
	Preface

	Conventions Used in This Book

	Example Code

	O’Reilly Online Learning

	How to Contact Us

	Acknowledgments

	Introduction to JavaScript

	1.1 Exploring JavaScript

	1.2 Hello World

	1.3 A Tour of JavaScript

	1.4 Example: Character Frequency Histograms

	1.5 Summary

	Lexical Structure

	2.1 The Text of a JavaScript Program

	2.2 Comments

	2.3 Literals

	2.4 Identifiers and Reserved Words

	2.4.1 Reserved Words

	2.5 Unicode

	2.5.1 Unicode Escape Sequences

	2.5.2 Unicode Normalization

	2.6 Optional Semicolons

	2.7 Summary

	Types, Values, and Variables

	3.1 Overview and Definitions

	3.2 Numbers

	3.2.1 Integer Literals

	3.2.2 Floating-Point Literals

	3.2.3 Arithmetic in JavaScript

	3.2.4 Binary Floating-Point and Rounding Errors

	3.2.5 Arbitrary Precision Integers with BigInt

	3.2.6 Dates and Times

	3.3 Text

	3.3.1 String Literals

	3.3.2 Escape Sequences in String Literals

	3.3.3 Working with Strings

	3.3.4 Template Literals

	3.3.5 Pattern Matching

	3.4 Boolean Values

	3.5 null and undefined

	3.6 Symbols

	3.7 The Global Object

	3.8 Immutable Primitive Values and Mutable Object References

	3.9 Type Conversions

	3.9.1 Conversions and Equality

	3.9.2 Explicit Conversions

	3.9.3 Object to Primitive Conversions

	3.10 Variable Declaration and Assignment

	3.10.1 Declarations with let and const

	3.10.2 Variable Declarations with var

	3.10.3 Destructuring Assignment

	3.11 Summary

	Expressions and Operators

	4.1 Primary Expressions

	4.2 Object and Array Initializers

	4.3 Function Definition Expressions

	4.4 Property Access Expressions

	4.4.1 Conditional Property Access

	4.5 Invocation Expressions

	4.5.1 Conditional Invocation

	4.6 Object Creation Expressions

	4.7 Operator Overview

	4.7.1 Number of Operands

	4.7.2 Operand and Result Type

	4.7.3 Operator Side Effects

	4.7.4 Operator Precedence

	4.7.5 Operator Associativity

	4.7.6 Order of Evaluation

	4.8 Arithmetic Expressions

	4.8.1 The + Operator

	4.8.2 Unary Arithmetic Operators

	4.8.3 Bitwise Operators

	4.9 Relational Expressions

	4.9.1 Equality and Inequality Operators

	4.9.2 Comparison Operators

	4.9.3 The in Operator

	4.9.4 The instanceof Operator

	4.10 Logical Expressions

	4.10.1 Logical AND (&&)

	4.10.2 Logical OR (||)

	4.10.3 Logical NOT (!)

	4.11 Assignment Expressions

	4.11.1 Assignment with Operation

	4.12 Evaluation Expressions

	4.12.1 eval()

	4.12.2 Global eval()

	4.12.3 Strict eval()

	4.13 Miscellaneous Operators

	4.13.1 The Conditional Operator (?:)

	4.13.2 First-Defined (??)

	4.13.3 The typeof Operator

	4.13.4 The delete Operator

	4.13.5 The await Operator

	4.13.6 The void Operator

	4.13.7 The comma Operator (,)

	4.14 Summary

	Statements

	5.1 Expression Statements

	5.2 Compound and Empty Statements

	5.3 Conditionals

	5.3.1 if

	5.3.2 else if

	5.3.3 switch

	5.4 Loops

	5.4.1 while

	5.4.2 do/while

	5.4.3 for

	5.4.4 for/of

	5.4.5 for/in

	5.5 Jumps

	5.5.1 Labeled Statements

	5.5.2 break

	5.5.3 continue

	5.5.4 return

	5.5.5 yield

	5.5.6 throw

	5.5.7 try/catch/finally

	5.6 Miscellaneous Statements

	5.6.1 with

	5.6.2 debugger

	5.6.3 “use strict”

	5.7 Declarations

	5.7.1 const, let, and var

	5.7.2 function

	5.7.3 class

	5.7.4 import and export

	5.8 Summary of JavaScript Statements

	Objects

	6.1 Introduction to Objects

	6.2 Creating Objects

	6.2.1 Object Literals

	6.2.2 Creating Objects with new

	6.2.3 Prototypes

	6.2.4 Object.create()

	6.3 Querying and Setting Properties

	6.3.1 Objects As Associative Arrays

	6.3.2 Inheritance

	6.3.3 Property Access Errors

	6.4 Deleting Properties

	6.5 Testing Properties

	6.6 Enumerating Properties

	6.6.1 Property Enumeration Order

	6.7 Extending Objects

	6.8 Serializing Objects

	6.9 Object Methods

	6.9.1 The toString() Method

	6.9.2 The toLocaleString() Method

	6.9.3 The valueOf() Method

	6.9.4 The toJSON() Method

	6.10 Extended Object Literal Syntax

	6.10.1 Shorthand Properties

	6.10.2 Computed Property Names

	6.10.3 Symbols as Property Names

	6.10.4 Spread Operator

	6.10.5 Shorthand Methods

	6.10.6 Property Getters and Setters

	6.11 Summary

	Arrays

	7.1 Creating Arrays

	7.1.1 Array Literals

	7.1.2 The Spread Operator

	7.1.3 The Array() Constructor

	7.1.4 Array.of()

	7.1.5 Array.from()

	7.2 Reading and Writing Array Elements

	7.3 Sparse Arrays

	7.4 Array Length

	7.5 Adding and Deleting Array Elements

	7.6 Iterating Arrays

	7.7 Multidimensional Arrays

	7.8 Array Methods

	7.8.1 Array Iterator Methods

	7.8.2 Flattening arrays with flat() and flatMap()

	7.8.3 Adding arrays with concat()

	7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

	7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

	7.8.6 Array Searching and Sorting Methods

	7.8.7 Array to String Conversions

	7.8.8 Static Array Functions

	7.9 Array-Like Objects

	7.10 Strings as Arrays

	7.11 Summary

	Functions

	8.1 Defining Functions

	8.1.1 Function Declarations

	8.1.2 Function Expressions

	8.1.3 Arrow Functions

	8.1.4 Nested Functions

	8.2 Invoking Functions

	8.2.1 Function Invocation

	8.2.2 Method Invocation

	8.2.3 Constructor Invocation

	8.2.4 Indirect Invocation

	8.2.5 Implicit Function Invocation

	8.3 Function Arguments and Parameters

	8.3.1 Optional Parameters and Defaults

	8.3.2 Rest Parameters and Variable-Length Argument Lists

	8.3.3 The Arguments Object

	8.3.4 The Spread Operator for Function Calls

	8.3.5 Destructuring Function Arguments into Parameters

	8.3.6 Argument Types

	8.4 Functions as Values

	8.4.1 Defining Your Own Function Properties

	8.5 Functions as Namespaces

	8.6 Closures

	8.7 Function Properties, Methods, and Constructor

	8.7.1 The length Property

	8.7.2 The name Property

	8.7.3 The prototype Property

	8.7.4 The call() and apply() Methods

	8.7.5 The bind() Method

	8.7.6 The toString() Method

	8.7.7 The Function() Constructor

	8.8 Functional Programming

	8.8.1 Processing Arrays with Functions

	8.8.2 Higher-Order Functions

	8.8.3 Partial Application of Functions

	8.8.4 Memoization

	8.9 Summary

	Classes

	9.1 Classes and Prototypes

	9.2 Classes and Constructors

	9.2.1 Constructors, Class Identity, and instanceof

	9.2.2 The constructor Property

	9.3 Classes with the class Keyword

	9.3.1 Static Methods

	9.3.2 Getters, Setters, and other Method Forms

	9.3.3 Public, Private, and Static Fields

	9.3.4 Example: A Complex Number Class

	9.4 Adding Methods to Existing Classes

	9.5 Subclasses

	9.5.1 Subclasses and Prototypes

	9.5.2 Subclasses with extends and super

	9.5.3 Delegation Instead of Inheritance

	9.5.4 Class Hierarchies and Abstract Classes

	9.6 Summary

	Modules

	10.1 Modules with Classes, Objects, and Closures

	10.1.1 Automating Closure-Based Modularity

	10.2 Modules in Node

	10.2.1 Node Exports

	10.2.2 Node Imports

	10.2.3 Node-Style Modules on the Web

	10.3 Modules in ES6

	10.3.1 ES6 Exports

	10.3.2 ES6 Imports

	10.3.3 Imports and Exports with Renaming

	10.3.4 Re-Exports

	10.3.5 JavaScript Modules on the Web

	10.3.6 Dynamic Imports with import()

	10.3.7 import.meta.url

	10.4 Summary

	The JavaScript Standard Library

	11.1 Sets and Maps

	11.1.1 The Set Class

	11.1.2 The Map Class

	11.1.3 WeakMap and WeakSet

	11.2 Typed Arrays and Binary Data

	11.2.1 Typed Array Types

	11.2.2 Creating Typed Arrays

	11.2.3 Using Typed Arrays

	11.2.4 Typed Array Methods and Properties

	11.2.5 DataView and Endianness

	11.3 Pattern Matching with Regular Expressions

	11.3.1 Defining Regular Expressions

	11.3.2 String Methods for Pattern Matching

	11.3.3 The RegExp Class

	11.4 Dates and Times

	11.4.1 Timestamps

	11.4.2 Date Arithmetic

	11.4.3 Formatting and Parsing Date Strings

	11.5 Error Classes

	11.6 JSON Serialization and Parsing

	11.6.1 JSON Customizations

	11.7 The Internationalization API

	11.7.1 Formatting Numbers

	11.7.2 Formatting Dates and Times

	11.7.3 Comparing Strings

	11.8 The Console API

	11.8.1 Formatted Output with Console

	11.9 URL APIs

	11.9.1 Legacy URL Functions

	11.10 Timers

	11.11 Summary

	Iterators and Generators

	12.1 How Iterators Work

	12.2 Implementing Iterable Objects

	12.2.1 “Closing” an Iterator: The Return Method

	12.3 Generators

	12.3.1 Generator Examples

	12.3.2 yield* and Recursive Generators

	12.4 Advanced Generator Features

	12.4.1 The Return Value of a Generator Function

	12.4.2 The Value of a yield Expression

	12.4.3 The return() and throw() Methods of a Generator

	12.4.4 A Final Note About Generators

	12.5 Summary

	Asynchronous JavaScript

	13.1 Asynchronous Programming with Callbacks

	13.1.1 Timers

	13.1.2 Events

	13.1.3 Network Events

	13.1.4 Callbacks and Events in Node

	13.2 Promises

	13.2.1 Using Promises

	13.2.2 Chaining Promises

	13.2.3 Resolving Promises

	13.2.4 More on Promises and Errors

	13.2.5 Promises in Parallel

	13.2.6 Making Promises

	13.2.7 Promises in Sequence

	13.3 async and await

	13.3.1 await Expressions

	13.3.2 async Functions

	13.3.3 Awaiting Multiple Promises

	13.3.4 Implementation Details

	13.4 Asynchronous Iteration

	13.4.1 The for/await Loop

	13.4.2 Asynchronous Iterators

	13.4.3 Asynchronous Generators

	13.4.4 Implementing Asynchronous Iterators

	13.5 Summary

	Metaprogramming

	14.1 Property Attributes

	14.2 Object Extensibility

	14.3 The prototype Attribute

	14.4 Well-Known Symbols

	14.4.1 Symbol.iterator and Symbol.asyncIterator

	14.4.2 Symbol.hasInstance

	14.4.3 Symbol.toStringTag

	14.4.4 Symbol.species

	14.4.5 Symbol.isConcatSpreadable

	14.4.6 Pattern-Matching Symbols

	14.4.7 Symbol.toPrimitive

	14.4.8 Symbol.unscopables

	14.5 Template Tags

	14.6 The Reflect API

	14.7 Proxy Objects

	14.7.1 Proxy Invariants

	14.8 Summary

	JavaScript in Web Browsers

	15.1 Web Programming Basics

	15.1.1 JavaScript in HTML <script> Tags

	15.1.2 The Document Object Model

	15.1.3 The Global Object in Web Browsers

	15.1.4 Scripts Share a Namespace

	15.1.5 Execution of JavaScript Programs

	15.1.6 Program Input and Output

	15.1.7 Program Errors

	15.1.8 The Web Security Model

	15.2 Events

	15.2.1 Event Categories

	15.2.2 Registering Event Handlers

	15.2.3 Event Handler Invocation

	15.2.4 Event Propagation

	15.2.5 Event Cancellation

	15.2.6 Dispatching Custom Events

	15.3 Scripting Documents

	15.3.1 Selecting Document Elements

	15.3.2 Document Structure and Traversal

	15.3.3 Attributes

	15.3.4 Element Content

	15.3.5 Creating, Inserting, and Deleting Nodes

	15.3.6 Example: Generating a Table of Contents

	15.4 Scripting CSS

	15.4.1 CSS Classes

	15.4.2 Inline Styles

	15.4.3 Computed Styles

	15.4.4 Scripting Stylesheets

	15.4.5 CSS Animations and Events

	15.5 Document Geometry and Scrolling

	15.5.1 Document Coordinates and Viewport Coordinates

	15.5.2 Querying the Geometry of an Element

	15.5.3 Determining the Element at a Point

	15.5.4 Scrolling

	15.5.5 Viewport Size, Content Size, and Scroll Position

	15.6 Web Components

	15.6.1 Using Web Components

	15.6.2 HTML Templates

	15.6.3 Custom Elements

	15.6.4 Shadow DOM

	15.6.5 Example: a <search-box> Web Component

	15.7 SVG: Scalable Vector Graphics

	15.7.1 SVG in HTML

	15.7.2 Scripting SVG

	15.7.3 Creating SVG Images with JavaScript

	15.8 Graphics in a <canvas>

	15.8.1 Paths and Polygons

	15.8.2 Canvas Dimensions and Coordinates

	15.8.3 Graphics Attributes

	15.8.4 Canvas Drawing Operations

	15.8.5 Coordinate System Transforms

	15.8.6 Clipping

	15.8.7 Pixel Manipulation

	15.9 Audio APIs

	15.9.1 The Audio() Constructor

	15.9.2 The WebAudio API

	15.10 Location, Navigation, and History

	15.10.1 Loading New Documents

	15.10.2 Browsing History

	15.10.3 History Management with hashchange Events

	15.10.4 History Management with pushState()

	15.11 Networking

	15.11.1 fetch()

	15.11.2 Server-Sent Events

	15.11.3 WebSockets

	15.12 Storage

	15.12.1 localStorage and sessionStorage

	15.12.2 Cookies

	15.12.3 IndexedDB

	15.13 Worker Threads and Messaging

	15.13.1 Worker Objects

	15.13.2 The Global Object in Workers

	15.13.3 Importing Code into a Worker

	15.13.4 Worker Execution Model

	15.13.5 postMessage(), MessagePorts, and MessageChannels

	15.13.6 Cross-Origin Messaging with postMessage()

	15.14 Example: The Mandelbrot Set

	15.15 Summary and Suggestions for Further Reading

	15.15.1 HTML and CSS

	15.15.2 Performance

	15.15.3 Security

	15.15.4 WebAssembly

	15.15.5 More Document and Window Features

	15.15.6 Events

	15.15.7 Progressive Web Apps and Service Workers

	15.15.8 Mobile Device APIs

	15.15.9 Binary APIs

	15.15.10 Media APIs

	15.15.11 Cryptography and Related APIs

	Server-Side JavaScript with Node

	16.1 Node Programming Basics

	16.1.1 Console Output

	16.1.2 Command-Line Arguments and Environment Variables

	16.1.3 Program Life Cycle

	16.1.4 Node Modules

	16.1.5 The Node Package Manager

	16.2 Node Is Asynchronous by Default

	16.3 Buffers

	16.4 Events and EventEmitter

	16.5 Streams

	16.5.1 Pipes

	16.5.2 Asynchronous Iteration

	16.5.3 Writing to Streams and Handling Backpressure

	16.5.4 Reading Streams with Events

	16.6 Process, CPU, and Operating System Details

	16.7 Working with Files

	16.7.1 Paths, File Descriptors, and FileHandles

	16.7.2 Reading Files

	16.7.3 Writing Files

	16.7.4 File Operations

	16.7.5 File Metadata

	16.7.6 Working with Directories

	16.8 HTTP Clients and Servers

	16.9 Non-HTTP Network Servers and Clients

	16.10 Working with Child Processes

	16.10.1 execSync() and execFileSync()

	16.10.2 exec() and execFile()

	16.10.3 spawn()

	16.10.4 fork()

	16.11 Worker Threads

	16.11.1 Creating Workers and Passing Messages

	16.11.2 The Worker Execution Environment

	16.11.3 Communication Channels and MessagePorts

	16.11.4 Transferring MessagePorts and Typed Arrays

	16.11.5 Sharing Typed Arrays Between Threads

	16.12 Summary

	JavaScript Tools and Extensions

	17.1 Linting with ESLint

	17.2 JavaScript Formatting with Prettier

	17.3 Unit Testing with Jest

	17.4 Package Management with npm

	17.5 Code Bundling

	17.6 Transpilation with Babel

	17.7 JSX: Markup Expressions in JavaScript

	17.8 Type Checking with Flow

	17.8.1 Installing and Running Flow

	17.8.2 Using Type Annotations

	17.8.3 Class Types

	17.8.4 Object Types

	17.8.5 Type Aliases

	17.8.6 Array Types

	17.8.7 Other Parameterized Types

	17.8.8 Read-Only Types

	17.8.9 Function Types

	17.8.10 Union Types

	17.8.11 Enumerated Types and Discriminated Unions

	17.9 Summary

	Index

Praise for JavaScript: The Definitive Guide, Seventh Edition

“This book is everything you never knew you wanted to know about JavaScript. Take your JavaScript code quality and productivity to the next level. David’s knowledge of the language, its intricacies and gotchas, is astounding, and it shines through in this truly definitive guide to the JavaScript language.”

Schalk Neethling, Senior Frontend Engineer at MDN Web Docs

“David Flanagan takes readers on a guided tour of JavaScript that will provide them with a feature-complete picture of the language and its ecosystem.”

Sarah Wachs, Frontend Developer and Women Who Code Berlin Lead

“Any developer interested in being productive in codebases developed throughout JavaScript’s lifetime (including the latest and emerging features) will be well served by a deep and reflective journey through this comprehensive and definitive book.”

Brian Sletten, President of Bosatsu Consulting

JavaScript: The Definitive Guide

Seventh Edition

Master the World’s Most-Used Programming Language

David Flanagan

JavaScript: The Definitive Guide, Seventh Edition

by David Flanagan

Copyright © 2020 David Flanagan. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Acquisitions Editor: Jennifer Pollock

		Development Editor: Angela Rufino

		Production Editor: Deborah Baker

		Copyeditor: Holly Bauer Forsyth

		Proofreader: Piper Editorial, LLC

		Indexer: Judith McConville

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Rebecca Demarest

		June 1998: Third Edition

		November 2001: Fourth Edition

		August 2006: Fifth Edition

		May 2011: Sixth Edition

		May 2020: Seventh Edition

Revision History for the Seventh Edition

		2020-05-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491952023 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. JavaScript: The Definitive Guide, Seventh Edition, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-95202-3

[LSI]

Dedication

To my parents, Donna and Matt, with love and gratitude.

Preface

This book covers the JavaScript language and the JavaScript APIs
implemented by web browsers and by Node. I wrote it for readers with
some prior programming experience who want to learn JavaScript and
also for programmers who already use JavaScript but want to take their
understanding to a new level and really master the language. My goal
with this book is to document the JavaScript language comprehensively
and definitively and to provide an in-depth introduction to the most
important client-side and server-side APIs available to JavaScript
programs. As a result, this is a long and detailed book. My hope,
however, is that it will reward careful study and that the time you
spend reading it will be easily recouped in the form of higher
programming productivity.

Previous editions of this book included a comprehensive reference
section. I no longer feel that it makes sense to include that material
in printed form when it is so quick and easy to find up-to-date
reference material online. If you need to look up anything related to
core or client-side JavaScript, I recommend you visit the MDN website. And for server-side Node APIs, I recommend you go directly to the source and consult the Node.js reference documentation.

Conventions Used in This Book

I use the following typographical conventions in this book:

	Italic

	
 Is used for emphasis and to indicate the first use of a term.
Italic is also used for email addresses, URLs, and file names.

	Constant width

	
 Is used in all JavaScript code and CSS and HTML listings, and
generally for anything that you would type literally when programming.

	Constant width italic

	
Is occasionally used when explaining JavaScript syntax.

	Constant width bold

	
Shows commands or other text that should be typed literally by the user

Note

This element signifies a general note.

Important

This element indicates a warning or caution.

Example Code

Supplemental material (code examples, exercises, etc.) for this book is available for download at:

	
https://oreil.ly/javascript_defgd7

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “JavaScript: The Definitive Guide, Seventh Edition, by David
Flanagan (O’Reilly). Copyright 2020 David Flanagan, 978-1-491-95202-3.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/javascript_defgd7.

Email bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and more information about our books and courses, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many people have helped with the creation of this book. I’d like to
thank my editor, Angela Rufino, for keeping me on track and for her
patience with my missed deadlines. Thanks also to my technical
reviewers: Brian Sletten, Elisabeth Robson, Ethan Flanagan,
Maximiliano Firtman, Sarah Wachs, and Schalk Neethling. Their comments
and suggestions have made this a better book.

The production team at O’Reilly has done their usual fine job: Kristen Brown managed the production process, Deborah Baker was the production editor, Rebecca Demarest drew the figures, and Judy McConville created the index.

Editors, reviewers, and contributors to previous editions of this book
have included: Andrew Schulman, Angelo Sirigos, Aristotle Pagaltzis,
Brendan Eich, Christian Heilmann, Dan Shafer, Dave C. Mitchell, Deb
Cameron, Douglas Crockford, Dr. Tankred Hirschmann, Dylan Schiemann,
Frank Willison, Geoff Stearns, Herman Venter, Jay Hodges, Jeff Yates,
Joseph Kesselman, Ken Cooper, Larry Sullivan, Lynn Rollins, Neil
Berkman, Mike Loukides, Nick Thompson, Norris Boyd, Paula Ferguson,
Peter-Paul Koch, Philippe Le Hegaret, Raffaele Cecco, Richard Yaker,
Sanders Kleinfeld, Scott Furman, Scott Isaacs, Shon Katzenberger,
Terry Allen, Todd Ditchendorf, Vidur Apparao, Waldemar Horwat, and
Zachary Kessin.

Writing this seventh edition kept me away from my family for many late
nights. My love to them and my thanks for putting up with my absences.

David Flanagan,
March 2020

Chapter 1. Introduction to JavaScript

JavaScript is the programming language of the web. The overwhelming
majority of websites use JavaScript, and all modern web browsers—on
desktops, tablets, and phones—include JavaScript interpreters, making
JavaScript the most-deployed programming language in history. Over the
last decade, Node.js has enabled JavaScript programming outside of web
browsers, and the dramatic success of Node means that JavaScript is
now also the most-used programming language among software
developers. Whether you’re starting from scratch or are already using
JavaScript professionally, this book will help you master the
language.

If you are already familiar with other programming languages, it may
help you to know that JavaScript is a high-level, dynamic, interpreted
programming language that is well-suited to object-oriented and
functional programming styles. JavaScript’s variables are untyped. Its
syntax is loosely based on Java, but the languages are otherwise
unrelated. JavaScript derives its first-class functions from Scheme
and its prototype-based inheritance from the little-known language
Self. But you do not need to know any of those languages, or be
familiar with those terms, to use this book and learn JavaScript.

The name “JavaScript” is quite misleading. Except for a superficial
syntactic resemblance, JavaScript is completely different from the
Java programming language. And JavaScript has long since outgrown its
scripting-language roots to become a robust and efficient
general-purpose language suitable for serious software engineering
and projects with huge codebases.

JavaScript: Names, Versions, and Modes

JavaScript was created at Netscape in the early days of the web, and
technically, “JavaScript” is a trademark licensed from Sun
Microsystems (now Oracle) used to describe Netscape’s (now Mozilla’s)
implementation of the language. Netscape submitted the language for
standardization to ECMA—the European Computer Manufacturer’s
Association—and because of trademark issues, the standardized version
of the language was stuck with the awkward name “ECMAScript.” In
practice, everyone just calls the language JavaScript. This book uses
the name “ECMAScript” and the abbreviation “ES” to refer to the
language standard and to versions of that standard.

For most of the 2010s, version 5 of the ECMAScript standard has been
supported by all web browsers. This book treats ES5 as the
compatibility baseline and no longer discusses earlier versions of the
language. ES6 was released in 2015 and added major new
features—including class and module syntax—that changed JavaScript
from a scripting language into a serious, general-purpose language
suitable for large-scale software engineering. Since ES6, the
ECMAScript specification has moved to a yearly release cadence, and
versions of the language—ES2016, ES2017, ES2018, ES2019, and
ES2020—are now identified by year of release.

As JavaScript evolved, the language designers attempted to correct
flaws in the early (pre-ES5) versions. In order to maintain backward
compatibility, it is not possible to remove legacy features, no matter
how flawed. But in ES5 and later, programs can opt in to JavaScript’s
strict mode in which a number of early language mistakes have been
corrected. The mechanism for opting in is the “use strict” directive
described in §5.6.3. That section also summarizes the
differences between legacy JavaScript and strict JavaScript. In ES6
and later, the use of new language features often implicitly invokes
strict mode. For example, if you use the ES6 class keyword or create
an ES6 module, then all the code within the class or module is
automatically strict, and the old, flawed features are not available
in those contexts. This book will cover the legacy features of
JavaScript but is careful to point out that they are not available in
strict mode.

To be useful, every language must have a platform, or standard
library, for performing things like basic input and output. The core
JavaScript language defines a minimal API for working with numbers, text, arrays, sets, maps, and so
on, but does not include any input or output functionality. Input and
output (as well as more sophisticated features, such as networking,
storage, and graphics) are the responsibility of the “host
environment” within which JavaScript is embedded.

The original host environment for JavaScript was a web browser, and
this is still the most common execution environment for JavaScript
code. The web browser environment allows JavaScript code to obtain
input from the user’s mouse and keyboard and by making HTTP
requests. And it allows JavaScript code to display output to the user
with HTML and CSS.

Since 2010, another host environment has been available for JavaScript
code. Instead of constraining JavaScript to work with the APIs
provided by a web browser, Node gives JavaScript access to the entire
operating system, allowing JavaScript programs to read and write
files, send and receive data over the network, and make and serve HTTP
requests. Node is a popular choice for implementing web servers and
also a convenient tool for writing simple utility scripts as an
alternative to shell scripts.

Most of this book is focused on the JavaScript language itself.
Chapter 11 documents the JavaScript standard library, Chapter 15 introduces the web browser host environment, and
Chapter 16 introduces the Node host environment.

This book covers low-level fundamentals first, and then builds on
those to more advanced and higher-level abstractions. The chapters are
intended to be read more or less in order. But learning a new
programming language is never a linear process, and describing a
language is not linear either: each language feature is related to
other features, and this book is full of cross-references—sometimes
backward and sometimes forward—to related material. This introductory
chapter makes a quick first pass through the language, introducing key
features that will make it easier to understand the in-depth treatment
in the chapters that follow. If you are already a practicing
JavaScript programmer, you can probably skip this chapter. (Although you
might enjoy reading Example 1-1 at the end of the chapter before
you move on.)

1.1 Exploring JavaScript

When learning a new programming language, it’s important to try the
examples in the book, then modify them and try them again to test
your understanding of the language. To do that, you need a JavaScript
interpreter.

The easiest way to try out a few lines of JavaScript is to open up the
web developer tools in your web browser (with F12, Ctrl-Shift-I,
or Command-Option-I) and select the Console tab. You can then type
code at the prompt and see the results as you type. Browser developer
tools often appear as panes at the bottom or right of the browser
window, but you can usually detach them as separate windows (as
pictured in Figure 1-1), which is often quite convenient.

[image: js7e 0101]
Figure 1-1. The JavaScript console in Firefox’s Developer Tools

Another way to try out JavaScript code is to download and install Node
from https://nodejs.org. Once Node is installed on your system, you
can simply open a Terminal window and type node to begin an
interactive JavaScript session like this one:

$ node
Welcome to Node.js v12.13.0.
Type ".help" for more information.
> .help
.break Sometimes you get stuck, this gets you out
.clear Alias for .break
.editor Enter editor mode
.exit Exit the repl
.help Print this help message
.load Load JS from a file into the REPL session
.save Save all evaluated commands in this REPL session to a file

Press ^C to abort current expression, ^D to exit the repl
> let x = 2, y = 3;
undefined
> x + y
5
> (x === 2) && (y === 3)
true
> (x > 3) || (y < 3)
false

1.2 Hello World

When you are ready to start experimenting with longer chunks of code,
these line-by-line interactive environments may no longer be suitable,
and you will probably prefer to write your code in a text editor. From
there, you can copy and paste to the JavaScript console or into a Node
session. Or you can save your code to a file (the traditional
filename extension for JavaScript code is .js) and then run that
file of JavaScript code with Node:

$ node snippet.js

If you use Node in a noninteractive manner like this, it won’t
automatically print out the value of all the code you run, so you’ll
have to do that yourself. You can use the function console.log() to
display text and other JavaScript values in your terminal window or in
a browser’s developer tools console. So, for example, if you create a
hello.js file containing this line of code:

console.log("Hello World!");

and execute the file with node hello.js, you’ll see the message
“Hello World!” printed out.

If you want to see that same message printed out in the JavaScript
console of a web browser, create a new file named hello.html, and
put this text in it:

<script src="hello.js"></script>

Then load hello.html into your web browser using a file:// URL
like this one:

file:///Users/username/javascript/hello.html

Open the developer tools window to see the greeting in the console.

1.3 A Tour of JavaScript

This section presents a quick introduction, through code examples, to the
JavaScript language. After this introductory chapter, we dive into
JavaScript at the lowest level: Chapter 2 explains things like
JavaScript comments, semicolons, and the Unicode character set.
Chapter 3 starts to get more interesting: it explains JavaScript
variables and the values you can assign to those variables.

Here’s some
sample code to illustrate the highlights of those two chapters:

// Anything following double slashes is an English-language comment.
// Read the comments carefully: they explain the JavaScript code.

// A variable is a symbolic name for a value.
// Variables are declared with the let keyword:
let x; // Declare a variable named x.

// Values can be assigned to variables with an = sign
x = 0; // Now the variable x has the value 0
x // => 0: A variable evaluates to its value.

// JavaScript supports several types of values
x = 1; // Numbers.
x = 0.01; // Numbers can be integers or reals.
x = "hello world"; // Strings of text in quotation marks.
x = 'JavaScript'; // Single quote marks also delimit strings.
x = true; // A Boolean value.
x = false; // The other Boolean value.
x = null; // Null is a special value that means "no value."
x = undefined; // Undefined is another special value like null.

Two other very important types that JavaScript programs can
manipulate are objects and arrays. These are the subjects of Chapters
6 and 7, but they are so important that you’ll see
them many times before you reach those chapters:

// JavaScript's most important datatype is the object.
// An object is a collection of name/value pairs, or a string to value map.
let book = { // Objects are enclosed in curly braces.
 topic: "JavaScript", // The property "topic" has value "JavaScript."
 edition: 7 // The property "edition" has value 7
}; // The curly brace marks the end of the object.

// Access the properties of an object with . or []:
book.topic // => "JavaScript"
book["edition"] // => 7: another way to access property values.
book.author = "Flanagan"; // Create new properties by assignment.
book.contents = {}; // {} is an empty object with no properties.

// Conditionally access properties with ?. (ES2020):
book.contents?.ch01?.sect1 // => undefined: book.contents has no ch01 property.

// JavaScript also supports arrays (numerically indexed lists) of values:
let primes = [2, 3, 5, 7]; // An array of 4 values, delimited with [and].
primes[0] // => 2: the first element (index 0) of the array.
primes.length // => 4: how many elements in the array.
primes[primes.length-1] // => 7: the last element of the array.
primes[4] = 9; // Add a new element by assignment.
primes[4] = 11; // Or alter an existing element by assignment.
let empty = []; // [] is an empty array with no elements.
empty.length // => 0

// Arrays and objects can hold other arrays and objects:
let points = [// An array with 2 elements.
 {x: 0, y: 0}, // Each element is an object.
 {x: 1, y: 1}
];
let data = { // An object with 2 properties
 trial1: [[1,2], [3,4]], // The value of each property is an array.
 trial2: [[2,3], [4,5]] // The elements of the arrays are arrays.
};

Comment Syntax in Code Examples

You may have noticed in the preceding code that some of the comments begin
with an arrow (=>). These show the value produced by the code before
the comment and are my attempt to emulate an interactive JavaScript
environment like a web browser console in a printed book.

Those // => comments also serve as an assertion, and I’ve written
a tool that tests the code and verifies that it produces the value
specified in the comment. This should help, I hope, to reduce
errors in the book.

There are two related styles of comment/assertion. If you see a
comment of the form // a == 42, it means that after the code before
the comment runs, the variable a will have the value 42. If you see
a comment of the form // !, it means that the code on the line
before the comment throws an exception (and the rest of the comment
after the exclamation mark usually explains what kind of exception is
thrown).

You’ll see these comments used throughout the book.

The syntax illustrated here for listing array elements within square
braces or mapping object property names to property values inside curly
braces is known as an initializer expression, and it is just one of
the topics of Chapter 4. An expression is a phrase of
JavaScript that can be evaluated to produce a value. For example, the
use of . and [] to refer to the value of an object property or
array element is an expression.

One of the most common ways to form expressions in JavaScript is to use
operators:

// Operators act on values (the operands) to produce a new value.
// Arithmetic operators are some of the simplest:
3 + 2 // => 5: addition
3 - 2 // => 1: subtraction
3 * 2 // => 6: multiplication
3 / 2 // => 1.5: division
points[1].x - points[0].x // => 1: more complicated operands also work
"3" + "2" // => "32": + adds numbers, concatenates strings

// JavaScript defines some shorthand arithmetic operators
let count = 0; // Define a variable
count++; // Increment the variable
count--; // Decrement the variable
count += 2; // Add 2: same as count = count + 2;
count *= 3; // Multiply by 3: same as count = count * 3;
count // => 6: variable names are expressions, too.

// Equality and relational operators test whether two values are equal,
// unequal, less than, greater than, and so on. They evaluate to true or false.
let x = 2, y = 3; // These = signs are assignment, not equality tests
x === y // => false: equality
x !== y // => true: inequality
x < y // => true: less-than
x <= y // => true: less-than or equal
x > y // => false: greater-than
x >= y // => false: greater-than or equal
"two" === "three" // => false: the two strings are different
"two" > "three" // => true: "tw" is alphabetically greater than "th"
false === (x > y) // => true: false is equal to false

// Logical operators combine or invert boolean values
(x === 2) && (y === 3) // => true: both comparisons are true. && is AND
(x > 3) || (y < 3) // => false: neither comparison is true. || is OR
!(x === y) // => true: ! inverts a boolean value

If JavaScript expressions are like phrases, then JavaScript
statements are like full sentences. Statements are the topic of
Chapter 5. Roughly, an expression is something that computes a
value but doesn’t do anything: it doesn’t alter the program state in
any way. Statements, on the other hand, don’t have a value, but they
do alter the state. You’ve seen variable declarations and assignment
statements above. The other broad category of statement is control structures, such as conditionals and loops. You’ll see examples below, after we cover functions.

A function is a named and parameterized block of JavaScript code that
you define once, and can then invoke over and over again. Functions
aren’t covered formally until Chapter 8, but like objects and
arrays, you’ll see them many times before you get to that chapter. Here
are some simple examples:

// Functions are parameterized blocks of JavaScript code that we can invoke.
function plus1(x) { // Define a function named "plus1" with parameter "x"
 return x + 1; // Return a value one larger than the value passed in
} // Functions are enclosed in curly braces

plus1(y) // => 4: y is 3, so this invocation returns 3+1

let square = function(x) { // Functions are values and can be assigned to vars
 return x * x; // Compute the function's value
}; // Semicolon marks the end of the assignment.

square(plus1(y)) // => 16: invoke two functions in one expression

In ES6 and later, there is a shorthand syntax for defining
functions. This concise syntax uses => to separate the argument list
from the function body, so functions defined this way are known as
arrow functions. Arrow functions are most commonly used when you
want to pass an unnamed function as an argument to another
function. The preceding code looks like this when rewritten to use arrow
functions:

const plus1 = x => x + 1; // The input x maps to the output x + 1
const square = x => x * x; // The input x maps to the output x * x
plus1(y) // => 4: function invocation is the same
square(plus1(y)) // => 16

When we use functions with objects, we get methods:

// When functions are assigned to the properties of an object, we call
// them "methods." All JavaScript objects (including arrays) have methods:
let a = []; // Create an empty array
a.push(1,2,3); // The push() method adds elements to an array
a.reverse(); // Another method: reverse the order of elements

// We can define our own methods, too. The "this" keyword refers to the object
// on which the method is defined: in this case, the points array from earlier.
points.dist = function() { // Define a method to compute distance between points
 let p1 = this[0]; // First element of array we're invoked on
 let p2 = this[1]; // Second element of the "this" object
 let a = p2.x-p1.x; // Difference in x coordinates
 let b = p2.y-p1.y; // Difference in y coordinates
 return Math.sqrt(a*a + // The Pythagorean theorem
 b*b); // Math.sqrt() computes the square root
};
points.dist() // => Math.sqrt(2): distance between our 2 points

Now, as promised, here are some functions whose bodies demonstrate
common JavaScript control structure statements:

// JavaScript statements include conditionals and loops using the syntax
// of C, C++, Java, and other languages.
function abs(x) { // A function to compute the absolute value.
 if (x >= 0) { // The if statement...
 return x; // executes this code if the comparison is true.
 } // This is the end of the if clause.
 else { // The optional else clause executes its code if
 return -x; // the comparison is false.
 } // Curly braces optional when 1 statement per clause.
} // Note return statements nested inside if/else.
abs(-10) === abs(10) // => true

function sum(array) { // Compute the sum of the elements of an array
 let sum = 0; // Start with an initial sum of 0.
 for(let x of array) { // Loop over array, assigning each element to x.
 sum += x; // Add the element value to the sum.
 } // This is the end of the loop.
 return sum; // Return the sum.
}
sum(primes) // => 28: sum of the first 5 primes 2+3+5+7+11

function factorial(n) { // A function to compute factorials
 let product = 1; // Start with a product of 1
 while(n > 1) { // Repeat statements in {} while expr in () is true
 product *= n; // Shortcut for product = product * n;
 n--; // Shortcut for n = n - 1
 } // End of loop
 return product; // Return the product
}
factorial(4) // => 24: 1*4*3*2

function factorial2(n) { // Another version using a different loop
 let i, product = 1; // Start with 1
 for(i=2; i <= n; i++) // Automatically increment i from 2 up to n
 product *= i; // Do this each time. {} not needed for 1-line loops
 return product; // Return the factorial
}
factorial2(5) // => 120: 1*2*3*4*5

JavaScript supports an object-oriented programming style, but it is
significantly different than “classical” object-oriented programming
languages. Chapter 9 covers object-oriented programming in
JavaScript in detail, with lots of examples. Here is a very simple
example that demonstrates how to define a JavaScript class to
represent 2D geometric points. Objects that are instances of this
class have a single method, named distance(), that computes the
distance of the point from the origin:

class Point { // By convention, class names are capitalized.
 constructor(x, y) { // Constructor function to initialize new instances.
 this.x = x; // This keyword is the new object being initialized.
 this.y = y; // Store function arguments as object properties.
 } // No return is necessary in constructor functions.

 distance() { // Method to compute distance from origin to point.
 return Math.sqrt(// Return the square root of x² + y².
 this.x * this.x + // this refers to the Point object on which
 this.y * this.y // the distance method is invoked.
);
 }
}

// Use the Point() constructor function with "new" to create Point objects
let p = new Point(1, 1); // The geometric point (1,1).

// Now use a method of the Point object p
p.distance() // => Math.SQRT2

This introductory tour of JavaScript’s fundamental syntax and
capabilities ends here, but the book continues with self-contained
chapters that cover additional features of the language:

	Chapter 10, Modules

	
Shows how JavaScript code in one file or script can use JavaScript functions and classes defined in other files or scripts.

	Chapter 11, The JavaScript Standard Library

	
Covers the built-in functions and classes that are
 available to all JavaScript programs. This includes important data
 stuctures like maps and sets, a regular expression class for textual
 pattern matching, functions for serializing JavaScript data
 structures, and much more.

	Chapter 12, Iterators and Generators

	
Explains how the for/of loop works and how you can
 make your own classes iterable with for/of. It also covers
 generator functions and the yield statement.

	Chapter 13, Asynchronous JavaScript

	
This chapter is an in-depth exploration of asynchronous programming in
 JavaScript, covering callbacks and events, Promise-based APIs, and
 the async and await keywords. Although the core JavaScript
 language is not asynchronous, asynchronous APIs are the default in
 both web browsers and Node, and this chapter explains the techniques
 for working with those APIs.

	Chapter 14, Metaprogramming

	
Introduces a number of advanced features of
 JavaScript that may be of interest to programmers writing
 libraries of code for other JavaScript programmers to use.

	Chapter 15, JavaScript in Web Browsers

	
Introduces the web browser host environment, explains
 how web browsers execute JavaScript code, and covers the most
 important of the many APIs defined by web browsers. This is by far
 the longest chapter in the book.

	Chapter 16, Server-Side JavaScript with Node

	
Introduces the Node host environment, covering the
 fundamental programming model and the data structures and APIs that
 are most important to understand.

	Chapter 17, JavaScript Tools and Extensions

	
Covers tools and language extensions that are worth
 knowing about because they are widely used and may make you a more
 productive programmer.

1.4 Example: Character Frequency Histograms

This chapter concludes with a short but nontrivial JavaScript
program. Example 1-1 is a Node program that reads text from
standard input, computes a character frequency histogram from that
text, and then prints out the histogram. You could invoke the program
like this to analyze the character frequency of its own source code:

$ node charfreq.js < charfreq.js
T: ########### 11.22%
E: ########## 10.15%
R: ####### 6.68%
S: ###### 6.44%
A: ###### 6.16%
N: ###### 5.81%
O: ##### 5.45%
I: ##### 4.54%
H: #### 4.07%
C: ### 3.36%
L: ### 3.20%
U: ### 3.08%
/: ### 2.88%

This example uses a number of advanced JavaScript features and is
intended to demonstrate what real-world JavaScript programs can look
like. You should not expect to understand all of the code yet, but be
assured that all of it will be explained in the chapters that follow.

Example 1-1. Computing character frequency histograms with JavaScript

/**
 * This Node program reads text from standard input, computes the frequency
 * of each letter in that text, and displays a histogram of the most
 * frequently used characters. It requires Node 12 or higher to run.
 *
 * In a Unix-type environment you can invoke the program like this:
 * node charfreq.js < corpus.txt
 */

// This class extends Map so that the get() method returns the specified
// value instead of null when the key is not in the map
class DefaultMap extends Map {
 constructor(defaultValue) {
 super(); // Invoke superclass constructor
 this.defaultValue = defaultValue; // Remember the default value
 }

 get(key) {
 if (this.has(key)) { // If the key is already in the map
 return super.get(key); // return its value from superclass.
 }
 else {
 return this.defaultValue; // Otherwise return the default value
 }
 }
}

// This class computes and displays letter frequency histograms
class Histogram {
 constructor() {
 this.letterCounts = new DefaultMap(0); // Map from letters to counts
 this.totalLetters = 0; // How many letters in all
 }

 // This function updates the histogram with the letters of text.
 add(text) {
 // Remove whitespace from the text, and convert to upper case
 text = text.replace(/\s/g, "").toUpperCase();

 // Now loop through the characters of the text
 for(let character of text) {
 let count = this.letterCounts.get(character); // Get old count
 this.letterCounts.set(character, count+1); // Increment it
 this.totalLetters++;
 }
 }

 // Convert the histogram to a string that displays an ASCII graphic
 toString() {
 // Convert the Map to an array of [key,value] arrays
 let entries = [...this.letterCounts];

 // Sort the array by count, then alphabetically
 entries.sort((a,b) => { // A function to define sort order.
 if (a[1] === b[1]) { // If the counts are the same
 return a[0] < b[0] ? -1 : 1; // sort alphabetically.
 } else { // If the counts differ
 return b[1] - a[1]; // sort by largest count.
 }
 });

 // Convert the counts to percentages
 for(let entry of entries) {
 entry[1] = entry[1] / this.totalLetters*100;
 }

 // Drop any entries less than 1%
 entries = entries.filter(entry => entry[1] >= 1);

 // Now convert each entry to a line of text
 let lines = entries.map(
 ([l,n]) => `${l}: ${"#".repeat(Math.round(n))} ${n.toFixed(2)}%`
);

 // And return the concatenated lines, separated by newline characters.
 return lines.join("\n");
 }
}

// This async (Promise-returning) function creates a Histogram object,
// asynchronously reads chunks of text from standard input, and adds those chunks to
// the histogram. When it reaches the end of the stream, it returns this histogram
async function histogramFromStdin() {
 process.stdin.setEncoding("utf-8"); // Read Unicode strings, not bytes
 let histogram = new Histogram();
 for await (let chunk of process.stdin) {
 histogram.add(chunk);
 }
 return histogram;
}

// This one final line of code is the main body of the program.
// It makes a Histogram object from standard input, then prints the histogram.
histogramFromStdin().then(histogram => { console.log(histogram.toString()); });

1.5 Summary

This book explains JavaScript from the bottom up. This means that we
start with low-level details like comments, identifiers, variables, and
types; then build to expressions, statements, objects, and functions;
and then cover high-level language abstractions like classes and
modules. I take the word definitive in the title of this book
seriously, and the coming chapters explain the language at a level of
detail that may feel off-putting at first. True mastery of JavaScript
requires an understanding of the details, however, and I hope that you
will make time to read this book cover to cover. But please don’t feel
that you need to do that on your first reading. If you find yourself
feeling bogged down in a section, simply skip to the next. You can
come back and master the details once you have a working knowledge of
the language as a whole.

Chapter 2. Lexical Structure

The lexical structure of a programming language is the set of
elementary rules that specifies how you write programs in that
language. It is the lowest-level syntax of a language: it specifies
what variable names look like, the delimiter characters for comments,
and how one program statement is separated from the next, for
example. This short chapter documents the lexical structure of
JavaScript. It covers:

	
Case sensitivity, spaces, and line breaks

	
Comments

	
Literals

	
Identifiers and reserved words

	
Unicode

	
Optional semicolons

2.1 The Text of a JavaScript Program

JavaScript is a case-sensitive language. This means that language
keywords, variables, function names, and other identifiers must
always be typed with a consistent capitalization of letters. The
while keyword, for example, must be typed “while,” not “While”
or “WHILE.” Similarly, online, Online, OnLine, and ONLINE
are four distinct variable names.

JavaScript ignores spaces that appear between tokens in programs. For
the most part, JavaScript also ignores line breaks (but see
§2.6 for an exception). Because you can use spaces
and newlines freely in your programs, you can format and indent your
programs in a neat and consistent way that makes the code easy to read
and understand.

In addition to the regular space character (\u0020), JavaScript also
recognizes tabs, assorted ASCII control characters, and various Unicode
space characters as whitespace. JavaScript recognizes newlines,
carriage returns, and a carriage return/line feed sequence as line
terminators.

2.2 Comments

JavaScript supports two styles of comments. Any text between a //
and the end of a line is treated as a comment and is ignored by
JavaScript. Any text between the characters /* and */ is also
treated as a comment; these comments may span multiple lines but may
not be nested. The following lines of code are all legal JavaScript
comments:

// This is a single-line comment.

/* This is also a comment */ // and here is another comment.

/*
 * This is a multi-line comment. The extra * characters at the start of
 * each line are not a required part of the syntax; they just look cool!
 */

2.3 Literals

A literal is a data value that appears directly in a program. The
following are all literals:

12 // The number twelve
1.2 // The number one point two
"hello world" // A string of text
'Hi' // Another string
true // A Boolean value
false // The other Boolean value
null // Absence of an object

Complete details on numeric and string literals appear in
Chapter 3.

2.4 Identifiers and Reserved Words

An identifier is simply a name. In JavaScript, identifiers are used
to name constants, variables, properties, functions, and classes and
to provide labels for certain loops in JavaScript code. A JavaScript
identifier must begin with a letter, an underscore (_), or a dollar
sign ($). Subsequent characters can be letters, digits, underscores,
or dollar signs. (Digits are not allowed as the first character so
that JavaScript can easily distinguish identifiers from numbers.)
These are all legal identifiers:

i
my_variable_name
v13
_dummy
$str

Like any language, JavaScript reserves certain identifiers for use by
the language itself. These “reserved words” cannot be used as
regular identifiers. They are listed in the next section.

2.4.1 Reserved Words

The following words are part of the JavaScript language.
Many of these (such as if, while, and for) are reserved
keywords that must not be used as the names of constants, variables,
functions, or classes (though they can all be used as the names of
properties within an object). Others (such as from, of, get, and
set) are used in limited contexts with no syntactic ambiguity and
are perfectly legal as identifiers. Still other keywords (such as
let) can’t be fully reserved in order to retain backward
compatibility with older programs, and so there are complex rules that
govern when they can be used as identifiers and when they
cannot. (let can be used as a variable name if declared with var
outside of a class, for example, but not if declared inside a class or
with const.) The simplest course is to avoid using any of these
words as identifiers, except for from, set, and target,
which are safe to use and are already in common use.

as const export get null target void
async continue extends if of this while
await debugger false import return throw with
break default finally in set true yield
case delete for instanceof static try
catch do from let super typeof
class else function new switch var

JavaScript also reserves or restricts the use of certain keywords that
are not currently used by the language but that might be used in
future versions:

enum implements interface package private protected public

For historical reasons, arguments and eval are not allowed as
identifiers in certain circumstances and are best avoided entirely.

2.5 Unicode

JavaScript programs are written using the Unicode character set, and
you can use any Unicode characters in strings and comments. For
portability and ease of editing, it is common to use only ASCII
letters and digits in identifiers. But this is a programming
convention only, and the language allows Unicode letters, digits, and
ideographs (but not emojis) in identifiers. This means that
programmers can use mathematical symbols and words from non-English
languages as constants and variables:

const π = 3.14;
const sí = true;

2.5.1 Unicode Escape Sequences

Some computer hardware and software cannot display, input, or
correctly process the full set of Unicode characters. To support
programmers and systems using older technology, JavaScript defines
escape sequences that allow us to write Unicode characters using only
ASCII characters. These Unicode escapes begin with the characters \u
and are either followed by exactly four hexadecimal digits (using
uppercase or lowercase letters A–F) or by one to six hexadecimal digits
enclosed within curly braces. These Unicode escapes may appear in
JavaScript string literals, regular expression literals, and identifiers (but not in language keywords). The Unicode escape for the
character “é,” for example, is \u00E9; here are three different
ways to write a variable name that includes this character:

let café = 1; // Define a variable using a Unicode character
caf\u00e9 // => 1; access the variable using an escape sequence
caf\u{E9} // => 1; another form of the same escape sequence

Early versions of JavaScript only supported the four-digit escape
sequence. The version with curly braces was introduced
in ES6 to better
support Unicode codepoints that require more than 16 bits, such as
emoji:

console.log("\u{1F600}"); // Prints a smiley face emoji

Unicode escapes may also appear in comments, but since comments are
ignored, they are simply treated as ASCII characters in that context
and not interpreted as Unicode.

2.5.2 Unicode Normalization

If you use non-ASCII characters in your JavaScript programs, you must
be aware that Unicode allows more than one way of encoding the same
character. The string “é,” for example, can be encoded as the single
Unicode character \u00E9 or as a regular ASCII “e” followed by the
acute accent combining mark \u0301. These two encodings typically look
exactly the same when displayed by a text editor, but they have
different binary encodings, meaning that they are considered
different by JavaScript, which can lead to very confusing programs:

const café = 1; // This constant is named "caf\u{e9}"
const café = 2; // This constant is different: "cafe\u{301}"
café // => 1: this constant has one value
café // => 2: this indistinguishable constant has a different value

The Unicode standard defines the preferred encoding for all characters
and specifies a normalization procedure to convert text to a canonical
form suitable for comparisons. JavaScript assumes that the source code
it is interpreting has already been normalized and does not do any
normalization on its own. If you plan to use Unicode characters in
your JavaScript programs, you should ensure that your editor or some
other tool performs Unicode normalization of your source code to
prevent you from ending up with different but visually
indistinguishable identifiers.

2.6 Optional Semicolons

Like many programming languages, JavaScript uses the semicolon (;)
to separate statements (see Chapter 5) from one another. This is
important for making the meaning of your code clear: without a separator,
the end of one statement might appear to be the beginning of the next,
or vice versa. In JavaScript, you can usually omit the semicolon
between two statements if those statements are written on separate
lines. (You can also omit a semicolon at the end of a program or if
the next token in the program is a closing curly brace: }.) Many
JavaScript programmers (and the code in this book) use semicolons to
explicitly mark the ends of statements, even where they are not
required. Another style is to omit semicolons whenever possible,
using them only in the few situations that require them. Whichever
style you choose, there are a few details you should understand about
optional semicolons in JavaScript.

Consider the following code. Since the two statements appear on
separate lines, the first semicolon could be omitted:

a = 3;
b = 4;

Written as follows, however, the first semicolon is required:

a = 3; b = 4;

Note that JavaScript does not treat every line break as a semicolon:
it usually treats line breaks as semicolons only if it can’t parse the
code without adding an implicit semicolon. More formally (and with three
exceptions described a bit later), JavaScript treats a line break as a
semicolon if the next nonspace character cannot be interpreted as a
continuation of the current statement. Consider the following code:

let a
a
=
3
console.log(a)

JavaScript interprets this code like this:

let a; a = 3; console.log(a);

JavaScript does treat the first line break as a semicolon because it
cannot parse the code let a a without a semicolon. The second a
could stand alone as the statement a;, but JavaScript does not treat
the second line break as a semicolon because it can continue parsing
the longer statement a = 3;.

These statement termination rules lead to some surprising cases. This code
looks like two separate statements separated with a newline:

let y = x + f
(a+b).toString()

But the parentheses on the second line of code can be interpreted as a
function invocation of f from the first line, and JavaScript
interprets the code like this:

let y = x + f(a+b).toString();

More likely than not, this is not the interpretation intended by the
author of the code. In order to work as two separate statements, an
explicit semicolon is required in this case.

In general, if a statement begins with (, [, /, +, or -,
there is a chance that it could be interpreted as a continuation of
the statement before. Statements beginning with /, +, and - are
quite rare in practice, but statements beginning with (and [are
not uncommon at all, at least in some styles of JavaScript
programming. Some programmers like to put a defensive semicolon at the
beginning of any such statement so that it will continue to work
correctly even if the statement before it is modified and a previously
terminating semicolon removed:

let x = 0 // Semicolon omitted here
;[x,x+1,x+2].forEach(console.log) // Defensive ; keeps this statement separate

There are three exceptions to the general rule that JavaScript
interprets line breaks as semicolons when it cannot parse the second
line as a continuation of the statement on the first line. The first
exception involves the return, throw, yield, break, and
continue statements (see Chapter 5). These statements often
stand alone, but they are sometimes followed by an identifier or
expression. If a line break appears after any of these words (before
any other tokens), JavaScript will always interpret that line break as
a semicolon. For example, if you write:

return
true;

JavaScript assumes you meant:

return; true;

However, you probably meant:

return true;

This means that you must not insert a line break between
return, break, or continue and the expression that follows the
keyword. If you do insert a line break, your code is likely to fail in
a nonobvious way that is difficult to debug.

The second exception involves the ++ and −− operators
(§4.8). These operators can be prefix operators
that appear before an expression or postfix operators that appear
after an expression. If you want to use either of these operators as
postfix operators, they must appear on the same line as the expression
they apply to. The third exception involves functions defined using
concise “arrow” syntax: the => arrow itself
must appear on the same line as the parameter list.

2.7 Summary

This chapter has shown how JavaScript programs are written at the
lowest level. The next chapter takes us one step higher and introduces
the primitive types and values (numbers, strings, and so on) that
serve as the basic units of computation for JavaScript programs.

Chapter 3. Types, Values, and Variables

Computer programs work by manipulating values, such as the number 3.14
or the text “Hello World.” The kinds of values that can be represented
and manipulated in a programming language are known as types, and one
of the most fundamental characteristics of a programming language is
the set of types it supports. When a program needs to retain a value
for future use, it assigns the value to (or “stores” the value in) a
variable. Variables have names, and they allow use of those names in our
programs to refer to values. The way that variables work is another
fundamental characteristic of any programming language. This chapter
explains types, values, and variables in JavaScript. It begins with an
overview and some definitions.

3.1 Overview and Definitions

JavaScript types can be divided into two categories: primitive types
and object types. JavaScript’s primitive types include numbers,
strings of text (known as strings), and Boolean truth values (known as
booleans). A significant portion of this chapter is dedicated to a
detailed explanation of the numeric (§3.2) and string
(§3.3) types in JavaScript. Booleans are covered in §3.4.

The special JavaScript values null and undefined are primitive values, but
they are not numbers, strings, or booleans. Each value is typically considered
to be the sole member of its own special type. §3.5 has more about
null and undefined. ES6 adds a new special-purpose type,
known as Symbol, that enables the definition of language extensions
without harming backward compatibility. Symbols are covered briefly in
§3.6.

Any JavaScript value that is not a number, a string, a boolean, a
symbol, null, or undefined is an object. An object (that is, a
member of the type object) is a collection of properties where
each property has a name and a value (either a primitive value or
another object). One very special object, the global object, is
covered in §3.7, but more general and more detailed coverage of
objects is in Chapter 6.

An ordinary JavaScript object is an unordered collection of named values. The
language also defines a special kind of object, known as an array, that
represents an ordered collection of numbered values. The JavaScript language
includes special syntax for working with arrays, and arrays have some special
behavior that distinguishes them from ordinary objects. Arrays are the subject
of Chapter 7.

In addition to basic objects and arrays, JavaScript defines a number of
other useful object types. A Set object represents a set of values. A
Map object
represents a mapping from keys to values. Various “typed array” types
facilitate operations on arrays of bytes and other binary data. The
RegExp type represents textual patterns and enables sophisticated
matching, searching, and replacing operations on strings. The Date type
represents dates and times and supports rudimentary date
arithmetic. Error and its subtypes represent errors that can arise when
executing JavaScript code. All of these types are covered in
Chapter 11.

JavaScript differs from more static languages in that functions and
classes are not just part of the language syntax: they are themselves
values that can be manipulated by JavaScript programs. Like any
JavaScript value that is not a primitive value, functions and classes
are a specialized kind of object. They are covered in detail in Chapters 8 and 9.

The JavaScript interpreter performs automatic garbage collection for
memory management. This means that a JavaScript programmer generally
does not need to worry about destruction or deallocation of objects or
other values. When a value is no longer reachable—when a program no
longer has any way to refer to it—the interpreter knows it can never
be used again and automatically reclaims the memory it was
occupying. (JavaScript programmers do sometimes need to take care to
ensure that values do not inadvertently remain reachable—and therefore
nonreclaimable—longer than necessary.)

JavaScript supports an object-oriented programming style. Loosely,
this means that rather than having globally defined functions to
operate on values of various types, the types themselves define
methods for working with values. To sort the elements of an array a,
for example, we don’t pass a to a sort() function. Instead, we
invoke the sort() method of a:

a.sort(); // The object-oriented version of sort(a).

Method definition is covered in Chapter 9. Technically, it is only
JavaScript objects that have methods. But numbers, strings, boolean, and
symbol values behave as if they have methods. In JavaScript, null and
undefined are the only values that methods cannot be invoked on.

JavaScript’s object types are mutable and its primitive types are
immutable. A value of a mutable type can change: a JavaScript program
can change the values of object properties and array elements. Numbers,
booleans, symbols, null, and undefined are immutable—it doesn’t even make
sense to talk about changing the value of a number, for example. Strings
can be thought of as arrays of characters, and you might expect them to
be mutable. In JavaScript, however, strings are immutable: you can
access the text at any index of a string, but JavaScript provides no way
to alter the text of an existing string. The differences between mutable
and immutable values are explored further in §3.8.

JavaScript liberally converts values from one type to another. If a
program expects a string, for example, and you give it a number, it will
automatically convert the number to a string for you. And if you use a
non-boolean value where a boolean is expected, JavaScript will convert
accordingly. The rules for value conversion are explained in
§3.9. JavaScript’s liberal value conversion rules affect its
definition of equality, and the == equality operator performs type
conversions as described in §3.9.1. (In practice,
however, the == equality operator is deprecated in favor of the
strict equality operator ===, which does no type conversions. See
§4.9.1 for more about both operators.)

Constants and variables allow you to use names to refer to values in
your programs. Constants are declared with const and variables are
declared with let (or with var in older JavaScript code). JavaScript
constants and variables are untyped: declarations do not specify what
kind of values will be assigned. Variable declaration and assignment are
covered in §3.10.

As you can see from this long introduction, this is a wide-ranging
chapter that explains many fundamental details about how data is
represented and manipulated in JavaScript. We’ll begin by diving right
in to the details of JavaScript numbers and text.

3.2 Numbers

JavaScript’s primary numeric type, Number, is used to represent
integers and to approximate real numbers. JavaScript represents
numbers using the 64-bit floating-point format defined by the IEEE 754
standard,1 which means it can
represent numbers as large as ±1.7976931348623157 × 10308 and as
small as ±5 × 10−324.

The JavaScript number format allows you to exactly represent all integers
between −9,007,199,254,740,992 (−253) and 9,007,199,254,740,992 (253), inclusive. If
you use integer values larger than this, you may lose precision in the trailing
digits. Note, however, that certain operations in JavaScript (such as array
indexing and the bitwise operators described in Chapter 4) are performed
with 32-bit integers. If you need to exactly represent larger
integers, see §3.2.5.

When a number appears directly in a JavaScript program, it’s called a numeric literal. JavaScript supports numeric literals in several formats, as described
in the following sections. Note that any numeric literal can be preceded by a
minus sign (-) to make the number negative.

3.2.1 Integer Literals

In a JavaScript program, a base-10 integer is written as a sequence of
digits. For example:

0
3
10000000

In addition to base-10 integer literals, JavaScript recognizes
hexadecimal (base-16) values. A hexadecimal literal begins with 0x
or 0X, followed by a string of hexadecimal digits. A hexadecimal
digit is one of the digits 0 through 9 or the letters a (or A) through
f (or F), which represent values 10 through 15. Here are examples of
hexadecimal integer literals:

0xff // => 255: (15*16 + 15)
0xBADCAFE // => 195939070

In ES6 and later, you can also express integers in binary
(base 2) or octal (base 8) using the prefixes 0b and 0o (or 0B
and 0O) instead of 0x:

0b10101 // => 21: (1*16 + 0*8 + 1*4 + 0*2 + 1*1)
0o377 // => 255: (3*64 + 7*8 + 7*1)

3.2.2 Floating-Point Literals

Floating-point literals can have a decimal point; they use the traditional
syntax for real numbers. A real value is represented as the integral part of
the number, followed by a decimal point and the fractional part of the number.

Floating-point literals may also be represented using exponential notation: a
real number followed by the letter e (or E), followed by an optional plus or
minus sign, followed by an integer exponent. This notation represents the real
number multiplied by 10 to the power of the exponent.

More succinctly, the syntax is:

[digits][.digits][(E|e)[(+|-)]digits]

For example:

3.14
2345.6789
.333333333333333333
6.02e23 // 6.02 × 10²³
1.4738223E-32 // 1.4738223 × 10⁻³²

Separators in Numeric Literals

You can use underscores within numeric literals to break long literals
up into chunks that are easier to read:

let billion = 1_000_000_000; // Underscore as a thousands separator.
let bytes = 0x89_AB_CD_EF; // As a bytes separator.
let bits = 0b0001_1101_0111; // As a nibble separator.
let fraction = 0.123_456_789; // Works in the fractional part, too.

At the time of this writing in early 2020, underscores in numeric
literals are not yet formally standardized as part of JavaScript. But
they are in the advanced stages of the standardization process and are
implemented by all major browsers and by Node.

3.2.3 Arithmetic in JavaScript

JavaScript programs work with numbers using the arithmetic operators
. that the language provides. These include + for addition,
- for subtraction, * for multiplication, / for
division, and % for modulo (remainder after division).
ES2016 adds ** for exponentiation.
Full details on these and other operators can be found in Chapter 4.

In addition to these basic arithmetic operators, JavaScript supports more
complex mathematical operations through a set of functions and constants
defined as properties of the Math object:

Math.pow(2,53) // => 9007199254740992: 2 to the power 53
Math.round(.6) // => 1.0: round to the nearest integer
Math.ceil(.6) // => 1.0: round up to an integer
Math.floor(.6) // => 0.0: round down to an integer
Math.abs(-5) // => 5: absolute value
Math.max(x,y,z) // Return the largest argument
Math.min(x,y,z) // Return the smallest argument
Math.random() // Pseudo-random number x where 0 <= x < 1.0
Math.PI // π: circumference of a circle / diameter
Math.E // e: The base of the natural logarithm
Math.sqrt(3) // => 3**0.5: the square root of 3
Math.pow(3, 1/3) // => 3**(1/3): the cube root of 3
Math.sin(0) // Trigonometry: also Math.cos, Math.atan, etc.
Math.log(10) // Natural logarithm of 10
Math.log(100)/Math.LN10 // Base 10 logarithm of 100
Math.log(512)/Math.LN2 // Base 2 logarithm of 512
Math.exp(3) // Math.E cubed

ES6 defines more functions on the Math object:

Math.cbrt(27) // => 3: cube root
Math.hypot(3, 4) // => 5: square root of sum of squares of all arguments
Math.log10(100) // => 2: Base-10 logarithm
Math.log2(1024) // => 10: Base-2 logarithm
Math.log1p(x) // Natural log of (1+x); accurate for very small x
Math.expm1(x) // Math.exp(x)-1; the inverse of Math.log1p()
Math.sign(x) // -1, 0, or 1 for arguments <, ==, or > 0
Math.imul(2,3) // => 6: optimized multiplication of 32-bit integers
Math.clz32(0xf) // => 28: number of leading zero bits in a 32-bit integer
Math.trunc(3.9) // => 3: convert to an integer by truncating fractional part
Math.fround(x) // Round to nearest 32-bit float number
Math.sinh(x) // Hyperbolic sine. Also Math.cosh(), Math.tanh()
Math.asinh(x) // Hyperbolic arcsine. Also Math.acosh(), Math.atanh()

Arithmetic in JavaScript does not raise errors in cases of overflow, underflow,
or division by zero. When the result of a numeric operation is larger than the
largest representable number (overflow), the result is a special infinity
value, Infinity. Similarly, when the absolute
value of a negative value becomes larger than the absolute value of the largest
representable negative number, the result is negative infinity,
-Infinity. The infinite values behave as you would expect: adding,
subtracting, multiplying, or dividing them by anything results in an infinite
value (possibly with the sign reversed).

Underflow occurs when the result of a numeric operation is closer to zero than
the smallest representable number. In this case, JavaScript returns 0. If
underflow occurs from a negative number, JavaScript returns a special value
known as “negative zero.” This value is almost completely indistinguishable
from regular zero and JavaScript programmers rarely need to detect it.

Division by zero is not an error in JavaScript: it simply returns infinity or
negative infinity. There is one exception, however: zero divided by zero does
not have a well-defined value, and the result of this operation is the special
not-a-number value, NaN. NaN also arises if you attempt to
divide infinity by infinity, take the square root of a negative number, or
use arithmetic operators with non-numeric operands that cannot be converted to
numbers.

JavaScript predefines global constants Infinity and NaN to hold the
positive infinity and not-a-number value, and these values are also
available as properties of the Number object:

Infinity // A positive number too big to represent
Number.POSITIVE_INFINITY // Same value
1/0 // => Infinity
Number.MAX_VALUE * 2 // => Infinity; overflow

-Infinity // A negative number too big to represent
Number.NEGATIVE_INFINITY // The same value
-1/0 // => -Infinity
-Number.MAX_VALUE * 2 // => -Infinity

NaN // The not-a-number value
Number.NaN // The same value, written another way
0/0 // => NaN
Infinity/Infinity // => NaN

Number.MIN_VALUE/2 // => 0: underflow
-Number.MIN_VALUE/2 // => -0: negative zero
-1/Infinity // -> -0: also negative 0
-0

// The following Number properties are defined in ES6
Number.parseInt() // Same as the global parseInt() function
Number.parseFloat() // Same as the global parseFloat() function
Number.isNaN(x) // Is x the NaN value?
Number.isFinite(x) // Is x a number and finite?
Number.isInteger(x) // Is x an integer?
Number.isSafeInteger(x) // Is x an integer -(2**53) < x < 2**53?
Number.MIN_SAFE_INTEGER // => -(2**53 - 1)
Number.MAX_SAFE_INTEGER // => 2**53 - 1
Number.EPSILON // => 2**-52: smallest difference between numbers

The not-a-number value has one unusual feature in JavaScript: it does
not compare equal to any other value, including itself. This means
that you can’t write x === NaN to determine whether the value of a
variable x is NaN. Instead, you must write x != x or
Number.isNaN(x). Those expressions will be true if, and only if, x
has the same value as the global constant NaN.

The global function isNaN() is similar to Number.isNaN(). It
returns true if its argument is NaN, or if that argument is a
non-numeric value that cannot be converted to a number. The related
function Number.isFinite() returns true if its argument is a
number other than NaN, Infinity, or -Infinity. The global
isFinite() function returns true if its argument is, or can be
converted to, a finite number.

The negative zero value is also somewhat unusual. It compares equal (even using
JavaScript’s strict equality test) to positive zero, which means that the two
values are almost indistinguishable, except when used as a divisor:

let zero = 0; // Regular zero
let negz = -0; // Negative zero
zero === negz // => true: zero and negative zero are equal
1/zero === 1/negz // => false: Infinity and -Infinity are not equal

3.2.4 Binary Floating-Point and Rounding Errors

There are infinitely many real numbers, but only a finite number of them
(18,437,736,874,454,810,627, to be exact) can be represented exactly by the
JavaScript floating-point format. This means that when you’re working with real
numbers in JavaScript, the representation of the number will often be an
approximation of the actual number.

The IEEE-754 floating-point representation used by JavaScript (and just about
every other modern programming language) is a binary representation, which can
exactly represent fractions like 1/2, 1/8, and 1/1024.
Unfortunately, the fractions we use most commonly (especially when performing
financial calculations) are decimal fractions: 1/10, 1/100, and
so on. Binary floating-point representations cannot exactly represent numbers
as simple as 0.1.

JavaScript numbers have plenty of precision and can approximate 0.1 very
closely. But the fact that this number cannot be represented exactly can lead
to problems. Consider this code:

let x = .3 - .2; // thirty cents minus 20 cents
let y = .2 - .1; // twenty cents minus 10 cents
x === y // => false: the two values are not the same!
x === .1 // => false: .3-.2 is not equal to .1
y === .1 // => true: .2-.1 is equal to .1

Because of rounding error, the difference between the approximations of .3 and
.2 is not exactly the same as the difference between the approximations of .2
and .1. It is important to understand that this problem is not specific to
JavaScript: it affects any programming language that uses binary floating-point
numbers. Also, note that the values x and y in the code shown here are very
close to each other and to the correct value. The computed values are adequate
for almost any purpose; the problem only arises when we attempt to
compare values for equality.

If these floating-point approximations are problematic for your
programs, consider using scaled integers. For example, you might
manipulate monetary values as integer cents rather than fractional
dollars.

3.2.5 Arbitrary Precision Integers with BigInt

One of the newest features of JavaScript, defined in ES2020, is a new
numeric type known as BigInt. As of early 2020, it has been implemented
in Chrome, Firefox, Edge, and Node, and there is an implementation in
progress in Safari. As the name implies, BigInt is a numeric type
whose values are integers. The type was added to JavaScript mainly to
allow the representation of 64-bit integers, which are required for
compatibility with many other programming languages and APIs. But
BigInt values can have thousands or even millions of digits, should
you have need to work with numbers that large. (Note, however, that
BigInt implementations are not suitable for cryptography because they
do not attempt to prevent timing attacks.)

BigInt literals are written as a string of digits followed by a
lowercase letter n. By default, the are in base 10, but you can use
the 0b, 0o, and 0x prefixes for binary, octal, and hexadecimal
BigInts:

1234n // A not-so-big BigInt literal
0b111111n // A binary BigInt
0o7777n // An octal BigInt
0x8000000000000000n // => 2n**63n: A 64-bit integer

You can use BigInt() as a function for converting regular JavaScript
numbers or strings to BigInt values:

BigInt(Number.MAX_SAFE_INTEGER) // => 9007199254740991n
let string = "1" + "0".repeat(100); // 1 followed by 100 zeros.
BigInt(string) // => 10n**100n: one googol

Arithmetic with BigInt values works like arithmetic with regular
JavaScript numbers, except that division drops any remainder and
rounds down (toward zero):

1000n + 2000n // => 3000n
3000n - 2000n // => 1000n
2000n * 3000n // => 6000000n
3000n / 997n // => 3n: the quotient is 3
3000n % 997n // => 9n: and the remainder is 9
(2n ** 131071n) - 1n // A Mersenne prime with 39457 decimal digits

Although the standard +, -, *, /, %, and ** operators work
with BigInt, it is important to understand that you may not mix
operands of type BigInt with regular number operands. This may seem
confusing at first, but there is a good reason for it. If one numeric
type was more general than the other, it would be easy to define
arithmetic on mixed operands to simply return a value of the more
general type. But neither type is more general than the other: BigInt
can represent extraordinarily large values, making it more general
than regular numbers. But BigInt can only represent integers, making
the regular JavaScript number type more general. There is no way
around this problem, so JavaScript sidesteps it by simply not allowing
mixed operands to the arithmetic operators.

Comparison operators, by contrast, do work with mixed numeric types
(but see §3.9.1 for more about the difference
between == and ===):

1 < 2n // => true
2 > 1n // => true
0 == 0n // => true
0 === 0n // => false: the === checks for type equality as well

The bitwise operators (described in §4.8.3) generally
work with BigInt operands. None of the functions of the Math object
accept BigInt operands, however.

3.2.6 Dates and Times

JavaScript defines a simple Date class for representing and
manipulating the numbers that represent dates and times. JavaScript
Dates are objects, but they also have a numeric representation as a
timestamp that specifies the number of elapsed milliseconds since
January 1, 1970:

let timestamp = Date.now(); // The current time as a timestamp (a number).
let now = new Date(); // The current time as a Date object.
let ms = now.getTime(); // Convert to a millisecond timestamp.
let iso = now.toISOString(); // Convert to a string in standard format.

The Date class and its methods are covered in detail in
§11.4. But we will see Date objects again in §3.9.3 when we examine the details of JavaScript type
conversions.

3.3 Text

The JavaScript type for representing text is the string. A string
is an immutable ordered sequence of 16-bit values, each of which
typically represents a Unicode character. The length of a string is
the number of 16-bit values it contains. JavaScript’s strings (and its
arrays) use zero-based indexing: the first 16-bit value is at position
0, the second at position 1, and so on. The empty string is the
string of length 0. JavaScript does not have a special type that
represents a single element of a string. To represent a single 16-bit
value, simply use a string that has a length of 1.

Characters, Codepoints, and JavaScript Strings

JavaScript uses the UTF-16 encoding of the Unicode character set, and JavaScript strings are sequences of unsigned 16-bit values. The most commonly used Unicode characters (those from the “basic multilingual plane”) have codepoints that fit in 16 bits and can be represented by one element of a string. Unicode characters whose codepoints do not fit in 16 bits are encoded using the rules of UTF-16 as a sequence (known as a “surrogate pair”) of two 16-bit values. This means that a JavaScript string of length 2 (two 16-bit values) might represent only a single Unicode character:

let euro = "€";
let love = "❤";
euro.length // => 1: this character has one 16-bit element
love.length // => 2: UTF-16 encoding of ❤ is "\ud83d\udc99"

Most string-manipulation methods defined by JavaScript operate on 16-bit
values, not characters. They do not treat surrogate pairs specially, they perform
no normalization of the string, and don’t even ensure that a string is
well-formed UTF-16.

In ES6, however, strings are iterable, and if you use the
for/of loop or ... operator with a string, it will iterate the
actual characters of the string, not the 16-bit values.

3.3.1 String Literals

To include a string in a JavaScript program, simply enclose the
characters of the string within a matched pair of single or double
quotes or backticks (' or " or `). Double-quote characters and
backticks may be contained within strings delimited by single-quote
characters, and similarly for strings delimited by double quotes and
backticks. Here are examples of string literals:

"" // The empty string: it has zero characters
'testing'
"3.14"
'name="myform"'
"Wouldn't you prefer O'Reilly's book?"
"τ is the ratio of a circle's circumference to its radius"
`"She said 'hi'", he said.`

Strings delimited with backticks are a feature of ES6, and
allow JavaScript expressions to be embedded within (or interpolated
into) the string literal. This expression interpolation syntax is
covered in §3.3.4.

The original versions of JavaScript required string literals to be
written on a single line, and it is common to see JavaScript code that
creates long strings by concatenating single-line strings with the +
operator. As of ES5, however, you can break a string literal
across multiple lines by ending each line but the last with a
backslash (\). Neither the backslash nor the line terminator that
follow it are part of the string literal. If you need to include a
newline character in a single-quoted or double-quoted string literal,
use the character sequence \n (documented in the next section). The ES6 backtick
syntax allows strings to be broken across multiple lines, and in this
case, the line terminators are part of the string literal:

// A string representing 2 lines written on one line:
'two\nlines'

// A one-line string written on 3 lines:
"one\
 long\
 line"

// A two-line string written on two lines:
`the newline character at the end of this line
is included literally in this string`

Note that when you use single quotes to delimit your strings, you must be
careful with English contractions and possessives, such as can’t and
O’Reilly’s. Since the apostrophe is the same as the single-quote character,
you must use the backslash character (\) to “escape” any apostrophes
that appear in single-quoted strings (escapes are explained in the next
section).

In client-side JavaScript programming, JavaScript code may contain strings of
HTML code, and HTML code may contain strings of JavaScript code. Like
JavaScript, HTML uses either single or double quotes to delimit its strings.
Thus, when combining JavaScript and HTML, it is a good idea to use one style of
quotes for JavaScript and the other style for HTML. In the following example,
the string “Thank you” is single-quoted within a JavaScript expression, which
is then double-quoted within an HTML event-handler attribute:

<button onclick="alert('Thank you')">Click Me</button>

3.3.2 Escape Sequences in String Literals

The backslash character (\) has a special purpose in JavaScript
strings. Combined with the character that follows it, it represents a character
that is not otherwise representable within the string. For example, \n
is an escape sequence that represents a newline character.

Another example, mentioned earlier, is the \' escape, which
represents the single quote (or apostrophe) character. This escape sequence is
useful when you need to include an apostrophe in a string literal that is
contained within single quotes. You can see why these are called escape
sequences: the backslash allows you to escape from the usual interpretation of
the single-quote character. Instead of using it to mark the end of the string,
you use it as an apostrophe:

'You\'re right, it can\'t be a quote'

Table 3-1 lists the JavaScript escape sequences and the
characters they represent. Three escape sequences are generic and can
be used to represent any character by specifying its Unicode character
code as a hexadecimal number. For example, the sequence \xA9
represents the copyright symbol, which has the Unicode encoding given
by the hexadecimal number A9. Similarly, the \u escape represents an
arbitrary Unicode character specified by four hexadecimal digits or
one to five digits when the digits are enclosed in curly braces:
\u03c0 represents the character π, for example, and \u{1f600}
represents the “grinning face” emoji.

Table 3-1. JavaScript escape sequences

	Sequence
	Character represented

	\0

	The NUL character (\u0000)

	\b

	Backspace (\u0008)

	\t

	Horizontal tab (\u0009)

	\n

	Newline (\u000A)

	\v

	Vertical tab (\u000B)

	\f

	Form feed (\u000C)

	\r

	Carriage return (\u000D)

	\"

	Double quote (\u0022)

	\'

	Apostrophe or single quote (\u0027)

	\\

	Backslash (\u005C)

	\xnn

	The Unicode character specified by the two hexadecimal digits nn

	\unnnn

	The Unicode character specified by the four hexadecimal digits nnnn

	\u{n}

	The Unicode character specified by the codepoint n, where n is one to six hexadecimal digits between 0 and 10FFFF (ES6)

If the \ character precedes any character other than those shown in
Table 3-1, the backslash is simply ignored (although future versions
of the language may, of course, define new escape sequences). For example,
\# is the same as #. Finally, as noted earlier, ES5 allows a
backslash before a line break to break a string literal across multiple lines.

3.3.3 Working with Strings

One of the built-in features of JavaScript is the ability to concatenate
strings. If you use the + operator with numbers, it adds them. But if
you use this operator on strings, it joins them by appending the second to the
first. For example:

let msg = "Hello, " + "world"; // Produces the string "Hello, world"
let greeting = "Welcome to my blog," + " " + name;

Strings can be compared with the standard === equality and !==
inequality operators: two strings are equal if and only if they
consist of exactly the same sequence of 16-bit values. Strings can
also be compared with the <, <=, >, and >= operators. String
comparison is done simply by comparing the 16-bit values. (For more
robust locale-aware string comparison and sorting, see §11.7.3.)

To determine the length of a string—the number of 16-bit values it contains—use
the length property of the string:

s.length

In addition to this length property, JavaScript provides a rich API
for working with strings:

let s = "Hello, world"; // Start with some text.

// Obtaining portions of a string
s.substring(1,4) // => "ell": the 2nd, 3rd, and 4th characters.
s.slice(1,4) // => "ell": same thing
s.slice(-3) // => "rld": last 3 characters
s.split(", ") // => ["Hello", "world"]: split at delimiter string

// Searching a string
s.indexOf("l") // => 2: position of first letter l
s.indexOf("l", 3) // => 3: position of first "l" at or after 3
s.indexOf("zz") // => -1: s does not include the substring "zz"
s.lastIndexOf("l") // => 10: position of last letter l

// Boolean searching functions in ES6 and later
s.startsWith("Hell") // => true: the string starts with these
s.endsWith("!") // => false: s does not end with that
s.includes("or") // => true: s includes substring "or"

// Creating modified versions of a string
s.replace("llo", "ya") // => "Heya, world"
s.toLowerCase() // => "hello, world"
s.toUpperCase() // => "HELLO, WORLD"
s.normalize() // Unicode NFC normalization: ES6
s.normalize("NFD") // NFD normalization. Also "NFKC", "NFKD"

// Inspecting individual (16-bit) characters of a string
s.charAt(0) // => "H": the first character
s.charAt(s.length-1) // => "d": the last character
s.charCodeAt(0) // => 72: 16-bit number at the specified position
s.codePointAt(0) // => 72: ES6, works for codepoints > 16 bits

// String padding functions in ES2017
"x".padStart(3) // => " x": add spaces on the left to a length of 3
"x".padEnd(3) // => "x ": add spaces on the right to a length of 3
"x".padStart(3, "*") // => "**x": add stars on the left to a length of 3
"x".padEnd(3, "-") // => "x--": add dashes on the right to a length of 3

// Space trimming functions. trim() is ES5; others ES2019
" test ".trim() // => "test": remove spaces at start and end
" test ".trimStart() // => "test ": remove spaces on left. Also trimLeft
" test ".trimEnd() // => " test": remove spaces at right. Also trimRight

// Miscellaneous string methods
s.concat("!") // => "Hello, world!": just use + operator instead
"<>".repeat(5) // => "<><><><><>": concatenate n copies. ES6

Remember that strings are immutable in JavaScript. Methods like replace() and
toUpperCase() return new strings: they do not modify the string on which
they are invoked.

Strings can also be treated like read-only arrays,
and you can access individual characters (16-bit values) from a string
using square brackets instead of the charAt() method:

let s = "hello, world";
s[0] // => "h"
s[s.length-1] // => "d"

3.3.4 Template Literals

In ES6 and later, string literals can be delimited with
backticks:

let s = `hello world`;

This is more than just another string literal syntax, however, because
these template literals can include arbitrary JavaScript
expressions. The final value of a string literal in backticks is
computed by evaluating any included expressions, converting the values
of those expressions to strings and combining those computed strings
with the literal characters within the backticks:

let name = "Bill";
let greeting = `Hello ${ name }.`; // greeting == "Hello Bill."

Everything between the ${ and the matching } is
interpreted as a JavaScript expression. Everything outside the curly
braces is normal string literal text. The expression inside the braces
is evaluated and then converted to a string and inserted into the
template, replacing the dollar sign, the curly braces, and everything
in between them.

A template literal may include any number of expressions. It can use
any of the escape characters that normal strings can, and it can span
any number of lines, with no special escaping required. The following
template literal includes four JavaScript expressions, a Unicode escape
sequence, and at least four newlines (the expression values may include
newlines as well):

let errorMessage = `\
\u2718 Test failure at ${filename}:${linenumber}:
${exception.message}
Stack trace:
${exception.stack}
`;

The backslash at the end of the first line here escapes the initial
newline so that the resulting string begins with the Unicode ✘
character (\u2718) rather than a newline.

Tagged template literals

A powerful but less commonly used feature of template literals is
that, if a function name (or “tag”) comes right before the opening
backtick, then the text and the values of the expressions within the
template literal are passed to the function. The value of this
“tagged template literal” is the return value of the function. This
could be used, for example, to apply HTML or SQL escaping to the
values before substituting them into the text.

ES6 has one built-in tag function: String.raw(). It
returns the text within backticks without any processing of
backslash escapes:

`\n`.length // => 1: the string has a single newline character
String.raw`\n`.length // => 2: a backslash character and the letter n

Note that even though the tag portion of a tagged template literal is a
function, there are no parentheses used in its invocation. In this
very specific case, the backtick characters replace the open and close
parentheses.

The ability to define your own template tag functions is a powerful
feature of JavaScript. These functions do not need to return
strings, and they can be used like constructors, as if defining a new
literal syntax for the language. We’ll see an example in §14.5.

3.3.5 Pattern Matching

JavaScript defines a datatype known as a regular expression (or
RegExp) for describing and matching patterns in strings of
text. RegExps are not one of the fundamental datatypes in JavaScript,
but they have a literal syntax like numbers and strings do, so they
sometimes seem like they are fundamental. The grammar of regular
expression literals is complex and the API they define is
nontrivial. They are documented in detail in §11.3. Because
RegExps are powerful and commonly used for text processing, however,
this section provides a brief overview.

Text between a pair of slashes constitutes a regular expression
literal. The second slash in the pair can also be followed by one or more
letters, which modify the meaning of the pattern. For example:

/^HTML/; // Match the letters H T M L at the start of a string
/[1-9][0-9]*/; // Match a nonzero digit, followed by any # of digits
/\bjavascript\b/i; // Match "javascript" as a word, case-insensitive

RegExp objects define a number of useful methods, and strings also have methods
that accept RegExp arguments. For example:

let text = "testing: 1, 2, 3"; // Sample text
let pattern = /\d+/g; // Matches all instances of one or more digits
pattern.test(text) // => true: a match exists
text.search(pattern) // => 9: position of first match
text.match(pattern) // => ["1", "2", "3"]: array of all matches
text.replace(pattern, "#") // => "testing: #, #, #"
text.split(/\D+/) // => ["","1","2","3"]: split on nondigits

3.4 Boolean Values

A boolean value represents truth or falsehood, on or off, yes or no. There are
only two possible values of this type. The reserved words true and false
evaluate to these two values.

Boolean values are generally the result of comparisons you make in your
JavaScript programs. For example:

a === 4

This code tests to see whether the value of the variable a is equal to the
number 4. If it is, the result of this comparison is the boolean value
true. If a is not equal to 4, the result of the comparison is false.

Boolean values are commonly used in JavaScript control structures. For example,
the if/else statement in JavaScript performs one action if a boolean
value is true and another action if the value is false. You usually combine
a comparison that creates a boolean value directly with a statement that uses
it. The result looks like this:

if (a === 4) {
 b = b + 1;
} else {
 a = a + 1;
}

This code checks whether a equals 4. If so, it adds 1 to b; otherwise,
it adds 1 to a.

As we’ll discuss in §3.9, any JavaScript value can be converted to a
boolean value. The following values convert to, and therefore work like,
false:

undefined
null
0
-0
NaN
"" // the empty string

All other values, including all objects (and arrays) convert to, and work like,
true. false, and the six values that convert to it, are sometimes called
falsy values, and all other values are called truthy. Any time JavaScript
expects a boolean value, a falsy value works like false and a truthy value
works like true.

As an example, suppose that the variable o either holds an object or the
value null. You can test explicitly to see if o is non-null with an if
statement like this:

if (o !== null) ...

The not-equal operator !== compares o to null and evaluates to either
true or false. But you can omit the comparison and instead rely on the fact
that null is falsy and objects are truthy:

if (o) ...

In the first case, the body of the if will be executed only if o is not
null. The second case is less strict: it will execute the body of the if
only if o is not false or any falsy value (such as null or undefined).
Which if statement is appropriate for your program really depends on what
values you expect to be assigned to o. If you need to distinguish null from
0 and "", then you should use an explicit comparison.

Boolean values have a toString() method that you can use to convert them to
the strings “true” or “false”, but they do not have any other useful
methods. Despite the trivial API, there are three important boolean operators.

The && operator performs the Boolean AND operation. It evaluates to a
truthy value if and only if both of its operands are truthy; it evaluates to a
falsy value otherwise. The || operator is the Boolean OR operation: it
evaluates to a truthy value if either one (or both) of its operands is truthy
and evaluates to a falsy value if both operands are falsy. Finally, the unary
! operator performs the Boolean NOT operation: it evaluates to true if its
operand is falsy and evaluates to false if its operand is truthy. For example:

if ((x === 0 && y === 0) || !(z === 0)) {
 // x and y are both zero or z is non-zero
}

Full details on these operators are in §4.10.

3.5 null and undefined

null is a language keyword that evaluates to a special value that is usually
used to indicate the absence of a value. Using the typeof operator on null
returns the string “object”, indicating that null can be thought of as a
special object value that indicates “no object”. In practice, however, null
is typically regarded as the sole member of its own type, and it can be used to
indicate “no value” for numbers and strings as well as objects. Most
programming languages have an equivalent to JavaScript’s null: you may be
familiar with it as NULL, nil, or None.

JavaScript also has a second value that indicates absence of value. The
undefined value represents a deeper kind of absence. It is the value of
variables that have not been initialized and the value you get when you
query the value of an object property or array element that does not
exist. The undefined value is also the return value of functions that do
not explicitly return a value and the value of function parameters for
which no argument is passed. undefined is a predefined global constant
(not a language keyword like null, though this is not an important
distinction in practice) that is initialized to the undefined value. If
you apply the typeof operator to the undefined value, it returns
“undefined”, indicating that this value is the sole member of a
special type.

Despite these differences, null and undefined both indicate an absence of
value and can often be used interchangeably. The equality operator ==
considers them to be equal. (Use the strict equality operator === to
distinguish them.) Both are falsy values: they behave like false when a
boolean value is required. Neither null nor undefined have any properties
or methods. In fact, using . or [] to access a property or method of these
values causes a TypeError.

I consider undefined to represent a system-level, unexpected, or
error-like absence of value and null to represent a program-level,
normal, or expected absence of value. I avoid using null and
undefined when I can, but if I need to assign one of these values to
a variable or property or pass or return one of these values to or
from a function, I usually use null. Some programmers strive to avoid
null entirely and use undefined in its place wherever they can.

3.6 Symbols

Symbols were introduced in ES6 to serve as
non-string property names. To understand Symbols, you need to know that
JavaScript’s fundamental Object type is an unordered collection of
properties, where each property has a name and a value. Property names
are typically (and until ES6, were exclusively) strings. But in
ES6 and later, Symbols can also serve this purpose:

let strname = "string name"; // A string to use as a property name
let symname = Symbol("propname"); // A Symbol to use as a property name
typeof strname // => "string": strname is a string
typeof symname // => "symbol": symname is a symbol
let o = {}; // Create a new object
o[strname] = 1; // Define a property with a string name
o[symname] = 2; // Define a property with a Symbol name
o[strname] // => 1: access the string-named property
o[symname] // => 2: access the symbol-named property

The Symbol type does not have a literal syntax. To obtain a Symbol
value, you call the Symbol() function. This function never returns
the same value twice, even when called with the same argument. This
means that if you call Symbol() to obtain a Symbol value, you can
safely use that value as a property name to add a new property to an
object and do not need to worry that you might be overwriting an
existing property with the same name. Similarly, if you use symbolic
property names and do not share those symbols, you can be confident
that other modules of code in your program will not accidentally
overwrite your properties.

In practice, Symbols serve as a language extension mechanism. When ES6
introduced the for/of loop (§5.4.4) and iterable objects
(Chapter 12), it needed to define standard method that classes could
implement to make themselves iterable. But standardizing any
particular string name for this iterator method would have broken
existing code, so a symbolic name was used instead. As we’ll see in
Chapter 12, Symbol.iterator is a Symbol value that can be used as
a method name to make an object iterable.

The Symbol() function takes an optional string argument and returns a
unique Symbol value. If you supply a string argument, that string will
be included in the output of the Symbol’s toString() method. Note,
however, that calling Symbol() twice with the same string produces two
completely different Symbol values.

let s = Symbol("sym_x");
s.toString() // => "Symbol(sym_x)"

toString() is the only interesting method of Symbol instances. There
are two other Symbol-related functions you should know about,
however. Sometimes when using Symbols, you want to keep them private to
your own code so you have a guarantee that your properties will never
conflict with properties used by other code. Other times, however, you
might want to define a Symbol value and share it widely with other
code. This would be the case, for example, if you were defining some
kind of extension that you wanted other code to be able to participate
in, as with the Symbol.iterator mechanism described earlier.

To serve this latter use case, JavaScript defines a global Symbol
registry. The Symbol.for() function takes a string argument and
returns a Symbol value that is associated with the string you pass. If
no Symbol is already associated with that string, then a new one is
created and returned; otherwise, the already existing Symbol is
returned. That is, the Symbol.for() function is completely different
than the Symbol() function: Symbol() never returns the same value
twice, but Symbol.for() always returns the same value when called with
the same string. The string passed to Symbol.for() appears in the
output of toString() for the returned Symbol, and it can also be
retrieved by calling Symbol.keyFor() on the returned Symbol.

let s = Symbol.for("shared");
let t = Symbol.for("shared");
s === t // => true
s.toString() // => "Symbol(shared)"
Symbol.keyFor(t) // => "shared"

3.7 The Global Object

The preceding sections have explained JavaScript’s primitive types and
values. Object types—objects, arrays, and functions—are covered in
chapters of their own later in this book. But there is one very
important object value that we must cover now. The global object
is a regular JavaScript object that serves a very important purpose:
the properties of this object are the globally defined identifiers
that are available to a JavaScript program. When the JavaScript
interpreter starts (or whenever a web browser loads a new page), it
creates a new global object and gives it an initial set of properties
that define:

	
Global constants like undefined, Infinity, and NaN

	
Global functions like isNaN(), parseInt()
(§3.9.2), and eval() (§4.12)

	
Constructor functions like Date(), RegExp(), String(),
Object(), and Array() (§3.9.2)

	
Global objects like Math and JSON (§6.8)

The initial properties of the global object are not reserved words, but
they deserve to be treated as if they are. This chapter has already
described some of these global properties. Most of the others will be
covered elsewhere in this book.

In Node, the global object has a property named global whose value is
the global object itself, so you can always refer to the global object
by the name global in Node programs.

In web browsers, the Window object serves as the global object for all
JavaScript code contained in the browser window it represents. This
global Window object has a self-referential window property that can
be used to refer to the global object. The Window object defines the
core global properties, but it also defines quite a few other globals
that are specific to web browsers and client-side JavaScript. Web
worker threads (§15.13) have a different global object than
the Window with which they are associated. Code in a worker can refer
to its global object as self.

ES2020 finally defines globalThis as the standard way to refer to
the global object in any context. As of early 2020, this feature has been
implemented by all modern browsers and by Node.

3.8 Immutable Primitive Values and Mutable Object References

There is a fundamental difference in JavaScript between primitive values
(undefined, null, booleans, numbers, and strings) and objects (including
arrays and functions). Primitives are immutable: there is no way to change (or
“mutate”) a primitive value. This is obvious for numbers and booleans—it
doesn’t even make sense to change the value of a number. It is not so obvious
for strings, however. Since strings are like arrays of characters, you might
expect to be able to alter the character at any specified index. In fact,
JavaScript does not allow this, and all string methods that appear to return a
modified string are, in fact, returning a new string value. For example:

let s = "hello"; // Start with some lowercase text
s.toUpperCase(); // Returns "HELLO", but doesn't alter s
s // => "hello": the original string has not changed

Primitives are also compared by value: two values are the same only if they
have the same value. This sounds circular for numbers, booleans, null, and
undefined: there is no other way that they could be compared. Again, however,
it is not so obvious for strings. If two distinct string values are compared,
JavaScript treats them as equal if, and only if, they have the same length and
if the character at each index is the same.

Objects are different than primitives. First, they are mutable—their values
can change:

let o = { x: 1 }; // Start with an object
o.x = 2; // Mutate it by changing the value of a property
o.y = 3; // Mutate it again by adding a new property

let a = [1,2,3]; // Arrays are also mutable
a[0] = 0; // Change the value of an array element
a[3] = 4; // Add a new array element

Objects are not compared by value: two distinct objects are not equal
even if they have the same properties and values. And two distinct
arrays are not equal even if they have the same elements in the same
order:

let o = {x: 1}, p = {x: 1}; // Two objects with the same properties
o === p // => false: distinct objects are never equal
let a = [], b = []; // Two distinct, empty arrays
a === b // => false: distinct arrays are never equal

Objects are sometimes called reference types to distinguish them from
JavaScript’s primitive types. Using this terminology, object values are
references, and we say that objects are compared by reference: two object
values are the same if and only if they refer to the same underlying object.

let a = []; // The variable a refers to an empty array.
let b = a; // Now b refers to the same array.
b[0] = 1; // Mutate the array referred to by variable b.
a[0] // => 1: the change is also visible through variable a.
a === b // => true: a and b refer to the same object, so they are equal.

As you can see from this code, assigning an object (or array) to a
variable simply assigns the reference: it does not create a new copy of the
object. If you want to make a new copy of an object or array, you must
explicitly copy the properties of the object or the elements of the array. This
example demonstrates using a for loop (§5.4.3):

let a = ["a","b","c"]; // An array we want to copy
let b = []; // A distinct array we'll copy into
for(let i = 0; i < a.length; i++) { // For each index of a[]
 b[i] = a[i]; // Copy an element of a into b
}
let c = Array.from(b); // In ES6, copy arrays with Array.from()

Similarly, if we want to compare two distinct objects or arrays, we must
compare their properties or elements. This code defines a function to compare
two arrays:

function equalArrays(a, b) {
 if (a === b) return true; // Identical arrays are equal
 if (a.length !== b.length) return false; // Different-size arrays not equal
 for(let i = 0; i < a.length; i++) { // Loop through all elements
 if (a[i] !== b[i]) return false; // If any differ, arrays not equal
 }
 return true; // Otherwise they are equal
}

3.9 Type Conversions

JavaScript is very flexible about the types of values it requires. We’ve seen
this for booleans: when JavaScript expects a boolean value, you may supply a
value of any type, and JavaScript will convert it as needed. Some values
(“truthy” values) convert to true and others (“falsy” values) convert to
false. The same is true for other types: if JavaScript wants a string, it
will convert whatever value you give it to a string. If JavaScript wants a
number, it will try to convert the value you give it to a number (or to NaN
if it cannot perform a meaningful conversion).

Some examples:

10 + " objects" // => "10 objects": Number 10 converts to a string
"7" * "4" // => 28: both strings convert to numbers
let n = 1 - "x"; // n == NaN; string "x" can't convert to a number
n + " objects" // => "NaN objects": NaN converts to string "NaN"

Table 3-2 summarizes how values convert from one type to another in
JavaScript. Bold entries in the table highlight conversions that you may find
surprising. Empty cells indicate that no conversion is necessary and none is
performed.

Table 3-2. JavaScript type conversions

	Value
	to String
	to Number
	to Boolean

	undefined

	"undefined"

	NaN

	false

	null

	"null"

	0

	false

	true

	"true"

	1

	

	false

	"false"

	0

	

	"" (empty string)

	
	0

	false

	"1.2" (nonempty, numeric)

	
	1.2

	true

	"one" (nonempty, non-numeric)

	
	NaN

	true

	0

	"0"

	
	false

	-0

	"0"

	
	false

	1 (finite, non-zero)

	"1"

	
	true

	Infinity

	"Infinity"

	
	true

	-Infinity

	"-Infinity"

	
	true

	NaN

	"NaN"

	
	false

	{} (any object)

	see §3.9.3

	see §3.9.3

	true

	[] (empty array)

	""

	0

	true

	[9] (one numeric element)

	"9"

	9

	true

	['a'] (any other array)

	use join() method

	NaN

	true

	function(){} (any function)

	see §3.9.3

	NaN

	true

The primitive-to-primitive conversions shown in the table are relatively
straightforward. Conversion to boolean was already discussed in §3.4.
Conversion to strings is well defined for all primitive values. Conversion to
numbers is just a little trickier. Strings that can be parsed as numbers
convert to those numbers. Leading and trailing spaces are allowed, but any
leading or trailing nonspace characters that are not part of a numeric literal
cause the string-to-number conversion to produce NaN. Some numeric
conversions may seem surprising: true converts to 1, and false and the
empty string convert to 0.

Object-to-primitive conversion is somewhat more complicated, and it is the
subject of §3.9.3.

3.9.1 Conversions and Equality

JavaScript has two operators that test whether two values are
equal. The “strict equality operator,” ===, does not consider its
operands to be equal if they are not of the same type, and this is
almost always the right operator to use when coding. But because
JavaScript is so flexible with type conversions, it also defines the
== operator with a flexible definition of equality. All of the
following comparisons are true, for example:

null == undefined // => true: These two values are treated as equal.
"0" == 0 // => true: String converts to a number before comparing.
0 == false // => true: Boolean converts to number before comparing.
"0" == false // => true: Both operands convert to 0 before comparing!

§4.9.1 explains exactly what conversions are performed by the ==
operator in order to determine whether two values should be considered equal.

Keep in mind that convertibility of one value to another does not imply
equality of those two values. If undefined is used where a boolean value is
expected, for example, it will convert to false. But this does not mean that
undefined == false. JavaScript operators and statements expect values of
various types and perform conversions to those types. The if statement
converts undefined to false, but the == operator never attempts to
convert its operands to booleans.

3.9.2 Explicit Conversions

Although JavaScript performs many type conversions automatically, you may
sometimes need to perform an explicit conversion, or you may prefer to make the
conversions explicit to keep your code clearer.

The simplest way to perform an explicit type conversion is to use the
Boolean(), Number(), and String() functions:

Number("3") // => 3
String(false) // => "false": Or use false.toString()
Boolean([]) // => true

Any value other than null or undefined has a toString() method, and
the result of this method is usually the same as that returned by the
String() function.

As an aside, note that the Boolean(), Number(), and String()
functions can also be invoked—with new—as constructor. If you use
them this way, you’ll get a “wrapper” object that behaves just like a
primitive boolean, number, or string value. These wrapper objects are a
historical leftover from the earliest days of JavaScript, and there is
never really any good reason to use them.

Certain JavaScript operators perform implicit type conversions and
are sometimes used explicitly for the purpose of type conversion. If
one operand of the + operator is a string, it converts the other one
to a string. The unary + operator converts its operand to a
number. And the unary ! operator converts its operand to a boolean
and negates it. These facts lead to the following type conversion
idioms that you may see in some code:

x + "" // => String(x)
+x // => Number(x)
x-0 // => Number(x)
!!x // => Boolean(x): Note double !

Formatting and parsing numbers are common tasks in computer programs, and
JavaScript has specialized functions and methods that provide more precise
control over number-to-string and string-to-number conversions.

The toString() method defined by the Number class accepts an optional
argument that specifies a radix, or base, for the conversion. If you do not
specify the argument, the conversion is done in base 10. However, you can also
convert numbers in other bases (between 2 and 36). For example:

let n = 17;
let binary = "0b" + n.toString(2); // binary == "0b10001"
let octal = "0o" + n.toString(8); // octal == "0o21"
let hex = "0x" + n.toString(16); // hex == "0x11"

When working with financial or scientific data, you may want to convert numbers
to strings in ways that give you control over the number of decimal places or
the number of significant digits in the output, or you may want to control
whether exponential notation is used. The Number class defines three methods
for these kinds of number-to-string conversions. toFixed() converts a number
to a string with a specified number of digits after the decimal point. It never
uses exponential notation. toExponential() converts a number to a string
using exponential notation, with one digit before the decimal point and a
specified number of digits after the decimal point (which means that the number
of significant digits is one larger than the value you specify).
toPrecision() converts a number to a string with the number of significant
digits you specify. It uses exponential notation if the number of significant
digits is not large enough to display the entire integer portion of the number.
Note that all three methods round the trailing digits or pad with zeros as
appropriate. Consider the following examples:

let n = 123456.789;
n.toFixed(0) // => "123457"
n.toFixed(2) // => "123456.79"
n.toFixed(5) // => "123456.78900"
n.toExponential(1) // => "1.2e+5"
n.toExponential(3) // => "1.235e+5"
n.toPrecision(4) // => "1.235e+5"
n.toPrecision(7) // => "123456.8"
n.toPrecision(10) // => "123456.7890"

In addition to the number-formatting methods shown here, the
Intl.NumberFormat class defines a more general, internationalized
number-formatting method. See §11.7.1 for details.

If you pass a string to the Number() conversion function, it attempts to
parse that string as an integer or floating-point literal. That function only
works for base-10 integers and does not allow trailing characters that are not
part of the literal. The parseInt() and parseFloat() functions (these are
global functions, not methods of any class) are more flexible. parseInt()
parses only integers, while parseFloat() parses both integers and
floating-point numbers. If a string begins with “0x” or “0X”, parseInt()
interprets it as a hexadecimal number. Both
parseInt() and parseFloat() skip leading whitespace, parse as many numeric
characters as they can, and ignore anything that follows. If the first nonspace
character is not part of a valid numeric literal, they return NaN:

parseInt("3 blind mice") // => 3
parseFloat(" 3.14 meters") // => 3.14
parseInt("-12.34") // => -12
parseInt("0xFF") // => 255
parseInt("0xff") // => 255
parseInt("-0XFF") // => -255
parseFloat(".1") // => 0.1
parseInt("0.1") // => 0
parseInt(".1") // => NaN: integers can't start with "."
parseFloat("$72.47") // => NaN: numbers can't start with "$"

parseInt() accepts an optional second argument specifying the radix (base) of
the number to be parsed. Legal values are between 2 and 36. For example:

parseInt("11", 2) // => 3: (1*2 + 1)
parseInt("ff", 16) // => 255: (15*16 + 15)
parseInt("zz", 36) // => 1295: (35*36 + 35)
parseInt("077", 8) // => 63: (7*8 + 7)
parseInt("077", 10) // => 77: (7*10 + 7)

3.9.3 Object to Primitive Conversions

The previous sections have explained how you can explicitly convert
values of one type to another type and have explained JavaScript’s
implicit conversions of values from one primitive type to another
primitive type. This section covers the complicated rules that
JavaScript uses to convert objects to primitive values. It is long and
obscure, and if this is your first reading of this chapter, you should
feel free to skip ahead to §3.10.

One reason for the complexity of JavaScript’s object-to-primitive
conversions is that some types of objects have more than one primitive
representation. Date objects, for example, can be represented as
strings or as numeric timestamps. The JavaScript specification defines
three fundamental algorithms for converting objects to primitive
values:

	prefer-string

	
This algorithm returns a primitive value,
 preferring a string value, if a conversion to string is possible.

	prefer-number

	
This algorithm returns a primitive value,
 preferring a number, if such a conversion is possible.

	no-preference

	
This algorithm expresses no preference about what
 type of primitive value is desired, and classes can define their own
 conversions. Of the built-in JavaScript types, all except Date
 implement this algorithm as prefer-number. The Date class
 implements this algorithm as prefer-string.

The implementation of these object-to-primitive conversion algorithms is explained at the end of this section. First, however, we explain
how the algorithms are used in JavaScript.

Object-to-boolean conversions

Object-to-boolean conversions are trivial: all objects convert to
true. Notice that this conversion does not require the use of the
object-to-primitive algorithms described, and that it literally
applies to all objects, including empty arrays and even the wrapper
object new Boolean(false).

Object-to-string conversions

When an object needs to be converted to a string, JavaScript first
converts it to a primitive using the prefer-string algorithm, then converts the resulting primitive value to a string, if necessary,
following the rules in Table 3-2.

This kind of conversion happens, for example, if you pass an object to
a built-in function that expects a string argument, if you call
String() as a conversion function, and when you interpolate objects
into template literals (§3.3.4).

Object-to-number conversions

When an object needs to be converted to a number, JavaScript first
converts it to a primitive value using the prefer-number algorithm, then converts the resulting primitive value to a number, if
necessary, following the rules in Table 3-2.

Built-in JavaScript functions and methods that expect numeric
arguments convert object arguments to numbers in this way, and most
(see the exceptions that follow) JavaScript operators that expect
numeric operands convert objects to numbers in this way as well.

Special case operator conversions

Operators are covered in detail in Chapter 4. Here, we explain
the special case operators that do not use the basic object-to-string
and object-to-number conversions described earlier.

The + operator in JavaScript performs numeric addition and string
concatenation. If either of its operands is an object, JavaScript
converts them to primitive values using the no-preference algorithm.
Once it has two primitive values, it checks their types. If either
argument is a string, it converts the other to a string and
concatenates the strings. Otherwise, it converts both arguments to
numbers and adds them.

The == and != operators perform equality and inequality testing in
a loose way that allows type conversions. If one operand is an object and
the other is a primitive value, these operators convert the object to
primitive using the no-preference algorithm and then compare the two
primitive values.

Finally, the relational operators <, <=, >, and >= compare the
order of their operands and can be used to compare both numbers and
strings. If either operand is an object, it is converted to a
primitive value using the prefer-number algorithm. Note, however,
that unlike the object-to-number conversion, the primitive values
returned by the prefer-number conversion are not then converted to
numbers.

Note that the numeric representation of Date objects is meaningfully
comparable with < and >, but the string representation is not. For
Date objects, the no-preference algorithm converts to a string, so
the fact that JavaScript uses the prefer-number algorithm for these
operators means that we can use them to compare the order of two Date
objects.

The toString() and valueOf() methods

All objects inherit two conversion methods that are used by
object-to-primitive conversions, and before we can explain the
prefer-string, prefer-number, and no-preference conversion
algorithms, we have to explain these two methods.

The first method is toString(), and its job is to return a string
representation of the object. The default toString() method does not
return a very interesting value (though we’ll find it useful in
§14.4.3):

({x: 1, y: 2}).toString() // => "[object Object]"

Many classes define more specific versions of the toString()
method. The toString() method of the Array class, for example,
converts each array element to a string and joins the resulting
strings together with commas in between. The toString() method of
the Function class converts user-defined functions to strings
of JavaScript source code. The Date class defines a toString()
method that returns a human-readable (and JavaScript-parsable) date
and time string. The RegExp class defines a toString() method that
converts RegExp objects to a string that looks like a RegExp literal:

[1,2,3].toString() // => "1,2,3"
(function(x) { f(x); }).toString() // => "function(x) { f(x); }"
/\d+/g.toString() // => "/\\d+/g"
let d = new Date(2020,0,1);
d.toString() // => "Wed Jan 01 2020 00:00:00 GMT-0800 (Pacific Standard Time)"

The other object conversion function is called valueOf(). The job of
this method is less well defined: it is supposed to convert an object
to a primitive value that represents the object, if any such primitive
value exists. Objects are compound values, and most objects cannot
really be represented by a single primitive value, so the default
valueOf() method simply returns the object itself rather than
returning a primitive. Wrapper classes such as String, Number, and
Boolean define valueOf() methods that simply return the wrapped
primitive value. Arrays, functions, and regular expressions simply
inherit the default method. Calling valueOf() for instances of these
types simply returns the object itself. The Date class defines a
valueOf() method that returns the date in its internal
representation: the number of milliseconds since January 1, 1970:

let d = new Date(2010, 0, 1); // January 1, 2010, (Pacific time)
d.valueOf() // => 1262332800000

Object-to-primitive conversion algorithms

With the toString() and valueOf() methods explained, we can now
explain approximately how the three object-to-primitive algorithms
work (the complete details are deferred until §14.4.7):

	
The prefer-string algorithm first tries the toString()
method. If the method is defined and returns a primitive value, then
JavaScript uses that primitive value (even if it is not a
string!). If toString() does not exist or if it returns an object,
then JavaScript tries the valueOf() method. If that method exists
and returns a primitive value, then JavaScript uses that
value. Otherwise, the conversion fails with a TypeError.

	
The prefer-number algorithm works like the prefer-string
algorithm, except that it tries valueOf() first and toString()
second.

	
The no-preference algorithm depends on the class of the object
being converted. If the object is a Date object, then JavaScript
uses the prefer-string algorithm. For any other object, JavaScript
uses the prefer-number algorithm.

The rules described here are true for all built-in JavaScript types
and are the default rules for any classes you define
yourself. §14.4.7 explains how you can define your own
object-to-primitive conversion algorithms for the classes you define.

Before we leave this topic, it is worth noting that the details of the
prefer-number conversion explain why empty arrays convert to the
number 0 and single-element arrays can also convert to numbers:

Number([]) // => 0: this is unexpected!
Number([99]) // => 99: really?

The object-to-number conversion first converts the object to a
primitive using the prefer-number algorithm, then converts the
resulting primitive value to a number. The prefer-number algorithm
tries valueOf() first and then falls back on toString(). But the
Array class inherits the default valueOf() method, which does not
return a primitive value. So when we try to convert an array to a
number, we end up invoking the toString() method of the array. Empty
arrays convert to the empty string. And the empty string converts to
the number 0. An array with a single element converts to the same
string that that one element does. If an array contains a single
number, that number is converted to a string, and then back to a
number.

3.10 Variable Declaration and Assignment

One of the most fundamental techniques of computer programming is the
use of names—or identifiers—to represent values. Binding a name to a
value gives us a way to refer to that value and use it in the programs
we write. When we do this, we typically say that we are assigning a
value to a variable. The term “variable” implies that new values can
be assigned: that the value associated with the variable may vary as our
program runs. If we permanently assign a value to a name, then we call
that name a constant instead of a variable.

Before you can use a variable or constant in a JavaScript program,
you must declare it. In ES6 and later, this is done with the
let and const keywords, which we explain next. Prior to
ES6, variables were declared with var, which is more idiosyncratic and
is explained later on in this section.

3.10.1 Declarations with let and const

In modern JavaScript (ES6 and later), variables are declared with the
let keyword, like this:

let i;
let sum;

You can also declare multiple variables in a single let statement:

let i, sum;

It is a good programming practice to assign an initial value to your
variables when you declare them, when this is possible:

let message = "hello";
let i = 0, j = 0, k = 0;
let x = 2, y = x*x; // Initializers can use previously declared variables

If you don’t specify an initial value for a variable with the let
statement, the variable is declared, but its value is undefined
until your code assigns a value to it.

To declare a constant instead of a variable, use const instead of
let. const works just like let except that you must initialize the
constant when you declare it:

const H0 = 74; // Hubble constant (km/s/Mpc)
const C = 299792.458; // Speed of light in a vacuum (km/s)
const AU = 1.496E8; // Astronomical Unit: distance to the sun (km)

As the name implies, constants cannot have their values changed, and
any attempt to do so causes a TypeError to be thrown.

It is a common (but not universal) convention to declare constants
using names with all capital letters such as H0 or HTTP_NOT_FOUND
as a way to distinguish them from variables.

When to Use const

There are two schools of thought about the use of the const
keyword. One approach is to use const only for values that are
fundamentally unchanging, like the physical constants shown, or
program version numbers, or byte sequences used to identify file types,
for example. Another approach recognizes that many of the so-called
variables in our program don’t actually ever change as our program
runs. In this approach, we declare everything with const, and then if
we find that we do actually want to allow the value to vary, we switch
the declaration to let. This may help prevent bugs by ruling out
accidental changes to variables that we did not intend.

In one approach, we use const only for values that must not
change. In the other, we use const for any value that does not happen
to change. I prefer the former approach in my own code.

In Chapter 5, we’ll learn about the for, for/in, and for/of
loop statements in JavaScript. Each of these loops includes a loop
variable that gets a new value assigned to it on each iteration of the
loop. JavaScript allows us to declare the loop variable as part of the
loop syntax itself, and this is another common way to use let:

for(let i = 0, len = data.length; i < len; i++) console.log(data[i]);
for(let datum of data) console.log(datum);
for(let property in object) console.log(property);

It may seem surprising, but you can also use const to declare the loop
“variables” for for/in and for/of loops, as long as the body of the
loop does not reassign a new value. In this case, the const
declaration is just saying that the value is constant for the duration
of one loop iteration:

for(const datum of data) console.log(datum);
for(const property in object) console.log(property);

Variable and constant scope

The scope of a variable is the region of your program source code in
which it is defined. Variables and constants declared with let and
const are block scoped. This means that they are only defined
within the block of code in which the let or const statement
appears. JavaScript class and function definitions are blocks, and so
are the bodies of if/else statements, while loops, for loops, and
so on. Roughly speaking, if a variable or constant is declared within a
set of curly braces, then those curly braces delimit the region of code in
which the variable or constant is defined (though of course it is not
legal to reference a variable or constant from lines of code that
execute before the let or const statement that declares the
variable). Variables and constants declared as part of a for, for/in,
or for/of loop have the loop body as their scope, even though they
technically appear outside of the curly braces.

When a declaration appears at the top level, outside of any code blocks,
we say it is a global variable or constant and has global scope. In
Node and in client-side JavaScript modules (see Chapter 10), the scope
of a global variable is the file that it is defined in. In traditional
client-side JavaScript, however, the scope of a global variable is the
HTML document in which it is defined. That is: if one <script>
declares a global variable or constant, that variable or constant is
defined in all of the <script> elements in that document (or at least
all of the scripts that execute after the let or const statement
executes).

Repeated declarations

It is a syntax error to use the same name with more than one let or
const declaration in the same scope. It is legal (though a practice
best avoided) to declare a new variable with the same name in a nested
scope:

const x = 1; // Declare x as a global constant
if (x === 1) {
 let x = 2; // Inside a block x can refer to a different value
 console.log(x); // Prints 2
}
console.log(x); // Prints 1: we're back in the global scope now
let x = 3; // ERROR! Syntax error trying to re-declare x

Declarations and types

If you’re used to statically typed languages such as C or Java, you
may think that the primary purpose of variable declarations is to
specify the type of values that may be assigned to a variable. But, as
you have seen, there is no type associated with JavaScript’s variable
declarations.2 A
JavaScript variable can hold a value of any type. For example, it is
perfectly legal (but generally poor programming style) in JavaScript
to assign a number to a variable and then later assign a string to
that variable:

let i = 10;
i = "ten";

3.10.2 Variable Declarations with var

In versions of JavaScript before ES6, the only way to declare a variable
is with the var keyword, and there is no way to declare constants. The
syntax of var is just like the syntax of let:

var x;
var data = [], count = data.length;
for(var i = 0; i < count; i++) console.log(data[i]);

Although var and let have the same syntax, there are important
differences in the way they work:

	
Variables declared with var do not have block scope. Instead, they
are scoped to the body of the containing function no matter how deeply
nested they are inside that function.

	
If you use var outside of a function body, it declares a global
variable. But global variables declared with var differ from
globals declared with let in an important way. Globals declared
with var are implemented as properties of the global object
(§3.7). The global object can be referenced as
globalThis. So if you write var x = 2; outside of a function, it
is like you wrote globalThis.x = 2;. Note however, that the analogy is not perfect: the properties created with global var declarations
cannot be deleted with the delete operator
(§4.13.4). Global variables and constants declared with
let and const are not properties of the global object.

	
Unlike variables declared with let, it is legal to declare the same
variable multiple times with var. And because var variables have
function scope instead of block scope, it is actually common to do
this kind of redeclaration. The variable i is frequently used for
integer values, and especially as the index variable of for
loops. In a function with multiple for loops, it is typical for each
one to begin for(var i = 0; Because var does not scope these
variables to the loop body, each of these loops is (harmlessly)
re-declaring and re-initializing the same variable.

	
One of the most unusual features of var declarations is known as
hoisting. When a variable is declared with var, the declaration is
lifted up (or “hoisted”) to the top of the enclosing function. The
initialization of the variable remains where you wrote it, but the
definition of the variable moves to the top of the function. So
variables declared with var can be used, without error, anywhere in
the enclosing function. If the initialization code has not run yet,
then the value of the variable may be undefined, but you won’t get an
error if you use the variable before it is initialized. (This can be a
source of bugs and is one of the important misfeatures that let
corrects: if you declare a variable with let but attempt to use it
before the let statement runs, you will get an actual error instead
of just seeing an undefined value.)

Using Undeclared Variables

In strict mode (§5.6.3), if you attempt to use an undeclared
variable, you’ll get a reference error when you run your code. Outside
of strict mode, however, if you assign a value to a name that has not
been declared with let, const, or var, you’ll end up creating a new
global variable. It will be a global no matter now deeply nested within
functions and blocks your code is, which is almost certainly not what
you want, is bug-prone, and is one of the best reasons for using strict
mode!

Global variables created in this accidental way are like global
variables declared with var: they define properties of the global
object. But unlike the properties defined by proper var
declarations, these properties can be deleted with the delete
operator (§4.13.4).

3.10.3 Destructuring Assignment

ES6 implements a kind of compound declaration and assignment
syntax known as destructuring assignment. In a destructuring
assignment, the value on the righthand side of the equals sign is an
array or object (a “structured” value), and the lefthand side
specifies one or more variable names using a syntax that mimics array
and object literal syntax. When a destructuring assignment occurs, one
or more values are extracted (“destructured”) from the value on the
right and stored into the variables named on the left. Destructuring
assignment is perhaps most commonly used to initialize variables as part
of a const, let, or var declaration statement, but it can also be
done in regular assignment expressions (with variables that have already
been declared). And, as we’ll see in §8.3.5,
destructuring can also be used when defining the parameters to a
function.

Here are simple destructuring assignments using arrays of values:

let [x,y] = [1,2]; // Same as let x=1, y=2
[x,y] = [x+1,y+1]; // Same as x = x + 1, y = y + 1
[x,y] = [y,x]; // Swap the value of the two variables
[x,y] // => [3,2]: the incremented and swapped values

Notice how destructuring assignment makes it easy to work with functions that
return arrays of values:

// Convert [x,y] coordinates to [r,theta] polar coordinates
function toPolar(x, y) {
 return [Math.sqrt(x*x+y*y), Math.atan2(y,x)];
}

// Convert polar to Cartesian coordinates
function toCartesian(r, theta) {
 return [r*Math.cos(theta), r*Math.sin(theta)];
}

let [r,theta] = toPolar(1.0, 1.0); // r == Math.sqrt(2); theta == Math.PI/4
let [x,y] = toCartesian(r,theta); // [x, y] == [1.0, 1,0]

We saw that variables and constants can be declared as part of
JavaScript’s various for loops. It is possible to use variable
destructuring in this context as well. Here is a code that loops over
the name/value pairs of all properties of an object and uses
destructuring assignment to convert those pairs from two-element arrays
into individual variables:

let o = { x: 1, y: 2 }; // The object we'll loop over
for(const [name, value] of Object.entries(o)) {
 console.log(name, value); // Prints "x 1" and "y 2"
}

The number of variables on the left of a destructuring assignment does
not have to match the number of array elements on the right. Extra
variables on the left are set to undefined, and extra values on the
right are ignored. The list of variables on the left can include extra
commas to skip certain values on the right:

let [x,y] = [1]; // x == 1; y == undefined
[x,y] = [1,2,3]; // x == 1; y == 2
[,x,,y] = [1,2,3,4]; // x == 2; y == 4

If you want to collect all unused or remaining values into a single
variable when destructuring an array, use three dots (...) before the
last variable name on the left-hand side:

let [x, ...y] = [1,2,3,4]; // y == [2,3,4]

We’ll see three dots used this way again in §8.3.2, where
they are used to indicate that all remaining function arguments should
be collected into a single array.

Destructuring assignment can be used with nested arrays. In this case,
the lefthand side of the assignment should look like a nested array
literal:

let [a, [b, c]] = [1, [2,2.5], 3]; // a == 1; b == 2; c == 2.5

A powerful feature of array destructuring is that it does not actually
require an array! You can use any iterable object (Chapter 12) on
the righthand side of the assignment; any object that can be used with
a for/of loop (§5.4.4) can also be destructured:

let [first, ...rest] = "Hello"; // first == "H"; rest == ["e","l","l","o"]

Destructuring assignment can also be performed when the righthand side is an
object value. In this case, the lefthand side of the assignment looks
something like an object literal: a comma-separated list of variable
names within curly braces:

let transparent = {r: 0.0, g: 0.0, b: 0.0, a: 1.0}; // A RGBA color
let {r, g, b} = transparent; // r == 0.0; g == 0.0; b == 0.0

The next example copies global functions of the Math object into variables,
which might simplify code that does a lot of trigonometry:

// Same as const sin=Math.sin, cos=Math.cos, tan=Math.tan
const {sin, cos, tan} = Math;

Notice in the code here that the Math object has many properties
other than the three that are destructured into individual
variables. Those that are not named are simply ignored. If the lefthand
side of this assignment had included a variable whose name was not
a property of Math, that variable would simply be assigned undefined.

In each of these object destructuring examples, we have chosen
variable names that match the property names of the object we’re
destructuring. This keeps the syntax simple and easy to understand, but
it is not required. Each of the identifiers on the lefthand side of an
object destructuring assignment can also be a colon-separated pair of
identifiers, where the first is the name of the property whose value is
to be assigned and the second is the name of the variable to assign it
to:

// Same as const cosine = Math.cos, tangent = Math.tan;
const { cos: cosine, tan: tangent } = Math;

I find that object destructuring syntax becomes too complicated to be
useful when the variable names and property names are not the same, and
I tend to avoid the shorthand in this case. If you choose to use it,
remember that property names are always on the left of the colon, in
both object literals and on the left of an object destructuring
assignment.

Destructuring assignment becomes even more complicated when it is used
with nested objects, or arrays of objects, or objects of arrays, but it
is legal:

let points = [{x: 1, y: 2}, {x: 3, y: 4}]; // An array of two point objects
let [{x: x1, y: y1}, {x: x2, y: y2}] = points; // destructured into 4 variables.
(x1 === 1 && y1 === 2 && x2 === 3 && y2 === 4) // => true

Or, instead of destructuring an array of objects, we could destructure an
object of arrays:

let points = { p1: [1,2], p2: [3,4] }; // An object with 2 array props
let { p1: [x1, y1], p2: [x2, y2] } = points; // destructured into 4 vars
(x1 === 1 && y1 === 2 && x2 === 3 && y2 === 4) // => true

Complex destructuring syntax like this can be hard to write and hard to
read, and you may be better off just writing out your assignments
explicitly with traditional code like let x1 = points.p1[0];.

Understanding Complex Destructuring

If you find yourself working with code that uses complex destructuring
assignments, there is a useful regularity that can help you make
sense of the complex cases. Think first about a regular (single-value)
assignment. After the assignment is done, you can take the variable
name from the lefthand side of the assignment and use it as an
expression in your code, where it will evaluate to whatever value you
assigned it. The same thing is true for destructuring assignment. The
lefthand side of a destructuring assignment looks like an array
literal or an object literal (§6.2.1 and
§6.10). After the assignment has been
done, the lefthand side will actually work as a valid array literal
or object literal elsewhere in your code. You can check that you’ve
written a destructuring assignment correctly by trying to use the
lefthand side on the righthand side of another assignment
expression:

// Start with a data structure and a complex destructuring
let points = [{x: 1, y: 2}, {x: 3, y: 4}];
let [{x: x1, y: y1}, {x: x2, y: y2}] = points;

// Check your destructuring syntax by flipping the assignment around
let points2 = [{x: x1, y: y1}, {x: x2, y: y2}]; // points2 == points

3.11 Summary

Some key points to remember about this chapter:

	
How to write and manipulate numbers and strings of text in JavaScript.

	
How to work with JavaScript’s other primitive types: booleans,
Symbols, null, and undefined.

	
The differences between immutable primitive types and mutable
reference types.

	
How JavaScript converts values implicitly from one type to another and
how you can do so explicitly in your programs.

	
How to declare and initialize constants and variables (including with
destructuring assignment) and the lexical scope of the variables and
constants you declare.

1 This is the format for numbers of type double in Java, C++, and most modern programming languages.
2 There are JavaScript extensions, such as TypeScript and Flow (§17.8), that allow types to be specified as part of variable declarations with syntax like let x: number = 0;.

Chapter 4. Expressions and Operators

This chapter documents JavaScript expressions and the operators with which many of those expressions are built. An expression is a phrase
of JavaScript that can be evaluated to produce a value. A constant
embedded literally in your program is a very simple kind of
expression. A variable name is also a simple expression that evaluates
to whatever value has been assigned to that variable. Complex
expressions are built from simpler expressions. An array access
expression, for example, consists of one expression that evaluates to
an array followed by an open square bracket, an expression that
evaluates to an integer, and a close square bracket. This new, more
complex expression evaluates to the value stored at the specified
index of the specified array. Similarly, a function invocation
expression consists of one expression that evaluates to a function
object and zero or more additional expressions that are used as the
arguments to the function.

The most common way to build a complex expression out of simpler
expressions is with an operator. An operator combines the values of
its operands (usually two of them) in some way and evaluates to a new
value. The multiplication operator * is a simple example. The
expression x * y evaluates to the product of the values of the
expressions x and y. For simplicity, we sometimes say that an
operator returns a value rather than “evaluates to” a value.

This chapter documents all of JavaScript’s operators, and it also
explains expressions (such as array indexing and function invocation)
that do not use operators. If you already know another programming
language that uses C-style syntax, you’ll find that the syntax of most
of JavaScript’s expressions and operators is already familiar to you.

4.1 Primary Expressions

The simplest expressions, known as primary expressions, are those that
stand alone—they do not include any simpler expressions. Primary
expressions in JavaScript are constant or literal values, certain
language keywords, and variable references.

Literals are constant values that are embedded directly in your
program. They look like these:

1.23 // A number literal
"hello" // A string literal
/pattern/ // A regular expression literal

JavaScript syntax for number literals was covered in §3.2.
String literals were documented in §3.3. The regular expression
literal syntax was introduced in §3.3.5 and will be documented
in detail in §11.3.

Some of JavaScript’s reserved words are primary expressions:

true // Evalutes to the boolean true value
false // Evaluates to the boolean false value
null // Evaluates to the null value
this // Evaluates to the "current" object

We learned about true, false, and null in §3.4 and
§3.5. Unlike the other keywords, this is not a
constant—it evaluates to different values in different places in the
program. The this keyword is used in object-oriented programming.
Within the body of a method, this evaluates to the object on which
the method was invoked. See §4.5, Chapter 8
(especially §8.2.2), and Chapter 9 for more on this.

Finally, the third type of primary expression is a reference to a
variable, constant, or property of the global object:

i // Evaluates to the value of the variable i.
sum // Evaluates to the value of the variable sum.
undefined // The value of the "undefined" property of the global object

When any identifier appears by itself in a program, JavaScript assumes
it is a variable or constant or property of the global object and
looks up its value. If no variable with that name exists, an attempt
to evaluate a nonexistent variable throws a ReferenceError instead.

4.2 Object and Array Initializers

Object and array initializers are expressions whose value is a newly
created object or array. These initializer expressions are sometimes
called object literals and array literals. Unlike true
literals, however, they are not primary expressions, because they
include a number of subexpressions that specify property and element
values. Array initializers have a slightly simpler syntax, and we’ll
begin with those.

An array initializer is a comma-separated list of expressions contained
within square brackets. The value of an array initializer is a newly
created array. The elements of this new array are initialized to the
values of the comma-separated expressions:

[] // An empty array: no expressions inside brackets means no elements
[1+2,3+4] // A 2-element array. First element is 3, second is 7

The element expressions in an array initializer can themselves be array
initializers, which means that these expressions can create nested
arrays:

let matrix = [[1,2,3], [4,5,6], [7,8,9]];

The element expressions in an array initializer are evaluated each time
the array initializer is evaluated. This means that the value of an
array initializer expression may be different each time it is evaluated.

Undefined elements can be included in an array literal by simply
omitting a value between commas. For example, the following array
contains five elements, including three undefined elements:

let sparseArray = [1,,,,5];

A single trailing comma is allowed after the last expression in an
array initializer and does not create an undefined element. However,
any array access expression for an index after that of the last
expression will necessarily evaluate to undefined.

Object initializer expressions are like array initializer expressions,
but the square brackets are replaced by curly brackets, and each
subexpression is prefixed with a property name and a colon:

let p = { x: 2.3, y: -1.2 }; // An object with 2 properties
let q = {}; // An empty object with no properties
q.x = 2.3; q.y = -1.2; // Now q has the same properties as p

In ES6, object literals have a much more feature-rich syntax (you can find details in §6.10). Object literals can be nested. For example:

let rectangle = {
 upperLeft: { x: 2, y: 2 },
 lowerRight: { x: 4, y: 5 }
};

We’ll see object and array initializers again in Chapters 6 and 7.

4.3 Function Definition Expressions

A function definition expression defines a JavaScript function, and the
value of such an expression is the newly defined function. In a sense,
a function definition expression is a “function literal” in the same
way that an object initializer is an “object literal.” A function
definition expression typically consists of the keyword function
followed by a comma-separated list of zero or more identifiers (the
parameter names) in parentheses and a block of JavaScript code (the
function body) in curly braces. For example:

// This function returns the square of the value passed to it.
let square = function(x) { return x * x; };

A function definition expression can also include a name for the
function. Functions can also be defined using a function statement
rather than a function expression. And in ES6 and later, function
expressions can use a compact new “arrow function” syntax. Complete
details on function definition are in Chapter 8.

4.4 Property Access Expressions

A property access expression evaluates to the value of an object
property or an array element. JavaScript defines two syntaxes for
property access:

expression . identifier
expression [expression]

The first style of property access is an expression followed by a
period and an identifier. The expression specifies the object, and the
identifier specifies the name of the desired property. The second style
of property access follows the first expression (the object or array)
with another expression in square brackets. This second expression
specifies the name of the desired property or the index of the desired
array element. Here are some concrete examples:

let o = {x: 1, y: {z: 3}}; // An example object
let a = [o, 4, [5, 6]]; // An example array that contains the object
o.x // => 1: property x of expression o
o.y.z // => 3: property z of expression o.y
o["x"] // => 1: property x of object o
a[1] // => 4: element at index 1 of expression a
a[2]["1"] // => 6: element at index 1 of expression a[2]
a[0].x // => 1: property x of expression a[0]

With either type of property access expression, the expression before
the . or [is first evaluated. If the value is null or undefined,
the expression throws a TypeError, since these are the two JavaScript
values that cannot have properties. If the object
expression is followed by a dot and an identifier, the value of the
property named by that identifier is looked up and becomes the overall
value of the expression. If the object expression is followed by
another expression in square brackets, that second expression is
evaluated and converted to a string. The overall value of the
expression is then the value of the property named by that string. In
either case, if the named property does not exist, then the value of
the property access expression is undefined.

The .identifier syntax is the simpler of the two property access
options, but notice that it can only be used when the property you
want to access has a name that is a legal identifier, and when you
know the name when you write the program. If the property name
includes spaces or punctuation characters, or when it is a number (for
arrays), you must use the square bracket notation. Square brackets are
also used when the property name is not static but is itself the
result of a computation (see §6.3.1 for an example).

Objects and their properties are covered in detail in Chapter 6, and
arrays and their elements are covered in Chapter 7.

4.4.1 Conditional Property Access

ES2020 adds two new kinds of property access expressions:

expression ?. identifier
expression ?.[expression]

In JavaScript, the values null and undefined are the only two
values that do not have properties. In a regular property access
expression using . or [], you get a TypeError if the expression on
the left evaluates to null or undefined. You can use ?.
and ?.[] syntax to guard against errors of this type.

Consider the expression a?.b. If a is null or undefined, then
the expression evaluates to undefined without any attempt to access
the property b. If a is some other value, then a?.b evaluates
to whatever a.b would evaluate to (and if a does not have a property
named b, then the value will again be undefined).

This form of property access expression is sometimes called “optional
chaining” because it also works for longer “chained” property access
expressions like this one:

let a = { b: null };
a.b?.c.d // => undefined

a is an object, so a.b is a valid property access expression. But
the value of a.b is null, so a.b.c would throw a TypeError. By
using ?. instead of . we avoid the TypeError, and a.b?.c
evaluates to undefined. This means that (a.b?.c).d will throw a
TypeError, because that expression attempts to access a property of
the value undefined. But—and this is a very important part of
“optional chaining”—a.b?.c.d (without the parentheses) simply
evaluates to undefined and does not throw an error. This is because
property access with ?. is “short-circuiting”: if the subexpression
to the left of ?. evaluates to null or undefined, then the
entire expression immediately evaluates to undefined without any
further property access attempts.

Of course, if a.b is an object, and if that object has no property
named c, then a.b?.c.d will again throw a TypeError, and we will want to use another conditional property access:

let a = { b: {} };
a.b?.c?.d // => undefined

Conditional property access is also possible using ?.[] instead of
[]. In the expression a?.[b][c], if the value of a is null or
undefined, then the entire expression immediately evaluates to
undefined, and subexpressions b and c are never even
evaluated. If either of those expressions has side effects, the side
effect will not occur if a is not defined:

let a; // Oops, we forgot to initialize this variable!
let index = 0;
try {
 a[index++]; // Throws TypeError
} catch(e) {
 index // => 1: increment occurs before TypeError is thrown
}
a?.[index++] // => undefined: because a is undefined
index // => 1: not incremented because ?.[] short-circuits
a[index++] // !TypeError: can't index undefined.

Conditional property access with ?. and ?.[] is one of the newest
features of JavaScript. As of early 2020, this new syntax is supported in
the current or beta versions of most major browsers.

4.5 Invocation Expressions

An invocation expression is JavaScript’s syntax for calling (or
executing) a function or method. It starts with a function expression
that identifies the function to be called. The function expression is
followed by an open parenthesis, a comma-separated list of zero or more
argument expressions, and a close parenthesis. Some examples:

f(0) // f is the function expression; 0 is the argument expression.
Math.max(x,y,z) // Math.max is the function; x, y, and z are the arguments.
a.sort() // a.sort is the function; there are no arguments.

When an invocation expression is evaluated, the function expression is
evaluated first, and then the argument expressions are evaluated to
produce a list of argument values. If the value of the function
expression is not a function, a TypeError is thrown. Next, the argument
values are assigned, in order, to the parameter names specified when
the function was defined, and then the body of the function is
executed. If the function uses a return statement to return a value,
then that value becomes the value of the invocation expression.
Otherwise, the value of the invocation expression is undefined.
Complete details on function invocation, including an explanation of
what happens when the number of argument expressions does not match the
number of parameters in the function definition, are in Chapter 8.

Every invocation expression includes a pair of parentheses and an
expression before the open parenthesis. If that expression is a
property access expression, then the invocation is known as a method
invocation. In method invocations, the object or array that is the
subject of the property access becomes the value of the this keyword
while the body of the function is being executed. This enables an
object-oriented programming paradigm in which functions (which we call
“methods” when used this way) operate on the object of which they
are part. See Chapter 9 for details.

4.5.1 Conditional Invocation

In ES2020, you can also invoke a function using ?.() instead of
(). Normally when you invoke a function, if the expression to the
left of the parentheses is null or undefined or any other
non-function, a TypeError is thrown. With the new ?.() invocation
syntax, if the expression to the left of the ?. evaluates to null
or undefined, then the entire invocation expression evaluates to
undefined and no exception is thrown.

Array objects have a sort() method that can optionally be passed a
function argument that defines the desired sorting order for the array
elements. Before ES2020, if you wanted to write a method like sort()
that takes an optional function argument, you would typically use an
if statement to check that the function argument was defined before
invoking it in the body of the if:

function square(x, log) { // The second argument is an optional function
 if (log) { // If the optional function is passed
 log(x); // Invoke it
 }
 return x * x; // Return the square of the argument
}

With this conditional invocation syntax of ES2020, however, you can
simply write the function invocation using ?.(), knowing that
invocation will only happen if there is actually a value to be
invoked:

function square(x, log) { // The second argument is an optional function
 log?.(x); // Call the function if there is one
 return x * x; // Return the square of the argument
}

Note, however, that ?.() only checks whether the lefthand side is
null or undefined. It does not verify that the value is actually a
function. So the square() function in this example would still throw an
exception if you passed two numbers to it, for example.

Like conditional property access expressions
(§4.4.1), function invocation with ?.() is
short-circuiting: if the value to the left of ?. is null or
undefined, then none of the argument expressions within the
parentheses are evaluated:

let f = null, x = 0;
try {
 f(x++); // Throws TypeError because f is null
} catch(e) {
 x // => 1: x gets incremented before the exception is thrown
}
f?.(x++) // => undefined: f is null, but no exception thrown
x // => 1: increment is skipped because of short-circuiting

Conditional invocation expressions with ?.() work just as well for
methods as they do for functions. But because method invocation also
involves property access, it is worth taking a moment to be sure you
understand the differences between the following expressions:

o.m() // Regular property access, regular invocation
o?.m() // Conditional property access, regular invocation
o.m?.() // Regular property access, conditional invocation

In the first expression, o must be an object with a property m and
the value of that property must be a function. In the second
expression, if o is null or undefined, then the expression
evaluates to undefined. But if o has any other value, then it must
have a property m whose value is a function. And in the third
expression, o must not be null or undefined. If it does not have
a property m, or if the value of that property is null, then the
entire expression evaluates to undefined.

Conditional invocation with ?.() is one of the newest features of
JavaScript. As of the first months of 2020, this new syntax is supported in the current
or beta versions of most major browsers.

4.6 Object Creation Expressions

An object creation expression creates a new object and invokes a
function (called a constructor) to initialize the properties of that
object. Object creation expressions are like invocation expressions
except that they are prefixed with the keyword new:

new Object()
new Point(2,3)

If no arguments are passed to the constructor function in an object
creation expression, the empty pair of parentheses can be omitted:

new Object
new Date

The value of an object creation expression is the newly created object.
Constructors are explained in more detail in Chapter 9.

4.7 Operator Overview

Operators are used for JavaScript’s arithmetic expressions, comparison
expressions, logical expressions, assignment expressions, and more.
Table 4-1 summarizes the operators and serves as a convenient
reference.

Note that most operators are represented by punctuation characters such
as + and =. Some, however, are represented by keywords such
as delete and instanceof. Keyword operators are regular operators,
just like those expressed with punctuation; they simply have a less
succinct syntax.

Table 4-1 is organized by operator precedence. The operators
listed first have higher precedence than those listed last. Operators
separated by a horizontal line have different precedence levels. The
column labeled A gives the operator associativity, which can be L
(left-to-right) or R (right-to-left), and the column N specifies the
number of operands. The column labeled Types lists the expected types
of the operands and (after the → symbol) the result type for the
operator. The subsections that follow the table explain the concepts
of precedence, associativity, and operand type. The operators
themselves are individually documented following that discussion.

Table 4-1. JavaScript operators

	Operator
	Operation
	A
	N
	Types

	++

	Pre- or post-increment

	R

	1

	lval→num

	--

	Pre- or post-decrement

	R

	1

	lval→num

	-

	Negate number

	R

	1

	num→num

	+

	Convert to number

	R

	1

	any→num

	~

	Invert bits

	R

	1

	int→int

	!

	Invert boolean value

	R

	1

	bool→bool

	delete

	Remove a property

	R

	1

	lval→bool

	typeof

	Determine type of operand

	R

	1

	any→str

	void

	Return undefined value

	R

	1

	any→undef

	**

	Exponentiate

	R

	2

	num,num→num

	*, /, %

	Multiply, divide, remainder

	L

	2

	num,num→num

	+, -

	Add, subtract

	L

	2

	num,num→num

	+

	Concatenate strings

	L

	2

	str,str→str

	<<

	Shift left

	L

	2

	int,int→int

	>>

	Shift right with sign extension

	L

	2

	int,int→int

	>>>

	Shift right with zero extension

	L

	2

	int,int→int

	<, <=,>, >=

	Compare in numeric order

	L

	2

	num,num→bool

	<, <=,>, >=

	Compare in alphabetical order

	L

	2

	str,str→bool

	instanceof

	Test object class

	L

	2

	obj,func→bool

	in

	Test whether property exists

	L

	2

	any,obj→bool

	==

	Test for non-strict equality

	L

	2

	any,any→bool

	!=

	Test for non-strict inequality

	L

	2

	any,any→bool

	===

	Test for strict equality

	L

	2

	any,any→bool

	!==

	Test for strict inequality

	L

	2

	any,any→bool

	&

	Compute bitwise AND

	L

	2

	int,int→int

	^

	Compute bitwise XOR

	L

	2

	int,int→int

	|

	Compute bitwise OR

	L

	2

	int,int→int

	&&

	Compute logical AND

	L

	2

	any,any→any

	||

	Compute logical OR

	L

	2

	any,any→any

	??

	Choose 1st defined operand

	L

	2

	any,any→any

	?:

	Choose 2nd or 3rd operand

	R

	3

	bool,any,any→any

	=

	Assign to a variable or property

	R

	2

	lval,any→any

	**=, *=, /=, %=,

	Operate and assign

	R

	2

	lval,any→any

	+=, -=, &=, ^=, |=,

	
	
	
	

	<<=, >>=, >>>=

	
	
	
	

	,

	Discard 1st operand, return 2nd

	L

	2

	any,any→any

4.7.1 Number of Operands

Operators can be categorized based on the number of operands they
expect (their arity). Most JavaScript operators, like the *
multiplication operator, are binary operators that combine two
expressions into a single, more complex expression. That is, they
expect two operands. JavaScript also supports a number of unary
operators, which convert a single expression into a single, more
complex expression. The − operator in the expression −x is a unary
operator that performs the operation of negation on the operand x.
Finally, JavaScript supports one ternary operator, the conditional
operator ?:, which combines three expressions into a single
expression.

4.7.2 Operand and Result Type

Some operators work on values of any type, but most expect their
operands to be of a specific type, and most operators return (or
evaluate to) a value of a specific type. The Types column in
Table 4-1 specifies operand types (before the arrow) and result
type (after the arrow) for the operators.

JavaScript operators usually convert the type (see §3.9) of
their operands as needed. The multiplication operator * expects
numeric operands, but the expression "3" * "5" is legal because
JavaScript can convert the operands to numbers. The value of this
expression is the number 15, not the string “15”, of course. Remember
also that every JavaScript value is either “truthy” or “falsy,” so
operators that expect boolean operands will work with an operand of any
type.

Some operators behave differently depending on the type of the operands
used with them. Most notably, the + operator adds numeric
operands but concatenates string operands. Similarly, the comparison
operators such as < perform comparison in numerical or alphabetical
order depending on the type of the operands. The descriptions of
individual operators explain their type-dependencies and specify what
type conversions they perform.

Notice that the assignment operators and a few of the other operators
listed in Table 4-1 expect an operand of type lval. lvalue is
a historical term that means “an expression that can legally appear on
the left side of an assignment expression.” In JavaScript, variables,
properties of objects, and elements of arrays are lvalues.

4.7.3 Operator Side Effects

Evaluating a simple expression like 2 * 3 never affects the
state of your program, and any future computation your program performs
will be unaffected by that evaluation. Some expressions, however, have
side effects, and their evaluation may affect the result of future
evaluations. The assignment operators are the most obvious example: if
you assign a value to a variable or property, that changes the value of
any expression that uses that variable or property. The ++ and
-- increment and decrement operators are similar, since they perform
an implicit assignment. The delete operator also has side effects:
deleting a property is like (but not the same as) assigning undefined
to the property.

No other JavaScript operators have side effects, but function
invocation and object creation expressions will have side effects if
any of the operators used in the function or constructor body have side
effects.

4.7.4 Operator Precedence

The operators listed in Table 4-1 are arranged in order from high
precedence to low precedence, with horizontal lines separating groups
of operators at the same precedence level. Operator precedence controls
the order in which operations are performed. Operators with higher
precedence (nearer the top of the table) are performed before those
with lower precedence (nearer to the bottom).

Consider the following expression:

w = x + y*z;

The multiplication operator * has a higher precedence than the
addition operator +, so the multiplication is performed before
the addition. Furthermore, the assignment operator = has the lowest
precedence, so the assignment is performed after all the operations on
the right side are completed.

Operator precedence can be overridden with the explicit use of
parentheses. To force the addition in the previous example to be
performed first, write:

w = (x + y)*z;

Note that property access and invocation expressions have higher
precedence than any of the operators listed in Table 4-1. Consider
this expression:

// my is an object with a property named functions whose value is an
// array of functions. We invoke function number x, passing it argument
// y, and then we ask for the type of the value returned.
typeof my.functions[x](y)

Although typeof is one of the highest-priority operators, the
typeof operation is performed on the result of the property
access, array index, and function invocation, all of which have higher
priority than operators.

In practice, if you are at all unsure about the precedence of your
operators, the simplest thing to do is to use parentheses to make the
evaluation order explicit. The rules that are important to know are
these: multiplication and division are performed before addition and
subtraction, and assignment has very low precedence and is almost
always performed last.

When new operators are added to JavaScript, they do not always fit
naturally into this precedence scheme. The ?? operator
(§4.13.2) is shown in the table as lower-precedence than ||
and &&, but, in fact, its precedence relative to those operators is
not defined, and ES2020 requires you to explicitly use parentheses if
you mix ?? with either || or &&. Similarly, the new **
exponentiation operator does not have a well-defined precedence
relative to the unary negation operator, and you must use parentheses
when combining negation with exponentiation.

4.7.5 Operator Associativity

In Table 4-1, the column labeled A specifies the associativity of
the operator. A value of L specifies left-to-right associativity, and a
value of R specifies right-to-left associativity. The associativity of
an operator specifies the order in which operations of the same
precedence are performed. Left-to-right associativity means that
operations are performed from left to right. For example, the
subtraction operator has left-to-right associativity, so:

w = x - y - z;

is the same as:

w = ((x - y) - z);

On the other hand, the following expressions:

y = a ** b ** c;
x = ~-y;
w = x = y = z;
q = a?b:c?d:e?f:g;

are equivalent to:

y = (a ** (b ** c));
x = ~(-y);
w = (x = (y = z));
q = a?b:(c?d:(e?f:g));

because the exponentiation, unary, assignment, and ternary conditional
operators have right-to-left associativity.

4.7.6 Order of Evaluation

Operator precedence and associativity specify the order in which
operations are performed in a complex expression, but they do not
specify the order in which the subexpressions are evaluated. JavaScript
always evaluates expressions in strictly left-to-right order. In the
expression w = x + y * z, for example, the subexpression w is
evaluated first, followed by x, y, and z. Then the values of y
and z are multiplied, added to the value of x, and assigned to the
variable or property specified by expression w. Adding parentheses to
the expressions can change the relative order of the multiplication,
addition, and assignment, but not the left-to-right order of evaluation.

Order of evaluation only makes a difference if any of the expressions
being evaluated has side effects that affect the value of another
expression. If expression x increments a variable that is used by
expression z, then the fact that x is evaluated before z is
important.

4.8 Arithmetic Expressions

This section covers the operators that perform arithmetic or other
numerical manipulations on their operands. The exponentiation, multiplication,
division, and subtraction operators are straightforward and are
covered first. The addition operator gets a subsection of its own
because it can also perform string concatenation and has some unusual
type conversion rules. The unary operators and the bitwise operators
are also covered in subsections of their own.

Most of these arithmetic operators (except as noted as follows) can be used
with BigInt (see §3.2.5) operands or with regular numbers, as long
as you don’t mix the two types.

The basic arithmetic operators are ** (exponentiation), *
(multiplication), / (division), % (modulo: remainder after
division), + (addition), and - (subtraction). As noted,
we’ll discuss the + operator in a section of its
own. The other five basic operators simply evaluate their operands,
convert the values to numbers if necessary, and then compute the
power, product, quotient, remainder, or difference. Non-numeric
operands that cannot convert to numbers convert to
the NaN value. If either operand is (or converts to) NaN, the
result of the operation is (almost always) NaN.

The ** operator has higher precedence than *, /, and % (which
in turn have higher precedence than + and -). Unlike the other
operators, ** works right-to-left, so 2**2**3 is the same as
2**8, not 4**3. There is a natural ambiguity to expressions like
-3**2. Depending on the relative precedence of unary minus and
exponentiation, that expression could mean (-3)**2 or
-(3**2). Different languages handle this differently, and rather
than pick sides, JavaScript simply makes it a syntax error to omit
parentheses in this case, forcing you to write an unambiguous
expression. ** is JavaScript’s newest arithmetic operator: it was
added to the language with ES2016. The Math.pow() function
has been available since the earliest versions of JavaScript, however,
and it performs exactly the same operation as the ** operator.

The / operator divides its first operand by its second. If you
are used to programming languages that distinguish between integer and
floating-point numbers, you might expect to get an integer result when
you divide one integer by another. In JavaScript, however, all numbers
are floating-point, so all division operations have floating-point
results: 5/2 evaluates to 2.5, not 2. Division by zero
yields positive or negative infinity, while 0/0 evaluates to
NaN: neither of these cases raises an error.

The % operator computes the first operand modulo the second operand.
In other words, it returns the remainder after whole-number division of
the first operand by the second operand. The sign of the result is the
same as the sign of the first operand. For example, 5 % 2 evaluates
to 1, and -5 % 2 evaluates to -1.

While the modulo operator is typically used with integer operands, it
also works for floating-point values. For example, 6.5 % 2.1
evaluates to 0.2.

4.8.1 The + Operator

The binary + operator adds numeric operands or concatenates
string operands:

1 + 2 // => 3
"hello" + " " + "there" // => "hello there"
"1" + "2" // => "12"

When the values of both operands are numbers, or are both strings, then
it is obvious what the + operator does. In any other case,
however, type conversion is necessary, and the operation to be
performed depends on the conversion performed. The conversion rules
for + give priority to string concatenation: if either of the
operands is a string or an object that converts to a string, the other
operand is converted to a string and concatenation is performed.
Addition is performed only if neither operand is string-like.

Technically, the + operator behaves like this:

	
If either of its operand values is an object, it converts it to a
primitive using the object-to-primitive algorithm described in
§3.9.3. Date objects are converted by their toString() method,
and all other objects are converted via valueOf(), if that method
returns a primitive value. However, most objects do not have a useful
valueOf() method, so they are converted via toString() as
well.

	
After object-to-primitive conversion, if either operand is a string,
the other is converted to a string and concatenation is performed.

	
Otherwise, both operands are converted to numbers (or to NaN) and
addition is performed.

Here are some examples:

1 + 2 // => 3: addition
"1" + "2" // => "12": concatenation
"1" + 2 // => "12": concatenation after number-to-string
1 + {} // => "1[object Object]": concatenation after object-to-string
true + true // => 2: addition after boolean-to-number
2 + null // => 2: addition after null converts to 0
2 + undefined // => NaN: addition after undefined converts to NaN

Finally, it is important to note that when the + operator is
used with strings and numbers, it may not be associative. That is, the
result may depend on the order in which operations are performed.

For example:

1 + 2 + " blind mice" // => "3 blind mice"
1 + (2 + " blind mice") // => "12 blind mice"

The first line has no parentheses, and the + operator has
left-to-right associativity, so the two numbers are added first, and
their sum is concatenated with the string. In the second line,
parentheses alter this order of operations: the number 2 is
concatenated with the string to produce a new string. Then the number 1
is concatenated with the new string to produce the final result.

4.8.2 Unary Arithmetic Operators

Unary operators modify the value of a single operand to produce a new
value. In JavaScript, the unary operators all have high precedence and
are all right-associative. The arithmetic unary operators described in
this section (+, -, ++, and --) all convert their
single operand to a number, if necessary. Note that the punctuation
characters + and - are used as both unary and binary
operators.

The unary arithmetic operators are the following:

	Unary plus (+)

	
The unary plus operator converts its operand to
a number (or to NaN) and returns that converted value. When used
with an operand that is already a number, it doesn’t do anything. This
operator may not be used with BigInt values, since they cannot be
converted to regular numbers.

	Unary minus (-)

	
When - is used as a unary operator, it
converts its operand to a number, if necessary, and then changes the
sign of the result.

	Increment (++)

	
The ++ operator increments (i.e., adds 1 to)
its single operand, which must be an lvalue (a variable, an element of
an array, or a property of an object). The operator converts its
operand to a number, adds 1 to that number, and assigns the
incremented value back into the variable, element, or property.

The return value of the ++ operator depends on its position
relative to the operand. When used before the operand, where it is
known as the pre-increment operator, it increments the operand and
evaluates to the incremented value of that operand. When used after the
operand, where it is known as the post-increment operator, it
increments its operand but evaluates to the unincremented value of
that operand. Consider the difference between these two lines of code:

let i = 1, j = ++i; // i and j are both 2
let n = 1, m = n++; // n is 2, m is 1

Note that the expression x++ is not always the same as
x=x+1. The ++ operator never performs string
concatenation: it always converts its operand to a number and
increments it. If x is the string “1”, ++x is the number 2,
but x+1 is the string “11”.

Also note that, because of JavaScript’s automatic semicolon insertion,
you cannot insert a line break between the post-increment operator and
the operand that precedes it. If you do so, JavaScript will treat the
operand as a complete statement by itself and insert a semicolon before
it.

This operator, in both its pre- and post-increment forms, is most
commonly used to increment a counter that controls a for loop
(§5.4.3).

	Decrement (--)

	
The -- operator expects an lvalue operand. It
converts the value of the operand to a number, subtracts 1, and
assigns the decremented value back to the operand. Like the ++
operator, the return value of -- depends on its position relative to
the operand. When used before the operand, it decrements and returns
the decremented value. When used after the operand, it decrements the
operand but returns the undecremented value. When used after its
operand, no line break is allowed between the operand and the
operator.

4.8.3 Bitwise Operators

The bitwise operators perform low-level manipulation of the bits in
the binary representation of numbers. Although they do not perform
traditional arithmetic operations, they are categorized as arithmetic
operators here because they operate on numeric operands and return a
numeric value. Four of these operators perform Boolean algebra on the
individual bits of the operands, behaving as if each bit in each
operand were a boolean value (1=true, 0=false). The other three
bitwise operators are used to shift bits left and right. These
operators are not commonly used in JavaScript programming, and if you
are not familiar with the binary representation of integers, including
the two’s complement representation of negative integers, you can
probably skip this section.

The bitwise operators expect integer operands and behave as if those
values were represented as 32-bit integers rather than 64-bit
floating-point values. These operators convert their operands to
numbers, if necessary, and then coerce the numeric values to 32-bit
integers by dropping any fractional part and any bits beyond the 32nd.
The shift operators require a right-side operand between 0 and 31.
After converting this operand to an unsigned 32-bit integer, they drop
any bits beyond the 5th, which yields a number in the appropriate
range. Surprisingly, NaN, Infinity, and -Infinity all convert to
0 when used as operands of these bitwise operators.

All of these bitwise operators except >>> can be used with regular
number operands or with BigInt (see §3.2.5) operands.

	Bitwise AND (&)

	
The & operator performs a Boolean AND
operation on each bit of its integer arguments. A bit is set in the
result only if the corresponding bit is set in both operands. For
example, 0x1234 & 0x00FF evaluates to 0x0034.

	Bitwise OR (|)

	
The | operator performs a Boolean OR
operation on each bit of its integer arguments. A bit is set in the
result if the corresponding bit is set in one or both of the
operands. For example, 0x1234 | 0x00FF evaluates to 0x12FF.

	Bitwise XOR (^)

	
The ^ operator performs a Boolean exclusive
OR operation on each bit of its integer arguments. Exclusive OR means
that either operand one is true or operand two is true, but not
both. A bit is set in this operation’s result if a corresponding bit
is set in one (but not both) of the two operands. For example, 0xFF00
^ 0xF0F0 evaluates to 0x0FF0.

	Bitwise NOT (~)

	
The ~ operator is a unary operator that
appears before its single integer operand. It operates by reversing
all bits in the operand. Because of the way signed integers are
represented in JavaScript, applying the ~ operator to a value is
equivalent to changing its sign and subtracting 1. For example, ~0x0F
evaluates to 0xFFFFFFF0, or −16.

	Shift left (<<)

	
The << operator moves all bits in its first
operand to the left by the number of places specified in the second
operand, which should be an integer between 0 and 31. For example, in
the operation a << 1, the first bit (the ones bit) of a becomes
the second bit (the twos bit), the second bit of a becomes the
third, etc. A zero is used for the new first bit, and the value of the
32nd bit is lost. Shifting a value left by one position is equivalent
to multiplying by 2, shifting two positions is equivalent to
multiplying by 4, and so on. For example, 7 << 2 evaluates to 28.

	Shift right with sign (>>)

	
The >> operator moves all bits in
its first operand to the right by the number of places specified in
the second operand (an integer between 0 and 31). Bits that are
shifted off the right are lost. The bits filled in on the left depend
on the sign bit of the original operand, in order to preserve the sign
of the result. If the first operand is positive, the result has zeros
placed in the high bits; if the first operand is negative, the result
has ones placed in the high bits. Shifting a positive value right one
place is equivalent to dividing by 2 (discarding the remainder),
shifting right two places is equivalent to integer division by 4, and
so on. 7 >> 1 evaluates to 3, for example, but note that and −7 >>
1 evaluates to −4.

	Shift right with zero fill (>>>)

	
The >>> operator is just
like the >> operator, except that the bits shifted in on the left
are always zero, regardless of the sign of the first operand. This is
useful when you want to treat signed 32-bit values as if they are
unsigned integers. −1 >> 4 evaluates to −1, but −1 >>> 4 evaluates
to 0x0FFFFFFF, for example. This is the only one of the JavaScript
bitwise operators that cannot be used with BigInt values. BigInt does
not represent negative numbers by setting the high bit the way that
32-bit integers do, and this operator only makes sense for that
particular two’s complement representation.

4.9 Relational Expressions

This section describes JavaScript’s relational operators. These
operators test for a relationship (such as “equals,” “less than,”
or “property of”) between two values and return true or false
depending on whether that relationship exists. Relational expressions
always evaluate to a boolean value, and that value is often used to
control the flow of program execution in if, while, and for
statements (see Chapter 5). The subsections that follow document
the equality and inequality operators, the comparison operators, and
JavaScript’s other two relational operators, in and instanceof.

4.9.1 Equality and Inequality Operators

The == and === operators check whether two values are the same,
using two different definitions of sameness. Both operators accept
operands of any type, and both return true if their operands are the
same and false if they are different. The === operator is known as
the strict equality operator (or sometimes the identity operator), and
it checks whether its two operands are “identical” using a strict
definition of sameness. The == operator is known as the equality
operator; it checks whether its two operands are “equal” using a more
relaxed definition of sameness that allows type conversions.

The != and !== operators test for the exact opposite of the ==
and === operators. The != inequality operator returns false if
two values are equal to each other according to == and returns true
otherwise. The !== operator returns false if two values are
strictly equal to each other and returns true otherwise. As you’ll
see in §4.10, the ! operator computes the Boolean NOT
operation. This makes it easy to remember that != and !== stand for
“not equal to” and “not strictly equal to.”

The =, ==, and === operators

JavaScript supports =, ==, and === operators. Be sure you
understand the differences between these assignment, equality, and
strict equality operators, and be careful to use the correct one when
coding! Although it is tempting to read all three operators as
“equals,” it may help to reduce confusion if you read “gets” or “is
assigned” for =, “is equal to” for ==, and “is strictly equal
to” for ===.

The == operator is a legacy feature of JavaScript and is widely
considered to be a source of bugs. You should almost always use ===
instead of ==, and !== instead of !=.

As mentioned in §3.8, JavaScript objects are
compared by reference, not by value. An object is equal to itself, but
not to any other object. If two distinct objects have the same number
of properties, with the same names and values, they are still not
equal. Similarly, two arrays that have the same elements in the same
order are not equal to each other.

Strict equality

The strict equality operator === evaluates its operands, then
compares the two values as follows, performing no type conversion:

	
If the two values have different types, they are not equal.

	
If both values are null or both values are undefined, they are
equal.

	
If both values are the boolean value true or both are the boolean
value false, they are equal.

	
If one or both values is NaN, they are not equal. (This is
surprising, but the NaN value is never equal to any other value,
including itself! To check whether a value x is NaN, use x !==
x, or the global isNaN() function.)

	
If both values are numbers and have the same value, they are equal.
If one value is 0 and the other is -0, they are also equal.

	
If both values are strings and contain exactly the same 16-bit values
(see the sidebar in §3.3) in the same positions, they are equal. If
the strings differ in length or content, they are not equal. Two
strings may have the same meaning and the same visual appearance, but
still be encoded using different sequences of 16-bit values. JavaScript
performs no Unicode normalization, and a pair of strings like this is
not considered equal to the === or == operators.

	
If both values refer to the same object, array, or function, they are
equal. If they refer to different objects, they are not equal, even if
both objects have identical properties.

Equality with type conversion

The equality operator == is like the strict equality operator, but it
is less strict. If the values of the two operands are not the same
type, it attempts some type conversions and tries the comparison again:

	
If the two values have the same type, test them for strict equality
as described previously. If they are strictly equal, they are equal. If they
are not strictly equal, they are not equal.

	
If the two values do not have the same type, the == operator may
still consider them equal. It uses the following rules and type
conversions to check for equality:

	
If one value is null and the other is undefined, they are equal.

	
If one value is a number and the other is a string, convert the
string to a number and try the comparison again, using the converted
value.

	
If either value is true, convert it to 1 and try the comparison
again. If either value is false, convert it to 0 and try the
comparison again.

	
If one value is an object and the other is a number or string,
convert the object to a primitive using the algorithm described in
§3.9.3 and try the comparison again. An object is converted to a
primitive value by either its toString() method or its valueOf()
method. The built-in classes of core JavaScript attempt valueOf()
conversion before toString() conversion, except for the Date class,
which performs toString() conversion.

	
Any other combinations of values are not equal.

As an example of testing for equality, consider the comparison:

"1" == true // => true

This expression evaluates to true, indicating that these very
different-looking values are in fact equal. The boolean value true is
first converted to the number 1, and the comparison is done again.
Next, the string "1" is converted to the number 1. Since both values
are now the same, the comparison returns true.

4.9.2 Comparison Operators

The comparison operators test the relative order (numerical or
alphabetical) of their two operands:

	Less than (<)

	
 The < operator evaluates to true if its first operand is less
than its second operand; otherwise, it evaluates to false.

	Greater than (>)

	
 The > operator evaluates to true if its first operand is
greater than its second operand; otherwise, it evaluates to false.

	Less than or equal (<=)

	
 The <= operator evaluates to true if its first operand is less
than or equal to its second operand; otherwise, it evaluates to false.

	Greater than or equal (>=)

	
 The >= operator evaluates to true if its first operand is
greater than or equal to its second operand; otherwise, it evaluates to
false.

The operands of these comparison operators may be of any type.
Comparison can be performed only on numbers and strings, however, so
operands that are not numbers or strings are converted.

Comparison and conversion occur as follows:

	
If either operand evaluates to an object, that object is converted to
a primitive value, as described at the end of §3.9.3; if its
valueOf() method returns a primitive value, that value is used.
Otherwise, the return value of its toString() method is used.

	
If, after any required object-to-primitive conversion, both operands
are strings, the two strings are compared, using alphabetical order,
where “alphabetical order” is defined by the numerical order of the
16-bit Unicode values that make up the strings.

	
If, after object-to-primitive conversion, at least one operand is not
a string, both operands are converted to numbers and compared
numerically. 0 and -0 are considered equal. Infinity is larger
than any number other than itself, and -Infinity is smaller than any
number other than itself. If either operand is (or converts to) NaN,
then the comparison operator always returns false. Although the
arithmetic operators do not allow BigInt values to be mixed with
regular numbers, the comparison operators do allow comparisons between
numbers and BigInts.

Remember that JavaScript strings are sequences of 16-bit integer
values, and that string comparison is just a numerical comparison of
the values in the two strings. The numerical encoding order defined by
Unicode may not match the traditional collation order used in any
particular language or locale. Note in particular that string
comparison is case-sensitive, and all capital ASCII letters are “less
than” all lowercase ASCII letters. This rule can cause confusing
results if you do not expect it. For example, according to the <
operator, the string “Zoo” comes before the string “aardvark”.

For a more robust string-comparison algorithm, try the
String.localeCompare() method, which also takes locale-specific
definitions of alphabetical order into account. For case-insensitive
comparisons, you can convert the strings to all lowercase or all
uppercase using String.toLowerCase() or String.toUpperCase(). And,
for a more general and better localized string comparison tool,
use the Intl.Collator class described in §11.7.3.

Both the + operator and the comparison operators behave
differently for numeric and string operands. + favors strings:
it performs concatenation if either operand is a string. The comparison
operators favor numbers and only perform string comparison if both
operands are strings:

1 + 2 // => 3: addition.
"1" + "2" // => "12": concatenation.
"1" + 2 // => "12": 2 is converted to "2".
11 < 3 // => false: numeric comparison.
"11" < "3" // => true: string comparison.
"11" < 3 // => false: numeric comparison, "11" converted to 11.
"one" < 3 // => false: numeric comparison, "one" converted to NaN.

Finally, note that the <= (less than or equal) and >= (greater than
or equal) operators do not rely on the equality or strict equality
operators for determining whether two values are “equal.” Instead,
the less-than-or-equal operator is simply defined as “not greater
than,” and the greater-than-or-equal operator is defined as “not less
than.” The one exception occurs when either operand is (or converts
to) NaN, in which case, all four comparison operators return false.

4.9.3 The in Operator

The in operator expects a left-side operand that is a string, symbol, or value that can be converted to a string. It expects a
right-side operand that is an object. It evaluates to true if the
left-side value is the name of a property of the right-side
object. For example:

let point = {x: 1, y: 1}; // Define an object
"x" in point // => true: object has property named "x"
"z" in point // => false: object has no "z" property.
"toString" in point // => true: object inherits toString method

let data = [7,8,9]; // An array with elements (indices) 0, 1, and 2
"0" in data // => true: array has an element "0"
1 in data // => true: numbers are converted to strings
3 in data // => false: no element 3

4.9.4 The instanceof Operator

The instanceof operator expects a left-side operand that is an object
and a right-side operand that identifies a class of objects. The
operator evaluates to true if the left-side object is an instance of
the right-side class and evaluates to false otherwise. Chapter 9
explains that, in JavaScript, classes of objects are defined by the
constructor function that initializes them. Thus, the right-side
operand of instanceof should be a function. Here are examples:

let d = new Date(); // Create a new object with the Date() constructor
d instanceof Date // => true: d was created with Date()
d instanceof Object // => true: all objects are instances of Object
d instanceof Number // => false: d is not a Number object
let a = [1, 2, 3]; // Create an array with array literal syntax
a instanceof Array // => true: a is an array
a instanceof Object // => true: all arrays are objects
a instanceof RegExp // => false: arrays are not regular expressions

Note that all objects are instances of Object. instanceof considers
the “superclasses” when deciding whether an object is an instance of
a class. If the left-side operand of instanceof is not an object,
instanceof returns false. If the righthand side is not a class of
objects, it throws a TypeError.

In order to understand how the instanceof operator works, you must
understand the “prototype chain.” This is JavaScript’s inheritance
mechanism, and it is described in §6.3.2. To evaluate the
expression o instanceof f, JavaScript evaluates f.prototype, and
then looks for that value in the prototype chain of o. If it finds
it, then o is an instance of f (or of a subclass of f) and the
operator returns true. If f.prototype is not one of the values in
the prototype chain of o, then o is not an instance of f and
instanceof returns false.

4.10 Logical Expressions

The logical operators &&, ||, and ! perform Boolean
algebra and are often used in conjunction with the relational operators
to combine two relational expressions into one more complex expression.
These operators are described in the subsections that follow. In order
to fully understand them, you may want to review the concept of
“truthy” and “falsy” values introduced in §3.4.

4.10.1 Logical AND (&&)

The && operator can be understood at three different levels.
At the simplest level, when used with boolean operands, &&
performs the Boolean AND operation on the two values: it returns true
if and only if both its first operand and its second operand are
true. If one or both of these operands is false, it returns false.

&& is often used as a conjunction to join two relational
expressions:

x === 0 && y === 0 // true if, and only if, x and y are both 0

Relational expressions always evaluate to true or false, so when
used like this, the && operator itself returns true or
false. Relational operators have higher precedence than &&
(and ||), so expressions like these can safely be written without
parentheses.

But && does not require that its operands be boolean values.
Recall that all JavaScript values are either “truthy” or “falsy.”
(See §3.4 for details. The falsy values are false, null,
undefined, 0, -0, NaN, and "". All other values, including
all objects, are truthy.) The second level at which && can be
understood is as a Boolean AND operator for truthy and falsy values. If
both operands are truthy, the operator returns a truthy value.
Otherwise, one or both operands must be falsy, and the operator returns
a falsy value. In JavaScript, any expression or statement that expects
a boolean value will work with a truthy or falsy value, so the fact
that && does not always return true or false does not
cause practical problems.

Notice that this description says that the operator returns “a
truthy value” or “a falsy value” but does not specify what that
value is. For that, we need to describe && at the third and
final level. This operator starts by evaluating its first operand, the
expression on its left. If the value on the left is falsy, the value of
the entire expression must also be falsy, so && simply
returns the value on the left and does not even evaluate the expression
on the right.

On the other hand, if the value on the left is truthy, then the overall
value of the expression depends on the value on the righthand side. If
the value on the right is truthy, then the overall value must be
truthy, and if the value on the right is falsy, then the overall value
must be falsy. So when the value on the left is truthy, the
&& operator evaluates and returns the value on the right:

let o = {x: 1};
let p = null;
o && o.x // => 1: o is truthy, so return value of o.x
p && p.x // => null: p is falsy, so return it and don't evaluate p.x

It is important to understand that && may or may not evaluate
its right-side operand. In this code example, the variable p is set to
null, and the expression p.x would, if evaluated, cause a
TypeError. But the code uses && in an idiomatic way so that
p.x is evaluated only if p is truthy—not null or undefined.

The behavior of && is sometimes called short circuiting,
and you may sometimes see code that purposely exploits this behavior to
conditionally execute code. For example, the following two lines of
JavaScript code have equivalent effects:

if (a === b) stop(); // Invoke stop() only if a === b
(a === b) && stop(); // This does the same thing

In general, you must be careful whenever you write an expression with
side effects (assignments, increments, decrements, or function
invocations) on the righthand side of &&. Whether those side
effects occur depends on the value of the lefthand side.

Despite the somewhat complex way that this operator actually works, it
is most commonly used as a simple Boolean algebra operator that works
on truthy and falsy values.

4.10.2 Logical OR (||)

The || operator performs the Boolean OR operation on its two
operands. If one or both operands is truthy, it returns a truthy value.
If both operands are falsy, it returns a falsy value.

Although the || operator is most often used simply as a Boolean OR
operator, it, like the && operator, has more complex behavior. It
starts by evaluating its first operand, the expression on its left. If
the value of this first operand is truthy, it short-circuits and
returns that truthy value without ever evaluating the expression on
the right. If, on the other hand, the value of the first operand is
falsy, then || evaluates its second operand and returns the value of
that expression.

As with the && operator, you should avoid right-side operands
that include side effects, unless you purposely want to use the fact
that the right-side expression may not be evaluated.

An idiomatic usage of this operator is to select the first truthy value
in a set of alternatives:

// If maxWidth is truthy, use that. Otherwise, look for a value in
// the preferences object. If that is not truthy, use a hardcoded constant.
let max = maxWidth || preferences.maxWidth || 500;

Note that if 0 is a legal value for maxWidth, then this code will not work correctly, since 0 is a falsy value. See the ??
operator (§4.13.2) for an alternative.

Prior to ES6, this idiom is often used in functions to supply
default values for parameters:

// Copy the properties of o to p, and return p
function copy(o, p) {
 p = p || {}; // If no object passed for p, use a newly created object.
 // function body goes here
}

In ES6 and later, however, this trick is no longer needed because the
default parameter value could simply be written in the function
definition itself: function copy(o, p={}) { ... }.

4.10.3 Logical NOT (!)

The ! operator is a unary operator; it is placed before a single
operand. Its purpose is to invert the boolean value of its operand. For
example, if x is truthy, !x evaluates to false. If x is falsy,
then !x is true.

Unlike the && and || operators, the ! operator converts
its operand to a boolean value (using the rules described in
Chapter 3) before inverting the converted value. This means that
! always returns true or false and that you can convert any
value x to its equivalent boolean value by applying this operator
twice: !!x (see §3.9.2).

As a unary operator, ! has high precedence and binds tightly. If you
want to invert the value of an expression like p && q, you
need to use parentheses: !(p && q). It is worth noting two
laws of Boolean algebra here that we can express using JavaScript
syntax:

// DeMorgan's Laws
!(p && q) === (!p || !q) // => true: for all values of p and q
!(p || q) === (!p && !q) // => true: for all values of p and q

4.11 Assignment Expressions

JavaScript uses the = operator to assign a value to a variable or
property. For example:

i = 0; // Set the variable i to 0.
o.x = 1; // Set the property x of object o to 1.

The = operator expects its left-side operand to be an lvalue: a
variable or object property (or array element). It expects its
right-side operand to be an arbitrary value of any type. The value of
an assignment expression is the value of the right-side operand. As a
side effect, the = operator assigns the value on the right to the
variable or property on the left so that future references to the
variable or property evaluate to the value.

Although assignment expressions are usually quite simple, you may
sometimes see the value of an assignment expression used as part of a
larger expression. For example, you can assign and test a value in the
same expression with code like this:

(a = b) === 0

If you do this, be sure you are clear on the difference between the =
and === operators! Note that = has very low precedence, and
parentheses are usually necessary when the value of an assignment is to
be used in a larger expression.

The assignment operator has right-to-left associativity, which means
that when multiple assignment operators appear in an expression, they
are evaluated from right to left. Thus, you can write code like this to
assign a single value to multiple variables:

i = j = k = 0; // Initialize 3 variables to 0

4.11.1 Assignment with Operation

Besides the normal = assignment operator, JavaScript supports a
number of other assignment operators that provide shortcuts by
combining assignment with some other operation. For example, the
+= operator performs addition and assignment. The following
expression:

total += salesTax;

is equivalent to this one:

total = total + salesTax;

As you might expect, the += operator works for numbers or
strings. For numeric operands, it performs addition and assignment; for
string operands, it performs concatenation and assignment.

Similar operators include -=, *=, &=, and so on.
Table 4-2 lists them all.

Table 4-2. Assignment operators

	Operator
	Example
	Equivalent

	+=

	a += b

	a = a + b

	-=

	a -= b

	a = a - b

	*=

	a *= b

	a = a * b

	/=

	a /= b

	a = a / b

	%=

	a %= b

	a = a % b

	**=

	a **= b

	a = a ** b

	<<=

	a <<= b

	a = a << b

	>>=

	a >>= b

	a = a >> b

	>>>=

	a >>>= b

	a = a >>> b

	&=

	a &= b

	a = a & b

	|=

	a |= b

	a = a | b

	^=

	a ^= b

	a = a ^ b

In most cases, the expression:

a op= b

where op is an operator, is equivalent to the expression:

a = a op b

In the first line, the expression a is evaluated once. In the second,
it is evaluated twice. The two cases will differ only if a includes
side effects such as a function call or an increment operator. The
following two assignments, for example, are not the same:

data[i++] *= 2;
data[i++] = data[i++] * 2;

4.12 Evaluation Expressions

Like many interpreted languages, JavaScript has the ability to
interpret strings of JavaScript source code, evaluating them to produce
a value. JavaScript does this with the global function eval():

eval("3+2") // => 5

Dynamic evaluation of strings of source code is a powerful language
feature that is almost never necessary in practice. If you find
yourself using eval(), you should think carefully about whether you
really need to use it. In particular, eval() can be a security
hole, and you should never pass any string derived from user input to
eval(). With a language as complicated as JavaScript, there is no way
to sanitize user input to make it safe to use with eval(). Because
of these security issues, some web servers use the HTTP
“Content-Security-Policy” header to disable eval() for an entire
website.

The subsections that follow explain the basic use of eval() and explain two restricted versions of it that have less impact on the
optimizer.

Is eval() a Function or an Operator?

eval() is a function, but it is included in this chapter on
expressions because it really should have been an operator. The
earliest versions of the language defined an eval() function, and
ever since then, language designers and interpreter writers have been
placing restrictions on it that make it more and more operator-like.
Modern JavaScript interpreters perform a lot of code analysis and
optimization. Generally speaking, if a function calls
eval(), the interpreter cannot optimize that function. The problem
with defining eval() as a function is that it can be given other
names:

let f = eval;
let g = f;

If this is allowed, then the interpreter can’t know for sure which
functions call eval(), so it cannot optimize aggressively. This issue could have been avoided if eval()
was an operator (and a reserved word). We’ll learn (in
§4.12.2 and §4.12.3) about restrictions placed on
eval() to make it more operator-like.

4.12.1 eval()

eval() expects one argument. If you pass any value other than a
string, it simply returns that value. If you pass a string, it attempts
to parse the string as JavaScript code, throwing a SyntaxError if it
fails. If it successfully parses the string, then it evaluates the code
and returns the value of the last expression or statement in the string
or undefined if the last expression or statement had no value. If the
evaluated string throws an exception, that exception propogates from
the call to eval().

The key thing about eval() (when invoked like this) is that it uses
the variable environment of the code that calls it. That is, it looks
up the values of variables and defines new variables and functions in
the same way that local code does. If a function defines a local
variable x and then calls eval("x"), it will obtain the value of
the local variable. If it calls eval("x=1"), it changes the value of
the local variable. And if the function calls eval("var y = 3;"),
it declares a new local variable y. On the other hand, if the
evaluated string uses let or const, the variable or constant
declared will be local to the evaluation and will not be defined in
the calling environment.

Similarly, a function can declare a local function with code like this:

eval("function f() { return x+1; }");

If you call eval() from top-level code, it operates on global
variables and global functions, of course.

Note that the string of code you pass to eval() must make syntactic
sense on its own: you cannot use it to paste code fragments into a
function. It makes no sense to write eval("return;"), for example,
because return is only legal within functions, and the fact that the
evaluated string uses the same variable environment as the calling
function does not make it part of that function. If your string would
make sense as a standalone script (even a very short one like x=0),
it is legal to pass to eval(). Otherwise, eval() will throw a
SyntaxError.

4.12.2 Global eval()

It is the ability of eval() to change local variables that is so
problematic to JavaScript optimizers. As a workaround, however,
interpreters simply do less optimization on any function that calls
eval(). But what should a JavaScript interpreter do, however, if a
script defines an alias for eval() and then calls that function by
another name? The JavaScript specification declares that when eval()
is invoked by any name other than “eval”, it should evaluate the
string as if it were top-level global code. The evaluated code may
define new global variables or global functions, and it may set global
variables, but it will not use or modify any variables local to the
calling function, and will not, therefore, interfere with local
optimizations.

A “direct eval” is a call to the eval()
function with an expression that uses the exact, unqualified name
“eval” (which is beginning to feel like a reserved word). Direct
calls to eval() use the variable environment of the calling context.
Any other call—an indirect call—uses the global object as its variable
environment and cannot read, write, or define local variables or
functions. (Both direct and indirect calls can define new variables
only with var. Uses of let and const inside an evaluated string
create variables and constants that are local to the evaluation and do
not alter the calling or global environment.)

The following code demonstrates:

const geval = eval; // Using another name does a global eval
let x = "global", y = "global"; // Two global variables
function f() { // This function does a local eval
 let x = "local"; // Define a local variable
 eval("x += 'changed';"); // Direct eval sets local variable
 return x; // Return changed local variable
}
function g() { // This function does a global eval
 let y = "local"; // A local variable
 geval("y += 'changed';"); // Indirect eval sets global variable
 return y; // Return unchanged local variable
}
console.log(f(), x); // Local variable changed: prints "localchanged global":
console.log(g(), y); // Global variable changed: prints "local globalchanged":

Notice that the ability to do a global eval is not just an
accommodation to the needs of the optimizer; it is actually a
tremendously useful feature that allows you to execute strings of code
as if they were independent, top-level scripts. As noted at the
beginning of this section, it is rare to truly need to evaluate a
string of code. But if you do find it necessary, you are more likely to
want to do a global eval than a local eval.

4.12.3 Strict eval()

Strict mode (see §5.6.3) imposes further
restrictions on the behavior of the eval() function and even on the
use of the identifier “eval”. When eval() is called from strict-mode code, or when the string of code to be evaluated itself begins
with a “use strict” directive, then eval() does a local eval with a
private variable environment. This means that in strict mode, evaluated
code can query and set local variables, but it cannot define new
variables or functions in the local scope.

Furthermore, strict mode makes eval() even more operator-like by
effectively making “eval” into a reserved word. You are not allowed
to overwrite the eval() function with a new value. And you are not
allowed to declare a variable, function, function parameter, or catch
block parameter with the name “eval”.

4.13 Miscellaneous Operators

JavaScript supports a number of other miscellaneous operators,
described in the following sections.

4.13.1 The Conditional Operator (?:)

The conditional operator is the only ternary operator (three operands)
in JavaScript and is sometimes actually called the ternary operator.
This operator is sometimes written ?:, although it does not appear
quite that way in code. Because this operator has three operands, the
first goes before the ?, the second goes between the ? and the :,
and the third goes after the :. It is used like this:

x > 0 ? x : -x // The absolute value of x

The operands of the conditional operator may be of any type. The first
operand is evaluated and interpreted as a boolean. If the value of the
first operand is truthy, then the second operand is evaluated, and its
value is returned. Otherwise, if the first operand is falsy, then the
third operand is evaluated and its value is returned. Only one of the
second and third operands is evaluated; never both.

While you can achieve similar results using the if statement
(§5.3.1), the ?: operator often provides a handy shortcut.
Here is a typical usage, which checks to be sure that a variable is
defined (and has a meaningful, truthy value) and uses it if so or
provides a default value if not:

greeting = "hello " + (username ? username : "there");

This is equivalent to, but more compact than, the following if
statement:

greeting = "hello ";
if (username) {
 greeting += username;
} else {
 greeting += "there";
}

4.13.2 First-Defined (??)

The first-defined operator ?? evaluates to its first defined
operand: if its left operand is not null and not undefined, it
returns that value. Otherwise, it returns the value of the right
operand. Like the && and || operators, ?? is short-circuiting:
it only evaluates its second operand if the first operand evaluates to
null or undefined. If the expression a has no side effects, then
the expression a ?? b is equivalent to:

(a !== null && a !== undefined) ? a : b

?? is a useful alternative to || (§4.10.2) when you want to
select the first defined operand rather than the first truthy
operand. Although || is nominally a logical OR operator, it is also
used idiomatically to select the first non-falsy operand with code
like this:

// If maxWidth is truthy, use that. Otherwise, look for a value in
// the preferences object. If that is not truthy, use a hardcoded constant.
let max = maxWidth || preferences.maxWidth || 500;

The problem with this idiomatic use is that zero, the empty string,
and false are all falsy values that may be perfectly valid in some
circumstances. In this code example, if maxWidth is zero, that value
will be ignored. But if we change the || operator to ??, we end up
with an expression where zero is a valid value:

// If maxWidth is defined, use that. Otherwise, look for a value in
// the preferences object. If that is not defined, use a hardcoded constant.
let max = maxWidth ?? preferences.maxWidth ?? 500;

Here are more examples showing how ?? works when the first operand
is falsy. If that operand is falsy but defined, then ?? returns
it. It is only when the first operand is “nullish” (i.e., null or
undefined) that this operator evaluates and returns the second operand:

let options = { timeout: 0, title: "", verbose: false, n: null };
options.timeout ?? 1000 // => 0: as defined in the object
options.title ?? "Untitled" // => "": as defined in the object
options.verbose ?? true // => false: as defined in the object
options.quiet ?? false // => false: property is not defined
options.n ?? 10 // => 10: property is null

Note that the timeout, title, and verbose expressions here
would have different values if we used || instead of ??.

The ?? operator is similar to the && and || operators but does
not have higher precedence or lower precedence than they do. If you use
it in an expression with either of those operators, you must use
explicit parentheses to specify which operation you want to perform
first:

(a ?? b) || c // ?? first, then ||
a ?? (b || c) // || first, then ??
a ?? b || c // SyntaxError: parentheses are required

The ?? operator is defined by ES2020, and as of early 2020, is
newly supported by current or beta versions of all major
browsers. This operator is formally called the “nullish coalescing”
operator, but I avoid that term because this operator selects one of
its operands but does not “coalesce” them in any way that I can see.

4.13.3 The typeof Operator

typeof is a unary operator that is placed before its single operand,
which can be of any type. Its value is a string that specifies the type
of the operand. Table 4-3 specifies the value of the typeof
operator for any JavaScript value.

Table 4-3. Values returned by the typeof operator

	x
	typeof x

	undefined

	"undefined"

	null

	"object"

	true or false

	"boolean"

	any number or NaN

	"number"

	any BigInt

	"bigint"

	any string

	"string"

	any symbol

	"symbol"

	any function

	"function"

	any nonfunction object

	"object"

You might use the typeof operator in an expression like this:

// If the value is a string, wrap it in quotes, otherwise, convert
(typeof value === "string") ? "'" + value + "'" : value.toString()

Note that typeof returns “object” if the operand value is null.
If you want to distinguish null from objects, you’ll have to
explicitly test for this special-case value.

Although JavaScript functions are a kind of object, the typeof
operator considers functions to be sufficiently different that they
have their own return value.

Because typeof evaluates to “object” for all object and array
values other than functions, it is useful only to distinguish objects
from other, primitive types. In order to distinguish one class of
object from another, you must use other techniques, such as the
instanceof operator (see §4.9.4), the class attribute (see
§14.4.3), or the constructor property (see
§9.2.2 and §14.3).

4.13.4 The delete Operator

delete is a unary operator that attempts to delete the object
property or array element specified as its operand. Like the
assignment, increment, and decrement operators, delete is typically
used for its property deletion side effect and not for the value it
returns. Some examples:

let o = { x: 1, y: 2}; // Start with an object
delete o.x; // Delete one of its properties
"x" in o // => false: the property does not exist anymore

let a = [1,2,3]; // Start with an array
delete a[2]; // Delete the last element of the array
2 in a // => false: array element 2 doesn't exist anymore
a.length // => 3: note that array length doesn't change, though

Note that a deleted property or array element is not merely set to the
undefined value. When a property is deleted, the property ceases to
exist. Attempting to read a nonexistent property returns undefined,
but you can test for the actual existence of a property with the in
operator (§4.9.3). Deleting an array element leaves a “hole”
in the array and does not change the array’s length. The resulting
array is sparse (§7.3).

delete expects its operand to be an lvalue. If it is not an lvalue,
the operator takes no action and returns true. Otherwise, delete
attempts to delete the specified lvalue. delete returns true if it
successfully deletes the specified lvalue. Not all properties can be
deleted, however: non-configurable properties
(§14.1) are immune from deletion.

In strict mode, delete raises a SyntaxError if its operand is an
unqualified identifier such as a variable, function, or function
parameter: it only works when the operand is a property access
expression (§4.4). Strict mode also specifies that
delete raises a TypeError if asked to delete any non-configurable
(i.e., nondeleteable) property. Outside of strict mode, no exception
occurs in these cases, and delete simply returns false to indicate
that the operand could not be deleted.

Here are some example uses of the delete operator:

let o = {x: 1, y: 2};
delete o.x; // Delete one of the object properties; returns true.
typeof o.x; // Property does not exist; returns "undefined".
delete o.x; // Delete a nonexistent property; returns true.
delete 1; // This makes no sense, but it just returns true.
// Can't delete a variable; returns false, or SyntaxError in strict mode.
delete o;
// Undeletable property: returns false, or TypeError in strict mode.
delete Object.prototype;

We’ll see the delete operator again in §6.4.

4.13.5 The await Operator

await was introduced in ES2017 as a way to make
asynchronous programming more natural in JavaScript. You will need to
read Chapter 13 to understand this operator. Briefly, however,
await expects a Promise object (representing an asynchronous
computation) as its sole operand, and it makes your program behave as
if it were waiting for the asynchronous computation to complete (but
it does this without actually blocking, and it does not prevent other
asynchronous operations from proceeding at the same time). The value
of the await operator is the fulfillment value of the Promise
object. Importantly, await is only legal within functions that have
been declared asynchronous with the async keyword. Again, see
Chapter 13 for full details.

4.13.6 The void Operator

void is a unary operator that appears before its single operand,
which may be of any type. This operator is unusual and infrequently
used; it evaluates its operand, then discards the value and returns
undefined. Since the operand value is discarded, using the void
operator makes sense only if the operand has side effects.

The void operator is so obscure that it is difficult to come up with a
practical example of its use. One case would be when you want to
define a function that returns nothing but also uses the arrow
function shortcut syntax (see §8.1.3) where the body of
the function is a single expression that is evaluated and returned. If
you are evaluating the expression solely for its side effects and do
not want to return its value, then the simplest thing is to use curly
braces around the function body. But, as an alternative, you could
also use the void operator in this case:

let counter = 0;
const increment = () => void counter++;
increment() // => undefined
counter // => 1

4.13.7 The comma Operator (,)

The comma operator is a binary operator whose operands may be of any
type. It evaluates its left operand, evaluates its right operand, and
then returns the value of the right operand. Thus, the following line:

i=0, j=1, k=2;

evaluates to 2 and is basically equivalent to:

i = 0; j = 1; k = 2;

The lefthand expression is always evaluated, but its value is
discarded, which means that it only makes sense to use the comma
operator when the lefthand expression has side effects. The only
situation in which the comma operator is commonly used is with a for
loop (§5.4.3) that has multiple loop variables:

// The first comma below is part of the syntax of the let statement
// The second comma is the comma operator: it lets us squeeze 2
// expressions (i++ and j--) into a statement (the for loop) that expects 1.
for(let i=0,j=10; i < j; i++,j--) {
 console.log(i+j);
}

4.14 Summary

This chapter covers a wide variety of topics, and there is lots of
reference material here that you may want to reread in the future as
you continue to learn JavaScript. Some key points to remember,
however, are these:

	
Expressions are the phrases of a JavaScript program.

	
Any expression can be evaluated to a JavaScript value.

	
Expressions can also have side effects (such as
variable assignment) in addition to producing a value.

	
Simple expressions such as literals, variable references, and
property accesses can be combined with operators to produce larger
expressions.

	
JavaScript defines operators for arithmetic, comparisons, Boolean
logic, assignment, and bit manipulation, along with some
miscellaneous operators, including the ternary conditional operator.

	
The JavaScript + operator is used to both add numbers and
concatenate strings.

	
The logical operators && and || have special “short-circuiting”
behavior and sometimes only evaluate one of their arguments. Common
JavaScript idioms require you to understand the special behavior of
these operators.

Chapter 5. Statements

Chapter 4 described expressions as JavaScript phrases. By that
analogy, statements are JavaScript sentences or commands. Just as
English sentences are terminated and separated from one another with
periods, JavaScript statements are terminated with semicolons
(§2.6). Expressions are evaluated to produce a value, but statements are executed to make something happen.

One way to “make something happen” is to evaluate an expression that
has side effects. Expressions with side effects, such as assignments
and function invocations, can stand alone as statements, and when used
this way are known as expression statements. A similar
category of statements are the declaration statements that declare
new variables and define new functions.

JavaScript programs are nothing more than a sequence of statements to
execute. By default, the JavaScript interpreter executes these
statements one after another in the order they are written. Another way
to “make something happen” is to alter this default order of
execution, and JavaScript has a number of statements or control
structures that do just this:

	Conditionals

	
Statements like if and switch that make the
JavaScript interpreter execute or skip other statements depending on
the value of an expression

	Loops

	
Statements like while and for that execute other
statements repetitively

	Jumps

	
Statements like break, return, and throw that cause
the interpreter to jump to another part of the program

The sections that follow describe the various statements in JavaScript
and explain their syntax. Table 5-1, at the end of the
chapter, summarizes the syntax. A JavaScript program is simply a
sequence of statements, separated from one another with semicolons, so
once you are familiar with the statements of JavaScript, you can begin
writing JavaScript programs.

5.1 Expression Statements

The simplest kinds of statements in JavaScript are expressions that
have side effects. This sort of statement was shown in
Chapter 4. Assignment statements are one major category of
expression statements. For example:

greeting = "Hello " + name;
i *= 3;

The increment and decrement operators, ++ and --, are related
to assignment statements. These have the side effect of changing a
variable value, just as if an assignment had been performed:

counter++;

The delete operator has the important side effect of deleting an
object property. Thus, it is almost always used as a statement, rather
than as part of a larger expression:

delete o.x;

Function calls are another major category of expression statements. For
example:

console.log(debugMessage);
displaySpinner(); // A hypothetical function to display a spinner in a web app.

These function calls are expressions, but they have side effects
that affect the host environment or program state, and they are used here
as statements. If a function does not have any side effects, there is
no sense in calling it, unless it is part of a larger expression or an
assignment statement. For example, you wouldn’t just compute a cosine
and discard the result:

Math.cos(x);

But you might well compute the value and assign it to a variable for
future use:

cx = Math.cos(x);

Note that each line of code in each of these examples is terminated
with a semicolon.

5.2 Compound and Empty Statements

Just as the comma operator (§4.13.7) combines multiple
expressions into a single expression, a statement block combines
multiple statements into a single compound statement. A statement
block is simply a sequence of statements enclosed within curly braces.
Thus, the following lines act as a single statement and can be used
anywhere that JavaScript expects a single statement:

{
 x = Math.PI;
 cx = Math.cos(x);
 console.log("cos(π) = " + cx);
}

There are a few things to note about this statement block. First, it
does not end with a semicolon. The primitive statements within the
block end in semicolons, but the block itself does not. Second, the
lines inside the block are indented relative to the curly braces that
enclose them. This is optional, but it makes the code easier to read
and understand.

Just as expressions often contain subexpressions, many JavaScript
statements contain substatements. Formally, JavaScript syntax usually
allows a single substatement. For example, the while loop syntax
includes a single statement that serves as the body of the loop. Using
a statement block, you can place any number of statements within this
single allowed substatement.

A compound statement allows you to use multiple statements where
JavaScript syntax expects a single statement. The empty statement
is the opposite: it allows you to include no statements where one is
expected. The empty statement looks like this:

;

The JavaScript interpreter takes no action when it executes an empty
statement. The empty statement is occasionally useful when you want to
create a loop that has an empty body. Consider the following for loop
(for loops will be covered in §5.4.3):

// Initialize an array a
for(let i = 0; i < a.length; a[i++] = 0) ;

In this loop, all the work is done by the expression a[i++] = 0,
and no loop body is necessary. JavaScript syntax requires a
statement as a loop body, however, so an empty statement—just a bare
semicolon—is used.

Note that the accidental inclusion of a semicolon after the right
parenthesis of a for loop, while loop, or if statement can cause
frustrating bugs that are difficult to detect. For example, the
following code probably does not do what the author intended:

if ((a === 0) || (b === 0)); // Oops! This line does nothing...
 o = null; // and this line is always executed.

When you intentionally use the empty statement, it is a good idea to
comment your code in a way that makes it clear that you are doing it on
purpose. For example:

for(let i = 0; i < a.length; a[i++] = 0) /* empty */ ;

5.3 Conditionals

Conditional statements execute or skip other statements depending on
the value of a specified expression. These statements are the decision
points of your code, and they are also sometimes known as “branches.”
If you imagine a JavaScript interpreter following a path through your
code, the conditional statements are the places where the code branches
into two or more paths and the interpreter must choose which path to
follow.

The following subsections explain JavaScript’s basic conditional, the
if/else statement, and also cover switch, a more complicated,
multiway branch statement.

5.3.1 if

The if statement is the fundamental control statement that allows
JavaScript to make decisions, or, more precisely, to execute statements
conditionally. This statement has two forms. The first is:

if (expression)
 statement

In this form, expression is evaluated. If the resulting value is
truthy, statement is executed. If expression is falsy,
statement is not executed. (See §3.4 for a definition of
truthy and falsy values.) For example:

if (username == null) // If username is null or undefined,
 username = "John Doe"; // define it

Or similarly:

// If username is null, undefined, false, 0, "", or NaN, give it a new value
if (!username) username = "John Doe";

Note that the parentheses around the expression are a required part
of the syntax for the if statement.

JavaScript syntax requires a single statement after the if keyword
and parenthesized expression, but you can use a statement block to
combine multiple statements into one. So the if statement might also
look like this:

if (!address) {
 address = "";
 message = "Please specify a mailing address.";
}

The second form of the if statement introduces an else clause that
is executed when expression is false. Its syntax is:

if (expression)
 statement1
else
 statement2

This form of the statement executes statement1 if expression is
truthy and executes statement2 if expression is falsy. For
example:

if (n === 1)
 console.log("You have 1 new message.");
else
 console.log(`You have ${n} new messages.`);

When you have nested if statements with else clauses, some caution
is required to ensure that the else clause goes with the appropriate
if statement. Consider the following lines:

i = j = 1;
k = 2;
if (i === j)
 if (j === k)
 console.log("i equals k");
else
 console.log("i doesn't equal j"); // WRONG!!

In this example, the inner if statement forms the single statement
allowed by the syntax of the outer if statement. Unfortunately, it is
not clear (except from the hint given by the indentation) which if
the else goes with. And in this example, the indentation is wrong,
because a JavaScript interpreter actually interprets the previous
example as:

if (i === j) {
 if (j === k)
 console.log("i equals k");
 else
 console.log("i doesn't equal j"); // OOPS!
}

The rule in JavaScript (as in most programming languages) is that by
default an else clause is part of the nearest if statement. To make
this example less ambiguous and easier to read, understand, maintain,
and debug, you should use curly braces:

if (i === j) {
 if (j === k) {
 console.log("i equals k");
 }
} else { // What a difference the location of a curly brace makes!
 console.log("i doesn't equal j");
}

Many programmers make a habit of enclosing the bodies of if and
else statements (as well as other compound statements, such as
while loops) within curly braces, even when the body consists of
only a single statement. Doing so consistently can prevent the sort of
problem just shown, and I advise you to adopt this practice. In this
printed book, I place a premium on keeping example code vertically
compact, and I do not always follow my own advice on this matter.

5.3.2 else if

The if/else statement evaluates an expression and executes one
of two pieces of code, depending on the outcome. But what about when
you need to execute one of many pieces of code? One way to do this is
with an else if statement. else if is not really a JavaScript
statement, but simply a frequently used programming idiom that results
when repeated if/else statements are used:

if (n === 1) {
 // Execute code block #1
} else if (n === 2) {
 // Execute code block #2
} else if (n === 3) {
 // Execute code block #3
} else {
 // If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if
statements, where each following if is part of the else clause of
the previous statement. Using the else if idiom is preferable to,
and more legible than, writing these statements out in their
syntactically equivalent, fully nested form:

if (n === 1) {
 // Execute code block #1
}
else {
 if (n === 2) {
 // Execute code block #2
 }
 else {
 if (n === 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute block #4
 }
 }
}

5.3.3 switch

An if statement causes a branch in the flow of a program’s execution,
and you can use the else if idiom to perform a multiway branch.
This is not the best solution, however, when all of the branches depend
on the value of the same expression. In this case, it is wasteful to
repeatedly evaluate that expression in multiple if statements.

The switch statement handles exactly this situation. The switch
keyword is followed by an expression in parentheses and a block of code
in curly braces:

switch(expression) {
 statements
}

However, the full syntax of a switch statement is more complex than
this. Various locations in the block of code are labeled with the
case keyword followed by an expression and a colon. When a switch
executes, it computes the value of expression and then looks for a
case label whose expression evaluates to the same value (where
sameness is determined by the === operator). If it finds one, it
starts executing the block of code at the statement labeled by the
case. If it does not find a case with a matching value, it looks
for a statement labeled default:. If there is no default: label,
the switch statement skips the block of code altogether.

switch is a confusing statement to explain; its operation becomes
much clearer with an example. The following switch statement is
equivalent to the repeated if/else statements shown in the
previous section:

switch(n) {
case 1: // Start here if n === 1
 // Execute code block #1.
 break; // Stop here
case 2: // Start here if n === 2
 // Execute code block #2.
 break; // Stop here
case 3: // Start here if n === 3
 // Execute code block #3.
 break; // Stop here
default: // If all else fails...
 // Execute code block #4.
 break; // Stop here
}

Note the break keyword used at the end of each case in this code. The break statement, described later in this chapter, causes
the interpreter to jump to the end (or “break out”) of the switch
statement and continue with the statement that follows it. The case
clauses in a switch statement specify only the starting point of
the desired code; they do not specify any ending point. In the absence
of break statements, a switch statement begins executing its block
of code at the case label that matches the value of its
expression and continues executing statements until it reaches the
end of the block. On rare occasions, it is useful to write code like
this that “falls through” from one case label to the next, but 99% of the time you should be careful to end every case with a
break statement. (When using switch inside a function, however, you
may use a return statement instead of a break statement. Both serve
to terminate the switch statement and prevent execution from falling
through to the next case.)

Here is a more realistic example of the switch statement; it converts
a value to a string in a way that depends on the type of the value:

function convert(x) {
 switch(typeof x) {
 case "number": // Convert the number to a hexadecimal integer
 return x.toString(16);
 case "string": // Return the string enclosed in quotes
 return '"' + x + '"';
 default: // Convert any other type in the usual way
 return String(x);
 }
}

Note that in the two previous examples, the case keywords are
followed by number and string literals, respectively. This is how the
switch statement is most often used in practice, but note that the
ECMAScript standard allows each case to be followed by an arbitrary
expression.

The switch statement first evaluates the expression that follows the
switch keyword and then evaluates the case expressions, in the
order in which they appear, until it finds a value that
matches.1 The matching
case is determined using the === identity operator, not the ==
equality operator, so the expressions must match without any type
conversion.

Because not all of the case expressions are evaluated each time the
switch statement is executed, you should avoid using case
expressions that contain side effects such as function calls or
assignments. The safest course is simply to limit your case
expressions to constant expressions.

As explained earlier, if none of the case expressions match the
switch expression, the switch statement begins executing its body
at the statement labeled default:. If there is no default: label,
the switch statement skips its body altogether. Note that in the
examples shown, the default: label appears at the end of the switch
body, following all the case labels. This is a logical and common
place for it, but it can actually appear anywhere within the body of
the statement.

5.4 Loops

To understand conditional statements, we imagined the JavaScript
interpreter following a branching path through your source code. The
looping statements are those that bend that path back upon itself to
repeat portions of your code. JavaScript has five looping statements:
while, do/while, for, for/of (and its for/await variant),
and for/in. The following subsections explain each in turn. One common
use for loops is to iterate over the elements of an
array. §7.6 discusses this kind of loop in detail and
covers special looping methods defined by the Array class.

5.4.1 while

Just as the if statement is JavaScript’s basic conditional, the
while statement is JavaScript’s basic loop. It has the following
syntax:

while (expression)
 statement

To execute a while statement, the interpreter first evaluates
expression. If the value of the expression is falsy, then the
interpreter skips over the statement that serves as the loop body
and moves on to the next statement in the program. If, on the other
hand, the expression is truthy, the interpreter executes the
statement and repeats, jumping back to the top of the loop and
evaluating expression again. Another way to say this is that the
interpreter executes statement repeatedly while the
expression is truthy. Note that you can create an infinite loop
with the syntax while(true).

Usually, you do not want JavaScript to perform exactly the same
operation over and over again. In almost every loop, one or more
variables change with each iteration of the loop. Since the variables
change, the actions performed by executing statement may differ
each time through the loop. Furthermore, if the changing variable or
variables are involved in expression, the value of the expression
may be different each time through the loop. This is important;
otherwise, an expression that starts off truthy would never change, and
the loop would never end! Here is an example of a while loop that
prints the numbers from 0 to 9:

let count = 0;
while(count < 10) {
 console.log(count);
 count++;
}

As you can see, the variable count starts off at 0 and is incremented
each time the body of the loop runs. Once the loop has executed 10
times, the expression becomes false (i.e., the variable count is no
longer less than 10), the while statement finishes, and the
interpreter can move on to the next statement in the program. Many
loops have a counter variable like count. The variable names i,
j, and k are commonly used as loop counters, though you should use
more descriptive names if it makes your code easier to understand.

5.4.2 do/while

The do/while loop is like a while loop, except that the loop
expression is tested at the bottom of the loop rather than at the top.
This means that the body of the loop is always executed at least once.
The syntax is:

do
 statement
while (expression);

The do/while loop is less commonly used than its while
cousin—in practice, it is somewhat uncommon to be certain that you want
a loop to execute at least once. Here’s an example of a
do/while loop:

function printArray(a) {
 let len = a.length, i = 0;
 if (len === 0) {
 console.log("Empty Array");
 } else {
 do {
 console.log(a[i]);
 } while(++i < len);
 }
}

There are a couple of syntactic differences between the
do/while loop and the ordinary while loop. First, the do
loop requires both the do keyword (to mark the beginning of the loop)
and the while keyword (to mark the end and introduce the loop
condition). Also, the do loop must always be terminated with a
semicolon. The while loop doesn’t need a semicolon if the loop body
is enclosed in curly braces.

5.4.3 for

The for statement provides a looping construct that is often more
convenient than the while statement. The for statement simplifies
loops that follow a common pattern. Most loops have a counter variable
of some kind. This variable is initialized before the loop starts and
is tested before each iteration of the loop. Finally, the counter
variable is incremented or otherwise updated at the end of the loop
body, just before the variable is tested again. In this kind of loop,
the initialization, the test, and the update are the three crucial
manipulations of a loop variable. The for statement encodes each of
these three manipulations as an expression and makes those expressions
an explicit part of the loop syntax:

for(initialize ; test ; increment)
 statement

initialize, test, and increment are three expressions
(separated by semicolons) that are responsible for initializing,
testing, and incrementing the loop variable. Putting them all in the
first line of the loop makes it easy to understand what a for loop is
doing and prevents mistakes such as forgetting to initialize or
increment the loop variable.

The simplest way to explain how a for loop works is to show the
equivalent while loop:2

initialize;
while(test) {
 statement
 increment;
}

In other words, the initialize expression is evaluated once, before
the loop begins. To be useful, this expression must have side effects
(usually an assignment). JavaScript also allows initialize to be a
variable declaration statement so that you can declare and
initialize a loop counter at the same time. The test expression is
evaluated before each iteration and controls whether the body of the
loop is executed. If test evaluates to a truthy value, the
statement that is the body of the loop is executed. Finally, the
increment expression is evaluated. Again, this must be an
expression with side effects in order to be useful. Generally, it is either an assignment expression, or it uses the ++ or -- operators.

We can print the numbers from 0 to 9 with a for loop like the
following. Contrast it with the equivalent while loop shown in the
previous section:

for(let count = 0; count < 10; count++) {
 console.log(count);
}

Loops can become a lot more complex than this simple example, of
course, and sometimes multiple variables change with each iteration of
the loop. This situation is the only place that the comma operator is
commonly used in JavaScript; it provides a way to combine multiple
initialization and increment expressions into a single expression
suitable for use in a for loop:

let i, j, sum = 0;
for(i = 0, j = 10 ; i < 10 ; i++, j--) {
 sum += i * j;
}

In all our loop examples so far, the loop variable has been numeric.
This is quite common but is not necessary. The following code uses a
for loop to traverse a linked list data structure and return the last
object in the list (i.e., the first object that does not have a next
property):

function tail(o) { // Return the tail of linked list o
 for(; o.next; o = o.next) /* empty */ ; // Traverse while o.next is truthy
 return o;
}

Note that this code has no initialize expression. Any of the
three expressions may be omitted from a for loop, but the two
semicolons are required. If you omit the test expression, the loop
repeats forever, and for(;;) is another way of writing an infinite
loop, like while(true).

5.4.4 for/of

ES6 defines a new loop statement: for/of. This new kind of
loop uses the for keyword but is a completely different kind of loop
than the regular for loop. (It is also completely different than the
older for/in loop that we’ll describe in §5.4.5.)

The for/of loop works with iterable objects. We’ll explain
exactly what it means for an object to be iterable in Chapter 12,
but for this chapter, it is enough to know that arrays, strings, sets,
and maps are iterable: they represent a sequence or set of elements
that you can loop or iterate through using a for/of loop.

Here, for example, is how we can use for/of to loop through the
elements of an array of numbers and compute their sum:

let data = [1, 2, 3, 4, 5, 6, 7, 8, 9], sum = 0;
for(let element of data) {
 sum += element;
}
sum // => 45

Superficially, the syntax looks like a regular for loop: the for
keyword is followed by parentheses that contain details about what the
loop should do. In this case, the parentheses contain a variable
declaration (or, for variables that have already been declared, simply
the name of the variable) followed by the of keyword and an
expression that evaluates to an iterable object, like the data array
in this case. As with all loops, the body of a for/of loop follows
the parentheses, typically within curly braces.

In the code just shown, the loop body runs once for each element of the
data array. Before each execution of the loop body, the next element
of the array is assigned to the element variable. Array elements are
iterated in order from first to last.

Arrays are iterated “live”—changes made during the iteration may
affect the outcome of the iteration. If we modify the preceding code by adding the line data.push(sum); inside the loop body, then we create
an infinite loop because the iteration can never reach the last
element of the array.

for/of with objects

Objects are not (by default) iterable. Attempting to use for/of on a
regular object throws a TypeError at runtime:

let o = { x: 1, y: 2, z: 3 };
for(let element of o) { // Throws TypeError because o is not iterable
 console.log(element);
}

If you want to iterate through the properties of an object, you can
use the for/in loop (introduced in §5.4.5), or use for/of
with the Object.keys() method:

let o = { x: 1, y: 2, z: 3 };
let keys = "";
for(let k of Object.keys(o)) {
 keys += k;
}
keys // => "xyz"

This works because Object.keys() returns an array of property names
for an object, and arrays are iterable with for/of. Note also that
this iteration of the keys of an object is not live as the array
example above was—changes to the object o made in the loop body
will have no effect on the iteration. If you don’t care about the keys
of an object, you can also iterate through their corresponding values
like this:

let sum = 0;
for(let v of Object.values(o)) {
 sum += v;
}
sum // => 6

And if you are interested in both the keys and the values of an
object’s properties, you can use for/of with Object.entries() and
destructuring assignment:

let pairs = "";
for(let [k, v] of Object.entries(o)) {
 pairs += k + v;
}
pairs // => "x1y2z3"

Object.entries() returns an array of arrays, where each inner array
represents a key/value pair for one property of the object. We use
destructuring assignment in this code example to unpack those inner
arrays into two individual variables.

for/of with strings

Strings are iterable character-by-character in ES6:

let frequency = {};
for(let letter of "mississippi") {
 if (frequency[letter]) {
 frequency[letter]++;
 } else {
 frequency[letter] = 1;
 }
}
frequency // => {m: 1, i: 4, s: 4, p: 2}

Note that strings are iterated by Unicode codepoint, not by UTF-16
character. The string “I ❤ ” has a .length of 5 (because the two
emoji characters each require two UTF-16 characters to represent). But
if you iterate that string with for/of, the loop body will run three
times, once for each of the three code points “I”, “❤”, and “.”

for/of with Set and Map

The built-in ES6 Set and Map classes are iterable. When you iterate a
Set with for/of, the loop body runs once for each element of the
set. You could use code like this to print the unique words in a
string of text:

let text = "Na na na na na na na na Batman!";
let wordSet = new Set(text.split(" "));
let unique = [];
for(let word of wordSet) {
 unique.push(word);
}
unique // => ["Na", "na", "Batman!"]

Maps are an interesting case because the iterator for a Map object
does not iterate the Map keys, or the Map values, but key/value
pairs. Each time through the iteration, the iterator returns an array
whose first element is a key and whose second element is the
corresponding value. Given a Map m, you could iterate and destructure
its key/value pairs like this:

let m = new Map([[1, "one"]]);
for(let [key, value] of m) {
 key // => 1
 value // => "one"
}

Asynchronous iteration with for/await

ES2018 introduces a new kind of iterator, known as an
asynchronous iterator, and a variant on the for/of loop, known as
the for/await loop that works with asynchronous iterators.

You’ll need to read Chapters 12 and 13 in order to understand
the for/await loop, but here is how it looks in code:

// Read chunks from an asynchronously iterable stream and print them out
async function printStream(stream) {
 for await (let chunk of stream) {
 console.log(chunk);
 }
}

5.4.5 for/in

A for/in loop looks a lot like a for/of loop, with the of
keyword changed to in. While a for/of loop requires an iterable
object after the of, a for/in loop works with any object after the
in. The for/of loop is new in ES6, but for/in has been
part of JavaScript since the very beginning (which is why it has the
more natural sounding syntax).

The for/in statement loops through the property names of a specified
object. The syntax looks like this:

for (variable in object)
 statement

variable typically names a variable, but it may be a variable
declaration or anything suitable as the left-hand side of an
assignment expression. object is an expression that evaluates to
an object. As usual, statement is the statement or statement block
that serves as the body of the loop.

And you might use a for/in loop like this:

for(let p in o) { // Assign property names of o to variable p
 console.log(o[p]); // Print the value of each property
}

To execute a for/in statement, the JavaScript interpreter first
evaluates the object expression. If it evaluates to null or
undefined, the interpreter skips the loop and moves on to the next
statement. The interpreter now executes the body of the loop once for
each enumerable property of the object. Before each iteration,
however, the interpreter evaluates the variable expression and
assigns the name of the property (a string value) to it.

Note that the variable in the for/in loop may be an
arbitrary expression, as long as it evaluates to something suitable for
the left side of an assignment. This expression is evaluated each time
through the loop, which means that it may evaluate differently each
time. For example, you can use code like the following to copy the
names of all object properties into an array:

let o = { x: 1, y: 2, z: 3 };
let a = [], i = 0;
for(a[i++] in o) /* empty */;

JavaScript arrays are simply a specialized kind of object, and array
indexes are object properties that can be enumerated with a
for/in loop. For example, following the previous code with this
line enumerates the array indexes 0, 1, and 2:

for(let i in a) console.log(i);

I find that a common source of bugs in my own code is the accidental
use of for/in with arrays when I meant to use for/of. When working
with arrays, you almost always want to use for/of instead of
for/in.

The for/in loop does not actually enumerate all properties of an
object. It does not enumerate properties whose names are symbols. And
of the properties whose names are strings, it only loops over the
enumerable properties (see §14.1). The various
built-in methods defined by core JavaScript are not enumerable. All
objects have a toString() method, for example, but the for/in loop
does not enumerate this toString property. In addition to built-in
methods, many other properties of the built-in objects are
non-enumerable. All properties and methods defined by your code are
enumerable, by default. (You can make them non-enumerable using
techniques explained in §14.1.)

Enumerable inherited properties (see §6.3.2) are also
enumerated by the for/in loop. This means that if you use
for/in loops and also use code that defines properties that are
inherited by all objects, then your loop may not behave in the way you
expect. For this reason, many programmers prefer to use a for/of
loop with Object.keys() instead of a for/in loop.

If the body of a for/in loop deletes a property that has not
yet been enumerated, that property will not be enumerated. If the body
of the loop defines new properties on the object, those properties may
or may not be enumerated. See §6.6.1 for more
information on the order in which for/in enumerates the properties
of an object.

5.5 Jumps

Another category of JavaScript statements are jump statements. As
the name implies, these cause the JavaScript interpreter to jump to a
new location in the source code. The break statement makes the
interpreter jump to the end of a loop or other statement. continue
makes the interpreter skip the rest of the body of a loop and jump back
to the top of a loop to begin a new iteration. JavaScript allows
statements to be named, or labeled, and break and continue
can identify the target loop or other statement label.

The return statement makes the interpreter jump from a function
invocation back to the code that invoked it and also supplies the
value for the invocation. The throw statement is a kind of interim
return from a generator function. The throw statement raises, or
throws, an exception and is designed to work with the
try/catch/finally statement, which establishes a block of exception-handling code. This is a complicated kind of jump statement: when an
exception is thrown, the interpreter jumps to the nearest enclosing
exception handler, which may be in the same function or up the call
stack in an invoking function.

Details about each of these jump statements are in the sections that
follow.

5.5.1 Labeled Statements

Any statement may be labeled by preceding it with an identifier and a
colon:

identifier: statement

By labeling a statement, you give it a name that you can use to refer
to it elsewhere in your program. You can label any statement, although
it is only useful to label statements that have bodies, such as loops
and conditionals. By giving a loop a name, you can use break and
continue statements inside the body of the loop to exit the loop or
to jump directly to the top of the loop to begin the next iteration.
break and continue are the only JavaScript statements that use
statement labels; they are covered in the following subsections. Here is an
example of a labeled while loop and a continue statement that uses
the label.

mainloop: while(token !== null) {
 // Code omitted...
 continue mainloop; // Jump to the next iteration of the named loop
 // More code omitted...
}

The identifier you use to label a statement can be any legal
JavaScript identifier that is not a reserved word. The namespace for
labels is different than the namespace for variables and functions, so
you can use the same identifier as a statement label and as a variable
or function name. Statement labels are defined only within the
statement to which they apply (and within its substatements, of
course). A statement may not have the same label as a statement that
contains it, but two statements may have the same label as long as
neither one is nested within the other. Labeled statements may
themselves be labeled. Effectively, this means that any statement may
have multiple labels.

5.5.2 break

The break statement, used alone, causes the innermost enclosing loop
or switch statement to exit immediately. Its syntax is simple:

break;

Because it causes a loop or switch to exit, this form of the break
statement is legal only if it appears inside one of these statements.

You’ve already seen examples of the break statement within a switch
statement. In loops, it is typically used to exit prematurely when, for
whatever reason, there is no longer any need to complete the loop. When
a loop has complex termination conditions, it is often easier to
implement some of these conditions with break statements rather than
trying to express them all in a single loop expression. The following
code searches the elements of an array for a particular value. The loop
terminates in the normal way when it reaches the end of the array; it
terminates with a break statement if it finds what it is looking for
in the array:

for(let i = 0; i < a.length; i++) {
 if (a[i] === target) break;
}

JavaScript also allows the break keyword to be followed by a
statement label (just the identifier, with no colon):

break labelname;

When break is used with a label, it jumps to the end of, or
terminates, the enclosing statement that has the specified label. It is
a syntax error to use break in this form if there is no enclosing
statement with the specified label. With this form of the break
statement, the named statement need not be a loop or switch: break
can “break out of” any enclosing statement. This statement can even
be a statement block grouped within curly braces for the sole purpose
of naming the block with a label.

A newline is not allowed between the break keyword and the
labelname. This is a result of JavaScript’s automatic insertion of
omitted semicolons: if you put a line terminator between the break
keyword and the label that follows, JavaScript assumes you meant to use
the simple, unlabeled form of the statement and treats the line
terminator as a semicolon. (See §2.6.)

You need the labeled form of the break statement when you want to
break out of a statement that is not the nearest enclosing loop or a
switch. The following code demonstrates:

let matrix = getData(); // Get a 2D array of numbers from somewhere
// Now sum all the numbers in the matrix.
let sum = 0, success = false;
// Start with a labeled statement that we can break out of if errors occur
computeSum: if (matrix) {
 for(let x = 0; x < matrix.length; x++) {
 let row = matrix[x];
 if (!row) break computeSum;
 for(let y = 0; y < row.length; y++) {
 let cell = row[y];
 if (isNaN(cell)) break computeSum;
 sum += cell;
 }
 }
 success = true;
}
// The break statements jump here. If we arrive here with success == false
// then there was something wrong with the matrix we were given.
// Otherwise, sum contains the sum of all cells of the matrix.

Finally, note that a break statement, with or without a label, can
not transfer control across function boundaries. You cannot label a
function definition statement, for example, and then use that label
inside the function.

5.5.3 continue

The continue statement is similar to the break statement. Instead
of exiting a loop, however, continue restarts a loop at the next
iteration. The continue statement’s syntax is just as simple as the
break statement’s:

continue;

The continue statement can also be used with a label:

continue labelname;

The continue statement, in both its labeled and unlabeled forms, can
be used only within the body of a loop. Using it anywhere else causes a
syntax error.

When the continue statement is executed, the current iteration of the
enclosing loop is terminated, and the next iteration begins. This means
different things for different types of loops:

	
In a while loop, the specified expression at the beginning of
the loop is tested again, and if it’s true, the loop body is executed
starting from the top.

	
In a do/while loop, execution skips to the bottom of the
loop, where the loop condition is tested again before restarting the
loop at the top.

	
In a for loop, the increment expression is evaluated, and the
test expression is tested again to determine if another iteration
should be done.

	
In a for/of or for/in loop, the loop starts over with the next
iterated value or next property name being assigned to the specified
variable.

Note the difference in behavior of the continue statement in the
while and for loops: a while loop returns directly to its
condition, but a for loop first evaluates its increment
expression and then returns to its condition. Earlier, we considered the
behavior of the for loop in terms of an “equivalent” while loop.
Because the continue statement behaves differently for these two
loops, however, it is not actually possible to perfectly simulate a
for loop with a while loop alone.

The following example shows an unlabeled continue statement being
used to skip the rest of the current iteration of a loop when an error
occurs:

for(let i = 0; i < data.length; i++) {
 if (!data[i]) continue; // Can't proceed with undefined data
 total += data[i];
}

Like the break statement, the continue statement can be used in its
labeled form within nested loops when the loop to be restarted is not
the immediately enclosing loop. Also, as with the break statement, line
breaks are not allowed between the continue statement and its labelname.

5.5.4 return

Recall that function invocations are expressions and that all
expressions have values. A return statement within a function
specifies the value of invocations of that function. Here’s the syntax
of the return statement:

return expression;

A return statement may appear only within the body of a function. It
is a syntax error for it to appear anywhere else. When the return
statement is executed, the function that contains it returns the value
of expression to its caller. For example:

function square(x) { return x*x; } // A function that has a return statement
square(2) // => 4

With no return statement, a function invocation simply executes each
of the statements in the function body in turn until it reaches the end
of the function and then returns to its caller. In this case, the
invocation expression evaluates to undefined. The return statement
often appears as the last statement in a function, but it need not be
last: a function returns to its caller when a return statement is
executed, even if there are other statements remaining in the function
body.

The return statement can also be used without an expression to
make the function return undefined to its caller. For example:

function displayObject(o) {
 // Return immediately if the argument is null or undefined.
 if (!o) return;
 // Rest of function goes here...
}

Because of JavaScript’s automatic semicolon insertion
(§2.6), you cannot include a line break between the
return keyword and the expression that follows it.

5.5.5 yield

The yield statement is much like the return statement but is used
only in ES6 generator functions (see §12.3) to produce the next
value in the generated sequence of values without actually returning:

// A generator function that yields a range of integers
function* range(from, to) {
 for(let i = from; i <= to; i++) {
 yield i;
 }
}

In order to understand yield, you must understand iterators and
generators, which will not be covered until Chapter 12. yield is
included here for completeness, however. (Technically, though, yield
is an operator rather than a statement, as explained in
§12.4.2.)

5.5.6 throw

An exception is a signal that indicates that some sort of exceptional
condition or error has occurred. To throw an exception is to signal
such an error or exceptional condition. To catch an exception is to
handle it—to take whatever actions are necessary or appropriate to
recover from the exception. In JavaScript, exceptions are thrown
whenever a runtime error occurs and whenever the program explicitly
throws one using the throw statement. Exceptions are caught with the
try/catch/finally statement, which is described in the next
section.

The throw statement has the following syntax:

throw expression;

expression may evaluate to a value of any type. You might throw a
number that represents an error code or a string that contains a
human-readable error message. The Error class and its subclasses are
used when the JavaScript interpreter itself throws an error, and you
can use them as well. An Error object has a name property that
specifies the type of error and a message property that holds the
string passed to the constructor function. Here is an example function
that throws an Error object when invoked with an invalid argument:

function factorial(x) {
 // If the input argument is invalid, throw an exception!
 if (x < 0) throw new Error("x must not be negative");
 // Otherwise, compute a value and return normally
 let f;
 for(f = 1; x > 1; f *= x, x--) /* empty */ ;
 return f;
}
factorial(4) // => 24

When an exception is thrown, the JavaScript interpreter immediately
stops normal program execution and jumps to the nearest exception
handler. Exception handlers are written using the catch clause of the
try/catch/finally statement, which is described in the next
section. If the block of code in which the exception was thrown does
not have an associated catch clause, the interpreter checks the next-highest enclosing block of code to see if it has an exception handler
associated with it. This continues until a handler is found. If an
exception is thrown in a function that does not contain a
try/catch/finally statement to handle it, the exception
propagates up to the code that invoked the function. In this way,
exceptions propagate up through the lexical structure of JavaScript
methods and up the call stack. If no exception handler is ever found,
the exception is treated as an error and is reported to the user.

5.5.7 try/catch/finally

The try/catch/finally statement is JavaScript’s exception
handling mechanism. The try clause of this statement simply defines
the block of code whose exceptions are to be handled. The try block
is followed by a catch clause, which is a block of statements that
are invoked when an exception occurs anywhere within the try block.
The catch clause is followed by a finally block containing cleanup
code that is guaranteed to be executed, regardless of what happens in
the try block. Both the catch and finally blocks are optional,
but a try block must be accompanied by at least one of these blocks.
The try, catch, and finally blocks all begin and end with curly
braces. These braces are a required part of the syntax and cannot be
omitted, even if a clause contains only a single statement.

The following code illustrates the syntax and purpose of the
try/catch/finally statement:

try {
 // Normally, this code runs from the top of the block to the bottom
 // without problems. But it can sometimes throw an exception,
 // either directly, with a throw statement, or indirectly, by calling
 // a method that throws an exception.
}
catch(e) {
 // The statements in this block are executed if, and only if, the try
 // block throws an exception. These statements can use the local variable
 // e to refer to the Error object or other value that was thrown.
 // This block may handle the exception somehow, may ignore the
 // exception by doing nothing, or may rethrow the exception with throw.
}
finally {
 // This block contains statements that are always executed, regardless of
 // what happens in the try block. They are executed whether the try
 // block terminates:
 // 1) normally, after reaching the bottom of the block
 // 2) because of a break, continue, or return statement
 // 3) with an exception that is handled by a catch clause above
 // 4) with an uncaught exception that is still propagating
}

Note that the catch keyword is generally followed by an identifier in
parentheses. This identifier is like a function parameter. When an
exception is caught, the value associated with the exception (an Error
object, for example) is assigned to this parameter. The identifier
associated with a catch clause has block
scope—it is only defined within the catch block.

Here is a realistic example of the try/catch statement. It uses
the factorial() method defined in the previous section and the
client-side JavaScript methods prompt() and alert() for input and
output:

try {
 // Ask the user to enter a number
 let n = Number(prompt("Please enter a positive integer", ""));
 // Compute the factorial of the number, assuming the input is valid
 let f = factorial(n);
 // Display the result
 alert(n + "! = " + f);
}
catch(ex) { // If the user's input was not valid, we end up here
 alert(ex); // Tell the user what the error is
}

This example is a try/catch statement with no finally clause.
Although finally is not used as often as catch, it can be useful.
However, its behavior requires additional explanation. The finally
clause is guaranteed to be executed if any portion of the try block
is executed, regardless of how the code in the try block completes.
It is generally used to clean up after the code in the try clause.

In the normal case, the JavaScript interpreter reaches the end of the
try block and then proceeds to the finally block, which performs
any necessary cleanup. If the interpreter left the try block because
of a return, continue, or break statement, the finally block is
executed before the interpreter jumps to its new destination.

If an exception occurs in the try block and there is an associated
catch block to handle the exception, the interpreter first executes
the catch block and then the finally block. If there is no local
catch block to handle the exception, the interpreter first executes
the finally block and then jumps to the nearest containing catch
clause.

If a finally block itself causes a jump with a return, continue,
break, or throw statement, or by calling a method that throws an
exception, the interpreter abandons whatever jump was pending and
performs the new jump. For example, if a finally clause throws an
exception, that exception replaces any exception that was in the
process of being thrown. If a finally clause issues a return
statement, the method returns normally, even if an exception has been
thrown and has not yet been handled.

try and finally can be used together without a catch clause. In
this case, the finally block is simply cleanup code that is
guaranteed to be executed, regardless of what happens in the try
block. Recall that we can’t completely simulate a for loop with a
while loop because the continue statement behaves differently for
the two loops. If we add a try/finally statement, we can write
a while loop that works like a for loop and that handles continue
statements correctly:

// Simulate for(initialize ; test ;increment) body;
initialize ;
while(test) {
 try { body ; }
 finally { increment ; }
}

Note, however, that a body that contains a break statement
behaves slightly differently (causing an extra increment before
exiting) in the while loop than it does in the for loop, so even
with the finally clause, it is not possible to completely simulate
the for loop with while.

Bare Catch Clauses

Occasionally you may find yourself using a catch clause solely to
detect and stop the propagation of an exception, even though you do not
care about the type or the value of the exception. In ES2019 and later,
you can omit the parentheses and the identifier and use the catch
keyword bare in this case. Here is an example:

// Like JSON.parse(), but return undefined instead of throwing an error
function parseJSON(s) {
 try {
 return JSON.parse(s);
 } catch {
 // Something went wrong but we don't care what it was
 return undefined;
 }
}

5.6 Miscellaneous Statements

This section describes the remaining three JavaScript
statements—with, debugger, and "use strict".

5.6.1 with

The with statement runs a block of code as if the properties of
a specified object were variables in scope for that code. It has the
following syntax:

with (object)
 statement

This statement creates a temporary scope with the properties of
object as variables and then executes statement within that
scope.

The with statement is forbidden in strict mode (see
§5.6.3) and should be considered deprecated in non-strict
mode: avoid using it whenever possible. JavaScript code that uses
with is difficult to optimize and is likely to run significantly
more slowly than the equivalent code written without the with
statement.

The common use of the with statement is to make it easier to work
with deeply nested object hierarchies. In client-side JavaScript, for
example, you may have to type expressions like this one to access
elements of an HTML form:

document.forms[0].address.value

If you need to write expressions like this a number of times, you can
use the with statement to treat the properties of the form object
like variables:

with(document.forms[0]) {
 // Access form elements directly here. For example:
 name.value = "";
 address.value = "";
 email.value = "";
}

This reduces the amount of typing you have to do: you no longer need
to prefix each form property name with document.forms[0]. It is
just as simple, of course, to avoid the with statement and write
the preceding code like this:

let f = document.forms[0];
f.name.value = "";
f.address.value = "";
f.email.value = "";

Note that if you use const or let or var to declare a variable
or constant within the body of a with statement, it creates an
ordinary variable and does not define a new property within the
specified object.

5.6.2 debugger

The debugger statement normally does nothing. If, however, a debugger
program is available and is running, then an implementation may (but is
not required to) perform some kind of debugging action. In practice,
this statement acts like a breakpoint: execution of JavaScript code
stops, and you can use the debugger to print variables’ values, examine
the call stack, and so on. Suppose, for example, that you are getting
an exception in your function f() because it is being called with an
undefined argument, and you can’t figure out where this call is coming
from. To help you in debugging this problem, you might alter f() so
that it begins like this:

function f(o) {
 if (o === undefined) debugger; // Temporary line for debugging purposes
 ... // The rest of the function goes here.
}

Now, when f() is called with no argument, execution will stop, and
you can use the debugger to inspect the call stack and find out where
this incorrect call is coming from.

Note that it is not enough to have a debugger available: the
debugger statement won’t start the debugger for you. If you’re using
a web browser and have the developer tools console open, however, this
statement will cause a breakpoint.

5.6.3 “use strict”

"use strict" is a directive introduced in ES5.
Directives are not statements (but are close enough that "use
strict" is documented here). There are two important differences
between the "use strict" directive and regular statements:

	
It does not include any language keywords: the directive is just an
expression statement that consists of a special string literal (in
single or double quotes).

	
It can appear only at the start of a script or at the start of a
function body, before any real statements have appeared.

The purpose of a "use strict" directive is to indicate that the code
that follows (in the script or function) is strict code. The
top-level (nonfunction) code of a script is strict code if the script
has a "use strict" directive. A function body is strict code if it
is defined within strict code or if it has a "use strict"
directive. Code passed to the eval() method is strict code if
eval() is called from strict code or if the string of code includes
a "use strict" directive. In addition to code explicitly declared to
be strict, any code in a class body (Chapter 9) or in an ES6
module (§10.3) is automatically strict code. This means that
if all of your JavaScript code is written as modules, then it is all
automatically strict, and you will never need to use an explicit "use
strict" directive.

Strict code is executed in strict mode. Strict mode is a restricted
subset of the language that fixes important language deficiencies and
provides stronger error checking and increased security. Because
strict mode is not the default, old JavaScript code that still uses
the deficient legacy features of the language will continue to run
correctly. The differences between strict mode and non-strict mode are
the following (the first three are particularly important):

	
The with statement is not allowed in strict mode.

	
In strict mode, all variables must be declared: a ReferenceError is
thrown if you assign a value to an identifier that is not a declared
variable, function, function parameter, catch clause parameter, or
property of the global object. (In non-strict mode, this implicitly
declares a global variable by adding a new property to the global
object.)

	
In strict mode, functions invoked as functions (rather than as
methods) have a this value of undefined. (In non-strict mode,
functions invoked as functions are always passed the global object as
their this value.) Also, in strict mode, when a function is invoked
with call() or apply() (§8.7.4), the this value is
exactly the value passed as the first argument to call() or
apply(). (In non-strict mode, null and undefined values are
replaced with the global object and nonobject values are converted to
objects.)

	
In strict mode, assignments to nonwritable properties and attempts to
create new properties on non-extensible objects throw a TypeError. (In
non-strict mode, these attempts fail silently.)

	
In strict mode, code passed to eval() cannot declare variables or
define functions in the caller’s scope as it can in non-strict mode.
Instead, variable and function definitions live in a new scope created
for the eval(). This scope is discarded when the eval() returns.

	
In strict mode, the Arguments object (§8.3.3) in a
function holds a static copy of the values passed to the function. In
non-strict mode, the Arguments object has “magical” behavior in
which elements of the array and named function parameters both refer to
the same value.

	
In strict mode, a SyntaxError is thrown if the delete operator is
followed by an unqualified identifier such as a variable, function, or
function parameter. (In nonstrict mode, such a delete expression
does nothing and evaluates to false.)

	
In strict mode, an attempt to delete a nonconfigurable property
throws a TypeError. (In non-strict mode, the attempt fails and the
delete expression evaluates to false.)

	
In strict mode, it is a syntax error for an object literal to define
two or more properties by the same name. (In non-strict mode, no error
occurs.)

	
In strict mode, it is a syntax error for a function declaration to
have two or more parameters with the same name. (In non-strict mode, no
error occurs.)

	
In strict mode, octal integer literals (beginning with a 0 that is
not followed by an x) are not allowed. (In non-strict mode, some
implementations allow octal literals.)

	
In strict mode, the identifiers eval and arguments are treated
like keywords, and you are not allowed to change their value. You
cannot assign a value to these identifiers, declare them as variables,
use them as function names, use them as function parameter names, or
use them as the identifier of a catch block.

	
In strict mode, the ability to examine the call stack is restricted.
arguments.caller and arguments.callee both throw a TypeError within
a strict mode function. Strict mode functions also have caller and
arguments properties that throw TypeError when read. (Some
implementations define these nonstandard properties on non-strict
functions.)

5.7 Declarations

The keywords const, let, var, function, class, import, and
export are not technically statements, but they look a lot like
statements, and this book refers informally to them as statements, so
they deserve a mention in this chapter.

These keywords are more accurately described as declarations rather
than statements. We said at the start of this chapter that statements
“make something happen.” Declarations serve to define new values and
give them names that we can use to refer to those values. They don’t
make much happen themselves, but by providing names for values they,
in an important sense, define the meaning of the other statements in
your program.

When a program runs, it is the program’s expressions that are being
evaluated and the program’s statements that are being executed. The
declarations in a program don’t “run” in the same way: instead, they
define the structure of the program itself. Loosely, you can think of
declarations as the parts of the program that are processed before the
code starts running.

JavaScript declarations are used to define constants, variables,
functions, and classes and for importing and exporting values between
modules. The next subsections give examples of all of these
declarations. They are all covered in much more detail elsewhere in
this book.

5.7.1 const, let, and var

The const, let, and var declarations are covered in
§3.10. In ES6 and later, const declares constants,
and let declares variables. Prior to ES6, the var keyword was the only way
to declare variables and there was no way to declare
constants. Variables declared with var are scoped to the containing
function rather than the containing block. This can be a source of
bugs, and in modern JavaScript there is really no reason to use var
instead of let.

const TAU = 2*Math.PI;
let radius = 3;
var circumference = TAU * radius;

5.7.2 function

The function declaration is used to define functions, which are
covered in detail in Chapter 8. (We also saw function in
§4.3, where it was used as part of a function expression
rather than a function declaration.) A function declaration looks like
this:

function area(radius) {
 return Math.PI * radius * radius;
}

A function declaration creates a function object and assigns it to the
specified name—area in this example. Elsewhere in our program,
we can refer to the function—and run the code inside it—by using this
name. The function declarations in any block of JavaScript code are
processed before that code runs, and the function names are bound to
the function objects throughout the block. We say that function
declarations are “hoisted” because it is as if they had all been moved
up to the top of whatever scope they are defined within. The upshot is
that code that invokes a function can exist in your program before the
code that declares the function.

§12.3 describes a special kind of function known as a
generator. Generator declarations use the function keyword but
follow it with an asterisk. §13.3 describes asynchronous
functions, which are also declared using the function keyword but
are prefixed with the async keyword.

5.7.3 class

In ES6 and later, the class declaration creates a new class and
gives it a name that we can use to refer to it. Classes are described
in detail in Chapter 9. A simple class declaration might look like
this:

class Circle {
 constructor(radius) { this.r = radius; }
 area() { return Math.PI * this.r * this.r; }
 circumference() { return 2 * Math.PI * this.r; }
}

Unlike functions, class declarations are not hoisted, and you cannot
use a class declared this way in code that appears before the
declaration.

5.7.4 import and export

The import and export declarations are used together to make
values defined in one module of JavaScript code available in another
module. A module is a file of JavaScript code with its own global
namespace, completely independent of all other modules. The only way
that a value (such as function or class) defined in one module can be
used in another module is if the defining module exports it with
export and the using module imports it with import. Modules are
the subject of Chapter 10, and import and export are covered in
detail in §10.3.

import directives are used to import one or more values from another
file of JavaScript code and give them names within the current
module. import directives come in a few different forms. Here are
some examples:

import Circle from './geometry/circle.js';
import { PI, TAU } from './geometry/constants.js';
import { magnitude as hypotenuse } from './vectors/utils.js';

Values within a JavaScript module are private and cannot be imported
into other modules unless they have been explicitly exported. The
export directive does this: it declares that one or more values
defined in the current module are exported and therefore available for
import by other modules. The export directive has more variants than
the import directive does. Here is one of them:

// geometry/constants.js
const PI = Math.PI;
const TAU = 2 * PI;
export { PI, TAU };

The export keyword is sometimes used as a modifier on other
declarations, resulting in a kind of compound declaration that defines
a constant, variable, function, or class and exports it at the same
time. And when a module exports only a single value, this is typically
done with the special form export default:

export const TAU = 2 * Math.PI;
export function magnitude(x,y) { return Math.sqrt(x*x + y*y); }
export default class Circle { /* class definition omitted here */ }

5.8 Summary of JavaScript Statements

This chapter introduced each of the JavaScript language’s statements, which are summarized in Table 5-1.

Table 5-1. JavaScript statement syntax

	Statement
	Purpose

	break

	Exit from the innermost loop or switch or from named enclosing statement

	case

	Label a statement within a switch

	class

	Declare a class

	const

	Declare and initialize one or more constants

	continue

	Begin next iteration of the innermost loop or the named loop

	debugger

	Debugger breakpoint

	default

	Label the default statement within a switch

	do/while

	An alternative to the while loop

	export

	Declare values that can be imported into other modules

	for

	An easy-to-use loop

	for/await

	Asynchronously iterate the values of an async iterator

	for/in

	Enumerate the property names of an object

	for/of

	Enumerate the values of an iterable object such as an array

	function

	Declare a function

	if/else

	Execute one statement or another depending on a condition

	import

	Declare names for values defined in other modules

	label

	Give statement a name for use with break and continue

	let

	Declare and initialize one or more block-scoped variables (new syntax)

	return

	Return a value from a function

	switch

	Multiway branch to case or default: labels

	throw

	Throw an exception

	try/catch/finally

	Handle exceptions and code cleanup

	“use strict”

	Apply strict mode restrictions to script or function

	var

	Declare and initialize one or more variables (old syntax)

	while

	A basic loop construct

	with

	Extend the scope chain (deprecated and forbidden in strict mode)

	yield

	Provide a value to be iterated; only used in generator functions

1 The fact that the case expressions are evaluated at runtime makes the JavaScript switch statement much different from (and less efficient than) the switch statement of C, C++, and Java. In those languages, the case expressions must be compile-time constants of the same type, and switch statements can often compile down to highly efficient jump tables.
2 When we consider the continue statement in §5.5.3, we’ll see that this while loop is not an exact equivalent of the for loop.

Chapter 6. Objects

Objects are JavaScript’s most fundamental datatype, and you have
already seen them many times in the chapters that precede this
one. Because objects are so important to the JavaScript language, it
is important that you understand how they work in detail, and this
chapter provides that detail. It begins with a formal overview of
objects, then dives into practical sections about creating
objects and querying, setting, deleting, testing, and enumerating the
properties of objects. These property-focused sections are followed by
sections that explain how to extend, serialize, and define important
methods on objects. Finally, the chapter concludes with a long section
about new object literal syntax in ES6 and more recent versions of the
language.

6.1 Introduction to Objects

An object is a composite value: it aggregates multiple values
(primitive values or other objects) and allows you to store and
retrieve those values by name. An object is an unordered collection of
properties, each of which has a name and a value. Property names
are usually strings (although, as we’ll see in
§6.10.3, property names can also be Symbols), so
we can say that objects map strings to values. This string-to-value
mapping goes by various names—you are probably already familiar with
the fundamental data structure under the name “hash,” “hashtable,”
“dictionary,” or “associative array.” An object is more than a simple
string-to-value map, however. In addition to maintaining its own set
of properties, a JavaScript object also inherits the properties of
another object, known as its “prototype.” The methods of an object
are typically inherited properties, and this “prototypal inheritance”
is a key feature of JavaScript.

JavaScript objects are dynamic—properties can usually be added and
deleted—but they can be used to simulate the static objects and
“structs” of statically typed languages. They can also be used (by
ignoring the value part of the string-to-value mapping) to represent
sets of strings.

Any value in JavaScript that is not a string, a number, a Symbol, or true,
false, null, or undefined is an object. And even though strings,
numbers, and booleans are not objects, they can behave like immutable
objects.

Recall from §3.8 that objects are mutable and
manipulated by reference rather than by value. If the variable x
refers to an object and the code let y = x; is executed, the
variable y holds a reference to the same object, not a copy of that
object. Any modifications made to the object through the variable y
are also visible through the variable x.

The most common things to do with objects are to create them and set,
query, delete, test, and enumerate their properties. These fundamental
operations are described in the opening sections of this chapter. The
sections after that cover more advanced topics.

A property has a name and a value. A property name may be any
string, including the empty string (or any Symbol), but no object may have two
properties with the same name. The value may be any JavaScript value,
or it may be a getter or setter function (or both). We’ll learn
about getter and setter functions in §6.10.6.

It is sometimes important to be able to distinguish between properties
defined directly on an object and those that are inherited from a
prototype object. JavaScript uses the term own property to refer
to non-inherited properties.

In addition to its name and value, each property has three property
attributes:

	
The writable attribute specifies whether the value of the property
can be set.

	
The enumerable attribute specifies whether the property name is
returned by a for/in loop.

	
The configurable attribute specifies whether the property can be
deleted and whether its attributes can be altered.

Many of JavaScript’s built-in objects have properties that are
read-only, non-enumerable, or non-configurable. By default, however,
all properties of the objects you create are writable, enumerable, and
configurable. §14.1 explains techniques for
specifying non-default property attribute values for your objects.

6.2 Creating Objects

Objects can be created with object literals, with the new keyword,
and with the Object.create() function. The subsections below
describe each technique.

6.2.1 Object Literals

The easiest way to create an object is to include an object literal in
your JavaScript code. In its simplest form, an object literal is a
comma-separated list of colon-separated name:value pairs, enclosed
within curly braces. A property name is a JavaScript identifier or a
string literal (the empty string is allowed). A property value is any
JavaScript expression; the value of the expression (it may be a
primitive value or an object value) becomes the value of the property.
Here are some examples:

let empty = {}; // An object with no properties
let point = { x: 0, y: 0 }; // Two numeric properties
let p2 = { x: point.x, y: point.y+1 }; // More complex values
let book = {
 "main title": "JavaScript", // These property names include spaces,
 "sub-title": "The Definitive Guide", // and hyphens, so use string literals.
 for: "all audiences", // for is reserved, but no quotes.
 author: { // The value of this property is
 firstname: "David", // itself an object.
 surname: "Flanagan"
 }
};

A trailing comma following the last property in an object literal is
legal, and some programming styles encourage the use of these trailing
commas so you’re less likely to cause a syntax error if you add a new
property at the end of the object literal at some later time.

An object literal is an expression that creates and initializes a new
and distinct object each time it is evaluated. The value of each
property is evaluated each time the literal is evaluated. This means
that a single object literal can create many new objects if it appears
within the body of a loop or in a function that is called repeatedly, and
that the property values of these objects may differ from each other.

The object literals shown here use simple syntax that has been legal
since the earliest versions of JavaScript. Recent versions of the
language have introduced a number of new object literal features,
which are covered in §6.10.

6.2.2 Creating Objects with new

The new operator creates and initializes a new object. The new
keyword must be followed by a function invocation. A function used in
this way is called a constructor and serves to initialize a newly
created object. JavaScript includes constructors for its built-in
types. For example:

let o = new Object(); // Create an empty object: same as {}.
let a = new Array(); // Create an empty array: same as [].
let d = new Date(); // Create a Date object representing the current time
let r = new Map(); // Create a Map object for key/value mapping

In addition to these built-in constructors, it is common to define
your own constructor functions to initialize newly created
objects. Doing so is covered in Chapter 9.

6.2.3 Prototypes

Before we can cover the third object creation technique, we must pause
for a moment to explain prototypes. Almost every JavaScript object has
a second JavaScript object associated with it. This second object is
known as a prototype, and the first object inherits properties from
the prototype.

All objects created by object literals have the same prototype object,
and we can refer to this prototype object in JavaScript code as
Object.prototype. Objects created using the new keyword and a
constructor invocation use the value of the prototype property of
the constructor function as their prototype. So the object created by
new Object() inherits from Object.prototype, just as the object
created by {} does. Similarly, the object created by new Array()
uses Array.prototype as its prototype, and the object created by
new Date() uses Date.prototype as its prototype. This can be confusing when first learning JavaScript. Remember: almost all objects have a prototype, but only a relatively small number of objects have a prototype property. It is these objects with prototype properties that define the prototypes for all the other objects.

Object.prototype is one of the rare objects that has no prototype:
it does not inherit any properties. Other prototype objects are normal
objects that do have a prototype. Most built-in constructors (and most
user-defined constructors) have a prototype that inherits from
Object.prototype. For example, Date.prototype inherits properties
from Object.prototype, so a Date object created by new Date()
inherits properties from both Date.prototype and
Object.prototype. This linked series of prototype objects is known
as a prototype chain.

An explanation of how property inheritance works is in
§6.3.2. Chapter 9 explains the connection between
prototypes and constructors in more detail: it shows how to define new
“classes” of objects by writing a constructor function and setting its
prototype property to the prototype object to be used by the
“instances” created with that constructor. And we’ll learn how to
query (and even change) the prototype of an object in §14.3.

6.2.4 Object.create()

Object.create() creates a new object, using its first argument as
the prototype of that object:

let o1 = Object.create({x: 1, y: 2}); // o1 inherits properties x and y.
o1.x + o1.y // => 3

You can pass null to create a new object that does not have a
prototype, but if you do this, the newly created object will not
inherit anything, not even basic methods like toString() (which
means it won’t work with the + operator either):

let o2 = Object.create(null); // o2 inherits no props or methods.

If you want to create an ordinary empty object (like the object returned by
{} or new Object()), pass Object.prototype:

let o3 = Object.create(Object.prototype); // o3 is like {} or new Object().

The ability to create a new object with an arbitrary prototype is a
powerful one, and we’ll use Object.create() in a number of places
throughout this chapter. (Object.create() also takes an optional
second argument that describes the properties of the new object. This
second argument is an advanced feature covered in
§14.1.)

One use for Object.create() is when you want to guard against
unintended (but nonmalicious) modification of an object by a library
function that you don’t have control over. Instead of passing the
object directly to the function, you can pass an object that inherits
from it. If the function reads properties of that object, it will see
the inherited values. If it sets properties, however, those writes
will not affect the original object.

let o = { x: "don't change this value" };
library.function(Object.create(o)); // Guard against accidental modifications

To understand why this works, you need to know how properties are
queried and set in JavaScript. These are the topics of the next
section.

6.3 Querying and Setting Properties

To obtain the value of a property, use the dot (.) or square bracket
([]) operators described in §4.4. The lefthand side
should be an expression whose value is an object. If using the dot
operator, the righthand side must be a simple identifier that names the
property. If using square brackets, the value within the brackets must
be an expression that evaluates to a string that contains the desired
property name:

let author = book.author; // Get the "author" property of the book.
let name = author.surname; // Get the "surname" property of the author.
let title = book["main title"]; // Get the "main title" property of the book.

To create or set a property, use a dot or square brackets as you would
to query the property, but put them on the lefthand side of an
assignment expression:

book.edition = 7; // Create an "edition" property of book.
book["main title"] = "ECMAScript"; // Change the "main title" property.

When using square bracket notation, we’ve said that the expression
inside the square brackets must evaluate to a string. A more precise
statement is that the expression must evaluate to a string or a value
that can be converted to a string or to a Symbol
(§6.10.3). In Chapter 7, for example, we’ll see
that it is common to use numbers inside the square brackets.

6.3.1 Objects As Associative Arrays

As explained in the preceding section, the following two JavaScript expressions have the same
value:

object.property
object["property"]

The first syntax, using the dot and an identifier, is like the syntax
used to access a static field of a struct or object in C or Java. The
second syntax, using square brackets and a string, looks like array
access, but to an array indexed by strings rather than by
numbers. This kind of array is known as an associative array (or hash
or map or dictionary). JavaScript objects are associative arrays, and
this section explains why that is important.

In C, C++, Java, and similar strongly typed languages, an object can
have only a fixed number of properties, and the names of these
properties must be defined in advance. Since JavaScript is a loosely
typed language, this rule does not apply: a program can create any
number of properties in any object. When you use the . operator to
access a property of an object, however, the name of the property is
expressed as an identifier. Identifiers must be typed literally into
your JavaScript program; they are not a datatype, so they cannot be
manipulated by the program.

On the other hand, when you access a property of an object with the
[] array notation, the name of the property is expressed as a
string. Strings are JavaScript datatypes, so they can be manipulated
and created while a program is running. So, for example, you can write
the following code in JavaScript:

let addr = "";
for(let i = 0; i < 4; i++) {
 addr += customer[`address${i}`] + "\n";
}

This code reads and concatenates the address0, address1,
address2, and address3 properties of the customer object.

This brief example demonstrates the flexibility of using array
notation to access properties of an object with string
expressions. This code could be rewritten using the dot notation,
but there are cases in which only the array notation will do. Suppose,
for example, that you are writing a program that uses network
resources to compute the current value of the user’s stock market
investments. The program allows the user to type in the name of each
stock they own as well as the number of shares of each stock. You
might use an object named portfolio to hold this information. The
object has one property for each stock. The name of the property is
the name of the stock, and the property value is the number of shares
of that stock. So, for example, if a user holds 50 shares of stock in
IBM, the portfolio.ibm property has the value 50.

Part of this program might be a function for adding a new stock to the
portfolio:

function addstock(portfolio, stockname, shares) {
 portfolio[stockname] = shares;
}

Since the user enters stock names at runtime, there is no way that you
can know the property names ahead of time. Since you can’t know the
property names when you write the program, there is no way you can use
the . operator to access the properties of the portfolio
object. You can use the [] operator, however, because it uses a
string value (which is dynamic and can change at runtime) rather than
an identifier (which is static and must be hardcoded in the program)
to name the property.

In Chapter 5, we introduced the for/in loop (and we’ll see it again shortly, in §6.6). The power of this JavaScript
statement becomes clear when you consider its use with associative
arrays. Here is how you would use it when computing the total value of a
portfolio:

function computeValue(portfolio) {
 let total = 0.0;
 for(let stock in portfolio) { // For each stock in the portfolio:
 let shares = portfolio[stock]; // get the number of shares
 let price = getQuote(stock); // look up share price
 total += shares * price; // add stock value to total value
 }
 return total; // Return total value.
}

JavaScript objects are commonly used as associative arrays as shown
here, and it is important to understand how this works. In ES6 and later, however, the Map class described in §11.1.2 is often
a better choice than using a plain object.

6.3.2 Inheritance

JavaScript objects have a set of “own properties,” and they also
inherit a set of properties from their prototype object. To understand
this, we must consider property access in more detail. The examples in
this section use the Object.create() function to create objects with
specified prototypes. We’ll see in Chapter 9, however, that every time
you create an instance of a class with new, you are creating an
object that inherits properties from a prototype object.

Suppose you query the property x in the object o. If o does not
have an own property with that name, the prototype object of o1 is
queried for the property x. If the prototype object does not have an
own property by that name, but has a prototype itself, the query is
performed on the prototype of the prototype. This continues until the
property x is found or until an object with a null prototype is
searched. As you can see, the prototype attribute of an object
creates a chain or linked list from which properties are inherited:

let o = {}; // o inherits object methods from Object.prototype
o.x = 1; // and it now has an own property x.
let p = Object.create(o); // p inherits properties from o and Object.prototype
p.y = 2; // and has an own property y.
let q = Object.create(p); // q inherits properties from p, o, and...
q.z = 3; // ...Object.prototype and has an own property z.
let f = q.toString(); // toString is inherited from Object.prototype
q.x + q.y // => 3; x and y are inherited from o and p

Now suppose you assign to the property x of the object o. If o
already has an own (non-inherited) property named x, then the
assignment simply changes the value of this existing
property. Otherwise, the assignment creates a new property named x
on the object o. If o previously inherited the property x, that
inherited property is now hidden by the newly created own property
with the same name.

Property assignment examines the prototype chain only to determine
whether the assignment is allowed. If o inherits a read-only
property named x, for example, then the assignment is not
allowed. (Details about when a property may be set are in
§6.3.3.) If the assignment is allowed, however, it
always creates or sets a property in the original object and never
modifies objects in the prototype chain. The fact that inheritance
occurs when querying properties but not when setting them is a key
feature of JavaScript because it allows us to selectively override
inherited properties:

let unitcircle = { r: 1 }; // An object to inherit from
let c = Object.create(unitcircle); // c inherits the property r
c.x = 1; c.y = 1; // c defines two properties of its own
c.r = 2; // c overrides its inherited property
unitcircle.r // => 1: the prototype is not affected

There is one exception to the rule that a property assignment either
fails or creates or sets a property in the original object. If o
inherits the property x, and that property is an accessor property
with a setter method (see §6.10.6), then that setter
method is called rather than creating a new property x in o. Note,
however, that the setter method is called on the object o, not on
the prototype object that defines the property, so if the setter
method defines any properties, it will do so on o, and it will again
leave the prototype chain unmodified.

6.3.3 Property Access Errors

Property access expressions do not always return or set a value. This
section explains the things that can go wrong when you query or set a
property.

It is not an error to query a property that does not exist. If the
property x is not found as an own property or an inherited property
of o, the property access expression o.x evaluates to
undefined. Recall that our book object has a “sub-title” property,
but not a “subtitle” property:

book.subtitle // => undefined: property doesn't exist

It is an error, however, to attempt to query a property of an object that does
not exist. The null and undefined values have no properties, and it is an
error to query properties of these values. Continuing the preceding example:

let len = book.subtitle.length; // !TypeError: undefined doesn't have length

Property access expressions will fail if the lefthand side of the .
is null or undefined. So when writing an expression like
book.author.surname, you should be careful if you are not certain
that book and book.author are actually defined. Here are two ways
to guard against this kind of problem:

// A verbose and explicit technique
let surname = undefined;
if (book) {
 if (book.author) {
 surname = book.author.surname;
 }
}

// A concise and idiomatic alternative to get surname or null or undefined
surname = book && book.author && book.author.surname;

To understand why this idiomatic expression works to prevent TypeError
exceptions, you might want to review the short-circuiting behavior of
the && operator in §4.10.1.

As described in §4.4.1, ES2020 supports
conditional property access with ?., which allows us to rewrite the previous assignment expression as:

let surname = book?.author?.surname;

Attempting to set a property on null or undefined also causes a
TypeError. Attempts to set properties on other values do not always
succeed, either: some properties are read-only and cannot be set, and
some objects do not allow the addition of new properties. In strict
mode (§5.6.3), a TypeError is thrown whenever an attempt to set
a property fails. Outside of strict mode, these failures are usually
silent.

The rules that specify when a property assignment succeeds and when it
fails are intuitive but difficult to express concisely. An attempt to
set a property p of an object o fails in these circumstances:

	
o has an own property p that is read-only: it is not possible to
set read-only properties.

	
o has an inherited property p that is read-only: it is not
possible to hide an inherited read-only property with an own property
of the same name.

	
o does not have an own property p; o does not inherit a
property p with a setter method, and o’s extensible attribute
(see §14.2) is false. Since p does not already exist in
o, and if there is no setter method to call, then p must be added
to o. But if o is not extensible, then no new properties can be
defined on it.

6.4 Deleting Properties

The delete operator (§4.13.4) removes a property from an
object. Its single operand should be a property access
expression. Surprisingly, delete does not operate on the value of
the property but on the property itself:

delete book.author; // The book object now has no author property.
delete book["main title"]; // Now it doesn't have "main title", either.

The delete operator only deletes own properties, not inherited
ones. (To delete an inherited property, you must delete it from the
prototype object in which it is defined. Doing this affects every
object that inherits from that prototype.)

A delete expression evaluates to true if the delete succeeded or
if the delete had no effect (such as deleting a nonexistent
property). delete also evaluates to true when used (meaninglessly)
with an expression that is not a property access expression:

let o = {x: 1}; // o has own property x and inherits property toString
delete o.x // => true: deletes property x
delete o.x // => true: does nothing (x doesn't exist) but true anyway
delete o.toString // => true: does nothing (toString isn't an own property)
delete 1 // => true: nonsense, but true anyway

delete does not remove properties that have a configurable
attribute of false. Certain properties of built-in objects are
non-configurable, as are properties of the global object created by
variable declaration and function declaration. In strict mode,
attempting to delete a non-configurable property causes a TypeError. In
non-strict mode, delete simply evaluates to false in this case:

// In strict mode, all these deletions throw TypeError instead of returning false
delete Object.prototype // => false: property is non-configurable
var x = 1; // Declare a global variable
delete globalThis.x // => false: can't delete this property
function f() {} // Declare a global function
delete globalThis.f // => false: can't delete this property either

When deleting configurable properties of the global object in non-strict mode,
you can omit the reference to the global object and simply follow the delete
operator with the property name:

globalThis.x = 1; // Create a configurable global property (no let or var)
delete x // => true: this property can be deleted

In strict mode, however, delete raises a SyntaxError if its operand
is an unqualified identifier like x, and you have to be explicit
about the property access:

delete x; // SyntaxError in strict mode
delete globalThis.x; // This works

6.5 Testing Properties

JavaScript objects can be thought of as sets of properties, and it is
often useful to be able to test for membership in the set—to check
whether an object has a property with a given name. You can do this
with the in operator, with the hasOwnProperty() and
propertyIsEnumerable() methods, or simply by querying the
property. The examples shown here all use strings as property names,
but they also work with Symbols (§6.10.3).

The in operator expects a property name on its left
side and an object on its right. It returns true if the object has
an own property or an inherited property by that name:

let o = { x: 1 };
"x" in o // => true: o has an own property "x"
"y" in o // => false: o doesn't have a property "y"
"toString" in o // => true: o inherits a toString property

The hasOwnProperty() method of an object tests whether that object
has an own property with the given name. It returns false for
inherited properties:

let o = { x: 1 };
o.hasOwnProperty("x") // => true: o has an own property x
o.hasOwnProperty("y") // => false: o doesn't have a property y
o.hasOwnProperty("toString") // => false: toString is an inherited property

The propertyIsEnumerable() refines the hasOwnProperty() test. It
returns true only if the named property is an own property and its
enumerable attribute is true. Certain built-in properties are
not enumerable. Properties created by normal JavaScript code are
enumerable unless you’ve used one of the techniques shown in
§14.1 to make them non-enumerable.

let o = { x: 1 };
o.propertyIsEnumerable("x") // => true: o has an own enumerable property x
o.propertyIsEnumerable("toString") // => false: not an own property
Object.prototype.propertyIsEnumerable("toString") // => false: not enumerable

Instead of using the in operator, it is often sufficient to simply query the
property and use !== to make sure it is not undefined:

let o = { x: 1 };
o.x !== undefined // => true: o has a property x
o.y !== undefined // => false: o doesn't have a property y
o.toString !== undefined // => true: o inherits a toString property

There is one thing the in operator can do that the simple property
access technique shown here cannot do. in can distinguish between
properties that do not exist and properties that exist but have been
set to undefined. Consider this code:

let o = { x: undefined }; // Property is explicitly set to undefined
o.x !== undefined // => false: property exists but is undefined
o.y !== undefined // => false: property doesn't even exist
"x" in o // => true: the property exists
"y" in o // => false: the property doesn't exist
delete o.x; // Delete the property x
"x" in o // => false: it doesn't exist anymore

6.6 Enumerating Properties

Instead of testing for the existence of individual properties, we
sometimes want to iterate through or obtain a list of all the
properties of an object. There are a few different ways to do this.

The for/in loop was covered in §5.4.5. It runs the body of the
loop once for each enumerable property (own or inherited) of the specified
object, assigning the name of the property to the loop variable. Built-in
methods that objects inherit are not enumerable, but the properties that your
code adds to objects are enumerable by default. For example:

let o = {x: 1, y: 2, z: 3}; // Three enumerable own properties
o.propertyIsEnumerable("toString") // => false: not enumerable
for(let p in o) { // Loop through the properties
 console.log(p); // Prints x, y, and z, but not toString
}

To guard against enumerating inherited properties with for/in, you
can add an explicit check inside the loop body:

for(let p in o) {
 if (!o.hasOwnProperty(p)) continue; // Skip inherited properties
}

for(let p in o) {
 if (typeof o[p] === "function") continue; // Skip all methods
}

As an alternative to using a for/in loop, it is often easier to get
an array of property names for an object and then loop through that
array with a for/of loop. There are four functions you can use to
get an array of property names:

	
Object.keys() returns an array of the names of the enumerable own
properties of an object. It does not include non-enumerable
properties, inherited properties, or properties whose name is a Symbol
(see §6.10.3).

	
Object.getOwnPropertyNames() works like Object.keys() but
returns an array of the names of non-enumerable own properties as
well, as long as their names are strings.

	
Object.getOwnPropertySymbols() returns own properties whose names
are Symbols, whether or not they are enumerable.

	
Reflect.ownKeys() returns all own property names, both enumerable
and non-enumerable, and both string and Symbol. (See §14.6.)

There are examples of the use of Object.keys() with a for/of loop
in §6.7.

6.6.1 Property Enumeration Order

ES6 formally defines the order in which the own properties of an
object are enumerated. Object.keys(),
Object.getOwnPropertyNames(), Object.getOwnPropertySymbols(),
Reflect.ownKeys(), and related methods such as JSON.stringify() all
list properties in the following order, subject to their own
additional constraints about whether they list non-enumerable
properties or properties whose names are strings or Symbols:

	
String properties whose names are non-negative integers are listed
first, in numeric order from smallest to largest. This rule means
that arrays and array-like objects will have their properties
enumerated in order.

	
After all properties that look like array indexes are listed, all
remaining properties with string names are listed (including
properties that look like negative numbers or floating-point
numbers). These properties are listed in the order in which they
were added to the object. For properties defined in an object
literal, this order is the same order they appear in the literal.

	
Finally, the properties whose names are Symbol objects are listed
in the order in which they were added to the object.

The enumeration order for the for/in loop is not as tightly
specified as it is for these enumeration functions, but
implementations typically enumerate own properties in the order
just described, then travel up the prototype chain enumerating
properties in the same order for each prototype object. Note, however,
that a property will not be enumerated if a property by that same name
has already been enumerated, or even if a non-enumerable property by
the same name has already been considered.

6.7 Extending Objects

A common operation in JavaScript programs is needing to copy the
properties of one object to another object. It is easy to do that with
code like this:

let target = {x: 1}, source = {y: 2, z: 3};
for(let key of Object.keys(source)) {
 target[key] = source[key];
}
target // => {x: 1, y: 2, z: 3}

But because this is a common operation, various JavaScript frameworks
have defined utility functions, often named extend(), to perform this
copying operation. Finally, in ES6, this ability comes to the core
JavaScript language in the form of Object.assign().

Object.assign() expects two or more objects as its arguments. It
modifies and returns the first argument, which is the target object,
but does not alter the second or any subsequent arguments, which are
the source objects. For each source object, it copies the enumerable
own properties of that object (including those whose names are
Symbols) into the target object. It processes the source objects in
argument list order so that properties in the first source object
override properties by the same name in the target object and
properties in the second source object (if there is one) override
properties with the same name in the first source object.

Object.assign() copies properties with ordinary property get and set
operations, so if a source object has a getter method or the target
object has a setter method, they will be invoked during the copy, but
they will not themselves be copied.

One reason to assign properties from one object into another is when
you have an object that defines default values for many properties and
you want to copy those default properties into another object if a
property by that name does not already exist in that object. Using
Object.assign() naively will not do what you want:

Object.assign(o, defaults); // overwrites everything in o with defaults

Instead, what you can do is to create a new object, copy the defaults
into it, and then override those defaults with the properties in o:

o = Object.assign({}, defaults, o);

We’ll see in §6.10.4 that you can also
express this object copy-and-override operation using the ... spread
operator like this:

o = {...defaults, ...o};

We could also avoid the overhead of the extra object creation and
copying by writing a version of Object.assign() that copies
properties only if they are missing:

// Like Object.assign() but doesn't override existing properties
// (and also doesn't handle Symbol properties)
function merge(target, ...sources) {
 for(let source of sources) {
 for(let key of Object.keys(source)) {
 if (!(key in target)) { // This is different than Object.assign()
 target[key] = source[key];
 }
 }
 }
 return target;
}
Object.assign({x: 1}, {x: 2, y: 2}, {y: 3, z: 4}) // => {x: 2, y: 3, z: 4}
merge({x: 1}, {x: 2, y: 2}, {y: 3, z: 4}) // => {x: 1, y: 2, z: 4}

It is straightforward to write other property manipulation utilities
like this merge() function. A restrict() function could delete
properties of an object if they do not appear in another template
object, for example. Or a subtract() function could remove all of
the properties of one object from another object.

6.8 Serializing Objects

Object serialization is the process of converting an object’s state
to a string from which it can later be restored. The functions
JSON.stringify() and JSON.parse() serialize and restore JavaScript
objects. These functions use the JSON data interchange format. JSON
stands for “JavaScript Object Notation,” and its syntax is very
similar to that of JavaScript object and array literals:

let o = {x: 1, y: {z: [false, null, ""]}}; // Define a test object
let s = JSON.stringify(o); // s == '{"x":1,"y":{"z":[false,null,""]}}'
let p = JSON.parse(s); // p == {x: 1, y: {z: [false, null, ""]}}

JSON syntax is a subset of JavaScript syntax, and it cannot
represent all JavaScript values. Objects, arrays, strings, finite
numbers, true, false, and null are supported and can be
serialized and restored. NaN, Infinity, and -Infinity are
serialized to null. Date objects are serialized to ISO-formatted
date strings (see the Date.toJSON() function), but JSON.parse()
leaves these in string form and does not restore the original Date
object. Function, RegExp, and Error objects and the undefined value
cannot be serialized or restored. JSON.stringify() serializes only
the enumerable own properties of an object. If a property value cannot
be serialized, that property is simply omitted from the stringified
output. Both JSON.stringify() and JSON.parse() accept optional
second arguments that can be used to customize the serialization
and/or restoration process by specifying a list of properties to be
serialized, for example, or by converting certain values during the
serialization or stringification process. Complete documentation for
these functions is in §11.6.

6.9 Object Methods

As discussed earlier, all JavaScript objects (except those explicitly
created without a prototype) inherit properties from
Object.prototype. These inherited properties are primarily methods,
and because they are universally available, they are of particular
interest to JavaScript programmers. We’ve already seen the
hasOwnProperty() and propertyIsEnumerable() methods, for example.
(And we’ve also already covered quite a few static functions defined
on the Object constructor, such as Object.create() and
Object.keys().) This section explains a handful of universal object
methods that are defined on Object.prototype, but which are intended
to be replaced by other, more specialized implementations. In the
sections that follow, we show examples of defining these methods on a
single object. In Chapter 9, you’ll learn how to define these methods
more generally for an entire class of objects.

6.9.1 The toString() Method

The toString() method takes no arguments; it returns a string that
somehow represents the value of the object on which it is
invoked. JavaScript invokes this method of an object whenever it needs
to convert the object to a string. This occurs, for example, when you
use the + operator to concatenate a string with an object or when
you pass an object to a method that expects a string.

The default toString() method is not very informative (though it is
useful for determining the class of an object, as we will see in
§14.4.3). For example, the following line of code simply
evaluates to the string “[object Object]”:

let s = { x: 1, y: 1 }.toString(); // s == "[object Object]"

Because this default method does not display much useful information,
many classes define their own versions of toString(). For example,
when an array is converted to a string, you obtain a list of the
array elements, themselves each converted to a string, and when a
function is converted to a string, you obtain the source code for the
function. You might define your own toString() method like this:

let point = {
 x: 1,
 y: 2,
 toString: function() { return `(${this.x}, ${this.y})`; }
};
String(point) // => "(1, 2)": toString() is used for string conversions

6.9.2 The toLocaleString() Method

In addition to the basic toString() method, objects all have a
toLocaleString(). The purpose of this method is to return a localized string
representation of the object. The default toLocaleString() method defined by
Object doesn’t do any localization itself: it simply calls toString() and
returns that value. The Date and Number classes define customized versions of
toLocaleString() that attempt to format numbers, dates, and times according
to local conventions. Array defines a toLocaleString() method that works like
toString() except that it formats array elements by calling their
toLocaleString() methods instead of their toString() methods. You
might do the same thing with a point object like this:

let point = {
 x: 1000,
 y: 2000,
 toString: function() { return `(${this.x}, ${this.y})`; },
 toLocaleString: function() {
 return `(${this.x.toLocaleString()}, ${this.y.toLocaleString()})`;
 }
};
point.toString() // => "(1000, 2000)"
point.toLocaleString() // => "(1,000, 2,000)": note thousands separators

The internationalization classes documented in §11.7 can be useful
when implementing a toLocaleString() method.

6.9.3 The valueOf() Method

The valueOf() method is much like the toString() method, but it is
called when JavaScript needs to convert an object to some primitive
type other than a string—typically, a number. JavaScript calls this
method automatically if an object is used in a context where a
primitive value is required. The default valueOf() method does
nothing interesting, but some of the built-in classes define their own
valueOf() method. The Date class defines valueOf() to convert
dates to numbers, and this allows Date objects to be chronologically
compared with < and >. You could do something similar with a point
object, defining a valueOf() method that returns the distance from
the origin to the point:

let point = {
 x: 3,
 y: 4,
 valueOf: function() { return Math.hypot(this.x, this.y); }
};
Number(point) // => 5: valueOf() is used for conversions to numbers
point > 4 // => true
point > 5 // => false
point < 6 // => true

6.9.4 The toJSON() Method

Object.prototype does not actually define a toJSON() method, but
the JSON.stringify() method (see §6.8) looks for a
toJSON() method on any object it is asked to serialize. If this
method exists on the object to be serialized, it is invoked, and the
return value is serialized, instead of the original object. The Date
class (§11.4) defines a toJSON() method that returns a
serializable string representation of the date. We could do the same
for our Point object like this:

let point = {
 x: 1,
 y: 2,
 toString: function() { return `(${this.x}, ${this.y})`; },
 toJSON: function() { return this.toString(); }
};
JSON.stringify([point]) // => '["(1, 2)"]'

6.10 Extended Object Literal Syntax

Recent versions of JavaScript have extended the syntax for object
literals in a number of useful ways. The following subsections explain
these extensions.

6.10.1 Shorthand Properties

Suppose you have values stored in variables x and y and want to
create an object with properties named x and y that hold those
values. With basic object literal syntax, you’d end up repeating each
identifier twice:

let x = 1, y = 2;
let o = {
 x: x,
 y: y
};

In ES6 and later, you can drop the colon and one copy of the
identifier and end up with much simpler code:

let x = 1, y = 2;
let o = { x, y };
o.x + o.y // => 3

6.10.2 Computed Property Names

Sometimes you need to create an object with a specific property, but
the name of that property is not a compile-time constant that you can
type literally in your source code. Instead, the property name you
need is stored in a variable or is the return value of a function that
you invoke. You can’t use a basic object literal for this kind of
property. Instead, you have to create an object and then add the
desired properties as an extra step:

const PROPERTY_NAME = "p1";
function computePropertyName() { return "p" + 2; }

let o = {};
o[PROPERTY_NAME] = 1;
o[computePropertyName()] = 2;

It is much simpler to set up an object like this with an ES6 feature
known as computed properties that lets you take the square brackets
from the preceding code and move them directly into the object literal:

const PROPERTY_NAME = "p1";
function computePropertyName() { return "p" + 2; }

let p = {
 [PROPERTY_NAME]: 1,
 [computePropertyName()]: 2
};

p.p1 + p.p2 // => 3

With this new syntax, the square brackets delimit an arbitrary
JavaScript expression. That expression is evaluated, and the resulting
value (converted to a string, if necessary) is used as the property
name.

One situation where you might want to use computed properties is when
you have a library of JavaScript code that expects to be passed
objects with a particular set of properties, and the names of those
properties are defined as constants in that library. If you are
writing code to create the objects that will be passed to that
library, you could hardcode the property names, but you’d risk bugs if
you type the property name wrong anywhere, and you’d risk version
mismatch issues if a new version of the library changes the required
property names. Instead, you might find that it makes your code
more robust to use computed property syntax with the property name
constants defined by the library.

6.10.3 Symbols as Property Names

The computed property syntax enables one other very important object
literal feature. In ES6 and later, property names can be strings or
symbols. If you assign a symbol to a variable or constant, then you
can use that symbol as a property name using the computed property
syntax:

const extension = Symbol("my extension symbol");
let o = {
 [extension]: { /* extension data stored in this object */ }
};
o[extension].x = 0; // This won't conflict with other properties of o

As explained in §3.6, Symbols are opaque values. You can’t do
anything with them other than use them as property names. Every Symbol
is different from every other Symbol, however, which means that
Symbols are good for creating unique property names. Create a new
Symbol by calling the Symbol() factory function. (Symbols are
primitive values, not objects, so Symbol() is not a constructor
function that you invoke with new.) The value returned by Symbol()
is not equal to any other Symbol or other value. You can pass a string
to Symbol(), and this string is used when your Symbol is converted
to a string. But this is a debugging aid only: two Symbols created
with the same string argument are still different from one another.

The point of Symbols is not security, but to define a safe extension
mechanism for JavaScript objects. If you get an object from third-party code that you do not control and need to add some of your
own properties to that object but want to be sure that your
properties will not conflict with any properties that may already
exist on the object, you can safely use Symbols as your property
names. If you do this, you can also be confident that the third-party
code will not accidentally alter your symbolically named properties.
(That third-party code could, of course, use
Object.getOwnPropertySymbols() to discover the Symbols you’re using
and could then alter or delete your properties. This is why Symbols
are not a security mechanism.)

6.10.4 Spread Operator

In ES2018 and later, you can copy the properties of an existing object
into a new object using the “spread operator” ... inside an object
literal:

let position = { x: 0, y: 0 };
let dimensions = { width: 100, height: 75 };
let rect = { ...position, ...dimensions };
rect.x + rect.y + rect.width + rect.height // => 175

In this code, the properties of the position and dimensions objects
are “spread out” into the rect object literal as if they had been
written literally inside those curly braces. Note that this
... syntax is often called a spread operator but is not a
true JavaScript operator in any sense. Instead, it is a special-case
syntax available only within object literals. (Three dots are used for
other purposes in other JavaScript contexts, but object literals are
the only context where the three dots cause this kind of interpolation
of one object into another one.)

If the object that is spread and the object it is being spread into
both have a property with the same name, then the value of that
property will be the one that comes last:

let o = { x: 1 };
let p = { x: 0, ...o };
p.x // => 1: the value from object o overrides the initial value
let q = { ...o, x: 2 };
q.x // => 2: the value 2 overrides the previous value from o.

Also note that the spread operator only spreads the own properties of
an object, not any inherited ones:

let o = Object.create({x: 1}); // o inherits the property x
let p = { ...o };
p.x // => undefined

Finally, it is worth noting that, although the spread operator is just
three little dots in your code, it can represent a substantial amount
of work to the JavaScript interpreter. If an object has n
properties, the process of spreading those properties into another
object is likely to be an O(n) operation. This means that if you
find yourself using ... within a loop or recursive function as a way
to accumulate data into one large object, you may be writing an
inefficient O(n2) algorithm that will not scale well as n gets
larger.

6.10.5 Shorthand Methods

When a function is defined as a property of an object, we call that
function a method (we’ll have a lot more to say about methods in Chapters 8 and 9). Prior to ES6, you would define a
method in an object literal using a function definition expression just
as you would define any other property of an object:

let square = {
 area: function() { return this.side * this.side; },
 side: 10
};
square.area() // => 100

In ES6, however, the object literal syntax (and also the class
definition syntax we’ll see in Chapter 9) has been extended to allow
a shortcut where the function keyword and the colon are omitted,
resulting in code like this:

let square = {
 area() { return this.side * this.side; },
 side: 10
};
square.area() // => 100

Both forms of the code are equivalent: both add a property named area
to the object literal, and both set the value of that property to the
specified function. The shorthand syntax makes it clearer that area()
is a method and not a data property like side.

When you write a method using this shorthand syntax, the property name
can take any of the forms that are legal in an object literal: in
addition to a regular JavaScript identifier like the name area
above, you can also use string literals and computed property names,
which can include Symbol property names:

const METHOD_NAME = "m";
const symbol = Symbol();
let weirdMethods = {
 "method With Spaces"(x) { return x + 1; },
 [METHOD_NAME](x) { return x + 2; },
 [symbol](x) { return x + 3; }
};
weirdMethods["method With Spaces"](1) // => 2
weirdMethods[METHOD_NAME](1) // => 3
weirdMethods[symbol](1) // => 4

Using a Symbol as a method name is not as strange as it seems. In
order to make an object iterable (so it can be used with a for/of
loop), you must define a method with the symbolic name
Symbol.iterator, and there are examples of doing exactly that in
Chapter 12.

6.10.6 Property Getters and Setters

All of the object properties we’ve discussed so far in this chapter
have been data properties with a name and an ordinary
value. JavaScript also supports accessor properties, which do not
have a single value but instead have one or two accessor methods: a
getter and/or a setter.

When a program queries the value of an
accessor property, JavaScript invokes the getter method (passing no
arguments). The return value of this method becomes the value of the
property access expression. When a program sets the value of an
accessor property, JavaScript invokes the setter method, passing the
value of the righthand side of the assignment. This method is
responsible for “setting,” in some sense, the property value. The
return value of the setter method is ignored.

If a property has both a getter and a setter method, it is a
read/write property. If it has only a getter method, it is a read-only
property. And if it has only a setter method, it is a write-only
property (something that is not possible with data properties), and
attempts to read it always evaluate to undefined.

Accessor properties can be defined with an extension to the object
literal syntax (unlike the other ES6 extensions we’ve seen here,
getters and setters were introduced in ES5):

let o = {
 // An ordinary data property
 dataProp: value,

 // An accessor property defined as a pair of functions.
 get accessorProp() { return this.dataProp; },
 set accessorProp(value) { this.dataProp = value; }
};

Accessor properties are defined as one or two methods whose name is
the same as the property name. These look like ordinary methods
defined using the ES6 shorthand except that getter and setter
definitions are prefixed with get or set. (In ES6, you can also
use computed property names when defining getters and setters. Simply
replace the property name after get or set with an expression in
square brackets.)

The accessor methods defined above simply get and set the value of a
data property, and there is no reason to prefer the accessor property
over the data property. But as a more interesting example, consider
the following object that represents a 2D Cartesian point. It has
ordinary data properties to represent the x and y coordinates of the
point, and it has accessor properties that give the equivalent polar
coordinates of the point:

let p = {
 // x and y are regular read-write data properties.
 x: 1.0,
 y: 1.0,

 // r is a read-write accessor property with getter and setter.
 // Don't forget to put a comma after accessor methods.
 get r() { return Math.hypot(this.x, this.y); },
 set r(newvalue) {
 let oldvalue = Math.hypot(this.x, this.y);
 let ratio = newvalue/oldvalue;
 this.x *= ratio;
 this.y *= ratio;
 },

 // theta is a read-only accessor property with getter only.
 get theta() { return Math.atan2(this.y, this.x); }
};
p.r // => Math.SQRT2
p.theta // => Math.PI / 4

Note the use of the keyword this in the getters and setter
in this example. JavaScript invokes these functions as methods of the object on
which they are defined, which means that within the body of the
function, this refers to the point object p. So the getter method
for the r property can refer to the x and y properties as
this.x and this.y. Methods and the this keyword are covered in
more detail in §8.2.2.

Accessor properties are inherited, just as data properties are, so you
can use the object p defined above as a prototype for other
points. You can give the new objects their own x and y properties,
and they’ll inherit the r and theta properties:

let q = Object.create(p); // A new object that inherits getters and setters
q.x = 3; q.y = 4; // Create q's own data properties
q.r // => 5: the inherited accessor properties work
q.theta // => Math.atan2(4, 3)

The code above uses accessor properties to define an API that provides two
representations (Cartesian coordinates and polar coordinates) of a single set
of data. Other reasons to use accessor properties include sanity checking of
property writes and returning different values on each property read:

// This object generates strictly increasing serial numbers
const serialnum = {
 // This data property holds the next serial number.
 // The _ in the property name hints that it is for internal use only.
 _n: 0,

 // Return the current value and increment it
 get next() { return this._n++; },

 // Set a new value of n, but only if it is larger than current
 set next(n) {
 if (n > this._n) this._n = n;
 else throw new Error("serial number can only be set to a larger value");
 }
};
serialnum.next = 10; // Set the starting serial number
serialnum.next // => 10
serialnum.next // => 11: different value each time we get next

Finally, here is one more example that uses a getter method to implement a
property with “magical” behavior:

// This object has accessor properties that return random numbers.
// The expression "random.octet", for example, yields a random number
// between 0 and 255 each time it is evaluated.
const random = {
 get octet() { return Math.floor(Math.random()*256); },
 get uint16() { return Math.floor(Math.random()*65536); },
 get int16() { return Math.floor(Math.random()*65536)-32768; }
};

6.11 Summary

This chapter has documented JavaScript objects in great detail,
covering topics that include:

	
Basic object terminology, including the meaning of terms like
enumerable and own property.

	
Object literal syntax, including the many new features in ES6 and
later.

	
How to read, write, delete, enumerate, and check for the presence of the
properties of an object.

	
How prototype-based inheritance works in JavaScript and how to
create an object that inherits from another object with
Object.create().

	
How to copy properties from one object into another with
Object.assign().

All JavaScript values that are not primitive values are objects. This
includes both arrays and functions, which are the topics of the next
two chapters.

1 Remember; almost all objects have a prototype but most do not have a property named prototype. JavaScript inheritance works even if you can’t access the prototype object directly. But see §14.3 if you want to learn how to do that.

Chapter 7. Arrays

This chapter documents arrays, a fundamental datatype in JavaScript
and in most other programming languages.
An array is an ordered collection of values. Each value is called an
element, and each element has a numeric position in the array, known as its
index. JavaScript arrays are untyped: an array element may be of any type,
and different elements of the same array may be of different types. Array
elements may even be objects or other arrays, which allows you to create
complex data structures, such as arrays of objects and arrays of arrays.
JavaScript arrays are zero-based and use 32-bit indexes: the index of the
first element is 0, and the highest possible index is 4294967294 (232−2), for
a maximum array size of 4,294,967,295 elements. JavaScript arrays are
dynamic: they grow or shrink as needed, and there is no need to declare a
fixed size for the array when you create it or to reallocate it when the size
changes. JavaScript arrays may be sparse: the elements need not have
contiguous indexes, and there may be gaps. Every JavaScript array has a length
property. For nonsparse arrays, this property specifies the number of elements
in the array. For sparse arrays, length is larger than the highest
index of any element.

JavaScript arrays are a specialized form of JavaScript object, and array
indexes are really little more than property names that happen to be integers.
We’ll talk more about the specializations of arrays elsewhere in this chapter.
Implementations typically optimize arrays so that access to numerically indexed
array elements is generally significantly faster than access to regular object
properties.

Arrays inherit properties from Array.prototype, which defines a rich
set of array manipulation methods, covered in §7.8. Most
of these methods are generic, which means that they work correctly
not only for true arrays, but for any “array-like object.” We’ll
discuss array-like objects in §7.9. Finally, JavaScript
strings behave like arrays of characters, and we’ll discuss this in
§7.10.

ES6 introduces a set of new array classes known collectively
as “typed arrays.” Unlike regular JavaScript arrays, typed arrays have
a fixed length and a fixed numeric element type. They offer high
performance and byte-level access to binary data and are covered in
§11.2.

7.1 Creating Arrays

There are several ways to create arrays. The subsections that follow
explain how to create arrays with:

	
Array literals

	
The ... spread operator on an iterable object

	
The Array() constructor

	
The Array.of() and Array.from() factory methods

7.1.1 Array Literals

By far the simplest way to create an array is with an array literal,
which is simply a comma-separated list of array elements within square
brackets. For example:

let empty = []; // An array with no elements
let primes = [2, 3, 5, 7, 11]; // An array with 5 numeric elements
let misc = [1.1, true, "a",]; // 3 elements of various types + trailing comma

The values in an array literal need not be constants; they may be
arbitrary expressions:

let base = 1024;
let table = [base, base+1, base+2, base+3];

Array literals can contain object literals or other array literals:

let b = [[1, {x: 1, y: 2}], [2, {x: 3, y: 4}]];

If an array literal contains multiple commas in a row, with no value
between, the array is sparse (see §7.3). Array elements for which
values are omitted do not exist but appear to be undefined if you
query them:

let count = [1,,3]; // Elements at indexes 0 and 2. No element at index 1
let undefs = [,,]; // An array with no elements but a length of 2

Array literal syntax allows an optional trailing comma, so [,,]
has a length of 2, not 3.

7.1.2 The Spread Operator

In ES6 and later, you can use the “spread operator,” ..., to
include the elements of one array within an array literal:

let a = [1, 2, 3];
let b = [0, ...a, 4]; // b == [0, 1, 2, 3, 4]

The three dots “spread” the array a so that its elements become
elements within the array literal that is being created. It is as if
the ...a was replaced by the elements of the array a, listed
literally as part of the enclosing array literal. (Note that, although
we call these three dots a spread operator, this is not a true
operator because it can only be used in array literals and, as we’ll
see later in the book, function invocations.)

The spread operator is a convenient way to create a (shallow) copy of an
array:

let original = [1,2,3];
let copy = [...original];
copy[0] = 0; // Modifying the copy does not change the original
original[0] // => 1

The spread operator
works on any iterable object. (Iterable objects are what
the for/of loop iterates over; we first saw them in §5.4.4, and
we’ll see much more about them in Chapter 12.) Strings are iterable,
so you can use a spread operator to turn any string into an array of
single-character strings:

let digits = [..."0123456789ABCDEF"];
digits // => ["0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"]

Set objects (§11.1.1) are iterable, so an easy way to remove
duplicate elements
from an array is to convert the array to a set and then immediately
convert the set back to an array using the spread operator:

let letters = [..."hello world"];
[...new Set(letters)] // => ["h","e","l","o"," ","w","r","d"]

7.1.3 The Array() Constructor

Another way to create an array is with the Array()
constructor. You can invoke this constructor in three distinct ways:

	
Call it with no arguments:

let a = new Array();

This method creates an empty array with no elements and is equivalent
to the array literal [].

	
Call it with a single numeric argument, which specifies a length:

let a = new Array(10);

This technique creates an array with the specified length. This form
of the Array() constructor can be used to preallocate an array
when you know in advance how many elements will be required. Note that
no values are stored in the array, and the array index properties
“0”, “1”, and so on are not even defined for
the array.

	
Explicitly specify two or more array elements or a single
non-numeric element for the array:

let a = new Array(5, 4, 3, 2, 1, "testing, testing");

In this form, the constructor arguments become the elements of the new
array. Using an array literal is almost always simpler than this usage
of the Array() constructor.

7.1.4 Array.of()

When the Array() constructor function is invoked with one numeric
argument, it uses that argument as an array length. But when invoked
with more than one numeric argument, it treats those arguments as
elements for the array to be created. This means that the Array()
constructor cannot be used to create an array with a single numeric
element.

In ES6, the Array.of() function addresses this problem: it is a
factory method that creates and returns a new array, using its
argument values (regardless of how many of them there are) as the
array elements:

Array.of() // => []; returns empty array with no arguments
Array.of(10) // => [10]; can create arrays with a single numeric argument
Array.of(1,2,3) // => [1, 2, 3]

7.1.5 Array.from()

Array.from is another array factory method introduced in ES6. It
expects an iterable or array-like object as its first argument and
returns a new array that contains the elements of that object. With an
iterable argument, Array.from(iterable) works like the spread
operator [...iterable] does. It is also a simple way to make a copy
of an array:

let copy = Array.from(original);

Array.from() is also important because it defines a way to make a
true-array copy of an array-like object. Array-like objects are
non-array objects that have a numeric length property and have values
stored with properties whose names happen to be integers. When working
with client-side JavaScript, the return values of some web browser
methods are array-like, and it can be easier to work with them if you
first convert them to true arrays:

let truearray = Array.from(arraylike);

Array.from() also accepts an optional second argument. If you pass a
function as the second argument, then as the new array is being built,
each element from the source object will be passed to the function you
specify, and the return value of the function will be stored in the
array instead of the original value. (This is very much like the array
map() method that will be introduced later in the chapter, but it is
more efficient to perform the mapping while the array is being built
than it is to build the array and then map it to another new array.)

7.2 Reading and Writing Array Elements

You access an element of an array using the [] operator. A reference to the
array should appear to the left of the brackets. An arbitrary expression that
has a non-negative integer value should be inside the brackets. You can use
this syntax to both read and write the value of an element of an array. Thus,
the following are all legal JavaScript statements:

let a = ["world"]; // Start with a one-element array
let value = a[0]; // Read element 0
a[1] = 3.14; // Write element 1
let i = 2;
a[i] = 3; // Write element 2
a[i + 1] = "hello"; // Write element 3
a[a[i]] = a[0]; // Read elements 0 and 2, write element 3

What is special about arrays is that when you use property names that are
non-negative integers less than 232–1, the array automatically maintains the
value of the length property for you. In the preceding, for example, we created an array
a with a single element. We then assigned values at indexes 1, 2, and 3. The
length property of the array changed as we did, so:

a.length // => 4

Remember that arrays are a specialized kind of object. The square brackets used
to access array elements work just like the square brackets used to access
object properties. JavaScript converts the numeric array index you specify to a
string—the index 1 becomes the string "1"—then uses that string as a
property name. There is nothing special about the conversion of the index from
a number to a string: you can do that with regular objects, too:

let o = {}; // Create a plain object
o[1] = "one"; // Index it with an integer
o["1"] // => "one"; numeric and string property names are the same

It is helpful to clearly distinguish an array index from an object
property name. All indexes are property names, but only property names that
are integers between 0 and 232–2 are indexes. All arrays are objects, and you
can create properties of any name on them. If you use properties that are array
indexes, however, arrays have the special behavior of updating their length
property as needed.

Note that you can index an array using numbers that are negative or that are
not integers. When you do this, the number is converted to a string, and that
string is used as the property name. Since the name is not a non-negative
integer, it is treated as a regular object property, not an array index. Also,
if you index an array with a string that happens to be a non-negative integer,
it behaves as an array index, not an object property. The same is true if you
use a floating-point number that is the same as an integer:

a[-1.23] = true; // This creates a property named "-1.23"
a["1000"] = 0; // This the 1001st element of the array
a[1.000] = 1; // Array index 1. Same as a[1] = 1;

The fact that array indexes are simply a special type of object property name
means that JavaScript arrays have no notion of an “out of bounds” error. When
you try to query a nonexistent property of any object, you don’t get an error;
you simply get undefined. This is just as true for arrays as it is for
objects:

let a = [true, false]; // This array has elements at indexes 0 and 1
a[2] // => undefined; no element at this index.
a[-1] // => undefined; no property with this name.

7.3 Sparse Arrays

A sparse array is one in which the elements do not have contiguous indexes
starting at 0. Normally, the length property of an array specifies the number
of elements in the array. If the array is sparse, the value of the length
property is greater than the number of elements. Sparse arrays can be created
with the Array() constructor or simply by assigning to an array index larger
than the current array length.

let a = new Array(5); // No elements, but a.length is 5.
a = []; // Create an array with no elements and length = 0.
a[1000] = 0; // Assignment adds one element but sets length to 1001.

We’ll see later that you can also make an array sparse with the delete
operator.

Arrays that are sufficiently sparse are typically implemented in a slower, more
memory-efficient way than dense arrays are, and looking up elements in such an
array will take about as much time as regular object property lookup.

Note that when you omit a value in an array literal (using repeated commas as
in [1,,3]), the resulting array is sparse, and the omitted elements simply do
not exist:

let a1 = [,]; // This array has no elements and length 1
let a2 = [undefined]; // This array has one undefined element
0 in a1 // => false: a1 has no element with index 0
0 in a2 // => true: a2 has the undefined value at index 0

Understanding sparse arrays is an important part of understanding the true
nature of JavaScript arrays. In practice, however, most JavaScript arrays you
will work with will not be sparse. And, if you do have to work with a sparse
array, your code will probably treat it just as it would treat a nonsparse
array with undefined elements.

7.4 Array Length

Every array has a length property, and it is this property that makes arrays
different from regular JavaScript objects. For arrays that are dense (i.e., not
sparse), the length property specifies the number of elements in the array.
Its value is one more than the highest index in the array:

[].length // => 0: the array has no elements
["a","b","c"].length // => 3: highest index is 2, length is 3

When an array is sparse, the length property is greater than the number of
elements, and all we can say about it is that length is guaranteed to be
larger than the index of every element in the array. Or, put another way, an
array (sparse or not) will never have an element whose index is greater than or
equal to its length. In order to maintain this invariant, arrays have two
special behaviors. The first we described above: if you assign a value to an
array element whose index i is greater than or equal to the array’s current
length, the value of the length property is set to i+1.

The second special behavior that arrays implement in order to maintain the
length invariant is that, if you set the length property to a non-negative
integer n smaller than its current value, any array elements whose index is
greater than or equal to n are deleted from the array:

a = [1,2,3,4,5]; // Start with a 5-element array.
a.length = 3; // a is now [1,2,3].
a.length = 0; // Delete all elements. a is [].
a.length = 5; // Length is 5, but no elements, like new Array(5)

You can also set the length property of an array to a value larger than its
current value. Doing this does not actually add any new elements to the array;
it simply creates a sparse area at the end of the array.

7.5 Adding and Deleting Array Elements

We’ve already seen the simplest way to add elements to an array: just assign
values to new indexes:

let a = []; // Start with an empty array.
a[0] = "zero"; // And add elements to it.
a[1] = "one";

You can also use the push() method to add one or more values to the end of an
array:

let a = []; // Start with an empty array
a.push("zero"); // Add a value at the end. a = ["zero"]
a.push("one", "two"); // Add two more values. a = ["zero", "one", "two"]

Pushing a value onto an array a is the same as assigning the value
to a[a.length]. You can use the unshift() method (described in
§7.8) to insert a value at the beginning of an array,
shifting the existing array elements to higher indexes. The pop()
method is the opposite of push(): it removes the last element of the
array and returns it, reducing the length of an array by 1. Similarly,
the shift() method removes and returns the first element of the
array, reducing the length by 1 and shifting all elements down to an
index one lower than their current index. See §7.8 for
more on these methods.

You can delete array elements with the delete operator, just as you can
delete object properties:

let a = [1,2,3];
delete a[2]; // a now has no element at index 2
2 in a // => false: no array index 2 is defined
a.length // => 3: delete does not affect array length

Deleting an array element is similar to (but subtly different than) assigning
undefined to that element. Note that using delete on an array element does
not alter the length property and does not shift elements with higher indexes
down to fill in the gap that is left by the deleted property. If you delete an
element from an array, the array becomes sparse.

As we saw above, you can also remove elements from the end of an array
simply by setting the length property to the new desired length.

Finally, splice() is the general-purpose method for inserting,
deleting, or replacing array elements. It alters the length property
and shifts array elements to higher or lower indexes as needed. See
§7.8 for details.

7.6 Iterating Arrays

As of ES6, the easiest way to loop through each of the
elements of an array (or any iterable object) is with the for/of
loop, which was covered in detail in §5.4.4:

let letters = [..."Hello world"]; // An array of letters
let string = "";
for(let letter of letters) {
 string += letter;
}
string // => "Hello world"; we reassembled the original text

The built-in array iterator that the for/of loop uses returns the
elements of an array in ascending order. It has no special behavior
for sparse arrays and simply returns undefined for any array
elements that do not exist.

If you want to use a for/of loop for an array and need to know the index
of each array element, use the entries() method of the array, along
with destructuring assignment, like this:

let everyother = "";
for(let [index, letter] of letters.entries()) {
 if (index % 2 === 0) everyother += letter; // letters at even indexes
}
everyother // => "Hlowrd"

Another good way to iterate arrays is with forEach(). This is not a
new form of the for loop, but an array method that offers a
functional approach to array iteration. You pass a function to the
forEach() method of an array, and forEach() invokes your function
once on each element of the array:

let uppercase = "";
letters.forEach(letter => { // Note arrow function syntax here
 uppercase += letter.toUpperCase();
});
uppercase // => "HELLO WORLD"

As you would expect, forEach() iterates the array in order, and it
actually passes the array index to your function as a second argument,
which is occasionally useful. Unlike the for/of loop, the
forEach() is aware of sparse arrays and does not invoke your
function for elements that are not there.

§7.8.1 documents the forEach() method in more
detail. That section also covers related methods such as map() and
filter() that perform specialized kinds of array iteration.

You can also loop through the elements of an array with a good
old-fashioned for loop (§5.4.3):

let vowels = "";
for(let i = 0; i < letters.length; i++) { // For each index in the array
 let letter = letters[i]; // Get the element at that index
 if (/[aeiou]/.test(letter)) { // Use a regular expression test
 vowels += letter; // If it is a vowel, remember it
 }
}
vowels // => "eoo"

In nested loops, or other contexts where performance is critical, you
may sometimes see this basic array iteration loop written so that the
array length is only looked up once rather than on each
iteration. Both of the following for loop forms are idiomatic,
though not particularly common, and with modern JavaScript
interpreters, it is not at all clear that they have any performance
impact:

// Save the array length into a local variable
for(let i = 0, len = letters.length; i < len; i++) {
 // loop body remains the same
}

// Iterate backwards from the end of the array to the start
for(let i = letters.length-1; i >= 0; i--) {
 // loop body remains the same
}

These examples assume that the array is dense and that all elements
contain valid data. If this is not the case, you should test the array
elements before using them. If you want to skip undefined and
nonexistent elements, you might write:

for(let i = 0; i < a.length; i++) {
 if (a[i] === undefined) continue; // Skip undefined + nonexistent elements
 // loop body here
}

7.7 Multidimensional Arrays

JavaScript does not support true multidimensional arrays, but you can
approximate them with arrays of arrays. To access a value in an array of
arrays, simply use the [] operator twice. For example, suppose the variable
matrix is an array of arrays of numbers. Every element in matrix[x] is an
array of numbers. To access a particular number within this array, you would
write matrix[x][y]. Here is a concrete example that uses a two-dimensional
array as a multiplication table:

// Create a multidimensional array
let table = new Array(10); // 10 rows of the table
for(let i = 0; i < table.length; i++) {
 table[i] = new Array(10); // Each row has 10 columns
}

// Initialize the array
for(let row = 0; row < table.length; row++) {
 for(let col = 0; col < table[row].length; col++) {
 table[row][col] = row*col;
 }
}

// Use the multidimensional array to compute 5*7
table[5][7] // => 35

7.8 Array Methods

The preceding sections have focused on basic JavaScript syntax for working
with arrays. In general, though, it is the methods defined by the
Array class that are the most powerful. The next sections document
these methods. While reading about these methods, keep in mind that
some of them modify the array they are called on and some of them
leave the array unchanged. A number of the methods return an array:
sometimes, this is a new array, and the original is unchanged. Other
times, a method will modify the array in place and will also return a
reference to the modified array.

Each of the subsections that follows covers a group of related array
methods:

	
Iterator methods loop over the elements of an array, typically
invoking a function that you specify on each of those elements.

	
Stack and queue methods add and remove array elements to and from
the beginning and the end of an array.

	
Subarray methods are for extracting, deleting, inserting, filling,
and copying contiguous regions of a larger array.

	
Searching and sorting methods are for locating elements within an
array and for sorting the elements of an array.

The following subsections also cover the static methods of the Array class
and a few miscellaneous methods for concatenating arrays and converting
arrays to strings.

7.8.1 Array Iterator Methods

The methods described in this section iterate over arrays by passing
array elements, in order, to a function you supply, and they provide
convenient ways to iterate, map, filter, test, and reduce arrays.

Before we explain the methods in detail, however, it is worth making
some generalizations about them. First, all of these methods accept a
function as their first argument and invoke that function once for
each element (or some elements) of the array. If the array is sparse,
the function you pass is not invoked for nonexistent elements. In most
cases, the function you supply is invoked with three arguments: the
value of the array element, the index of the array element, and the
array itself. Often, you only need the first of these argument values
and can ignore the second and third values.

Most of the iterator methods described in the following subsections accept an optional second argument. If specified, the function is
invoked as if it is a method of this second argument. That is, the
second argument you pass becomes the value of the this keyword
inside of the function you pass as the first argument. The return
value of the function you pass is usually important, but different
methods handle the return value in different ways. None of the methods
described here modify the array on which they are invoked (though the
function you pass can modify the array, of course).

Each of these functions is invoked with a function as its first
argument, and it is very common to define that function inline as part
of the method invocation expression instead of using an existing
function that is defined elsewhere. Arrow function syntax (see
§8.1.3) works particularly well with these methods, and we
will use it in the examples that follow.

forEach()

The forEach() method iterates through an array, invoking a function you
specify for each element. As we’ve described, you pass the function as the
first argument to forEach(). forEach() then invokes your function with
three arguments: the value of the array element, the index of the array
element, and the array itself. If you only care about the value of the array
element, you can write a function with only one parameter—the additional
arguments will be ignored:

let data = [1,2,3,4,5], sum = 0;
// Compute the sum of the elements of the array
data.forEach(value => { sum += value; }); // sum == 15

// Now increment each array element
data.forEach(function(v, i, a) { a[i] = v + 1; }); // data == [2,3,4,5,6]

Note that forEach() does not provide a way to terminate iteration before all
elements have been passed to the function. That is, there is no equivalent of
the break statement you can use with a regular for loop.

map()

The map() method passes each element of the array on which it is invoked to
the function you specify and returns an array containing the values returned
by your function. For example:

let a = [1, 2, 3];
a.map(x => x*x) // => [1, 4, 9]: the function takes input x and returns x*x

The function you pass to map() is invoked in the same way as a
function passed to forEach(). For the map() method, however, the
function you pass should return a value. Note that map() returns a
new array: it does not modify the array it is invoked on. If that
array is sparse, your function will not be called for the missing
elements, but the returned array will be sparse in the same way as the
original array: it will have the same length and the same missing
elements.

filter()

The filter() method returns an array containing a subset of the elements of
the array on which it is invoked. The function you pass to it should be
predicate: a function that returns true or false. The predicate is invoked
just as for forEach() and map(). If the return value is true, or a value
that converts to true, then the element passed to the predicate is a member
of the subset and is added to the array that will become the return value.
Examples:

let a = [5, 4, 3, 2, 1];
a.filter(x => x < 3) // => [2, 1]; values less than 3
a.filter((x,i) => i%2 === 0) // => [5, 3, 1]; every other value

Note that filter() skips missing elements in sparse arrays and that its
return value is always dense. To close the gaps in a sparse array, you can do
this:

let dense = sparse.filter(() => true);

And to close gaps and remove undefined and null elements, you can use filter,
like this:

a = a.filter(x => x !== undefined && x !== null);

find() and findIndex()

The find() and findIndex() methods are like filter() in that
they iterate through your array looking for elements for which your
predicate function returns a truthy value. Unlike filter(), however,
these two methods stop iterating the first time the predicate finds an
element. When that happens, find() returns the
matching element, and findIndex() returns the index of the matching
element. If no matching element is found, find() returns undefined
and findIndex() returns -1:

let a = [1,2,3,4,5];
a.findIndex(x => x === 3) // => 2; the value 3 appears at index 2
a.findIndex(x => x < 0) // => -1; no negative numbers in the array
a.find(x => x % 5 === 0) // => 5: this is a multiple of 5
a.find(x => x % 7 === 0) // => undefined: no multiples of 7 in the array

every() and some()

The every() and some() methods are array predicates: they apply a predicate
function you specify to the elements of the array, then return true or
false.

The every() method is like the mathematical “for all” quantifier ∀: it
returns true if and only if your predicate function returns true for all
elements in the array:

let a = [1,2,3,4,5];
a.every(x => x < 10) // => true: all values are < 10.
a.every(x => x % 2 === 0) // => false: not all values are even.

The some() method is like the mathematical “there exists” quantifier ∃: it
returns true if there exists at least one element in the array for which the
predicate returns true and returns false if and only if the predicate
returns false for all elements of the array:

let a = [1,2,3,4,5];
a.some(x => x%2===0) // => true; a has some even numbers.
a.some(isNaN) // => false; a has no non-numbers.

Note that both every() and some() stop iterating array elements as soon as
they know what value to return. some() returns true the first time your
predicate returns <code>true</code> and only iterates through the entire array if your
predicate always returns false. every() is the opposite: it returns false
the first time your predicate returns false and only iterates all elements
if your predicate always returns true. Note also that, by mathematical
convention, every() returns true and some returns false when invoked on
an empty array.

reduce() and reduceRight()

The reduce() and reduceRight() methods combine the elements of an array,
using the function you specify, to produce a single value. This is a common
operation in functional programming and also goes by the names “inject” and
“fold.” Examples help illustrate how it works:

let a = [1,2,3,4,5];
a.reduce((x,y) => x+y, 0) // => 15; the sum of the values
a.reduce((x,y) => x*y, 1) // => 120; the product of the values
a.reduce((x,y) => (x > y) ? x : y) // => 5; the largest of the values

reduce() takes two arguments. The first is the function that performs the
reduction operation. The task of this reduction function is to somehow combine
or reduce two values into a single value and to return that reduced value. In
the examples we’ve shown here, the functions combine two values by adding them,
multiplying them, and choosing the largest. The second (optional) argument is
an initial value to pass to the function.

Functions used with reduce() are different than the functions used with
forEach() and map(). The familiar value, index, and array values are passed
as the second, third, and fourth arguments. The first argument is the
accumulated result of the reduction so far. On the first call to the function,
this first argument is the initial value you passed as the second argument to
reduce(). On subsequent calls, it is the value returned by the previous
invocation of the function. In the first example, the reduction function
is first called with arguments 0 and 1. It adds these and returns 1. It is then
called again with arguments 1 and 2 and returns 3. Next, it computes 3+3=6,
then 6+4=10, and finally 10+5=15. This final value, 15, becomes the return
value of reduce().

You may have noticed that the third call to reduce() in this example has only a single
argument: there is no initial value specified. When you invoke reduce() like
this with no initial value, it uses the first element of the array as the
initial value. This means that the first call to the reduction function will
have the first and second array elements as its first and second arguments. In
the sum and product examples, we could have omitted the initial value
argument.

Calling reduce() on an empty array with no initial value argument causes a
TypeError. If you call it with only one value—either an array with one element
and no initial value or an empty array and an initial value—it simply returns
that one value without ever calling the reduction function.

reduceRight() works just like reduce(), except that it processes the array
from highest index to lowest (right-to-left), rather than from lowest to
highest. You might want to do this if the reduction operation has right-to-left
associativity, for example:

// Compute 2^(3^4). Exponentiation has right-to-left precedence
let a = [2, 3, 4];
a.reduceRight((acc,val) => Math.pow(val,acc)) // => 2.4178516392292583e+24

Note that neither reduce() nor reduceRight() accepts an optional
argument that specifies the this value on which the reduction
function is to be invoked. The optional initial value argument takes
its place. See the Function.bind() method (§8.7.5) if you need
your reduction function invoked as a method of a particular object.

The examples shown so far have been numeric for simplicity, but
reduce() and reduceRight() are not intended solely for
mathematical computations. Any function that can combine two values
(such as two objects) into one value of the same type can be used as a
reduction function. On the other hand, algorithms expressed using
array reductions can quickly become complex and hard to understand,
and you may find that it is easier to read, write, and reason about
your code if you use regular looping constructs to process your arrays.

7.8.2 Flattening arrays with flat() and flatMap()

In ES2019, the flat() method creates and returns a new array that
contains the same elements as the array it is called on, except that
any elements that are themselves arrays are “flattened” into the
returned array. For example:

[1, [2, 3]].flat() // => [1, 2, 3]
[1, [2, [3]]].flat() // => [1, 2, [3]]

When called with no arguments, flat() flattens one level of
nesting. Elements of the original array that are themselves arrays are
flattened, but array elements of those arrays are not flattened. If
you want to flatten more levels, pass a number to flat():

let a = [1, [2, [3, [4]]]];
a.flat(1) // => [1, 2, [3, [4]]]
a.flat(2) // => [1, 2, 3, [4]]
a.flat(3) // => [1, 2, 3, 4]
a.flat(4) // => [1, 2, 3, 4]

The flatMap() method works just like the map() method
(see “map()”) except that the returned array is automatically
flattened as if passed to flat(). That is, calling a.flatMap(f) is
the same as (but more efficient than) a.map(f).flat():

let phrases = ["hello world", "the definitive guide"];
let words = phrases.flatMap(phrase => phrase.split(" "));
words // => ["hello", "world", "the", "definitive", "guide"];

You can think of flatMap() as a generalization of map() that
allows each element of the input array to map to any number of
elements of the output array. In particular, flatMap() allows you to
map input elements to an empty array, which flattens to nothing in the
output array:

// Map non-negative numbers to their square roots
[-2, -1, 1, 2].flatMap(x => x < 0 ? [] : Math.sqrt(x)) // => [1, 2**0.5]

7.8.3 Adding arrays with concat()

The concat() method creates and returns a new array that contains the
elements of the original array on which concat() was invoked, followed by
each of the arguments to concat(). If any of these arguments is itself an
array, then it is the array elements that are concatenated, not the array
itself. Note, however, that concat() does not recursively flatten arrays of
arrays. concat() does not modify the array on which it is invoked:

let a = [1,2,3];
a.concat(4, 5) // => [1,2,3,4,5]
a.concat([4,5],[6,7]) // => [1,2,3,4,5,6,7]; arrays are flattened
a.concat(4, [5,[6,7]]) // => [1,2,3,4,5,[6,7]]; but not nested arrays
a // => [1,2,3]; the original array is unmodified

Note that concat() makes a new copy of the array it is called on. In
many cases, this is the right thing to do, but it is an expensive
operation. If you find yourself writing code like a = a.concat(x),
then you should think about modifying your array in place with
push() or splice() instead of creating a new one.

7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

The push() and pop() methods allow you to work with arrays as if
they were stacks. The push() method appends one or more new elements
to the end of an array and returns the new length of the array. Unlike
concat(), push() does not flatten array arguments. The pop() method does
the reverse: it deletes the last element of an array, decrements the
array length, and returns the value that it removed. Note that both
methods modify the array in place. The combination of push() and
pop() allows you to use a JavaScript array to implement a first-in,
last-out stack. For example:

let stack = []; // stack == []
stack.push(1,2); // stack == [1,2];
stack.pop(); // stack == [1]; returns 2
stack.push(3); // stack == [1,3]
stack.pop(); // stack == [1]; returns 3
stack.push([4,5]); // stack == [1,[4,5]]
stack.pop() // stack == [1]; returns [4,5]
stack.pop(); // stack == []; returns 1

The push() method does not flatten an array you pass to it, but if
you want to push all of the elements from one array onto another
array, you can use the spread operator
(§8.3.4) to flatten it explicitly:

a.push(...values);

The unshift() and shift() methods behave much like push() and
pop(), except that they insert and remove elements from the
beginning of an array rather than from the end. unshift() adds an
element or elements to the beginning of the array, shifts the existing
array elements up to higher indexes to make room, and returns the new
length of the array. shift() removes and returns the first element
of the array, shifting all subsequent elements down one place to
occupy the newly vacant space at the start of the array. You could use
unshift() and shift() to implement a stack, but it would be less
efficient than using push() and pop() because the array elements
need to be shifted up or down every time an element is added or
removed at the start of the array. Instead, though, you can implement
a queue data structure by using push() to add elements at the end of
an array and shift() to remove them from the start of the array:

let q = []; // q == []
q.push(1,2); // q == [1,2]
q.shift(); // q == [2]; returns 1
q.push(3) // q == [2, 3]
q.shift() // q == [3]; returns 2
q.shift() // q == []; returns 3

There is one feature of unshift() that is worth calling out because
you may find it surprising. When passing multiple arguments to unshift(),
they are inserted all at once, which means that they end up in the
array in a different order than they would be if you inserted them one
at a time:

let a = []; // a == []
a.unshift(1) // a == [1]
a.unshift(2) // a == [2, 1]
a = []; // a == []
a.unshift(1,2) // a == [1, 2]

7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

Arrays define a number of methods that work on contiguous regions, or
subarrays or “slices” of an array. The following sections describe
methods for extracting, replacing, filling, and copying slices.

slice()

The slice() method returns a slice, or subarray, of the specified
array. Its two arguments specify the start and end of the slice to be returned.
The returned array contains the element specified by the first argument and all
subsequent elements up to, but not including, the element specified by the
second argument. If only one argument is specified, the returned array contains
all elements from the start position to the end of the array. If either
argument is negative, it specifies an array element relative to the length
of the array. An argument of –1, for example, specifies the last
element in the array, and an argument of –2 specifies the element
before that one. Note that slice() does not modify the array on which it
is invoked. Here are some examples:

let a = [1,2,3,4,5];
a.slice(0,3); // Returns [1,2,3]
a.slice(3); // Returns [4,5]
a.slice(1,-1); // Returns [2,3,4]
a.slice(-3,-2); // Returns [3]

splice()

splice() is a general-purpose method for inserting or removing
elements from an array. Unlike slice() and concat(), splice()
modifies the array on which it is invoked. Note that splice() and
slice() have very similar names but perform substantially different
operations.

splice() can delete elements from an array, insert new elements into
an array, or perform both operations at the same time. Elements of the
array that come after the insertion or deletion point have their
indexes increased or decreased as necessary so that they remain
contiguous with the rest of the array. The first argument to
splice() specifies the array position at which the insertion and/or
deletion is to begin. The second argument specifies the number of
elements that should be deleted from (spliced out of) the array. (Note
that this is another difference between these two methods. The second
argument to slice() is an end position. The second argument to
splice() is a length.) If this second argument is omitted, all array
elements from the start element to the end of the array are
removed. splice() returns an array of the deleted elements, or an
empty array if no elements were deleted. For example:

let a = [1,2,3,4,5,6,7,8];
a.splice(4) // => [5,6,7,8]; a is now [1,2,3,4]
a.splice(1,2) // => [2,3]; a is now [1,4]
a.splice(1,1) // => [4]; a is now [1]

The first two arguments to splice() specify which array elements are to be
deleted. These arguments may be followed by any number of additional arguments
that specify elements to be inserted into the array, starting at the position
specified by the first argument. For example:

let a = [1,2,3,4,5];
a.splice(2,0,"a","b") // => []; a is now [1,2,"a","b",3,4,5]
a.splice(2,2,[1,2],3) // => ["a","b"]; a is now [1,2,[1,2],3,3,4,5]

Note that, unlike concat(), splice() inserts arrays themselves, not the
elements of those arrays.

fill()

The fill() method sets the elements of an array, or a slice of an
array, to a specified value. It mutates the array it is called on, and
also returns the modified array:

let a = new Array(5); // Start with no elements and length 5
a.fill(0) // => [0,0,0,0,0]; fill the array with zeros
a.fill(9, 1) // => [0,9,9,9,9]; fill with 9 starting at index 1
a.fill(8, 2, -1) // => [0,9,8,8,9]; fill with 8 at indexes 2, 3

The first argument to fill() is the value to set array elements
to. The optional second argument specifies the starting index. If
omitted, filling starts at index 0. The optional third argument
specifies the ending index—array elements up to, but not including,
this index will be filled. If this argument is omitted, then the array
is filled from the start index to the end. You can specify indexes
relative to the end of the array by passing negative numbers, just as
you can for slice().

copyWithin()

copyWithin() copies a slice of an array to a new position within the
array. It modifies the array in place and returns the modified array,
but it will not change the length of the array. The first argument
specifies the destination index to which the first element will be
copied. The second argument specifies the index of the first element
to be copied. If this second argument is omitted, 0 is used. The third
argument specifies the end of the slice of elements to be copied. If
omitted, the length of the array is used. Elements from the start
index up to, but not including, the end index will be copied. You can
specify indexes relative to the end of the array by passing negative
numbers, just as you can for slice():

let a = [1,2,3,4,5];
a.copyWithin(1) // => [1,1,2,3,4]: copy array elements up one
a.copyWithin(2, 3, 5) // => [1,1,3,4,4]: copy last 2 elements to index 2
a.copyWithin(0, -2) // => [4,4,3,4,4]: negative offsets work, too

copyWithin() is intended as a high-performance method that is
particularly useful with typed arrays (see §11.2). It is
modeled after the memmove() function from the C standard
library. Note that the copy will work correctly even if there is
overlap between the source and destination regions.

7.8.6 Array Searching and Sorting Methods

Arrays implement indexOf(), lastIndexOf(), and includes() methods
that are similar to the same-named methods of strings. There are also
sort() and reverse() methods for reordering the elements of an
array. These methods are described in the subsections that follow.

indexOf() and lastIndexOf()

indexOf() and lastIndexOf() search an array for an element with a
specified value and return the index of the first such element found,
or -1 if none is found. indexOf() searches the array from
beginning to end, and lastIndexOf() searches from end to beginning:

let a = [0,1,2,1,0];
a.indexOf(1) // => 1: a[1] is 1
a.lastIndexOf(1) // => 3: a[3] is 1
a.indexOf(3) // => -1: no element has value 3

indexOf() and lastIndexOf() compare their argument to the array
elements using the equivalent of the === operator. If your array
contains objects instead of primitive values, these methods check to
see if two references both refer to exactly the same object. If you
want to actually look at the content of an object, try using the
find() method with your own custom predicate function instead.

indexOf() and lastIndexOf() take an optional second argument that
specifies the array index at which to begin the search. If this
argument is omitted, indexOf() starts at the beginning and
lastIndexOf() starts at the end. Negative values are allowed for the
second argument and are treated as an offset from the end of the
array, as they are for the slice() method: a value of –1, for
example, specifies the last element of the array.

The following function searches an array for a specified value and returns an
array of all matching indexes. This demonstrates how the second argument to
indexOf() can be used to find matches beyond the first.

// Find all occurrences of a value x in an array a and return an array
// of matching indexes
function findall(a, x) {
 let results = [], // The array of indexes we'll return
 len = a.length, // The length of the array to be searched
 pos = 0; // The position to search from
 while(pos < len) { // While more elements to search...
 pos = a.indexOf(x, pos); // Search
 if (pos === -1) break; // If nothing found, we're done.
 results.push(pos); // Otherwise, store index in array
 pos = pos + 1; // And start next search at next element
 }
 return results; // Return array of indexes
}

Note that strings have indexOf() and lastIndexOf() methods that work like
these array methods, except that a negative second argument is treated as zero.

includes()

The ES2016 includes() method takes a single argument and returns
true if the array contains that value or false otherwise. It does
not tell you the index of the value, only whether it exists. The
includes() method is effectively a set membership test for
arrays. Note, however, that arrays are not an efficient representation
for sets, and if you are working with more than a few elements, you
should use a real Set object (§11.1.1).

The includes() method is slightly different than the indexOf()
method in one important way. indexOf() tests equality using the same
algorithm that the === operator does, and that equality algorithm
considers the not-a-number value to be different from every other
value, including itself. includes() uses a slightly different version of
equality that does consider NaN to be equal to itself. This means
that indexOf() will not detect the NaN value in an array, but
includes() will:

let a = [1,true,3,NaN];
a.includes(true) // => true
a.includes(2) // => false
a.includes(NaN) // => true
a.indexOf(NaN) // => -1; indexOf can't find NaN

sort()

sort() sorts the elements of an array in place and returns the sorted
array. When sort() is called with no arguments, it sorts the array elements
in alphabetical order (temporarily converting them to strings to perform the
comparison, if necessary):

let a = ["banana", "cherry", "apple"];
a.sort(); // a == ["apple", "banana", "cherry"]

If an array contains undefined elements, they are sorted to the end of the
array.

To sort an array into some order other than alphabetical, you must pass a
comparison function as an argument to sort(). This function decides which of
its two arguments should appear first in the sorted array. If the first
argument should appear before the second, the comparison function should return
a number less than zero. If the first argument should appear after the second
in the sorted array, the function should return a number greater than zero. And
if the two values are equivalent (i.e., if their order is irrelevant), the
comparison function should return 0. So, for example, to sort array elements
into numerical rather than alphabetical order, you might do this:

let a = [33, 4, 1111, 222];
a.sort(); // a == [1111, 222, 33, 4]; alphabetical order
a.sort(function(a,b) { // Pass a comparator function
 return a-b; // Returns < 0, 0, or > 0, depending on order
}); // a == [4, 33, 222, 1111]; numerical order
a.sort((a,b) => b-a); // a == [1111, 222, 33, 4]; reverse numerical order

As another example of sorting array items, you might perform a case-insensitive
alphabetical sort on an array of strings by passing a comparison function that
converts both of its arguments to lowercase (with the toLowerCase() method)
before comparing them:

let a = ["ant", "Bug", "cat", "Dog"];
a.sort(); // a == ["Bug","Dog","ant","cat"]; case-sensitive sort
a.sort(function(s,t) {
 let a = s.toLowerCase();
 let b = t.toLowerCase();
 if (a < b) return -1;
 if (a > b) return 1;
 return 0;
}); // a == ["ant","Bug","cat","Dog"]; case-insensitive sort

reverse()

The reverse() method reverses the order of the elements of an array and
returns the reversed array. It does this in place; in other words, it
doesn’t
create a new array with the elements rearranged but instead rearranges them in
the already existing array:

let a = [1,2,3];
a.reverse(); // a == [3,2,1]

7.8.7 Array to String Conversions

The Array class defines three methods that can convert arrays to
strings, which is generally something you might do when creating log
and error messages. (If you want to save the contents of an array in
textual form for later reuse, serialize the array with
JSON.stringify() [§6.8] instead of using the
methods described here.)

The join() method converts all the elements of an array to strings
and concatenates them, returning the resulting string. You can specify
an optional string that separates the elements in the resulting
string. If no separator string is specified, a comma is used:

let a = [1, 2, 3];
a.join() // => "1,2,3"
a.join(" ") // => "1 2 3"
a.join("") // => "123"
let b = new Array(10); // An array of length 10 with no elements
b.join("-") // => "---------": a string of 9 hyphens

The join() method is the inverse of the String.split() method, which
creates an array by breaking a string into pieces.

Arrays, like all JavaScript objects, have a toString() method. For
an array, this method works just like the join() method with no
arguments:

[1,2,3].toString() // => "1,2,3"
["a", "b", "c"].toString() // => "a,b,c"
[1, [2,"c"]].toString() // => "1,2,c"

Note that the output does not include square brackets or any other
sort of delimiter around the array value.

toLocaleString() is the localized version of toString(). It
converts each array element to a string by calling the
toLocaleString() method of the element, and then it concatenates the
resulting strings using a locale-specific (and implementation-defined)
separator string.

7.8.8 Static Array Functions

In addition to the array methods we’ve already documented, the Array class
also defines three static functions that you can invoke through the
Array constructor rather than on arrays. Array.of() and
Array.from() are factory methods for creating new arrays. They were
documented in §7.1.4 and §7.1.5.

The one other static array function is Array.isArray(), which is
useful for determining whether an unknown value is an array or not:

Array.isArray([]) // => true
Array.isArray({}) // => false

7.9 Array-Like Objects

As we’ve seen, JavaScript arrays have some special features that other objects
do not have:

	
The length property is automatically updated as new elements are added to
the list.

	
Setting length to a smaller value truncates the array.

	
Arrays inherit useful methods from Array.prototype.

	
Array.isArray() returns true for arrays.

These are the features that make JavaScript arrays distinct from regular
objects. But they are not the essential features that define an array. It is
often perfectly reasonable to treat any object with a numeric length property
and corresponding non-negative integer properties as a kind of array.

These “array-like” objects actually do occasionally appear in practice, and
although you cannot directly invoke array methods on them or expect special
behavior from the length property, you can still iterate through them with
the same code you’d use for a true array. It turns out that many array
algorithms work just as well with array-like objects as they do with real
arrays. This is especially true if your algorithms treat the array as read-only
or if they at least leave the array length unchanged.

The following code takes a regular object, adds properties to make it an
array-like object, and then iterates through the “elements” of the resulting
pseudo-array:

let a = {}; // Start with a regular empty object

// Add properties to make it "array-like"
let i = 0;
while(i < 10) {
 a[i] = i * i;
 i++;
}
a.length = i;

// Now iterate through it as if it were a real array
let total = 0;
for(let j = 0; j < a.length; j++) {
 total += a[j];
}

In client-side JavaScript, a number of methods for working with HTML
documents (such as document.querySelectorAll(), for example) return
array-like objects. Here’s a function you might use to test for
objects that work like arrays:

// Determine if o is an array-like object.
// Strings and functions have numeric length properties, but are
// excluded by the typeof test. In client-side JavaScript, DOM text
// nodes have a numeric length property, and may need to be excluded
// with an additional o.nodeType !== 3 test.
function isArrayLike(o) {
 if (o && // o is not null, undefined, etc.
 typeof o === "object" && // o is an object
 Number.isFinite(o.length) && // o.length is a finite number
 o.length >= 0 && // o.length is non-negative
 Number.isInteger(o.length) && // o.length is an integer
 o.length < 4294967295) { // o.length < 2^32 - 1
 return true; // Then o is array-like.
 } else {
 return false; // Otherwise it is not.
 }
}

We’ll see in a later section that strings behave like arrays. Nevertheless,
tests like this one for array-like objects typically return false for
strings—they are usually best handled as strings, not as arrays.

Most JavaScript array methods are purposely defined to be generic so
that they work correctly when applied to array-like objects in
addition to true arrays. Since array-like objects do not inherit from
Array.prototype, you cannot invoke array methods on them
directly. You can invoke them indirectly using the Function.call
method, however (see §8.7.4 for details):

let a = {"0": "a", "1": "b", "2": "c", length: 3}; // An array-like object
Array.prototype.join.call(a, "+") // => "a+b+c"
Array.prototype.map.call(a, x => x.toUpperCase()) // => ["A","B","C"]
Array.prototype.slice.call(a, 0) // => ["a","b","c"]: true array copy
Array.from(a) // => ["a","b","c"]: easier array copy

The second-to-last line of this code invokes the Array slice()
method on an array-like object in order to copy the elements of that
object into a true array object. This is an idiomatic trick that
exists in much legacy code, but is now much easier to do with
Array.from().

7.10 Strings as Arrays

JavaScript strings behave like read-only arrays of UTF-16 Unicode
characters. Instead of accessing individual characters with the
charAt() method, you can use square brackets:

let s = "test";
s.charAt(0) // => "t"
s[1] // => "e"

The typeof operator still returns “string” for strings, of course, and the
Array.isArray() method returns false if you pass it a string.

The primary benefit of indexable strings is simply that we can replace calls to
charAt() with square brackets, which are more concise and readable, and
potentially more efficient. The fact that strings behave like arrays also
means, however, that we can apply generic array methods to them. For example:

Array.prototype.join.call("JavaScript", " ") // => "J a v a S c r i p t"

Keep in mind that strings are immutable values, so when they are treated as
arrays, they are read-only arrays. Array methods like push(), sort(),
reverse(), and splice() modify an array in place and do not work on
strings. Attempting to modify a string using an array method does not, however,
cause an error: it simply fails silently.

7.11 Summary

This chapter has covered JavaScript arrays in depth, including
esoteric details about sparse arrays and array-like objects. The main
points to take from this chapter are:

	
Array literals are written as comma-separated lists of values within
square brackets.

	
Individual array elements are accessed by specifying the desired
array index within square brackets.

	
The for/of loop and ... spread operator introduced in ES6 are
particularly useful ways to iterate arrays.

	
The Array class defines a rich set of methods for manipulating
arrays, and you should be sure to familiarize yourself with the
Array API.

Chapter 8. Functions

This chapter covers JavaScript functions. Functions are a fundamental
building block for JavaScript programs and a common feature in
almost all programming languages. You may already be familiar with the
concept of a function under a name such as subroutine or
procedure.

A function is a block of JavaScript code that is defined once but
may be executed, or invoked, any number of times. JavaScript
functions are parameterized: a function definition may include a
list of identifiers, known as parameters, that work as local
variables for the body of the function. Function invocations provide
values, or arguments, for the function’s parameters. Functions often
use their argument values to compute a return value that becomes the
value of the function-invocation expression. In addition to the
arguments, each invocation has another value—the invocation
context—that is the value of the this keyword.

If a function is assigned to a property of an object, it is known as
a method of that object. When a function is invoked on or
through an object, that object is the invocation context or this
value for the function. Functions designed to initialize a newly
created object are called constructors. Constructors were described
in §6.2 and will be covered again in Chapter 9.

In JavaScript, functions are objects, and they can be manipulated by
programs. JavaScript can assign functions to variables and pass them
to other functions, for example. Since functions are objects, you can
set properties on them and even invoke methods on them.

JavaScript function definitions can be nested within other functions,
and they have access to any variables that are in scope where they are
defined. This means that JavaScript functions are closures, and it
enables important and powerful programming techniques.

8.1 Defining Functions

The most straightforward way to define a JavaScript function is with the
function keyword, which can be used as a declaration or as an
expression. ES6 defines an important new way to define
functions without the function keyword: “arrow functions” have a
particularly compact syntax and are useful when passing one function as
an argument to another function. The subsections that follow cover these three
ways of defining functions. Note that some details of function
definition syntax involving function parameters are deferred to
§8.3.

In object literals and class definitions, there is a convenient shorthand
syntax for defining methods. This shorthand syntax was covered in
§6.10.5 and is equivalent to using a
function definition expression and assigning it to an object property
using the basic name:value object literal syntax. In another special
case, you can use keywords get and set in object literals to define
special property getter and setter methods. This function definition
syntax was covered in §6.10.6.

Note that functions can also be defined with the Function()
constructor, which is the subject of
§8.7.7. Also, JavaScript defines some
specialized kinds of functions.
function* defines generator functions
(see Chapter 12) and async function defines asynchronous functions
(see Chapter 13).

8.1.1 Function Declarations

Function declarations consist of the function keyword, followed by
these components:

	
An identifier that names the function. The name is a required part
of function declarations: it is used as the name of a
variable, and the newly defined function object is assigned to the
variable.

	
A pair of parentheses around a comma-separated list of zero or more
identifiers. These identifiers are the parameter names for the
function, and they behave like local variables within the body of
the function.

	
A pair of curly braces with zero or more JavaScript statements
inside. These statements are the body of the function: they are
executed whenever the function is invoked.

Here are some example function declarations:

// Print the name and value of each property of o. Return undefined.
function printprops(o) {
 for(let p in o) {
 console.log(`${p}: ${o[p]}\n`);
 }
}

// Compute the distance between Cartesian points (x1,y1) and (x2,y2).
function distance(x1, y1, x2, y2) {
 let dx = x2 - x1;
 let dy = y2 - y1;
 return Math.sqrt(dx*dx + dy*dy);
}

// A recursive function (one that calls itself) that computes factorials
// Recall that x! is the product of x and all positive integers less than it.
function factorial(x) {
 if (x <= 1) return 1;
 return x * factorial(x-1);
}

One of the important things to understand about function declarations
is that the name of the function becomes a variable whose
value is the function itself. Function declaration statements are
“hoisted” to the top of the enclosing script, function, or block so
that functions defined in this way may be invoked from code that
appears before the definition. Another way to say this is that all of
the functions declared in a block of JavaScript code will be defined
throughout that block, and they will be defined before the JavaScript
interpreter begins to execute any of the code in that block.

The distance() and factorial() functions we’ve described are designed to
compute a value, and they use return to return that value to their
caller. The return statement causes the function to stop executing
and to return the value of its expression (if any) to the caller. If
the return statement does not have an associated expression, the
return value of the function is undefined.

The printprops() function is different: its job is to output the
names and values of an object’s properties. No return value is
necessary, and the function does not include a return statement. The
value of an invocation of the printprops() function is always
undefined. If a function does not contain a return statement, it
simply executes each statement in the function body until it reaches
the end, and returns the undefined value to the caller.

Prior to ES6, function declarations were only allowed
at the top level within a JavaScript file or within another
function. While some implementations bent the rule, it was not
technically legal to define functions inside the body of loops,
conditionals, or other blocks. In the strict mode of ES6, however,
function declarations are allowed within blocks. A function
defined within a block only exists within that block, however, and is
not visible outside the block.

8.1.2 Function Expressions

Function expressions look a lot like function declarations,
but they appear within the context of a larger expression
or statement, and the name is optional. Here are some example
function expressions:

// This function expression defines a function that squares its argument.
// Note that we assign it to a variable
const square = function(x) { return x*x; };

// Function expressions can include names, which is useful for recursion.
const f = function fact(x) { if (x <= 1) return 1; else return x*fact(x-1); };

// Function expressions can also be used as arguments to other functions:
[3,2,1].sort(function(a,b) { return a-b; });

// Function expressions are sometimes defined and immediately invoked:
let tensquared = (function(x) {return x*x;}(10));

Note that the function name is optional for functions defined as
expressions, and most of the preceding function expressions we’ve shown omit it. A function declaration actually declares a
variable and assigns a function object to it. A function
expression, on the other hand, does not declare a variable: it is up
to you to assign the newly defined function object to a constant or
variable if you are going to need to refer to it multiple times. It is
a good practice to use const with function expressions so you don’t
accidentally overwrite your functions by assigning new values.

A name is allowed for functions, like the factorial function,
that need to refer to themselves. If a function expression
includes a name, the local function scope for that function will
include a binding of that name to the function object. In effect, the
function name becomes a local variable within the function. Most
functions defined as expressions do not need names, which makes their
definition more compact (though not nearly as compact as arrow
functions, described below).

There is an important difference between defining a function f()
with a function declaration and assigning a function to the variable f
after creating it as an expression. When you use the declaration form,
the function objects are created before the code that contains them
starts to run, and the definitions are hoisted so that you can call
these functions from code that appears above the definition
statement. This is not true for functions defined as expressions,
however: these functions do not exist until the expression that
defines them are actually evaluated. Furthermore, in order to invoke a
function, you must be able to refer to it, and you can’t refer to a
function defined as an expression until it is assigned to a
variable, so functions
defined with expressions cannot be invoked before they are defined.

8.1.3 Arrow Functions

In ES6, you can define functions using a particularly compact syntax
known as “arrow functions.” This syntax is reminiscent of mathematical
notation and uses an => “arrow” to separate the function parameters
from the function body. The function keyword is not used, and, since
arrow functions are expressions instead of statements, there is no need
for a function name, either. The general form of an arrow function is
a comma-separated list of parameters in parentheses, followed by the
=> arrow, followed by the function body in curly braces:

const sum = (x, y) => { return x + y; };

But arrow functions support an even more compact syntax. If the body
of the function is a single return statement, you can omit the
return keyword, the semicolon that goes with it, and the curly
braces, and write the body of the function as the expression whose
value is to be returned:

const sum = (x, y) => x + y;

Furthermore, if an arrow function has exactly one parameter, you can
omit the parentheses around the parameter list:

const polynomial = x => x*x + 2*x + 3;

Note, however, that an arrow function with no arguments at all must be
written with an empty pair of parentheses:

const constantFunc = () => 42;

Note that, when writing an arrow function, you must not put a new line
between the function parameters and the => arrow. Otherwise, you could
end up with a line like const polynomial = x, which is a syntactically
valid assignment statement on its own.

Also, if the body of your arrow function is a single return statement
but the expression to be returned is an object literal, then you have to
put the object literal inside parentheses to avoid syntactic ambiguity
between the curly braces of a function body and the curly braces of an
object literal:

const f = x => { return { value: x }; }; // Good: f() returns an object
const g = x => ({ value: x }); // Good: g() returns an object
const h = x => { value: x }; // Bad: h() returns nothing
const i = x => { v: x, w: x }; // Bad: Syntax Error

In the third line of this code, the function h() is truly ambiguous:
the code you intended as an object literal can be parsed as a labeled
statement, so a function that returns undefined is created. On the
fourth line, however, the more complicated object literal is not a valid
statement, and this illegal code causes a syntax error.

The concise syntax of arrow functions makes them ideal when you need to
pass one function to another function, which is a common thing to do
with array methods like map(), filter(), and reduce() (see
§7.8.1), for example:

// Make a copy of an array with null elements removed.
let filtered = [1,null,2,3].filter(x => x !== null); // filtered == [1,2,3]
// Square some numbers:
let squares = [1,2,3,4].map(x => x*x); // squares == [1,4,9,16]

Arrow functions differ from functions defined in other ways in one
critical way: they inherit the value of the this keyword from
the environment in which they are defined rather than defining their
own invocation context as functions defined in other ways do. This is
an important and very useful feature of arrow functions, and we’ll
return to it again later in this chapter. Arrow functions also differ
from other functions in that they do not have a prototype property,
which means that they cannot be used as constructor functions for new
classes (see §9.2).

8.1.4 Nested Functions

In JavaScript, functions may be nested within other functions. For
example:

function hypotenuse(a, b) {
 function square(x) { return x*x; }
 return Math.sqrt(square(a) + square(b));
}

The interesting thing about nested functions is their variable scoping
rules: they can access the parameters and variables of the function
(or functions) they are nested within. In the code shown here, for example,
the inner function square() can read and write the parameters a
and b defined by the outer function hypotenuse(). These scope
rules for nested functions are very important, and we will
consider them again in §8.6.

8.2 Invoking Functions

The JavaScript code that makes up the body of a function is not
executed when the function is defined, but rather when it is
invoked. JavaScript functions can be invoked in five ways:

	
As functions

	
As methods

	
As constructors

	
Indirectly through their call() and apply() methods

	
Implicitly, via JavaScript language features that do not appear like
normal function invocations

8.2.1 Function Invocation

Functions are invoked as functions or as methods with an invocation
expression (§4.5). An invocation expression consists of
a function expression that evaluates to a function object followed by
an open parenthesis, a comma-separated list of zero or more argument
expressions, and a close parenthesis. If the function expression is a
property-access expression—if the function is the property of an
object or an element of an array—then it is a method invocation
expression. That case will be explained in the following example. The following code
includes a number of regular function invocation expressions:

printprops({x: 1});
let total = distance(0,0,2,1) + distance(2,1,3,5);
let probability = factorial(5)/factorial(13);

In an invocation, each argument expression (the ones between the
parentheses) is evaluated, and the resulting values become the
arguments to the function. These values are assigned to the parameters
named in the function definition. In the body of the function, a
reference to a parameter evaluates to the corresponding argument
value.

For regular function invocation, the return value of the function
becomes the value of the invocation expression. If the function
returns because the interpreter reaches the end, the return value is
undefined. If the function returns because the interpreter executes
a return statement, then the return value is the value of the
expression that follows the return or is undefined if the return
statement has no value.

Conditional Invocation

In ES2020 you can insert ?. after the function expression and before
the open parenthesis in a function invocation in order to invoke the
function only if it is not null or undefined. That is, the
expression f?.(x) is equivalent (assuming no side effects) to:

(f !== null && f !== undefined) ? f(x) : undefined

Full details on this conditional invocation syntax are in
§4.5.1.

For function invocation in non-strict mode, the invocation context (the
this value) is the global object. In strict mode, however, the
invocation context is undefined. Note that functions defined using
the arrow syntax behave differently: they always inherit the this
value that is in effect where they are defined.

Functions written to be invoked as functions (and not as methods) do not
typically use the this keyword at all. The keyword can be used, however, to
determine whether strict mode is in effect:

// Define and invoke a function to determine if we're in strict mode.
const strict = (function() { return !this; }());

Recursive Functions and the Stack

A recursive function is one, like the factorial() function at the
start of this chapter, that calls itself. Some algorithms, such as those
involving tree-based data structures, can be implemented particularly
elegantly with recursive functions. When writing a recursive function,
however, it is important to think about memory constraints. When a
function A calls function B, and then function B calls function C, the
JavaScript interpreter needs to keep track of the execution contexts for
all three functions. When function C completes, the interpreter needs to
know where to resume executing function B, and when function B
completes, it needs to know where to resume executing function A. You
can imagine these execution contexts as a stack. When a function calls
another function, a new execution context is pushed onto the stack. When
that function returns, its execution context object is popped off the
stack. If a function calls itself recursively 100 times, the stack will
have 100 objects pushed onto it, and then have those 100 objects popped
off. This call stack takes memory. On modern hardware, it is typically
fine to write recursive functions that call themselves hundreds of
times. But if a function calls itself ten thousand times, it is likely
to fail with an error such as “Maximum call-stack size exceeded.”

8.2.2 Method Invocation

A method is nothing more than a JavaScript function that is stored
in a property of an object. If you have a function f and an object
o, you can define a method named m of o with the following line:

o.m = f;

Having defined the method m() of the object o, invoke it like
this:

o.m();

Or, if m() expects two arguments, you might invoke it like this:

o.m(x, y);

The code in this example is an invocation expression: it includes a function
expression o.m and two argument expressions, x and y. The
function expression is itself a property access expression, and this
means that the function is invoked as a method rather than as a
regular function.

The arguments and return value of a method invocation are handled
exactly as described for regular function invocation. Method
invocations differ from function invocations in one important way,
however: the invocation context. Property access expressions consist
of two parts: an object (in this case o) and a property name
(m). In a method-invocation expression like this, the object o
becomes the invocation context, and the function body can refer to
that object by using the keyword this. Here is a concrete example:

let calculator = { // An object literal
 operand1: 1,
 operand2: 1,
 add() { // We're using method shorthand syntax for this function
 // Note the use of the this keyword to refer to the containing object.
 this.result = this.operand1 + this.operand2;
 }
};
calculator.add(); // A method invocation to compute 1+1.
calculator.result // => 2

Most method invocations use the dot notation for property access, but
property access expressions that use square brackets also cause method
invocation. The following are both method invocations, for example:

o["m"](x,y); // Another way to write o.m(x,y).
a[0](z) // Also a method invocation (assuming a[0] is a function).

Method invocations may also involve more complex property access
expressions:

customer.surname.toUpperCase(); // Invoke method on customer.surname
f().m(); // Invoke method m() on return value of f()

Methods and the this keyword are central to the object-oriented
programming paradigm. Any function that is used as a method is
effectively passed an implicit argument—the object through which it is
invoked. Typically, a method performs some sort of operation on that
object, and the method-invocation syntax is an elegant way to express
the fact that a function is operating on an object. Compare the
following two lines:

rect.setSize(width, height);
setRectSize(rect, width, height);

The hypothetical functions invoked in these two lines of code may
perform exactly the same operation on the (hypothetical) object
rect, but the method-invocation syntax in the first line more
clearly indicates the idea that it is the object rect that is the
primary focus of the operation.

Method Chaining

When methods return objects, you can use the return value of one
method invocation as part of a subsequent invocation. This results in
a series (or “chain”) of method invocations as a single
expression. When working with Promise-based asynchronous operations
(see Chapter 13), for example, it is common to write code structured like this:

// Run three asynchronous operations in sequence, handling errors.
doStepOne().then(doStepTwo).then(doStepThree).catch(handleErrors);

When you write a method that does not have a return value of its own,
consider having the method return this. If you do this consistently
throughout your API, you will enable a style of programming known as
method chaining1 in
which an object can be named once and then multiple methods can be
invoked on it:

new Square().x(100).y(100).size(50).outline("red").fill("blue").draw();

Note that this is a keyword, not a variable or property
name. JavaScript syntax does not allow you to assign a value to
this.

The this keyword is not scoped the way variables are, and, except for
arrow functions, nested functions do not inherit the
this value of the containing function. If a nested function is invoked
as a method, its this value is the object it was invoked on. If a
nested function (that is not an arrow function) is invoked as a function,
then its this value will be either the global object (non-strict mode)
or undefined (strict mode). It is a common mistake to assume that a
nested function defined within a method and invoked as a function can
use this to obtain the invocation context of the method. The following
code demonstrates the problem:

let o = { // An object o.
 m: function() { // Method m of the object.
 let self = this; // Save the "this" value in a variable.
 this === o // => true: "this" is the object o.
 f(); // Now call the helper function f().

 function f() { // A nested function f
 this === o // => false: "this" is global or undefined
 self === o // => true: self is the outer "this" value.
 }
 }
};
o.m(); // Invoke the method m on the object o.

Inside the nested function f(), the this keyword is not equal to the
object o. This is widely considered to be a flaw in the JavaScript
language, and it is important to be aware of it. The code above
demonstrates one common workaround. Within the method m, we assign the
this value to a variable self, and within the nested function f, we
can use self instead of this to refer to the containing object.

In ES6 and later, another workaround to this issue is to convert the
nested function f into an arrow function, which will properly inherit
the this value:

const f = () => {
 this === o // true, since arrow functions inherit this
};

Functions defined as expressions instead of statements are not hoisted,
so in order to make this code work, the function definition for f will
need to be moved within the method m so that it appears before it is
invoked.

Another workaround is to invoke the bind() method of the nested
function to define a new function that is implicitly invoked on a
specified object:

const f = (function() {
 this === o // true, since we bound this function to the outer this
}).bind(this);

We’ll talk more about bind() in §8.7.5.

8.2.3 Constructor Invocation

If a function or method invocation is preceded by the keyword new,
then it is a constructor invocation. (Constructor invocations were
introduced in §4.6 and §6.2.2, and
constructors will be covered in more detail in Chapter 9.)
Constructor invocations differ from regular function and method
invocations in their handling of arguments, invocation context, and
return value.

If a constructor invocation includes an argument list in parentheses,
those argument expressions are evaluated and passed to the function in
the same way they would be for function and method invocations. It is
not common practice, but you can omit a pair of empty parentheses in a
constructor invocation. The following two lines, for example, are
equivalent:

o = new Object();
o = new Object;

A constructor invocation creates a new, empty object that inherits
from the object specified by the
prototype property of the constructor. Constructor
functions are intended to initialize objects, and this newly created
object is used as the invocation context, so the constructor function
can refer to it with the this keyword. Note that the new object is
used as the invocation context even if the constructor invocation
looks like a method invocation. That is, in the expression new
o.m(), o is not used as the invocation context.

Constructor functions do not normally use the return keyword. They
typically initialize the new object and then return implicitly when
they reach the end of their body. In this case, the new object is the
value of the constructor invocation expression. If, however, a
constructor explicitly uses the return statement to return an
object, then that object becomes the value of the invocation
expression. If the constructor uses return with no value, or if it
returns a primitive value, that return value is ignored and the new
object is used as the value of the invocation.

8.2.4 Indirect Invocation

JavaScript functions are objects, and like all JavaScript objects, they
have methods. Two of these methods, call() and apply(), invoke the
function indirectly. Both methods allow you to explicitly specify the
this value for the invocation, which means you can invoke any
function as a method of any object, even if it is not actually a
method of that object. Both methods also allow you to specify the
arguments for the invocation. The call() method uses its own
argument list as arguments to the function, and the apply() method
expects an array of values to be used as arguments. The call() and
apply() methods are described in detail in §8.7.4.

8.2.5 Implicit Function Invocation

There are various JavaScript language features that do not look like
function invocations but that cause functions to be invoked. Be extra
careful when writing functions that may be implicitly invoked, because
bugs, side effects, and performance issues in these functions are harder
to diagnose and fix than in regular functions for the simple reason that
it may not be obvious from a simple inspection of your code when they
are being called.

The language features that can cause implicit function invocation
include:

	
If an object has getters or setters defined, then querying or setting
the value of its properties may invoke those methods. See
§6.10.6 for more information.

	
When an object is used in a string context (such as when it is
concatenated with a string), its toString() method is
called. Similarly, when an object is used in a numeric context, its
valueOf() method is invoked. See §3.9.3 for details.

	
When you loop over the elements of an iterable object, there are a
number of method calls that occur. Chapter 12 explains how iterators
work at the function call level and demonstrates how to write these
methods so that you can define your own iterable types.

	
A tagged template literal is a function invocation in
disguise. §14.5 demonstrates how to write functions that
can be used in conjunction with template literal strings.

	
Proxy objects (described in §14.7) have their behavior
completely controlled by functions. Just about any operation on one of
these objects will cause a function to be invoked.

8.3 Function Arguments and Parameters

JavaScript function definitions do not specify an expected type for
the function parameters, and function invocations do not do any type
checking on the argument values you pass. In fact, JavaScript function
invocations do not even check the number of arguments being
passed. The subsections that follow describe what happens when a
function is invoked with fewer arguments than declared parameters or
with more arguments than declared parameters. They also demonstrate
how you can explicitly test the type of function arguments if you need
to ensure that a function is not invoked with inappropriate arguments.

8.3.1 Optional Parameters and Defaults

When a function is invoked with fewer arguments than declared
parameters, the additional parameters are set to their default value,
which is normally undefined. It is often useful to write functions so
that some arguments are optional. Following is an example:

// Append the names of the enumerable properties of object o to the
// array a, and return a. If a is omitted, create and return a new array.
function getPropertyNames(o, a) {
 if (a === undefined) a = []; // If undefined, use a new array
 for(let property in o) a.push(property);
 return a;
}

// getPropertyNames() can be invoked with one or two arguments:
let o = {x: 1}, p = {y: 2, z: 3}; // Two objects for testing
let a = getPropertyNames(o); // a == ["x"]; get o's properties in a new array
getPropertyNames(p, a); // a == ["x","y","z"]; add p's properties to it

Instead of using an if statement in the first line of this function,
you can use the || operator in this idiomatic way:

a = a || [];

Recall from §4.10.2 that the || operator returns its first
argument if that argument is truthy and otherwise returns its second
argument. In this case, if any object is passed as the second
argument, the function will use that object. But if the second
argument is omitted (or null or another falsy value is passed), a
newly created empty array will be used instead.

Note that when designing functions with optional arguments, you should
be sure to put the optional ones at the end of the argument list so
that they can be omitted. The programmer who calls your function
cannot omit the first argument and pass the second: they would have to
explicitly pass undefined as the first argument.

In ES6 and later, you can define a default value for each of your
function parameters directly in the parameter list of your
function. Simply follow the parameter name with an equals sign and the
default value to use when no argument is supplied for that parameter:

// Append the names of the enumerable properties of object o to the
// array a, and return a. If a is omitted, create and return a new array.
function getPropertyNames(o, a = []) {
 for(let property in o) a.push(property);
 return a;
}

Parameter default expressions are evaluated when your function is
called, not when it is defined, so each time this getPropertyNames()
function is invoked with one argument, a new empty array is created and
passed.2 It is probably easiest to reason about functions if the
parameter defaults are constants (or literal expressions like [] and
{}). But this is not required: you can use variables, or function
invocations, for example, to compute the default value of a
parameter. One interesting case is that, for functions with multiple
parameters, you can use the value of a previous parameter to define the
default value of the parameters that follow it:

// This function returns an object representing a rectangle's dimensions.
// If only width is supplied, make it twice as high as it is wide.
const rectangle = (width, height=width*2) => ({width, height});
rectangle(1) // => { width: 1, height: 2 }

This code demonstrates that parameter defaults work with arrow
functions. The same is true for method shorthand functions and all other
forms of function definitions.

8.3.2 Rest Parameters and Variable-Length Argument Lists

Parameter defaults enable us to write functions that can be invoked with
fewer arguments than parameters. Rest parameters enable the opposite
case: they allow us to write functions that can be invoked with
arbitrarily more arguments than parameters. Here is an example function
that expects one or more numeric arguments and returns the largest one:

function max(first=-Infinity, ...rest) {
 let maxValue = first; // Start by assuming the first arg is biggest
 // Then loop through the rest of the arguments, looking for bigger
 for(let n of rest) {
 if (n > maxValue) {
 maxValue = n;
 }
 }
 // Return the biggest
 return maxValue;
}

max(1, 10, 100, 2, 3, 1000, 4, 5, 6) // => 1000

A rest parameter is preceded by three periods, and it must be the last
parameter in a function declaration. When you invoke a function with a
rest parameter, the arguments you pass are first assigned to the
non-rest parameters, and then any remaining arguments (i.e., the “rest”
of the arguments) are stored in an array that becomes the value of the
rest parameter. This last point is important: within the body of a
function, the value of a rest parameter will always be an array. The
array may be empty, but a rest parameter will never be undefined. (It
follows from this that it is never useful—and not legal—to define a
parameter default for a rest parameter.)

Functions like the previous example that can accept any number of arguments are
called variadic functions, variable arity functions, or vararg functions. This book uses the most colloquial term, varargs, which
dates to the early days of the C programming language.

Don’t confuse the ... that defines a rest parameter in a function
definition with the ... spread operator, described in §8.3.4, which can be
used in function invocations.

8.3.3 The Arguments Object

Rest parameters were introduced into JavaScript in ES6. Before
that version of the language, varargs functions were written using the
Arguments object: within the body of any function, the identifier
arguments refers to the Arguments object for that invocation. The
Arguments object is an array-like object (see §7.9) that allows
the argument values passed to the function to be retrieved by number,
rather than by name. Here is the max() function from earlier, rewritten
to use the Arguments object instead of a rest parameter:

function max(x) {
 let maxValue = -Infinity;
 // Loop through the arguments, looking for, and remembering, the biggest.
 for(let i = 0; i < arguments.length; i++) {
 if (arguments[i] > maxValue) maxValue = arguments[i];
 }
 // Return the biggest
 return maxValue;
}

max(1, 10, 100, 2, 3, 1000, 4, 5, 6) // => 1000

The Arguments object dates back to the earliest days of JavaScript and
carries with it some strange historical baggage that makes it
inefficient and hard to optimize, especially outside of strict
mode. You may still encounter code that uses the Arguments object, but
you should avoid using it in any new code you write. When refactoring
old code, if you encounter a function that uses arguments, you can
often replace it with a ...args rest parameter. Part of the
unfortunate legacy of the Arguments object is that, in strict mode,
arguments is treated as a reserved word, and you cannot declare a
function parameter or a local variable with that name.

8.3.4 The Spread Operator for Function Calls

The spread operator ... is used to unpack, or “spread out,” the elements
of an array (or any other iterable object, such as strings) in a context
where individual values are expected. We’ve seen the spread operator
used with array literals in §7.1.2. The
operator can be used, in the same way, in function invocations:

let numbers = [5, 2, 10, -1, 9, 100, 1];
Math.min(...numbers) // => -1

Note that ... is not a true operator in the sense that it cannot be
evaluated to produce a value. Instead, it is a special JavaScript syntax
that can be used in array literals and function invocations.

When we use the same ... syntax in a function definition rather than a
function invocation, it has the opposite effect to the spread
operator. As we saw in §8.3.2, using ... in a function
definition gathers multiple function arguments into an array. Rest
parameters and the spread operator are often useful together, as in the
following function, which takes a function argument and returns an
instrumented version of the function for testing:

// This function takes a function and returns a wrapped version
function timed(f) {
 return function(...args) { // Collect args into a rest parameter array
 console.log(`Entering function ${f.name}`);
 let startTime = Date.now();
 try {
 // Pass all of our arguments to the wrapped function
 return f(...args); // Spread the args back out again
 }
 finally {
 // Before we return the wrapped return value, print elapsed time.
 console.log(`Exiting ${f.name} after ${Date.now()-startTime}ms`);
 }
 };
}

// Compute the sum of the numbers between 1 and n by brute force
function benchmark(n) {
 let sum = 0;
 for(let i = 1; i <= n; i++) sum += i;
 return sum;
}

// Now invoke the timed version of that test function
timed(benchmark)(1000000) // => 500000500000; this is the sum of the numbers

8.3.5 Destructuring Function Arguments into Parameters

When you invoke a function with a list of argument values, those values
end up being assigned to the parameters declared in the function
definition. This initial phase of function invocation is a lot like
variable assignment. So it should not be surprising that we can use the
techniques of destructuring assignment (see
§3.10.3) with functions.

If you define a function that has parameter names within square
brackets, you are telling the function to expect an array value to be
passed for each pair of square brackets. As part of the invocation
process, the array arguments will be unpacked into the individually
named parameters. As an example, suppose we are representing 2D vectors
as arrays of two numbers, where the first element is the X coordinate
and the second element is the Y coordinate. With this simple data
structure, we could write the following function to add two vectors:

function vectorAdd(v1, v2) {
 return [v1[0] + v2[0], v1[1] + v2[1]];
}
vectorAdd([1,2], [3,4]) // => [4,6]

The code would be easier to understand if we destructured the two vector
arguments into more clearly named parameters:

function vectorAdd([x1,y1], [x2,y2]) { // Unpack 2 arguments into 4 parameters
 return [x1 + x2, y1 + y2];
}
vectorAdd([1,2], [3,4]) // => [4,6]

Similarly, if you are defining a function that expects an object
argument, you can destructure parameters of that object. Let’s use a
vector example again, except this time, let’s suppose that we represent
vectors as objects with x and y parameters:

// Multiply the vector {x,y} by a scalar value
function vectorMultiply({x, y}, scalar) {
 return { x: x*scalar, y: y*scalar };
}
vectorMultiply({x: 1, y: 2}, 2) // => {x: 2, y: 4}

This example of destructuring a single object argument into two
parameters is a fairly clear one because the parameter names we use match
the property names of the incoming object. The syntax is more verbose
and more confusing when you need to destructure properties with one name
into parameters with different names. Here’s the vector addition
example, implemented for object-based vectors:

function vectorAdd(
 {x: x1, y: y1}, // Unpack 1st object into x1 and y1 params
 {x: x2, y: y2} // Unpack 2nd object into x2 and y2 params
)
{
 return { x: x1 + x2, y: y1 + y2 };
}
vectorAdd({x: 1, y: 2}, {x: 3, y: 4}) // => {x: 4, y: 6}

The tricky thing about destructuring syntax like {x:x1, y:y1} is
remembering which are the property names and which are the parameter
names. The rule to keep in mind for destructuring assignment and
destructuring function calls is that the variables or parameters being
declared go in the spots where you’d expect values to go in an object
literal. So property names are always on the lefthand side of the
colon, and the parameter (or variable) names are on the right.

You can define parameter defaults with destructured parameters. Here’s
vector multiplication that works with 2D or 3D vectors:

// Multiply the vector {x,y} or {x,y,z} by a scalar value
function vectorMultiply({x, y, z=0}, scalar) {
 return { x: x*scalar, y: y*scalar, z: z*scalar };
}
vectorMultiply({x: 1, y: 2}, 2) // => {x: 2, y: 4, z: 0}

Some languages (like Python) allow the caller of a function to invoke a
function with arguments specified in name=value form, which is
convenient when there are many optional arguments or when the parameter
list is long enough that it is hard to remember the correct
order. JavaScript does not allow this directly, but you can approximate
it by destructuring an object argument into your function
parameters. Consider a function that copies a specified number of
elements from one array into another array with optionally specified
starting offsets for each array. Since there are five possible parameters,
some of which have defaults, and it would be hard for a caller to remember
which order to pass the arguments in, we can define and invoke the
arraycopy() function like this:

function arraycopy({from, to=from, n=from.length, fromIndex=0, toIndex=0}) {
 let valuesToCopy = from.slice(fromIndex, fromIndex + n);
 to.splice(toIndex, 0, ...valuesToCopy);
 return to;
}
let a = [1,2,3,4,5], b = [9,8,7,6,5];
arraycopy({from: a, n: 3, to: b, toIndex: 4}) // => [9,8,7,6,1,2,3,5]

When you destructure an array, you can define a rest parameter for extra
values within the array that is being unpacked. That rest parameter
within the square brackets is completely different than the true rest
parameter for the function:

// This function expects an array argument. The first two elements of that
// array are unpacked into the x and y parameters. Any remaining elements
// are stored in the coords array. And any arguments after the first array
// are packed into the rest array.
function f([x, y, ...coords], ...rest) {
 return [x+y, ...rest, ...coords]; // Note: spread operator here
}
f([1, 2, 3, 4], 5, 6) // => [3, 5, 6, 3, 4]

In ES2018, you can also use a rest parameter when you destructure an
object. The value of that rest parameter will be an object that has any
properties that did not get destructured. Object rest parameters are
often useful with the object spread operator, which is also a new
feature of ES2018:

// Multiply the vector {x,y} or {x,y,z} by a scalar value, retain other props
function vectorMultiply({x, y, z=0, ...props}, scalar) {
 return { x: x*scalar, y: y*scalar, z: z*scalar, ...props };
}
vectorMultiply({x: 1, y: 2, w: -1}, 2) // => {x: 2, y: 4, z: 0, w: -1}

Finally, keep in mind that, in addition to destructuring argument
objects and arrays, you can also destructure arrays of objects,
objects that have array properties, and objects that have object
properties, to essentially any depth. Consider graphics code that
represents circles as objects with x, y, radius, and color
properties, where the color property is an array of red, green, and
blue color components. You might define a function that expects a
single circle object to be passed to it but destructures that circle
object into six separate parameters:

function drawCircle({x, y, radius, color: [r, g, b]}) {
 // Not yet implemented
}

If function argument destructuring is any more complicated than this, I
find that the code becomes harder to read, rather than
simpler. Sometimes, it is clearer to be explicit about your object
property access and array indexing.

8.3.6 Argument Types

JavaScript method parameters have no declared types, and no type
checking is performed on the values you pass to a function. You can help
 make your code self-documenting by choosing descriptive names for
function arguments and by documenting them carefully in the comments for
each function. (Alternatively, see §17.8 for a language extension
that allows you to layer type checking on top of regular JavaScript.)

As described in §3.9, JavaScript performs liberal type
conversion as needed. So if you write a function that expects a string
argument and then call that function with a value of some other type,
the value you passed will simply be converted to a string when the
function tries to use it as a string. All primitive types can be
converted to strings, and all objects have toString() methods (if
not necessarily useful ones), so an error never occurs in this case.

This is not always true, however. Consider again the arraycopy()
method shown earlier. It expects one or two array arguments and will
fail if these arguments are of the wrong type. Unless you are writing a
private function that will only be called from nearby parts of your
code, it may be worth adding code to check the types of arguments like
this. It is better for a function to fail immediately and predictably
when passed bad values than to begin executing and fail later with an
error message that is likely to be unclear. Here is an example function
that performs type-checking:

// Return the sum of the elements an iterable object a.
// The elements of a must all be numbers.
function sum(a) {
 let total = 0;
 for(let element of a) { // Throws TypeError if a is not iterable
 if (typeof element !== "number") {
 throw new TypeError("sum(): elements must be numbers");
 }
 total += element;
 }
 return total;
}
sum([1,2,3]) // => 6
sum(1, 2, 3); // !TypeError: 1 is not iterable
sum([1,2,"3"]); // !TypeError: element 2 is not a number

8.4 Functions as Values

The most important features of functions are that they can be defined
and invoked. Function definition and invocation are syntactic features
of JavaScript and of most other programming languages. In JavaScript,
however, functions are not only syntax but also values, which means
they can be assigned to variables, stored in the properties of objects
or the elements of arrays, passed as arguments to functions, and so
on.3

To understand how functions can be JavaScript data as well as
JavaScript syntax, consider this function definition:

function square(x) { return x*x; }

This definition creates a new function object and assigns it to the
variable square. The name of a function is really immaterial; it is
simply the name of a variable that refers to the function object. The
function can be assigned to another variable and still work the same
way:

let s = square; // Now s refers to the same function that square does
square(4) // => 16
s(4) // => 16

Functions can also be assigned to object properties rather than
variables. As we’ve already discussed, we call the functions “methods”
when we do this:

let o = {square: function(x) { return x*x; }}; // An object literal
let y = o.square(16); // y == 256

Functions don’t even require names at all, as when they’re
assigned to array elements:

let a = [x => x*x, 20]; // An array literal
a[0](a[1]) // => 400

The syntax of this last example looks strange, but it is still a legal
function invocation expression!

As an example of how useful it is to treat functions as values,
consider the Array.sort() method. This method sorts the elements of
an array. Because there are many possible orders to sort by (numerical
order, alphabetical order, date order, ascending, descending, and so
on), the sort() method optionally takes a function as an argument to
tell it how to perform the sort. This function has a simple job: for
any two values it is passed, it returns a value that specifies which
element would come first in a sorted array. This function argument
makes Array.sort() perfectly general and infinitely flexible; it can
sort any type of data into any conceivable order. Examples are shown
in §7.8.6.

Example 8-1 demonstrates the kinds of things that can be done
when functions are used as values. This example may be a little
tricky, but the comments explain what is going on.

Example 8-1. Using functions as data

// We define some simple functions here
function add(x,y) { return x + y; }
function subtract(x,y) { return x - y; }
function multiply(x,y) { return x * y; }
function divide(x,y) { return x / y; }

// Here's a function that takes one of the preceding functions
// as an argument and invokes it on two operands
function operate(operator, operand1, operand2) {
 return operator(operand1, operand2);
}

// We could invoke this function like this to compute the value (2+3) + (4*5):
let i = operate(add, operate(add, 2, 3), operate(multiply, 4, 5));

// For the sake of the example, we implement the simple functions again,
// this time within an object literal;
const operators = {
 add: (x,y) => x+y,
 subtract: (x,y) => x-y,
 multiply: (x,y) => x*y,
 divide: (x,y) => x/y,
 pow: Math.pow // This works for predefined functions too
};

// This function takes the name of an operator, looks up that operator
// in the object, and then invokes it on the supplied operands. Note
// the syntax used to invoke the operator function.
function operate2(operation, operand1, operand2) {
 if (typeof operators[operation] === "function") {
 return operators[operation](operand1, operand2);
 }
 else throw "unknown operator";
}

operate2("add", "hello", operate2("add", " ", "world")) // => "hello world"
operate2("pow", 10, 2) // => 100

8.4.1 Defining Your Own Function Properties

Functions are not primitive values in JavaScript, but a specialized
kind of object, which means that functions can have properties. When a
function needs a “static” variable whose value persists
across invocations, it is often convenient to use a property of the
function itself. For example, suppose you want to write a function that
returns a unique integer whenever it is invoked. The function must
never return the same value twice. In order to manage this, the
function needs to keep track of the values it has already returned,
and this information must persist across function invocations. You
could store this information in a global variable, but that is
unnecessary, because the information is used only by the function
itself. It is better to store the information in a property of the
Function object. Here is an example that returns a unique integer
whenever it is called:

// Initialize the counter property of the function object.
// Function declarations are hoisted so we really can
// do this assignment before the function declaration.
uniqueInteger.counter = 0;

// This function returns a different integer each time it is called.
// It uses a property of itself to remember the next value to be returned.
function uniqueInteger() {
 return uniqueInteger.counter++; // Return and increment counter property
}
uniqueInteger() // => 0
uniqueInteger() // => 1

As another example, consider the following factorial() function that
uses properties of itself (treating itself as an array) to cache
previously computed results:

// Compute factorials and cache results as properties of the function itself.
function factorial(n) {
 if (Number.isInteger(n) && n > 0) { // Positive integers only
 if (!(n in factorial)) { // If no cached result
 factorial[n] = n * factorial(n-1); // Compute and cache it
 }
 return factorial[n]; // Return the cached result
 } else {
 return NaN; // If input was bad
 }
}
factorial[1] = 1; // Initialize the cache to hold this base case.
factorial(6) // => 720
factorial[5] // => 120; the call above caches this value

8.5 Functions as Namespaces

Variables declared within a function are not visible outside of the
function. For this reason, it is sometimes useful to define a function
simply to act as a temporary namespace in which you can define variables
without cluttering the global namespace.

Suppose, for example, you have a chunk of JavaScript code that you
want to use in a number of different JavaScript programs (or, for
client-side JavaScript, on a number of different web pages). Assume
that this code, like most code, defines variables to store the
intermediate results of its computation. The problem is that since
this chunk of code will be used in many different programs, you don’t
know whether the variables it creates will conflict with variables
created by the programs that use it. The solution is to put the chunk
of code into a function and then invoke the function. This way,
variables that would have been global become local to the function:

function chunkNamespace() {
 // Chunk of code goes here
 // Any variables defined in the chunk are local to this function
 // instead of cluttering up the global namespace.
}
chunkNamespace(); // But don't forget to invoke the function!

This code defines only a single global variable: the function name
chunkNamespace. If defining even a single property is too
much, you can define and invoke an anonymous function in a single
expression:

(function() { // chunkNamespace() function rewritten as an unnamed expression.
 // Chunk of code goes here
}()); // End the function literal and invoke it now.

This technique of defining and invoking a function in a single
expression is used frequently enough that it has become
idiomatic and has been given the name “immediately invoked function
expression.” Note the use of parentheses in the previous code example. The open
parenthesis before function is required because without it, the
JavaScript interpreter tries to parse the function keyword as a
function declaration statement. With the parenthesis, the interpreter
correctly recognizes this as a function definition expression. The
leading parenthesis also helps human readers recognize when a
function is being defined to be immediately invoked instead of defined
for later use.

This use of functions as namespaces becomes really useful when we define
one or more functions inside the namespace function using variables
within that namesapce, but then pass them back out as
the return value of the namespace function. Functions like this are
known as closures, and they’re the topic of the next section.

8.6 Closures

Like most modern programming languages, JavaScript uses lexical
scoping. This means that functions are executed using the variable
scope that was in effect when they were defined, not the variable
scope that is in effect when they are invoked. In order to implement
lexical scoping, the internal state of a JavaScript function object
must include not only the code of the function but also a reference to
the scope in which the function definition appears. This combination
of a function object and a scope (a set of variable bindings) in which
the function’s variables are resolved is called a closure in the
computer science literature.

Technically, all JavaScript functions are closures, but because most
functions are invoked from the same scope that they were defined in,
it normally doesn’t really matter that there is a closure
involved. Closures become interesting when they are invoked from a
different scope than the one they were defined in. This happens most
commonly when a nested function object is returned from the function
within which it was defined. There are a number of powerful
programming techniques that involve this kind of nested function
closures, and their use has become relatively common in JavaScript
programming. Closures may seem confusing when you first encounter
them, but it is important that you understand them well enough to use
them comfortably.

The first step to understanding closures is to review the lexical
scoping rules for nested functions. Consider the following code:

let scope = "global scope"; // A global variable
function checkscope() {
 let scope = "local scope"; // A local variable
 function f() { return scope; } // Return the value in scope here
 return f();
}
checkscope() // => "local scope"

The checkscope() function declares a local variable and then defines
and invokes a function that returns the value of that variable. It
should be clear to you why the call to checkscope() returns “local
scope”. Now, let’s change the code just slightly. Can you tell what
this code will return?

let scope = "global scope"; // A global variable
function checkscope() {
 let scope = "local scope"; // A local variable
 function f() { return scope; } // Return the value in scope here
 return f;
}
let s = checkscope()(); // What does this return?

In this code, a pair of parentheses has moved from inside
checkscope() to outside of it. Instead of invoking the nested
function and returning its result, checkscope() now just returns the
nested function object itself. What happens when we invoke that nested
function (with the second pair of parentheses in the last line of
code) outside of the function in which it was defined?

Remember the fundamental rule of lexical scoping: JavaScript functions
are executed using the scope they were defined in. The nested function
f() was defined in a scope where the variable scope was bound to
the value “local scope”. That binding is still in effect when f is
executed, no matter where it is executed from. So the last line of
the preceding code example returns “local scope”, not “global scope”. This, in a
nutshell, is the surprising and powerful nature of closures: they
capture the local variable (and parameter) bindings of the outer
function within which they are defined.

In §8.4.1, we defined a uniqueInteger() function
that used a property of the function itself to keep track of the next
value to be returned. A shortcoming of that approach is that buggy or
malicious code could reset the counter or set it to a noninteger,
causing the uniqueInteger() function to violate the
“unique” or the “integer” part of its
contract. Closures capture the local variables of a single function
invocation and can use those variables as private state. Here is how
we could rewrite the uniqueInteger() using an immediately invoked
function expression to define a namespace and a closure that
uses that namespace to keep its state private:

let uniqueInteger = (function() { // Define and invoke
 let counter = 0; // Private state of function below
 return function() { return counter++; };
}());
uniqueInteger() // => 0
uniqueInteger() // => 1

In order to understand this code, you have to read it carefully. At
first glance, the first line of code looks like it is assigning a
function to the variable uniqueInteger. In fact, the code is
defining and invoking (as hinted by the open parenthesis on the first
line) a function, so it is the return value of the function that is
being assigned to uniqueInteger. Now, if we study the body of the
function, we see that its return value is another function. It is this
nested function object that gets assigned to uniqueInteger. The
nested function has access to the variables in its scope and can use the
counter variable defined in the outer function. Once that outer
function returns, no other code can see the counter variable: the
inner function has exclusive access to it.

Private variables like counter need not be exclusive to a single
closure: it is perfectly possible for two or more nested functions to
be defined within the same outer function and share the same
scope. Consider the following code:

function counter() {
 let n = 0;
 return {
 count: function() { return n++; },
 reset: function() { n = 0; }
 };
}

let c = counter(), d = counter(); // Create two counters
c.count() // => 0
d.count() // => 0: they count independently
c.reset(); // reset() and count() methods share state
c.count() // => 0: because we reset c
d.count() // => 1: d was not reset

The counter() function returns a “counter” object. This
object has two methods: count() returns the next integer, and
reset() resets the internal state. The first thing to understand is
that the two methods share access to the private variable n. The
second thing to understand is that each invocation of counter()
creates a new scope—independent of the scopes used by previous
invocations—and a new private variable within that scope. So if you call
counter() twice, you get two counter objects with different private
variables. Calling count() or reset() on one counter object has no
effect on the other.

It is worth noting here that you can combine this closure technique
with property getters and setters. The following version of the
counter() function is a variation on code that appeared in
§6.10.6, but it uses closures for private state rather
than relying on a regular object property:

function counter(n) { // Function argument n is the private variable
 return {
 // Property getter method returns and increments private counter var.
 get count() { return n++; },
 // Property setter doesn't allow the value of n to decrease
 set count(m) {
 if (m > n) n = m;
 else throw Error("count can only be set to a larger value");
 }
 };
}

let c = counter(1000);
c.count // => 1000
c.count // => 1001
c.count = 2000;
c.count // => 2000
c.count = 2000; // !Error: count can only be set to a larger value

Note that this version of the counter() function does not declare a
local variable but just uses its parameter n to hold the private
state shared by the property accessor methods. This allows the caller
of counter() to specify the initial value of the private variable.

Example 8-2 is a generalization of the shared private
state through the closures technique we’ve been demonstrating
here. This example defines an addPrivateProperty() function that
defines a private variable and two nested functions to get and set the
value of that variable. It adds these nested functions as methods of
the object you specify.

Example 8-2. Private property accessor methods using closures

// This function adds property accessor methods for a property with
// the specified name to the object o. The methods are named get<name>
// and set<name>. If a predicate function is supplied, the setter
// method uses it to test its argument for validity before storing it.
// If the predicate returns false, the setter method throws an exception.
//
// The unusual thing about this function is that the property value
// that is manipulated by the getter and setter methods is not stored in
// the object o. Instead, the value is stored only in a local variable
// in this function. The getter and setter methods are also defined
// locally to this function and therefore have access to this local variable.
// This means that the value is private to the two accessor methods, and it
// cannot be set or modified except through the setter method.
function addPrivateProperty(o, name, predicate) {
 let value; // This is the property value

 // The getter method simply returns the value.
 o[`get${name}`] = function() { return value; };

 // The setter method stores the value or throws an exception if
 // the predicate rejects the value.
 o[`set${name}`] = function(v) {
 if (predicate && !predicate(v)) {
 throw new TypeError(`set${name}: invalid value ${v}`);
 } else {
 value = v;
 }
 };
}

// The following code demonstrates the addPrivateProperty() method.
let o = {}; // Here is an empty object

// Add property accessor methods getName and setName()
// Ensure that only string values are allowed
addPrivateProperty(o, "Name", x => typeof x === "string");

o.setName("Frank"); // Set the property value
o.getName() // => "Frank"
o.setName(0); // !TypeError: try to set a value of the wrong type

We’ve now seen a number of examples in which two closures are
defined in the same scope and share access to the same private
variable or variables. This is an important technique, but it is just
as important to recognize when closures inadvertently share access to
a variable that they should not share. Consider the following code:

// This function returns a function that always returns v
function constfunc(v) { return () => v; }

// Create an array of constant functions:
let funcs = [];
for(var i = 0; i < 10; i++) funcs[i] = constfunc(i);

// The function at array element 5 returns the value 5.
funcs[5]() // => 5

When working with code like this that creates multiple closures using
a loop, it is a common error to try to move the loop within the
function that defines the closures. Think about the following code,
for example:

// Return an array of functions that return the values 0-9
function constfuncs() {
 let funcs = [];
 for(var i = 0; i < 10; i++) {
 funcs[i] = () => i;
 }
 return funcs;
}

let funcs = constfuncs();
funcs[5]() // => 10; Why doesn't this return 5?

This code creates 10 closures and stores them in an array. The
closures are all defined within the same invocation of the function,
so they share access to the variable i. When constfuncs() returns,
the value of the variable i is 10, and all 10 closures share this
value. Therefore, all the functions in the returned array of functions
return the same value, which is not what we wanted at all. It is
important to remember that the scope associated with a closure is
“live.” Nested functions do not make private copies of the scope or
make static snapshots of the variable bindings. Fundamentally, the
problem here is that variables declared with var are defined
throughout the function. Our for loop declares the loop
variable with var i, so the variable i is defined throughout the
function rather than being more narrowly scoped to the body of the
loop. The code demonstrates a common category of bugs in ES5 and
before, but the introduction of block-scoped variables in ES6
addresses the issue. If we just replace the var with a let or a
const, then the problem goes away. Because let and const are
block scoped, each iteration of the loop defines a scope that is
independent of the scopes for all other iterations, and each of these
scopes has its own independent binding of i.

Another thing to remember when writing closures is that this is a
JavaScript keyword, not a variable. As discussed earlier, arrow
functions inherit the this value of the function that contains them,
but functions defined with the function keyword do not. So if you’re
writing a closure that needs to use the this value of its containing
function, you should use an arrow function, or call bind(), on the
closure before returning it, or assign the outer this value to a
variable that your closure will inherit:

const self = this; // Make the this value available to nested functions

8.7 Function Properties, Methods, and Constructor

We’ve seen that functions are values in JavaScript programs. The
typeof operator returns the string “function” when applied to a
function, but functions are really a specialized kind of JavaScript
object. Since functions are objects, they can have properties and
methods, just like any other object. There is even a Function()
constructor to create new function objects. The subsections that
follow document the length, name, and prototype properties; the
call(), apply(), bind(), and toString() methods; and the
Function() constructor.

8.7.1 The length Property

The read-only length property of a function specifies
the arity of the function—the number of parameters it declares in its
parameter list, which is usually the number of arguments that the
function expects. If a function has a rest parameter, that parameter is
not counted for the purposes of this length property.

8.7.2 The name Property

The read-only name property of a function specifies the name that was
used when the function was defined, if it was defined with a name, or
the name of the variable or property that an unnamed function expression
was assigned to when it was first created. This property is primarily
useful when writing debugging or error messages.

8.7.3 The prototype Property

All functions, except arrow functions, have a prototype property that
refers to an object known as the prototype object. Every function has
a different prototype object. When a function is used as a constructor,
the newly created object inherits properties from the prototype
object. Prototypes and the prototype property were discussed in
§6.2.3 and will be covered again in Chapter 9.

8.7.4 The call() and apply() Methods

call() and apply() allow you to indirectly invoke
(§8.2.4) a function as if it were a method of some
other object. The first argument to both call() and
apply() is the object on which the function is to be invoked; this
argument is the invocation context and becomes the value of the this
keyword within the body of the function. To invoke the function f()
as a method of the object o (passing no arguments), you could use
either call() or apply():

f.call(o);
f.apply(o);

Either of these lines of code are similar to the following (which
assume that o does not already have a property named m):

o.m = f; // Make f a temporary method of o.
o.m(); // Invoke it, passing no arguments.
delete o.m; // Remove the temporary method.

Remember that arrow functions inherit the this value of the context
where they are defined. This cannot be overridden with the call() and
apply() methods. If you call either of those methods on an arrow
function, the first argument is effectively ignored.

Any arguments to call() after the first invocation context argument
are the values that are passed to the function that is invoked (and
these arguments are not ignored for arrow functions). For example, to
pass two numbers to the function f() and invoke it as if it were a
method of the object o, you could use code like this:

f.call(o, 1, 2);

The apply() method is like the call() method, except that the
arguments to be passed to the function are specified as an array:

f.apply(o, [1,2]);

If a function is defined to accept an arbitrary number of arguments, the
apply() method allows you to invoke that function on the contents of
an array of arbitrary length. In ES6 and later, we can just use the
spread operator, but you may see ES5 code that uses apply() instead. For
example, to find the largest number in an array of numbers without
using the spread operator, you could use the apply() method to pass the
elements of the array to the Math.max() function:

let biggest = Math.max.apply(Math, arrayOfNumbers);

The trace() function defined in the following is similar to the timed()
function defined in §8.3.4, but it works for
methods instead of functions. It uses the apply() method instead of a
spread operator, and by doing that, it is able to invoke the wrapped
method with the same arguments and the same this value as the wrapper
method:

// Replace the method named m of the object o with a version that logs
// messages before and after invoking the original method.
function trace(o, m) {
 let original = o[m]; // Remember original method in the closure.
 o[m] = function(...args) { // Now define the new method.
 console.log(new Date(), "Entering:", m); // Log message.
 let result = original.apply(this, args); // Invoke original.
 console.log(new Date(), "Exiting:", m); // Log message.
 return result; // Return result.
 };
}

8.7.5 The bind() Method

The primary purpose of bind() is to bind a
function to an object. When you invoke the bind() method on a function
f and pass an object o, the method returns a new function. Invoking
the new function (as a function) invokes the original function f as a
method of o. Any arguments you pass to the new function are passed to
the original function. For example:

function f(y) { return this.x + y; } // This function needs to be bound
let o = { x: 1 }; // An object we'll bind to
let g = f.bind(o); // Calling g(x) invokes f() on o
g(2) // => 3
let p = { x: 10, g }; // Invoke g() as a method of this object
p.g(2) // => 3: g is still bound to o, not p.

Arrow functions inherit their this value from the environment in which
they are defined, and that value cannot be overridden with bind(), so
if the function f() in the preceding code was defined as an arrow
function, the binding would not work. The most common use case for
calling bind() is to make non-arrow functions behave like arrow
functions, however, so this limitation on binding arrow functions is not
a problem in practice.

The bind() method does more than just bind a function to an object,
however. It can also perform partial application: any arguments you pass
to bind() after the first are bound along with the this value. This
partial application feature of bind() does work with arrow
functions. Partial application is a common technique in functional
programming and is sometimes called currying. Here are some examples
of the bind() method used for partial application:

let sum = (x,y) => x + y; // Return the sum of 2 args
let succ = sum.bind(null, 1); // Bind the first argument to 1
succ(2) // => 3: x is bound to 1, and we pass 2 for the y argument

function f(y,z) { return this.x + y + z; }
let g = f.bind({x: 1}, 2); // Bind this and y
g(3) // => 6: this.x is bound to 1, y is bound to 2 and z is 3

The name property of the function returned by bind() is the name
property of the function that bind() was called on, prefixed with
the word “bound”.

8.7.6 The toString() Method

Like all JavaScript objects, functions have a toString() method. The
ECMAScript spec requires this method to return a string that follows
the syntax of the function declaration statement. In practice, most
(but not all) implementations of this toString() method return the
complete source code for the function. Built-in functions typically
return a string that includes something like “[native
code]” as the function body.

8.7.7 The Function() Constructor

Because functions are objects, there is a Function() constructor that
can be used to create new functions:

const f = new Function("x", "y", "return x*y;");

This line of code creates a new function that is more or less
equivalent to a function defined with the familiar syntax:

const f = function(x, y) { return x*y; };

The Function() constructor expects any number of string
arguments. The last argument is the text of the function body; it can
contain arbitrary JavaScript statements, separated from each other by
semicolons. All other arguments to the constructor are strings that
specify the parameter names for the function. If you are defining a
function that takes no arguments, you would simply pass a single string—the
function body—to the constructor.

Notice that the Function() constructor is not passed any argument
that specifies a name for the function it creates. Like function
literals, the Function() constructor creates anonymous functions.

There are a few points that are important to understand about the
Function() constructor:

	
The Function() constructor allows JavaScript functions to be
dynamically created and compiled at runtime.

	
The Function() constructor parses the function body and creates a
new function object each time it is called. If the call to the
constructor appears within a loop or within a frequently called
function, this process can be inefficient. By contrast, nested
functions and function expressions that appear within
loops are not recompiled each time they are encountered.

	
A last, very important point about the Function() constructor is
that the functions it creates do not use lexical scoping; instead,
they are always compiled as if they were top-level functions, as the
following code demonstrates:

let scope = "global";
function constructFunction() {
 let scope = "local";
 return new Function("return scope"); // Doesn't capture local scope!
}
// This line returns "global" because the function returned by the
// Function() constructor does not use the local scope.
constructFunction()() // => "global"

The Function() constructor is best thought of as a globally scoped
version of eval() (see §4.12.2) that defines new variables and
functions in its own private scope. You will probably never need to use
this constructor in your code.

8.8 Functional Programming

JavaScript is not a functional programming language like Lisp or
Haskell, but the fact that JavaScript can manipulate functions as
objects means that we can use functional programming techniques in
JavaScript. Array methods such as map() and
reduce() lend themselves particularly well to a functional
programming style. The sections that follow demonstrate techniques for
functional programming in JavaScript. They are intended as a
mind-expanding exploration of the power of JavaScript’s
functions, not as a prescription for good programming
style.

8.8.1 Processing Arrays with Functions

Suppose we have an array of numbers and we want to compute the mean
and standard deviation of those values. We might do that in
nonfunctional style like this:

let data = [1,1,3,5,5]; // This is our array of numbers

// The mean is the sum of the elements divided by the number of elements
let total = 0;
for(let i = 0; i < data.length; i++) total += data[i];
let mean = total/data.length; // mean == 3; The mean of our data is 3

// To compute the standard deviation, we first sum the squares of
// the deviation of each element from the mean.
total = 0;
for(let i = 0; i < data.length; i++) {
 let deviation = data[i] - mean;
 total += deviation * deviation;
}
let stddev = Math.sqrt(total/(data.length-1)); // stddev == 2

We can perform these same computations in concise functional style
using the array methods map() and reduce() like this (see
§7.8.1 to review these methods):

// First, define two simple functions
const sum = (x,y) => x+y;
const square = x => x*x;

// Then use those functions with Array methods to compute mean and stddev
let data = [1,1,3,5,5];
let mean = data.reduce(sum)/data.length; // mean == 3
let deviations = data.map(x => x-mean);
let stddev = Math.sqrt(deviations.map(square).reduce(sum)/(data.length-1));
stddev // => 2

This new version of the code looks quite different than the first one,
but it is still invoking methods on objects, so it has some object-oriented
conventions remaining. Let’s write functional versions of the map()
and reduce() methods:

const map = function(a, ...args) { return a.map(...args); };
const reduce = function(a, ...args) { return a.reduce(...args); };

With these map() and reduce() functions defined, our code to compute the
mean and standard deviation now looks like this:

const sum = (x,y) => x+y;
const square = x => x*x;

let data = [1,1,3,5,5];
let mean = reduce(data, sum)/data.length;
let deviations = map(data, x => x-mean);
let stddev = Math.sqrt(reduce(map(deviations, square), sum)/(data.length-1));
stddev // => 2

8.8.2 Higher-Order Functions

A higher-order function is a function that operates on functions,
taking one or more functions as arguments and returning a new
function. Here is an example:

// This higher-order function returns a new function that passes its
// arguments to f and returns the logical negation of f's return value;
function not(f) {
 return function(...args) { // Return a new function
 let result = f.apply(this, args); // that calls f
 return !result; // and negates its result.
 };
}

const even = x => x % 2 === 0; // A function to determine if a number is even
const odd = not(even); // A new function that does the opposite
[1,1,3,5,5].every(odd) // => true: every element of the array is odd

This not() function is a higher-order function because it takes a
function argument and returns a new function. As another example, consider the
mapper() function that follows. It takes a function argument and returns a new
function that maps one array to another using that function. This function uses
the map() function defined earlier, and it is important that you understand
how the two functions are different:

// Return a function that expects an array argument and applies f to
// each element, returning the array of return values.
// Contrast this with the map() function from earlier.
function mapper(f) {
 return a => map(a, f);
}

const increment = x => x+1;
const incrementAll = mapper(increment);
incrementAll([1,2,3]) // => [2,3,4]

Here is another, more general, example that takes two functions, f and g, and
returns a new function that computes f(g()):

// Return a new function that computes f(g(...)).
// The returned function h passes all of its arguments to g, then passes
// the return value of g to f, then returns the return value of f.
// Both f and g are invoked with the same this value as h was invoked with.
function compose(f, g) {
 return function(...args) {
 // We use call for f because we're passing a single value and
 // apply for g because we're passing an array of values.
 return f.call(this, g.apply(this, args));
 };
}

const sum = (x,y) => x+y;
const square = x => x*x;
compose(square, sum)(2,3) // => 25; the square of the sum

The partial() and memoize() functions defined in the sections that follow
are two more important higher-order functions.

8.8.3 Partial Application of Functions

The bind() method of a function f (see §8.7.5) returns a new function that
invokes f in a specified context and with a specified set of arguments. We
say that it binds the function to an object and partially applies the
arguments. The bind() method partially applies arguments on the left—that is,
the arguments you pass to bind() are placed at the start of the argument list
that is passed to the original function. But it is also possible to partially
apply arguments on the right:

// The arguments to this function are passed on the left
function partialLeft(f, ...outerArgs) {
 return function(...innerArgs) { // Return this function
 let args = [...outerArgs, ...innerArgs]; // Build the argument list
 return f.apply(this, args); // Then invoke f with it
 };
}

// The arguments to this function are passed on the right
function partialRight(f, ...outerArgs) {
 return function(...innerArgs) { // Return this function
 let args = [...innerArgs, ...outerArgs]; // Build the argument list
 return f.apply(this, args); // Then invoke f with it
 };
}

// The arguments to this function serve as a template. Undefined values
// in the argument list are filled in with values from the inner set.
function partial(f, ...outerArgs) {
 return function(...innerArgs) {
 let args = [...outerArgs]; // local copy of outer args template
 let innerIndex=0; // which inner arg is next
 // Loop through the args, filling in undefined values from inner args
 for(let i = 0; i < args.length; i++) {
 if (args[i] === undefined) args[i] = innerArgs[innerIndex++];
 }
 // Now append any remaining inner arguments
 args.push(...innerArgs.slice(innerIndex));
 return f.apply(this, args);
 };
}

// Here is a function with three arguments
const f = function(x,y,z) { return x * (y - z); };
// Notice how these three partial applications differ
partialLeft(f, 2)(3,4) // => -2: Bind first argument: 2 * (3 - 4)
partialRight(f, 2)(3,4) // => 6: Bind last argument: 3 * (4 - 2)
partial(f, undefined, 2)(3,4) // => -6: Bind middle argument: 3 * (2 - 4)

These partial application functions allow us to easily define interesting
functions out of functions we already have defined. Here are some examples:

const increment = partialLeft(sum, 1);
const cuberoot = partialRight(Math.pow, 1/3);
cuberoot(increment(26)) // => 3

Partial application becomes even more interesting when we combine it with other
higher-order functions. Here, for example, is a way to define the preceding not()
function just shown using composition and partial application:

const not = partialLeft(compose, x => !x);
const even = x => x % 2 === 0;
const odd = not(even);
const isNumber = not(isNaN);
odd(3) && isNumber(2) // => true

We can also use composition and partial application to redo our mean and
standard deviation calculations in extreme functional style:

// sum() and square() functions are defined above. Here are some more:
const product = (x,y) => x*y;
const neg = partial(product, -1);
const sqrt = partial(Math.pow, undefined, .5);
const reciprocal = partial(Math.pow, undefined, neg(1));

// Now compute the mean and standard deviation.
let data = [1,1,3,5,5]; // Our data
let mean = product(reduce(data, sum), reciprocal(data.length));
let stddev = sqrt(product(reduce(map(data,
 compose(square,
 partial(sum, neg(mean)))),
 sum),
 reciprocal(sum(data.length,neg(1)))));
[mean, stddev] // => [3, 2]

Notice that this code to compute mean and standard deviation is
entirely function invocations; there are no operators involved, and
the number of parentheses has grown so large that this JavaScript is
beginning to look like Lisp code. Again, this is not a style that I
advocate for JavaScript programming, but it is an interesting exercise
to see how deeply functional JavaScript code can be.

8.8.4 Memoization

In §8.4.1, we defined a factorial function that cached its
previously computed results. In functional programming, this kind of caching is
called memoization. The code that follows shows a higher-order function, memoize(),
that accepts a function as its argument and returns a memoized version of the
function:

// Return a memoized version of f.
// It only works if arguments to f all have distinct string representations.
function memoize(f) {
 const cache = new Map(); // Value cache stored in the closure.

 return function(...args) {
 // Create a string version of the arguments to use as a cache key.
 let key = args.length + args.join("+");
 if (cache.has(key)) {
 return cache.get(key);
 } else {
 let result = f.apply(this, args);
 cache.set(key, result);
 return result;
 }
 };
}

The memoize() function creates a new object to use as the cache and assigns
this object to a local variable so that it is private to (in the closure of)
the returned function. The returned function converts its arguments array to a
string and uses that string as a property name for the cache object. If a
value exists in the cache, it returns it directly. Otherwise, it calls the
specified function to compute the value for these arguments, caches that value,
and returns it. Here is how we might use memoize():

// Return the Greatest Common Divisor of two integers using the Euclidian
// algorithm: http://en.wikipedia.org/wiki/Euclidean_algorithm
function gcd(a,b) { // Type checking for a and b has been omitted
 if (a < b) { // Ensure that a >= b when we start
 [a, b] = [b, a]; // Destructuring assignment to swap variables
 }
 while(b !== 0) { // This is Euclid's algorithm for GCD
 [a, b] = [b, a%b];
 }
 return a;
}

const gcdmemo = memoize(gcd);
gcdmemo(85, 187) // => 17

// Note that when we write a recursive function that we will be memoizing,
// we typically want to recurse to the memoized version, not the original.
const factorial = memoize(function(n) {
 return (n <= 1) ? 1 : n * factorial(n-1);
});
factorial(5) // => 120: also caches values for 4, 3, 2 and 1.

8.9 Summary

Some key points to remember about this chapter are as follows:

	
You can define functions with the function keyword and with the ES6
=> arrow syntax.

	
You can invoke functions, which can be used as methods and
constructors.

	
Some ES6 features allow you to define default values for
optional function parameters, to gather multiple arguments into an
array using a rest parameter, and to destructure object and array
arguments into function parameters.

	
You can use the ... spread operator to pass the elements of an
array or other iterable object as arguments in a function
invocation.

	
A function defined inside of and returned by an enclosing
function retains access to its lexical scope and can therefore read
and write the variables defined inside the outer function. Functions
used in this way are called closures, and this is a technique that is
worth understanding.

	
Functions are objects that can be manipulated by JavaScript,
and this enables a functional style of programming.

1 The term was coined by Martin Fowler. See http://martinfowler.com/dslCatalog/methodChaining.html.
2 If you are familiar with Python, note that this is different than Python, in which every invocation shares the same default value.
3 This may not seem like a particularly interesting point unless you are familiar with more static languages, in which functions are part of a program but cannot be manipulated by the program.

Chapter 9. Classes

JavaScript objects were covered in Chapter 6. That chapter treated
each object as a unique set of properties, different from every other
object. It is often useful, however, to define a class of objects
that share certain properties. Members, or instances, of the class
have their own properties to hold or define their state, but they also
have methods that define their behavior. These methods are defined by
the class and shared by all instances. Imagine a class named Complex
that represents and performs arithmetic on complex numbers, for
example. A Complex instance would have properties to hold the real and
imaginary parts (the state) of the complex number. And the Complex
class would define methods to perform addition and multiplication (the
behavior) of those numbers.

In JavaScript, classes use prototype-based inheritance: if two objects
inherit properties (generally function-valued properties, or methods)
from the same prototype, then we say that those objects are instances
of the same class. That, in a nutshell, is how JavaScript classes
work. JavaScript prototypes and inheritance were covered in
§6.2.3 and §6.3.2, and you will need to be familiar
with the material in those sections to understand this chapter. This
chapter covers prototypes in §9.1.

If two objects inherit from the same prototype, this typically (but
not necessarily) means that they were created and initialized by the
same constructor function or factory function. Constructors have been
covered in §4.6, §6.2.2, and
§8.2.3, and this chapter has more in
§9.2.

JavaScript has always allowed the definition of classes. ES6
introduced a brand-new syntax (including a class keyword) that makes
it even easier to create classes. These new JavaScript classes work
in the same way that old-style classes do, and this chapter starts by
explaining the old way of creating classes because that demonstrates
more clearly what is going on behind the scenes to make classes
work. Once we’ve explained those fundamentals, we’ll shift and start
using the new, simplified class definition syntax.

If you’re familiar with strongly typed object-oriented programming
languages like Java or C++, you’ll notice that JavaScript classes are
quite different from classes in those languages. There are some
syntactic similarities, and you can emulate many features of
“classical” classes in JavaScript, but it is best to understand up
front that JavaScript’s classes and prototype-based inheritance
mechanism are substantially different from the classes and class-based
inheritance mechanism of Java and similar languages.

9.1 Classes and Prototypes

In JavaScript, a class is a set of objects that inherit properties
from the same prototype object. The prototype object, therefore, is
the central feature of a class. Chapter 6 covered the
Object.create() function that returns a newly created object that
inherits from a specified prototype object. If we define a prototype
object and then use Object.create() to create objects that inherit
from it, we have defined a JavaScript class. Usually, the instances of
a class require further initialization, and it is common to define a
function that creates and initializes the new object. Example 9-1
demonstrates this: it defines a prototype object for a class that
represents a range of values and also defines a factory
function that creates and initializes a new instance of the class.

Example 9-1. A simple JavaScript class

// This is a factory function that returns a new range object.
function range(from, to) {
 // Use Object.create() to create an object that inherits from the
 // prototype object defined below. The prototype object is stored as
 // a property of this function, and defines the shared methods (behavior)
 // for all range objects.
 let r = Object.create(range.methods);

 // Store the start and end points (state) of this new range object.
 // These are noninherited properties that are unique to this object.
 r.from = from;
 r.to = to;

 // Finally return the new object
 return r;
}

// This prototype object defines methods inherited by all range objects.
range.methods = {
 // Return true if x is in the range, false otherwise
 // This method works for textual and Date ranges as well as numeric.
 includes(x) { return this.from <= x && x <= this.to; },

 // A generator function that makes instances of the class iterable.
 // Note that it only works for numeric ranges.
 *[Symbol.iterator]() {
 for(let x = Math.ceil(this.from); x <= this.to; x++) yield x;
 },

 // Return a string representation of the range
 toString() { return "(" + this.from + "..." + this.to + ")"; }
};

// Here are example uses of a range object.
let r = range(1,3); // Create a range object
r.includes(2) // => true: 2 is in the range
r.toString() // => "(1...3)"
[...r] // => [1, 2, 3]; convert to an array via iterator

There are a few things worth noting in the code of Example 9-1:

	
This code defines a factory function range() for creating new
Range objects.

	
It uses the methods property of this range() function as a
convenient place to store the prototype object that defines the
class. There is nothing special or idiomatic about putting the
prototype object here.

	
The range() function defines from and to properties on each
Range object. These are the unshared, noninherited properties that
define the unique state of each individual Range object.

	
The range.methods object uses the ES6 shorthand syntax for
defining methods, which is why you don’t see the function keyword
anywhere. (See §6.10.5 to
review object literal shorthand method syntax.)

	
One of the methods in the prototype has the computed name
(§6.10.2) Symbol.iterator, which means that it
is defining an iterator for Range objects. The name of this method
is prefixed with *, which indicates that it is a generator function
instead of a regular function. Iterators and generators are covered
in detail in Chapter 12. For now, the upshot is that instances of
this Range class can be used with the for/of loop and with the
... spread operator.

	
The shared, inherited methods defined in range.methods all use the
from and to properties that were initialized in the range()
factory function. In order to refer to them, they use the this
keyword to refer to the object through which they were invoked. This
use of this is a fundamental characteristic of the methods of any
class.

9.2 Classes and Constructors

Example 9-1 demonstrates a simple way to define a JavaScript
class. It is not the idiomatic way to do so, however, because it did
not define a constructor. A constructor is a function designed for
the initialization of newly created objects. Constructors are invoked
using the new keyword as described in
§8.2.3. Constructor invocations using new
automatically create the new object, so the constructor itself only
needs to initialize the state of that new object. The critical feature
of constructor invocations is that the prototype property of the
constructor is used as the prototype of the new object. §6.2.3 introduced prototypes and emphasized that while almost all objects have a prototype, only a few objects have a prototype property. Finally, we can clarify this: it is function objects that have a prototype property. This means
that all objects created with the same constructor function inherit from the
same object and are therefore members of the same class.
Example 9-2 shows how we could alter the Range class of
Example 9-1 to use a constructor function instead of a factory
function. Example 9-2 demonstrates the idiomatic way to create a
class in versions of JavaScript that do not support the ES6 class
keyword. Even though class is well supported now, there is still
lots of older JavaScript code around that defines classes like this,
and you should be familiar with the idiom so that you can read old
code and so that you understand what is going on “under the hood”
when you use the class keyword.

Example 9-2. A Range class using a constructor

// This is a constructor function that initializes new Range objects.
// Note that it does not create or return the object. It just initializes this.
function Range(from, to) {
 // Store the start and end points (state) of this new range object.
 // These are noninherited properties that are unique to this object.
 this.from = from;
 this.to = to;
}

// All Range objects inherit from this object.
// Note that the property name must be "prototype" for this to work.
Range.prototype = {
 // Return true if x is in the range, false otherwise
 // This method works for textual and Date ranges as well as numeric.
 includes: function(x) { return this.from <= x && x <= this.to; },

 // A generator function that makes instances of the class iterable.
 // Note that it only works for numeric ranges.
 [Symbol.iterator]: function*() {
 for(let x = Math.ceil(this.from); x <= this.to; x++) yield x;
 },

 // Return a string representation of the range
 toString: function() { return "(" + this.from + "..." + this.to + ")"; }
};

// Here are example uses of this new Range class
let r = new Range(1,3); // Create a Range object; note the use of new
r.includes(2) // => true: 2 is in the range
r.toString() // => "(1...3)"
[...r] // => [1, 2, 3]; convert to an array via iterator

It is worth comparing Examples 9-1 and 9-2 fairly carefully
and noting the differences between these two techniques for defining
classes. First, notice that we renamed the range() factory function
to Range() when we converted it to a constructor. This is a very
common coding convention: constructor functions define, in a sense,
classes, and classes have names that (by convention) begin with capital
letters. Regular functions and methods have names that begin with
lowercase letters.

Next, notice that the Range() constructor is invoked (at the end
of the example) with the new keyword while the range() factory
function was invoked without it. Example 9-1 uses regular function
invocation (§8.2.1) to create the new object, and
Example 9-2 uses constructor invocation
(§8.2.3). Because the Range() constructor is
invoked with new, it does not have to call Object.create() or take
any action to create a new object. The new object is automatically
created before the constructor is called, and it is accessible as the
this value. The Range() constructor merely has to initialize
this. Constructors do not even have to return the newly created
object. Constructor invocation automatically creates a new object,
invokes the constructor as a method of that object, and returns the
new object. The fact that constructor invocation is so different from
regular function invocation is another reason that we give
constructors names that start with capital letters. Constructors are
written to be invoked as constructors, with the new keyword, and
they usually won’t work properly if they are invoked as regular
functions. A naming convention that keeps constructor functions
distinct from regular functions helps programmers know when to use
new.

Constructors and new.target

Within a function body, you can tell whether the function has been
invoked as a constructor with the special expression new.target. If
the value of that expression is defined, then you know that the
function was invoked as a constructor, with the new keyword. When we
discuss subclasses in §9.5, we’ll see that new.target is
not always a reference to the constructor it is used in: it might also
refer to the constructor function of a subclass.

If new.target is undefined, then the containing function was
invoked as a function, without the new keyword. JavaScript’s various
error constructors can be invoked without new, and if you want to
emulate this feature in your own constructors, you can write them like
this:

function C() {
 if (!new.target) return new C();
 // initialization code goes here
}

This technique only works for constructors defined in this
old-fashioned way. Classes created with the class keyword do not
allow their constructors to be invoked without new.

Another critical difference between Examples 9-1 and 9-2 is
the way the prototype object is named. In the first example, the
prototype was range.methods. This was a convenient and descriptive
name, but arbitrary. In the second example, the prototype is
Range.prototype, and this name is mandatory. An invocation of the
Range() constructor automatically uses Range.prototype as the
prototype of the new Range object.

Finally, also note the things that do not change between Examples 9-1 and 9-2 : the range methods are defined and invoked in the
same way for both classes. Because Example 9-2 demonstrates the
idiomatic way to create classes in versions of JavaScript before ES6,
it does not use the ES6 shorthand method syntax in the prototype
object and explicitly spells out the methods with the function
keyword. But you can see that the implementation of the methods is the
same in both examples.

Importantly, note that neither of the two range examples uses arrow
functions when defining constructors or methods. Recall from
§8.1.3 that functions defined in this way do not have a
prototype property and so cannot be used as constructors. Also,
arrow functions inherit the this keyword from the context in which
they are defined rather than setting it based on the object through which they
are invoked, and this makes them useless for methods because
the defining characteristic of methods is that they use this to
refer to the instance on which they were invoked.

Fortunately, the new ES6 class syntax doesn’t allow the option of
defining methods with arrow functions, so this is not a mistake that
you can accidentally make when using that syntax. We will cover the
ES6 class keyword soon, but first, there are more details to cover
about constructors.

9.2.1 Constructors, Class Identity, and instanceof

As we’ve seen, the prototype object is fundamental to the identity of
a class: two objects are instances of the same class if and only if
they inherit from the same prototype object. The constructor function
that initializes the state of a new object is not fundamental: two
constructor functions may have prototype properties that point to
the same prototype object. Then, both constructors can be used to
create instances of the same class.

Even though constructors are not as fundamental as prototypes, the
constructor serves as the public face of a class. Most obviously, the
name of the constructor function is usually adopted as the name of the
class. We say, for example, that the Range() constructor creates
Range objects. More fundamentally, however, constructors are used
as the righthand operand of
the instanceof operator when testing objects for membership in a
class. If we have an object r and want to know if it is a Range
object, we can write:

r instanceof Range // => true: r inherits from Range.prototype

The instanceof operator was described in §4.9.4. The
lefthand operand should be the object that is being tested, and the
righthand operand should be a constructor function that names a
class. The expression o instanceof C evaluates to true if o
inherits from C.prototype. The inheritance need not be direct: if
o inherits from an object that inherits from an object that inherits
from C.prototype, the expression will still evaluate to true.

Technically speaking, in the previous code example, the instanceof operator is
not checking whether r was actually initialized by the Range
constructor. Instead, it is checking whether r inherits from
Range.prototype. If we define a function Strange() and set its
prototype to be the same as Range.prototype, then objects created
with new Strange() will count as Range objects as far as
instanceof is concerned (they won’t actually work as Range objects,
however, because their from and to properties have not been
initialized):

function Strange() {}
Strange.prototype = Range.prototype;
new Strange() instanceof Range // => true

Even though instanceof cannot actually verify the use of a
constructor, it still uses a constructor function as its righthand
side because constructors are the public identity of a class.

If you want to test the prototype chain of an object for a specific
prototype and do not want to use the constructor function as an
intermediary, you can use the isPrototypeOf() method. In
Example 9-1, for example, we defined a class without a constructor
function, so there is no way to use instanceof with that
class. Instead, however, we could test whether an object r was a
member of that constructor-less class with this code:

range.methods.isPrototypeOf(r); // range.methods is the prototype object.

9.2.2 The constructor Property

In Example 9-2, we set Range.prototype to a new object that
contained the methods for our class. Although it was convenient to
express those methods as properties of a single object literal, it was
not actually necessary to create a new object. Any regular JavaScript
function (excluding arrow functions, generator functions, and async
functions) can be used as a constructor, and constructor
invocations need a prototype property. Therefore, every regular
JavaScript function1
automatically has a prototype property. The value of this property
is an object that has a single, non-enumerable constructor
property. The value of the constructor property is the function
object:

let F = function() {}; // This is a function object.
let p = F.prototype; // This is the prototype object associated with F.
let c = p.constructor; // This is the function associated with the prototype.
c === F // => true: F.prototype.constructor === F for any F

The existence of this predefined prototype object with its constructor
property means that objects typically inherit a constructor property that
refers to their constructor. Since constructors serve as the public identity of
a class, this constructor property gives the class of an object:

let o = new F(); // Create an object o of class F
o.constructor === F // => true: the constructor property specifies the class

Figure 9-1 illustrates this relationship between the constructor
function, its prototype object, the back reference from the prototype
to the constructor, and the instances created with the constructor.

[image: js7e 0901]
Figure 9-1. A constructor function, its prototype, and instances

Notice that Figure 9-1 uses our Range() constructor as an
example. In fact, however, the Range class defined in Example 9-2
overwrites the predefined Range.prototype object with an object of
its own. And the new prototype object it defines does not have a
constructor property. So instances of the Range class, as defined,
do not have a constructor property. We can remedy this problem by
explicitly adding a constructor to the prototype:

Range.prototype = {
 constructor: Range, // Explicitly set the constructor back-reference

 /* method definitions go here */
};

Another common technique that you are likely to see in older JavaScript
code is to use the predefined prototype object with its constructor
property and add methods to it one at a time with code like this:

// Extend the predefined Range.prototype object so we don't overwrite
// the automatically created Range.prototype.constructor property.
Range.prototype.includes = function(x) {
 return this.from <= x && x <= this.to;
};
Range.prototype.toString = function() {
 return "(" + this.from + "..." + this.to + ")";
};

9.3 Classes with the class Keyword

Classes have been part of JavaScript since the very first version of
the language, but in ES6, they finally got their own syntax
with the introduction of the class keyword. Example 9-3 shows what
our Range class looks like when written with this new syntax.

Example 9-3. The Range class rewritten using class

class Range {
 constructor(from, to) {
 // Store the start and end points (state) of this new range object.
 // These are noninherited properties that are unique to this object.
 this.from = from;
 this.to = to;
 }

 // Return true if x is in the range, false otherwise
 // This method works for textual and Date ranges as well as numeric.
 includes(x) { return this.from <= x && x <= this.to; }

 // A generator function that makes instances of the class iterable.
 // Note that it only works for numeric ranges.
 *[Symbol.iterator]() {
 for(let x = Math.ceil(this.from); x <= this.to; x++) yield x;
 }

 // Return a string representation of the range
 toString() { return `(${this.from}...${this.to})`; }
}

// Here are example uses of this new Range class
let r = new Range(1,3); // Create a Range object
r.includes(2) // => true: 2 is in the range
r.toString() // => "(1...3)"
[...r] // => [1, 2, 3]; convert to an array via iterator

It is important to understand that the classes defined in Examples 9-2 and 9-3 work in exactly the same way. The
introduction of the class keyword to the language does not alter the
fundamental nature of JavaScript’s prototype-based classes. And
although Example 9-3 uses the class keyword, the resulting Range
object is a constructor function, just like the version defined in
Example 9-2. The new class syntax is clean and convenient but is
best thought of as “syntactic sugar” for the more fundamental class
definition mechanism shown in Example 9-2.

Note the following things about the class syntax in Example 9-3:

	
The class is declared with the class keyword, which is followed by
the name of class and a class body in curly braces.

	
The class body includes method definitions that use object literal
method shorthand (which we also used in Example 9-1), where the
function keyword is omitted. Unlike object literals, however, no
commas are used to separate the methods from each other. (Although
class bodies are superficially similar to object literals, they are
not the same thing. In particular, they do not support the
definition of properties with name/value pairs.)

	
The keyword constructor is used to define the constructor function
for the class. The function defined is not actually named
“constructor”, however. The class declaration statement defines a
new variable Range and assigns the value of this special
constructor function to that variable.

	
If your class does not need to do any initialization, you can omit
the constructor keyword and its body, and an empty constructor
function will be implicitly created for you.

If you want to define a class that subclasses—or inherits
from—another class, you can use the extends keyword with the
class keyword:

// A Span is like a Range, but instead of initializing it with
// a start and an end, we initialize it with a start and a length
class Span extends Range {
 constructor(start, length) {
 if (length >= 0) {
 super(start, start + length);
 } else {
 super(start + length, start);
 }
 }
}

Creating subclasses is a whole topic of its own. We’ll return to it,
and explain the extends and super keywords shown here, in
§9.5.

Like function declarations, class declarations have both statement and
expression forms. Just as we can write:

let square = function(x) { return x * x; };
square(3) // => 9

we can also write:

let Square = class { constructor(x) { this.area = x * x; } };
new Square(3).area // => 9

As with function definition expressions, class definition expressions
can include an optional class name. If you provide such a name, that
name is only defined within the class body itself.

Although function expressions are quite common (particularly with the
arrow function shorthand), in JavaScript programming, class definition
expressions are not something that you are likely to use much unless
you find yourself writing a function that takes a class as its
argument and returns a subclass.

We’ll conclude this introduction to the class keyword by mentioning
a couple of important things you should know that are not apparent
from class syntax:

	
All code within the body of a class declaration is implicitly in
strict mode (§5.6.3), even if no "use strict" directive
appears. This means, for example, that you can’t use octal integer
literals or the with statement within class bodies and that you
are more likely to get syntax errors if you forget to declare a
variable before using it.

	
Unlike function declarations, class declarations are not
“hoisted.” Recall from §8.1.1 that function definitions
behave as if they had been moved to the top of the enclosing file or
enclosing function, meaning that you can invoke a function in code
that comes before the actual definition of the function. Although
class declarations are like function declarations in some ways, they
do not share this hoisting behavior: you cannot instantiate a
class before you declare it.

9.3.1 Static Methods

You can define a static method within a class body by prefixing the
method declaration with the static keyword. Static methods are
defined as properties of the constructor function rather than
properties of the prototype object.

For example, suppose we added the following code to Example 9-3:

static parse(s) {
 let matches = s.match(/^\((\d+)\.\.\.(\d+)\)$/);
 if (!matches) {
 throw new TypeError(`Cannot parse Range from "${s}".`)
 }
 return new Range(parseInt(matches[1]), parseInt(matches[2]));
}

The method defined by this code is Range.parse(), not
Range.prototype.parse(), and you must invoke it through the
constructor, not through an instance:

let r = Range.parse('(1...10)'); // Returns a new Range object
r.parse('(1...10)'); // TypeError: r.parse is not a function

You’ll sometimes see static methods called class methods because
they are invoked using the name of the class/constructor. When this
term is used, it is to contrast class methods with the regular
instance methods that are invoked on instances of the class.
Because static methods are invoked on the constructor rather than on
any particular instance, it almost never makes sense to use the this
keyword in a static method.

We’ll see examples of static methods in Example 9-4.

9.3.2 Getters, Setters, and other Method Forms

Within a class body, you can define getter and setter methods
(§6.10.6) just as you can in object literals. The only
difference is that in class bodies, you don’t put a comma after the
getter or setter. Example 9-4 includes a practical example of a
getter method in a class.

In general, all of the shorthand method definition syntaxes
allowed in object literals are also allowed in class bodies. This
includes generator methods (marked with *) and methods whose names
are the value of an expression in square brackets. In fact, you’ve
already seen (in Example 9-3) a generator method with a computed
name that makes the Range class iterable:

*[Symbol.iterator]() {
 for(let x = Math.ceil(this.from); x <= this.to; x++) yield x;
}

9.3.3 Public, Private, and Static Fields

In the discussion here of classes defined with the class keyword,
we have only described the definition of methods within the class
body. The ES6 standard only allows the creation of methods (including
getters, setters, and generators) and static methods; it does not
include syntax for defining fields. If you want to define a field
(which is just an object-oriented synonym for “property”) on a class
instance, you must do that in the constructor function or in one of
the methods. And if you want to define a static field for a class, you
must do that outside the class body, after the class has been
defined. Example 9-4 includes examples of both kinds of fields.

Standardization is underway, however, for extended class syntax that
allows the definition of instance and static fields, in both public
and private forms. The code shown in the rest of this section is not
yet standard JavaScript as of early 2020 but is already supported in Chrome
 and partially supported (public instance fields only) in Firefox. The
syntax for public instance fields is in common use by JavaScript
programmers using the React framework and the Babel transpiler.

Suppose you’re writing a class like this one, with a constructor that
initializes three fields:

class Buffer {
 constructor() {
 this.size = 0;
 this.capacity = 4096;
 this.buffer = new Uint8Array(this.capacity);
 }
}

With the new instance field syntax that is likely to be standardized,
you could instead write:

class Buffer {
 size = 0;
 capacity = 4096;
 buffer = new Uint8Array(this.capacity);
}

The field initialization code has moved out of the constructor and now
appears directly in the class body. (That code is still run as part of
the constructor, of course. If you do not define a constructor, the
fields are initialized as part of the implicitly created constructor.)
The this. prefixes that appeared on the lefthand side of the
assignments are gone, but note that you still must use
this. to refer to these fields, even on the righthand side of the
initializer assignments. The advantage of initializing your instance
fields in this way is that this syntax allows (but does not require)
you to put the initializers up at the top of the class definition,
making it clear to readers exactly what fields will hold the state of
each instance. You can declare fields without an initializer by just
writing the name of the field followed by a semicolon. If you do that,
the initial value of the field will be undefined. It is better style
to always make the initial value explicit for all of your class
fields.

Before the addition of this field syntax, class bodies looked a lot
like object literals using shortcut method syntax, except that the
commas had been removed. This field syntax—with equals signs and
semicolons instead of colons and commas—makes it clear that
class bodies are not at all the same as object literals.

The same proposal that seeks to standardize these instance fields also
defines private instance fields. If you use the instance field
initialization syntax shown in the previous example to define a field whose name begins
with # (which is not normally a legal character in JavaScript
identifiers), that field will be usable (with the # prefix) within
the class body but will be invisible and inaccessible (and therefore
immutable) to any code outside of the class body. If, for the preceding hypothetical Buffer class, you wanted to ensure that users of the
class could not inadvertently modify the size field of an instance,
you could use a private #size field instead, then define a getter
function to provide read-only access to the value:

class Buffer {
 #size = 0;
 get size() { return this.#size; }
}

Note that private fields must be declared using this new field syntax
before they can be used. You can’t just write this.#size = 0; in the
constructor of a class unless you include a “declaration” of the field
directly in the class body.

Finally, a related proposal seeks to standardize the use of the
static keyword for fields. If you add static before a public or
private field declaration, those fields will be created as properties
of the constructor function instead of properties of
instances. Consider the static Range.parse() method we’ve defined. It included a fairly complex regular expression that might be
good to factor out into its own static field. With the proposed new
static field syntax, we could do that like this:

static integerRangePattern = /^\((\d+)\.\.\.(\d+)\)$/;
static parse(s) {
 let matches = s.match(Range.integerRangePattern);
 if (!matches) {
 throw new TypeError(`Cannot parse Range from "${s}".`)
 }
 return new Range(parseInt(matches[1]), matches[2]);
}

If we wanted this static field to be accessible only within the class,
we could make it private using a name like #pattern.

9.3.4 Example: A Complex Number Class

Example 9-4 defines a class to represent complex numbers. The
class is a relatively simple one, but it includes instance methods
(including getters), static methods, instance fields, and static
fields. It includes some commented-out code demonstrating how we might
use the not-yet-standard syntax for defining instance fields and
static fields within the class body.

Example 9-4. Complex.js: a complex number class

/**
 * Instances of this Complex class represent complex numbers.
 * Recall that a complex number is the sum of a real number and an
 * imaginary number and that the imaginary number i is the square root of -1.
 */
class Complex {
 // Once class field declarations are standardized, we could declare
 // private fields to hold the real and imaginary parts of a complex number
 // here, with code like this:
 //
 // #r = 0;
 // #i = 0;

 // This constructor function defines the instance fields r and i on every
 // instance it creates. These fields hold the real and imaginary parts of
 // the complex number: they are the state of the object.
 constructor(real, imaginary) {
 this.r = real; // This field holds the real part of the number.
 this.i = imaginary; // This field holds the imaginary part.
 }

 // Here are two instance methods for addition and multiplication
 // of complex numbers. If c and d are instances of this class, we
 // might write c.plus(d) or d.times(c)
 plus(that) {
 return new Complex(this.r + that.r, this.i + that.i);
 }
 times(that) {
 return new Complex(this.r * that.r - this.i * that.i,
 this.r * that.i + this.i * that.r);
 }

 // And here are static variants of the complex arithmetic methods.
 // We could write Complex.sum(c,d) and Complex.product(c,d)
 static sum(c, d) { return c.plus(d); }
 static product(c, d) { return c.times(d); }

 // These are some instance methods that are defined as getters
 // so they're used like fields. The real and imaginary getters would
 // be useful if we were using private fields this.#r and this.#i
 get real() { return this.r; }
 get imaginary() { return this.i; }
 get magnitude() { return Math.hypot(this.r, this.i); }

 // Classes should almost always have a toString() method
 toString() { return `{${this.r},${this.i}}`; }

 // It is often useful to define a method for testing whether
 // two instances of your class represent the same value
 equals(that) {
 return that instanceof Complex &&
 this.r === that.r &&
 this.i === that.i;
 }

 // Once static fields are supported inside class bodies, we could
 // define a useful Complex.ZERO constant like this:
 // static ZERO = new Complex(0,0);
}

// Here are some class fields that hold useful predefined complex numbers.
Complex.ZERO = new Complex(0,0);
Complex.ONE = new Complex(1,0);
Complex.I = new Complex(0,1);

With the Complex class of Example 9-4 defined, we can use the constructor,
instance fields, instance methods, class fields, and class methods with code
like this:

let c = new Complex(2, 3); // Create a new object with the constructor
let d = new Complex(c.i, c.r); // Use instance fields of c
c.plus(d).toString() // => "{5,5}"; use instance methods
c.magnitude // => Math.hypot(2,3); use a getter function
Complex.product(c, d) // => new Complex(0, 13); a static method
Complex.ZERO.toString() // => "{0,0}"; a static property

9.4 Adding Methods to Existing Classes

JavaScript’s prototype-based inheritance mechanism is dynamic: an
object inherits properties from its prototype, even if the properties
of the prototype change after the object is created. This means that
we can augment JavaScript classes simply by adding new methods to
their prototype objects.

Here, for example, is code that adds a method for computing the complex conjugate to the Complex class of Example 9-4:

// Return a complex number that is the complex conjugate of this one.
Complex.prototype.conj = function() { return new Complex(this.r, -this.i); };

The prototype object of built-in JavaScript classes is also open like
this, which means that we can add methods to numbers, strings, arrays,
functions, and so on. This is useful for implementing new language
features in older versions of the language:

// If the new String method startsWith() is not already defined...
if (!String.prototype.startsWith) {
 // ...then define it like this using the older indexOf() method.
 String.prototype.startsWith = function(s) {
 return this.indexOf(s) === 0;
 };
}

Here is another example:

// Invoke the function f this many times, passing the iteration number
// For example, to print "hello" 3 times:
// let n = 3;
// n.times(i => { console.log(`hello ${i}`); });
Number.prototype.times = function(f, context) {
 let n = this.valueOf();
 for(let i = 0; i < n; i++) f.call(context, i);
};

Adding methods to the prototypes of built-in types like this is
generally considered to be a bad idea because it will cause confusion
and compatibility problems in the future if a new version of
JavaScript defines a method with the same name. It is even possible to
add methods to Object.prototype, making them available for all
objects. But this is never a good thing to do because properties added
to Object.prototype are visible to for/in loops (though you can
avoid this by using Object.defineProperty()
[§14.1] to make the new property non-enumerable).

9.5 Subclasses

In object-oriented programming, a class B can extend or subclass
another class A. We say that A is the superclass and B is the
subclass. Instances of B inherit the methods of A. The class B can
define its own methods, some of which may override methods of the
same name defined by class A. If a method of B overrides a method of
A, the overriding method in B often needs to invoke the overridden
method in A. Similarly, the subclass constructor B() must typically
invoke the superclass constructor A() in order to ensure that
instances are completely initialized.

This section starts by showing how to define subclasses the old,
pre-ES6 way, and then quickly moves on to demonstrate subclassing
using the class and extends keywords and superclass constructor
method invocation with the super keyword. Next is a
subsection about avoiding subclasses and relying on object
composition instead of inheritance. The section ends with an extended
example that defines a hierarchy of Set classes and demonstrates how
abstract classes can be used to separate interface from
implementation.

9.5.1 Subclasses and Prototypes

Suppose we wanted to define a Span subclass of the Range class from
Example 9-2. This subclass will work just like a Range, but instead
of initializing it with a start and an end, we’ll instead specify a
start and a distance, or span. An instance of this Span class is also
an instance of the Range superclass. A span instance inherits a
customized toString() method from Span.prototype, but in order to
be a subclass of Range, it must also inherit methods (such as
includes()) from Range.prototype.

Example 9-5. Span.js: a simple subclass of Range

// This is the constructor function for our subclass
function Span(start, span) {
 if (span >= 0) {
 this.from = start;
 this.to = start + span;
 } else {
 this.to = start;
 this.from = start + span;
 }
}

// Ensure that the Span prototype inherits from the Range prototype
Span.prototype = Object.create(Range.prototype);

// We don't want to inherit Range.prototype.constructor, so we
// define our own constructor property.
Span.prototype.constructor = Span;

// By defining its own toString() method, Span overrides the
// toString() method that it would otherwise inherit from Range.
Span.prototype.toString = function() {
 return `(${this.from}... +${this.to - this.from})`;
};

In order to make Span a subclass of Range, we need to arrange for
Span.prototype to inherit from Range.prototype. The key line of
code in the preceding example is this one, and if it makes sense to you, you
understand how subclasses work in JavaScript:

Span.prototype = Object.create(Range.prototype);

Objects created with the Span() constructor will inherit from the
Span.prototype object. But we created that object to inherit from
Range.prototype, so Span objects will inherit from both
Span.prototype and Range.prototype.

You may notice that our Span() constructor sets the same from and
to properties that the Range() constructor does and so does not
need to invoke the Range() constructor to initialize the new
object. Similarly, Span’s toString() method completely re-implements
the string conversion without needing to call Range’s version of
toString(). This makes Span a special case, and we can only really
get away with this kind of subclassing because we know the
implementation details of the superclass. A robust subclassing
mechanism needs to allow classes to invoke the methods and constructor
of their superclass, but prior to ES6, JavaScript did not have a
simple way to do these things.

Fortunately, ES6 solves these problems with the super keyword as
part of the class syntax. The next section demonstrates how it
works.

9.5.2 Subclasses with extends and super

In ES6 and later, you can create a superclass simply by adding an
extends clause to a class declaration, and you can do this even for
built-in classes:

// A trivial Array subclass that adds getters for the first and last elements.
class EZArray extends Array {
 get first() { return this[0]; }
 get last() { return this[this.length-1]; }
}

let a = new EZArray();
a instanceof EZArray // => true: a is subclass instance
a instanceof Array // => true: a is also a superclass instance.
a.push(1,2,3,4); // a.length == 4; we can use inherited methods
a.pop() // => 4: another inherited method
a.first // => 1: first getter defined by subclass
a.last // => 3: last getter defined by subclass
a[1] // => 2: regular array access syntax still works.
Array.isArray(a) // => true: subclass instance really is an array
EZArray.isArray(a) // => true: subclass inherits static methods, too!

This EZArray subclass defines two simple getter methods. Instances of
EZArray behave like ordinary arrays, and we can use inherited methods
and properties like push(), pop(), and length. But we can also
use the first and last getters defined in the subclass. Not only
are instance methods like pop() inherited, but static methods like
Array.isArray are also inherited. This is a new feature enabled by
ES6 class syntax: EZArray() is a function, but it inherits from
Array():

// EZArray inherits instance methods because EZArray.prototype
// inherits from Array.prototype
Array.prototype.isPrototypeOf(EZArray.prototype) // => true

// And EZArray inherits static methods and properties because
// EZArray inherits from Array. This is a special feature of the
// extends keyword and is not possible before ES6.
Array.isPrototypeOf(EZArray) // => true

Our EZArray subclass is too simple to be very instructive.
Example 9-6 is a more fully fleshed-out example. It defines a
TypedMap subclass of the built-in Map class that adds type checking to
ensure that the keys and values of the map are of the specified types
(according to typeof). Importantly, this example demonstrates the
use of the super keyword to invoke the constructor and methods of
the superclass.

Example 9-6. TypedMap.js: a subclass of Map that checks key and value types

class TypedMap extends Map {
 constructor(keyType, valueType, entries) {
 // If entries are specified, check their types
 if (entries) {
 for(let [k, v] of entries) {
 if (typeof k !== keyType || typeof v !== valueType) {
 throw new TypeError(`Wrong type for entry [${k}, ${v}]`);
 }
 }
 }

 // Initialize the superclass with the (type-checked) initial entries
 super(entries);

 // And then initialize this subclass by storing the types
 this.keyType = keyType;
 this.valueType = valueType;
 }

 // Now redefine the set() method to add type checking for any
 // new entries added to the map.
 set(key, value) {
 // Throw an error if the key or value are of the wrong type
 if (this.keyType && typeof key !== this.keyType) {
 throw new TypeError(`${key} is not of type ${this.keyType}`);
 }
 if (this.valueType && typeof value !== this.valueType) {
 throw new TypeError(`${value} is not of type ${this.valueType}`);
 }

 // If the types are correct, we invoke the superclass's version of
 // the set() method, to actually add the entry to the map. And we
 // return whatever the superclass method returns.
 return super.set(key, value);
 }
}

The first two arguments to the TypedMap() constructor are the
desired key and value types. These should be strings, such as “number”
and “boolean”, that the typeof operator returns. You can also specify
a third argument: an array (or any iterable object) of [key,value]
arrays that specify the initial entries in the map. If you specify any
initial entries, then the first thing the constructor does is verify
that their types are correct. Next, the constructor invokes the
superclass constructor, using the super keyword as if it was a
function name. The Map() constructor takes one optional argument: an
iterable object of [key,value] arrays. So the optional third
argument of the TypedMap() constructor is the optional first
argument to the Map() constructor, and we pass it to that superclass
constructor with super(entries).

After invoking the superclass constructor to initialize superclass
state, the TypedMap() constructor next initializes its own subclass
state by setting this.keyType and this.valueType to the specified
types. It needs to set these properties so that it can use them again
in the set() method.

There are a few important rules that you will need to know about using super() in constructors:

	
If you define a class with the extends keyword, then the
constructor for your class must use super() to invoke the
superclass constructor.

	
If you don’t define a constructor in your subclass, one will be
defined automatically for you. This implicitly defined constructor
simply takes whatever values are passed to it and passes those
values to super().

	
You may not use the this keyword in your constructor until after
you have invoked the superclass constructor with super(). This
enforces a rule that superclasses get to initialize themselves
before subclasses do.

	
The special expression new.target is undefined in functions that
are invoked without the new keyword. In constructor functions,
however, new.target is a reference to the constructor that was
invoked. When a subclass constructor is invoked and uses super()
to invoke the superclass constructor, that superclass constructor
will see the subclass constructor as the value of new.target. A
well-designed superclass should not need to know whether it has been
subclassed, but it might be useful to be able to use
new.target.name in logging messages, for example.

After the constructor, the next part of Example 9-6 is a method
named set(). The Map superclass defines a method named set() to
add a new entry to the map. We say that this set() method in
TypedMap overrides the set() method of its superclass. This simple
TypedMap subclass doesn’t know anything about adding new entries to
map, but it does know how to check types, so that is what it does
first, verifying that the key and value to be added to the map have
the correct types and throwing an error if they do not. This set()
method doesn’t have any way to add the key and value to the map
itself, but that is what the superclass set() method is for. So we
use the super keyword again to invoke the superclass’s version of
the method. In this context, super works much like the this
keyword does: it refers to the current object but allows access to
overridden methods defined in the superclass.

In constructors, you are required to invoke the superclass constructor
before you can access this and initialize the new object
yourself. There are no such rules when you override a method. A method
that overrides a superclass method is not required to invoke the
superclass method. If it does use super to invoke the overridden
method (or any method) in the superclass, it can do that at the
beginning or the middle or the end of the overriding method.

Finally, before we leave the TypedMap example behind, it is worth
noting that this class is an ideal candidate for the use of private
fields. As the class is written now, a user could change the
keyType or valueType properties to subvert the type checking. Once
private fields are supported, we could change these properties to
#keyType and #valueType so that they could not be altered from the
outside.

9.5.3 Delegation Instead of Inheritance

The extends keyword makes it easy to create subclasses. But that
does not mean that you should create lots of subclasses. If you want
to write a class that shares the behavior of some other class, you can
try to inherit that behavior by creating a subclass. But it is often
easier and more flexible to get that desired behavior into your class
by having your class create an instance of the other class and simply
delegating to that instance as needed. You create a new class not by
subclassing, but instead by wrapping or “composing” other
classes. This delegation approach is often called “composition,” and
it is an oft-quoted maxim of object-oriented programming that one
should “favor composition over inheritance.”2

Suppose, for example, we wanted a Histogram class that behaves
something like JavaScript’s Set class, except that instead of just
keeping track of whether a value has been added to set or not, it
instead maintains a count of the number of times the value has been
added. Because the API for this Histogram class is similar to Set, we
might consider subclassing Set and adding a count() method. On the
other hand, once we start thinking about how we might implement this
count() method, we might realize that the Histogram class is more
like a Map than a Set because it needs to maintain a mapping between
values and the number of times they have been added. So instead of
subclassing Set, we can create a class that defines a Set-like
API but implements those methods by delegating to an internal Map
object. Example 9-7 shows how we could do this.

Example 9-7. Histogram.js: a Set-like class implemented with delegation

/**
 * A Set-like class that keeps track of how many times a value has
 * been added. Call add() and remove() like you would for a Set, and
 * call count() to find out how many times a given value has been added.
 * The default iterator yields the values that have been added at least
 * once. Use entries() if you want to iterate [value, count] pairs.
 */
class Histogram {
 // To initialize, we just create a Map object to delegate to
 constructor() { this.map = new Map(); }

 // For any given key, the count is the value in the Map, or zero
 // if the key does not appear in the Map.
 count(key) { return this.map.get(key) || 0; }

 // The Set-like method has() returns true if the count is non-zero
 has(key) { return this.count(key) > 0; }

 // The size of the histogram is just the number of entries in the Map.
 get size() { return this.map.size; }

 // To add a key, just increment its count in the Map.
 add(key) { this.map.set(key, this.count(key) + 1); }

 // Deleting a key is a little trickier because we have to delete
 // the key from the Map if the count goes back down to zero.
 delete(key) {
 let count = this.count(key);
 if (count === 1) {
 this.map.delete(key);
 } else if (count > 1) {
 this.map.set(key, count - 1);
 }
 }

 // Iterating a Histogram just returns the keys stored in it
 [Symbol.iterator]() { return this.map.keys(); }

 // These other iterator methods just delegate to the Map object
 keys() { return this.map.keys(); }
 values() { return this.map.values(); }
 entries() { return this.map.entries(); }
}

All the Histogram() constructor does in Example 9-7 is create a
Map object. And most of the methods are one-liners that just delegate
to a method of the map, making the implementation quite
simple. Because we used delegation rather than inheritance, a
Histogram object is not an instance of Set or Map. But Histogram
implements a number of commonly used Set methods, and in an untyped
language like JavaScript, that is often good enough: a formal
inheritance relationship is sometimes nice, but often optional.

9.5.4 Class Hierarchies and Abstract Classes

Example 9-6 demonstrated how we can subclass Map. Example 9-7
demonstrated how we can instead delegate to a Map object without
actually subclassing anything. Using JavaScript classes to encapsulate
data and modularize your code is often a great technique, and you may
find yourself using the class keyword frequently. But you may find
that you prefer composition to inheritance and that you rarely need to
use extends (except when you’re using a library or framework that
requires you to extend its base classes).

There are some circumstances when multiple levels of subclassing are
appropriate, however, and we’ll end this chapter with an extended
example that demonstrates a hierarchy of classes representing
different kinds of sets. (The set classes defined in Example 9-8 are
similar to, but not completely compatible with, JavaScript’s built-in
Set class.)

Example 9-8 defines lots of subclasses, but it also demonstrates how
you can define abstract classes—classes that do not include a
complete implementation—to serve as a common superclass for a group
of related subclasses. An abstract superclass can define a partial
implementation that all subclasses inherit and share. The subclasses,
then, only need to define their own unique behavior by implementing
the abstract methods defined—but not implemented—by the superclass.
Note that JavaScript does not have any formal definition of abstract
methods or abstract classes; I’m simply using that name here for
unimplemented methods and incompletely implemented classes.

Example 9-8 is well commented and stands on its own. I encourage you
to read it as a capstone example for this chapter on classes. The
final class in Example 9-8 does a lot of bit manipulation with the
&, |, and ~ operators, which you can review in §4.8.3.

Example 9-8. Sets.js: a hierarchy of abstract and concrete set classes

/**
 * The AbstractSet class defines a single abstract method, has().
 */
class AbstractSet {
 // Throw an error here so that subclasses are forced
 // to define their own working version of this method.
 has(x) { throw new Error("Abstract method"); }
}

/**
 * NotSet is a concrete subclass of AbstractSet.
 * The members of this set are all values that are not members of some
 * other set. Because it is defined in terms of another set it is not
 * writable, and because it has infinite members, it is not enumerable.
 * All we can do with it is test for membership and convert it to a
 * string using mathematical notation.
 */
class NotSet extends AbstractSet {
 constructor(set) {
 super();
 this.set = set;
 }

 // Our implementation of the abstract method we inherited
 has(x) { return !this.set.has(x); }
 // And we also override this Object method
 toString() { return `{ x| x ∉ ${this.set.toString()} }`; }
}

/**
 * Range set is a concrete subclass of AbstractSet. Its members are
 * all values that are between the from and to bounds, inclusive.
 * Since its members can be floating point numbers, it is not
 * enumerable and does not have a meaningful size.
 */
class RangeSet extends AbstractSet {
 constructor(from, to) {
 super();
 this.from = from;
 this.to = to;
 }

 has(x) { return x >= this.from && x <= this.to; }
 toString() { return `{ x| ${this.from} ≤ x ≤ ${this.to} }`; }
}

/*
 * AbstractEnumerableSet is an abstract subclass of AbstractSet. It defines
 * an abstract getter that returns the size of the set and also defines an
 * abstract iterator. And it then implements concrete isEmpty(), toString(),
 * and equals() methods on top of those. Subclasses that implement the
 * iterator, the size getter, and the has() method get these concrete
 * methods for free.
 */
class AbstractEnumerableSet extends AbstractSet {
 get size() { throw new Error("Abstract method"); }
 [Symbol.iterator]() { throw new Error("Abstract method"); }

 isEmpty() { return this.size === 0; }
 toString() { return `{${Array.from(this).join(", ")}}`; }
 equals(set) {
 // If the other set is not also Enumerable, it isn't equal to this one
 if (!(set instanceof AbstractEnumerableSet)) return false;

 // If they don't have the same size, they're not equal
 if (this.size !== set.size) return false;

 // Loop through the elements of this set
 for(let element of this) {
 // If an element isn't in the other set, they aren't equal
 if (!set.has(element)) return false;
 }

 // The elements matched, so the sets are equal
 return true;
 }
}

/*
 * SingletonSet is a concrete subclass of AbstractEnumerableSet.
 * A singleton set is a read-only set with a single member.
 */
class SingletonSet extends AbstractEnumerableSet {
 constructor(member) {
 super();
 this.member = member;
 }

 // We implement these three methods, and inherit isEmpty, equals()
 // and toString() implementations based on these methods.
 has(x) { return x === this.member; }
 get size() { return 1; }
 *[Symbol.iterator]() { yield this.member; }
}

/*
 * AbstractWritableSet is an abstract subclass of AbstractEnumerableSet.
 * It defines the abstract methods insert() and remove() that insert and
 * remove individual elements from the set, and then implements concrete
 * add(), subtract(), and intersect() methods on top of those. Note that
 * our API diverges here from the standard JavaScript Set class.
 */
class AbstractWritableSet extends AbstractEnumerableSet {
 insert(x) { throw new Error("Abstract method"); }
 remove(x) { throw new Error("Abstract method"); }

 add(set) {
 for(let element of set) {
 this.insert(element);
 }
 }

 subtract(set) {
 for(let element of set) {
 this.remove(element);
 }
 }

 intersect(set) {
 for(let element of this) {
 if (!set.has(element)) {
 this.remove(element);
 }
 }
 }
}

/**
 * A BitSet is a concrete subclass of AbstractWritableSet with a
 * very efficient fixed-size set implementation for sets whose
 * elements are non-negative integers less than some maximum size.
 */
class BitSet extends AbstractWritableSet {
 constructor(max) {
 super();
 this.max = max; // The maximum integer we can store.
 this.n = 0; // How many integers are in the set
 this.numBytes = Math.floor(max / 8) + 1; // How many bytes we need
 this.data = new Uint8Array(this.numBytes); // The bytes
 }

 // Internal method to check if a value is a legal member of this set
 _valid(x) { return Number.isInteger(x) && x >= 0 && x <= this.max; }

 // Tests whether the specified bit of the specified byte of our
 // data array is set or not. Returns true or false.
 _has(byte, bit) { return (this.data[byte] & BitSet.bits[bit]) !== 0; }

 // Is the value x in this BitSet?
 has(x) {
 if (this._valid(x)) {
 let byte = Math.floor(x / 8);
 let bit = x % 8;
 return this._has(byte, bit);
 } else {
 return false;
 }
 }

 // Insert the value x into the BitSet
 insert(x) {
 if (this._valid(x)) { // If the value is valid
 let byte = Math.floor(x / 8); // convert to byte and bit
 let bit = x % 8;
 if (!this._has(byte, bit)) { // If that bit is not set yet
 this.data[byte] |= BitSet.bits[bit]; // then set it
 this.n++; // and increment set size
 }
 } else {
 throw new TypeError("Invalid set element: " + x);
 }
 }

 remove(x) {
 if (this._valid(x)) { // If the value is valid
 let byte = Math.floor(x / 8); // compute the byte and bit
 let bit = x % 8;
 if (this._has(byte, bit)) { // If that bit is already set
 this.data[byte] &= BitSet.masks[bit]; // then unset it
 this.n--; // and decrement size
 }
 } else {
 throw new TypeError("Invalid set element: " + x);
 }
 }

 // A getter to return the size of the set
 get size() { return this.n; }

 // Iterate the set by just checking each bit in turn.
 // (We could be a lot more clever and optimize this substantially)
 *[Symbol.iterator]() {
 for(let i = 0; i <= this.max; i++) {
 if (this.has(i)) {
 yield i;
 }
 }
 }
}

// Some pre-computed values used by the has(), insert() and remove() methods
BitSet.bits = new Uint8Array([1, 2, 4, 8, 16, 32, 64, 128]);
BitSet.masks = new Uint8Array([~1, ~2, ~4, ~8, ~16, ~32, ~64, ~128]);

9.6 Summary

This chapter has explained the key features of JavaScript classes:

	
Objects that are members of the same class inherit properties from
the same prototype object. The prototype object is the key feature
of JavaScript classes, and it is possible to define classes with
nothing more than the Object.create() method.

	
Prior to ES6, classes were more typically defined by first defining
a constructor function. Functions created with the function
keyword have a prototype property, and the value of this property
is an object that is used as the prototype of all objects created
when the function is invoked with new as a constructor. By
initializing this prototype object, you can define the shared methods
of your class. Although the prototype object is the key
feature of the class, the constructor function is the public
identity of the class.

	
ES6 introduces a class keyword that makes it easier to define
classes, but under the hood, constructor and prototype mechanism
remains the same.

	
Subclasses are defined using the extends keyword in a class
declaration.

	
Subclasses can invoke the constructor of their superclass or
overridden methods of their superclass with the super keyword.

1 Except functions returned by the ES5 Function.bind() method. Bound functions have no prototype property of their own, but they use the prototype of the underlying function if they are invoked as constructors.
2 See Design Patterns (Addison-Wesley Professional) by Erich Gamma et al. or Effective Java (Addison-Wesley Professional) by Joshua Bloch, for example.

Chapter 10. Modules

The goal of modular programming is to allow large programs to be
assembled using modules of code from disparate authors and sources
and for all of that code to run correctly even in the presence of code
that the various module authors did not anticipate. As a practical
matter, modularity is mostly about encapsulating or hiding private
implementation details and keeping the global namespace tidy so that
modules cannot accidentally modify the variables, functions, and
classes defined by other modules.

Until recently, JavaScript had no built-in support for modules, and
programmers working on large code bases did their best to use the weak
modularity available through classes, objects, and
closures. Closure-based modularity, with support from code-bundling
tools, led to a practical form of modularity based on a require()
function, which was adopted by Node. require()-based modules are a
fundamental part of the Node programming environment but were never
adopted as an official part of the JavaScript language. Instead, ES6
defines modules using import and export keywords. Although
import and export have been part of the language for years, they
were only implemented by web browsers and Node relatively
recently. And, as a practical matter, JavaScript modularity still
depends on code-bundling tools.

The sections that follow cover:

	
Do-it-yourself modules with classes, objects, and closures

	
Node modules using require()

	
ES6 modules using export, import, and import()

10.1 Modules with Classes, Objects, and Closures

Though it may be obvious, it is worth pointing out that one of the
important features of classes is that they act as modules for their
methods. Think back to Example 9-8. That example defined a number of
different classes, all of which had a method named has(). But you
would have no problem writing a program that used multiple set classes
from that example: there is no danger that the implementation of
has() from SingletonSet will overwrite the has() method of BitSet,
for example.

The reason that the methods of one class are independent of the
methods of other, unrelated classes is that the methods of each class
are defined as properties of independent prototype objects. The reason
that classes are modular is that objects are modular: defining a
property in a JavaScript object is a lot like declaring a variable,
but adding properties to objects does not affect the global namespace
of a program, nor does it affect the properties of other
objects. JavaScript defines quite a few mathematical functions and
constants, but instead of defining them all globally, they are grouped
as properties of a single global Math object. This same technique
could have been used in Example 9-8. Instead of defining global
classes with names like SingletonSet and BitSet, that example could
have been written to define only a single global Sets object, with
properties referencing the various classes. Users of this Sets library
could then refer to the classes with names like Sets.Singleton and
Sets.Bit.

Using classes and objects for modularity is a common and useful
technique in JavaScript programming, but it doesn’t go far enough. In
particular, it doesn’t offer us any way to hide internal
implementation details inside the module. Consider Example 9-8
again. If we were writing that example as a module, maybe we would
have wanted to keep the various abstract classes internal to the
module, only making the concrete subclasses available to users of the
module. Similarly, in the BitSet class, the
_valid() and _has() methods are internal utilities that should not
really be exposed to users of the class. And BitSet.bits and
BitSet.masks are implementation details that would be better off
hidden.

As we saw in §8.6, local variables and nested functions
declared within a function are private to that function. This means
that we can use immediately invoked function expressions to achieve a
kind of modularity by leaving the implementation details and utility
functions hidden within the enclosing function but making the public
API of the module the return value of the function. In the case of the
BitSet class, we might structure the module like this:

const BitSet = (function() { // Set BitSet to the return value of this function
 // Private implementation details here
 function isValid(set, n) { ... }
 function has(set, byte, bit) { ... }
 const BITS = new Uint8Array([1, 2, 4, 8, 16, 32, 64, 128]);
 const MASKS = new Uint8Array([~1, ~2, ~4, ~8, ~16, ~32, ~64, ~128]);

 // The public API of the module is just the BitSet class, which we define
 // and return here. The class can use the private functions and constants
 // defined above, but they will be hidden from users of the class
 return class BitSet extends AbstractWritableSet {
 // ... implementation omitted ...
 };
}());

This approach to modularity becomes a little more interesting when the
module has more than one item in it. The following code, for example,
defines a mini statistics module that exports mean() and stddev()
functions while leaving the implementation details hidden:

// This is how we could define a stats module
const stats = (function() {
 // Utility functions private to the module
 const sum = (x, y) => x + y;
 const square = x => x * x;

 // A public function that will be exported
 function mean(data) {
 return data.reduce(sum)/data.length;
 }

 // A public function that we will export
 function stddev(data) {
 let m = mean(data);
 return Math.sqrt(
 data.map(x => x - m).map(square).reduce(sum)/(data.length-1)
);
 }

 // We export the public function as properties of an object
 return { mean, stddev };
}());

// And here is how we might use the module
stats.mean([1, 3, 5, 7, 9]) // => 5
stats.stddev([1, 3, 5, 7, 9]) // => Math.sqrt(10)

10.1.1 Automating Closure-Based Modularity

Note that it is a fairly mechanical process to transform a file of
JavaScript code into this kind of module by inserting some text at the
beginning and end of the file. All that is needed is some convention
for the file of JavaScript code to indicate which values are to be
exported and which are not.

Imagine a tool that takes a set of files, wraps the content of each of
those files within an immediately invoked function expression, keeps
track of the return value of each function, and concatenates
everything into one big file. The result might look something like this:

const modules = {};
function require(moduleName) { return modules[moduleName]; }

modules["sets.js"] = (function() {
 const exports = {};

 // The contents of the sets.js file go here:
 exports.BitSet = class BitSet { ... };

 return exports;
}());

modules["stats.js"] = (function() {
 const exports = {};

 // The contents of the stats.js file go here:
 const sum = (x, y) => x + y;
 const square = x = > x * x;
 exports.mean = function(data) { ... };
 exports.stddev = function(data) { ... };

 return exports;
}());

With modules bundled up into a single file like the one shown in the preceding example,
you can imagine writing code like the following to make use of those
modules:

// Get references to the modules (or the module content) that we need
const stats = require("stats.js");
const BitSet = require("sets.js").BitSet;

// Now write code using those modules
let s = new BitSet(100);
s.insert(10);
s.insert(20);
s.insert(30);
let average = stats.mean([...s]); // average is 20

This code is a rough sketch of how code-bundling tools (such as
webpack and Parcel) for web browsers work, and it’s also a simple
introduction to the require() function like the one used in Node
programs.

10.2 Modules in Node

In Node programming, it is normal to split programs into as many files
as seems natural. These files of JavaScript code are assumed to all
live on a fast filesystem. Unlike web browsers, which have to
read files of JavaScript over a relatively slow network connection,
there is no need or benefit to bundling a Node program into a single
JavaScript file.

In Node, each file is an independent module with a private
namespace. Constants, variables, functions, and classes defined in one
file are private to that file unless the file exports them. And values
exported by one module are only visible in another module if that
module explicitly imports them.

Node modules import other modules with the require() function and
export their public API by setting properties of the Exports object
or by replacing the module.exportsobject entirely.

10.2.1 Node Exports

Node defines a global exports object that is always defined. If you
are writing a Node module that exports multiple values, you can simply
assign them to the properties of this object:

const sum = (x, y) => x + y;
const square = x => x * x;

exports.mean = data => data.reduce(sum)/data.length;
exports.stddev = function(d) {
 let m = exports.mean(d);
 return Math.sqrt(d.map(x => x - m).map(square).reduce(sum)/(d.length-1));
};

Often, however, you want to define a module that exports only a
single function or class rather than an object full of functions or
classes. To do this, you simply assign the
single value you want to export to module.exports:

module.exports = class BitSet extends AbstractWritableSet {
 // implementation omitted
};

The default value of module.exports is the same object that
exports refers to. In the previous stats module, we could have assigned
the mean function to module.exports.mean instead of
exports.mean. Another approach with modules like the stats module
is to export a single object at the end of the module rather than
exporting functions one by one as you go:

// Define all the functions, public and private
const sum = (x, y) => x + y;
const square = x => x * x;
const mean = data => data.reduce(sum)/data.length;
const stddev = d => {
 let m = mean(d);
 return Math.sqrt(d.map(x => x - m).map(square).reduce(sum)/(d.length-1));
};

// Now export only the public ones
module.exports = { mean, stddev };

10.2.2 Node Imports

A Node module imports another module by calling the require()
function. The argument to this function is the name of the module to
be imported, and the return value is whatever value (typically a
function, class, or object) that module exports.

If you want to import a system module built in to Node or a module
that you have installed on your system via a package manager, then you
simply use the unqualified name of the module, without any “/”
characters that would turn it into a filesystem path:

// These modules are built in to Node
const fs = require("fs"); // The built-in filesystem module
const http = require("http"); // The built-in HTTP module

// The Express HTTP server framework is a third-party module.
// It is not part of Node but has been installed locally
const express = require("express");

When you want to import a module of your own code, the module name
should be the path to the file that contains that code, relative to
the current module’s file. It is legal to use absolute paths that
begin with a / character, but typically, when importing modules that
are part of your own program, the module names will begin with ./ or
sometimes ../ to indicate that they are relative to the current
directory or the parent directory. For example:

const stats = require('./stats.js');
const BitSet = require('./utils/bitset.js');

(You can also omit the .js suffix on the files you’re importing and
Node will still find the files, but it is common to see these file
extensions explicitly included.)

When a module exports just a single function or class, all you have to
do is require it. When a module exports an object with multiple
properties, you have a choice: you can import the entire object, or
just import the specific properties (using destructuring assignment)
of the object that you plan to use. Compare these two approaches:

// Import the entire stats object, with all of its functions
const stats = require('./stats.js');

// We've got more functions than we need, but they're neatly
// organized into a convenient "stats" namespace.
let average = stats.mean(data);

// Alternatively, we can use idiomatic destructuring assignment to import
// exactly the functions we want directly into the local namespace:
const { stddev } = require('./stats.js');

// This is nice and succinct, though we lose a bit of context
// without the 'stats' prefix as a namspace for the stddev() function.
let sd = stddev(data);

10.2.3 Node-Style Modules on the Web

Modules with an Exports object and a require() function are
built in to Node. But if you’re willing to process your code with a
bundling tool like webpack, then it is also possible to use this style
of modules for code that is intended to run in web browsers. Until
recently, this was a very common thing to do, and you may see
lots of web-based code that still does it.

Now that JavaScript has its own standard module syntax, however,
developers who use bundlers are more likely to use the official
JavaScript modules with import and export statements.

10.3 Modules in ES6

ES6 adds import and export keywords to JavaScript and finally
supports real modularity as a core language feature. ES6 modularity is
conceptually the same as Node modularity: each file is its own module,
and constants, variables, functions, and classes defined within a file
are private to that module unless they are explicitly exported. Values
that are exported from one module are available for use in modules
that explicitly import them. ES6 modules differ from Node modules in
the syntax used for exporting and importing and also in the way that
modules are defined in web browsers. The sections that follow explain
these things in detail.

First, though, note that ES6 modules are also different from regular
JavaScript “scripts” in some important ways. The most obvious
difference is the modularity itself: in regular scripts, top-level
declarations of variables, functions, and classes go into a single
global context shared by all scripts. With modules, each file has its
own private context and can use the import and export statements,
which is the whole point, after all. But there are other differences
between modules and scripts as well. Code inside an ES6 module (like
code inside any ES6 class definition) is automatically in strict
mode (see §5.6.3). This means that, when you start using ES6
modules, you’ll never have to write "use strict" again. And it means
that code in modules cannot use the with statement or the
arguments object or undeclared variables. ES6 modules are even
slightly stricter than strict mode: in strict mode, in functions
invoked as functions, this is undefined. In modules, this is
undefined even in top-level code. (By contrast, scripts in web browsers
and Node set this to the global object.)

ES6 Modules on the Web and in Node

ES6 modules have been in use on the web for years with the help of
code bundlers like webpack, which combine independent modules of
JavaScript code into large, non-modular bundles suitable for inclusion
into web pages. At the time of this writing, however, ES6 modules are
finally supported natively by all web browsers other than Internet
Explorer. When used natively, ES6 modules are added into HTML pages
with a special <script type="module"> tag, described later in this chapter.

And meanwhile, having pioneered JavaScript modularity, Node finds
itself in the awkward position of having to support two
not entirely compatible module systems. Node 13 supports ES6 modules,
but for now, the vast majority of Node programs still use Node modules.

10.3.1 ES6 Exports

To export a constant, variable, function, or class from an ES6 module,
simply add the keyword export before the declaration:

export const PI = Math.PI;

export function degreesToRadians(d) { return d * PI / 180; }

export class Circle {
 constructor(r) { this.r = r; }
 area() { return PI * this.r * this.r; }
}

As an alternative to scattering export keywords throughout your
module, you can define your constants, variables, functions, and
classes as you normally would, with no export statement, and then
(typically at the end of your module) write a single export
statement that declares exactly what is exported in a single place. So
instead of writing three individual exports in the preceding code, we
could have equivalently written a single line at the end:

export { Circle, degreesToRadians, PI };

This syntax looks like the export keyword followed by an object
literal (using shorthand notation). But in this case, the curly braces
do not actually define an object literal. This export syntax simply
requires a comma-separated list of identifiers within curly braces.

It is common to write modules that export only one value (typically a
function or class), and in this case, we usually use export default
instead of export:

export default class BitSet {
 // implementation omitted
}

Default exports are slightly easier to import than non-default
exports, so when there is only one exported value, using export
default makes things easier for the modules that use your exported
value.

Regular exports with export can only be done on declarations that
have a name. Default exports with export default can export any
expression including anonymous function expressions and anonymous
class expressions. This means that if you use export default, you can
export object literals. So unlike the export syntax, if you see
curly braces after export default, it really is an object literal
that is being exported.

It is legal, but somewhat uncommon, for modules to have a set of
regular exports and also a default export. If a module has a default
export, it can only have one.

Finally, note that the export keyword can only appear at the top
level of your JavaScript code. You may not export a value from within
a class, function, loop, or conditional. (This is an important feature
of the ES6 module system and enables static analysis: a modules
export will be the same on every run, and the symbols exported can be
determined before the module is actually run.)

10.3.2 ES6 Imports

You import values that have been exported by other modules with the
import keyword. The simplest form of import is used for modules that
define a default export:

import BitSet from './bitset.js';

This is the import keyword, followed by an identifier, followed by
the from keyword, followed by a string literal that names the module
whose default export we are importing. The default export value of the
specified module becomes the value of the specified identifier in the
current module.

The identifier to which the imported value is assigned is a constant,
as if it had been declared with the const keyword. Like exports,
imports can only appear at the top level of a module and are not
allowed within classes, functions, loops, or conditionals. By
near-universal convention, the imports needed by a module are placed
at the start of the module. Interestingly, however, this is not
required: like function declarations, imports are “hoisted” to the top,
and all imported values are available for any of the module’s code runs.

The module from which a value is imported is specified as a constant
string literal in single quotes or double quotes. (You may not use a
variable or other expression whose value is a string, and you may not
use a string within backticks because template literals can interpolate
variables and do not always have constant values.) In web browsers,
this string is interpreted as a URL relative to the location of the
module that is doing the importing. (In Node, or when using a bundling
tool, the string is interpreted as a filename relative to the current
module, but this makes little difference in practice.) A module
specifier string must be an absolute path starting with “/”, or a
relative path starting with “./” or “../”, or a complete URL a with
protocol and hostname. The ES6 specification does not allow
unqualified module specifier strings like “util.js” because it is
ambiguous whether this is intended to name a module in the same
directory as the current one or some kind of system module that is
installed in some special location. (This restriction against “bare
module specifiers” is not honored by code-bundling tools like webpack,
which can easily be configured to find bare modules in a library
directory that you specify.) A future version of the language may
allow “bare module specifiers,” but for now, they are not allowed. If
you want to import a module from the same directory as the current
one, simply place “./” before the module name and import from
“./util.js” instead of “util.js”.

So far, we’ve only considered the case of importing a single value
from a module that uses export default. To import values from a
module that exports multiple values, we use a slightly different
syntax:

import { mean, stddev } from "./stats.js";

Recall that default exports do not need to have a name in the module
that defines them. Instead, we provide a local name when we import
those values. But non-default exports of a module do have names in the
exporting module, and when we import those values, we refer to them by
those names. The exporting module can export any number of named
value. An import statement that references that module can import
any subset of those values simply by listing their names within curly
braces. The curly braces make this kind of import statement look
something like a destructuring assignment, and destructuring
assignment is actually a good analogy for what this style of import is
doing. The identifiers within curly braces are all hoisted to the top
of the importing module and behave like constants.

Style guides sometimes recommend that you explicitly import every
symbol that your module will use. When importing from a module that
defines many exports, however, you can easily import everything with
an import statement like this:

import * as stats from "./stats.js";

An import statement like this creates an object and assigns it to a
constant named stats. Each of the non-default exports of the module
being imported becomes a property of this stats
object. Non-default exports always have names, and those are used as
property names within the object. Those properties are effectively
constants: they cannot be overwritten or deleted. With the wildcard
import shown in the previous example, the importing module would use the imported
mean() and stddev() functions through the stats object, invoking
them as stats.mean() and stats.stddev().

Modules typically define either one default export or multiple named
exports. It is legal, but somewhat uncommon, for a module to use both
export and export default. But when a module does that, you can
import both the default value and the named values with an import
statement like this:

import Histogram, { mean, stddev } from "./histogram-stats.js";

So far, we’ve seen how to import from modules with a default export
and from modules with non-default or named exports. But there is one
other form of the import statement that is used with modules that
have no exports at all. To include a no-exports module into your
program, simply use the import keyword with the module specifier:

import "./analytics.js";

A module like this runs the first time it is imported. (And subsequent
imports do nothing.) A module that just defines functions is only
useful if it exports at least one of those functions. But if a module
runs some code, then it can be useful to import even without
symbols. An analytics module for a web application might run code to
register various event handlers and then use those event handlers to
send telemetry data back to the server at appropriate times. The
module is self-contained and does not need to export anything, but we
still need to import it so that it does actually run as part of our
program.

Note that you can use this import-nothing import syntax even with
modules that do have exports. If a module defines useful behavior
independent of the values it exports, and if your program does not
need any of those exported values, you can still import the module
. just for that default behavior.

10.3.3 Imports and Exports with Renaming

If two modules export two different values using the same name and
you want to import both of those values, you will have to rename one
or both of the values when you import it. Similarly, if you want to
import a value whose name is already in use in your module, you will
need to rename the imported value. You can use the as keyword with
named imports to rename them as you import them:

import { render as renderImage } from "./imageutils.js";
import { render as renderUI } from "./ui.js";

These lines import two functions into the current module. The
functions are both named render() in the modules that define them
but are imported with the more descriptive and disambiguating
names renderImage() and renderUI().

Recall that default exports do not have a name. The importing module
always chooses the name when importing a default export. So there is
no need for a special syntax for renaming in that case.

Having said that, however, the possibility of renaming on import
provides another way of importing from modules that define both a
default export and named exports. Recall the “./histogram-stats.js”
module from the previous section. Here is another way to import both the default
and named exports of that module:

import { default as Histogram, mean, stddev } from "./histogram-stats.js";

In this case, the JavaScript keyword default serves as a placeholder
and allows us to indicate that we want to import and provide a name
for the default export of the module.

It is also possible to rename values as you export them, but only when
using the curly brace variant of the export statement. It is not
common to need to do this, but if you chose short, succinct names for
use inside your module, you might prefer to export your values with
more descriptive names that are less likely to conflict with other
modules. As with imports, you use the as keyword to do this:

export {
 layout as calculateLayout,
 render as renderLayout
};

Keep in mind that, although the curly braces look something like object
literals, they are not, and the export keyword expects a single
identifier before the as, not an expression. This means,
unfortunately, that you cannot use export renaming like this:

export { Math.sin as sin, Math.cos as cos }; // SyntaxError

10.3.4 Re-Exports

Throughout this chapter, we’ve discussed a hypothetical “./stats.js” module
that exports mean() and stddev() functions. If we were writing
such a module and we thought that many users of the module would want
only one function or the other, then we might want to define mean()
in a “./stats/mean.js” module and define stddev() in
“./stats/stddev.js”. That way, programs only need to import exactly
the functions they need and are not bloated by importing code they do
not need.

Even if we had defined these statistical functions in individual
modules, however, we might expect that there would be plenty of
programs that want both functions and would appreciate a convenient
“./stats.js” module from which they could import both on one line.

Given that the implementations are now in separate files, defining
this “./stat.js” module is simple:

import { mean } from "./stats/mean.js";
import { stddev } from "./stats/stddev.js";
export { mean, stdev };

ES6 modules anticipate this use case and provide a special syntax
for it. Instead of importing a symbol simply to export it again, you
can combine the import and the export steps into a single “re-export”
statement that uses the export keyword and the from keyword:

export { mean } from "./stats/mean.js";
export { stddev } from "./stats/stddev.js";

Note that the names mean and stddev are not actually used in this
code. If we are not being selective with a re-export and simply want to
export all of the named values from another module, we can use a
wildcard:

export * from "./stats/mean.js";
export * from "./stats/stddev.js";

Re-export syntax allows renaming with as just as regular import and
export statements do. Suppose we wanted to re-export the mean()
function but also define average() as another name for the
function. We could do that like this:

export { mean, mean as average } from "./stats/mean.js";
export { stddev } from "./stats/stddev.js";

All of the re-exports in this example assume that the “./stats/mean.js” and
“./stats/stddev.js” modules export their functions using export
instead of export default. In fact, however, since these are modules
with only a single export, it would have made sense to define them
with export default. If we had done so, then the re-export syntax is
a little more complicated because it needs to define a name for the
unnamed default exports. We can do that like this:

export { default as mean } from "./stats/mean.js";
export { default as stddev } from "./stats/stddev.js";

If you want to re-export a named symbol from another module as the
default export of your module, you could do an import followed by an
export default, or you could combine the two statements like this:

// Import the mean() function from ./stats.js and make it the
// default export of this module
export { mean as default } from "./stats.js"

And finally, to re-export the default export of another module as the
default export of your module (though it is unclear why you would want
to do this, since users could simply import the other module directly),
you can write:

// The average.js module simply re-exports the stats/mean.js default export
export { default } from "./stats/mean.js"

10.3.5 JavaScript Modules on the Web

The preceding sections have described ES6 modules and their import and
export declarations in a somewhat abstract manner. In this section
and the next, we’ll be discussing how they actually work in web
browsers, and if you are not already an experienced web developer, you
may find the rest of this chapter easier to understand after you have
read Chapter 15.

As of early 2020, production code using ES6 modules is still generally
bundled with a tool like webpack. There are trade-offs to doing
this,1
but on the whole, code bundling tends to give better performance. That
may well change in the future as network speeds grow and browser
vendors continue to optimize their ES6 module implementations.

Even though bundling tools may still be desirable in production, they
are no longer required in development since all current browsers
provide native support for JavaScript modules. Recall that modules use
strict mode by default, this does not refer to a global object, and
top-level declarations are not shared globally by default. Since
modules must be executed differently than legacy non-module code,
their introduction requires changes to HTML as well as JavaScript. If
you want to natively use import directives in a web browser, you
must tell the web browser that your code is a module by using a
<script type="module"> tag.

One of the nice features of ES6 modules is that each module has a
static set of imports. So given a single starting module, a web browser
can load all of its imported modules and then load all of the modules
imported by that first batch of modules, and so on, until a complete
program has been loaded. We’ve seen that the module specifier in an
import statement can be treated as a relative URL. A <script
type="module"> tag marks the starting point of a modular
program. None of the modules it imports are expected to be in
<script> tags, however: instead, they are loaded on demand as
regular JavaScript files and are executed in strict mode as regular
ES6 modules. Using a <script type="module"> tag to define the main
entry point for a modular JavaScript program can be as simple as this:

<script type="module">import "./main.js";</script>

Code inside an inline <script type="module"> tag is an ES6 module,
and as such can use the export statement. There is not any point in
doing so, however, because the HTML <script> tag syntax does not
provide any way to define a name for inline modules, so even if such a
module does export a value, there is no way for another module to
import it.

Scripts with the type="module" attribute are loaded and executed
like scripts with the defer attribute. Loading of the code begins as
soon as the HTML parser encounters the <script> tag (in the case of
modules, this code-loading step may be a recursive process that loads
multiple JavaScript files). But code execution does not begin until
HTML parsing is complete. And once HTML parsing is complete, scripts
(both modular and non) are executed in the order in which they appear
in the HTML document.

You can modify the execution time of modules with the async
attribute, which works the same way for modules that it does for
regular scripts. An async module will execute as soon as the code is
loaded, even if HTML parsing is not complete and even if this changes
the relative ordering of the scripts.

Web browsers that support <script type="module"> must also support
<script nomodule>. Browsers that are module-aware
ignore any script with the nomodule attribute and will not execute
it. Browsers that do not support modules will not recognize the
nomodule attribute, so they will ignore it and run the script. This
provides a powerful technique for dealing with browser compatibility
issues. Browsers that support ES6 modules also support other
modern JavaScript features like classes, arrow functions, and the
for/of loop. If you write modern JavaScript and load it with
<script type="module">, you know that it will only be loaded by
browsers that can support it. And as a fallback for IE11 (which, in
2020, is effectively the only remaining browser that does not support
ES6), you can use tools like Babel and webpack to transform your code
into non-modular ES5 code, then load that less-efficient
transformed code via <script nomodule>.

Another important difference between regular scripts and module
scripts has to do with cross-origin loading. A regular <script> tag
will load a file of JavaScript code from any server on the internet,
and the internet’s infrastructure of advertising, analytics, and
tracking code depends on that fact. But <script type="module">
provides an opportunity to tighten this up, and modules can only be
loaded from the same origin as the containing HTML document or when
proper CORS headers are in place to securely allow cross-origin loads.
An unfortunate side effect of this new security restriction is that it
makes it difficult to test ES6 modules in development mode using
file: URLs. When using ES6 modules, you will likely need to set up a
static web server for testing.

Some programmers like to use the filename extension .mjs to
distinguish their modular JavaScript files from their regular,
non-modular JavaScript files with the traditional .js extension. For
the purposes of web browsers and <script> tags, the file extension is
actually irrelevant. (The MIME type is relevant, however, so if you
use .mjs files, you may need to configure your web server to serve
them with the same MIME type as .js files.) Node’s support for ES6
does use the filename extension as a hint to distinguish which module
system is used by each file it loads. So if you are writing ES6
modules and want them to be usable with Node, then it may be helpful
to adopt the .mjs naming convention.

10.3.6 Dynamic Imports with import()

We’ve seen that the ES6 import and export directives are
completely static and enable JavaScript interpreters and other
JavaScript tools to determine the relationships between modules with
simple text analysis while the modules are being loaded without having
to actually execute any of the code in the modules. With statically
imported modules, you are guaranteed that the values you import into a
module will be ready for use before any of the code in your module
begins to run.

On the web, code has to be transferred over a network instead of being
read from the filesystem. And once transfered, that code is often
executed on mobile devices with relatively slow CPUs. This is not the
kind of environment where static module imports—which require an
entire program to be loaded before any of it runs—make a lot of sense.

It is common for web applications to initially load only enough of
their code to render the first page displayed to the user. Then, once
the user has some preliminary content to interact with, they can begin
to load the often much larger amount of code needed for the rest of
the web app. Web browsers make it easy to dynamically load code by
using the DOM API to inject a new <script> tag into the current HTML
document, and web apps have been doing this for many years.

Although dynamic loading has been possible for a long time, it has not
been part of the language itself. That changes with the introduction
of import() in ES2020 (as of early 2020, dynamic import is supported by
all browsers that support ES6 modules). You pass a module specifier to
import() and it returns a Promise object that represents the
asynchronous process of loading and running the specified module. When
the dynamic import is complete, the Promise is “fulfilled” (see
Chapter 13 for complete details on asynchronous programming and
Promises) and produces an object like the one you would get with the
import * as form of the static import statement.

So instead of importing the “./stats.js” module statically, like this:

import * as stats from "./stats.js";

we might import it and use it dynamically, like this:

import("./stats.js").then(stats => {
 let average = stats.mean(data);
})

Or, in an async function (again, you may need to read Chapter 13
before you’ll understand this code), we can simplify the code with
await:

async analyzeData(data) {
 let stats = await import("./stats.js");
 return {
 average: stats.mean(data),
 stddev: stats.stddev(data)
 };
}

The argument to import() should be a module specifier, exactly like
one you’d use with a static import directive. But with import(),
you are not constrained to use a constant string literal: any
expression that evaluates to a string in the proper form will do.

Dynamic import() looks like a function invocation, but it actually
is not. Instead, import() is an operator and the parentheses are a
required part of the operator syntax. The reason for this unusual bit
of syntax is that import() needs to be able to resolve module
specifiers as URLs relative to the currently running module, and this
requires a bit of implementation magic that would not be legal to put
in a JavaScript function. The function versus operator distinction
rarely makes a difference in practice, but you’ll notice it if you try
writing code like console.log(import); or let require = import;.

Finally, note that dynamic import() is not just for web
browsers. Code-packaging tools like webpack can also make good use of
it. The most straightforward way to use a code bundler is to tell it
the main entry point for your program and let it find all the static
import directives and assemble everything into one large file. By
strategically using dynamic import() calls, however, you can break
that one monolithic bundle up into a set of smaller bundles that can
be loaded on demand.

10.3.7 import.meta.url

There is one final feature of the ES6 module system to discuss. Within
an ES6 module (but not within a regular <script> or a Node module
loaded with require()), the special syntax import.meta refers to an
object that contains metadata about the currently executing
module. The url property of this object is the URL from which the
module was loaded. (In Node, this will be a file:// URL.)

The primary use case of import.meta.url is to be able to refer to
images, data files, or other resources that are stored in the same
directory as (or relative to) the module. The URL() constructor
makes it easy to resolve a relative URL against an absolute URL like
import.meta.url. Suppose, for example, that you have written a
module that includes strings that need to be localized and that the
localization files are stored in an l10n/ directory, which is in the
same directory as the module itself. Your module could load its
strings using a URL created with a function, like this:

function localStringsURL(locale) {
 return new URL(`l10n/${locale}.json`, import.meta.url);
}

10.4 Summary

The goal of modularity is to allow programmers to hide the implementation
details of their code so that chunks of code from various sources can
be assembled into large programs without worrying that one chunk will
overwrite functions or variables of another. This chapter has
explained three different JavaScript module systems:

	
In the early days of JavaScript, modularity could only be achieved
through the clever use of immediately invoked function expressions.

	
Node added its own module system on top of the JavaScript
language. Node modules are imported with require() and define
their exports by setting properties of the Exports object, or by
setting the module.exports property.

	
In ES6, JavaScript finally got its own module system with import
and export keywords, and ES2020 is adding support for dynamic
imports with import().

1 For example: web apps that have frequent incremental updates and users who make frequent return visits may find that using small modules instead of large bundles can result in better average load times because of better utilization of the user’s browser cache.

Chapter 11. The JavaScript Standard Library

Some datatypes, such as numbers and strings (Chapter 3), objects
(Chapter 6), and arrays (Chapter 7) are so fundamental to JavaScript
that we can consider them to be part of the language itself. This
chapter covers other important but less fundamental APIs that can be
thought of as defining the “standard library” for JavaScript: these
are useful classes and functions that are built in to JavaScript and
available to all JavaScript programs in both web browsers and in
Node.1

The sections of this chapter are independent of one another, and you
can read them in any order. They cover:

	
The Set and Map classes for representing sets of values and mappings
from one set of values to another set of values.

	
Array-like objects known as TypedArrays that represent arrays of
binary data, along with a related class for extracting values from
non-array binary data.

	
Regular expressions and the RegExp class, which define textual
patterns and are useful for text processing. This section also
covers regular expression syntax in detail.

	
The Date class for representing and manipulating dates and times.

	
The Error class and its various subclasses, instances of which are
thrown when errors occur in JavaScript programs.

	
The JSON object, whose methods support serialization and
deserialization of JavaScript data structures composed of objects,
arrays, strings, numbers, and booleans.

	
The Intl object and the classes it defines that can help you
localize your JavaScript programs.

	
The Console object, whose methods output strings in ways that are
particularly useful for debugging programs and logging the behavior
of those programs.

	
The URL class, which simplifies the task of parsing and manipulating
URLs. This section also covers global functions for encoding and
decoding URLs and their component parts.

	
setTimeout() and related functions for specifying code to be
executed after a specified interval of time has elapsed.

Some of the sections in this chapter—notably, the sections on typed
arrays and regular expressions—are quite long because there is
significant background information you need to understand before you
can use those types effectively. Many of the other sections, however,
are short: they simply introduce a new API and show some examples of
its use.

11.1 Sets and Maps

JavaScript’s Object type is a versatile data structure that can be
used to map strings (the object’s property names) to arbitrary
values. And when the value being mapped to is something fixed like
true, then the object is effectively a set of strings.

Objects are actually used as maps and sets fairly routinely in
JavaScript programming, but this is limited by the restriction to
strings and complicated by the fact that objects normally inherit
properties with names like “toString”, which are not typically intended
to be part of the map or set.

For this reason, ES6 introduces true Set and Map classes, which we’ll cover
in the sub-sections that follow.

11.1.1 The Set Class

A set is a collection of values, like an array is. Unlike arrays,
however, sets are not ordered or indexed, and they do not allow
duplicates: a value is either a member of a set or it is not a member;
it is not possible to ask how many times a value appears in a set.

Create a Set object with the Set() constructor:

let s = new Set(); // A new, empty set
let t = new Set([1, s]); // A new set with two members

The argument to the Set() constructor need not be an array: any
iterable object (including other Set objects) is allowed:

let t = new Set(s); // A new set that copies the elements of s.
let unique = new Set("Mississippi"); // 4 elements: "M", "i", "s", and "p"

The size property of a set is like the length property of an
array: it tells you how many values the set contains:

unique.size // => 4

Sets don’t need to be initialized when you create them. You can add
and remove elements at any time with add(), delete(), and
clear(). Remember that sets cannot contain duplicates, so adding a
value to a set when it already contains that value has no effect:

let s = new Set(); // Start empty
s.size // => 0
s.add(1); // Add a number
s.size // => 1; now the set has one member
s.add(1); // Add the same number again
s.size // => 1; the size does not change
s.add(true); // Add another value; note that it is fine to mix types
s.size // => 2
s.add([1,2,3]); // Add an array value
s.size // => 3; the array was added, not its elements
s.delete(1) // => true: successfully deleted element 1
s.size // => 2: the size is back down to 2
s.delete("test") // => false: "test" was not a member, deletion failed
s.delete(true) // => true: delete succeeded
s.delete([1,2,3]) // => false: the array in the set is different
s.size // => 1: there is still that one array in the set
s.clear(); // Remove everything from the set
s.size // => 0

There are a few important points to note about this code:

	
The add() method takes a single argument; if you pass an array, it
adds the array itself to the set, not the individual array
elements. add() always returns the set it is invoked on, however,
so if you want to add multiple values to a set, you can used chained
method calls like s.add('a').add('b').add('c');.

	
The delete() method also only deletes a single set element at a
time. Unlike add(), however, delete() returns a boolean value. If
the value you specify was actually a member of the set, then
delete() removes it and returns true. Otherwise, it does nothing
and returns false.

	
Finally, it is very important to understand that set membership is
based on strict equality checks, like the === operator
performs. A set can contain both the number 1 and the string
"1", because it considers them to be distinct values. When the
values are objects (or arrays or functions), they are also compared
as if with ===. This is why we were unable to delete the array
element from the set in this code. We added an array to the
set and then tried to remove that array by passing a
different array (albeit with the same elements) to the delete()
method. In order for this to work, we would have had to pass a
reference to exactly the same array.

Note

Python programmers take note: this is a significant difference between JavaScript and
 Python sets. Python sets compare members for equality, not identity,
 but the trade-off is that Python sets only allow immutable members,
 like tuples, and do not allow lists and dicts to be added to sets.

In practice, the most important thing we do with sets is not to add
and remove elements from them, but to check to see whether a specified
value is a member of the set. We do this with the has() method:

let oneDigitPrimes = new Set([2,3,5,7]);
oneDigitPrimes.has(2) // => true: 2 is a one-digit prime number
oneDigitPrimes.has(3) // => true: so is 3
oneDigitPrimes.has(4) // => false: 4 is not a prime
oneDigitPrimes.has("5") // => false: "5" is not even a number

The most important thing to understand about sets is that they are
optimized for membership testing, and no matter how many members the
set has, the has() method will be very fast. The includes() method
of an array also performs membership testing, but the time it takes is
proportional to the size of the array, and using an array as a set can
be much, much slower than using a real Set object.

The Set class is iterable, which means that you can use a for/of
loop to enumerate all of the elements of a set:

let sum = 0;
for(let p of oneDigitPrimes) { // Loop through the one-digit primes
 sum += p; // and add them up
}
sum // => 17: 2 + 3 + 5 + 7

Because Set objects are iterable, you can convert them to arrays and
argument lists with the ... spread operator:

[...oneDigitPrimes] // => [2,3,5,7]: the set converted to an Array
Math.max(...oneDigitPrimes) // => 7: set elements passed as function arguments

Sets are often described as “unordered collections.” This isn’t
exactly true for the JavaScript Set class, however. A JavaScript set
is unindexed: you can’t ask for the first or third element of a set
the way you can with an array. But the JavaScript Set class always
remembers the order that elements were inserted in, and it
always uses this order when you iterate a set: the first element
inserted will be the first one iterated (assuming you haven’t deleted
it first), and the most recently inserted element will be the last one
iterated.2

In addition to being iterable, the Set class also implements a
forEach() method that is similar to the array method of the same name:

let product = 1;
oneDigitPrimes.forEach(n => { product *= n; });
product // => 210: 2 * 3 * 5 * 7

The forEach() of an array passes array indexes as the second
argument to the function you specify. Sets don’t have indexes, so the
Set class’s version of this method simply passes the element value as
both the first and second argument.

11.1.2 The Map Class

A Map object represents a set of values known as keys, where each key
has another value associated with (or “mapped to”) it. In a sense, a
map is like an array, but instead of using a set of sequential
integers as the keys, maps allow us to use arbitrary values as
“indexes.” Like arrays, maps are fast: looking up the value associated
with a key will be fast (though not as fast as indexing an array) no
matter how large the map is.

Create a new map with the Map() constructor:

let m = new Map(); // Create a new, empty map
let n = new Map([// A new map initialized with string keys mapped to numbers
 ["one", 1],
 ["two", 2]
]);

The optional argument to the Map() constructor should be an iterable
object that yields two element [key, value] arrays. In practice,
this means that if you want to initialize a map when you create it,
you’ll typically write out the desired keys and associated values as
an array of arrays. But you can also use the Map() constructor to
copy other maps or to copy the property names and values from an
existing object:

let copy = new Map(n); // A new map with the same keys and values as map n
let o = { x: 1, y: 2}; // An object with two properties
let p = new Map(Object.entries(o)); // Same as new map([["x", 1], ["y", 2]])

Once you have created a Map object, you can query the value associated
with a given key with get() and can add a new key/value pair with
set(). Remember, though, that a map is a set of keys, each of which
has an associated value. This is not quite the same as a set of
key/value pairs. If you call set() with a key that already exists in
the map, you will change the value associated with that key, not add a
new key/value mapping. In addition to get() and set(), the Map
class also defines methods that are like Set methods: use has() to
check whether a map includes the specified key; use delete() to
remove a key (and its associated value) from the map; use clear() to
remove all key/value pairs from the map; and use the size property
to find out how many keys a map contains.

let m = new Map(); // Start with an empty map
m.size // => 0: empty maps have no keys
m.set("one", 1); // Map the key "one" to the value 1
m.set("two", 2); // And the key "two" to the value 2.
m.size // => 2: the map now has two keys
m.get("two") // => 2: return the value associated with key "two"
m.get("three") // => undefined: this key is not in the set
m.set("one", true); // Change the value associated with an existing key
m.size // => 2: the size doesn't change
m.has("one") // => true: the map has a key "one"
m.has(true) // => false: the map does not have a key true
m.delete("one") // => true: the key existed and deletion succeeded
m.size // => 1
m.delete("three") // => false: failed to delete a nonexistent key
m.clear(); // Remove all keys and values from the map

Like the add() method of Set, the set() method of Map can be
chained, which allows maps to be initialized without using arrays of
arrays:

let m = new Map().set("one", 1).set("two", 2).set("three", 3);
m.size // => 3
m.get("two") // => 2

As with Set, any JavaScript value can be used as a key or a value in a
Map. This includes null, undefined, and NaN, as well as reference
types like objects and arrays. And as with the Set class, Map compares
keys by identity, not by equality, so if you use an object or array as
a key, it will be considered different from every other object and
array, even those with exactly the same properties or elements:

let m = new Map(); // Start with an empty map.
m.set({}, 1); // Map one empty object to the number 1.
m.set({}, 2); // Map a different empty object to the number 2.
m.size // => 2: there are two keys in this map
m.get({}) // => undefined: but this empty object is not a key
m.set(m, undefined); // Map the map itself to the value undefined.
m.has(m) // => true: m is a key in itself
m.get(m) // => undefined: same value we'd get if m wasn't a key

Map objects are iterable, and each iterated value is a two-element
array where the first element is a key and the second element is the
value associated with that key. If you use the spread operator with a
Map object, you’ll get an array of arrays like the ones that we passed
to the Map() constructor. And when iterating a map with a for/of
loop, it is idiomatic to use destructuring assignment to assign the
key and value to separate variables:

let m = new Map([["x", 1], ["y", 2]]);
[...m] // => [["x", 1], ["y", 2]]

for(let [key, value] of m) {
 // On the first iteration, key will be "x" and value will be 1
 // On the second iteration, key will be "y" and value will be 2
}

Like the Set class, the Map class iterates in insertion order. The
first key/value pair iterated will be the one least recently added to
the map, and the last pair iterated will be the one most recently
added.

If you want to iterate just the keys or just the associated values of
a map, use the keys() and values() methods: these return iterable
objects that iterate keys and values, in insertion order. (The
entries() method returns an iterable object that iterates key/value
pairs, but this is exactly the same as iterating the map directly.)

[...m.keys()] // => ["x", "y"]: just the keys
[...m.values()] // => [1, 2]: just the values
[...m.entries()] // => [["x", 1], ["y", 2]]: same as [...m]

Map objects can also be iterated using the forEach() method that was
first implemented by the Array class.

m.forEach((value, key) => { // note value, key NOT key, value
 // On the first invocation, value will be 1 and key will be "x"
 // On the second invocation, value will be 2 and key will be "y"
});

It may seem strange that the value parameter comes before the key
parameter in the code above, since with for/of iteration, the key
comes first. As noted at the start of this section, you can think of a
map as a generalized array in which integer array indexes are replaced
with arbitrary key values. The forEach() method of arrays passes the
array element first and the array index second, so, by analogy, the
forEach() method of a map passes the map value first and the map key
second.

11.1.3 WeakMap and WeakSet

The WeakMap class is a variant (but not an actual subclass) of the Map
class that does not prevent its key values from being garbage
collected. Garbage collection is the process by which the JavaScript
interpreter reclaims the memory of objects that are no longer
“reachable” and cannot be used by the program. A regular map holds
“strong” references to its key values, and they remain reachable
through the map, even if all other references to them are gone. The
WeakMap, by contrast, keeps “weak” references to its key values so
that they are not reachable through the WeakMap, and their presence in
the map does not prevent their memory from being reclaimed.

The WeakMap() constructor is just like the Map() constructor, but
there are some significant differences between WeakMap and Map:

	
WeakMap keys must be objects or arrays; primitive values are not
subject to garbage collection and cannot be used as keys.

	
WeakMap implements only the get(), set(), has(), and delete()
methods. In particular, WeakMap is not iterable and does not define
keys(), values(), or forEach(). If WeakMap was iterable, then
its keys would be reachable and it wouldn’t be weak.

	
Similarly, WeakMap does not implement the size property because
the size of a WeakMap could change at any time as objects are
garbage collected.

The intended use of WeakMap is to allow you to associate values with
objects without causing memory leaks. Suppose, for example, that you
are writing a function that takes an object argument and needs to
perform some time-consuming computation on that object. For efficiency,
you’d like to cache the computed value for later reuse. If you use a
Map object to implement the cache, you will prevent any of the objects
from ever being reclaimed, but by using a WeakMap, you avoid this
problem. (You can often achieve a similar result using a private Symbol
property to cache the computed value directly on the object. See
§6.10.3.)

WeakSet implements a set of objects that does not prevent those
objects from being garbage collected. The WeakSet() constructor
works like the Set() constructor, but WeakSet objects differ from
Set objects in the same ways that WeakMap objects differ from Map
objects:

	
WeakSet does not allow primitive values as members.

	
WeakSet implements only the add(), has(), and delete()
methods and is not iterable.

	
WeakSet does not have a size property.

WeakSet is not frequently used: its use cases are like those for
WeakMap. If you want to mark (or “brand”) an object as having some
special property or type, for example, you could add it to a
WeakSet. Then, elsewhere, when you want to check for that property or
type, you can test for membership in that WeakSet. Doing this with a
regular set would prevent all marked objects from being garbage
collected, but this is not a concern when using WeakSet.

11.2 Typed Arrays and Binary Data

Regular JavaScript arrays can have elements of any type and can grow
or shrink dynamically. JavaScript implementations perform lots of
optimizations so that typical uses of JavaScript arrays are very
fast. Nevertheless, they are still quite different from the array
types of lower-level languages like C and Java. Typed arrays, which
are new in ES6,3 are much closer to the low-level arrays
of those languages. Typed arrays are not technically arrays
(Array.isArray() returns false for them), but they implement all of
the array methods described in §7.8 plus a few more of
their own. They differ from regular arrays in some very important
ways, however:

	
The elements of a typed array are all numbers. Unlike regular
JavaScript numbers, however, typed arrays allow you to specify the
type (signed and unsigned integers and IEEE-754 floating point) and
size (8 bits to 64 bits) of the numbers to be stored in the array.

	
You must specify the length of a typed array when you create it, and
that length can never change.

	
The elements of a typed array are always initialized to 0 when the
array is created.

11.2.1 Typed Array Types

JavaScript does not define a TypedArray class. Instead, there are
11 kinds of typed arrays, each with a different element type and
constructor:

	Constructor
	Numeric type

	Int8Array()

	signed bytes

	Uint8Array()

	unsigned bytes

	Uint8ClampedArray()

	unsigned bytes without rollover

	Int16Array()

	signed 16-bit short integers

	Uint16Array()

	unsigned 16-bit short integers

	Int32Array()

	signed 32-bit integers

	Uint32Array()

	unsigned 32-bit integers

	BigInt64Array()

	signed 64-bit BigInt values (ES2020)

	BigUint64Array()

	unsigned 64-bit BigInt values (ES2020)

	Float32Array()

	32-bit floating-point value

	Float64Array()

	64-bit floating-point value: a regular JavaScript number

The types whose names begin with Int hold signed integers, of 1, 2,
or 4 bytes (8, 16, or 32 bits). The types whose names begin with
Uint hold unsigned integers of those same lengths. The “BigInt” and
“BigUint” types hold 64-bit integers, represented in JavaScript as
BigInt values (see §3.2.5). The types that
begin with Float hold floating-point numbers. The elements of a
Float64Array are of the same type as regular JavaScript numbers. The
elements of a Float32Array have lower precision and a smaller range
but require only half the memory. (This type is called float in C
and Java.)

Uint8ClampedArray is a special-case variant on Uint8Array. Both of
these types hold unsigned bytes and can represent numbers between 0
and 255. With Uint8Array, if you store a value larger than 255 or
less than zero into an array element, it “wraps around,” and you get
some other value. This is how computer memory works at a low level, so
this is very fast. Uint8ClampedArray does some extra
type checking so that, if you store a value greater than 255 or less
than 0, it “clamps” to 255 or 0 and does not wrap around. (This
clamping behavior is required by the HTML <canvas> element’s low-level
API for manipulating pixel colors.)

Each of the typed array constructors has a BYTES_PER_ELEMENT
property with the value 1, 2, 4, or 8, depending on the type.

11.2.2 Creating Typed Arrays

The simplest way to create a typed array is to call the appropriate
constructor with one numeric argument that specifies the number of
elements you want in the array:

let bytes = new Uint8Array(1024); // 1024 bytes
let matrix = new Float64Array(9); // A 3x3 matrix
let point = new Int16Array(3); // A point in 3D space
let rgba = new Uint8ClampedArray(4); // A 4-byte RGBA pixel value
let sudoku = new Int8Array(81); // A 9x9 sudoku board

When you create typed arrays in this way, the array elements are all
guaranteed to be initialized to 0, 0n, or 0.0. But if you know
the values you want in your typed array, you can also specify those
values when you create the array. Each of the typed array constructors
has static from() and of() factory methods that work like
Array.from() and Array.of():

let white = Uint8ClampedArray.of(255, 255, 255, 0); // RGBA opaque white

Recall that the Array.from() factory method expects an array-like or
iterable object as its first argument. The same is true for the typed
array variants, except that the iterable or array-like
object must also have numeric elements. Strings are iterable, for example,
but it would make no sense to pass them to the from() factory method
of a typed array.

If you are just using the one-argument version of from(), you can
drop the .from and pass your iterable or array-like object directly
to the constructor function, which behaves exactly the same. Note that
both the constructor and the from() factory method allow you to copy
existing typed arrays, while possibly changing the type:

let ints = Uint32Array.from(white); // The same 4 numbers, but as ints

When you create a new typed array from an existing array, iterable, or
array-like object, the values may be truncated in order to fit the
type constraints of your array. There are no warnings or errors when
this happens:

// Floats truncated to ints, longer ints truncated to 8 bits
Uint8Array.of(1.23, 2.99, 45000) // => new Uint8Array([1, 2, 200])

Finally, there is one more way to create typed arrays that involves
the ArrayBuffer type. An ArrayBuffer is an opaque reference to a chunk
of memory. You can create one with the constructor; just pass in the
number of bytes of memory you’d like to allocate:

let buffer = new ArrayBuffer(1024*1024);
buffer.byteLength // => 1024*1024; one megabyte of memory

The ArrayBuffer class does not allow you to read or write any of the
bytes that you have allocated. But you can create typed arrays that
use the buffer’s memory and that do allow you to read and write that
memory. To do this, call the typed array constructor with an
ArrayBuffer as the first argument, a byte offset within the array
buffer as the second argument, and the array length (in elements, not
in bytes) as the third argument. The second and third arguments are
optional. If you omit both, then the array will use all of the memory
in the array buffer. If you omit only the length argument, then your
array will use all of the available memory between the start position
and the end of the array. One more thing to bear in mind about this
form of the typed array constructor: arrays must be memory aligned, so
if you specify a byte offset, the value should be a multiple of the
size of your type. The Int32Array() constructor requires a multiple
of four, for example, and the Float64Array() requires a multiple of eight.

Given the ArrayBuffer created earlier, you could create typed arrays
like these:

let asbytes = new Uint8Array(buffer); // Viewed as bytes
let asints = new Int32Array(buffer); // Viewed as 32-bit signed ints
let lastK = new Uint8Array(buffer, 1023*1024); // Last kilobyte as bytes
let ints2 = new Int32Array(buffer, 1024, 256); // 2nd kilobyte as 256 integers

These four typed arrays offer four different views into the memory
represented by the ArrayBuffer. It is important to understand that all
typed arrays have an underlying ArrayBuffer, even if you do not
explicitly specify one. If you call a typed array constructor without
passing a buffer object, a buffer of the appropriate size will be
automatically created. As described later, the buffer property of
any typed array refers to its underlying ArrayBuffer object. The
reason to work directly with ArrayBuffer objects is that sometimes you
may want to have multiple typed array views of a single buffer.

11.2.3 Using Typed Arrays

Once you have created a typed array, you can read and write its
elements with regular square-bracket notation, just as you would with
any other array-like object:

// Return the largest prime smaller than n, using the sieve of Eratosthenes
function sieve(n) {
 let a = new Uint8Array(n+1); // a[x] will be 1 if x is composite
 let max = Math.floor(Math.sqrt(n)); // Don't do factors higher than this
 let p = 2; // 2 is the first prime
 while(p <= max) { // For primes less than max
 for(let i = 2*p; i <= n; i += p) // Mark multiples of p as composite
 a[i] = 1;
 while(a[++p]) /* empty */; // The next unmarked index is prime
 }
 while(a[n]) n--; // Loop backward to find the last prime
 return n; // And return it
}

The function here computes the largest prime number smaller than the
number you specify. The code is exactly the same as it would be with a
regular JavaScript array, but using Uint8Array() instead of
Array() makes the code run more than four times faster and use eight times
less memory in my testing.

Typed arrays are not true arrays, but they re-implement most
array methods, so you can use them pretty much just like you’d use
regular arrays:

let ints = new Int16Array(10); // 10 short integers
ints.fill(3).map(x=>x*x).join("") // => "9999999999"

Remember that typed arrays have fixed lengths, so the length
property is read-only, and methods that change the length of the array
(such as push(), pop(), unshift(), shift(), and splice())
are not implemented for typed arrays. Methods that alter the contents
of an array without changing the length (such as sort(), reverse(),
and fill()) are implemented. Methods like map() and slice() that
return new arrays return a typed array of the same type as the one
they are called on.

11.2.4 Typed Array Methods and Properties

In addition to standard array methods, typed arrays also implement a
few methods of their own. The set() method sets multiple elements of
a typed array at once by copying the elements of a regular or typed
array into a typed array:

let bytes = new Uint8Array(1024); // A 1K buffer
let pattern = new Uint8Array([0,1,2,3]); // An array of 4 bytes
bytes.set(pattern); // Copy them to the start of another byte array
bytes.set(pattern, 4); // Copy them again at a different offset
bytes.set([0,1,2,3], 8); // Or just copy values direct from a regular array
bytes.slice(0, 12) // => new Uint8Array([0,1,2,3,0,1,2,3,0,1,2,3])

The set() method takes an array or typed array as its first
argument and an element offset as its optional second argument, which
defaults to 0 if left unspecified. If you are copying values from one
typed array to another, the operation will likely be extremely fast.

Typed arrays also have a subarray method that returns a portion of the array
on which it is called:

let ints = new Int16Array([0,1,2,3,4,5,6,7,8,9]); // 10 short integers
let last3 = ints.subarray(ints.length-3, ints.length); // Last 3 of them
last3[0] // => 7: this is the same as ints[7]

subarray() takes the same arguments as the slice() method and
seems to work the same way. But there is an important
difference. slice() returns the specified elements in a new,
independent typed array that does not share memory with the original
array. subarray() does not copy any memory; it just returns a new
view of the same underlying values:

ints[9] = -1; // Change a value in the original array and...
last3[2] // => -1: it also changes in the subarray

The fact that the subarray() method returns a new view of an existing array
brings us back to the topic of ArrayBuffers. Every typed array has three
properties that relate to the underlying buffer:

last3.buffer // The ArrayBuffer object for a typed array
last3.buffer === ints.buffer // => true: both are views of the same buffer
last3.byteOffset // => 14: this view starts at byte 14 of the buffer
last3.byteLength // => 6: this view is 6 bytes (3 16-bit ints) long
last3.buffer.byteLength // => 20: but the underlying buffer has 20 bytes

The buffer property is the ArrayBuffer of the array. byteOffset is
the starting position of the array’s data within the underlying
buffer. And byteLength is the length of the array’s data in
bytes. For any typed array, a, this invariant should always be true:

a.length * a.BYTES_PER_ELEMENT === a.byteLength // => true

ArrayBuffers are just opaque chunks of bytes. You can access those bytes with
typed arrays, but an ArrayBuffer is not itself a typed array. Be careful,
however: you can use numeric array indexing with ArrayBuffers just as you can
with any JavaScript object. Doing so does not give you access to the bytes in
the buffer, but it can cause confusing bugs:

let bytes = new Uint8Array(8);
bytes[0] = 1; // Set the first byte to 1
bytes.buffer[0] // => undefined: buffer doesn't have index 0
bytes.buffer[1] = 255; // Try incorrectly to set a byte in the buffer
bytes.buffer[1] // => 255: this just sets a regular JS property
bytes[1] // => 0: the line above did not set the byte

We saw previously that you can create an ArrayBuffer with the
ArrayBuffer() constructor and then create typed arrays that use that
buffer. Another approach is to create an initial typed array, then use
the buffer of that array to create other views:

let bytes = new Uint8Array(1024); // 1024 bytes
let ints = new Uint32Array(bytes.buffer); // or 256 integers
let floats = new Float64Array(bytes.buffer); // or 128 doubles

11.2.5 DataView and Endianness

Typed arrays allow you to view the same sequence of bytes in chunks of 8, 16,
32, or 64 bits. This exposes the “endianness”: the order in which bytes are
arranged into longer words. For efficiency, typed arrays use the native
endianness of the underlying hardware. On little-endian systems, the bytes of a
number are arranged in an ArrayBuffer from least significant to most
significant. On big-endian platforms, the bytes are arranged from most
significant to least significant. You can determine the endianness of the
underlying platform with code like this:

// If the integer 0x00000001 is arranged in memory as 01 00 00 00, then
// we're on a little-endian platform. On a big-endian platform, we'd get
// bytes 00 00 00 01 instead.
let littleEndian = new Int8Array(new Int32Array([1]).buffer)[0] === 1;

Today, the most common CPU architectures are little-endian. Many
network protocols, and some binary file formats, require big-endian
byte ordering, however. If you’re using typed arrays with data that
came from the network or from a file, you can’t just assume that the
platform endianness matches the byte order of the data. In general,
when working with external data, you can use Int8Array and Uint8Array
to view the data as an array of individual bytes, but you should not
use the other typed arrays with multibyte word sizes. Instead, you can
use the DataView class, which defines methods for reading and writing
values from an ArrayBuffer with explicitly specified byte ordering:

// Assume we have a typed array of bytes of binary data to process. First,
// we create a DataView object so we can flexibly read and write
// values from those bytes
let view = new DataView(bytes.buffer,
 bytes.byteOffset,
 bytes.byteLength);

let int = view.getInt32(0); // Read big-endian signed int from byte 0
int = view.getInt32(4, false); // Next int is also big-endian
int = view.getUint32(8, true); // Next int is little-endian and unsigned
view.setUint32(8, int, false); // Write it back in big-endian format

DataView defines 10 get methods for each of the 10 typed array
classes (excluding Uint8ClampedArray). They have names like
getInt16(), getUint32(), getBigInt64(), and getFloat64(). The
first argument is the byte offset within the ArrayBuffer at which the
value begins. All of these getter methods, other than getInt8() and
getUint8(), accept an optional boolean value as their second
argument. If the second argument is omitted or is false, big-endian
byte ordering is used. If the second argument is true, little-endian
ordering is used.

DataView also defines 10 corresponding Set methods that write values
into the underlying ArrayBuffer. The first argument is the offset at
which the value begins. The second argument is the value to
write. Each of the methods, except setInt8() and setUint8(),
accepts an optional third argument. If the argument is omitted or is
false, the value is written in big-endian format with the most
significant byte first. If the argument is true, the value is
written in little-endian format with the least significant byte first.

Typed arrays and the DataView class give you all the tools you need to
process binary data and enable you to write JavaScript programs that
do things like decompressing ZIP files or extracting metadata from
JPEG files.

11.3 Pattern Matching with Regular Expressions

A regular expression is an object that describes a textual pattern.
The JavaScript RegExp class represents regular expressions, and both
String and RegExp define methods that use regular expressions to
perform powerful pattern-matching and search-and-replace functions on
text. In order to use the RegExp API effectively, however, you must
also learn how to describe patterns of text using the regular
expression grammar, which is essentially a mini programming language
of its own. Fortunately, the JavaScript regular expression grammar is
quite similar to the grammar used by many other programming languages,
so you may already be familiar with it. (And if you are not, the
effort you invest in learning JavaScript regular expressions will
probably be useful to you in other programming contexts as well.)

The subsections that follow describe the regular expression grammar
first, and then, after explaining how to write regular expressions,
they explain how you can use them with methods of the String and
RegExp classes.

11.3.1 Defining Regular Expressions

In JavaScript, regular expressions are represented by RegExp objects.
RegExp objects may be created with the RegExp() constructor, of
course, but they are more often created using a special literal syntax.
Just as string literals are specified as characters within quotation
marks, regular expression literals are specified as characters within a
pair of slash (/) characters. Thus, your JavaScript code may
contain lines like this:

let pattern = /s$/;

This line creates a new RegExp object and assigns it to the variable
pattern. This particular RegExp object matches any string that ends
with the letter “s.” This regular expression could have equivalently
been defined with the RegExp() constructor, like this:

let pattern = new RegExp("s$");

Regular-expression pattern specifications consist of a series of
characters. Most characters, including all alphanumeric characters,
simply describe characters to be matched literally. Thus, the regular
expression /java/ matches any string that contains the
substring “java”. Other characters in regular expressions are not
matched literally but have special significance. For example, the
regular expression /s$/ contains two characters. The first,
“s”, matches itself literally. The second, “$”, is a special
meta-character that matches the end of a string. Thus, this regular
expression matches any string that contains the letter “s” as its
last character.

As we’ll see, regular expressions can also have one or more flag
characters that affect how they work. Flags are specified following
the second slash character in RegExp literals, or as a second string
argument to the RegExp() constructor. If we wanted to match strings
that end with “s” or “S”, for example, we could use the i flag
with our regular expression to indicate that we want case-insensitive
matching:

let pattern = /s$/i;

The following sections describe the various characters and
meta-characters used in JavaScript regular expressions.

Literal characters

All alphabetic characters and digits match themselves
literally in regular expressions. JavaScript regular expression syntax
also supports certain nonalphabetic characters through escape sequences
that begin with a backslash (\). For example, the sequence
\n matches a literal newline character in a string.
Table 11-1 lists these characters.

Table 11-1. Regular-expression literal characters

	Character
	Matches

	Alphanumeric character

	Itself

	\0

	The NUL character (\u0000)

	\t

	Tab (\u0009)

	\n

	Newline (\u000A)

	\v

	Vertical tab (\u000B)

	\f

	Form feed (\u000C)

	\r

	Carriage return (\u000D)

	\xnn

	The Latin character specified by the hexadecimal number nn; for example, \x0A is the same as \n.

	\uxxxx

	The Unicode character specified by the hexadecimal number xxxx; for example, \u0009 is the same as \t.

	\u{n}

	The Unicode character specified by the codepoint n, where n is one to six hexadecimal digits between 0 and 10FFFF. Note that this syntax is only supported in regular expressions that use the u flag.

	\cX

	The control character ^X; for example, \cJ is equivalent to the newline character \n.

A number of punctuation characters have special meanings in regular
expressions. They are:

^ $. * + ? = ! : | \ / () [] { }

The meanings of these characters are discussed in the sections that
follow. Some of these characters have special meaning only within
certain contexts of a regular expression and are treated literally in
other contexts. As a general rule, however, if you want to include any
of these punctuation characters literally in a regular expression, you
must precede them with a \. Other punctuation characters, such
as quotation marks and @, do not have special meaning and simply
match themselves literally in a regular expression.

If you can’t remember exactly which punctuation characters need to be
escaped with a backslash, you may safely place a backslash before any
punctuation character. On the other hand, note that many letters and
numbers have special meaning when preceded by a backslash, so any
letters or numbers that you want to match literally should not be
escaped with a backslash. To include a backslash character literally
in a regular expression, you must escape it with a backslash, of
course. For example, the following regular expression matches any
string that includes a backslash: /\\/. (And if you use the
RegExp() constructor, keep in mind that any backslashes in your
regular expression need to be doubled, since strings also use
backslashes as an escape character.)

Character classes

Individual literal characters can be combined into character classes
by placing them within square brackets. A character class matches any
one character that is contained within it. Thus, the regular
expression /[abc]/ matches any one of the letters a, b, or
c. Negated character classes can also be defined; these match any
character except those contained within the brackets. A negated
character class is specified by placing a caret (^) as the first
character inside the left bracket. The RegExp /[^abc]/ matches any
one character other than a, b, or c. Character classes can use a
hyphen to indicate a range of characters. To match any one lowercase
character from the Latin alphabet, use /[a-z]/, and to match any
letter or digit from the Latin alphabet, use /[a-zA-Z0-9]/. (And if
you want to include an actual hyphen in your character class, simply
make it the last character before the right bracket.)

Because certain character classes are commonly used, the JavaScript
regular-expression syntax includes special characters and escape
sequences to represent these common classes. For example, \s
matches the space character, the tab character, and any other Unicode
whitespace character; \S matches any character that is not
Unicode whitespace. Table 11-2 lists these characters and
summarizes character-class syntax. (Note that several of these
character-class escape sequences match only ASCII characters and have
not been extended to work with Unicode characters. You can, however,
explicitly define your own Unicode character classes; for example,
/[\u0400-\u04FF]/ matches any one Cyrillic character.)

Table 11-2. Regular expression character classes

	Character
	Matches

	[...]

	Any one character between the brackets.

	[^...]

	Any one character not between the brackets.

	.

	Any character except newline or another Unicode line terminator. Or, if the RegExp uses the s flag, then a period matches any character, including line terminators.

	\w

	Any ASCII word character. Equivalent to [a-zA-Z0-9_].

	\W

	Any character that is not an ASCII word character. Equivalent to [^a-zA-Z0-9_].

	\s

	Any Unicode whitespace character.

	\S

	Any character that is not Unicode whitespace.

	\d

	Any ASCII digit. Equivalent to [0-9].

	\D

	Any character other than an ASCII digit. Equivalent to [^0-9].

	[\b]

	A literal backspace (special case).

Note that the special character-class escapes can be used within square
brackets. \s matches any whitespace character, and \d
matches any digit, so /[\s\d]/ matches any one
whitespace character or digit. Note that there is one special case. As
you’ll see later, the \b escape has a special meaning. When
used within a character class, however, it represents the backspace
character. Thus, to represent a backspace character literally in a
regular expression, use the character class with one element:
/[\b]/.

Unicode Character Classes

In ES2018, if a regular expression uses the u flag, then
character classes \p{...} and its negation \P{...} are
supported. (As of early 2020, this is implemented by Node, Chrome, Edge, and
Safari, but not Firefox.) These character classes are based on
properties defined by the Unicode standard, and the set of characters
they represent may change as Unicode evolves.

The \d character class matches only ASCII digits. If you want to
match one decimal digit from any of the world’s writing systems, you
can use /\p{Decimal_Number}/u. And if you want to match any one
character that is not a decimal digit in any language, you can
capitalize the p and write \P{Decimal_Number}. If you want to
match any number-like character, including fractions and roman
numerals, you can use \p{Number}. Note that “Decimal_Number” and
“Number” are not specific to JavaScript or to regular expression
grammar: it is the name of a category of characters defined by the
Unicode standard.

The \w character class only works for ASCII text, but with \p, we
can approximate an internationalized version like this:

/[\p{Alphabetic}\p{Decimal_Number}\p{Mark}]/u

(Though to be fully compatible with the complexity of the world’s
languages, we really need to add in the categories
“Connector_Punctuation” and “Join_Control” as well.)

As a final example, the \p syntax also allows us to define regular
expressions that match characters from a particular alphabet or
script:

let greekLetter = /\p{Script=Greek}/u;
let cyrillicLetter = /\p{Script=Cyrillic}/u;

Repetition

With the regular expression syntax you’ve learned so far, you can
describe a two-digit number as /\d\d/ and a
four-digit number as /\d\d\d\d/. But you
don’t have any way to describe, for example, a number that can have any
number of digits or a string of three letters followed by an optional
digit. These more complex patterns use regular expression syntax that
specifies how many times an element of a regular expression may be
repeated.

The characters that specify repetition always follow the pattern to
which they are being applied. Because certain types of repetition are
quite commonly used, there are special characters to represent these
cases. For example, + matches one or more occurrences of the
previous pattern.

Table 11-3 summarizes the repetition syntax.

Table 11-3. Regular expression repetition characters

	Character
	Meaning

	{n,m}

	Match the previous item at least n times but no more than m times.

	{n,}

	Match the previous item n or more times.

	{n}

	Match exactly n occurrences of the previous item.

	?

	Match zero or one occurrences of the previous item. That is, the previous item is optional. Equivalent to {0,1}.

	+

	Match one or more occurrences of the previous item. Equivalent to {1,}.

	*

	Match zero or more occurrences of the previous item. Equivalent to {0,}.

The following lines show some examples:

let r = /\d{2,4}/; // Match between two and four digits
r = /\w{3}\d?/; // Match exactly three word characters and an optional digit
r = /\s+java\s+/; // Match "java" with one or more spaces before and after
r = /[^(]*/; // Match zero or more characters that are not open parens

Note that in all of these examples, the repetition specifiers apply to
the single character or character class that precedes them. If you
want to match repetitions of more complicated expressions, you’ll need
to define a group with parentheses, which are explained in the following sections.

Be careful when using the * and ? repetition characters.
Since these characters may match zero instances of whatever precedes
them, they are allowed to match nothing. For example, the regular
expression /a*/ actually matches the string “bbbb”
because the string contains zero occurrences of the letter a!

Non-greedy repetition

The repetition characters listed in Table 11-3 match as many
times as possible while still allowing any following parts of the
regular expression to match. We say that this repetition is “greedy.”
It is also possible to specify that repetition should be done in a
non-greedy way. Simply follow the repetition character or characters
with a question mark: ??, +?, *?, or even {1,5}?.
For example, the regular expression /a+/ matches one or
more occurrences of the letter a. When applied to the string “aaa”,
it matches all three letters. But /a+?/ matches one or
more occurrences of the letter a, matching as few characters as
necessary. When applied to the same string, this pattern matches only
the first letter a.

Using non-greedy repetition may not always produce the results you
expect. Consider the pattern /a+b/, which matches one
or more a’s, followed by the letter b. When applied to the string
“aaab”, it matches the entire string. Now let’s use the non-greedy
version: /a+?b/. This should match the letter b
preceded by the fewest number of a’s possible. When applied to the same
string “aaab”, you might expect it to match only one a and the last
letter b. In fact, however, this pattern matches the entire string,
just like the greedy version of the pattern. This is because
regular expression pattern matching is done by finding the first
position in the string at which a match is possible. Since a match is
possible starting at the first character of the string, shorter matches
starting at subsequent characters are never even considered.

Alternation, grouping, and references

The regular expression grammar includes special characters for
specifying alternatives, grouping subexpressions, and referring to
previous subexpressions. The | character separates alternatives. For
example, /ab|cd|ef/ matches the string “ab” or the string
“cd” or the string “ef”. And /\d{3}|[a-z]{4}/
matches either three digits or four lowercase letters.

Note that alternatives are considered left to right until a match is
found. If the left alternative matches, the right alternative is
ignored, even if it would have produced a “better” match. Thus, when
the pattern /a|ab/ is applied to the string “ab”, it
matches only the first letter.

Parentheses have several purposes in regular expressions. One purpose
is to group separate items into a single subexpression so that the
items can be treated as a single unit by |, *, +,
?, and so on. For example, /java(script)?/ matches
“java” followed by the optional “script”. And
/(ab|cd)+|ef/ matches either the string “ef” or one
or more repetitions of either of the strings “ab” or “cd”.

Another purpose of parentheses in regular expressions is to define
subpatterns within the complete pattern. When a regular expression is
successfully matched against a target string, it is possible to extract
the portions of the target string that matched any particular
parenthesized subpattern. (You’ll see how these matching substrings are
obtained later in this section.) For example, suppose you are looking
for one or more lowercase letters followed by one or more digits. You
might use the pattern /[a-z]+\d+/. But suppose you
only really care about the digits at the end of each match. If you put
that part of the pattern in parentheses
(/[a-z]+(\d+)/), you can extract the digits
from any matches you find, as explained later.

A related use of parenthesized subexpressions is to allow you to refer
back to a subexpression later in the same regular expression. This is
done by following a \ character by a digit or digits. The
digits refer to the position of the parenthesized subexpression within
the regular expression. For example, \1 refers back to the
first subexpression, and \3 refers to the third. Note that,
because subexpressions can be nested within others, it is the position
of the left parenthesis that is counted. In the following regular
expression, for example, the nested subexpression ([Ss]cript) is
referred to as \2:

/([Jj]ava([Ss]cript)?)\sis\s(fun\w*)/

A reference to a previous subexpression of a regular expression does
not refer to the pattern for that subexpression but rather to the
text that matched the pattern. Thus, references can be used to enforce
a constraint that separate portions of a string contain exactly the
same characters. For example, the following regular expression matches
zero or more characters within single or double quotes. However, it
does not require the opening and closing quotes to match (i.e., both
single quotes or both double quotes):

/['"][^'"]*['"]/

To require the quotes to match, use a reference:

/(['"])[^'"]*\1/

The \1 matches whatever the first parenthesized subexpression
matched. In this example, it enforces the constraint that the closing
quote match the opening quote. This regular expression does not allow
single quotes within double-quoted strings or vice versa. (It is not
legal to use a reference within a character class, so you cannot write:
/(['"])[^\1]*\1/.)

When we cover the RegExp API later, you’ll see that this kind of
reference to a parenthesized subexpression is a powerful feature of
regular-expression search-and-replace operations.

It is also possible to group items in a regular expression without
creating a numbered reference to those items. Instead of simply
grouping the items within (and), begin the group with (?: and
end it with). Consider the following pattern:

/([Jj]ava(?:[Ss]cript)?)\sis\s(fun\w*)/

In this example, the subexpression (?:[Ss]cript) is used simply for grouping, so
the ? repetition character can be applied to the group. These
modified parentheses do not produce a reference, so in this regular
expression, \2 refers to the text matched by
(fun\w*).

Table 11-4 summarizes the regular expression alternation,
grouping, and referencing operators.

Table 11-4. Regular expression alternation, grouping, and reference characters

	Character
	Meaning

	|

	Alternation: match either the subexpression to the left or the subexpression to the right.

	(...)

	Grouping: group items into a single unit that can be used with *, +, ?, |, and so on. Also remember the characters that match this group for use with later references.

	(?:...)

	Grouping only: group items into a single unit, but do not remember the characters that match this group.

	\n

	Match the same characters that were matched when group number n was first matched. Groups are subexpressions within (possibly nested) parentheses. Group numbers are assigned by counting left parentheses from left to right. Groups formed with (?: are not numbered.

Named Capture Groups

ES2018 standardizes a new feature that can make regular expressions
more self-documenting and easier to understand. This new feature is
known as “named capture groups” and it allows us to associate a name
with each left parenthesis in a regular expression so that we can
refer to the matching text by name rather than by number. Equally
important: using names allows someone reading the code to more easily
understand the purpose of that portion of the regular expression. As
of early 2020, this feature is implemented in Node, Chrome, Edge, and Safari,
but not yet by Firefox.

To name a group, use (?<...> instead of (and put the name
between the angle brackets. For example, here is a regular expression
that might be used to check the formatting of the final line of a US
mailing address:

/(?<city>\w+) (?<state>[A-Z]{2}) (?<zipcode>\d{5})(?<zip9>-\d{4})?/

Notice how much context the group names provide to make the regular
expression easier to understand. In §11.3.2, when we discuss the String
replace() and match() methods and the RegExp exec() method,
you’ll see how the RegExp API allows you to refer to the text that
matches each of these groups by name rather than by position.

If you want to refer back to a named capture group within a regular
expression, you can do that by name as well. In the preceding example, we were able to use a
regular expression “backreference” to write a RegExp that would match
a single- or double-quoted string where the open and close quotes had
to match. We could rewrite this RegExp using a named capturing group
and a named backreference like this:

/(?<quote>['"])[^'"]*\k<quote>/

The \k<quote> is a named backreference to the named group that
captures the open quotation mark.

Specifying match position

As described earlier, many elements of a regular expression match a
single character in a string. For example, \s matches a single
character of whitespace. Other regular expression elements match the
positions between characters instead of actual characters. \b,
for example, matches an ASCII word boundary—the boundary between a \w
(ASCII word character) and a \W (nonword character), or the
boundary between an ASCII word character and the beginning or end of a
string.4 Elements such as
\b do not specify any characters to be used in a matched
string; what they do specify, however, are legal positions at which a
match can occur. Sometimes these elements are called
regular expression anchors because they anchor the pattern to a
specific position in the search string. The most commonly used anchor
elements are ^, which ties the pattern to the beginning of the
string, and $, which anchors the pattern to the end of the string.

For example, to match the word “JavaScript” on a line by itself, you
can use the regular expression /^JavaScript$/. If you want
to search for “Java” as a word by itself (not as a prefix, as it is
in “JavaScript”), you can try the pattern
/\sJava\s/, which requires a space before and after
the word. But there are two problems with this solution. First, it does
not match “Java” at the beginning or the end of a string, but only if
it appears with space on either side. Second, when this pattern does
find a match, the matched string it returns has leading and trailing
spaces, which is not quite what’s needed. So instead of matching actual
space characters with \s, match (or anchor to) word boundaries
with \b. The resulting expression is
/\bJava\b/. The element \B anchors the
match to a location that is not a word boundary. Thus, the pattern /\B[Ss]cript/ matches “JavaScript” and
“postscript”, but not “script” or “Scripting”.

You can also use arbitrary regular expressions as anchor conditions. If
you include an expression within (?= and) characters, it is a
lookahead assertion, and it specifies that the enclosed characters must
match, without actually matching them. For example, to match the name
of a common programming language, but only if it is followed by a
colon, you could use /[Jj]ava([Ss]cript)?(?=\:)/. This
pattern matches the word “JavaScript” in “JavaScript: The Definitive
Guide”, but it does not match “Java” in “Java in a Nutshell”
because it is not followed by a colon.

If you instead introduce an assertion with (?!, it is a negative
lookahead assertion, which specifies that the following characters must
not match. For example, /Java(?!Script)([A-Z]\w*)/
matches “Java” followed by a capital letter and any number of
additional ASCII word characters, as long as “Java” is not followed
by “Script”. It matches “JavaBeans” but not “Javanese”, and it
matches “JavaScrip” but not “JavaScript” or “JavaScripter”. Table 11-5 summarizes regular expression anchors.

Table 11-5. Regular expression anchor characters

	Character
	Meaning

	^

	Match the beginning of the string or, with the m flag, the beginning of a line.

	$

	Match the end of the string and, with the m flag, the end of a line.

	\b

	Match a word boundary. That is, match the position between a \w character and a \W character or between a \w character and the beginning or end of a string. (Note, however, that [\b] matches backspace.)

	\B

	Match a position that is not a word boundary.

	(?=p)

	A positive lookahead assertion. Require that the following characters match the pattern p, but do not include those characters in the match.

	(?!p)

	A negative lookahead assertion. Require that the following characters do not match the pattern p.

Lookbehind Assertions

ES2018 extends regular expression syntax to allow “lookbehind”
assertions. These are like lookahead assertions but refer to text
before the current match position. As of early 2020, these are
implemented in Node, Chrome, and Edge, but not Firefox or Safari.

Specify a positive lookbehind assertion with (?<=...) and a negative
lookbehind assertion with (?<!...). For example, if you were
working with US mailing addresses, you could match a 5-digit zip code,
but only when it follows a two-letter state abbreviation, like this:

/(?<= [A-Z]{2})\d{5}/

And you could match a string of digits that is not preceded by a
Unicode currency symbol with a negative lookbehind assertion like this:

/(?<![\p{Currency_Symbol}\d.])\d+(\.\d+)?/u

Flags

Every regular expression can have one or more flags associated with
it to alter its matching behavior. JavaScript defines six possible flags,
each of which is represented by a single letter. Flags are specified
after the second / character of a regular expression literal or as
a string passed as the second argument to the RegExp() constructor. The supported flags and their meanings are:

	g

	
The g flag indicates that the regular expression is
“global”—that is, that we intend to use it to find all matches within
a string rather than just finding the first match. This flag does not
alter the way that pattern matching is done, but, as we’ll see later,
it does alter the behavior of the String match() method and the
RegExp exec() method in important ways.

	i

	
The i flag specifies that pattern matching should be
case-insensitive.

	m

	
The m flag specifies that matching should be done in
“multiline” mode. It says that the RegExp will be used with multiline
strings and that the ^ and $ anchors should match both the
beginning and end of the string and also the beginning and end of
individual lines within the string.

	s

	
Like the m flag, the s flag is also useful when working with
text that includes newlines. Normally, a “.” in a regular expression
matches any character except a line terminator. When the s flag is
used, however, “.” will match any character, including line
terminators. The s flag was added to JavaScript in ES2018 and, as of
early 2020, is supported in Node, Chrome, Edge, and Safari, but not Firefox.

	u

	
The u flag stands for Unicode, and it makes the regular expression
match full Unicode codepoints rather than matching 16-bit
values. This flag was introduced in ES6, and you should make a habit
of using it on all regular expressions unless you have some reason not
to. If you do not use this flag, then your RegExps will not work well
with text that includes emoji and other characters (including many
Chinese characters) that require more than 16 bits. Without the u flag,
the “.” character matches any 1 UTF-16 16-bit value. With the flag,
however, “.” matches one Unicode codepoint, including those that have
more than 16 bits. Setting the u flag on a RegExp also allows you to use
the new \u{...} escape sequence for Unicode character and also
enables the \p{...} notation for Unicode character classes.

	y

	
The y flag indicates that the regular expression is “sticky”
and should match at the beginning of a string or at the first
character following the previous match. When used with a regular
expression that is designed to find a single match, it effectively
treats that regular expression as if it begins with ^ to anchor it
to the beginning of the string. This flag is more useful with regular
expressions that are used repeatedly to find all matches within a
string. In this case, it causes special behavior of the String
match() method and the RegExp exec() method to enforce that each
subsequent match is anchored to the string position at which the last
one ended.

These flags may be specified in any combination and in any order. For
example, if you want your regular expression to be Unicode-aware to
do case-insensitive matching and you intend to use it to find
multiple matches within a string, you would specify the flags uig,
gui, or any other permutation of these three letters.

11.3.2 String Methods for Pattern Matching

Until now, we have been describing the grammar used to define regular
expressions, but not explaining how those regular expressions can
actually be used in JavaScript code. We are now switching to cover the
API for using RegExp objects. This section begins by explaining the
string methods that use regular expressions to perform pattern
matching and search-and-replace operations. The sections that follow
this one continue the discussion of pattern matching with JavaScript
regular expressions by discussing the RegExp object and its methods
and properties.

search()

Strings support four methods that use regular expressions. The simplest
is search(). This method takes a regular expression argument and
returns either the character position of the start of the first
matching substring or −1 if there is no match:

"JavaScript".search(/script/ui) // => 4
"Python".search(/script/ui) // => -1

If the argument to search() is not a regular expression, it is first
converted to one by passing it to the RegExp constructor. search()
does not support global searches; it ignores the g flag of its
regular expression argument.

replace()

The replace() method performs a search-and-replace operation. It
takes a regular expression as its first argument and a replacement
string as its second argument. It searches the string on which it is
called for matches with the specified pattern. If the regular
expression has the g flag set, the replace() method replaces all
matches in the string with the replacement string; otherwise, it
replaces only the first match it finds. If the first argument to
replace() is a string rather than a regular expression, the method
searches for that string literally rather than converting it to a
regular expression with the RegExp() constructor, as search() does.
As an example, you can use replace() as follows to provide uniform
capitalization of the word “JavaScript” throughout a string of text:

// No matter how it is capitalized, replace it with the correct capitalization
text.replace(/javascript/gi, "JavaScript");

replace() is more powerful than this, however. Recall that
parenthesized subexpressions of a regular expression are numbered from
left to right and that the regular expression remembers the text that
each subexpression matches. If a $ followed by a digit appears in
the replacement string, replace() replaces those two characters with
the text that matches the specified subexpression. This is a very
useful feature. You can use it, for example, to replace quotation marks
in a string with other characters:

// A quote is a quotation mark, followed by any number of
// nonquotation mark characters (which we capture), followed
// by another quotation mark.
let quote = /"([^"]*)"/g;
// Replace the straight quotation marks with guillemets
// leaving the quoted text (stored in $1) unchanged.
'He said "stop"'.replace(quote, '«$1»') // => 'He said «stop»'

If your RegExp uses named capture groups, then you can refer to the
matching text by name rather than by number:

let quote = /"(?<quotedText>[^"]*)"/g;
'He said "stop"'.replace(quote, '«$<quotedText>»') // => 'He said «stop»'

Instead of passing a replacement string as the second argument to
replace(), you can also pass a function that will be invoked to
compute the replacement value. The replacement function is invoked
with a number of arguments. First is the entire matched text. Next, if
the RegExp has capturing groups, then the substrings that were captured
by those groups are passed as arguments. The next argument is the
position within the string at which the match was found. After that,
the entire string that replace() was called on is passed. And
finally, if the RegExp contained any named capture groups, the last
argument to the replacement function is an object whose property names
match the capture group names and whose values are the matching
text. As an example, here is code that uses a replacement function to
convert decimal integers in a string to hexadecimal:

let s = "15 times 15 is 225";
s.replace(/\d+/gu, n => parseInt(n).toString(16)) // => "f times f is e1"

match()

The match() method is the most general of the String
regular expression methods. It takes a regular expression as its only
argument (or converts its argument to a regular expression by passing
it to the RegExp() constructor) and returns an array that contains
the results of the match, or null if no match is found. If the
regular expression has the g flag set, the method returns an array
of all matches that appear in the string. For example:

"7 plus 8 equals 15".match(/\d+/g) // => ["7", "8", "15"]

If the regular expression does not have the g flag set, match()
does not do a global search; it simply searches for the first match.
In this nonglobal case, match() still returns an array, but the
array elements are completely different. Without the g flag, the
first element of the returned array is the matching string, and any
remaining elements are the substrings matching the parenthesized
capturing groups of the regular expression. Thus, if match() returns
an array a, a[0] contains the complete match, a[1] contains the
substring that matched the first parenthesized expression, and so on.
To draw a parallel with the replace() method, a[1] is the same
string as $1, a[2] is the same as $2, and so on.

For example, consider parsing a URL5 with the following code:

// A very simple URL parsing RegExp
let url = /(\w+):\/\/([\w.]+)\/(\S*)/;
let text = "Visit my blog at http://www.example.com/~david";
let match = text.match(url);
let fullurl, protocol, host, path;
if (match !== null) {
 fullurl = match[0]; // fullurl == "http://www.example.com/~david"
 protocol = match[1]; // protocol == "http"
 host = match[2]; // host == "www.example.com"
 path = match[3]; // path == "~david"
}

In this non-global case, the array returned by match() also has some
object properties in addition to the numbered array elements. The
input property refers to the string on which match() was
called. The index property is the position within that string at
which the match starts. And if the regular expression contains named
capture groups, then the returned array also has a groups property
whose value is an object. The properties of this object match the
names of the named groups, and the values are the matching text. We
could rewrite the previous URL parsing example, for example, like this:

let url = /(?<protocol>\w+):\/\/(?<host>[\w.]+)\/(?<path>\S*)/;
let text = "Visit my blog at http://www.example.com/~david";
let match = text.match(url);
match[0] // => "http://www.example.com/~david"
match.input // => text
match.index // => 17
match.groups.protocol // => "http"
match.groups.host // => "www.example.com"
match.groups.path // => "~david"

We’ve seen that match() behaves quite differently depending on
whether the RegExp has the g flag set or not. There are also
important but less dramatic differences in behavior when the y flag
is set. Recall that the y flag makes a regular expression “sticky”
by constraining where in the string matches can begin. If a RegExp
has both the g and y flags set, then match() returns an array of
matched strings, just as it does when g is set without y. But the
first match must begin at the start of the string, and each subsequent
match must begin at the character immediately following the previous
match.

If the y flag is set without g, then match() tries to find a
single match, and, by default, this match is constrained to the start
of the string. You can change this default match start position,
however, by setting the lastIndex property of the RegExp object at
the index at which you want to match at. If a match is found, then
this lastIndex will be automatically updated to the first character
after the match, so if you call match() again, in this case, it will
look for a subsequent match. (lastIndex may seem like a strange name
for a property that specifies the position at which to begin the
next match. We will see it again when we cover the RegExp exec()
method, and its name may make more sense in that context.)

let vowel = /[aeiou]/y; // Sticky vowel match
"test".match(vowel) // => null: "test" does not begin with a vowel
vowel.lastIndex = 1; // Specify a different match position
"test".match(vowel)[0] // => "e": we found a vowel at position 1
vowel.lastIndex // => 2: lastIndex was automatically updated
"test".match(vowel) // => null: no vowel at position 2
vowel.lastIndex // => 0: lastIndex gets reset after failed match

It is worth noting that passing a non-global regular expression to the
match() method of a string is the same as passing the string
to the exec() method of the regular expression: the returned array
and its properties are the same in both cases.

matchAll()

The matchAll() method is defined in ES2020, and as of early 2020 is
implemented by modern web browsers and Node. matchAll() expects a
RegExp with the g flag set. Instead of returning an array of
matching substrings like match() does, however, it returns an
iterator that yields the kind of match objects that match() returns
when used with a non-global RegExp. This makes matchAll() the
easiest and most general way to loop through all matches within a
string.

You might use matchAll() to loop through the words in a string of
text like this:

// One or more Unicode alphabetic characters between word boundaries
const words = /\b\p{Alphabetic}+\b/gu; // \p is not supported in Firefox yet
const text = "This is a naïve test of the matchAll() method.";
for(let word of text.matchAll(words)) {
 console.log(`Found '${word[0]}' at index ${word.index}.`);
}

You can set the lastIndex property of a RegExp object to tell
matchAll() what index in the string to begin matching at. Unlike the
other pattern-matching methods, however, matchAll() never modifies
the lastIndex property of the RegExp you call it on, and this makes
it much less likely to cause bugs in your code.

split()

The last of the regular expression methods of the String object is
split(). This method breaks the string on which it is called into an
array of substrings, using the argument as a separator. It can be used
with a string argument like this:

"123,456,789".split(",") // => ["123", "456", "789"]

The split() method can also take a regular expression as its
argument, and this allows you to specify more general separators. Here
we call it with a separator that includes an arbitrary amount of
whitespace on either side:

"1, 2, 3,\n4, 5".split(/\s*,\s*/) // => ["1", "2", "3", "4", "5"]

Surprisingly, if you call split() with a RegExp delimiter and the
regular expression includes capturing groups, then the text that
matches the capturing groups will be included in the returned
array. For example:

const htmlTag = /<([^>]+)>/; // < followed by one or more non->, followed by >
"Testing
1,2,3".split(htmlTag) // => ["Testing", "br/", "1,2,3"]

11.3.3 The RegExp Class

This section documents the RegExp() constructor, the properties of
RegExp instances, and two important pattern-matching methods defined
by the RegExp class.

The RegExp() constructor takes one or two string arguments and
creates a new RegExp object. The first argument to this constructor is
a string that contains the body of the regular expression—the text
that would appear within slashes in a regular-expression literal. Note
that both string literals and regular expressions use the \
character for escape sequences, so when you pass a regular expression
to RegExp() as a string literal, you must replace each \ character
with \\. The second argument to RegExp() is optional. If supplied,
it indicates the regular expression flags. It should be g, i, m,
s, u, y, or any combination of those letters.

For example:

// Find all five-digit numbers in a string. Note the double \\ in this case.
let zipcode = new RegExp("\\d{5}", "g");

The RegExp() constructor is useful when a regular expression is being
dynamically created and thus cannot be represented with the
regular expression literal syntax. For example, to search for a string
entered by the user, a regular expression must be created at runtime
with RegExp().

Instead of passing a string as the first argument to RegExp(), you
can also pass a RegExp object. This allows you to copy a regular
expression and change its flags:

let exactMatch = /JavaScript/;
let caseInsensitive = new RegExp(exactMatch, "i");

RegExp properties

RegExp objects have the following properties:

	source

	
This read-only property is the source text of the regular
expression: the characters that appear between the slashes in a
RegExp literal.

	flags

	
This read-only property is a string that specifies the set
of letters that represent the flags for the RegExp.

	global

	
A read-only boolean property that is true if the g flag
is set.

	ignoreCase

	
A read-only boolean property that is true if the i
flag is set.

	multiline

	
A read-only boolean property that is true if the m
flag is set.

	dotAll

	
A read-only boolean property that is true if the s
flag is set.

	unicode

	
A read-only boolean property that is true if the u
flag is set.

	sticky

	
A read-only boolean property that is true if the y
flag is set.

	lastIndex

	
This property is a read/write integer. For patterns with
the g or y flags, it specifies the character position at which the
next search is to begin. It is used by the exec() and test()
methods, described in the next two subsections.

test()

The test() method of the RegExp class is the simplest way to use a
regular expression. It takes a single string argument and returns
true if the string matches the pattern or false if it does not
match.

test() works by simply calling the (much more complicated) exec()
method described in the next section and returning true if exec() returns a
non-null value. Because of this, if you use test() with a RegExp that
uses the g or y flags, then its behavior depends on the value of
the lastIndex property of the RegExp object, which can change
unexpectedly. See “The lastIndex Property and RegExp Reuse” for more details.

exec()

The RegExp exec() method is the most general and powerful way to use
regular expressions. It takes a single string argument and looks for a
match in that string. If no match is found, it returns null. If a
match is found, however, it returns an array just like the array
returned by the match() method for non-global searches. Element 0 of
the array contains the string that matched the regular expression, and
any subsequent array elements contain the substrings that matched any
capturing groups. The returned array also has named properties: the
index property contains the character position at which the match
occurred, and the input property specifies the string that was
searched, and the groups property, if defined, refers to an object
that holds the substrings matching the any named capturing groups.

Unlike the String match() method, exec() returns the same kind of
array whether or not the regular expression has the global g
flag. Recall that match() returns an array of matches when passed a
global regular expression. exec(), by contrast, always returns a
single match and provides complete information about that match. When
exec() is called on a regular expression that has either the global
g flag or the sticky y flag set, it consults the lastIndex
property of the RegExp object to determine where to start looking for
a match. (And if the y flag is set, it also constrains the match to
begin at that position.) For a newly created RegExp object,
lastIndex is 0, and the search begins at the start of the string. But
each time exec() successfully finds a match, it updates the
lastIndex property to the index of the character immediately after
the matched text. If exec() fails to find a match, it resets
lastIndex to 0. This special behavior allows you to call exec()
repeatedly in order to loop through all the regular expression matches
in a string. (Although, as we’ve described, in ES2020 and later, the
matchAll() method of String is an easier way to loop through all
matches.) For example, the loop in the following code will run twice:

let pattern = /Java/g;
let text = "JavaScript > Java";
let match;
while((match = pattern.exec(text)) !== null) {
 console.log(`Matched ${match[0]} at ${match.index}`);
 console.log(`Next search begins at ${pattern.lastIndex}`);
}

The lastIndex Property and RegExp Reuse

As you have seen already, JavaScript’s regular expression API is
complicated. The use of the lastIndex property with the g and y
flags is a particularly awkward part of this API. When you use these
flags, you need to be particularly careful when calling the match(),
exec(), or test() methods because the behavior of these methods
depends on lastIndex, and the value of lastIndex depends on what
you have previously done with the RegExp object. This makes it easy to
write buggy code.

Suppose, for example, that we wanted to find the index of all <p>
tags within a string of HTML text. We might write code like this:

let match, positions = [];
while((match = /<p>/g.exec(html)) !== null) { // POSSIBLE INFINITE LOOP
 positions.push(match.index);
}

This code does not do what we want it to. If the html string
contains at least one <p> tag, then it will loop forever. The
problem is that we use a RegExp literal in the while loop
condition. For each iteration of the loop, we’re creating a new RegExp
object with lastIndex set to 0, so exec() always begins at the
start of the string, and if there is a match, it will keep matching
over and over. The solution, of course, is to define the RegExp once,
and save it to a variable so that we’re using the same RegExp object
for each iteration of the loop.

On the other hand, sometimes reusing a RegExp object is the wrong
thing to do. Suppose, for example, that we want to loop through all of
the words in a dictionary to find words that contain pairs of double
letters:

let dictionary = ["apple", "book", "coffee"];
let doubleLetterWords = [];
let doubleLetter = /(\w)\1/g;

for(let word of dictionary) {
 if (doubleLetter.test(word)) {
 doubleLetterWords.push(word);
 }
}
doubleLetterWords // => ["apple", "coffee"]: "book" is missing!

Because we set the g flag on the RegExp, the lastIndex property is
changed after successful matches, and the test() method (which is
based on exec()) starts searching for a match at the position
specified by lastIndex. After matching the “pp” in “apple”,
lastIndex is 3, and so we start searching the word “book” at position
3 and do not see the “oo” that it contains.

We could fix this problem by removing the g flag (which is not actually
necessary in this particular example), or by moving the RegExp literal
into the body of the loop so that it is re-created on each iteration,
or by explicitly resetting lastIndex to zero before each call to
test().

The moral here is that lastIndex makes the RegExp API error
prone. So be extra careful when using the g or y flags and
looping. And in ES2020 and later, use the String matchAll()
method instead of exec() to sidestep this problem since matchAll()
does not modify lastIndex.

11.4 Dates and Times

The Date class is JavaScript’s API for working with dates and
times. Create a Date object with the Date() constructor. With no
arguments, it returns a Date object that represents the current date
and time:

let now = new Date(); // The current time

If you pass one numeric argument, the Date() constructor interprets
that argument as the number of milliseconds since the 1970 epoch:

let epoch = new Date(0); // Midnight, January 1st, 1970, GMT

If you specify two or more integer arguments, they are interpreted as
the year, month, day-of-month, hour, minute, second, and millisecond in
your local time zone, as in the following:

let century = new Date(2100, // Year 2100
 0, // January
 1, // 1st
 2, 3, 4, 5); // 02:03:04.005, local time

One quirk of the Date API is that the first month of a year is
number 0, but the first day of a month is number 1. If you omit the time
fields, the Date() constructor defaults them all to 0, setting the
time to midnight.

Note that when invoked with multiple numbers, the Date() constructor
interprets them using whatever time zone the local computer is set
to. If you want to specify a date and time in UTC (Universal
Coordinated Time, aka GMT), then you can use the Date.UTC(). This
static method takes the same arguments as the Date() constructor,
interprets them in UTC, and returns a millisecond timestamp that you
can pass to the Date() constructor:

// Midnight in England, January 1, 2100
let century = new Date(Date.UTC(2100, 0, 1));

If you print a date (with console.log(century), for example), it will,
by default, be printed in your local time zone. If you want to display a
date in UTC, you should explicitly convert it to a string with
toUTCString() or toISOString().

Finally, if you pass a string to the Date() constructor, it will
attempt to parse that string as a date and time specification. The
constructor can parse dates specified in the formats produced by the
toString(), toUTCString(), and toISOString() methods:

let century = new Date("2100-01-01T00:00:00Z"); // An ISO format date

Once you have a Date object, various get and set methods allow
you to query and modify the year, month, day-of-month, hour, minute,
second, and millisecond fields of the Date. Each of these methods has
two forms: one that gets or sets using local time and one that gets or
sets using UTC time. To get or set the year of a Date object, for
example, you would use getFullYear(), getUTCFullYear(),
setFullYear(), or setUTCFullYear():

let d = new Date(); // Start with the current date
d.setFullYear(d.getFullYear() + 1); // Increment the year

To get or set the other fields of a Date, replace “FullYear” in the
method name with “Month”, “Date”, “Hours”, “Minutes”, “Seconds”, or
“Milliseconds”. Some of the date set methods allow you to set more
than one field at a time. setFullYear() and setUTCFullYear() also
optionally allow you to set the month and day-of-month as well. And
setHours() and setUTCHours() allow you to specify the minutes,
seconds, and milliseconds fields in addition to the hours field.

Note that the methods for querying the day-of-month are getDate() and
getUTCDate(). The more natural-sounding functions getDay() and
getUTCDay() return the day-of-week (0 for Sunday through 6 for
Saturday). The day-of-week is read-only, so there is not a
corresponding setDay() method.

11.4.1 Timestamps

JavaScript represents dates internally as integers that specify the
number of milliseconds since (or before) midnight on January 1, 1970,
UTC time. Integers as large as 8,640,000,000,000,000 are supported, so
JavaScript won’t be running out of milliseconds for more than 270,000 years.

For any Date object, the getTime() method returns this
internal value, and the setTime() method sets it. So you can add 30
seconds to a Date with code like this, for example:

d.setTime(d.getTime() + 30000);

These millisecond values are sometimes called timestamps, and it is
sometimes useful to work with them directly rather than with Date
objects. The static Date.now() method returns the current time as a
timestamp and is helpful when you want to measure how long your code
takes to run:

let startTime = Date.now();
reticulateSplines(); // Do some time-consuming operation
let endTime = Date.now();
console.log(`Spline reticulation took ${endTime - startTime}ms.`);

High-Resolution Timestamps

The timestamps returned by Date.now() are measured in
milliseconds. A millisecond is actually a relatively long time for a
computer, and sometimes you may want to measure elapsed time with
higher precision. The performance.now() function allows this: it
also returns a millisecond-based timestamp, but the return value is
not an integer, so it includes fractions of a millisecond. The value
returned by performance.now() is not an absolute timestamp like the
Date.now() value is. Instead, it simply indicates how much time has
elapsed since a web page was loaded or since the Node process started.

The performance object is part of a larger Performance API that is
not defined by the ECMAScript standard but is implemented by web
browsers and by Node. In order to use the performance object in
Node, you must import it with:

const { performance } = require("perf_hooks");

Allowing high-precision timing on the web may allow unscrupulous
websites to fingerprint visitors, so browsers (notably Firefox) may
reduce the precision of performance.now() by default. As a web
developer, you should be able to re-enable high-precision timing
somehow (such as by setting privacy.reduceTimerPrecision to false in
Firefox).

11.4.2 Date Arithmetic

Date objects can be compared with JavaScript’s standard <, <=, >,
and >= comparison operators. And you can subtract one Date object
from another to determine the number of milliseconds between the two
dates. (This works because the Date class defines a valueOf() method
that returns a timestamp.)

If you want to add or subtract a specified number of seconds, minutes,
or hours from a Date, it is often easiest to simply modify the
timestamp as demonstrated in the previous example, when we added 30 seconds to a
date. This technique becomes more cumbersome if you want to add days,
and it does not work at all for months and years since they have
varying numbers of days. To do date arithmetic involving days, months,
and years, you can use setDate(), setMonth(), and setYear().
Here, for example, is code that adds three months and two weeks to
the current date:

let d = new Date();
d.setMonth(d.getMonth() + 3, d.getDate() + 14);

Date setting methods work correctly even when they overflow. When we
add three months to the current month, we can end up with a value
greater than 11 (which represents December). The setMonth() handles
this by incrementing the year as needed. Similarly, when we set the
day of the month to a value larger than the number of days in the
month, the month gets incremented appropriately.

11.4.3 Formatting and Parsing Date Strings

If you are using the Date class to actually keep track of dates and
times (as opposed to just measuring time intervals), then you are
likely to need to display dates and times to the users of your
code. The Date class defines a number of different methods for
converting Date objects to strings. Here are some examples:

let d = new Date(2020, 0, 1, 17, 10, 30); // 5:10:30pm on New Year's Day 2020
d.toString() // => "Wed Jan 01 2020 17:10:30 GMT-0800 (Pacific Standard Time)"
d.toUTCString() // => "Thu, 02 Jan 2020 01:10:30 GMT"
d.toLocaleDateString() // => "1/1/2020": 'en-US' locale
d.toLocaleTimeString() // => "5:10:30 PM": 'en-US' locale
d.toISOString() // => "2020-01-02T01:10:30.000Z"

This is a full list of the string formatting methods of the Date class:

	toString()

	
This method uses the local time zone but does not format
the date and time in a locale-aware way.

	toUTCString()

	
This method uses the UTC time zone but does not
format the date in a locale-aware way.

	toISOString()

	
This method prints the date and time in the standard
year-month-day hours:minutes:seconds.ms format of the ISO-8601
standard. The letter “T” separates the date portion of the output from
the time portion of the output. The time is expressed in UTC, and this
is indicated with the letter “Z” as the last letter of the
output.

	toLocaleString()

	
This method uses the local time zone and a
format that is appropriate for the user’s locale.

	toDateString()

	
This method formats only the date portion of the
Date and omits the time. It uses the local time zone and does not do
locale-appropriate formatting.

	toLocaleDateString()

	
This method formats only the date. It uses
the local time zone and a locale-appropriate date format.

	toTimeString()

	
This method formats only the time and omits the
date. It uses the local time zone but does not format the time in a
locale-aware way.

	toLocaleTimeString()

	
This method formats the time in a locale-aware way and uses the local time zone.

None of these date-to-string methods is ideal when formatting dates and
times to be displayed to end users. See §11.7.2 for a more
general-purpose and locale-aware date- and time-formatting
technique.

Finally, in addition to these methods that convert a Date object to a
string, there is also a static Date.parse() method that takes a
string as its argument, attempts to parse it as a date and time, and
returns a timestamp representing that date. Date.parse() is able to
parse the same strings that the Date() constructor can and is
guaranteed to be able to parse the output of toISOString(),
toUTCString(), and toString().

11.5 Error Classes

The JavaScript throw and catch statements can throw and catch any
JavaScript value, including primitive values. There is no exception
type that must be used to signal errors. JavaScript does define an
Error class, however, and it is traditional to use instances of Error
or a subclass when signaling an error with throw. One good reason
to use an Error object is that, when you create an Error, it captures
the state of the JavaScript stack, and if the exception is uncaught,
the stack trace will be displayed with the error message, which will
help you debug the issue. (Note that the stack trace shows where
the Error object was created, not where the throw statement throws
it. If you always create the object right before throwing it with
throw new Error(), this will not cause any confusion.)

Error objects have two properties: message and name, and a
toString() method. The value of the message property is the value
you passed to the Error() constructor, converted to a string if
necessary. For error objects created with Error(), the name
property is always “Error”. The toString() method simply returns the
value of the name property followed by a colon and space and the
value of the message property.

Although it is not part of the ECMAScript standard, Node and all
modern browsers also define a stack property on Error objects. The
value of this property is a multi-line string that contains a stack
trace of the JavaScript call stack at the moment that the Error
object was created. This can be useful information to log when an
unexpected error is caught.

In addition to the Error class, JavaScript defines a number of
subclasses that it uses to signal particular types of errors defined
by ECMAScript. These subclasses are EvalError, RangeError,
ReferenceError, SyntaxError, TypeError, and URIError. You can use these
error classes in your own code if they seem appropriate. Like the base
Error class, each of these subclasses has a constructor that takes a
single message argument. And instances of each of these subclasses
have a name property whose value is the same as the constructor
name.

You should feel free to define your own Error subclasses that best
encapsulate the error conditions of your own program. Note that you
are not limited to the name and message properties. If you create
a subclass, you can define new properties to provide error details. If
you are writing a parser, for example, you might find it useful to
define a ParseError class with line and column properties that
specify the exact location of the parsing failure. Or if you are
working with HTTP requests, you might want to define an HTTPError
class that has a status property that holds the HTTP status code
(such as 404 or 500) of the failed request.

For example:

class HTTPError extends Error {
 constructor(status, statusText, url) {
 super(`${status} ${statusText}: ${url}`);
 this.status = status;
 this.statusText = statusText;
 this.url = url;
 }

 get name() { return "HTTPError"; }
}

let error = new HTTPError(404, "Not Found", "http://example.com/");
error.status // => 404
error.message // => "404 Not Found: http://example.com/"
error.name // => "HTTPError"

11.6 JSON Serialization and Parsing

When a program needs to save data or needs to transmit data across a
network connection to another program, it must to convert its
in-memory data structures into a string of bytes or characters than
can be saved or transmitted and then later be parsed to restore the
original in-memory data structures. This process of converting data
structures into streams of bytes or characters is known as
serialization (or marshaling or even pickling).

The easiest way to serialize data in JavaScript uses a serialization
format known as JSON. This acronym stands for “JavaScript Object
Notation” and, as the name implies, the format uses JavaScript
object and array literal syntax to convert data structures consisting
of objects and arrays into strings. JSON supports primitive numbers
and strings and also the values true, false, and null, as well as
arrays and objects built up from those primitive values. JSON does not
support other JavaScript types like Map, Set, RegExp, Date, or typed
arrays. Nevertheless, it has proved to be a remarkably versatile data
format and is in common use even with non-JavaScript-based
programs.

JavaScript supports JSON serialization and deserialization with the
two functions JSON.stringify() and JSON.parse(), which were covered
briefly in §6.8. Given an object
or array (nested arbitrarily deeply) that does not contain any
nonserializable values like RegExp objects or typed arrays, you can
serialize the object simply by passing it to JSON.stringify(). As
the name implies, the return value of this function is a string. And
given a string returned by JSON.stringify(), you can re-create the
original data structure by passing the string to JSON.parse():

let o = {s: "", n: 0, a: [true, false, null]};
let s = JSON.stringify(o); // s == '{"s":"","n":0,"a":[true,false,null]}'
let copy = JSON.parse(s); // copy == {s: "", n: 0, a: [true, false, null]}

If we leave out the part where serialized data is saved to a file or
sent over the network, we can use this pair of functions as a somewhat
inefficient way of creating a deep copy of an object:

// Make a deep copy of any serializable object or array
function deepcopy(o) {
 return JSON.parse(JSON.stringify(o));
}

JSON Is a Subset of JavaScript

When data is serialized to JSON format, the result is valid JavaScript
source code for an expression that evaluates to a copy of the original
data structure. If you prefix a JSON string with var data = and pass
the result to eval(), you’ll get a copy of the original data
structure assigned to the variable data. You should never do this,
however, because it is a huge security hole—if an attacker could
inject arbitrary JavaScript code into a JSON file, they could make your
program run their code. It is faster and safer to just use
JSON.parse() to decode JSON-formatted data.

JSON is sometimes used as a human-readable configuration file
format. If you find yourself hand-editing a JSON file, note that the
JSON format is a very strict subset of JavaScript. Comments are not
allowed and property names must be enclosed in double quotes even when
JavaScript would not require this.

Typically, you pass only a single argument to JSON.stringify() and
JSON.parse(). Both functions accept an optional second argument
that allows us to extend the JSON format, and these are described
next. JSON.stringify() also takes an optional third argument
that we’ll discuss first. If you would like your JSON-formatted string to be
human-readable (if it is being used as a configuration file, for
example), then you should pass null as the second argument and pass a
number or string as the third argument. This third argument tells
JSON.stringify() that it should format the data on multiple indented
lines. If the third argument is a number, then it will use that number
of spaces for each indentation level. If the third argument is a
string of whitespace (such as '\t'), it will use that string for each
level of indent.

let o = {s: "test", n: 0};
JSON.stringify(o, null, 2) // => '{\n "s": "test",\n "n": 0\n}'

JSON.parse() ignores whitespace, so passing a third argument to
JSON.stringify() has no impact on our ability to convert the string
back into a data structure.

11.6.1 JSON Customizations

If JSON.stringify() is asked to serialize a value that is not
natively supported by the JSON format, it looks to see if that value
has a toJSON() method, and if so, it calls that method and then
stringifies the return value in place of the original value. Date
objects implement toJSON(): it returns the same string that
toISOString() method does. This means that if you serialize an
object that includes a Date, the date will automatically be converted
to a string for you. When you parse the serialized string, the
re-created data structure will not be exactly the same as the one you
started with because it will have a string where the original object
had a Date.

If you need to re-create Date objects (or modify the parsed object in
any other way), you can pass a “reviver” function as the second
argument to JSON.parse(). If specified, this “reviver” function is
invoked once for each primitive value (but not the objects or arrays
that contain those primitive values) parsed from the input
string. The function is invoked with two arguments. The first is a
property name—either an object property name or an array index
converted to a string. The second argument is the primitive value of
that object property or array element. Furthermore, the function is
invoked as a method of the object or array that contains the primitive
value, so you can refer to that containing object with the this
keyword.

The return value of the reviver function becomes the new value of the
named property. If it returns its second argument, the property will
remain unchanged. If it returns undefined, then the named property will
be deleted from the object or array before JSON.parse() returns to
the user.

As an example, here is a call to JSON.parse() that uses a reviver
function to filter some properties and to re-create Date objects:

let data = JSON.parse(text, function(key, value) {
 // Remove any values whose property name begins with an underscore
 if (key[0] === "_") return undefined;

 // If the value is a string in ISO 8601 date format convert it to a Date.
 if (typeof value === "string" &&
 /^\d\d\d\d-\d\d-\d\dT\d\d:\d\d:\d\d.\d\d\dZ$/.test(value)) {
 return new Date(value);
 }

 // Otherwise, return the value unchanged
 return value;
});

In addition to its use of toJSON() described earlier,
JSON.stringify() also allows its output to be customized by passing
an array or a function as the optional second argument.

If an array of strings (or numbers—they are converted to strings) is
passed instead as the second argument, these are used as the names of
object properties (or array elements). Any property whose name is not
in the array will be omitted from stringification. Furthermore, the
returned string will include properties in the same order that they
appear in the array (which can be very useful when writing tests).

If you pass a function, it is a replacer function—effectively the
inverse of the optional reviver function you can pass to
JSON.parse(). If specified, the replacer function is invoked for
each value to be stringified. The first argument to the replacer
function is the object property name or array index of the value
within that object, and the second argument is the value itself. The
replacer function is invoked as a method of the object or array that
contains the value to be stringified. The return value of the replacer
function is stringified in place of the original value. If the
replacer returns undefined or returns nothing at all, then that
value (and its array element or object property) is omitted from the
stringification.

// Specify what fields to serialize, and what order to serialize them in
let text = JSON.stringify(address, ["city","state","country"]);

// Specify a replacer function that omits RegExp-value properties
let json = JSON.stringify(o, (k, v) => v instanceof RegExp ? undefined : v);

The two JSON.stringify() calls here use the second argument in a
benign way, producing serialized output that can be deserialized
without requiring a special reviver function. In general, though, if
you define a toJSON() method for a type, or if you use a replacer
function that actually replaces nonserializable values with
serializable ones, then you will typically need to use a custom reviver
function with JSON.parse() to get your original data structure
back. If you do this, you should understand that you are defining a
custom data format and sacrificing portability and compatibility with
a large ecosystem of JSON-compatible tools and languages.

11.7 The Internationalization API

The JavaScript internationalization API consists of the three classes
Intl.NumberFormat, Intl.DateTimeFormat, and Intl.Collator that allow us
to format numbers (including monetary amounts and percentages), dates,
and times in locale-appropriate ways and to compare strings in
locale-appropriate ways. These classes are not part of the ECMAScript
standard but are defined as part of the ECMA402 standard
 and are well-supported by web browsers. The
Intl API is also supported in Node, but at the time of this writing,
prebuilt Node binaries do not ship with the localization data
required to make them work with locales other than US English. So in
order to use these classes with Node, you may need to download a
separate data package or use a custom build of Node.

One of the most important parts of internationalization is displaying
text that has been translated into the user’s language. There are
various ways to achieve this, but none of them are within the scope of
the Intl API described here.

11.7.1 Formatting Numbers

Users around the world expect numbers to be formatted in different
ways. Decimal points can be periods or commas. Thousands separators
can be commas or periods, and they aren’t used every three digits in
all places. Some currencies are divided into hundredths, some into
thousandths, and some have no subdivisions. Finally, although
the so-called “Arabic numerals” 0 through 9 are used in many
languages, this is not universal, and users in some countries will
expect to see numbers written using the digits from their own
scripts.

The Intl.NumberFormat class defines a format() method that takes all
of these formatting possibilities into account. The constructor takes
two arguments. The first argument specifies the locale that the number
should be formatted for and the second is an object that specifies
more details about how the number should be formatted. If the first
argument is omitted or undefined, then
the system locale (which we assume to be the user’s preferred locale)
will be used. If the first argument is a string, it specifies a
desired locale, such as "en-US" (English as used in the United
States), "fr" (French), or "zh-Hans-CN" (Chinese, using the
simplified Han writing system, in China). The first argument can also
be an array of locale strings, and in this case, Intl.NumberFormat
will choose the most specific one that is well supported.

The second argument to the Intl.NumberFormat() constructor, if
specified, should be an object that defines one or more of the
following properties:

	style

	
Specifies the kind of number formatting that is
required. The default is "decimal". Specify "percent" to format a
number as a percentage or specify "currency" to specify a number as
an amount of money.

	currency

	
If style is "currency", then this property is required
to specify the three-letter ISO currency code (such as "USD" for US
dollars or "GBP" for British pounds) of the desired currency.

	currencyDisplay

	
If style is "currency", then this property
specifies how the currency is displayed. The default value "symbol"
uses a currency symbol if the currency has one. The value "code"
uses the three-letter ISO code, and the value "name" spells out the name
of the currency in long form.

	useGrouping

	
Set this property to false if you do not want
numbers to have thousands separators (or their locale-appropriate
equivalents).

	minimumIntegerDigits

	
The minimum number of digits to use to
display the integer part of the number. If the number has fewer digits
than this, it will be padded on the left with zeros. The default value
is 1, but you can use values as high as 21.

	minimumFractionDigits, maximumFractionDigits

	
These two
properties control the formatting of the fractional part of the
number. If a number has fewer fractional digits than the minimum, it
will be padded with zeros on the right. If it has more than the
maximum, then the fractional part will be rounded. Legal values for
both properties are between 0 and 20. The default minimum is 0 and the
default maximum is 3, except when formatting monetary amounts, when
the length of the fractional part varies depending on the specified
currency.

	minimumSignificantDigits, maximumSignificantDigits

	
These properties control the number of
significant digits used when formatting a number, making them suitable
when formatting scientific data, for example. If specified, these
properties override the integer and fractional digit properties listed
previously. Legal values are between 1 and 21.

Once you have created an Intl.NumberFormat object with the desired
locale and options, you use it by passing a number to its format()
method, which returns an appropriately formatted string. For example:

let euros = Intl.NumberFormat("es", {style: "currency", currency: "EUR"});
euros.format(10) // => "10,00 €": ten euros, Spanish formatting

let pounds = Intl.NumberFormat("en", {style: "currency", currency: "GBP"});
pounds.format(1000) // => "£1,000.00": One thousand pounds, English formatting

A useful feature of Intl.NumberFormat (and the other Intl classes as
well) is that its format() method is bound to the NumberFormat
object to which it belongs. So instead of defining a variable that
refers to the formatting object and then invoking the format()
method on that, you can just assign the format() method to a
variable and use it as if it were a standalone function, as in this
example:

let data = [0.05, .75, 1];
let formatData = Intl.NumberFormat(undefined, {
 style: "percent",
 minimumFractionDigits: 1,
 maximumFractionDigits: 1
}).format;

data.map(formatData) // => ["5.0%", "75.0%", "100.0%"]: in en-US locale

Some languages, such as Arabic, use their own script for decimal
digits:

let arabic = Intl.NumberFormat("ar", {useGrouping: false}).format;
arabic(1234567890) // => "١٢٣٤٥٦٧٨٩٠"

Other languages, such as Hindi, use a script that has its own set of
digits, but tend to use the ASCII digits 0–9 by default. If you want
to override the default script used for digits, add -u-nu- to the
locale and follow it with an abbreviated script name. You can format
numbers with Indian-style grouping and Devanagari digits like this, for example:

let hindi = Intl.NumberFormat("hi-IN-u-nu-deva").format;
hindi(1234567890) // => "१,२३,४५,६७,८९०"

-u- in a locale specifies that what comes next is a Unicode
extension. nu is the extension name for the numbering system, and
deva is short for Devanagari. The Intl API standard defines names for
a number of other numbering systems, mostly for the Indic languages of
South and Southeast Asia.

11.7.2 Formatting Dates and Times

The Intl.DateTimeFormat class is a lot like the Intl.NumberFormat
class. The Intl.DateTimeFormat() constructor takes the same two
arguments that Intl.NumberFormat() does: a locale or array of
locales and an object of formatting options. And the way you use an
Intl.DateTimeFormat instance is by calling its format() method to
convert a Date object to a string.

As mentioned in §11.4, the Date class defines simple
toLocaleDateString() and toLocaleTimeString() methods that produce
locale-appropriate output for the user’s locale. But these methods
don’t give you any control over what fields of the date and time are
displayed. Maybe you want to omit the year but add a weekday to the
date format. Do you want the month to be represented numerically or
spelled out by name? The Intl.DateTimeFormat class provides
fine-grained control over what is output based on the properties in
the options object that is passed as the second argument to the
constructor. Note, however, that Intl.DateTimeFormat cannot always
display exactly what you ask for. If you specify options to format
hours and seconds but omit minutes, you’ll find that the formatter
displays the minutes anyway. The idea is that you use the options
object to specify what date and time fields you’d like to present to
the user and how you’d like those formatted (by name or by number, for
example), then the formatter will look for a locale-appropriate
format that most closely matches what you have asked for.

The available options are the following. Only specify properties for
date and time fields that you would like to appear in the formatted
output.

	year

	
Use "numeric" for a full, four-digit year or "2-digit"
for a two-digit abbreviation.

	month

	
Use "numeric" for a possibly short number like “1”, or
"2-digit" for a numeric representation that always has two digits,
like “01”. Use "long" for a full name like “January”, "short" for
an abbreviated name like “Jan”, and "narrow" for a highly
abbreviated name like “J” that is not guaranteed to be unique.

	day

	
Use "numeric" for a one- or two-digit number or
"2-digit" for a two-digit number for the day-of-month.

	weekday

	
Use "long" for a full name like “Monday”, "short"
for an abbreviated name like “Mon”, and "narrow" for a highly
abbreviated name like “M” that is not guaranteed to be unique.

	era

	
This property specifies whether a date should be formatted
with an era, such as CE or BCE. This may be useful if you are
formatting dates from very long ago or if you are using a Japanese
calendar. Legal values are "long", "short", and "narrow".

	hour, minute, second

	
These properties specify how you would
like time displayed. Use "numeric" for a one- or two-digit field or
"2-digit" to force single-digit numbers to be padded on the left
with a 0.

	timeZone

	
This property specifies the desired time zone for which
the date should be formatted. If omitted, the local time zone is
used. Implementations always recognize “UTC” and may also recognize
Internet Assigned Numbers Authority (IANA) time zone names, such as “America/Los_Angeles”.

	timeZoneName

	
This property specifies how the time zone should be
displayed in a formatted date or time. Use "long" for a fully
spelled-out time zone name and "short" for an abbreviated or numeric
time zone.

	hour12

	
This boolean property specifies whether or not to use 12-hour time. The default is locale dependent, but you can override it with
this property.

	hourCycle

	
This property allows you to specify whether midnight is
written as 0 hours, 12 hours, or 24 hours. The default is
locale dependent, but you can override the default with this
property. Note that hour12 takes precedence over this property. Use
the value "h11" to specify that midnight is 0 and the hour before
midnight is 11pm. Use "h12" to specify that midnight is 12. Use
"h23" to specify that midnight is 0 and the hour before midnight is 23.
And use "h24" to specify that midnight is 24.

Here are some examples:

let d = new Date("2020-01-02T13:14:15Z"); // January 2nd, 2020, 13:14:15 UTC

// With no options, we get a basic numeric date format
Intl.DateTimeFormat("en-US").format(d) // => "1/2/2020"
Intl.DateTimeFormat("fr-FR").format(d) // => "02/01/2020"

// Spelled out weekday and month
let opts = { weekday: "long", month: "long", year: "numeric", day: "numeric" };
Intl.DateTimeFormat("en-US", opts).format(d) // => "Thursday, January 2, 2020"
Intl.DateTimeFormat("es-ES", opts).format(d) // => "jueves, 2 de enero de 2020"

// The time in New York, for a French-speaking Canadian
opts = { hour: "numeric", minute: "2-digit", timeZone: "America/New_York" };
Intl.DateTimeFormat("fr-CA", opts).format(d) // => "8 h 14"

Intl.DateTimeFormat can display dates using calendars other than the
default Julian calendar based on the Christian era. Although some
locales may use a non-Christian calendar by default, you can always
explicitly specify the calendar to use by adding -u-ca- to the
locale and following that with the name of the calendar. Possible
calendar names include “buddhist”, “chinese”, “coptic”, “ethiopic”,
“gregory”, “hebrew”, “indian”, “islamic”, “iso8601”, “japanese”, and
“persian”. Continuing the preceding example, we can determine the year in
various non-Christian calendars:

let opts = { year: "numeric", era: "short" };
Intl.DateTimeFormat("en", opts).format(d) // => "2020 AD"
Intl.DateTimeFormat("en-u-ca-iso8601", opts).format(d) // => "2020 AD"
Intl.DateTimeFormat("en-u-ca-hebrew", opts).format(d) // => "5780 AM"
Intl.DateTimeFormat("en-u-ca-buddhist", opts).format(d) // => "2563 BE"
Intl.DateTimeFormat("en-u-ca-islamic", opts).format(d) // => "1441 AH"
Intl.DateTimeFormat("en-u-ca-persian", opts).format(d) // => "1398 AP"
Intl.DateTimeFormat("en-u-ca-indian", opts).format(d) // => "1941 Saka"
Intl.DateTimeFormat("en-u-ca-chinese", opts).format(d) // => "36 78"
Intl.DateTimeFormat("en-u-ca-japanese", opts).format(d) // => "2 Reiwa"

11.7.3 Comparing Strings

The problem of sorting strings into alphabetical order (or some more
general “collation order” for nonalphabetical scripts) is more
challenging than English speakers often realize. English uses a
relatively small alphabet with no accented letters, and we have the
benefit of a character encoding (ASCII, since incorporated into
Unicode) whose numerical values perfectly match our standard string
sort order. Things are not so simple in other languages. Spanish, for
example treats ñ as a distinct letter that comes after n and before
o. Lithuanian alphabetizes Y before J, and Welsh treats digraphs like
CH and DD as single letters with CH coming after C and DD sorting
after D.

If you want to display strings to a user in an order that they will
find natural, it is not enough use the sort() method on an array of
strings. But if you create an Intl.Collator object, you can pass the
compare() method of that object to the sort() method to perform
locale-appropriate sorting of the strings. Intl.Collator objects can
be configured so that the compare() method performs case-insensitive
comparisons or even comparisons that only consider the base letter and
ignore accents and other diacritics.

Like Intl.NumberFormat() and Intl.DateTimeFormat(), the
Intl.Collator() constructor takes two arguments. The first specifies
a locale or an array of locales, and the second is an optional object
whose properties specify exactly what kind of string comparison is to
be done. The supported properties are these:

	usage

	
This property specifies how the collator object is to be
used. The default value is "sort", but you can also specify
"search". The idea is that, when sorting strings, you typically want a
collator that differentiates as many strings as possible to produce a
reliable ordering. But when comparing two strings, some locales may
want a less strict comparison that ignores accents, for example.

	sensitivity

	
This property specifies whether the collator is
sensitive to letter case and accents when comparing strings. The value
"base" causes comparisons that ignore case and accents, considering
only the base letter for each character. (Note, however, that some
languages consider certain accented characters to be distinct base
letters.) "accent" considers accents in comparisons but ignores
case. "case" considers case and ignores accents. And "variant"
performs strict comparisons that consider both case and accents. The
default value for this property is "variant" when usage is
"sort". If usage is "search", then the default sensitivity
depends on the locale.

	ignorePunctuation

	
Set this property to true to ignore spaces and
punctuation when comparing strings. With this property set to true,
the strings “any one” and “anyone”, for example, will be considered
equal.

	numeric

	
Set this property to true if the strings you are
comparing are integers or contain integers and you want them to be
sorted into numerical order instead of alphabetical order. With this
option set, the string “Version 9” will be sorted before “Version 10”,
for example.

	caseFirst

	
This property specifies which letter case should come
first. If you specify "upper", then “A” will sort before “a”. And if
you specify "lower", then “a” will sort before “A”. In either case,
note that the upper- and lowercase variants of the same letter will be
next to one another in sort order, which is different than Unicode
lexicographic ordering (the default behavior of the Array sort()
method) in which all ASCII uppercase letters come before all ASCII
lowercase letters. The default for this property is locale dependent,
and implementations may ignore this property and not allow you to
override the case sort order.

Once you have created an Intl.Collator object for the desired locale
and options, you can use its compare() method to compare two
strings. This method returns a number. If the returned value is less
than zero, then the first string comes before the second string. If it
is greater than zero, then the first string comes after the second
string. And if compare() returns zero, then the two strings are equal
as far as this collator is concerned.

This compare() method that takes two strings and returns a number
less than, equal to, or greater than zero is exactly what the Array
sort() method expects for its optional argument. Also,
Intl.Collator automatically binds the compare() method to its
instance, so you can pass it directly to sort() without having to
write a wrapper function and invoke it through the collator object.
Here are some examples:

// A basic comparator for sorting in the user's locale.
// Never sort human-readable strings without passing something like this:
const collator = new Intl.Collator().compare;
["a", "z", "A", "Z"].sort(collator) // => ["a", "A", "z", "Z"]

// Filenames often include numbers, so we should sort those specially
const filenameOrder = new Intl.Collator(undefined, { numeric: true }).compare;
["page10", "page9"].sort(filenameOrder) // => ["page9", "page10"]

// Find all strings that loosely match a target string
const fuzzyMatcher = new Intl.Collator(undefined, {
 sensitivity: "base",
 ignorePunctuation: true
}).compare;
let strings = ["food", "fool", "Føø Bar"];
strings.findIndex(s => fuzzyMatcher(s, "foobar") === 0) // => 2

Some locales have more than one possible collation order. In Germany,
for example, phone books use a slightly more phonetic sort order than
dictionaries do. In Spain, before 1994, “ch” and “ll” were treated as
separate letters, so that country now has a modern sort order and a
traditional sort order. And in China, collation order can be based on
character encodings, the base radical and strokes of each character,
or on the Pinyin romanization of characters. These collation variants
cannot be selected through the Intl.Collator options argument, but
they can be selected by adding -u-co- to the locale string and
adding the name of the desired variant. Use "de-DE-u-co-phonebk"
for phone book ordering in Germany, for example, and
"zh-TW-u-co-pinyin" for Pinyin ordering in Taiwan.

// Before 1994, CH and LL were treated as separate letters in Spain
const modernSpanish = Intl.Collator("es-ES").compare;
const traditionalSpanish = Intl.Collator("es-ES-u-co-trad").compare;
let palabras = ["luz", "llama", "como", "chico"];
palabras.sort(modernSpanish) // => ["chico", "como", "llama", "luz"]
palabras.sort(traditionalSpanish) // => ["como", "chico", "luz", "llama"]

11.8 The Console API

You’ve seen the console.log() function used throughout this book: in
web browsers, it prints a string in the “Console” tab of the browser’s
developer tools pane, which can be very helpful when debugging. In
Node, console.log() is a general-purpose output function and prints
its arguments to the process’s stdout stream, where it typically
appears to the user in a terminal window as program output.

The Console API defines a number of useful functions in addition to
console.log(). The API is not part of any ECMAScript standard, but
it is supported by browsers and by Node and has been formally written
up and standardized at https://console.spec.whatwg.org.

The Console API defines the following functions:

	console.log()

	
This is the most well-known of the console functions. It converts its
arguments to strings and outputs them to the console. It includes
spaces between the arguments and starts a new line after outputting
all arguments.

	console.debug(), console.info(), console.warn(), console.error()

	
These functions are almost identical to console.log(). In Node,
console.error() sends its output to the stderr stream rather than
the stdout stream, but the other functions are aliases of
console.log(). In browsers, output messages generated by each of
these functions may be prefixed by an icon that indicates its level
or severity, and the developer console may also allow developers to
filter console messages by level.

	console.assert()

	
If the first argument is truthy (i.e., if the
assertion passes), then this function does nothing. But if the first
argument is false or another falsy value, then the remaining
arguments are printed as if they had been passed to console.error()
with an “Assertion failed” prefix. Note that, unlike typical
assert() functions, console.assert() does not throw an exception
when an assertion fails.

	console.clear()

	
This function clears the console when that is
possible. This works in browsers and in Node when Node is displaying
its output to a terminal. If Node’s output has been redirected to a
file or a pipe, however, then calling this function has no effect.

	console.table()

	
This function is a remarkably powerful but
little-known feature for producing tabular output, and it is
particularly useful in Node programs that need to produce output that
summarizes data. console.table() attempts to display its argument in
tabular form (although, if it can’t do that, it displays it using regular
console.log() formatting). This works best when the argument is a
relatively short array of objects, and all of the objects in the array
have the same (relatively small) set of properties. In this case,
each object in the array is formatted as a row of the table, and each
property is a column of the table. You can also pass an array of
property names as an optional second argument to specify the desired
set of columns. If you pass an object instead of an array of objects,
then the output will be a table with one column for property names and
one column for property values. Or, if those property values are
themselves objects, their property names will become columns in the
table.

	console.trace()

	
This function logs its arguments like
console.log() does, and, in addition, follows its output with a
stack trace. In Node, the output goes to stderr instead of stdout.

	console.count()

	
This function takes a string argument and logs
that string, followed by the number of times it has been called with
that string. This can be useful when debugging an event handler, for
example, if you need to keep track of how many times the event handler
has been triggered.

	console.countReset()

	
This function takes a string argument and
resets the counter for that string.

	console.group()

	
This function prints its arguments to the console
as if they had been passed to console.log(), then sets the
internal state of the console so that all subsequent console messages
(until the next console.groupEnd() call) will be indented relative
to the message that it just printed. This allows a group of related
messages to be visually grouped with indentation. In web browsers, the
developer console typically allows grouped messages to be collapsed
and expanded as a group. The arguments to console.group() are
typically used to provide an explanatory name for the group.

	console.groupCollapsed()

	
This function works like
console.group() except that in web browsers, the group will be
“collapsed” by default and the messages it contains will be hidden
unless the user clicks to expand the group. In Node, this function is
a synonym for console.group().

	console.groupEnd()

	
This function takes no arguments. It produces
no output of its own but ends the indentation and grouping caused by
the most recent call to console.group() or
console.groupCollapsed().

	console.time()

	
This function takes a single string argument, makes
a note of the time it was called with that string, and produces no output.

	console.timeLog()

	
This function takes a string as its first
argument. If that string had previously been passed to
console.time(), then it prints that string followed by the elapsed
time since the console.time() call. If there are any additional
arguments to console.timeLog(), they are printed as if they had been
passed to console.log().

	console.timeEnd()

	
This function takes a single string argument. If
that argument had previously been passed to console.time(), then it
prints that argument and the elapsed time. After calling
console.timeEnd(), it is no longer legal to call console.timeLog()
without first calling console.time() again.

11.8.1 Formatted Output with Console

Console functions that print their arguments like console.log() have
a little-known feature: if the first argument is a string that includes %s,
%i, %d, %f, %o, %O, or %c, then this first argument is treated as
format string,6 and the values of subsequent arguments
are substituted into the string in place of the two-character %
sequences.

The meanings of the sequences are as follows:

	%s

	
The argument is converted to a string.

	%i and %d

	
The argument is converted to a number and then
truncated to an integer.

	%f

	
The argument is converted to a number

	%o and %O

	
The argument is treated as an
object, and property names and values are displayed. (In web browsers,
this display is typically interactive, and users can expand and
collapse properties to explore a nested data structure.) %o and %O
both display object details. The uppercase variant uses an
implementation-dependent output format that is judged to be most
useful for software developers.

	%c

	
In web browsers, the argument is interpreted as a string of CSS
styles and used to style any text that follows (until the next %c
sequence or the end of the string). In Node, the %c sequence and its
corresponding argument are simply ignored.

Note that it is not often necessary to use a format string with
the console functions: it is usually easy to obtain suitable output by
simply passing one or more values (including objects) to the function
and allowing the implementation to display them in a useful way. As an
example, note that, if you pass an Error object to console.log(), it
is automatically printed along with its stack trace.

11.9 URL APIs

Since JavaScript is so commonly used in web browsers and web
servers, it is common for JavaScript code to need to manipulate
URLs. The URL class parses URLs and also allows modification (adding
search parameters or altering paths, for example) of existing
URLs. It also properly handles the complicated topic of escaping and
unescaping the various components of a URL.

The URL class is not part of any ECMAScript standard, but it works in
Node and all internet browsers other than Internet Explorer. It is standardized at https://url.spec.whatwg.org.

Create a URL object with the URL() constructor, passing an absolute
URL string as the argument. Or pass a relative URL as the first
argument and the absolute URL that it is relative to as the second
argument. Once you have created the URL object, its various properties
allow you to query unescaped versions of the various parts of the URL:

let url = new URL("https://example.com:8000/path/name?q=term#fragment");
url.href // => "https://example.com:8000/path/name?q=term#fragment"
url.origin // => "https://example.com:8000"
url.protocol // => "https:"
url.host // => "example.com:8000"
url.hostname // => "example.com"
url.port // => "8000"
url.pathname // => "/path/name"
url.search // => "?q=term"
url.hash // => "#fragment"

Although it is not commonly used, URLs can include a username or a
username and password, and the URL class can parse these URL
components, too:

let url = new URL("ftp://admin:1337!@ftp.example.com/");
url.href // => "ftp://admin:1337!@ftp.example.com/"
url.origin // => "ftp://ftp.example.com"
url.username // => "admin"
url.password // => "1337!"

The origin property here is a simple combination of the URL
protocol and host (including the port if one is specified). As such,
it is a read-only property. But each of the other properties
demonstrated in the previous example is read/write: you can set any of these properties
to set the corresponding part of the URL:

let url = new URL("https://example.com"); // Start with our server
url.pathname = "api/search"; // Add a path to an API endpoint
url.search = "q=test"; // Add a query parameter
url.toString() // => "https://example.com/api/search?q=test"

One of the important features of the URL class is that it correctly
adds punctuation and escapes special characters in URLs when that is
needed:

let url = new URL("https://example.com");
url.pathname = "path with spaces";
url.search = "q=foo#bar";
url.pathname // => "/path%20with%20spaces"
url.search // => "?q=foo%23bar"
url.href // => "https://example.com/path%20with%20spaces?q=foo%23bar"

The href property in these examples is a special one: reading
href is equivalent to calling toString(): it reassembles all parts
of the URL into the canonical string form of the URL. And setting
href to a new string reruns the URL parser on the new string as if
you had called the URL() constructor again.

In the previous examples, we’ve been using the search property to refer
to the entire query portion of a URL, which consists of the characters
from a question mark to the end of the URL or to the first hash
character. Sometimes, it is sufficient to just treat this as a single
URL property. Often, however, HTTP requests encode the values of
multiple form fields or multiple API parameters into the query portion
of a URL using the application/x-www-form-urlencoded format. In this
format, the query portion of the URL is a question mark followed by
one or more name/value pairs, which are separated from one another by
ampersands. The same name can appear more than once, resulting in a
named search parameter with more than one value.

If you want to encode these kinds of name/value pairs into the query
portion of a URL, then the searchParams property will be more useful
than the search property. The search property is a read/write
string that lets you get and set the entire query portion of the
URL. The searchParams property is a read-only reference to a

URLSearchParams object, which has an API for getting, setting, adding,
deleting, and sorting the parameters encoded into the query portion of
the URL:

let url = new URL("https://example.com/search");
url.search // => "": no query yet
url.searchParams.append("q", "term"); // Add a search parameter
url.search // => "?q=term"
url.searchParams.set("q", "x"); // Change the value of this parameter
url.search // => "?q=x"
url.searchParams.get("q") // => "x": query the parameter value
url.searchParams.has("q") // => true: there is a q parameter
url.searchParams.has("p") // => false: there is no p parameter
url.searchParams.append("opts", "1"); // Add another search parameter
url.search // => "?q=x&opts=1"
url.searchParams.append("opts", "&"); // Add another value for same name
url.search // => "?q=x&opts=1&opts=%26": note escape
url.searchParams.get("opts") // => "1": the first value
url.searchParams.getAll("opts") // => ["1", "&"]: all values
url.searchParams.sort(); // Put params in alphabetical order
url.search // => "?opts=1&opts=%26&q=x"
url.searchParams.set("opts", "y"); // Change the opts param
url.search // => "?opts=y&q=x"
// searchParams is iterable
[...url.searchParams] // => [["opts", "y"], ["q", "x"]]
url.searchParams.delete("opts"); // Delete the opts param
url.search // => "?q=x"
url.href // => "https://example.com/search?q=x"

The value of the searchParams property is a URLSearchParams
object. If you want to encode URL parameters into a query string, you
can create a URLSearchParams object, append parameters, then convert
it to a string and set it on the search property of a URL:

let url = new URL("http://example.com");
let params = new URLSearchParams();
params.append("q", "term");
params.append("opts", "exact");
params.toString() // => "q=term&opts=exact"
url.search = params;
url.href // => "http://example.com/?q=term&opts=exact"

11.9.1 Legacy URL Functions

Prior to the definition of the URL API described previously, there have
been multiple attempts to support URL escaping and unescaping in the
core JavaScript language. The first attempt was the globally defined
escape() and unescape() functions, which are now deprecated but
still widely implemented. They should not be used.

When escape() and unescape() were deprecated, ECMAScript
introduced two pairs of alternative global functions:

	encodeURI() and decodeURI()

	
encodeURI() takes a string as its
argument and returns a new string in which non-ASCII characters plus
certain ASCII characters (such as space) are escaped. decodeURI()
reverses the process. Characters that need to be escaped are first
converted to their UTF-8 encoding, then each byte of that encoding
is replaced with a %xx escape sequence, where xx is two
hexadecimal digits. Because encodeURI() is intended for encoding
entire URLs, it does not escape URL separator characters such as /,
?, and #. But this means that encodeURI() cannot work correctly
for URLs that have those characters within their various components.

	encodeURIComponent() and decodeURIComponent()

	
This pair of
functions works just like encodeURI() and decodeURI() except that
they are intended to escape individual components of a URI, so they
also escape characters like /, ?, and # that are used to separate
those components. These are the most useful of the legacy URL
functions, but be aware that encodeURIComponent() will escape /
characters in a path name that you probably do not want escaped. And
it will convert spaces in a query parameter to %20, even though
spaces are supposed to be escaped with a + in that portion of a
URL.

The fundamental problem with all of these legacy functions is that
they seek to apply a single encoding scheme to all parts of a URL when
the fact is that different portions of a URL use different
encodings. If you want a properly formatted and encoded URL, the
solution is simply to use the URL class for all URL manipulation you
do.

11.10 Timers

Since the earliest days of JavaScript, web browsers have defined two
functions—setTimeout() and setInterval()—that allow programs to ask
the browser to invoke a function after a specified amount of time has
elapsed or to invoke the function repeatedly at a specified
interval. These functions have never been standardized as part of the
core language, but they work in all browsers and in Node and are a
de facto part of the JavaScript standard library.

The first argument to setTimeout() is a function, and the second
argument is a number that specifies how many milliseconds should
elapse before the function is invoked. After the specified amount of
time (and maybe a little longer if the system is busy), the function
will be invoked with no arguments. Here, for example, are three
setTimeout() calls that print console messages after one second, two
seconds, and three seconds:

setTimeout(() => { console.log("Ready..."); }, 1000);
setTimeout(() => { console.log("set..."); }, 2000);
setTimeout(() => { console.log("go!"); }, 3000);

Note that setTimeout() does not wait for the time to elapse before
returning. All three lines of code in this example run almost instantly, but
then nothing happens until 1,000 milliseconds elapse.

If you omit the second argument to setTimeout(), it defaults to
0. That does not mean, however, that the function you specify is
invoked immediately. Instead, the function is registered to be called
“as soon as possible.” If a browser is particularly busy handling user
input or other events, it may take 10 milliseconds or more before the function is
invoked.

setTimeout() registers a function to be invoked once. Sometimes, that
function will itself call setTimeout() to schedule another
invocation at a future time. If you want to invoke a function
repeatedly, however, it is often simpler to use
setInterval(). setInterval() takes the same two arguments as
setTimeout() but invokes the function repeatedly every time the
specified number of milliseconds (approximately) have elapsed.

Both setTimeout() and setInterval() return a value. If you save
this value in a variable, you can then use it later to cancel the
execution of the function by passing it to clearTimeout() or
clearInterval(). The returned value is typically a number in web
browsers and is an object in Node. The actual type doesn’t matter,
and you should treat it as an opaque value. The only thing you can do
with this value is pass it to clearTimeout() to cancel the execution
of a function registered with setTimeout() (assuming it hasn’t been
invoked yet) or to stop the repeating execution of a function
registered with setInterval().

Here is an example that demonstrates the use of setTimeout(),
setInterval(), and clearInterval() to display a simple digital
clock with the Console API:

// Once a second: clear the console and print the current time
let clock = setInterval(() => {
 console.clear();
 console.log(new Date().toLocaleTimeString());
}, 1000);

// After 10 seconds: stop the repeating code above.
setTimeout(() => { clearInterval(clock); }, 10000);

We’ll see setTimeout() and setInterval() again when we cover
asynchronous programming in Chapter 13.

11.11 Summary

Learning a programming language is not just about mastering the
grammar. It is equally important to study the standard library so that
you are familiar with all the tools that are shipped with the
language. This chapter has documented JavaScript’s standard library,
which includes:

	
Important data structures, such as Set, Map, and typed arrays.

	
The Date and URL classes for working with dates and URLs.

	
JavaScript’s regular expression grammar and its RegExp class for
textual pattern matching.

	
JavaScript’s internationalization library for formatting dates, time,
and numbers and for sorting strings.

	
The JSON object for serializing and deserializing simple data
structures and the console object for logging messages.

1 Not everything documented here is defined by the JavaScript language specification: some of the classes and functions documented here were first implemented in web browsers and then adopted by Node, making them de facto members of the JavaScript standard library.
2 This predictable iteration order is another thing about JavaScript sets that Python programmers may find surprising.
3 Typed arrays were first introduced to client-side JavaScript when web browsers added support for WebGL graphics. What is new in ES6 is that they have been elevated to a core language feature.
4 Except within a character class (square brackets), where \b matches the backspace character.
5 Parsing URLs with regular expressions is not a good idea. See §11.9 for a more robust URL parser.
6 C programmers will recognize many of these character sequences from the printf() function.

Chapter 12. Iterators and Generators

Iterable objects and their associated iterators are a feature of
ES6 that we’ve seen several times throughout this
book. Arrays (including TypedArrays) are iterable, as are strings and
Set and Map objects. This means that the contents of these data
structures can be iterated—looped over—with the for/of loop, as we
saw in §5.4.4:

let sum = 0;
for(let i of [1,2,3]) { // Loop once for each of these values
 sum += i;
}
sum // => 6

Iterators can also be used with the ... operator to expand
or “spread” an iterable object into an array initializer or function
invocation, as we saw in §7.1.2:

let chars = [..."abcd"]; // chars == ["a", "b", "c", "d"]
let data = [1, 2, 3, 4, 5];
Math.max(...data) // => 5

Iterators can be used with destructuring assignment:

let purpleHaze = Uint8Array.of(255, 0, 255, 128);
let [r, g, b, a] = purpleHaze; // a == 128

When you iterate a Map object, the returned values are [key, value]
pairs, which work well with destructuring assignment in a for/of
loop:

let m = new Map([["one", 1], ["two", 2]]);
for(let [k,v] of m) console.log(k, v); // Logs 'one 1' and 'two 2'

If you want to iterate just the keys or just the values rather than
the pairs, you can use the keys() and values() methods:

[...m] // => [["one", 1], ["two", 2]]: default iteration
[...m.entries()] // => [["one", 1], ["two", 2]]: entries() method is the same
[...m.keys()] // => ["one", "two"]: keys() method iterates just map keys
[...m.values()] // => [1, 2]: values() method iterates just map values

Finally, a number of built-in functions and constructors that are
commonly used with Array objects are actually written (in ES6
and later) to accept arbitrary iterators instead. The Set()
constructor is one such API:

// Strings are iterable, so the two sets are the same:
new Set("abc") // => new Set(["a", "b", "c"])

This chapter explains how iterators work and demonstrates how to
create your own data structures that are iterable. After explaining
basic iterators, this chapter covers generators, a powerful new
feature of ES6 that is primarily used as a particularly easy way to
create iterators.

12.1 How Iterators Work

The for/of loop and spread operator work seamlessly with iterable
objects, but it is worth understanding what is actually happening to
make the iteration work. There are three separate types that you need
to understand to understand iteration in JavaScript. First, there are
the iterable objects: these are types like Array, Set, and Map that
can be iterated. Second, there is the iterator object itself, which
performs the iteration. And third, there is the iteration result
object that holds the result of each step of the iteration.

An iterable object is any object with a special iterator method that
returns an iterator object. An iterator is any object with a
next() method that returns an iteration result object. And an
iteration result object is an object with properties named value
and done. To iterate an iterable object, you first call its
iterator method to get an iterator object. Then, you call the next()
method of the iterator object repeatedly until the returned value has
its done property set to true. The tricky thing about this is that
the iterator method of an iterable object does not have a conventional
name but uses the Symbol Symbol.iterator as its name. So a simple
for/of loop over an iterable object iterable could also be written
the hard way, like this:

let iterable = [99];
let iterator = iterable[Symbol.iterator]();
for(let result = iterator.next(); !result.done; result = iterator.next()) {
 console.log(result.value) // result.value == 99
}

The iterator object of the built-in iterable datatypes is itself
iterable. (That is, it has a method named Symbol.iterator that just
returns itself.) This is occasionally useful in code like the
following when you want to iterate though a “partially used” iterator:

let list = [1,2,3,4,5];
let iter = list[Symbol.iterator]();
let head = iter.next().value; // head == 1
let tail = [...iter]; // tail == [2,3,4,5]

12.2 Implementing Iterable Objects

Iterable objects are so useful in ES6 that you should consider making
your own datatypes iterable whenever they represent something that
can be iterated. The Range classes shown in Examples 9-2 and 9-3 in Chapter 9 were iterable. Those classes used
generator functions to make themselves iterable. We’ll document
generators later in this chapter, but first, we will implement the
Range class one more time, making it iterable without relying on a
generator.

In order to make a class iterable, you must implement a method whose
name is the Symbol Symbol.iterator. That method must return an
iterator object that has a next() method. And the next() method
must return an iteration result object that has a value property
and/or a boolean done property. Example 12-1 implements an
iterable Range class and demonstrates how to create iterable,
iterator, and iteration result objects.

Example 12-1. An iterable numeric Range class

/*
 * A Range object represents a range of numbers {x: from <= x <= to}
 * Range defines a has() method for testing whether a given number is a member
 * of the range. Range is iterable and iterates all integers within the range.
 */
class Range {
 constructor (from, to) {
 this.from = from;
 this.to = to;
 }

 // Make a Range act like a Set of numbers
 has(x) { return typeof x === "number" && this.from <= x && x <= this.to; }

 // Return string representation of the range using set notation
 toString() { return `{ x | ${this.from} ≤ x ≤ ${this.to} }`; }

 // Make a Range iterable by returning an iterator object.
 // Note that the name of this method is a special symbol, not a string.
 [Symbol.iterator]() {
 // Each iterator instance must iterate the range independently of
 // others. So we need a state variable to track our location in the
 // iteration. We start at the first integer >= from.
 let next = Math.ceil(this.from); // This is the next value we return
 let last = this.to; // We won't return anything > this
 return { // This is the iterator object
 // This next() method is what makes this an iterator object.
 // It must return an iterator result object.
 next() {
 return (next <= last) // If we haven't returned last value yet
 ? { value: next++ } // return next value and increment it
 : { done: true }; // otherwise indicate that we're done.
 },

 // As a convenience, we make the iterator itself iterable.
 [Symbol.iterator]() { return this; }
 };
 }
}

for(let x of new Range(1,10)) console.log(x); // Logs numbers 1 to 10
[...new Range(-2,2)] // => [-2, -1, 0, 1, 2]

In addition to making your classes iterable, it can be quite useful to
define functions that return iterable values. Consider these
iterable-based alternatives to the map() and filter() methods of
JavaScript arrays:

// Return an iterable object that iterates the result of applying f()
// to each value from the source iterable
function map(iterable, f) {
 let iterator = iterable[Symbol.iterator]();
 return { // This object is both iterator and iterable
 [Symbol.iterator]() { return this; },
 next() {
 let v = iterator.next();
 if (v.done) {
 return v;
 } else {
 return { value: f(v.value) };
 }
 }
 };
}

// Map a range of integers to their squares and convert to an array
[...map(new Range(1,4), x => x*x)] // => [1, 4, 9, 16]

// Return an iterable object that filters the specified iterable,
// iterating only those elements for which the predicate returns true
function filter(iterable, predicate) {
 let iterator = iterable[Symbol.iterator]();
 return { // This object is both iterator and iterable
 [Symbol.iterator]() { return this; },
 next() {
 for(;;) {
 let v = iterator.next();
 if (v.done || predicate(v.value)) {
 return v;
 }
 }
 }
 };
}

// Filter a range so we're left with only even numbers
[...filter(new Range(1,10), x => x % 2 === 0)] // => [2,4,6,8,10]

One key feature of iterable objects and iterators is that they are
inherently lazy: when computation is required to compute the next
value, that computation can be deferred until the value is actually
needed. Suppose, for example, that you have a very long string of text
that you want to tokenize into space-separated words. You could simply
use the split() method of your string, but if you do this, then the
entire string has to be processed before you can use even the first
word. And you end up allocating lots of memory for the returned array
and all of the strings within it. Here is a function that allows you
to lazily iterate the words of a string without keeping them all in
memory at once (in ES2020, this function would be much easier to
implement using the iterator-returning matchAll() method described
in §11.3.2):

function words(s) {
 var r = /\s+|$/g; // Match one or more spaces or end
 r.lastIndex = s.match(/[^]/).index; // Start matching at first nonspace
 return { // Return an iterable iterator object
 [Symbol.iterator]() { // This makes us iterable
 return this;
 },
 next() { // This makes us an iterator
 let start = r.lastIndex; // Resume where the last match ended
 if (start < s.length) { // If we're not done
 let match = r.exec(s); // Match the next word boundary
 if (match) { // If we found one, return the word
 return { value: s.substring(start, match.index) };
 }
 }
 return { done: true }; // Otherwise, say that we're done
 }
 };
}

[...words(" abc def ghi! ")] // => ["abc", "def", "ghi!"]

12.2.1 “Closing” an Iterator: The Return Method

Imagine a (server-side) JavaScript variant of the words() iterator that, instead of taking a source string as its argument,
takes the name of a file, opens the file, reads lines from it, and
iterates the words from those lines. In most operating systems,
programs that open files to read from them need to remember to close
those files when they are done reading, so this hypothetical iterator
would be sure to close the file after the next() method returns the
last word in it.

But iterators don’t always run all the way to the end: a for/of loop
might be terminated with a break or return or by an
exception. Similarly, when an iterator is used with destructuring
assignment, the next() method is only called enough times to obtain
values for each of the specified variables. The iterator may have many
more values it could return, but they will never be requested.

If our hypothetical words-in-a-file iterator never runs all the way to
the end, it still needs to close the file it opened. For this reason,
iterator objects may implement a return() method to go along with
the next() method. If iteration stops before next() has returned
an iteration result with the done property set to true (most
commonly because you left a for/of loop early via a break
statement), then the interpreter will check to see if the iterator
object has a return() method. If this method exists, the interpreter
will invoke it with no arguments, giving the iterator the chance to
close files, release memory, and otherwise clean up after itself. The
return() method must return an iterator result object. The
properties of the object are ignored, but it is an error to return a
non-object value.

The for/of loop and the spread operator are really useful features
of JavaScript, so when you are creating APIs, it is a good idea to use
them when possible. But having to work with an iterable object, its
iterator object, and the iterator’s result objects makes the process
somewhat complicated. Fortunately, generators can dramatically
simplify the creation of custom iterators, as we’ll see in the rest of
this chapter.

12.3 Generators

A generator is a kind of iterator defined with powerful new ES6
syntax; it’s particularly useful when the values to be iterated are not
the elements of a data structure, but the result of a computation.

To create a generator, you must first define a generator function. A
generator function is syntactically like a regular JavaScript
function but is defined with the keyword function* rather than
function. (Technically, this is not a new keyword, just a * after
the keyword function and before the function name.) When you invoke
a generator function, it does not actually execute the function body,
but instead returns a generator object. This generator object is an
iterator. Calling its next() method causes the body of the generator
function to run from the start (or whatever its current position is)
until it reaches a yield statement. yield is new in ES6 and is
something like a return statement. The value of the yield
statement becomes the value returned by the next() call on the
iterator. An example makes this clearer:

// A generator function that yields the set of one digit (base-10) primes.
function* oneDigitPrimes() { // Invoking this function does not run the code
 yield 2; // but just returns a generator object. Calling
 yield 3; // the next() method of that generator runs
 yield 5; // the code until a yield statement provides
 yield 7; // the return value for the next() method.
}

// When we invoke the generator function, we get a generator
let primes = oneDigitPrimes();

// A generator is an iterator object that iterates the yielded values
primes.next().value // => 2
primes.next().value // => 3
primes.next().value // => 5
primes.next().value // => 7
primes.next().done // => true

// Generators have a Symbol.iterator method to make them iterable
primes[Symbol.iterator]() // => primes

// We can use generators like other iterable types
[...oneDigitPrimes()] // => [2,3,5,7]
let sum = 0;
for(let prime of oneDigitPrimes()) sum += prime;
sum // => 17

In this example, we used a function* statement to define a
generator. Like regular functions, however, we can also define
generators in expression form. Once again, we just put an asterisk
after the function keyword:

const seq = function*(from,to) {
 for(let i = from; i <= to; i++) yield i;
};
[...seq(3,5)] // => [3, 4, 5]

In classes and object literals, we can use shorthand notation to omit
the function keyword entirely when we define methods. To define a
generator in this context, we simply use an asterisk before the method
name where the function keyword would have been, had we used it:

let o = {
 x: 1, y: 2, z: 3,
 // A generator that yields each of the keys of this object
 *g() {
 for(let key of Object.keys(this)) {
 yield key;
 }
 }
};
[...o.g()] // => ["x", "y", "z", "g"]

Note that there is no way to write a generator function using arrow
function syntax.

Generators often make it particularly easy to define iterable
classes. We can replace the [Symbol.iterator]() method show in
Example 12-1 with a much shorter *[Symbol.iterator]() generator
function that looks like this:

*[Symbol.iterator]() {
 for(let x = Math.ceil(this.from); x <= this.to; x++) yield x;
}

See Example 9-3 in Chapter 9 to see this generator-based
iterator function in context.

12.3.1 Generator Examples

Generators are more interesting if they actually generate the values
they yield by doing some kind of computation. Here, for example, is a
generator function that yields Fibonacci numbers:

function* fibonacciSequence() {
 let x = 0, y = 1;
 for(;;) {
 yield y;
 [x, y] = [y, x+y]; // Note: destructuring assignment
 }
}

Note that the fibonacciSequence() generator function here has an
infinite loop and yields values forever without returning. If this
generator is used with the ... spread operator, it will loop until
memory is exhausted and the program crashes. With care, it is possible
to use it in a for/of loop, however:

// Return the nth Fibonacci number
function fibonacci(n) {
 for(let f of fibonacciSequence()) {
 if (n-- <= 0) return f;
 }
}
fibonacci(20) // => 10946

This kind of infinite generator becomes more useful with a take()
generator like this:

// Yield the first n elements of the specified iterable object
function* take(n, iterable) {
 let it = iterable[Symbol.iterator](); // Get iterator for iterable object
 while(n-- > 0) { // Loop n times:
 let next = it.next(); // Get the next item from the iterator.
 if (next.done) return; // If there are no more values, return early
 else yield next.value; // otherwise, yield the value
 }
}

// An array of the first 5 Fibonacci numbers
[...take(5, fibonacciSequence())] // => [1, 1, 2, 3, 5]

Here is another useful generator function that interleaves the
elements of multiple iterable objects:

// Given an array of iterables, yield their elements in interleaved order.
function* zip(...iterables) {
 // Get an iterator for each iterable
 let iterators = iterables.map(i => i[Symbol.iterator]());
 let index = 0;
 while(iterators.length > 0) { // While there are still some iterators
 if (index >= iterators.length) { // If we reached the last iterator
 index = 0; // go back to the first one.
 }
 let item = iterators[index].next(); // Get next item from next iterator.
 if (item.done) { // If that iterator is done
 iterators.splice(index, 1); // then remove it from the array.
 }
 else { // Otherwise,
 yield item.value; // yield the iterated value
 index++; // and move on to the next iterator.
 }
 }
}

// Interleave three iterable objects
[...zip(oneDigitPrimes(),"ab",[0])] // => [2,"a",0,3,"b",5,7]

12.3.2 yield* and Recursive Generators

In addition to the zip() generator defined in the preceding example, it might be useful
to have a similar generator function that yields the elements of
multiple iterable objects sequentially rather than interleaving
them. We could write that generator like this:

function* sequence(...iterables) {
 for(let iterable of iterables) {
 for(let item of iterable) {
 yield item;
 }
 }
}

[...sequence("abc",oneDigitPrimes())] // => ["a","b","c",2,3,5,7]

This process of yielding the elements of some other iterable object is
common enough in generator functions that ES6 has special syntax for
it. The yield* keyword is like yield except that, rather than
yielding a single value, it iterates an iterable object and yields
each of the resulting values. The sequence() generator function
that we’ve used can be simplified with yield* like this:

function* sequence(...iterables) {
 for(let iterable of iterables) {
 yield* iterable;
 }
}

[...sequence("abc",oneDigitPrimes())] // => ["a","b","c",2,3,5,7]

The array forEach() method is often an elegant way to loop over the
elements of an array, so you might be tempted to write the sequence()
function like this:

function* sequence(...iterables) {
 iterables.forEach(iterable => yield* iterable); // Error
}

This does not work, however. yield and yield* can only be used
within generator functions, but the nested arrow function in this code is a regular function, not a function* generator function, so
yield is not allowed.

yield* can be used with any kind of iterable object, including
iterables implemented with generators. This means that yield* allows
us to define recursive generators, and you might use this feature to
allow simple non-recursive iteration over a recursively defined tree
structure, for example.

12.4 Advanced Generator Features

The most common use of generator functions is to create iterators, but
the fundamental feature of generators is that they allow us to pause a
computation, yield intermediate results, and then resume the
computation later. This means that generators have features beyond
those of iterators, and we explore those features in the following sections.

12.4.1 The Return Value of a Generator Function

The generator functions we’ve seen so far have not had return
statements, or if they have, they have been used to cause an early
return, not to return a value. Like any function, though, a generator
function can return a value. In order to understand what happens in
this case, recall how iteration works. The return value of the
next() function is an object that has a value property and/or a
done property. With typical iterators and generators, if the value
property is defined, then the done property is undefined or is
false. And if done is true, then value is undefined. But in
the case of a generator that returns a value, the final call to next
returns an object that has both value and done defined. The
value property holds the return value of the generator function, and
the done property is true, indicating that there are no more values
to iterate. This final value is ignored by the for/of loop and by
the spread operator, but it is available to code that manually
iterates with explicit calls to next():

function *oneAndDone() {
 yield 1;
 return "done";
}

// The return value does not appear in normal iteration.
[...oneAndDone()] // => [1]

// But it is available if you explicitly call next()
let generator = oneAndDone();
generator.next() // => { value: 1, done: false}
generator.next() // => { value: "done", done: true }
// If the generator is already done, the return value is not returned again
generator.next() // => { value: undefined, done: true }

12.4.2 The Value of a yield Expression

In the preceding discussion, we’ve treated yield as a
statement that takes a value but has no value of its own. In fact,
however, yield is an expression, and it can have a value.

When the next() method of a generator is invoked, the generator
function runs until it reaches a yield expression. The expression
that follows the yield keyword is evaluated, and that value becomes
the return value of the next() invocation. At this point, the
generator function stops executing right in the middle of evaluating
the yield expression. The next time the next() method of the
generator is called, the argument passed to next() becomes the value
of the yield expression that was paused. So the generator returns
values to its caller with yield, and the caller passes values in to
the generator with next(). The generator and caller are two
separate streams of execution passing values (and control) back and
forth. The following code illustrates:

function* smallNumbers() {
 console.log("next() invoked the first time; argument discarded");
 let y1 = yield 1; // y1 == "b"
 console.log("next() invoked a second time with argument", y1);
 let y2 = yield 2; // y2 == "c"
 console.log("next() invoked a third time with argument", y2);
 let y3 = yield 3; // y3 == "d"
 console.log("next() invoked a fourth time with argument", y3);
 return 4;
}

let g = smallNumbers();
console.log("generator created; no code runs yet");
let n1 = g.next("a"); // n1.value == 1
console.log("generator yielded", n1.value);
let n2 = g.next("b"); // n2.value == 2
console.log("generator yielded", n2.value);
let n3 = g.next("c"); // n3.value == 3
console.log("generator yielded", n3.value);
let n4 = g.next("d"); // n4 == { value: 4, done: true }
console.log("generator returned", n4.value);

When this code runs, it produces the following output that
demonstrates the back-and-forth between the two blocks of code:

generator created; no code runs yet
next() invoked the first time; argument discarded
generator yielded 1
next() invoked a second time with argument b
generator yielded 2
next() invoked a third time with argument c
generator yielded 3
next() invoked a fourth time with argument d
generator returned 4

Note the asymmetry in this code. The first invocation of next()
starts the generator, but the value passed to that invocation is not
accessible to the generator.

12.4.3 The return() and throw() Methods of a Generator

We’ve seen that you can receive values yielded by or returned by
a generator function. And you can pass values to a running generator
by passing those values when you call the next() method of the
generator.

In addition to providing input to a generator with next(), you can
also alter the flow of control inside the generator by calling its
return() and throw() methods. As the names suggest, calling these
methods on a generator causes it to return a value or throw an
exception as if the next statement in the generator was a return or
throw.

Recall from earlier in the chapter that, if an iterator defines a
return() method and iteration stops early, then the interpreter
automatically calls the return() method to give the iterator a
chance to close files or do other cleanup. In the case of generators,
you can’t define a custom return() method to handle cleanup, but you
can structure the generator code to use a try/finally statement that
ensures the necessary cleanup is done (in the finally block) when
the generator returns. By forcing the generator to return, the
generator’s built-in return() method ensures that the cleanup code
is run when the generator will no longer be used.

Just as the next() method of a generator allows us to pass arbitrary
values into a running generator, the throw() method of a generator
gives us a way to send arbitrary signals (in the form of exceptions)
into a generator. Calling the throw() method always causes an
exception inside the generator. But if the generator function is
written with appropriate exception-handling code, the exception need
not be fatal but can instead be a means of altering the behavior of
the generator. Imagine, for example, a counter generator that yields
an ever-increasing sequence of integers. This could be written so that
an exception sent with throw() would reset the counter to zero.

When a generator uses yield* to yield values from some other
iterable object, then a call to the next() method of the generator
causes a call to the next() method of the iterable object. The same
is true of the return() and throw() methods. If a generator uses
yield* on an iterable object that has these methods defined, then
calling return() or throw() on the generator causes the iterator’s
return() or throw() method to be called in turn. All iterators
must have a next() method. Iterators that need to clean up after
incomplete iteration should define a return() method. And any
iterator may define a throw() method, though I don’t know of any
practical reason to do so.

12.4.4 A Final Note About Generators

Generators are a very powerful generalized control structure. They
give us the ability to pause a computation with yield and restart it
again at some arbitrary later time with an arbitrary input value. It
is possible to use generators to create a kind of cooperative
threading system within single-threaded JavaScript code. And it is
possible to use generators to mask asynchronous parts of your program
so that your code appears sequential and synchronous, even though some
of your function calls are actually asynchronous and depend on events
from the network.

Trying to do these things with generators leads to code that is
mind-bendingly hard to understand or to explain. It has been done,
however, and the only really practical use case has been for managing
asynchronous code. JavaScript now has async and await keywords
(see Chapter 13) for this very purpose, however, and there is no longer
any reason to abuse generators in this way.

12.5 Summary

In this chapter, you have learned:

	
The for/of loop and the ... spread operator work with iterable
objects.

	
An object is iterable if it has a method with the symbolic name
[Symbol.iterator] that returns an iterator object.

	
An iterator object has a next() method that returns an iteration
result object.

	
An iteration result object has a value property that holds the
next iterated value, if there is one. If the iteration has
completed, then the result object must have a done property
set to true.

	
You can implement your own iterable objects by defining a
[Symbol.iterator]() method that returns an object with a next()
method that returns iteration result objects. You can also implement
functions that accept iterator arguments and return iterator
values.

	
Generator functions (functions defined with function* instead of
function) are another way to define iterators.

	
When you invoke a generator function, the body of the function does
not run right away; instead, the return value is an iterable iterator
object. Each time the next() method of the iterator is called,
another chunk of the generator function runs.

	
Generator functions can use the yield operator to specify the
values that are returned by the iterator. Each call to next()
causes the generator function to run up to the next yield
expression. The value of that yield expression then becomes the value
returned by the iterator. When there are no more yield
expressions, then the generator function returns, and the iteration
is complete.

Chapter 13. Asynchronous JavaScript

Some computer programs, such as scientific simulations and machine
learning models, are compute-bound: they run continuously, without
pause, until they have computed their result. Most real-world computer
programs, however, are significantly asynchronous. This means that
they often have to stop computing while waiting for data to arrive or
for some event to occur. JavaScript programs in a web browser are
typically event-driven, meaning that they wait for the user to click
or tap before they actually do anything. And JavaScript-based servers
typically wait for client requests to arrive over the network before
they do anything.

This kind of asynchronous programming is commonplace in JavaScript, and
this chapter documents three important language features that help
make it easier to work with asynchronous code. Promises, new in
ES6, are objects that represent the not-yet-available result
of an asynchronous operation. The keywords async and await were
introduced in ES2017 and provide new syntax that simplifies
asynchronous programming by allowing you to structure your Promise-based
code as if it was synchronous. Finally, asynchronous iterators and the
for/await loop were introduced in ES2018 and allow you to
work with streams of asynchronous events using simple loops that
appear synchronous.

Ironically, even though JavaScript provides these powerful features
for working with asynchronous code, there are no features of the core
language that are themselves asynchronous. In order to demonstrate
Promises, async, await, and for/await, therefore, we will first take a detour into client-side and server-side JavaScript to
explain some of the asynchronous features of web browsers and Node.
(You can learn more about client-side and server-side JavaScript in
Chapters 15 and 16.)

13.1 Asynchronous Programming with Callbacks

At its most fundamental level, asynchronous programming in JavaScript
is done with callbacks. A callback is a function that you write and
then pass to some other function. That other function then invokes
(“calls back”) your function when some condition is met or some
(asynchronous) event occurs. The invocation of the callback function
you provide notifies you of the condition or event, and sometimes, the
invocation will include function arguments that provide additional
details. This is easier to understand with some concrete examples, and
the subsections that follow demonstrate various forms of
callback-based asynchronous programming using both client-side
JavaScript and Node.

13.1.1 Timers

One of the simplest kinds of asynchrony is when you want to run some
code after a certain amount of time has elapsed. As we saw in
§11.10, you can do this with the setTimeout() function:

setTimeout(checkForUpdates, 60000);

The first argument to setTimeout()
is a function and the second is a time interval measured in
milliseconds. In the preceding code, a hypothetical checkForUpdates()
function will be called 60,000 milliseconds (1 minute) after the
setTimeout() call. checkForUpdates() is a callback function that
your program might define, and setTimeout() is the function that you
invoke to register your callback function and specify under what
asynchronous conditions it should be invoked.

setTimeout() calls the specified callback function one time, passing
no arguments, and then forgets about it. If you are writing a function
that really does check for updates, you probably want it to run
repeatedly. You can do this by using setInterval() instead of
setTimeout():

// Call checkForUpdates in one minute and then again every minute after that
let updateIntervalId = setInterval(checkForUpdates, 60000);

// setInterval() returns a value that we can use to stop the repeated
// invocations by calling clearInterval(). (Similarly, setTimeout()
// returns a value that you can pass to clearTimeout())
function stopCheckingForUpdates() {
 clearInterval(updateIntervalId);
}

13.1.2 Events

Client-side JavaScript programs are almost universally event driven:
rather than running some kind of predetermined computation, they
typically wait for the user to do something and then respond to the
user’s actions. The web browser generates an event when the user
presses a key on the keyboard, moves the mouse, clicks a mouse button,
or touches a touchscreen device. Event-driven JavaScript programs
register callback functions for specified types of events in specified
contexts, and the web browser invokes those functions whenever the
specified events occur. These callback functions are called event
handlers or event listeners, and they are registered with
addEventListener():

// Ask the web browser to return an object representing the HTML
// <button> element that matches this CSS selector
let okay = document.querySelector('#confirmUpdateDialog button.okay');

// Now register a callback function to be invoked when the user
// clicks on that button.
okay.addEventListener('click', applyUpdate);

In this example, applyUpdate() is a hypothetical callback function
that we assume is implemented somewhere else. The call to
document.querySelector() returns an object that represents a single
specified element in the web page. We call addEventListener() on that element to register our callback. Then the first argument to addEventListener() is a string that
specifies the kind of event we’re interested in—a mouse click or
touchscreen tap, in this case. If the user clicks or taps on that
specific element of the web page, then the browser will invoke our
applyUpdate() callback function, passing an object that includes
details (such as the time and the mouse pointer coordinates) about
the event.

13.1.3 Network Events

Another common source of asynchrony in JavaScript programming is
network requests. JavaScript running in the browser can fetch data
from a web server with code like this:

function getCurrentVersionNumber(versionCallback) { // Note callback argument
 // Make a scripted HTTP request to a backend version API
 let request = new XMLHttpRequest();
 request.open("GET", "http://www.example.com/api/version");
 request.send();

 // Register a callback that will be invoked when the response arrives
 request.onload = function() {
 if (request.status === 200) {
 // If HTTP status is good, get version number and call callback.
 let currentVersion = parseFloat(request.responseText);
 versionCallback(null, currentVersion);
 } else {
 // Otherwise report an error to the callback
 versionCallback(response.statusText, null);
 }
 };
 // Register another callback that will be invoked for network errors
 request.onerror = request.ontimeout = function(e) {
 versionCallback(e.type, null);
 };
}

Client-side JavaScript code can use the XMLHttpRequest class plus
callback functions to make HTTP requests and asynchronously handle the
server’s response when it arrives.1 The getCurrentVersionNumber() function
defined here (we can imagine that it is used by the hypothetical
checkForUpdates() function we discussed in §13.1.1) makes an HTTP
request and defines event handlers that will be invoked when the
server’s response is received or when a timeout or other error causes
the request to fail.

Notice that the code example above does not call addEventListener() as our
previous example did. For most web APIs (including this one), event
handlers can be defined by invoking addEventListener() on the object
generating the event and passing the name of the event of interest
along with the callback function. Typically, though, you can also
register a single event listener by assigning it directly to a property of
the object. That is what we do in this example code, assigning
functions to the onload, onerror, and ontimeout properties. By
convention, event listener properties like these always have names
that begin with on. addEventListener() is the more flexible
technique because it allows for multiple event handlers. But in cases
where you are sure that no other code will need to register a listener
for the same object and event type, it can be simpler to simply set
the appropriate property to your callback.

Another thing to note about the getCurrentVersionNumber() function
in this example code is that, because it makes an asynchronous request, it cannot
synchronously return the value (the current version number) that the
caller is interested in. Instead, the caller passes a callback
function, which is invoked when the result is ready or when an error
occurs. In this case, the caller supplies a callback function that
expects two arguments. If the XMLHttpRequest works correctly, then
getCurrentVersionNumber() invokes the callback with a null first
argument and the version number as the second argument. Or, if an
error occurs, then getCurrentVersionNumber() invokes the callback
with error details in the first argument and null as the second
argument.

13.1.4 Callbacks and Events in Node

The Node.js server-side JavaScript environment is deeply asynchronous
and defines many APIs that use callbacks and events. The default API
for reading the contents of a file, for example, is asynchronous and
invokes a callback function when the contents of the file have been
read:

const fs = require("fs"); // The "fs" module has filesystem-related APIs
let options = { // An object to hold options for our program
 // default options would go here
};

// Read a configuration file, then call the callback function
fs.readFile("config.json", "utf-8", (err, text) => {
 if (err) {
 // If there was an error, display a warning, but continue
 console.warn("Could not read config file:", err);
 } else {
 // Otherwise, parse the file contents and assign to the options object
 Object.assign(options, JSON.parse(text));
 }

 // In either case, we can now start running the program
 startProgram(options);
});

Node’s fs.readFile() function takes a two-parameter callback as its
last argument. It reads the specified file asynchronously and then
invokes the callback. If the file was read successfully, it passes the
file contents as the second callback argument. If there was an error,
it passes the error as the first callback argument. In this example, we
express the callback as an arrow function, which is a succinct and
natural syntax for this kind of simple operation.

Node also defines a number of event-based APIs. The following function
shows how to make an HTTP request for the contents of a URL in
Node. It has two layers of asynchronous code handled with event
listeners. Notice that Node uses an on() method to register event
listeners instead of addEventListener():

const https = require("https");

// Read the text content of the URL and asynchronously pass it to the callback.
function getText(url, callback) {
 // Start an HTTP GET request for the URL
 request = https.get(url);

 // Register a function to handle the "response" event.
 request.on("response", response => {
 // The response event means that response headers have been received
 let httpStatus = response.statusCode;

 // The body of the HTTP response has not been received yet.
 // So we register more event handlers to to be called when it arrives.
 response.setEncoding("utf-8"); // We're expecting Unicode text
 let body = ""; // which we will accumulate here.

 // This event handler is called when a chunk of the body is ready
 response.on("data", chunk => { body += chunk; });

 // This event handler is called when the response is complete
 response.on("end", () => {
 if (httpStatus === 200) { // If the HTTP response was good
 callback(null, body); // Pass response body to the callback
 } else { // Otherwise pass an error
 callback(httpStatus, null);
 }
 });
 });

 // We also register an event handler for lower-level network errors
 request.on("error", (err) => {
 callback(err, null);
 });
}

13.2 Promises

Now that we’ve seen examples of callback and event-based asynchronous
programming in client-side and server-side JavaScript environments, we
can introduce Promises, a core language feature designed to simplify
asynchronous programming.

A Promise is an object that represents the result of an asynchronous
computation. That result may or may not be ready yet, and the Promise
API is intentionally vague about this: there is no way to
synchronously get the value of a Promise; you can only ask the Promise
to call a callback function when the value is ready. If you are
defining an asynchronous API like the getText() function in the
previous section, but want to make it Promise-based, omit the callback
argument, and instead return a Promise object. The caller can then
register one or more callbacks on this Promise object, and they will be
invoked when the asynchronous computation is done.

So, at the simplest level, Promises are just a different way of working
with callbacks. However, there are practical benefits to using them. One real problem with callback-based asynchronous programming is that
it is common to end up with callbacks inside callbacks inside
callbacks, with lines of code so highly indented that it is difficult
to read. Promises allow this kind of nested callback to be
re-expressed as a more linear Promise chain that tends to be easier
to read and easier to reason about.

Another problem with callbacks is that they can make handling errors
difficult. If an asynchronous function (or an asynchronously invoked
callback) throws an exception, there is no way for that exception to
propagate back to the initiator of the asynchronous operation. This is
a fundamental fact about asynchronous programming: it breaks exception
handling. The alternative is to meticulously track and propagate
errors with callback arguments and return values, but this is tedious
and difficult to get right. Promises help here by standardizing a way
to handle errors and providing a way for errors to propagate
correctly through a chain of promises.

Note that Promises represent the future results of single asynchronous
computations. They cannot be used to represent repeated asynchronous
computations, however. Later in this chapter, we’ll write a
Promise-based alternative to the setTimeout() function, for
example. But we can’t use Promises to replace setInterval() because
that function invokes a callback function repeatedly, which is
something that Promises are just not designed to do. Similarly, we
could use a Promise instead of the “load” event handler of an
XMLHttpRequest object, since that callback is only ever called
once. But we typically would not use a Promise in place of a “click”
event handler of an HTML button object, since we normally want to
allow the user to click a button multiple times.

The subsections that follow will:

	
Explain Promise terminology and show basic Promise usage

	
Show how promises can be chained

	
Demonstrate how to create your own Promise-based APIs

Important

Promises seem simple at first, and the basic use case for
Promises is, in fact, straightforward and simple. But they can become
surprisingly confusing for anything beyond the simplest use cases.
Promises are a powerful idiom for asynchronous programming, but you
need to understand them deeply to use them correctly and
confidently. It is worth taking the time to develop that deep
understanding, however, and I urge you to study this long chapter
carefully.

13.2.1 Using Promises

With the advent of Promises in the core JavaScript language, web
browsers have begun to implement Promise-based APIs. In the previous
section, we implemented a getText() function that made an
asynchronous HTTP request and passed the body of the HTTP response to
a specified callback function as a string. Imagine a variant of this
function, getJSON(), which parses the body of the HTTP response as
JSON and returns a Promise instead of accepting a callback
argument. We will implement a getJSON() function later in this
chapter, but for now, let’s look at how we would use this
Promise-returning utility function:

getJSON(url).then(jsonData => {
 // This is a callback function that will be asynchronously
 // invoked with the parsed JSON value when it becomes available.
});

getJSON() starts an asynchronous HTTP request for the URL you
specify and then, while that request is pending, it returns a Promise
object. The Promise object defines a then() instance method. Instead
of passing our callback function directly to
getJSON(), we instead
pass it to the then() method. When the HTTP response arrives, the
body of that response is parsed as JSON, and the resulting parsed
value is passed to the function that we passed to then().

You can think of the then() method as a callback registration method
like the
addEventListener() method used for registering event
handlers in client-side JavaScript. If you call the then() method of
a Promise object multiple
times, each of the functions you specify will be called when the
promised computation is complete.

Unlike many event listeners, though,
a Promise represents a single computation, and each function
registered with then() will be invoked only once. It is worth noting
that the function you pass to then() is invoked asynchronously, even
if the asynchronous computation is already complete when you call then().

At a simple syntactical level, the then() method is the distinctive
feature of Promises, and it is idiomatic to append .then() directly
to the function invocation that returns the Promise, without the
intermediate step of assigning the Promise object to a variable.

It is
also idiomatic to name functions that return Promises and functions
that use the results of Promises with verbs, and these idioms lead to
code that is particularly easy to read:

// Suppose you have a function like this to display a user profile
function displayUserProfile(profile) { /* implementation omitted */ }

// Here's how you might use that function with a Promise.
// Notice how this line of code reads almost like an English sentence:
getJSON("/api/user/profile").then(displayUserProfile);

Handling errors with Promises

Asynchronous operations, particularly those that involve networking,
can typically fail in a number of ways, and robust code has to be
written to handle the errors that will inevitably occur.

For Promises,
we can do this by passing a second function to the then() method:

getJSON("/api/user/profile").then(displayUserProfile, handleProfileError);

A Promise represents the future result of an asynchronous computation
that occurs after the Promise object is created. Because the
computation is performed after the Promise object is returned to us,
there is no way that the computation can traditionally return a value
or throw an exception that we can catch. The functions that we pass to
then() provide alternatives. When a synchronous computation
completes normally, it simply returns its result to its caller. When a
Promise-based asynchronous computation completes normally, it passes
its result to the function that is the first argument to then().

When something goes wrong in a synchronous computation, it throws an
exception that propagates up the call stack until there is a catch
clause to handle it. When an asynchronous computation runs, its caller
is no longer on the stack, so if something goes wrong, it is simply
not possible to throw an exception back to the caller.

Instead,
Promise-based asynchronous computations pass the exception (typically
as an Error object of some kind, though this is not required) to the
second function passed to then(). So, in the code above, if
getJSON() runs normally, it passes its result to
displayUserProfile(). If there is an error (the user is not logged
in, the server is down, the user’s internet connection dropped, the
request timed out, etc.), then getJSON() passes an Error object to
handleProfileError().

In practice, it is rare to see two functions passed to then(). There
is a better and more idiomatic way of handling errors when working
with Promises. To understand it, first consider what happens if
getJSON() completes normally but an error occurs in
displayUserProfile(). That callback function is invoked
asynchronously when getJSON() returns, so it is also asynchronous
and cannot meaningfully throw an exception (because there is no code
on the call stack to handle it).

The more idiomatic way to handle errors in this code looks like this:

getJSON("/api/user/profile").then(displayUserProfile).catch(handleProfileError);

With this code, a normal result from getJSON() is still passed to
displayUserProfile(), but any error in getJSON() or in
displayUserProfile() (including any exceptions thrown by
displayUserProfile) get passed to handleProfileError(). The
catch() method is just a shorthand for calling then() with a
null first argument and the specified error handler function as the
second argument.

We’ll have more to say about catch() and this error-handling idiom when we discuss Promise chains in the next section.

Promise Terminology

Before we discuss Promises further, it is worth pausing to define some
terms. When we are not programming and we talk about human promises, we say
that a promise is “kept” or “broken.” When discussing JavaScript
Promises, the equivalent terms are “fulfilled” and “rejected.” Imagine
that you have called the then() method of a Promise and have passed
two callback functions to it. We say that the promise has been
fulfilled if and when the first callback is called. And we say that
the Promise has been rejected if and when the second callback is
called. If a Promise is neither fulfilled nor rejected, then it is
pending. And once a promise is fulfilled or rejected, we say that it
is settled. Note that a Promise can never be both fulfilled and
rejected. Once a Promise settles, it will never change from fulfilled
to rejected or vice versa.

Remember how we defined Promises at the start of this section: “a
Promise is an object that represents the result of an asynchronous
operation.” It is important to remember that Promises are not just
abstract ways registering callbacks to run when some async code
finishes—they represent the results of that async code. If the async
code runs normally (and the Promise is fulfilled), then that result is
essentially the return value of the code. And if the async code does
not complete normally (and the Promise is rejected), then the result is
an Error object or some other value that the code might have thrown if
it was not asynchronous. Any Promise that has settled has a value
associated with it, and that value will not change. If the Promise is
fulfilled, then the value is a return value that gets passed to any
callback functions registered as the first argument of then(). If
the Promise is rejected, then the value is an error of some sort that
is passed to any callback functions registered with catch() or as
the second argument of then().

The reason that I want to be precise about Promise terminology is
that Promises can also be resolved. It is
easy to confuse this resolved state with the fulfilled state or with
settled state, but it is not precisely the same as
either. Understanding the resolved state is one of the keys to a deep
understanding of Promises, and I’ll come back to it after we’ve
discussed Promise chains below.

13.2.2 Chaining Promises

One of the most important benefits of Promises is that they provide a
natural way to express a sequence of asynchronous operations as a
linear chain of then() method invocations, without having to nest
each operation within the callback of the previous one. Here, for
example, is a hypothetical Promise chain:

fetch(documentURL) // Make an HTTP request
 .then(response => response.json()) // Ask for the JSON body of the response
 .then(document => { // When we get the parsed JSON
 return render(document); // display the document to the user
 })
 .then(rendered => { // When we get the rendered document
 cacheInDatabase(rendered); // cache it in the local database.
 })
 .catch(error => handle(error)); // Handle any errors that occur

This code illustrates how a chain of Promises can make it easy to
express a sequence of asynchronous operations. We’re not going to discuss
this particular Promise chain at all, however. We will continue to explore the idea of using Promise chains to make HTTP requests, however.

Earlier in this chapter, we saw the XMLHttpRequest object used to make
an HTTP request in JavaScript. That strangely named object has an old
and awkward API, and it has largely been replaced by the newer,
Promise-based Fetch API (§15.11.1). In its simplest form, this new
HTTP API is just the function fetch(). You pass it a URL, and it
returns a Promise. That promise is fulfilled when the HTTP response
begins to arrive and the HTTP status and headers are available:

fetch("/api/user/profile").then(response => {
 // When the promise resolves, we have status and headers
 if (response.ok &&
 response.headers.get("Content-Type") === "application/json") {
 // What can we do here? We don't actually have the response body yet.
 }
});

When the Promise returned by fetch() is fulfilled, it passes a
Response object to the function you passed to its then()
method. This response object gives you access to request status and
headers, and it also defines methods like text() and json(), which
give you access to the body of the response in text and JSON-parsed
forms, respectively. But although the initial Promise is fulfilled,
the body of the response may not yet have arrived. So these text()
and json() methods for accessing the body of the response themselves
return Promises. Here’s a naive way of using fetch() and the
response.json() method to get the body of an HTTP response:

fetch("/api/user/profile").then(response => {
 response.json().then(profile => { // Ask for the JSON-parsed body
 // When the body of the response arrives, it will be automatically
 // parsed as JSON and passed to this function.
 displayUserProfile(profile);
 });
});

This is a naive way to use Promises because we nested them, like
callbacks, which defeats the purpose. The preferred idiom is
to use Promises in a sequential chain with code like this:

fetch("/api/user/profile")
 .then(response => {
 return response.json();
 })
 .then(profile => {
 displayUserProfile(profile);
 });

Let’s look at the method invocations in this code, ignoring the
arguments that are passed to the methods:

fetch().then().then()

When more than one method is invoked in a single expression like this,
we call it a method chain. We know that the fetch() function
returns a Promise object, and we can see that the first .then() in
this chain invokes a method on that returned Promise object. But there
is a second .then() in the chain, which means that the first
invocation of the then() method must itself return a Promise.

Sometimes, when an API is designed to use this kind of method
chaining, there is just a single object, and each method of that object
returns the object itself in order to facilitate chaining. That is not how
Promises work, however. When we write a chain of .then()
invocations, we are not registering multiple callbacks on a single
Promise object. Instead, each invocation of the then() method
returns a new Promise object. That new Promise object is not fulfilled
until the function passed to then() is complete.

Let’s return to a simplified form of the original fetch() chain
above. If we define the functions passed to the then() invocations
elsewhere, we might refactor the code to look like this:

fetch(theURL) // task 1; returns promise 1
 .then(callback1) // task 2; returns promise 2
 .then(callback2); // task 3; returns promise 3

Let’s walk through this code in detail:

	
On the first line, fetch() is invoked with a URL. It initiates an
HTTP GET request for that URL and returns a Promise. We’ll call this
HTTP request “task 1” and we’ll call the Promise “promise 1”.

	
On the second line, we invoke the then() method of promise 1,
passing the callback1 function that we want to be invoked when
promise 1 is fulfilled. The then() method stores our callback
somewhere, then returns a new Promise. We’ll call the new Promise
returned at this step “promise 2”, and we’ll say that “task 2” begins
when callback1 is invoked.

	
On the third line, we invoke the then() method of promise 2,
passing the callback2 function we want invoked when promise 2 is
fulfilled. This then() method remembers our callback and returns yet
another Promise. We’ll say that “task 3” begins when callback2 is
invoked. We can call this latest Promise “promise 3”, but we don’t
really need a name for it because we won’t be using it at all.

	
The previous three steps all happen synchronously when the
expression is first executed. Now we have an asynchronous pause while
the HTTP request initiated in step 1 is sent out across the internet.

	
Eventually, the HTTP response starts to arrive. The asynchronous part
of the fetch() call wraps the HTTP status and headers in a Response
object and fulfills promise 1 with that Response object as the value.

	
When promise 1 is fulfilled, its value (the Response object) is
passed to our callback1() function, and task 2
begins. The job of this task, given a Response object as input, is to
obtain the response body as a JSON object.

	
Let’s assume that task 2 completes normally and is able to parse the
body of the HTTP response to produce a JSON object. This JSON object is
used to fulfill promise 2.

	
The value that fulfills promise 2 becomes the input to task 3 when
it is passed to the callback2() function. This third task now
displays the data to the user in some unspecified way. When task 3 is
complete (assuming it completes normally), then promise 3 will be
fulfilled. But because we never did anything with promise 3, nothing
happens when that Promise settles, and the chain of asynchronous
computation ends at this point.

13.2.3 Resolving Promises

While explaining the URL-fetching Promise chain with the list in the last section,
we talked about promises 1, 2, and 3. But there is actually a fourth
Promise object involved as well, and this brings us to our important
discussion of what it means for a Promise to be “resolved.”

Remember that fetch() returns a Promise object which, when
fulfilled, passes a Response object to the callback function we
register. This Response object has .text(), .json(), and other
methods to request the body of the HTTP response in various forms. But
since the body may not yet have arrived, these methods must return
Promise objects. In the example we’ve been studying, “task 2” calls
the .json() method and returns its value. This is the fourth Promise
object, and it is the return value of the callback1() function.

Let’s rewrite the URL-fetching code one more time in a verbose and
nonidiomatic way that makes the callbacks and promises explicit:

function c1(response) { // callback 1
 let p4 = response.json();
 return p4; // returns promise 4
}

function c2(profile) { // callback 2
 displayUserProfile(profile);
}

let p1 = fetch("/api/user/profile"); // promise 1, task 1
let p2 = p1.then(c1); // promise 2, task 2
let p3 = p2.then(c2); // promise 3, task 3

In order for Promise chains to work usefully, the output of task 2
must become the input to task 3. And in the example we’re considering
here, the input to task 3 is the body of the URL that was fetched,
parsed as a JSON object. But, as we’ve just discussed, the return
value of callback c1 is not a JSON object, but Promise p4 for that
JSON object. This seems like a contradiction, but it is not: when p1
is fulfilled, c1 is invoked, and task 2 begins. And when p2 is
fulfilled, c2 is invoked, and task 3 begins. But just because task 2
begins when c1 is invoked, it does not mean that task 2 must end
when c1 returns. Promises are about managing asynchronous tasks,
after all, and if task 2 is asynchronous (which it is, in this case),
then that task will not be complete by the time the callback returns.

We are now ready to discuss the final detail that you need to
understand to really master Promises. When you pass a callback c to
the then() method, then() returns a Promise p and arranges to
asynchronously invoke c at some later time. The callback performs
some computation and returns a value v. When the callback returns,
p is resolved with the value v. When a Promise is resolved with
a value that is not itself a Promise, it is immediately fulfilled with
that value. So if c returns a non-Promise, that return value becomes
the value of p, p is fulfilled and we are done. But if the return
value v is itself a Promise, then p is resolved but not yet
fulfilled. At this stage, p cannot settle until the Promise v settles. If v is fulfilled, then p will be fulfilled to the same
value. If v is rejected, then p will be rejected for the same
reason. This is what the “resolved” state of a Promise means: the
Promise has become associated with, or “locked onto,” another
Promise. We don’t know yet whether p will be fulfilled or rejected,
but our callback c no longer has any control over that. p is
“resolved” in the sense that its fate now depends entirely on what
happens to Promise v.

Let’s bring this back to our URL-fetching example. When c1 returns
p4, p2 is resolved. But being resolved is not the same as being
fulfilled, so task 3 does not begin yet. When the full body of the
HTTP response becomes available, then the .json() method can parse
it and use that parsed value to fulfill p4. When p4 is fulfilled,
p2 is automatically fulfilled as well, with the same parsed JSON
value. At this point, the parsed JSON object is passed to c2, and
task 3 begins.

This can be one of the trickiest parts of JavaScript to understand,
and you may need to read this section more than
once. Figure 13-1 presents the process in visual form
and may help clarify it for you.

[image: js7e 1301]
Figure 13-1. Fetching a URL with Promises

13.2.4 More on Promises and Errors

Earlier in the chapter, we saw that you can pass a second callback function to the .then() method and that this second function will
be invoked if the Promise is rejected. When that happens, the argument
to this second callback function is a value—typically an Error
object—that represents the reason for the rejection. We also learned
that it is uncommon (and even unidiomatic) to pass two callbacks to a
.then() method. Instead, Promise-related errors are typically
handled by adding a .catch() method invocation to a Promise
chain. Now that we have examined Promise chains, we can
return to error handling and discuss it in more detail. To preface the
discussion, I’d like to stress that careful error handling is really
important when doing asynchronous programming. With synchronous code,
if you leave out error-handling code, you’ll at least get an exception
and a stack trace that you can use to figure out what is going
wrong. With asynchronous code, unhandled exceptions will often go
unreported, and errors can occur silently, making them much harder to
debug. The good news is that the .catch() method makes it easy to
handle errors when working with Promises.

The catch and finally methods

The .catch() method of a Promise is simply
a shorthand way to call .then() with null as the first argument
and an error-handling callback as the second argument. Given any Promise
p and a callback c, the following two lines are equivalent:

p.then(null, c);
p.catch(c);

The .catch() shorthand is preferred because it is simpler and
because the name matches the catch clause in a try/catch exception-handling statement. As we’ve discussed, normal exceptions don’t work
with asynchronous code. The .catch() method of Promises is an
alternative that does work for asynchronous code. When something goes
wrong in synchronous code, we can speak of an exception “bubbling up
the call stack” until it finds a catch block. With an asynchronous
chain of Promises, the comparable metaphor might be of an error
“trickling down the chain” until it finds a .catch() invocation.

In ES2018, Promise objects also define a .finally() method
whose purpose is similar to the finally clause in a
try/catch/finally statement. If you add a .finally() invocation to
your Promise chain, then the callback you pass to .finally() will be
invoked when the Promise you called it on settles. Your callback will
be invoked if the Promise fulfills or rejects, and it will not be
passed any arguments, so you can’t find out whether it fulfilled or
rejected. But if you need to run some kind of cleanup code (such as
closing open files or network connections) in either case, a
.finally() callback is the ideal way to do that. Like .then() and
.catch(), .finally() returns a new Promise object. The return
value of a .finally() callback is generally ignored, and the Promise
returned by .finally() will typically resolve or reject with the
same value that the Promise that .finally() was invoked on resolves
or rejects with. If a .finally() callback throws an exception,
however, then the Promise returned by .finally() will reject with
that value.

The URL-fetching code that we studied in the previous sections did not do
any error handling. Let’s correct that now with a more realistic
version of the code:

fetch("/api/user/profile") // Start the HTTP request
 .then(response => { // Call this when status and headers are ready
 if (!response.ok) { // If we got a 404 Not Found or similar error
 return null; // Maybe user is logged out; return null profile
 }

 // Now check the headers to ensure that the server sent us JSON.
 // If not, our server is broken, and this is a serious error!
 let type = response.headers.get("content-type");
 if (type !== "application/json") {
 throw new TypeError(`Expected JSON, got ${type}`);
 }

 // If we get here, then we got a 2xx status and a JSON content-type
 // so we can confidently return a Promise for the response
 // body as a JSON object.
 return response.json();
 })
 .then(profile => { // Called with the parsed response body or null
 if (profile) {
 displayUserProfile(profile);
 }
 else { // If we got a 404 error above and returned null we end up here
 displayLoggedOutProfilePage();
 }
 })
 .catch(e => {
 if (e instanceof NetworkError) {
 // fetch() can fail this way if the internet connection is down
 displayErrorMessage("Check your internet connection.");
 }
 else if (e instanceof TypeError) {
 // This happens if we throw TypeError above
 displayErrorMessage("Something is wrong with our server!");
 }
 else {
 // This must be some kind of unanticipated error
 console.error(e);
 }
 });

Let’s analyze this code by looking at what happens when things go
wrong. We’ll use the naming scheme we used before: p1 is the Promise
returned by the fetch() call. p2 is the Promise returned by the
first .then() call, and c1 is the callback that we pass to that
.then() call. p3 is the Promise returned by the second .then()
call, and c2 is the callback we pass to that call. Finally, c3 is
the callback that we pass to the .catch() call. (That call returns a
Promise, but we don’t need to refer to it by name.)

The first thing that could fail is the fetch() request itself. If
the network connection is down (or for some other reason an HTTP
request cannot be made), then Promise p1 will be rejected with a
NetworkError object. We didn’t pass an error-handling callback
function as the second argument to the .then() call, so p2 rejects
as well with the same NetworkError object. (If we had passed an error
handler to that first .then() call, the error handler would be
invoked, and if it returned normally, p2 would be resolved and/or
fulfilled with the return value from that handler.) Without a handler,
though, p2 is rejected, and then p3 is rejected for the same
reason. At this point, the c3 error-handling callback is called, and
the NetworkError-specific code within it runs.

Another way our code could fail is if our HTTP request returns a 404
Not Found or another HTTP error. These are valid HTTP responses, so the
fetch() call does not consider them errors. fetch() encapsulates a
404 Not Found in a Response object and fulfills p1 with that object,
causing c1 to be invoked. Our code in c1 checks the ok property
of the Response object to detect that it has not received a normal
HTTP response and handles that case by simply returning
null. Because this return value is not a Promise, it fulfills p2
right away, and c2 is invoked with this value. Our code in c2
explicitly checks for and handles falsy values by displaying a
different result to the user. This is a case where we treat an
abnormal condition as a nonerror and handle it without actually using
an error handler.

A more serious error occurs in c1 if the we get a normal HTTP
response code but the Content-Type header is not set
appropriately. Our code expects a JSON-formatted response, so if the
server is sending us HTML, XML, or plain text instead, we’re going to
have a problem. c1 includes code to check the Content-Type
header. If the header is wrong, it treats this as a nonrecoverable
problem and throws a TypeError. When a callback passed to .then()
(or .catch()) throws a value, the Promise that was the return value
of the .then() call is rejected with that thrown value. In this
case, the code in c1 that raises a TypeError causes p2 to be
rejected with that TypeError object. Since we did not specify an error
handler for p2, p3 will be rejected as well. c2 will
not be called, and the TypeError will be passed to c3, which has code
to explicitly check for and handle this type of error.

There are a couple of things worth noting about this code. First,
notice that the error object thrown with a regular, synchronous
throw statement ends up being handled asynchronously with a
.catch() method invocation in a Promise chain. This should make it
clear why this shorthand method is preferred over passing a second
argument to .then(), and also why it is so idiomatic to end Promise
chains with a .catch() call.

Before we leave the topic of error handling, I want to point out that, although it is idiomatic to end every Promise chain with a .catch()
to clean up (or at least log) any errors that occurred in the chain,
it is also perfectly valid to use .catch() elsewhere in a Promise
chain. If one of the stages in your Promise chain can fail with an
error, and if the error is some kind of recoverable error that should
not stop the rest of the chain from running, then you can insert a
.catch() call in the chain, resulting in code that might look like
this:

startAsyncOperation()
 .then(doStageTwo)
 .catch(recoverFromStageTwoError)
 .then(doStageThree)
 .then(doStageFour)
 .catch(logStageThreeAndFourErrors);

Remember that the callback you pass to .catch() will only be invoked
if the callback at a previous stage throws an error. If the callback
returns normally, then the .catch() callback will be skipped, and the
return value of the previous callback will become the input to the
next .then() callback. Also remember that .catch() callbacks are
not just for reporting errors, but for handling and recovering from
errors. Once an error has been passed to a .catch() callback, it
stops propagating down the Promise chain. A .catch() callback can
throw a new error, but if it returns normally, than that return value
is used to resolve and/or fulfill the associated Promise, and the error
stops propagating.

Let’s be concrete about this: in the preceding code example, if
either startAsyncOperation() or doStageTwo() throws an error, then the
recoverFromStageTwoError() function will be invoked. If
recoverFromStageTwoError() returns normally, then its return value
will be passed to doStageThree() and the asynchronous operation
continues normally. On the other hand, if recoverFromStageTwoError()
was unable to recover, it will itself throw an error (or it will
rethrow the error that it was passed). In this case, neither
doStageThree() nor doStageFour() will be invoked, and the error
thrown by recoverFromStageTwoError() would be passed to
logStageThreeAndFourErrors().

Sometimes, in complex network environments, errors can occur more or
less at random, and it can be appropriate to handle those errors by
simply retrying the asynchronous request. Imagine you’ve written a
Promise-based operation to query a database:

queryDatabase()
 .then(displayTable)
 .catch(displayDatabaseError);

Now suppose that transient network load issues are causing this to
fail about 1% of the time. A simple solution might be to retry the
query with a .catch() call:

queryDatabase()
 .catch(e => wait(500).then(queryDatabase)) // On failure, wait and retry
 .then(displayTable)
 .catch(displayDatabaseError);

If the hypothetical failures are truly random, then adding this one
line of code should reduce your error rate from 1% to .01%.

Returning from a Promise Callback

Let’s return one last time to the earlier URL-fetching example, and
consider the c1 callback that we passed to the first .then()
invocation. Notice that there are three ways that c1 can
terminate. It can return normally with the Promise returned by the
.json() call. This causes p2 to be resolved, but whether that
Promise is fulfilled or rejected depends on what happens with the
newly returned Promise. c1 can also return normally with the value
null, which causes p2 to be fulfilled immediately. Finally, c1 can
terminate by throwing an error, which causes p2 to be
rejected. These are the three possible outcomes for a Promise, and the
code in c1 demonstrates how the callback can cause each outcome.

In a Promise chain, the value returned (or thrown) at one stage of the
chain becomes the input to the next stage of the chain, so it is
critical to get this right. In practice, forgetting to return a value
from a callback function is actually a common source of
Promise-related bugs, and this is exacerbated by JavaScript’s arrow
function shortcut syntax. Consider this line of code that we saw earlier:

.catch(e => wait(500).then(queryDatabase))

Recall from Chapter 8 that arrow functions allow a lot of
shortcuts. Since there is exactly one argument (the error value), we
can omit the parentheses. Since the body of the function is a single
expression, we can omit the curly braces around the function body, and
the value of the expression becomes the return value of the
function. Because of these shortcuts, the preceding code is correct. But
consider this innocuous-seeming change:

.catch(e => { wait(500).then(queryDatabase) })

By adding the curly braces, we no longer get the automatic return. This
function now returns undefined instead of returning a Promise, which
means that the next stage in this Promise chain will be invoked with
undefined as its input rather than the result of the retried
query. It is a subtle error that may not be easy to debug.

13.2.5 Promises in Parallel

We’ve spent a lot of time talking about Promise chains for
sequentially running the asynchronous steps of a larger asynchronous
operation. Sometimes, though, we want to execute a number of
asynchronous operations in parallel. The function Promise.all() can
do this. Promise.all() takes an array of Promise objects as its
input and returns a Promise. The returned Promise will be rejected if
any of the input Promises are rejected. Otherwise, it will be
fulfilled with an array of the fulfillment values of each of the input
Promises. So, for example, if you want to fetch the text content of
multiple URLs, you could use code like this:

// We start with an array of URLs
const urls = [/* zero or more URLs here */];
// And convert it to an array of Promise objects
promises = urls.map(url => fetch(url).then(r => r.text()));
// Now get a Promise to run all those Promises in parallel
Promise.all(promises)
 .then(bodies => { /* do something with the array of strings */ })
 .catch(e => console.error(e));

Promise.all() is slightly more flexible than described before. The
input array can contain both Promise objects and non-Promise
values. If an element of the array is not a Promise, it is treated as
if it is the value of an already fulfilled Promise and is simply
copied unchanged into the output array.

The Promise returned by Promise.all() rejects when any of the
input Promises is rejected. This happens immediately upon the first
rejection and can happen while other input Promises are still
pending. In ES2020, Promise.allSettled() takes an array of input
Promises and returns a Promise, just like Promise.all() does. But
Promise.allSettled() never rejects the returned Promise, and it does
not fulfill that Promise until all of the input Promises have
settled. The Promise resolves to an array of objects, with one object
for each input Promise. Each of these returned objects has a status
property set to “fulfilled” or “rejected.” If the status is
“fulfilled”, then the object will also have a value property that
gives the fulfillment value. And if the status is “rejected”, then the
object will also have a reason property that gives the error or
rejection value of the corresponding Promise:

Promise.allSettled([Promise.resolve(1), Promise.reject(2), 3]).then(results => {
 results[0] // => { status: "fulfilled", value: 1 }
 results[1] // => { status: "rejected", reason: 2 }
 results[2] // => { status: "fulfilled", value: 3 }
});

Occasionally, you may want to run a number of Promises at once but may
only care about the value of the first one to fulfill. In that case,
you can use Promise.race() instead of Promise.all(). It returns a
Promise that is fulfilled or rejected when the first of the Promises
in the input array is fulfilled or rejected. (Or, if there are any
non-Promise values in the input array, it simply returns the first of
those.)

13.2.6 Making Promises

We’ve used the Promise-returning function fetch() in many of the
previous examples because it is one of the simplest functions built in to web
browsers that returns a Promise. Our discussion of Promises has also
relied on hypothetical Promise-returning functions getJSON() and
wait(). Functions written to return Promises really are quite
useful, and this section shows how you can create your own
Promise-based APIs. In particular, we’ll show implementations of
getJSON() and wait().

Promises based on other Promises

It is easy to write a function that returns a Promise if you have some
other Promise-returning function to start with. Given a Promise, you
can always create (and return) a new one by calling .then(). So if
we use the existing fetch() function as a starting point, we can
write getJSON() like this:

function getJSON(url) {
 return fetch(url).then(response => response.json());
}

The code is trivial because the Response object of the fetch() API
has a predefined json() method. The json() method returns a
Promise, which we return from our callback (the callback is an arrow
function with a single-expression body, so the return is implicit), so
the Promise returned by getJSON() resolves to the Promise returned
by response.json(). When that Promise fulfills, the Promise
returned by getJSON() fulfills to the same value. Note that there is
no error handling in this getJSON() implementation. Instead of
checking response.ok and the Content-Type header, we instead just
allow the json() method to reject the Promise it returned with a
SyntaxError if the response body cannot be parsed as JSON.

Let’s write another Promise-returning function, this time using
getJSON() as the source of the initial Promise:

function getHighScore() {
 return getJSON("/api/user/profile").then(profile => profile.highScore);
}

We’re assuming that this function is part of some sort of web-based
game and that the URL “/api/user/profile” returns a JSON-formatted
data structure that includes a highScore property.

Promises based on synchronous values

Sometimes, you may need to implement an existing Promise-based API and
return a Promise from a function, even though the computation
to be performed does not actually require any asynchronous
operations. In that case, the static methods Promise.resolve() and
Promise.reject() will do what you want. Promise.resolve() takes a
value as its single argument and returns a Promise that will
immediately (but asynchronously) be fulfilled to that
value. Similarly, Promise.reject() takes a single argument and
returns a Promise that will be rejected with that value as the
reason. (To be clear: the Promises returned by these static methods
are not already fulfilled or rejected when they are returned, but they
will fulfill or reject immediately after the current synchronous chunk
of code has finished running. Typically, this happens within a few
milliseconds unless there are many pending asynchronous tasks waiting
to run.)

Recall from §13.2.3 that a resolved Promise is
not the same thing as a fulfilled Promise. When we call
Promise.resolve(), we typically pass the fulfillment value to create
a Promise object that will very soon fulfill to that value. The method
is not named Promise.fulfill(), however. If you pass a Promise p1
to Promise.resolve(), it will return a new Promise p2, which is
immediately resolved, but which will not be fulfilled or rejected
until p1 is fulfilled or rejected.

It is possible, but unusual, to write a Promise-based function where
the value is computed synchronously and returned asynchronously with
Promise.resolve(). It is fairly common, however, to have synchronous
special cases within an asynchronous function, and you can handle
these special cases with Promise.resolve() and
Promise.reject(). In particular, if you detect error conditions
(such as bad argument values) before beginning an asynchronous
operation, you can report that error by returning a Promise created
with Promise.reject(). (You could also just throw an error
synchronously in that case, but that is considered poor form because
then the caller of your function needs to write both a synchronous
catch clause and use an asynchronous .catch() method to handle errors.)
Finally, Promise.resolve() is sometimes useful to create the initial
Promise in a chain of Promises. We’ll see a couple of examples
that use it this way.

Promises from scratch

For both getJSON() and getHighScore(), we started off by calling
an existing function to get an initial Promise, and created and
returned a new Promise by calling the .then() method of that initial
Promise. But what about writing a Promise-returning function when you
can’t use another Promise-returning function as the starting point? In
that case, you use the Promise() constructor to create a new Promise
object that you have complete control over. Here’s how it works: you
invoke the Promise() constructor and pass a function as its only
argument. The function you pass should be written to expect two
parameters, which, by convention, should be named resolve and
reject. The constructor synchronously calls your function with
function arguments for the resolve and reject parameters. After
calling your function, the Promise() constructor returns the newly
created Promise. That returned Promise is under the control of the
function you passed to the constructor. That function should perform
some asynchronous operation and then call the resolve function to
resolve or fulfill the returned Promise or call the reject function
to reject the returned Promise. Your function does not have to be
asynchronous: it can call resolve or reject synchronously, but the
Promise will still be resolved, fulfilled, or rejected asynchronously if
you do this.

It can be hard to understand the functions passed to a function passed
to a constructor by just reading about it, but hopefully some examples
will make this clear. Here’s how to write the Promise-based wait()
function that we used in various examples earlier in the chapter:

function wait(duration) {
 // Create and return a new Promise
 return new Promise((resolve, reject) => { // These control the Promise
 // If the argument is invalid, reject the Promise
 if (duration < 0) {
 reject(new Error("Time travel not yet implemented"));
 }
 // Otherwise, wait asynchronously and then resolve the Promise.
 // setTimeout will invoke resolve() with no arguments, which means
 // that the Promise will fulfill with the undefined value.
 setTimeout(resolve, duration);
 });
}

Note that the pair of functions that you use to control the fate of a
Promise created with the Promise() constructor are named resolve()
and reject(), not fulfill() and reject(). If you pass a Promise
to resolve(), the returned Promise will resolve to that new
Promise. Often, however, you will pass a non-Promise value,
which fulfills the returned Promise with that value.

Example 13-1 is another example of using the Promise() constructor. This one
implements our getJSON() function for use in Node, where the
fetch() API is not built in. Remember that we started this chapter
with a discussion of asynchronous callbacks and events. This example
uses both callbacks and event handlers and is a good demonstration,
therefore, of how we can implement Promise-based APIs on top of other
styles of asynchronous programming.

Example 13-1. An asynchronous getJSON() function

const http = require("http");

function getJSON(url) {
 // Create and return a new Promise
 return new Promise((resolve, reject) => {
 // Start an HTTP GET request for the specified URL
 request = http.get(url, response => { // called when response starts
 // Reject the Promise if the HTTP status is wrong
 if (response.statusCode !== 200) {
 reject(new Error(`HTTP status ${response.statusCode}`));
 response.resume(); // so we don't leak memory
 }
 // And reject if the response headers are wrong
 else if (response.headers["content-type"] !== "application/json") {
 reject(new Error("Invalid content-type"));
 response.resume(); // don't leak memory
 }
 else {
 // Otherwise, register events to read the body of the response
 let body = "";
 response.setEncoding("utf-8");
 response.on("data", chunk => { body += chunk; });
 response.on("end", () => {
 // When the response body is complete, try to parse it
 try {
 let parsed = JSON.parse(body);
 // If it parsed successfully, fulfill the Promise
 resolve(parsed);
 } catch(e) {
 // If parsing failed, reject the Promise
 reject(e);
 }
 });
 }
 });
 // We also reject the Promise if the request fails before we
 // even get a response (such as when the network is down)
 request.on("error", error => {
 reject(error);
 });
 });
}

13.2.7 Promises in Sequence

Promise.all() makes it easy to run an arbitrary number of Promises
in parallel. And Promise chains make it easy to express a sequence of a
fixed number of Promises. Running an arbitrary number of Promises in
sequence is trickier, however. Suppose, for example, that you have an
array of URLs to fetch, but that to avoid overloading your network,
you want to fetch them one at a time. If the array is of arbitrary
length and unknown content, you can’t write out a Promise chain in
advance, so you need to build one dynamically, with code like this:

function fetchSequentially(urls) {
 // We'll store the URL bodies here as we fetch them
 const bodies = [];

 // Here's a Promise-returning function that fetches one body
 function fetchOne(url) {
 return fetch(url)
 .then(response => response.text())
 .then(body => {
 // We save the body to the array, and we're purposely
 // omitting a return value here (returning undefined)
 bodies.push(body);
 });
 }

 // Start with a Promise that will fulfill right away (with value undefined)
 let p = Promise.resolve(undefined);

 // Now loop through the desired URLs, building a Promise chain
 // of arbitrary length, fetching one URL at each stage of the chain
 for(url of urls) {
 p = p.then(() => fetchOne(url));
 }

 // When the last Promise in that chain is fulfilled, then the
 // bodies array is ready. So let's return a Promise for that
 // bodies array. Note that we don't include any error handlers:
 // we want to allow errors to propagate to the caller.
 return p.then(() => bodies);
}

With this fetchSequentially() function defined, we could fetch the
URLs one at a time with code much like the fetch-in-parallel code we
used earlier to demonstrate Promise.all():

fetchSequentially(urls)
 .then(bodies => { /* do something with the array of strings */ })
 .catch(e => console.error(e));

The fetchSequentially() function starts by creating a Promise that
will fulfill immediately after it returns. It then builds a long,
linear Promise chain off of that initial Promise and returns the last
Promise in the chain. It is like setting up a row of dominoes and then
knocking the first one over.

There is another (possibly more elegant) approach that we can
take. Rather than creating the Promises in advance, we can have the
callback for each Promise create and return the next Promise. That is,
instead of creating and chaining a bunch of Promises, we instead
create Promises that resolve to other Promises. Rather than creating a
domino-like chain of Promises, we are instead creating a sequence of
Promises nested one inside the other like a set of matryoshka
dolls. With this approach, our code can return the first (outermost)
Promise, knowing that it will eventually fulfill (or reject!) to the
same value that the last (innermost) Promise in the sequence does. The
promiseSequence() function that follows is written to be generic and is not
specific to URL fetching. It is here at the end of our discussion of
Promises because it is complicated. If you’ve read this chapter
carefully, however, I hope you’ll be able to understand how it
works. In particular, note that the nested function inside
promiseSequence() appears to call itself recursively, but because
the “recursive” call is through a then() method, there is not
actually any traditional recursion happening:

// This function takes an array of input values and a "promiseMaker" function.
// For any input value x in the array, promiseMaker(x) should return a Promise
// that will fulfill to an output value. This function returns a Promise
// that fulfills to an array of the computed output values.
//
// Rather than creating the Promises all at once and letting them run in
// parallel, however, promiseSequence() only runs one Promise at a time
// and does not call promiseMaker() for a value until the previous Promise
// has fulfilled.
function promiseSequence(inputs, promiseMaker) {
 // Make a private copy of the array that we can modify
 inputs = [...inputs];

 // Here's the function that we'll use as a Promise callback
 // This is the pseudorecursive magic that makes this all work.
 function handleNextInput(outputs) {
 if (inputs.length === 0) {
 // If there are no more inputs left, then return the array
 // of outputs, finally fulfilling this Promise and all the
 // previous resolved-but-not-fulfilled Promises.
 return outputs;
 } else {
 // If there are still input values to process, then we'll
 // return a Promise object, resolving the current Promise
 // with the future value from a new Promise.
 let nextInput = inputs.shift(); // Get the next input value,
 return promiseMaker(nextInput) // compute the next output value,
 // Then create a new outputs array with the new output value
 .then(output => outputs.concat(output))
 // Then "recurse", passing the new, longer, outputs array
 .then(handleNextInput);
 }
 }

 // Start with a Promise that fulfills to an empty array and use
 // the function above as its callback.
 return Promise.resolve([]).then(handleNextInput);
}

This promiseSequence() function is intentionally generic. We can use
it to fetch URLs with code like this:

// Given a URL, return a Promise that fulfills to the URL body text
function fetchBody(url) { return fetch(url).then(r => r.text()); }
// Use it to sequentially fetch a bunch of URL bodies
promiseSequence(urls, fetchBody)
 .then(bodies => { /* do something with the array of strings */ })
 .catch(console.error);

13.3 async and await

ES2017 introduces two new keywords—async and await—that
represent a paradigm shift in asynchronous JavaScript
programming. These new keywords dramatically simplify the use of
Promises and allow us to write Promise-based, asynchronous code that
looks like synchronous code that blocks while waiting for network
responses or other asynchronous events. Although it is still important
to understand how Promises work, much of their complexity (and
sometimes even their very presence!) vanishes when you use them with
async and await.

As we discussed earlier in the chapter, asynchronous code can’t
return a value or throw an exception the way that regular synchronous
code can. And this is why Promises are designed the way the are. The
value of a fulfilled Promise is like the return value of a synchronous
function. And the value of a rejected Promise is like a value thrown
by a synchronous function. This latter similarity is made explicit by
the naming of the .catch() method. async and await take
efficient, Promise-based code and hide the Promises so that your
asynchronous code can be as easy to read and as easy to reason about
as inefficient, blocking, synchronous code.

13.3.1 await Expressions

The await keyword takes a Promise and turns it back into a return
value or a thrown exception. Given a Promise object p, the
expression await p waits until p settles. If p fulfills, then
the value of await p is the fulfillment value of p. On the other
hand, if p is rejected, then the await p expression throws the
rejection value of p. We don’t usually use await with a variable
that holds a Promise; instead, we use it before the invocation of a
function that returns a Promise:

let response = await fetch("/api/user/profile");
let profile = await response.json();

It is critical to understand right away that the await keyword does
not cause your program to block and literally do nothing until the
specified Promise settles. The code remains asynchronous, and the
await simply disguises this fact. This means that any code that uses
await is itself asynchronous.

13.3.2 async Functions

Because any code that uses await is asynchronous, there is one
critical rule: you can only use the await keyword within functions
that have been declared with the async keyword. Here’s a version of
the getHighScore() function from earlier in the chapter, rewritten
to use async and await:

async function getHighScore() {
 let response = await fetch("/api/user/profile");
 let profile = await response.json();
 return profile.highScore;
}

Declaring a function async means that the return value of the
function will be a Promise even if no Promise-related code appears in
the body of the function. If an async function appears to return
normally, then the Promise object that is the real return value of the
function will resolve to that apparent return value. And if an async
function appears to throw an exception, then the Promise object that
it returns will be rejected with that exception.

The getHighScore() function is declared async, so it returns a
Promise. And because it returns a Promise, we can use the await
keyword with it:

displayHighScore(await getHighScore());

But remember, that line of code will only work if it is inside another
async function! You can nest await expressions within async
functions as deeply as you want. But if you’re at the top level2 or are inside a
function that is not async for some reason, then you can’t use
await and have to deal with a returned Promise in the regular way:

getHighScore().then(displayHighScore).catch(console.error);

You can use the async keyword with any kind of function. It works
with the function keyword as a statement or as an expression. It
works with arrow functions and with the method shortcut form in
classes and object literals. (See Chapter 8 for more about the
various ways to write functions.)

13.3.3 Awaiting Multiple Promises

Suppose that we’ve written our getJSON() function using async:

async function getJSON(url) {
 let response = await fetch(url);
 let body = await response.json();
 return body;
}

And now suppose that we want to fetch two JSON values with this
function:

let value1 = await getJSON(url1);
let value2 = await getJSON(url2);

The problem with this code is that it is unnecessarily sequential: the
fetch of the second URL will not begin until the first fetch is
complete. If the second URL does not depend on the value obtained
from the first URL, then we should probably try to fetch the two
values at the same time. This is a case where the Promise-based nature
of async functions shows. In order to await a set of
concurrently executing async functions, we use Promise.all() just
as we would if working with Promises directly:

let [value1, value2] = await Promise.all([getJSON(url1), getJSON(url2)]);

13.3.4 Implementation Details

Finally, in order to understand how async functions work, it may help
to think about what is going on under the hood.

Suppose you write an async function like this:

async function f(x) { /* body */ }

You can think about this as a Promise-returning function wrapped
around the body of your original function:

function f(x) {
 return new Promise(function(resolve, reject) {
 try {
 resolve((function(x) { /* body */ })(x));
 }
 catch(e) {
 reject(e);
 }
 });
}

It is harder to express the await keyword in terms of a syntax
transformation like this one. But think of the await keyword
as a marker that breaks a function body up into separate, synchronous
chunks. An ES2017 interpreter can break the function body up
into a sequence of separate subfunctions, each of which gets passed
to the then() method of the await-marked Promise that precedes
it.

13.4 Asynchronous Iteration

We began this chapter with a discussion of callback- and event-based
asynchrony, and when we introduced Promises, we noted that they were
useful for single-shot asynchronous computations but were not
suitable for use with sources of repetitive asynchronous events, such
as setInterval(), the “click” event in a web browser, or the “data”
event on a Node stream. Because single Promises do not work for
sequences of asynchronous events, we also cannot use regular async
functions and the await statements for these things.

ES2018 provides a solution, however. Asynchronous iterators
are like the iterators described in Chapter 12, but they are Promise-based and are meant to be used with a new form of the for/of loop:
for/await.

13.4.1 The for/await Loop

Node 12 makes its readable streams asynchronously iterable. This means
you can read successive chunks of data from a stream with a
for/await loop like this one:

const fs = require("fs");

async function parseFile(filename) {
 let stream = fs.createReadStream(filename, { encoding: "utf-8"});
 for await (let chunk of stream) {
 parseChunk(chunk); // Assume parseChunk() is defined elsewhere
 }
}

Like a regular await expression, the for/await loop is
Promise-based. Roughly speaking, the asynchronous iterator produces a
Promise and the for/await loop waits for that Promise to fulfill,
assigns the fulfillment value to the loop variable, and runs the body
of the loop. And then it starts over, getting another Promise from the
iterator and waiting for that new Promise to fulfill.

Suppose you have an array of URLs:

const urls = [url1, url2, url3];

You can call fetch() on each URL to get an array of Promises:

const promises = urls.map(url => fetch(url));

We saw earlier in the chapter that we could now use Promise.all() to
wait for all the Promises in the array to be fulfilled. But suppose we
want the results of the first fetch as soon as they become available
and don’t want to wait for all the URLs to be fetched. (Of course, the
first fetch might take longer than any of the others, so this is not
necessarily faster than using Promise.all().) Arrays are
iterable, so we can iterate through the array of promises with a
regular for/of loop:

for(const promise of promises) {
 response = await promise;
 handle(response);
}

This example code uses a regular for/of loop with a regular
iterator. But because this iterator returns Promises, we can also use
the new for/await for slightly simpler code:

for await (const response of promises) {
 handle(response);
}

In this case, the for/await loop just builds the await call into
the loop and makes our code slightly more compact, but the two
examples do exactly the same thing. Importantly, both examples will
only work if they are within functions declared async; a for/await
loop is no different than a regular await expression in that way.

It is important to realize, however, that we’re using for/await with
a regular iterator in this example. Things are more interesting with
fully asynchronous iterators.

13.4.2 Asynchronous Iterators

Let’s review some terminology from Chapter 12. An iterable object
is one that can be used with a for/of loop. It defines a method
with the symbolic name Symbol.iterator. This method returns an
iterator object. The iterator object has a next() method, which can
be called repeatedly to obtain the values of the iterable object. The
next() method of the iterator object returns iteration result
objects. The iteration result object has a value property and/or a
done property.

Asynchronous iterators are quite similar to regular iterators, but
there are two important differences. First, an asynchronously iterable
object implements a method with the symbolic name
Symbol.asyncIterator instead of Symbol.iterator. (As we saw earlier,
for/await is compatible with regular iterable objects but it
prefers asynchronously iterable objects, and tries the
Symbol.asyncIterator method before it tries the Symbol.iterator
method.) Second, the next() method of an asynchronous iterator
returns a Promise that resolves to an iterator result object instead
of returning an iterator result object directly.

Note

In the previous section, when we used for/await on a regular,
synchronously iterable array of Promises, we were working with
synchronous iterator result objects in which the value property
was a Promise object but the done property was synchronous. True
asynchronous iterators return Promises for iteration result objects,
and both the value and the done properties are asynchronous. The
difference is a subtle one: with asynchronous iterators, the choice
about when iteration ends can be made asynchronously.

13.4.3 Asynchronous Generators

As we saw in Chapter 12, the easiest way to implement an iterator is
often to use a generator. The same is true for asynchronous iterators,
which we can implement with generator functions that we declare
async. An async generator has the features of async functions and
the features of generators: you can use await as you would in a
regular async function, and you can use yield as you would in a
regular generator. But values that you yield are automatically wrapped
in Promises. Even the syntax for async generators is a combination:
async function and function * combine into async function *.
Here is an example that shows how you might use an async generator and
a for/await loop to repetitively run code at fixed intervals using
loop syntax instead of a setInterval() callback function:

// A Promise-based wrapper around setTimeout() that we can use await with.
// Returns a Promise that fulfills in the specified number of milliseconds
function elapsedTime(ms) {
 return new Promise(resolve => setTimeout(resolve, ms));
}

// An async generator function that increments a counter and yields it
// a specified (or infinite) number of times at a specified interval.
async function* clock(interval, max=Infinity) {
 for(let count = 1; count <= max; count++) { // regular for loop
 await elapsedTime(interval); // wait for time to pass
 yield count; // yield the counter
 }
}

// A test function that uses the async generator with for/await
async function test() { // Async so we can use for/await
 for await (let tick of clock(300, 100)) { // Loop 100 times every 300ms
 console.log(tick);
 }
}

13.4.4 Implementing Asynchronous Iterators

Instead of using async generators to implement asynchronous iterators,
it is also possible to implement them directly by defining an object
with a Symbol.asyncIterator() method that returns an object with a
next() method that returns a Promise that resolves to an iterator
result object. In the following code, we re-implement the clock()
function from the preceding example so that it is not a generator and instead just returns
an asynchronously iterable object. Notice that the next() method in
this example does not explicitly return a Promise; instead, we just
declare next() to be async:

function clock(interval, max=Infinity) {
 // A Promise-ified version of setTimeout that we can use await with.
 // Note that this takes an absolute time instead of an interval.
 function until(time) {
 return new Promise(resolve => setTimeout(resolve, time - Date.now()));
 }

 // Return an asynchronously iterable object
 return {
 startTime: Date.now(), // Remember when we started
 count: 1, // Remember which iteration we're on
 async next() { // The next() method makes this an iterator
 if (this.count > max) { // Are we done?
 return { done: true }; // Iteration result indicating done
 }
 // Figure out when the next iteration should begin,
 let targetTime = this.startTime + this.count * interval;
 // wait until that time,
 await until(targetTime);
 // and return the count value in an iteration result object.
 return { value: this.count++ };
 },
 // This method means that this iterator object is also an iterable.
 [Symbol.asyncIterator]() { return this; }
 };
}

This iterator-based version of the clock() function fixes a flaw in
the generator-based version. Note that, in this newer code, we target
the absolute time at which each iteration should begin and subtract the
current time from that in order to compute the interval that we pass
to setTimeout(). If we use clock() with a for/await loop, this
version will run loop iterations more precisely at the specified
interval because it accounts for the time required to actually run the
body of the loop. But this fix isn’t just about timing accuracy. The
for/await loop always waits for the Promise returned by one iteration to
be fulfilled before it begins the next iteration. But if you use an
asynchronous iterator without a for/await loop, there is nothing to
prevent you from calling the next() method whenever you want. With
the generator-based version of clock(), if you call the next()
method three times sequentially, you’ll get three Promises that will
all fulfill at almost exactly the same time, which is probably not
what you want. The iterator-based version we’ve implemented here does
not have that problem.

The benefit of asynchronous iterators is that they allow us to
represent streams of asynchronous events or data. The clock()
function discussed previously was fairly simple to write because the source of the
asynchrony was the setTimeout() calls we were making ourselves. But
when we are trying to work with other asynchronous sources, such as
the triggering of event handlers, it becomes substantially harder to
implement asynchronous iterators—we typically have a single event
handler function that responds to events, but each call to the
iterator’s next() method must return a distinct Promise object, and
multiple calls to next() may occur before the first Promise
resolves. This means that any asynchronous iterator method must be
able to maintain an internal queue of Promises that it resolves in
order as asynchronous events are occurring. If we encapsulate this Promise-queueing behavior into an AsyncQueue class, then it becomes much
easier to write asynchronous iterators based on
AsyncQueue.3

The AsyncQueue class that follows has enqueue() and dequeue() methods as
you’d expect for a queue class. The dequeue() method returns a
Promise rather than an actual value, however, which means that it is
OK to call dequeue() before enqueue() has ever been called. The AsyncQueue
class is also an asynchronous iterator, and is intended to be used
with a for/await loop whose body runs once each time a new value is
asynchronously enqueued. (AsyncQueue has a close() method. Once
called, no more values can be enqueued. When a closed queue is empty,
the for/await loop will stop looping.)

Note that the implementation of AsyncQueue does not use async or
await and instead works directly with Promises. The code is somewhat
complicated, and you can use it to test your understanding of the
material we’ve covered in this long chapter. Even if you don’t fully
understand the AsyncQueue implementation, do take a look at the
shorter example that follows it: it implements a simple but very
interesting asynchronous iterator on top of AsyncQueue.

/**
 * An asynchronously iterable queue class. Add values with enqueue()
 * and remove them with dequeue(). dequeue() returns a Promise, which
 * means that values can be dequeued before they are enqueued. The
 * class implements [Symbol.asyncIterator] and next() so that it can
 * be used with the for/await loop (which will not terminate until
 * the close() method is called.)
 */
class AsyncQueue {
 constructor() {
 // Values that have been queued but not dequeued yet are stored here
 this.values = [];
 // When Promises are dequeued before their corresponding values are
 // queued, the resolve methods for those Promises are stored here.
 this.resolvers = [];
 // Once closed, no more values can be enqueued, and no more unfulfilled
 // Promises returned.
 this.closed = false;
 }

 enqueue(value) {
 if (this.closed) {
 throw new Error("AsyncQueue closed");
 }
 if (this.resolvers.length > 0) {
 // If this value has already been promised, resolve that Promise
 const resolve = this.resolvers.shift();
 resolve(value);
 }
 else {
 // Otherwise, queue it up
 this.values.push(value);
 }
 }

 dequeue() {
 if (this.values.length > 0) {
 // If there is a queued value, return a resolved Promise for it
 const value = this.values.shift();
 return Promise.resolve(value);
 }
 else if (this.closed) {
 // If no queued values and we're closed, return a resolved
 // Promise for the "end-of-stream" marker
 return Promise.resolve(AsyncQueue.EOS);
 }
 else {
 // Otherwise, return an unresolved Promise,
 // queuing the resolver function for later use
 return new Promise((resolve) => { this.resolvers.push(resolve); });
 }
 }

 close() {
 // Once the queue is closed, no more values will be enqueued.
 // So resolve any pending Promises with the end-of-stream marker
 while(this.resolvers.length > 0) {
 this.resolvers.shift()(AsyncQueue.EOS);
 }
 this.closed = true;
 }

 // Define the method that makes this class asynchronously iterable
 [Symbol.asyncIterator]() { return this; }

 // Define the method that makes this an asynchronous iterator. The
 // dequeue() Promise resolves to a value or the EOS sentinel if we're
 // closed. Here, we need to return a Promise that resolves to an
 // iterator result object.
 next() {
 return this.dequeue().then(value => (value === AsyncQueue.EOS)
 ? { value: undefined, done: true }
 : { value: value, done: false });
 }
}

// A sentinel value returned by dequeue() to mark "end of stream" when closed
AsyncQueue.EOS = Symbol("end-of-stream");

Because this AsyncQueue class defines the asynchronous iteration
basics, we can create our own, more interesting asynchronous iterators
simply by asynchronously queueing values. Here’s an example that uses
AsyncQueue to produce a stream of web browser events that can be
handled with a for/await loop:

// Push events of the specified type on the specified document element
// onto an AsyncQueue object, and return the queue for use as an event stream
function eventStream(elt, type) {
 const q = new AsyncQueue(); // Create a queue
 elt.addEventListener(type, e=>q.enqueue(e)); // Enqueue events
 return q;
}

async function handleKeys() {
 // Get a stream of keypress events and loop once for each one
 for await (const event of eventStream(document, "keypress")) {
 console.log(event.key);
 }
}

13.5 Summary

In this chapter, you have learned:

	
Most real-world JavaScript programming is asynchronous.

	
Traditionally, asynchrony has been handled with events and callback
functions. This can get complicated, however, because you can end up
with multiple levels of callbacks nested inside other callbacks, and
because it is difficult to do robust error handling.

	
Promises provide a new way of structuring callback functions. If
used correctly (and unfortunately, Promises are easy to use
incorrectly), they can convert asynchronous code that would have
been nested into linear chains of then() calls where one
asynchronous step of a computation follows another. Also, Promises
allow you to centralize your error-handling code into a single
catch() call at the end of a chain of then() calls.

	
The async and await keywords allow us to write asynchronous code
that is Promise-based under the hood but that looks like
synchronous code. This makes the code easier to understand and
reason about. If a function is declared async, it will implicitly
return a Promise. Inside an async function, you can await
a Promise (or a function that returns a Promise) as if the Promise
value was synchronously computed.

	
Objects that are asynchronously iterable can be used with a
for/await loop. You can create asynchronously iterable objects by
implementing a [Symbol.asyncIterator]() method or by invoking an
async function * generator function. Asynchronous iterators
provide an alternative to “data” events on streams in Node and can
be used to represent a stream of user input events in client-side
JavaScript.

1 The XMLHttpRequest class has nothing in particular to do with XML. In modern client-side JavaScript, it has largely been replaced by the fetch() API, which is covered in §15.11.1. The code example shown here is the last XMLHttpRequest-based example remaining in this book.
2 You can typically use await at the top level in a browser’s developer console. And there is a pending proposal to allow top-level await in a future version of JavaScript.
3 I learned about this approach to asynchronous iteration from the blog of Dr. Axel Rauschmayer, https://2ality.com.

Chapter 14. Metaprogramming

This chapter covers a number of advanced JavaScript features that are
not commonly used in day-to-day programming but that may be valuable
to programmers writing reusable libraries and of interest to anyone
who wants to tinker with the details about how JavaScript objects
behave.

Many of the features described here can loosely be described as
“metaprogramming”: if regular programming is writing code to
manipulate data, then metaprogramming is writing code to manipulate
other code. In a dynamic language like JavaScript, the lines between
programming and metaprogramming are blurry—even the simple ability to
iterate over the properties of an object with a for/in loop might be
considered “meta” by programmers accustomed to more static languages.

The metaprogramming topics covered in this chapter include:

	
§14.1 Controlling the enumerability, deleteability, and
configurability of object properties

	
§14.2 Controlling the extensibility of objects, and
creating “sealed” and “frozen” objects

	
§14.3 Querying and setting the prototypes of objects

	
§14.4 Fine-tuning the behavior of your types with
well-known Symbols

	
§14.5 Creating DSLs (domain-specific languages) with
template tag functions

	
§14.6 Probing objects with reflect methods

	
§14.7 Controlling object behavior with Proxy

14.1 Property Attributes

The properties of a JavaScript object have names and values, of
course, but each property also has three associated attributes that
specify how that property behaves and what you can do with it:

	
The writable attribute specifies whether or not the value of a property
can change.

	
The enumerable attribute specifies whether the property is
enumerated by the for/in loop and the Object.keys() method.

	
The configurable attribute specifies whether a property can be
deleted and also whether the property’s attributes can be changed.

Properties defined in object literals or by ordinary assignment to an
object are writable, enumerable, and configurable. But many of the
properties defined by the JavaScript standard library are not.

This section explains the API for querying and setting property
attributes. This API is particularly important to library authors
because:

	
It allows them to add methods to prototype objects and make them
non-enumerable, like built-in methods.

	
It allows them to “lock down” their objects, defining properties that
cannot be changed or deleted.

Recall from §6.10.6 that, while “data properties” have a
value, “accessor properties” have a getter and/or a setter method
instead. For the purposes of this section, we are going to consider
the getter and setter methods of an accessor property to be property
attributes. Following this logic, we’ll even say that the value of a
data property is an attribute as well. Thus, we can say that a
property has a name and four attributes. The four attributes of a data
property are value, writable, enumerable, and
configurable. Accessor properties don’t have a value attribute or
a writable attribute: their writability is determined by the
presence or absence of a setter. So the four attributes of an accessor
property are get, set, enumerable, and configurable.

The JavaScript methods for querying and setting the attributes of a
property use an object called a property descriptor to represent the
set of four attributes. A property descriptor object has properties
with the same names as the attributes of the property it
describes. Thus, the property descriptor object of a data property has
properties named value, writable, enumerable, and
configurable. And the descriptor for an accessor property has get
and set properties instead of value and writable. The
writable, enumerable, and configurable properties are boolean
values, and the get and set properties are function values.

To obtain the property descriptor for a named property of a specified object,
call Object.getOwnPropertyDescriptor():

// Returns {value: 1, writable:true, enumerable:true, configurable:true}
Object.getOwnPropertyDescriptor({x: 1}, "x");

// Here is an object with a read-only accessor property
const random = {
 get octet() { return Math.floor(Math.random()*256); },
};

// Returns { get: /*func*/, set:undefined, enumerable:true, configurable:true}
Object.getOwnPropertyDescriptor(random, "octet");

// Returns undefined for inherited properties and properties that don't exist.
Object.getOwnPropertyDescriptor({}, "x") // => undefined; no such prop
Object.getOwnPropertyDescriptor({}, "toString") // => undefined; inherited

As its name implies, Object.getOwnPropertyDescriptor() works only for own
properties. To query the attributes of inherited properties, you must
explicitly traverse the prototype chain. (See Object.getPrototypeOf() in §14.3); see also the similar Reflect.getOwnPropertyDescriptor() function in §14.6.)

To set the attributes of a property or to create a new property with the
specified attributes, call Object.defineProperty(), passing the object to be
modified, the name of the property to be created or altered, and the property
descriptor object:

let o = {}; // Start with no properties at all
// Add a non-enumerable data property x with value 1.
Object.defineProperty(o, "x", {
 value: 1,
 writable: true,
 enumerable: false,
 configurable: true
});

// Check that the property is there but is non-enumerable
o.x // => 1
Object.keys(o) // => []

// Now modify the property x so that it is read-only
Object.defineProperty(o, "x", { writable: false });

// Try to change the value of the property
o.x = 2; // Fails silently or throws TypeError in strict mode
o.x // => 1

// The property is still configurable, so we can change its value like this:
Object.defineProperty(o, "x", { value: 2 });
o.x // => 2

// Now change x from a data property to an accessor property
Object.defineProperty(o, "x", { get: function() { return 0; } });
o.x // => 0

The property descriptor you pass to Object.defineProperty() does not
have to include all four attributes. If you’re creating a new
property, then omitted attributes are taken to be false or
undefined. If you’re modifying an existing property, then the
attributes you omit are simply left unchanged. Note that this method
alters an existing own property or creates a new own property, but it
will not alter an inherited property. See also the very similar
function Reflect.defineProperty() in §14.6.

If you want to create or modify more than one property at a time, use
Object.defineProperties(). The first argument is the object that is to be
modified. The second argument is an object that maps the names of the
properties to be created or modified to the property descriptors for those
properties. For example:

let p = Object.defineProperties({}, {
 x: { value: 1, writable: true, enumerable: true, configurable: true },
 y: { value: 1, writable: true, enumerable: true, configurable: true },
 r: {
 get() { return Math.sqrt(this.x*this.x + this.y*this.y); },
 enumerable: true,
 configurable: true
 }
});
p.r // => Math.SQRT2

This code starts with an empty object, then adds two data properties and one
read-only accessor property to it. It relies on the fact that
Object.defineProperties() returns the modified object (as does
Object.defineProperty()).

The Object.create() method was introduced in §6.2. We
learned there that the first argument to that method is the prototype object
for the newly created object. This method also accepts a second optional
argument, which is the same as the second argument to
Object.defineProperties(). If you pass a set of property descriptors to
Object.create(), then they are used to add properties to the newly created
object.

Object.defineProperty() and Object.defineProperties() throw TypeError if
the attempt to create or modify a property is not allowed. This happens if you
attempt to add a new property to a non-extensible (see §14.2)
object. The other reasons that these methods might throw TypeError have to do
with the attributes themselves. The writable attribute governs attempts to
change the value attribute. And the configurable attribute governs attempts
to change the other attributes (and also specifies whether a property can be
deleted). The rules are not completely straightforward, however. It is possible
to change the value of a nonwritable property if that property is configurable,
for example. Also, it is possible to change a property from writable to
nonwritable even if that property is nonconfigurable. Here are the complete
rules. Calls to Object.defineProperty() or Object.defineProperties()
that attempt to violate them throw a TypeError:

	
If an object is not extensible, you can edit its existing own
properties, but you cannot add new properties to it.

	
If a property is not configurable, you cannot change its
configurable or enumerable attributes.

	
If an accessor property is not configurable, you cannot change its
getter or setter method, and you cannot change it to a data
property.

	
If a data property is not configurable, you cannot change it to an
accessor property.

	
If a data property is not configurable, you cannot change its
writable attribute from false to true, but you can change it
from true to false.

	
If a data property is not configurable and not writable, you cannot
change its value. You can change the value of a property that is
configurable but nonwritable, however (because that would be the
same as making it writable, then changing the value, then converting
it back to nonwritable).

§6.7 described the Object.assign() function that
copies property values from one or more source objects into a target
object. Object.assign() only copies enumerable properties, and property values, not property attributes. This is normally what
we want, but it does mean, for example, that if one of the source
objects has an accessor property, it is the value returned by the
getter function that is copied to the target object, not the getter
function itself. Example 14-1 demonstrates how we can use
Object.getOwnPropertyDescriptor() and Object.defineProperty() to
create a variant of Object.assign() that copies entire property
descriptors rather than just copying property values.

Example 14-1. Copying properties and their attributes from one object to another

/*
 * Define a new Object.assignDescriptors() function that works like
 * Object.assign() except that it copies property descriptors from
 * source objects into the target object instead of just copying
 * property values. This function copies all own properties, both
 * enumerable and non-enumerable. And because it copies descriptors,
 * it copies getter functions from source objects and overwrites setter
 * functions in the target object rather than invoking those getters and
 * setters.
 *
 * Object.assignDescriptors() propagates any TypeErrors thrown by
 * Object.defineProperty(). This can occur if the target object is sealed
 * or frozen or if any of the source properties try to change an existing
 * non-configurable property on the target object.
 *
 * Note that the assignDescriptors property is added to Object with
 * Object.defineProperty() so that the new function can be created as
 * a non-enumerable property like Object.assign().
 */
Object.defineProperty(Object, "assignDescriptors", {
 // Match the attributes of Object.assign()
 writable: true,
 enumerable: false,
 configurable: true,
 // The function that is the value of the assignDescriptors property.
 value: function(target, ...sources) {
 for(let source of sources) {
 for(let name of Object.getOwnPropertyNames(source)) {
 let desc = Object.getOwnPropertyDescriptor(source, name);
 Object.defineProperty(target, name, desc);
 }

 for(let symbol of Object.getOwnPropertySymbols(source)) {
 let desc = Object.getOwnPropertyDescriptor(source, symbol);
 Object.defineProperty(target, symbol, desc);
 }
 }
 return target;
 }
});

let o = {c: 1, get count() {return this.c++;}}; // Define object with getter
let p = Object.assign({}, o); // Copy the property values
let q = Object.assignDescriptors({}, o); // Copy the property descriptors
p.count // => 1: This is now just a data property so
p.count // => 1: ...the counter does not increment.
q.count // => 2: Incremented once when we copied it the first time,
q.count // => 3: ...but we copied the getter method so it increments.

14.2 Object Extensibility

The extensible attribute of an object specifies whether new
properties can be added to the object or not. Ordinary JavaScript
objects are extensible by default, but you can change that with the
functions described in this section.

To determine whether an object is extensible, pass it to
Object.isExtensible(). To make an object non-extensible, pass it to
Object.preventExtensions(). Once you have done this, any attempt to
add a new property to the object will throw a TypeError in strict mode
and simply fail silently without an error in non-strict mode. In
addition, attempting to change the prototype (see §14.3) of
a non-extensible object will always throw a TypeError.

Note that there is no way to make an object extensible again once you
have made it non-extensible. Also note that calling
Object.preventExtensions() only affects the extensibility of the object
itself. If new properties are added to the prototype of a
non-extensible object, the non-extensible object will inherit those
new properties.

Two similar functions, Reflect.isExtensible() and
Reflect.preventExtensions(), are described in §14.6.

The purpose of the extensible attribute is to be able to “lock
down” objects into a known state and prevent outside tampering. The
extensible attribute of objects is often used in conjunction with
the configurable and writable attributes of properties, and
JavaScript defines functions that make it easy to set these attributes
together:

	
Object.seal() works like Object.preventExtensions(), but in
addition to making the object non-extensible, it also makes all of
the own properties of that object nonconfigurable. This means that
new properties cannot be added to the object, and existing
properties cannot be deleted or configured. Existing properties that
are writable can still be set, however. There is no way to unseal a
sealed object. You can use Object.isSealed() to determine whether
an object is sealed.

	
Object.freeze() locks objects down even more tightly. In addition
to making the object non-extensible and its properties
nonconfigurable, it also makes all of the object’s own data
properties read-only. (If the object has accessor properties with
setter methods, these are not affected and can still be invoked by
assignment to the property.) Use Object.isFrozen() to determine
if an object is frozen.

It is important to understand that Object.seal() and
Object.freeze() affect only the object they are passed: they have no
effect on the prototype of that object. If you want to thoroughly lock
down an object, you probably need to seal or freeze the objects in the
prototype chain as well.

Object.preventExtensions(), Object.seal(), and Object.freeze()
all return the object that they are passed, which means that you can
use them in nested function invocations:

// Create a sealed object with a frozen prototype and a non-enumerable property
let o = Object.seal(Object.create(Object.freeze({x: 1}),
 {y: {value: 2, writable: true}}));

If you are writing a JavaScript library that passes objects to
callback functions written by the users of your library, you might use
Object.freeze() on those objects to prevent the user’s code from
modifying them. This is easy and convenient to do, but there are
trade-offs: frozen objects can interfere with common JavaScript testing
strategies, for example.

14.3 The prototype Attribute

An object’s prototype attribute specifies the object from which it
inherits properties. (Review §6.2.3 and §6.3.2 for
more on prototypes and property inheritance.) This is such an
important attribute that we usually simply say “the prototype of
o" rather than “the prototype attribute of o.” Remember also
that when prototype appears in code font, it refers to an ordinary
object property, not to the prototype attribute: Chapter 9 explained
that the prototype property of a constructor function specifies the
prototype attribute of the objects created with that constructor.

The prototype attribute is set when an object is created. Objects
created from object literals use Object.prototype as their
prototype. Objects created with new use the value of the prototype
property of their constructor function as their prototype. And objects
created with Object.create() use the first argument to that function
(which may be null) as their prototype.

You can query the prototype of any object by passing that object to
Object.getPrototypeOf():

Object.getPrototypeOf({}) // => Object.prototype
Object.getPrototypeOf([]) // => Array.prototype
Object.getPrototypeOf(()=>{}) // => Function.prototype

A very similar function, Reflect.getPrototypeOf(), is described in
§14.6.

To determine whether one object is the prototype of (or is part of the
prototype chain of) another object, use the isPrototypeOf() method:

let p = {x: 1}; // Define a prototype object.
let o = Object.create(p); // Create an object with that prototype.
p.isPrototypeOf(o) // => true: o inherits from p
Object.prototype.isPrototypeOf(p) // => true: p inherits from Object.prototype
Object.prototype.isPrototypeOf(o) // => true: o does too

Note that isPrototypeOf() performs a function similar to the instanceof
operator (see §4.9.4).

The prototype attribute of an object is set when the object is
created and normally remains fixed. You can, however, change the
prototype of an object with Object.setPrototypeOf():

let o = {x: 1};
let p = {y: 2};
Object.setPrototypeOf(o, p); // Set the prototype of o to p
o.y // => 2: o now inherits the property y
let a = [1, 2, 3];
Object.setPrototypeOf(a, p); // Set the prototype of array a to p
a.join // => undefined: a no longer has a join() method

There is generally no need to ever use Object.setPrototypeOf().
JavaScript implementations may make aggressive optimizations based on
the assumption that the prototype of an object is fixed and
unchanging. This means that if you ever call
Object.setPrototypeOf(), any code that uses the altered objects may
run much slower than it would normally.

A similar function, Reflect.setPrototypeOf(), is described in
§14.6.

Some early browser implementations of JavaScript exposed the
prototype attribute of an object through the __proto__
property (written with two underscores at the start and end). This has
long since been deprecated, but enough existing
code on the web depends on __proto__ that the ECMAScript standard
mandates it for all JavaScript implementations that run in web
browsers. (Node supports it, too, though the standard does not require
it for Node.) In modern JavaScript, __proto__ is readable and
writeable, and you can (though you shouldn’t) use it as an alternative
to Object.getPrototypeOf() and Object.setPrototypeOf(). One
interesting use of __proto__, however, is to define the prototype of
an object literal:

let p = {z: 3};
let o = {
 x: 1,
 y: 2,
 __proto__: p
};
o.z // => 3: o inherits from p

14.4 Well-Known Symbols

The Symbol type was added to JavaScript in ES6, and one of the primary
reasons for doing so was to safely add extensions to the language
without breaking compatibility with code already deployed on the
web. We saw an example of this in Chapter 12, where we learned that
you can make a class iterable by implementing a method whose “name” is
the Symbol Symbol.iterator.

Symbol.iterator is the best-known example of the “well-known
Symbols.” These are a set of Symbol values stored as properties of the
Symbol() factory function that are used to allow JavaScript
code to control certain low-level behaviors of objects and
classes. The subsections that follow describe each of these
well-known Symbols and explain how they can be used.

14.4.1 Symbol.iterator and Symbol.asyncIterator

The Symbol.iterator and Symbol.asyncIterator Symbols allow objects
or classes to make themselves iterable or asynchronously
iterable. They were covered in detail in Chapter 12 and
§13.4.2, respectively, and are mentioned again here
only for completeness.

14.4.2 Symbol.hasInstance

When the instanceof operator was described in §4.9.4, we said
that the righthand side must be a constructor function and that the
expression o instanceof f was evaluated by looking for the value
f.prototype within the prototype chain of o. That is still true,
but in ES6 and beyond, Symbol.hasInstance provides an
alternative. In ES6, if the righthand side of instanceof is any
object with a [Symbol.hasInstance] method, then that method is
invoked with the lefthand side value as its argument, and the return
value of the method, converted to a boolean, becomes the value of the
instanceof operator. And, of course, if the value on the righthand
side does not have a [Symbol.hasInstance] method but is a function,
then the instanceof operator behaves in its ordinary way.

Symbol.hasInstance means that we can use the instanceof operator
to do generic type checking with suitably defined pseudotype
objects. For example:

// Define an object as a "type" we can use with instanceof
let uint8 = {
 [Symbol.hasInstance](x) {
 return Number.isInteger(x) && x >= 0 && x <= 255;
 }
};
128 instanceof uint8 // => true
256 instanceof uint8 // => false: too big
Math.PI instanceof uint8 // => false: not an integer

Note that this example is clever but confusing because it uses a
nonclass object where a class would normally be expected. It would be
just as easy—and clearer to readers of your code—to write a
isUint8() function instead of relying on this Symbol.hasInstance
behavior.

14.4.3 Symbol.toStringTag

If you invoke the toString() method of a basic JavaScript object,
you get the string “[object Object]”:

{}.toString() // => "[object Object]"

If you invoke this same Object.prototype.toString() function as a
method of instances of built-in types, you get some interesting
results:

Object.prototype.toString.call([]) // => "[object Array]"
Object.prototype.toString.call(/./) // => "[object RegExp]"
Object.prototype.toString.call(()=>{}) // => "[object Function]"
Object.prototype.toString.call("") // => "[object String]"
Object.prototype.toString.call(0) // => "[object Number]"
Object.prototype.toString.call(false) // => "[object Boolean]"

It turns out that you can use this
Object.prototype.toString().call() technique with any JavaScript
value to obtain the “class attribute” of an object that contains type
information that is not otherwise available. The following
classof() function is arguably more useful than the typeof
operator, which makes no distinction between types of objects:

function classof(o) {
 return Object.prototype.toString.call(o).slice(8,-1);
}

classof(null) // => "Null"
classof(undefined) // => "Undefined"
classof(1) // => "Number"
classof(10n**100n) // => "BigInt"
classof("") // => "String"
classof(false) // => "Boolean"
classof(Symbol()) // => "Symbol"
classof({}) // => "Object"
classof([]) // => "Array"
classof(/./) // => "RegExp"
classof(()=>{}) // => "Function"
classof(new Map()) // => "Map"
classof(new Set()) // => "Set"
classof(new Date()) // => "Date"

Prior to ES6, this special behavior of the
Object.prototype.toString() method was available only to instances
of built-in types, and if you called this classof() function on an
instance of a class you had defined yourself, it would simply return
“Object”. In ES6, however, Object.prototype.toString() looks for a
property with the symbolic name Symbol.toStringTag on its argument,
and if such a property exists, it uses the property value in its
output. This means that if you define a class of your own, you can
easily make it work with functions like classof():

class Range {
 get [Symbol.toStringTag]() { return "Range"; }
 // the rest of this class is omitted here
}
let r = new Range(1, 10);
Object.prototype.toString.call(r) // => "[object Range]"
classof(r) // => "Range"

14.4.4 Symbol.species

Prior to ES6, JavaScript did not provide any real way to create robust
subclasses of built-in classes like Array. In ES6, however, you can
extend any built-in class simply by using the class and extends
keywords. §9.5.2 demonstrated that with this simple
subclass of Array:

// A trivial Array subclass that adds getters for the first and last elements.
class EZArray extends Array {
 get first() { return this[0]; }
 get last() { return this[this.length-1]; }
}

let e = new EZArray(1,2,3);
let f = e.map(x => x * x);
e.last // => 3: the last element of EZArray e
f.last // => 9: f is also an EZArray with a last property

Array defines methods concat(), filter(), map(), slice(), and
splice(), which return arrays. When we create an array subclass like
EZArray that inherits these methods, should the inherited method
return instances of Array or instances of EZArray? Good arguments can
be made for either choice, but the ES6 specification says that (by
default) the five array-returning methods will return instances of the
subclass.

Here’s how it works:

	
In ES6 and later, the Array() constructor has a property with the
symbolic name Symbol.species. (Note that this Symbol is used as
the name of a property of the constructor function. Most of the
other well-known Symbols described here are used as the name of
methods of a prototype object.)

	
When we create a subclass with extends, the resulting subclass
constructor inherits properties from the superclass
constructor. (This is in addition to the normal kind of inheritance,
where instances of the subclass inherit methods of the
superclass.) This means that the constructor for every subclass of
Array also has an inherited property with name
Symbol.species. (Or a subclass can define its own property
with this name, if it wants.)

	
Methods like map() and slice() that create and return new arrays
are tweaked slightly in ES6 and later. Instead of just creating a
regular Array, they (in effect) invoke new
this.constructor[Symbol.species]() to create the new array.

Now here’s the interesting part. Suppose that Array[Symbol.species]
was just a regular data property, defined like this:

Array[Symbol.species] = Array;

In that case, then subclass constructors would inherit the Array()
constructor as their “species,” and invoking map() on an array
subclass would return an instance of the superclass rather than an
instance of the subclass. That is not how ES6 actually behaves,
however. The reason is that Array[Symbol.species] is a read-only
accessor property whose getter function simply returns this. Subclass
constructors inherit this getter function, which means that by default,
every subclass constructor is its own “species.”

Sometimes this default behavior is not what you want, however. If you
wanted the array-returning methods of EZArray to return regular Array
objects, you just need to set EZArray[Symbol.species] to
Array. But since the inherited property is a read-only accessor, you
can’t just set it with an assignment operator. You can use
defineProperty(), however:

EZArray[Symbol.species] = Array; // Attempt to set a read-only property fails

// Instead we can use defineProperty():
Object.defineProperty(EZArray, Symbol.species, {value: Array});

The simplest option is probably to explicitly define your own
Symbol.species getter when creating the subclass in the first place:

class EZArray extends Array {
 static get [Symbol.species]() { return Array; }
 get first() { return this[0]; }
 get last() { return this[this.length-1]; }
}

let e = new EZArray(1,2,3);
let f = e.map(x => x - 1);
e.last // => 3
f.last // => undefined: f is a regular array with no last getter

Creating useful subclasses of Array was the primary use case that
motivated the introduction of Symbol.species, but it is not the only
place that this well-known Symbol is used. Typed array classes use the
Symbol in the same way that the Array class does. Similarly, the
slice() method of ArrayBuffer looks at the Symbol.species property
of this.constructor instead of simply creating a new
ArrayBuffer. And Promise methods like then() that return new Promise
objects create those objects via this species protocol as
well. Finally, if you find yourself subclassing Map (for example) and
defining methods that return new Map objects, you might want to use
Symbol.species yourself for the benefit of subclasses of your
subclass.

14.4.5 Symbol.isConcatSpreadable

The Array method concat() is one of the methods described in the previous section that
uses Symbol.species to determine what constructor to use for the
returned array. But concat() also uses Symbol.isConcatSpreadable.
Recall from §7.8.3 that the concat() method of an array
treats its this value and its array arguments differently than its
nonarray arguments: nonarray arguments are simply appended to the
new array, but the this array and any array arguments are flattened
or “spread” so that the elements of the array are concatenated rather
than the array argument itself.

Before ES6, concat() just used Array.isArray() to determine
whether to treat a value as an array or not. In ES6, the algorithm is
changed slightly: if the argument (or the this value) to
concat() is an object and has a property with the symbolic name
Symbol.isConcatSpreadable, then the boolean value of that property
is used to determine whether the argument should be “spread.” If no
such property exists, then Array.isArray() is used as in previous
versions of the language.

There are two cases when you might want to use this Symbol:

	
If you create an Array-like (see §7.9) object and want it
to behave like a real array when passed to concat(), you can
simply add the symbolic property to your object:

let arraylike = {
 length: 1,
 0: 1,
 [Symbol.isConcatSpreadable]: true
};
[].concat(arraylike) // => [1]: (would be [[1]] if not spread)

	
Array subclasses are spreadable by default, so if you are defining an
array subclass that you do not want to act like an array when used
with concat(), then you can1 add a getter like this to your subclass:

class NonSpreadableArray extends Array {
 get [Symbol.isConcatSpreadable]() { return false; }
}
let a = new NonSpreadableArray(1,2,3);
[].concat(a).length // => 1; (would be 3 elements long if a was spread)

14.4.6 Pattern-Matching Symbols

§11.3.2 documented the String methods that perform
pattern-matching operations using a RegExp argument. In ES6 and later,
these methods have been generalized to work with RegExp objects or any
object that defines pattern-matching behavior via properties with
symbolic names. For each of the string methods match(),
matchAll(), search(), replace(), and split(), there is a
corresponding well-known Symbol: Symbol.match, Symbol.search, and
so on.

RegExps are a general and very powerful way to describe textual
patterns, but they can be complicated and not well suited to fuzzy
matching. With the generalized string methods, you can define your own
pattern classes using the well-known Symbol methods to provide custom
matching. For example, you could perform string comparisons using
Intl.Collator (see §11.7.3) to ignore accents when matching. Or
you could define a pattern class based on the Soundex algorithm to
match words based on their approximate sounds or to loosely match
strings up to a given Levenshtein distance.

In general, when you invoke one of these five String methods on a
pattern object like this:

string.method(pattern, arg)

that invocation turns into an invocation of a symbolically named
method on your pattern object:

pattern[symbol](string, arg)

As an example, consider the pattern-matching class in the next example, which
implements pattern matching using the simple * and ? wildcards that
you are probably familar with from filesystems. This style of pattern
matching dates back to the very early days of the Unix operating
system, and the patterns are often called globs:

class Glob {
 constructor(glob) {
 this.glob = glob;

 // We implement glob matching using RegExp internally.
 // ? matches any one character except /, and * matches zero or more
 // of those characters. We use capturing groups around each.
 let regexpText = glob.replace("?", "([^/])").replace("*", "([^/]*)");

 // We use the u flag to get Unicode-aware matching.
 // Globs are intended to match entire strings, so we use the ^ and $
 // anchors and do not implement search() or matchAll() since they
 // are not useful with patterns like this.
 this.regexp = new RegExp(`^${regexpText}$`, "u");
 }

 toString() { return this.glob; }

 [Symbol.search](s) { return s.search(this.regexp); }
 [Symbol.match](s) { return s.match(this.regexp); }
 [Symbol.replace](s, replacement) {
 return s.replace(this.regexp, replacement);
 }
}

let pattern = new Glob("docs/*.txt");
"docs/js.txt".search(pattern) // => 0: matches at character 0
"docs/js.htm".search(pattern) // => -1: does not match
let match = "docs/js.txt".match(pattern);
match[0] // => "docs/js.txt"
match[1] // => "js"
match.index // => 0
"docs/js.txt".replace(pattern, "web/$1.htm") // => "web/js.htm"

14.4.7 Symbol.toPrimitive

§3.9.3 explained that JavaScript has three slightly different
algorithms for converting objects to primitive values. Loosely
speaking, for
conversions where a string value is expected or preferred, JavaScript
invokes an object’s toString() method first and falls back on the
valueOf() method if toString() is not defined or does not return a
primitive value. For conversions where a numeric value is preferred,
JavaScript tries the valueOf() method first and falls back on
toString() if valueOf() is not defined or if it does not return a
primitive value. And finally, in cases where there is no preference,
it lets the class decide how to do the conversion. Date objects
convert using toString() first, and all other types try valueOf()
first.

In ES6, the well-known Symbol Symbol.toPrimitive allows you to
override this default object-to-primitive behavior and gives you
complete control over how instances of your own classes will be
converted to primitive values. To do this, define a method with this
symbolic name. The method must return a primitive value that somehow
represents the object. The method you define will be invoked with a
single string argument that tells you what kind of conversion
JavaScript is trying to do on your object:

	
If the argument is "string", it means that JavaScript is doing the
conversion in a context where it would expect or prefer (but not
require) a string. This happens when you interpolate the object into
a template literal, for example.

	
If the argument is "number", it means that JavaScript is doing the
conversion in a context where it would expect or prefer (but not
require) a numeric value. This happens when you use the object with
a < or > operator or with arithmetic operators like - and
*.

	
If the argument is "default", it means that JavaScript is
converting your object in a context where either a numeric or string
value could work. This happens with the +, ==, and !=
operators.

Many classes can ignore the argument and simply return the same
primitive value in all cases. If you want instances of your class to
be comparable and sortable with < and >, then that is a good
reason to define a [Symbol.toPrimitive] method.

14.4.8 Symbol.unscopables

The final well-known Symbol that we’ll cover here is an obscure one
that was introduced as a workaround for compatibility issues caused
by the deprecated with statement. Recall that the with statement
takes an object and executes its statement body as if it were in a
scope where the properties of that object were variables. This caused
compatibility problems when new methods were added to the Array class,
and it broke some existing code. Symbol.unscopables is the result. In
ES6 and later, the with statement has been slightly modified. When
used with an object o, a with statement computes
Object.keys(o[Symbol.unscopables]||{}) and ignores properties whose
names are in the resulting array when creating the simulated scope in
which to execute its body. ES6 uses this to add new methods to
Array.prototype without breaking existing code on the web. This
means that you can find a list of the newest Array methods by
evaluating:

let newArrayMethods = Object.keys(Array.prototype[Symbol.unscopables]);

14.5 Template Tags

Strings within backticks are known as “template literals” and were
covered in §3.3.4. When an expression whose value is a
function is followed by a template literal, it turns into a function
invocation, and we call it a “tagged template literal.” Defining a new
tag function for use with tagged
template literals can be thought of as metaprogramming, because tagged
templates are often used to define DSLs—domain-specific languages—and
defining a new tag function is like adding new syntax to JavaScript.
Tagged template literals have been adopted by a number of frontend
JavaScript packages. The GraphQL query language uses a gql`` tag
function to allow queries to be embedded within JavaScript code. And
the Emotion library uses a css`` tag function to enable CSS styles
to be embedded in JavaScript. This section demonstrates how to write
your own tag functions like these.

There is nothing special about tag functions: they are ordinary
JavaScript functions, and no special syntax is required to define
them. When a function expression is followed by a template literal,
the function is invoked. The first argument is an array of strings,
and this is followed by zero or more additional arguments, which can
have values of any type.

The number of arguments depends on the number of values that are
interpolated into the template literal. If the template literal is
simply a constant string with no interpolations, then the tag function
will be called with an array of that one string and no additional
arguments. If the template literal includes one interpolated value,
then the tag function is called with two arguments. The first is an
array of two strings, and the second is the interpolated value. The
strings in that initial array are the string to the left of the
interpolated value and the string to its right, and either one of them
may be the empty string. If the template literal includes two
interpolated values, then the tag function is invoked with three
arguments: an array of three strings and the two interpolated
values. The three strings (any or all of which may be empty) are the
text to the left of the first value, the text between the two values,
and the text to the right of the second value. In the general case, if
the template literal has n interpolated values, then the tag function
will be invoked with n+1 arguments. The first argument will be an
array of n+1 strings, and the remaining arguments are the n
interpolated values, in the order that they appear in the template
literal.

The value of a template literal is always a string. But the value of a
tagged template literal is whatever value the tag function
returns. This may be a string, but when the tag function is used to
implement a DSL, the return value is typically a non-string data
structure that is a parsed representation of the string.

As an example of a template tag function that returns a string,
consider the following html`` template, which is useful when you want to
safely interpolate values into a string of HTML. The tag performs HTML
escaping on each of the values before using it to build the final
string:

function html(strings, ...values) {
 // Convert each value to a string and escape special HTML characters
 let escaped = values.map(v => String(v)
 .replace("&", "&")
 .replace("<", "<")
 .replace(">", ">")
 .replace('"', """)
 .replace("'", "'"));

 // Return the concatenated strings and escaped values
 let result = strings[0];
 for(let i = 0; i < escaped.length; i++) {
 result += escaped[i] + strings[i+1];
 }
 return result;
}

let operator = "<";
html`x ${operator} y` // => "x < y"

let kind = "game", name = "D&D";
html`<div class="${kind}">${name}</div>` // =>'<div class="game">D&D</div>'

For an example of a tag function that does not return a string but
instead a parsed representation of a string, think back to the Glob
pattern class defined in §14.4.6. Since the
Glob() constructor takes a single string argument, we can define a
tag function for creating new Glob objects:

function glob(strings, ...values) {
 // Assemble the strings and values into a single string
 let s = strings[0];
 for(let i = 0; i < values.length; i++) {
 s += values[i] + strings[i+1];
 }
 // Return a parsed representation of that string
 return new Glob(s);
}

let root = "/tmp";
let filePattern = glob`${root}/*.html`; // A RegExp alternative
"/tmp/test.html".match(filePattern)[1] // => "test"

One of the features mentioned in passing in §3.3.4 is the
String.raw`` tag function that returns a string in its “raw” form
without interpreting any of the backslash escape sequences. This is
implemented using a feature of tag function invocation that we have not
discussed yet. When a tag function is invoked, we’ve seen that its
first argument is an array of strings. But this array also has a
property named raw, and the value of that property is another array
of strings, with the same number of elements. The argument array
includes strings that have had escape sequences interpreted as
usual. And the raw array includes strings in which escape sequences
are not interpreted. This obscure feature is important if you want to
define a DSL with a grammar that uses backslashes. For example, if we
wanted our glob`` tag function to support pattern matching on
Windows-style paths (which use backslashes instead of forward slashes)
and we did not want users of the tag to have to double every
backslash, we could rewrite that function to use strings.raw[]
instead of strings[]. The downside, of course, would be that we
could no longer use escapes like \u in our glob literals.

14.6 The Reflect API

The Reflect object is not a class; like the Math object, its
properties simply define a collection of related functions. These
functions, added in ES6, define an API for “reflecting upon” objects
and their properties. There is little new functionality here: the
Reflect object defines a convenient set of functions, all in a single
namespace, that mimic the behavior of core language syntax and
duplicate the features of various pre-existing Object functions.

Although the Reflect functions do not provide any new features, they
do group the features together in one convenient API. And,
importantly, the set of Reflect functions maps one-to-one with the set
of Proxy handler methods that we’ll learn about in §14.7.

The Reflect API consists of the following functions:

	Reflect.apply(f, o, args)

	
This function invokes the function f
as a method of o (or invokes it as a function with no this value
if o is null) and passes the values in the args array as
arguments. It is equivalent to f.apply(o, args).

	Reflect.construct(c, args, newTarget)

	
This function invokes the
constructor c as if the new keyword had been used and passes the
elements of the array args as arguments. If the optional newTarget
argument is specified, it is used as the value of new.target within
the constructor invocation. If not specified, then the new.target
value will be c.

	Reflect.defineProperty(o, name, descriptor)

	
This function defines
a property on the object o, using name (a string or symbol) as the
name of the property. The Descriptor object should define the value
(or getter and/or setter) and attributes of the
property. Reflect.defineProperty() is very similar to
Object.defineProperty() but returns true on success and false
on failures. (Object.defineProperty() returns o on success and
throws TypeError on failure.)

	Reflect.deleteProperty(o, name)

	
This function deletes the property
with the specified string or symbolic name from the object o,
returning true if successful (or if no such property existed) and
false if the property could not be deleted. Calling this function is
similar to writing delete o[name].

	Reflect.get(o, name, receiver)

	
This function returns the value of
the property of o with the specified name (a string or symbol). If the
property is an accessor method with a getter, and if the optional
receiver argument is specified, then the getter function is called as a
method of receiver instead of as a method of o. Calling this
function is similar to evaluating o[name].

	Reflect.getOwnPropertyDescriptor(o, name)

	
This function returns a
property descriptor object that describes the attributes of the
property named name of the object o, or returns undefined if no
such property exists. This function is nearly identical to
Object.getOwnPropertyDescriptor(), except that the Reflect API
version of the function requires that the first argument be an object
and throws TypeError if it is not.

	Reflect.getPrototypeOf(o)

	
This function returns the prototype
of object o or null if the object has no prototype. It throws a
TypeError if o is a primitive value instead of an object. This
function is almost identical to Object.getPrototypeOf() except that
Object.getPrototypeOf() only throws a TypeError for null and
undefined arguments and coerces other primitive values to their
wrapper objects.

	Reflect.has(o, name)

	
This function returns true if the object
o has a property with the specified name (which must be a string or a
symbol). Calling this function is similar to evaluating name in o.

	Reflect.isExtensible(o)

	
This function returns true if the object
o is extensible (§14.2) and false if it is not. It
throws a TypeError if o is not an object. Object.isExtensible() is
similar but simply returns false when passed an argument that is not
an object.

	Reflect.ownKeys(o)

	
This function returns an array of the names of
the properties of the object o or throws a TypeError if o is not
an object. The names in the returned array will be strings and/or
symbols. Calling this function is similar to calling
Object.getOwnPropertyNames() and Object.getOwnPropertySymbols()
and combining their results.

	Reflect.preventExtensions(o)

	
This function sets the extensible
attribute (§14.2) of the object o to false and
returns true to indicate success. It throws a TypeError if o is
not an object. Object.preventExtensions() has the same effect but
returns o instead of true and does not throw TypeError for
nonobject arguments.

	Reflect.set(o, name, value, receiver)

	
This function sets the
property with the specified name of the object o to the specified
value. It returns
true on success and false on failure (which can happen if the
property is read-only). It throws TypeError if o is not an
object. If the specified property is an accessor property with a
setter function, and if the optional receiver argument is passed, then
the setter will be invoked as a method of receiver instead of being
invoked as a method of o. Calling this function is usually the same
as evaluating o[name] = value.

	Reflect.setPrototypeOf(o, p)

	
This function sets the prototype of
the object o to p, returning true on success and false on
failure (which can occur if o is not extensible or if the operation
would cause a circular prototype chain). It throws a TypeError if o
is not an object or if p is neither an object nor
null. Object.setPrototypeOf() is similar, but returns o on
success and throws TypeError on failure. Remember that calling either
of these functions is likely to make your code slower by disrupting
JavaScript interpreter optimizations.

14.7 Proxy Objects

The Proxy class, available in ES6 and later, is JavaScript’s most
powerful metaprogramming feature. It allows us to write code that
alters the fundamental behavior of JavaScript objects. The Reflect
API described in §14.6 is a set of functions that gives us direct
access to a set of fundamental operations on JavaScript objects. What
the Proxy class does is allows us a way to implement those fundamental
operations ourselves and create objects that behave in ways that are
not possible for ordinary objects.

When we create a Proxy object, we specify two other objects, the
target object and the handlers object:

let proxy = new Proxy(target, handlers);

The resulting Proxy object has no state or behavior of its
own. Whenever you perform an operation on it (read a property, write a
property, define a new property, look up the prototype, invoke it as a
function), it dispatches those operations to the handlers object or to
the target object.

The operations supported by Proxy objects are the same as those
defined by the Reflect API. Suppose that p is a Proxy object and you
write delete p.x. The Reflect.deleteProperty() function has the
same behavior as the delete operator. And when you use the delete
operator to delete a property of a Proxy object, it looks for a
deleteProperty() method on the handlers object. If such a method
exists, it invokes it. And if no such method exists, then the Proxy
object performs the property deletion on the target object instead.

Proxies work this way for all of the fundamental operations: if an
appropriate method exists on the handlers object, it invokes that
method to perform the operation. (The method names and signatures are
the same as those of the Reflect functions covered in
§14.6.) And if that method does not exist on the handlers
object, then the Proxy performs the fundamental operation on the target
object. This means that a Proxy can obtain its behavior from the
target object or from the handlers object. If the handlers object is
empty, then the proxy is essentially a transparent wrapper around the
target object:

let t = { x: 1, y: 2 };
let p = new Proxy(t, {});
p.x // => 1
delete p.y // => true: delete property y of the proxy
t.y // => undefined: this deletes it in the target, too
p.z = 3; // Defining a new property on the proxy
t.z // => 3: defines the property on the target

This kind of transparent wrapper proxy is essentially equivalent to
the underlying target object, which means that there really isn’t a
reason to use it instead of the wrapped object. Transparent wrappers
can be useful, however, when created as “revocable proxies.”
Instead of creating a Proxy with the Proxy() constructor, you can
use the Proxy.revocable() factory function. This function returns an
object that includes a Proxy object and also a revoke()
function. Once you call the revoke() function, the proxy immediately
stops working:

function accessTheDatabase() { /* implementation omitted */ return 42; }
let {proxy, revoke} = Proxy.revocable(accessTheDatabase, {});

proxy() // => 42: The proxy gives access to the underlying target function
revoke(); // But that access can be turned off whenever we want
proxy(); // !TypeError: we can no longer call this function

Note that in addition to demonstrating revocable proxies, the preceding code
also demonstrates that proxies can work with target functions as
well as target objects. But the main point here is that revocable
proxies are a building block for a kind of code isolation, and you
might use them when dealing with untrusted third-party libraries, for
example. If you have to pass a function to a library that you don’t
control, you can pass a revocable proxy instead and then revoke the
proxy when you are finished with the library. This prevents the
library from keeping a reference to your function and calling it at
unexpected times. This kind of defensive programming is not typical in
JavaScript programs, but the Proxy class at least makes it possible.

If we pass a non-empty handlers object to the Proxy() constructor,
then we are no longer defining a transparent wrapper object and are
instead implementing custom behavior for our proxy. With the right set
of handlers, the underlying target object essentially becomes
irrelevant.

In the following code, for example, is how we could implement an object
that appears to have an infinite number of read-only properties, where
the value of each property is the same as the name of the property:

// We use a Proxy to create an object that appears to have every
// possible property, with the value of each property equal to its name
let identity = new Proxy({}, {
 // Every property has its own name as its value
 get(o, name, target) { return name; },
 // Every property name is defined
 has(o, name) { return true; },
 // There are too many properties to enumerate, so we just throw
 ownKeys(o) { throw new RangeError("Infinite number of properties"); },
 // All properties exist and are not writable, configurable or enumerable.
 getOwnPropertyDescriptor(o, name) {
 return {
 value: name,
 enumerable: false,
 writable: false,
 configurable: false
 };
 },
 // All properties are read-only so they can't be set
 set(o, name, value, target) { return false; },
 // All properties are non-configurable, so they can't be deleted
 deleteProperty(o, name) { return false; },
 // All properties exist and are non-configurable so we can't define more
 defineProperty(o, name, desc) { return false; },
 // In effect, this means that the object is not extensible
 isExtensible(o) { return false; },
 // All properties are already defined on this object, so it couldn't
 // inherit anything even if it did have a prototype object.
 getPrototypeOf(o) { return null; },
 // The object is not extensible, so we can't change the prototype
 setPrototypeOf(o, proto) { return false; },
});

identity.x // => "x"
identity.toString // => "toString"
identity[0] // => "0"
identity.x = 1; // Setting properties has no effect
identity.x // => "x"
delete identity.x // => false: can't delete properties either
identity.x // => "x"
Object.keys(identity); // !RangeError: can't list all the keys
for(let p of identity) ; // !RangeError

Proxy objects can derive their behavior from the target object and
from the handlers object, and the examples we have seen so far have
used one object or the other. But it is typically more useful to
define proxies that use both objects.

The following code, for example, uses Proxy to create a read-only wrapper
for a target object. When code tries to read values from the object,
those reads are forwarded to the target object normally. But if any
code tries to modify the object or its properties, methods of the
handler object throw a TypeError. A proxy like this might be helpful
for writing tests: suppose you’ve written a function that takes an
object argument and want to ensure that your function does not make
any attempt to modify the input argument. If your test passes in a
read-only wrapper object, then any writes will throw exceptions that
cause the test to fail:

function readOnlyProxy(o) {
 function readonly() { throw new TypeError("Readonly"); }
 return new Proxy(o, {
 set: readonly,
 defineProperty: readonly,
 deleteProperty: readonly,
 setPrototypeOf: readonly,
 });
}

let o = { x: 1, y: 2 }; // Normal writable object
let p = readOnlyProxy(o); // Readonly version of it
p.x // => 1: reading properties works
p.x = 2; // !TypeError: can't change properties
delete p.y; // !TypeError: can't delete properties
p.z = 3; // !TypeError: can't add properties
p.__proto__ = {}; // !TypeError: can't change the prototype

Another technique when writing proxies is to define handler methods
that intercept operations on an object but still delegate the
operations to the target object. The functions of the Reflect API
(§14.6) have exactly the same signatures as the handler
methods, so they make it easy to do that kind of delegation.

Here, for
example, is a proxy that delegates all operations to the target object
but uses handler methods to log the operations:

/*
 * Return a Proxy object that wraps o, delegating all operations to
 * that object after logging each operation. objname is a string that
 * will appear in the log messages to identify the object. If o has own
 * properties whose values are objects or functions, then if you query
 * the value of those properties, you'll get a loggingProxy back, so that
 * logging behavior of this proxy is "contagious".
 */
function loggingProxy(o, objname) {
 // Define handlers for our logging Proxy object.
 // Each handler logs a message and then delegates to the target object.
 const handlers = {
 // This handler is a special case because for own properties
 // whose value is an object or function, it returns a proxy rather
 // than returning the value itself.
 get(target, property, receiver) {
 // Log the get operation
 console.log(`Handler get(${objname},${property.toString()})`);

 // Use the Reflect API to get the property value
 let value = Reflect.get(target, property, receiver);

 // If the property is an own property of the target and
 // the value is an object or function then return a Proxy for it.
 if (Reflect.ownKeys(target).includes(property) &&
 (typeof value === "object" || typeof value === "function")) {
 return loggingProxy(value, `${objname}.${property.toString()}`);
 }

 // Otherwise return the value unmodified.
 return value;
 },

 // There is nothing special about the following three methods:
 // they log the operation and delegate to the target object.
 // They are a special case simply so we can avoid logging the
 // receiver object which can cause infinite recursion.
 set(target, prop, value, receiver) {
 console.log(`Handler set(${objname},${prop.toString()},${value})`);
 return Reflect.set(target, prop, value, receiver);
 },
 apply(target, receiver, args) {
 console.log(`Handler ${objname}(${args})`);
 return Reflect.apply(target, receiver, args);
 },
 construct(target, args, receiver) {
 console.log(`Handler ${objname}(${args})`);
 return Reflect.construct(target, args, receiver);
 }
 };

 // We can automatically generate the rest of the handlers.
 // Metaprogramming FTW!
 Reflect.ownKeys(Reflect).forEach(handlerName => {
 if (!(handlerName in handlers)) {
 handlers[handlerName] = function(target, ...args) {
 // Log the operation
 console.log(`Handler ${handlerName}(${objname},${args})`);
 // Delegate the operation
 return Reflect[handlerName](target, ...args);
 };
 }
 });

 // Return a proxy for the object using these logging handlers
 return new Proxy(o, handlers);
}

The loggingProxy() function defined earlier creates proxies that log
all of the ways they are used. If you are trying
to understand how an undocumented function uses the objects you pass
it, using a logging proxy can help.

Consider the following examples, which result in some genuine insights about array iteration:

// Define an array of data and an object with a function property
let data = [10,20];
let methods = { square: x => x*x };

// Create logging proxies for the array and the object
let proxyData = loggingProxy(data, "data");
let proxyMethods = loggingProxy(methods, "methods");

// Suppose we want to understand how the Array.map() method works
data.map(methods.square) // => [100, 400]

// First, let's try it with a logging Proxy array
proxyData.map(methods.square) // => [100, 400]
// It produces this output:
// Handler get(data,map)
// Handler get(data,length)
// Handler get(data,constructor)
// Handler has(data,0)
// Handler get(data,0)
// Handler has(data,1)
// Handler get(data,1)

// Now lets try with a proxy methods object
data.map(proxyMethods.square) // => [100, 400]
// Log output:
// Handler get(methods,square)
// Handler methods.square(10,0,10,20)
// Handler methods.square(20,1,10,20)

// Finally, let's use a logging proxy to learn about the iteration protocol
for(let x of proxyData) console.log("Datum", x);
// Log output:
// Handler get(data,Symbol(Symbol.iterator))
// Handler get(data,length)
// Handler get(data,0)
// Datum 10
// Handler get(data,length)
// Handler get(data,1)
// Datum 20
// Handler get(data,length)

From the first chunk of logging output, we learn that the
Array.map() method explicitly checks for the existence of each array
element (causing the has() handler to be invoked) before actually
reading the element value (which triggers the get() handler). This
is presumably so that it can distinguish nonexistent array elements
from elements that exist but are undefined.

The second chunk of logging output might remind us that the function
we pass to Array.map() is invoked with three arguments: the
element’s value, the element’s index, and the array itself. (There is
a problem in our logging output: the Array.toString() method does
not include square brackets in its output, and the log messages would
be clearer if they were included in the argument list
(10,0,[10,20]).)

The third chunk of logging output shows us that the for/of loop
works by looking for a method with symbolic name
[Symbol.iterator]. It also demonstrates that the Array class’s
implementation of this iterator method is careful to check the array
length at every iteration and does not assume that the array length
remains constant during the iteration.

14.7.1 Proxy Invariants

The readOnlyProxy() function defined earlier creates Proxy objects
that are effectively frozen: any attempt to alter a property value or
property attribute or to add or remove properties will throw an
exception. But as long as the target object is not frozen, we’ll find
that if we can query the proxy with Reflect.isExtensible() and
Reflect.getOwnPropertyDescriptor(), and it will tell us that we
should be able to set, add, and delete properties. So
readOnlyProxy() creates objects in an inconsistent state. We could
fix this by adding isExtensible() and getOwnPropertyDescriptor()
handlers, or we can just live with this kind of minor inconsistency.

The Proxy handler API allows us to define objects with major
inconsistencies, however, and in this case, the Proxy class itself
will prevent us from creating Proxy objects that are inconsistent in a
bad way. At the start of this section, we described proxies as objects
with no behavior of their own because they simply forward all
operations to the handlers object and the target object. But this is
not entirely true: after forwarding an operation, the Proxy class
performs some sanity checks on the result to ensure important
JavaScript invariants are not being violated. If it detects a
violation, the proxy will throw a TypeError instead of letting the
operation proceed.

As an example, if you create a proxy for a non-extensible object, the
proxy will throw a TypeError if the isExtensible() handler ever
returns true:

let target = Object.preventExtensions({});
let proxy = new Proxy(target, { isExtensible() { return true; }});
Reflect.isExtensible(proxy); // !TypeError: invariant violation

Relatedly, proxy objects for non-extensible targets may not have a
getPrototypeOf() handler that returns anything other than the real
prototype object of the target. Also, if the target object has
nonwritable, nonconfigurable properties, then the Proxy class will
throw a TypeError if the get() handler returns anything other than
the actual value:

let target = Object.freeze({x: 1});
let proxy = new Proxy(target, { get() { return 99; }});
proxy.x; // !TypeError: value returned by get() doesn't match target

Proxy enforces a number of additional invariants, almost all of them having to do with non-extensible target objects and nonconfigurable
properties on the target object.

14.8 Summary

In this chapter, you have learned:

	
JavaScript objects have an extensible attribute and object
properties have writable, enumerable, and configurable
attributes, as well as a value and a getter and/or setter
attribute. You can use these attributes to “lock down” your objects
in various ways, including creating “sealed” and “frozen” objects.

	
JavaScript defines functions that allow you to traverse the
prototype chain of an object and even to change the prototype of an
object (though doing this can make your code slower).

	
The properties of the Symbol object have values that are
“well-known Symbols,” which you can use as property or method names
for the objects and classes that you define. Doing so allows you to
control how your object interacts with JavaScript language features
and with the core library. For example, well-known Symbols allow you
to make your classes iterable and control the string that is
displayed when an instance is passed to
Object.prototype.toString(). Prior to ES6, this kind of
customization was available only to the native classes that were
built in to an implementation.

	
Tagged template literals are a function invocation syntax, and
defining a new tag function is kind of like adding a new literal
syntax to the language. Defining a tag function that parses its
template string argument allows you to embed DSLs within JavaScript code. Tag functions also provide access to a
raw, unescaped form of string literals where backslashes have no
special meaning.

	
The Proxy class and the related Reflect API allow low-level
control over the fundamental behaviors of JavaScript objects. Proxy
objects can be used as optionally revocable wrappers to improve code
encapsulation, and they can also be used to implement nonstandard
object behaviors (like some of the special case APIs defined by
early web browsers).

1 A bug in the V8 JavaScript engine means that this code does not work correctly in Node 13.

Chapter 15. JavaScript in Web Browsers

The JavaScript language was created in 1994 with the express purpose of
enabling dynamic behavior in the documents displayed by web
browsers. The language has evolved significantly since then, and at the
same time, the scope and capabilities of the web platform have grown
explosively. Today, JavaScript programmers can think of the web as a
full-featured platform for application development. Web browsers
specialize in the display of formatted text and images, but, like native
operating systems, browsers also provide other services, including
graphics, video, audio, networking, storage, and threading. JavaScript
is the language that enables web applications to use the services
provided by the web platform, and this chapter demonstrates how you can
use the most important of these services.

The chapter begins with the web platform’s programming model, explaining
how scripts are embedded within HTML pages (§15.1) and how
JavaScript code is triggered asynchronously by events (§15.2). The
sections that follow this introductory material document the core JavaScript
APIs that enable your web applications to:

	
Control document content (§15.3) and style (§15.4)

	
Determine the on-screen position of document elements (§15.5)

	
Create reusable user interface components (§15.6)

	
Draw graphics (§15.7 and §15.8)

	
Play and generate sounds (§15.9)

	
Manage browser navigation and history (§15.10)

	
Exchange data over the network (§15.11)

	
Store data on the user’s computer (§15.12)

	
Perform concurrent computation with threads (§15.13)

Client-Side JavaScript

In this book, and on the web, you’ll see the term “client-side
JavaScript.” The term is simply a synonym for JavaScript written to
run in a web browser, and it stands in contrast to “server-side” code,
which runs in web servers.

The two “sides” refer to the two ends of
the network connection that separate the web server and the web
browser, and software development for the web typically requires code
to be written on both “sides.” Client-side and server-side are also
often called “frontend” and “backend.”

Previous editions of this book attempted to comprehensively cover all
JavaScript APIs defined by web browsers, and as a result, this book was
too long a decade ago. The number and complexity of web APIs has
continued to grow, and I no longer think it makes sense to attempt to
cover them all in one book. As of the seventh edition, my goal is to
cover the JavaScript language definitively and to provide an in-depth
introduction to using the language with Node and with web browsers. This
chapter cannot cover all the web APIs, but it introduces the most
important ones in enough detail that you can start using them right
away. And, having learned about the core APIs covered here, you should
be able to pick up new APIs (like those summarized in §15.15)
when and if you need them.

Node has a single implementation and a single authoritative source for
documentation. Web APIs, by contrast, are defined by consensus among the
major web browser vendors, and the authoritative documentation takes the
form of a specification intended for the C++ programmers who implement
the API, not for the JavaScript programmers who will use
it. Fortunately, Mozilla’s “MDN web docs” project is a reliable and comprehensive source1 for
web API documentation.

Legacy APIs

In the 25 years since JavaScript was first released, browser vendors
have been adding features and APIs for programmers to use. Many of
those APIs are now obsolete. They include:

	
Proprietary APIs that were never standardized and/or never
implemented by other browser vendors. Microsoft’s Internet Explorer
defined a lot of these APIs. Some (like the innerHTML property)
proved useful and were eventually standardized. Others (like the
attachEvent() method) have been obsolete for years.

	
Inefficient APIs (like the document.write() method) that have such
a severe performance impact that their use is no longer considered
acceptable.

	
Outdated APIs that have long since been replaced by new APIs for
achieving the same thing. An example is document.bgColor, which was
defined to allow JavaScript to set the background color of a
document. With the advent of CSS, document.bgColor became a quaint
special case with no real purpose.

	
Poorly designed APIs that have been replaced by better ones. In the
early days of the web, standards committees defined the key Document
Object Model API in a language-agnostic way so that the same API
could be used in Java programs to work with XML documents on and in
JavaScript programs to work with HTML documents. This resulted in an
API that was not well suited to the JavaScript language and that had
features that web programmers didn’t particularly care about. It
took decades to recover from those early design mistakes, but
today’s web browsers support a much-improved Document Object Model.

Browser vendors may need to support these legacy APIs for the
foreseeable future in order to ensure backward compatibility, but
there is no longer any need for this book to document them or for you
to learn about them. The web platform has matured and stabilized, and
if you are a seasoned web developer who remembers the fourth or fifth
edition of this book, then you may have as much outdated knowledge to
forget as you have new material to learn.

15.1 Web Programming Basics

This section explains how JavaScript programs for the web are
structured, how they are loaded into a web browser, how they obtain
input, how they produce output, and how they run asynchronously by
responding to events.

15.1.1 JavaScript in HTML <script> Tags

Web browsers display HTML documents. If you want a web browser to
execute JavaScript code, you must include (or reference) that code
from an HTML document, and this is what the HTML <script> tag does.

JavaScript code can appear inline within an HTML file between
<script> and
</script> tags. Here, for example, is an HTML file
that includes a script tag with JavaScript code that dynamically
updates one element of the document to make it behave like a digital
clock:

<!DOCTYPE html> <!-- This is an HTML5 file -->
<html> <!-- The root element -->
<head> <!-- Title, scripts & styles can go here -->
<title>Digital Clock</title>
<style> /* A CSS stylesheet for the clock */
#clock { /* Styles apply to element with id="clock" */
 font: bold 24px sans-serif; /* Use a big bold font */
 background: #ddf; /* on a light bluish-gray background. */
 padding: 15px; /* Surround it with some space */
 border: solid black 2px; /* and a solid black border */
 border-radius: 10px; /* with rounded corners. */
}
</style>
</head>
<body> <!-- The body holds the content of the document. -->
<h1>Digital Clock</h1> <!-- Display a title. -->
 <!-- We will insert the time into this element. -->
<script>
// Define a function to display the current time
function displayTime() {
 let clock = document.querySelector("#clock"); // Get element with id="clock"
 let now = new Date(); // Get current time
 clock.textContent = now.toLocaleTimeString(); // Display time in the clock
}
displayTime() // Display the time right away
setInterval(displayTime, 1000); // And then update it every second.
</script>
</body>
</html>

Although JavaScript code can be embedded directly within a <script>
tag, it is more common to instead use the src attribute of the
<script> tag to specify the URL (an absolute URL or a URL relative
to the URL of the HTML file being displayed) of a file containing
JavaScript code. If we took the JavaScript code out of this
HTML file and stored it in its own scripts/digital_clock.js
file, then the <script> tag might reference that file of code like
this:

<script src="scripts/digital_clock.js"></script>

A JavaScript file contains pure JavaScript, without <script> tags or
any other HTML. By convention, files of JavaScript code have names that
end with .js.

A <script> tag with the a src attribute behaves exactly as
if the contents of the specified JavaScript file appeared directly
between the <script> and </script> tags. Note that the
closing </script> tag is required in HTML documents even when
the src attribute is specified: HTML does not support a <script/>
tag.

There are a number of advantages to using the src attribute:

	
It simplifies your HTML files by allowing you to remove large blocks
of JavaScript code from them—that is, it helps keep content and
behavior separate.

	
When multiple web pages share the same JavaScript code, using the
src attribute allows you to maintain only a single copy of that code,
rather than having to edit each HTML file when the code changes.

	
If a file of JavaScript code is shared by more than one page, it only
needs to be downloaded once, by the first page that uses it—subsequent
pages can retrieve it from the browser cache.

	
Because the src attribute takes an arbitrary URL as its value, a
JavaScript program or web page from one web server can employ code
exported by other web servers. Much internet advertising relies on this
fact.

Modules

§10.3 documents JavaScript modules and covers their import
and export directives. If you have written your JavaScript program
using modules (and have not used a code-bundling tool to combine all
your modules into a single nonmodular file of JavaScript), then you
must load the top-level module of your program with a <script> tag that
has a type="module" attribute. If you do this, then the module you
specify will be loaded, and all of the modules it imports will be
loaded, and (recursively) all of the modules they import will be
loaded. See §10.3.5 for complete details.

Specifying script type

In the early days of the web, it was thought that browsers might some
day implement languages other than JavaScript, and programmers added
attributes like language="javascript" and
type="application/javascript" to their <script> tags. This is
completely unnecessary. JavaScript is the default (and only) language
of the web. The language attribute is deprecated, and there are only
two reasons to use a type attribute on a <script> tag:

	
To specify that the script is a module

	
To embed data into a web page without displaying it (see
§15.3.4)

When scripts run: async and deferred

When JavaScript was first added to web browsers, there was no API for
traversing and manipulating the structure and content of an
already rendered document. The only way that JavaScript code could
affect the content of a document was to generate that content on the
fly while the document was in the process of loading. It did this by using the
document.write() method to inject HTML text into the document at the
location of the script.

The use of document.write() is no longer considered good style, but
the fact that it is possible means that when the HTML parser
encounters a <script> element, it must, by default, run the script
just to be sure that it doesn’t output any HTML before it can resume
parsing and rendering the document. This can dramatically slow down
parsing and rendering of the web page.

Fortunately, this default synchronous or blocking script execution
mode is not the only option. The <script> tag can have defer and
async attributes, which cause scripts to be executed differently.
These are boolean attributes—they don’t have a value; they just need
to be present on the <script> tag. Note that these attributes
are only meaningful when used in conjunction with the src attribute:

<script defer src="deferred.js"></script>
<script async src="async.js"></script>

Both the defer and async attributes are ways of telling the
browser that the linked script does not use document.write() to
generate HTML output, and that the browser, therefore, can continue to
parse and render the document while downloading the script. The
defer attribute causes the browser to defer execution of the script
until after the document has been fully loaded and parsed and is ready
to be manipulated. The async attribute causes the browser to run the
script as soon as possible but does not block document parsing while
the script is being downloaded. If a <script> tag has both
attributes, the async attribute takes precedence.

Note that deferred scripts run in the order in which they appear in the
document. Async scripts run as they load, which means that they may
execute out of order.

Scripts with the type="module" attribute are, by default, executed
after the document has loaded, as if they had a defer attribute. You
can override this default with the async attribute, which will cause
the code to be executed as soon as the module and all of its
dependencies have loaded.

A simple alternative to the async and defer attributes—especially
for code that is included directly in the HTML—is to simply put your
scripts at the end of the HTML file. That way, the script can run
knowing that the document content before it has been parsed and is
ready to be manipulated.

Loading scripts on demand

Sometimes, you may have JavaScript code that is not used when a
document first loads and is only needed if the user takes some action
like clicking on a button or opening a menu. If you are developing
your code using modules, you can load a module on demand with
import(), as described in §10.3.6.

If you are not using modules, you can load a file of JavaScript on
demand simply by adding a <script> tag to your document when you
want the script to load:

// Asynchronously load and execute a script from a specified URL
// Returns a Promise that resolves when the script has loaded.
function importScript(url) {
 return new Promise((resolve, reject) => {
 let s = document.createElement("script"); // Create a <script> element
 s.onload = () => { resolve(); }; // Resolve promise when loaded
 s.onerror = (e) => { reject(e); }; // Reject on failure
 s.src = url; // Set the script URL
 document.head.append(s); // Add <script> to document
 });
}

This importScript() function uses DOM APIs (§15.3) to create a new
<script> tag and add it to the document <head>. And it uses event
handlers (§15.2) to determine when the script has loaded
successfully or when loading has failed.

15.1.2 The Document Object Model

One of the most important objects in client-side JavaScript
programming is the Document object—which represents the HTML document that is displayed in a
browser window or tab. The API for working with HTML documents is
known as the Document Object Model, or DOM, and it is covered in detail
in §15.3. But the DOM is so central to client-side JavaScript
programming that it deserves to be introduced here.

HTML documents contain HTML elements nested within one another, forming
a tree. Consider the following simple HTML document:

<html>
 <head>
 <title>Sample Document</title>
 </head>
 <body>
 <h1>An HTML Document</h1>
 <p>This is a <i>simple</i> document.
 </body>
</html>

The top-level <html> tag contains <head> and <body> tags. The
<head> tag contains a <title> tag. And the <body> tag contains
<h1> and <p> tags. The <title> and <h1> tags contain strings
of text, and the <p> tag contains two strings of text with an <i>
tag between them.

The DOM API mirrors the tree structure of an HTML document. For each
HTML tag in the document, there is a corresponding JavaScript Element
object, and for each run of text in the document, there is a
corresponding Text object. The Element and Text classes, as well as the
Document class itself, are all subclasses of the more general Node
class, and Node objects are organized into a tree structure that
JavaScript can query and traverse using the DOM API. The DOM
representation of this document is the tree pictured in
Figure 15-1.

[image: js7e 1501]
Figure 15-1. The tree representation of an HTML document

If you are not already familiar with tree structures in computer
programming, it is helpful to know that they borrow terminology from
family trees. The node directly above a node is the parent of that
node. The nodes one level directly below another node are the
children of that node. Nodes at the same level, and with the same
parent, are siblings. The set of nodes any number of levels below
another node are the descendants of that node. And the parent,
grandparent, and all other nodes above a node are the ancestors of
that node.

The DOM API includes methods for creating new Element and Text nodes,
and for inserting them into the document as children of other Element
objects. There are also methods for moving elements within the
document and for removing them entirely. While a server-side
application might produce plain-text output by writing strings with
console.log(), a client-side JavaScript application can produce
formatted HTML output by building or manipulating the document tree
document using the DOM API.

There is a JavaScript class corresponding to each HTML tag type, and
each occurrence of the tag in a document is represented by an instance
of the class. The <body> tag, for example, is represented by an
instance of HTMLBodyElement, and a <table> tag is represented by an
instance of HTMLTableElement. The JavaScript element objects have
properties that correspond to the HTML attributes of the tags. For
example, instances of HTMLImageElement, which represent tags,
have a src property that corresponds to the src attribute of the
tag. The initial value of the src property is the attribute value
that appears in the HTML tag, and setting this property with
JavaScript changes the value of the HTML attribute (and causes the
browser to load and display a new image). Most of the JavaScript
element classes just mirror the attributes of an HTML tag, but some
define additional methods. The HTMLAudioElement and HTMLVideoElement
classes, for example, define methods like play() and pause() for
controlling playback of audio and video files.

15.1.3 The Global Object in Web Browsers

There is one global object per browser window or tab (§3.7). All of
the JavaScript code (except code running in worker threads; see §15.13)
running in that window shares this single global object. This is true
regardless of how many scripts or modules are in the document: all the
scripts and modules of a document share a single global object; if one
script defines a property on that object, that property is visible to
all the other scripts as well.

The global object is where JavaScript’s standard library is
defined—the parseInt() function, the Math object, the Set class,
and so on. In web browsers, the global object also contains the main
entry points of various web APIs. For example, the document property
represents the currently displayed document, the fetch() method
makes HTTP network requests, and the Audio() constructor allows
JavaScript programs to play sounds.

In web browsers, the global object does double duty: in addition to
defining built-in types and functions, it also represents the current
web browser window and defines properties like history (§15.10.2), which represent the window’s browsing history, and innerWidth, which holds
the window’s width in pixels. One of the properties of this global object is
named window, and its value is the global object itself. This means
that you can simply type window to refer to the global object in
your client-side code. When using window-specific features, it is often a good
idea to include a window. prefix: window.innerWidth is clearer
than innerWidth, for example.

15.1.4 Scripts Share a Namespace

With modules, the constants, variables, functions, and classes defined
at the top level (i.e., outside of any function or class definition) of
the module are private to the module unless they are explicitly
exported, in which case, they can be selectively imported by other
modules. (Note that this property of modules is honored by code-bundling tools as well.)

With non-module scripts, however, the situation is completely
different. If the top-level code in a script defines a constant,
variable, function, or class, that declaration will be visible to all
other scripts in the same document. If one script defines a function
f() and another script defines a class c, then a third script can
invoke the function and instantiate the class without having to take
any action to import them. So if you are not using modules, the
independent scripts in your document share a single namespace and
behave as if they are all part of a single larger script. This can be
convenient for small programs, but the need to avoid naming conflicts
can become problematic for larger programs, especially when some of
the scripts are third-party libraries.

There are some historical quirks with how this shared namespace
works. var and function declarations at the top level create
properties in the shared global object. If one script defines a
top-level function f(), then another script in the same document can
invoke that function as f() or as window.f(). On the other hand,
the ES6 declarations const, let, and class, when used at the
top level, do not create properties in the global object. They are
still defined in a shared namespace, however: if one script defines a
class C, other scripts will be able to create instances of that class
with new C(), but not with new window.C().

To summarize: in modules, top-level declarations are scoped to the
module and can be explicitly exported. In nonmodule scripts,
however, top-level declarations are scoped to the containing document,
and the declarations are shared by all scripts in the document. Older
var and function declarations are shared via properties of the
global object. Newer const, let, and class declarations are also
shared and have the same document scope, but they do not exist as
properties of any object that JavaScript code has access to.

15.1.5 Execution of JavaScript Programs

There is no formal definition of a program in client-side
JavaScript, but we can say that a JavaScript program consists of all
the JavaScript code in, or referenced from, a document. These separate
bits of code share a single global Window object, which gives them
access to the same underlying Document object representing the HTML
document. Scripts that are not modules additionally share a top-level
namespace.

If a web page includes an embedded frame (using the <iframe>
element), the JavaScript code in the embedded document has a different
global object and Document object than the code in the
embedding document, and it can be considered a separate JavaScript
program. Remember, though, that there is no formal definition of what
the boundaries of a JavaScript program are. If the container document
and the contained document are both loaded from the same server, the
code in one document can interact with the code in the other, and you
can treat them as two interacting parts of a single program, if you
wish. §15.13.6 explains how a JavaScript program can
send and receive
messages to and from JavaScript code running in an <iframe>.

You can think of JavaScript program execution as occurring in two
phases. In the first phase, the document content is loaded, and the
code from <script> elements (both inline scripts and external
scripts) is run. Scripts generally run in the order in which they
appear in the document, though this default order can be modified by
the async and defer attributes we’ve described.
The JavaScript code within any
single script is run from top to bottom, subject, of course, to
JavaScript’s conditionals, loops, and other control statements. Some
scripts don’t really do anything during this first phase and instead
just define functions and classes for use in the second phase. Other
scripts might do significant work during the first phase and then do
nothing in the second. Imagine a script at the very end of a document
that finds all <h1> and <h2> tags in the document and modifies the
document by generating and inserting a table of contents at the
beginning of the document. This could be done entirely in the first
phase. (See §15.3.6 for an example that does exactly this.)

Once the document is loaded and all scripts have run, JavaScript
execution enters its second phase. This phase is asynchronous and
event-driven. If a script is going to participate in this second
phase, then one of the things it must have done during the first phase
is to register at least one event handler or other callback function
that will be invoked asynchronously. During this event-driven second
phase, the web browser invokes event handler functions and other
callbacks in response to events that occur asynchronously. Event
handlers are most commonly invoked in response to user input (mouse
clicks, keystrokes, etc.) but may also be triggered by network
activity, document and resource loading, elapsed time, or errors in
JavaScript code. Events and event handlers are described in detail in
§15.2.

Some of the first events to occur during the event-driven phase are
the “DOMContentLoaded” and “load” events. “DOMContentLoaded” is
triggered when the HTML document has been completely loaded and
parsed. The “load” event is triggered when all of the document’s
external resources—such as images—are also fully loaded. JavaScript
programs often use one of these events as a trigger or starting
signal. It is common to see programs whose scripts define functions
but take no action other than registering an event handler function to be
triggered by the “load” event at the beginning of the event-driven
phase of execution. It is this “load” event handler that then
manipulates the document and does whatever it is that the program is
supposed to do. Note that it is common in JavaScript programming for
an event handler function such as the “load” event handler described
here to register other event handlers.

The loading phase of a JavaScript program is relatively short: ideally less than a second. Once the document is loaded,
the event-driven phase lasts for as long as the document is displayed
by the web browser. Because this phase is asynchronous and
event-driven, there may be long periods of inactivity where no
JavaScript is executed, punctuated by bursts of activity triggered by
user or network events. We’ll cover these two phases in more detail next.

Client-side JavaScript threading model

JavaScript is a single-threaded language, and single-threaded
execution makes for much simpler programming: you can write code with
the assurance that two event handlers will never run at the same
time. You can manipulate document content knowing that no other thread
is attempting to modify it at the same time, and you never need to
worry about locks, deadlock, or race conditions when writing
JavaScript code.

Single-threaded execution means that web browsers stop responding
to user input while scripts and event handlers are executing. This
places a burden on JavaScript programmers: it means that JavaScript
scripts and event handlers must not run for too long. If a script
performs a computationally intensive task, it will introduce a delay
into document loading, and the user will not see the document content
until the script completes. If an event handler performs a
computationally intensive task, the browser may become nonresponsive,
possibly causing the user to think that it has crashed.

The web platform defines a controlled form of concurrency called a
“web worker.” A web worker is a background thread for performing
computationally intensive tasks without freezing the user
interface. The code that runs in a web worker thread does not have
access to document content, does not share any state with the main
thread or with other workers, and can only communicate with the main
thread and other workers through asynchronous message events, so the
concurrency is not detectable to the main thread, and web workers do
not alter the basic single-threaded execution model of JavaScript
programs. See §15.13 for full details on the web’s safe
threading mechanism.

Client-side JavaScript timeline

We’ve already seen that JavaScript programs begin in a script-execution phase and then transition to an event-handling phase. These
two phases can be further broken down into the following steps:

	
The web browser creates a Document object and begins parsing the web
page, adding Element objects and Text nodes to the document as it
parses HTML elements and their textual content. The
document.readyState property has the value “loading” at this
stage.

	
When the HTML parser encounters a <script> tag that does not have
any of the async, defer, or type="module" attributes, it adds
that script tag to the document and then executes the script. The
script is executed synchronously, and the HTML parser pauses while
the script downloads (if necessary) and runs. A script like this can
use document.write() to insert text into the input stream, and
that text will become part of the document when the parser
resumes. A script like this often simply defines functions and
registers event handlers for later use, but it can traverse and
manipulate the document tree as it exists at that time. That is,
non-module scripts that do not have an async or defer attribute
can see their own <script> tag and document content that comes
before it.

	
When the parser encounters a <script> element that has the async
attribute set, it begins downloading the script text (and if the
script is a module, it also recursively downloads all of the
script’s dependencies) and continues parsing the document. The
script will be executed as soon as possible after it has downloaded,
but the parser does not stop and wait for it to
download. Asynchronous scripts must not use the document.write()
method. They can see their own <script> tag and all document
content that comes before it, and may or may not have access to
additional document content.

	
When the document is completely parsed, the document.readyState
property changes to “interactive.”

	
Any scripts that had the defer attribute set (along with any module
scripts that do not have an async attribute) are executed in the order
in which they appeared in the document. Async scripts may also be
executed at this time. Deferred scripts have access to the complete
document and they must not use the
document.write() method.

	
The browser fires a “DOMContentLoaded” event on the Document object.
This marks the transition from synchronous script-execution phase to
the asynchronous, event-driven phase of program execution. Note,
however, that there may still be async scripts that have not yet
executed at this point.

	
The document is completely parsed at this point, but the browser may
still be waiting for additional content, such as images, to
load. When all such content finishes loading, and when all async
scripts have loaded and executed, the document.readyState property
changes to “complete” and the web browser fires a “load” event on the
Window object.

	
From this point on, event handlers are invoked asynchronously in
response to user input events, network events, timer expirations,
and so on.

15.1.6 Program Input and Output

Like any program, client-side JavaScript programs process input data
to produce output data. There are a variety of inputs available:

	
The content of the document itself, which JavaScript code can access
with the DOM API (§15.3).

	
User input, in the form of events, such as mouse clicks (or
touch-screen taps) on HTML <button> elements, or text entered into
HTML <textarea> elements, for example. §15.2 demonstrates how
JavaScript programs can respond to user events like these.

	
The URL of the document being displayed is available to client-side
JavaScript as document.URL. If you pass this string to the URL()
constructor (§11.9), you can easily access the path, query, and
fragment sections of the URL.

	
The content of the HTTP “Cookie” request header is available to
client-side code as document.cookie. Cookies are usually used by
server-side code for maintaining user sessions, but client-side code
can also read (and write) them if necessary. See §15.12.2 for
further details.

	
The global navigator property provides access to information about
the web browser, the OS it’s running on top of, and the
capabilities of each. For example, navigator.userAgent is a
string that identifies the web browser, navigator.language is the
user’s preferred language, and navigator.hardwareConcurrency
returns the number of logical CPUs available to the web
browser. Similarly, the global screen property provides access to
the user’s display size via the screen.width and screen.height
properties. In a sense, these navigator and screen objects are
to web browsers what environment variables are to Node programs.

Client-side JavaScript typically produces output, when it needs to, by
manipulating the HTML document with the DOM API (§15.3) or by using
a higher-level
framework such as React or Angular to manipulate the
document. Client-side code can also use console.log() and related
methods (§11.8) to produce output. But this output is only
visible in the web developer console, so it is useful when debugging,
but not for user-visible output.

15.1.7 Program Errors

Unlike applications (such as Node applications) that run directly on
top of the OS, JavaScript programs in a web browser can’t really
“crash.” If an exception occurs while your JavaScript program is
running, and if you do not have a catch statement to handle it, an
error message will be displayed in the developer console, but any
event handlers that have been registered keep running and responding
to events.

If you would like to define an error handler of last resort to be
invoked when this kind of uncaught exception occurs, set the onerror
property of the Window object to an error handler function. When an
uncaught exception propagates all the way up the call stack and an
error message is about to be displayed in the developer console, the
window.onerror function will be invoked with three string arguments.
The first argument to window.onerror is a message describing the
error. The second argument is a string that contains the URL of the
JavaScript code that caused the error. The third argument is the line
number within the document where the error occurred. If the onerror
handler returns true, it tells the browser that the handler has
handled the error and that no further action is necessary—in other
words, the browser should not display its own error message.

When a Promise is rejected and there is no .catch() function to
handle it, that is a situation much like an unhandled exception: an
unanticipated error or a logic error in your program. You can detect
this by defining a window.onunhandledrejection function or by using
window.addEventListener() to register a handler for
“unhandledrejection” events. The event object passed to this handler
will have a promise property whose value is the Promise object that
rejected and a reason property whose value is what would have been
passed to a .catch() function. As with the error handlers described
earlier, if you call preventDefault() on the unhandled rejection event
object, it will be considered handled and won’t cause an error message
in the developer console.

It is not often necessary to define onerror or
onunhandledrejection handlers, but it can be quite useful as a
telemetry mechanism if you want to report client-side errors to the
server (using the fetch() function to make an HTTP POST request, for
example) so that you can get information about unexpected errors that
happen in your users’ browsers.

15.1.8 The Web Security Model

The fact that web pages can execute arbitrary JavaScript code on your personal device has clear security implications, and browser vendors
have worked hard to balance two competing goals:

	
Defining powerful client-side APIs to enable useful web applications

	
Preventing malicious code from reading or altering your data,
compromising your privacy, scamming you, or wasting your time

The subsections that follow give a quick overview of the security restrictions
and issues that you, as a JavaScript programmer, should to be aware
of.

What JavaScript can’t do

Web browsers’ first line of defense against malicious code is that
they simply do not support certain capabilities. For example,
client-side JavaScript does not provide any way to write or delete
arbitrary files or list arbitrary directories on the client
computer. This means a JavaScript program cannot delete data or plant
viruses.

Similarly, client-side JavaScript does not have general-purpose
networking capabilities. A client-side JavaScript program can
make HTTP requests (§15.11.1). And another standard, known as
WebSockets (§15.11.3), defines a socket-like API for
communicating with specialized servers. But neither of these APIs
allows unmediated access to the wider network. General-purpose
internet clients and servers cannot be written in client-side
JavaScript.

The same-origin policy

The same-origin policy is a sweeping security restriction on what
web content JavaScript code can interact with. It typically comes into
play when a web page includes <iframe> elements. In this case, the
same-origin policy governs the interactions of JavaScript code in one
frame with the content of other frames. Specifically, a script can
read only the properties of windows and documents that have the same
origin as the document that contains the script.

The origin of a document is defined as the protocol, host, and port of
the URL from which the document was loaded. Documents loaded from
different web servers have different origins. Documents loaded through
different ports of the same host have different origins. And a document
loaded with the http: protocol has a different origin than one loaded
with the https: protocol, even if they come from the same web
server. Browsers typically treat every file: URL as a separate
origin, which means that if you’re working on a program that displays
more than one document from the same server, you may not be able to
test it locally using file: URLs and will have to run a static
web server during development.

It is important to understand that the origin of the script itself is
not relevant to the same-origin policy: what matters is the origin of
the document in which the script is embedded. Suppose, for example,
that a script hosted by host A is included (using the src property
of a <script> element) in a web page served by host B. The origin of
that script is host B, and the script has full access to the content of
the document that contains it. If the document contains an <iframe>
that contains a second document from host B, then the script also has
full access to the content of that second document. But if the
top-level document contains another <iframe> that displays a document
from host C (or even one from host A), then the same-origin policy
comes into effect and prevents the script from accessing this
nested document.

The same-origin policy also applies to scripted HTTP requests (see
§15.11.1). JavaScript code can make arbitrary HTTP requests to the web
server from which the containing document was loaded, but it does not
allow scripts to communicate with other web servers (unless those web
servers opt in with CORS, as we describe next).

The same-origin policy poses problems for large websites that use
multiple subdomains. For example, scripts with origin
orders.example.com might need to read properties from documents on
example.com. To support multidomain websites of this sort, scripts
can alter their origin by setting document.domain to a domain
suffix. So a script with origin https://orders.example.com can
change its origin to https://example.com by setting
document.domain to “example.com.” But that script cannot set
document.domain to “orders.example”, “ample.com”, or “com”.

The second technique for relaxing the same-origin policy is
Cross-Origin Resource Sharing, or CORS, which allows servers to decide
which origins they are willing to serve. CORS extends HTTP with a new
Origin: request header and a new Access-Control-Allow-Origin
response header. It allows servers to use a header to explicitly list
origins that may request a file or to use a wildcard and allow a file
to be requested by any site. Browsers honor these CORS headers and do
not relax same-origin restrictions unless they are present.

Cross-site scripting

Cross-site scripting, or XSS, is a term for a category of security
issues in which an attacker injects HTML tags or scripts into a target
website. Client-side JavaScript programmers must be aware of, and
defend against, cross-site scripting.

A web page is vulnerable to cross-site scripting if it dynamically
generates document content and bases that content on user-submitted
data without first “sanitizing” that data by removing any embedded
HTML tags from it. As a trivial example, consider the following web
page that uses JavaScript to greet the user by name:

<script>
let name = new URL(document.URL).searchParams.get("name");
document.querySelector('h1').innerHTML = "Hello " + name;
</script>

This two-line script extracts input from the “name” query parameter of
the document URL. It then uses the DOM API to inject an HTML string
into the first <h1> tag in the document. This page is intended to
be invoked with a URL like this:

http://www.example.com/greet.html?name=David

When used like this, it displays the text “Hello David.” But consider
what happens when it is invoked with this query parameter:

name=%3Cimg%20src=%22x.png%22%20onload=%22alert(%27hacked%27)%22/%3E

When the URL-escaped parameters are decoded, this URL causes the
following HTML to be injected into the document:

Hello

After the image loads, the string of JavaScript in the onload
attribute is executed. The global alert() function displays a modal
dialogue box. A single dialogue box is relatively benign but demonstrates
that arbitrary code execution is possible on this site because it
displays unsanitized HTML.

Cross-site scripting attacks are so called because more than one site
is involved. Site B includes a specially crafted link (like the one
in the previous example) to site A. If site B can convince users to click the link,
they will be taken to site A, but that site will now be running code
from site B. That code might deface the page or cause it to
malfunction. More dangerously, the malicious code could read cookies
stored by site A (perhaps account numbers or other personally
identifying information) and send that data back to site B. The
injected code could even track the user’s keystrokes and send that
data back to site B.

In general, the way to prevent XSS attacks is to remove HTML tags from
any untrusted data before using it to create dynamic document content.
You can fix the greet.html file shown earlier by replacing special
HTML characters in the untrusted input string with their equivalent
HTML entities:

name = name
 .replace(/&/g, "&")
 .replace(/</g, "<")
 .replace(/>/g, ">")
 .replace(/"/g, """)
 .replace(/'/g, "'")
 .replace(/\//g, "/")

Another approach to the problem of XSS is to structure your web
applications so that untrusted content is always displayed in an
<iframe> with the sandbox attribute set to disable scripting and
other capabilities.

Cross-site scripting is a pernicious vulnerability whose roots go deep
into the architecture of the web. It is worth understanding this
vulnerability in-depth, but further discussion is beyond the scope of
this book. There are many online resources to help you defend against
cross-site scripting.

15.2 Events

Client-side JavaScript programs use an asynchronous event-driven
programming model. In this style of programming, the web browser
generates an event whenever something interesting happens to the
document or browser or to some element or object associated with
it. For example, the web browser generates an event when it finishes
loading a document, when the user moves the mouse over a hyperlink, or
when the user strikes a key on the keyboard. If a JavaScript
application cares about a particular type of event, it can register
one or more functions to be invoked when events of that type
occur. Note that this is not unique to web programming: all
applications with graphical user interfaces are designed this way—they
sit around waiting to be interacted with (i.e., they wait for events
to occur), and then they respond.

In client-side JavaScript, events can occur on any element within an
HTML document, and this fact makes the event model of web browsers
significantly more complex than Node’s event model. We begin this
section with some important definitions that help to explain that
event model:

	event type

	
This string specifies what kind of event
occurred. The type “mousemove,” for example, means that the user moved
the mouse. The type “keydown” means that the user pressed a key on the
keyboard down. And the type “load” means that a document (or some
other resource) has finished loading from the network. Because the
type of an event is just a string, it’s sometimes called an event
name, and indeed, we use this name to identify the kind of
event we’re talking about.

	event target

	
This is the object on which the event occurred or with
which the event is associated. When we speak of an event, we must
specify both the type and the target. A load event on a Window, for
example, or a click event on a <button> Element. Window, Document,
and Element objects are the most common event targets in client-side
JavaScript applications, but some events are triggered on other kinds
of objects. For example, a Worker object (a kind of thread, covered
§15.13) is a target for “message” events that occur when the
worker thread sends a message to the main thread.

	event handler, or event listener

	
This function handles
or responds to an event.2 Applications register their event
handler functions with the web browser, specifying an event type and an
event target. When an event of the specified type occurs on the
specified target, the browser invokes the handler function. When event handlers
are invoked for an object, we say that the browser has
“fired,” “triggered,” or “dispatched” the event. There are a
number of ways to register event handlers, and the details of handler
registration and invocation are explained in §15.2.2
and §15.2.3.

	event object

	
This object is associated with a particular
event and contains details about that event. Event objects are passed
as an argument to the event handler function. All event objects have a
type property that specifies the event type and a target property
that specifies the event target. Each event type defines a set of
properties for its associated event object. The object associated with
a mouse event includes the coordinates of the mouse pointer, for
example, and the object associated with a keyboard event contains
details about the key that was pressed and the modifier keys that were
held down. Many event types define only a few standard properties—such
as type and target—and do not carry much other useful
information. For those events, it is the simple occurrence of the
event, not the event details, that matter.

	event propagation

	
This is the process by which the browser decides which
objects to trigger event handlers on. For events that are specific to
a single object—such as the “load” event on the Window object or a
“message” event on a Worker object—no propagation is required. But
when certain kinds of events occur on elements within the HTML
document, however, they propagate or “bubble” up the document tree.
If the user moves the mouse over a hyperlink, the mousemove event is
first fired on the <a> element that defines that link. Then it is
fired on the containing elements: perhaps a <p> element, a <section>
element, and the Document object itself. It is sometimes more
convenient to register a single event handler on a Document or other
container element than to register handlers on each individual element
you’re interested in. An event handler can stop the propagation of an
event so that it will not continue to bubble and will not trigger
handlers on containing elements. Handlers do this by invoking a method
of the event object. In another form of event
propagation, known as event capturing, handlers specially registered
on container elements have the opportunity to intercept (or “capture”)
events before they are delivered to their actual target. Event
bubbling and capturing are covered in detail in §15.2.4.

Some events have default actions associated with them. When a click
event occurs on a hyperlink, for example, the default action is for
the browser to follow the link and load a new page. Event handlers can
prevent this default action by invoking a method of the event object.
This is sometimes called “canceling” the event and is covered in
§15.2.5.

15.2.1 Event Categories

Client-side JavaScript supports such a large number of event types
that there is no way this chapter can cover them all. It can be useful,
though, to group events into some general categories, to illustrate
the scope and wide variety of supported events:

	Device-dependent input events

	
These events are directly
tied to a specific input device, such as the mouse or keyboard. They
include event types such as “mousedown,” “mousemove,” “mouseup,”
“touchstart,” “touchmove,” “touchend,” “keydown,” and “keyup.”

	Device-independent input events

	
These input events are not
directly tied to a specific input device. The “click” event, for
example, indicates that a link or button (or other document element)
has been activated. This is often done via a mouse click, but it could
also be done by keyboard or (on touch-sensitive devices) with a tap.
The “input” event is a device-independent alternative to the “keydown”
event and supports keyboard input as well as alternatives such as
cut-and-paste and input methods used for ideographic scripts. The
“pointerdown,” “pointermove,” and “pointerup” event types are device-independent alternatives to mouse and touch events. They work
for mouse-type pointers, for touch screens, and for pen- or stylus-style
input as well.

	User interface events

	
UI events are higher-level events, often on
HTML form elements that define a user interface for a web
application. They include the “focus” event (when a text input field
gains keyboard focus), the “change” event (when the user changes the
value displayed by a form element), and the “submit” event (when the
user clicks a Submit button in a form).

	State-change events

	
Some events are not triggered directly by user
activity, but by network or browser activity, and indicate some kind
of life-cycle or state-related change. The “load” and
“DOMContentLoaded” events—fired on the Window and Document objects,
respectively, at the end of document loading—are probably the most
commonly used of these events (see “Client-side JavaScript timeline”). Browsers fire
“online” and “offline” events on the Window object when network
connectivity changes. The browser’s history management mechanism
(§15.10.4) fires the “popstate” event in response to the browser’s
Back button.

	API-specific events

	
A number of web APIs defined by HTML and
related specifications include their own event types. The HTML
<video> and <audio> elements define a long list of
associated event types such as “waiting,” “playing,” “seeking,”
“volumechange,” and so on, and you can use them to customize media
playback. Generally
speaking, web platform APIs that are asynchronous
and were developed before Promises were added to JavaScript are
event-based and define API-specific events. The IndexedDB API, for
example (§15.12.3), fires “success” and “error” events when database
requests succeed or fail. And although the new fetch() API (§15.11.1)
for making HTTP requests is Promise-based, the XMLHttpRequest API
that it replaces defines a number of API-specific event types.

15.2.2 Registering Event Handlers

There are two basic ways to register event handlers. The first, from
the early days of the web, is to set a property on the object or
document element that is the event target. The second (newer and more
general) technique is to pass the handler to the addEventListener()
method of the object or element.

Setting event handler properties

The simplest way to register an event handler is by setting a property
of the event target to the desired event handler function. By
convention, event handler properties have names that consist of the
word “on” followed by the event name: onclick, onchange, onload,
onmouseover, and so on. Note that these property names are case
sensitive and are written in all lowercase,3 even when the
event type (such as “mousedown”) consists of multiple words. The following code includes two event handler registrations of this kind:

// Set the onload property of the Window object to a function.
// The function is the event handler: it is invoked when the document loads.
window.onload = function() {
 // Look up a <form> element
 let form = document.querySelector("form#shipping");
 // Register an event handler function on the form that will be invoked
 // before the form is submitted. Assume isFormValid() is defined elsewhere.
 form.onsubmit = function(event) { // When the user submits the form
 if (!isFormValid(this)) { // check whether form inputs are valid
 event.preventDefault(); // and if not, prevent form submission.
 }
 };
};

The shortcoming of event handler properties is that they are designed
around the assumption that event targets will have at most one handler
for each type of event. It is often better to register event handlers
using addEventListener() because that technique does not overwrite
any previously registered handlers.

Setting event handler attributes

The event handler properties of document elements can also be defined
directly in the HTML file as attributes on the corresponding HTML
tag. (Handlers that would be registered on the Window element with
JavaScript can be defined with attributes on the <body> tag in
HTML.) This technique is generally frowned upon in modern web
development, but it is possible, and it’s documented here because you may
still see it in existing code.

When defining an event handler as an HTML attribute, the attribute
value should be a string of JavaScript code. That code should be the
body of the event handler function, not a complete function
declaration. That is, your HTML event handler code should not be
surrounded by curly braces and prefixed with the function keyword.
For example:

<button onclick="console.log('Thank you');">Please Click</button>

If an HTML event handler attribute contains multiple JavaScript
statements, you must remember to separate those statements with
semicolons or break the attribute value across multiple lines.

When you specify a string of JavaScript code as the value of an HTML
event handler attribute, the browser converts your string into a
function that works something like this one:

function(event) {
 with(document) {
 with(this.form || {}) {
 with(this) {
 /* your code here */
 }
 }
 }
}

The event argument means that your handler code can refer to the
current event object as event. The with statements mean that the
code of your handler can refer to the properties of the target object,
the containing <form> (if any), and the containing Document object
directly, as if they were variables in scope. The with statement is
forbidden in strict mode (§5.6.3), but JavaScript code in HTML
attributes is never strict. Event handlers defined in this way are
executed in an environment in which unexpected variables are
defined. This can be a source of confusing bugs and is a good reason
to avoid writing event handlers in HTML.

addEventListener()

Any object that can be an event target—this includes the Window and
Document objects and all document Elements—defines a method named
addEventListener() that you can use to register an event handler for
that target. addEventListener() takes three arguments. The first is
the event type for which the handler is being registered. The event
type (or name) is a string that does not include the “on” prefix
used when setting event handler properties. The second
argument to addEventListener() is the function that should be
invoked when the specified type of event occurs. The third argument is
optional and is explained below.

The following code registers two handlers for the “click” event on a
<button> element. Note the differences between the two techniques
used:

<button id="mybutton">Click me</button>
<script>
let b = document.querySelector("#mybutton");
b.onclick = function() { console.log("Thanks for clicking me!"); };
b.addEventListener("click", () => { console.log("Thanks again!"); });
</script>

Calling addEventListener() with “click” as its first argument does
not affect the value of the onclick property. In this code, a
button click will log two messages to the developer console. And if
we called addEventListener() first and then set onclick, we would
still log two messages, just in the opposite order. More importantly,
you can call addEventListener() multiple times to register more than
one handler function for the same event type on the same object. When
an event occurs on an object, all of the handlers registered for that
type of event are invoked in the order in which they were
registered. Invoking addEventListener() more than once on the same
object with the same arguments has no effect—the handler function
remains registered only once, and the repeated invocation does not
alter the order in which handlers are invoked.

addEventListener() is paired with a removeEventListener() method
that expects the same two arguments (plus an optional third) but removes
an event handler function from an object rather than adding it. It is
often useful to temporarily register an event handler and then remove
it soon afterward. For example, when you get a “mousedown” event, you
might register temporary event handlers for “mousemove” and “mouseup”
events so that you can see if the user drags the mouse. You’d then
deregister these handlers when the “mouseup” event arrives. In such a
situation, your event handler removal code might look like this:

document.removeEventListener("mousemove", handleMouseMove);
document.removeEventListener("mouseup", handleMouseUp);

The optional third argument to addEventListener() is a boolean value
or object. If you pass true, then your handler function is
registered as a capturing event handler and is invoked at a
different phase of event dispatch. We’ll cover event capturing in
§15.2.4. If you pass a third argument of true when you
register an event listener, then you must also pass true as the
third argument to removeEventListener() if you want to remove the
handler.

Registering a capturing event handler is only one of the three options
that addEventListener() supports, and instead of passing a single
boolean value, you can also pass an object that explicitly specifies
the options you want:

document.addEventListener("click", handleClick, {
 capture: true,
 once: true,
 passive: true
});

If the Options object has a capture property set to true, then the
event handler will be registered as a capturing handler. If that
property is false or is omitted, then the handler will be
non-capturing.

If the Options object has a once property set to true, then the
event listener will be automatically removed after it is triggered
once. If this property is false or is omitted, then the handler is
never automatically removed.

If the Options object has a passive property set to true, it
indicates that the event handler will never call preventDefault() to
cancel the default action (see §15.2.5). This is
particularly important for touch events on mobile devices—if event
handlers for “touchmove” events can prevent the browser’s default
scrolling action, then the browser cannot implement smooth
scrolling. This passive property provides a way to register a
potentially disruptive event handler of this sort but lets the web
browser know that it can safely begin its default behavior—such as
scrolling—while the event handler is running. Smooth scrolling is so
important for a good user experience that Firefox and Chrome make
“touchmove” and “mousewheel” events passive by default. So if you
actually want to register a handler that calls preventDefault() for
one of these events, you should explicitly set the passive property
to false.

You can also pass an Options object to removeEventListener(), but the
capture property is the only one that is relevant. There is no need
to specify once or passive when removing a listener, and these
properties are ignored.

15.2.3 Event Handler Invocation

Once you’ve registered an event handler, the web browser will invoke
it automatically when an event of the specified type occurs on the
specified object. This section describes event handler invocation in
detail, explaining event handler arguments, the invocation context
(the this value), and the meaning of the return value of an event
handler.

Event handler argument

Event handlers are invoked with an Event object as their single
argument. The properties of the Event object provide details about the
event:

	type

	
The type of the event that occurred.

	target

	
The object on which the event occurred.

	currentTarget

	
For events that propagate, this property is the
object on which the current event handler was registered.

	timeStamp

	
A timestamp (in milliseconds) that represents when the
event occurred but that does not represent an absolute time. You can
determine the elapsed time between two events by subtracting the
timestamp of the first event from the timestamp of the second.

	isTrusted

	
This property will be true if the event was dispatched
by the web browser itself and false if the event was dispatched by
JavaScript code.

Specific kinds of events have additional properties. Mouse and pointer
events, for example, have clientX and clientY properties that specify
the window coordinates at which the event occurred.

Event handler context

When you register an event handler by setting a property, it looks as
if you are defining a new method on the target object:

target.onclick = function() { /* handler code */ };

It isn’t surprising, therefore, that event handlers are invoked as
methods of the object on which they are defined. That is, within the
body of an event handler, the this keyword refers to the object on
which the event handler was registered.

Handlers are invoked with the target as their this value, even when
registered using addEventListener(). This does not work for handlers
defined as arrow functions, however: arrow functions always have the
same this value as the scope in which they are defined.

Handler return value

In modern JavaScript, event handlers should not return anything. You
may see event handlers that return values in older code, and the
return value is typically a signal to the browser that it should not
perform the default action associated with the event. If the onclick
handler of a Submit button in a form returns false, for example,
then the web browser will not submit the form (usually because the
event handler determined that the user’s input fails client-side
validation).

The standard and preferred way to prevent the browser from performing
a default action is to call the preventDefault() method
(§15.2.5) on the Event object.

Invocation order

An event target may have more than one event handler registered for a
particular type of event. When an event of that type occurs, the
browser invokes all of the handlers in the order in which they were
registered. Interestingly, this is true even if you mix event handlers
registered with addEventListener() with an event handler registered
on an object property like onclick.

15.2.4 Event Propagation

When the target of an event is the Window object or some other
standalone object, the browser responds to an event simply by invoking
the appropriate handlers on that one object. When the event target is
a Document or document Element, however, the situation is more
complicated.

After the event handlers registered on the target element are invoked,
most events “bubble” up the DOM tree. The event handlers of the
target’s parent are invoked. Then the handlers registered on the
target’s grandparent are invoked. This continues up to the Document
object, and then beyond to the Window object. Event bubbling provides
an alternative to registering handlers on lots of individual document
elements: instead, you can register a single handler on a common
ancestor element and handle events there. You might register a
“change” handler on a <form> element, for example, instead of
registering a “change” handler for every element in the form.

Most events that occur on document elements bubble. Notable exceptions
are the “focus,” “blur,” and “scroll” events. The “load” event on
document elements bubbles, but it stops bubbling at the Document
object and does not propagate on to the
Window object. (The “load”
event handlers of the Window object are triggered only when the entire
document has loaded.)

Event bubbling is the third “phase” of event propagation. The
invocation of the event handlers of the target object itself is the
second phase. The first phase, which occurs even before the target
handlers are invoked, is called the “capturing” phase. Recall that
addEventListener() takes an optional third argument. If that
argument is true, or {capture:true}, then the event handler is
registered as a capturing event handler for invocation during this
first phase of event propagation. The capturing phase of event
propagation is like the bubbling phase in reverse. The capturing
handlers of the Window object are invoked first, then the capturing
handlers of the Document object, then of the body object, and so on
down the DOM tree until the capturing event handlers of the parent of
the event target are invoked. Capturing event handlers registered on
the event target itself are not invoked.

Event capturing provides an opportunity to peek at events before they
are delivered to their target. A capturing event handler can be used
for debugging, or it can be used along with the event cancellation
technique described in the next section to filter events so that the target event
handlers are never actually invoked. One common use for event capturing
is handling mouse drags, where mouse motion events need to be handled
by the object being dragged, not the document elements over which it is
dragged.

15.2.5 Event Cancellation

Browsers respond to many user events, even if your code does not: when
the user clicks the mouse on a hyperlink, the browser follows the
link. If an HTML text input element has the keyboard focus and the
user types a key, the browser will enter the user’s input. If the user
moves their finger across a touch-screen device, the browser
scrolls. If you register an event handler for events like these, you
can prevent the browser from performing its default action by invoking
the preventDefault() method of the event object. (Unless you
registered the handler with the passive option, which makes
preventDefault() ineffective.)

Canceling the default action associated with an event is only one kind
of event cancellation. We can also cancel the propagation of events by
calling the stopPropagation() method of the event object. If there
are other handlers defined on the same object, the rest of those
handlers will still be invoked, but no event handlers on any other
object will be invoked after stopPropagation() is
called. stopPropagation() works during the capturing phase, at the
event target itself, and during the bubbling
phase. stopImmediatePropagation() works like stopPropagation(), but
it also prevents the invocation of any subsequent event handlers
registered on the same object.

15.2.6 Dispatching Custom Events

Client-side JavaScript’s event API is a relatively powerful one, and
you can use it to define and dispatch your own events. Suppose, for
example, that your program periodically needs to perform a long
calculation or make a network request and that, while this operation is
pending, other operations are not possible. You want to let the user
know about this by displaying “spinners” to indicate that the
application is busy. But the module that is busy should not need to
know where the spinners should be displayed. Instead, that module
might just dispatch an event to announce that it is busy and then
dispatch another event when it is no longer busy. Then, the UI module
can register event handlers for those events and take whatever UI
actions are appropriate to notify the user.

If a JavaScript object has an addEventListener() method, then it is
an “event target,” and this means it also has a dispatchEvent()
method. You can create your own event object with the CustomEvent()
constructor and pass it to dispatchEvent(). The first argument to
CustomEvent() is a string that specifies the type of your event, and
the second argument is an object that specifies the properties of the
event object. Set the detail property of this object to a string,
object, or other value that represents the content of your event. If
you plan to dispatch your event on a document element and want it to
bubble up the document tree, add bubbles:true to the second argument:

// Dispatch a custom event so the UI knows we are busy
document.dispatchEvent(new CustomEvent("busy", { detail: true }));

// Perform a network operation
fetch(url)
 .then(handleNetworkResponse)
 .catch(handleNetworkError)
 .finally(() => {
 // After the network request has succeeded or failed, dispatch
 // another event to let the UI know that we are no longer busy.
 document.dispatchEvent(new CustomEvent("busy", { detail: false }));
 });

// Elsewhere, in your program you can register a handler for "busy" events
// and use it to show or hide the spinner to let the user know.
document.addEventListener("busy", (e) => {
 if (e.detail) {
 showSpinner();
 } else {
 hideSpinner();
 }
});

15.3 Scripting Documents

Client-side JavaScript exists to turn static HTML documents into
interactive web applications. So scripting the content of web pages is
really the central purpose of JavaScript.

Every Window object has a document property that refers to a
Document object. The Document object represents the content of the
window, and it is the subject of this section. The Document object
does not stand alone, however. It is the central object in the DOM for representing
and manipulating document content.

The DOM was introduced in §15.1.2. This section explains
the API in detail. It covers:

	
How to query or select individual elements from a document.

	
How to traverse a document, and how to find the ancestors,
siblings, and descendants of any document element.

	
How to query and set the attributes of document elements.

	
How to query, set, and modify the content of a document.

	
How to modify the structure of a document by creating, inserting, and
deleting nodes.

15.3.1 Selecting Document Elements

Client-side JavaScript programs often need to manipulate one or more
elements within the document. The global document property refers to
the Document object, and the Document object has head and body
properties that refer to the Element objects for the <head> and
<body> tags, respectively. But a program that wants to manipulate an
element embedded more deeply in the document must somehow obtain or
select the Element objects that refer to those document
elements.

Selecting elements with CSS selectors

CSS stylesheets have a very powerful syntax, known as selectors, for
describing elements or sets of elements within a document. The DOM
methods querySelector() and querySelectorAll() allow us to find
the element or elements within a document that match a specified CSS
selector. Before we cover the methods, we’ll start with a quick
tutorial on CSS selector syntax.

CSS selectors can describe elements by tag name, the value of
their id attribute, or the words in their class attribute:

div // Any <div> element
#nav // The element with id="nav"
.warning // Any element with "warning" in its class attribute

The # character is used to match based on the id attribute, and the
. character is used to match based on the class
attribute. Elements can also be selected based on more general
attribute values:

p[lang="fr"] // A paragraph written in French: <p lang="fr">
*[name="x"] // Any element with a name="x" attribute

Note that these examples combine a tag name selector (or the *
tag name wildcard) with an attribute selector. More complex
combinations are also possible:

span.fatal.error // Any with "fatal" and "error" in its class
span[lang="fr"].warning // Any in French with class "warning"

Selectors can also specify document structure:

#log span // Any descendant of the element with id="log"
#log>span // Any child of the element with id="log"
body>h1:first-child // The first <h1> child of the <body>
img + p.caption // A <p> with class "caption" immediately after an
h2 ~ p // Any <p> that follows an <h2> and is a sibling of it

If two selectors are separated by a comma, it means that we’ve
selected elements that match either one of the selectors:

button, input[type="button"] // All <button> and <input type="button"> elements

As you can see, CSS selectors allow us to refer to elements within a
document by type, ID, class, attributes, and position within the
document. The querySelector() method takes a CSS selector string as
its argument and returns the first matching element in the document
that it finds, or returns null if none match:

// Find the document element for the HTML tag with attribute id="spinner"
let spinner = document.querySelector("#spinner");

querySelectorAll() is similar, but it returns all matching elements
in the document rather than just returning the first:

// Find all Element objects for <h1>, <h2>, and <h3> tags
let titles = document.querySelectorAll("h1, h2, h3");

The return value of querySelectorAll() is not an array of Element
objects. Instead, it is an array-like object known as a
NodeList. NodeList objects have a length property and can be indexed
like arrays, so you can loop over them with a traditional for
loop. NodeLists are also iterable, so you can use them with for/of
loops as well. If you want to convert a NodeList into a true array,
simply pass it to Array.from().

The NodeList returned by querySelectorAll() will have a length
property set to 0 if there are not any elements in the document that
match the specified selector.

querySelector() and querySelectorAll() are implemented by the
Element class as well as by the Document class. When invoked on an
element, these methods will only return elements that are descendants
of that element.

Note that CSS defines ::first-line and ::first-letter pseudoelements.
In CSS, these match portions of text nodes rather than actual elements.
They will not match if used with querySelectorAll() or
querySelector(). Also, many browsers will refuse to return matches
for the :link and :visited pseudoclasses, as this could expose
information about the user’s browsing history.

Another CSS-based element selection method is closest(). This method
is defined by the Element class and takes a selector as its only
argument. If the selector matches the element it is invoked on, it
returns that element. Otherwise, it returns the closest ancestor
element that the selector matches, or returns null if none matched. In
a sense, closest() is the opposite of querySelector(): closest()
starts at an element and looks for a match above it in the tree, while
querySelector() starts with an element and looks for a match below
it in the tree. closest() can be useful when you have registered an
event handler at a high level in the document tree. If you are
handling a “click” event, for example, you might want to know whether
it is a click a hyperlink. The event object will tell you what the
target was, but that target might be the text inside a link rather
than the hyperlink’s <a> tag itself. Your event handler could look
for the nearest containing hyperlink like this:

// Find the closest enclosing <a> tag that has an href attribute.
let hyperlink = event.target.closest("a[href]");

Here is another way you might use closest():

// Return true if the element e is inside of an HTML list element
function insideList(e) {
 return e.closest("ul,ol,dl") !== null;
}

The related method matches() does not return ancestors or
descendants: it simply tests whether an element is matched by a CSS
selector and returns true if so and false otherwise:

// Return true if e is an HTML heading element
function isHeading(e) {
 return e.matches("h1,h2,h3,h4,h5,h6");
}

Other element selection methods

In addition to querySelector() and querySelectorAll(), the DOM
also defines a number of older element selection methods that are
more or less obsolete now. You may still see some of these methods
(especially getElementById()) in use, however:

// Look up an element by id. The argument is just the id, without
// the CSS selector prefix #. Similar to document.querySelector("#sect1")
let sect1 = document.getElementById("sect1");

// Look up all elements (such as form checkboxes) that have a name="color"
// attribute. Similar to document.querySelectorAll('*[name="color"]');
let colors = document.getElementsByName("color");

// Look up all <h1> elements in the document.
// Similar to document.querySelectorAll("h1")
let headings = document.getElementsByTagName("h1");

// getElementsByTagName() is also defined on elements.
// Get all <h2> elements within the sect1 element.
let subheads = sect1.getElementsByTagName("h2");

// Look up all elements that have class "tooltip."
// Similar to document.querySelectorAll(".tooltip")
let tooltips = document.getElementsByClassName("tooltip");

// Look up all descendants of sect1 that have class "sidebar"
// Similar to sect1.querySelectorAll(".sidebar")
let sidebars = sect1.getElementsByClassName("sidebar");

Like querySelectorAll(), the methods in this code return a
NodeList (except for getElementById(), which returns a single
Element object). Unlike querySelectorAll(), however, the NodeLists
returned by these older selection methods are “live,” which means that
the length and content of the list can change if the document content
or structure changes.

Preselected elements

For historical reasons, the Document class defines shortcut properties
to access certain kinds of nodes. The images, forms, and links
properties, for example, provide easy access to the , <form>,
and <a> elements (but only <a> tags that have an href attribute)
of a document. These properties refer to HTMLCollection objects, which
are much like NodeList objects, but they can additionally be indexed
by element ID or name. With the document.forms property, for
example, you can access the <form id="address"> tag as:

document.forms.address;

An even more outdated API for selecting elements is the document.all
property, which is like an HTMLCollection for all elements in the
document. document.all is deprecated, and you should no longer use it.

15.3.2 Document Structure and Traversal

Once you have selected an Element from a Document, you sometimes need
to find structurally related portions (parent, siblings, children) of
the document. When we are primarily interested in the Elements of a
document instead of the text within them (and the whitespace between
them, which is also text), there is a traversal API that allows us to
treat a document as a tree of Element objects, ignoring Text nodes
that are also part of the document. This traversal API does not
involve any methods; it is simply a set of properties on Element
objects that allow us to refer to the parent, children, and siblings of
a given element:

	parentNode

	
This property of an element refers to the parent of the
element, which will be another Element or a Document object.

	children

	
This NodeList contains the Element children of an
element, but excludes non-Element children like Text nodes (and
Comment nodes).

	childElementCount

	
The number of Element children. Returns the same
value as children.length.

	firstElementChild, lastElementChild

	
These properties refer to
the first and last Element children of an Element. They are null if
the Element has no Element children.

	nextElementSibling, previousElementSibling

	
These properties
refer to the sibling Elements immediately before or immediately after
an Element, or null if there is no such sibling.

Using these Element properties, the second child Element of the first
child Element of the Document can be referred to with either of these
expressions:

document.children[0].children[1]
document.firstElementChild.firstElementChild.nextElementSibling

(In a standard HTML document, both of those expressions refer to the
<body> tag of the document.)

Here are two functions that demonstrate how you can use these
properties to recursively do a depth-first traversal of a document
invoking a specified function for every element in the document:

// Recursively traverse the Document or Element e, invoking the function
// f on e and on each of its descendants
function traverse(e, f) {
 f(e); // Invoke f() on e
 for(let child of e.children) { // Iterate over the children
 traverse(child, f); // And recurse on each one
 }
}

function traverse2(e, f) {
 f(e); // Invoke f() on e
 let child = e.firstElementChild; // Iterate the children linked-list style
 while(child !== null) {
 traverse2(child, f); // And recurse
 child = child.nextElementSibling;
 }
}

Documents as trees of nodes

If you want to traverse a document or some portion of a document and
do not want to ignore the Text nodes, you can use a different set of
properties defined on all Node objects. This will allow you to see
Elements, Text nodes, and even Comment nodes (which represent HTML
comments in the document).

All Node objects define the following properties:

	parentNode

	
The node that is the parent of this one, or null for
nodes like the Document object that have no parent.

	childNodes

	
A read-only NodeList that that contains all children
(not just Element children) of the node.

	firstChild, lastChild

	
The first and last child nodes of a node,
or null if the node has no children.

	nextSibling, previousSibling

	
The next and previous sibling nodes
of a node. These properties connect nodes in a doubly linked list.

	nodeType

	
A number that specifies what kind of node this is.
Document nodes have value 9.
Element nodes have value 1.
Text nodes have value 3.
Comment nodes have value 8.

	nodeValue

	
The textual content of a Text or Comment node.

	nodeName

	
The HTML tag name of an Element, converted to uppercase.

Using these Node properties, the second child node of the first child
of the Document can be referred to with expressions like these:

document.childNodes[0].childNodes[1]
document.firstChild.firstChild.nextSibling

Suppose the document in question is the following:

<html><head><title>Test</title></head><body>Hello World!</body></html>

Then the second child of the first child is the <body> element. It
has a nodeType of 1 and a nodeName of “BODY”.

Note, however, that this API is extremely sensitive to variations in
the document text. If the document is modified by inserting a single
newline between the <html> and the <head> tag, for example, the
Text node that represents that newline becomes the first child of the
first child, and the second child is the <head> element instead of
the <body> element.

To demonstrate this Node-based traversal API, here is a function that
returns all of the text within an element or document:

// Return the plain-text content of element e, recursing into child elements.
// This method works like the textContent property
function textContent(e) {
 let s = ""; // Accumulate the text here
 for(let child = e.firstChild; child !== null; child = child.nextSibling) {
 let type = child.nodeType;
 if (type === 3) { // If it is a Text node
 s += child.nodeValue; // add the text content to our string.
 } else if (type === 1) { // And if it is an Element node
 s += textContent(child); // then recurse.
 }
 }
 return s;
}

This function is a demonstration only—in practice, you would simply
write e.textContent to obtain the textual content of the element
e.

15.3.3 Attributes

HTML elements consist of a tag name and a set of name/value pairs
known as attributes. The <a> element that defines a hyperlink, for
example, uses the value of its href attribute as the destination of
the link.

The Element class defines general getAttribute(), setAttribute(),
hasAttribute(), and removeAttribute() methods for querying,
setting, testing, and removing the attributes of an element. But the
attribute values of HTML elements (for all standard attributes of
standard HTML elements) are available as properties of the HTMLElement
objects that represent those elements, and it is usually much easier
to work with them as JavaScript properties than it is to call
getAttribute() and related methods.

HTML attributes as element properties

The Element objects that represent the elements of an HTML document
usually define read/write properties that mirror the HTML attributes of the
elements. Element defines properties for the universal HTML
attributes such as id, title, lang, and dir and event handler
properties like onclick. Element-specific subtypes define attributes
specific to those elements. To query the URL of an image, for example,
you can use the src property of the HTMLElement that represents the
 element:

let image = document.querySelector("#main_image");
let url = image.src; // The src attribute is the URL of the image
image.id === "main_image" // => true; we looked up the image by id

Similarly, you might set the form-submission attributes of a <form>
element with code like this:

let f = document.querySelector("form"); // First <form> in the document
f.action = "https://www.example.com/submit"; // Set the URL to submit it to.
f.method = "POST"; // Set the HTTP request type.

For some elements, such as the <input> element, some HTML attribute
names map to differently named properties. The HTML value attribute
of an <input>, for example, is mirrored by the JavaScript
defaultValue property. The JavaScript value property of the
<input> element contains the user’s current input, but changes to the
value property do not affect the defaultValue property nor the
value attribute.

HTML attributes are not case sensitive, but JavaScript property names
are. To convert an attribute name to the JavaScript property, write it
in lowercase. If the attribute is more than one word long, however,
put the first letter of each word after the first in uppercase:
defaultChecked and tabIndex, for example. Event handler properties
like onclick are an exception, however, and are written in lowercase.

Some HTML attribute names are reserved words in JavaScript. For these,
the general rule is to prefix the property name with “html”. The HTML
for attribute (of the <label> element), for example, becomes the
JavaScript htmlFor property. “class” is a reserved
word in JavaScript, and the very important HTML class attribute is an
exception to the rule: it becomes className in JavaScript code.

The properties that represent HTML attributes usually have string
values. But when the attribute is a boolean or numeric value (the
defaultChecked and maxLength attributes of an <input> element,
for example), the properties are booleans or numbers instead of
strings. Event handler attributes always have functions (or
null) as their values.

Note that this property-based API for getting and setting attribute
values does not define any way to remove an attribute from an element.
In particular, the delete operator cannot be used for this purpose.
If you need to delete an attribute, use the removeAttribute() method.

The class attribute

The class attribute of an HTML element is a particularly important
one. Its value is a space-separated list of CSS classes that apply to
the element and affect how it is styled with CSS. Because class is a
reserved word in JavaScript, the value of this attribute is available
through the className property on Element objects. The className
property can set and return the value of the class attribute as a
string. But the class attribute is poorly named: its value is a list
of CSS classes, not a single class, and it is common in client-side
JavaScript programming to want to add and remove individual class
names from this list rather than work with the list as a single
string.

For this reason, Element objects define a classList property that
allows you to treat the class attribute as a list. The value of the
classList property is an iterable Array-like object. Although the
name of the property is classList, it behaves more like a set of
classes, and defines add(), remove(), contains(), and toggle()
methods:

// When we want to let the user know that we are busy, we display
// a spinner. To do this we have to remove the "hidden" class and add the
// "animated" class (assuming the stylesheets are configured correctly).
let spinner = document.querySelector("#spinner");
spinner.classList.remove("hidden");
spinner.classList.add("animated");

Dataset attributes

It is sometimes useful to attach additional information to HTML
elements, typically when JavaScript code will be selecting those
elements and manipulating them in some way. In HTML, any attribute
whose name is lowercase and begins with the prefix “data-” is
considered valid, and you can use them for any purpose. These “dataset
attributes” will not affect the presentation of the elements on which
they appear, and they define a standard way to attach additional data
without compromising document validity.

In the DOM, Element objects have a dataset property that refers to
an object that has properties that correspond to the data-
attributes with their prefix removed. Thus, dataset.x would hold the
value of the data-x attribute. Hyphenated attributes map to
camelCase property names: the attribute data-section-number becomes
the property dataset.sectionNumber.

Suppose an HTML document contains this text:

<h2 id="title" data-section-number="16.1">Attributes</h2>

Then you could write JavaScript like this to access that section
number:

let number = document.querySelector("#title").dataset.sectionNumber;

15.3.4 Element Content

Look again at the document tree pictured in Figure 15-1,
and ask yourself what the
“content” of the <p> element is. There are two ways we might
answer this question:

	
The content is the HTML string “This is a <i>simple</i> document”.

	
The content is the plain-text string “This is a simple document”.

Both of these are valid answers, and each answer is useful in its own
way. The sections that follow explain how to work with the HTML
representation and the plain-text representation of an element’s
content.

Element content as HTML

Reading the innerHTML property of an Element returns the content of
that element as a string of markup. Setting this property on an element
invokes the web browser’s parser and replaces the element’s current
content with a parsed representation of the new string. You can test
this out by opening the developer console and typing:

document.body.innerHTML = "<h1>Oops</h1>";

You will see that the entire web page disappears and is replaced with
the single heading, “Oops”. Web browsers are very good at parsing HTML,
and setting innerHTML is usually fairly efficient. Note, however,
that appending text to the innerHTML property with the +=
operator is not efficient because it requires both a serialization
step to convert element content to a string and then a parsing step to
convert the new string back into element content.

Warning

When using these HTML APIs, it is very important that you never insert
user input into the document. If you do this, you allow malicious
users to inject their own scripts into your application. See “Cross-site scripting”
for details.

The outerHTML property of an Element is like innerHTML except that
its value includes the element itself. When you query outerHTML, the
value includes the opening and closing tags of the element. And when
you set outerHTML on an element, the new content replaces the
element itself.

A related Element method is insertAdjacentHTML(), which allows you
to insert a string of arbitrary HTML markup “adjacent” to the
specified element. The markup is passed as the second argument to this
method, and the precise meaning of “adjacent” depends on the value of
the first argument. This first argument should be a string with one
of the values “beforebegin,” “afterbegin,” “beforeend,” or
“afterend.” These values correspond to insertion points that are
illustrated in Figure 15-2.

[image: js7e 1502]
Figure 15-2. Insertion points for insertAdjacentHTML()

Element content as plain text

Sometimes you want to query the content of an element as plain text or
to insert plain text into a document (without having to escape the
angle brackets and ampersands used in HTML markup). The standard way to
do this is with the textContent property:

let para = document.querySelector("p"); // First <p> in the document
let text = para.textContent; // Get the text of the paragraph
para.textContent = "Hello World!"; // Alter the text of the paragraph

The textContent property is defined by the Node class, so it works
for Text nodes as well as Element nodes. For Element nodes, it finds
and returns all text in all descendants of the element.

The Element class defines an innerText property that is similar to
textContent. innerText has some unusual and complex behaviors, such
as attempting to preserve table formatting. It is not well specified
nor implemented compatibly between browsers, however, and should no
longer be used.

Text in <script> Elements

Inline <script> elements (i.e., those that do not have a src
attribute) have a text property that you can use to retrieve their
text. The content of a <script> element is never displayed by the
browser, and the HTML parser ignores angle brackets and ampersands
within a script. This makes a <script> element an ideal place to
embed arbitrary textual data for use by your application. Simply set
the type attribute of the element to some value (such as
“text/x-custom-data”) that makes it clear that the script is not
executable JavaScript code. If you do this, the JavaScript interpreter
will ignore the script, but the element will exist in the document tree,
and its text property will return the data to you.

15.3.5 Creating, Inserting, and Deleting Nodes

We’ve seen how to query and alter document content using strings of
HTML and of plain text. And we’ve also seen that we can traverse a
Document to examine the individual Element and Text nodes that it is
made of. It is also possible to alter a document at the level of
individual nodes. The Document class defines methods for creating
Element objects, and Element and Text objects have methods for
inserting, deleting, and replacing nodes in the tree.

Create a new element with the createElement() method of the Document
class and append strings of text or other elements to it with its
append() and prepend() methods:

let paragraph = document.createElement("p"); // Create an empty <p> element
let emphasis = document.createElement("em"); // Create an empty element
emphasis.append("World"); // Add text to the element
paragraph.append("Hello ", emphasis, "!"); // Add text and to <p>
paragraph.prepend("¡"); // Add more text at start of <p>
paragraph.innerHTML // => "¡Hello World!"

append() and prepend() take any number of arguments, which can be
Node objects or strings. String arguments are automatically converted
to Text nodes. (You can create Text nodes explicitly with
document.createTextNode(), but there is rarely any reason to do
so.) append() adds the arguments to the element at the end of the
child list. prepend() adds the arguments at the start of the child
list.

If you want to insert an Element or Text node into the middle of the
containing element’s child list, then neither append() or prepend()
will work for you. In this case, you should obtain a reference to a
sibling node and call before() to insert the new content before that
sibling or after() to insert it after that sibling. For example:

// Find the heading element with class="greetings"
let greetings = document.querySelector("h2.greetings");

// Now insert the new paragraph and a horizontal rule after that heading
greetings.after(paragraph, document.createElement("hr"));

Like append() and prepend(), after() and before() take any
number of string and element arguments and insert them all into the
document after converting strings to Text nodes. append() and
prepend() are only defined on Element objects, but after() and
before() work on both Element and Text nodes: you can use them to
insert content relative to a Text node.

Note that elements can only be inserted at one spot in the
document. If an element is already in the document and you insert it
somewhere else, it will be moved to the new location, not copied:

// We inserted the paragraph after this element, but now we
// move it so it appears before the element instead
greetings.before(paragraph);

If you do want to make a copy of an element, use the cloneNode()
method, passing true to copy all of its content:

// Make a copy of the paragraph and insert it after the greetings element
greetings.after(paragraph.cloneNode(true));

You can remove an Element or Text node from the document by calling
its remove() method, or you can replace it by calling
replaceWith() instead. remove() takes no arguments, and
replaceWith() takes any number of strings and elements just like
before() and after() do:

// Remove the greetings element from the document and replace it with
// the paragraph element (moving the paragraph from its current location
// if it is already inserted into the document).
greetings.replaceWith(paragraph);

// And now remove the paragraph.
paragraph.remove();

The DOM API also defines an older generation of methods for inserting
and removing content. appendChild(), insertBefore(),
replaceChild(), and removeChild() are harder to use than
the methods shown here and should never be needed.

15.3.6 Example: Generating a Table of Contents

Example 15-1 shows how to dynamically create a table of contents for a
document. It demonstrates many of the document scripting techniques
described in the previous sections. The example is well commented, and you
should have no trouble following the code.

Example 15-1. Generating a table of contents with the DOM API

/**
 * TOC.js: create a table of contents for a document.
 *
 * This script runs when the DOMContentLoaded event is fired and
 * automatically generates a table of contents for the document.
 * It does not define any global symbols so it should not conflict
 * with other scripts.
 *
 * When this script runs, it first looks for a document element with
 * an id of "TOC". If there is no such element it creates one at the
 * start of the document. Next, the function finds all <h2> through
 * <h6> tags, treats them as section titles, and creates a table of
 * contents within the TOC element. The function adds section numbers
 * to each section heading and wraps the headings in named anchors so
 * that the TOC can link to them. The generated anchors have names
 * that begin with "TOC", so you should avoid this prefix in your own
 * HTML.
 *
 * The entries in the generated TOC can be styled with CSS. All
 * entries have a class "TOCEntry". Entries also have a class that
 * corresponds to the level of the section heading. <h1> tags generate
 * entries of class "TOCLevel1", <h2> tags generate entries of class
 * "TOCLevel2", and so on. Section numbers inserted into headings have
 * class "TOCSectNum".
 *
 * You might use this script with a stylesheet like this:
 *
 * #TOC { border: solid black 1px; margin: 10px; padding: 10px; }
 * .TOCEntry { margin: 5px 0px; }
 * .TOCEntry a { text-decoration: none; }
 * .TOCLevel1 { font-size: 16pt; font-weight: bold; }
 * .TOCLevel2 { font-size: 14pt; margin-left: .25in; }
 * .TOCLevel3 { font-size: 12pt; margin-left: .5in; }
 * .TOCSectNum:after { content: ": "; }
 *
 * To hide the section numbers, use this:
 *
 * .TOCSectNum { display: none }
 **/
document.addEventListener("DOMContentLoaded", () => {
 // Find the TOC container element.
 // If there isn't one, create one at the start of the document.
 let toc = document.querySelector("#TOC");
 if (!toc) {
 toc = document.createElement("div");
 toc.id = "TOC";
 document.body.prepend(toc);
 }

 // Find all section heading elements. We're assuming here that the
 // document title uses <h1> and that sections within the document are
 // marked with <h2> through <h6>.
 let headings = document.querySelectorAll("h2,h3,h4,h5,h6");

 // Initialize an array that keeps track of section numbers.
 let sectionNumbers = [0,0,0,0,0];

 // Now loop through the section header elements we found.
 for(let heading of headings) {
 // Skip the heading if it is inside the TOC container.
 if (heading.parentNode === toc) {
 continue;
 }

 // Figure out what level heading it is.
 // Subtract 1 because <h2> is a level-1 heading.
 let level = parseInt(heading.tagName.charAt(1)) - 1;

 // Increment the section number for this heading level
 // and reset all lower heading level numbers to zero.
 sectionNumbers[level-1]++;
 for(let i = level; i < sectionNumbers.length; i++) {
 sectionNumbers[i] = 0;
 }

 // Now combine section numbers for all heading levels
 // to produce a section number like 2.3.1.
 let sectionNumber = sectionNumbers.slice(0, level).join(".");

 // Add the section number to the section header title.
 // We place the number in a to make it styleable.
 let span = document.createElement("span");
 span.className = "TOCSectNum";
 span.textContent = sectionNumber;
 heading.prepend(span);

 // Wrap the heading in a named anchor so we can link to it.
 let anchor = document.createElement("a");
 let fragmentName = `TOC${sectionNumber}`;
 anchor.name = fragmentName;
 heading.before(anchor); // Insert anchor before heading
 anchor.append(heading); // and move heading inside anchor

 // Now create a link to this section.
 let link = document.createElement("a");
 link.href = `#${fragmentName}`; // Link destination

 // Copy the heading text into the link. This is a safe use of
 // innerHTML because we are not inserting any untrusted strings.
 link.innerHTML = heading.innerHTML;

 // Place the link in a div that is styleable based on the level.
 let entry = document.createElement("div");
 entry.classList.add("TOCEntry", `TOCLevel${level}`);
 entry.append(link);

 // And add the div to the TOC container.
 toc.append(entry);
 }
});

15.4 Scripting CSS

We’ve seen that JavaScript can control the logical structure and
content of HTML documents. It can also control the visual appearance
and layout of those documents by scripting CSS. The following subsections explain a few different techniques that JavaScript code can use to work with CSS.

This is a book about JavaScript, not about CSS, and this section
assumes that you already have a working knowledge of how CSS is used
to style HTML content. But it’s worth mentioning some of the CSS styles
that are commonly scripted from JavaScript:

	
Setting the display style to “none” hides an element. You can
later show the element by setting display to some other value.

	
You can dynamically position elements by setting the position
style to “absolute,” “relative,” or “fixed” and then setting the
top and left styles to the desired coordinates. This is
important when using JavaScript to display dynamic content like
modal dialogues and tooltips.

	
You can shift, scale, and rotate elements with the transform
style.

	
You can animate changes to other CSS styles with the transition
style. These animations are handled automatically by the web browser
and do not require JavaScript, but you can use JavaScript to
initiate the animations.

15.4.1 CSS Classes

The simplest way to use JavaScript to affect the styling of document
content is to add and remove CSS class names from the class
attribute of HTML tags. This is easy to do with the classList
property of Element objects, as explained in “The class attribute”.

Suppose, for example, that your document’s stylesheet includes a
definition for a “hidden” class:

.hidden {
 display:none;
}

With this style defined, you can hide (and then show) an element with
code like this:

// Assume that this "tooltip" element has class="hidden" in the HTML file.
// We can make it visible like this:
document.querySelector("#tooltip").classList.remove("hidden");

// And we can hide it again like this:
document.querySelector("#tooltip").classList.add("hidden");

15.4.2 Inline Styles

To continue with the preceding tooltip example, suppose that the document
is structured with only a single tooltip element, and we want to
dynamically position it before displaying it. In general, we can’t
create a different stylesheet class for each possible position of the
tooltip, so the classList property won’t help us with positioning.

In this case, we need to script the style attribute of the tooltip
element to set inline styles that are specific to that one
element. The DOM defines a style property on all Element objects
that correspond to the style attribute. Unlike most such
properties, however, the style property is not a string. Instead, it
is a CSSStyleDeclaration object: a parsed representation of the CSS
styles that appear in textual form in the style attribute. To
display and set the position of our hypothetical tooltip with
JavaScript, we might use code like this:

function displayAt(tooltip, x, y) {
 tooltip.style.display = "block";
 tooltip.style.position = "absolute";
 tooltip.style.left = `${x}px`;
 tooltip.style.top = `${y}px`;
}

Naming Conventions: CSS Properties in JavaScript

Many CSS style properties, such as font-size, contain hyphens in
their names. In JavaScript, a hyphen is interpreted as a minus sign and is not allowed in property names or other identifiers. Therefore,
the names of the properties of the CSSStyleDeclaration object are
slightly different from the names of actual CSS properties. If a CSS
property name contains one or more hyphens, the CSSStyleDeclaration
property name is formed by removing the hyphens and capitalizing the
letter immediately following each hyphen. The CSS property
border-left-width is accessed through the JavaScript
borderLeftWidth property, for example, and the CSS font-family
property is written as fontFamily in JavaScript.

When working with the style properties of the CSSStyleDeclaration
object, remember that all values must be specified as strings. In a
stylesheet or style attribute, you can write:

display: block; font-family: sans-serif; background-color: #ffffff;

To accomplish the same thing for an element e with JavaScript, you
have to quote all of the values:

e.style.display = "block";
e.style.fontFamily = "sans-serif";
e.style.backgroundColor = "#ffffff";

Note that the semicolons go outside the strings. These are just normal
JavaScript semicolons; the semicolons you use in CSS stylesheets are
not required as part of the string values you set with JavaScript.

Furthermore, remember that many CSS properties require units such as
“px” for pixels or “pt” for points. Thus, it is not correct to set the
marginLeft property like this:

e.style.marginLeft = 300; // Incorrect: this is a number, not a string
e.style.marginLeft = "300"; // Incorrect: the units are missing

Units are required when setting style properties in JavaScript, just as
they are when setting style properties in stylesheets. The correct way
to set the value of the marginLeft property of an element e to 300 pixels
is:

e.style.marginLeft = "300px";

If you want to set a CSS property to a computed value, be sure to
append the units at the end of the computation:

e.style.left = `${x0 + left_border + left_padding}px`;

Recall that some CSS properties, such as margin, are shortcuts for
other properties, such as margin-top, margin-right,
margin-bottom, and margin-left. The CSSStyleDeclaration object has
properties that correspond to these shortcut properties. For example,
you might set the margin property like this:

e.style.margin = `${top}px ${right}px ${bottom}px ${left}px`;

Sometimes, you may find it easier to set or query the inline style of
an element as a single string value rather than as a
CSSStyleDeclaration object. To do that, you can use the Element
getAttribute() and setAttribute() methods, or you can use the
cssText property of the CSSStyleDeclaration object:

// Copy the inline styles of element e to element f:
f.setAttribute("style", e.getAttribute("style"));

// Or do it like this:
f.style.cssText = e.style.cssText;

When querying the style property of an element, keep in mind that it
represents only the inline styles of an element and that most styles
for most elements are specified in stylesheets rather than
inline. Furthermore, the values you obtain when querying the style
property will use whatever units and whatever shortcut property format
is actually used on the HTML attribute, and your code may have to do
some sophisticated parsing to interpret them. In general, if you want
to query the styles of an element, you probably want the computed
style, which is discussed next.

15.4.3 Computed Styles

The computed style for an element is the set of property values that
the browser derives (or computes) from the element’s inline style plus
all applicable style rules in all stylesheets: it is the set of
properties actually used to display the element. Like inline styles,
computed styles are represented with a CSSStyleDeclaration
object. Unlike inline styles, however, computed styles are
read-only. You can’t set these styles, but the computed
CSSStyleDeclaration object for an element lets you determine what
style property values the browser used when rendering that element.

Obtain the computed style for an element with the getComputedStyle()
method of the Window object. The first argument to this method is the
element whose computed style is desired. The optional second argument
is used to specify a CSS pseudoelement, such as “::before” or
“::after”:

let title = document.querySelector("#section1title");
let styles = window.getComputedStyle(title);
let beforeStyles = window.getComputedStyle(title, "::before");

The return value of getComputedStyle() is a CSSStyleDeclaration
object that represents all the styles that apply to the specified
element (or pseudoelement). There are a number of important differences
between a CSSStyleDeclaration object that represents inline styles and
one that represents computed styles:

	
Computed style properties are read-only.

	
Computed style properties are absolute: relative units like
percentages and points are converted to absolute values. Any
property that specifies a size (such as a margin size or a font
size) will have a value measured in pixels. This value will be a
string with a “px” suffix, so you’ll still need to parse it, but you
won’t have to worry about parsing or converting other units. Properties
whose values are colors will be returned in “rgb()” or
“rgba()” format.

	
Shortcut properties are not computed—only the fundamental
properties that they are based on are. Don’t query the margin
property, for example, but use marginLeft, marginTop, and so
on. Similarly, don’t query border or even borderWidth. Instead,
use borderLeftWidth, borderTopWidth, and so on.

	
The cssText property of the computed style is undefined.

A CSSStyleDeclaration object returned by getComputedStyle()
generally contains much more information about an element than the
CSSStyleDeclaration obtained from the inline style property of that
element. But computed styles can be tricky, and querying them does not
always provide the information you might expect. Consider the
font-family attribute: it accepts a comma-separated list of desired
font families for cross-platform portability. When you query the
fontFamily property of a computed style, you’re simply getting the
value of the most specific font-family style that applies to the
element. This may return a value such as “arial,helvetica,sans-serif,”
which does not tell you which typeface is actually in use. Similarly,
if an element is not absolutely positioned, attempting to query its
position and size through the top and left properties of its
computed style often returns the value auto. This is a perfectly
legal CSS value, but it is probably not what you were looking for.

Although CSS can be used to precisely specify the position and size of
document elements, querying the computed style of an element is not the
preferred way to determine the element’s size and position. See
§15.5.2 for a simpler, portable alternative.

15.4.4 Scripting Stylesheets

In addition to scripting class attributes and inline styles,
JavaScript can also manipulate stylesheets themselves. Stylesheets are
associated with an HTML document with a <style> tag or with a <link
rel="stylesheet"> tag. Both of these are regular HTML tags, so you
can give them both id attributes and then look them up with
document.querySelector().

The Element objects for both <style> and <link> tags have a
disabled property that you can use to disable the entire
stylesheet. You might use it with code like this:

// This function switches between the "light" and "dark" themes
function toggleTheme() {
 let lightTheme = document.querySelector("#light-theme");
 let darkTheme = document.querySelector("#dark-theme");
 if (darkTheme.disabled) { // Currently light, switch to dark
 lightTheme.disabled = true;
 darkTheme.disabled = false;
 } else { // Currently dark, switch to light
 lightTheme.disabled = false;
 darkTheme.disabled = true;
 }
}

Another simple way to script stylesheets is to insert new ones into
the document using DOM manipulation techniques we’ve already seen. For
example:

function setTheme(name) {
 // Create a new <link rel="stylesheet"> element to load the named stylesheet
 let link = document.createElement("link");
 link.id = "theme";
 link.rel = "stylesheet";
 link.href = `themes/${name}.css`;

 // Look for an existing link with id "theme"
 let currentTheme = document.querySelector("#theme");
 if (currentTheme) {
 // If there is an existing theme, replace it with the new one.
 currentTheme.replaceWith(link);
 } else {
 // Otherwise, just insert the link to the theme stylesheet.
 document.head.append(link);
 }
}

Less subtly, you can also just insert a string of HTML containing a
<style> tag into your document. This is a fun trick, for example:

document.head.insertAdjacentHTML(
 "beforeend",
 "<style>body{transform:rotate(180deg)}</style>"
);

Browsers define an API that allows JavaScript to look inside
stylesheets to query, modify, insert, and delete style rules in that
stylesheet. This API is so specialized that it is not documented
here. You can read about it on MDN by searching for “CSSStyleSheet”
and “CSS Object Model.”

15.4.5 CSS Animations and Events

Suppose you have the following two CSS classes defined in a
stylesheet:

.transparent { opacity: 0; }
.fadeable { transition: opacity .5s ease-in }

If you apply the first style to an element, it will be fully
transparent and therefore invisible. But if you apply the second style
that tells the browser that when the opacity of the element changes,
that change should be animated over a period of 0.5 seconds, “ease-in”
specifies that the opacity change animation should start off slow and
then accelerate.

Now suppose that your HTML document contains an element with the
“fadeable” class:

<div id="subscribe" class="fadeable notification">...</div>

In JavaScript, you can add the “transparent” class:

document.querySelector("#subscribe").classList.add("transparent");

This element is configured to animate opacity changes. Adding the
“transparent” class changes the opacity and triggers an animate: the
browser “fades out” the element so that it becomes fully transparent
over the period of half a second.

This works in reverse as well: if you remove the “transparent” class
of a “fadeable” element, that is also an opacity change, and the
element fades back in and becomes visible again.

JavaScript does not have to do any work to make these animations
happen: they are a pure CSS effect. But JavaScript can be used to
trigger them.

JavaScript can also be used to monitor the progress of a CSS
transition because the web browser fires events at the start and end
of a transition. The “transitionrun” event is dispatched when the
transition is first triggered. This may happen before any visual
changes begin, when the transition-delay style has been
specified. Once the visual changes begin a “transitionstart” event is
dispatched, and when the animation is complete, a “transitionend” event
is dispatched. The target of all these events is the element being
animated, of course. The event object passed to handlers for these
events is a TransitionEvent object. It has a propertyName property
that specifies the CSS property being animated and an elapsedTime
property that for “transitionend” events specifies how many seconds have
passed since the “transitionstart” event.

In addition to transitions, CSS also supports a more complex form of
animation known simply as “CSS Animations.” These use CSS properties
such as animation-name and animation-duration and a special
@keyframes rule to define animation details. Details of how CSS
animations work are beyond the scope of this book, but once again, if
you define all of the animation properties on a CSS class, then you
can use JavaScript to trigger the animation simply by adding the class
to the element that is to be animated.

And like CSS transitions, CSS animations also trigger events that your
JavaScript code can listen form. “animationstart” is dispatched when
the animation starts, and “animationend” is dispatched when it is
complete. If the animation repeats more than once, then an
“animationiteration” event is dispatched after each repetition except
the last. The event target is the animated element, and the event
object passed to handler functions is an AnimationEvent object. These
events include an animationName property that specifies the
animation-name property that defines the animation and an
elapsedTime property that specifies how many seconds have passed
since the animation started.

15.5 Document Geometry and Scrolling

In this chapter so far, we have thought about documents as abstract
trees of elements and text nodes. But when a browser renders a
document within a window, it creates a visual representation of the
document in which each element has a position and a size. Often, web
applications can treat documents as trees of elements and never have
to think about how those elements are rendered on screen. Sometimes,
however, it is necessary to determine the precise geometry of an
element. If, for example, you want to use CSS to dynamically position
an element (such as a tooltip) next to some ordinary
browser-positioned element, you need to be able to determine the
location of that element.

The following subsections explain how you can go back and forth between
the abstract, tree-based model of a document and the geometrical,
coordinate-based view of the document as it is laid out in a browser
window.

15.5.1 Document Coordinates and Viewport Coordinates

The position of a document element is measured in CSS pixels, with the x
coordinate increasing to the right and the y coordinate increasing as
we go down. There are two different points we can use as the
coordinate system origin, however: the x and y coordinates of an
element can be relative to the top-left corner of the document or
relative to the top-left corner of the viewport in which the
document is displayed. In top-level windows and tabs, the “viewport”
is the portion of the browser that actually displays document content:
it excludes browser “chrome” such as menus, toolbars, and tabs. For
documents displayed in <iframe> tags, it is the iframe element in
the DOM that defines the viewport for the nested document. In either
case, when we talk about the position of an element, we must be clear
whether we are using document coordinates or viewport
coordinates. (Note that viewport coordinates are sometimes called
“window coordinates.”)

If the document is smaller than the viewport, or if it has not been
scrolled, the upper-left corner of the document is in the upper-left
corner of the viewport and the document and viewport coordinate
systems are the same. In general, however, to convert between the two
coordinate systems, we must add or subtract the scroll offsets. If
an element has a y coordinate of 200 pixels in document coordinates,
for example, and if the user has scrolled down by 75 pixels, then that
element has a y coordinate of 125 pixels in viewport
coordinates. Similarly, if an element has an x coordinate of 400 in
viewport coordinates after the user has scrolled the viewport 200
pixels horizontally, then the element’s x coordinate in document
coordinates is 600.

If we use the mental model of printed paper documents, it is logical
to assume that every element in a document must have a unique position
in document coordinates, regardless of how much the user has scrolled
the document. That is an appealing property of paper documents, and it
applies for simple web documents, but in general, document coordinates
don’t really work on the web. The problem is that the CSS overflow
property allows elements within a document to contain more content
than it can display. Elements can have their own scrollbars and serve
as viewports for the content they contain. The fact that the web
allows scrolling elements within a scrolling document means that it is
simply not possible to describe the position of an element within the
document using a single (x,y) point.

Because document coordinates don’t really work, client-side JavaScript
tends to use viewport coordinates. The getBoundingClientRect() and
elementFromPoint() methods described next use viewport coordinates,
for example, and the clientX and clientY properties of mouse and
pointer event objects also use this coordinate system.

When you explicitly position an element using CSS position:fixed,
the top and left properties are interpreted in viewport
coordinates. If you use position:relative, the element is positioned
relative to where it would have been if it didn’t have the position
property set. If you use position:absolute, then top and left
are relative to the document or to the nearest containing positioned
element. This means, for example, that an absolutely positioned element
inside a relatively positioned element is positioned relative to the
container element, not relative to the overall document. It is
sometimes very useful to create a relatively positioned container with
top and left set to 0 (so the container is laid out normally) in
order to establish a new coordinate system origin for the absolutely
positioned elements it contains. We might refer to this new coordinate
system as “container coordinates” to distinguish it from document
coordinates and viewport coordinates.

CSS Pixels

If, like me, you are old enough to remember computer monitors with
resolutions of 1024 × 768 and touch-screen phones with resolutions of
320 × 480, then you may still think that the word “pixel” refers to a
single “picture element” in hardware. Today’s 4K monitors and
“retina” displays have such high resolution that software pixels have
been decoupled from hardware pixels. A CSS pixel—and therefore a
client-side JavaScript pixel—may in fact consist of multiple device
pixels. The devicePixelRatio property of the Window object specifies
how many device pixels are used for each software pixel. A “dpr” of 2,
for example, means that each software pixel is actually a 2 × 2 grid of
hardware pixels. The devicePixelRatio value
depends on the physical resolution of your hardware, on settings in
your operating system, and on the zoom level in your browser.

devicePixelRatio does not have to be an integer. If you are using a
CSS font size of “12px” and the device pixel ratio is 2.5, then the
actual font size, in device pixels, is 30. Because the pixel values we
use in CSS no longer correspond directly to individual pixels on the
screen, pixel coordinates no longer need to be integers. If the
devicePixelRatio is 3, then a coordinate of 3.33 makes perfect
sense. And if the ratio is actually 2, then a coordinate of 3.33 will
just be rounded up to 3.5.

15.5.2 Querying the Geometry of an Element

You can determine the size (including CSS border and padding, but not
the margin) and position (in viewport coordinates) of
an element by calling its getBoundingClientRect() method. It takes
no arguments and returns an object with properties left, right,
top, bottom, width, and height. The left and top
properties give the x and y coordinates of the upper-left corner of
the element, and the right and bottom properties give the
coordinates of the lower-right corner. The differences between these
values are the width and height properties.

Block elements, such as images, paragraphs, and <div> elements are
always rectangular when laid out by the browser. Inline elements, such
as , <code>, and elements, however, may span multiple
lines and may therefore consist of multiple rectangles. Imagine, for
example, some text within and tags that happens to be
displayed so that it wraps across two lines.
Its rectangles consist of the end of
the first line and beginning of the second line. If you call
getBoundingClientRect() on this element, the bounding rectangle would
include the entire width of both lines. If you want to query the
individual rectangles of inline elements, call the getClientRects()
method to obtain a read-only, array-like object whose elements are
rectangle objects like those returned by getBoundingClientRect().

15.5.3 Determining the Element at a Point

The getBoundingClientRect() method allows us to determine the
current position of an element in a viewport. Sometimes we want to go
in the other direction and determine which element is at a given
location in the viewport. You can determine this with the
elementFromPoint() method of the Document object. Call this method
with the x and y coordinates of a point (using viewport coordinates,
not document coordinates: the clientX and clientY coordinates of a
mouse event work, for example). elementFromPoint() returns an
Element object that is at the specified
position. The hit detection algorithm for selecting the element is
not precisely specified, but the intent of this method is that it
returns the innermost (most deeply nested) and uppermost (highest CSS
z-index attribute) element at that point.

15.5.4 Scrolling

The scrollTo() method of the Window object takes the x and y
coordinates of a point (in document coordinates) and sets these as the
scrollbar offsets. That is, it scrolls the window so that the
specified point is in the upper-left corner of the viewport. If you
specify a point that is too close to the bottom or too close to the
right edge of the document, the browser will move it as close as
possible to the upper-left corner but won’t be able to get it all the
way there. The following code scrolls the browser so that the
bottom-most page of the document is visible:

// Get the heights of the document and viewport.
let documentHeight = document.documentElement.offsetHeight;
let viewportHeight = window.innerHeight;
// And scroll so the last "page" shows in the viewport
window.scrollTo(0, documentHeight - viewportHeight);

The scrollBy() method of the Window is similar to scrollTo(), but
its arguments are relative and are added to the current scroll
position:

// Scroll 50 pixels down every 500 ms. Note there is no way to turn this off!
setInterval(() => { scrollBy(0,50)}, 500);

If you want to scroll smoothly with scrollTo() or scrollBy(), pass
a single object argument instead of two numbers, like this:

window.scrollTo({
 left: 0,
 top: documentHeight - viewportHeight,
 behavior: "smooth"
});

Often, instead of scrolling to a numeric location in a document, we just
want to scroll so that a certain element in the document is visible.
You can do this with the scrollIntoView() method on the desired HTML
element. This method ensures that the element on which it is invoked
is visible in the viewport. By default, it tries to put the top edge
of the element at or near the top of the viewport. If false is passed as the only argument, it tries to put the bottom edge of the
element at the bottom of the viewport. The browser will also scroll
the viewport horizontally as needed to make the element visible.

You can also pass an object to scrollIntoView(), setting the
behavior:"smooth" property for smooth scrolling. You can set the
block property to specify where the element should be positioned
vertically and the inline property to specify how it should be
positioned horizontally if horizontal scrolling is needed. Legal
values for both of these properties are start, end, nearest, and center.

15.5.5 Viewport Size, Content Size, and Scroll Position

As we’ve discussed, browser windows and other HTML elements can
display scrolling content. When this is the case, we sometimes need to
know the size of the viewport, the size of the content, and the scroll
offsets of the content within the viewport. This section covers these
details.

For browser windows, the viewport size is given by the
window.innerWidth and window.innerHeight properties. (Web pages
optimized for mobile devices often use a <meta name="viewport"> tag
in their <head> to set the desired viewport width for the page.) The total
size of the document is the same as the size of the <html> element,
document.documentElement. You can call getBoundingClientRect() on
document.documentElement to get the width and height of the document, or you can use the offsetWidth and offsetHeight properties of
document.documentElement. The scroll offsets of the document within
its viewport are available as window.scrollX and
window.scrollY. These are read-only properties, so you can’t set
them to scroll the document: use window.scrollTo() instead.

Things are a little more complicated for elements. Every Element
object defines the following three groups of properties:

offsetWidth clientWidth scrollWidth
offsetHeight clientHeight scrollHeight
offsetLeft clientLeft scrollLeft
offsetTop clientTop scrollTop
offsetParent

The offsetWidth and offsetHeight properties of an element return its on-screen size in CSS pixels. The returned sizes include the element
border and padding but not margins. The offsetLeft and offsetTop
properties return the x and y coordinates of the element. For
many elements, these values are document coordinates. But for
descendants of positioned elements and for some other elements, such
as table cells, these properties return coordinates that are relative
to an ancestor element rather than the document itself. The
offsetParent property specifies which element the properties are
relative to. These offset properties are all read-only.

clientWidth and clientHeight are like offsetWidth and
offsetHeight except that they do not include the border size—only
the content area and its padding. The clientLeft and clientTop
properties are not very useful: they return the horizontal and
vertical distance between the outside of an element’s padding and the
outside of its border. Usually, these values are just the width of the
left and top borders. These client properties are all read-only. For
inline elements like <i>, <code>, and , they all return 0.

scrollWidth and scrollHeight return the size of an element’s
content area plus its padding plus any overflowing content. When the
content fits within the content area without overflow, these
properties are the same as clientWidth and clientHeight. But when
there is overflow, they include the overflowing content and return
values larger than clientWidth and clientHeight. scrollLeft and
scrollTop give the scroll offset of the element content within the
element’s viewport. Unlike all the other properties described here,
scrollLeft and scrollTop are writable properties, and you can set
them to scroll the content within an element. (In most browsers,
Element objects also have scrollTo() and scrollBy() methods like
the Window object does, but these are not yet universally supported.)

15.6 Web Components

HTML is a language for document markup and defines a rich set of tags
for that purpose. Over the last three decades, it has become a language
that is used to describe the user interfaces of web applications, but
basic HTML tags such as <input> and <button> are
inadequate for modern UI designs. Web developers are able to make it
work, but only by using CSS and JavaScript to augment the appearance
and behavior of basic HTML tags. Consider a typical user interface
component, such as the search box shown in Figure 15-3.

[image: js7e 1503]
Figure 15-3. A search box user interface component

The HTML <input> element can be used to accept a single line of
input from the user, but it doesn’t have any way to display icons like
the magnifying glass on the left and the cancel X on the right. In
order to implement a modern user interface element like this for the
web, we need to use at least four HTML elements: an <input> element to
accept and display the user’s input, two elements (or in this
case, two elements displaying Unicode glyphs), and a container
<div> element to hold those three children. Furthermore, we have to
use CSS to hide the default border of the <input> element and define
a border for the container. And we need to use JavaScript to make all
the HTML elements work together. When the user clicks on the X icon, we
need an event handler to clear the input from the <input>
element, for example.

That is a lot of work to do every time you want to display a search
box in a web application, and most web applications today are not
written using “raw” HTML. Instead, many web developers use frameworks
like React and Angular that support the creation of reusable user
interface components like the search box shown here. Web components
is a browser-native alternative to those frameworks based on three
relatively recent additions to web standards that allow JavaScript to
extend HTML with new tags that work as self-contained, reusable UI
components.

The subsections that follow explain how to use web components defined
by other developers in your own web pages, then explain each of the
three technologies that web components are based on, and finally tie all
three together in an example that implements the search box element
pictured in Figure 15-3.

15.6.1 Using Web Components

Web components are defined in JavaScript, so in order to use a web
component in your HTML file, you need to include the JavaScript file
that defines the component. Because web components are a relatively
new technology, they are often written as JavaScript modules, so you
might include one in your HTML like this:

<script type="module" src="components/search-box.js">

Web components define their own HTML tag names, with the important
restriction that those tag names must include a hyphen. (This means
that future versions of HTML can introduce new tags without hyphens,
and there is no chance that the tags will conflict with anyone’s web
component.) To use a web component, just use its tag in your HTML
file:

<search-box placeholder="Search..."></search-box>

Web components can have attributes just like regular HTML tags can;
the documentation for the component you are using should tell you
which attributes are supported. Web components cannot be defined with
self-closing tags. You cannot write <search-box/>, for example. Your
HTML file must include both the opening tag and the closing tag.

Like regular HTML elements, some web components are written to expect
children and others are written in such a way that they do not expect
(and will not display) children. Some web components are written so
that they can optionally accept
specially labeled children that will
appear in named “slots.” The <search-box> component pictured in
Figure 15-3 and implemented in Example 15-3 uses “slots” for
the two icons it displays. If you want to to use a <search-box> with
different icons, you can use HTML like this:

<search-box>

</search-box>

The slot attribute is an extension to HTML that it is used to
specify which children should go where. The slot names—“left” and
“right” in this example—are defined by the web component. If the
component you are using supports slots, that fact should be included
in its documentation.

I previously noted that web components are often implemented as JavaScript
modules and can be loaded into HTML files with a <script
type="module"> tag. You may remember from the beginning of this
chapter that modules are loaded after document content is parsed, as
if they had a deferred tag. So this means that a web browser will
typically parse and render tags like <search-box> before it has run
the code that will tell it what a <search-box> is. This is normal
when using web components. HTML parsers in web browsers are flexible
and very forgiving about input that they do not understand. When they
encounter a web component tag before that component has been defined,
they add a generic HTMLElement to the DOM tree even though they do not
know what to do with it. Later, when the custom element is defined, the
generic element is “upgraded” so that it looks and behaves as desired.

If a web component has children, then those children will probably be
displayed incorrectly before the component is defined. You can use
this CSS to keep web components hidden until they are defined:

/*
 * Make the <search-box> component invisible before it is defined.
 * And try to duplicate its eventual layout and size so that nearby
 * content does not move when it becomes defined.
 */
search-box:not(:defined) {
 opacity:0;
 display: inline-block;
 width: 300px;
 height: 50px;
}

Like regular HTML elements, web components can be used in
JavaScript. If you include a <search-box> tag in your web page, then
you can obtain a reference to it with querySelector() and an
appropriate CSS selector, just as you would for any other HTML tag.
Generally, it only makes sense to do this after the module that
defines the component has run, so be careful when querying web
components that you do not do so too early. Web component
implementations typically (but this is not a requirement) define a
JavaScript property for each HTML attribute they support. And, like
HTML elements, they may also define useful methods. Once again, the
documentation for the web component you are using should specify what
properties and methods are available to your JavaScript code.

Now that you know how to use web components, the next three sections
cover the three web browser features that allow us to implement them.

DocumentFragment Nodes

Before we can cover web component APIs, we need to return briefly to
the DOM API to explain what a DocumentFragment is. The DOM API
organizes a document into a tree of Node objects, where a Node can be
a Document, an Element, a Text node, or even a Comment. None of these
node types allows you to represent a fragment of a document that
consists of a set of sibling nodes without their parent. This is where
DocumentFragment comes in: it is another type of Node that serves as a
temporary parent when you want to manipulate a group of sibling nodes
as a single unit. You can create a DocumentFragment node with
document.createDocumentFragment(). Once you have a DocumentFragment,
you can use it like an Element and append() content to it. A
DocumentFragment is different from an Element because it does not have
a parent. But more importantly, when you insert a DocumentFragment
node into the document, the DocumentFragment itself is not
inserted. Instead, all of its children are inserted.

15.6.2 HTML Templates

The HTML <template> tag is only loosely related to web components,
but it does enable a useful optimization for components that appear
frequently in web pages. <template> tags and their children are
never rendered by a web browser and are only useful on web pages that
use JavaScript. The idea behind this tag is that when a web page
contains multiple repetitions of the same basic HTML structure (such
as rows in a table or the internal implementation of a web component),
then we can use a <template> to define that element structure once, then use JavaScript to duplicate the structure as many times as
needed.

In JavaScript, a <template> tag is represented by an
HTMLTemplateElement object. This object defines a single content
property, and the value of this property is a DocumentFragment of all
the child nodes of the <template>. You can clone this
DocumentFragment and then insert the cloned copy into your document as
needed. The fragment itself will not be inserted, but its children
will be. Suppose you’re working with a document that includes a
<table> and <template id="row"> tag and that the template defines
the structure of rows for that table. You might use the template like this:

let tableBody = document.querySelector("tbody");
let template = document.querySelector("#row");
let clone = template.content.cloneNode(true); // deep clone
// ...Use the DOM to insert content into the <td> elements of the clone...
// Now add the cloned and initialized row into the table
tableBody.append(clone);

Template elements do not have to appear literally in an HTML document
in order to be useful. You can create a template in your JavaScript
code, create its children with innerHTML, and then make as many
clones as needed without the parsing overhead of innerHTML. This is
how HTML templates are typically used in web components, and
Example 15-3 demonstrates this technique.

15.6.3 Custom Elements

The second web browser feature that enables web components is “custom
elements”: the ability to associate a JavaScript class with an HTML
tag name so that any such tags in the document are automatically
turned into instances of the class in the DOM tree. The
customElements.define() method takes a web component tag name as its
first argument (remember that the tag name must include a hyphen) and
a subclass of HTMLElement as its second argument. Any existing
elements in the document with that tag name are “upgraded” to newly
created instances of the class. And if the browser parses any HTML in
the future, it will automatically create an instance of the class for
each of the tags it encounters.

The class passed to customElements.define() should extend
HTMLElement and not a more specific type like
HTMLButtonElement.4
Recall from Chapter 9 that when a JavaScript class extends another
class, the constructor function must call super() before it uses the
this keyword, so if the custom element class has a constructor, it
should call super() (with no arguments) before doing anything else.

The browser will automatically invoke certain “lifecycle methods” of a
custom element class. The connectedCallback() method is invoked when
an instance of the custom element is inserted into the document, and
many elements use this method to perform initialization. There is also
a disconnectedCallback() method invoked when (and if) the element is
removed from the document, though this is less often used.

If a custom element class defines a static observedAttributes
property whose value is an array of attribute names, and if any of the
named attributes are set (or changed) on an instance of the custom
element, the browser will invoke the attributeChangedCallback()
method, passing the attribute name, its old value, and its new
value. This callback can take whatever steps are necessary to update
the component based on its attribute values.

Custom element classes can also define whatever other properties and
methods they want to. Commonly, they will define getter and setter
methods that make the element’s attributes available as JavaScript
properties.

As an example of a custom element, suppose we want to be able to
display circles within paragraphs of regular text. We’d like to be
able to write HTML like this in order to render mathematical story
problems like the one shown in Figure 15-4:

<p>
 The document has one marble: <inline-circle></inline-circle>.
 The HTML parser instantiates two more marbles:
 <inline-circle diameter="1.2em" color="blue"></inline-circle>
 <inline-circle diameter=".6em" color="gold"></inline-circle>.
 How many marbles does the document contain now?
</p>

[image: js7e 15in01]
Figure 15-4. An inline circle custom element

We can implement this <inline-circle> custom element with the code shown in Example 15-2:

Example 15-2. The <inline-circle> custom element

customElements.define("inline-circle", class InlineCircle extends HTMLElement {
 // The browser calls this method when an <inline-circle> element
 // is inserted into the document. There is also a disconnectedCallback()
 // that we don't need in this example.
 connectedCallback() {
 // Set the styles needed to create circles
 this.style.display = "inline-block";
 this.style.borderRadius = "50%";
 this.style.border = "solid black 1px";
 this.style.transform = "translateY(10%)";

 // If there is not already a size defined, set a default size
 // that is based on the current font size.
 if (!this.style.width) {
 this.style.width = "0.8em";
 this.style.height = "0.8em";
 }
 }

 // The static observedAttributes property specifies which attributes
 // we want to be notified about changes to. (We use a getter here since
 // we can only use "static" with methods.)
 static get observedAttributes() { return ["diameter", "color"]; }

 // This callback is invoked when one of the attributes listed above
 // changes, either when the custom element is first parsed, or later.
 attributeChangedCallback(name, oldValue, newValue) {
 switch(name) {
 case "diameter":
 // If the diameter attribute changes, update the size styles
 this.style.width = newValue;
 this.style.height = newValue;
 break;
 case "color":
 // If the color attribute changes, update the color styles
 this.style.backgroundColor = newValue;
 break;
 }
 }

 // Define JavaScript properties that correspond to the element's
 // attributes. These getters and setters just get and set the underlying
 // attributes. If a JavaScript property is set, that sets the attribute
 // which triggers a call to attributeChangedCallback() which updates
 // the element styles.
 get diameter() { return this.getAttribute("diameter"); }
 set diameter(diameter) { this.setAttribute("diameter", diameter); }
 get color() { return this.getAttribute("color"); }
 set color(color) { this.setAttribute("color", color); }
});

15.6.4 Shadow DOM

The custom element demonstrated in Example 15-2 is not well
encapsulated. When you set its diameter or color attributes, it
responds by altering its own style attribute, which is not behavior
we would ever expect from a real HTML element. To turn a custom
element into a true web component, it should use the powerful
encapsulation mechanism known as shadow DOM.

Shadow DOM allows a “shadow root” to be attached to a custom element
(and also to a <div>, , <body>, <article>, <main>,
<nav>, <header>, <footer>, <section>, <p>, <blockquote>,
<aside>, or <h1> through <h6> element) known as a “shadow host.”
Shadow host elements, like all HTML elements, are already the
root of a normal DOM tree of descendant elements and text nodes. A
shadow root is the root of another, more private, tree of descendant
elements that sprouts from the shadow host and can be thought of as a
distinct minidocument.

The word “shadow” in “shadow DOM” refers to the fact that elements
that descend from a shadow root are “hiding in the shadows”: they are
not part of the normal DOM tree, do not appear in the children array
of their host element, and are not visited by normal DOM traversal
methods such as querySelector(). For contrast, the normal, regular
DOM children of a shadow host are sometimes referred to as the “light
DOM.”

To understand the purpose of the shadow DOM, picture the HTML
<audio> and <video> elements: they display a nontrivial user
interface for controlling media playback, but the play and pause
buttons and other UI elements are not part of the DOM tree and cannot
be manipulated by JavaScript. Given that web browsers are designed to
display HTML, it is only natural that browser vendors would want to
display internal UIs like these using HTML. In fact, most browsers
have been doing something like that for a long time, and the shadow
DOM makes it a standard part of the web platform.

Shadow DOM encapsulation

The key feature of shadow DOM is the encapsulation it provides. The
descendants of a shadow root are hidden from—and independent from—the
regular DOM tree, almost as if they were in an independent
document. There are three very important kinds of encapsulation
provided by the shadow DOM:

	
As already mentioned, elements in the shadow DOM are hidden from
regular DOM methods like querySelectorAll(). When a shadow root is
created and attached to its shadow host, it can be created in “open”
or “closed” mode. A closed shadow root is completely sealed away and
inaccessible. More commonly, though, shadow roots are created in
“open” mode, which means that the shadow host has a shadowRoot
property that JavaScript can use to gain access to the elements of
the shadow root, if it has some reason to do so.

	
Styles defined beneath a shadow root are private to that tree and
will never affect the light DOM elements on the outside. (A shadow
root can define default styles for its host element, but these will
be overridden by light DOM styles.) Similarly, the light DOM styles
that apply to the shadow host element have no effect on the
descendants of the shadow root. Elements in the shadow DOM will
inherit things like font size and background color from the light
DOM, and styles in the shadow DOM can choose to use CSS variables
defined in the light DOM. For the most part, however, the styles of
the light DOM and the styles of the shadow DOM are completely
independent: the author of a web component and the user of a web
component do not have to worry about collisions or conflicts between
their stylesheets. Being able to “scope” CSS in this way is perhaps
the most important feature of the shadow DOM.

	
Some events (like “load”) that occur within the shadow DOM are
confined to the shadow DOM. Others, including focus, mouse, and
keyboard events bubble up and out. When an event that originates in
the shadow DOM crosses the boundary and begins to propagate in the
light DOM, its target property is changed to the shadow host
element, so it appears to have originated directly on that element.

Shadow DOM slots and light DOM children

An HTML element that is a shadow host has two trees of
descendants. One is the children[] array—the regular light DOM
descendants of the host element—and the other is the shadow root and
all of its descendants, and you may be wondering how two distinct
content trees can be displayed within the same host element. Here’s
how it works:

	
The descendants of the shadow root are always displayed within the
shadow host.

	
If those descendants include a <slot> element, then the regular
light DOM children of the host element are displayed as if they were
children of that <slot>, replacing any shadow DOM content in the
slot. If the shadow DOM does not include a <slot>, then any light
DOM content of the host is never displayed. If the shadow DOM has a
<slot>, but the shadow host has no light DOM children, then the
shadow DOM content of the slot is displayed as a default.

	
When light DOM content is displayed within a shadow DOM slot, we say
that those elements have been “distributed,” but it is important to
understand that the elements do not actually become part of the
shadow DOM. They can still be queried with querySelector(), and
they still appear in the light DOM as children or descendants of
the host element.

	
If the shadow DOM defines more than one <slot> and names those
slots with a name attribute, then children of the shadow host can
specify which slot they would like to appear in by specifying a
slot="slotname" attribute. We saw an example of this usage
in §15.6.1 when we demonstrated how to customize the
icons displayed by the <search-box> component.

Shadow DOM API

For all of its power, the Shadow DOM doesn’t have much of a JavaScript
API. To turn a light DOM element into a shadow host, just call its
attachShadow() method, passing
{mode:"open"} as the only argument. This method returns a shadow
root object and also sets that object as the value of the host’s
shadowRoot property. The shadow root object is a DocumentFragment,
and you can use DOM methods to add content to it or just set its
innerHTML property to a string of HTML.

If your web component needs to know when the light DOM content of a
shadow DOM <slot> has changed, it can register a listener for
“slotchanged” events directly on the <slot> element.

15.6.5 Example: a <search-box> Web Component

Figure 15-3 illustrated a <search-box> web
component. Example 15-3 demonstrates the three enabling
technologies that define web components: it implements the
<search-box> component as a custom element that uses a <template>
tag for efficiency and a shadow root for encapsulation.

This example shows how to use the low-level web component APIs
directly. In practice, many web components developed today create them
using higher-level libraries such as “lit-element.” One of the reasons
to use a library is that creating reusable and customizable components
is actually quite hard to do well, and there are many details to get
right. Example 15-3 demonstrates web components and does some
basic keyboard focus handling, but otherwise ignores accessibility and
makes no attempt to use proper ARIA attributes to make the component
work with screen readers and other assistive technology.

Example 15-3. Implementing a web component

/**
 * This class defines a custom HTML <search-box> element that displays an
 * <input> text input field plus two icons or emoji. By default, it displays a
 * magnifying glass emoji (indicating search) to the left of the text field
 * and an X emoji (indicating cancel) to the right of the text field. It
 * hides the border on the input field and displays a border around itself,
 * creating the appearance that the two emoji are inside the input
 * field. Similarly, when the internal input field is focused, the focus ring
 * is displayed around the <search-box>.
 *
 * You can override the default icons by including or children
 * of <search-box> with slot="left" and slot="right" attributes.
 *
 * <search-box> supports the normal HTML disabled and hidden attributes and
 * also size and placeholder attributes, which have the same meaning for this
 * element as they do for the <input> element.
 *
 * Input events from the internal <input> element bubble up and appear with
 * their target field set to the <search-box> element.
 *
 * The element fires a "search" event with the detail property set to the
 * current input string when the user clicks on the left emoji (the magnifying
 * glass). The "search" event is also dispatched when the internal text field
 * generates a "change" event (when the text has changed and the user types
 * Return or Tab).
 *
 * The element fires a "clear" event when the user clicks on the right emoji
 * (the X). If no handler calls preventDefault() on the event then the element
 * clears the user's input once event dispatch is complete.
 *
 * Note that there are no onsearch and onclear properties or attributes:
 * handlers for the "search" and "clear" events can only be registered with
 * addEventListener().
 */
class SearchBox extends HTMLElement {
 constructor() {
 super(); // Invoke the superclass constructor; must be first.

 // Create a shadow DOM tree and attach it to this element, setting
 // the value of this.shadowRoot.
 this.attachShadow({mode: "open"});

 // Clone the template that defines the descendants and stylesheet for
 // this custom component, and append that content to the shadow root.
 this.shadowRoot.append(SearchBox.template.content.cloneNode(true));

 // Get references to the important elements in the shadow DOM
 this.input = this.shadowRoot.querySelector("#input");
 let leftSlot = this.shadowRoot.querySelector('slot[name="left"]');
 let rightSlot = this.shadowRoot.querySelector('slot[name="right"]');

 // When the internal input field gets or loses focus, set or remove
 // the "focused" attribute which will cause our internal stylesheet
 // to display or hide a fake focus ring on the entire component. Note
 // that the "blur" and "focus" events bubble and appear to originate
 // from the <search-box>.
 this.input.onfocus = () => { this.setAttribute("focused", ""); };
 this.input.onblur = () => { this.removeAttribute("focused");};

 // If the user clicks on the magnifying glass, trigger a "search"
 // event. Also trigger it if the input field fires a "change"
 // event. (The "change" event does not bubble out of the Shadow DOM.)
 leftSlot.onclick = this.input.onchange = (event) => {
 event.stopPropagation(); // Prevent click events from bubbling
 if (this.disabled) return; // Do nothing when disabled
 this.dispatchEvent(new CustomEvent("search", {
 detail: this.input.value
 }));
 };

 // If the user clicks on the X, trigger a "clear" event.
 // If preventDefault() is not called on the event, clear the input.
 rightSlot.onclick = (event) => {
 event.stopPropagation(); // Don't let the click bubble up
 if (this.disabled) return; // Don't do anything if disabled
 let e = new CustomEvent("clear", { cancelable: true });
 this.dispatchEvent(e);
 if (!e.defaultPrevented) { // If the event was not "cancelled"
 this.input.value = ""; // then clear the input field
 }
 };
 }

 // When some of our attributes are set or changed, we need to set the
 // corresponding value on the internal <input> element. This life cycle
 // method, together with the static observedAttributes property below,
 // takes care of that.
 attributeChangedCallback(name, oldValue, newValue) {
 if (name === "disabled") {
 this.input.disabled = newValue !== null;
 } else if (name === "placeholder") {
 this.input.placeholder = newValue;
 } else if (name === "size") {
 this.input.size = newValue;
 } else if (name === "value") {
 this.input.value = newValue;
 }
 }

 // Finally, we define property getters and setters for properties that
 // correspond to the HTML attributes we support. The getters simply return
 // the value (or the presence) of the attribute. And the setters just set
 // the value (or the presence) of the attribute. When a setter method
 // changes an attribute, the browser will automatically invoke the
 // attributeChangedCallback above.

 get placeholder() { return this.getAttribute("placeholder"); }
 get size() { return this.getAttribute("size"); }
 get value() { return this.getAttribute("value"); }
 get disabled() { return this.hasAttribute("disabled"); }
 get hidden() { return this.hasAttribute("hidden"); }

 set placeholder(value) { this.setAttribute("placeholder", value); }
 set size(value) { this.setAttribute("size", value); }
 set value(text) { this.setAttribute("value", text); }
 set disabled(value) {
 if (value) this.setAttribute("disabled", "");
 else this.removeAttribute("disabled");
 }
 set hidden(value) {
 if (value) this.setAttribute("hidden", "");
 else this.removeAttribute("hidden");
 }
}

// This static field is required for the attributeChangedCallback method.
// Only attributes named in this array will trigger calls to that method.
SearchBox.observedAttributes = ["disabled", "placeholder", "size", "value"];

// Create a <template> element to hold the stylesheet and the tree of
// elements that we'll use for each instance of the SearchBox element.
SearchBox.template = document.createElement("template");

// We initialize the template by parsing this string of HTML. Note, however,
// that when we instantiate a SearchBox, we are able to just clone the nodes
// in the template and do have to parse the HTML again.
SearchBox.template.innerHTML = `
<style>
/*
 * The :host selector refers to the <search-box> element in the light
 * DOM. These styles are defaults and can be overridden by the user of the
 * <search-box> with styles in the light DOM.
 */
:host {
 display: inline-block; /* The default is inline display */
 border: solid black 1px; /* A rounded border around the <input> and <slots> */
 border-radius: 5px;
 padding: 4px 6px; /* And some space inside the border */
}
:host([hidden]) { /* Note the parentheses: when host has hidden... */
 display:none; /* ...attribute set don't display it */
}
:host([disabled]) { /* When host has the disabled attribute... */
 opacity: 0.5; /* ...gray it out */
}
:host([focused]) { /* When host has the focused attribute... */
 box-shadow: 0 0 2px 2px #6AE; /* display this fake focus ring. */
}

/* The rest of the stylesheet only applies to elements in the Shadow DOM. */
input {
 border-width: 0; /* Hide the border of the internal input field. */
 outline: none; /* Hide the focus ring, too. */
 font: inherit; /* <input> elements don't inherit font by default */
 background: inherit; /* Same for background color. */
}
slot {
 cursor: default; /* An arrow pointer cursor over the buttons */
 user-select: none; /* Don't let the user select the emoji text */
}
</style>
<div>
 <slot name="left">\u{1f50d}</slot> <!-- U+1F50D is a magnifying glass -->
 <input type="text" id="input" /> <!-- The actual input element -->
 <slot name="right">\u{2573}</slot> <!-- U+2573 is an X -->
</div>
`;

// Finally, we call customElement.define() to register the SearchBox element
// as the implementation of the <search-box> tag. Custom elements are required
// to have a tag name that contains a hyphen.
customElements.define("search-box", SearchBox);

15.7 SVG: Scalable Vector Graphics

SVG (scalable vector graphics) is an image format. The word “vector” in its name indicates that
it is fundamentally different from raster image formats, such as GIF,
JPEG, and PNG, that specify a matrix of pixel values. Instead, an SVG
“image” is a precise, resolution-independent (hence “scalable”)
description of the steps necessary to draw the desired graphic. SVG
images are described by text files using the XML markup language,
which is quite similar to HTML.

There are three ways you can use SVG in web browsers:

	
You can use .svg image files with regular HTML tags,
just as you would use a .png or .jpeg image.

	
Because the XML-based SVG format is so similar to HTML, you
can actually embed SVG tags directly into your HTML documents. If
you do this, the browser’s HTML parser allows you to omit XML
namespaces and treat SVG tags as if they were HTML tags.

	
You can use the DOM API to dynamically create SVG elements to
generate images on demand.

The subsections that follow demonstrate the second and third uses of
SVG. Note, however, that SVG has a large and moderately complex
grammar. In addition to simple shape-drawing primitives, it includes
support for arbitrary curves, text, and animation. SVG graphics can
even incorporate JavaScript scripts and CSS stylesheets to add
behavior and presentation information. A full description of SVG is
well beyond the scope of this book. The goal of this section is just
to show you how you can use SVG in your HTML documents and script it
with JavaScript.

15.7.1 SVG in HTML

SVG images can, of course, be displayed using HTML tags. But
you can also embed SVG directly in HTML. And if you do this, you can
even use CSS stylesheets to specify things like fonts, colors, and line
widths. Here, for example, is an HTML file that uses SVG to display
an analog clock face:

<html>
<head>
<title>Analog Clock</title>
<style>
/* These CSS styles all apply to the SVG elements defined below */
#clock { /* Styles for everything in the clock:*/
 stroke: black; /* black lines */
 stroke-linecap: round; /* with rounded ends */
 fill: #ffe; /* on an off-white background */
}
#clock .face { stroke-width: 3; } /* Clock face outline */
#clock .ticks { stroke-width: 2; } /* Lines that mark each hour */
#clock .hands { stroke-width: 3; } /* How to draw the clock hands */
#clock .numbers { /* How to draw the numbers */
 font-family: sans-serif; font-size: 10; font-weight: bold;
 text-anchor: middle; stroke: none; fill: black;
}
</style>
</head>
<body>
 <svg id="clock" viewBox="0 0 100 100" width="250" height="250">
 <!-- The width and height attributes are the screen size of the graphic -->
 <!-- The viewBox attribute gives the internal coordinate system -->
 <circle class="face" cx="50" cy="50" r="45"/> <!-- the clock face -->
 <g class="ticks"> <!-- tick marks for each of the 12 hours -->
 <line x1='50' y1='5.000' x2='50.00' y2='10.00'/>
 <line x1='72.50' y1='11.03' x2='70.00' y2='15.36'/>
 <line x1='88.97' y1='27.50' x2='84.64' y2='30.00'/>
 <line x1='95.00' y1='50.00' x2='90.00' y2='50.00'/>
 <line x1='88.97' y1='72.50' x2='84.64' y2='70.00'/>
 <line x1='72.50' y1='88.97' x2='70.00' y2='84.64'/>
 <line x1='50.00' y1='95.00' x2='50.00' y2='90.00'/>
 <line x1='27.50' y1='88.97' x2='30.00' y2='84.64'/>
 <line x1='11.03' y1='72.50' x2='15.36' y2='70.00'/>
 <line x1='5.000' y1='50.00' x2='10.00' y2='50.00'/>
 <line x1='11.03' y1='27.50' x2='15.36' y2='30.00'/>
 <line x1='27.50' y1='11.03' x2='30.00' y2='15.36'/>
 </g>
 <g class="numbers"> <!-- Number the cardinal directions-->
 <text x="50" y="18">12</text><text x="85" y="53">3</text>
 <text x="50" y="88">6</text><text x="15" y="53">9</text>
 </g>
 <g class="hands"> <!-- Draw hands pointing straight up. -->
 <line class="hourhand" x1="50" y1="50" x2="50" y2="25"/>
 <line class="minutehand" x1="50" y1="50" x2="50" y2="20"/>
 </g>
 </svg>
 <script src="clock.js"></script>
</body>
</html>

You’ll notice that the descendants of the <svg> tag are not normal
HTML tags. <circle>, <line>, and <text> tags have obvious
purposes, though, and it should be clear how this SVG graphic
works. There are many other SVG tags, however, and you’ll need to
consult an SVG reference to learn more. You may also notice that the
stylesheet is odd. Styles like fill, stroke-width, and
text-anchor are not normal CSS style properties. In this case, CSS
is essentially being used to set attributes of SVG tags that appear in
the document. Note also that the CSS font shorthand property does
not work for SVG tags, and you must explicitly set font-family,
font-size, and font-weight as separate style properties.

15.7.2 Scripting SVG

One reason to embed SVG directly into your HTML files (instead of just
using static tags) is that if you do this, then you can use
the DOM API to manipulate the SVG image. Suppose you use SVG to
display icons in your web application. You could embed SVG within a
<template> tag (§15.6.2) and then clone the template content
whenever you need to insert a copy of that icon into your UI. And if
you want the icon to respond to user activity—by changing color when
the user hovers the pointer over it, for example—you can often achieve
this with CSS.

It is also possible to dynamically manipulate SVG graphics that are
directly embedded in HTML. The clock face example in the previous section displays a
static clock with hour and minute hands facing straight up displaying
the time noon or midnight. But you may have noticed that the HTML file
includes a <script> tag. That script runs a function periodically
to check the time and transform the hour and minute hands by rotating
them the appropriate number of degrees so that the clock actually
displays the current time, as shown in Figure 15-5.

[image: js7e 1504]
Figure 15-5. A scripted SVG analog clock

The code to manipulate the clock is straightforward. It determines the
proper angle of the hour and minute hands based on the current time,
then uses querySelector() to look up the SVG elements that display
those hands, then sets a transform attribute on them to rotate them
around the center of the clock face. The function uses setTimeout()
to ensure that it runs once a minute:

(function updateClock() { // Update the SVG clock graphic to show current time
 let now = new Date(); // Current time
 let sec = now.getSeconds(); // Seconds
 let min = now.getMinutes() + sec/60; // Fractional minutes
 let hour = (now.getHours() % 12) + min/60; // Fractional hours
 let minangle = min * 6; // 6 degrees per minute
 let hourangle = hour * 30; // 30 degrees per hour

 // Get SVG elements for the hands of the clock
 let minhand = document.querySelector("#clock .minutehand");
 let hourhand = document.querySelector("#clock .hourhand");

 // Set an SVG attribute on them to move them around the clock face
 minhand.setAttribute("transform", `rotate(${minangle},50,50)`);
 hourhand.setAttribute("transform", `rotate(${hourangle},50,50)`);

 // Run this function again in 10 seconds
 setTimeout(updateClock, 10000);
}()); // Note immediate invocation of the function here.

15.7.3 Creating SVG Images with JavaScript

In addition to simply scripting SVG images embedded in your HTML
documents, you can also build SVG images from scratch, which can be
useful to create visualizations of dynamically loaded data, for
example. Example 15-4 demonstrates how you can use JavaScript to
create SVG pie charts, like the one shown in Figure 15-6.

Even though SVG tags can be included within HTML documents, they are
technically XML tags, not HTML tags, and if you want to create SVG
elements with the JavaScript DOM API, you can’t use the normal
createElement() function that was introduced in
§15.3.5. Instead you must use
createElementNS(), which takes an XML namespace string as its first
argument. For SVG, that namespace is the literal string
“http://www.w3.org/2000/svg.”

[image: js7e 1505]
Figure 15-6. An SVG pie chart built with JavaScript (data from Stack Overflow’s 2018 Developer Survey of Most Popular Technologies)

Other than the use of createElementNS(), the pie chart–drawing code
in Example 15-4 is relatively straightforward. There is a little
math to convert the data being charted into pie-slice angles. The
bulk of the example, however, is DOM code that creates SVG elements
and sets attributes on those elements.

The most opaque part of this example is the code that draws the actual
pie slices. The element used to display each slice is <path>.
This SVG element describes arbitrary shapes comprised of lines and
curves. The shape description is specified by the d attribute of the
<path> element. The value of this attribute uses a compact
grammar of letter codes and numbers that specify coordinates, angles,
and other values. The letter M, for example, means “move to” and is
followed by x and y coordinates. The letter L means “line to” and
draws a line from the current point to the coordinates that follow it.
This example also uses the letter A to draw an arc. This letter is
followed by seven numbers describing the arc, and you can look up the
syntax online if you want to know more.

Example 15-4. Drawing a pie chart with JavaScript and SVG

/**
 * Create an <svg> element and draw a pie chart into it.
 *
 * This function expects an object argument with the following properties:
 *
 * width, height: the size of the SVG graphic, in pixels
 * cx, cy, r: the center and radius of the pie
 * lx, ly: the upper-left corner of the chart legend
 * data: an object whose property names are data labels and whose
 * property values are the values associated with each label
 *
 * The function returns an <svg> element. The caller must insert it into
 * the document in order to make it visible.
 */
function pieChart(options) {
 let {width, height, cx, cy, r, lx, ly, data} = options;

 // This is the XML namespace for svg elements
 let svg = "http://www.w3.org/2000/svg";

 // Create the <svg> element, and specify pixel size and user coordinates
 let chart = document.createElementNS(svg, "svg");
 chart.setAttribute("width", width);
 chart.setAttribute("height", height);
 chart.setAttribute("viewBox", `0 0 ${width} ${height}`);

 // Define the text styles we'll use for the chart. If we leave these
 // values unset here, they can be set with CSS instead.
 chart.setAttribute("font-family", "sans-serif");
 chart.setAttribute("font-size", "18");

 // Get labels and values as arrays and add up the values so we know how
 // big the pie is.
 let labels = Object.keys(data);
 let values = Object.values(data);
 let total = values.reduce((x,y) => x+y);

 // Figure out the angles for all the slices. Slice i starts at angles[i]
 // and ends at angles[i+1]. The angles are measured in radians.
 let angles = [0];
 values.forEach((x, i) => angles.push(angles[i] + x/total * 2 * Math.PI));

 // Now loop through the slices of the pie
 values.forEach((value, i) => {
 // Compute the two points where our slice intersects the circle
 // These formulas are chosen so that an angle of 0 is at 12 o'clock
 // and positive angles increase clockwise.
 let x1 = cx + r * Math.sin(angles[i]);
 let y1 = cy - r * Math.cos(angles[i]);
 let x2 = cx + r * Math.sin(angles[i+1]);
 let y2 = cy - r * Math.cos(angles[i+1]);

 // This is a flag for angles larger than a half circle
 // It is required by the SVG arc drawing component
 let big = (angles[i+1] - angles[i] > Math.PI) ? 1 : 0;

 // This string describes how to draw a slice of the pie chart:
 let path = `M${cx},${cy}` + // Move to circle center.
 `L${x1},${y1}` + // Draw line to (x1,y1).
 `A${r},${r} 0 ${big} 1` + // Draw an arc of radius r...
 `${x2},${y2}` + // ...ending at to (x2,y2).
 "Z"; // Close path back to (cx,cy).

 // Compute the CSS color for this slice. This formula works for only
 // about 15 colors. So don't include more than 15 slices in a chart.
 let color = `hsl(${(i*40)%360},${90-3*i}%,${50+2*i}%)`;

 // We describe a slice with a <path> element. Note createElementNS().
 let slice = document.createElementNS(svg, "path");

 // Now set attributes on the <path> element
 slice.setAttribute("d", path); // Set the path for this slice
 slice.setAttribute("fill", color); // Set slice color
 slice.setAttribute("stroke", "black"); // Outline slice in black
 slice.setAttribute("stroke-width", "1"); // 1 CSS pixel thick
 chart.append(slice); // Add slice to chart

 // Now draw a little matching square for the key
 let icon = document.createElementNS(svg, "rect");
 icon.setAttribute("x", lx); // Position the square
 icon.setAttribute("y", ly + 30*i);
 icon.setAttribute("width", 20); // Size the square
 icon.setAttribute("height", 20);
 icon.setAttribute("fill", color); // Same fill color as slice
 icon.setAttribute("stroke", "black"); // Same outline, too.
 icon.setAttribute("stroke-width", "1");
 chart.append(icon); // Add to the chart

 // And add a label to the right of the rectangle
 let label = document.createElementNS(svg, "text");
 label.setAttribute("x", lx + 30); // Position the text
 label.setAttribute("y", ly + 30*i + 16);
 label.append(`${labels[i]} ${value}`); // Add text to label
 chart.append(label); // Add label to the chart
 });

 return chart;
}

The pie chart in Figure 15-6 was created using the pieChart()
function from Example 15-4, like this:

document.querySelector("#chart").append(pieChart({
 width: 640, height:400, // Total size of the chart
 cx: 200, cy: 200, r: 180, // Center and radius of the pie
 lx: 400, ly: 10, // Position of the legend
 data: { // The data to chart
 "JavaScript": 71.5,
 "Java": 45.4,
 "Bash/Shell": 40.4,
 "Python": 37.9,
 "C#": 35.3,
 "PHP": 31.4,
 "C++": 24.6,
 "C": 22.1,
 "TypeScript": 18.3,
 "Ruby": 10.3,
 "Swift": 8.3,
 "Objective-C": 7.3,
 "Go": 7.2,
 }
}));

15.8 Graphics in a <canvas>

The <canvas> element has no appearance of its own but creates a
drawing surface within the document and exposes a powerful drawing API
to client-side JavaScript. The main difference between the <canvas>
API and SVG is that with the canvas you create drawings by calling
methods, and with SVG you create drawings by building a tree of XML
elements. These two approaches are equivalently powerful: either one
can be simulated with the other. On the surface, they are quite
different, however, and each has its strengths and weaknesses. An SVG
drawing, for example, is easily edited by removing elements from its
description. To remove an element from the same graphic in a
<canvas>, it is often necessary to erase the drawing and redraw it
from scratch. Since the Canvas drawing API is JavaScript-based and
relatively compact (unlike the SVG grammar), it is documented in more
detail in this book.

3D Graphics in a Canvas

You can also call getContext() with the string “webgl” to obtain a
context object that allows you to draw 3D graphics using the WebGL
API. WebGL is a large, complicated, and low-level API that allows
JavaScript programmers to access the GPU, write custom shaders, and
perform other very powerful graphics operations. WebGL is not
documented in this book, however: web developers are more likely to
use utility libraries built on top of WebGL than to use the WebGL API
directly.

Most of the Canvas drawing API is defined not on the <canvas> element
itself, but instead on a “drawing context” object obtained with the
getContext() method of the canvas. Call getContext() with the
argument “2d” to obtain a CanvasRenderingContext2D object that you
can use to draw two-dimensional graphics into the canvas.

As a simple example of the Canvas API, the following HTML document
uses <canvas> elements and some JavaScript to display two simple
shapes:

<p>This is a red square: <canvas id="square" width=10 height=10></canvas>.
<p>This is a blue circle: <canvas id="circle" width=10 height=10></canvas>.
<script>
let canvas = document.querySelector("#square"); // Get first canvas element
let context = canvas.getContext("2d"); // Get 2D drawing context
context.fillStyle = "#f00"; // Set fill color to red
context.fillRect(0,0,10,10); // Fill a square

canvas = document.querySelector("#circle"); // Second canvas element
context = canvas.getContext("2d"); // Get its context
context.beginPath(); // Begin a new "path"
context.arc(5, 5, 5, 0, 2*Math.PI, true); // Add a circle to the path
context.fillStyle = "#00f"; // Set blue fill color
context.fill(); // Fill the path
</script>

We’ve seen that SVG describes complex shapes as a “path” of lines and
curves that can be drawn or filled. The Canvas API also uses the notion
of a path. Instead of describing a path as a string of letters and
numbers, a path is defined by a series of method calls, such as the
beginPath() and arc() invocations in the preceding code. Once a path is
defined, other methods, such as fill(), operate on that path. Various
properties of the context object, such as fillStyle, specify how
these operations are performed.

The subsections that follow demonstrate the methods and properties of
the 2D Canvas API. Much of the example code that follows operates on a variable
c. This variable holds the CanvasRenderingContext2D object of the
canvas, but the code to initialize that variable is sometimes not shown.
In order to make these examples run, you would need to add HTML markup
to define a canvas with appropriate width and height attributes, and
then add code like this to initialize the variable c:

let canvas = document.querySelector("#my_canvas_id");
let c = canvas.getContext('2d');

15.8.1 Paths and Polygons

To draw lines on a canvas and to fill the areas enclosed by those
lines, you begin by defining a path. A path is a sequence of one or
more subpaths. A subpath is a sequence of two or more points connected
by line segments (or, as we’ll see later, by curve segments). Begin a
new path with the beginPath() method. Begin a new
subpath with the
moveTo() method. Once you have established the starting point of a
subpath with moveTo(), you can connect that point to a new point with
a straight line by calling lineTo(). The following code defines a
path that includes two line segments:

c.beginPath(); // Start a new path
c.moveTo(100, 100); // Begin a subpath at (100,100)
c.lineTo(200, 200); // Add a line from (100,100) to (200,200)
c.lineTo(100, 200); // Add a line from (200,200) to (100,200)

This code simply defines a path; it does not draw anything on the
canvas. To draw (or “stroke”) the two line segments in the path, call
the stroke() method, and to fill the area defined by those line
segments, call fill():

c.fill(); // Fill a triangular area
c.stroke(); // Stroke two sides of the triangle

This code (along with some additional code to set line widths and
fill colors) produced the drawing shown in Figure 15-7.

[image: js7e 1506]
Figure 15-7. A simple path, filled and stroked

Notice that the subpath defined in Figure 15-7 is “open.” It consists of just
two line segments, and the end point is not connected back to the
starting point. This means that it does not enclose a region. The
fill() method fills open subpaths by acting as if a straight line
connected the last point in the subpath to the first point in the
subpath. That is why this code fills a triangle, but strokes only
two sides of the triangle.

If you wanted to stroke all three sides of the triangle just shown, you
would call the closePath() method to connect the end point of the
subpath to the start point. (You could also call lineTo(100,100), but
then you end up with three line segments that share a start and end
point but are not truly closed. When drawing with wide lines, the
visual results are better if you use closePath().)

There are two other important points to notice about stroke() and
fill(). First, both methods operate on all subpaths in the current
path. Suppose we had added another subpath in the preceding code:

c.moveTo(300,100); // Begin a new subpath at (300,100);
c.lineTo(300,200); // Draw a vertical line down to (300,200);

If we then called stroke(), we would draw two connected edges of a
triangle and a disconnected vertical line.

The second point to note about stroke() and fill() is that neither
one alters the current path: you can call fill() and the path will
still be there when you call stroke(). When you are done with a path
and want to begin another, you must remember to call beginPath(). If
you don’t, you’ll end up adding new subpaths to the existing path, and
you may end up drawing those old subpaths over and over again.

Example 15-5 defines a function for drawing regular polygons and
demonstrates the use of moveTo(), lineTo(), and closePath() for
defining subpaths and of fill() and stroke() for drawing those
paths. It produces the drawing shown in Figure 15-8.

[image: js7e 1507]
Figure 15-8. Regular polygons

Example 15-5. Regular polygons with moveTo(), lineTo(), and closePath()

// Define a regular polygon with n sides, centered at (x,y) with radius r.
// The vertices are equally spaced along the circumference of a circle.
// Put the first vertex straight up or at the specified angle.
// Rotate clockwise, unless the last argument is true.
function polygon(c, n, x, y, r, angle=0, counterclockwise=false) {
 c.moveTo(x + r*Math.sin(angle), // Begin a new subpath at the first vertex
 y - r*Math.cos(angle)); // Use trigonometry to compute position
 let delta = 2*Math.PI/n; // Angular distance between vertices
 for(let i = 1; i < n; i++) { // For each of the remaining vertices
 angle += counterclockwise?-delta:delta; // Adjust angle
 c.lineTo(x + r*Math.sin(angle), // Add line to next vertex
 y - r*Math.cos(angle));
 }
 c.closePath(); // Connect last vertex back to the first
}

// Assume there is just one canvas, and get its context object to draw with.
let c = document.querySelector("canvas").getContext("2d");

// Start a new path and add polygon subpaths
c.beginPath();
polygon(c, 3, 50, 70, 50); // Triangle
polygon(c, 4, 150, 60, 50, Math.PI/4); // Square
polygon(c, 5, 255, 55, 50); // Pentagon
polygon(c, 6, 365, 53, 50, Math.PI/6); // Hexagon
polygon(c, 4, 365, 53, 20, Math.PI/4, true); // Small square inside the hexagon

// Set some properties that control how the graphics will look
c.fillStyle = "#ccc"; // Light gray interiors
c.strokeStyle = "#008"; // outlined with dark blue lines
c.lineWidth = 5; // five pixels wide.

// Now draw all the polygons (each in its own subpath) with these calls
c.fill(); // Fill the shapes
c.stroke(); // And stroke their outlines

Notice that this example draws a hexagon with a square inside it. The
square and the hexagon are separate subpaths, but they overlap. When
this happens (or when a single subpath intersects itself), the canvas
needs to be able to determine which regions are inside the path and
which are outside. The canvas uses a test known as the “nonzero
winding rule” to achieve this. In this case, the interior of the
square is not filled because the square and the hexagon were drawn in
the opposite directions: the vertices of the hexagon were connected
with line segments moving clockwise around the circle. The vertices of
the square were connected counterclockwise. Had the square been drawn
clockwise as well, the call to fill() would have filled the interior
of the square as well.

15.8.2 Canvas Dimensions and Coordinates

The width and height attributes of the <canvas> element and the
corresponding width and height properties of the Canvas object
specify the dimensions of the canvas. The default canvas
coordinate system places the origin (0,0) at the upper-left corner of
the canvas. The x coordinates increase to the right and the y coordinates
increase as you go down the screen. Points on the canvas can be
specified using floating-point values.

The dimensions of a canvas cannot be altered without completely
resetting the canvas. Setting either the width or height properties
of a Canvas (even setting them to their current value) clears the
canvas, erases the current path, and resets all graphics attributes
(including current transformation and clipping region) to their original
state.

The width and height attributes of a canvas specify the actual
number of pixels that the canvas can draw into. Four bytes of memory
are allocated for each pixel, so if width and height are both set
to 100, the canvas allocates 40,000 bytes to represent 10,000 pixels.

The width and height attributes also specify the default size (in
CSS pixels) at which the canvas will be displayed on the screen. If
window.devicePixelRatio is 2, then 100 × 100 CSS pixels is actually
40,000 hardware pixels. When the contents of the canvas are drawn onto
the screen, the 10,000 pixels in memory will need to be enlarged to
cover 40,000 physical pixels on the screen, and this means that your
graphics will not be as crisp as they could be.

For optimum image quality, you should not use the width and height
attributes to set the on-screen size of the canvas. Instead, set the
desired on-screen size CSS pixel size of the canvas with CSS width
and height style attributes. Then, before you begin drawing in your
JavaScript code, set the width and height properties of the canvas
object to the number of CSS pixels times
window.devicePixelRatio. Continuing with the preceding example, this
technique would result in the canvas being displayed at 100 × 100 CSS
pixels but allocating memory for 200 × 200 pixels. (Even with this
technique, the user can zoom in on the canvas and may see fuzzy or
pixelated graphics if they do. This is in contrast to SVG graphics,
which remain crisp no matter the on-screen size or zoom level.)

15.8.3 Graphics Attributes

Example 15-5 set the properties fillStyle, strokeStyle, and
lineWidth on the context object of the canvas. These properties are
graphics attributes that specify the color to be used by fill() and by stroke(), and the width of the lines to be drawn
by stroke(). Notice that these parameters are not passed to the
fill() and stroke() methods, but are instead part of the general
graphics state of the canvas. If you define a method that draws a
shape and do not set these properties yourself, the caller of your
method can define the color of the shape by setting the strokeStyle
and fillStyle properties before calling your method. This separation
of graphics state from drawing commands is fundamental to the Canvas
API and is akin to the separation of presentation from content achieved
by applying CSS stylesheets to HTML documents.

There are a number of properties (and also some methods) on the context
object that affect the graphics state of the canvas. They are detailed
below.

Line styles

The lineWidth property specifies how wide (in CSS pixels) the lines
drawn by stroke() will be. The default value is 1. It is important
to understand that line width is determined by the lineWidth
property at the time stroke() is called, not at the time that
lineTo() and other path-building methods are called. To fully
understand the lineWidth property, it is important to visualize
paths as infinitely thin one-dimensional lines. The lines and curves
drawn by the stroke() method are centered over the path, with half
of the lineWidth on either side. If you’re stroking a closed path
and only want the line to appear outside the path, stroke the path
first, then fill with an opaque color to hide the portion of the
stroke that appears inside the path. Or if you only want the line to
appear inside a closed path, call the save() and clip() methods
first, then call stroke() and restore(). (The save(),
restore(), and clip() methods are described later.)

When drawing lines that are more than about two pixels wide, the lineCap
and lineJoin properties can have a significant impact on the visual
appearance of the ends of a path and the vertices at which two path
segments meet. Figure 15-9 illustrates the values and resulting
graphical appearance of lineCap and lineJoin.

[image: js7e 1508]
Figure 15-9. The lineCap and lineJoin attributes

The default value for lineCap is “butt.” The default value for
lineJoin is “miter.” Note, however, that if two lines meet at a very
narrow angle, then the resulting miter can become quite long and
visually distracting. If the miter at a given vertex would be longer
than half of the line width times the miterLimit property, that vertex
will be drawn with a beveled join instead of a mitered join. The default
value for miterLimit is 10.

The stroke() method can draw dashed and dotted lines as well as solid
lines, and a canvas’s graphics state includes an array of numbers that
serves as a “dash pattern” by specifying how many pixels to draw, then
how many to omit. Unlike other line-drawing properties, the dash pattern
is set and queried with the methods setLineDash() and getLineDash()
instead of with a property. To specify a dotted dash pattern, you might
use setLineDash() like this:

c.setLineDash([18, 3, 3, 3]); // 18px dash, 3px space, 3px dot, 3px space

Finally, the lineDashOffset property specifies how far into the dash
pattern drawing should begin. The default is 0. Paths stroked with the
dash pattern shown here begin with an 18-pixel dash, but if
lineDashOffset is set to 21, then that same path would begin with a
dot followed by a space and a dash.

Colors, patterns, and gradients

The fillStyle and strokeStyle properties specify how paths are
filled and stroked. The word “style” often means color, but these
properties can also be used to specify a color gradient or an image to
be used for filling and stroking. (Note that drawing a line is basically
the same as filling a narrow region on both sides of the line, and
filling and stroking are fundamentally the same operation.)

If you want to fill or stroke with a solid color (or a translucent
color), simply set these properties to a valid CSS color string. Nothing
else is required.

To fill (or stroke) with a color gradient, set fillStyle (or
strokeStyle) to a CanvasGradient object returned by the
createLinearGradient() or createRadialGradient() methods of the
context. The arguments to createLinearGradient() are the coordinates
of two points that define a line (it does not need to be horizontal or
vertical) along which the colors will vary. The arguments to
createRadialGradient() specify the centers and radii of two
circles. (They need not be concentric, but the first circle typically
lies entirely inside the second.) Areas inside the smaller circle or
outside the larger will be filled with solid colors; areas between the
two will be filled with a color gradient.

After creating the CanvasGradient object that defines the regions of the
canvas that will be filled, you must define the gradient colors by
calling the addColorStop() method of the CanvasGradient. The first
argument to this method is a number between 0.0 and 1.0. The second
argument is a CSS color specification. You must call this method at
least twice to define a simple color gradient, but you may call it more
than that. The color at 0.0 will appear at the start of the gradient,
and the color at 1.0 will appear at the end. If you specify additional
colors, they will appear at the specified fractional position within the
gradient. Between the points you specify, colors will be smoothly
interpolated. Here are some examples:

// A linear gradient, diagonally across the canvas (assuming no transforms)
let bgfade = c.createLinearGradient(0,0,canvas.width,canvas.height);
bgfade.addColorStop(0.0, "#88f"); // Start with light blue in upper left
bgfade.addColorStop(1.0, "#fff"); // Fade to white in lower right

// A gradient between two concentric circles. Transparent in the middle
// fading to translucent gray and then back to transparent.
let donut = c.createRadialGradient(300,300,100, 300,300,300);
donut.addColorStop(0.0, "transparent"); // Transparent
donut.addColorStop(0.7, "rgba(100,100,100,.9)"); // Translucent gray
donut.addColorStop(1.0, "rgba(0,0,0,0)"); // Transparent again

An important point to understand about gradients is that they are not
position-independent. When you create a gradient, you specify bounds
for the gradient. If you then attempt to fill an area outside of those
bounds, you’ll get the solid color defined at one end or the other of
the gradient.

In addition to colors and color gradients, you can also fill and stroke
using images. To do this, set fillStyle or strokeStyle to a
CanvasPattern returned by the createPattern() method of the context
object. The first argument to this method should be an or
<canvas> element that contains the image you want to fill or stroke
with. (Note that the source image or canvas does not need to be inserted
into the document in order to be used in this way.) The second argument
to createPattern() is the string “repeat,” “repeat-x,” “repeat-y,” or
“no-repeat,” which specifies whether (and in which dimensions) the
background images repeat.

Text styles

The font property specifies the font to be used by the text-drawing
methods fillText() and strokeText() (see “Text”). The value of
the font property should be a string in the same syntax as the CSS
font attribute.

The textAlign property specifies how the text should be horizontally
aligned with respect to the X coordinate passed to fillText() or
strokeText(). Legal values are “start,” “left,” “center,” “right,”
and “end.” The default is “start,” which, for left-to-right text, has the
same meaning as “left.”

The textBaseline property specifies how the text should be vertically
aligned with respect to the y coordinate. The default value is
“alphabetic,” and it is appropriate for Latin and similar scripts. The
value “ideographic” is intended for use with scripts such as Chinese and
Japanese. The value “hanging” is intended for use with Devanagari and
similar scripts (which are used for many of the languages of India). The
“top,” “middle,” and “bottom” baselines are purely geometric baselines,
based on the “em square” of the font.

Shadows

Four properties of the context object control the drawing of drop
shadows. If you set these properties appropriately, any line, area,
text, or image you draw will be given a shadow, which will make it
appear as if it is floating above the canvas surface.

The shadowColor property specifies the color of the shadow. The
default is fully transparent black, and shadows will never appear
unless you set this property to a translucent or opaque color. This
property can only be set to a color string: patterns and gradients are
not allowed for shadows. Using a translucent shadow color produces the
most realistic shadow effects because it allows the background to show
through.

The shadowOffsetX and shadowOffsetY properties specify the X and Y
offsets of the shadow. The default for both properties is 0, which
places the shadow directly beneath your drawing, where it is not
visible. If you set both properties to a positive value, shadows will
appear below and to the right of what you draw, as if there were a
light source above and to the left, shining onto the canvas from
outside the computer screen. Larger offsets produce larger shadows and
make drawn objects appear as if they are floating “higher” above the
canvas. These values are not affected by
coordinate transformations
(§15.8.5): shadow direction and “height” remain consistent
even when shapes are rotated and scaled.

The shadowBlur property specifies how blurred the edges of the shadow
are. The default value is 0, which produces crisp, unblurred shadows.
Larger values produce more blur, up to an implementation-defined upper
bound.

Translucency and compositing

If you want to stroke or fill a path using a translucent color, you can
set strokeStyle or fillStyle using a CSS color syntax like
“rgba(…)” that supports alpha transparency. The “a” in “RGBA” stands
for “alpha” and is a value between 0 (fully transparent) and 1 (fully
opaque). But the Canvas API provides another way to work with
translucent colors. If you do not want to explicitly specify an alpha
channel for each color, or if you want to add translucency to opaque
images or patterns, you can set the globalAlpha property. Every pixel
you draw will have its alpha value multiplied by globalAlpha. The
default is 1, which adds no transparency. If you set globalAlpha to 0,
everything you draw will be fully transparent, and nothing will appear in
the canvas. But if you set this property to 0.5, then pixels that would
otherwise have been opaque will be 50% opaque, and pixels that
would have been 50% opaque will be 25% opaque instead.

When you stroke lines, fill regions, draw text, or copy images, you
generally expect the new pixels to be drawn on top of the pixels that
are already in the canvas. If you are drawing opaque pixels, they simply
replace the pixels that are already there. If you are drawing with
translucent pixels, the new (“source”) pixel is combined with the old
(“destination”) pixel so that the old pixel shows through the new pixel
based on how transparent that pixel is.

This process of combining new (possibly translucent) source pixels with
existing (possibly translucent) destination pixels is called
compositing, and the compositing process described previously is the
default way that the Canvas API combines pixels. But you can set the
globalCompositeOperation property to specify other ways of combining
pixels. The default value is “source-over,” which means that source
pixels are drawn “over” the destination pixels and are combined with
them if the source is translucent. But if you set
globalCompositeOperation to “destination-over”, then the canvas will
combine pixels as if the new source pixels were drawn beneath the
existing destination pixels. If the destination is translucent or
transparent, some or all of the source pixel color is visible in the
resulting color. As another example, the compositing mode “source-atop”
combines the source pixels with the transparency of the
destination pixels so that nothing is drawn on portions of the canvas
that are already fully transparent. There are a number of legal values
for globalCompositeOperation, but most have only specialized uses and
are not covered here.

Saving and restoring graphics state

Since the Canvas API defines graphics attributes on the context object,
you might be tempted to call getContext() multiple times to obtain
multiple context objects. If you could do this, you could define
different attributes on each context: each context would then be like a
different brush and would paint with a different color or draw lines of
different widths. Unfortunately, you cannot use the canvas in this way.
Each <canvas> element has only a single context object, and every
call to getContext() returns the same CanvasRenderingContext2D object.

Although the Canvas API only allows you to define a single set of
graphics attributes at a time, it does allow you to save the current
graphics state so that you can alter it and then easily restore it
later. The save() method pushes the current graphics state onto a
stack of saved states. The restore() method pops the stack and
restores the most recently saved state. All of the properties that
have been described in this section are part of the saved state, as
are the current transformation and clipping region (both of which are
explained later). Importantly, the currently defined path and the
current point are not part of the graphics state and cannot be saved
and restored.

15.8.4 Canvas Drawing Operations

We’ve already seen some basic canvas methods—beginPath(), moveTo(),
lineTo(), closePath(), fill(), and stroke()—for defining,
filling, and drawing lines and polygons. But the Canvas API includes
other drawing methods as well.

Rectangles

CanvasRenderingContext2D defines four methods for drawing rectangles.
All four of these rectangle methods expect two arguments that specify
one corner of the rectangle followed by the rectangle width and
height. Normally, you specify the upper-left corner and then pass a
positive width and positive height, but you may also specify other
corners and pass negative dimensions.

fillRect() fills the specified rectangle with the current
fillStyle. strokeRect() strokes the outline of the specified
rectangle using the current strokeStyle and other line attributes.
clearRect() is like fillRect(), but it ignores the current fill
style and fills the rectangle with transparent black pixels (the
default color of all blank canvases). The important thing about these
three methods is that they do not affect the current path or the
current point within that path.

The final rectangle method is named rect(), and it does affect the
current path: it adds the specified rectangle, in a subpath of its own,
to the path. Like other path-definition methods, it does not fill or
stroke anything itself.

Curves

A path is a sequence of subpaths, and a subpath is a sequence of
connected points. In the paths we defined in §15.8.1, those
points were connected with straight line segments, but that need not
always be the case. The CanvasRenderingContext2D object defines a
number of methods that add a new point to the subpath and connect the
current point to that new point with a curve:

	arc()

	
This method adds a circle, or a portion of a circle (an arc),
to the path. The arc to be drawn is specified with six parameters:
the x and y coordinates of the center of a circle, the radius of the
circle, the start and end angles of the arc, and the direction
(clockwise or counterclockwise) of the arc between those two angles.
If there is a current point in the path, then this method connects
the current point to the beginning of the arc with a straight line
(which is useful when drawing wedges or pie slices), then
connects the beginning of the arc to the end of the arc with a
portion of a circle, leaving the end of the arc as the new current
point. If there is no current point when this method is called, then
it only adds the circular arc to the path.

	ellipse()

	
This method is much like arc() except that it adds an
ellipse or a portion of an ellipse to the path. Instead of one
radius, it has two: an x-axis radius and a y-axis radius. Also,
because ellipses are not radially symmetrical, this method takes
another argument that specifies the number of radians by which the
ellipse is rotated clockwise about its center.

	arcTo()

	
This method draws a straight line and a circular arc just
like the arc() method does, but it specifies the arc to be drawn
using different parameters. The arguments to arcTo() specify
points P1 and P2 and a radius. The arc that is added to the path has the specified radius. It begins at the tangent point with the (imaginary) line from the current point to P1 and ends at the tangent point with the (imaginary) line between P1 and P2. This
unusual-seeming method of specifying arcs is actually quite useful
for drawing shapes with rounded corners. If you specify a radius of
0, this method just draws a straight line from the current point to
P1. With a nonzero radius, however, it draws a straight line from
the current point in the direction of P1, then curves that line
around in a circle until it is heading in the direction of P2.

	bezierCurveTo()

	
This method adds a new point P to the subpath and
connects it to the current point with a cubic Bezier curve. The
shape of the curve is specified by two “control points,” C1 and
C2. At the start of the curve (at the current point), the curve
heads in the direction of C1. At the end of the curve (at point P),
the curve arrives from the direction of C2. In between these points,
the direction of the curve varies smoothly. The point P becomes the
new current point for the subpath.

	quadraticCurveTo()

	
This method is like bezierCurveTo(), but it
uses a quadratic Bezier curve instead of a cubic Bezier curve and
has only a single control point.

You can use these methods to draw paths like those in Figure 15-10.

[image: js7e 1509]
Figure 15-10. Curved paths in a canvas

Example 15-6 shows the code used to create Figure 15-10. The methods
demonstrated in this code are some of the most complicated in the Canvas
API; consult an online reference for complete details on the methods and
their arguments.

Example 15-6. Adding curves to a path

// A utility function to convert angles from degrees to radians
function rads(x) { return Math.PI*x/180; }

// Get the context object of the document's canvas element
let c = document.querySelector("canvas").getContext("2d");

// Define some graphics attributes and draw the curves
c.fillStyle = "#aaa"; // Gray fills
c.lineWidth = 2; // 2-pixel black (by default) lines

// Draw a circle.
// There is no current point, so draw just the circle with no straight
// line from the current point to the start of the circle.
c.beginPath();
c.arc(75,100,50, // Center at (75,100), radius 50
 0,rads(360),false); // Go clockwise from 0 to 360 degrees
c.fill(); // Fill the circle
c.stroke(); // Stroke its outline.

// Now draw an ellipse in the same way
c.beginPath(); // Start new path not connected to the circle
c.ellipse(200, 100, 50, 35, rads(15), // Center, radii, and rotation
 0, rads(360), false); // Start angle, end angle, direction

// Draw a wedge. Angles are measured clockwise from the positive x axis.
// Note that arc() adds a line from the current point to the arc start.
c.moveTo(325, 100); // Start at the center of the circle.
c.arc(325, 100, 50, // Circle center and radius
 rads(-60), rads(0), // Start at angle -60 and go to angle 0
 true); // counterclockwise
c.closePath(); // Add radius back to the center of the circle

// Similar wedge, offset a bit, and in the opposite direction
c.moveTo(340, 92);
c.arc(340, 92, 42, rads(-60), rads(0), false);
c.closePath();

// Use arcTo() for rounded corners. Here we draw a square with
// upper left corner at (400,50) and corners of varying radii.
c.moveTo(450, 50); // Begin in the middle of the top edge.
c.arcTo(500,50,500,150,30); // Add part of top edge and upper right corner.
c.arcTo(500,150,400,150,20); // Add right edge and lower right corner.
c.arcTo(400,150,400,50,10); // Add bottom edge and lower left corner.
c.arcTo(400,50,500,50,0); // Add left edge and upper left corner.
c.closePath(); // Close path to add the rest of the top edge.

// Quadratic Bezier curve: one control point
c.moveTo(525, 125); // Begin here
c.quadraticCurveTo(550, 75, 625, 125); // Draw a curve to (625, 125)
c.fillRect(550-3, 75-3, 6, 6); // Mark the control point (550,75)

// Cubic Bezier curve
c.moveTo(625, 100); // Start at (625, 100)
c.bezierCurveTo(645,70,705,130,725,100); // Curve to (725, 100)
c.fillRect(645-3, 70-3, 6, 6); // Mark control points
c.fillRect(705-3, 130-3, 6, 6);

// Finally, fill the curves and stroke their outlines.
c.fill();
c.stroke();

Text

To draw text in a canvas, you normally use the fillText() method,
which draws text using the color (or gradient or pattern) specified by
the fillStyle property. For special effects at large text sizes, you
can use strokeText() to draw the outline of the individual font
glyphs. Both methods take the text to be drawn as their first argument
and take the x and y coordinates of the text as the second and third
arguments. Neither method affects the current path or the current
point.

fillText() and strokeText() take an optional fourth argument. If
given, this argument specifies the maximum width of the text to be
displayed. If the text would be wider than the specified value when
drawn using the font property, the canvas will make it fit by scaling
it or by using a narrower or smaller font.

If you need to measure text yourself before drawing it, pass it to the
measureText() method. This method returns a TextMetrics object that
specifies the measurements of the text when drawn with the current
font. At the time of this writing, the only “metric” contained in
the TextMetrics object is the width. Query the on-screen width of a
string like this:

let width = c.measureText(text).width;

This is useful if you want to center a string of text within a canvas,
for example.

Images

In addition to vector graphics (paths, lines, etc.), the Canvas API
also supports bitmap images. The drawImage() method copies the pixels
of a source image (or of a rectangle within the source image) onto the
canvas, scaling and rotating the pixels of the image as necessary.

drawImage() can be invoked with three, five, or nine arguments. In
all cases, the first argument is the source image from which pixels are
to be copied. This image argument is often an element, but it can
also be another <canvas> element or even a <video> element (from
which a single frame will be copied). If you
specify an or <video> element that is still loading its data,
the drawImage() call will do nothing.

In the three-argument version of drawImage(), the second and third
arguments specify the x and y coordinates at which the upper-left
corner of the image is to be drawn. In this version of the method, the
entire source image is copied to the canvas. The x and y coordinates
are interpreted in the current coordinate system, and the image is
scaled and rotated if necessary, depending on the canvas transform currently
in effect.

The five-argument version of drawImage() adds width and height
arguments to the x and y arguments described earlier. These four
arguments define a destination rectangle within the canvas. The upper-left corner of the source image goes at (x,y), and the lower-right
corner goes at (x+width, y+height). Again, the entire source image is
copied. With this version of the method, the source image will be scaled
to fit the destination rectangle.

The nine-argument version of drawImage() specifies both a source
rectangle and a destination rectangle and copies only the pixels within
the source rectangle. Arguments two through five specify the source
rectangle. They are measured in CSS pixels. If the source image is
another canvas, the source rectangle uses the default coordinate system
for that canvas and ignores any transformations that have been
specified. Arguments six through nine specify the destination rectangle
into which the image is drawn and are in the current coordinate system
of the canvas, not in the default coordinate system.

In addition to drawing images into a canvas, we can also extract the
content of a canvas as an image using the toDataURL() method. Unlike
all the other methods described here, toDataURL() is a method of the
Canvas element itself, not of the context object. You normally invoke
toDataURL() with no arguments, and it returns the content of the
canvas as a PNG image, encoded as a string using a data: URL. The
returned URL is suitable for use with an element, and you can
make a static snapshot of a canvas with code like this:

let img = document.createElement("img"); // Create an element
img.src = canvas.toDataURL(); // Set its src attribute
document.body.appendChild(img); // Append it to the document

15.8.5 Coordinate System Transforms

As we’ve noted, the default coordinate system of a canvas places the
origin in the upper-left corner, has x coordinates increasing to the
right, and has y coordinates increasing downward. In this default
system, the coordinates of a point map directly to a CSS pixel (which
then maps directly to one or more device pixels). Certain canvas
operations and attributes (such as extracting raw pixel values and
setting shadow offsets) always use this default coordinate system. In
addition to the default coordinate system, however, every canvas has a
“current transformation matrix” as part of its graphics state. This
matrix defines the current coordinate system of the canvas. In most
canvas operations, when you specify the coordinates of a point, it is
taken to be a point in the current coordinate system, not in the
default coordinate system. The current transformation matrix is used to
convert the coordinates you specified to the equivalent coordinates in
the default coordinate system.

The setTransform() method allows you to set a canvas’s transformation
matrix directly, but coordinate system transformations are usually
easier to specify as a sequence of translations, rotations, and scaling
operations. Figure 15-11 illustrates these operations and their
effect on the canvas coordinate system. The program that produced the
figure drew the same set of axes seven times in a row. The only thing
that changed each time was the current transform. Notice that the
transforms affect the text as well as the lines that are drawn.

[image: js7e 1510]
Figure 15-11. Coordinate system transformations

The translate() method simply moves the origin of the coordinate
system left, right, up, or down. The rotate() method rotates the axes
clockwise by the specified angle. (The Canvas API always specifies
angles in radians. To convert degrees to radians, divide by 180 and
multiply by Math.PI.) The scale() method stretches or contracts
distances along the x or y axes.

Passing a negative scale factor to the scale() method flips that axis
across the origin, as if it were reflected in a mirror. This is what
was done in the lower left of Figure 15-11: translate() was
used to move the origin to the bottom-left corner of the canvas,
then scale() was used to flip the y axis around so that y coordinates
increase as we go up the page. A flipped coordinate system like this is
familiar from algebra class and may be useful for plotting data points
on charts. Note, however, that it makes text difficult to read!

Understanding transformations mathematically

I find it easiest to understand transforms geometrically, thinking about
translate(), rotate(), and scale() as transforming the axes of the
coordinate system as illustrated in Figure 15-11. It is also
possible to understand transforms algebraically as equations that map
the coordinates of a point (x,y) in the transformed coordinate system
back to the coordinates (x',y') of the same point in the previous
coordinate system.

The method call c.translate(dx,dy) can be described with these
equations:

x' = x + dx; // An X coordinate of 0 in the new system is dx in the old
y' = y + dy;

Scaling operations have similarly simple equations. A call
c.scale(sx,sy) can be described like this:

x' = sx * x;
y' = sy * y;

Rotations are more complicated. The call c.rotate(a) is described by
these trigonometric equations:

x' = x * cos(a) - y * sin(a);
y' = y * cos(a) + x * sin(a);

Notice that the order of transformations matters. Suppose we start with
the default coordinate system of a canvas, then translate it, and
then scale it. In order to map the point (x,y) in the current
coordinate system back to the point (x'',y'') in the
default coordinate system, we must first apply the scaling equations to
map the point to an intermediate point (x',y') in the
translated but unscaled coordinate system, then use the translation
equations to map from this intermediate point to (x'',y'').
The result is this:

x'' = sx*x + dx;
y'' = sy*y + dy;

If, on the other hand, we’d called scale() before calling
translate(), the resulting equations would be different:

x'' = sx*(x + dx);
y'' = sy*(y + dy);

The key thing to remember when thinking algebraically about sequences
of transformations is that you must work backward from the last (most
recent) transformation to the first. When thinking geometrically about
transformed axes, however, you work forward from first transformation
to last.

The transformations supported by the canvas are known as affine
transforms. Affine transforms may modify the distances between points
and the angles between lines, but parallel lines always remain parallel
after an affine transformation—it is not possible, for example, to
specify a fish-eye lens distortion with an affine transform. An
arbitrary affine transform can be described by the six parameters a
through f in these equations:

x' = ax + cy + e
y' = bx + dy + f

You can apply an arbitrary transformation to the current coordinate
system by passing those six parameters to the transform() method.
Figure 15-11 illustrates two types of transformations—shears and
rotations about a specified point—that you can implement with the
transform() method like this:

// Shear transform:
// x' = x + kx*y;
// y' = ky*x + y;
function shear(c, kx, ky) { c.transform(1, ky, kx, 1, 0, 0); }

// Rotate theta radians counterclockwise around the point (x,y)
// This can also be accomplished with a translate, rotate, translate sequence
function rotateAbout(c, theta, x, y) {
 let ct = Math.cos(theta);
 let st = Math.sin(theta);
 c.transform(ct, -st, st, ct, -x*ct-y*st+x, x*st-y*ct+y);
}

The setTransform() method takes the same arguments as transform(),
but instead of transforming the current coordinate system, it ignores
the current system, transforms the default coordinate system, and makes
the result the new current coordinate system. setTransform() is
useful to temporarily reset the canvas to its default coordinate system:

c.save(); // Save current coordinate system
c.setTransform(1,0,0,1,0,0); // Revert to the default coordinate system
// Perform operations using default CSS pixel coordinates
c.restore(); // Restore the saved coordinate system

Transformation example

Example 15-7 demonstrates the power of coordinate system transformations
by using the translate(), rotate(), and scale() methods
recursively to draw a Koch snowflake fractal. The output of this
example appears in Figure 15-12, which shows Koch snowflakes with 0, 1,
2, 3, and 4 levels of recursion.

[image: js7e 1511]
Figure 15-12. Koch snowflakes

The code that produces these figures is elegant, but its use of
recursive coordinate system transformations makes it somewhat difficult
to understand. Even if you don’t follow all the nuances, note that the
code includes only a single invocation of the lineTo() method. Every
single line segment in Figure 15-12 is drawn like this:

c.lineTo(len, 0);

The value of the variable len does not change during the execution of
the program, so the position, orientation, and length of each of the
line segments is determined by translations, rotations, and scaling
operations.

Example 15-7. A Koch snowflake with transformations

let deg = Math.PI/180; // For converting degrees to radians

// Draw a level-n Koch snowflake fractal on the canvas context c,
// with lower-left corner at (x,y) and side length len.
function snowflake(c, n, x, y, len) {
 c.save(); // Save current transformation
 c.translate(x,y); // Translate origin to starting point
 c.moveTo(0,0); // Begin a new subpath at the new origin
 leg(n); // Draw the first leg of the snowflake
 c.rotate(-120*deg); // Now rotate 120 degrees counterclockwise
 leg(n); // Draw the second leg
 c.rotate(-120*deg); // Rotate again
 leg(n); // Draw the final leg
 c.closePath(); // Close the subpath
 c.restore(); // And restore original transformation

 // Draw a single leg of a level-n Koch snowflake.
 // This function leaves the current point at the end of the leg it has
 // drawn and translates the coordinate system so the current point is (0,0).
 // This means you can easily call rotate() after drawing a leg.
 function leg(n) {
 c.save(); // Save the current transformation
 if (n === 0) { // Nonrecursive case:
 c.lineTo(len, 0); // Just draw a horizontal line
 } // _ _
 else { // Recursive case: draw 4 sub-legs like: \/
 c.scale(1/3,1/3); // Sub-legs are 1/3 the size of this leg
 leg(n-1); // Recurse for the first sub-leg
 c.rotate(60*deg); // Turn 60 degrees clockwise
 leg(n-1); // Second sub-leg
 c.rotate(-120*deg); // Rotate 120 degrees back
 leg(n-1); // Third sub-leg
 c.rotate(60*deg); // Rotate back to our original heading
 leg(n-1); // Final sub-leg
 }
 c.restore(); // Restore the transformation
 c.translate(len, 0); // But translate to make end of leg (0,0)
 }
}

let c = document.querySelector("canvas").getContext("2d");
snowflake(c, 0, 25, 125, 125); // A level-0 snowflake is a triangle
snowflake(c, 1, 175, 125, 125); // A level-1 snowflake is a 6-sided star
snowflake(c, 2, 325, 125, 125); // etc.
snowflake(c, 3, 475, 125, 125);
snowflake(c, 4, 625, 125, 125); // A level-4 snowflake looks like a snowflake!
c.stroke(); // Stroke this very complicated path

15.8.6 Clipping

After defining a path, you usually call stroke() or fill() (or
both). You can also call the clip() method to define a clipping
region. Once a clipping region is defined, nothing will be drawn
outside of it. Figure 15-13 shows a complex drawing produced using
clipping regions. The vertical stripe running down the middle and the
text along the bottom of the figure were stroked with no clipping
region and then filled after the triangular clipping region was defined.

[image: js7e 1512]
Figure 15-13. Unclipped strokes and clipped fills

Figure 15-13 was generated using the polygon() method of
Example 15-5 and the following code:

// Define some drawing attributes
c.font = "bold 60pt sans-serif"; // Big font
c.lineWidth = 2; // Narrow lines
c.strokeStyle = "#000"; // Black lines

// Outline a rectangle and some text
c.strokeRect(175, 25, 50, 325); // A vertical stripe down the middle
c.strokeText("<canvas>", 15, 330); // Note strokeText() instead of fillText()

// Define a complex path with an interior that is outside.
polygon(c,3,200,225,200); // Large triangle
polygon(c,3,200,225,100,0,true); // Smaller reverse triangle inside

// Make that path the clipping region.
c.clip();

// Stroke the path with a 5 pixel line, entirely inside the clipping region.
c.lineWidth = 10; // Half of this 10 pixel line will be clipped away
c.stroke();

// Fill the parts of the rectangle and text that are inside the clipping region
c.fillStyle = "#aaa"; // Light gray
c.fillRect(175, 25, 50, 325); // Fill the vertical stripe
c.fillStyle = "#888"; // Darker gray
c.fillText("<canvas>", 15, 330); // Fill the text

It is important to note that when you call clip(), the current path
is itself clipped to the current clipping region, then that clipped
path becomes the new clipping region. This means that the clip()
method can shrink the clipping region but can never enlarge it. There
is no method to reset the clipping region, so before calling clip(),
you should typically call save() so that you can later restore()
the unclipped region.

15.8.7 Pixel Manipulation

The getImageData() method returns an ImageData object that represents
the raw pixels (as R, G, B, and A components) from
a rectangular region of your canvas. You can create empty
ImageData objects with createImageData(). The pixels in an
ImageData object are writable, so you can set them any way you want,
then copy those pixels back onto the canvas with putImageData().

These pixel manipulation methods provide very low-level access to the
canvas. The rectangle you pass to getImageData() is in the default
coordinate system: its dimensions are measured in CSS pixels, and it is
not affected by the current transformation. When you call
putImageData(), the position you specify is also measured in the
default coordinate system. Furthermore, putImageData() ignores all
graphics attributes. It does not perform any compositing, it does not
multiply pixels by globalAlpha, and it does not draw shadows.

Pixel manipulation methods are useful for implementing image
processing. Example 15-8 shows how to create a simple motion blur or
“smear” effect like that shown in Figure 15-14.

[image: js7e 1513]
Figure 15-14. A motion blur effect created by image processing

The following code demonstrates getImageData() and putImageData()
and shows how to iterate through and modify the pixel values in an
ImageData object.

Example 15-8. Motion blur with ImageData

// Smear the pixels of the rectangle to the right, producing a
// sort of motion blur as if objects are moving from right to left.
// n must be 2 or larger. Larger values produce bigger smears.
// The rectangle is specified in the default coordinate system.
function smear(c, n, x, y, w, h) {
 // Get the ImageData object that represents the rectangle of pixels to smear
 let pixels = c.getImageData(x, y, w, h);

 // This smear is done in-place and requires only the source ImageData.
 // Some image processing algorithms require an additional ImageData to
 // store transformed pixel values. If we needed an output buffer, we could
 // create a new ImageData with the same dimensions like this:
 // let output_pixels = c.createImageData(pixels);

 // Get the dimensions of the grid of pixels in the ImageData object
 let width = pixels.width, height = pixels.height;

 // This is the byte array that holds the raw pixel data, left-to-right and
 // top-to-bottom. Each pixel occupies 4 consecutive bytes in R,G,B,A order.
 let data = pixels.data;

 // Each pixel after the first in each row is smeared by replacing it with
 // 1/nth of its own value plus m/nths of the previous pixel's value
 let m = n-1;

 for(let row = 0; row < height; row++) { // For each row
 let i = row*width*4 + 4; // The offset of the second pixel of the row
 for(let col = 1; col < width; col++, i += 4) { // For each column
 data[i] = (data[i] + data[i-4]*m)/n; // Red pixel component
 data[i+1] = (data[i+1] + data[i-3]*m)/n; // Green
 data[i+2] = (data[i+2] + data[i-2]*m)/n; // Blue
 data[i+3] = (data[i+3] + data[i-1]*m)/n; // Alpha component
 }
 }

 // Now copy the smeared image data back to the same position on the canvas
 c.putImageData(pixels, x, y);
}

15.9 Audio APIs

The HTML <audio> and <video> tags allow you to easily include sound
and videos in your web pages. These are complex elements with
significant APIs and nontrivial user interfaces. You can control
media playback with the play() and pause() methods. You can set the
volume and playbackRate properties to control the audio volume and
speed of playback. And you can skip to a particular time within the
media by setting the currentTime property.

We will not cover <audio> and <video> tags in any further detail
here, however. The following subsections demonstrate two ways to add
scripted sound effects to your web pages.

15.9.1 The Audio() Constructor

You don’t have to include an <audio> tag in your HTML document in
order to include sound effects in your web pages. You can dynamically
create <audio> elements with the normal DOM document.createElement()
method, or, as a shortcut, you can simply use the Audio()
constructor. You do not have to add the created element to your document
in order to play it. You can simply call its play() method:

// Load the sound effect in advance so it is ready for use
let soundeffect = new Audio("soundeffect.mp3");

// Play the sound effect whenever the user clicks the mouse button
document.addEventListener("click", () => {
 soundeffect.cloneNode().play(); // Load and play the sound
});

Note the use of cloneNode() here. If the user clicks the
mouse rapidly, we want to be able to have multiple overlapping copies of
the sound effect playing at the same time. To do that, we need multiple
Audio elements. Because the Audio elements are not added to the document,
they will be garbage collected when they are done playing.

15.9.2 The WebAudio API

In addition to playback of recorded sounds with Audio elements, web
browsers also allow the generation and playback of synthesized sounds
with the WebAudio API. Using the WebAudio API is like hooking up an
old-style electronic synthesizer with patch cords. With WebAudio, you
create a set of AudioNode objects, which represents sources,
transformations, or destinations of waveforms, and then connect these
nodes together into a network to produce sounds. The API is not
particularly complex, but a full explanation requires an understanding
of electronic music and signal processing concepts that are beyond the
scope of this book.

The following code below uses the WebAudio API to synthesize a short chord that
fades out over about a second. This example demonstrates the basics of
the WebAudio API. If this is interesting to you, you can find much more
about this API online:

// Begin by creating an audioContext object. Safari still requires
// us to use webkitAudioContext instead of AudioContext.
let audioContext = new (this.AudioContext||this.webkitAudioContext)();

// Define the base sound as a combination of three pure sine waves
let notes = [293.7, 370.0, 440.0]; // D major chord: D, F# and A

// Create oscillator nodes for each of the notes we want to play
let oscillators = notes.map(note => {
 let o = audioContext.createOscillator();
 o.frequency.value = note;
 return o;
});

// Shape the sound by controlling its volume over time.
// Starting at time 0 quickly ramp up to full volume.
// Then starting at time 0.1 slowly ramp down to 0.
let volumeControl = audioContext.createGain();
volumeControl.gain.setTargetAtTime(1, 0.0, 0.02);
volumeControl.gain.setTargetAtTime(0, 0.1, 0.2);

// We're going to send the sound to the default destination:
// the user's speakers
let speakers = audioContext.destination;

// Connect each of the source notes to the volume control
oscillators.forEach(o => o.connect(volumeControl));

// And connect the output of the volume control to the speakers.
volumeControl.connect(speakers);

// Now start playing the sounds and let them run for 1.25 seconds.
let startTime = audioContext.currentTime;
let stopTime = startTime + 1.25;
oscillators.forEach(o => {
 o.start(startTime);
 o.stop(stopTime);
});

// If we want to create a sequence of sounds we can use event handlers
oscillators[0].addEventListener("ended", () => {
 // This event handler is invoked when the note stops playing
});

15.10 Location, Navigation, and History

The location property of both the Window and Document objects refers
to the Location object, which represents the current URL of the document
displayed in the window, and which also provides an API for loading new
documents into the window.

The Location object is very much like a URL object (§11.9), and you
can use properties like protocol, hostname, port, and path to
access the various parts of the URL of the current document. The href
property returns the entire URL as a string, as does the toString()
method.

The hash and search properties of the Location object are
interesting ones. The hash property returns the “fragment
identifier” portion of the URL, if there is one: a hash mark (#)
followed by an element ID. The search property is similar. It returns
the portion of the URL that starts with a question mark: often some
sort of query string. In general, this portion of a URL is used to
parameterize the URL and provides a way to embed arguments in it. While
these arguments are usually intended for scripts run on a server, there
is no reason why they cannot also be used in JavaScript-enabled pages.

URL objects have a searchParams property that is a parsed
representation of the search property. The Location object does not
have a searchParams property, but if you want to parse
window.location.search, you can simply create a URL object from the
Location object and then use the URL’s searchParams:

let url = new URL(window.location);
let query = url.searchParams.get("q");
let numResults = parseInt(url.searchParams.get("n") || "10");

In addition to the Location object that you can refer to as
window.location or document.location, and the URL() constructor
that we used earlier, browsers also define a document.URL
property. Surprisingly, the value of this property is not a URL object,
but just a string. The string holds the URL of the current document.

15.10.1 Loading New Documents

If you assign a string to window.location or to document.location,
that string is interpreted as a URL and the browser loads it, replacing
the current document with a new one:

window.location = "http://www.oreilly.com"; // Go buy some books!

You can also assign relative URLs to location. They are resolved
relative to the current URL:

document.location = "page2.html"; // Load the next page

A bare fragment identifier is a special kind of relative URL that does
not cause the browser to load a new document but simply to scroll so
that the document element with id or name that matches the fragment
is visible at the top of the browser window. As a special case, the
fragment identifier #top makes the browser jump to the start of the
document (assuming no element has an id="top" attribute):

location = "#top"; // Jump to the top of the document

The individual properties of the Location object are writable,
and setting them changes the location URL and also causes the browser
to load a new document (or, in the case of the hash property, to
navigate within the current document):

document.location.path = "pages/3.html"; // Load a new page
document.location.hash = "TOC"; // Scroll to the table of contents
location.search = "?page=" + (page+1); // Reload with new query string

You can also load a new page by passing a new string to the assign()
method of the Location object. This is the same as assigning the string
to the location property, however, so it’s not particularly
interesting.

The replace() method of the Location object, on the other hand, is
quite useful. When you pass a string to replace(), it is interpreted as
a URL and causes the browser to load a new page, just as assign()
does. The difference is that replace() replaces the current document
in the browser’s history. If a script in document A sets the location
property or calls assign() to load document B and then the user
clicks the Back button, the browser will go back to document A. If you
use replace() instead, then document A is erased from the browser’s
history, and when the user clicks the Back button, the browser returns to
whatever document was displayed before document A.

When a script unconditionally loads a new document, the replace()
method is a better choice than assign(). Otherwise, the Back
button would take the browser back to the original document, and the
same script would again load the new document. Suppose you have a
JavaScript-enhanced version of your page and a static version that does
not use JavaScript. If you determine that the user’s browser does not
support the web platform APIs that you want to use, you could use
location.replace() to load the static version:

// If the browser does not support the JavaScript APIs we need,
// redirect to a static page that does not use JavaScript.
if (!isBrowserSupported()) location.replace("staticpage.html");

Notice that the URL passed to replace() is a relative one. Relative
URLs are interpreted relative to the page in which they appear, just as
they would be if they were used in a hyperlink.

In addition to the assign() and replace() methods, the Location
object also defines reload(), which simply makes the browser reload the
document.

15.10.2 Browsing History

The history property of the Window object refers to the History
object for the window. The History object models the browsing history
of a window as a list of documents and document states. The length
property of the History object specifies the number of elements in the
browsing history list, but for security reasons, scripts are not allowed
to access the stored URLs. (If they could, any scripts could snoop
through your browsing history.)

The History object has back() and forward() methods that behave
like the browser’s Back and Forward buttons do: they make the browser
go backward or forward one step in its browsing history. A third
method, go(), takes an integer argument and can skip any number of
pages forward (for positive arguments) or backward (for negative
arguments) in the history list:

history.go(-2); // Go back 2, like clicking the Back button twice
history.go(0); // Another way to reload the current page

If a window contains child windows (such as <iframe> elements),
the browsing histories of the child windows are
chronologically interleaved with the history of the main window. This
means that calling history.back() (for example) on the main window
may cause one of the child windows to navigate back to a previously
displayed document but leaves the main window in its current state.

The History object described here dates back to the early days of the
web when documents were passive and all computation was performed on the
server. Today, web applications often generate or load content
dynamically and display new application states without actually loading
new documents. Applications like these must perform their own history
management if they want the user to be able to use the Back and Forward
buttons (or the equivalent gestures) to navigate from one application
state to another in an intuitive way. There are two ways to accomplish
this, described in the next two sections.

15.10.3 History Management with hashchange Events

One history management technique involves location.hash and the
“hashchange” event. Here are the key facts you need to know to understand this technique:

	
The location.hash property sets the fragment identifier of the URL
and is traditionally used to specify the ID of a document section to
scroll to. But location.hash does not have to be an element ID: you
can set it to any string. As long as no element happens to have that
string as its ID, the browser won’t scroll when you set the hash
property like this.

	
Setting the location.hash property updates the URL displayed in the
location bar and, very importantly, adds an entry to the browser’s
history.

	
Whenever the fragment identifier of the document changes, the browser
fires a “hashchange” event on the Window object. If you set
location.hash explictly, a “hashchange” event is fired. And, as
we’ve mentioned, this change to the Location object creates a new entry
in the browser’s browsing history. So if the user now clicks the Back
button, the browser will return to its previous URL before you set
location.hash. But this means that the fragment identifier has changed
again, so another “hashchange” event is fired in this case. This
means that as long as you can create a unique fragment identifier for
each possible state of your application, “hashchange” events will notify
you if the user moves backward and forward though their browsing
history.

To use this history management mechanism, you’ll need to be able to
encode the state information necessary to render a “page” of your
application into a relatively short string of text that is suitable for
use as a fragment identifier. And you’ll need to write a function to convert page state into a string and another function to parse the string and re-create the page state it represents.

Once you have written those functions, the rest is easy. Define a
window.onhashchange function (or register a “hashchange” listener with
addEventListener()) that reads location.hash, converts that
string into a representation of your application state, and then takes
whatever actions are necessary to display that new application state.

When the user interacts with your application (such as by clicking a
link) in a way that would cause the application to enter a new state,
don’t render the new state directly. Instead, encode the desired new
state as a string and set location.hash to that string. This will
trigger a “hashchange” event, and your handler for that event will
display the new state. Using this roundabout technique ensures that the
new state is inserted into the browsing history so that the Back and
Forward buttons continue to work.

15.10.4 History Management with pushState()

The second technique for managing history is somewhat more complex but
is less of a hack than the “hashchange” event. This more robust history-management technique is based on the history.pushState() method and the
“popstate” event. When a web app enters a new state, it calls
history.pushState() to add an object representing the state to the
browser’s history. If the user then clicks the Back button, the browser
fires a “popstate” event with a copy of that saved state object, and the
app uses that object to re-create its previous state. In addition to the
saved state object, applications can also save a URL with each state,
which is important if you want users to be able to bookmark and share
links to the internal states of the app.

The first argument to pushState() is an object that contains all the
state information necessary to restore the current state of the
document. This object is saved using HTML’s structured clone
algorithm, which is more versatile than JSON.stringify() and can
support Map, Set, and Date objects as well as typed arrays and
ArrayBuffers.

The second argument was intended to be a title string for the state, but
most browsers do not support it, and you should just pass an empty
string. The third argument is an optional URL that will be displayed in
the location bar immediately and also if the user returns to this state
via Back and Forward buttons. Relative URLs are resolved against the
current location of the document. Associating a URL with each state
allows the user to bookmark internal states of your
application. Remember, though, that if the user saves a bookmark and
then visits it a day later, you won’t get a “popstate” event about that
visit: you’ll have to restore your application state by parsing the URL.

The Structured Clone Algorithm

The history.pushState() method does not use JSON.stringify()
(§11.6) to serialize state data. Instead, it (and other browser
APIs we’ll learn about later) uses a more robust serialization
technique known as the structured clone algorithm, defined by the
HTML standard.

The structured clone algorithm can serialize anything that
JSON.stringify() can, but in addition, it enables serialization of
most other JavaScript types, including Map, Set, Date, RegExp, and
typed arrays, and it can handle data structures that include circular
references. The structured clone algorithm cannot serialize
functions or classes, however. When cloning objects it does not copy
the prototype object, getters and setters, or non-enumerable
properties. While the structured clone algorithm can clone most
built-in JavaScript types, it cannot copy types defined by the host
environment, such as document Element objects.

This means that the state object you pass to history.pushState()
need not be limited to the objects, arrays, and primitive values that
JSON.stringify() supports. Note, however, that if you pass an
instance of a class that you have defined, that instance will be
serialized as an ordinary JavaScript object and will lose its
prototype.

In addition to the pushState() method, the History object also
defines replaceState(), which takes the same arguments but replaces
the current history state instead of adding a new state to the browsing
history. When an application that uses pushState() is first loaded, it
is often a good idea to call replaceState() to define a state object
for this initial state of the application.

When the user navigates to saved history states using the Back or
Forward buttons, the browser fires a “popstate” event on the Window
object. The event object associated with the event has a property named
state, which contains a copy (another structured clone) of the state
object you passed to pushState().

Example 15-9 is a simple web application—the number-guessing
game pictured in Figure 15-15—that uses pushState() to save
its history, allowing the user to “go back” to review or redo their
guesses.

[image: js7e 1514]
Figure 15-15. A number-guessing game

Example 15-9. History management with pushState()

<html><head><title>I'm thinking of a number...</title>
<style>
body { height: 250px; display: flex; flex-direction: column;
 align-items: center; justify-content: space-evenly; }
#heading { font: bold 36px sans-serif; margin: 0; }
#container { border: solid black 1px; height: 1em; width: 80%; }
#range { background-color: green; margin-left: 0%; height: 1em; width: 100%; }
#input { display: block; font-size: 24px; width: 60%; padding: 5px; }
#playagain { font-size: 24px; padding: 10px; border-radius: 5px; }
</style>
</head>
<body>
<h1 id="heading">I'm thinking of a number...</h1>
<!-- A visual representation of the numbers that have not been ruled out -->
<div id="container"><div id="range"></div></div>
<!-- Where the user enters their guess -->
<input id="input" type="text">
<!-- A button that reloads with no search string. Hidden until game ends. -->
<button id="playagain" hidden onclick="location.search='';">Play Again</button>
<script>
/**
 * An instance of this GameState class represents the internal state of
 * our number guessing game. The class defines static factory methods for
 * initializing the game state from different sources, a method for
 * updating the state based on a new guess, and a method for modifying the
 * document based on the current state.
 */
class GameState {
 // This is a factory function to create a new game
 static newGame() {
 let s = new GameState();
 s.secret = s.randomInt(0, 100); // An integer: 0 < n < 100
 s.low = 0; // Guesses must be greater than this
 s.high = 100; // Guesses must be less than this
 s.numGuesses = 0; // How many guesses have been made
 s.guess = null; // What the last guess was
 return s;
 }

 // When we save the state of the game with history.pushState(), it is just
 // a plain JavaScript object that gets saved, not an instance of GameState.
 // So this factory function re-creates a GameState object based on the
 // plain object that we get from a popstate event.
 static fromStateObject(stateObject) {
 let s = new GameState();
 for(let key of Object.keys(stateObject)) {
 s[key] = stateObject[key];
 }
 return s;
 }

 // In order to enable bookmarking, we need to be able to encode the
 // state of any game as a URL. This is easy to do with URLSearchParams.
 toURL() {
 let url = new URL(window.location);
 url.searchParams.set("l", this.low);
 url.searchParams.set("h", this.high);
 url.searchParams.set("n", this.numGuesses);
 url.searchParams.set("g", this.guess);
 // Note that we can't encode the secret number in the url or it
 // will give away the secret. If the user bookmarks the page with
 // these parameters and then returns to it, we will simply pick a
 // new random number between low and high.
 return url.href;
 }

 // This is a factory function that creates a new GameState object and
 // initializes it from the specified URL. If the URL does not contain the
 // expected parameters or if they are malformed it just returns null.
 static fromURL(url) {
 let s = new GameState();
 let params = new URL(url).searchParams;
 s.low = parseInt(params.get("l"));
 s.high = parseInt(params.get("h"));
 s.numGuesses = parseInt(params.get("n"));
 s.guess = parseInt(params.get("g"));

 // If the URL is missing any of the parameters we need or if
 // they did not parse as integers, then return null;
 if (isNaN(s.low) || isNaN(s.high) ||
 isNaN(s.numGuesses) || isNaN(s.guess)) {
 return null;
 }

 // Pick a new secret number in the right range each time we
 // restore a game from a URL.
 s.secret = s.randomInt(s.low, s.high);
 return s;
 }

 // Return an integer n, min < n < max
 randomInt(min, max) {
 return min + Math.ceil(Math.random() * (max - min - 1));
 }

 // Modify the document to display the current state of the game.
 render() {
 let heading = document.querySelector("#heading"); // The <h1> at the top
 let range = document.querySelector("#range"); // Display guess range
 let input = document.querySelector("#input"); // Guess input field
 let playagain = document.querySelector("#playagain");

 // Update the document heading and title
 heading.textContent = document.title =
 `I'm thinking of a number between ${this.low} and ${this.high}.`;

 // Update the visual range of numbers
 range.style.marginLeft = `${this.low}%`;
 range.style.width = `${(this.high-this.low)}%`;

 // Make sure the input field is empty and focused.
 input.value = "";
 input.focus();

 // Display feedback based on the user's last guess. The input
 // placeholder will show because we made the input field empty.
 if (this.guess === null) {
 input.placeholder = "Type your guess and hit Enter";
 } else if (this.guess < this.secret) {
 input.placeholder = `${this.guess} is too low. Guess again`;
 } else if (this.guess > this.secret) {
 input.placeholder = `${this.guess} is too high. Guess again`;
 } else {
 input.placeholder = document.title = `${this.guess} is correct!`;
 heading.textContent = `You win in ${this.numGuesses} guesses!`;
 playagain.hidden = false;
 }
 }

 // Update the state of the game based on what the user guessed.
 // Returns true if the state was updated, and false otherwise.
 updateForGuess(guess) {
 // If it is a number and is in the right range
 if ((guess > this.low) && (guess < this.high)) {
 // Update state object based on this guess
 if (guess < this.secret) this.low = guess;
 else if (guess > this.secret) this.high = guess;
 this.guess = guess;
 this.numGuesses++;
 return true;
 }
 else { // An invalid guess: notify user but don't update state
 alert(`Please enter a number greater than ${
 this.low} and less than ${this.high}`);
 return false;
 }
 }
}

// With the GameState class defined, making the game work is just a matter
// of initializing, updating, saving and rendering the state object at
// the appropriate times.

// When we are first loaded, we try get the state of the game from the URL
// and if that fails we instead begin a new game. So if the user bookmarks a
// game that game can be restored from the URL. But if we load a page with
// no query parameters we'll just get a new game.
let gamestate = GameState.fromURL(window.location) || GameState.newGame();

// Save this initial state of the game into the browser history, but use
// replaceState instead of pushState() for this initial page
history.replaceState(gamestate, "", gamestate.toURL());

// Display this initial state
gamestate.render();

// When the user guesses, update the state of the game based on their guess
// then save the new state to browser history and render the new state
document.querySelector("#input").onchange = (event) => {
 if (gamestate.updateForGuess(parseInt(event.target.value))) {
 history.pushState(gamestate, "", gamestate.toURL());
 }
 gamestate.render();
};

// If the user goes back or forward in history, we'll get a popstate event
// on the window object with a copy of the state object we saved with
// pushState. When that happens, render the new state.
window.onpopstate = (event) => {
 gamestate = GameState.fromStateObject(event.state); // Restore the state
 gamestate.render(); // and display it
};
</script>
</body></html>

15.11 Networking

Every time you load a web page, the browser makes network
requests—using the HTTP and HTTPS protocols—for an HTML file as well
as the images, fonts, scripts, and stylesheets that the file depends
on. But in addition to being able to make network requests in response
to user actions, web browsers also expose JavaScript APIs for
networking as well.

This section covers three network APIs:

	
The fetch() method defines a Promise-based API for making HTTP and HTTPS
requests. The fetch() API makes basic GET requests simple but has
a comprehensive feature set that also supports just about any
possible HTTP use case.

	
The Server-Sent Events (or SSE) API is a convenient, event-based
interface to HTTP “long polling” techniques where the web server
holds the network connection open so that it can send data to the
client whenever it wants.

	
WebSockets is a networking protocol that is not HTTP but is
designed to interoperate with HTTP. It defines an asynchronous
message-passing API where clients and servers can send and receive
messages from each other in a way that is similar to TCP
network sockets.

15.11.1 fetch()

For basic HTTP requests, using fetch() is a three-step process:

	
Call fetch(), passing the URL whose content you want to retrieve.

	
Get the response object that is asynchronously returned by step 1
when the HTTP response begins to arrive and call a method of this
response object to ask for the body of the response.

	
Get the body object that is asynchronously returned by step 2 and
process it however you want.

The fetch() API is completely Promise-based, and there are two
asynchronous steps here, so you typically expect two then() calls
or two await expressions when using fetch(). (And if you’ve
forgotten what those are, you may want to reread Chapter 13
before continuing with this section.)

Here’s what a fetch() request looks like if you are using then()
and expect the server’s response to your request to be JSON-formatted:

fetch("/api/users/current") // Make an HTTP (or HTTPS) GET request
 .then(response => response.json()) // Parse its body as a JSON object
 .then(currentUser => { // Then process that parsed object
 displayUserInfo(currentUser);
 });

Here’s a similar request made using the async and await keywords
to an API that returns a plain string rather than a JSON object:

async function isServiceReady() {
 let response = await fetch("/api/service/status");
 let body = await response.text();
 return body === "ready";
}

If you understand these two code examples, then you know 80% of what
you need to know to use the fetch() API. The subsections that follow
will demonstrate how to make requests and receive responses that are
somewhat more complicated than those shown here.

Goodbye XMLHttpRequest

The fetch() API replaces the baroque and misleadingly named
XMLHttpRequest API (which has nothing to do with XML). You may still
see XHR (as it is often abbreviated) in existing code, but there is no
reason today to use it in new code, and it is not documented in this
chapter. There is one example of XMLHttpRequest in this book, however,
and you can refer to §13.1.3 if you’d like to see an example
of old-style JavaScript networking.

HTTP status codes, response headers, and network errors

The three-step fetch() process shown in §15.11.1 elides all error-handling
code. Here’s a more realistic version:

fetch("/api/users/current") // Make an HTTP (or HTTPS) GET request.
 .then(response => { // When we get a response, first check it
 if (response.ok && // for a success code and the expected type.
 response.headers.get("Content-Type") === "application/json") {
 return response.json(); // Return a Promise for the body.
 } else {
 throw new Error(// Or throw an error.
 `Unexpected response status ${response.status} or content type`
);
 }
 })
 .then(currentUser => { // When the response.json() Promise resolves
 displayUserInfo(currentUser); // do something with the parsed body.
 })
 .catch(error => { // Or if anything went wrong, just log the error.
 // If the user's browser is offline, fetch() itself will reject.
 // If the server returns a bad response then we throw an error above.
 console.log("Error while fetching current user:", error);
 });

The Promise returned by fetch() resolves to a Response object. The
status property of this object is the HTTP status code, such as 200
for successful requests or 404 for “Not Found” responses. (statusText
gives the standard English text that goes along with the numeric status
code.) Conveniently, the ok property of a Response is true if
status is 200 or any code between 200 and 299 and is false for any
other code.

fetch() resolves its Promise when the server’s response starts to
arrive, as soon as the HTTP status and response headers are available,
but typically before the full response body has arrived. Even though the
body is not available yet, you can examine the headers in this second
step of the fetch process. The headers property of a Response object
is a Headers object. Use its has() method to test for the presence of
a header, or use its get() method to get the value of a header. HTTP
header names are case-insensitive, so you can pass lowercase or
mixed-case header names to these functions.

The Headers object is also iterable if you ever need to do that:

fetch(url).then(response => {
 for(let [name,value] of response.headers) {
 console.log(`${name}: ${value}`);
 }
});

If a web server responds to your fetch() request, then the Promise
that was returned will be fulfilled with a Response object, even if the
server’s response was a 404 Not Found error or a 500 Internal Server
Error. fetch() only rejects the Promise it returns if it cannot
contact the web server at all. This can happen if the user’s computer is
offline, the server is unresponsive, or the URL specifies a
hostname that does not exist. Because these things can happen on any
network request, it is always a good idea to include a .catch() clause
any time you make a fetch() call.

Setting request parameters

Sometimes you want to pass extra parameters along with the URL when you
make a request. This can be done by adding name/value pairs at the end
of a URL after a ?. The URL and URLSearchParams classes (which were
covered in §11.9) make it easy to construct URLs in this form, and
the fetch() function accepts URL objects as its first argument, so you
can include request parameters in a fetch() request like this:

async function search(term) {
 let url = new URL("/api/search");
 url.searchParams.set("q", term);
 let response = await fetch(url);
 if (!response.ok) throw new Error(response.statusText);
 let resultsArray = await response.json();
 return resultsArray;
}

Setting request headers

Sometimes you need to set headers in your fetch() requests. If you’re
making web API requests that require credentials, for example, then you
may need to include an Authorization header that contains those
credentials. In order to do this, you can use the two-argument version
of fetch(). As before, the first argument is a string or URL object
that specifies the URL to fetch. The second argument is an object that
can provide additional options, including request headers:

let authHeaders = new Headers();
// Don't use Basic auth unless it is over an HTTPS connection.
authHeaders.set("Authorization",
 `Basic ${btoa(`${username}:${password}`)}`);
fetch("/api/users/", { headers: authHeaders })
 .then(response => response.json()) // Error handling omitted...
 .then(usersList => displayAllUsers(usersList));

There are a number of other options that can be specified in the second
argument to fetch(), and we’ll see it again later. An alternative to
passing two arguments to fetch() is to instead pass the same two
arguments to the Request() constructor and then pass the resulting
Request object to fetch():

let request = new Request(url, { headers });
fetch(request).then(response => ...);

Parsing response bodies

In the three-step fetch() process that we’ve demonstrated, the
second step ends by calling the json() or text() methods of the
Response object and returning the Promise object that those methods
return. Then, the third step begins when that Promise resolves with the
body of the response parsed as a JSON object or simply as a string of
text.

These are probably the two most common scenarios, but they are not the
only ways to obtain the body of a web server’s response. In addition to
json() and text(), the Response object also has these methods:

	arrayBuffer()

	
This method returns a Promise that resolves to an
ArrayBuffer. This is useful when the response contains binary data. You
can use the ArrayBuffer to create a typed array (§11.2) or a
DataView object (§11.2.5) from which you can read the
binary data.

	blob()

	
This method returns a Promise that resolves to a Blob
object. Blobs are not covered in any detail in this book, but the name
stands for “Binary Large Object,” and they are useful when you expect
large amounts of binary data. If you ask for the body of the response as
a Blob, the browser implementation may stream the response data to a
temporary file and then return a Blob object that represents that
temporary file. Blob objects, therefore, do not allow random access to
the response body the way that an ArrayBuffer does. Once you have a
Blob, you can create a URL that refers to it with
URL.createObjectURL(), or you can use the event-based FileReader API
to asynchronously obtain the content of the Blob as a string or an
ArrayBuffer. At the time of this writing, some browsers also define
Promise-based text() and arrayBuffer() methods that give a more
direct route for obtaining the content of a Blob.

	formData()

	
This method returns a Promise that resolves to a FormData
object. You should use this method if you expect the body of the
Response to be encoded in “multipart/form-data” format. This format is
common in POST requests made to a server, but uncommon in server
responses, so this method is not frequently used.

Streaming response bodies

In addition to the five response methods that asynchronously return some
form of the complete response body to you, there is also an option to
stream the response body, which is useful if there is some kind of
processing you can do on the chunks of the response body as they arrive
over the network. But streaming the response is also useful if you want
to display a progress bar so that the user can see the progress of the
download.

The body property of a Response object is a ReadableStream object. If
you have already called a response method like text() or json() that
reads, parses, and returns the body, then bodyUsed will be true to
indicate that the body stream has already been read. If bodyUsed is
false, however, then the stream has not yet been read. In this case,
you can call getReader() on response.body to obtain a stream reader
object, then use the read() method of this reader object to
asynchronously read chunks of text from the stream. The read() method
returns a Promise that resolves to an object with done and value
properties. done will be true if the entire body has been read or if
the stream was closed. And value will either be the next chunk, as a
Uint8Array, or undefined if there are no more chunks.

This streaming API is relatively straightforward if you use async and
await but is surprisingly complex if you attempt to use it with raw
Promises. Example 15-10 demonstrates the API by defining a
streamBody() function. Suppose you wanted to download a large JSON
file and report download progress to the user. You can’t do that with
the json() method of the Response object, but you could do it with
the streamBody() function, like this (assuming that an
updateProgress() function is defined to set the value attribute
on an HTML <progress> element):

fetch('big.json')
 .then(response => streamBody(response, updateProgress))
 .then(bodyText => JSON.parse(bodyText))
 .then(handleBigJSONObject);

The streamBody() function can be implemented as shown in Example 15-10.

Example 15-10. Streaming the response body from a fetch() request

/**
 * An asynchronous function for streaming the body of a Response object
 * obtained from a fetch() request. Pass the Response object as the first
 * argument followed by two optional callbacks.
 *
 * If you specify a function as the second argument, that reportProgress
 * callback will be called once for each chunk that is received. The first
 * argument passed is the total number of bytes received so far. The second
 * argument is a number between 0 and 1 specifying how complete the download
 * is. If the Response object has no "Content-Length" header, however, then
 * this second argument will always be NaN.
 *
 * If you want to process the data in chunks as they arrive, specify a
 * function as the third argument. The chunks will be passed, as Uint8Array
 * objects, to this processChunk callback.
 *
 * streamBody() returns a Promise that resolves to a string. If a processChunk
 * callback was supplied then this string is the concatenation of the values
 * returned by that callback. Otherwise the string is the concatenation of
 * the chunk values converted to UTF-8 strings.
 */
async function streamBody(response, reportProgress, processChunk) {
 // How many bytes are we expecting, or NaN if no header
 let expectedBytes = parseInt(response.headers.get("Content-Length"));
 let bytesRead = 0; // How many bytes received so far
 let reader = response.body.getReader(); // Read bytes with this function
 let decoder = new TextDecoder("utf-8"); // For converting bytes to text
 let body = ""; // Text read so far

 while(true) { // Loop until we exit below
 let {done, value} = await reader.read(); // Read a chunk

 if (value) { // If we got a byte array:
 if (processChunk) { // Process the bytes if
 let processed = processChunk(value); // a callback was passed.
 if (processed) {
 body += processed;
 }
 } else { // Otherwise, convert bytes
 body += decoder.decode(value, {stream: true}); // to text.
 }

 if (reportProgress) { // If a progress callback was
 bytesRead += value.length; // passed, then call it
 reportProgress(bytesRead, bytesRead / expectedBytes);
 }
 }
 if (done) { // If this is the last chunk,
 break; // exit the loop
 }
 }

 return body; // Return the body text we accumulated
}

This streaming API is new at the time of this writing and is expected to
evolve. In particular, there are plans to make ReadableStream objects
asynchronously iterable so that they can be used with for/await loops
(§13.4.1).

Specifying the request method and request body

In each of the fetch() examples shown so far, we have made an HTTP (or
HTTPS) GET request. If you want to use a different request method (such
as POST, PUT, or DELETE), simply use the two-argument version of
fetch(), passing an Options object with a method parameter:

fetch(url, { method: "POST" }).then(r => r.json()).then(handleResponse);

POST and PUT requests typically have a request body containing data to
be sent to the server. As long as the method property is not set to
"GET" or "HEAD" (which do not support request bodies), you can
specify a request body by setting the body property of the Options
object:

fetch(url, {
 method: "POST",
 body: "hello world"
})

When you specify a request body, the browser automatically adds an
appropriate “Content-Length” header to the request. When the body is a
string, as in the preceding example, the browser defaults the “Content-Type” header to
“text/plain;charset=UTF-8.” You may need to override this default if you
specify a string body of some more specific type such as “text/html” or
“application/json”:

fetch(url, {
 method: "POST",
 headers: new Headers({"Content-Type": "application/json"}),
 body: JSON.stringify(requestBody)
})

The body property of the fetch() options object does not have to be
a string. If you have binary data in a typed array or a DataView object
or an ArrayBuffer, you can set the body property to that value and
specify an appropriate “Content-Type” header. If you have binary data in
Blob form, you can simply set body to the Blob. Blobs have a type
property that specifies their content type, and the value of this
property is used as the default value of the “Content-Type” header.

With POST requests, is it somewhat common to pass a set of name/value
parameters in the request body (instead of encoding them into the query
portion of the URL). There are two ways to do this:

	
You can specify your parameter names and values with URLSearchParams
(which we saw earlier in this section, and which is documented in
§11.9) and then pass the URLSearchParams object as the value of
the body property. If you do this, the body will be set to a string
that looks like the query portion of a URL, and the “Content-Type”
header will be automatically set to
“application/x-www-form-urlencoded;charset=UTF-8.”

	
If instead you specify your parameter names and values with a
FormData object, the body will use a more verbose multipart encoding
and “Content-Type” will be set to “multipart/form-data; boundary=…”
with a unique boundary string that matches the body. Using a FormData
object is particularly useful when the values you want to upload are
long, or are File or Blob objects that may each have its own
“Content-Type.” FormData objects can be created and initialized with
values by passing a <form> element to the FormData()
constructor. But you can also create “multipart/form-data” request
bodies by invoking the FormData() constructor with no arguments and
initializing the name/value pairs it represents with the set() and
append() methods.

File upload with fetch()

Uploading files from a user’s computer to a web server is a common task
and can be accomplished using a FormData object as the request body. A
common way to obtain a File object is to display an <input type="file">
element on your web page and listen for “change” events on that
element. When a “change” event occurs, the files array of the input
element should contain at least one File object. File objects are also
available through the HTML drag-and-drop API. That API is not covered in
this book, but you can get files from the dataTransfer.files array of
the event object passed to an event listener for “drop” events.

Remember also that File objects are a kind of Blob, and sometimes it can
be useful to upload Blobs. Suppose you’ve written a web application that
allows the user to create drawings in a <canvas> element. You can
upload the user’s drawings as PNG files with code like the following:

// The canvas.toBlob() function is callback-based.
// This is a Promise-based wrapper for it.
async function getCanvasBlob(canvas) {
 return new Promise((resolve, reject) => {
 canvas.toBlob(resolve);
 });
}

// Here is how we upload a PNG file from a canvas
async function uploadCanvasImage(canvas) {
 let pngblob = await getCanvasBlob(canvas);
 let formdata = new FormData();
 formdata.set("canvasimage", pngblob);
 let response = await fetch("/upload", { method: "POST", body: formdata });
 let body = await response.json();
}

Cross-origin requests

Most often, fetch() is used by web applications to request data from
their own web server. Requests like these are known as same-origin
requests because the URL passed to fetch() has the same origin
(protocol plus hostname plus port) as the document that contains the
script that is making the request.

For security reasons, web browsers generally disallow (though there are
exceptions for images and scripts) cross-origin network
requests. However, Cross-Origin Resource Sharing, or CORS, enables safe
cross-origin requests. When fetch() is used with a cross-origin URL,
the browser adds an “Origin” header to the request (and does not allow
it to be overridden via the headers property) to notify the web server
that the request is coming from a document with a different origin. If
the server responds to the request with an appropriate
“Access-Control-Allow-Origin” header, then the request
proceeds. Otherwise, if the server does not explicitly allow the
request, then the Promise returned by fetch() is rejected.

Aborting a request

Sometimes you may want to abort a fetch() request that you have
already issued, perhaps because the user clicked a Cancel button or the request is taking too long. The fetch API allows requests to
be aborted using the AbortController and AbortSignal classes. (These
classes define a generic abort mechanism suitable for use by other APIs
as well.)

If you want to have the option of aborting a fetch() request, then
create an AbortController object before starting the request. The
signal property of the controller object is an AbortSignal
object. Pass this signal object as the value of the signal property of
the options object that you pass to fetch(). Having done that, you can
call the abort() method of the controller object to abort the
request, which will cause any Promise objects related to the fetch
request to reject with an exception.

Here is an example of using the AbortController mechanism to enforce a
timeout for fetch requests:

// This function is like fetch(), but it adds support for a timeout
// property in the options object and aborts the fetch if it is not complete
// within the number of milliseconds specified by that property.
function fetchWithTimeout(url, options={}) {
 if (options.timeout) { // If the timeout property exists and is nonzero
 let controller = new AbortController(); // Create a controller
 options.signal = controller.signal; // Set the signal property
 // Start a timer that will send the abort signal after the specified
 // number of milliseconds have passed. Note that we never cancel
 // this timer. Calling abort() after the fetch is complete has
 // no effect.
 setTimeout(() => { controller.abort(); }, options.timeout);
 }
 // Now just perform a normal fetch
 return fetch(url, options);
}

Miscellaneous request options

We’ve seen that an Options object can be passed as the second argument
to fetch() (or as the second argument to the Request() constructor)
to specify the request method, request headers, and request body. It
supports a number of other options as well, including these:

	cache

	
Use this property to override the browser’s default caching
behavior. HTTP caching is a complex topic that is beyond the scope of
this book, but if you know something about how it works, you can use the
following legal values of cache:

	"default"

	
This value specifies the default caching behavior. Fresh
 responses in the cache are served directly from the cache, and stale
 responses are revalidated before being served.

	"no-store"

	
This value makes the browser ignore its cache. The cache
is not checked for matches when the request is made and is not updated
when the response arrives.

	"reload"

	
This value tells the browser to always make a normal
network request, ignoring the cache. When the response arrives,
however, it is stored in the cache.

	"no-cache"

	
This (misleadingly named) value tells the browser to not
serve fresh values from the cache. Fresh or stale cached values are
revalidated before being returned.

	"force-cache"

	
This value tells the browser to serve responses from
the cache even if they are stale.

	redirect

	
This property controls how the browser handles redirect
responses from the server. The three legal values are:

	"follow"

	
This is the default value, and it makes the browser follow
redirects automatically. If you use this default, the Response objects you
get with fetch() should never have a status in the 300 to 399
range.

	"error"

	
This value makes fetch() reject its returned Promise if
the server returns a redirect response.

	"manual"

	
This value means that you want to manually handle redirect
responses, and the Promise returned by fetch() may resolve to a
Response object with a status in the 300 to 399 range. In this
case, you will have to use the “Location” header of the Response to
manually follow the redirection.

	referrer

	
You can set this property to a string that contains a
relative URL to specify the value of the HTTP “Referer” header
(which is historically misspelled with three Rs instead of four). If you
set this property to the empty string, then the “Referer” header will
be omitted from the request.

15.11.2 Server-Sent Events

A fundamental feature of the HTTP protocol upon which the web is built
is that clients initiate requests and servers respond to those
requests. Some web apps find it useful, however, to have their server
send them notifications when events occur. This does not come naturally
to HTTP, but the technique that has been devised is for the client to
make a request to the server, and then neither the client nor the server
close the connection. When the server has something to tell the client
about, it writes data to the connection but keeps it open. The effect is
as if the client makes a network request and the server responds in a
slow and bursty way with significant pauses between bursts of
activity. Network connections like this don’t usually stay open forever,
but if the client detects that the connection has closed, it can simply
make another request to reopen the connection.

This technique for allowing servers to send messages to clients is
surprisingly effective (though it can be expensive on the server side
because the server must maintain an active connection to all of its
clients). Because it is a useful programming pattern, client-side
JavaScript supports it with the EventSource API. To create this kind of
long-lived request connection to a web server, simply pass a URL to the
EventSource() constructor. When the server writes (properly formatted)
data to the connection, the EventSource object translates those into
events that you can listen for:

let ticker = new EventSource("stockprices.php");
ticker.addEventListener("bid", (event) => {
 displayNewBid(event.data);
}

The event object associated with a message event has a data property
that holds whatever string the server sent as the payload for this
event. The event object also has a type property, like all event
objects do, that specifies the name of the event. The server determines
the type of the events that are generated. If the server omits an event
name in the data it writes, then the event type defaults to “message.”

The Server-Sent Event protocol is straightforward. The client initiates
a connection to the server (when it creates the EventSource object),
and the server keeps this connection open. When an event occurs, the
server writes lines of text to the connection. An event going over the
wire might look like this, if the comments were omitted:

event: bid // sets the type of the event object
data: GOOG // sets the data property
data: 999 // appends a newline and more data
 // a blank line marks the end of the event

There are some additional details to the protocol that allow events to
be given IDs and allow a reconnecting client to tell the server what the
ID of the last event it received was, so that a server can resend any
events it missed. Those details are invisible on the client side,
however, and are not discussed here.

One obvious application for Server-Sent Events is for multiuser
collaborations like online chat. A chat client might use fetch() to
post messages to the chat room and subscribe to the stream of chatter
with an EventSource object. Example 15-11 demonstrates how easy it
is to write a chat client like this with EventSource.

Example 15-11. A simple chat client using EventSource

<html>
<head><title>SSE Chat</title></head>
<body>
<!-- The chat UI is just a single text input field -->
<!-- New chat messages will be inserted before this input field -->
<input id="input" style="width:100%; padding:10px; border:solid black 2px"/>
<script>
// Take care of some UI details
let nick = prompt("Enter your nickname"); // Get user's nickname
let input = document.getElementById("input"); // Find the input field
input.focus(); // Set keyboard focus

// Register for notification of new messages using EventSource
let chat = new EventSource("/chat");
chat.addEventListener("chat", event => { // When a chat message arrives
 let div = document.createElement("div"); // Create a <div>
 div.append(event.data); // Add text from the message
 input.before(div); // And add div before input
 input.scrollIntoView(); // Ensure input elt is visible
});

// Post the user's messages to the server using fetch
input.addEventListener("change", ()=>{ // When the user strikes return
 fetch("/chat", { // Start an HTTP request to this url.
 method: "POST", // Make it a POST request with body
 body: nick + ": " + input.value // set to the user's nick and input.
 })
 .catch(e => console.error); // Ignore response, but log any errors.
 input.value = ""; // Clear the input
});
</script>
</body>
</html>

The server-side code for this chat program is not much more complicated
than the client-side code. Example 15-12 is a simple Node HTTP
server. When a client requests the root URL “/”, it sends the chat
client code shown in Example 15-11. When a client makes a GET
request for the URL “/chat”, it saves the response object and keeps that
connection open. And when a client makes a POST request to “/chat”, it
uses the body of the request as a chat message and writes it, using the
“text/event-stream” format to each of the saved response objects. The
server code listens on port 8080, so after running it with Node, point
your browser to http://localhost:8080 to connect and begin chatting
with yourself.

Example 15-12. A Server-Sent Events chat server

// This is server-side JavaScript, intended to be run with NodeJS.
// It implements a very simple, completely anonymous chat room.
// POST new messages to /chat, or GET a text/event-stream of messages
// from the same URL. Making a GET request to / returns a simple HTML file
// that contains the client-side chat UI.
const http = require("http");
const fs = require("fs");
const url = require("url");

// The HTML file for the chat client. Used below.
const clientHTML = fs.readFileSync("chatClient.html");

// An array of ServerResponse objects that we're going to send events to
let clients = [];

// Create a new server, and listen on port 8080.
// Connect to http://localhost:8080/ to use it.
let server = new http.Server();
server.listen(8080);

// When the server gets a new request, run this function
server.on("request", (request, response) => {
 // Parse the requested URL
 let pathname = url.parse(request.url).pathname;

 // If the request was for "/", send the client-side chat UI.
 if (pathname === "/") { // A request for the chat UI
 response.writeHead(200, {"Content-Type": "text/html"}).end(clientHTML);
 }
 // Otherwise send a 404 error for any path other than "/chat" or for
 // any method other than "GET" and "POST"
 else if (pathname !== "/chat" ||
 (request.method !== "GET" && request.method !== "POST")) {
 response.writeHead(404).end();
 }
 // If the /chat request was a GET, then a client is connecting.
 else if (request.method === "GET") {
 acceptNewClient(request, response);
 }
 // Otherwise the /chat request is a POST of a new message
 else {
 broadcastNewMessage(request, response);
 }
});

// This handles GET requests for the /chat endpoint which are generated when
// the client creates a new EventSource object (or when the EventSource
// reconnects automatically).
function acceptNewClient(request, response) {
 // Remember the response object so we can send future messages to it
 clients.push(response);

 // If the client closes the connection, remove the corresponding
 // response object from the array of active clients
 request.connection.on("end", () => {
 clients.splice(clients.indexOf(response), 1);
 response.end();
 });

 // Set headers and send an initial chat event to just this one client
 response.writeHead(200, {
 "Content-Type": "text/event-stream",
 "Connection": "keep-alive",
 "Cache-Control": "no-cache"
 });
 response.write("event: chat\ndata: Connected\n\n");

 // Note that we intentionally do not call response.end() here.
 // Keeping the connection open is what makes Server-Sent Events work.
}

// This function is called in response to POST requests to the /chat endpoint
// which clients send when users type a new message.
async function broadcastNewMessage(request, response) {
 // First, read the body of the request to get the user's message
 request.setEncoding("utf8");
 let body = "";
 for await (let chunk of request) {
 body += chunk;
 }

 // Once we've read the body send an empty response and close the connection
 response.writeHead(200).end();

 // Format the message in text/event-stream format, prefixing each
 // line with "data: "
 let message = "data: " + body.replace("\n", "\ndata: ");

 // Give the message data a prefix that defines it as a "chat" event
 // and give it a double newline suffix that marks the end of the event.
 let event = `event: chat\n${message}\n\n`;

 // Now send this event to all listening clients
 clients.forEach(client => client.write(event));
}

15.11.3 WebSockets

The WebSocket API is a simple interface to a complex and powerful network
protocol. WebSockets allow JavaScript code in the browser to easily
exchange text and binary messages with a server. As with Server-Sent
Events, the client must establish the connection, but once the
connection is established, the server can asynchronously send messages
to the client. Unlike SSE, binary messages are supported, and messages
can be sent in both directions, not just from server to client.

The network protocol that enables WebSockets is a kind of extension to
HTTP. Although the WebSocket API is reminiscent of low-level network
sockets, connection endpoints are not identified by IP address and
port. Instead, when you want to connect to a service using the WebSocket
protocol, you specify the service with a URL, just as you would for a
web service. WebSocket URLs begin with wss:// instead of https://,
however. (Browsers typically restrict WebSockets to only work in pages
loaded over secure https:// connections).

To establish a WebSocket connection, the browser first establishes an
HTTP connection and sends the server an Upgrade: websocket header
requesting that the connection be switched from the HTTP protocol to the
WebSocket protocol. What this means is that in order to use WebSockets
in your client-side JavaScript, you will need to be working with a web
server that also speaks the WebSocket protocol, and you will need to
have server-side code written to send and receive data using that
protocol. If your server is set up that way, then this section will
explain everything you need to know to handle the client-side end of the
connection. If your server does not support the WebSocket protocol,
consider using Server-Sent Events (§15.11.2) instead.

Creating, connecting, and disconnecting WebSockets

If you want to communicate with a WebSocket-enabled server, create a
WebSocket object, specifying the wss:// URL that identifies the server
and service you want to use:

let socket = new WebSocket("wss://example.com/stockticker");

When you create a WebSocket, the connection process begins
automatically. But a newly created WebSocket will not be connected when
it is first returned.

The readyState property of the socket
specifies what state the connection is in. This property can have the
following values:

	WebSocket.CONNECTING

	
This WebSocket is connecting.

	WebSocket.OPEN

	
This WebSocket is connected and ready for communication.

	WebSocket.CLOSING

	
This WebSocket connection is being closed.

	WebSocket.CLOSED

	
This WebSocket has been closed; no further
communication is possible. This state can also occur when the initial
connection attempt fails.

When a WebSocket transitions from the CONNECTING to the OPEN state, it
fires an “open” event, and you can listen for this event by setting the
onopen property of the WebSocket or by calling addEventListener() on
that object.

If a protocol or other error occurs for a WebSocket connection, the
WebSocket object fires an “error” event. You can set onerror to define
a handler, or, alternatively, use addEventListener().

When you are done with a WebSocket, you can close the connection by
calling the close() method of the WebSocket object. When a WebSocket
changes to the CLOSED state, it fires a “close” event, and you can set
the onclose property to listen for this event.

Sending messages over a WebSocket

To send a message to the server on the other end of a WebSocket
connection, simply invoke the send() method of the WebSocket
object. send() expects a single message argument, which can be a
string, Blob, ArrayBuffer, typed array, or DataView object.

The send() method buffers the specified message to be transmitted and
returns before the message is actually sent. The bufferedAmount
property of the WebSocket object specifies the number of bytes that are
buffered but not yet sent. (Surprisingly, WebSockets do not fire any
event when this value reaches 0.)

Receiving messages from a WebSocket

To receive messages from a server over a WebSocket, register an event
handler for “message” events, either by setting the onmessage property
of the WebSocket object, or by calling addEventListener(). The object
associated with a “message” event is a MessageEvent instance with a
data property that contains the server’s message. If the server sent
UTF-8 encoded text, then event.data will be a string containing that
text.

If the server sends a message that consists of binary data instead of
text, then the data property will (by default) be a Blob object
representing that data. If you prefer to receive binary messages as
ArrayBuffers instead of Blobs, set the binaryType property of the
WebSocket object to the string “arraybuffer.”

There are a number of Web APIs that use MessageEvent objects for
exchanging messages. Some of these APIs use the structured clone
algorithm (see “The Structured Clone Algorithm”) to allow complex data structures as the
message payload. WebSockets is not one of those APIs: messages exchanged
over a WebSocket are either a single string of Unicode characters or a
single string of bytes (represented as a Blob or an ArrayBuffer).

Protocol negotiation

The WebSocket protocol enables the exchange of text and binary messages,
but says nothing at all about the structure or meaning of those
messages. Applications that use WebSockets must build their own
communication protocol on top of this simple message-exchange
mechanism. The use of wss:// URLs helps with this: each URL will
typically have its own rules for how messages are to be exchanged. If
you write code to connect to wss://example.com/stockticker, then you
probably know that you will be receiving messages about stock prices.

Protocols tend to evolve, however. If a hypothetical stock quotation
protocol is updated, you can define a new URL and connect to the updated
service as wss://example.com/stockticker/v2. URL-based versioning is
not always sufficient, however. With complex protocols that have evolved
over time, you may end up with deployed servers that support multiple
versions of the protocol and deployed clients that support a different
set of protocol versions.

Anticipating this situation, the WebSocket protocol and API include an application-level protocol negotiation feature. When you call the
WebSocket() constructor, the wss:// URL is the first argument, but
you can also pass an array of strings as the second argument. If you do
this, you are specifying a list of application protocols that you know
how to handle and asking the server to pick one. During the connection
process, the server will choose one of the protocols (or will fail with
an error if it does not support any of the client’s options). Once the
connection has been established, the protocol property of the
WebSocket object specifies which protocol version the server chose.

15.12 Storage

Web applications can use browser APIs to store data locally on the
user’s computer. This client-side storage serves to give the web
browser a memory. Web apps can store user preferences, for example, or
even store their complete state, so that they can resume exactly where
you left off at the end of your last visit. Client-side storage is
segregated by origin, so pages from one site can’t read the data stored
by pages from another site. But two pages from the same site can share
storage and use it as a communication mechanism. Data input in a
form on one page can be displayed in a table on another page, for
example. Web applications can choose the lifetime of the data they
store: data can be stored temporarily so that it is retained only until
the window closes or the browser exits, or it can be saved on the user’s
computer and stored permanently so that it is available months or years
later.

There are a number of forms of client-side storage:

	Web Storage

	
The Web Storage API consists of the localStorage and
sessionStorage objects, which are essentially persistent objects
that map string keys to string values. Web Storage is very easy to
use and is suitable for storing large (but not huge) amounts of
data.

	Cookies

	
Cookies are an old client-side storage mechanism that was
designed for use by server-side scripts. An awkward JavaScript API
makes cookies scriptable on the client side, but they’re hard to
use and suitable only for storing small amounts of textual
data. Also, any data stored as cookies is always transmitted to the
server with every HTTP request, even if the data is only of interest
to the client.

	IndexedDB

	
IndexedDB is an asynchronous API to an object database that
supports indexing.

Storage, Security, and Privacy

Web browsers often offer to remember web passwords for you, and they
store them safely in encrypted form on the device. But none of the forms
of client-side data storage described in this chapter involve
encryption: you should assume that anything your web applications save
resides on the user’s device in unencrypted form. Stored data is
therefore accessible to curious users who share access to the device
and to malicious software (such as spyware) that exists on the
device. For this reason, no form of client-side storage should ever be
used for passwords, financial account numbers, or other similarly
sensitive information.

15.12.1 localStorage and sessionStorage

The localStorage and sessionStorage properties of the Window object
refer to Storage objects. A Storage object behaves much like a regular
JavaScript object, except that:

	
The property values of Storage objects must be strings.

	
The properties stored in a Storage object persist. If you set a
property of the localStorage object and then the user reloads the
page, the value you saved in that property is still available to your
program.

You can use the localStorage object like this, for example:

let name = localStorage.username; // Query a stored value.
if (!name) {
 name = prompt("What is your name?"); // Ask the user a question.
 localStorage.username = name; // Store the user's response.
}

You can use the delete operator to remove properties from
localStorage and sessionStorage, and you can use a for/in loop or
Object.keys() to enumerate the properties of a Storage object. If you
want to remove all properties of a storage object, call the clear()
method:

localStorage.clear();

Storage objects also define getItem(), setItem(), and deleteItem()
methods, which you can use instead of direct property access and the
delete operator if you want to.

Keep in mind that the properties of Storage objects can only store
strings. If you want to store and retrieve other kinds of
data, you’ll have to encode and decode it yourself.

For example:

// If you store a number, it is automatically converted to a string.
// Don't forget to parse it when retrieving it from storage.
localStorage.x = 10;
let x = parseInt(localStorage.x);

// Convert a Date to a string when setting, and parse it when getting
localStorage.lastRead = (new Date()).toUTCString();
let lastRead = new Date(Date.parse(localStorage.lastRead));

// JSON makes a convenient encoding for any primitive or data structure
localStorage.data = JSON.stringify(data); // Encode and store
let data = JSON.parse(localStorage.data); // Retrieve and decode.

Storage lifetime and scope

The difference between localStorage and sessionStorage involves the
lifetime and scope of the storage. Data stored through localStorage
is permanent: it does not expire and remains stored on the user’s
device until a web app deletes it or the user asks the browser
(through some browser-specific UI) to delete it.

localStorage is scoped to the document origin. As explained in
“The same-origin policy”, the origin of a document is defined by its
protocol, hostname, and port. All documents with the same origin share
the same localStorage data (regardless of the origin of the scripts
that actually access localStorage). They can read each other’s
data, and they can overwrite each other’s data. But documents with
different origins can never read or overwrite each other’s data (even if
they’re both running a script from the same third-party server).

Note that localStorage is also scoped by browser implementation. If
you visit a site using Firefox and then visit again using
Chrome (for example), any data stored during the first visit will not be
accessible during the second visit.

Data stored through sessionStorage has a different lifetime than data
stored through localStorage: it has the same lifetime as the
top-level window or browser tab in which the script that stored it is
running. When the window or tab is permanently closed, any data stored
through sessionStorage is deleted. (Note, however, that modern
browsers have the ability to reopen recently closed tabs and restore
the last browsing session, so the lifetime of these tabs and their
associated sessionStorage may be longer than it seems.)

Like localStorage, sessionStorage is scoped to the document origin
so that documents with different origins will never share
sessionStorage. But sessionStorage is also scoped on a per-window
basis. If a user has two browser tabs displaying documents from the
same origin, those two tabs have separate sessionStorage data: the
scripts running in one tab cannot read or overwrite the data written by
scripts in the other tab, even if both tabs are visiting exactly the
same page and are running exactly the same scripts.

Storage events

Whenever the data stored in localStorage changes, the browser triggers
a “storage” event on any other Window objects to which that data is
visible (but not on the window that made the change). If a browser has
two tabs open to pages with the same origin, and one of those pages
stores a value in localStorage, the other tab will receive a “storage” event.

Register a handler for “storage” events either by setting window.onstorage or
by calling window.addEventListener() with event type “storage”.

The event object associated with a “storage” event has some important
properties:

	key

	
The name or key of the item that was set or removed. If the
clear() method was called, this property will be null.

	newValue

	
Holds the new value of the item, if there is one. If
removeItem() was called, this property will not be present.

	oldValue

	
Holds the old value of an existing item that changed or was
deleted. If a new property (with no old value) is added, then this
property will not be present in the event object.

	storageArea

	
The Storage object that changed. This is usually the
localStorage object.

	url

	
The URL (as a string) of the document whose script made this
storage change.

Note that localStorage and the “storage” event can serve as a
broadcast mechanism by which a browser sends a message to all windows
that are currently visiting the same website. If a user requests that a
website stop performing animations, for example, the site might store
that preference in localStorage so that it can honor it in future
visits. And by storing the preference, it generates an event that
allows other windows displaying the same site to honor the request as
well.

As another example, imagine a web-based image-editing application
that allows the user to display tool palettes in separate windows. When
the user selects a tool, the application uses localStorage to save
the current state and to generate a notification to other windows that
a new tool has been selected.

15.12.2 Cookies

A cookie is a small amount of named data stored by the web browser and
associated with a particular web page or website. Cookies were designed
for server-side programming, and at the lowest level, they are
implemented as an extension to the HTTP protocol. Cookie data is
automatically transmitted between the web browser and web server, so
server-side scripts can read and write cookie values that are stored on
the client. This section demonstrates how client-side scripts can also
manipulate cookies using the cookie property of the Document object.

Why “Cookie”?

The name “cookie” does not have a lot of significance, but it is not
used without precedent. In the annals of computing history, the term
“cookie” or “magic cookie” has been used to refer to a small chunk
of data, particularly a chunk of privileged or secret data, akin to a
password, that proves identity or permits access. In JavaScript,
cookies are used to save state and can establish a kind of identity for
a web browser. Cookies in JavaScript do not use any kind of
cryptography, however, and are not secure in any way (although
transmitting them across an https: connection helps).

The API for manipulating cookies is an old and cryptic one.
There are no methods involved: cookies are queried, set, and deleted by
reading and writing the cookie property of the Document object using
specially formatted strings. The lifetime and scope of each cookie can
be individually specified with cookie attributes. These attributes are
also specified with specially formatted strings set on the same
cookie property.

The subsections that follow explain how to query and set cookie values
and attributes.

Reading cookies

When you read the document.cookie property, it returns a string that
contains all the cookies that apply to the current document. The string
is a list of name/value pairs separated from each other by a semicolon
and a space. The cookie value is just the value itself and does not
include any of the attributes that may be associated with that
cookie. (We’ll talk about attributes next.) In order to make use of the
document.cookie property, you must typically call the split() method
to break it into individual name/value pairs.

Once you have extracted the value of a cookie from the cookie
property, you must interpret that value based on whatever format or
encoding was used by the cookie’s creator. You might, for example, pass
the cookie value to decodeURIComponent() and then to JSON.parse().

The code that follows defines a getCookie() function that parses the
document.cookie property and returns an object whose properties
specify the names and values of the document’s cookies:

// Return the document's cookies as a Map object.
// Assume that cookie values are encoded with encodeURIComponent().
function getCookies() {
 let cookies = new Map(); // The object we will return
 let all = document.cookie; // Get all cookies in one big string
 let list = all.split("; "); // Split into individual name/value pairs
 for(let cookie of list) { // For each cookie in that list
 if (!cookie.includes("=")) continue; // Skip if there is no = sign
 let p = cookie.indexOf("="); // Find the first = sign
 let name = cookie.substring(0, p); // Get cookie name
 let value = cookie.substring(p+1); // Get cookie value
 value = decodeURIComponent(value); // Decode the value
 cookies.set(name, value); // Remember cookie name and value
 }
 return cookies;
}

Cookie attributes: lifetime and scope

In addition to a name and a value, each cookie has optional attributes
that control its lifetime and scope. Before we can describe how to set
cookies with JavaScript, we need to explain cookie attributes.

Cookies are transient by default; the values they store last for the
duration of the web browser session but are lost when the user exits the
browser. If you want a cookie to last beyond a single browsing session,
you must tell the browser how long (in seconds) you would like it to
retain the cookie by specifying a max-age attribute. If you specify a
lifetime, the browser will store cookies in a file and delete them only
once they expire.

Cookie visibility is scoped by document origin as localStorage and
sessionStorage are, but also by document path. This scope is
configurable through cookie attributes path and domain. By default,
a cookie is associated with, and accessible to, the web page that
created it and any other web pages in the same directory or any
subdirectories of that directory. If the web page
example.com/catalog/index.html creates a cookie, for example,
that cookie is also visible to example.com/catalog/order.html
and example.com/catalog/widgets/index.html, but it is not
visible to example.com/about.html.

This default visibility behavior is often exactly what you want.
Sometimes, though, you’ll want to use cookie values throughout a
website, regardless of which page creates the cookie. For instance, if
the user enters their mailing address in a form on one page, you may
want to save that address to use as the default the next time they
return to the page and also as the default in an entirely unrelated
form on another page where they are asked to enter a billing address. To
allow this usage, you specify a path for the cookie. Then, any web
page from the same web server whose URL begins with the path prefix you
specified can share the cookie. For example, if a cookie set by
example.com/catalog/widgets/index.html has its path set to “/catalog”, that cookie is also visible to example.com/catalog/order.html. Or, if
the path is set to “/”, the cookie is visible to any page in the
example.com domain, giving the cookie a scope like that of
localStorage.

By default, cookies are scoped by document origin. Large websites may
want cookies to be shared across subdomains, however. For example, the
server at
order.example.com may need to read cookie values set from
catalog.example.com. This is where the domain attribute comes in.
If a cookie created by a page on catalog.example.com sets its path
attribute to “/” and its domain attribute to “.example.com,” that
cookie is available to all web pages on catalog.example.com,
orders.example.com, and any other server in the example.com domain.
Note that you cannot set the domain of a cookie to a domain other than a
parent domain of your server.

The final cookie attribute is a boolean attribute named secure that
specifies how cookie values are transmitted over the network. By
default, cookies are insecure, which means that they are transmitted
over a normal, insecure HTTP connection. If a cookie is marked secure,
however, it is transmitted only when the browser and server are
connected via HTTPS or another secure protocol.

Cookie Limitations

Cookies are intended for storage of small amounts of data by server-side
scripts, and that data is transferred to the server each time a relevant
URL is requested. The standard that defines cookies encourages browser
manufacturers to allow unlimited numbers of cookies of unrestricted size
but does not require browsers to retain more than 300 cookies total, 20
cookies per web server, or 4 KB of data per cookie (both name and value
count toward this 4 KB limit). In practice, browsers allow many more
than 300 cookies total, but the 4 KB size limit may still be enforced by
some.

Storing cookies

To associate a transient cookie value with the current document, simply
set the cookie property to a name=value string. For example:

document.cookie = `version=${encodeURIComponent(document.lastModified)}`;

The next time you read the cookie property, the name/value pair you
stored is included in the list of cookies for the document. Cookie
values cannot include semicolons, commas, or whitespace. For this
reason, you may want to use the core JavaScript global function
encodeURIComponent() to encode the value before storing it in the
cookie. If you do this, you’ll have to use the corresponding
decodeURIComponent() function when you read the cookie value.

A cookie written with a simple name/value pair lasts for the current
web-browsing session but is lost when the user exits the browser. To
create a cookie that can last across browser sessions, specify its
lifetime (in seconds) with a max-age attribute. You can do this by
setting the cookie property to a string of the form: name=value;
max-age=seconds. The following function sets a cookie with an optional
max-age attribute:

// Store the name/value pair as a cookie, encoding the value with
// encodeURIComponent() in order to escape semicolons, commas, and spaces.
// If daysToLive is a number, set the max-age attribute so that the cookie
// expires after the specified number of days. Pass 0 to delete a cookie.
function setCookie(name, value, daysToLive=null) {
 let cookie = `${name}=${encodeURIComponent(value)}`;
 if (daysToLive !== null) {
 cookie += `; max-age=${daysToLive*60*60*24}`;
 }
 document.cookie = cookie;
}

Similarly, you can set the path and domain attributes of a cookie
by appending strings of the form ;path=value or ;domain=value to
the string that you set on the document.cookie property. To set the
secure property, simply append ;secure.

To change the value of a cookie, set its value again using the same
name, path, and domain along with the new value. You can change the
lifetime of a cookie when you change its value by specifying a new
max-age attribute.

To delete a cookie, set it again using the same name, path, and domain,
specifying an arbitrary (or empty) value, and a max-age attribute of
0.

15.12.3 IndexedDB

Web application architecture has traditionally featured HTML, CSS, and
JavaScript on the client and a database on the server. You may find it
surprising, therefore, to learn that the web platform includes a simple
object database with a JavaScript API for persistently storing
JavaScript objects on the user’s computer and retrieving them as
needed.

IndexedDB is an object database, not a relational database, and it is
much simpler than databases that support SQL queries. It is more
powerful, efficient, and robust than the key/value storage provided by
the localStorage, however. Like the localStorage, IndexedDB
databases are scoped to the origin of the containing document: two web
pages with the same origin can access each other’s data, but web pages
from different origins cannot.

Each origin can have any number of IndexedDB databases. Each one has a
name that must be unique within the origin. In the IndexedDB API, a
database is simply a collection of named object stores. As the name
implies, an object store stores objects. Objects are serialized into
the object store using the structured clone algorithm (see
“The Structured Clone Algorithm”), which means that the objects you store can have
properties whose values are Maps, Sets, or typed arrays. Each object
must have a key by which it can be sorted and retrieved from the
store. Keys must be unique—two objects in the same store may not have
the same key—and they must have a natural ordering so that they can be
sorted. JavaScript strings, numbers, and Date objects are valid
keys. An IndexedDB database can automatically generate a unique key
for each object you insert into the database. Often, though, the
objects you insert into an object store will already have a property
that is suitable for use as a key. In this case, you specify a “key
path” for that property when you create the object
store. Conceptually, a key path is a value that tells the database how
to extract an object’s key from the object.

In addition to retrieving objects from an object store by their primary
key value, you may want to be able to search based on the value of
other properties in the object. In order to be able to do this, you can
define any number of indexes on the object store. (The ability to
index an object store explains the name “IndexedDB.”) Each index
defines a secondary key for the stored objects. These indexes are not
generally unique, and multiple objects may match a single key value.

IndexedDB provides atomicity guarantees: queries and updates to the
database are grouped within a transaction so that they all succeed
together or all fail together and never leave the database in an
undefined, partially updated state. Transactions in IndexedDB are
simpler than in many database APIs; we’ll mention them again later.

Conceptually, the IndexedDB API is quite simple. To query or update a
database, you first open the database you want (specifying it by name).
Next, you create a transaction object and use that object to look up
the desired object store within the database, also by name. Finally,
you look up an object by calling the get() method of the object store
or store a new object by calling put() (or by calling add(), if
you want to avoid overwriting existing objects).

If you want to look up the objects for a range of keys, you create an
IDBRange object that specifies the upper and lower bounds of the range
and pass it to the getAll() or openCursor() methods of the object
store.

If you want to make a query using a secondary key, you look up the
named index of the object store, then call the get(), getAll(),
or openCursor() methods of the index object, passing either a single
key or an IDBRange object.

This conceptual simplicity of the IndexedDB API is complicated,
however, by the fact that the API is asynchronous (so that web apps
can use it without blocking the browser’s main UI thread). IndexedDB
was defined before Promises were widely supported, so the API is
event-based rather than Promise-based, which means that it does not
work with async and await.

Creating transactions and looking up object stores and indexes are
synchronous operations. But opening a database, updating an object
store, and querying a store or index are all asynchronous
operations. These asynchronous methods all immediately return a
request object. The browser triggers a success or error event on the
request object when the request succeeds or fails, and you can define
handlers with the onsuccess and onerror properties. Inside an
onsuccess handler, the result of the operation is available as the
result property of the request object. Another useful event is the
“complete” event dispatched on transaction objects when a transaction
has completed successfully.

One convenient feature of this asynchronous API is that it simplifies
transaction management. The IndexedDB API forces you to create a
transaction object in order to get the object store on which you can
perform queries and updates. In a synchronous API, you would expect to
explicitly mark the end of the transaction by calling a commit()
method. But with IndexedDB, transactions are automatically committed
(if you do not explicitly abort them) when all the onsuccess event
handlers have run and there are no more pending asynchronous requests
that refer to that transaction.

There is one more event that is important to the IndexedDB API. When
you open a database for the first time, or when you increment the
version number of an existing database, IndexedDB fires an
“upgradeneeded” event on the request object returned by the
indexedDB.open() call. The job of the event handler for
“upgradeneeded” events is to define or update the schema for the new
database (or the new version of the existing database). For IndexedDB
databases, this means creating object stores and defining indexes on
those object stores. And in fact, the only time the IndexedDB API
allows you to create an object store or an index is in response to an
“upgradeneeded” event.

With this high-level overview of IndexedDB in mind, you should now be
able to understand Example 15-13. That example uses IndexedDB to
create and query a database that maps US postal codes (zip codes) to US
cities. It demonstrates many, but not all, of the basic features of
IndexedDB. Example 15-13 is long, but well commented.

Example 15-13. A IndexedDB database of US postal codes

// This utility function asynchronously obtains the database object (creating
// and initializing the DB if necessary) and passes it to the callback.
function withDB(callback) {
 let request = indexedDB.open("zipcodes", 1); // Request v1 of the database
 request.onerror = console.error; // Log any errors
 request.onsuccess = () => { // Or call this when done
 let db = request.result; // The result of the request is the database
 callback(db); // Invoke the callback with the database
 };

 // If version 1 of the database does not yet exist, then this event
 // handler will be triggered. This is used to create and initialize
 // object stores and indexes when the DB is first created or to modify
 // them when we switch from one version of the DB schema to another.
 request.onupgradeneeded = () => { initdb(request.result, callback); };
}

// withDB() calls this function if the database has not been initialized yet.
// We set up the database and populate it with data, then pass the database to
// the callback function.
//
// Our zip code database includes one object store that holds objects like this:
//
// {
// zipcode: "02134",
// city: "Allston",
// state: "MA",
// }
//
// We use the "zipcode" property as the database key and create an index for
// the city name.
function initdb(db, callback) {
 // Create the object store, specifying a name for the store and
 // an options object that includes the "key path" specifying the
 // property name of the key field for this store.
 let store = db.createObjectStore("zipcodes", // store name
 { keyPath: "zipcode" });

 // Now index the object store by city name as well as by zip code.
 // With this method the key path string is passed directly as a
 // required argument rather than as part of an options object.
 store.createIndex("cities", "city");

 // Now get the data we are going to initialize the database with.
 // The zipcodes.json data file was generated from CC-licensed data from
 // www.geonames.org: https://download.geonames.org/export/zip/US.zip
 fetch("zipcodes.json") // Make an HTTP GET request
 .then(response => response.json()) // Parse the body as JSON
 .then(zipcodes => { // Get 40K zip code records
 // In order to insert zip code data into the database we need a
 // transaction object. To create our transaction object, we need
 // to specify which object stores we'll be using (we only have
 // one) and we need to tell it that we'll be doing writes to the
 // database, not just reads:
 let transaction = db.transaction(["zipcodes"], "readwrite");
 transaction.onerror = console.error;

 // Get our object store from the transaction
 let store = transaction.objectStore("zipcodes");

 // The best part about the IndexedDB API is that object stores
 // are *really* simple. Here's how we add (or update) our records:
 for(let record of zipcodes) { store.put(record); }

 // When the transaction completes successfully, the database
 // is initialized and ready for use, so we can call the
 // callback function that was originally passed to withDB()
 transaction.oncomplete = () => { callback(db); };
 });
}

// Given a zip code, use the IndexedDB API to asynchronously look up the city
// with that zip code, and pass it to the specified callback, or pass null if
// no city is found.
function lookupCity(zip, callback) {
 withDB(db => {
 // Create a read-only transaction object for this query. The
 // argument is an array of object stores we will need to use.
 let transaction = db.transaction(["zipcodes"]);

 // Get the object store from the transaction
 let zipcodes = transaction.objectStore("zipcodes");

 // Now request the object that matches the specified zipcode key.
 // The lines above were synchronous, but this one is async.
 let request = zipcodes.get(zip);
 request.onerror = console.error; // Log errors
 request.onsuccess = () => { // Or call this function on success
 let record = request.result; // This is the query result
 if (record) { // If we found a match, pass it to the callback
 callback(`${record.city}, ${record.state}`);
 } else { // Otherwise, tell the callback that we failed
 callback(null);
 }
 };
 });
}

// Given the name of a city, use the IndexedDB API to asynchronously
// look up all zip code records for all cities (in any state) that have
// that (case-sensitive) name.
function lookupZipcodes(city, callback) {
 withDB(db => {
 // As above, we create a transaction and get the object store
 let transaction = db.transaction(["zipcodes"]);
 let store = transaction.objectStore("zipcodes");

 // This time we also get the city index of the object store
 let index = store.index("cities");

 // Ask for all matching records in the index with the specified
 // city name, and when we get them we pass them to the callback.
 // If we expected more results, we might use openCursor() instead.
 let request = index.getAll(city);
 request.onerror = console.error;
 request.onsuccess = () => { callback(request.result); };
 });
}

15.13 Worker Threads and Messaging

One of the fundamental features of JavaScript is that it is
single-threaded: a browser will never run two event handlers at the same
time, and it will never trigger a timer while an event handler is
running, for example. Concurrent updates to application state or to the
document are simply not possible, and client-side programmers do not
need to think about, or even understand, concurrent programming. A
corollary is that client-side JavaScript functions must not run too
long; otherwise, they will tie up the event loop and the web browser will
become unresponsive to user input. This is the reason that fetch() is
an asynchronous function, for example.

Web browsers very carefully relax the single-thread requirement with the
Worker class: instances of this class represent threads that run
concurrently with the main thread and the event loop. Workers live in a
self-contained execution environment with a completely independent
global object and no access to the Window or Document objects. Workers
can communicate with the main thread only through asynchronous message
passing. This means that concurrent modifications of the DOM remain
impossible, but it also means that you can write long-running functions
that do not stall the event loop and hang the browser. Creating a new
worker is not a heavyweight operation like opening a new browser window,
but workers are not flyweight “fibers” either, and it does not make
sense to create new workers to perform trivial operations. Complex web
applications may find it useful to create tens of workers, but it is
unlikely that an application with hundreds or thousands of workers would
be practical.

Workers are useful when your application needs to perform computationally
intensive tasks, such as image processing. Using a worker moves tasks
like this off the main thread so that the browser does not become
unresponsive. And workers also offer the possibility of dividing the
work among multiple threads. But workers are also useful when you have
to perform frequent moderately intensive computations. Suppose, for
example, that you’re implementing a simple in-browser code editor, and
want to include syntax highlighting. To get the highlighting right, you
need to parse the code on every keystroke. But if you do that on the
main thread, it is likely that the parsing code will prevent the
event handlers that respond to the user’s key strokes from running
promptly and the user’s typing experience will be sluggish.

As with any threading API, there are two parts to the Worker API. The
first is the Worker object: this is what a worker looks like from the
outside, to the thread that creates it. The second is the
WorkerGlobalScope: this is the global object for a new worker, and it is
what a worker thread looks like, on the inside, to itself.

The following sections cover Worker and WorkerGlobalScope and also explain
the message-passing API that allows workers to communicate with the main
thread and each other. The same communication API is used to exchange
messages between a document and <iframe> elements contained in the
document, and this is covered in the following sections as well.

15.13.1 Worker Objects

To create a new worker, call the Worker() constructor, passing a
URL that specifies the JavaScript code that the worker is to run:

let dataCruncher = new Worker("utils/cruncher.js");

If you specify a relative URL, it is resolved relative to the URL of
the document that contains the script that called the Worker()
constructor. If you specify an absolute URL, it must have the same
origin (same protocol, host, and port) as that containing document.

Once you have a Worker object, you can send data to it with
postMessage(). The value you pass to postMessage() will be copied
using the structured clone algorithm (see “The Structured Clone Algorithm”), and the
resulting copy will be delivered to the worker via a message event:

dataCruncher.postMessage("/api/data/to/crunch");

Here we’re just passing a single string message, but you can also use
objects, arrays, typed arrays, Maps, Sets, and so on. You can receive
messages from a worker by listening for “message” events on the Worker
object:

dataCruncher.onmessage = function(e) {
 let stats = e.data; // The message is the data property of the event
 console.log(`Average: ${stats.mean}`);
}

Like all event targets, Worker objects define the standard
addEventListener() and removeEventListener() methods, and you can
use these in place of the onmessage.

In addition to postMessage(), Worker objects have just one other
method, terminate(), which forces a worker thread to stop running.

15.13.2 The Global Object in Workers

When you create a new worker with the Worker() constructor, you
specify the URL of a file of JavaScript code. That code is executed in
a new, pristine JavaScript execution environment, isolated
from the script that created the worker. The global object for that new
execution environment is a WorkerGlobalScope object. A
WorkerGlobalScope is something more than the core JavaScript global
object, but less than a full-blown client-side Window object.

The WorkerGlobalScope object has a postMessage() method and an
onmessage event handler property that are just like those of the
Worker object but work in the opposite direction: calling
postMessage() inside a worker generates a message event outside the
worker, and messages sent from outside the worker are turned into events
and delivered to the onmessage handler. Because the WorkerGlobalScope
is the global object for a worker, postMessage() and onmessage look
like a global function and global variable to worker code.

If you pass an object as the second argument to the Worker()
constructor, and if that object has a name property, then the value of
that property becomes the value of the name property in the worker’s
global object. A worker might include this name in any messages it
prints with console.warn() or console.error().

The close() function allows a worker to terminate itself, and it is
similar in effect to the terminate() method of a Worker object.

Since WorkerGlobalScope is the global object for workers, it has all of
the properties of the core JavaScript global object, such as the JSON
object, the isNaN() function, and the Date() constructor. In
addition, however, WorkerGlobalScope also has the following properties
of the client-side Window object:

	
self is a reference to the global object itself. WorkerGlobalScope
is not a Window object and does not define a window property.

	
The timer methods setTimeout(), clearTimeout(), setInterval(),
and clearInterval().

	
A location property that describes the URL that was passed to the
Worker() constructor. This property refers to a Location object, just
as the location property of a Window does. The Location object has
properties href, protocol, host, hostname, port, pathname,
search, and hash. In a worker, these properties are read-only,
however.

	
A navigator property that refers to an object with properties like
those of the Navigator object of a window. A worker’s Navigator object
has the properties appName, appVersion, platform, userAgent, and
onLine.

	
The usual event target methods addEventListener() and
removeEventListener().

Finally, the WorkerGlobalScope object includes important client-side
JavaScript APIs including the Console object, the fetch() function,
and the IndexedDB API. WorkerGlobalScope also includes the Worker()
constructor, which means that worker threads can create their own
workers.

15.13.3 Importing Code into a Worker

Workers were defined in web browsers before JavaScript had a module
system, so workers have a unique system for including additional
code. WorkerGlobalScope defines importScripts() as a global function
that all workers have access to:

// Before we start working, load the classes and utilities we'll need
importScripts("utils/Histogram.js", "utils/BitSet.js");

importScripts() takes one or more URL arguments, each of which should
refer to a file of JavaScript code. Relative URLs are resolved relative
to the URL that was passed to the Worker() constructor (not relative
to the containing document). importScripts() synchronously loads and
executes these files one after the other, in the order in which they
were specified. If loading a script causes a network error, or if
executing throws an error of any sort, none of the subsequent scripts
are loaded or executed. A script loaded with importScripts() can
itself call importScripts() to load the files it depends on. Note,
however, that importScripts() does not try to keep track of what
scripts have already loaded and does nothing to prevent dependency
cycles.

importScripts() is a synchronous function: it does not return until
all of the scripts have loaded and executed. You can start using the
scripts you loaded as soon as importScripts() returns: there is no
need for a callback, event handler, then() method or await. Once you
have internalized the asynchronous nature of client-side JavaScript, it
feels strange to go back to simple, synchronous programming
again. But that is the beauty of threads: you can use a blocking
function call in a worker without blocking the event loop in the main
thread, and without blocking the computations being concurrently
performed in other workers.

Modules in Workers

In order to use modules in workers, you must pass a second argument to
the Worker() constructor. This second argument must be an object with
a type property set to the string “module.” Passing a type:"module"
option to the Worker() constructor is much like using the
type="module" attribute on an HTML <script> tag: it means that the
code should be interpreted as a module and that import declarations
are allowed.

When a worker loads a module instead of a traditional script, the
WorkerGlobalScope does not define the importScripts() function.

Note that as of early 2020, Chrome is the only browser that supports
true modules and import declarations in workers.

15.13.4 Worker Execution Model

Worker threads run their code (and all imported scripts or modules)
synchronously from top to bottom, and then enter an asynchronous phase
in which they respond to events and timers. If a worker registers a
“message” event handler, it will never exit as long as there is a
possibility that message events will still arrive. But if a worker
doesn’t listen for messages, it will run until there are no further
pending tasks (such as fetch() promises and timers) and all
task-related callbacks have been called. Once all registered callbacks
have been called, there is no way a worker can begin a new task, so it
is safe for the thread to exit, which it will do automatically. A worker
can also explicitly shut itself down by calling the global close()
function. Note that there are no properties or methods on the Worker
object that specify whether a worker thread is still running or not, so
workers should not close themselves without somehow coordinating this
with their parent thread.

Errors in Workers

If an exception occurs in a worker and is not caught by any catch
clause, then an “error” event is triggered on the global object of the
worker. If this event is handled and the handler calls the
preventDefault() method of the event object, the error propagation
ends. Otherwise, the “error” event is fired on the Worker object. If
preventDefault() is called there, then propagation ends. Otherwise, an
error message is printed in the developer console and the onerror
handler (§15.1.7) of the Window object is invoked.

// Handle uncaught worker errors with a handler inside the worker.
self.onerror = function(e) {
 console.log(`Error in worker at ${e.filename}:${e.lineno}: ${e.message}`);
 e.preventDefault();
};

// Or, handle uncaught worker errors with a handler outside the worker.
worker.onerror = function(e) {
 console.log(`Error in worker at ${e.filename}:${e.lineno}: ${e.message}`);
 e.preventDefault();
};

Like windows, workers can register a handler to be invoked when a
Promise is rejected and there is no .catch() function to handle
it. Within a worker you can detect this by defining a
self.onunhandledrejection function or by using addEventListener()
to register a global handler for “unhandledrejection” events. The
event object passed to this handler will have a promise property
whose value is the Promise object that rejected and a reason
property whose value is what would have been passed to a .catch()
function.

15.13.5 postMessage(), MessagePorts, and MessageChannels

The postMessage() method of the Worker object and the global
postMesage() function defined inside a worker both work by invoking
the postMessage() methods of a pair of MessagePort objects that are
automatically created along with the worker. Client-side JavaScript
can’t directly access these automatically created MessagePort objects,
but it can create new pairs of connected ports with the
MessageChannel() constructor:

let channel = new MessageChannel; // Create a new channel.
let myPort = channel.port1; // It has two ports
let yourPort = channel.port2; // connected to each other.

myPort.postMessage("Can you hear me?"); // A message posted to one will
yourPort.onmessage = (e) => console.log(e.data); // be received on the other.

A MessageChannel is an object with port1 and port2 properties that
refer to a pair of connected MessagePort objects. A MessagePort is an
object with a postMessage() method and an onmessage event handler
property. When postMessage() is called on
one port of a connected pair, a “message” event is fired on the other
port in the pair. You can receive these “message” events by setting the
onmessage property or by using addEventListener() to register a
listener for “message” events.

Messages sent to a port are queued until the onmessage property is
defined or until the start() method is called on the port. This
prevents messages sent by one end of the channel from being missed by
the other end. If you use addEventListener() with a MessagePort, don’t
forget to call start() or you may never see a message delivered.

All the postMessage() calls we’ve seen so far have taken a single
message argument. But the method also accepts an optional second
argument. This second argument is an array of items that are to be
transferred to the other end of the channel instead of having a copy
sent across the channel. Values that can be transferred instead of
copied are MessagePorts and ArrayBuffers. (Some browsers also
implement other transferable types, such as ImageBitmap and
OffscreenCanvas. These are not universally supported, however, and are
not covered in this book.) If the first argument to postMessage()
includes a MessagePort (nested anywhere within the message object),
then that MessagePort must also appear in the second argument. If you
do this, then the MessagePort will become available to the other end of
the channel and will immediately become nonfunctional on your
end. Suppose you have created a worker and want to have two channels
for communicating with it: one channel for ordinary data exchange and
one channel for high-priority messages. In the main thread, you might
create a MessageChannel, then call postMessage() on the worker to
pass one of the MessagePorts to it:

let worker = new Worker("worker.js");
let urgentChannel = new MessageChannel();
let urgentPort = urgentChannel.port1;
worker.postMessage({ command: "setUrgentPort", value: urgentChannel.port2 },
 [urgentChannel.port2]);
// Now we can receive urgent messages from the worker like this
urgentPort.addEventListener("message", handleUrgentMessage);
urgentPort.start(); // Start receiving messages
// And send urgent messages like this
urgentPort.postMessage("test");

MessageChannels are also useful if you create two workers and want to
allow them to communicate directly with each other rather than requiring
code on the main thread to relay messages between them.

The other use of the second argument to postMessage() is to transfer
ArrayBuffers between workers without having to copy them. This is an
important performance enhancement for large ArrayBuffers like those
used to hold image data. When an ArrayBuffer is transferred over a
MessagePort, the ArrayBuffer becomes unusable in the original thread
so that there is no possibility of concurrent access to its contents.
If the first argument to postMessage() includes an ArrayBuffer, or
any value (such as a typed array) that has an ArrayBuffer, then that
buffer may appear as an array element in the second postMessage()
argument. If it does appear, then it will be transferred without
copying. If not, then the ArrayBuffer will be copied rather than
transferred. Example 15-14 will demonstrate
the use of this transfer technique with ArrayBuffers.

15.13.6 Cross-Origin Messaging with postMessage()

There is another use case for the postMessage() method in client-side
JavaScript. It involves windows instead of workers, but there are enough
similarities between the two cases that we will describe the
postMessage() method of the Window object here.

When a document contains an <iframe> element, that element acts as an
embedded but independent window. The Element object that represents the
<iframe> has a contentWindow property that is the Window object for
the embedded document. And for scripts running within that nested
iframe, the window.parent property refers to the containing Window
object. When two windows display documents with the same origin, then
scripts in each of those windows have access to the contents of the
other window. But when the documents have different origins, the browser’s same-origin policy prevents JavaScript in one window from accessing
the content of another window.

For workers, postMessage() provides a safe way for two independent
threads to communicate without sharing memory. For windows,
postMessage() provides a controlled way for two independent origins to
safely exchange messages. Even if the same-origin policy prevents your
script from seeing the content of another window, you can still call
postMessage() on that window, and doing so will cause a “message”
event to be triggered on that window, where it can be seen by the event
handlers in that window’s scripts.

The postMessage() method of a Window is a little different than the
postMessage() method of a Worker, however. The first argument is still an
arbitrary message that will be copied by the structured clone
algorithm. But the optional second argument listing objects to be
transferred instead of copied becomes an optional third argument. The
postMessage() method of a window takes a string as its required second
argument. This second argument should be an origin (a protocol, hostname,
and optional port) that specifies who you expect to be receiving the
message. If you pass the string “https://good.example.com” as the second
argument, but the window you are posting the message to actually
contains content from “https://malware.example.com,” then the message
you posted will not be delivered. If you are willing to send your
message to content from any origin, then you can pass the wildcard “*”
as the second argument.

JavaScript code running inside a window or <iframe> can receive
messages posted to that window or frame by defining the onmessage
property of that window or by calling addEventListener() for “message”
events. As with workers, when you receive a “message” event for a window,
the data property of the event object is the message that was sent. In
addition, however, “message” events delivered to windows also define
source and origin properties. The source property specifies the
Window object that sent the event, and you can use
event.source.postMessage() to send a reply. The origin property
specifies the origin of the content in the source window. This is not
something the sender of the message can forge, and when you receive a
“message” event, you will typically want to verify that it is from an
origin you expect.

15.14 Example: The Mandelbrot Set

This chapter on client-side JavaScript culminates with a long example
that demonstrates using workers and messaging to parallelize
computationally intensive tasks. But it is written to be an engaging,
real-world web application and also demonstrates a number of the other
APIs demonstrated in this chapter, including history management; use of
the ImageData class with a <canvas>; and the use of keyboard, pointer,
and resize events. It also demonstrates important core JavaScript
features, including generators and a sophisticated use of Promises.

The example is a program for displaying and exploring the Mandelbrot set,
a complex fractal that includes beautiful images like the one shown
in Figure 15-16.

[image: js7e 1515]
Figure 15-16. A portion of the Mandelbrot set

The Mandelbrot set is defined as the set of points on the complex plane,
which, when put through a repeated process of complex multiplication and
addition, produce a value whose magnitude remains bounded. The contours
of the set are surprisingly complex, and computing which points are
members of the set and which are not is computationally intensive: to
produce a 500×500 image of the Mandelbrot set, you must individually
compute the membership of each of the 250,000 pixels in your image. And
to verify that the value associated with each pixel remains bounded, you
may have to repeat the process of complex multiplication 1,000 times or
more. (More iterations give more sharply defined boundaries for the
set; fewer iterations produce fuzzier boundaries.) With up to 250
million steps of complex arithmetic required to produce a high-quality
image of the Mandelbrot set, you can understand why using workers is a
valuable technique. Example 15-14 shows the worker code we
will use. This file is relatively compact: it is just the raw
computational muscle for the larger program. Two things are worth noting
about it, however:

	
The worker creates an ImageData object to represent the rectangular
grid of pixels for which it is computing Mandelbrot set
membership. But instead of storing actual pixel values in the
ImageData, it uses a custom-typed array to treat each pixel as
a 32-bit integer. It stores the number of iterations required for each
pixel in this array. If the magnitude of the complex number computed
for each pixel becomes greater than four, then it is mathematically
guaranteed to grow without bounds from then on, and we say it has
“escaped.” So the value this worker returns for each pixel is the
number of iterations before the value escaped. We tell the worker the
maximum number of iterations it should try for each value, and pixels
that reach this maximum number are considered to be in the set.

	
The worker transfers the ArrayBuffer associated with the ImageData back
to the main thread so the memory associated with it does not need to
be copied.

Example 15-14. Worker code for computing regions of the Mandelbrot set

// This is a simple worker that receives a message from its parent thread,
// performs the computation described by that message and then posts the
// result of that computation back to the parent thread.
onmessage = function(message) {
 // First, we unpack the message we received:
 // - tile is an object with width and height properties. It specifies the
 // size of the rectangle of pixels for which we will be computing
 // Mandelbrot set membership.
 // - (x0, y0) is the point in the complex plane that corresponds to the
 // upper-left pixel in the tile.
 // - perPixel is the pixel size in both the real and imaginary dimensions.
 // - maxIterations specifies the maximum number of iterations we will
 // perform before deciding that a pixel is in the set.
 const {tile, x0, y0, perPixel, maxIterations} = message.data;
 const {width, height} = tile;

 // Next, we create an ImageData object to represent the rectangular array
 // of pixels, get its internal ArrayBuffer, and create a typed array view
 // of that buffer so we can treat each pixel as a single integer instead of
 // four individual bytes. We'll store the number of iterations for each
 // pixel in this iterations array. (The iterations will be transformed into
 // actual pixel colors in the parent thread.)
 const imageData = new ImageData(width, height);
 const iterations = new Uint32Array(imageData.data.buffer);

 // Now we begin the computation. There are three nested for loops here.
 // The outer two loop over the rows and columns of pixels, and the inner
 // loop iterates each pixel to see if it "escapes" or not. The various
 // loop variables are the following:
 // - row and column are integers representing the pixel coordinate.
 // - x and y represent the complex point for each pixel: x + yi.
 // - index is the index in the iterations array for the current pixel.
 // - n tracks the number of iterations for each pixel.
 // - max and min track the largest and smallest number of iterations
 // we've seen so far for any pixel in the rectangle.
 let index = 0, max = 0, min=maxIterations;
 for(let row = 0, y = y0; row < height; row++, y += perPixel) {
 for(let column = 0, x = x0; column < width; column++, x += perPixel) {
 // For each pixel we start with the complex number c = x+yi.
 // Then we repeatedly compute the complex number z(n+1) based on
 // this recursive formula:
 // z(0) = c
 // z(n+1) = z(n)^2 + c
 // If |z(n)| (the magnitude of z(n)) is > 2, then the
 // pixel is not part of the set and we stop after n iterations.
 let n; // The number of iterations so far
 let r = x, i = y; // Start with z(0) set to c
 for(n = 0; n < maxIterations; n++) {
 let rr = r*r, ii = i*i; // Square the two parts of z(n).
 if (rr + ii > 4) { // If |z(n)|^2 is > 4 then
 break; // we've escaped and can stop iterating.
 }
 i = 2*r*i + y; // Compute imaginary part of z(n+1).
 r = rr - ii + x; // And the real part of z(n+1).
 }
 iterations[index++] = n; // Remember # iterations for each pixel.
 if (n > max) max = n; // Track the maximum number we've seen.
 if (n < min) min = n; // And the minimum as well.
 }
 }

 // When the computation is complete, send the results back to the parent
 // thread. The imageData object will be copied, but the giant ArrayBuffer
 // it contains will be transferred for a nice performance boost.
 postMessage({tile, imageData, min, max}, [imageData.data.buffer]);
};

The Mandelbrot set viewer application that uses that worker code is
shown in Example 15-15. Now that you have nearly reached the end of
this chapter, this long example is something of a capstone experience that
brings together a number of important core and client-side JavaScript
features and APIs. The code is thoroughly commented, and I encourage you to
read it carefully.

Example 15-15. A web application for displaying and exploring the Mandelbrot set

/*
 * This class represents a subrectangle of a canvas or image. We use Tiles to
 * divide a canvas into regions that can be processed independently by Workers.
 */
class Tile {
 constructor(x, y, width, height) {
 this.x = x; // The properties of a Tile object
 this.y = y; // represent the position and size
 this.width = width; // of the tile within a larger
 this.height = height; // rectangle.
 }

 // This static method is a generator that divides a rectangle of the
 // specified width and height into the specified number of rows and
 // columns and yields numRows*numCols Tile objects to cover the rectangle.
 static *tiles(width, height, numRows, numCols) {
 let columnWidth = Math.ceil(width / numCols);
 let rowHeight = Math.ceil(height / numRows);

 for(let row = 0; row < numRows; row++) {
 let tileHeight = (row < numRows-1)
 ? rowHeight // height of most rows
 : height - rowHeight * (numRows-1); // height of last row
 for(let col = 0; col < numCols; col++) {
 let tileWidth = (col < numCols-1)
 ? columnWidth // width of most columns
 : width - columnWidth * (numCols-1); // and last column

 yield new Tile(col * columnWidth, row * rowHeight,
 tileWidth, tileHeight);
 }
 }
 }
}

/*
 * This class represents a pool of workers, all running the same code. The
 * worker code you specify must respond to each message it receives by
 * performing some kind of computation and then posting a single message with
 * the result of that computation.
 *
 * Given a WorkerPool and message that represents work to be performed, simply
 * call addWork(), with the message as an argument. If there is a Worker
 * object that is currently idle, the message will be posted to that worker
 * immediately. If there are no idle Worker objects, the message will be
 * queued and will be posted to a Worker when one becomes available.
 *
 * addWork() returns a Promise, which will resolve with the message recieved
 * from the work, or will reject if the worker throws an unhandled error.
 */
class WorkerPool {
 constructor(numWorkers, workerSource) {
 this.idleWorkers = []; // Workers that are not currently working
 this.workQueue = []; // Work not currently being processed
 this.workerMap = new Map(); // Map workers to resolve and reject funcs

 // Create the specified number of workers, add message and error
 // handlers and save them in the idleWorkers array.
 for(let i = 0; i < numWorkers; i++) {
 let worker = new Worker(workerSource);
 worker.onmessage = message => {
 this._workerDone(worker, null, message.data);
 };
 worker.onerror = error => {
 this._workerDone(worker, error, null);
 };
 this.idleWorkers[i] = worker;
 }
 }

 // This internal method is called when a worker finishes working, either
 // by sending a message or by throwing an error.
 _workerDone(worker, error, response) {
 // Look up the resolve() and reject() functions for this worker
 // and then remove the worker's entry from the map.
 let [resolver, rejector] = this.workerMap.get(worker);
 this.workerMap.delete(worker);

 // If there is no queued work, put this worker back in
 // the list of idle workers. Otherwise, take work from the queue
 // and send it to this worker.
 if (this.workQueue.length === 0) {
 this.idleWorkers.push(worker);
 } else {
 let [work, resolver, rejector] = this.workQueue.shift();
 this.workerMap.set(worker, [resolver, rejector]);
 worker.postMessage(work);
 }

 // Finally, resolve or reject the promise associated with the worker.
 error === null ? resolver(response) : rejector(error);
 }

 // This method adds work to the worker pool and returns a Promise that
 // will resolve with a worker's response when the work is done. The work
 // is a value to be passed to a worker with postMessage(). If there is an
 // idle worker, the work message will be sent immediately. Otherwise it
 // will be queued until a worker is available.
 addWork(work) {
 return new Promise((resolve, reject) => {
 if (this.idleWorkers.length > 0) {
 let worker = this.idleWorkers.pop();
 this.workerMap.set(worker, [resolve, reject]);
 worker.postMessage(work);
 } else {
 this.workQueue.push([work, resolve, reject]);
 }
 });
 }
}

/*
 * This class holds the state information necessary to render a Mandelbrot set.
 * The cx and cy properties give the point in the complex plane that is the
 * center of the image. The perPixel property specifies how much the real and
 * imaginary parts of that complex number changes for each pixel of the image.
 * The maxIterations property specifies how hard we work to compute the set.
 * Larger numbers require more computation but produce crisper images.
 * Note that the size of the canvas is not part of the state. Given cx, cy, and
 * perPixel we simply render whatever portion of the Mandelbrot set fits in
 * the canvas at its current size.
 *
 * Objects of this type are used with history.pushState() and are used to read
 * the desired state from a bookmarked or shared URL.
 */
class PageState {
 // This factory method returns an initial state to display the entire set.
 static initialState() {
 let s = new PageState();
 s.cx = -0.5;
 s.cy = 0;
 s.perPixel = 3/window.innerHeight;
 s.maxIterations = 500;
 return s;
 }

 // This factory method obtains state from a URL, or returns null if
 // a valid state could not be read from the URL.
 static fromURL(url) {
 let s = new PageState();
 let u = new URL(url); // Initialize state from the url's search params.
 s.cx = parseFloat(u.searchParams.get("cx"));
 s.cy = parseFloat(u.searchParams.get("cy"));
 s.perPixel = parseFloat(u.searchParams.get("pp"));
 s.maxIterations = parseInt(u.searchParams.get("it"));
 // If we got valid values, return the PageState object, otherwise null.
 return (isNaN(s.cx) || isNaN(s.cy) || isNaN(s.perPixel)
 || isNaN(s.maxIterations))
 ? null
 : s;
 }

 // This instance method encodes the current state into the search
 // parameters of the browser's current location.
 toURL() {
 let u = new URL(window.location);
 u.searchParams.set("cx", this.cx);
 u.searchParams.set("cy", this.cy);
 u.searchParams.set("pp", this.perPixel);
 u.searchParams.set("it", this.maxIterations);
 return u.href;
 }
}

// These constants control the parallelism of the Mandelbrot set computation.
// You may need to adjust them to get optimum performance on your computer.
const ROWS = 3, COLS = 4, NUMWORKERS = navigator.hardwareConcurrency || 2;

// This is the main class of our Mandelbrot set program. Simply invoke the
// constructor function with the <canvas> element to render into. The program
// assumes that this <canvas> element is styled so that it is always as big
// as the browser window.
class MandelbrotCanvas {
 constructor(canvas) {
 // Store the canvas, get its context object, and initialize a WorkerPool
 this.canvas = canvas;
 this.context = canvas.getContext("2d");
 this.workerPool = new WorkerPool(NUMWORKERS, "mandelbrotWorker.js");

 // Define some properties that we'll use later
 this.tiles = null; // Subregions of the canvas
 this.pendingRender = null; // We're not currently rendering
 this.wantsRerender = false; // No render is currently requested
 this.resizeTimer = null; // Prevents us from resizing too frequently
 this.colorTable = null; // For converting raw data to pixel values.

 // Set up our event handlers
 this.canvas.addEventListener("pointerdown", e => this.handlePointer(e));
 window.addEventListener("keydown", e => this.handleKey(e));
 window.addEventListener("resize", e => this.handleResize(e));
 window.addEventListener("popstate", e => this.setState(e.state, false));

 // Initialize our state from the URL or start with the initial state.
 this.state =
 PageState.fromURL(window.location) || PageState.initialState();

 // Save this state with the history mechanism.
 history.replaceState(this.state, "", this.state.toURL());

 // Set the canvas size and get an array of tiles that cover it.
 this.setSize();

 // And render the Mandelbrot set into the canvas.
 this.render();
 }

 // Set the canvas size and initialize an array of Tile objects. This
 // method is called from the constructor and also by the handleResize()
 // method when the browser window is resized.
 setSize() {
 this.width = this.canvas.width = window.innerWidth;
 this.height = this.canvas.height = window.innerHeight;
 this.tiles = [...Tile.tiles(this.width, this.height, ROWS, COLS)];
 }

 // This function makes a change to the PageState, then re-renders the
 // Mandelbrot set using that new state, and also saves the new state with
 // history.pushState(). If the first argument is a function that function
 // will be called with the state object as its argument and should make
 // changes to the state. If the first argument is an object, then we simply
 // copy the properties of that object into the state object. If the optional
 // second argument is false, then the new state will not be saved. (We
 // do this when calling setState in response to a popstate event.)
 setState(f, save=true) {
 // If the argument is a function, call it to update the state.
 // Otherwise, copy its properties into the current state.
 if (typeof f === "function") {
 f(this.state);
 } else {
 for(let property in f) {
 this.state[property] = f[property];
 }
 }

 // In either case, start rendering the new state ASAP.
 this.render();

 // Normally we save the new state. Except when we're called with
 // a second argument of false which we do when we get a popstate event.
 if (save) {
 history.pushState(this.state, "", this.state.toURL());
 }
 }

 // This method asynchronously draws the portion of the Mandelbrot set
 // specified by the PageState object into the canvas. It is called by
 // the constructor, by setState() when the state changes, and by the
 // resize event handler when the size of the canvas changes.
 render() {
 // Sometimes the user may use the keyboard or mouse to request renders
 // more quickly than we can perform them. We don't want to submit all
 // the renders to the worker pool. Instead if we're rendering, we'll
 // just make a note that a new render is needed, and when the current
 // render completes, we'll render the current state, possibly skipping
 // multiple intermediate states.
 if (this.pendingRender) { // If we're already rendering,
 this.wantsRerender = true; // make a note to rerender later
 return; // and don't do anything more now.
 }

 // Get our state variables and compute the complex number for the
 // upper left corner of the canvas.
 let {cx, cy, perPixel, maxIterations} = this.state;
 let x0 = cx - perPixel * this.width/2;
 let y0 = cy - perPixel * this.height/2;

 // For each of our ROWS*COLS tiles, call addWork() with a message
 // for the code in mandelbrotWorker.js. Collect the resulting Promise
 // objects into an array.
 let promises = this.tiles.map(tile => this.workerPool.addWork({
 tile: tile,
 x0: x0 + tile.x * perPixel,
 y0: y0 + tile.y * perPixel,
 perPixel: perPixel,
 maxIterations: maxIterations
 }));

 // Use Promise.all() to get an array of responses from the array of
 // promises. Each response is the computation for one of our tiles.
 // Recall from mandelbrotWorker.js that each response includes the
 // Tile object, an ImageData object that includes iteration counts
 // instead of pixel values, and the minimum and maximum iterations
 // for that tile.
 this.pendingRender = Promise.all(promises).then(responses => {

 // First, find the overall max and min iterations over all tiles.
 // We need these numbers so we can assign colors to the pixels.
 let min = maxIterations, max = 0;
 for(let r of responses) {
 if (r.min < min) min = r.min;
 if (r.max > max) max = r.max;
 }

 // Now we need a way to convert the raw iteration counts from the
 // workers into pixel colors that will be displayed in the canvas.
 // We know that all the pixels have between min and max iterations
 // so we precompute the colors for each iteration count and store
 // them in the colorTable array.

 // If we haven't allocated a color table yet, or if it is no longer
 // the right size, then allocate a new one.
 if (!this.colorTable || this.colorTable.length !== maxIterations+1){
 this.colorTable = new Uint32Array(maxIterations+1);
 }

 // Given the max and the min, compute appropriate values in the
 // color table. Pixels in the set will be colored fully opaque
 // black. Pixels outside the set will be translucent black with higher
 // iteration counts resulting in higher opacity. Pixels with
 // minimum iteration counts will be transparent and the white
 // background will show through, resulting in a grayscale image.
 if (min === max) { // If all the pixels are the same,
 if (min === maxIterations) { // Then make them all black
 this.colorTable[min] = 0xFF000000;
 } else { // Or all transparent.
 this.colorTable[min] = 0;
 }
 } else {
 // In the normal case where min and max are different, use a
 // logarithic scale to assign each possible iteration count an
 // opacity between 0 and 255, and then use the shift left
 // operator to turn that into a pixel value.
 let maxlog = Math.log(1+max-min);
 for(let i = min; i <= max; i++) {
 this.colorTable[i] =
 (Math.ceil(Math.log(1+i-min)/maxlog * 255) << 24);
 }
 }

 // Now translate the iteration numbers in each response's
 // ImageData to colors from the colorTable.
 for(let r of responses) {
 let iterations = new Uint32Array(r.imageData.data.buffer);
 for(let i = 0; i < iterations.length; i++) {
 iterations[i] = this.colorTable[iterations[i]];
 }
 }

 // Finally, render all the imageData objects into their
 // corresponding tiles of the canvas using putImageData().
 // (First, though, remove any CSS transforms on the canvas that may
 // have been set by the pointerdown event handler.)
 this.canvas.style.transform = "";
 for(let r of responses) {
 this.context.putImageData(r.imageData, r.tile.x, r.tile.y);
 }
 })
 .catch((reason) => {
 // If anything went wrong in any of our Promises, we'll log
 // an error here. This shouldn't happen, but this will help with
 // debugging if it does.
 console.error("Promise rejected in render():", reason);
 })
 .finally(() => {
 // When we are done rendering, clear the pendingRender flags
 this.pendingRender = null;
 // And if render requests came in while we were busy, rerender now.
 if (this.wantsRerender) {
 this.wantsRerender = false;
 this.render();
 }
 });
 }

 // If the user resizes the window, this function will be called repeatedly.
 // Resizing a canvas and rerendering the Mandlebrot set is an expensive
 // operation that we can't do multiple times a second, so we use a timer
 // to defer handling the resize until 200ms have elapsed since the last
 // resize event was received.
 handleResize(event) {
 // If we were already deferring a resize, clear it.
 if (this.resizeTimer) clearTimeout(this.resizeTimer);
 // And defer this resize instead.
 this.resizeTimer = setTimeout(() => {
 this.resizeTimer = null; // Note that resize has been handled
 this.setSize(); // Resize canvas and tiles
 this.render(); // Rerender at the new size
 }, 200);
 }

 // If the user presses a key, this event handler will be called.
 // We call setState() in response to various keys, and setState() renders
 // the new state, updates the URL, and saves the state in browser history.
 handleKey(event) {
 switch(event.key) {
 case "Escape": // Type Escape to go back to the initial state
 this.setState(PageState.initialState());
 break;
 case "+": // Type + to increase the number of iterations
 this.setState(s => {
 s.maxIterations = Math.round(s.maxIterations*1.5);
 });
 break;
 case "-": // Type - to decrease the number of iterations
 this.setState(s => {
 s.maxIterations = Math.round(s.maxIterations/1.5);
 if (s.maxIterations < 1) s.maxIterations = 1;
 });
 break;
 case "o": // Type o to zoom out
 this.setState(s => s.perPixel *= 2);
 break;
 case "ArrowUp": // Up arrow to scroll up
 this.setState(s => s.cy -= this.height/10 * s.perPixel);
 break;
 case "ArrowDown": // Down arrow to scroll down
 this.setState(s => s.cy += this.height/10 * s.perPixel);
 break;
 case "ArrowLeft": // Left arrow to scroll left
 this.setState(s => s.cx -= this.width/10 * s.perPixel);
 break;
 case "ArrowRight": // Right arrow to scroll right
 this.setState(s => s.cx += this.width/10 * s.perPixel);
 break;
 }
 }

 // This method is called when we get a pointerdown event on the canvas.
 // The pointerdown event might be the start of a zoom gesture (a click or
 // tap) or a pan gesture (a drag). This handler registers handlers for
 // the pointermove and pointerup events in order to respond to the rest
 // of the gesture. (These two extra handlers are removed when the gesture
 // ends with a pointerup.)
 handlePointer(event) {
 // The pixel coordinates and time of the initial pointer down.
 // Because the canvas is as big as the window, these event coordinates
 // are also canvas coordinates.
 const x0 = event.clientX, y0 = event.clientY, t0 = Date.now();

 // This is the handler for move events.
 const pointerMoveHandler = event => {
 // How much have we moved, and how much time has passed?
 let dx=event.clientX-x0, dy=event.clientY-y0, dt=Date.now()-t0;

 // If the pointer has moved enough or enough time has passed that
 // this is not a regular click, then use CSS to pan the display.
 // (We will rerender it for real when we get the pointerup event.)
 if (dx > 10 || dy > 10 || dt > 500) {
 this.canvas.style.transform = `translate(${dx}px, ${dy}px)`;
 }
 };

 // This is the handler for pointerup events
 const pointerUpHandler = event => {
 // When the pointer goes up, the gesture is over, so remove
 // the move and up handlers until the next gesture.
 this.canvas.removeEventListener("pointermove", pointerMoveHandler);
 this.canvas.removeEventListener("pointerup", pointerUpHandler);

 // How much did the pointer move, and how much time passed?
 const dx = event.clientX-x0, dy=event.clientY-y0, dt=Date.now()-t0;
 // Unpack the state object into individual constants.
 const {cx, cy, perPixel} = this.state;

 // If the pointer moved far enough or if enough time passed, then
 // this was a pan gesture, and we need to change state to change
 // the center point. Otherwise, the user clicked or tapped on a
 // point and we need to center and zoom in on that point.
 if (dx > 10 || dy > 10 || dt > 500) {
 // The user panned the image by (dx, dy) pixels.
 // Convert those values to offsets in the complex plane.
 this.setState({cx: cx - dx*perPixel, cy: cy - dy*perPixel});
 } else {
 // The user clicked. Compute how many pixels the center moves.
 let cdx = x0 - this.width/2;
 let cdy = y0 - this.height/2;

 // Use CSS to quickly and temporarily zoom in
 this.canvas.style.transform =
 `translate(${-cdx*2}px, ${-cdy*2}px) scale(2)`;

 // Set the complex coordinates of the new center point and
 // zoom in by a factor of 2.
 this.setState(s => {
 s.cx += cdx * s.perPixel;
 s.cy += cdy * s.perPixel;
 s.perPixel /= 2;
 });
 }
 };

 // When the user begins a gesture we register handlers for the
 // pointermove and pointerup events that follow.
 this.canvas.addEventListener("pointermove", pointerMoveHandler);
 this.canvas.addEventListener("pointerup", pointerUpHandler);
 }
}

// Finally, here's how we set up the canvas. Note that this JavaScript file
// is self-sufficient. The HTML file only needs to include this one <script>.
let canvas = document.createElement("canvas"); // Create a canvas element
document.body.append(canvas); // Insert it into the body
document.body.style = "margin:0"; // No margin for the <body>
canvas.style.width = "100%"; // Make canvas as wide as body
canvas.style.height = "100%"; // and as high as the body.
new MandelbrotCanvas(canvas); // And start rendering into it!

15.15 Summary and Suggestions for Further Reading

This long chapter has covered the fundamentals of client-side JavaScript
programming:

	
How scripts and JavaScript modules are included in web pages and how
and when they are executed.

	
Client-side JavaScript’s asynchronous, event-driven programming model.

	
The Document Object Model (DOM) that allows JavaScript code to inspect
and modify the HTML content of the document it is embedded
within. This DOM API is the heart of all client-side JavaScript
programming.

	
How JavaScript code can manipulate the CSS styles that are applied to
content within the document.

	
How JavaScript code can obtain the coordinates of document elements
in the browser window and within the document itself.

	
How to create reusable UI “Web Components” with JavaScript, HTML, and CSS
using the Custom Elements and Shadow DOM APIs.

	
How to display and dynamically generate graphics with SVG and the
HTML <canvas> element.

	
How to add scripted sound effects (both recorded and synthesized) to
your web pages.

	
How JavaScript can make the browser load new pages, go backward and
forward in the user’s browsing history, and even add new entries to
the browsing history.

	
How JavaScript programs can exchange data with web servers using the
HTTP and WebSocket protocols.

	
How JavaScript programs can store data in the user’s browser.

	
How JavaScript programs can use worker threads to achieve a safe form
of concurrency.

This has been the longest chapter of the book, by far. But it cannot
come close to covering all the APIs available to web browsers. The web
platform is sprawling and ever-evolving, and my goal for this chapter
was to introduce the most important core APIs. With the knowledge you
have from this book, you are well equipped to learn and use new APIs as
you need them. But you can’t learn about a new API if you don’t know
that it exists, so the short sections that follow end the chapter with a quick
list of web platform features that you might want to investigate in the
future.

15.15.1 HTML and CSS

The web is built upon three key technologies: HTML, CSS, and JavaScript,
and knowledge of JavaScript can take you only so far as a web developer
unless you also develop your expertise with HTML and CSS. It is
important to know how to use JavaScript to manipulate HTML elements and
CSS styles, but that knowledge is is much more useful if you also know
which HTML elements and which CSS styles to use.

So before you start exploring more JavaScript APIs, I would encourage
you to invest some time in mastering the other tools in a web
developer’s toolkit. HTML form and input elements, for example, have
sophisticated behavior that is important to understand, and the flexbox and grid layout modes in CSS are incredibly powerful.

Two topics worth paying particular attention to in this area are
accessibility (including ARIA attributes) and internationalization
(including support for right-to-left writing directions).

15.15.2 Performance

Once you have written a web application and released it to the world,
the never-ending quest to make it fast begins. It is hard to optimize
things that you can’t measure, however, so it is worth familiarizing
yourself with the Performance APIs. The performance property of the
window object is the main entry point to this API. It includes a
high-resolution time source performance.now(), and methods
performance.mark() and performance.measure() for marking critical
points in your code and measuring the elapsed time between them. Calling
these methods creates PerformanceEntry objects that you can access with
performance.getEntries(). Browsers add their own PerformanceEntry
objects any time the browser loads a new page or fetches a file over the
network, and these automatically created PerformanceEntry objects
include granular timing details of your application’s network
performance. The related PerformanceObserver class allows you to specify
a function to be invoked when new PerformanceEntry objects are created.

15.15.3 Security

This chapter introduced the general idea of how to defend against
cross-site scripting (XSS) security vulnerabilities in your
websites, but we did not go into much detail. The topic of web
security is an important one, and you may want to spend some time
learning more about it. In addition to XSS, it is worth learning about
the Content-Security-Policy HTTP header and understanding how CSP
allows you to ask the web browser to restrict the capabilities it
grants to JavaScript code. Understanding CORS (Cross-Origin Resource
Sharing) is also important.

15.15.4 WebAssembly

WebAssembly (or “wasm”) is a low-level virtual machine bytecode format
that is designed to integrate well with JavaScript interpreters in web
browsers. There are compilers that allow you to compile C, C++, and
Rust programs to WebAssembly bytecode and to run those programs in
web browsers at close to native speed, without breaking the browser
sandbox or security model. WebAssembly can export functions that can
be called by JavaScript programs. A typical use case for WebAssembly
would be to compile the standard C-language zlib compression library
so that JavaScript code has access to high-speed compression and
decompression algorithms. Learn more at https://webassembly.org.

15.15.5 More Document and Window Features

The Window and Document objects have a number of features that were not
covered in this chapter:

	
The Window object defines alert(), confirm(), and prompt()
methods that display simple modal dialogues to the user. These methods
block the main thread. The confirm() method synchronously returns a
boolean value, and prompt() synchronously returns a string of user
input. These are not suitable for production use but can be useful
for simple projects and prototypes.

	
The navigator and screen properties of the Window object were
mentioned in passing at the start of this chapter, but the Navigator
and Screen objects that they reference have some features that were
not described here that you may find useful.

	
The requestFullscreen() method of any Element object requests that
that element (a <video> or <canvas> element, for example) be
displayed in fullscreen mode. The exitFullscreen() method of the
Document returns to normal display mode.

	
The requestAnimationFrame() method of the Window object takes a
function as its argument and will execute that function when the
browser is preparing to render the next frame. When you are making
visual changes (especially repeated or animated ones), wrapping your
code within a call to requestAnimationFrame() can help to ensure
that the changes are rendered smoothly and in a way that is optimized
by the browser.

	
If the user selects text within your document, you can obtain details
of that selection with the Window method getSelection() and get the
selected text with getSelection().toString(). In some browsers,
navigator.clipboard is an object with an async API for reading and
setting the content of the system
clipboard to enable copy-and-paste
interactions with applications outside of the browser.

	
A little-known feature of web browsers is that HTML elements with a
contenteditable="true" attribute allow their content to be
edited. The document.execCommand() method enables rich-text editing
features for editable content.

	
A MutationObserver allows JavaScript to monitor changes to, or
beneath, a specified element in the document. Create a
MutationObserver with the MutationObserver() constructor, passing
the callback function that should be called when changes are
made. Then call the observe() method of the MutationObserver to
specify which parts of which element are to be monitored.

	
An IntersectionObserver allows JavaScript to determine which document
elements are on the screen and which are close to being on the
screen. It is particularly useful for applications that want to
dynamically load content on demand as the user scrolls.

15.15.6 Events

The sheer number and diversity of events supported by the web platform
can be daunting. This chapter has discussed a variety of event types,
but here are some more that you may find useful:

	
Browsers fire “online” and “offline” events at the Window object when
the browser gains or loses an internet connection.

	
Browsers fire a “visiblitychange” event at the Document object when
a document becomes visible or invisible (usually because a user has
switched tabs). JavaScript can check document.visibilityState to
determine whether its document is currently “visible” or “hidden.”

	
Browsers support a complicated API to support drag-and-drop UIs and to
support data exchange with applications outside the browser. This API
involves a number of events, including “dragstart,” “dragover,”
“dragend,” and “drop.” This API is tricky to use correctly but useful
when you need it. It is an important API to know about if you want to
enable users to drag files from their desktop into your web
application.

	
The Pointer Lock API enables JavaScript to hide the mouse pointer and
get raw mouse events as relative movement amounts rather than absolute
positions on the screen. This is typically useful for games. Call
requestPointerLock() on the element you want all mouse events
directed to. After you do this, “mousemove” events delivered to that
element will have movementX and movementY properties.

	
The Gamepad API adds support for game controllers. Use
navigator.getGamepads() to get connected Gamepad objects, and listen
for “gamepadconnected” events on the Window object to be notified when
a new controller is plugged in. The Gamepad object defines an API for
querying the current state of the buttons on the controller.

15.15.7 Progressive Web Apps and Service Workers

The term Progressive Web Apps, or PWAs, is a buzzword that describes web
applications that are built using a few key technologies. Careful
documentation of these key technologies would require a book of its own,
and I have not covered them in this chapter, but you should be aware of
all of these APIs. It is worth noting that powerful modern APIs like
these are typically designed to work only on secure HTTPS
connections. Websites that are still using http:// URLs will not be
able to take advantage of these:

	
A ServiceWorker is a kind of worker thread with the ability to
intercept, inspect, and respond to network requests from the web
application that it “services.” When a web application registers a
service worker, that worker’s code becomes persistent in the browser’s
local storage, and when the user visits the associated website again,
the service worker is reactivated. Service workers can cache network
responses (including files of JavaScript code), which means that web
applications that use service workers
can effectively install themselves onto the user’s computer for rapid
startup and offline use. The Service Worker Cookbook at
https://serviceworke.rs is a valuable resource for learning about
service workers and their related technologies.

	
The Cache API is designed for use by service workers (but is also
available to regular JavaScript code outside of workers). It works
with the Request and Response objects defined by the fetch() API and
implements a cache of Request/Response pairs. The Cache API enables a
service worker to cache the scripts and other assets of the web app it
serves and can also help to enable offline use of the web app (which
is particularly important for mobile devices).

	
A Web Manifest is a JSON-formatted file that describes a web
application including a name, a URL, and links to icons in various
sizes. If your web app uses a service worker and includes a <link
rel="manifest"> tag that references a .webmanifest file, then
browsers (particularly browsers on mobile devices) may give you the
option to add an icon for the web app to your desktop or home screen.

	
The Notifications API allows web apps to display notifications using
the native OS notification system on both mobile and desktop
devices. Notifications can include an image and text, and your code
can receive an event if the user clicks on the notification. Using
this API is complicated by the fact that you must first request the
user’s permission to display notifications.

	
The Push API allows web applications that have a service worker (and
that have the user’s permission) to subscribe to notifications from a
server, and to display those notifications even when the application
itself is not running. Push notifications are common on mobile
devices, and the Push API brings web apps closer to feature parity
with native apps on mobile.

15.15.8 Mobile Device APIs

There are a number of web APIs that are primarily useful for web apps
running on mobile devices. (Unfortunately, a number of these APIs only
work on Android devices and not iOS devices.)

	
The Geolocation API allows JavaScript (with the user’s permission) to
determine the user’s physical location. It is well supported on
desktop and mobile devices, including iOS devices. Use
navigator.geolocation.getCurrentPosition() to request the user’s current
position and use navigator.geolocation.watchPosition() to register a
callback to be called when the user’s position changes.

	
The navigator.vibrate() method causes a mobile device (but not iOS)
to vibrate. Often this is only allowed in response to a user gesture,
but calling this method will allow your app to provide silent feedback
that a gesture has been
recognized.

	
The ScreenOrientation API enables a web application to query the
current orientation of a mobile device screen and also to lock
themselves to landscape or portrait orientation.

	
The “devicemotion” and “deviceorientation” events on the window
object report accelerometer and magnetometer data for the device,
enabling you to determine how the device is accelerating and how the
user is orienting it in space. (These events do work on iOS.)

	
The Sensor API is not yet widely supported beyond Chrome on Android
devices, but it enables JavaScript access to the full suite of mobile
device sensors, including accelerometer, gyroscope, magnetometer, and
ambient light sensor. These sensors enable JavaScript to determine
which direction a user is facing or to detect when the user shakes
their phone, for example.

15.15.9 Binary APIs

Typed arrays, ArrayBuffers, and the DataView class (all covered in
§11.2) enable JavaScript to work with binary data. As
described earlier in this chapter, the fetch() API enables JavaScript
programs to load binary data over the network. Another source of binary
data is files from the user’s local filesystem. For security reasons,
JavaScript can’t just read local files. But if the user selects a file
for upload (using an <input type="file> form element) or uses
drag-and-drop to drop a file into your web application, then JavaScript
can access that file as a File object.

File is a subclass of Blob, and as such, it is an opaque representation
of a chunk of data. You can use a FileReader class to asynchronously get
the content of a file as an ArrayBuffer or string. (In some browsers, you
can skip the FileReader and instead use the Promise-based text() and
arrayBuffer() methods defined by the Blob class, or the stream()
method for streaming access to the file contents.)

When working with binary data, especially streaming binary data, you may
need to decode bytes into text or encode text as bytes. The TextEncoder
and TextDecoder classes help with this task.

15.15.10 Media APIs

The navigator.mediaDevices.getUserMedia() function allows JavaScript
to request access to the user’s microphone and/or video camera. A
successful request results in a MediaStream object. Video streams can be
displayed in a <video> tag (by setting the srcObject property to the
stream). Still frames of the video can be captured into an offscreen
<canvas> with the canvas drawImage() function resulting in a
relatively low-resolution photograph. Audio and video streams returned
by getUserMedia() can be recorded and encoded to a Blob with a
MediaRecorder object.

The more complex WebRTC API enables the transmission and reception of
MediaStreams over the network, enabling peer-to-peer video conferencing,
for example.

15.15.11 Cryptography and Related APIs

The crypto property of the Window object exposes a getRandomValues()
method for cryptographically secure pseudorandom numbers. Other methods for
encryption, decryption, key generation, digital signatures, and so on are
available through crypto.subtle. The name of this property is a
warning to everyone who uses these methods that properly using
cryptographic algorithms is difficult and that you should not use those
methods unless you really know what you are doing. Also, the methods
of crypto.subtle are only available to JavaScript code running
within documents that were loaded over a secure HTTPS connection.

The Credential Management API and the Web Authentication API allow
JavaScript to generate, store, and retrieve public key (and other types
of) credentials and enables account creation and login without
passwords. The JavaScript API consists primarily of the functions
navigator.credentials.create() and navigator.credentials.get(), but
substantial infrastructure is required on the server side to make these
methods work. These APIs are not universally supported yet, but have the
potential to revolutionize the way we log in to websites.

The Payment Request API adds browser support for making credit card
payments on the web. It allows users to store their payment details
securely in the browser so that they don’t have to type their credit
card number each time they make a purchase. Web applications that want
to request a payment create a PaymentRequest object and call its
show() method to display the request to the user.

1 Previous editions of this book had an extensive reference section covering the JavaScript standard library and web APIs. It was removed in the seventh edition because MDN has made it obsolete: today, it is quicker to look something up on MDN than it is to flip through a book, and my former colleagues at MDN do a better job at keeping their online documentation up to date than this book ever could.
2 Some sources, including the HTML specification, make a technical distinction between handlers and listeners, based on the way in which they are registered. In this book, we treat the two terms as synonyms.
3 If you have used the React framework to create client-side user interfaces, this may surprise you. React makes a number of minor changes to the client-side event model, and one of them is that in React, event handler property names are written in camelCase: onClick, onMouseOver, and so on. When working with the web platform natively, however, the event handler properties are written entirely in lowercase.
4 The custom element specification allows subclassing of <button> and other specific element classes, but this is not supported in Safari and a different syntax is required to use a custom element that extends anything other than HTMLElement.

Chapter 16. Server-Side JavaScript with Node

Node is JavaScript with bindings to the underlying operating system,
making it possible to write JavaScript programs that read and write
files, execute child processes, and communicate over the network. This
makes Node useful as a:

	
Modern alternative to shell scripts that does not suffer from the
arcane syntax of bash and other Unix shells.

	
General-purpose programming language for running trusted programs,
not subject to the security constraints imposed by web browsers on
untrusted code.

	
Popular environment for writing efficient and highly concurrent
web servers.

The defining feature of Node is its single-threaded event-based
concurrency enabled by an asynchronous-by-default API. If you have
programmed in other languages but have not done much JavaScript
coding, or if you’re an experienced client-side JavaScript programmer
used to writing code for web browers, using Node will be a bit of an
adjustment, as is any new programming language or environment. This
chapter begins by explaining the Node programming model, with an
emphasis on concurrency, Node’s API for working with streaming data,
and Node’s Buffer type for working with binary data. These initial
sections are followed by sections that highlight and demonstrate some
of the most important Node APIs, including those for working with
files, networks, processes, and threads.

One chapter is not enough to document all of Node’s APIs, but my hope
is that this chapter will explain enough of the fundamentals to make
you productive with Node, and confident that you can master any new
APIs you need.

Installing Node

Node is open source software. Visit https://nodejs.org to download
and install Node for Windows and MacOS. On Linux, you may be able to
install Node with your normal package manager, or you can visit
https://nodejs.org/en/download to download the binaries directly. If
you work on containerized software, you can find official Node Docker
images at https://hub.docker.com.

In addition to the Node executable, a Node installation also
includes npm, a package manager that enables easy access to a vast
ecosystem of JavaScript tools and libraries. The examples in this
chapter will use only Node’s built-in packages and will not require
npm or any external libraries.

Finally, do not overlook the official Node documentation, available at
https://nodejs.org/api and https://nodejs.org/docs/guides. I have
found it to be well organized and well written.

16.1 Node Programming Basics

We’ll begin this chapter with a quick look at how Node programs are
structured and how they interact with the operating system.

16.1.1 Console Output

If you are used to JavaScript programming for web browsers, one of the
minor surprises about Node is that console.log() is not just for
debugging, but is Node’s easiest way to display a message to the user,
or, more generally, to send output to the stdout stream. Here’s the
classic “Hello World” program in Node:

console.log("Hello World!");

There are lower-level ways to write to stdout, but no fancier or more
official way than simply calling console.log().

In web browsers, console.log(), console.warn(), and
console.error() typically display little icons next to their output
in the developer console to indicate the variety of the log
message. Node does not do this, but output displayed with
console.error() is distinguished from output displayed with
console.log() because console.error() writes to the stderr
stream. If you’re using Node to write a program that is designed to
have stdout redirected to a file or a pipe, you can use
console.error() to display text to the console where the user will
see it, even though text printed with console.log() is hidden.

16.1.2 Command-Line Arguments and Environment Variables

If you have previously written Unix-style programs designed to be
invoked from a terminal or other command-line interface, you know that
these programs typically get their input primarily from command-line
arguments and secondarily from environment variables.

Node follows these Unix conventions. A Node program can read its
command-line arguments from the array of strings process.argv. The
first element of this array is always the path to the Node
executable. The second argument is the path to the file of JavaScript
code that Node is executing. Any remaining elements in this array are
the space-separated arguments that you passed on the command-line when
you invoked Node.

For example, suppose you save this very short Node program to the file
argv.js:

console.log(process.argv);

You can then execute the program and see output like this:

$ node --trace-uncaught argv.js --arg1 --arg2 filename
[
 '/usr/local/bin/node',
 '/private/tmp/argv.js',
 '--arg1',
 '--arg2',
 'filename'
]

There are a couple of things to note here:

	
The first and second elements of process.argv will be
fully qualified filesystem paths to the Node executable and the file
of JavaScript that is being executed, even if you did not type them
that way.

	
Command-line arguments that are intended for and interpreted by the
Node executable itself are consumed by the Node executable and do
not appear in process.argv. (The --trace-uncaught command-line
argument isn’t actually doing anything useful in the previous example;
it is just there to demonstrate that it does not appear in the
output.) Any arguments (such as --arg1 and filename) that
appear after the name of the JavaScript file will appear in
process.argv.

Node programs can also take input from Unix-style environment
variables. Node makes these available though the process.env
object. The property names of this object are environment variable
names, and the property values (always strings) are the values of
those variables.

Here is a partial list of environment variables on my system:

$ node -p -e 'process.env'
{
 SHELL: '/bin/bash',
 USER: 'david',
 PATH: '/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin',
 PWD: '/tmp',
 LANG: 'en_US.UTF-8',
 HOME: '/Users/david',
}

You can use node -h or node --help to find out what the -p and
-e command-line arguments do. However, as a hint, note that you could rewrite
the line above as node --eval 'process.env' --print.

16.1.3 Program Life Cycle

The node command expects a command-line argument that specifies the
file of JavaScript code to be run. This initial file typically imports
other modules of JavaScript code, and may also define its own classes
and functions. Fundamentally, however, Node executes the JavaScript
code in the specified file from top to bottom. Some Node programs exit
when they are done executing the last line of code in the file. Often,
however, a Node program will keep running long after the initial file
has been executed. As we’ll discuss in the following sections, Node programs are often
asynchronous and based on callbacks and event handlers. Node programs
do not exit until they are done running the initial file and until all
callbacks have been called and there are no more pending events. A
Node-based server program that listens for incoming network
connections will theoretically run forever because it will always be
waiting for more events.

A program can force itself to exit by calling process.exit(). Users
can usually terminate a Node program by typing Ctrl-C in the terminal
window where the program is running. A program can ignore Ctrl-C by
registering a signal handler function with process.on("SIGINT",
()=>{}).

If code in your program throws an exception and no catch clause
catches it, the program will print a stack trace and exit. Because of
Node’s asynchronous nature, exceptions that occur in callbacks or
event handlers must be handled locally or not handled at all, which
means that handling exceptions that occur in the asynchronous parts of
your program can be a difficult problem. If you don’t want these
exceptions to cause your program to completely crash, register a
global handler function that will be invoked instead of crashing:

process.setUncaughtExceptionCaptureCallback(e => {
 console.error("Uncaught exception:", e);
});

A similar situation arises if a Promise created by your program is
rejected and there is no .catch() invocation to handle it. As of
Node 13, this is not a fatal error that causes your program to exit,
but it does print a verbose error message to the console. In some
future version of Node, unhandled Promise rejections are expected to
become fatal errors. If you do not want unhandled rejections, to print
error messages or terminate your program, register a global handler
function:

process.on("unhandledRejection", (reason, promise) => {
 // reason is whatever value would have been passed to a .catch() function
 // promise is the Promise object that rejected
});

16.1.4 Node Modules

Chapter 10 documented JavaScript module systems, covering both Node
modules and ES6 modules. Because Node was created before JavaScript
had a module system, Node had to create its own. Node’s module system
uses the require() function to import values into a module and the
exports object or the module.exports property to export values
from a module. These are a fundamental part of the Node programming
model, and they are covered in detail in §10.2.

Node 13 adds support for standard ES6 modules as well as
require-based modules (which Node calls “CommonJS modules”). The two
module systems are not fully compatible, so this is somewhat tricky to
do. Node needs to know—before it loads a module—whether that module
will be using require() and module.exports or if it will be using
import and export. When Node loads a file of JavaScript code as a
CommonJS module, it automatically defines the require() function
along with identifiers exports and module, and it does not enable
the import and export keywords. On the other hand, when Node loads
a file of code as an ES6 module, it must enable the import and
export declarations, and it must not define extra identifiers like
require, module, and exports.

The simplest way to tell Node what kind of module it is loading is to
encode this information in the file extension. If you save your
JavaScript code in a file that ends with .mjs, then Node will always
load it as an ES6 module, will expect it to use import and export,
and will not provide a require() function. And if you save your code
in a file that ends with .cjs, then Node will always treat it as a
CommonJS module, will provide a require() function, and will throw a
SyntaxError if you use import or export declarations.

For files that do not have an explicit .mjs or .cjs extension,
Node looks for a file named package.json in the same directory as
the file and then in each of the containing directories. Once the
nearest package.json file is found, Node checks for a top-level
type property in the JSON object. If the value of the type
property is “module”, then Node loads the file as an ES6 module. If
the value of that property is
“commonjs”, then Node loads the file as
a CommonJS module. Note that you do not need to have a package.json
file to run Node programs: when no such file is found (or when the
file is found but it does not have a type property), Node defaults to
using CommonJS modules. This package.json trick only becomes
necessary if you want to use ES6 modules with Node and do not want
to use the .mjs file extension.

Because there is an enormous amount of existing Node code written
using CommonJS module format, Node allows ES6 modules to load CommonJS
modules using the import keyword. The reverse is not true,
however: a CommonJS module cannot use require() to load an ES6
module.

16.1.5 The Node Package Manager

When you install Node, you typically get a program named npm as
well. This is the Node Package Manager, and it helps you download
and manage libraries that your program depends on. npm keeps track of
those dependencies (as well as other information about your program)
in a file named package.json in the root directory of your
project. This package.json file created by npm is where you would
add "type":"module" if you wanted to use ES6 modules for your
project.

This chapter does not cover npm in any detail (but see
§17.4 for a little more depth). I’m mentioning
it here because unless you write programs that do not use any external
libraries, you will almost certainly be using npm or a tool like
it. Suppose, for example, that you are going to be developing a web server
and plan to use the Express framework (https://expressjs.com) to
simplify the task. To get started, you might create a directory for
your project, and then, in that directory type npm init. npm will
ask you for your project name, version number, etc., and will then
create an initial package.json file based on your responses.

Now to start using Express, you’d type npm install express.
This tells npm to download the Express library along with
all of its dependencies and install all the packages in a local
node_modules/ directory:

$ npm install express
npm notice created a lockfile as package-lock.json. You should commit this file.
npm WARN my-server@1.0.0 No description
npm WARN my-server@1.0.0 No repository field.

+ express@4.17.1
added 50 packages from 37 contributors and audited 126 packages in 3.058s
found 0 vulnerabilities

When you install a package with npm, npm records this dependency—that
your project depends on Express—in the
package.json file. With this dependency recorded in package.json,
you could give another programmer a copy of your code and your
package.json, and they could simply type npm install to
automatically download and install all of the libraries that your
program needs in order to run.

16.2 Node Is Asynchronous by Default

JavaScript is a general-purpose programming language, so it is
perfectly possible to write CPU-intensive programs that multiply large
matrices or perform complicated statistical analyses. But Node was
designed and optimized for programs—like network servers—that are I/O
intensive. And in particular, Node was designed to make it possible to
easily implement highly concurrent servers that can handle many
requests at the same time.

Unlike many programming languages, however, Node does not achieve
concurrency with threads. Multithreaded programming is notoriously
hard to do correctly, and difficult to debug. Also, threads are a
relatively heavyweight abstraction and if you want to write a server
that can handle hundreds of concurrent requests, using hundreds of
threads may require a prohibitive amount of memory. So Node adopts the
single-threaded JavaScript programming model that the web uses, and
this turns out to be a vast simplification that makes the creation of
network servers a routine skill rather than an arcane one.

True Parallelism with Node

Node programs can run multiple operating system processes, and Node 10
and later support Worker objects (§16.11), which are
a kind of thread borrowed from web browsers. If you use multiple
processes or create one or more Worker threads and run your program on
a system with more than one CPU, then your program will no longer be
single-threaded and your program will truly be executing multiple
streams of code in parallel. These techniques can be valuable for
CPU-intensive operations but are not commonly used for I/O-intensive
programs like servers.

It is worth noting, however, that Node’s processes and Workers avoid
the typical complexity of multithreaded programming because
interprocess and inter-Worker communication is via message passing
and they cannot easily share memory with each other.

Node achieves high levels of concurrency while maintaining a
single-threaded programming model by making its API asynchronous and
nonblocking by default. Node takes its nonblocking approach very
seriously and to an extreme that may surprise you. You probably expect
functions that read from and write to the network to be asynchronous,
but Node goes further and defines nonblocking asynchronous functions
for reading and writing files from the local filesystem. This makes
sense, when you think about it: the Node API was designed in the days
when spinning hard drives were still the norm and there really were
milliseconds of blocking “seek time” while waiting for the disc to
spin around before a file operation could begin. And in modern
datacenters, the “local” filesystem may actually be across the network
somewhere with network latencies on top of drive latencies. But even
if reading a file asynchronously seems normal to you, Node takes it
still further: the default functions for initiating a network
connection or looking up a file modification time, for example, are
also nonblocking.

Some functions in Node’s API are synchronous but nonblocking: they
run to completion and return without ever needing to block. But most
of the interesting functions perform some kind of input or output, and
these are asynchronous functions so they can avoid even the tiniest
amount of blocking. Node was created before JavaScript had a
Promise class, so asynchronous Node APIs are callback-based. (If you
have not yet read or have already forgotten Chapter 13, this would be
a good time to skip back to that chapter.) Generally, the last argument
you pass to an asynchronous Node function is a callback. Node uses
error-first callbacks, which are typically invoked with two
arguments. The first argument to an error-first callback is normally
null in the case where no error occurred, and the second argument is
whatever data or response was produced by the original asynchronous
function you called. The reason for putting the error argument first
is to make it impossible for you to omit it, and you should always
check for a non-null value in this argument. If it is an Error object,
or even an integer error code or string error message, then something
went wrong. In this case, the second argument to your callback
function is likely to be null.

The following code demonstrates how to use the nonblocking
readFile() function to read a configuration file, parse it as JSON,
and then pass the parsed configuration object to another callback:

const fs = require("fs"); // Require the filesystem module

// Read a config file, parse its contents as JSON, and pass the
// resulting value to the callback. If anything goes wrong,
// print an error message to stderr and invoke the callback with null
function readConfigFile(path, callback) {
 fs.readFile(path, "utf8", (err, text) => {
 if (err) { // Something went wrong reading the file
 console.error(err);
 callback(null);
 return;
 }
 let data = null;
 try {
 data = JSON.parse(text);
 } catch(e) { // Something went wrong parsing the file contents
 console.error(e);
 }
 callback(data);
 });
}

Node predates standardized promises, but because it is fairly
consistent about its error-first callbacks, it is easy to create
Promise-based variants of its callback-based APIs using the
util.promisify() wrapper. Here’s how we could rewrite the
readConfigFile() function to return a Promise:

const util = require("util");
const fs = require("fs"); // Require the filesystem module
const pfs = { // Promise-based variants of some fs functions
 readFile: util.promisify(fs.readFile)
};

function readConfigFile(path) {
 return pfs.readFile(path, "utf-8").then(text => {
 return JSON.parse(text);
 });
}

We can also simpify the preceding Promise-based function using async and
await (again, if you have not yet read through Chapter 13, this
would be a good time to do so):

async function readConfigFile(path) {
 let text = await pfs.readFile(path, "utf-8");
 return JSON.parse(text);
}

The util.promisify() wrapper can produce a Promise-based version of
many Node functions. In Node 10 and later, the fs.promises object
has a number of predefined Promise-based functions for working with
the filesystem. We’ll discuss them later in this chapter, but note
that in the preceding code, we could replace pfs.readFile() with
fs.promises.readFile().

We had said that Node’s programming model is async-by-default. But
for programmer convenience, Node does define blocking, synchronous
variants of many of its functions, especially in the filesystem
module. These functions typically have names that are clearly labeled
with Sync at the end.

When a server is first starting up and is reading its configuration
files, it is not handling network requests yet, and little or no
concurrency is actually possible. So in this situation, there is
really no need to avoid blocking, and we can safely use blocking
functions like fs.readFileSync(). We can drop the async and
await from this code and write a purely synchronous version of
our readConfigFile() function. Instead of invoking a callback or
returning a Promise, this function simply returns the parsed JSON
value or throws an exception:

const fs = require("fs");
function readConfigFileSync(path) {
 let text = fs.readFileSync(path, "utf-8");
 return JSON.parse(text);
}

In addition to its error-first two-argument callbacks, Node also has a
number of APIs that use event-based asynchrony, typically for handling
streaming data. We’ll cover Node events in more detail later.

Now that we’ve discussed Node’s aggressively nonblocking API, let’s
turn back to the topic of concurrency. Node’s built-in nonblocking
functions work using the operating system’s version of callbacks and
event handlers. When you call one of these functions, Node takes
action to get the operation started, then registers some kind of
event handler with the operating system so that it will be notified
when the operation is complete. The callback you passed to the Node
function gets stored internally so that Node can invoke your callback
when the operating system sends the appropriate event to Node.

This kind of concurrency is often called event-based concurrency. At its core, Node has a single thread that runs an “event loop.” When
a Node program starts, it runs whatever code you’ve told it to
run. This code presumably calls at least one nonblocking function
causing a callback or event handler to be registered with the
operating system. (If not, then you’ve written a synchronous Node
program, and Node simply exits when it reaches the end.) When Node
reaches the end of your program, it blocks until an event happens, at
which time the OS starts it running again. Node maps the OS event to
the JavaScript callback you registered and then invokes that
function. Your callback function may invoke more nonblocking Node
functions, causing more OS event handlers to be registered. Once your
callback function is done running, Node goes back to sleep again and
the cycle repeats.

For web servers and other I/O-intensive applications that spend most
of their time waiting for input and output, this style of event-based
concurrency is efficient and effective. A web server can concurrently
handle requests from 50 different clients without needing 50 different
threads as long as it uses nonblocking APIs and there is some kind of
internal mapping from network sockets to JavaScript functions to
invoke when activity occurs on those sockets.

16.3 Buffers

One of the datatypes you’re likely to use frequently in
Node—especially when reading data from files or from the network—is
the Buffer class. A Buffer is a lot like a string, except that it is a
sequence of bytes instead of a sequence of characters. Node was
created before core JavaScript supported typed arrays (see
§11.2) and there was no Uint8Array to represent an array of
unsigned bytes. Node defined the Buffer class to fill that need. Now
that Uint8Array is part of the JavaScript language, Node’s Buffer
class is a subclass of Uint8Array.

What distinguishes Buffer from its Uint8Array superclass is that it is
designed to interoperate with JavaScript strings: the bytes in a
buffer can be initialized from character strings or converted to
character strings. A character encoding maps each character in some
set of characters to an integer. Given a string of text and a
character encoding, we can encode the characters in the string into
a sequence of bytes. And given a (properly encoded) sequence of bytes
and a character encoding, we can decode those bytes into a sequence
of characters. Node’s Buffer class has methods that perform both
encoding and decoding, and you can recognize these methods because
they expect an encoding argument that specifies the encoding to be
used.

Encodings in Node are specified by name, as strings. The supported
encodings are:

	"utf8"

	
This is the default when no encoding is specified, and is the
Unicode encoding you are most likely to use.

	"utf16le"

	
Two-byte Unicode characters, with little-endian
ordering. Codepoints above \uffff are encoded as a pair of
two-byte sequences. Encoding "ucs2" is an alias.

	"latin1"

	
The one-byte-per-character ISO-8859-1 encoding that
defines a character set suitable for many Western European
languages. Because there is a one-to-one mapping between bytes and
latin-1 characters, this encoding is also known as "binary".

	"ascii"

	
The 7-bit English-only ASCII encoding, a strict subset of
the "utf8" encoding.

	"hex"

	
This encoding converts each byte to a pair of ASCII
hexadecimal digits.

	"base64"

	
This encoding converts each sequence of three bytes into
a sequence of four ascii characters.

Here is some example code that demonstrates how to work with Buffers
and how to convert to and from strings:

let b = Buffer.from([0x41, 0x42, 0x43]); // <Buffer 41 42 43>
b.toString() // => "ABC"; default "utf8"
b.toString("hex") // => "414243"

let computer = Buffer.from("IBM3111", "ascii"); // Convert string to Buffer
for(let i = 0; i < computer.length; i++) { // Use Buffer as byte array
 computer[i]--; // Buffers are mutable
}
computer.toString("ascii") // => "HAL2000"
computer.subarray(0,3).map(x=>x+1).toString() // => "IBM"

// Create new "empty" buffers with Buffer.alloc()
let zeros = Buffer.alloc(1024); // 1024 zeros
let ones = Buffer.alloc(128, 1); // 128 ones
let dead = Buffer.alloc(1024, "DEADBEEF", "hex"); // Repeating pattern of bytes

// Buffers have methods for reading and writing multi-byte values
// from and to a buffer at any specified offset.
dead.readUInt32BE(0) // => 0xDEADBEEF
dead.readUInt32BE(1) // => 0xADBEEFDE
dead.readBigUInt64BE(6) // => 0xBEEFDEADBEEFDEADn
dead.readUInt32LE(1020) // => 0xEFBEADDE

If you write a Node program that actually manipulates binary data, you
may find yourself using the Buffer class extensively. On the other
hand, if you are just working with text that is read from or written
to a file or the network, then you may only encounter Buffer as an
intermediate representation of your data. A number of Node APIs can
take input or return output as either strings or Buffer
objects. Typically, if you pass a string, or expect a string to be
returned, from one of these APIs, you’ll need to specify the name of
the text encoding you want to use. And if you do this, then you may
not need to use a Buffer object at all.

16.4 Events and EventEmitter

As described, all of Node’s APIs are
asynchronous by default. For many of them, this asynchrony takes the
form of two-argument error-first callbacks that are invoked when the
requested operation is complete. But some of the more complicated APIs are
event-based instead. This is typically the case when the API is
designed around an object rather than a function, or when a callback
function needs to be invoked multiple times, or when there are
multiple types of callback functions that may be required. Consider
the net.Server class, for example: an object of this type is a
server socket that is used to accept incoming connections from
clients. It emits a “listening” event when it first starts listening
for connections, a “connection” event every time a client connects,
and a “close” event when it has been closed and is no longer
listening.

In Node, objects that emit events are instances of EventEmitter or a
subclass of EventEmitter:

const EventEmitter = require("events"); // Module name does not match class name
const net = require("net");
let server = new net.Server(); // create a Server object
server instanceof EventEmitter // => true: Servers are EventEmitters

The main feature of EventEmitters is that they allow you to register
event handler functions with the on() method. EventEmitters can emit
multiple types of events, and event types are identified by name. To
register an event handler, call the on() method, passing the name of
the event type and the function that should be invoked when an event
of that type occurs. EventEmitters can invoke handler functions with
any number of arguments, and you need to read the documentation for a
specific kind of event from a specific EventEmitter to know what
arguments you should expect to be passed:

const net = require("net");
let server = new net.Server(); // create a Server object
server.on("connection", socket => { // Listen for "connection" events
 // Server "connection" events are passed a socket object
 // for the client that just connected. Here we send some data
 // to the client and disconnect.
 socket.end("Hello World", "utf8");
});

If you prefer more explicit method names for registering event
listeners, you can also use addListener(). And you can remove a
previously registered event listener with off() or
removeListener(). As a special case, you can register an event
listener that will be automatically removed after it is triggered for
the first time by calling once() instead of on().

When an event of a particular type occurs for a particular
EventEmitter object, Node invokes all of the handler functions that
are currently registered on that EventEmitter for events of that
type. They are invoked in order from the first registered to the last
registered. If there is more than one handler function, they are
invoked sequentially on a single thread: there is no parallelism in
Node, remember. And, importantly, event handling functions are invoked
synchronously, not asynchronously. What this means is that the
emit() method does not queue up event handlers to be invoked at some
later time. emit() invokes all the registered handlers, one after
the other, and does not return until the last event handler has
returned.

What this means, in effect, is that when one of the built-in Node APIs
emits an event, that API is basically blocking on your event
handlers. If you write an event handler that calls a blocking function
like fs.readFileSync(), no further event handling will happen until
your synchronous file read is complete. If your program is one—like a
network server—that needs to be responsive, then it is important that
you keep your event handler functions nonblocking and fast. If you
need to do a lot of computation when an event occurs, it is often best
to use the handler to schedule that computation asynchronously using
setTimeout() (see §11.10). Node also defines setImmediate(),
which schedules a function to be invoked immediately after all pending
callbacks and events have been handled.

The EventEmitter class also defines an emit() method that causes the
registered event handler functions to be invoked. This is useful if
you are defining your own event-based API, but is not commonly used
when you’re just programming with existing APIs. emit() must be
invoked with the name of the event type as its first argument. Any
additional arguments that are passed to emit() become arguments to
the registered event handler functions. The handler functions are also
invoked with the this value set to the EventEmitter object itself,
which is often convenient. (Remember, though, that arrow functions
always use the this value of the context in which they are defined,
and they cannot be invoked with any other this value. Nevertheless,
arrow functions are often the most convenient way to write event
handlers.)

Any value returned by an event handler function is ignored. If an
event handler function throws an exception, however, it propagates out
from the emit() call and prevents the execution of any handler
functions that were registered after the one that threw the exception.

Recall that Node’s callback-based APIs use error-first callbacks, and
it is important that you always check the first callback argument to
see if an error occurred. With event-based APIs, the equivalent is
“error” events. Since event-based APIs are often used for networking
and other forms of streaming I/O, they are vulnerable to unpredictable
asynchronous errors, and most EventEmitters define an “error” event
that they emit when an error occurs. Whenever you use an event-based
API, you should make it a habit to register a handler for “error”
events. “Error” events get special treatment by the EventEmitter
class. If emit() is called to emit an “error” event, and if there
are no handlers registered for that event type, then an exception will
be thrown. Since this occurs asynchronously, there is no way for you
to handle the exception in a catch block, so this kind of error
typically causes your program to exit.

16.5 Streams

When implementing an algorithm to process data, it is almost always
easiest to read all the data into memory, do the processing, and then
write the data out. For example, you could write a Node function to
copy a file like this.1

const fs = require("fs");

// An asynchronous but nonstreaming (and therefore inefficient) function.
function copyFile(sourceFilename, destinationFilename, callback) {
 fs.readFile(sourceFilename, (err, buffer) => {
 if (err) {
 callback(err);
 } else {
 fs.writeFile(destinationFilename, buffer, callback);
 }
 });
}

This copyFile() function uses asynchronous functions and callbacks,
so it does not block and is suitable for use in concurrent programs
like servers. But notice that it must allocate enough memory to hold the
entire contents of the file in memory at once. This may be fine in some
use cases, but it starts to fail if the files to be copied are very
large, or if your program is highly concurrent and there may be many
files being copied at the same time. Another shortcoming of this
copyFile() implementation is that it cannot start writing the new
file until it has finished reading the old file.

The solution to these problems is to use streaming algorithms where
data “flows” into your program, is processed, and then flows out of
your program. The idea is that your algorithm processes the data in
small chunks and the full dataset is never held in memory at
once. When streaming solutions are possible, they are more memory
efficient and can also be faster. Node’s networking APIs are
stream-based and Node’s filesystem module defines streaming APIs for
reading and writing files, so you are likely to use a streaming API in
many of the Node programs that you write. We’ll see a streaming
version of the copyFile() function in “Flowing mode”.

Node supports four basic stream types:

	Readable

	
Readable streams are sources of data. The stream returned
by fs.createReadStream(), for example, is a stream from which the
content of a specified file can be read. process.stdin is another
Readable stream that returns data from standard input.

	Writable

	
Writable streams are sinks or destinations for data. The
return value of fs.createWriteStream(), for example, is a Writable
stream: it allows data to be written to it in chunks, and outputs all
of that data to a specified file.

	Duplex

	
Duplex streams combine a Readable stream and a Writable
stream into one object. The Socket objects returned by net.connect()
and other Node networking APIs, for example, are Duplex streams. If
you write to a socket, your data is sent across the network to
whatever computer the socket is connected to. And if you read from a
socket, you access the data written by that other computer.

	Transform

	
Transform streams are also readable and writable, but they
differ from Duplex streams in an important way: data written to a
Transform stream becomes readable—usually in some transformed
form—from the same stream. The zlib.createGzip() function, for
example, returns a Transform stream that compresses (with the gzip
algorithm) the data written to it. In a similar way, the

crypto.createCipheriv() function returns a Transform stream that
encrypts or decrypts data that is written to it.

By default, streams read and write buffers. If you call the
setEncoding() method of a Readable stream, it will return decoded
strings to you instead of Buffer objects. And if you write a string to
a Writable buffer, it will be automatically encoded using the buffer’s
default encoding or whatever encoding you specify. Node’s stream API
also supports an “object mode” where streams read and write objects
more complex than buffers and strings. None of Node’s core APIs
use this object mode, but you may encounter it in other libraries.

Readable streams have to read their data from somewhere, and Writable
streams have to write their data to somewhere, so every stream has two
ends: an input and an output or a source and a destination. The tricky
thing about stream-based APIs is that the two ends of the stream will
almost always flow at different speeds. Perhaps the code that reads from a
stream wants to read and process data more quickly than the data is
actually being written into the stream. Or the reverse: perhaps data
is written to a stream more quickly than it can be read and pulled out
of the stream on the other end. Stream implementations almost always
include an internal buffer to hold data that has been written but not
yet read. Buffering helps to ensure that there is data available to
read when it’s requested, and that there is space to hold data when it
is written. But neither of these things can ever be guaranteed, and it
is the nature of stream-based programming that readers will sometimes
have to wait for data to be written (because the stream buffer is
empty), and writers will sometimes have to wait for data to be read
(because the stream buffer is full).

In programming environments that use thread-based concurrency, stream
APIs typically have blocking calls: a call to read data does not
return until data arrives in the stream and a call to write data
blocks until there is enough room in the stream’s internal buffer to
accommodate the new data. With an event-based concurrency model,
however, blocking calls do not make sense, and Node’s stream APIs are
event- and callback-based. Unlike other Node APIs, there are not “Sync”
versions of the methods that will be described later in this chapter.

The need to coordinate stream readability (buffer not empty) and
writability (buffer not full) via events makes Node’s stream APIs
somewhat complicated. This is compounded by the fact that these APIs
have evolved and changed over the years: for Readable streams, there
are two completely distinct APIs that you can use. Despite the
complexity, it is worth understanding and mastering Node’s streaming
APIs because they enable high-throughput I/O in your programs.

The subsections that follow demonstrate how to read and write from
Node’s stream classes.

16.5.1 Pipes

Sometimes, you need to read data from a stream simply to turn around
and write that same data to another stream. Imagine, for example, that
you are writing a simple HTTP server that serves a directory of static
files. In this case, you will need to read data from a file input
stream and write it out to a network socket. But instead of writing
your own code to handle the reading and writing, you can instead
simply connect the two sockets together as a “pipe” and let Node
handle the complexities for you. Simply pass the Writable stream to
the pipe() method of the Readable stream:

const fs = require("fs");

function pipeFileToSocket(filename, socket) {
 fs.createReadStream(filename).pipe(socket);
}

The following utility function pipes one stream to another and invokes
a callback when done or when an error occurs:

function pipe(readable, writable, callback) {
 // First, set up error handling
 function handleError(err) {
 readable.close();
 writable.close();
 callback(err);
 }

 // Next define the pipe and handle the normal termination case
 readable
 .on("error", handleError)
 .pipe(writable)
 .on("error", handleError)
 .on("finish", callback);
}

Transform streams are particularly useful with pipes, and create
pipelines that involve more than two streams. Here’s an example
function that compresses a file:

const fs = require("fs");
const zlib = require("zlib");

function gzip(filename, callback) {
 // Create the streams
 let source = fs.createReadStream(filename);
 let destination = fs.createWriteStream(filename + ".gz");
 let gzipper = zlib.createGzip();

 // Set up the pipeline
 source
 .on("error", callback) // call callback on read error
 .pipe(gzipper)
 .pipe(destination)
 .on("error", callback) // call callback on write error
 .on("finish", callback); // call callback when writing is complete
}

Using the pipe() method to copy data from a Readable stream to a
Writable stream is easy, but in practice, you often need to process the data somehow as it streams through your program. One way to do
this is to implement your own Transform stream to do that processing,
and this approach allows you to avoid manually reading and writing
the streams. Here, for example, is a function that works like the Unix
grep utility: it reads lines of text from an input stream, but
writes only the lines that match a specified regular expression:

const stream = require("stream");

class GrepStream extends stream.Transform {
 constructor(pattern) {
 super({decodeStrings: false});// Don't convert strings back to buffers
 this.pattern = pattern; // The regular expression we want to match
 this.incompleteLine = ""; // Any remnant of the last chunk of data
 }

 // This method is invoked when there is a string ready to be
 // transformed. It should pass transformed data to the specified
 // callback function. We expect string input so this stream should
 // only be connected to readable streams that have had
 // setEncoding() called on them.
 _transform(chunk, encoding, callback) {
 if (typeof chunk !== "string") {
 callback(new Error("Expected a string but got a buffer"));
 return;
 }
 // Add the chunk to any previously incomplete line and break
 // everything into lines
 let lines = (this.incompleteLine + chunk).split("\n");

 // The last element of the array is the new incomplete line
 this.incompleteLine = lines.pop();

 // Find all matching lines
 let output = lines // Start with all complete lines,
 .filter(l => this.pattern.test(l)) // filter them for matches,
 .join("\n"); // and join them back up.

 // If anything matched, add a final newline
 if (output) {
 output += "\n";
 }

 // Always call the callback even if there is no output
 callback(null, output);
 }

 // This is called right before the stream is closed.
 // It is our chance to write out any last data.
 _flush(callback) {
 // If we still have an incomplete line, and it matches
 // pass it to the callback
 if (this.pattern.test(this.incompleteLine)) {
 callback(null, this.incompleteLine + "\n");
 }
 }
}

// Now we can write a program like 'grep' with this class.
let pattern = new RegExp(process.argv[2]); // Get a RegExp from command line.
process.stdin // Start with standard input,
 .setEncoding("utf8") // read it as Unicode strings,
 .pipe(new GrepStream(pattern)) // pipe it to our GrepStream,
 .pipe(process.stdout) // and pipe that to standard out.
 .on("error", () => process.exit()); // Exit gracefully if stdout closes.

16.5.2 Asynchronous Iteration

In Node 12 and later, Readable streams are asynchronous iterators,
which means that within an async function you can use a for/await
loop to read string or Buffer chunks from a stream using code that is
structured like synchronous code would be. (See §13.4
for more on asynchronous iterators and for/await loops.)

Using an asynchronous iterator is almost as easy as using the pipe()
method, and is probably easier when you need to process each chunk you
read in some way. Here’s how we could rewrite the grep program
in the previous section using an async function and a for/await loop:

// Read lines of text from the source stream, and write any lines
// that match the specified pattern to the destination stream.
async function grep(source, destination, pattern, encoding="utf8") {
 // Set up the source stream for reading strings, not Buffers
 source.setEncoding(encoding);

 // Set an error handler on the destination stream in case standard
 // output closes unexpectedly (when piping output to `head`, e.g.)
 destination.on("error", err => process.exit());

 // The chunks we read are unlikely to end with a newline, so each will
 // probably have a partial line at the end. Track that here
 let incompleteLine = "";

 // Use a for/await loop to asynchronously read chunks from the input stream
 for await (let chunk of source) {
 // Split the end of the last chunk plus this one into lines
 let lines = (incompleteLine + chunk).split("\n");
 // The last line is incomplete
 incompleteLine = lines.pop();
 // Now loop through the lines and write any matches to the destination
 for(let line of lines) {
 if (pattern.test(line)) {
 destination.write(line + "\n", encoding);
 }
 }
 }
 // Finally, check for a match on any trailing text.
 if (pattern.test(incompleteLine)) {
 destination.write(incompleteLine + "\n", encoding);
 }
}

let pattern = new RegExp(process.argv[2]); // Get a RegExp from command line.
grep(process.stdin, process.stdout, pattern) // Call the async grep() function.
 .catch(err => { // Handle asynchronous exceptions.
 console.error(err);
 process.exit();
 });

16.5.3 Writing to Streams and Handling Backpressure

The async grep() function in the preceding code example demonstrated how to use
a Readable stream as an asynchronous iterator, but it also
demonstrated that you can write data to a Writable stream simply by
passing it to the write() method. The write() method takes a
buffer or string as the first argument. (Object streams expect other
kinds of objects, but are beyond the scope of this chapter.) If you
pass a buffer, the bytes of that buffer will be written directly. If
you pass a string, it will be encoded to a buffer of bytes before
being written. Writable streams have a default encoding that is used
when you pass a string as the only argument to write(). The default
encoding is typically “utf8,” but you can set it explicitly by calling
setDefaultEncoding() on the Writable stream. Alternatively, when you
pass a string as the first argument to write() you can pass an
encoding name as the second argument.

write() optionally takes a callback function as its third
argument. This will be invoked when the data has actually been written
and is no longer in the Writable stream’s internal buffer. (This
callback may also be invoked if an error occurs, but this is not
guaranteed. You should register an “error” event handler on the
Writable stream to detect errors.)

The write() method has a very important return value. When you call
write() on a stream, it will always accept and buffer the chunk of
data you have passed. It then returns true if the internal buffer is
not yet full. Or, if the buffer is now full or overfull, it returns
false. This return value is advisory, and you can ignore it—Writable
streams will enlarge their internal buffer as much as needed if you
keep calling write().
But remember that the reason to use a streaming API in the first place
is to avoid the cost of keeping lots of data in memory at once.

A return value of false from the write() method is a form of
backpressure: a message from the stream that you have written data
more quickly than it can be handled. The proper response to this kind
of backpressure is to stop calling write() until the stream emits a
“drain” event, signaling that there is once again room in the
buffer. Here, for example, is a function that writes to a stream, and
then invokes a callback when it is OK to write more data to the
stream:

function write(stream, chunk, callback) {
 // Write the specified chunk to the specified stream
 let hasMoreRoom = stream.write(chunk);

 // Check the return value of the write() method:
 if (hasMoreRoom) { // If it returned true, then
 setImmediate(callback); // invoke callback asynchronously.
 } else { // If it returned false, then
 stream.once("drain", callback); // invoke callback on drain event.
 }
}

The fact that it is sometimes OK to call write() multiple times in
a row and sometimes you have to wait for an event between writes makes
for awkward algorithms. This is one of the reasons that using the
pipe() method is so appealing: when you use pipe(), Node handles
backpressure for you automatically.

If you are using await and async in your program, and are treating
Readable streams as asynchronous iterators, it is straightforward to
implement a Promise-based version of the write() utility function
above to properly handle backpressure. In the async grep()
function we just looked at, we did not handle backpressure. The async copy()
function in the following example demonstrates how it can be done correctly. Note that this
function just copies chunks from a source stream to a destination
stream and calling copy(source, destination) is much like calling
source.pipe(destination):

// This function writes the specified chunk to the specified stream and
// returns a Promise that will be fulfilled when it is OK to write again.
// Because it returns a Promise, it can be used with await.
function write(stream, chunk) {
 // Write the specified chunk to the specified stream
 let hasMoreRoom = stream.write(chunk);

 if (hasMoreRoom) { // If buffer is not full, return
 return Promise.resolve(null); // an already resolved Promise object
 } else {
 return new Promise(resolve => { // Otherwise, return a Promise that
 stream.once("drain", resolve); // resolves on the drain event.
 });
 }
}

// Copy data from the source stream to the destination stream
// respecting backpressure from the destination stream.
// This is much like calling source.pipe(destination).
async function copy(source, destination) {
 // Set an error handler on the destination stream in case standard
 // output closes unexpectedly (when piping output to `head`, e.g.)
 destination.on("error", err => process.exit());

 // Use a for/await loop to asynchronously read chunks from the input stream
 for await (let chunk of source) {
 // Write the chunk and wait until there is more room in the buffer.
 await write(destination, chunk);
 }
}

// Copy standard input to standard output
copy(process.stdin, process.stdout);

Before we conclude this discussion of writing to streams, note again
that failing to respond to backpressure can cause your program to use
more memory than it should when the internal buffer of a Writable
stream overflows and grows larger and larger. If you are writing a network
server, this can be a remotely exploitable security issue. Suppose you
write an HTTP server that delivers files over the network, but you
didn’t use pipe() and you didn’t take the time to handle
backpressure from the write() method. An attacker could write an HTTP
client that initiates requests for large files (such as images) but
never actually reads the body of the request. Since the client is not
reading the data over the network, and the server isn’t responding to
backpressure, buffers on the server are going to overflow. With enough
concurrent connections from the attacker, this can turn into a
denial-of-service attack that slows your server down or even crashes
it.

16.5.4 Reading Streams with Events

Node’s readable streams have two modes, each of which has its own API
for reading. If you can’t use pipes or asynchronous iteration in your
program, you will need to pick one of these two event-based APIs for
handling streams. It is important that you use only one or the other
and do not mix the two APIs.

Flowing mode

In flowing mode, when readable data arrives, it is immediately
emitted in the form of a “data” event. To read from a stream in this
mode, simply register an event handler for “data” events, and the
stream will push chunks of data (buffers or strings) to you as soon as
they becomes available. Note that there is no need to call the
read() method in flowing mode: you only need to handle “data”
events. Note that newly
created streams do not start off in flowing
mode. Registering a “data” event handler switches a stream into
flowing mode. Conveniently, this means that a stream does not emit
“data” events until you register the first “data” event handler.

If you are using flowing mode to read data from a Readable stream,
process it, then write it to a Writable stream, then you may need
to handle backpressure from the Writable stream. If the write()
method returns false to indicate that the write buffer is full, you
can call pause() on the Readable stream to temporarily stop data
events. Then, when you get a “drain” event from the Writable stream,
you can call resume() on the Readable stream to start the “data”
events flowing again.

A stream in flowing mode emits an “end” event when the end of the
stream is reached. This event indicates that no more “data” events
will ever be emitted. And, as with all streams, an “error” event is
emitted if an error occurs.

At the beginning of this section on streams, we showed a nonstreaming
copyFile() function and promised a better version to come. The
following code shows how to implement a streaming copyFile()
function that uses the flowing mode API and handles backpressure. This
would have been easier to implement with a pipe() call, but it
serves here as a useful demonstration of the multiple event handlers
that are used to coordinate data flow from one stream to the other.

const fs = require("fs");

// A streaming file copy function, using "flowing mode".
// Copies the contents of the named source file to the named destination file.
// On success, invokes the callback with a null argument. On error,
// invokes the callback with an Error object.
function copyFile(sourceFilename, destinationFilename, callback) {
 let input = fs.createReadStream(sourceFilename);
 let output = fs.createWriteStream(destinationFilename);

 input.on("data", (chunk) => { // When we get new data,
 let hasRoom = output.write(chunk); // write it to the output stream.
 if (!hasRoom) { // If the output stream is full
 input.pause(); // then pause the input stream.
 }
 });
 input.on("end", () => { // When we reach the end of input,
 output.end(); // tell the output stream to end.
 });
 input.on("error", err => { // If we get an error on the input,
 callback(err); // call the callback with the error
 process.exit(); // and quit.
 });

 output.on("drain", () => { // When the output is no longer full,
 input.resume(); // resume data events on the input
 });
 output.on("error", err => { // If we get an error on the output,
 callback(err); // call the callback with the error
 process.exit(); // and quit.
 });
 output.on("finish", () => { // When output is fully written
 callback(null); // call the callback with no error.
 });
}

// Here's a simple command-line utility to copy files
let from = process.argv[2], to = process.argv[3];
console.log(`Copying file ${from} to ${to}...`);
copyFile(from, to, err => {
 if (err) {
 console.error(err);
 } else {
 console.log("done.");
 }
});

Paused mode

The other mode for Readable streams is “paused mode.” This is the mode
that streams start in. If you never register a “data” event handler
and never call the pipe() method, then a Readable stream remains in
paused mode. In paused mode, the stream does not push data to you in
the form of “data” events. Instead, you pull data from the stream by
explicitly calling its read() method. This is not a blocking call,
and if there is no data available to read on the stream, it will
return null. Since there is not a synchronous API to wait for data,
the paused mode API is also event-based. A Readable stream in paused
mode emits “readable” events when data becomes available to read on
the stream. In response, your code should call the read() method to
read that data. You must do this in a loop, calling read()
repeatedly until it returns null. It is necessary to completely
drain the stream’s buffer like this in order to trigger a new
“readable” event in the future. If you stop calling read() while
there is still readable data, you will not get another “readable”
event and your program is likely to hang.

Streams in paused mode emit “end” and “error” events just like flowing
mode streams do. If you are writing a program that reads data from a Readable stream
and writes it to a Writable stream, then paused mode may not be a good
choice. In order to properly handle backpressure, you only want to read
when the input stream is readable and the output stream is not backed
up. In paused mode, that means reading and writing until read()
returns null or write() returns false, and then starting reading
or writing again on a readable or drain event. This is inelegant,
and you may find that flowing mode (or pipes) is easier in this case.

The following code demonstrates how you can compute a SHA256 hash for the
contents of a specified file. It uses a Readable stream in paused mode
to read the contents of a file in chunks, then passes each chunk
to the object that computes the hash. (Note that in Node 12 and later,
it would be simpler to write this function using a for/await loop.)

const fs = require("fs");
const crypto = require("crypto");

// Compute a sha256 hash of the contents of the named file and pass the
// hash (as a string) to the specified error-first callback function.
function sha256(filename, callback) {
 let input = fs.createReadStream(filename); // The data stream.
 let hasher = crypto.createHash("sha256"); // For computing the hash.

 input.on("readable", () => { // When there is data ready to read
 let chunk;
 while(chunk = input.read()) { // Read a chunk, and if non-null,
 hasher.update(chunk); // pass it to the hasher,
 } // and keep looping until not readable
 });
 input.on("end", () => { // At the end of the stream,
 let hash = hasher.digest("hex"); // compute the hash,
 callback(null, hash); // and pass it to the callback.
 });
 input.on("error", callback); // On error, call callback
}

// Here's a simple command-line utility to compute the hash of a file
sha256(process.argv[2], (err, hash) => { // Pass filename from command line.
 if (err) { // If we get an error
 console.error(err.toString()); // print it as an error.
 } else { // Otherwise,
 console.log(hash); // print the hash string.
 }
});

16.6 Process, CPU, and Operating System Details

The global Process object has a number of useful properties and
functions that generally relate to the state of the currently running
Node process. Consult the Node documentation for complete details, but
here are some properties and functions you should be aware of:

process.argv // An array of command-line arguments.
process.arch // The CPU architecture: "x64", for example.
process.cwd() // Returns the current working directory.
process.chdir() // Sets the current working directory.
process.cpuUsage() // Reports CPU usage.
process.env // An object of environment variables.
process.execPath // The absolute filesystem path to the node executable.
process.exit() // Terminates the program.
process.exitCode // An integer code to be reported when the program exits.
process.getuid() // Return the Unix user id of the current user.
process.hrtime.bigint() // Return a "high-resolution" nanosecond timestamp.
process.kill() // Send a signal to another process.
process.memoryUsage() // Return an object with memory usage details.
process.nextTick() // Like setImmediate(), invoke a function soon.
process.pid // The process id of the current process.
process.ppid // The parent process id.
process.platform // The OS: "linux", "darwin", or "win32", for example.
process.resourceUsage() // Return an object with resource usage details.
process.setuid() // Sets the current user, by id or name.
process.title // The process name that appears in `ps` listings.
process.umask() // Set or return the default permissions for new files.
process.uptime() // Return Node's uptime in seconds.
process.version // Node's version string.
process.versions // Version strings for the libraries Node depends on.

The “os” module (which, unlike process, needs to be explicitly loaded
with require()) provides access to similarly low-level details about
the computer and operating system that Node is running on. You may
never need to use any of these features, but it is worth knowing that
Node makes them available:

const os = require("os");
os.arch() // Returns CPU architecture. "x64" or "arm", for example.
os.constants // Useful constants such as os.constants.signals.SIGINT.
os.cpus() // Data about system CPU cores, including usage times.
os.endianness() // The CPU's native endianness "BE" or "LE".
os.EOL // The OS native line terminator: "\n" or "\r\n".
os.freemem() // Returns the amount of free RAM in bytes.
os.getPriority() // Returns the OS scheduling priority of a process.
os.homedir() // Returns the current user's home directory.
os.hostname() // Returns the hostname of the computer.
os.loadavg() // Returns the 1, 5, and 15-minute load averages.
os.networkInterfaces() // Returns details about available network. connections.
os.platform() // Returns OS: "linux", "darwin", or "win32", for example.
os.release() // Returns the version number of the OS.
os.setPriority() // Attempts to set the scheduling priority for a process.
os.tmpdir() // Returns the default temporary directory.
os.totalmem() // Returns the total amount of RAM in bytes.
os.type() // Returns OS: "Linux", "Darwin", or "Windows_NT", e.g.
os.uptime() // Returns the system uptime in seconds.
os.userInfo() // Returns uid, username, home, and shell of current user.

16.7 Working with Files

Node’s “fs” module is a comprehensive API for working with files and
directories. It is complemented by the “path” module, which defines
utility functions for working with file and directory names. The “fs”
module contains a handful of high-level functions for easily reading,
writing, and copying files. But most of the functions in the module are
low-level JavaScript bindings to Unix system calls (and their
equivalents on Windows). If you have worked with low-level filesystem
calls before (in C or other
languages), then the Node API will be
familiar to you. If not, you may find parts of the “fs” API to be
terse and unintuitive. The function to delete a file, for example, is
called unlink().

The “fs” module defines a large API, mainly because there are usually
multiple variants of each fundamental operation. As discussed at the
beginning of the chapter, most functions such as fs.readFile() are
nonblocking, callback-based, and asynchronous. Typically, though, each
of these functions has a synchronous blocking variant, such as
fs.readFileSync(). In Node 10 and later, many of these functions
also have a Promise-based asynchronous variant such as
fs.promises.readFile(). Most “fs” functions take a string as their
first argument, specifying the path (filename plus optional directory
names) to the file that is to be operated on. But a number of these
functions also support a variant that takes an integer “file
descriptor” as the first argument instead of a path. These variants
have names that begin with the letter “f.” For example, fs.truncate()
truncates a file specified by path, and fs.ftruncate() truncates a
file specified by file descriptor. There is a Promise-based
fs.promises.truncate() that expects a path and another
Promise-based version that is implemented as a method of a FileHandle
object. (The FileHandle class is the equivalent of a file descriptor
in the Promise-based API.) Finally, there are a handful of functions
in the “fs” module that have variants whose names are prefixed with
the letter “l.” These “l” variants are like the base function but do
not follow symbolic links in the filesystem and instead operate
directly on the symbolic links themselves.

16.7.1 Paths, File Descriptors, and FileHandles

In order to use the “fs” module to work with files, you first need to
be able to name the file you want to work with. Files are most often
specified by path, which means the name of the file itself, plus the
hierarchy of directories in which the file appears. If a path is
absolute, it means that directories all the way up to the filesystem
root are specified. Otherwise, the path is relative and is only
meaningful in relation to some other path, usually the current working directory. Working with paths can be a little tricky because
different operating systems use different characters to separate
directory names, it is easy to accidentally double those
separator characters when concatenating paths, and because ../
parent directory path segments need special handling. Node’s “path”
module and a couple of other important Node features help:

// Some important paths
process.cwd() // Absolute path of the current working directory.
__filename // Absolute path of the file that holds the current code.
__dirname // Absolute path of the directory that holds __filename.
os.homedir() // The user's home directory.

const path = require("path");

path.sep // Either "/" or "\" depending on your OS

// The path module has simple parsing functions
let p = "src/pkg/test.js"; // An example path
path.basename(p) // => "test.js"
path.extname(p) // => ".js"
path.dirname(p) // => "src/pkg"
path.basename(path.dirname(p)) // => "pkg"
path.dirname(path.dirname(p)) // => "src"

// normalize() cleans up paths:
path.normalize("a/b/c/../d/") // => "a/b/d/": handles ../ segments
path.normalize("a/./b") // => "a/b": strips "./" segments
path.normalize("//a//b//") // => "/a/b/": removes duplicate /

// join() combines path segments, adding separators, then normalizes
path.join("src", "pkg", "t.js") // => "src/pkg/t.js"

// resolve() takes one or more path segments and returns an absolute
// path. It starts with the last argument and works backward, stopping
// when it has built an absolute path or resolving against process.cwd().
path.resolve() // => process.cwd()
path.resolve("t.js") // => path.join(process.cwd(), "t.js")
path.resolve("/tmp", "t.js") // => "/tmp/t.js"
path.resolve("/a", "/b", "t.js") // => "/b/t.js"

Note that path.normalize() is simply a string manipulation function
that has no access to the actual filesystem. The fs.realpath() and
fs.realpathSync() functions perform filesystem-aware
canonicalization: they resolve symbolic links and interpret relative
pathnames relative to the current working directory.

In the previous examples, we assumed that the code is running on a
Unix-based OS and path.sep is “/.” If you want to work with
Unix-style paths even when on a Windows system, then use path.posix
instead of path. And conversely, if you want to work with Windows
paths even when on a Unix system, path.win32. path.posix
and path.win32 define the same properties and functions as path
itself.

Some of the “fs” functions we’ll be covering in the next sections expect a file
descriptor instead of a file name. File descriptors are integers used
as OS-level references to “open” files. You obtain a descriptor for a
given name by calling the fs.open() (or fs.openSync())
function. Processes are only allowed to have a limited number of files
open at one time, so it is important that you call fs.close() on
your file descriptors when you are done with them. You need to open
files if you want to use the lowest-level fs.read() and fs.write()
functions that allow you to jump around within a file, reading and
writing bits of it at different times. There are other functions in
the “fs” module that use file descriptors, but they all have
name-based versions, and it only really makes sense to use the
descriptor-based functions if you were going to open the file to read
or write anyway.

Finally, in the Promise-based API defined by fs.promises, the
equivalent of fs.open() is fs.promises.open(), which returns a
Promise that resolves to a FileHandle object. This FileHandle object
serves the same purpose as a file descriptor. Again,
however, unless you need to use the lowest-level read() and
write() methods of a FileHandle, there is really no reason to create
one. And if you do create a FileHandle, you should remember to call
its close() method once you are done with it.

16.7.2 Reading Files

Node allows you to read file content all at once, via a stream, or
with the low-level API.

If your files are small, or if memory usage and performance are not
the highest priority, then it is often easiest to read the entire
content of a file with a single call. You can do this synchronously,
with a callback, or with a Promise. By default, you’ll get the bytes of
the file as a buffer, but if you specify an encoding, you’ll get a
decoded string instead.

const fs = require("fs");
let buffer = fs.readFileSync("test.data"); // Synchronous, returns buffer
let text = fs.readFileSync("data.csv", "utf8"); // Synchronous, returns string

// Read the bytes of the file asynchronously
fs.readFile("test.data", (err, buffer) => {
 if (err) {
 // Handle the error here
 } else {
 // The bytes of the file are in buffer
 }
});

// Promise-based asynchronous read
fs.promises
 .readFile("data.csv", "utf8")
 .then(processFileText)
 .catch(handleReadError);

// Or use the Promise API with await inside an async function
async function processText(filename, encoding="utf8") {
 let text = await fs.promises.readFile(filename, encoding);
 // ... process the text here...
}

If you are able to process the contents of a file sequentially and do
not need to have the entire content of the file in memory at the same
time, then reading a file via a stream may be the most efficient
approach. We’ve covered streams extensively: here is how you
might use a stream and the pipe() method to write the contents of a
file to standard output:

function printFile(filename, encoding="utf8") {
 fs.createReadStream(filename, encoding).pipe(process.stdout);
}

Finally, if you need low-level control over exactly what bytes you
read from a file and when you read them, you can open a file to get a
file descriptor and then use fs.read(), fs.readSync(), or
fs.promises.read() to read a specified number of bytes from a
specified source location of the file into a specified buffer at the
specified destination position:

const fs = require("fs");

// Reading a specific portion of a data file
fs.open("data", (err, fd) => {
 if (err) {
 // Report error somehow
 return;
 }
 try {
 // Read bytes 20 through 420 into a newly allocated buffer.
 fs.read(fd, Buffer.alloc(400), 0, 400, 20, (err, n, b) => {
 // err is the error, if any.
 // n is the number of bytes actually read
 // b is the buffer that they bytes were read into.
 });
 }
 finally { // Use a finally clause so we always
 fs.close(fd); // close the open file descriptor
 }
});

The callback-based read() API is awkward to use if you need to read
more than one chunk of data from a file. If you can use the
synchronous API (or the Promise-based API with await), it becomes
easy to read multiple chunks from a file:

const fs = require("fs");

function readData(filename) {
 let fd = fs.openSync(filename);
 try {
 // Read the file header
 let header = Buffer.alloc(12); // A 12 byte buffer
 fs.readSync(fd, header, 0, 12, 0);

 // Verify the file's magic number
 let magic = header.readInt32LE(0);
 if (magic !== 0xDADAFEED) {
 throw new Error("File is of wrong type");
 }

 // Now get the offset and length of the data from the header
 let offset = header.readInt32LE(4);
 let length = header.readInt32LE(8);

 // And read those bytes from the file
 let data = Buffer.alloc(length);
 fs.readSync(fd, data, 0, length, offset);
 return data;
 } finally {
 // Always close the file, even if an exception is thrown above
 fs.closeSync(fd);
 }
}

16.7.3 Writing Files

Writing files in Node is a lot like reading them, with a few extra
details that you need to know about. One of these details is that the
way you create a new file is simply by writing to a filename that does
not already exist.

As with reading, there are three basic ways to write files in Node. If
you have the entire content of the file in a string or a buffer, you
can write the entire thing in one call with fs.writeFile()
(callback-based), fs.writeFileSync() (synchronous), or
fs.promises.writeFile() (Promise-based):

fs.writeFileSync(path.resolve(__dirname, "settings.json"),
 JSON.stringify(settings));

If the data you are writing to the file is a string, and you want to
use an encoding other than “utf8,” pass the encoding as an optional
third argument.

The related functions fs.appendFile(), fs.appendFileSync(), and
fs.promises.appendFile() are similar, but when the specified file
already exists,
they append their data to the end rather than overwriting the existing
file content.

If the data you want to write to a file is not all in one chunk, or if
it is not all in memory at the same time, then using a Writable stream
is a good approach, assuming that you plan to write the data from
beginning to end without skipping around in the file:

const fs = require("fs");
let output = fs.createWriteStream("numbers.txt");
for(let i = 0; i < 100; i++) {
 output.write(`${i}\n`);
}
output.end();

Finally, if you want to write data to a file in multiple chunks, and
you want to be able to control the exact position within the file at
which each chunk is written, then you can open the file with
fs.open(), fs.openSync(), or fs.promises.open() and then use
the resulting file descriptor with the fs.write() or
fs.writeSync() functions. These functions come in different forms
for strings and buffers. The string variant takes a file descriptor, a
string, and the file position at which to write that string (with an
encoding as an optional fourth argument). The buffer variant takes a
file descriptor, a buffer, an offset, and a length that specify a chunk
of data within the buffer, and a file position at which to write the
bytes of that chunk. And if you have an array of Buffer objects that
you want to write, you can do this with a single fs.writev() or
fs.writevSync(). Similar low-level functions exist for writing
buffers and strings using fs.promises.open() and the FileHandle
object it produces.

File Mode Strings

We saw the fs.open() and fs.openSync() methods before when using
the low-level API to read files. In that use case, it was sufficient to
just pass the filename to the open function. When you want to write a
file, however, you must also specify a second string argument that
specifies how you intend to use the file descriptor. Some of the
available flag strings are as follows:

	"w"

	
Open the file for writing

	"w+"

	
Open for writing and reading

	"wx"

	
Open for creating a new file; fails if the named file already
exists

	"wx+"

	
Open for creation, and also allow reading; fails if the
named file already exists

	"a"

	
Open the file for appending; existing content won’t be overwritten

	"a+"

	
Open for appending, but also allow reading

If you do not pass one of these flag strings to fs.open() or
fs.openSync(), they use the default “r” flag, making the file
descriptor read-only. Note that it can also be useful to pass these
flags to other file-writing methods:

// Write to a file in one call, but append to anything that is already there.
// This works like fs.appendFileSync()
fs.writeFileSync("messages.log", "hello", { flag: "a" });

// Open a write stream, but throw an error if the file already exists.
// We don't want to accidentally overwrite something!
// Note that the option above is "flag" and is "flags" here
fs.createWriteStream("messages.log", { flags: "wx" });

You can chop off the end of a file with fs.truncate(),
fs.truncateSync(), or fs.promises.truncate(). These functions take
a path as their first argument and a length as their second, and
modify the file so that it has the specified length. If you omit the
length, zero is used and the file becomes empty. Despite the name of
these functions, they can also be used to extend a file: if you
specify a length that is longer than the current file size, the file
is extended with zero bytes to the new size. If you have already
opened the file you wish to modify, you can use ftruncate() or

ftruncateSync() with the file descriptor or FileHandle.

The various file-writing functions described here return or invoke
their callback or resolve their Promise when the data has been
“written” in the sense that Node has handed it off to the operating
system. But this does not necessarily mean that the data has actually
been written to persistent storage yet: at least some of your data may
still be buffered somewhere in the operating system or in a device
driver waiting to be written to disk. If you call fs.writeSync() to
synchronously write some data to a file, and if there is a power
outage immediately after the function returns, you may still lose
data. If you want to force your data out to disk so you know for sure
that it has been safely saved, use fs.fsync() or
fs.fsyncSync(). These functions only work with file descriptors:
there is no path-based version.

16.7.4 File Operations

The preceding discussion of Node’s stream classes included two examples of
copyFile() functions. These are not practical utilities that you
would actually use because the “fs” module defines its own
fs.copyFile() method (and also fs.copyFileSync() and
fs.promises.copyFile(), of course).

These functions take the name of the original file and the name of the
copy as their first two arguments. These can be specified as strings
or as URL or Buffer objects. An optional third argument is an integer
whose bits specify flags that control details of the copy
operation. And for the callback-based fs.copyFile(), the final
argument is a callback function that will be called with no arguments
when the copy is complete, or that will be called with an error argument if
something fails. Following are some examples:

// Basic synchronous file copy.
fs.copyFileSync("ch15.txt", "ch15.bak");

// The COPYFILE_EXCL argument copies only if the new file does not already
// exist. It prevents copies from overwriting existing files.
fs.copyFile("ch15.txt", "ch16.txt", fs.constants.COPYFILE_EXCL, err => {
 // This callback will be called when done. On error, err will be non-null.
});

// This code demonstrates the Promise-based version of the copyFile function.
// Two flags are combined with the bitwise OR opeartor |. The flags mean that
// existing files won't be overwritten, and that if the filesystem supports
// it, the copy will be a copy-on-write clone of the original file, meaning
// that no additional storage space will be required until either the original
// or the copy is modified.
fs.promises.copyFile("Important data",
 `Important data ${new Date().toISOString()}"
 fs.constants.COPYFILE_EXCL | fs.constants.COPYFILE_FICLONE)
 .then(() => {
 console.log("Backup complete");
 });
 .catch(err => {
 console.error("Backup failed", err);
 });

The fs.rename() function (along with the usual synchronous and
Promise-based variants) moves and/or renames a file. Call it with the
current path to the file and the desired new path to the file. There
is no flags argument, but the callback-based version takes a callback
as the third argument:

fs.renameSync("ch15.bak", "backups/ch15.bak");

Note that there is no flag to prevent renaming from overwriting an
existing file. Also keep in mind that files can only be renamed within
a filesystem.

The functions fs.link() and fs.symlink() and their variants have
the same signatures as fs.rename() and behave something like
fs.copyFile() except that they create hard links and symbolic links,
respectively, rather than creating a copy.

Finally, fs.unlink(), fs.unlinkSync(), and fs.promises.unlink()
are Node’s functions for deleting a file. (The unintuitive naming is
inherited from Unix where deleting a file is basically the opposite of
creating a hard link to it.) Call this function with the string,
buffer, or URL path to the file to be deleted, and pass a callback if
you are using the callback-based version:

fs.unlinkSync("backups/ch15.bak");

16.7.5 File Metadata

The fs.stat(), fs.statSync(), and fs.promises.stat() functions
allow you to obtain metadata for a specified file or directory. For
example:

const fs = require("fs");
let stats = fs.statSync("book/ch15.md");
stats.isFile() // => true: this is an ordinary file
stats.isDirectory() // => false: it is not a directory
stats.size // file size in bytes
stats.atime // access time: Date when it was last read
stats.mtime // modification time: Date when it was last written
stats.uid // the user id of the file's owner
stats.gid // the group id of the file's owner
stats.mode.toString(8) // the file's permissions, as an octal string

The returned Stats object contains other, more obscure properties and
methods, but this code demonstrates those that you are most
likely to use.

fs.lstat() and its variants work just like fs.stat(), except that
if the specified file is a symbolic link, Node will return metadata
for the link itself rather than following the link.

If you have opened a file to produce a file descriptor or a FileHandle
object, then you can use fs.fstat() or its variants to get metadata
information for the opened file without having to specify the filename again.

In addition to querying metadata with fs.stat() and all of its
variants, there are also functions for changing metadata.

fs.chmod(), fs.lchmod(), and fs.fchmod() (along with synchronous
and Promise-based versions) set the “mode” or permissions of a file or
directory. Mode values are integers in which each bit has a specific
meaning and are easiest to think about in octal notation. For example,
to make a file read-only to its owner and inaccessible to everyone
else, use 0o400:

fs.chmodSync("ch15.md", 0o400); // Don't delete it accidentally!

fs.chown(), fs.lchown(), and fs.fchown() (along with synchronous
and Promise-based versions) set the owner and group (as IDs) for a
file or directory. (These matter because they interact with the file
permissions set by fs.chmod().)

Finally, you can set the access time and modification time of a file
or directory with fs.utimes() and fs.futimes() and their variants.

16.7.6 Working with Directories

To create a new directory in Node, use fs.mkdir(), fs.mkdirSync(),
or fs.promises.mkdir(). The first argument is the path of the
directory to be created. The optional second argument can be an
integer that specifies the mode (permissions bits) for the new
directory. Or you can pass an object with optional mode and
recursive properties. If recursive is true, then this function
will create any directories in the path that do not already exist:

// Ensure that dist/ and dist/lib/ both exist.
fs.mkdirSync("dist/lib", { recursive: true });

fs.mkdtemp() and its variants take a path prefix you provide, append
some random characters to it (this is important for security), create
a directory with that name, and return (or pass to a callback) the
directory path to you.

To delete a directory, use fs.rmdir() or one of its variants. Note
that directories must be empty before they can be deleted:

// Create a random temporary directory and get its path, then
// delete it when we are done
let tempDirPath;
try {
 tempDirPath = fs.mkdtempSync(path.join(os.tmpdir(), "d"));
 // Do something with the directory here
} finally {
 // Delete the temporary directory when we're done with it
 fs.rmdirSync(tempDirPath);
}

The “fs” module provides two distinct APIs for listing the contents of a
directory. First, fs.readdir(), fs.readdirSync(), and
fs.promises.readdir() read the entire directory all at once and give
you an array of strings or an array of Dirent objects that specify
the names and types (file or directory) of each item. Filenames
returned by these functions are just the local name of the file, not
the entire path. Here are examples:

let tempFiles = fs.readdirSync("/tmp"); // returns an array of strings

// Use the Promise-based API to get a Dirent array, and then
// print the paths of subdirectories
fs.promises.readdir("/tmp", {withFileTypes: true})
 .then(entries => {
 entries.filter(entry => entry.isDirectory())
 .map(entry => entry.name)
 .forEach(name => console.log(path.join("/tmp/", name)));
 })
 .catch(console.error);

If you anticipate needing to list directories that might have
thousands of entries, you might prefer the streaming approach of
fs.opendir() and its variants. These functions return a Dir object
representing the specified directory. You can use the read() or
readSync() methods of the Dir object to read one Dirent at a
time. If you pass a callback function to read(), it will call the
callback. And if you omit the callback argument, it will return a
Promise. When there are no more directory entries, you’ll get null
instead of a Dirent object.

The easiest way to use Dir objects is as async iterators with a
for/await loop. Here, for example, is a function that uses the
streaming API to list directory entries, calls stat() on each entry,
and prints file and directory names and sizes:

const fs = require("fs");
const path = require("path");

async function listDirectory(dirpath) {
 let dir = await fs.promises.opendir(dirpath);
 for await (let entry of dir) {
 let name = entry.name;
 if (entry.isDirectory()) {
 name += "/"; // Add a trailing slash to subdirectories
 }
 let stats = await fs.promises.stat(path.join(dirpath, name));
 let size = stats.size;
 console.log(String(size).padStart(10), name);
 }
}

16.8 HTTP Clients and Servers

Node’s “http,” “https,” and “http2” modules are full-featured but
relatively low-level implementations of the HTTP protocols. They
define comprehensive APIs for implementing HTTP clients and
servers. Because the APIs are relatively low-level, there is not room
in this chapter to cover all the features. But the examples that
follow demonstrate how to write basic clients and servers.

The simplest way to make a basic HTTP GET request is with http.get()
or https.get(). The first argument to these functions is the URL to
fetch. (If it is an http:// URL, you must use the “http” module, and
if it is an https:// URL you must use the “https” module.) The
second argument is a callback that will be invoked with an
IncomingMessage object when the server’s response has started to
arrive. When the callback is called, the HTTP status and headers are
available, but the body may not be ready yet. The IncomingMessage
object is a Readable stream, and you can use the techniques
demonstrated earlier in this chapter to read the response body from
it.

The getJSON() function at the end of §13.2.6
used the http.get() function as part of a demonstration of the
Promise() constructor. Now that you know about Node streams and the
Node programming model more generally, it is worth revisiting that
example to see how http.get() is used.

http.get() and https.get() are slightly simplified variants of the
more general http.request() and https.request() functions. The following postJSON() function demonstrates how to use https.request()
to make an HTTPS POST request that includes a JSON request body. Like
the getJSON() function of Chapter 13, it expects a JSON response and
returns a Promise that fulfills to the parsed version of that
response:

const https = require("https");

/*
 * Convert the body object to a JSON string then HTTPS POST it to the
 * specified API endpoint on the specified host. When the response arrives,
 * parse the response body as JSON and resolve the returned Promise with
 * that parsed value.
 */
function postJSON(host, endpoint, body, port, username, password) {
 // Return a Promise object immediately, then call resolve or reject
 // when the HTTPS request succeeds or fails.
 return new Promise((resolve, reject) => {
 // Convert the body object to a string
 let bodyText = JSON.stringify(body);

 // Configure the HTTPS request
 let requestOptions = {
 method: "POST", // Or "GET", "PUT", "DELETE", etc.
 host: host, // The host to connect to
 path: endpoint, // The URL path
 headers: { // HTTP headers for the request
 "Content-Type": "application/json",
 "Content-Length": Buffer.byteLength(bodyText)
 }
 };

 if (port) { // If a port is specified,
 requestOptions.port = port; // use it for the request.
 }
 // If credentials are specified, add an Authorization header.
 if (username && password) {
 requestOptions.auth = `${username}:${password}`;
 }

 // Now create the request based on the configuration object
 let request = https.request(requestOptions);

 // Write the body of the POST request and end the request.
 request.write(bodyText);
 request.end();

 // Fail on request errors (such as no network connection)
 request.on("error", e => reject(e));

 // Handle the response when it starts to arrive.
 request.on("response", response => {
 if (response.statusCode !== 200) {
 reject(new Error(`HTTP status ${response.statusCode}`));
 // We don't care about the response body in this case, but
 // we don't want it to stick around in a buffer somewhere, so
 // we put the stream into flowing mode without registering
 // a "data" handler so that the body is discarded.
 response.resume();
 return;
 }

 // We want text, not bytes. We're assuming the text will be
 // JSON-formatted but aren't bothering to check the
 // Content-Type header.
 response.setEncoding("utf8");

 // Node doesn't have a streaming JSON parser, so we read the
 // entire response body into a string.
 let body = "";
 response.on("data", chunk => { body += chunk; });

 // And now handle the response when it is complete.
 response.on("end", () => { // When the response is done,
 try { // try to parse it as JSON
 resolve(JSON.parse(body)); // and resolve the result.
 } catch(e) { // Or, if anything goes wrong,
 reject(e); // reject with the error
 }
 });
 });
 });
}

In addition to making HTTP and HTTPS requests, the “http” and “https”
modules also allow you to write servers that respond to those
requests. The basic approach is as follows:

	
Create a new Server object.

	
Call its listen() method to begin listening for requests on a
specified port.

	
Register an event handler for “request” events, use that handler to
read the client’s request (particularly the request.url property),
and write your response.

The code that follows creates a simple HTTP server that serves static files
from the local filesystem and also implements a debugging endpoint
that responds to a client’s request by echoing that request.

// This is a simple static HTTP server that serves files from a specified
// directory. It also implements a special /test/mirror endpoint that
// echoes the incoming request, which can be useful when debugging clients.
const http = require("http"); // Use "https" if you have a certificate
const url = require("url"); // For parsing URLs
const path = require("path"); // For manipulating filesystem paths
const fs = require("fs"); // For reading files

// Serve files from the specified root directory via an HTTP server that
// listens on the specified port.
function serve(rootDirectory, port) {
 let server = new http.Server(); // Create a new HTTP server
 server.listen(port); // Listen on the specified port
 console.log("Listening on port", port);

 // When requests come in, handle them with this function
 server.on("request", (request, response) => {
 // Get the path portion of the request URL, ignoring
 // any query parameters that are appended to it.
 let endpoint = url.parse(request.url).pathname;

 // If the request was for "/test/mirror", send back the request
 // verbatim. Useful when you need to see the request headers and body.
 if (endpoint === "/test/mirror") {
 // Set response header
 response.setHeader("Content-Type", "text/plain; charset=UTF-8");

 // Specify response status code
 response.writeHead(200); // 200 OK

 // Begin the response body with the request
 response.write(`${request.method} ${request.url} HTTP/${
 request.httpVersion
 }\r\n`);

 // Output the request headers
 let headers = request.rawHeaders;
 for(let i = 0; i < headers.length; i += 2) {
 response.write(`${headers[i]}: ${headers[i+1]}\r\n`);
 }

 // End headers with an extra blank line
 response.write("\r\n");

 // Now we need to copy any request body to the response body
 // Since they are both streams, we can use a pipe
 request.pipe(response);
 }
 // Otherwise, serve a file from the local directory.
 else {
 // Map the endpoint to a file in the local filesystem
 let filename = endpoint.substring(1); // strip leading /
 // Don't allow "../" in the path because it would be a security
 // hole to serve anything outside the root directory.
 filename = filename.replace(/\.\.\//g, "");
 // Now convert from relative to absolute filename
 filename = path.resolve(rootDirectory, filename);

 // Now guess the type file's content type based on extension
 let type;
 switch(path.extname(filename)) {
 case ".html":
 case ".htm": type = "text/html"; break;
 case ".js": type = "text/javascript"; break;
 case ".css": type = "text/css"; break;
 case ".png": type = "image/png"; break;
 case ".txt": type = "text/plain"; break;
 default: type = "application/octet-stream"; break;
 }

 let stream = fs.createReadStream(filename);
 stream.once("readable", () => {
 // If the stream becomes readable, then set the
 // Content-Type header and a 200 OK status. Then pipe the
 // file reader stream to the response. The pipe will
 // automatically call response.end() when the stream ends.
 response.setHeader("Content-Type", type);
 response.writeHead(200);
 stream.pipe(response);
 });

 stream.on("error", (err) => {
 // Instead, if we get an error trying to open the stream
 // then the file probably does not exist or is not readable.
 // Send a 404 Not Found plain-text response with the
 // error message.
 response.setHeader("Content-Type", "text/plain; charset=UTF-8");
 response.writeHead(404);
 response.end(err.message);
 });
 }
 });
}

// When we're invoked from the command line, call the serve() function
serve(process.argv[2] || "/tmp", parseInt(process.argv[3]) || 8000);

Node’s built-in modules are all you need to write simple HTTP and
HTTPS servers. Note, however, that production servers are not
typically built directly on top of these modules. Instead, most
nontrivial servers are implemented using external libraries—such as
the Express framework—that provide “middleware” and other higher-level
utilities that backend web developers have come to expect.

16.9 Non-HTTP Network Servers and Clients

Web servers and clients have become so ubiquitous that it is easy to
forget that it is possible to write clients and servers that do not
use HTTP. Even though Node has a reputation as a good environment for
writing web servers, Node also has full support for writing other
types of network servers and clients.

If you are comfortable working with streams, then networking is
relatively simple, because network sockets are simply a kind of Duplex
stream. The “net” module defines Server and Socket classes. To create
a server, call net.createServer(), then call the listen()
method of the resulting object to tell the server what port to listen on for connections. The Server object will generate “connection”
events when a client connects on that port, and the value passed to
the event listener will be a Socket object. The Socket object is
a Duplex stream, and you can use it to read data from the
client and write data to the client. Call end() on the Socket to
disconnect.

Writing a client is even easier: pass a port number and hostname to
net.createConnection() to create a socket to communicate with
whatever server is running on that host and listening on that
port. Then use that socket to read and write data from and to the
server.

The following code demonstrates how to write a server with the “net”
module. When the client connects, the server tells a knock-knock joke:

// A TCP server that delivers interactive knock-knock jokes on port 6789.
// (Why is six afraid of seven? Because seven ate nine!)
const net = require("net");
const readline = require("readline");

// Create a Server object and start listening for connections
let server = net.createServer();
server.listen(6789, () => console.log("Delivering laughs on port 6789"));

// When a client connects, tell them a knock-knock joke.
server.on("connection", socket => {
 tellJoke(socket)
 .then(() => socket.end()) // When the joke is done, close the socket.
 .catch((err) => {
 console.error(err); // Log any errors that occur,
 socket.end(); // but still close the socket!
 });
});

// These are all the jokes we know.
const jokes = {
 "Boo": "Don't cry...it's only a joke!",
 "Lettuce": "Let us in! It's freezing out here!",
 "A little old lady": "Wow, I didn't know you could yodel!"
};

// Interactively perform a knock-knock joke over this socket, without blocking.
async function tellJoke(socket) {
 // Pick one of the jokes at random
 let randomElement = a => a[Math.floor(Math.random() * a.length)];
 let who = randomElement(Object.keys(jokes));
 let punchline = jokes[who];

 // Use the readline module to read the user's input one line at a time.
 let lineReader = readline.createInterface({
 input: socket,
 output: socket,
 prompt: ">> "
 });

 // A utility function to output a line of text to the client
 // and then (by default) display a prompt.
 function output(text, prompt=true) {
 socket.write(`${text}\r\n`);
 if (prompt) lineReader.prompt();
 }

 // Knock-knock jokes have a call-and-response structure.
 // We expect different input from the user at different stages and
 // take different action when we get that input at different stages.
 let stage = 0;

 // Start the knock-knock joke off in the traditional way.
 output("Knock knock!");

 // Now read lines asynchronously from the client until the joke is done.
 for await (let inputLine of lineReader) {
 if (stage === 0) {
 if (inputLine.toLowerCase() === "who's there?") {
 // If the user gives the right response at stage 0
 // then tell the first part of the joke and go to stage 1.
 output(who);
 stage = 1;
 } else {
 // Otherwise teach the user how to do knock-knock jokes.
 output('Please type "Who\'s there?".');
 }
 } else if (stage === 1) {
 if (inputLine.toLowerCase() === `${who.toLowerCase()} who?`) {
 // If the user's response is correct at stage 1, then
 // deliver the punchline and return since the joke is done.
 output(`${punchline}`, false);
 return;
 } else {
 // Make the user play along.
 output(`Please type "${who} who?".`);
 }
 }
 }
}

Simple text-based servers like this do not typically need a custom
client. If the nc (“netcat”) utility is installed on your system,
you can use it to communicate with this server as follows:

$ nc localhost 6789
Knock knock!
>> Who's there?
A little old lady
>> A little old lady who?
Wow, I didn't know you could yodel!

On the other hand, writing a custom client for the joke server is
easy in Node. We just connect to the server, then pipe the
server’s output to stdout and pipe stdin to the server’s input:

// Connect to the joke port (6789) on the server named on the command line
let socket = require("net").createConnection(6789, process.argv[2]);
socket.pipe(process.stdout); // Pipe data from the socket to stdout
process.stdin.pipe(socket); // Pipe data from stdin to the socket
socket.on("close", () => process.exit()); // Quit when the socket closes.

In addition to supporting TCP-based servers, Node’s “net” module also
supports interprocess communication over “Unix domain sockets” that
are identified by a filesystem path rather than by a port number. We
are not going to cover that kind of socket in this chapter, but the
Node documentation has details. Other Node features that we don’t have
space to cover here include the “dgram” module for UDP-based clients
and servers and the “tls” module that is to “net” as “https” is to
“http.” The tls.Server and tls.TLSSocket classes allow the
creation of TCP servers (like the knock-knock joke server) that use
SSL-encrypted connections like HTTPS servers do.

16.10 Working with Child Processes

In addition to writing highly concurrent servers, Node also works well
for writing scripts that execute other programs. In Node the
“child_process” module defines a number of functions for running other
programs as child processes. This section demonstrates some of those
functions, starting with the simplest and moving to the more
complicated.

16.10.1 execSync() and execFileSync()

The easiest way to run another program is with
child_process.execSync(). This function takes the command to run as
its first argument. It creates a child process, runs a shell in that
process, and uses the shell to execute the command you passed. Then it
blocks until the command (and the shell) exit. If the command exits
with an error, then execSync() throws an exception. Otherwise,
execSync() returns whatever output the command writes to its stdout
stream. By default
this return value is a buffer, but you can specify an encoding in an
optional second argument to get a string instead. If the command
writes any output to stderr, that output just gets passed through to
the parent process’s stderr stream.

So, for example, if you are writing a script and performance is not a
concern, you might use child_process.execSync() to list a directory
with a familiar Unix shell command rather than using the
fs.readdirSync() function:

const child_process = require("child_process");
let listing = child_process.execSync("ls -l web/*.html", {encoding: "utf8"});

The fact that execSync() invokes a full Unix shell means that the
string you pass to it can include multiple semicolon-separated
commands, and can take advantage of shell features such as filename
wildcards, pipes, and output redirection. This also means that you
must be careful to never pass a command to execSync() if any portion
of that command is user input or comes from a similar untrusted
source. The complex syntax of shell commands can be easily subverted
to allow an attacker to run arbitrary code.

If you don’t need the features of a shell, you can avoid the overhead
of starting a shell by using child_process.execFileSync(). This
function executes a program directly, without invoking a shell. But
since no shell is involved, it can’t parse a command line, and you
must pass the executable as the first argument and an array of
command-line arguments as the second argument:

let listing = child_process.execFileSync("ls", ["-l", "web/"],
 {encoding: "utf8"});

Child Process Options

execSync() and many of the other child_process functions have a
second or third optional argument that specifies additional details
about how the child process is to run. The encoding property of this
object was used earlier to specify that we’d like the command output to
be delivered as a string rather than as a buffer. Other important
properties that you can specify include the following (note that not
all options are available to all child process functions):

	
cwd specifies the working directory for the child process. If you
omit this, then the child process inherits the value of
process.cwd().

	
env specifies the environment variables that the child process
will have access to. By default, child processes simply inherit
process.env, but you can specify a different object if you want.

	
input specifies a string or buffer of input data that should be
used as the standard input to the child process. This option is only
available to the synchronous functions that do not return a
ChildProcess object.

	
maxBuffer specifies the maximum number of bytes of output that
will be collected by the exec functions. (It does not apply to
spawn() and fork(), which use streams.) If a child process
produces more output than this, it will be killed and will exit with
an error.

	
shell specifies the path to a shell executable or true. For
child process functions that normally execute a shell command, this
option allows you to specify which shell to use. For functions that
do not normally use a shell, this option allows you to specify that
a shell should be used (by setting the property to true) or to
specify exactly which shell to use.

	
timeout specifies the maximum number of milliseconds that the
child process should be allowed to run. If it has not exited before
this time elapses, it will be killed and will exit with an
error. (This option applies to the exec functions but not to
spawn() or fork().)

	
uid specifies the user ID (a number) under which the program
should be run. If the parent process is running in a privileged
account, it can use this option to run the child with reduced
privileges.

16.10.2 exec() and execFile()

The execSync() and execFileSync() functions are, as their names
indicate, synchronous: they block and do not return until the child
process exits. Using these functions is a lot like typing Unix
commands in a terminal window: they allow you to run a sequence of
commands one at a time. But if you’re writing a program that needs to
accomplish a number of tasks, and those tasks don’t depend on each
other in any way, then you may want to parallelize them and run
multiple commands at the same time. You can do this with the
asynchronous functions child_process.exec() and
child_process.execFile().

exec() and execFile() are like their synchronous variants except
that they return immediately with a ChildProcess object that
represents the running child process, and they take an error-first
callback as their final argument. The callback is invoked when the
child process exits, and it is actually called with three
arguments. The first is the error, if any; it will be null if the
process terminated normally. The second argument is the
collected output that was sent to the child’s standard output
stream. And the third argument is any output that was sent to the
child’s standard error stream.

The ChildProcess object returned by exec() and execFile() allows you
to terminate the child process, and to write data to it (which it can
then read from its standard input). We’ll cover ChildProcess in more
detail when we discuss the child_process.spawn() function.

If you plan to execute multiple child processes at the same time, then
it may be easiest to use the “promisified” version of exec() which
returns a Promise object which, if the child process exits without
error, resolves to an object with stdout and stderr
properties. Here, for example, is a function that takes an array of
shell commands as its input and returns a Promise that resolves to the
result of all of those commands:

const child_process = require("child_process");
const util = require("util");
const execP = util.promisify(child_process.exec);

function parallelExec(commands) {
 // Use the array of commands to create an array of Promises
 let promises = commands.map(command => execP(command, {encoding: "utf8"}));
 // Return a Promise that will fulfill to an array of the fulfillment
 // values of each of the individual promises. (Instead of returning objects
 // with stdout and stderr properties we just return the stdout value.)
 return Promise.all(promises)
 .then(outputs => outputs.map(out => out.stdout));
}

module.exports = parallelExec;

16.10.3 spawn()

The various exec functions described so far—both synchronous and
asynchronous—are designed to be used with child processes that run
quickly and do not produce a lot of output. Even the asynchronous
exec() and execFile() are nonstreaming: they return the process
output in a single batch, only after the process has exited.

The child_process.spawn() function allows you streaming access to
the output of the child process, while the process is still
running. It also allows you to write data to the child process (which
will see that data as input on its standard input stream): this means it is
possible to dynamically interact with a child process, sending it
input based on the output it generates.

spawn() does not use a shell by default, so you must invoke it like
execFile() with the executable to be run and a separate array of
command-line arguments to pass to it. spawn() returns a ChildProcess
object like execFile() does, but it does not take a callback
argument. Instead of using a callback function, you listen to events
on the ChildProcess object and on its streams.

The ChildProcess object returned by spawn() is an event emitter. You
can listen for the “exit” event to be notified when the child process
exits. A ChildProcess object also has three stream
properties. stdout and stderr are Readable streams: when the child
process writes to its stdout and its stderr streams, that output
becomes readable through the ChildProcess streams. Note the inversion
of the names here. In the child process, “stdout” is a Writable output
stream, but in the parent process, the stdout property of a
ChildProcess object is a Readable input stream.

Similarly, the stdin property of the ChildProcess object is a
Writeable stream: anything you write to this stream becomes available
to the child process on its standard input.

The ChildProcess object also defines a pid property that specifies
the process id of the child. And it defines a kill() method that you
can use to terminate a child process.

16.10.4 fork()

child_process.fork() is a specialized function for running a module
of JavaScript code in a child Node process. fork() expects the same
arguments as spawn(), but the first argument should specify the path
to a file of JavaScript code instead of an executable binary file.

A child process created with fork() can communicate with the parent
process via its standard input and standard output streams, as
described in the previous section for spawn(). But in addition, fork() enables
another, much easier, communication channel between the parent and
child processes.

When you create a child process with fork(), you can use the
send() method of the returned ChildProcess object to send a copy of
an object to the child process. And you can listen for the “message”
event on the ChildProcess to receive messages from the child. The code
running in the child process can use process.send() to send a
message to the parent and can listen for “message” events on process
to receive messages from the parent.

Here, for example, is some code that uses fork() to create a child
process, then sends that child a message and waits for a response:

const child_process = require("child_process");

// Start a new node process running the code in child.js in our directory
let child = child_process.fork(`${__dirname}/child.js`);

// Send a message to the child
child.send({x: 4, y: 3});

// Print the child's response when it arrives.
child.on("message", message => {
 console.log(message.hypotenuse); // This should print "5"
 // Since we only send one message we only expect one response.
 // After we receive it we call disconnect() to terminate the connection
 // between parent and child. This allows both processes to exit cleanly.
 child.disconnect();
});

And here is the code that runs in the child process:

// Wait for messages from our parent process
process.on("message", message => {
 // When we receive one, do a calculation and send the result
 // back to the parent.
 process.send({hypotenuse: Math.hypot(message.x, message.y)});
});

Starting child processes is an expensive operation, and the child
process would have to be doing orders of magnitude more computation
before it would make sense to use fork() and interprocess
communication in this way. If you are writing a program that needs to
be very responsive to incoming events and also needs to perform
time-consuming computations, then you might consider using a separate
child process to perform the computations so that they don’t block the
event loop and reduce the responsiveness of the parent
process. (Though a thread—see §16.11—may be a
better choice than a child process in this scenario.)

The first argument to send() will be serialized with
JSON.stringify() and deserialized in the child process with
JSON.parse(), so you should only include values that are supported
by the JSON format. send() has a special second argument, however,
that allows you to transfer Socket and Server objects (from the “net”
module) to a child process. Network servers tend to be IO-bound rather
than compute-bound, but if you have written a server that needs to do
more computation than a single CPU can handle, and if you’re running
that server on a machine with multiple CPUs, then you could use
fork() to create multiple child processes for handling requests. In
the parent process, you might listen for “connection” events on your
Server object, then get the Socket object from that “connection” event
and send() it—using the special second argument—to one of the child
processes to be handled. (Note that this is an unlikely solution to an
uncommon scenario. Rather than writing a server that forks child
processes, it is probably simpler to keep your server single-threaded
and deploy multiple instances of it in production to handle the load.)

16.11 Worker Threads

As explained at the beginning of this chapter, Node’s concurrency
model is single-threaded and event-based. But in version 10 and later,
Node does allow true multithreaded programming, with an API that
closely mirrors the Web Workers API defined by web browsers
(§15.13). Multithreaded programming has a well-deserved
reputation for being difficult. This is almost entirely because of the
need to carefully synchronize access by threads to shared memory. But
JavaScript threads (in both Node and browsers) do not share memory by
default, so the dangers and difficulties of using threads do not apply
to these “workers” in JavaScript.

Instead of using shared memory, JavaScript’s worker threads
communicate by message passing. The main thread can send a message to
a worker thread by calling the postMessage() method of the Worker
object that represents that thread. The worker thread can receive
messages from its parent by listening for “message” events. And
workers can send messages to the main thread with their own version of
postMessage(), which the parent can receive with its own “message”
event handler. The example code will make it clear how this
works.

There are three reasons why you might want to use worker threads in a
Node application:

	
If your application actually needs to do more computation than one
CPU core can handle, then threads allow you to distribute work across
the multiple cores, which have become commonplace on computers today. If
you’re doing scientific computing or machine learning or graphics
processing in Node, then you may want to use threads simply to throw
more computing power at your problem.

	
Even if your application is not using the full power of one CPU, you
may still want to use threads to maintain the responsiveness of the
main thread. Consider a server that handles large but relatively
infrequent requests. Suppose it gets only one request a second, but
needs to spend about half a second of (blocking CPU-bound)
computation to process each request. On average, it will be idle 50%
of the time. But when two requests arrive within a few milliseconds
of each other, the server will not even be able to begin a response
to the second request until the computation of the first response is
complete. Instead, if the server uses a worker thread to perform the
computation, the server can begin the response to both requests
immediately and provide a better experience for the server’s
clients. Assuming the server has more than one CPU core, it can
also compute the body of both responses in parallel, but even if
there is only a single core, using workers still improves the
responsiveness.

	
In general, workers allow us to turn blocking synchronous
operations into nonblocking asynchronous operations. If you are
writing a program that depends on legacy code that is unavoidably
synchronous, you may be able to use workers to avoid blocking when
you need to call that legacy code.

Worker threads are not nearly as heavyweight as child processes, but
they are not lightweight. It does not generally make sense to create a
worker unless you have significant work for it to do. And, generally
speaking, if your program is not CPU-bound and is not having
responsiveness problems, then you probably do not need worker threads.

16.11.1 Creating Workers and Passing Messages

The Node module that defines workers is known as “worker_threads.” In
this section we’ll refer to it with the identifier threads:

const threads = require("worker_threads");

This module defines a Worker class to represent a worker thread, and
you can create a new thread with the threads.Worker()
constructor. The following code demonstrates using this constructor to
create a worker, and shows how to pass messages from main thread to
worker and from worker to main thread. It also demonstrates a trick
that allows you to put the main thread code and the worker thread code
in the same file.2

const threads = require("worker_threads");

// The worker_threads module exports the boolean isMainThread property.
// This property is true when Node is running the main thread and it is
// false when Node is running a worker. We can use this fact to implement
// the main and worker threads in the same file.
if (threads.isMainThread) {
 // If we're running in the main thread, then all we do is export
 // a function. Instead of performing a computationally intensive
 // task on the main thread, this function passes the task to a worker
 // and returns a Promise that will resolve when the worker is done.
 module.exports = function reticulateSplines(splines) {
 return new Promise((resolve,reject) => {
 // Create a worker that loads and runs this same file of code.
 // Note the use of the special __filename variable.
 let reticulator = new threads.Worker(__filename);

 // Pass a copy of the splines array to the worker
 reticulator.postMessage(splines);

 // And then resolve or reject the Promise when we get
 // a message or error from the worker.
 reticulator.on("message", resolve);
 reticulator.on("error", reject);
 });
 };
} else {
 // If we get here, it means we're in the worker, so we register a
 // handler to get messages from the main thread. This worker is designed
 // to only receive a single message, so we register the event handler
 // with once() instead of on(). This allows the worker to exit naturally
 // when its work is complete.
 threads.parentPort.once("message", splines => {
 // When we get the splines from the parent thread, loop
 // through them and reticulate all of them.
 for(let spline of splines) {
 // For the sake of example, assume that spline objects usually
 // have a reticulate() method that does a lot of computation.
 spline.reticulate ? spline.reticulate() : spline.reticulated = true;
 }

 // When all the splines have (finally!) been reticulated
 // pass a copy back to the main thread.
 threads.parentPort.postMessage(splines);
 });
}

The first argument to the Worker() constructor is the path to a file
of JavaScript code that is to run in the thread. In the preceding code, we
used the predefined __filename identifier to create a worker that
loads and runs the same file as the main thread. In general, though,
you will be passing a file path. Note that if you specify a relative
path, it is relative to process.cwd(), not relative to the currently
running module. If you want a path relative to the current module, use
something like path.resolve(__dirname, 'workers/reticulator.js').

The Worker() constructor can also accept an object as its second
argument, and the properties of this object provide optional
configuration for the worker. We’ll cover a number of these options
later, but for now note that if you pass {eval: true} as the second
argument, then the first argument to Worker() is interpreted as a
string of JavaScript code to be evaluated instead of a filename:

new threads.Worker(`
 const threads = require("worker_threads");
 threads.parentPort.postMessage(threads.isMainThread);
`, {eval: true}).on("message", console.log); // This will print "false"

Node makes a copy of the object passed to postMessage() rather than
sharing it directly with the worker thread. This prevents the worker
thread and the main thread from sharing memory. You might expect that
this copying would be done with JSON.stringify() and JSON.parse()
(§11.6). But in fact, Node borrows a more robust technique known
as the structured clone algorithm from web browsers.

The structured clone algorithm enables serialization of most
JavaScript types, including Map, Set, Date, and RegExp objects and
typed arrays, but it cannot, in general, copy types defined by the Node
host environment, such as sockets and streams. Note, however, that
Buffer objects are partially supported: if you pass a Buffer to
postMessage() it will be received as a Uint8Array, and can be
converted back into a Buffer with Buffer.from(). Read more about the
structured clone algorithm in “The Structured Clone Algorithm”.

16.11.2 The Worker Execution Environment

For the most part, JavaScript code in a Node worker thread runs just
like it would in Node’s main thread. There are a few differences that
you should be aware of, and some of these differences involve
properties of the optional second argument to the Worker()
constructor:

	
As we’ve seen, threads.isMainThread is true in the main
thread but is always false in any worker thread.

	
In a worker thread, you can use threads.parentPort.postMessage()
to send a message to the parent thread and threads.parentPort.on
to register event handlers for messages from the parent thread. In
the main thread, threads.parentPort is always null.

	
In a worker thread, threads.workerData is set to a copy of the
workerData property of the second argument to the Worker()
constructor. In the main thread, this property is always null. You
can use this workerData property to pass an initial message to the
worker that will be available as soon as it starts so that the
worker does not have to wait for a “message” event before it can start
doing work.

	
By default, process.env in a worker thread is a copy of
process.env in the parent thread. But the parent thread can
specify a custom set of environment variables by setting the env
property of the second argument to the Worker() constructor. As a
special (and potentially dangerous) case, the parent thread can set
the env property to threads.SHARE_ENV, which will cause the two
threads to share a single set of environment variables so that a
change in one thread is visible in the other.

	
By default, the process.stdin stream in a worker never has any
readable data on it. You can change this default by passing stdin:
true in the second argument to the Worker() constructor. If you
do that, then the stdin property of the Worker object is a
Writable stream. Any data that the parent writes to worker.stdin
becomes readable on process.stdin in the worker.

	
By default, the process.stdout and process.stderr streams in the
worker are simply piped to the corresponding streams in the parent
thread. This means, for example, that console.log() and
console.error() produce output in exactly the same way in a worker
thread as they do in the main thread. You can override this default
by passing stdout:true or stderr:true in the second argument to
the Worker() constructor. If you do this, then any output the
worker writes to those streams becomes readable by the parent thread
on the worker.stdout and worker.stderr threads. (There is a
potentially confusing inversion of stream directions here, and we
saw the same thing with with child processes earlier in the chapter:
the output streams of a worker thread are input streams for the
parent thread, and the input stream of a worker is an output stream
for the parent.)

	
If a worker thread calls process.exit(), only the thread exits,
not the entire process.

	
Worker threads are not allowed to change shared state of the process
they are part of. Functions like process.chdir() and
process.setuid() will throw exceptions when invoked from a worker.

	
Operating system signals (like SIGINT and SIGTERM) are only
delivered to the main thread; they cannot be received or handled in
worker threads.

16.11.3 Communication Channels and MessagePorts

When a new worker thread is created, a communication channel is
created along with it that allows messages to be passed back and forth
between the worker and the parent thread. As we’ve seen, the worker
thread uses threads.parentPort to send and receive messages to and
from the parent thread, and the parent thread uses the Worker object
to send and receive messages to and from the worker thread.

The worker thread API also allows the creation of custom communication
channels using the MessageChannel API defined by web browsers and
covered in §15.13.5. If you have read that section, much of
what follows will sound familiar to you.

Suppose a worker needs to handle two different kinds of messages sent
by two different modules in the main thread. These two different
modules could both share the default channel and send messages with
worker.postMessage(), but it would be cleaner if each module has its
own private channel for sending messages to the worker. Or consider the
case where the main thread creates two independent workers. A custom
communication channel can allow the two workers to communicate
directly with each other instead of having to send all their messages
via the parent.

Create a new message channel with the MessageChannel()
constructor. A MessageChannel object has two properties, named port1
and port2. These properties refer to a pair of MessagePort
objects. Calling postMessage() on one of the ports will cause a “message” event to be generated on the other with a structured clone of the Message object:

const threads = require("worker_threads");
let channel = new threads.MessageChannel();
channel.port2.on("message", console.log); // Log any messages we receive
channel.port1.postMessage("hello"); // Will cause "hello" to be printed

You can also call close() on either port to break the connection
between the two ports and to signal that no more messages will be
exchanged. When close() is called on either port, a “close” event is
delivered to both ports.

Note that the code example above creates a pair of MessagePort objects and
then uses those objects to transmit a message within the main
thread. In order to use custom communication channels with workers, we
must transfer one of the two ports from the thread in which it is
created to the thread in which it will be used. The next section
explains how to do this.

16.11.4 Transferring MessagePorts and Typed Arrays

The postMessage() function uses the structured clone algorithm, and
as we’ve noted, it cannot copy objects like SSockets and Streams. It
can handle MessagePort objects, but only as a special case using a
special technique. The postMessage() method (of a Worker object, of
threads.parentPort, or of any MessagePort object) takes an optional
second argument. This argument (called transferList) is an array of
objects that are to be transferred between threads rather than being
copied.

A MessagePort object cannot be copied by the structured clone
algorithm, but it can be transferred. If the first argument to
postMessage() has included one or more
MessagePorts (nested arbitrarily
deeply within the Message object), then those MessagePort objects must
also appear as members of the array passed as the second
argument. Doing this tells Node that it does not need to make a copy
of the MessagePort, and can instead just give the existing object to
the other thread. The key thing to understand, however, about
transferring values between threads is that once a value is
transferred, it can no longer be used in the thread that called
postMessage().

Here is how you might create a new MessageChannel and transfer one of
its MessagePorts to a worker:

// Create a custom communication channel
const threads = require("worker_threads");
let channel = new threads.MessageChannel();

// Use the worker's default channel to transfer one end of the new
// channel to the worker. Assume that when the worker receives this
// message it immediately begins to listen for messages on the new channel.
worker.postMessage({ command: "changeChannel", data: channel.port1 },
 [channel.port1]);

// Now send a message to the worker using our end of the custom channel
channel.port2.postMessage("Can you hear me now?");

// And listen for responses from the worker as well
channel.port2.on("message", handleMessagesFromWorker);

MessagePort objects are not the only ones that can be transferred. If
you call postMessage() with a typed array as the message (or with a
message that contains one or more typed arrays nested arbitrarily deep
within the message), that typed array (or those typed arrays) will
simply be copied by the structured clone algorithm. But typed arrays
can be large; for example, if you are using a worker thread to do image
processing on millions of pixels. So for efficiency, postMessage()
also gives us the option to transfer typed arrays rather than copying
them. (Threads share memory by default. Worker threads in JavaScript
generally avoid shared memory, but when we allow this kind of
controlled transfer, it can be done very efficiently.) What makes this
safe is that when a typed array is transferred to another thread, it
becomes unusable in the thread that transferred it. In the image-processing scenario, the main thread could transfer the pixels of an
image to the worker thread, and then the worker thread could transfer
the processed pixels back to the main thread when it was done. The
memory would not need to be copied, but it would never be accessible by
two threads at once.

To transfer a typed array instead of copying it, include the
ArrayBuffer that backs the array in the second argument to
postMessage():

let pixels = new Uint32Array(1024*1024); // 4 megabytes of memory

// Assume we read some data into this typed array, and then transfer the
// pixels to a worker without copying. Note that we don't put the array
// itself in the transfer list, but the array's Buffer object instead.
worker.postMessage(pixels, [pixels.buffer]);

As with transferred MessagePorts, a transferred typed array becomes
unusable once transferred. No exceptions are thrown if you attempt to
use a MessagePort or typed array that has been transferred; these
objects simply stop doing anything when you interact with them.

16.11.5 Sharing Typed Arrays Between Threads

In addition to transferring typed arrays between threads, it is
actually possible to share a typed array between threads. Simply
create a SharedArrayBuffer of the desired size and then use that
buffer to create a typed array. When a typed array that is backed by a
SharedArrayBuffer is passed via postMessage(), the underlying memory
will be shared between the threads. You should not include the shared
buffer in the second argument to postMessage() in this case.

You really should not do this, however, because JavaScript was never
designed with thread safety in mind and multithreaded programming is
very difficult to get right. (And this is why SharedArrayBuffer was
not covered in §11.2: it is a niche feature that is
difficult to get right.) Even the simple ++ operator is not
thread-safe because it needs to read a value, increment it, and write
it back. If two threads are incrementing a value at the same time, it
will often only be incremented once, as the following code
demonstrates:

const threads = require("worker_threads");

if (threads.isMainThread) {
 // In the main thread, we create a shared typed array with
 // one element. Both threads will be able to read and write
 // sharedArray[0] at the same time.
 let sharedBuffer = new SharedArrayBuffer(4);
 let sharedArray = new Int32Array(sharedBuffer);

 // Now create a worker thread, passing the shared array to it with
 // as its initial workerData value so we don't have to bother with
 // sending and receiving a message
 let worker = new threads.Worker(__filename, { workerData: sharedArray });

 // Wait for the worker to start running and then increment the
 // shared integer 10 million times.
 worker.on("online", () => {
 for(let i = 0; i < 10_000_000; i++) sharedArray[0]++;

 // Once we're done with our increments, we start listening for
 // message events so we know when the worker is done.
 worker.on("message", () => {
 // Although the shared integer has been incremented
 // 20 million times, its value will generally be much less.
 // On my computer the final value is typically under 12 million.
 console.log(sharedArray[0]);
 });
 });
} else {
 // In the worker thread, we get the shared array from workerData
 // and then increment it 10 million times.
 let sharedArray = threads.workerData;
 for(let i = 0; i < 10_000_000; i++) sharedArray[0]++;
 // When we're done incrementing, let the main thread know
 threads.parentPort.postMessage("done");
}

One scenario in which it might be reasonable to use a
SharedArrayBuffer is when the two threads operate on entirely separate
sections of the shared memory. You might enforce this by creating two
typed arrays that serve as views of nonoverlapping regions of the
shared buffer, and then have your two threads use those two separate
typed arrays. A parallel merge sort could be done like this: one
thread sorts the bottom half of an array and the other thread sorts
the top half, for example. Or some kinds of image-processing
algorithms are also suitable for this approach: multiple threads
working on disjoint regions of the image.

If you really must allow multiple threads to access the same region of
a shared array, you can take one step toward thread safety with the
functions defined by the Atomics object. Atomics was added to
JavaScript when SharedArrayBuffer was to define atomic operations on
the elements of a shared array. For example, the Atomics.add()
function reads the specified element of a shared array, adds a
specified value to it, and writes the sum back into the array. It does
this atomically as if it was a single operation, and ensures that no
other thread can read or write the value while the operation is taking
place. Atomics.add() allows us to rewrite the parallel increment
code we just looked at and get the correct result of 20 million increments of a
shared array element:

const threads = require("worker_threads");

if (threads.isMainThread) {
 let sharedBuffer = new SharedArrayBuffer(4);
 let sharedArray = new Int32Array(sharedBuffer);
 let worker = new threads.Worker(__filename, { workerData: sharedArray });

 worker.on("online", () => {
 for(let i = 0; i < 10_000_000; i++) {
 Atomics.add(sharedArray, 0, 1); // Threadsafe atomic increment
 }

 worker.on("message", (message) => {
 // When both threads are done, use a threadsafe function
 // to read the shared array and confirm that it has the
 // expected value of 20,000,000.
 console.log(Atomics.load(sharedArray, 0));
 });
 });
} else {
 let sharedArray = threads.workerData;
 for(let i = 0; i < 10_000_000; i++) {
 Atomics.add(sharedArray, 0, 1); // Threadsafe atomic increment
 }
 threads.parentPort.postMessage("done");
}

This new version of the code correctly prints the number
20,000,000. But it is about nine times slower than the incorrect code it
replaces. It would be much simpler and much faster to just do all 20
million increments in one thread. Also note that atomic operations may
be able to ensure thread safety for image-processing algorithms for
which each array element is a value entirely independent of all other
values. But in most real-world programs, multiple array elements are
often related to one another and some kind of higher-level thread
synchronization is required. The low-level
Atomics.wait() and
Atomics.notify() function can help with this, but a discussion of
their use is out of scope for this book.

16.12 Summary

Although JavaScript was created to run in web browsers, Node has
made JavaScript into a general-purpose programming language. It is
particularly popular for implementing web servers, but its deep
bindings to the operating system mean that it is also a good
alternative to shell scripts.

The most important topics covered in this long chapter include:

	
Node’s asynchronous-by-default APIs and its single-threaded, callback,
and event-based style of concurrency.

	
Node’s fundamental datatypes, buffers, and streams.

	
Node’s “fs” and “path” modules for working with the filesystem.

	
Node’s “http” and “https” modules for writing HTTP clients and
servers.

	
Node’s “net” module for writing non-HTTP clients and servers.

	
Node’s “child_process” module for creating and communicating with
child
processes.

	
Node’s “worker_threads” module for true multithreaded programming
using message-passing instead of shared memory.

1 Node defines a fs.copyFile() function that you would actually use in practice.
2 It is often cleaner and simpler to define the worker code in a separate file. But this trick of having two threads run different sections of the same file blew my mind when I first encountered it for the Unix fork() system call. And I think it is worth demonstrating this technique simply for its strange elegance.

Chapter 17. JavaScript Tools and Extensions

Congratulations on reaching the final chapter of this book. If you
have read everything that comes before, you now have a detailed
understanding of the JavaScript language and know how to use it in
Node and in web browsers. This chapter is a kind of graduation
present: it introduces a handful of important programming tools that
many JavaScript programmers find useful, and also describes two
widely used extensions to the core JavaScript language. Whether or not
you choose to use these tools and extensions for your own projects,
you are almost certain to see them used in other projects, so it is
important to at least know what they are.

The tools and language extensions covered in this chapter are:

	
ESLint for finding potential bugs and style problems in your code.

	
Prettier for formatting your JavaScript code in a standardized way.

	
Jest as an all-in-one solution for writing JavaScript unit tests.

	
npm for managing and installing the software libraries that your
program depends on.

	
Code-bundling tools—like webpack, Rollup, and Parcel—that convert
your modules of JavaScript code into a single bundle for use on the
web.

	
Babel for translating JavaScript code that uses brand-new language
features (or that uses language extensions) into JavaScript code
that can run in current web browsers.

	
The JSX language extension (used by the React framework) that allows
you to describe user interfaces using JavaScript expressions that
look like HTML markup.

	
The Flow language extension (or the similar TypeScript extension)
that allows you to annotate your JavaScript code with types and
check your code for type safety.

This chapter does not document these tools and extensions in any
comprehensive way. The goal is simply to explain them in enough depth
that you can understand why they are useful and when you might want to
use them. Everything covered in this chapter is widely used in the
JavaScript programming world, and if you do decide to adopt a tool or
extension, you’ll find lots of documentation and tutorials online.

17.1 Linting with ESLint

In programming, the term lint refers to code that, while technically
correct, is unsightly, or a possible bug, or suboptimal in some way. A
linter is a tool for detecting lint in your code, and linting is
the process of running a linter on your code (and then fixing your
code to remove the lint so that the linter no longer complains).

The most commonly used linter for JavaScript today is ESLint. If you run it and then take the time to actually
fix the issues it points out, it will make your code cleaner and less
likely to have bugs. Consider the following code:

var x = 'unused';

export function factorial(x) {
 if (x == 1) {
 return 1;
 } else {
 return x * factorial(x-1)
 }
}

If you run ESLint on this code, you might get output like this:

$ eslint code/ch17/linty.js

code/ch17/linty.js
 1:1 error Unexpected var, use let or const instead no-var
 1:5 error 'x' is assigned a value but never used no-unused-vars
 1:9 warning Strings must use doublequote quotes
 4:11 error Expected '===' and instead saw '==' eqeqeq
 5:1 error Expected indentation of 8 spaces but found 6 indent
 7:28 error Missing semicolon semi

✖ 6 problems (5 errors, 1 warning)
 3 errors and 1 warning potentially fixable with the `--fix` option.

Linters can seem nitpicky sometimes. Does it really matter whether we
used double quotes or single quotes for our strings? On the other
hand, getting indentation right is important for readability, and
using === and let instead of == and var protects you from
subtle bugs. And unused variables are dead weight in your code—there is no
reason to keep those around.

ESLint defines many linting rules and has an ecosystem of plug-ins that
add many more. But ESLint is fully configurable, and you can define a
configuration file that tunes ESLint to enforce exactly the rules you
want and only those rules.

17.2 JavaScript Formatting with Prettier

One of the reasons that some projects use linters is to enforce a
consistent coding style so that when a team of programmers is working
on a shared codebase, they use compatible code conventions. This
includes code indentation rules, but can also include things like what
kind of quotation marks are preferred and whether there should be a
space between the for keyword and the open parenthesis that follows
it.

A modern alternative to enforcing code formatting rules via a linter
is to adopt a tool like Prettier to
automatically parse and reformat all of your code.

Suppose you have written the following function, which works, but is
formatted unconventionally:

function factorial(x)
{
 if(x===1){return 1}
 else{return x*factorial(x-1)}
}

Running Prettier on this code fixes the indentation, adds missing
semicolons, adds spaces around binary operators and inserts line
breaks after { and before }, resulting in much more
conventional-looking code:

$ prettier factorial.js
function factorial(x) {
 if (x === 1) {
 return 1;
 } else {
 return x * factorial(x - 1);
 }
}

If you invoke Prettier with the --write option, it will simply
reformat the specified file in place rather than printing a
reformatted version. If you use git to manage your source code, you
can invoke Prettier with the --write option in a commit hook so
that code is automatically formatted before being checked in.

Prettier is particularly powerful if you configure your code editor to
run it automatically every time you save a file. I find it liberating
to write sloppy code and see it fixed automatically for me.

Prettier is configurable, but it only has a few options. You can select
the maximum line length, the indentation amount, whether semicolons
should be used, whether strings should be single- or double-quoted, and
a few other things. In general, Prettier’s default options are quite
reasonable. The idea is that you just adopt Prettier for your project
and then never have to think about code formatting again.

Personally, I really like using Prettier on JavaScript projects. I
have not used it for the code in this book, however, because in much of
my code I rely on careful hand formatting to align my comments
vertically, and Prettier messes them up.

17.3 Unit Testing with Jest

Writing tests is an important part of any nontrivial programming
project. Dynamic languages like JavaScript support testing frameworks
that dramatically reduce the effort required to write tests, and
almost make test writing fun! There are a lot of test tools and
libraries for JavaScript, and many are written in a modular way so
that it is possible to pick one library as your test runner, another
library for assertions, and a third for mocking. In this section,
however, we’ll describe Jest, which is a popular
framework that includes everything you need in a single package.

Suppose you’ve written the following function:

const getJSON = require("./getJSON.js");

/**
 * getTemperature() takes the name of a city as its input, and returns
 * a Promise that will resolve to the current temperature of that city,
 * in degrees Fahrenheit. It relies on a (fake) web service that returns
 * world temperatures in degrees Celsius.
 */
module.exports = async function getTemperature(city) {
 // Get the temperature in Celsius from the web service
 let c = await getJSON(
 `https://globaltemps.example.com/api/city/${city.toLowerCase()}`
);
 // Convert to Fahrenheit and return that value.
 return (c * 5 / 9) + 32; // TODO: double-check this formula
};

A good set of tests for this function might verify that
getTemperature() is fetching the right URL, and that it is
converting temperature scales correctly. We can do this with a
Jest-based test like the following. This code defines a mock
implementation of getJSON() so that the test does not actually make
a network request. And because getTemperature() is an async
function, the tests are async as well—it can be tricky to test
asynchronous functions, but Jest makes it relatively easy:

// Import the function we are going to test
const getTemperature = require("./getTemperature.js");

// And mock the getJSON() module that getTemperature() depends on
jest.mock("./getJSON");
const getJSON = require("./getJSON.js");

// Tell the mock getJSON() function to return an already resolved Promise
// with fulfillment value 0.
getJSON.mockResolvedValue(0);

// Our set of tests for getTemperature() begins here
describe("getTemperature()", () => {
 // This is the first test. We're ensuring that getTemperature() calls
 // getJSON() with the URL that we expect
 test("Invokes the correct API", async () => {
 let expectedURL = "https://globaltemps.example.com/api/city/vancouver";
 let t = await(getTemperature("Vancouver"));
 // Jest mocks remember how they were called, and we can check that.
 expect(getJSON).toHaveBeenCalledWith(expectedURL);
 });

 // This second test verifies that getTemperature() converts
 // Celsius to Fahrenheit correctly
 test("Converts C to F correctly", async () => {
 getJSON.mockResolvedValue(0); // If getJSON returns 0C
 expect(await getTemperature("x")).toBe(32); // We expect 32F

 // 100C should convert to 212F
 getJSON.mockResolvedValue(100); // If getJSON returns 100C
 expect(await getTemperature("x")).toBe(212); // We expect 212F
 });
});

With the test written, we can use the jest command to run it, and
we discover that one of our tests fails:

$ jest getTemperature
 FAIL ch17/getTemperature.test.js
 getTemperature()
 ✓ Invokes the correct API (4ms)
 ✕ Converts C to F correctly (3ms)

 ● getTemperature() › Converts C to F correctly

 expect(received).toBe(expected) // Object.is equality

 Expected: 212
 Received: 87.55555555555556

 29 | // 100C should convert to 212F
 30 | getJSON.mockResolvedValue(100); // If getJSON returns 100C
 > 31 | expect(await getTemperature("x")).toBe(212); // Expect 212F
 | ^
 32 | });
 33 | });
 34 |

 at Object.<anonymous> (ch17/getTemperature.test.js:31:43)

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 passed, 2 total
Snapshots: 0 total
Time: 1.403s
Ran all test suites matching /getTemperature/i.

Our getTemperature() implementation is using the wrong formula for
converting C to F. It multiplies by 5 and divides by 9 rather than
multiplying by 9 and dividing by 5. If we fix the code and run Jest
again, we can see the tests pass. And, as a bonus, if we add the
--coverage argument when we invoke jest, it will compute and
display the code coverage for our tests:

$ jest --coverage getTemperature
 PASS ch17/getTemperature.test.js
 getTemperature()
 ✓ Invokes the correct API (3ms)
 ✓ Converts C to F correctly (1ms)

------------------|--------|---------|---------|---------|------------------|
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Line #s
All files | 71.43| 100| 33.33| 83.33| |
 getJSON.js | 33.33| 100| 0| 50| 2|
 getTemperature.js| 100| 100| 100| 100| |
------------------|--------|---------|---------|---------|------------------|
Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 1.508s
Ran all test suites matching /getTemperature/i.

Running our test gave us 100% code coverage for the module we were
testing, which is exactly what we wanted. It only gave us partial
coverage of getJSON(), but we mocked that module and were not trying
to test it, so that is expected.

17.4 Package Management with npm

In modern software development, it is common for any nontrivial
program that you write to depend on third-party software libraries. If
you’re writing a web server in Node, for example, you might be using
the Express framework. And if you’re creating a user interface to be
displayed in a web browser, you might use a frontend framework like
React or LitElement or Angular. A package manager makes it easy to
find and install third-party packages like these. Just as importantly,
a package manager keeps track of what packages your code depends on
and saves this information into a file so that when someone else wants
to try your program, they can download your code and your list of
dependencies, then use their own package manager to install all the
third-party packages that your code needs.

npm is the package manager that is bundled with Node, and was
introduced in §16.1.5. It is just as useful for client-side JavaScript
programming as it is for server-side programming with Node, however.

If you are trying out someone else’s JavaScript project, then one of
the first things you will often do after downloading their code is to
type npm install. This reads the dependencies listed in the
package.json file and downloads the third-party packages
that the project needs and saves them in a node_modules/ directory.

You can also type npm install <package-name> to install a particular
package to your project’s node_modules/ directory:

$ npm install express

In addition to installing the named package, npm also makes a record
of the dependency in the package.json file
for the project. Recording dependencies in this way is what allows
others to install those dependencies simply by typing npm install.

The other kind of dependency is on developer tools that are needed by
developers who want to work on your project, but aren’t actually
needed to run the code. If a project uses Prettier, for example, to
ensure that all of its code is consistently formatted, then Prettier is
a “dev dependency,” and you can install and record one of these with
--save-dev:

$ npm install --save-dev prettier

Sometimes you might want to install developer tools globally so that
they are accessible anywhere even for code that is not part of a formal
project with a package.json file and a node_modules/ directory. For
that you can use the -g (for global) option:

$ npm install -g eslint jest
/usr/local/bin/eslint -> /usr/local/lib/node_modules/eslint/bin/eslint.js
/usr/local/bin/jest -> /usr/local/lib/node_modules/jest/bin/jest.js
+ jest@24.9.0
+ eslint@6.7.2
added 653 packages from 414 contributors in 25.596s

$ which eslint
/usr/local/bin/eslint
$ which jest
/usr/local/bin/jest

In addition to the “install” command, npm supports “uninstall” and
“update” commands, which do what their names say. npm also has an
interesting “audit” command that you can use to find and fix security
vulnerabilities in your dependencies:

$ npm audit --fix

 === npm audit security report ===

found 0 vulnerabilities
 in 876354 scanned packages

When you install a tool like ESLint locally for a project, the eslint
script winds up in ./node_modules/.bin/eslint, which makes the
command awkward to run. Fortunately, npm is bundled with a command
known as “npx,” which you can use to run locally installed tools with
commands like npx eslint or npx jest. (And if you use npx to
invoke a tool that has not been installed yet, it will install it for
you.)

The company behind npm also maintains the https://npmjs.com package
repository, which holds hundreds of thousands of open source
packages. But you don’t have to use the npm package manager to access
this repository of packages. Alternatives include
yarn and pnpm.

17.5 Code Bundling

If you are writing a large JavaScript program to run in web browsers,
you will probably want to use a code-bundling tool, especially if you
use external libraries that are delivered as modules. Web developers
have been using ES6 modules (§10.3) for years, since well
before the import and export keywords were supported on the
web. In order to do this, programmers use a code-bundler tool that
starts at the main entry point (or entry points) of the program and
follows the tree of import directives to find all modules that the
program depends on. It then combines all of those individual module
files into a single bundle of JavaScript code and rewrites the
import and export directives to make the code work in this new
form. The result is a single file of code that can be loaded into a
web browser that does not support modules.

ES6 modules are nearly universally supported by web browsers today,
but web developers still tend to use code bundlers, at least when
releasing production code. Developers find that user experience is
best when a single medium-sized bundle of code is loaded when a user
first visits a website than when many small modules are loaded.

Note

Web
performance is a notoriously tricky topic and there are lots of
variables to consider, including ongoing improvements by browser
vendors, so the only way to be sure of the fastest way to load your
code is by testing thoroughly and measuring carefully. Keep in mind
that there is one variable that is completely under your control: code
size. Less JavaScript code will always load and run faster than more
JavaScript code!

There are a number of good JavaScript bundler tools
available. Commonly used bundlers include webpack, Rollup and
Parcel. The basic features of bundlers are more or less the same, and
they are differentiated based on how configurable they are or how easy they are to use. Webpack has been around for a long time, has a large ecosystem of
plug-ins, is highly configurable, and can support older nonmodule
libraries. But it can also be complex and hard to configure. At the
other end of the spectrum is Parcel which is intended as a
zero-configuration alternative that simply does the right thing.

In addition to performing basic bundling, bundler tools can also
provide some additional features:

	
Some programs have more than one entry point. A web application with
multiple pages, for example, could be written with a different entry
point for each page. Bundlers generally allow you to create one
bundle per entry point or to create a single bundle that supports
multiple entry points.

	
Programs can use import() in its functional form (§10.3.6)
instead of its static form to dynamically load modules when they are
actually needed rather than statically loading them at program
startup time. Doing this is often a good way to improve the startup
time for your program. Bundler tools that support import() may be
able to produce multiple output bundles: one to load at startup
time, and one or more that are loaded dynamically when needed. This
can work well if there are only a few calls to import() in your
program and they load modules with relatively disjoint sets of
dependencies. If the dynamically loaded modules share dependencies
then it becomes tricky to figure out how many bundles to produce,
and you are likely to have to manually configure your bundler to
sort this out.

	
Bundlers can generally output a source map file that defines a
mapping between the lines of code in the bundle and the
corresponding lines in the original source files. This allows
browser developer tools to automatically display JavaScript errors
at their original unbundled locations.

	
Sometimes when you import a module into your program, you only use a
few of its features. A good bundler tool can analyze the code to
determine which parts are unused and can be omitted from the
bundles. This feature goes by the whimsical name of “tree-shaking.”

	
Bundlers typically have a plug-in–based architecture and support
plug-ins that allow importing and bundling “modules” that are not
actually files of JavaScript code. Suppose that your program
includes a large JSON-compatible data structure. Code bundlers can
be configured to allow you to move that data structure into a
separate JSON file and then import it into your program with a
declaration like import widgets from
"./big-widget-list.json". Similarly, web developers who embed CSS
into their JavaScript programs can use bundler plug-ins that allow
them to import CSS files with an import directive. Note, however,
that if you import anything other than a JavaScript file, you are
using a nonstandard JavaScript extension and making your code
dependent on the bundler tool.

	
In a language like JavaScript that does not require compilation,
running a bundler tool feels like a compilation step, and it is
frustrating to have to run a bundler after every code edit before
you can run the code in your browser. Bundlers typically support
filesystem watchers that detect edits to any files in a
project directory and automatically regenerate the necessary
bundles. With this feature in place you can typically save your code
and then immediately reload your web browser window to try it out.

	
Some bundlers also support a “hot module replacement” mode for
developers where each time a bundle is regenerated, it is
automatically loaded into the browser. When this works, it is a
magical experience for developers, but there are some tricks going
on under the hood to make it work, and it is not suitable for all
projects.

17.6 Transpilation with Babel

Babel is a tool that compiles JavaScript written
using modern language features into JavaScript that does not use those
modern language features. Because it compiles JavaScript to JavaScript,
Babel is sometimes called a “transpiler.” Babel was created so that
web developers could use the new language features of ES6 and later
while still targeting web browsers that only supported ES5.

Language features such as the ** exponentiation operator and arrow
functions can be transformed relatively easily into Math.pow() and
function expressions. Other language features, such as the class
keyword, require much more complex transformations, and, in general,
the code output by Babel is not meant to be human readable. Like
bundler tools, however, Babel can produce source maps that map
transformed code locations back to their original source locations, and
this helps dramatically when working with transformed code.

Browser vendors are doing a better job of keeping up with the
evolution of the JavaScript language, and there is much less need
today to compile away arrow functions and class declarations. Babel
can still help when you want to use the very latest features like
underscore separators in numeric literals.

Like most of the other tools described in this chapter, you can
install Babel with npm and run it with npx. Babel reads a .babelrc
configuration file that tells it how you would like your JavaScript
code transformed. Babel defines “presets” that you can choose from
depending on which language extensions you want to use and how
aggressively you want to transform standard language features. One of
Babel’s
interesting presets is for code compression by minification
(stripping comments and whitespace, renaming variables, and so on).

If you use Babel and a code-bundling tool, you may be able to set up
the code bundler to automatically run Babel on your JavaScript files
as it builds the bundle for you. If so, this can be a convenient option
because it simplifies the process of producing runnable code. Webpack,
for example, supports a “babel-loader” module that you can install and
configure to run Babel on each JavaScript module as it is bundled up.

Even though there is less need to transform the core JavaScript
language today, Babel is still commonly used to support nonstandard
extensions to the language, and we’ll describe two of these language
extensions in the sections that follow.

17.7 JSX: Markup Expressions in JavaScript

JSX is an extension to core JavaScript that uses HTML-style syntax
to define a tree of elements. JSX is most closely associated with
the React framework for user interfaces on the web. In React, the trees of
elements defined with JSX are ultimately rendered into a web browser
as HTML. Even if you have no plans to use React yourself, its
popularity means that you are likely to see code that uses JSX. This
section explains what you need to know to make sense of of it. (This
section is about the JSX language extension, not about React, and it
explains only enough of React to provide context for the JSX syntax.)

You can think of a JSX element as a new type of JavaScript expression
syntax. JavaScript string literals are delimited with quotation
marks, and regular expression literals are delimited with slashes. In
the same way, JSX expression literals are delimited with angle
brackets. Here is a very simple one:

let line = <hr/>;

If you use JSX, you will need to use Babel (or a similar tool) to
compile JSX expressions into regular JavaScript. The transformation is
simple enough that some developers choose to use React without using
JSX. Babel transforms the JSX expression in this assignment statement into a simple function call:

let line = React.createElement("hr", null);

JSX syntax is HTML-like, and like HTML elements, React elements can
have attributes like these:

let image = ;

When an element has one or more attributes, they become properties of
an object passed as the second argument to createElement():

let image = React.createElement("img", {
 src: "logo.png",
 alt: "The JSX logo",
 hidden: true
 });

Like HTML elements, JSX elements can have strings and other elements
as children. Just as JavaScript’s arithmetic operators can be used to
write arithmetic expressions of arbitrary complexity, JSX elements can
also be nested arbitrarily deeply to create trees of elements:

let sidebar = (
 <div className="sidebar">
 <h1>Title</h1>
 <hr/>
 <p>This is the sidebar content</p>
 </div>
);

Regular JavaScript function call expressions can also be nested
arbitrarily deeply, and these nested JSX expressions translate into a
set of nested createElement() calls. When an JSX element has
children, those children (which are typically strings and other JSX
elements) are passed as the third and subsequent arguments:

let sidebar = React.createElement(
 "div", { className: "sidebar"}, // This outer call creates a <div>
 React.createElement("h1", null, // This is the first child of the <div/>
 "Title"), // and its own first child.
 React.createElement("hr", null), // The second child of the <div/>.
 React.createElement("p", null, // And the third child.
 "This is the sidebar content"));

The value returned by React.createElement() is an ordinary
JavaScript object that is used by React to render output in a browser
window. Since this section is about the JSX syntax and not about
React, we’re not going to go into any detail about the returned Element
objects or the rendering process. It is worth noting that you can
configure Babel to compile JSX elements to invocations of a different
function, so if you think that JSX syntax would be a useful way to
express other kinds of nested data structures, you can adopt it for
your own non-React uses.

An important feature of JSX syntax is that you can embed regular
JavaScript expressions within JSX expressions. Within a JSX
expression, text within curly braces is interpreted as plain
JavaScript. These nested expressions are allowed as attribute values
and as child elements. For example:

function sidebar(className, title, content, drawLine=true) {
 return (
 <div className={className}>
 <h1>{title}</h1>
 { drawLine && <hr/> }
 <p>{content}</p>
 </div>
);
}

The sidebar() function returns a JSX element. It takes four
arguments that it uses within the JSX element. The curly brace syntax
may remind you of template literals that use ${} to include
JavaScript expressions within strings. Since we know that JSX
expressions compile into function invocations, it should not be
surprising that arbitrary JavaScript expressions can be included
because function invocations can be written with arbitrary
expressions as well. This example code is translated by Babel into the following:

function sidebar(className, title, content, drawLine=true) {
 return React.createElement("div", { className: className },
 React.createElement("h1", null, title),
 drawLine && React.createElement("hr", null),
 React.createElement("p", null, content));
}

This code is easy to read and understand: the curly braces are gone
and the resulting code passes the incoming function parameters to
React.createElement() in a natural way. Note the neat trick that
we’ve done here with the drawLine parameter and the
short-circuiting && operator. If you call sidebar() with only
three arguments, then drawLine defaults to true, and the fourth
argument to the outer createElement() call is the <hr/>
element. But if you pass false as the fourth argument to
sidebar(), then the fourth argument to the outer createElement()
call evaluates to false, and no <hr/> element is ever
created. This use of the && operator is a common idiom in JSX to
conditionally include or exclude a child element depending on the
value of some other expression. (This idiom works with React because
React simply ignores children that are false or null and does not
produce any output for them.)

When you use JavaScript expressions within JSX expressions, you are not
limited to simple values like the string and boolean values in the
preceding example. Any JavaScript value is allowed. In fact, it is quite
common in React programming to use objects, arrays, and
functions. Consider the following function, for example:

// Given an array of strings and a callback function return a JSX element
// representing an HTML list with an array of elements as its child.
function list(items, callback) {
 return (
 <ul style={ {padding:10, border:"solid red 4px"} }>
 {items.map((item,index) => {
 <li onClick={() => callback(index)} key={index}>{item}
 })}

);
}

This function uses an object literal as the value of the style
attribute on the element. (Note that double curly braces are
required here.) The element has a single child, but the value
of that child is an array. The child array is the array created by
using the map() function on the input array to create an array of
 elements. (This works with React because the React library
flattens the children of an element when it renders them. An element
with one array child is the same as that element with each of those
array elements as children.) Finally, note that each of the nested
 elements has an onClick event handler attribute whose value
is an arrow function. The JSX code compiles to the following
pure JavaScript code (which I have formatted with Prettier):

function list(items, callback) {
 return React.createElement(
 "ul",
 { style: { padding: 10, border: "solid red 4px" } },
 items.map((item, index) =>
 React.createElement(
 "li",
 { onClick: () => callback(index), key: index },
 item
)
)
);
}

One other use of object expressions in JSX is with the object spread
operator (§6.10.4) to specify multiple attributes
at once. Suppose that you find yourself writing a lot of JSX
expressions that repeat a common set of attributes. You can simplify
your expressions by defining the attributes as properties of an object
and “spreading them into” your JSX elements:

let hebrew = { lang: "he", dir: "rtl" }; // Specify language and direction
let shalom = שלום;

Babel compiles this to use an _extends() function (omitted here)
that combines that className attribute with the attributes contained
in the hebrew object:

let shalom = React.createElement("span",
 _extends({className: "emphasis"}, hebrew),
 "\u05E9\u05DC\u05D5\u05DD");

Finally, there is one more important feature of JSX that we have not
covered yet. As you’ve seen, all JSX elements begin with an identifier
immediately after the opening angle bracket. If the first letter of
this identifier is lowercase (as it has been in all of the examples
here), then the identifier is passed to createElement() as a
string. But if the first letter of the identifier is uppercase, then
it is treated as an actual identifer, and it is the JavaScript value
of that identifier that is passed as the first argument to
createElement(). This means that the JSX expression <Math/>
compiles to JavaScript code that passes the global Math object to
React.createElement().

For React, this ability to pass non-string values as the first
argument to createElement() enables the creation of components. A
component is a way of writing a simple JSX expression (with an
uppercase component name) that represents a more complex expression
(using lowercase HTML tag names).

The simplest way to define a new component in React is to write a
function that takes a “props object” as its argument and returns a JSX
expression. A props object is simply a JavaScript object that
represents attribute values, like the objects that are passed as the
second argument to createElement(). Here, for example, is another
take on our sidebar() function:

function Sidebar(props) {
 return (
 <div>
 <h1>{props.title}</h1>
 { props.drawLine && <hr/> }
 <p>{props.content}</p>
 </div>
);
}

This new Sidebar() function is a lot like the earlier sidebar()
function. But this one has a name that begins with a capital letter
and takes a single object argument instead of separate arguments. This
makes it a React component and means that it can be used in place of
an HTML tag name in JSX expressions:

let sidebar = <Sidebar title="Something snappy" content="Something wise"/>;

This <Sidebar/> element compiles like this:

let sidebar = React.createElement(Sidebar, {
 title: "Something snappy",
 content: "Something wise"
});

It is a simple JSX expression, but when React renders it, it will pass
the second argument (the Props object) to the first argument (the
Sidebar() function) and will use the JSX expression returned by that
function in place of the <Sidebar> expression.

17.8 Type Checking with Flow

Flow is a language extension that allows you to
annotate your JavaScript code with type
information, and a tool for checking your JavaScript code
(both annotated and unannotated) for type errors. To use Flow, you
start writing code using the Flow language extension to add type
annotations. Then you run the Flow tool to analyze your code and
report type errors. Once you have fixed the errors and are ready to
run the code, you use Babel (perhaps automatically as part of the code-bundling process) to strip the Flow type annotations out of your
code. (One of the nice things about the Flow language extension is
that there isn’t any new syntax that Flow has to compile or
transform. You use the Flow language extension to add
annotations to
the code, and all Babel has to do is to strip those annotations out to
return your code to standard JavaScript.)

TypeScript Versus Flow

TypeScript is a very popular alternative to Flow. TypeScript is an
extension of JavaScript that adds types as well as other language
features. The TypeScript compiler “tsc” compiles TypeScript programs
into JavaScript programs and in the process analyzes them and reports
type errors in much the same the way that Flow does. tsc is not a
Babel plugin: it is its own standalone compiler.

Simple type annotations in TypeScript are usually written identically
to the same annotations in Flow. For more advanced typing, the syntax
of the two extensions diverges, but the intent and value of the two
extensions is the same. My goal in this section is to explain the
benefits of type annotations and static code analysis. I’ll be doing
that with examples based on Flow, but everything demonstrated here can
also be achieved with TypeScript with relatively simple syntax changes.

TypeScript was released in 2012, before ES6, when JavaScript did not
have a class keyword or a for/of loop or modules or Promises. Flow
is a narrow language extension that adds type annotations to
JavaScript and nothing else. TypeScript, by contrast, was very much
designed as a new language. As its name implies, adding types to
JavaScript is the primary purpose of TypeScript, and it is the reason
that people use it today. But types are not the only feature that
TypeScript adds to JavaScript: the TypeScript language has enum
and namespace keywords that simply do not exist in
JavaScript. In 2020, TypeScript has better integration with IDEs and
code editors (particularly VSCode, which, like TypeScript, is from
Microsoft) than Flow does.

Ultimately, this is a book about JavaScript, and I’m covering Flow
here instead of TypeScript because I don’t want to take the focus off
of JavaScript. But everything you learn here about adding types to
JavaScript will be helpful to you if you decide to adopt TypeScript
for your projects.

Using Flow requires commitment, but I have found that for medium and
large projects, the extra effort is worth it. It takes extra time to
add type annotations to your code, to run Flow every time you edit the
code, and to fix the type errors it reports. But in return Flow will
enforce good coding discipline and will not allow you to cut corners
that can lead to bugs. When I have worked on projects that use
Flow, I have been impressed by the number of errors it found in my own
code. Being able to fix those issues before they became bugs is a
great feeling and gives me extra confidence that my code is
correct.

When I first started using Flow, I found that it was sometimes
difficult to understand why it was complaining about my code. With
some practice, though, I came to understand its error messages and
found that it was usually easy to make minor changes to my code to
make it safer and to satisfy Flow.1 I do not recommend
using Flow if you still feel like you are learning JavaScript
itself. But once you are confident with the language, adding Flow to
your JavaScript projects will push you to take your programming skills
to the next level. And this, really, is why I’m dedicating the last
section of this book to a Flow tutorial: because learning about
JavaScript type systems offers a glimpse of another level, or another
style, of programming.

This section is a tutorial, and it does not attempt to cover Flow
comprehensively. If you decide to try Flow, you will almost certainly
end up spending time reading the documentation at https://flow.org. On
the other hand, you do not need to master the Flow type system before
you can start making practical use of it in your projects: the simple
uses of Flow described here will take you a long way.

17.8.1 Installing and Running Flow

Like the other tools described in this chapter, you can install the
Flow type-checking tool using a package manager, with a command like
npm install -g flow-bin or npm install --save-dev flow-bin. If you
install the tool globally with -g, then you can run it with
flow. And if you install it locally in your project with
--save-dev, then you can run it with npx flow. Before using Flow
to do type checking, the first time run it as flow --init in the root
directory of your project to create a .flowconfig configuration
file. You may never need to add anything to this file, but Flow needs
it to know where your project root is.

When you run Flow, it will find all the JavaScript source code in your
project, but it will only report type errors for the files that have
“opted in” to type checking by adding a // @flow comment at the top
of the file. This opt-in behavior is important because it means that
you can adopt Flow for existing projects and then begin to convert
your code one file at a time, without being bothered by errors and
warnings on files that have not yet been converted.

Flow may be able to find errors in your code even if all you do is
opt in with a // @flow comment. Even if you do not use the Flow
language extension and add no type annotations to your code, the Flow
type checker tool can still make inferences about the values in your
program and alert you when you use them inconsistently.

Consider the following Flow error message:

Error ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈ variableReassignment.js:6:3

Cannot assign 1 to i.r because:
 • property r is missing in number [1].

 2│ let i = { r: 0, i: 1 }; // The complex number 0+1i
 [1] 3│ for(i = 0; i < 10; i++) { // Oops! The loop variable overwrites i
 4│ console.log(i);
 5│ }
 6│ i.r = 1; // Flow detects the error here

In this case, we declare the variable i and assign an object to
it. Then we use i again as a loop variable, overwriting the
object. Flow notices this and flags an error when we try to use i as
if it still held an object. (A simple fix would be to write for(let
i = 0; making the loop variable local to the loop.)

Here is another error that Flow detects even without type annotations:

Error ┈┈ size.js:3:14

Cannot get x.length because property length is missing in Number [1].

 1│ // @flow
 2│ function size(x) {
 3│ return x.length;
 4│ }
 [1] 5│ let s = size(1000);

Flow sees that the size() function takes a single argument. It
doesn’t know the type of that argument, but it can see that the
argument is expected to have a length property. When it sees this
size() function being called with a numeric argument, it correctly
flags this as an error because numbers do not have length
properties.

17.8.2 Using Type Annotations

When you declare a JavaScript variable, you can add a Flow
type annotation to it by following the variable name with a colon and
the type:

let message: string = "Hello world";
let flag: boolean = false;
let n: number = 42;

Flow would know the types of these variables even if you did not
annotate them: it can see what values you assign to each variable, and
it keeps track of that. If you add type annotations, however, Flow
knows both the type of the variable and that you have expressed the
intent that the variable should always be of that type. So if you use
the type annotation, Flow will flag an error if you ever assign a
value of a different type to that variable. Type annotations for
variables are also particularly useful if you tend to declare all your
variables up at the top of a function before they are used.

Type annotations for function arguments are like annotations for
variables: follow the name of the function argument with a colon and
the type name. When annotating a function, you typically also add an
annotation for the return type of the function. This goes between the
close parenthesis and the open curly brace of the function
body. Functions that return nothing use the Flow type void.

In the preceding example we defined a size() function that expected an
argument with a length property. Here’s how we could change that
function to explicitly specify that it expects a string argument and
returns a number. Note, Flow now flags an error if we pass an array to
the function, even though the function would work in that case:

Error ┈┈┈ size2.js:5:18

Cannot call size with array literal bound to s because array literal [1]
is incompatible with string [2].

 [2] 2│ function size(s: string): number {
 3│ return s.length;
 4│ }
 [1] 5│ console.log(size([1,2,3]));

Using type annotations with arrow functions is also possible, though
it can turn this normally succinct syntax into something more verbose:

const size = (s: string): number => s.length;

An important thing to understand about Flow is that the JavaScript
value null has the Flow type null and the JavaScript value
undefined has the Flow type void. But neither of these values is a
member of any other type (unless you explicitly add it). If you
declare a function parameter to be a string, then it must be a string,
and it is an error to pass null or to pass undefined or to omit
the argument (which is basically the same thing as passing
undefined):

Error ┈┈┈ size3.js:3:18

Cannot call size with null bound to s because null [1] is incompatible
with string [2].

 1│ // @flow
 [2] 2│ const size = (s: string): number => s.length;
 [1] 3│ console.log(size(null));

If you want to allow null and undefined as legal values for a
variable or function argument, simply prefix the type with a question
mark. For example, use ?string or ?number instead of string or
number. If we change our size() function to expect an argument of
type ?string, then Flow doesn’t complain when we pass null to the
function. But it now has something else to complain about:

Error ┈┈┈ size4.js:3:14

Cannot get s.length because property length is missing in null or
undefined [1].

 1│ // @flow
 [1] 2│ function size(s: ?string): number {
 3│ return s.length;
 4│ }
 5│ console.log(size(null));

What Flow is telling us here is that it is not safe to write
s.length because, at this place in our code, s might be null or
undefined, and those values do not have length properties. This is
where Flow makes sure we do not cut any corners. If a value might be
null, Flow will insist that we check for that case before we do
anything that depends on the value not being null.

In this case, we can fix the issue by changing the body of the
function as follows:

function size(s: ?string): number {
 // At this point in the code, s could be a string or null or undefined.
 if (s === null || s === undefined) {
 // In this block, Flow knows that s is null or undefined.
 return -1;
 } else {
 // And in this block, Flow knows that s is a string.
 return s.length;
 }
}

When the function is first called, the parameter can have more than
one type. But by adding type-checking code, we create a block within
the code where Flow knows for sure that the parameter is a
string. When we use s.length within that block, Flow does not
complain. Note that Flow does not require you to write verbose code
like this. Flow would also be satisfied if we just replaced the body
of the size() function with return s ? s.length : -1;.

Flow syntax allows a question mark before any type specification to
indicate that, in addition to the specified type, null and
undefined are allowed as well. Question marks can also appear after
a parameter name to indicate that the parameter itself is optional. So
if we changed the declaration of the parameter s from s: ?string
to s? : string, that would mean it is OK to call size() with no
arguments (or with the value undefined, which is the same as
omitting it), but that if we do call it with a parameter other than
undefined, then that parameter must be a string. In this case, null
is not a legal value.

So far, we’ve discussed primitive types string, number, boolean,
null, and void and have demonstrated how you can use use them with
variable declarations, function parameters, and function return
values. The subsections that follow describe some more complex types
supported by Flow.

17.8.3 Class Types

In addition to the primitive types that Flow knows about, it also
knows about all of JavaScript’s built-in classes and allows you to
use class name as types. The following function, for example, uses
type annotations to indicate that it should be invoked with one Date
object and one RegExp object:

// @flow
// Return true if the ISO representation of the specified date
// matches the specified pattern, or false otherwise.
// E.g: const isTodayChristmas = dateMatches(new Date(), /^\d{4}-12-25T/);
export function dateMatches(d: Date, p: RegExp): boolean {
 return p.test(d.toISOString());
}

If you define your own classes with the class keyword, those classes
automatically become valid Flow types. In order to make this work,
however, Flow does require you to use type annotations in the
class. In particular, each property of the class must have its type
declared. Here is a simple complex number class that demonstrates this:

// @flow
export default class Complex {
 // Flow requires an extended class syntax that includes type annotations
 // for each of the properties used by the class.
 i: number;
 r: number;
 static i: Complex;

 constructor(r: number, i:number) {
 // Any properties initialized by the constructor must have Flow type
 // annotations above.
 this.r = r;
 this.i = i;
 }

 add(that: Complex) {
 return new Complex(this.r + that.r, this.i + that.i);
 }
}

// This assignment would not be allowed by Flow if there was not a
// type annotation for i inside the class.
Complex.i = new Complex(0,1);

17.8.4 Object Types

The Flow type to describe an object looks a lot like an object
literal, except that property values are replaced by property
types. Here, for example, is a function that expects an object with
numeric x and y properties:

// @flow
// Given an object with numeric x and y properties, return the
// distance from the origin to the point (x,y) as a number.
export default function distance(point: {x:number, y:number}): number {
 return Math.hypot(point.x, point.y);
}

In this code, the text {x:number, y:number} is a Flow type, just
like string or Date is. As with any type, you can add a question
mark at the front to indicate that null and undefined should also
be allowed.

Within an object type, you can follow any of the property names with a
question mark to indicate that that property is optional and may be
omitted. For example, you might write the type for an object that
represents a 2D or 3D point like this:

{x: number, y: number, z?: number}

If a property is not marked as optional in an object type, then it is
required, and Flow will report an error if an appropriate property is
not present in the actual value. Normally, however, Flow tolerates
extra properties. If you were to pass an object that had a w
property to the distance() function above, Flow would not complain.

If you want Flow to strictly enforce that an object does not have
properties other than those explicitly declared in its type, you can
declare an exact object type by adding vertical bars to the curly
braces:

{| x: number, y: number |}

JavaScript’s objects are sometimes used as dictionaries or
string-to-value maps. When used like this, the property names are not
known in advance and cannot be declared in a Flow type. If you use
objects this way, you can still use Flow to describe the data
structure. Suppose that you have an object where the properties are
the names of the world’s major cities and the values of those
properties are objects that specify the geographical location of those
cities. You might declare this data structure like this:

// @flow
const cityLocations : {[string]: {longitude:number, latitude:number}} = {
 "Seattle": { longitude: 47.6062, latitude: -122.3321 },
 // TODO: if there are any other important cities, add them here.
};
export default cityLocations;

17.8.5 Type Aliases

Objects can have many properties, and the Flow type that describes
such an object will be long and difficult to type. And even relatively
short object types can be confusing because they look so much like
object literals. Once we get beyond simple types like number and
?string, it is often useful to be able to define names for our Flow
types. And in fact, Flow uses the type keyword to do exactly
that. Follow the type keyword with an identifier, an equals sign,
and a Flow type. Once you’ve done that, the identifier will be an
alias for the type. Here, for example, is how we could rewrite the
distance() function from the previous section with an explicitly defined Point type:

// @flow
export type Point = {
 x: number,
 y: number
};

// Given a Point object return its distance from the origin
export default function distance(point: Point): number {
 return Math.hypot(point.x, point.y);
}

Note that this code exports the distance() function and also exports
the Point type. Other modules can use import type Point from
'./distance.js' if they want to use that type definition. Keep in
mind, though, that import type is a Flow language extension and not a
real JavaScript import directive. Type imports and exports are used by
the Flow type checker, but like all other Flow language extensions,
they are stripped out of the code before it ever runs.

Finally, it is worth noting that instead of defining a name for a Flow
object type that represents a point, it would probably be simpler and
cleaner to just define a Point class and use that class as the type.

17.8.6 Array Types

The Flow type to describe an array is a compound type that also
includes the type of the array elements. Here, for example, is a
function that expects an array of numbers, and the error that Flow
reports if you try to call the function with an array that has
non-numeric elements:

Error ┈┈┈ average.js:8:16

Cannot call average with array literal bound to data because string [1]
is incompatible with number [2] in array element.

 [2] 2│ function average(data: Array<number>) {
 3│ let sum = 0;
 4│ for(let x of data) sum += x;
 5│ return sum/data.length;
 6│ }
 7│
 [1] 8│ average([1, 2, "three"]);

The Flow type for an array is Array followed by the element type in
angle brackets. You can also express an array type by following the
element type with open and close square brackets. So in this example we could
have written number[] instead of Array<number>. I prefer the angle
bracket notation because, as we’ll see, there are other Flow
types that use this angle-bracket syntax.

The Array type syntax shown works for arrays with an arbitrary
number of elements, all of which have the same type. Flow has a
different syntax for describing the type of a tuple: an array with a
fixed number of elements, each of which may have a different type.
To express the type of a tuple, simply write the type of each of its
elements, separate them with commas, and enclose them all in square
brackets.

A function that returns an HTTP status code and message might look
like this, for example:

function getStatus():[number, string] {
 return [getStatusCode(), getStatusMessage()];
}

Functions that return tuples are awkward to work with unless you use
destructuring assignment:

let [code, message] = getStatus();

Destructuring assignment, plus Flow’s type-aliasing capabilities, make
tuples easy enough to work with that you might consider them as an
alternative to classes for simple datatypes:

// @flow
export type Color = [number, number, number, number]; // [r, g, b, opacity]

function gray(level: number): Color {
 return [level, level, level, 1];
}

function fade([r,g,b,a]: Color, factor: number): Color {
 return [r, g, b, a/factor];
}

let [r, g, b, a] = fade(gray(75), 3);

Now that we have a way to express the type of an array, let’s return
to the size() function from earlier and modify it to expect an array
argument instead of a string argument. We want the function to be able
to accept an array of any length, so a tuple type is not
appropriate. But we don’t want to restrict our function to working
only for arrays where all the elements have the same type. The
solution is the type Array<mixed>:

// @flow
function size(s: Array<mixed>): number {
 return s.length;
}
console.log(size([1,true,"three"]));

The element type mixed indicates that the elements of the array can
be of any type. If our function actually indexed the array and
attempted to use any of those elements, Flow would insist that we use
typeof checks or other tests to determine the type of the element
before performing any unsafe operation on it. (If you are willing to give
up on type checking, you can also use any instead of mixed: it
allows you to do whatever you want with the values of the array
without ensuring that the values are of the type you expect.)

17.8.7 Other Parameterized Types

We’ve seen that when you annotate a value as an Array, Flow
requires you to also specify the type of the array elements inside
angle brackets. This additional type is known as a type parameter,
and Array is not the only JavaScript class that is parameterized.

JavaScript’s Set class is a collection of elements, like an array is,
and you can’t use Set as a type by itself, but you have to include a
type parameter within angle brackets to specify the type of the values
contained in the set. (Though you can use mixed or any if the set
may contain values of multiple types.) Here’s an example:

// @flow
// Return a set of numbers with members that are exactly twice those
// of the input set of numbers.
function double(s: Set<number>): Set<number> {
 let doubled: Set<number> = new Set();
 for(let n of s) doubled.add(n * 2);
 return doubled;
}
console.log(double(new Set([1,2,3]))); // Prints "Set {2, 4, 6}"

Map is another parameterized type. In this case, there are two type
parameters that must be specified; the type of the keys and the types
of the values:

// @flow
import type { Color } from "./Color.js";

let colorNames: Map<string, Color> = new Map([
 ["red", [1, 0, 0, 1]],
 ["green", [0, 1, 0, 1]],
 ["blue", [0, 0, 1, 1]]
]);

Flow lets you define type parameters for your own classes as well. The
following code defines a Result class but parameterizes that class with
an Error type and a Value type. We use placeholders E and V in the
code to represent these type parameters. When the user of this class
declares a variable of type Result, they will specify the actual types
to substitute for E and V. The variable declaration might look
like this:

let result: Result<TypeError, Set<string>>;

And here is how the parameterized class is defined:

// @flow
// This class represents the result of an operation that can either
// throw an error of type E or a value of type V.
export class Result<E, V> {
 error: ?E;
 value: ?V;

 constructor(error: ?E, value: ?V) {
 this.error = error;
 this.value = value;
 }

 threw(): ?E { return this.error; }
 returned(): ?V { return this.value; }

 get():V {
 if (this.error) {
 throw this.error;
 } else if (this.value === null || this.value === undefined) {
 throw new TypeError("Error and value must not both be null");
 } else {
 return this.value;
 }
 }

}

And you can even define type parameters for functions:

// @flow
// Combine the elements of two arrays into an array of pairs
function zip<A,B>(a:Array<A>, b:Array): Array<[?A,?B]> {
 let result:Array<[?A,?B]> = [];
 let len = Math.max(a.length, b.length);
 for(let i = 0; i < len; i++) {
 result.push([a[i], b[i]]);
 }
 return result;
}

// Create the array [[1,'a'], [2,'b'], [3,'c'], [4,undefined]]
let pairs: Array<[?number,?string]> = zip([1,2,3,4], ['a','b','c'])

17.8.8 Read-Only Types

Flow defines some special parameterized “utility types” that have
names beginning with $. Most of these types have advanced use cases
that we are not going to cover here. But two of them are quite useful
in practice. If you have an object type T and want to make a read-only
version of that type, just write $ReadOnly<T>. Similarly, you can
write $ReadOnlyArray<T> to describe a read-only array with elements
of type T.

The reason to use these types is not because they can offer any
guarantee that an object or array can’t be modified (see
Object.freeze() in §14.2 if you want true read-only
objects) but because it allows you to catch bugs caused by
unintentional modifications. If you write a function that takes an
object or array argument and does not change any of the object’s
properties or the array’s elements, then you can annotate the
function parameter with one of Flow’s read-only types. If you do this,
then Flow will report an error if you forget and accidentally modify
the input value. Here are two examples:

// @flow
type Point = {x:number, y:number};

// This function takes a Point object but promises not to modify it
function distance(p: $ReadOnly<Point>): number {
 return Math.hypot(p.x, p.y);
}

let p: Point = {x:3, y:4};
distance(p) // => 5

// This function takes an array of numbers that it will not modify
function average(data: $ReadOnlyArray<number>): number {
 let sum = 0;
 for(let i = 0; i < data.length; i++) sum += data[i];
 return sum/data.length;
}

let data: Array<number> = [1,2,3,4,5];
average(data) // => 3

17.8.9 Function Types

We have seen how to add type annotations to specify the types of a
function’s parameters and its return type. But when one of the
parameters of a function is itself a function, we need to be able to
specify the type of that function parameter.

To express the type of a function with Flow, write the types of each
parameter, separate them with commas, enclose them in parentheses,
and then follow that with an arrow and type return type of the
function.

Here is an example function that expects to be passed a callback
function. Notice how we defined a type alias for the type of the
callback function:

// @flow
// The type of the callback function used in fetchText() below
export type FetchTextCallback = (?Error, ?number, ?string) => void;

export default function fetchText(url: string, callback: FetchTextCallback) {
 let status = null;
 fetch(url)
 .then(response => {
 status = response.status;
 return response.text()
 })
 .then(body => {
 callback(null, status, body);
 })
 .catch(error => {
 callback(error, status, null);
 });
}

17.8.10 Union Types

Let’s return one more time to the size() function. It doesn’t really
make sense to have a function that does nothing other than return the
length of an array. Arrays have a perfectly good length property for
that. But size() might be useful if it could take any kind of
collection object (an array or a Set or a Map) and return the number
of elements in the collection. In regular untyped JavaScript it would
be easy to write a size() function like that. With Flow, we need a
way to express a type that allows arrays, Sets, and Maps, but doesn’t
allow values of any other type.

Flow calls types like this Union types and allows you to express
them by simply listing the desired types and separating them with
vertical bar characters:

// @flow
function size(collection: Array<mixed>|Set<mixed>|Map<mixed,mixed>): number {
 if (Array.isArray(collection)) {
 return collection.length;
 } else {
 return collection.size;
 }
}
size([1,true,"three"]) + size(new Set([true,false])) // => 5

Union types can be read using the word “or”—“an array or a Set or a
Map”—so the fact that this Flow syntax uses the same vertical bar
character as JavaScript’s OR operators is intentional.

We saw earlier that putting a question mark before a type allows
null and undefined values. And now you can see that a ? prefix
is simply a shortcut for adding a |null|void suffix to a type.

In general, when you annotate a value with a Union type, Flow will not
allow you to use that value until you’ve done enough tests to figure
out what the type of the actual value is. In the size() example
we just looked at, we need
to explicitly check whether the argument is an array before we try to
access the length property of the argument. Note that we do not have
to distinguish a Set argument from a Map argument,
however: both of
those classes define a size property, so the code in the else
clause is safe as long as the argument is not an array.

17.8.11 Enumerated Types and Discriminated Unions

Flow allows you to use primitive literals as types that consist of that
one single value. If you write let x:3;, then Flow will not allow
you to assign any value to that variable other than 3. It is not often
useful to define types that have only a single member, but a union of
literal types can be useful. You can probably imagine a use for types
like these, for example:

type Answer = "yes" | "no";
type Digit = 0|1|2|3|4|5|6|7|8|9;

If you use types made up of literals, you need to understand that only
literal values are allowed:

let a: Answer = "Yes".toLowerCase(); // Error: can't assign string to Answer
let d: Digit = 3+4; // Error: can't assign number to Digit

When Flow checks your types, it does not actually do the calculations:
it just checks the types of the calculations. Flow knows that
toLowerCase() returns a string and that the + operator on numbers
returns a number. Even though we know that both of these calculations
return values that are within the type, Flow cannot know that and
flags errors on both of these lines.

A union type of literal types like Answer and Digit is an
example of an enumerated type, or enum. A canonical use case for
enum types is to represent the suits of playing cards:

type Suit = "Clubs" | "Diamonds" | "Hearts" | "Spades";

A more relevant example might be HTTP status codes:

type HTTPStatus =
 | 200 // OK
 | 304 // Not Modified
 | 403 // Forbidden
 | 404; // Not Found

One of the pieces of advice that new programmers often hear is to
avoid using literals in their code and to instead define symbolic
constants to represent those values. One practical reason for this is
to avoid the problem of typos: if you misspell a string literal like
“Diamonds” JavaScript may never complain but your code may not work
right. If you mistype an identifier, on the other hand, JavaScript is
likely to throw an error that you’ll notice. With Flow, this advice
does not always apply. If you annotate a variable with the type Suit,
and then try to assign a misspelled suit to it, Flow will alert you to
the error.

Another important use for literal types is the creation of
discriminated unions. When you work with union types (made up of
actually different types, not of literals), you typically have to write
code to discriminate among the possible types. In the previous section, we wrote a function that could take an array or a Set or a Map as
its argument and had to write code to discriminate array input from
Set or Map input. If you want to create a union of Object types, you
can make these types easy to discriminate by using a literal type
within each of the individual Object types.

An example will make this clear. Suppose you’re using a worker thread
in Node (§16.11) and are using postMessage() and
“message” events for sending object-based messages between the main
thread and the worker thread. There are multiple types of messages
that the worker might want to send to the main thread, but we’d like
to write a Flow Union type that describes all possible
messages. Consider this code:

// @flow
// The worker sends a message of this type when it is done
// reticulating the splines we sent it.
export type ResultMessage = {
 messageType: "result",
 result: Array<ReticulatedSpline>, // Assume this type is defined elsewhere.
};

// The worker sends a message of this type if its code failed with an exception.
export type ErrorMessage = {
 messageType: "error",
 error: Error,
};

// The worker sends a message of this type to report usage statistics.
export type StatisticsMessage = {
 messageType: "stats",
 splinesReticulated: number,
 splinesPerSecond: number
};

// When we receive a message from the worker it will be a WorkerMessage.
export type WorkerMessage = ResultMessage | ErrorMessage | StatisticsMessage;

// The main thread will have an event handler function that is passed
// a WorkerMessage. But because we've carefully defined each of the
// message types to have a messageType property with a literal type,
// the event handler can easily discriminate among the possible messages:
function handleMessageFromReticulator(message: WorkerMessage) {
 if (message.messageType === "result") {
 // Only ResultMessage has a messageType property with this value
 // so Flow knows that it is safe to use message.result here.
 // And Flow will complain if you try to use any other property.
 console.log(message.result);
 } else if (message.messageType === "error") {
 // Only ErrorMessage has a messageType property with value "error"
 // so knows that it is safe to use message.error here.
 throw message.error;
 } else if (message.messageType === "stats") {
 // Only StatisticsMessage has a messageType property with value "stats"
 // so knows that it is safe to use message.splinesPerSecond here.
 console.info(message.splinesPerSecond);
 }
}

17.9 Summary

JavaScript is the most-used programming language in the world
today. It is a living language—one that continues to evolve and
improve—surrounded by a flourishing ecosystem of libraries, tools, and
extensions. This chapter introduced some of those tools and
extensions, but there are many more to learn about. The JavaScript
ecosystem flourishes because the JavaScript developer community is
active and vibrant, full of peers who share their knowledge through
blog posts, videos, and conference presentations. As you close this
book and go forth to join this community, you will find no shortage of
information sources to keep you engaged with and learning about
JavaScript.

Best wishes,
David Flanagan,
March 2020

1 If you have programmed with Java, you may have experienced something like this the first time you wrote a generic API that used a type parameter. I found the learning process for Flow to be remarkably similar to what I went through in 2004 when generics were added to Java.

 Index
Symbols
	! (Boolean NOT operator), Logical NOT (!)
	!= (non-strict inequality operator)	relational expressions, Equality and Inequality Operators
	type conversions, Special case operator conversions

	!== (inequality operator)	boolean values, Boolean Values
	overview of, Equality and Inequality Operators
	string comparison, Working with Strings

	" (double quotes), String Literals
	$ (dollar sign), Identifiers and Reserved Words
	% (modulo operator), Arithmetic in JavaScript, Arithmetic Expressions
	& (bitwise AND operator), Bitwise Operators
	&& (Boolean AND operator), Boolean Values, Logical AND (&&)
	' (single quotes), String Literals
	* (multiplication operator), Arithmetic in JavaScript, Expressions and Operators, Arithmetic Expressions
	** (exponentiation operator), Arithmetic in JavaScript, Arithmetic Expressions
	+ (plus sign)	addition and assignment operator (+=), Assignment with Operation
	addition operator, Arithmetic in JavaScript, The + Operator
	string concatenation, String Literals, Working with Strings, The + Operator
	type conversions, Special case operator conversions
	unary arithmetic operator, Unary Arithmetic Operators

	++ (increment operator), Unary Arithmetic Operators
	, (comma operator), The comma Operator (,)
	- (minus sign)	subtraction operator, Arithmetic in JavaScript, Arithmetic Expressions
	unary arithmetic operator, Unary Arithmetic Operators

	-- (decrement operator), Unary Arithmetic Operators
	. (dot operator), A Tour of JavaScript, Querying and Setting Properties
	/ (division operator), Arithmetic in JavaScript, Arithmetic Expressions
	/* */ characters, Comments
	// (double slashes), A Tour of JavaScript, A Tour of JavaScript, Comments
	3D graphics, Graphics in a <canvas>
	; (semicolon), Optional Semicolons-Optional Semicolons
	< (less than operator)	overview of, Comparison Operators
	string comparison, Working with Strings
	type conversions, Special case operator conversions

	<< (shift left operator), Bitwise Operators
	<= (less than or equal to operator)	overview of, Comparison Operators
	string comparison, Working with Strings
	type conversions, Special case operator conversions

	= (assignment operator), A Tour of JavaScript, Equality and Inequality Operators, Assignment Expressions
	== (equality operator)	overview of, Equality and Inequality Operators
	type conversions, Overview and Definitions, Conversions and Equality, Special case operator conversions

	=== (strict equality operator)	boolean values, Boolean Values
	overview of, Equality and Inequality Operators
	string comparison, Working with Strings
	type conversions, Overview and Definitions, Conversions and Equality

	=> (arrows), A Tour of JavaScript, Optional Semicolons, Arrow Functions
	> (greater than operator)	overview of, Comparison Operators
	string comparison, Working with Strings
	type conversions, Special case operator conversions

	>= (greater than or equal to operator)	overview of, Comparison Operators
	string comparison, Working with Strings
	type conversions, Special case operator conversions

	>> (shift right with sign operator), Bitwise Operators
	>>> (shift right with zero fill operator), Bitwise Operators
	?. (conditional access operator), A Tour of JavaScript, Function Invocation
	?: (conditional operator), The Conditional Operator (?:)
	?? (first-defined operator), First-Defined (??)
	[] (square brackets), A Tour of JavaScript, Working with Strings, Object and Array Initializers, Querying and Setting Properties, Reading and Writing Array Elements, Strings as Arrays
	\ (backslash), String Literals-Escape Sequences in String Literals
	\n (newline), String Literals, Escape Sequences in String Literals
	\u (Unicode character escape), Unicode Escape Sequences, Escape Sequences in String Literals
	\xA9 (copyright symbol), Escape Sequences in String Literals
	\` (backtick or apostrophe) escape, Escape Sequences in String Literals
	^ (bitwise XOR operator), Bitwise Operators
	_ (underscore), Identifiers and Reserved Words
	_ (underscores, as numeric separators), Floating-Point Literals
	` (backtick), String Literals, Template Literals
	{} (curly braces), A Tour of JavaScript, Object and Array Initializers
	|| (Boolean OR operator), Boolean Values, Logical OR (||)
	~ (bitwise NOT operator), Bitwise Operators
	ǀ (bitwise OR operator), Bitwise Operators
	… (spread operator), Spread Operator, The Spread Operator, The Spread Operator for Function Calls, Iterators and Generators

A
	abstract classes, Class Hierarchies and Abstract Classes-Summary
	accelerometers, Mobile Device APIs
	accessor properties, Property Getters and Setters
	addEventListener() method, addEventListener()
	addition operator (+), Arithmetic in JavaScript, The + Operator
	advanced features	object extensibility, Object Extensibility
	overview of, Metaprogramming
	property attributes, Property Attributes-Property Attributes
	prototype attribute, The prototype Attribute
	Proxy objects, Proxy Objects-Proxy Invariants
	Reflect API, The Reflect API-The Reflect API
	template tags, Template Tags-Template Tags
	well-known Symbols	pattern-matching symbols, Pattern-Matching Symbols
	Symbol.asyncIterator, Symbol.iterator and Symbol.asyncIterator
	Symbol.hasInstance, Symbol.hasInstance
	Symbol.isConcatSpreadable, Symbol.isConcatSpreadable
	Symbol.iterator, Well-Known Symbols
	Symbol.species, Symbol.species-Symbol.species
	Symbol.toPrimitive, Symbol.toPrimitive
	Symbol.toStringTag, Symbol.toStringTag
	Symbol.unscopables, Symbol.unscopables

	alphabetization, Comparing Strings
	anchor characters, Specifying match position
	apostrophes, String Literals
	apply() method, Indirect Invocation, The call() and apply() Methods
	arc() method, Curves
	arcTo() method, Curves
	arguments	argument types, Argument Types
	Arguments object, The Arguments Object
	definition of term, Functions
	destructuring function arguments into parameters, Destructuring Function Arguments into Parameters-Destructuring Function Arguments into Parameters
	variable-length argument lists, Rest Parameters and Variable-Length Argument Lists

	arithmetic operators, A Tour of JavaScript, Arithmetic in JavaScript-Arithmetic in JavaScript, Arithmetic Expressions-Bitwise Operators
	array index, Reading and Writing Array Elements
	array iterator methods	every() and some(), every() and some()
	filter(), filter()
	find() and findIndex(), find() and findIndex()
	forEach(), forEach()
	map(), map()
	overview of, Array Iterator Methods
	reduce() and reduceRight(), reduce() and reduceRight()

	array literals, Object and Array Initializers, Array Literals
	Array() constructor, The Array() Constructor
	Array.from() function, Array.from(), Static Array Functions
	Array.isArray() function, Static Array Functions
	Array.of() function, Array.of(), Static Array Functions
	Array.prototype, Arrays, Array-Like Objects
	Array.sort() method, Functions as Values
	arrayBuffer() method, Parsing response bodies
	arrays	adding and deleting, Adding and Deleting Array Elements
	array length, Array Length
	array methods	adding arrays, Adding arrays with concat()
	array to string conversions, Array to String Conversions
	flattening arrays, Flattening arrays with flat() and flatMap()
	generic application of, Arrays
	iterator methods, Array Iterator Methods-reduce() and reduceRight()
	overview of, Array Methods
	searching and sorting, Array Searching and Sorting Methods-reverse()
	stacks and queues, Stacks and Queues with push(), pop(), shift(), and unshift()
	static array functions, Static Array Functions
	subarrays, Subarrays with slice(), splice(), fill(), and copyWithin()

	array-like objects, Array-Like Objects-Array-Like Objects
	associative arrays, Introduction to Objects, Objects As Associative Arrays
	creating, Creating Arrays-Array.from()
	definition of term, Overview and Definitions
	initializer expressions, A Tour of JavaScript, Object and Array Initializers
	iterating arrays, Iterating Arrays
	multidimensional arrays, Multidimensional Arrays
	nested, Object and Array Initializers
	overview of, A Tour of JavaScript, Arrays
	processing with functions, Processing Arrays with Functions
	reading and writing array elements, Reading and Writing Array Elements
	sparse arrays, Sparse Arrays
	strings as arrays, Strings as Arrays
	typed arrays	creating, Creating Typed Arrays
	DataView and endianness, DataView and Endianness
	methods and properties, Typed Array Methods and Properties
	overview of, Typed Arrays and Binary Data
	typed array types, Typed Array Types
	using, Using Typed Arrays

	arrow functions, A Tour of JavaScript, Defining Functions, Arrow Functions
	arrows (=>), A Tour of JavaScript, Optional Semicolons, Arrow Functions
	ASCII control characters, The Text of a JavaScript Program
	assertions, A Tour of JavaScript
	assignment operator (=), A Tour of JavaScript, Equality and Inequality Operators, Assignment Expressions
	associative arrays, Introduction to Objects, Objects As Associative Arrays
	associativity, Operator Associativity
	async keyword, async and await-Implementation Details
	asynchronous programming (see also Node)	async and await keywords, async and await-Implementation Details
	asynchronous iteration	asynchronous generators, Asynchronous Generators
	asynchronous iterators, Asynchronous Iterators
	for/await loops, Asynchronous iteration with for/await, Asynchronous Iteration
	implementation, Implementing Asynchronous Iterators-Implementing Asynchronous Iterators

	callbacks	callbacks and events in Node, Callbacks and Events in Node
	definition of term, Asynchronous Programming with Callbacks
	events, Events
	network events, Network Events
	timers, Timers

	definition of term, Asynchronous JavaScript
	JavaScript support for, Asynchronous JavaScript
	Promises	chaining Promises, Chaining Promises-Chaining Promises
	error handling with, Handling errors with Promises, More on Promises and Errors-The catch and finally methods
	making Promises, Making Promises-Promises in Sequence
	overview of, Promises
	parallel operations, Promises in Parallel
	Promises in sequence, Promises in Sequence-Promises in Sequence
	resolving Promises, Resolving Promises-More on Promises and Errors
	returning from Promise callbacks, The catch and finally methods
	terminology, Handling errors with Promises
	using, Using Promises-Handling errors with Promises

	audio APIs	Audio() constructor, The Audio() Constructor
	overview of, Audio APIs
	WebAudio API, The WebAudio API

	await keyword, async and await-Implementation Details
	await operator, The await Operator

B
	Babel, Transpilation with Babel
	backend JavaScript, JavaScript in Web Browsers
	backpressure, Writing to Streams and Handling Backpressure-Writing to Streams and Handling Backpressure
	backslash (\), String Literals-Escape Sequences in String Literals
	backtick (`), String Literals, Template Literals
	bare catch clauses, try/catch/finally
	bezierCurveTo() method, Curves
	big-endian byte ordering, DataView and Endianness
	BigInt type, Arbitrary Precision Integers with BigInt
	binary data, processing, Typed Arrays and Binary Data-DataView and Endianness, Binary APIs (see also typed arrays)
	binary integer literals, Integer Literals
	binary operators, Number of Operands
	bind() method, The bind() Method, Partial Application of Functions
	bitwise operators, Bitwise Operators
	blob() method, Parsing response bodies
	block scoping, Variable and constant scope
	blocking script execution, When scripts run: async and deferred
	Boolean AND operator (&&), Boolean Values, Logical AND (&&)
	Boolean NOT operator (!), Logical NOT (!)
	Boolean OR operator (||), Boolean Values, Logical OR (||)
	boolean values, Boolean Values-Boolean Values
	Boolean() function, Explicit Conversions
	break statements, break
	browser development tools, Exploring JavaScript
	browsing history	managing with hashchange events, History Management with hashchange Events
	managing with pushState(), History Management with pushState()
	overview of, Browsing History
	structured clone algorithm, History Management with pushState()

	Buffer class (Node), Buffers

C
	Cache API, Progressive Web Apps and Service Workers
	calendars, Formatting Dates and Times
	call() method, Indirect Invocation, The call() and apply() Methods
	callbacks	callbacks and events in Node, Callbacks and Events in Node
	definition of term, Asynchronous Programming with Callbacks
	events, Events
	network events, Network Events
	timers, Timers

	Canvas API, Graphics in a <canvas>-Pixel Manipulation	canvas dimensions and coordinates, Canvas Dimensions and Coordinates
	coordinate system transforms, Coordinate System Transforms-Transformation example
	drawImage() function, Media APIs
	drawing operations	curves, Curves
	images, Images
	rectangles, Rectangles
	text, Text

	graphics attributes	colors, patterns, and gradients, Colors, patterns, and gradients
	line styles, Line styles
	overview of, Graphics Attributes
	saving and restoring graphics state, Saving and restoring graphics state
	shadows, Shadows
	text styles, Text styles
	translucency and compositing, Translucency and compositing

	overview of, Graphics in a <canvas>
	paths and polygons, Paths and Polygons
	pixel manipulation, Pixel Manipulation

	case sensitivity, The Text of a JavaScript Program
	catch clauses, try/catch/finally-Miscellaneous Statements
	catch statements, Error Classes
	.catch() method, The catch and finally methods-The catch and finally methods
	character classes (regular expressions), Character classes
	character frequency histograms, Example: Character Frequency Histograms-Summary
	charAt() method, Strings as Arrays
	checkscope() function, Closures
	child processes (Node), Working with Child Processes-fork()	benefits of, Working with Child Processes
	exec() and execFile(), exec() and execFile()
	execSync() and execFileSync(), execSync() and execFileSync()
	fork(), fork()
	options, execSync() and execFileSync()
	spawn(), spawn()

	class declaration, class
	class keyword, Classes with the class Keyword-Example: A Complex Number Class
	class methods, Static Methods
	classes	adding methods to existing classes, Adding Methods to Existing Classes
	classes and constructors, Classes and Constructors-The constructor Property	constructor property, The constructor Property
	constructors, class identity, and instanceof, Constructors, Class Identity, and instanceof
	new.target expression, Classes and Constructors

	classes and prototypes, Classes and Prototypes
	classes with class keyword, Classes with the class Keyword-Example: A Complex Number Class	complex number class example, Example: A Complex Number Class-Example: A Complex Number Class
	getters, setters, and other method forms, Getters, Setters, and other Method Forms
	public private, and static fields, Public, Private, and Static Fields-Public, Private, and Static Fields
	static methods, Static Methods

	modular programming with, Modules with Classes, Objects, and Closures
	naming, Reserved Words
	overview of, Overview and Definitions, Classes
	subclasses	class hierarchies and abstract classes, Class Hierarchies and Abstract Classes-Summary
	delegation versus inheritance, Delegation Instead of Inheritance
	overview of, Subclasses
	subclasses and prototypes, Subclasses and Prototypes
	with extends clause, Subclasses with extends and super-Subclasses with extends and super

	client-side JavaScript, JavaScript in Web Browsers
	client-side storage, Storage
	clipping, Clipping
	closest() method, Selecting elements with CSS selectors
	closures	combining with property getters and setters, Closures
	common errors, Closures
	definition of term, Closures
	lexical scoping rules and, Closures
	modular programming with, Automating Closure-Based Modularity
	nested function closures, Closures
	shared private state, Closures

	code bundling, Code Bundling
	code examples	comment syntax in, A Tour of JavaScript
	obtaining and using, Example Code
	trying out JavaScript code, Exploring JavaScript

	collation order, Comparing Strings
	colors, Colors, patterns, and gradients
	comma operator (,), The comma Operator (,)
	comments	syntax for, A Tour of JavaScript, Comments
	syntax in code examples, A Tour of JavaScript

	compare() method, Comparing Strings
	comparison operators, Comparison Operators
	compositing, Translucency and compositing
	compound statements, Compound and Empty Statements
	computed properties, Computed Property Names
	concat() method, Adding arrays with concat()
	conditional access operator (?.), A Tour of JavaScript, Function Invocation
	conditional invocation, Conditional Invocation, Function Invocation
	conditional operator (?:), The Conditional Operator (?:)
	conditional statements, Statements, Conditionals-switch
	configurable attribute, Introduction to Objects, Property Attributes
	Console API	console.log() function, The Console API
	formatted output with, Formatted Output with Console
	functions defined by, The Console API-The Console API
	support for, The Console API

	console.log() function, Hello World, Console Output
	const keyword, Declarations with let and const
	constants	declaring, Overview and Definitions, Declarations with let and const, const, let, and var
	definition of term, Variable Declaration and Assignment
	naming, Reserved Words

	constructors	Array() constructor, The Array() Constructor
	Audio() constructor, The Audio() Constructor
	classes and, Classes and Constructors-The constructor Property	constructor property, The constructor Property-The constructor Property
	constructors, class identity, and instanceof, Constructors, Class Identity, and instanceof
	new.target expression, Classes and Constructors

	constructor invocation, Constructor Invocation
	definition of term, Functions
	examples of, Creating Objects with new
	Function() constructor, The Function() Constructor
	Set() constructor, The Set Class

	Content-Security-Policy HTTP header, Security
	continue statements, continue
	control structures, A Tour of JavaScript-A Tour of JavaScript, Statements
	cookies	API for manipulating, Cookies
	definition of term, Cookies
	lifetime and scope attributes, Cookie attributes: lifetime and scope
	limitations of, Cookie attributes: lifetime and scope
	origin of name, Cookies
	reading, Reading cookies
	storing, Storing cookies

	coordinate system transforms, Coordinate System Transforms-Transformation example
	copyright symbol (\xA9), Escape Sequences in String Literals
	copyWithin() method, copyWithin()
	Credential Management API, Cryptography and Related APIs
	Cross-Origin Resource Sharing (CORS), The same-origin policy, Cross-origin requests
	cross-site scripting (XSS), Cross-site scripting
	cryptography, Arbitrary Precision Integers with BigInt, Cryptography and Related APIs
	CSS pixels, Document Coordinates and Viewport Coordinates
	CSS stylesheets	common CSS styles, Scripting CSS
	computed styles, Computed Styles
	CSS animations and events, CSS Animations and Events
	CSS classes, CSS Classes
	CSS selector syntax, Selecting elements with CSS selectors
	inline styles, Inline Styles
	naming conventions, Inline Styles
	scripting stylesheets, Scripting Stylesheets

	CSSStyleDeclaration object, Inline Styles
	curly braces ({}), A Tour of JavaScript, Object and Array Initializers
	currency, Formatting Numbers
	curves, Curves

D
	data properties, Property Getters and Setters
	DataView class, DataView and Endianness
	Date type, Overview and Definitions, Dates and Times
	dates and times	date arithmetic, Date Arithmetic
	formatting and parsing date strings, Formatting and Parsing Date Strings
	formatting for internationalization, Formatting Dates and Times-Formatting Dates and Times
	high-resolution timestamps, Timestamps
	overview of, Dates and Times, Dates and Times
	timestamps, Timestamps

	debugger statements, debugger
	declarations	class, class
	const, let, and var, const, let, and var
	function, function
	import and export, import and export
	overview of, Declarations

	decodeURI() function, Legacy URL Functions
	decodeURIComponent() function, Legacy URL Functions
	decrement operator (--), Unary Arithmetic Operators
	delegation, Delegation Instead of Inheritance
	delete operator, The delete Operator, Deleting Properties
	denial-of-service attacks, Writing to Streams and Handling Backpressure
	destructuring assignment, Destructuring Assignment-Destructuring Assignment, Destructuring Function Arguments into Parameters-Destructuring Function Arguments into Parameters
	development tools, Exploring JavaScript
	devicemotion event, Mobile Device APIs
	deviceorientation event, Mobile Device APIs
	devicePixelRatio property, Document Coordinates and Viewport Coordinates
	dictionaries, Introduction to Objects, Objects As Associative Arrays
	directories (Node), Working with Directories
	distance() function, Function Declarations
	division operator (/), Arithmetic in JavaScript, Arithmetic Expressions
	do/while loops, do/while
	document geometry and scrolling, Document Geometry and Scrolling-Viewport Size, Content Size, and Scroll Position	CSS pixels, Document Coordinates and Viewport Coordinates
	determining element at a point, Determining the Element at a Point
	document coordinates and viewport coordinates, Document Coordinates and Viewport Coordinates
	querying geometry of elements, Querying the Geometry of an Element
	scrolling, Scrolling
	viewport size, content size, and scroll position, Viewport Size, Content Size, and Scroll Position

	Document Object Model (DOM), The Document Object Model-Example: Generating a Table of Contents	document structure and traversal, Document Structure and Traversal
	DocumentFragment nodes, Using Web Components
	dynamically generating tables of contents, Example: Generating a Table of Contents
	iframe elements, Document Coordinates and Viewport Coordinates
	modifying content, Element content as HTML
	modifying structure, Creating, Inserting, and Deleting Nodes
	overview of, Scripting Documents
	querying and setting attributes, Attributes
	selecting document elements, Selecting Document Elements
	shadow DOM, Shadow DOM-Shadow DOM API

	DocumentFragment nodes, Using Web Components
	documents, loading new, Loading New Documents
	dollar sign ($), Identifiers and Reserved Words
	DOMContentLoaded event, Execution of JavaScript Programs, Client-side JavaScript timeline
	dot operator (.), A Tour of JavaScript, Querying and Setting Properties
	double quotes ("), String Literals
	double slashes (//), A Tour of JavaScript, A Tour of JavaScript, Comments
	drawImage() function, Media APIs
	drawing operations	curves, Curves
	images, Images
	rectangles, Rectangles
	text, Text

	dynamic arrays, Arrays

E
	ECMA402 standard, The Internationalization API
	ECMAScript (ES), Introduction to JavaScript
	elementFromPoint() method, Document Coordinates and Viewport Coordinates
	elements	array elements	definition of term, Arrays
	reading and writing, Reading and Writing Array Elements

	document elements	custom elements, Custom Elements
	determining element at a point, Determining the Element at a Point
	iframe, Document Coordinates and Viewport Coordinates
	querying geometry of elements, Querying the Geometry of an Element
	selecting, Selecting Document Elements

	ellipse() method, Curves
	else if statements, else if
	emojis, Unicode, Escape Sequences in String Literals
	empty statements, Compound and Empty Statements
	empty strings, Text
	encodeURI() function, Legacy URL Functions
	encodeURIComponent() function, Legacy URL Functions
	English contractions, String Literals
	enumerable attribute, Introduction to Objects, Property Attributes
	equality operator (==)	overview of, Equality and Inequality Operators
	type conversions, Overview and Definitions, Conversions and Equality, Special case operator conversions

	equality operators, A Tour of JavaScript
	Error classes, Error Classes
	error handling	using Promises, Handling errors with Promises, More on Promises and Errors
	web browser host environment, Program Errors

	ES2016	exponentiation operator (**), Arithmetic in JavaScript, Arithmetic Expressions
	includes() method, includes()

	ES2017, async and await keywords, The await Operator, Asynchronous JavaScript, async and await-Implementation Details
	ES2018	asynchronous iterator, Asynchronous iteration with for/await, Asynchronous Iteration
	destructuring with rest parameters, Destructuring Function Arguments into Parameters
	.finally() method, The catch and finally methods
	regular expressions	lookbehind assertions, Specifying match position
	named capture groups, Alternation, grouping, and references
	s flag, Flags
	Unicode character classes, Character classes

	spread operator (…), Spread Operator, Destructuring Function Arguments into Parameters, Iterators and Generators

	ES2019	bare catch clauses, try/catch/finally
	flattening arrays, Flattening arrays with flat() and flatMap()

	ES2020	?? operator, First-Defined (??)
	BigInt type, Arbitrary Precision Integers with BigInt
	BigInt64Array(), Typed Array Types
	BigUint64Array(), Typed Array Types
	conditional access operator (?.), A Tour of JavaScript, Property Access Errors, Function Invocation
	conditional invocation, Conditional Invocation
	globalThis, The Global Object
	import() function, Dynamic Imports with import()
	lastIndex and RegExp API, exec()
	matchAll() method, matchAll(), exec(), Implementing Iterable Objects
	operator precedence, Operator Precedence
	Promise.allSettled(), Promises in Parallel
	property access expressions, Conditional Property Access

	ES5	apply() method, The call() and apply() Methods
	breaking strings across multiple lines, String Literals, Escape Sequences in String Literals
	bugs addressed by block-scoped variables, Closures
	compatibility baseline, Introduction to JavaScript
	Function.bind() method, The constructor Property
	getters and setters, Property Getters and Setters
	IE11 workaround, JavaScript Modules on the Web
	transpilation with Babel, Transpilation with Babel

	ES6	Array.of() function, Array.of()
	arrow functions, Defining Functions, Arrow Functions
	binary and octal integers, Integer Literals
	built-in tag function, Tagged template literals
	class declaration, class
	class keyword, Classes with the class Keyword-Example: A Complex Number Class
	computed properties, Computed Property Names
	extended object literal syntax, Shorthand Properties
	for/of loops, for/of-for/in
	IE11 workaround, JavaScript Modules on the Web
	iterable strings in, Text
	iterating arrays, Iterating Arrays
	Math object, Arithmetic in JavaScript
	modules in	dynamic imports with import(), Dynamic Imports with import()
	exports, ES6 Exports
	import.meta.url, import.meta.url
	imports, ES6 Imports-ES6 Imports
	imports and exports with renaming, Imports and Exports with Renaming
	JavaScript modules on the web, JavaScript Modules on the Web-JavaScript Modules on the Web
	overview of, Modules in ES6
	re-exports, Re-Exports

	Promises	chaining Promises, Chaining Promises-Chaining Promises
	error handling with, More on Promises and Errors-The catch and finally methods
	making Promises, Making Promises-Promises in Sequence
	overview of, Promises
	parallel operations, Promises in Parallel
	Promises in sequence, Promises in Sequence-Promises in Sequence
	resolving Promises, Resolving Promises-More on Promises and Errors
	returning from Promise callbacks, The catch and finally methods
	using, Using Promises-Handling errors with Promises

	property enumeration order, Property Enumeration Order
	release of, Introduction to JavaScript
	Set and Map classes, for/of with Set and Map
	shorthand methods, Shorthand Methods
	spread operator (…), The Spread Operator
	strings delimited with backticks, String Literals, Template Literals
	subclasses with extends clause, Subclasses with extends and super-Subclasses with extends and super
	Symbol type, Overview and Definitions
	symbols as property names, Symbols as Property Names
	typed arrays, Arrays
	variable declaration in, Variable Declaration and Assignment
	yield* keyword, yield* and Recursive Generators

	escape sequences	apostrophes, String Literals
	in string literals, Escape Sequences in String Literals
	Unicode, Unicode Escape Sequences

	escape() function, Legacy URL Functions
	ESLint, Linting with ESLint
	eval() function, Evaluation Expressions-Strict eval()	global eval(), Global eval()
	strict eval(), Strict eval()

	evaluation expressions, Evaluation Expressions-Strict eval()
	event listeners, Events, Events
	event-driven programming model, Asynchronous JavaScript, Events-Dispatching Custom Events, Server-Sent Events	definition of term, Asynchronous JavaScript
	dispatching custom events, Dispatching Custom Events
	event cancellation, Event Cancellation
	event categories, Event Categories
	event handler invocation, Event Handler Invocation
	event propagation, Event Propagation
	overview of, Events
	registering event handlers, Registering Event Handlers
	server-sent events, Server-Sent Events
	web platform features to investigate, Events

	EventEmitter class, Events and EventEmitter
	every() method, every() and some()
	exceptions, throwing and catching, throw
	exec() method, exec()
	exponential notation, Floating-Point Literals
	exponentiation operator (**), Arithmetic in JavaScript, Arithmetic Expressions
	export declaration, import and export
	export keyword, Modules in ES6
	expression statements, Expression Statements
	expressions	arithmetic expressions, Arithmetic Expressions-Bitwise Operators
	assignment expressions, Assignment Expressions-Assignment with Operation
	definition of term, Expressions and Operators
	embedding within string literals, String Literals
	evaluation expressions, Evaluation Expressions-Strict eval()
	forming with operators, A Tour of JavaScript, Expressions and Operators
	function definition expressions, Function Definition Expressions
	function expressions, Function Expressions, Functions as Namespaces
	initializer expression, A Tour of JavaScript, Object and Array Initializers
	invocation expressions, Invocation Expressions-Conditional Invocation, Function Invocation-Constructor Invocation
	logical expressions, Logical Expressions-Logical NOT (!)
	new.target expression, Classes and Constructors
	object and array initializers, Object and Array Initializers
	object creation expressions, Object Creation Expressions
	primary expressions, Primary Expressions
	property access expressions, Property Access Expressions-Conditional Property Access
	relational expressions, Relational Expressions-The instanceof Operator
	versus statements, A Tour of JavaScript, Statements

	extensibility, Object Extensibility

F
	factorial() function, Function Declarations, Function Invocation
	factory functions, Classes and Prototypes
	falsy values, Boolean Values
	fetch() function, Network Events
	fetch() method	aborting requests, Aborting a request
	cross-origin requests, Cross-origin requests
	examples of, fetch()
	file upload, File upload with fetch()
	HTTP status codes, response headers, and network errors, HTTP status codes, response headers, and network errors
	miscellaneous request options, Miscellaneous request options
	parsing response bodies, Parsing response bodies
	setting request headers, Setting request headers
	setting request parameters, Setting request parameters
	specifying request method and request body, Specifying the request method and request body
	steps of, fetch()
	streaming response bodies, Streaming response bodies

	fields, public, private, and static, Public, Private, and Static Fields
	file handling (Node), Working with Files-Working with Directories	directories, Working with Directories
	file metadata, File Metadata
	file mode strings, Writing Files
	file operations, File Operations
	overview of, Working with Files
	paths, file descriptors, and FileHandles, Paths, File Descriptors, and FileHandles
	reading files, Reading Files
	writing files, Writing Files

	fill() method, fill()
	filter() method, filter()
	.finally() method, The catch and finally methods-The catch and finally methods
	financial account numbers, Storage
	find() method, find() and findIndex()
	findIndex() method, find() and findIndex()
	Firefox Developer Tools, Exploring JavaScript
	first-defined operator (??), First-Defined (??)
	flat() method, Flattening arrays with flat() and flatMap()
	flatMap() method, Flattening arrays with flat() and flatMap()
	floating-point literals, Floating-Point Literals, Binary Floating-Point and Rounding Errors
	Flow language extension, Type Checking with Flow-Enumerated Types and Discriminated Unions	array types, Array Types
	class types, Class Types
	enumerated types and discriminated unions, Enumerated Types and Discriminated Unions
	function types, Function Types
	installing and running, Installing and Running Flow
	object types, Object Types
	other parameterized types, Other Parameterized Types
	overview of, Type Checking with Flow
	read-only types, Read-Only Types
	type aliases, Type Aliases
	TypeScript versus Flow, Type Checking with Flow
	union types, Union Types
	using type annotations, Using Type Annotations

	for loops, for, Iterating Arrays
	for/await loops, Asynchronous iteration with for/await, Asynchronous Iteration
	for/in loops, for/in, Enumerating Properties
	for/of loops, Text, for/of-for/in, Iterating Arrays, Iterators and Generators
	forEach() method, Iterating Arrays, forEach()
	format() method, Formatting Numbers
	fractions, Formatting Numbers
	fromData() method, Parsing response bodies
	front-end JavaScript, JavaScript in Web Browsers
	fs module (Node), Working with Files-Working with Directories
	function declaration, function
	function expressions, Function Expressions, Functions as Namespaces
	function keyword, Defining Functions
	Function() constructor, The Function() Constructor
	function* keyword, Generators
	functions	arrow functions, A Tour of JavaScript, Defining Functions, Arrow Functions
	case sensitivity, The Text of a JavaScript Program
	closures, Closures-Closures
	defining, Defining Functions-Nested Functions
	defining your own function properties, Defining Your Own Function Properties
	factory functions, Classes and Prototypes
	function arguments and parameters	argument types, Argument Types
	arguments object, The Arguments Object
	destructuring function arguments into parameters, Destructuring Function Arguments into Parameters-Destructuring Function Arguments into Parameters
	optional parameters and defaults, Optional Parameters and Defaults
	overview of, Function Arguments and Parameters
	rest parameters, Rest Parameters and Variable-Length Argument Lists
	spread operator for function calls, The Spread Operator for Function Calls
	variable-length argument lists, Rest Parameters and Variable-Length Argument Lists

	function definition expressions, Function Definition Expressions
	function invocation, Creating Objects with new
	function properties, methods, and constructor, Function Properties, Methods, and Constructor-The Function() Constructor	bind() method, The bind() Method
	call() and apply() methods, The call() and apply() Methods
	Function() constructor, The Function() Constructor
	length property, The length Property
	name property, The name Property
	prototype property, The prototype Property
	toString() method, The toString() Method

	functional programming	exploring, Functional Programming
	higher-order functions, Higher-Order Functions
	memoization, Memoization
	partial application of functions, Partial Application of Functions
	processing arrays with function, Processing Arrays with Functions

	functions as namespaces, Functions as Namespaces
	functions as values, Functions as Values-Defining Your Own Function Properties
	invoking	approaches to, Invoking Functions
	constructor invocation, Constructor Invocation
	examples, A Tour of JavaScript
	implicit function invocation, Implicit Function Invocation
	indirect invocation, Indirect Invocation
	invocation expressions, Function Invocation
	method invocation, Method Invocation-Method Invocation

	naming, Reserved Words
	overview of, Overview and Definitions, Functions
	recursive functions, Function Invocation
	shorthand syntax for, A Tour of JavaScript
	static array functions, Static Array Functions

G
	garbage collection, Overview and Definitions
	generator functions, Generators, The Return Value of a Generator Function (see also iterators and generators)
	Geolocation API, Mobile Device APIs
	getBoundingClientRect() method, Document Coordinates and Viewport Coordinates
	getRandomValues() method, Cryptography and Related APIs
	getter methods, Property Getters and Setters, Getters, Setters, and other Method Forms
	global eval(), Global eval()
	global object, The Global Object, The Global Object in Web Browsers
	global variables, Variable and constant scope
	gradients, Colors, patterns, and gradients
	graphics	3D, Graphics in a <canvas>
	Canvas API, Graphics in a <canvas>-Pixel Manipulation	canvas dimensions and coordinates, Canvas Dimensions and Coordinates
	clipping, Clipping
	coordinate system transforms, Coordinate System Transforms-Transformation example
	drawing operations, Canvas Drawing Operations
	graphics attributes, Graphics Attributes
	overview of, Graphics in a <canvas>
	paths and polygons, Paths and Polygons
	pixel manipulation, Pixel Manipulation
	saving and restoring graphics state, Saving and restoring graphics state

	scalable vector graphics (SVG), SVG: Scalable Vector Graphics-Creating SVG Images with JavaScript

	greater than operator (>)	overview of, Comparison Operators
	string comparison, Working with Strings
	type conversions, Special case operator conversions

	greater than or equal to operator (>=)	overview of, Comparison Operators
	string comparison, Working with Strings
	type conversions, Special case operator conversions

H
	hashchange events, History Management with hashchange Events
	hashtables, Introduction to Objects, Objects As Associative Arrays
	hasOwnProperty operator, Testing Properties
	Hello World, Hello World, Console Output
	hexadecimal literals, Integer Literals, Escape Sequences in String Literals
	higher-order functions, Higher-Order Functions
	histograms, character frequency, Example: Character Frequency Histograms-Summary
	history.pushState() method, History Management with pushState()
	history.replaceState() method, History Management with pushState()
	hoisting, Variable Declarations with var
	HTML <script> tags, JavaScript in HTML <script> Tags-Loading scripts on demand	import and export directives, Modules
	loading scripts on demand, Loading scripts on demand
	specifying script type, Specifying script type
	synchronous script execution, When scripts run: async and deferred
	text property, Element content as plain text

	HTML <template> tag, HTML Templates
	HTML code, single and double quotes in, String Literals
	HTTP clients and servers, HTTP Clients and Servers-HTTP Clients and Servers

I
	identifiers	case sensitivity, The Text of a JavaScript Program
	purpose of, Identifiers and Reserved Words, Variable Declaration and Assignment
	reserved words, Identifiers and Reserved Words, Primary Expressions
	syntax for, Identifiers and Reserved Words

	ideographs, Unicode
	if statements, if-if
	if/else statement, Boolean Values
	images	drawing in Canvas, Images
	pixel manipulation, Pixel Manipulation

	immediately invoked function expression, Functions as Namespaces
	immutability, Working with Strings, Immutable Primitive Values and Mutable Object References
	implicit function invocation, Implicit Function Invocation
	import declaration, import and export
	import keyword, Modules in ES6
	import() function, Dynamic Imports with import()
	import.meta.url, import.meta.url
	in operator, The in Operator, Testing Properties
	includes() method, includes()
	increment operator (++), Unary Arithmetic Operators
	index position, Arrays, Reading and Writing Array Elements
	IndexedDB, IndexedDB-Worker Threads and Messaging
	indexOf() method, indexOf() and lastIndexOf()
	indirect invocation, Indirect Invocation
	inequality operator (!==)	boolean values, Boolean Values
	overview of, Equality and Inequality Operators
	string comparison, Working with Strings

	infinity value, Arithmetic in JavaScript
	inheritance, Introduction to Objects, Inheritance, Delegation Instead of Inheritance
	initializer expression, A Tour of JavaScript, Object and Array Initializers
	instance methods, Static Methods
	instanceof operator, The instanceof Operator, Constructors, Class Identity, and instanceof
	integer literals, Integer Literals
	internationalization API	classes included in, The Internationalization API
	comparing strings, Comparing Strings-Comparing Strings
	formatting dates and times, Formatting Dates and Times-Formatting Dates and Times
	formatting numbers, Formatting Numbers-Formatting Numbers
	support for in Node, The Internationalization API
	translated text, The Internationalization API

	interpolation, String Literals
	Intl.DateTimeFormat class, Formatting Dates and Times-Formatting Dates and Times
	Intl.NumberFormat class, Formatting Numbers-Formatting Numbers
	invocation expressions	conditional invocation, Conditional Invocation, Function Invocation
	method invocation, Invocation Expressions, Method Invocation
	overview of, Function Invocation

	isFinite() function, Arithmetic in JavaScript
	isNaN() function, Arithmetic in JavaScript
	iterators and generators (see also array iterator methods)	advanced generator features	return value of generator functions, The Return Value of a Generator Function
	return() and throw() methods, The return() and throw() Methods of a Generator
	value of yield expressions, The Value of a yield Expression

	asynchronous, Asynchronous Iterators-Implementing Asynchronous Iterators
	closing iterators, “Closing” an Iterator: The Return Method
	generators	benefits of, A Final Note About Generators
	creating, Generators
	definition of term, Generators
	examples of, Generator Examples
	yield* and recursive generators, yield* and Recursive Generators

	how iterators work, How Iterators Work
	implementing iterable objects, Implementing Iterable Objects-Implementing Iterable Objects
	overview of, Iterators and Generators

J
	JavaScript	benefits of, Introduction to JavaScript, Summary
	introduction to	chapter overviews, A Tour of JavaScript, A Tour of JavaScript
	character frequency histograms, Example: Character Frequency Histograms-Summary
	Hello World, Hello World
	history of, JavaScript in Web Browsers
	JavaScript interpreters, Exploring JavaScript
	lexical structure, Lexical Structure-Summary
	names, versions, and modes, Introduction to JavaScript
	syntax and capabilities, A Tour of JavaScript-A Tour of JavaScript

	reference documentation, Preface

	JavaScript standard library	Console API, The Console API-Formatted Output with Console
	dates and times, Dates and Times-Formatting and Parsing Date Strings
	error classes, Error Classes-Error Classes
	internationalization API, The Internationalization API-Comparing Strings
	JSON serialization and parsing, JSON Serialization and Parsing-JSON Customizations
	overview of, The JavaScript Standard Library
	pattern matching, Pattern Matching with Regular Expressions-exec()
	sets and maps, Sets and Maps-WeakMap and WeakSet
	timers, Timers-Timers
	typed arrays and binary data, Typed Arrays and Binary Data-DataView and Endianness
	URL APIs, URL APIs-Legacy URL Functions

	Jest, Unit Testing with Jest
	join() method, Array to String Conversions
	JSON serialization and parsing, JSON Serialization and Parsing-JSON Customizations
	JSON.parse() function, Serializing Objects, JSON Serialization and Parsing
	JSON.stringify() function, Serializing Objects, The toJSON() Method, JSON Serialization and Parsing
	JSX language extension, JSX: Markup Expressions in JavaScript-JSX: Markup Expressions in JavaScript
	jump statements, Statements, Jumps-try/catch/finally	break statements, break
	continue statements, continue
	definition of term, Statements
	labeled statements, Labeled Statements
	overview of, Jumps
	return statements, return

K
	keywords	async keyword, async and await-Implementation Details
	await keyword, async and await-Implementation Details
	case sensitivity, The Text of a JavaScript Program
	class keyword, Classes with the class Keyword-Example: A Complex Number Class
	const keyword, Declarations with let and const
	export keyword, Modules in ES6
	function keyword, Defining Functions
	function* keyword, Generators
	import keyword, Modules in ES6
	let keyword, A Tour of JavaScript, Declarations with let and const, const, let, and var
	new keyword, Creating Objects with new, Constructor Invocation
	reserved words, Reserved Words, Primary Expressions
	this keyword, A Tour of JavaScript, Primary Expressions, Function Invocation
	var keyword, Variable Declarations with var, const, let, and var
	yield* keyword, yield* and Recursive Generators

	Koch snowflakes, Transformation example

L
	labeled statements, Labeled Statements
	lastIndex property, exec()
	lastIndexOf() method, indexOf() and lastIndexOf()
	less than operator (<)	overview of, Comparison Operators
	string comparison, Working with Strings
	type conversions, Special case operator conversions

	less than or equal to operator (<=)	overview of, Comparison Operators
	string comparison, Working with Strings
	type conversions, Special case operator conversions

	let keyword, A Tour of JavaScript, Declarations with let and const, const, let, and var
	lexical scoping, Closures
	lexical structure, Lexical Structure-Summary	case sensitivity, The Text of a JavaScript Program
	comments, Comments
	identifiers, The Text of a JavaScript Program-Identifiers and Reserved Words
	line breaks, The Text of a JavaScript Program
	literals, Literals
	reserved words, Reserved Words, Primary Expressions
	semicolons, Optional Semicolons-Optional Semicolons
	spaces, The Text of a JavaScript Program
	Unicode character set	escape sequences, Unicode Escape Sequences
	normalization, Unicode Normalization
	overview of, Unicode

	line breaks, The Text of a JavaScript Program, Optional Semicolons-Optional Semicolons
	line styles, Line styles
	line terminators, The Text of a JavaScript Program
	linting tools, Linting with ESLint
	literals	numeric	floating-point literals, Floating-Point Literals, Binary Floating-Point and Rounding Errors
	integer literals, Integer Literals
	negative numbers, Numbers
	separators in, Floating-Point Literals

	regular expressions, Pattern Matching, Pattern Matching with Regular Expressions
	string, String Literals
	template literals, Template Literals, Template Tags

	little-endian architecture, DataView and Endianness
	load event, Execution of JavaScript Programs
	localStorage property, localStorage and sessionStorage
	location property, Location, Navigation, and History
	logical operators, A Tour of JavaScript, Logical Expressions-Logical NOT (!)
	lookbehind assertions, Specifying match position
	looping statements	do/while loops, do/while
	for loops, for, Iterating Arrays
	for/await loops, Asynchronous iteration with for/await, Asynchronous Iteration
	for/in loops, for/in, Enumerating Properties
	for/of loops, for/of-for/in, Iterating Arrays, Iterators and Generators
	purpose of, Statements
	while loops, while

	lvalue, Operand and Result Type

M
	magnetometers, Mobile Device APIs
	Mandelbrot set, Example: The Mandelbrot Set-Summary and Suggestions for Further Reading
	Map class, for/of with Set and Map, The Map Class-The Map Class
	Map objects, Overview and Definitions, The Map Class
	map() method, map()
	marshaling, JSON Serialization and Parsing
	match() method, match()
	matchAll() method, matchAll()
	matches() method, Selecting elements with CSS selectors
	Math.pow function, Arithmetic Expressions
	mathematical operations, Arithmetic in JavaScript-Arithmetic in JavaScript
	MDN website, Preface
	media APIs, Media APIs
	memoization, Memoization
	memory management, Overview and Definitions
	message events, Client-side JavaScript threading model, Events, Server-Sent Events, Worker Objects-The Global Object in Workers, Worker Execution Model-postMessage(), MessagePorts, and MessageChannels, Cross-Origin Messaging with postMessage(), fork()-Worker Threads, Communication Channels and MessagePorts, Enumerated Types and Discriminated Unions
	MessageChannels, postMessage(), MessagePorts, and MessageChannels
	MessagePort objects, postMessage(), MessagePorts, and MessageChannels, Communication Channels and MessagePorts
	messaging	WebSocket API	receiving messages, Receiving messages from a WebSocket
	sending messages, Sending messages over a WebSocket

	worker threads and messaging, Worker Threads and Messaging-Cross-Origin Messaging with postMessage()	cross-origin messaging, Cross-Origin Messaging with postMessage(), Cross-Origin Messaging with postMessage()
	execution model, Worker Execution Model
	importing code, Importing Code into a Worker
	Mandelbrot set example, Example: The Mandelbrot Set-Summary and Suggestions for Further Reading
	modules, Importing Code into a Worker
	overview of, Worker Threads and Messaging
	postMessage(), MessagePorts and MessageChannels, postMessage(), MessagePorts, and MessageChannels
	Worker objects, Worker Objects
	WorkerGlobalScope object, The Global Object in Workers

	metaprogramming, Metaprogramming
	methods	adding methods to existing classes, Adding Methods to Existing Classes
	array methods	generic application of, Arrays
	overview of, Array Methods

	class versus instance methods, Static Methods
	creating, A Tour of JavaScript
	definition of term, Functions, Method Invocation
	method chaining, Method Invocation
	method invocation, Invocation Expressions, Method Invocation-Method Invocation
	shorthand methods, Getters, Setters, and other Method Forms
	shorthand syntax, Shorthand Methods
	static methods, Static Methods
	typed array methods, Typed Array Methods and Properties

	minus sign (-)	subtraction operator, Arithmetic in JavaScript, Arithmetic Expressions
	unary arithmetic operator, Unary Arithmetic Operators

	mobile device APIs, Mobile Device APIs
	modules	automating closure-based modularity, Automating Closure-Based Modularity
	in ES6	dynamic imports with import(), Dynamic Imports with import()
	exports, ES6 Exports
	import.meta.url, import.meta.url
	imports, ES6 Imports-ES6 Imports
	imports and exports with renaming, Imports and Exports with Renaming
	JavaScript modules on the web, JavaScript Modules on the Web-JavaScript Modules on the Web
	overview of, Modules in ES6
	re-exports, Re-Exports

	fs module (Node), Working with Files-Working with Directories
	import and export directives, Modules
	in Node, Modules in Node-Node-Style Modules on the Web, Node Modules	Node exports, Node Exports
	Node imports, Node Imports
	Node-style modules on the web, Node-Style Modules on the Web

	overview of, Modules
	purpose of, Modules
	using in workers, Importing Code into a Worker
	with classes, objects, and closures, Modules with Classes, Objects, and Closures-Automating Closure-Based Modularity

	modulo operator (%), Arithmetic in JavaScript, Arithmetic Expressions
	multiplication operator (*), Arithmetic in JavaScript, Expressions and Operators, Arithmetic Expressions
	multithreaded programming, Node Is Asynchronous by Default, Worker Threads
	mutability, Overview and Definitions, Introduction to Objects

N
	named capture groups, Alternation, grouping, and references
	NaN (not-a-number value), Arithmetic in JavaScript
	navigator.mediaDevices.getUserMedia() function, Media APIs
	navigator.vibrate() method, Mobile Device APIs
	negative infinity value, Arithmetic in JavaScript
	negative zero, Arithmetic in JavaScript
	nested functions, Nested Functions
	network events, Network Events
	networking, Networking-Protocol negotiation	fetch() method	aborting requests, Aborting a request
	cross-origin requests, Cross-origin requests
	examples of, fetch()
	file upload, File upload with fetch()
	HTTP status codes, response headers, and network errors, HTTP status codes, response headers, and network errors
	miscellaneous request options, Miscellaneous request options
	parsing response bodies, Parsing response bodies
	setting request headers, Setting request headers
	setting request parameters, Setting request parameters
	specifying request method and request body, Specifying the request method and request body
	steps of, fetch()
	streaming response bodies, Streaming response bodies

	overview of, Networking
	server-sent events, Server-Sent Events
	WebSocket API, WebSockets
	XMLHttpRequest API (XHR), fetch()

	new keyword, Creating Objects with new, Constructor Invocation
	new.target expression, Classes and Constructors
	newline (\n), String Literals, Escape Sequences in String Literals
	newlines, Optional Semicolons-Optional Semicolons	using for code formatting, The Text of a JavaScript Program

	Node	asynchronous iteration in, The for/await Loop, Node Is Asynchronous by Default-Node Is Asynchronous by Default
	benefits of, Introduction to JavaScript, Server-Side JavaScript with Node
	BigInt type, Arbitrary Precision Integers with BigInt
	buffers, Buffers
	callbacks and events in, Callbacks and Events in Node
	child processes, Working with Child Processes-fork()
	defining feature of, Server-Side JavaScript with Node
	events and EventEmitter, Events and EventEmitter
	file handling, Working with Files-Working with Directories	directories, Working with Directories
	file metadata, File Metadata
	file mode strings, Writing Files
	file operations, File Operations
	overview of, Working with Files
	paths, file descriptors, and FileHandles, Paths, File Descriptors, and FileHandles
	reading files, Reading Files
	writing files, Writing Files

	HTTP clients and servers, HTTP Clients and Servers-HTTP Clients and Servers
	installing, Exploring JavaScript, Server-Side JavaScript with Node
	Intl API, The Internationalization API
	modules in, Modules in Node-Node-Style Modules on the Web
	non-HTTP network servers and clients, Non-HTTP Network Servers and Clients
	parallelism with, Node Is Asynchronous by Default
	process details, Process, CPU, and Operating System Details
	programming basics, Node Programming Basics-The Node Package Manager	command-line arguments, Command-Line Arguments and Environment Variables
	console output, Console Output
	environment variables, Command-Line Arguments and Environment Variables
	modules, Node Modules
	package manager, The Node Package Manager
	program life cycle, Program Life Cycle

	reference documentation, Preface
	streams, Streams-Paused mode	asynchronous iteration in, Asynchronous Iteration
	overview of, Streams
	pipes, Pipes
	reading with events, Reading Streams with Events
	types of, Streams
	writing to and handling backpressure, Writing to Streams and Handling Backpressure

	worker threads, Worker Threads-Sharing Typed Arrays Between Threads	communication channels and MessagePorts, Communication Channels and MessagePorts
	creating workers and passing messages, Creating Workers and Passing Messages
	overview of, Worker Threads
	sharing typed arrays between threads, Sharing Typed Arrays Between Threads
	transferring MessagePorts and typed arrays, Transferring MessagePorts and Typed Arrays
	worker execution environment, The Worker Execution Environment

	NodeLists, Selecting elements with CSS selectors
	non-inherited properties, Introduction to Objects
	non-strict inequality operator (!=)	relational expressions, Equality and Inequality Operators
	type conversions, Special case operator conversions

	normalization, Unicode Normalization
	not-a-number value (NaN), Arithmetic in JavaScript
	Notifications API, Progressive Web Apps and Service Workers
	npm package manager, Package Management with npm
	null values, null and undefined
	nullish coalescing operator (??), First-Defined (??)
	Number type	64-bit floating-point format, Numbers
	arbitrary precision integers with BigInt, Arbitrary Precision Integers with BigInt
	arithmetic and complex math, Arithmetic in JavaScript-Arithmetic in JavaScript
	binary floating-point and rounding errors, Binary Floating-Point and Rounding Errors
	dates and times, Dates and Times
	floating-point literals, Floating-Point Literals
	integer literals, Integer Literals
	separators in numeric literals, Floating-Point Literals

	Number() function, Explicit Conversions, Explicit Conversions
	Number.isFinite() function, Arithmetic in JavaScript
	numbers, formatting for internationalization, Formatting Numbers-Formatting Numbers
	numeric literals, Numbers

O
	object literals	extended syntax for, Extended Object Literal Syntax-Property Getters and Setters
	overview of, Object and Array Initializers
	simplest form of, Object Literals

	object property names, Reading and Writing Array Elements
	object-oriented programming	definition of term, Overview and Definitions
	example of, A Tour of JavaScript

	Object.assign() function, Extending Objects
	Object.create() function, Object.create(), Property Attributes
	Object.defineProperties() method, Property Attributes
	Object.defineProperty() method, Property Attributes
	Object.entries() method, for/of with objects
	Object.getOwnPropertyNames() function, Enumerating Properties
	Object.getOwnPropertySymbols() function, Enumerating Properties
	Object.keys method, for/of with objects
	Object.keys() function, Enumerating Properties
	Object.prototype, Prototypes, Object Methods
	objects	Arguments object, The Arguments Object
	array-like objects, Array-Like Objects-Array-Like Objects
	creating, Creating Objects-Object.create()
	deleting properties, Deleting Properties
	enumerating properties, Enumerating Properties
	extended object literal syntax, Extended Object Literal Syntax-Property Getters and Setters
	extending objects, Extending Objects
	implementing iterable objects, Implementing Iterable Objects-Implementing Iterable Objects
	introduction to, Objects
	modular programming with, Modules with Classes, Objects, and Closures
	mutable object references, Immutable Primitive Values and Mutable Object References, Introduction to Objects
	naming properties within, Reserved Words
	object creation expressions, Object Creation Expressions
	object extensibility, Object Extensibility
	object methods, Object Methods-The toJSON() Method
	overview of, A Tour of JavaScript, Overview and Definitions-Overview and Definitions
	querying and setting properties, Querying and Setting Properties-Property Access Errors
	serializing objects, Serializing Objects
	testing properties, Testing Properties

	onmessage event, Receiving messages from a WebSocket, Worker Objects-The Global Object in Workers, postMessage(), MessagePorts, and MessageChannels, Cross-Origin Messaging with postMessage()
	operators	arithmetic operators, A Tour of JavaScript, Arithmetic in JavaScript-Arithmetic in JavaScript, Arithmetic Expressions-Bitwise Operators
	assignment operators, Assignment Expressions-Assignment with Operation
	binary operators, Number of Operands
	comparison operators, Comparison Operators
	equality and inequality operators, Equality and Inequality Operators
	equality operators, A Tour of JavaScript
	forming expressions with, A Tour of JavaScript, Expressions and Operators
	logical operators, A Tour of JavaScript, Logical Expressions-Logical NOT (!)
	miscellaneous operators	await operator, The await Operator
	comma operator (,), The comma Operator (,)
	conditional operator (?:), The Conditional Operator (?:)
	delete operator, The delete Operator
	first-defined operator (??), First-Defined (??)
	typeof operator, The typeof Operator
	void operator, The void Operator

	number of operands, Number of Operands
	operand and result type, Operand and Result Type
	operator associativity, Operator Associativity
	operator precedence, Operator Precedence
	operator side effects, Operator Side Effects
	order of evaluation, Order of Evaluation
	overview of, Operator Overview
	postfix operators, Optional Semicolons
	relational operators, A Tour of JavaScript, Relational Expressions-The instanceof Operator
	table of, Operator Overview
	ternary operators, Number of Operands

	optional semicolons, Optional Semicolons-Optional Semicolons
	overflow, Arithmetic in JavaScript
	own properties, Introduction to Objects, Inheritance

P
	package manager (Node), The Node Package Manager, Package Management with npm
	parallelization, Node Is Asynchronous by Default
	parameterization, Functions
	parseFloat() function, Explicit Conversions
	parseInt() function, Explicit Conversions
	passwords, Storage
	paths, Paths and Polygons-Paths and Polygons
	pattern matching	defining regular expressions	alternation, grouping, and references, Alternation, grouping, and references
	character classes, Character classes
	flags, Flags
	literal characters, Literal characters
	lookbehind assertions, Specifying match position
	named group captures, Alternation, grouping, and references
	non-greedy repetition, Non-greedy repetition
	pattern specifications, Defining Regular Expressions
	repetition characters, Repetition
	specifying match position, Specifying match position
	Unicode character classes, Character classes

	overview of, Pattern Matching with Regular Expressions
	pattern-matching symbols, Pattern-Matching Symbols
	RegExp class	exec() method, exec()
	lastIndex property and RegExp reuse, exec()
	overview of, The RegExp Class
	RegExp properties, RegExp properties
	test() method, test()

	string methods for	match(), match()
	matchAll(), matchAll()
	replace(), replace()
	search(), String Methods for Pattern Matching
	split(), split()

	syntax for, Pattern Matching

	patterns, Colors, patterns, and gradients
	Payment Request API, Cryptography and Related APIs
	Performance APIs, Performance
	pickling, JSON Serialization and Parsing
	pixels, Document Coordinates and Viewport Coordinates, Pixel Manipulation
	plus sign (+)	addition and assignment operator (+=), Assignment with Operation
	addition operator, Arithmetic in JavaScript, The + Operator
	string concatenation, String Literals, Working with Strings, The + Operator
	type conversions, Special case operator conversions
	unary arithmetic operator, Unary Arithmetic Operators

	polygons, Paths and Polygons-Paths and Polygons
	pop() method, Stacks and Queues with push(), pop(), shift(), and unshift()
	popstate event, Event Categories, History Management with pushState()-Networking
	positive zero, Arithmetic in JavaScript
	possessives, String Literals
	postfix operators, Optional Semicolons
	postMessage() method, postMessage(), MessagePorts, and MessageChannels
	Prettier, JavaScript Formatting with Prettier
	primary expressions, Primary Expressions
	primitive types	Boolean truth values, Boolean Values-Boolean Values
	immutable primitive values, Immutable Primitive Values and Mutable Object References
	Number type, Numbers-Dates and Times
	overview and definitions, Overview and Definitions
	String type, Text-Tagged template literals

	printprops() function, Function Declarations
	private fields, Public, Private, and Static Fields
	procedures, Functions
	programs	error handling, Program Errors
	execution of JavaScript, Execution of JavaScript Programs-Client-side JavaScript timeline	client-side threading model, Client-side JavaScript threading model
	client-side timeline, Client-side JavaScript timeline

	input and output, Program Input and Output

	Progressive Web Apps (PWAs), Progressive Web Apps and Service Workers
	Promise chains, Promises, Chaining Promises-Chaining Promises
	Promise.all() function, Promises in Parallel
	Promises	chaining Promises, Chaining Promises-Chaining Promises
	error handling with, Handling errors with Promises, More on Promises and Errors-The catch and finally methods
	making Promises, Making Promises-Promises in Sequence	based on other Promises, Promises based on other Promises
	based on synchronous values, Promises based on synchronous values
	from scratch, Promises from scratch

	overview of, Promises
	parallel operations, Promises in Parallel
	Promises in sequence, Promises in Sequence-Promises in Sequence
	resolving Promises, Resolving Promises-More on Promises and Errors
	returning from Promise callbacks, The catch and finally methods
	terminology, Handling errors with Promises
	using, Using Promises-Handling errors with Promises

	properties	computed property names, Computed Property Names
	conditional property access, Conditional Property Access
	copying from one object to another, Extending Objects
	defining your own function properties, Defining Your Own Function Properties
	definition of term, Overview and Definitions
	deleting, Deleting Properties
	enumerating properties, Enumerating Properties
	inheriting, Inheritance
	naming, Symbols, Introduction to Objects, Symbols as Property Names
	non-inherited properties, Introduction to Objects
	property access errors, Property Access Errors
	property access expressions, Property Access Expressions
	property attributes, Introduction to Objects, Property Attributes-Property Attributes
	property descriptors, Property Attributes
	property getters and setters, Property Getters and Setters
	querying and setting, Querying and Setting Properties-Property Access Errors
	testing, Testing Properties
	typed array properties, Typed Array Methods and Properties

	propertyIsEnumerable() method, Testing Properties
	prototypal inheritance, Introduction to Objects, Inheritance
	prototype chains, Prototypes
	prototypes, Prototypes, Inheritance, The prototype Property, Classes and Prototypes, The prototype Attribute
	proxy invariants, Proxy Invariants
	Proxy objects, Proxy Objects-Proxy Invariants
	pseudorandom numbers, Cryptography and Related APIs
	public fields, Public, Private, and Static Fields
	Push API, Progressive Web Apps and Service Workers
	push() method, A Tour of JavaScript, Stacks and Queues with push(), pop(), shift(), and unshift()

Q
	quadraticCurveTo() method, Curves
	querySelector() method, Selecting elements with CSS selectors
	querySelectorAll() method, Selecting elements with CSS selectors
	quote marks	double quotes ("), String Literals
	single quotes ('), String Literals

R
	React, JSX: Markup Expressions in JavaScript
	rectangles, Rectangles
	recursive functions, Function Invocation
	recursive generators, yield* and Recursive Generators
	reduce() method, reduce() and reduceRight()
	reduceRight() method, reduce() and reduceRight()
	reference types, Immutable Primitive Values and Mutable Object References
	Reflect API, The Reflect API-The Reflect API
	Reflect.ownKeys() function, Enumerating Properties
	RegExp class	exec() method, exec()
	lastIndex property and RegExp reuse, exec()
	overview of, The RegExp Class
	RegExp properties, RegExp properties
	test() method, test()

	RegExp type, Overview and Definitions, Pattern Matching, Pattern Matching with Regular Expressions (see also pattern matching)
	regular expressions, Pattern Matching with Regular Expressions	(see also pattern matching)

	relational expressions, Relational Expressions-The instanceof Operator
	relational operators, A Tour of JavaScript
	replace() method, Working with Strings
	require() function, Node Imports
	reserved words, Reserved Words, Primary Expressions
	rest parameters, Rest Parameters and Variable-Length Argument Lists
	return statements, return
	return values, Functions
	return() method, “Closing” an Iterator: The Return Method, The return() and throw() Methods of a Generator
	reverse() method, A Tour of JavaScript, reverse()
	rounding errors, Binary Floating-Point and Rounding Errors

S
	same-origin policy, The same-origin policy
	scalable vector graphics (SVG), SVG: Scalable Vector Graphics-Creating SVG Images with JavaScript	creating SVG images with JavaScript, Creating SVG Images with JavaScript
	overview of, SVG: Scalable Vector Graphics
	scripting SVG, Scripting SVG
	SVG in HTML, SVG in HTML

	ScreenOrientation API, Mobile Device APIs
	scroll offsets, Document Coordinates and Viewport Coordinates
	scrolling, Scrolling
	scrollTo() method, Scrolling
	search() method, String Methods for Pattern Matching
	security	client-side storage, Storage
	competing goals of web programming, The Web Security Model
	Cross-Origin Resource Sharing (CORS), The same-origin policy, Cross-origin requests
	cross-site scripting (XSS), Cross-site scripting
	cryptography APIs, Cryptography and Related APIs
	defense against malicious code, What JavaScript can’t do
	denial-of-service attacks, Writing to Streams and Handling Backpressure
	same-origin policy, The same-origin policy
	web platform features to investigate, Security

	semicolon (;), Optional Semicolons-Optional Semicolons
	sensitive information, Storage
	Sensor API, Mobile Device APIs
	serialization, Serializing Objects, JSON Serialization and Parsing, History Management with pushState()
	server-sent events, Server-Sent Events-Server-Sent Events
	server-side JavaScript, JavaScript in Web Browsers, Server-Side JavaScript with Node
	ServiceWorkers, Progressive Web Apps and Service Workers
	sessionStorage property, localStorage and sessionStorage
	Set class, for/of with Set and Map, The Set Class-The Set Class
	Set objects, Overview and Definitions
	Set() constructor, The Set Class
	setInterval() function, Timers
	sets and maps	definition of sets, The Set Class
	Map class, The Map Class-The Map Class
	overview of, Sets and Maps
	Set class, The Set Class-The Set Class
	WeakMap and WeakSet classes, WeakMap and WeakSet

	setter methods, Property Getters and Setters, Getters, Setters, and other Method Forms
	setTimeout() function, Timers, Timers
	setTransform() method, Coordinate System Transforms
	shadow DOM, Shadow DOM-Shadow DOM API
	shadows, Shadows
	shift left operator (<<), Bitwise Operators
	shift right with sign operator (>>), Bitwise Operators
	shift right with zero fill operator (>>>), Bitwise Operators
	shift() method, Stacks and Queues with push(), pop(), shift(), and unshift()
	shorthand methods, Shorthand Methods, Getters, Setters, and other Method Forms
	side effects, Operator Side Effects
	single quotes ('), String Literals
	slice() method, slice()
	some() method, every() and some()
	sort order, Comparing Strings
	sort() method, Conditional Invocation, sort()
	sparse arrays, Arrays, Sparse Arrays
	splice() method, splice()
	split() method, split()
	spread operator (…), Spread Operator, The Spread Operator, The Spread Operator for Function Calls, Iterators and Generators
	square brackets ([]), A Tour of JavaScript, Working with Strings, Object and Array Initializers, Querying and Setting Properties, Reading and Writing Array Elements, Strings as Arrays
	standard library (see JavaScript standard library)
	statement blocks, Compound and Empty Statements
	statements (see also declarations)	compound and empty statements, Compound and Empty Statements
	conditional statements, Statements, Conditionals-switch
	control structures, A Tour of JavaScript-A Tour of JavaScript, Statements
	expression statements, Expression Statements
	versus expressions, A Tour of JavaScript
	if/else statement, Boolean Values
	jump statements, Statements, Jumps-try/catch/finally
	line breaks and, Optional Semicolons-Optional Semicolons
	list of, Summary of JavaScript Statements
	loops, Statements, Loops-for/in
	miscellaneous statements	debugger statements, debugger
	use strict directive, “use strict”
	with statements, Miscellaneous Statements

	overview of, Statements
	separating with semicolons, Optional Semicolons-Optional Semicolons
	throw statements, throw
	try/catch/finally statements, try/catch/finally-try/catch/finally
	yield statements, yield, The Value of a yield Expression

	static fields, Public, Private, and Static Fields
	static methods, Static Methods
	storage, Storage-IndexedDB	cookies, Cookies
	IndexedDB, IndexedDB
	localStorage and sessionStorage, localStorage and sessionStorage
	overview of, Storage
	security and privacy, Storage

	streams (Node), Streams-Paused mode	asynchronous iteration in, Asynchronous Iteration
	overview of, Streams
	pipes, Pipes
	reading with events, Reading Streams with Events
	types of, Streams
	writing to and handling backpressure, Writing to Streams and Handling Backpressure

	strict equality operator (===)	boolean values, Boolean Values
	overview of, Equality and Inequality Operators
	string comparison, Working with Strings
	type conversions, Overview and Definitions, Conversions and Equality

	strict mode	default application of, Classes with the class Keyword, Modules in ES6, JavaScript Modules on the Web
	delete operator and, The delete Operator
	deleting properties, Deleting Properties
	eval() function, Strict eval()
	function declarations, Function Declarations
	function invocation, Function Invocation
	versus non-strict mode, “use strict”-“use strict”
	opting into, Introduction to JavaScript
	TypeError, Property Access Errors, Object Extensibility
	undeclared variables and, Variable Declarations with var
	with statement and, with, Setting event handler attributes

	string literals	escape sequences in, Escape Sequences in String Literals
	overview of, String Literals

	String() function, Explicit Conversions
	String.raw() function, Tagged template literals
	strings	array to string conversions, Array to String Conversions
	characters and codepoints, Text
	methods for pattern matching	match(), match()
	matchAll(), matchAll()
	replace(), replace()
	search(), String Methods for Pattern Matching
	split(), split()

	overview of, Text
	string literals, String Literals
	strings as arrays, Strings as Arrays
	working with	accessing individual characters, Working with Strings
	API for, Working with Strings
	comparing, Working with Strings, Comparing Strings
	concatenation, Working with Strings
	determining length, Working with Strings
	immutability, Working with Strings

	structured clone algorithm, History Management with pushState()
	subarrays, Subarrays with slice(), splice(), fill(), and copyWithin()
	subclasses	class hierarchies and abstract classes, Class Hierarchies and Abstract Classes-Summary
	delegation versus inheritance, Delegation Instead of Inheritance
	overview of, Subclasses
	prototypes and, Subclasses and Prototypes
	with extends clause, Subclasses with extends and super-Subclasses with extends and super

	subroutines, Functions
	subtraction operator (-), Arithmetic in JavaScript
	surrogate pairs, Text
	SVG (see scalable vector graphics (SVG))
	switch statements, switch-switch
	Symbol.asyncIterator, Symbol.iterator and Symbol.asyncIterator
	Symbol.hasInstance, Symbol.hasInstance
	Symbol.isConcatSpreadable, Symbol.isConcatSpreadable
	Symbol.iterator, Well-Known Symbols
	Symbol.species, Symbol.species-Symbol.species
	Symbol.toPrimitive, Symbol.toPrimitive
	Symbol.toStringTag, Symbol.toStringTag
	Symbol.unscopables, Symbol.unscopables
	Symbols	definition of language extensions, Overview and Definitions
	property names, Symbols, Symbols as Property Names
	well-known Symbols, Well-Known Symbols

	synchronous script execution, When scripts run: async and deferred
	syntax	control structures, A Tour of JavaScript-A Tour of JavaScript
	declaring variables, A Tour of JavaScript
	English-language comments, A Tour of JavaScript, A Tour of JavaScript
	equality and relational operators, A Tour of JavaScript
	expressions	forming with operators, A Tour of JavaScript
	initializer expression, A Tour of JavaScript

	extended for object literals, Extended Object Literal Syntax-Property Getters and Setters
	functions, A Tour of JavaScript
	lexical structure, Lexical Structure-Summary	case sensitivity, The Text of a JavaScript Program
	comments, Comments
	identifiers, The Text of a JavaScript Program-Identifiers and Reserved Words
	line breaks, The Text of a JavaScript Program
	literals, Literals
	reserved words, Reserved Words, Primary Expressions
	semicolons, Optional Semicolons-Optional Semicolons
	spaces, The Text of a JavaScript Program
	Unicode character set, Unicode Escape Sequences-Unicode Normalization

	logical operators, A Tour of JavaScript
	methods, A Tour of JavaScript
	objects	conditionally accessing properties, A Tour of JavaScript
	declaring, A Tour of JavaScript

	shorthand methods, Shorthand Methods
	statements, A Tour of JavaScript
	variables, assigning values to, A Tour of JavaScript

T
	tabs, The Text of a JavaScript Program
	tagged template literals, Tagged template literals, Template Tags
	template literals, Template Literals, Template Tags
	ternary operators, Number of Operands
	test() method, test()
	text	drawing in Canvas, Text
	escape sequences in string literals, Escape Sequences in String Literals
	pattern matching, Pattern Matching
	string literals, String Literals
	string type representing, Text
	template literals, Template Literals
	working with strings, Working with Strings

	text editors	normalization, Unicode Normalization
	using with Node, Hello World

	text styles, Text styles
	.then() method, Using Promises, Chaining Promises, More on Promises and Errors
	this keyword, A Tour of JavaScript, Primary Expressions, Function Invocation
	threading, Worker Threads and Messaging, Progressive Web Apps and Service Workers (see also Worker API)
	3D graphics, Graphics in a <canvas>
	throw statements, throw, Error Classes
	throw() method, The return() and throw() Methods of a Generator
	time zones, Formatting Dates and Times
	timers, Timers, Timers
	timestamps, Dates and Times, Timestamps
	toDateString() method, Formatting and Parsing Date Strings
	toExponential() method, Explicit Conversions
	toFixed() method, Explicit Conversions
	toISOString() method, Formatting and Parsing Date Strings, JSON Customizations
	toJSON() method, The toJSON() Method, JSON Customizations
	toLocaleDateString() method, Formatting and Parsing Date Strings, Formatting Dates and Times
	toLocaleString() method, The toLocaleString() Method, Array to String Conversions, Formatting and Parsing Date Strings
	toLocaleTimeString() method, Formatting and Parsing Date Strings, Formatting Dates and Times
	tools and extensions, JavaScript Tools and Extensions-Enumerated Types and Discriminated Unions	code bundling, Code Bundling
	JavaScript formatting with Prettier, JavaScript Formatting with Prettier
	JSX language extension, JSX: Markup Expressions in JavaScript-JSX: Markup Expressions in JavaScript
	linting with ESLint, Linting with ESLint
	overview of, JavaScript Tools and Extensions
	package management with npm, Package Management with npm
	transpilation with Babel, Transpilation with Babel
	type checking with Flow, Type Checking with Flow-Enumerated Types and Discriminated Unions	array types, Array Types
	class types, Class Types
	enumerated types and discriminated unions, Enumerated Types and Discriminated Unions
	function types, Function Types
	installing and running, Installing and Running Flow
	object types, Object Types
	other parameterized types, Other Parameterized Types
	overview of, Type Checking with Flow
	read-only types, Read-Only Types
	type aliases, Type Aliases
	TypeScript versus Flow, Type Checking with Flow
	union types, Union Types
	using type annotations, Using Type Annotations

	unit testing with Jest, Unit Testing with Jest

	toPrecision() method, Explicit Conversions
	toString() method, Boolean Values, Explicit Conversions, The toString() and valueOf() methods, The + Operator, Equality with type conversion, The toString() Method, The toString() Method, Formatting and Parsing Date Strings
	toTimeString() method, Formatting and Parsing Date Strings
	toUpperCase() method, Working with Strings
	toUTCString() method, Formatting and Parsing Date Strings
	transformations, Coordinate System Transforms-Transformation example
	translate() method, Coordinate System Transforms
	translucency, Translucency and compositing
	transpilation, Transpilation with Babel
	truthy values, Boolean Values
	try/catch/finally statements, try/catch/finally-try/catch/finally
	type checking, Type Checking with Flow-Enumerated Types and Discriminated Unions	array types, Array Types
	class types, Class Types
	enumerated types and discriminated unions, Enumerated Types and Discriminated Unions
	function types, Function Types
	installing and running Flow, Installing and Running Flow
	object types, Object Types
	other parameterized types, Other Parameterized Types
	overview of, Type Checking with Flow
	read-only types, Read-Only Types
	type aliases, Type Aliases
	TypeScript versus Flow, Type Checking with Flow
	union types, Union Types
	using type annotations, Using Type Annotations

	type conversions	equality and, Conversions and Equality, Equality with type conversion
	explicit conversions, Explicit Conversions
	financial and scientific data, Explicit Conversions
	implicit conversions, Explicit Conversions
	object to primitive conversions	algorithms for, Object to Primitive Conversions, Object-to-primitive conversion algorithms
	object-to-boolean, Object-to-boolean conversions
	object-to-number, Object-to-number conversions
	object-to-string, Object-to-string conversions
	special case operator conversions, Special case operator conversions
	toString() and valueOf() methods, The toString() and valueOf() methods

	overview of, Type Conversions

	typed arrays	creating, Creating Typed Arrays
	DataView and endianness, DataView and Endianness
	methods and properties, Typed Array Methods and Properties
	overview of, Typed Arrays and Binary Data
	versus regular arrays, Arrays
	sharing between threads, Sharing Typed Arrays Between Threads
	typed array types, Typed Array Types
	using, Using Typed Arrays

	typeof operator, The typeof Operator
	types	global object, The Global Object-The Global Object
	Number type, Numbers-Dates and Times
	objects (see objects)
	overview of, Types, Values, and Variables-Overview and Definitions
	primitive, Overview and Definitions
	RegExp, Pattern Matching-Pattern Matching
	strings, Text-Tagged template literals
	Symbols, Symbols-Symbols
	type conversions, Type Conversions-Object-to-primitive conversion algorithms

	TypeScript, Type Checking with Flow

U
	Uint8Array, Typed Array Types, Streaming response bodies, Buffers
	unary operators	arithmetic operators, Unary Arithmetic Operators
	Boolean NOT operator (!), Boolean Values
	JavaScript support for, Number of Operands

	undeclared variables, Variable Declarations with var
	undefined values, null and undefined
	underflow, Arithmetic in JavaScript
	underscore (_), Identifiers and Reserved Words
	underscores, as numeric separators (_), Floating-Point Literals
	unescape() function, Legacy URL Functions
	unhandledrejection event, Program Errors
	Unicode character set	escape sequences, Unicode Escape Sequences, Escape Sequences in String Literals
	JavaScript strings, Text
	normalization, Unicode Normalization
	overview of, Unicode
	pattern matching, Character classes
	space characters, The Text of a JavaScript Program

	unit testing, Unit Testing with Jest
	unshift() method, Stacks and Queues with push(), pop(), shift(), and unshift()
	URL APIs, URL APIs-Legacy URL Functions
	use strict directive	default application of strict mode, Classes with the class Keyword, Modules in ES6, JavaScript Modules on the Web
	delete operator and, The delete Operator
	eval() function, Strict eval()
	function declarations, Function Declarations
	function invocation, Function Invocation
	opting into strict mode, Introduction to JavaScript
	strict versus non-strict mode, “use strict”-“use strict”
	TypeError, Property Access Errors, Object Extensibility
	undeclared variables and, Variable Declarations with var
	with statement and, with, Setting event handler attributes

	use strict mode, Introduction to JavaScript	and global variables, Variable Declarations with var
	deleting properties, Deleting Properties

	UTF-16 encoding, Text

V
	valueOf() method, The toString() and valueOf() methods, The valueOf() Method
	values	assigning, A Tour of JavaScript
	boolean values, Boolean Values-Boolean Values
	falsy and truthy, Boolean Values
	functions as values, Functions as Values-Defining Your Own Function Properties
	immutable primitive values, Immutable Primitive Values and Mutable Object References
	null and undefined, null and undefined
	overview of, Types, Values, and Variables-Overview and Definitions
	types of, A Tour of JavaScript

	var keyword, Variable Declarations with var, const, let, and var
	varargs, Rest Parameters and Variable-Length Argument Lists
	variable arity functions, Rest Parameters and Variable-Length Argument Lists
	variables	case sensitivity, The Text of a JavaScript Program
	declaration and assignment	declarations with let and const, Declarations with let and const-Declarations and types
	declarations with var, Variable Declarations with var
	destructuring assignment, Destructuring Assignment-Destructuring Assignment
	overview of, A Tour of JavaScript
	undeclared variables, Variable Declarations with var

	definition of term, Variable Declaration and Assignment
	hoisted, Variable Declarations with var
	naming, Reserved Words
	overview of, Types, Values, and Variables-Overview and Definitions
	scope of, Variable and constant scope, Nested Functions

	variadic functions, Rest Parameters and Variable-Length Argument Lists
	video streams, Media APIs
	viewport, Document Coordinates and Viewport Coordinates, Viewport Size, Content Size, and Scroll Position
	void operator, The void Operator

W
	WeakMap class, WeakMap and WeakSet
	WeakSet class, WeakMap and WeakSet
	Web Authentication API, Cryptography and Related APIs
	web browser host environment	asynchronous APIs, Events
	audio APIs, Audio APIs-The WebAudio API
	benefits of JavaScript, JavaScript in Web Browsers
	Canvas API, Graphics in a <canvas>-Pixel Manipulation	canvas dimensions and coordinates, Canvas Dimensions and Coordinates
	clipping, Clipping
	coordinate system transforms, Coordinate System Transforms-Transformation example
	drawing operations, Canvas Drawing Operations
	graphics attributes, Graphics Attributes, Saving and restoring graphics state
	overview of, Graphics in a <canvas>
	paths and polygons, Paths and Polygons
	pixel manipulation, Pixel Manipulation

	document geometry and scrolling, Document Geometry and Scrolling-Viewport Size, Content Size, and Scroll Position	CSS pixels, Document Coordinates and Viewport Coordinates
	determining element at a point, Determining the Element at a Point
	document coordinates and viewport coordinates, Document Coordinates and Viewport Coordinates
	querying geometry of elements, Querying the Geometry of an Element
	scrolling, Scrolling
	viewport size, content size, and scroll position, Viewport Size, Content Size, and Scroll Position

	events, Events-Dispatching Custom Events	dispatching custom events, Dispatching Custom Events
	event cancellation, Event Cancellation
	event categories, Event Categories
	event handler invocation, Event Handler Invocation
	event propagation, Event Propagation
	overview of, Events
	registering event handlers, Registering Event Handlers

	legacy APIs, JavaScript in Web Browsers
	location, navigation, and history, Location, Navigation, and History-History Management with pushState()	browsing history, Browsing History
	loading new documents, Loading New Documents
	overview of, Location, Navigation, and History

	Mandelbrot set example, Example: The Mandelbrot Set-Summary and Suggestions for Further Reading
	module-aware browsers, JavaScript Modules on the Web
	networking, Networking-Protocol negotiation	fetch() method, fetch()
	overview of, Networking
	server-sent events, Server-Sent Events
	WebSocket API, WebSockets

	overview of, JavaScript in Web Browsers
	scalable vector graphics (SVG), SVG: Scalable Vector Graphics-Creating SVG Images with JavaScript	creating SVG images with JavaScript, Creating SVG Images with JavaScript
	overview of, SVG: Scalable Vector Graphics
	scripting SVG, Scripting SVG
	SVG in HTML, SVG in HTML

	scripting CSS, Scripting CSS-CSS Animations and Events	common CSS styles, Scripting CSS
	computed styles, Computed Styles
	CSS animations and events, CSS Animations and Events
	CSS classes, CSS Classes
	inline styles, Inline Styles
	naming conventions, Inline Styles
	scripting stylesheets, Scripting Stylesheets

	scripting documents, Scripting Documents-Example: Generating a Table of Contents	document structure and traversal, Document Structure and Traversal
	dynamically generating tables of contents, Example: Generating a Table of Contents
	modifying content, Element content as HTML
	modifying structure, Creating, Inserting, and Deleting Nodes
	overview of, Scripting Documents
	querying and setting attributes, Attributes
	selecting document elements, Selecting Document Elements

	storage, Storage-IndexedDB	cookies, Cookies
	IndexedDB, IndexedDB
	localStorage and sessionStorage, localStorage and sessionStorage
	overview of, Storage
	security and privacy, Storage

	web components, Web Components-Example: a <search-box> Web Component	custom elements, Custom Elements
	DocumentFragment nodes, Using Web Components
	HTML templates, HTML Templates
	overview of, Web Components
	search box example, Example: a <search-box> Web Component
	shadow DOM, Shadow DOM
	using, Using Web Components

	web platform features to investigate	binary APIs, Binary APIs
	cryptography and security APIs, Cryptography and Related APIs
	events, Events
	HTML and CSS, HTML and CSS
	media APIs, Media APIs
	mobile device APIs, Mobile Device APIs
	Performance APIs, Performance
	Progressive Web Apps and ServiceWorkers, Progressive Web Apps and Service Workers
	security, Security
	WebAssembly, WebAssembly
	Window and Document object features, More Document and Window Features

	web programming basics	Document Object Model (DOM), The Document Object Model-The Document Object Model
	execution of JavaScript programs, Execution of JavaScript Programs-Client-side JavaScript timeline
	global object in web browsers, The Global Object in Web Browsers
	JavaScript in HTML <script> tags, JavaScript in HTML <script> Tags-Loading scripts on demand
	program errors, Program Errors
	program input and output, Program Input and Output
	scripts sharing namespaces, Scripts Share a Namespace
	web security model, The Web Security Model-Cross-site scripting

	worker threads and messaging, Worker Threads and Messaging-Cross-Origin Messaging with postMessage()

	web developer tools, Exploring JavaScript
	Web Manifest, Progressive Web Apps and Service Workers
	Web Workers API, Client-side JavaScript threading model, Worker Threads
	WebAssembly, WebAssembly
	WebAudio API, The WebAudio API
	WebRTC API, Media APIs
	WebSocket API	creating, connecting and disconnecting WebSockets, Creating, connecting, and disconnecting WebSockets
	overview of, WebSockets
	protocol negotiation, Protocol negotiation
	receiving messages, Receiving messages from a WebSocket
	sending messages, Sending messages over a WebSocket

	while loops, while
	with statements, Miscellaneous Statements
	Worker API	cross-origin messaging, Cross-Origin Messaging with postMessage()
	errors, Errors in Workers
	execution model, Worker Execution Model
	importing code, Importing Code into a Worker
	Mandelbrot set example, Example: The Mandelbrot Set-Summary and Suggestions for Further Reading
	modules, Importing Code into a Worker
	overview of, Worker Threads and Messaging
	postMessage(), MessagePorts and MessageChannels, postMessage(), MessagePorts, and MessageChannels
	Worker objects, Worker Objects
	WorkerGlobalScope object, The Global Object in Workers

	writable attribute, Introduction to Objects, Property Attributes

X
	XMLHttpRequest API (XHR), fetch()
	XSS (cross-site scripting), The same-origin policy

Y
	yield statements, yield, The Value of a yield Expression
	yield* keyword, yield* and Recursive Generators

Z
	zero	negative zero, Arithmetic in JavaScript
	positive zero, Arithmetic in JavaScript

	zero-based arrays, Arrays

 About the Author

 David Flanagan has been programming with and writing about JavaScript since 1995. He lives with his wife and children in the Pacific Northwest between the cities of Seattle, Washington, and Vancouver, British Columbia. David has a degree in computer science and engineering from the Massachusetts Institute of Technology and works as a software engineer at VMware.

 Colophon

The animal on the cover of JavaScript: The Definitive
Guide, Seventh Edition, is a Javan rhinoceros (Rhinoceros sondaicus). All five species of
rhinoceros are distinguished by their large size, thick armor-like
skin, three-toed feet, and single or double snout horn. The Javan
rhinoceros resembles the related Indian rhinoceros, and as with that species, the males have a single horn. However, Javan rhinos are smaller and have unique skin textures. Though found today only in Indonesia, Javan rhinos once ranged throughout Southeastern Asia. They live in rainforest habitats, where they graze on abundant leaves and grasses and hide from insect pests such as blood-sucking flies by standing up to their snouts in water or mud.

The Javan rhino averages about 6 feet in height and can be up to 10 feet in length, with adults weighing up to 3,000 pounds. Like the Indian rhinoceros its gray skin seems to be separated into “plates,” some of them textured. The natural lifespan of a Javan rhino is estimated at 45–50 years. Females give birth every 3–5 years, after a gestation period of 16 months. Calves weigh about 100 pounds when born, and stay with their protective mothers for up to 2 years.

Rhinoceros are generally a somewhat plentiful animal, being adaptable to a range of habitats and at adulthood having no natural predators. However, humans have hunted them nearly to extinction. Folklore holds that the horn of the rhinoceros possesses magical and aphrodisiac powers, and because of this, rhinos are a prime target for poachers. The Javan rhino population is the most precarious: as of 2020, the 70 or so remaining animals of this species live, under guard, in Ujung Kulon National Park, in Java, Indonesia. This strategy seems to be helping ensure the survival of these rhinos for the time being, as a 1967 census counted only 25.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world.

The color illustration on the cover is by Karen Montgomery, based on a black-and-white engraving from Dover Animals. The cover fonts are Gilroy and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

 OEBPS/Images/#transforms.png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/js7e_1301.png
Browser

// Start HTTP request, return p1
let p1= fetch("/api/user/profile”);

// Register c1on p1, returning p2
let p2 = p1.then(cl);

// Register c2 on p2, returning p3
let p3 = p2.then(c2);

// p1fulfilled, c1(response) invoked
let p4 = response.json();

// clreturns p4, resolving p2
return p4

// Response body parsed as JSON
// The parsed object fulfills p4 and p2

// 2 invoked with the parsed body
displayUserProfile(profile)

- -1

- - -1

Server

HTTP GET /api/user/profile

Async: time passes...

>
»

_HTTP status and header arrive

&

Async: time passes...

HTTP response completes

- ==

full body available

]-——1

- ——1

- ——

Time

OEBPS/Images/js7e_1505.png
Programming languages by percentage of professional developers who report their use

B JavaScript 71.5
[Java 45.4

[Bash/shell 40.4
[Python 37.9
[c#353

& PHP 31.4

[l C++246

W c221

[TypeScript 18.3
[Ruby 10.3

[Swift8.3

] objective-C 7.3
[Go7.2

OEBPS/Images/js7e_1504.png

OEBPS/Images/js7e_1507.png
A 1O O

OEBPS/Images/js7e_1506.png

OEBPS/Images/js7e_1501.png
“Sample Document”

l <body> '

<p>

"An HTML Document”

OEBPS/Images/js7e_1503.png
[Os Search...

OEBPS/Images/js7e_1502.png
I<div id="target">This is the element contentl</div>l

beforebegin afterbegin beforeend afterend

OEBPS/Images/js7e_1509.png

OEBPS/Images/cat.png

OEBPS/Images/js7e_1508.png
B butt miter round bevel
===l square
&5 round

OEBPS/Images/js7e_1510.png
T T T T T T T =X
L c.translate(5,5)

S S
Q% %%

/sv

L
T T T ‘X /6)
c-translate(25 120)
c.scale (1.5, O.8)

f] '5)(?

//X
X 00/
e (2
— %L translat /0,25)
c.ueanslate D, 209 | ¢ ar (Cr 0r
saeax e, V.%, O | she
. L
A -
L v
N Y (
3 00Z ‘002
F G 2cITe (T' -T1) ‘Id"Yy3en ‘o

FCcrrrou2TIrs (' J00)

) Anogya3e30a

>

1 1 1 1 1 1 1 » X Y < 1 1 1 1

OEBPS/Images/js7e_0101.png
[JOX) Developer Tools - Node.js - https://nodejs.org/en/

G‘ l:}lnspector Console O Debugger {} Style Editor € Performance ﬁMemory T¢ Network > D—_l 00

@ Y Filter output Errors Warnings Logs Info Debug CSS XHR Requests [) Persist Logs
» let primes = [2, 3, 5, 7];

< undefined

> primes[primes.length-1]

€7

> primes[0] + primes[1]

€5

o

v

v

function fact(x) {
if (x > 1) return x * fact(x-1);
else return 1;

< undefined
» fact(4)

< 24

» fact(5)

€« 120

» fact(6)

€« 720

»

v

v

v

OEBPS/Images/js7e_1515.png

OEBPS/Images/js7e_0901.png
Constructor Prototype Instances

inherits
Rangeo P constructor ZU AR AR new Range(‘]lz)

prototype »| includes: ...

tOString: <|nher|t5 new Range(3'4)

OEBPS/Images/js7e_1512.png

OEBPS/Images/js7e_1511.png
AV O

OEBPS/Images/js7e_1514.png
o000 (<

(im] localhost [Jul

I'm thinking of a number between 50 and 75.

[L I

| |75 is too high. Guess again |

OEBPS/Images/js7e_1513.png

OEBPS/Images/#clip.png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/#mandelbrot.png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/#koch.png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/js7e_15in01.png
The document has one marble: (). The HTML

parser instantiates two more marbles: . O. How
many marbles does the document contain now?

OEBPS/Images/ch15.html#graphicsattributes

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 JavaScript: The Definitive Guide, 7th Edition

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Metaprogramming

 Next
 Next Chapter
 Server-Side JavaScript with Node

Chapter 15. JavaScript in Web Browsers

The JavaScript language was created in 1994 with the express purpose of
enabling dynamic behavior in the documents displayed by web
browsers. The language has evolved significantly since then, and at the
same time, the scope and capabilities of the web platform have grown
explosively. Today, JavaScript programmers can think of the web as a
full-featured platform for application development. Web browsers
specialize in the display of formatted text and images, but, like native
operating systems, browsers also provide other services, including
graphics, video, audio, networking, storage, and threading. JavaScript
is the language that enables web applications to use the services
provided by the web platform, and this chapter demonstrates how you can
use the most important of these services.

The chapter begins with the web platform’s programming model, explaining
how scripts are embedded within HTML pages (§15.1) and how
JavaScript code is triggered asynchronously by events (§15.2). The
sections that follow this introductory material document the core JavaScript
APIs that enable your web applications to:

		
Control document content (§15.3) and style (§15.4)

		
Determine the on-screen position of document elements (§15.5)

		
Create reusable user interface components (§15.6)

		
Draw graphics (§15.7 and §15.8)

		
Play and generate sounds (§15.9)

		
Manage browser navigation and history (§15.10)

		
Exchange data over the network (§15.11)

		
Store data on the user’s computer (§15.12)

		
Perform concurrent computation with threads (§15.13)

Client-Side JavaScript

In this book, and on the web, you’ll see the term “client-side
JavaScript.” The term is simply a synonym for JavaScript written to
run in a web browser, and it stands in contrast to “server-side” code,
which runs in web servers.

The two “sides” refer to the two ends of
the network connection that separate the web server and the web
browser, and software development for the web typically requires code
to be written on both “sides.” Client-side and server-side are also
often called “frontend” and “backend.”

Previous editions of this book attempted to comprehensively cover all
JavaScript APIs defined by web browsers, and as a result, this book was
too long a decade ago. The number and complexity of web APIs has
continued to grow, and I no longer think it makes sense to attempt to
cover them all in one book. As of the seventh edition, my goal is to
cover the JavaScript language definitively and to provide an in-depth
introduction to using the language with Node and with web browsers. This
chapter cannot cover all the web APIs, but it introduces the most
important ones in enough detail that you can start using them right
away. And, having learned about the core APIs covered here, you should
be able to pick up new APIs (like those summarized in §15.15)
when and if you need them.

Node has a single implementation and a single authoritative source for
documentation. Web APIs, by contrast, are defined by consensus among the
major web browser vendors, and the authoritative documentation takes the
form of a specification intended for the C++ programmers who implement
the API, not for the JavaScript programmers who will use
it. Fortunately, Mozilla’s “MDN web docs” project is a reliable and comprehensive source1 for
web API documentation.

Legacy APIs

In the 25 years since JavaScript was first released, browser vendors
have been adding features and APIs for programmers to use. Many of
those APIs are now obsolete. They include:

		
Proprietary APIs that were never standardized and/or never
implemented by other browser vendors. Microsoft’s Internet Explorer
defined a lot of these APIs. Some (like the innerHTML property)
proved useful and were eventually standardized. Others (like the
attachEvent() method) have been obsolete for years.

		
Inefficient APIs (like the document.write() method) that have such
a severe performance impact that their use is no longer considered
acceptable.

		
Outdated APIs that have long since been replaced by new APIs for
achieving the same thing. An example is document.bgColor, which was
defined to allow JavaScript to set the background color of a
document. With the advent of CSS, document.bgColor became a quaint
special case with no real purpose.

		
Poorly designed APIs that have been replaced by better ones. In the
early days of the web, standards committees defined the key Document
Object Model API in a language-agnostic way so that the same API
could be used in Java programs to work with XML documents on and in
JavaScript programs to work with HTML documents. This resulted in an
API that was not well suited to the JavaScript language and that had
features that web programmers didn’t particularly care about. It
took decades to recover from those early design mistakes, but
today’s web browsers support a much-improved Document Object Model.

Browser vendors may need to support these legacy APIs for the
foreseeable future in order to ensure backward compatibility, but
there is no longer any need for this book to document them or for you
to learn about them. The web platform has matured and stabilized, and
if you are a seasoned web developer who remembers the fourth or fifth
edition of this book, then you may have as much outdated knowledge to
forget as you have new material to learn.

15.1 Web Programming Basics

This section explains how JavaScript programs for the web are
structured, how they are loaded into a web browser, how they obtain
input, how they produce output, and how they run asynchronously by
responding to events.

15.1.1 JavaScript in HTML <script> Tags

Web browsers display HTML documents. If you want a web browser to
execute JavaScript code, you must include (or reference) that code
from an HTML document, and this is what the HTML <script> tag does.

JavaScript code can appear inline within an HTML file between
<script> and
</script> tags. Here, for example, is an HTML file
that includes a script tag with JavaScript code that dynamically
updates one element of the document to make it behave like a digital
clock:

<!DOCTYPE html> <!-- This is an HTML5 file -->
<html> <!-- The root element -->
<head> <!-- Title, scripts & styles can go here -->
<title>Digital Clock</title>
<style> /* A CSS stylesheet for the clock */
#clock { /* Styles apply to element with id="clock" */
 font: bold 24px sans-serif; /* Use a big bold font */
 background: #ddf; /* on a light bluish-gray background. */
 padding: 15px; /* Surround it with some space */
 border: solid black 2px; /* and a solid black border */
 border-radius: 10px; /* with rounded corners. */
}
</style>
</head>
<body> <!-- The body holds the content of the document. -->
<h1>Digital Clock</h1> <!-- Display a title. -->
 <!-- We will insert the time into this element. -->
<script>
// Define a function to display the current time
function displayTime() {
 let clock = document.querySelector("#clock"); // Get element with id="clock"
 let now = new Date(); // Get current time
 clock.textContent = now.toLocaleTimeString(); // Display time in the clock
}
displayTime() // Display the time right away
setInterval(displayTime, 1000); // And then update it every second.
</script>
</body>
</html>

Although JavaScript code can be embedded directly within a <script>
tag, it is more common to instead use the src attribute of the
<script> tag to specify the URL (an absolute URL or a URL relative
to the URL of the HTML file being displayed) of a file containing
JavaScript code. If we took the JavaScript code out of this
HTML file and stored it in its own scripts/digital_clock.js
file, then the <script> tag might reference that file of code like
this:

<script src="scripts/digital_clock.js"></script>

A JavaScript file contains pure JavaScript, without <script> tags or
any other HTML. By convention, files of JavaScript code have names that
end with .js.

A <script> tag with the a src attribute behaves exactly as
if the contents of the specified JavaScript file appeared directly
between the <script> and </script> tags. Note that the
closing </script> tag is required in HTML documents even when
the src attribute is specified: HTML does not support a <script/>
tag.

There are a number of advantages to using the src attribute:

		
It simplifies your HTML files by allowing you to remove large blocks
of JavaScript code from them—that is, it helps keep content and
behavior separate.

		
When multiple web pages share the same JavaScript code, using the
src attribute allows you to maintain only a single copy of that code,
rather than having to edit each HTML file when the code changes.

		
If a file of JavaScript code is shared by more than one page, it only
needs to be downloaded once, by the first page that uses it—subsequent
pages can retrieve it from the browser cache.

		
Because the src attribute takes an arbitrary URL as its value, a
JavaScript program or web page from one web server can employ code
exported by other web servers. Much internet advertising relies on this
fact.

Modules

§10.3 documents JavaScript modules and covers their import
and export directives. If you have written your JavaScript program
using modules (and have not used a code-bundling tool to combine all
your modules into a single nonmodular file of JavaScript), then you
must load the top-level module of your program with a <script> tag that
has a type="module" attribute. If you do this, then the module you
specify will be loaded, and all of the modules it imports will be
loaded, and (recursively) all of the modules they import will be
loaded. See §10.3.5 for complete details.

Specifying script type

In the early days of the web, it was thought that browsers might some
day implement languages other than JavaScript, and programmers added
attributes like language="javascript" and
type="application/javascript" to their <script> tags. This is
completely unnecessary. JavaScript is the default (and only) language
of the web. The language attribute is deprecated, and there are only
two reasons to use a type attribute on a <script> tag:

		
To specify that the script is a module

		
To embed data into a web page without displaying it (see
§15.3.4)

When scripts run: async and deferred

When JavaScript was first added to web browsers, there was no API for
traversing and manipulating the structure and content of an
already rendered document. The only way that JavaScript code could
affect the content of a document was to generate that content on the
fly while the document was in the process of loading. It did this by using the
document.write() method to inject HTML text into the document at the
location of the script.

The use of document.write() is no longer considered good style, but
the fact that it is possible means that when the HTML parser
encounters a <script> element, it must, by default, run the script
just to be sure that it doesn’t output any HTML before it can resume
parsing and rendering the document. This can dramatically slow down
parsing and rendering of the web page.

Fortunately, this default synchronous or blocking script execution
mode is not the only option. The <script> tag can have defer and
async attributes, which cause scripts to be executed differently.
These are boolean attributes—they don’t have a value; they just need
to be present on the <script> tag. Note that these attributes
are only meaningful when used in conjunction with the src attribute:

<script defer src="deferred.js"></script>
<script async src="async.js"></script>

Both the defer and async attributes are ways of telling the
browser that the linked script does not use document.write() to
generate HTML output, and that the browser, therefore, can continue to
parse and render the document while downloading the script. The
defer attribute causes the browser to defer execution of the script
until after the document has been fully loaded and parsed and is ready
to be manipulated. The async attribute causes the browser to run the
script as soon as possible but does not block document parsing while
the script is being downloaded. If a <script> tag has both
attributes, the async attribute takes precedence.

Note that deferred scripts run in the order in which they appear in the
document. Async scripts run as they load, which means that they may
execute out of order.

Scripts with the type="module" attribute are, by default, executed
after the document has loaded, as if they had a defer attribute. You
can override this default with the async attribute, which will cause
the code to be executed as soon as the module and all of its
dependencies have loaded.

A simple alternative to the async and defer attributes—especially
for code that is included directly in the HTML—is to simply put your
scripts at the end of the HTML file. That way, the script can run
knowing that the document content before it has been parsed and is
ready to be manipulated.

Loading scripts on demand

Sometimes, you may have JavaScript code that is not used when a
document first loads and is only needed if the user takes some action
like clicking on a button or opening a menu. If you are developing
your code using modules, you can load a module on demand with
import(), as described in §10.3.6.

If you are not using modules, you can load a file of JavaScript on
demand simply by adding a <script> tag to your document when you
want the script to load:

// Asynchronously load and execute a script from a specified URL
// Returns a Promise that resolves when the script has loaded.
function importScript(url) {
 return new Promise((resolve, reject) => {
 let s = document.createElement("script"); // Create a <script> element
 s.onload = () => { resolve(); }; // Resolve promise when loaded
 s.onerror = (e) => { reject(e); }; // Reject on failure
 s.src = url; // Set the script URL
 document.head.append(s); // Add <script> to document
 });
}

This importScript() function uses DOM APIs (§15.3) to create a new
<script> tag and add it to the document <head>. And it uses event
handlers (§15.2) to determine when the script has loaded
successfully or when loading has failed.

15.1.2 The Document Object Model

One of the most important objects in client-side JavaScript
programming is the Document object—which represents the HTML document that is displayed in a
browser window or tab. The API for working with HTML documents is
known as the Document Object Model, or DOM, and it is covered in detail
in §15.3. But the DOM is so central to client-side JavaScript
programming that it deserves to be introduced here.

HTML documents contain HTML elements nested within one another, forming
a tree. Consider the following simple HTML document:

<html>
 <head>
 <title>Sample Document</title>
 </head>
 <body>
 <h1>An HTML Document</h1>
 <p>This is a <i>simple</i> document.
 </body>
</html>

The top-level <html> tag contains <head> and <body> tags. The
<head> tag contains a <title> tag. And the <body> tag contains
<h1> and <p> tags. The <title> and <h1> tags contain strings
of text, and the <p> tag contains two strings of text with an <i>
tag between them.

The DOM API mirrors the tree structure of an HTML document. For each
HTML tag in the document, there is a corresponding JavaScript Element
object, and for each run of text in the document, there is a
corresponding Text object. The Element and Text classes, as well as the
Document class itself, are all subclasses of the more general Node
class, and Node objects are organized into a tree structure that
JavaScript can query and traverse using the DOM API. The DOM
representation of this document is the tree pictured in
Figure 15-1.

[image: js7e 1501]
Figure 15-1. The tree representation of an HTML document

If you are not already familiar with tree structures in computer
programming, it is helpful to know that they borrow terminology from
family trees. The node directly above a node is the parent of that
node. The nodes one level directly below another node are the
children of that node. Nodes at the same level, and with the same
parent, are siblings. The set of nodes any number of levels below
another node are the descendants of that node. And the parent,
grandparent, and all other nodes above a node are the ancestors of
that node.

The DOM API includes methods for creating new Element and Text nodes,
and for inserting them into the document as children of other Element
objects. There are also methods for moving elements within the
document and for removing them entirely. While a server-side
application might produce plain-text output by writing strings with
console.log(), a client-side JavaScript application can produce
formatted HTML output by building or manipulating the document tree
document using the DOM API.

There is a JavaScript class corresponding to each HTML tag type, and
each occurrence of the tag in a document is represented by an instance
of the class. The <body> tag, for example, is represented by an
instance of HTMLBodyElement, and a <table> tag is represented by an
instance of HTMLTableElement. The JavaScript element objects have
properties that correspond to the HTML attributes of the tags. For
example, instances of HTMLImageElement, which represent tags,
have a src property that corresponds to the src attribute of the
tag. The initial value of the src property is the attribute value
that appears in the HTML tag, and setting this property with
JavaScript changes the value of the HTML attribute (and causes the
browser to load and display a new image). Most of the JavaScript
element classes just mirror the attributes of an HTML tag, but some
define additional methods. The HTMLAudioElement and HTMLVideoElement
classes, for example, define methods like play() and pause() for
controlling playback of audio and video files.

15.1.3 The Global Object in Web Browsers

There is one global object per browser window or tab (§3.7). All of
the JavaScript code (except code running in worker threads; see §15.13)
running in that window shares this single global object. This is true
regardless of how many scripts or modules are in the document: all the
scripts and modules of a document share a single global object; if one
script defines a property on that object, that property is visible to
all the other scripts as well.

The global object is where JavaScript’s standard library is
defined—the parseInt() function, the Math object, the Set class,
and so on. In web browsers, the global object also contains the main
entry points of various web APIs. For example, the document property
represents the currently displayed document, the fetch() method
makes HTTP network requests, and the Audio() constructor allows
JavaScript programs to play sounds.

In web browsers, the global object does double duty: in addition to
defining built-in types and functions, it also represents the current
web browser window and defines properties like history (§15.10.2), which represent the window’s browsing history, and innerWidth, which holds
the window’s width in pixels. One of the properties of this global object is
named window, and its value is the global object itself. This means
that you can simply type window to refer to the global object in
your client-side code. When using window-specific features, it is often a good
idea to include a window. prefix: window.innerWidth is clearer
than innerWidth, for example.

15.1.4 Scripts Share a Namespace

With modules, the constants, variables, functions, and classes defined
at the top level (i.e., outside of any function or class definition) of
the module are private to the module unless they are explicitly
exported, in which case, they can be selectively imported by other
modules. (Note that this property of modules is honored by code-bundling tools as well.)

With non-module scripts, however, the situation is completely
different. If the top-level code in a script defines a constant,
variable, function, or class, that declaration will be visible to all
other scripts in the same document. If one script defines a function
f() and another script defines a class c, then a third script can
invoke the function and instantiate the class without having to take
any action to import them. So if you are not using modules, the
independent scripts in your document share a single namespace and
behave as if they are all part of a single larger script. This can be
convenient for small programs, but the need to avoid naming conflicts
can become problematic for larger programs, especially when some of
the scripts are third-party libraries.

There are some historical quirks with how this shared namespace
works. var and function declarations at the top level create
properties in the shared global object. If one script defines a
top-level function f(), then another script in the same document can
invoke that function as f() or as window.f(). On the other hand,
the ES6 declarations const, let, and class, when used at the
top level, do not create properties in the global object. They are
still defined in a shared namespace, however: if one script defines a
class C, other scripts will be able to create instances of that class
with new C(), but not with new window.C().

To summarize: in modules, top-level declarations are scoped to the
module and can be explicitly exported. In nonmodule scripts,
however, top-level declarations are scoped to the containing document,
and the declarations are shared by all scripts in the document. Older
var and function declarations are shared via properties of the
global object. Newer const, let, and class declarations are also
shared and have the same document scope, but they do not exist as
properties of any object that JavaScript code has access to.

15.1.5 Execution of JavaScript Programs

There is no formal definition of a program in client-side
JavaScript, but we can say that a JavaScript program consists of all
the JavaScript code in, or referenced from, a document. These separate
bits of code share a single global Window object, which gives them
access to the same underlying Document object representing the HTML
document. Scripts that are not modules additionally share a top-level
namespace.

If a web page includes an embedded frame (using the <iframe>
element), the JavaScript code in the embedded document has a different
global object and Document object than the code in the
embedding document, and it can be considered a separate JavaScript
program. Remember, though, that there is no formal definition of what
the boundaries of a JavaScript program are. If the container document
and the contained document are both loaded from the same server, the
code in one document can interact with the code in the other, and you
can treat them as two interacting parts of a single program, if you
wish. §15.13.6 explains how a JavaScript program can
send and receive
messages to and from JavaScript code running in an <iframe>.

You can think of JavaScript program execution as occurring in two
phases. In the first phase, the document content is loaded, and the
code from <script> elements (both inline scripts and external
scripts) is run. Scripts generally run in the order in which they
appear in the document, though this default order can be modified by
the async and defer attributes we’ve described.
The JavaScript code within any
single script is run from top to bottom, subject, of course, to
JavaScript’s conditionals, loops, and other control statements. Some
scripts don’t really do anything during this first phase and instead
just define functions and classes for use in the second phase. Other
scripts might do significant work during the first phase and then do
nothing in the second. Imagine a script at the very end of a document
that finds all <h1> and <h2> tags in the document and modifies the
document by generating and inserting a table of contents at the
beginning of the document. This could be done entirely in the first
phase. (See §15.3.6 for an example that does exactly this.)

Once the document is loaded and all scripts have run, JavaScript
execution enters its second phase. This phase is asynchronous and
event-driven. If a script is going to participate in this second
phase, then one of the things it must have done during the first phase
is to register at least one event handler or other callback function
that will be invoked asynchronously. During this event-driven second
phase, the web browser invokes event handler functions and other
callbacks in response to events that occur asynchronously. Event
handlers are most commonly invoked in response to user input (mouse
clicks, keystrokes, etc.) but may also be triggered by network
activity, document and resource loading, elapsed time, or errors in
JavaScript code. Events and event handlers are described in detail in
§15.2.

Some of the first events to occur during the event-driven phase are
the “DOMContentLoaded” and “load” events. “DOMContentLoaded” is
triggered when the HTML document has been completely loaded and
parsed. The “load” event is triggered when all of the document’s
external resources—such as images—are also fully loaded. JavaScript
programs often use one of these events as a trigger or starting
signal. It is common to see programs whose scripts define functions
but take no action other than registering an event handler function to be
triggered by the “load” event at the beginning of the event-driven
phase of execution. It is this “load” event handler that then
manipulates the document and does whatever it is that the program is
supposed to do. Note that it is common in JavaScript programming for
an event handler function such as the “load” event handler described
here to register other event handlers.

The loading phase of a JavaScript program is relatively short: ideally less than a second. Once the document is loaded,
the event-driven phase lasts for as long as the document is displayed
by the web browser. Because this phase is asynchronous and
event-driven, there may be long periods of inactivity where no
JavaScript is executed, punctuated by bursts of activity triggered by
user or network events. We’ll cover these two phases in more detail next.

Client-side JavaScript threading model

JavaScript is a single-threaded language, and single-threaded
execution makes for much simpler programming: you can write code with
the assurance that two event handlers will never run at the same
time. You can manipulate document content knowing that no other thread
is attempting to modify it at the same time, and you never need to
worry about locks, deadlock, or race conditions when writing
JavaScript code.

Single-threaded execution means that web browsers stop responding
to user input while scripts and event handlers are executing. This
places a burden on JavaScript programmers: it means that JavaScript
scripts and event handlers must not run for too long. If a script
performs a computationally intensive task, it will introduce a delay
into document loading, and the user will not see the document content
until the script completes. If an event handler performs a
computationally intensive task, the browser may become nonresponsive,
possibly causing the user to think that it has crashed.

The web platform defines a controlled form of concurrency called a
“web worker.” A web worker is a background thread for performing
computationally intensive tasks without freezing the user
interface. The code that runs in a web worker thread does not have
access to document content, does not share any state with the main
thread or with other workers, and can only communicate with the main
thread and other workers through asynchronous message events, so the
concurrency is not detectable to the main thread, and web workers do
not alter the basic single-threaded execution model of JavaScript
programs. See §15.13 for full details on the web’s safe
threading mechanism.

Client-side JavaScript timeline

We’ve already seen that JavaScript programs begin in a script-execution phase and then transition to an event-handling phase. These
two phases can be further broken down into the following steps:

		
The web browser creates a Document object and begins parsing the web
page, adding Element objects and Text nodes to the document as it
parses HTML elements and their textual content. The
document.readyState property has the value “loading” at this
stage.

		
When the HTML parser encounters a <script> tag that does not have
any of the async, defer, or type="module" attributes, it adds
that script tag to the document and then executes the script. The
script is executed synchronously, and the HTML parser pauses while
the script downloads (if necessary) and runs. A script like this can
use document.write() to insert text into the input stream, and
that text will become part of the document when the parser
resumes. A script like this often simply defines functions and
registers event handlers for later use, but it can traverse and
manipulate the document tree as it exists at that time. That is,
non-module scripts that do not have an async or defer attribute
can see their own <script> tag and document content that comes
before it.

		
When the parser encounters a <script> element that has the async
attribute set, it begins downloading the script text (and if the
script is a module, it also recursively downloads all of the
script’s dependencies) and continues parsing the document. The
script will be executed as soon as possible after it has downloaded,
but the parser does not stop and wait for it to
download. Asynchronous scripts must not use the document.write()
method. They can see their own <script> tag and all document
content that comes before it, and may or may not have access to
additional document content.

		
When the document is completely parsed, the document.readyState
property changes to “interactive.”

		
Any scripts that had the defer attribute set (along with any module
scripts that do not have an async attribute) are executed in the order
in which they appeared in the document. Async scripts may also be
executed at this time. Deferred scripts have access to the complete
document and they must not use the
document.write() method.

		
The browser fires a “DOMContentLoaded” event on the Document object.
This marks the transition from synchronous script-execution phase to
the asynchronous, event-driven phase of program execution. Note,
however, that there may still be async scripts that have not yet
executed at this point.

		
The document is completely parsed at this point, but the browser may
still be waiting for additional content, such as images, to
load. When all such content finishes loading, and when all async
scripts have loaded and executed, the document.readyState property
changes to “complete” and the web browser fires a “load” event on the
Window object.

		
From this point on, event handlers are invoked asynchronously in
response to user input events, network events, timer expirations,
and so on.

15.1.6 Program Input and Output

Like any program, client-side JavaScript programs process input data
to produce output data. There are a variety of inputs available:

		
The content of the document itself, which JavaScript code can access
with the DOM API (§15.3).

		
User input, in the form of events, such as mouse clicks (or
touch-screen taps) on HTML <button> elements, or text entered into
HTML <textarea> elements, for example. §15.2 demonstrates how
JavaScript programs can respond to user events like these.

		
The URL of the document being displayed is available to client-side
JavaScript as document.URL. If you pass this string to the URL()
constructor (§11.9), you can easily access the path, query, and
fragment sections of the URL.

		
The content of the HTTP “Cookie” request header is available to
client-side code as document.cookie. Cookies are usually used by
server-side code for maintaining user sessions, but client-side code
can also read (and write) them if necessary. See §15.12.2 for
further details.

		
The global navigator property provides access to information about
the web browser, the OS it’s running on top of, and the
capabilities of each. For example, navigator.userAgent is a
string that identifies the web browser, navigator.language is the
user’s preferred language, and navigator.hardwareConcurrency
returns the number of logical CPUs available to the web
browser. Similarly, the global screen property provides access to
the user’s display size via the screen.width and screen.height
properties. In a sense, these navigator and screen objects are
to web browsers what environment variables are to Node programs.

Client-side JavaScript typically produces output, when it needs to, by
manipulating the HTML document with the DOM API (§15.3) or by using
a higher-level
framework such as React or Angular to manipulate the
document. Client-side code can also use console.log() and related
methods (§11.8) to produce output. But this output is only
visible in the web developer console, so it is useful when debugging,
but not for user-visible output.

15.1.7 Program Errors

Unlike applications (such as Node applications) that run directly on
top of the OS, JavaScript programs in a web browser can’t really
“crash.” If an exception occurs while your JavaScript program is
running, and if you do not have a catch statement to handle it, an
error message will be displayed in the developer console, but any
event handlers that have been registered keep running and responding
to events.

If you would like to define an error handler of last resort to be
invoked when this kind of uncaught exception occurs, set the onerror
property of the Window object to an error handler function. When an
uncaught exception propagates all the way up the call stack and an
error message is about to be displayed in the developer console, the
window.onerror function will be invoked with three string arguments.
The first argument to window.onerror is a message describing the
error. The second argument is a string that contains the URL of the
JavaScript code that caused the error. The third argument is the line
number within the document where the error occurred. If the onerror
handler returns true, it tells the browser that the handler has
handled the error and that no further action is necessary—in other
words, the browser should not display its own error message.

When a Promise is rejected and there is no .catch() function to
handle it, that is a situation much like an unhandled exception: an
unanticipated error or a logic error in your program. You can detect
this by defining a window.onunhandledrejection function or by using
window.addEventListener() to register a handler for
“unhandledrejection” events. The event object passed to this handler
will have a promise property whose value is the Promise object that
rejected and a reason property whose value is what would have been
passed to a .catch() function. As with the error handlers described
earlier, if you call preventDefault() on the unhandled rejection event
object, it will be considered handled and won’t cause an error message
in the developer console.

It is not often necessary to define onerror or
onunhandledrejection handlers, but it can be quite useful as a
telemetry mechanism if you want to report client-side errors to the
server (using the fetch() function to make an HTTP POST request, for
example) so that you can get information about unexpected errors that
happen in your users’ browsers.

15.1.8 The Web Security Model

The fact that web pages can execute arbitrary JavaScript code on your personal device has clear security implications, and browser vendors
have worked hard to balance two competing goals:

		
Defining powerful client-side APIs to enable useful web applications

		
Preventing malicious code from reading or altering your data,
compromising your privacy, scamming you, or wasting your time

The subsections that follow give a quick overview of the security restrictions
and issues that you, as a JavaScript programmer, should to be aware
of.

What JavaScript can’t do

Web browsers’ first line of defense against malicious code is that
they simply do not support certain capabilities. For example,
client-side JavaScript does not provide any way to write or delete
arbitrary files or list arbitrary directories on the client
computer. This means a JavaScript program cannot delete data or plant
viruses.

Similarly, client-side JavaScript does not have general-purpose
networking capabilities. A client-side JavaScript program can
make HTTP requests (§15.11.1). And another standard, known as
WebSockets (§15.11.3), defines a socket-like API for
communicating with specialized servers. But neither of these APIs
allows unmediated access to the wider network. General-purpose
internet clients and servers cannot be written in client-side
JavaScript.

The same-origin policy

The same-origin policy is a sweeping security restriction on what
web content JavaScript code can interact with. It typically comes into
play when a web page includes <iframe> elements. In this case, the
same-origin policy governs the interactions of JavaScript code in one
frame with the content of other frames. Specifically, a script can
read only the properties of windows and documents that have the same
origin as the document that contains the script.

The origin of a document is defined as the protocol, host, and port of
the URL from which the document was loaded. Documents loaded from
different web servers have different origins. Documents loaded through
different ports of the same host have different origins. And a document
loaded with the http: protocol has a different origin than one loaded
with the https: protocol, even if they come from the same web
server. Browsers typically treat every file: URL as a separate
origin, which means that if you’re working on a program that displays
more than one document from the same server, you may not be able to
test it locally using file: URLs and will have to run a static
web server during development.

It is important to understand that the origin of the script itself is
not relevant to the same-origin policy: what matters is the origin of
the document in which the script is embedded. Suppose, for example,
that a script hosted by host A is included (using the src property
of a <script> element) in a web page served by host B. The origin of
that script is host B, and the script has full access to the content of
the document that contains it. If the document contains an <iframe>
that contains a second document from host B, then the script also has
full access to the content of that second document. But if the
top-level document contains another <iframe> that displays a document
from host C (or even one from host A), then the same-origin policy
comes into effect and prevents the script from accessing this
nested document.

The same-origin policy also applies to scripted HTTP requests (see
§15.11.1). JavaScript code can make arbitrary HTTP requests to the web
server from which the containing document was loaded, but it does not
allow scripts to communicate with other web servers (unless those web
servers opt in with CORS, as we describe next).

The same-origin policy poses problems for large websites that use
multiple subdomains. For example, scripts with origin
orders.example.com might need to read properties from documents on
example.com. To support multidomain websites of this sort, scripts
can alter their origin by setting document.domain to a domain
suffix. So a script with origin https://orders.example.com can
change its origin to https://example.com by setting
document.domain to “example.com.” But that script cannot set
document.domain to “orders.example”, “ample.com”, or “com”.

The second technique for relaxing the same-origin policy is
Cross-Origin Resource Sharing, or CORS, which allows servers to decide
which origins they are willing to serve. CORS extends HTTP with a new
Origin: request header and a new Access-Control-Allow-Origin
response header. It allows servers to use a header to explicitly list
origins that may request a file or to use a wildcard and allow a file
to be requested by any site. Browsers honor these CORS headers and do
not relax same-origin restrictions unless they are present.

Cross-site scripting

Cross-site scripting, or XSS, is a term for a category of security
issues in which an attacker injects HTML tags or scripts into a target
website. Client-side JavaScript programmers must be aware of, and
defend against, cross-site scripting.

A web page is vulnerable to cross-site scripting if it dynamically
generates document content and bases that content on user-submitted
data without first “sanitizing” that data by removing any embedded
HTML tags from it. As a trivial example, consider the following web
page that uses JavaScript to greet the user by name:

<script>
let name = new URL(document.URL).searchParams.get("name");
document.querySelector('h1').innerHTML = "Hello " + name;
</script>

This two-line script extracts input from the “name” query parameter of
the document URL. It then uses the DOM API to inject an HTML string
into the first <h1> tag in the document. This page is intended to
be invoked with a URL like this:

http://www.example.com/greet.html?name=David

When used like this, it displays the text “Hello David.” But consider
what happens when it is invoked with this query parameter:

name=%3Cimg%20src=%22x.png%22%20onload=%22alert(%27hacked%27)%22/%3E

When the URL-escaped parameters are decoded, this URL causes the
following HTML to be injected into the document:

Hello

After the image loads, the string of JavaScript in the onload
attribute is executed. The global alert() function displays a modal
dialogue box. A single dialogue box is relatively benign but demonstrates
that arbitrary code execution is possible on this site because it
displays unsanitized HTML.

Cross-site scripting attacks are so called because more than one site
is involved. Site B includes a specially crafted link (like the one
in the previous example) to site A. If site B can convince users to click the link,
they will be taken to site A, but that site will now be running code
from site B. That code might deface the page or cause it to
malfunction. More dangerously, the malicious code could read cookies
stored by site A (perhaps account numbers or other personally
identifying information) and send that data back to site B. The
injected code could even track the user’s keystrokes and send that
data back to site B.

In general, the way to prevent XSS attacks is to remove HTML tags from
any untrusted data before using it to create dynamic document content.
You can fix the greet.html file shown earlier by replacing special
HTML characters in the untrusted input string with their equivalent
HTML entities:

name = name
 .replace(/&/g, "&")
 .replace(/</g, "<")
 .replace(/>/g, ">")
 .replace(/"/g, """)
 .replace(/'/g, "'")
 .replace(/\//g, "/")

Another approach to the problem of XSS is to structure your web
applications so that untrusted content is always displayed in an
<iframe> with the sandbox attribute set to disable scripting and
other capabilities.

Cross-site scripting is a pernicious vulnerability whose roots go deep
into the architecture of the web. It is worth understanding this
vulnerability in-depth, but further discussion is beyond the scope of
this book. There are many online resources to help you defend against
cross-site scripting.

15.2 Events

Client-side JavaScript programs use an asynchronous event-driven
programming model. In this style of programming, the web browser
generates an event whenever something interesting happens to the
document or browser or to some element or object associated with
it. For example, the web browser generates an event when it finishes
loading a document, when the user moves the mouse over a hyperlink, or
when the user strikes a key on the keyboard. If a JavaScript
application cares about a particular type of event, it can register
one or more functions to be invoked when events of that type
occur. Note that this is not unique to web programming: all
applications with graphical user interfaces are designed this way—they
sit around waiting to be interacted with (i.e., they wait for events
to occur), and then they respond.

In client-side JavaScript, events can occur on any element within an
HTML document, and this fact makes the event model of web browsers
significantly more complex than Node’s event model. We begin this
section with some important definitions that help to explain that
event model:

		event type

		
This string specifies what kind of event
occurred. The type “mousemove,” for example, means that the user moved
the mouse. The type “keydown” means that the user pressed a key on the
keyboard down. And the type “load” means that a document (or some
other resource) has finished loading from the network. Because the
type of an event is just a string, it’s sometimes called an event
name, and indeed, we use this name to identify the kind of
event we’re talking about.

		event target

		
This is the object on which the event occurred or with
which the event is associated. When we speak of an event, we must
specify both the type and the target. A load event on a Window, for
example, or a click event on a <button> Element. Window, Document,
and Element objects are the most common event targets in client-side
JavaScript applications, but some events are triggered on other kinds
of objects. For example, a Worker object (a kind of thread, covered
§15.13) is a target for “message” events that occur when the
worker thread sends a message to the main thread.

		event handler, or event listener

		
This function handles
or responds to an event.2 Applications register their event
handler functions with the web browser, specifying an event type and an
event target. When an event of the specified type occurs on the
specified target, the browser invokes the handler function. When event handlers
are invoked for an object, we say that the browser has
“fired,” “triggered,” or “dispatched” the event. There are a
number of ways to register event handlers, and the details of handler
registration and invocation are explained in §15.2.2
and §15.2.3.

		event object

		
This object is associated with a particular
event and contains details about that event. Event objects are passed
as an argument to the event handler function. All event objects have a
type property that specifies the event type and a target property
that specifies the event target. Each event type defines a set of
properties for its associated event object. The object associated with
a mouse event includes the coordinates of the mouse pointer, for
example, and the object associated with a keyboard event contains
details about the key that was pressed and the modifier keys that were
held down. Many event types define only a few standard properties—such
as type and target—and do not carry much other useful
information. For those events, it is the simple occurrence of the
event, not the event details, that matter.

		event propagation

		
This is the process by which the browser decides which
objects to trigger event handlers on. For events that are specific to
a single object—such as the “load” event on the Window object or a
“message” event on a Worker object—no propagation is required. But
when certain kinds of events occur on elements within the HTML
document, however, they propagate or “bubble” up the document tree.
If the user moves the mouse over a hyperlink, the mousemove event is
first fired on the <a> element that defines that link. Then it is
fired on the containing elements: perhaps a <p> element, a <section>
element, and the Document object itself. It is sometimes more
convenient to register a single event handler on a Document or other
container element than to register handlers on each individual element
you’re interested in. An event handler can stop the propagation of an
event so that it will not continue to bubble and will not trigger
handlers on containing elements. Handlers do this by invoking a method
of the event object. In another form of event
propagation, known as event capturing, handlers specially registered
on container elements have the opportunity to intercept (or “capture”)
events before they are delivered to their actual target. Event
bubbling and capturing are covered in detail in §15.2.4.

Some events have default actions associated with them. When a click
event occurs on a hyperlink, for example, the default action is for
the browser to follow the link and load a new page. Event handlers can
prevent this default action by invoking a method of the event object.
This is sometimes called “canceling” the event and is covered in
§15.2.5.

15.2.1 Event Categories

Client-side JavaScript supports such a large number of event types
that there is no way this chapter can cover them all. It can be useful,
though, to group events into some general categories, to illustrate
the scope and wide variety of supported events:

		Device-dependent input events

		
These events are directly
tied to a specific input device, such as the mouse or keyboard. They
include event types such as “mousedown,” “mousemove,” “mouseup,”
“touchstart,” “touchmove,” “touchend,” “keydown,” and “keyup.”

		Device-independent input events

		
These input events are not
directly tied to a specific input device. The “click” event, for
example, indicates that a link or button (or other document element)
has been activated. This is often done via a mouse click, but it could
also be done by keyboard or (on touch-sensitive devices) with a tap.
The “input” event is a device-independent alternative to the “keydown”
event and supports keyboard input as well as alternatives such as
cut-and-paste and input methods used for ideographic scripts. The
“pointerdown,” “pointermove,” and “pointerup” event types are device-independent alternatives to mouse and touch events. They work
for mouse-type pointers, for touch screens, and for pen- or stylus-style
input as well.

		User interface events

		
UI events are higher-level events, often on
HTML form elements that define a user interface for a web
application. They include the “focus” event (when a text input field
gains keyboard focus), the “change” event (when the user changes the
value displayed by a form element), and the “submit” event (when the
user clicks a Submit button in a form).

		State-change events

		
Some events are not triggered directly by user
activity, but by network or browser activity, and indicate some kind
of life-cycle or state-related change. The “load” and
“DOMContentLoaded” events—fired on the Window and Document objects,
respectively, at the end of document loading—are probably the most
commonly used of these events (see “Client-side JavaScript timeline”). Browsers fire
“online” and “offline” events on the Window object when network
connectivity changes. The browser’s history management mechanism
(§15.10.4) fires the “popstate” event in response to the browser’s
Back button.

		API-specific events

		
A number of web APIs defined by HTML and
related specifications include their own event types. The HTML
<video> and <audio> elements define a long list of
associated event types such as “waiting,” “playing,” “seeking,”
“volumechange,” and so on, and you can use them to customize media
playback. Generally
speaking, web platform APIs that are asynchronous
and were developed before Promises were added to JavaScript are
event-based and define API-specific events. The IndexedDB API, for
example (§15.12.3), fires “success” and “error” events when database
requests succeed or fail. And although the new fetch() API (§15.11.1)
for making HTTP requests is Promise-based, the XMLHttpRequest API
that it replaces defines a number of API-specific event types.

15.2.2 Registering Event Handlers

There are two basic ways to register event handlers. The first, from
the early days of the web, is to set a property on the object or
document element that is the event target. The second (newer and more
general) technique is to pass the handler to the addEventListener()
method of the object or element.

Setting event handler properties

The simplest way to register an event handler is by setting a property
of the event target to the desired event handler function. By
convention, event handler properties have names that consist of the
word “on” followed by the event name: onclick, onchange, onload,
onmouseover, and so on. Note that these property names are case
sensitive and are written in all lowercase,3 even when the
event type (such as “mousedown”) consists of multiple words. The following code includes two event handler registrations of this kind:

// Set the onload property of the Window object to a function.
// The function is the event handler: it is invoked when the document loads.
window.onload = function() {
 // Look up a <form> element
 let form = document.querySelector("form#shipping");
 // Register an event handler function on the form that will be invoked
 // before the form is submitted. Assume isFormValid() is defined elsewhere.
 form.onsubmit = function(event) { // When the user submits the form
 if (!isFormValid(this)) { // check whether form inputs are valid
 event.preventDefault(); // and if not, prevent form submission.
 }
 };
};

The shortcoming of event handler properties is that they are designed
around the assumption that event targets will have at most one handler
for each type of event. It is often better to register event handlers
using addEventListener() because that technique does not overwrite
any previously registered handlers.

Setting event handler attributes

The event handler properties of document elements can also be defined
directly in the HTML file as attributes on the corresponding HTML
tag. (Handlers that would be registered on the Window element with
JavaScript can be defined with attributes on the <body> tag in
HTML.) This technique is generally frowned upon in modern web
development, but it is possible, and it’s documented here because you may
still see it in existing code.

When defining an event handler as an HTML attribute, the attribute
value should be a string of JavaScript code. That code should be the
body of the event handler function, not a complete function
declaration. That is, your HTML event handler code should not be
surrounded by curly braces and prefixed with the function keyword.
For example:

<button onclick="console.log('Thank you');">Please Click</button>

If an HTML event handler attribute contains multiple JavaScript
statements, you must remember to separate those statements with
semicolons or break the attribute value across multiple lines.

When you specify a string of JavaScript code as the value of an HTML
event handler attribute, the browser converts your string into a
function that works something like this one:

function(event) {
 with(document) {
 with(this.form || {}) {
 with(this) {
 /* your code here */
 }
 }
 }
}

The event argument means that your handler code can refer to the
current event object as event. The with statements mean that the
code of your handler can refer to the properties of the target object,
the containing <form> (if any), and the containing Document object
directly, as if they were variables in scope. The with statement is
forbidden in strict mode (§5.6.3), but JavaScript code in HTML
attributes is never strict. Event handlers defined in this way are
executed in an environment in which unexpected variables are
defined. This can be a source of confusing bugs and is a good reason
to avoid writing event handlers in HTML.

addEventListener()

Any object that can be an event target—this includes the Window and
Document objects and all document Elements—defines a method named
addEventListener() that you can use to register an event handler for
that target. addEventListener() takes three arguments. The first is
the event type for which the handler is being registered. The event
type (or name) is a string that does not include the “on” prefix
used when setting event handler properties. The second
argument to addEventListener() is the function that should be
invoked when the specified type of event occurs. The third argument is
optional and is explained below.

The following code registers two handlers for the “click” event on a
<button> element. Note the differences between the two techniques
used:

<button id="mybutton">Click me</button>
<script>
let b = document.querySelector("#mybutton");
b.onclick = function() { console.log("Thanks for clicking me!"); };
b.addEventListener("click", () => { console.log("Thanks again!"); });
</script>

Calling addEventListener() with “click” as its first argument does
not affect the value of the onclick property. In this code, a
button click will log two messages to the developer console. And if
we called addEventListener() first and then set onclick, we would
still log two messages, just in the opposite order. More importantly,
you can call addEventListener() multiple times to register more than
one handler function for the same event type on the same object. When
an event occurs on an object, all of the handlers registered for that
type of event are invoked in the order in which they were
registered. Invoking addEventListener() more than once on the same
object with the same arguments has no effect—the handler function
remains registered only once, and the repeated invocation does not
alter the order in which handlers are invoked.

addEventListener() is paired with a removeEventListener() method
that expects the same two arguments (plus an optional third) but removes
an event handler function from an object rather than adding it. It is
often useful to temporarily register an event handler and then remove
it soon afterward. For example, when you get a “mousedown” event, you
might register temporary event handlers for “mousemove” and “mouseup”
events so that you can see if the user drags the mouse. You’d then
deregister these handlers when the “mouseup” event arrives. In such a
situation, your event handler removal code might look like this:

document.removeEventListener("mousemove", handleMouseMove);
document.removeEventListener("mouseup", handleMouseUp);

The optional third argument to addEventListener() is a boolean value
or object. If you pass true, then your handler function is
registered as a capturing event handler and is invoked at a
different phase of event dispatch. We’ll cover event capturing in
§15.2.4. If you pass a third argument of true when you
register an event listener, then you must also pass true as the
third argument to removeEventListener() if you want to remove the
handler.

Registering a capturing event handler is only one of the three options
that addEventListener() supports, and instead of passing a single
boolean value, you can also pass an object that explicitly specifies
the options you want:

document.addEventListener("click", handleClick, {
 capture: true,
 once: true,
 passive: true
});

If the Options object has a capture property set to true, then the
event handler will be registered as a capturing handler. If that
property is false or is omitted, then the handler will be
non-capturing.

If the Options object has a once property set to true, then the
event listener will be automatically removed after it is triggered
once. If this property is false or is omitted, then the handler is
never automatically removed.

If the Options object has a passive property set to true, it
indicates that the event handler will never call preventDefault() to
cancel the default action (see §15.2.5). This is
particularly important for touch events on mobile devices—if event
handlers for “touchmove” events can prevent the browser’s default
scrolling action, then the browser cannot implement smooth
scrolling. This passive property provides a way to register a
potentially disruptive event handler of this sort but lets the web
browser know that it can safely begin its default behavior—such as
scrolling—while the event handler is running. Smooth scrolling is so
important for a good user experience that Firefox and Chrome make
“touchmove” and “mousewheel” events passive by default. So if you
actually want to register a handler that calls preventDefault() for
one of these events, you should explicitly set the passive property
to false.

You can also pass an Options object to removeEventListener(), but the
capture property is the only one that is relevant. There is no need
to specify once or passive when removing a listener, and these
properties are ignored.

15.2.3 Event Handler Invocation

Once you’ve registered an event handler, the web browser will invoke
it automatically when an event of the specified type occurs on the
specified object. This section describes event handler invocation in
detail, explaining event handler arguments, the invocation context
(the this value), and the meaning of the return value of an event
handler.

Event handler argument

Event handlers are invoked with an Event object as their single
argument. The properties of the Event object provide details about the
event:

		type

		
The type of the event that occurred.

		target

		
The object on which the event occurred.

		currentTarget

		
For events that propagate, this property is the
object on which the current event handler was registered.

		timeStamp

		
A timestamp (in milliseconds) that represents when the
event occurred but that does not represent an absolute time. You can
determine the elapsed time between two events by subtracting the
timestamp of the first event from the timestamp of the second.

		isTrusted

		
This property will be true if the event was dispatched
by the web browser itself and false if the event was dispatched by
JavaScript code.

Specific kinds of events have additional properties. Mouse and pointer
events, for example, have clientX and clientY properties that specify
the window coordinates at which the event occurred.

Event handler context

When you register an event handler by setting a property, it looks as
if you are defining a new method on the target object:

target.onclick = function() { /* handler code */ };

It isn’t surprising, therefore, that event handlers are invoked as
methods of the object on which they are defined. That is, within the
body of an event handler, the this keyword refers to the object on
which the event handler was registered.

Handlers are invoked with the target as their this value, even when
registered using addEventListener(). This does not work for handlers
defined as arrow functions, however: arrow functions always have the
same this value as the scope in which they are defined.

Handler return value

In modern JavaScript, event handlers should not return anything. You
may see event handlers that return values in older code, and the
return value is typically a signal to the browser that it should not
perform the default action associated with the event. If the onclick
handler of a Submit button in a form returns false, for example,
then the web browser will not submit the form (usually because the
event handler determined that the user’s input fails client-side
validation).

The standard and preferred way to prevent the browser from performing
a default action is to call the preventDefault() method
(§15.2.5) on the Event object.

Invocation order

An event target may have more than one event handler registered for a
particular type of event. When an event of that type occurs, the
browser invokes all of the handlers in the order in which they were
registered. Interestingly, this is true even if you mix event handlers
registered with addEventListener() with an event handler registered
on an object property like onclick.

15.2.4 Event Propagation

When the target of an event is the Window object or some other
standalone object, the browser responds to an event simply by invoking
the appropriate handlers on that one object. When the event target is
a Document or document Element, however, the situation is more
complicated.

After the event handlers registered on the target element are invoked,
most events “bubble” up the DOM tree. The event handlers of the
target’s parent are invoked. Then the handlers registered on the
target’s grandparent are invoked. This continues up to the Document
object, and then beyond to the Window object. Event bubbling provides
an alternative to registering handlers on lots of individual document
elements: instead, you can register a single handler on a common
ancestor element and handle events there. You might register a
“change” handler on a <form> element, for example, instead of
registering a “change” handler for every element in the form.

Most events that occur on document elements bubble. Notable exceptions
are the “focus,” “blur,” and “scroll” events. The “load” event on
document elements bubbles, but it stops bubbling at the Document
object and does not propagate on to the
Window object. (The “load”
event handlers of the Window object are triggered only when the entire
document has loaded.)

Event bubbling is the third “phase” of event propagation. The
invocation of the event handlers of the target object itself is the
second phase. The first phase, which occurs even before the target
handlers are invoked, is called the “capturing” phase. Recall that
addEventListener() takes an optional third argument. If that
argument is true, or {capture:true}, then the event handler is
registered as a capturing event handler for invocation during this
first phase of event propagation. The capturing phase of event
propagation is like the bubbling phase in reverse. The capturing
handlers of the Window object are invoked first, then the capturing
handlers of the Document object, then of the body object, and so on
down the DOM tree until the capturing event handlers of the parent of
the event target are invoked. Capturing event handlers registered on
the event target itself are not invoked.

Event capturing provides an opportunity to peek at events before they
are delivered to their target. A capturing event handler can be used
for debugging, or it can be used along with the event cancellation
technique described in the next section to filter events so that the target event
handlers are never actually invoked. One common use for event capturing
is handling mouse drags, where mouse motion events need to be handled
by the object being dragged, not the document elements over which it is
dragged.

15.2.5 Event Cancellation

Browsers respond to many user events, even if your code does not: when
the user clicks the mouse on a hyperlink, the browser follows the
link. If an HTML text input element has the keyboard focus and the
user types a key, the browser will enter the user’s input. If the user
moves their finger across a touch-screen device, the browser
scrolls. If you register an event handler for events like these, you
can prevent the browser from performing its default action by invoking
the preventDefault() method of the event object. (Unless you
registered the handler with the passive option, which makes
preventDefault() ineffective.)

Canceling the default action associated with an event is only one kind
of event cancellation. We can also cancel the propagation of events by
calling the stopPropagation() method of the event object. If there
are other handlers defined on the same object, the rest of those
handlers will still be invoked, but no event handlers on any other
object will be invoked after stopPropagation() is
called. stopPropagation() works during the capturing phase, at the
event target itself, and during the bubbling
phase. stopImmediatePropagation() works like stopPropagation(), but
it also prevents the invocation of any subsequent event handlers
registered on the same object.

15.2.6 Dispatching Custom Events

Client-side JavaScript’s event API is a relatively powerful one, and
you can use it to define and dispatch your own events. Suppose, for
example, that your program periodically needs to perform a long
calculation or make a network request and that, while this operation is
pending, other operations are not possible. You want to let the user
know about this by displaying “spinners” to indicate that the
application is busy. But the module that is busy should not need to
know where the spinners should be displayed. Instead, that module
might just dispatch an event to announce that it is busy and then
dispatch another event when it is no longer busy. Then, the UI module
can register event handlers for those events and take whatever UI
actions are appropriate to notify the user.

If a JavaScript object has an addEventListener() method, then it is
an “event target,” and this means it also has a dispatchEvent()
method. You can create your own event object with the CustomEvent()
constructor and pass it to dispatchEvent(). The first argument to
CustomEvent() is a string that specifies the type of your event, and
the second argument is an object that specifies the properties of the
event object. Set the detail property of this object to a string,
object, or other value that represents the content of your event. If
you plan to dispatch your event on a document element and want it to
bubble up the document tree, add bubbles:true to the second argument:

// Dispatch a custom event so the UI knows we are busy
document.dispatchEvent(new CustomEvent("busy", { detail: true }));

// Perform a network operation
fetch(url)
 .then(handleNetworkResponse)
 .catch(handleNetworkError)
 .finally(() => {
 // After the network request has succeeded or failed, dispatch
 // another event to let the UI know that we are no longer busy.
 document.dispatchEvent(new CustomEvent("busy", { detail: false }));
 });

// Elsewhere, in your program you can register a handler for "busy" events
// and use it to show or hide the spinner to let the user know.
document.addEventListener("busy", (e) => {
 if (e.detail) {
 showSpinner();
 } else {
 hideSpinner();
 }
});

15.3 Scripting Documents

Client-side JavaScript exists to turn static HTML documents into
interactive web applications. So scripting the content of web pages is
really the central purpose of JavaScript.

Every Window object has a document property that refers to a
Document object. The Document object represents the content of the
window, and it is the subject of this section. The Document object
does not stand alone, however. It is the central object in the DOM for representing
and manipulating document content.

The DOM was introduced in §15.1.2. This section explains
the API in detail. It covers:

		
How to query or select individual elements from a document.

		
How to traverse a document, and how to find the ancestors,
siblings, and descendants of any document element.

		
How to query and set the attributes of document elements.

		
How to query, set, and modify the content of a document.

		
How to modify the structure of a document by creating, inserting, and
deleting nodes.

15.3.1 Selecting Document Elements

Client-side JavaScript programs often need to manipulate one or more
elements within the document. The global document property refers to
the Document object, and the Document object has head and body
properties that refer to the Element objects for the <head> and
<body> tags, respectively. But a program that wants to manipulate an
element embedded more deeply in the document must somehow obtain or
select the Element objects that refer to those document
elements.

Selecting elements with CSS selectors

CSS stylesheets have a very powerful syntax, known as selectors, for
describing elements or sets of elements within a document. The DOM
methods querySelector() and querySelectorAll() allow us to find
the element or elements within a document that match a specified CSS
selector. Before we cover the methods, we’ll start with a quick
tutorial on CSS selector syntax.

CSS selectors can describe elements by tag name, the value of
their id attribute, or the words in their class attribute:

div // Any <div> element
#nav // The element with id="nav"
.warning // Any element with "warning" in its class attribute

The # character is used to match based on the id attribute, and the
. character is used to match based on the class
attribute. Elements can also be selected based on more general
attribute values:

p[lang="fr"] // A paragraph written in French: <p lang="fr">
*[name="x"] // Any element with a name="x" attribute

Note that these examples combine a tag name selector (or the *
tag name wildcard) with an attribute selector. More complex
combinations are also possible:

span.fatal.error // Any with "fatal" and "error" in its class
span[lang="fr"].warning // Any in French with class "warning"

Selectors can also specify document structure:

#log span // Any descendant of the element with id="log"
#log>span // Any child of the element with id="log"
body>h1:first-child // The first <h1> child of the <body>
img + p.caption // A <p> with class "caption" immediately after an
h2 ~ p // Any <p> that follows an <h2> and is a sibling of it

If two selectors are separated by a comma, it means that we’ve
selected elements that match either one of the selectors:

button, input[type="button"] // All <button> and <input type="button"> elements

As you can see, CSS selectors allow us to refer to elements within a
document by type, ID, class, attributes, and position within the
document. The querySelector() method takes a CSS selector string as
its argument and returns the first matching element in the document
that it finds, or returns null if none match:

// Find the document element for the HTML tag with attribute id="spinner"
let spinner = document.querySelector("#spinner");

querySelectorAll() is similar, but it returns all matching elements
in the document rather than just returning the first:

// Find all Element objects for <h1>, <h2>, and <h3> tags
let titles = document.querySelectorAll("h1, h2, h3");

The return value of querySelectorAll() is not an array of Element
objects. Instead, it is an array-like object known as a
NodeList. NodeList objects have a length property and can be indexed
like arrays, so you can loop over them with a traditional for
loop. NodeLists are also iterable, so you can use them with for/of
loops as well. If you want to convert a NodeList into a true array,
simply pass it to Array.from().

The NodeList returned by querySelectorAll() will have a length
property set to 0 if there are not any elements in the document that
match the specified selector.

querySelector() and querySelectorAll() are implemented by the
Element class as well as by the Document class. When invoked on an
element, these methods will only return elements that are descendants
of that element.

Note that CSS defines ::first-line and ::first-letter pseudoelements.
In CSS, these match portions of text nodes rather than actual elements.
They will not match if used with querySelectorAll() or
querySelector(). Also, many browsers will refuse to return matches
for the :link and :visited pseudoclasses, as this could expose
information about the user’s browsing history.

Another CSS-based element selection method is closest(). This method
is defined by the Element class and takes a selector as its only
argument. If the selector matches the element it is invoked on, it
returns that element. Otherwise, it returns the closest ancestor
element that the selector matches, or returns null if none matched. In
a sense, closest() is the opposite of querySelector(): closest()
starts at an element and looks for a match above it in the tree, while
querySelector() starts with an element and looks for a match below
it in the tree. closest() can be useful when you have registered an
event handler at a high level in the document tree. If you are
handling a “click” event, for example, you might want to know whether
it is a click a hyperlink. The event object will tell you what the
target was, but that target might be the text inside a link rather
than the hyperlink’s <a> tag itself. Your event handler could look
for the nearest containing hyperlink like this:

// Find the closest enclosing <a> tag that has an href attribute.
let hyperlink = event.target.closest("a[href]");

Here is another way you might use closest():

// Return true if the element e is inside of an HTML list element
function insideList(e) {
 return e.closest("ul,ol,dl") !== null;
}

The related method matches() does not return ancestors or
descendants: it simply tests whether an element is matched by a CSS
selector and returns true if so and false otherwise:

// Return true if e is an HTML heading element
function isHeading(e) {
 return e.matches("h1,h2,h3,h4,h5,h6");
}

Other element selection methods

In addition to querySelector() and querySelectorAll(), the DOM
also defines a number of older element selection methods that are
more or less obsolete now. You may still see some of these methods
(especially getElementById()) in use, however:

// Look up an element by id. The argument is just the id, without
// the CSS selector prefix #. Similar to document.querySelector("#sect1")
let sect1 = document.getElementById("sect1");

// Look up all elements (such as form checkboxes) that have a name="color"
// attribute. Similar to document.querySelectorAll('*[name="color"]');
let colors = document.getElementsByName("color");

// Look up all <h1> elements in the document.
// Similar to document.querySelectorAll("h1")
let headings = document.getElementsByTagName("h1");

// getElementsByTagName() is also defined on elements.
// Get all <h2> elements within the sect1 element.
let subheads = sect1.getElementsByTagName("h2");

// Look up all elements that have class "tooltip."
// Similar to document.querySelectorAll(".tooltip")
let tooltips = document.getElementsByClassName("tooltip");

// Look up all descendants of sect1 that have class "sidebar"
// Similar to sect1.querySelectorAll(".sidebar")
let sidebars = sect1.getElementsByClassName("sidebar");

Like querySelectorAll(), the methods in this code return a
NodeList (except for getElementById(), which returns a single
Element object). Unlike querySelectorAll(), however, the NodeLists
returned by these older selection methods are “live,” which means that
the length and content of the list can change if the document content
or structure changes.

Preselected elements

For historical reasons, the Document class defines shortcut properties
to access certain kinds of nodes. The images, forms, and links
properties, for example, provide easy access to the , <form>,
and <a> elements (but only <a> tags that have an href attribute)
of a document. These properties refer to HTMLCollection objects, which
are much like NodeList objects, but they can additionally be indexed
by element ID or name. With the document.forms property, for
example, you can access the <form id="address"> tag as:

document.forms.address;

An even more outdated API for selecting elements is the document.all
property, which is like an HTMLCollection for all elements in the
document. document.all is deprecated, and you should no longer use it.

15.3.2 Document Structure and Traversal

Once you have selected an Element from a Document, you sometimes need
to find structurally related portions (parent, siblings, children) of
the document. When we are primarily interested in the Elements of a
document instead of the text within them (and the whitespace between
them, which is also text), there is a traversal API that allows us to
treat a document as a tree of Element objects, ignoring Text nodes
that are also part of the document. This traversal API does not
involve any methods; it is simply a set of properties on Element
objects that allow us to refer to the parent, children, and siblings of
a given element:

		parentNode

		
This property of an element refers to the parent of the
element, which will be another Element or a Document object.

		children

		
This NodeList contains the Element children of an
element, but excludes non-Element children like Text nodes (and
Comment nodes).

		childElementCount

		
The number of Element children. Returns the same
value as children.length.

		firstElementChild, lastElementChild

		
These properties refer to
the first and last Element children of an Element. They are null if
the Element has no Element children.

		nextElementSibling, previousElementSibling

		
These properties
refer to the sibling Elements immediately before or immediately after
an Element, or null if there is no such sibling.

Using these Element properties, the second child Element of the first
child Element of the Document can be referred to with either of these
expressions:

document.children[0].children[1]
document.firstElementChild.firstElementChild.nextElementSibling

(In a standard HTML document, both of those expressions refer to the
<body> tag of the document.)

Here are two functions that demonstrate how you can use these
properties to recursively do a depth-first traversal of a document
invoking a specified function for every element in the document:

// Recursively traverse the Document or Element e, invoking the function
// f on e and on each of its descendants
function traverse(e, f) {
 f(e); // Invoke f() on e
 for(let child of e.children) { // Iterate over the children
 traverse(child, f); // And recurse on each one
 }
}

function traverse2(e, f) {
 f(e); // Invoke f() on e
 let child = e.firstElementChild; // Iterate the children linked-list style
 while(child !== null) {
 traverse2(child, f); // And recurse
 child = child.nextElementSibling;
 }
}

Documents as trees of nodes

If you want to traverse a document or some portion of a document and
do not want to ignore the Text nodes, you can use a different set of
properties defined on all Node objects. This will allow you to see
Elements, Text nodes, and even Comment nodes (which represent HTML
comments in the document).

All Node objects define the following properties:

		parentNode

		
The node that is the parent of this one, or null for
nodes like the Document object that have no parent.

		childNodes

		
A read-only NodeList that that contains all children
(not just Element children) of the node.

		firstChild, lastChild

		
The first and last child nodes of a node,
or null if the node has no children.

		nextSibling, previousSibling

		
The next and previous sibling nodes
of a node. These properties connect nodes in a doubly linked list.

		nodeType

		
A number that specifies what kind of node this is.
Document nodes have value 9.
Element nodes have value 1.
Text nodes have value 3.
Comment nodes have value 8.

		nodeValue

		
The textual content of a Text or Comment node.

		nodeName

		
The HTML tag name of an Element, converted to uppercase.

Using these Node properties, the second child node of the first child
of the Document can be referred to with expressions like these:

document.childNodes[0].childNodes[1]
document.firstChild.firstChild.nextSibling

Suppose the document in question is the following:

<html><head><title>Test</title></head><body>Hello World!</body></html>

Then the second child of the first child is the <body> element. It
has a nodeType of 1 and a nodeName of “BODY”.

Note, however, that this API is extremely sensitive to variations in
the document text. If the document is modified by inserting a single
newline between the <html> and the <head> tag, for example, the
Text node that represents that newline becomes the first child of the
first child, and the second child is the <head> element instead of
the <body> element.

To demonstrate this Node-based traversal API, here is a function that
returns all of the text within an element or document:

// Return the plain-text content of element e, recursing into child elements.
// This method works like the textContent property
function textContent(e) {
 let s = ""; // Accumulate the text here
 for(let child = e.firstChild; child !== null; child = child.nextSibling) {
 let type = child.nodeType;
 if (type === 3) { // If it is a Text node
 s += child.nodeValue; // add the text content to our string.
 } else if (type === 1) { // And if it is an Element node
 s += textContent(child); // then recurse.
 }
 }
 return s;
}

This function is a demonstration only—in practice, you would simply
write e.textContent to obtain the textual content of the element
e.

15.3.3 Attributes

HTML elements consist of a tag name and a set of name/value pairs
known as attributes. The <a> element that defines a hyperlink, for
example, uses the value of its href attribute as the destination of
the link.

The Element class defines general getAttribute(), setAttribute(),
hasAttribute(), and removeAttribute() methods for querying,
setting, testing, and removing the attributes of an element. But the
attribute values of HTML elements (for all standard attributes of
standard HTML elements) are available as properties of the HTMLElement
objects that represent those elements, and it is usually much easier
to work with them as JavaScript properties than it is to call
getAttribute() and related methods.

HTML attributes as element properties

The Element objects that represent the elements of an HTML document
usually define read/write properties that mirror the HTML attributes of the
elements. Element defines properties for the universal HTML
attributes such as id, title, lang, and dir and event handler
properties like onclick. Element-specific subtypes define attributes
specific to those elements. To query the URL of an image, for example,
you can use the src property of the HTMLElement that represents the
 element:

let image = document.querySelector("#main_image");
let url = image.src; // The src attribute is the URL of the image
image.id === "main_image" // => true; we looked up the image by id

Similarly, you might set the form-submission attributes of a <form>
element with code like this:

let f = document.querySelector("form"); // First <form> in the document
f.action = "https://www.example.com/submit"; // Set the URL to submit it to.
f.method = "POST"; // Set the HTTP request type.

For some elements, such as the <input> element, some HTML attribute
names map to differently named properties. The HTML value attribute
of an <input>, for example, is mirrored by the JavaScript
defaultValue property. The JavaScript value property of the
<input> element contains the user’s current input, but changes to the
value property do not affect the defaultValue property nor the
value attribute.

HTML attributes are not case sensitive, but JavaScript property names
are. To convert an attribute name to the JavaScript property, write it
in lowercase. If the attribute is more than one word long, however,
put the first letter of each word after the first in uppercase:
defaultChecked and tabIndex, for example. Event handler properties
like onclick are an exception, however, and are written in lowercase.

Some HTML attribute names are reserved words in JavaScript. For these,
the general rule is to prefix the property name with “html”. The HTML
for attribute (of the <label> element), for example, becomes the
JavaScript htmlFor property. “class” is a reserved
word in JavaScript, and the very important HTML class attribute is an
exception to the rule: it becomes className in JavaScript code.

The properties that represent HTML attributes usually have string
values. But when the attribute is a boolean or numeric value (the
defaultChecked and maxLength attributes of an <input> element,
for example), the properties are booleans or numbers instead of
strings. Event handler attributes always have functions (or
null) as their values.

Note that this property-based API for getting and setting attribute
values does not define any way to remove an attribute from an element.
In particular, the delete operator cannot be used for this purpose.
If you need to delete an attribute, use the removeAttribute() method.

The class attribute

The class attribute of an HTML element is a particularly important
one. Its value is a space-separated list of CSS classes that apply to
the element and affect how it is styled with CSS. Because class is a
reserved word in JavaScript, the value of this attribute is available
through the className property on Element objects. The className
property can set and return the value of the class attribute as a
string. But the class attribute is poorly named: its value is a list
of CSS classes, not a single class, and it is common in client-side
JavaScript programming to want to add and remove individual class
names from this list rather than work with the list as a single
string.

For this reason, Element objects define a classList property that
allows you to treat the class attribute as a list. The value of the
classList property is an iterable Array-like object. Although the
name of the property is classList, it behaves more like a set of
classes, and defines add(), remove(), contains(), and toggle()
methods:

// When we want to let the user know that we are busy, we display
// a spinner. To do this we have to remove the "hidden" class and add the
// "animated" class (assuming the stylesheets are configured correctly).
let spinner = document.querySelector("#spinner");
spinner.classList.remove("hidden");
spinner.classList.add("animated");

Dataset attributes

It is sometimes useful to attach additional information to HTML
elements, typically when JavaScript code will be selecting those
elements and manipulating them in some way. In HTML, any attribute
whose name is lowercase and begins with the prefix “data-” is
considered valid, and you can use them for any purpose. These “dataset
attributes” will not affect the presentation of the elements on which
they appear, and they define a standard way to attach additional data
without compromising document validity.

In the DOM, Element objects have a dataset property that refers to
an object that has properties that correspond to the data-
attributes with their prefix removed. Thus, dataset.x would hold the
value of the data-x attribute. Hyphenated attributes map to
camelCase property names: the attribute data-section-number becomes
the property dataset.sectionNumber.

Suppose an HTML document contains this text:

<h2 id="title" data-section-number="16.1">Attributes</h2>

Then you could write JavaScript like this to access that section
number:

let number = document.querySelector("#title").dataset.sectionNumber;

15.3.4 Element Content

Look again at the document tree pictured in Figure 15-1,
and ask yourself what the
“content” of the <p> element is. There are two ways we might
answer this question:

		
The content is the HTML string “This is a <i>simple</i> document”.

		
The content is the plain-text string “This is a simple document”.

Both of these are valid answers, and each answer is useful in its own
way. The sections that follow explain how to work with the HTML
representation and the plain-text representation of an element’s
content.

Element content as HTML

Reading the innerHTML property of an Element returns the content of
that element as a string of markup. Setting this property on an element
invokes the web browser’s parser and replaces the element’s current
content with a parsed representation of the new string. You can test
this out by opening the developer console and typing:

document.body.innerHTML = "<h1>Oops</h1>";

You will see that the entire web page disappears and is replaced with
the single heading, “Oops”. Web browsers are very good at parsing HTML,
and setting innerHTML is usually fairly efficient. Note, however,
that appending text to the innerHTML property with the +=
operator is not efficient because it requires both a serialization
step to convert element content to a string and then a parsing step to
convert the new string back into element content.

Warning

When using these HTML APIs, it is very important that you never insert
user input into the document. If you do this, you allow malicious
users to inject their own scripts into your application. See “Cross-site scripting”
for details.

The outerHTML property of an Element is like innerHTML except that
its value includes the element itself. When you query outerHTML, the
value includes the opening and closing tags of the element. And when
you set outerHTML on an element, the new content replaces the
element itself.

A related Element method is insertAdjacentHTML(), which allows you
to insert a string of arbitrary HTML markup “adjacent” to the
specified element. The markup is passed as the second argument to this
method, and the precise meaning of “adjacent” depends on the value of
the first argument. This first argument should be a string with one
of the values “beforebegin,” “afterbegin,” “beforeend,” or
“afterend.” These values correspond to insertion points that are
illustrated in Figure 15-2.

[image: js7e 1502]
Figure 15-2. Insertion points for insertAdjacentHTML()

Element content as plain text

Sometimes you want to query the content of an element as plain text or
to insert plain text into a document (without having to escape the
angle brackets and ampersands used in HTML markup). The standard way to
do this is with the textContent property:

let para = document.querySelector("p"); // First <p> in the document
let text = para.textContent; // Get the text of the paragraph
para.textContent = "Hello World!"; // Alter the text of the paragraph

The textContent property is defined by the Node class, so it works
for Text nodes as well as Element nodes. For Element nodes, it finds
and returns all text in all descendants of the element.

The Element class defines an innerText property that is similar to
textContent. innerText has some unusual and complex behaviors, such
as attempting to preserve table formatting. It is not well specified
nor implemented compatibly between browsers, however, and should no
longer be used.

Text in <script> Elements

Inline <script> elements (i.e., those that do not have a src
attribute) have a text property that you can use to retrieve their
text. The content of a <script> element is never displayed by the
browser, and the HTML parser ignores angle brackets and ampersands
within a script. This makes a <script> element an ideal place to
embed arbitrary textual data for use by your application. Simply set
the type attribute of the element to some value (such as
“text/x-custom-data”) that makes it clear that the script is not
executable JavaScript code. If you do this, the JavaScript interpreter
will ignore the script, but the element will exist in the document tree,
and its text property will return the data to you.

15.3.5 Creating, Inserting, and Deleting Nodes

We’ve seen how to query and alter document content using strings of
HTML and of plain text. And we’ve also seen that we can traverse a
Document to examine the individual Element and Text nodes that it is
made of. It is also possible to alter a document at the level of
individual nodes. The Document class defines methods for creating
Element objects, and Element and Text objects have methods for
inserting, deleting, and replacing nodes in the tree.

Create a new element with the createElement() method of the Document
class and append strings of text or other elements to it with its
append() and prepend() methods:

let paragraph = document.createElement("p"); // Create an empty <p> element
let emphasis = document.createElement("em"); // Create an empty element
emphasis.append("World"); // Add text to the element
paragraph.append("Hello ", emphasis, "!"); // Add text and to <p>
paragraph.prepend("¡"); // Add more text at start of <p>
paragraph.innerHTML // => "¡Hello World!"

append() and prepend() take any number of arguments, which can be
Node objects or strings. String arguments are automatically converted
to Text nodes. (You can create Text nodes explicitly with
document.createTextNode(), but there is rarely any reason to do
so.) append() adds the arguments to the element at the end of the
child list. prepend() adds the arguments at the start of the child
list.

If you want to insert an Element or Text node into the middle of the
containing element’s child list, then neither append() or prepend()
will work for you. In this case, you should obtain a reference to a
sibling node and call before() to insert the new content before that
sibling or after() to insert it after that sibling. For example:

// Find the heading element with class="greetings"
let greetings = document.querySelector("h2.greetings");

// Now insert the new paragraph and a horizontal rule after that heading
greetings.after(paragraph, document.createElement("hr"));

Like append() and prepend(), after() and before() take any
number of string and element arguments and insert them all into the
document after converting strings to Text nodes. append() and
prepend() are only defined on Element objects, but after() and
before() work on both Element and Text nodes: you can use them to
insert content relative to a Text node.

Note that elements can only be inserted at one spot in the
document. If an element is already in the document and you insert it
somewhere else, it will be moved to the new location, not copied:

// We inserted the paragraph after this element, but now we
// move it so it appears before the element instead
greetings.before(paragraph);

If you do want to make a copy of an element, use the cloneNode()
method, passing true to copy all of its content:

// Make a copy of the paragraph and insert it after the greetings element
greetings.after(paragraph.cloneNode(true));

You can remove an Element or Text node from the document by calling
its remove() method, or you can replace it by calling
replaceWith() instead. remove() takes no arguments, and
replaceWith() takes any number of strings and elements just like
before() and after() do:

// Remove the greetings element from the document and replace it with
// the paragraph element (moving the paragraph from its current location
// if it is already inserted into the document).
greetings.replaceWith(paragraph);

// And now remove the paragraph.
paragraph.remove();

The DOM API also defines an older generation of methods for inserting
and removing content. appendChild(), insertBefore(),
replaceChild(), and removeChild() are harder to use than
the methods shown here and should never be needed.

15.3.6 Example: Generating a Table of Contents

Example 15-1 shows how to dynamically create a table of contents for a
document. It demonstrates many of the document scripting techniques
described in the previous sections. The example is well commented, and you
should have no trouble following the code.

Example 15-1. Generating a table of contents with the DOM API

/**
 * TOC.js: create a table of contents for a document.
 *
 * This script runs when the DOMContentLoaded event is fired and
 * automatically generates a table of contents for the document.
 * It does not define any global symbols so it should not conflict
 * with other scripts.
 *
 * When this script runs, it first looks for a document element with
 * an id of "TOC". If there is no such element it creates one at the
 * start of the document. Next, the function finds all <h2> through
 * <h6> tags, treats them as section titles, and creates a table of
 * contents within the TOC element. The function adds section numbers
 * to each section heading and wraps the headings in named anchors so
 * that the TOC can link to them. The generated anchors have names
 * that begin with "TOC", so you should avoid this prefix in your own
 * HTML.
 *
 * The entries in the generated TOC can be styled with CSS. All
 * entries have a class "TOCEntry". Entries also have a class that
 * corresponds to the level of the section heading. <h1> tags generate
 * entries of class "TOCLevel1", <h2> tags generate entries of class
 * "TOCLevel2", and so on. Section numbers inserted into headings have
 * class "TOCSectNum".
 *
 * You might use this script with a stylesheet like this:
 *
 * #TOC { border: solid black 1px; margin: 10px; padding: 10px; }
 * .TOCEntry { margin: 5px 0px; }
 * .TOCEntry a { text-decoration: none; }
 * .TOCLevel1 { font-size: 16pt; font-weight: bold; }
 * .TOCLevel2 { font-size: 14pt; margin-left: .25in; }
 * .TOCLevel3 { font-size: 12pt; margin-left: .5in; }
 * .TOCSectNum:after { content: ": "; }
 *
 * To hide the section numbers, use this:
 *
 * .TOCSectNum { display: none }
 **/
document.addEventListener("DOMContentLoaded", () => {
 // Find the TOC container element.
 // If there isn't one, create one at the start of the document.
 let toc = document.querySelector("#TOC");
 if (!toc) {
 toc = document.createElement("div");
 toc.id = "TOC";
 document.body.prepend(toc);
 }

 // Find all section heading elements. We're assuming here that the
 // document title uses <h1> and that sections within the document are
 // marked with <h2> through <h6>.
 let headings = document.querySelectorAll("h2,h3,h4,h5,h6");

 // Initialize an array that keeps track of section numbers.
 let sectionNumbers = [0,0,0,0,0];

 // Now loop through the section header elements we found.
 for(let heading of headings) {
 // Skip the heading if it is inside the TOC container.
 if (heading.parentNode === toc) {
 continue;
 }

 // Figure out what level heading it is.
 // Subtract 1 because <h2> is a level-1 heading.
 let level = parseInt(heading.tagName.charAt(1)) - 1;

 // Increment the section number for this heading level
 // and reset all lower heading level numbers to zero.
 sectionNumbers[level-1]++;
 for(let i = level; i < sectionNumbers.length; i++) {
 sectionNumbers[i] = 0;
 }

 // Now combine section numbers for all heading levels
 // to produce a section number like 2.3.1.
 let sectionNumber = sectionNumbers.slice(0, level).join(".");

 // Add the section number to the section header title.
 // We place the number in a to make it styleable.
 let span = document.createElement("span");
 span.className = "TOCSectNum";
 span.textContent = sectionNumber;
 heading.prepend(span);

 // Wrap the heading in a named anchor so we can link to it.
 let anchor = document.createElement("a");
 let fragmentName = `TOC${sectionNumber}`;
 anchor.name = fragmentName;
 heading.before(anchor); // Insert anchor before heading
 anchor.append(heading); // and move heading inside anchor

 // Now create a link to this section.
 let link = document.createElement("a");
 link.href = `#${fragmentName}`; // Link destination

 // Copy the heading text into the link. This is a safe use of
 // innerHTML because we are not inserting any untrusted strings.
 link.innerHTML = heading.innerHTML;

 // Place the link in a div that is styleable based on the level.
 let entry = document.createElement("div");
 entry.classList.add("TOCEntry", `TOCLevel${level}`);
 entry.append(link);

 // And add the div to the TOC container.
 toc.append(entry);
 }
});

15.4 Scripting CSS

We’ve seen that JavaScript can control the logical structure and
content of HTML documents. It can also control the visual appearance
and layout of those documents by scripting CSS. The following subsections explain a few different techniques that JavaScript code can use to work with CSS.

This is a book about JavaScript, not about CSS, and this section
assumes that you already have a working knowledge of how CSS is used
to style HTML content. But it’s worth mentioning some of the CSS styles
that are commonly scripted from JavaScript:

		
Setting the display style to “none” hides an element. You can
later show the element by setting display to some other value.

		
You can dynamically position elements by setting the position
style to “absolute,” “relative,” or “fixed” and then setting the
top and left styles to the desired coordinates. This is
important when using JavaScript to display dynamic content like
modal dialogues and tooltips.

		
You can shift, scale, and rotate elements with the transform
style.

		
You can animate changes to other CSS styles with the transition
style. These animations are handled automatically by the web browser
and do not require JavaScript, but you can use JavaScript to
initiate the animations.

15.4.1 CSS Classes

The simplest way to use JavaScript to affect the styling of document
content is to add and remove CSS class names from the class
attribute of HTML tags. This is easy to do with the classList
property of Element objects, as explained in “The class attribute”.

Suppose, for example, that your document’s stylesheet includes a
definition for a “hidden” class:

.hidden {
 display:none;
}

With this style defined, you can hide (and then show) an element with
code like this:

// Assume that this "tooltip" element has class="hidden" in the HTML file.
// We can make it visible like this:
document.querySelector("#tooltip").classList.remove("hidden");

// And we can hide it again like this:
document.querySelector("#tooltip").classList.add("hidden");

15.4.2 Inline Styles

To continue with the preceding tooltip example, suppose that the document
is structured with only a single tooltip element, and we want to
dynamically position it before displaying it. In general, we can’t
create a different stylesheet class for each possible position of the
tooltip, so the classList property won’t help us with positioning.

In this case, we need to script the style attribute of the tooltip
element to set inline styles that are specific to that one
element. The DOM defines a style property on all Element objects
that correspond to the style attribute. Unlike most such
properties, however, the style property is not a string. Instead, it
is a CSSStyleDeclaration object: a parsed representation of the CSS
styles that appear in textual form in the style attribute. To
display and set the position of our hypothetical tooltip with
JavaScript, we might use code like this:

function displayAt(tooltip, x, y) {
 tooltip.style.display = "block";
 tooltip.style.position = "absolute";
 tooltip.style.left = `${x}px`;
 tooltip.style.top = `${y}px`;
}

Naming Conventions: CSS Properties in JavaScript

Many CSS style properties, such as font-size, contain hyphens in
their names. In JavaScript, a hyphen is interpreted as a minus sign and is not allowed in property names or other identifiers. Therefore,
the names of the properties of the CSSStyleDeclaration object are
slightly different from the names of actual CSS properties. If a CSS
property name contains one or more hyphens, the CSSStyleDeclaration
property name is formed by removing the hyphens and capitalizing the
letter immediately following each hyphen. The CSS property
border-left-width is accessed through the JavaScript
borderLeftWidth property, for example, and the CSS font-family
property is written as fontFamily in JavaScript.

When working with the style properties of the CSSStyleDeclaration
object, remember that all values must be specified as strings. In a
stylesheet or style attribute, you can write:

display: block; font-family: sans-serif; background-color: #ffffff;

To accomplish the same thing for an element e with JavaScript, you
have to quote all of the values:

e.style.display = "block";
e.style.fontFamily = "sans-serif";
e.style.backgroundColor = "#ffffff";

Note that the semicolons go outside the strings. These are just normal
JavaScript semicolons; the semicolons you use in CSS stylesheets are
not required as part of the string values you set with JavaScript.

Furthermore, remember that many CSS properties require units such as
“px” for pixels or “pt” for points. Thus, it is not correct to set the
marginLeft property like this:

e.style.marginLeft = 300; // Incorrect: this is a number, not a string
e.style.marginLeft = "300"; // Incorrect: the units are missing

Units are required when setting style properties in JavaScript, just as
they are when setting style properties in stylesheets. The correct way
to set the value of the marginLeft property of an element e to 300 pixels
is:

e.style.marginLeft = "300px";

If you want to set a CSS property to a computed value, be sure to
append the units at the end of the computation:

e.style.left = `${x0 + left_border + left_padding}px`;

Recall that some CSS properties, such as margin, are shortcuts for
other properties, such as margin-top, margin-right,
margin-bottom, and margin-left. The CSSStyleDeclaration object has
properties that correspond to these shortcut properties. For example,
you might set the margin property like this:

e.style.margin = `${top}px ${right}px ${bottom}px ${left}px`;

Sometimes, you may find it easier to set or query the inline style of
an element as a single string value rather than as a
CSSStyleDeclaration object. To do that, you can use the Element
getAttribute() and setAttribute() methods, or you can use the
cssText property of the CSSStyleDeclaration object:

// Copy the inline styles of element e to element f:
f.setAttribute("style", e.getAttribute("style"));

// Or do it like this:
f.style.cssText = e.style.cssText;

When querying the style property of an element, keep in mind that it
represents only the inline styles of an element and that most styles
for most elements are specified in stylesheets rather than
inline. Furthermore, the values you obtain when querying the style
property will use whatever units and whatever shortcut property format
is actually used on the HTML attribute, and your code may have to do
some sophisticated parsing to interpret them. In general, if you want
to query the styles of an element, you probably want the computed
style, which is discussed next.

15.4.3 Computed Styles

The computed style for an element is the set of property values that
the browser derives (or computes) from the element’s inline style plus
all applicable style rules in all stylesheets: it is the set of
properties actually used to display the element. Like inline styles,
computed styles are represented with a CSSStyleDeclaration
object. Unlike inline styles, however, computed styles are
read-only. You can’t set these styles, but the computed
CSSStyleDeclaration object for an element lets you determine what
style property values the browser used when rendering that element.

Obtain the computed style for an element with the getComputedStyle()
method of the Window object. The first argument to this method is the
element whose computed style is desired. The optional second argument
is used to specify a CSS pseudoelement, such as “::before” or
“::after”:

let title = document.querySelector("#section1title");
let styles = window.getComputedStyle(title);
let beforeStyles = window.getComputedStyle(title, "::before");

The return value of getComputedStyle() is a CSSStyleDeclaration
object that represents all the styles that apply to the specified
element (or pseudoelement). There are a number of important differences
between a CSSStyleDeclaration object that represents inline styles and
one that represents computed styles:

		
Computed style properties are read-only.

		
Computed style properties are absolute: relative units like
percentages and points are converted to absolute values. Any
property that specifies a size (such as a margin size or a font
size) will have a value measured in pixels. This value will be a
string with a “px” suffix, so you’ll still need to parse it, but you
won’t have to worry about parsing or converting other units. Properties
whose values are colors will be returned in “rgb()” or
“rgba()” format.

		
Shortcut properties are not computed—only the fundamental
properties that they are based on are. Don’t query the margin
property, for example, but use marginLeft, marginTop, and so
on. Similarly, don’t query border or even borderWidth. Instead,
use borderLeftWidth, borderTopWidth, and so on.

		
The cssText property of the computed style is undefined.

A CSSStyleDeclaration object returned by getComputedStyle()
generally contains much more information about an element than the
CSSStyleDeclaration obtained from the inline style property of that
element. But computed styles can be tricky, and querying them does not
always provide the information you might expect. Consider the
font-family attribute: it accepts a comma-separated list of desired
font families for cross-platform portability. When you query the
fontFamily property of a computed style, you’re simply getting the
value of the most specific font-family style that applies to the
element. This may return a value such as “arial,helvetica,sans-serif,”
which does not tell you which typeface is actually in use. Similarly,
if an element is not absolutely positioned, attempting to query its
position and size through the top and left properties of its
computed style often returns the value auto. This is a perfectly
legal CSS value, but it is probably not what you were looking for.

Although CSS can be used to precisely specify the position and size of
document elements, querying the computed style of an element is not the
preferred way to determine the element’s size and position. See
§15.5.2 for a simpler, portable alternative.

15.4.4 Scripting Stylesheets

In addition to scripting class attributes and inline styles,
JavaScript can also manipulate stylesheets themselves. Stylesheets are
associated with an HTML document with a <style> tag or with a <link
rel="stylesheet"> tag. Both of these are regular HTML tags, so you
can give them both id attributes and then look them up with
document.querySelector().

The Element objects for both <style> and <link> tags have a
disabled property that you can use to disable the entire
stylesheet. You might use it with code like this:

// This function switches between the "light" and "dark" themes
function toggleTheme() {
 let lightTheme = document.querySelector("#light-theme");
 let darkTheme = document.querySelector("#dark-theme");
 if (darkTheme.disabled) { // Currently light, switch to dark
 lightTheme.disabled = true;
 darkTheme.disabled = false;
 } else { // Currently dark, switch to light
 lightTheme.disabled = false;
 darkTheme.disabled = true;
 }
}

Another simple way to script stylesheets is to insert new ones into
the document using DOM manipulation techniques we’ve already seen. For
example:

function setTheme(name) {
 // Create a new <link rel="stylesheet"> element to load the named stylesheet
 let link = document.createElement("link");
 link.id = "theme";
 link.rel = "stylesheet";
 link.href = `themes/${name}.css`;

 // Look for an existing link with id "theme"
 let currentTheme = document.querySelector("#theme");
 if (currentTheme) {
 // If there is an existing theme, replace it with the new one.
 currentTheme.replaceWith(link);
 } else {
 // Otherwise, just insert the link to the theme stylesheet.
 document.head.append(link);
 }
}

Less subtly, you can also just insert a string of HTML containing a
<style> tag into your document. This is a fun trick, for example:

document.head.insertAdjacentHTML(
 "beforeend",
 "<style>body{transform:rotate(180deg)}</style>"
);

Browsers define an API that allows JavaScript to look inside
stylesheets to query, modify, insert, and delete style rules in that
stylesheet. This API is so specialized that it is not documented
here. You can read about it on MDN by searching for “CSSStyleSheet”
and “CSS Object Model.”

15.4.5 CSS Animations and Events

Suppose you have the following two CSS classes defined in a
stylesheet:

.transparent { opacity: 0; }
.fadeable { transition: opacity .5s ease-in }

If you apply the first style to an element, it will be fully
transparent and therefore invisible. But if you apply the second style
that tells the browser that when the opacity of the element changes,
that change should be animated over a period of 0.5 seconds, “ease-in”
specifies that the opacity change animation should start off slow and
then accelerate.

Now suppose that your HTML document contains an element with the
“fadeable” class:

<div id="subscribe" class="fadeable notification">...</div>

In JavaScript, you can add the “transparent” class:

document.querySelector("#subscribe").classList.add("transparent");

This element is configured to animate opacity changes. Adding the
“transparent” class changes the opacity and triggers an animate: the
browser “fades out” the element so that it becomes fully transparent
over the period of half a second.

This works in reverse as well: if you remove the “transparent” class
of a “fadeable” element, that is also an opacity change, and the
element fades back in and becomes visible again.

JavaScript does not have to do any work to make these animations
happen: they are a pure CSS effect. But JavaScript can be used to
trigger them.

JavaScript can also be used to monitor the progress of a CSS
transition because the web browser fires events at the start and end
of a transition. The “transitionrun” event is dispatched when the
transition is first triggered. This may happen before any visual
changes begin, when the transition-delay style has been
specified. Once the visual changes begin a “transitionstart” event is
dispatched, and when the animation is complete, a “transitionend” event
is dispatched. The target of all these events is the element being
animated, of course. The event object passed to handlers for these
events is a TransitionEvent object. It has a propertyName property
that specifies the CSS property being animated and an elapsedTime
property that for “transitionend” events specifies how many seconds have
passed since the “transitionstart” event.

In addition to transitions, CSS also supports a more complex form of
animation known simply as “CSS Animations.” These use CSS properties
such as animation-name and animation-duration and a special
@keyframes rule to define animation details. Details of how CSS
animations work are beyond the scope of this book, but once again, if
you define all of the animation properties on a CSS class, then you
can use JavaScript to trigger the animation simply by adding the class
to the element that is to be animated.

And like CSS transitions, CSS animations also trigger events that your
JavaScript code can listen form. “animationstart” is dispatched when
the animation starts, and “animationend” is dispatched when it is
complete. If the animation repeats more than once, then an
“animationiteration” event is dispatched after each repetition except
the last. The event target is the animated element, and the event
object passed to handler functions is an AnimationEvent object. These
events include an animationName property that specifies the
animation-name property that defines the animation and an
elapsedTime property that specifies how many seconds have passed
since the animation started.

15.5 Document Geometry and Scrolling

In this chapter so far, we have thought about documents as abstract
trees of elements and text nodes. But when a browser renders a
document within a window, it creates a visual representation of the
document in which each element has a position and a size. Often, web
applications can treat documents as trees of elements and never have
to think about how those elements are rendered on screen. Sometimes,
however, it is necessary to determine the precise geometry of an
element. If, for example, you want to use CSS to dynamically position
an element (such as a tooltip) next to some ordinary
browser-positioned element, you need to be able to determine the
location of that element.

The following subsections explain how you can go back and forth between
the abstract, tree-based model of a document and the geometrical,
coordinate-based view of the document as it is laid out in a browser
window.

15.5.1 Document Coordinates and Viewport Coordinates

The position of a document element is measured in CSS pixels, with the x
coordinate increasing to the right and the y coordinate increasing as
we go down. There are two different points we can use as the
coordinate system origin, however: the x and y coordinates of an
element can be relative to the top-left corner of the document or
relative to the top-left corner of the viewport in which the
document is displayed. In top-level windows and tabs, the “viewport”
is the portion of the browser that actually displays document content:
it excludes browser “chrome” such as menus, toolbars, and tabs. For
documents displayed in <iframe> tags, it is the iframe element in
the DOM that defines the viewport for the nested document. In either
case, when we talk about the position of an element, we must be clear
whether we are using document coordinates or viewport
coordinates. (Note that viewport coordinates are sometimes called
“window coordinates.”)

If the document is smaller than the viewport, or if it has not been
scrolled, the upper-left corner of the document is in the upper-left
corner of the viewport and the document and viewport coordinate
systems are the same. In general, however, to convert between the two
coordinate systems, we must add or subtract the scroll offsets. If
an element has a y coordinate of 200 pixels in document coordinates,
for example, and if the user has scrolled down by 75 pixels, then that
element has a y coordinate of 125 pixels in viewport
coordinates. Similarly, if an element has an x coordinate of 400 in
viewport coordinates after the user has scrolled the viewport 200
pixels horizontally, then the element’s x coordinate in document
coordinates is 600.

If we use the mental model of printed paper documents, it is logical
to assume that every element in a document must have a unique position
in document coordinates, regardless of how much the user has scrolled
the document. That is an appealing property of paper documents, and it
applies for simple web documents, but in general, document coordinates
don’t really work on the web. The problem is that the CSS overflow
property allows elements within a document to contain more content
than it can display. Elements can have their own scrollbars and serve
as viewports for the content they contain. The fact that the web
allows scrolling elements within a scrolling document means that it is
simply not possible to describe the position of an element within the
document using a single (x,y) point.

Because document coordinates don’t really work, client-side JavaScript
tends to use viewport coordinates. The getBoundingClientRect() and
elementFromPoint() methods described next use viewport coordinates,
for example, and the clientX and clientY properties of mouse and
pointer event objects also use this coordinate system.

When you explicitly position an element using CSS position:fixed,
the top and left properties are interpreted in viewport
coordinates. If you use position:relative, the element is positioned
relative to where it would have been if it didn’t have the position
property set. If you use position:absolute, then top and left
are relative to the document or to the nearest containing positioned
element. This means, for example, that an absolutely positioned element
inside a relatively positioned element is positioned relative to the
container element, not relative to the overall document. It is
sometimes very useful to create a relatively positioned container with
top and left set to 0 (so the container is laid out normally) in
order to establish a new coordinate system origin for the absolutely
positioned elements it contains. We might refer to this new coordinate
system as “container coordinates” to distinguish it from document
coordinates and viewport coordinates.

CSS Pixels

If, like me, you are old enough to remember computer monitors with
resolutions of 1024 × 768 and touch-screen phones with resolutions of
320 × 480, then you may still think that the word “pixel” refers to a
single “picture element” in hardware. Today’s 4K monitors and
“retina” displays have such high resolution that software pixels have
been decoupled from hardware pixels. A CSS pixel—and therefore a
client-side JavaScript pixel—may in fact consist of multiple device
pixels. The devicePixelRatio property of the Window object specifies
how many device pixels are used for each software pixel. A “dpr” of 2,
for example, means that each software pixel is actually a 2 × 2 grid of
hardware pixels. The devicePixelRatio value
depends on the physical resolution of your hardware, on settings in
your operating system, and on the zoom level in your browser.

devicePixelRatio does not have to be an integer. If you are using a
CSS font size of “12px” and the device pixel ratio is 2.5, then the
actual font size, in device pixels, is 30. Because the pixel values we
use in CSS no longer correspond directly to individual pixels on the
screen, pixel coordinates no longer need to be integers. If the
devicePixelRatio is 3, then a coordinate of 3.33 makes perfect
sense. And if the ratio is actually 2, then a coordinate of 3.33 will
just be rounded up to 3.5.

15.5.2 Querying the Geometry of an Element

You can determine the size (including CSS border and padding, but not
the margin) and position (in viewport coordinates) of
an element by calling its getBoundingClientRect() method. It takes
no arguments and returns an object with properties left, right,
top, bottom, width, and height. The left and top
properties give the x and y coordinates of the upper-left corner of
the element, and the right and bottom properties give the
coordinates of the lower-right corner. The differences between these
values are the width and height properties.

Block elements, such as images, paragraphs, and <div> elements are
always rectangular when laid out by the browser. Inline elements, such
as , <code>, and elements, however, may span multiple
lines and may therefore consist of multiple rectangles. Imagine, for
example, some text within and tags that happens to be
displayed so that it wraps across two lines.
Its rectangles consist of the end of
the first line and beginning of the second line. If you call
getBoundingClientRect() on this element, the bounding rectangle would
include the entire width of both lines. If you want to query the
individual rectangles of inline elements, call the getClientRects()
method to obtain a read-only, array-like object whose elements are
rectangle objects like those returned by getBoundingClientRect().

15.5.3 Determining the Element at a Point

The getBoundingClientRect() method allows us to determine the
current position of an element in a viewport. Sometimes we want to go
in the other direction and determine which element is at a given
location in the viewport. You can determine this with the
elementFromPoint() method of the Document object. Call this method
with the x and y coordinates of a point (using viewport coordinates,
not document coordinates: the clientX and clientY coordinates of a
mouse event work, for example). elementFromPoint() returns an
Element object that is at the specified
position. The hit detection algorithm for selecting the element is
not precisely specified, but the intent of this method is that it
returns the innermost (most deeply nested) and uppermost (highest CSS
z-index attribute) element at that point.

15.5.4 Scrolling

The scrollTo() method of the Window object takes the x and y
coordinates of a point (in document coordinates) and sets these as the
scrollbar offsets. That is, it scrolls the window so that the
specified point is in the upper-left corner of the viewport. If you
specify a point that is too close to the bottom or too close to the
right edge of the document, the browser will move it as close as
possible to the upper-left corner but won’t be able to get it all the
way there. The following code scrolls the browser so that the
bottom-most page of the document is visible:

// Get the heights of the document and viewport.
let documentHeight = document.documentElement.offsetHeight;
let viewportHeight = window.innerHeight;
// And scroll so the last "page" shows in the viewport
window.scrollTo(0, documentHeight - viewportHeight);

The scrollBy() method of the Window is similar to scrollTo(), but
its arguments are relative and are added to the current scroll
position:

// Scroll 50 pixels down every 500 ms. Note there is no way to turn this off!
setInterval(() => { scrollBy(0,50)}, 500);

If you want to scroll smoothly with scrollTo() or scrollBy(), pass
a single object argument instead of two numbers, like this:

window.scrollTo({
 left: 0,
 top: documentHeight - viewportHeight,
 behavior: "smooth"
});

Often, instead of scrolling to a numeric location in a document, we just
want to scroll so that a certain element in the document is visible.
You can do this with the scrollIntoView() method on the desired HTML
element. This method ensures that the element on which it is invoked
is visible in the viewport. By default, it tries to put the top edge
of the element at or near the top of the viewport. If false is passed as the only argument, it tries to put the bottom edge of the
element at the bottom of the viewport. The browser will also scroll
the viewport horizontally as needed to make the element visible.

You can also pass an object to scrollIntoView(), setting the
behavior:"smooth" property for smooth scrolling. You can set the
block property to specify where the element should be positioned
vertically and the inline property to specify how it should be
positioned horizontally if horizontal scrolling is needed. Legal
values for both of these properties are start, end, nearest, and center.

15.5.5 Viewport Size, Content Size, and Scroll Position

As we’ve discussed, browser windows and other HTML elements can
display scrolling content. When this is the case, we sometimes need to
know the size of the viewport, the size of the content, and the scroll
offsets of the content within the viewport. This section covers these
details.

For browser windows, the viewport size is given by the
window.innerWidth and window.innerHeight properties. (Web pages
optimized for mobile devices often use a <meta name="viewport"> tag
in their <head> to set the desired viewport width for the page.) The total
size of the document is the same as the size of the <html> element,
document.documentElement. You can call getBoundingClientRect() on
document.documentElement to get the width and height of the document, or you can use the offsetWidth and offsetHeight properties of
document.documentElement. The scroll offsets of the document within
its viewport are available as window.scrollX and
window.scrollY. These are read-only properties, so you can’t set
them to scroll the document: use window.scrollTo() instead.

Things are a little more complicated for elements. Every Element
object defines the following three groups of properties:

offsetWidth clientWidth scrollWidth
offsetHeight clientHeight scrollHeight
offsetLeft clientLeft scrollLeft
offsetTop clientTop scrollTop
offsetParent

The offsetWidth and offsetHeight properties of an element return its on-screen size in CSS pixels. The returned sizes include the element
border and padding but not margins. The offsetLeft and offsetTop
properties return the x and y coordinates of the element. For
many elements, these values are document coordinates. But for
descendants of positioned elements and for some other elements, such
as table cells, these properties return coordinates that are relative
to an ancestor element rather than the document itself. The
offsetParent property specifies which element the properties are
relative to. These offset properties are all read-only.

clientWidth and clientHeight are like offsetWidth and
offsetHeight except that they do not include the border size—only
the content area and its padding. The clientLeft and clientTop
properties are not very useful: they return the horizontal and
vertical distance between the outside of an element’s padding and the
outside of its border. Usually, these values are just the width of the
left and top borders. These client properties are all read-only. For
inline elements like <i>, <code>, and , they all return 0.

scrollWidth and scrollHeight return the size of an element’s
content area plus its padding plus any overflowing content. When the
content fits within the content area without overflow, these
properties are the same as clientWidth and clientHeight. But when
there is overflow, they include the overflowing content and return
values larger than clientWidth and clientHeight. scrollLeft and
scrollTop give the scroll offset of the element content within the
element’s viewport. Unlike all the other properties described here,
scrollLeft and scrollTop are writable properties, and you can set
them to scroll the content within an element. (In most browsers,
Element objects also have scrollTo() and scrollBy() methods like
the Window object does, but these are not yet universally supported.)

15.6 Web Components

HTML is a language for document markup and defines a rich set of tags
for that purpose. Over the last three decades, it has become a language
that is used to describe the user interfaces of web applications, but
basic HTML tags such as <input> and <button> are
inadequate for modern UI designs. Web developers are able to make it
work, but only by using CSS and JavaScript to augment the appearance
and behavior of basic HTML tags. Consider a typical user interface
component, such as the search box shown in Figure 15-3.

[image: js7e 1503]
Figure 15-3. A search box user interface component

The HTML <input> element can be used to accept a single line of
input from the user, but it doesn’t have any way to display icons like
the magnifying glass on the left and the cancel X on the right. In
order to implement a modern user interface element like this for the
web, we need to use at least four HTML elements: an <input> element to
accept and display the user’s input, two elements (or in this
case, two elements displaying Unicode glyphs), and a container
<div> element to hold those three children. Furthermore, we have to
use CSS to hide the default border of the <input> element and define
a border for the container. And we need to use JavaScript to make all
the HTML elements work together. When the user clicks on the X icon, we
need an event handler to clear the input from the <input>
element, for example.

That is a lot of work to do every time you want to display a search
box in a web application, and most web applications today are not
written using “raw” HTML. Instead, many web developers use frameworks
like React and Angular that support the creation of reusable user
interface components like the search box shown here. Web components
is a browser-native alternative to those frameworks based on three
relatively recent additions to web standards that allow JavaScript to
extend HTML with new tags that work as self-contained, reusable UI
components.

The subsections that follow explain how to use web components defined
by other developers in your own web pages, then explain each of the
three technologies that web components are based on, and finally tie all
three together in an example that implements the search box element
pictured in Figure 15-3.

15.6.1 Using Web Components

Web components are defined in JavaScript, so in order to use a web
component in your HTML file, you need to include the JavaScript file
that defines the component. Because web components are a relatively
new technology, they are often written as JavaScript modules, so you
might include one in your HTML like this:

<script type="module" src="components/search-box.js">

Web components define their own HTML tag names, with the important
restriction that those tag names must include a hyphen. (This means
that future versions of HTML can introduce new tags without hyphens,
and there is no chance that the tags will conflict with anyone’s web
component.) To use a web component, just use its tag in your HTML
file:

<search-box placeholder="Search..."></search-box>

Web components can have attributes just like regular HTML tags can;
the documentation for the component you are using should tell you
which attributes are supported. Web components cannot be defined with
self-closing tags. You cannot write <search-box/>, for example. Your
HTML file must include both the opening tag and the closing tag.

Like regular HTML elements, some web components are written to expect
children and others are written in such a way that they do not expect
(and will not display) children. Some web components are written so
that they can optionally accept
specially labeled children that will
appear in named “slots.” The <search-box> component pictured in
Figure 15-3 and implemented in Example 15-3 uses “slots” for
the two icons it displays. If you want to to use a <search-box> with
different icons, you can use HTML like this:

<search-box>

</search-box>

The slot attribute is an extension to HTML that it is used to
specify which children should go where. The slot names—“left” and
“right” in this example—are defined by the web component. If the
component you are using supports slots, that fact should be included
in its documentation.

I previously noted that web components are often implemented as JavaScript
modules and can be loaded into HTML files with a <script
type="module"> tag. You may remember from the beginning of this
chapter that modules are loaded after document content is parsed, as
if they had a deferred tag. So this means that a web browser will
typically parse and render tags like <search-box> before it has run
the code that will tell it what a <search-box> is. This is normal
when using web components. HTML parsers in web browsers are flexible
and very forgiving about input that they do not understand. When they
encounter a web component tag before that component has been defined,
they add a generic HTMLElement to the DOM tree even though they do not
know what to do with it. Later, when the custom element is defined, the
generic element is “upgraded” so that it looks and behaves as desired.

If a web component has children, then those children will probably be
displayed incorrectly before the component is defined. You can use
this CSS to keep web components hidden until they are defined:

/*
 * Make the <search-box> component invisible before it is defined.
 * And try to duplicate its eventual layout and size so that nearby
 * content does not move when it becomes defined.
 */
search-box:not(:defined) {
 opacity:0;
 display: inline-block;
 width: 300px;
 height: 50px;
}

Like regular HTML elements, web components can be used in
JavaScript. If you include a <search-box> tag in your web page, then
you can obtain a reference to it with querySelector() and an
appropriate CSS selector, just as you would for any other HTML tag.
Generally, it only makes sense to do this after the module that
defines the component has run, so be careful when querying web
components that you do not do so too early. Web component
implementations typically (but this is not a requirement) define a
JavaScript property for each HTML attribute they support. And, like
HTML elements, they may also define useful methods. Once again, the
documentation for the web component you are using should specify what
properties and methods are available to your JavaScript code.

Now that you know how to use web components, the next three sections
cover the three web browser features that allow us to implement them.

DocumentFragment Nodes

Before we can cover web component APIs, we need to return briefly to
the DOM API to explain what a DocumentFragment is. The DOM API
organizes a document into a tree of Node objects, where a Node can be
a Document, an Element, a Text node, or even a Comment. None of these
node types allows you to represent a fragment of a document that
consists of a set of sibling nodes without their parent. This is where
DocumentFragment comes in: it is another type of Node that serves as a
temporary parent when you want to manipulate a group of sibling nodes
as a single unit. You can create a DocumentFragment node with
document.createDocumentFragment(). Once you have a DocumentFragment,
you can use it like an Element and append() content to it. A
DocumentFragment is different from an Element because it does not have
a parent. But more importantly, when you insert a DocumentFragment
node into the document, the DocumentFragment itself is not
inserted. Instead, all of its children are inserted.

15.6.2 HTML Templates

The HTML <template> tag is only loosely related to web components,
but it does enable a useful optimization for components that appear
frequently in web pages. <template> tags and their children are
never rendered by a web browser and are only useful on web pages that
use JavaScript. The idea behind this tag is that when a web page
contains multiple repetitions of the same basic HTML structure (such
as rows in a table or the internal implementation of a web component),
then we can use a <template> to define that element structure once, then use JavaScript to duplicate the structure as many times as
needed.

In JavaScript, a <template> tag is represented by an
HTMLTemplateElement object. This object defines a single content
property, and the value of this property is a DocumentFragment of all
the child nodes of the <template>. You can clone this
DocumentFragment and then insert the cloned copy into your document as
needed. The fragment itself will not be inserted, but its children
will be. Suppose you’re working with a document that includes a
<table> and <template id="row"> tag and that the template defines
the structure of rows for that table. You might use the template like this:

let tableBody = document.querySelector("tbody");
let template = document.querySelector("#row");
let clone = template.content.cloneNode(true); // deep clone
// ...Use the DOM to insert content into the <td> elements of the clone...
// Now add the cloned and initialized row into the table
tableBody.append(clone);

Template elements do not have to appear literally in an HTML document
in order to be useful. You can create a template in your JavaScript
code, create its children with innerHTML, and then make as many
clones as needed without the parsing overhead of innerHTML. This is
how HTML templates are typically used in web components, and
Example 15-3 demonstrates this technique.

15.6.3 Custom Elements

The second web browser feature that enables web components is “custom
elements”: the ability to associate a JavaScript class with an HTML
tag name so that any such tags in the document are automatically
turned into instances of the class in the DOM tree. The
customElements.define() method takes a web component tag name as its
first argument (remember that the tag name must include a hyphen) and
a subclass of HTMLElement as its second argument. Any existing
elements in the document with that tag name are “upgraded” to newly
created instances of the class. And if the browser parses any HTML in
the future, it will automatically create an instance of the class for
each of the tags it encounters.

The class passed to customElements.define() should extend
HTMLElement and not a more specific type like
HTMLButtonElement.4
Recall from Chapter 9 that when a JavaScript class extends another
class, the constructor function must call super() before it uses the
this keyword, so if the custom element class has a constructor, it
should call super() (with no arguments) before doing anything else.

The browser will automatically invoke certain “lifecycle methods” of a
custom element class. The connectedCallback() method is invoked when
an instance of the custom element is inserted into the document, and
many elements use this method to perform initialization. There is also
a disconnectedCallback() method invoked when (and if) the element is
removed from the document, though this is less often used.

If a custom element class defines a static observedAttributes
property whose value is an array of attribute names, and if any of the
named attributes are set (or changed) on an instance of the custom
element, the browser will invoke the attributeChangedCallback()
method, passing the attribute name, its old value, and its new
value. This callback can take whatever steps are necessary to update
the component based on its attribute values.

Custom element classes can also define whatever other properties and
methods they want to. Commonly, they will define getter and setter
methods that make the element’s attributes available as JavaScript
properties.

As an example of a custom element, suppose we want to be able to
display circles within paragraphs of regular text. We’d like to be
able to write HTML like this in order to render mathematical story
problems like the one shown in Figure 15-4:

<p>
 The document has one marble: <inline-circle></inline-circle>.
 The HTML parser instantiates two more marbles:
 <inline-circle diameter="1.2em" color="blue"></inline-circle>
 <inline-circle diameter=".6em" color="gold"></inline-circle>.
 How many marbles does the document contain now?
</p>

[image: js7e 15in01]
Figure 15-4. An inline circle custom element

We can implement this <inline-circle> custom element with the code shown in Example 15-2:

Example 15-2. The <inline-circle> custom element

customElements.define("inline-circle", class InlineCircle extends HTMLElement {
 // The browser calls this method when an <inline-circle> element
 // is inserted into the document. There is also a disconnectedCallback()
 // that we don't need in this example.
 connectedCallback() {
 // Set the styles needed to create circles
 this.style.display = "inline-block";
 this.style.borderRadius = "50%";
 this.style.border = "solid black 1px";
 this.style.transform = "translateY(10%)";

 // If there is not already a size defined, set a default size
 // that is based on the current font size.
 if (!this.style.width) {
 this.style.width = "0.8em";
 this.style.height = "0.8em";
 }
 }

 // The static observedAttributes property specifies which attributes
 // we want to be notified about changes to. (We use a getter here since
 // we can only use "static" with methods.)
 static get observedAttributes() { return ["diameter", "color"]; }

 // This callback is invoked when one of the attributes listed above
 // changes, either when the custom element is first parsed, or later.
 attributeChangedCallback(name, oldValue, newValue) {
 switch(name) {
 case "diameter":
 // If the diameter attribute changes, update the size styles
 this.style.width = newValue;
 this.style.height = newValue;
 break;
 case "color":
 // If the color attribute changes, update the color styles
 this.style.backgroundColor = newValue;
 break;
 }
 }

 // Define JavaScript properties that correspond to the element's
 // attributes. These getters and setters just get and set the underlying
 // attributes. If a JavaScript property is set, that sets the attribute
 // which triggers a call to attributeChangedCallback() which updates
 // the element styles.
 get diameter() { return this.getAttribute("diameter"); }
 set diameter(diameter) { this.setAttribute("diameter", diameter); }
 get color() { return this.getAttribute("color"); }
 set color(color) { this.setAttribute("color", color); }
});

15.6.4 Shadow DOM

The custom element demonstrated in Example 15-2 is not well
encapsulated. When you set its diameter or color attributes, it
responds by altering its own style attribute, which is not behavior
we would ever expect from a real HTML element. To turn a custom
element into a true web component, it should use the powerful
encapsulation mechanism known as shadow DOM.

Shadow DOM allows a “shadow root” to be attached to a custom element
(and also to a <div>, , <body>, <article>, <main>,
<nav>, <header>, <footer>, <section>, <p>, <blockquote>,
<aside>, or <h1> through <h6> element) known as a “shadow host.”
Shadow host elements, like all HTML elements, are already the
root of a normal DOM tree of descendant elements and text nodes. A
shadow root is the root of another, more private, tree of descendant
elements that sprouts from the shadow host and can be thought of as a
distinct minidocument.

The word “shadow” in “shadow DOM” refers to the fact that elements
that descend from a shadow root are “hiding in the shadows”: they are
not part of the normal DOM tree, do not appear in the children array
of their host element, and are not visited by normal DOM traversal
methods such as querySelector(). For contrast, the normal, regular
DOM children of a shadow host are sometimes referred to as the “light
DOM.”

To understand the purpose of the shadow DOM, picture the HTML
<audio> and <video> elements: they display a nontrivial user
interface for controlling media playback, but the play and pause
buttons and other UI elements are not part of the DOM tree and cannot
be manipulated by JavaScript. Given that web browsers are designed to
display HTML, it is only natural that browser vendors would want to
display internal UIs like these using HTML. In fact, most browsers
have been doing something like that for a long time, and the shadow
DOM makes it a standard part of the web platform.

Shadow DOM encapsulation

The key feature of shadow DOM is the encapsulation it provides. The
descendants of a shadow root are hidden from—and independent from—the
regular DOM tree, almost as if they were in an independent
document. There are three very important kinds of encapsulation
provided by the shadow DOM:

		
As already mentioned, elements in the shadow DOM are hidden from
regular DOM methods like querySelectorAll(). When a shadow root is
created and attached to its shadow host, it can be created in “open”
or “closed” mode. A closed shadow root is completely sealed away and
inaccessible. More commonly, though, shadow roots are created in
“open” mode, which means that the shadow host has a shadowRoot
property that JavaScript can use to gain access to the elements of
the shadow root, if it has some reason to do so.

		
Styles defined beneath a shadow root are private to that tree and
will never affect the light DOM elements on the outside. (A shadow
root can define default styles for its host element, but these will
be overridden by light DOM styles.) Similarly, the light DOM styles
that apply to the shadow host element have no effect on the
descendants of the shadow root. Elements in the shadow DOM will
inherit things like font size and background color from the light
DOM, and styles in the shadow DOM can choose to use CSS variables
defined in the light DOM. For the most part, however, the styles of
the light DOM and the styles of the shadow DOM are completely
independent: the author of a web component and the user of a web
component do not have to worry about collisions or conflicts between
their stylesheets. Being able to “scope” CSS in this way is perhaps
the most important feature of the shadow DOM.

		
Some events (like “load”) that occur within the shadow DOM are
confined to the shadow DOM. Others, including focus, mouse, and
keyboard events bubble up and out. When an event that originates in
the shadow DOM crosses the boundary and begins to propagate in the
light DOM, its target property is changed to the shadow host
element, so it appears to have originated directly on that element.

Shadow DOM slots and light DOM children

An HTML element that is a shadow host has two trees of
descendants. One is the children[] array—the regular light DOM
descendants of the host element—and the other is the shadow root and
all of its descendants, and you may be wondering how two distinct
content trees can be displayed within the same host element. Here’s
how it works:

		
The descendants of the shadow root are always displayed within the
shadow host.

		
If those descendants include a <slot> element, then the regular
light DOM children of the host element are displayed as if they were
children of that <slot>, replacing any shadow DOM content in the
slot. If the shadow DOM does not include a <slot>, then any light
DOM content of the host is never displayed. If the shadow DOM has a
<slot>, but the shadow host has no light DOM children, then the
shadow DOM content of the slot is displayed as a default.

		
When light DOM content is displayed within a shadow DOM slot, we say
that those elements have been “distributed,” but it is important to
understand that the elements do not actually become part of the
shadow DOM. They can still be queried with querySelector(), and
they still appear in the light DOM as children or descendants of
the host element.

		
If the shadow DOM defines more than one <slot> and names those
slots with a name attribute, then children of the shadow host can
specify which slot they would like to appear in by specifying a
slot="slotname" attribute. We saw an example of this usage
in §15.6.1 when we demonstrated how to customize the
icons displayed by the <search-box> component.

Shadow DOM API

For all of its power, the Shadow DOM doesn’t have much of a JavaScript
API. To turn a light DOM element into a shadow host, just call its
attachShadow() method, passing
{mode:"open"} as the only argument. This method returns a shadow
root object and also sets that object as the value of the host’s
shadowRoot property. The shadow root object is a DocumentFragment,
and you can use DOM methods to add content to it or just set its
innerHTML property to a string of HTML.

If your web component needs to know when the light DOM content of a
shadow DOM <slot> has changed, it can register a listener for
“slotchanged” events directly on the <slot> element.

15.6.5 Example: a <search-box> Web Component

Figure 15-3 illustrated a <search-box> web
component. Example 15-3 demonstrates the three enabling
technologies that define web components: it implements the
<search-box> component as a custom element that uses a <template>
tag for efficiency and a shadow root for encapsulation.

This example shows how to use the low-level web component APIs
directly. In practice, many web components developed today create them
using higher-level libraries such as “lit-element.” One of the reasons
to use a library is that creating reusable and customizable components
is actually quite hard to do well, and there are many details to get
right. Example 15-3 demonstrates web components and does some
basic keyboard focus handling, but otherwise ignores accessibility and
makes no attempt to use proper ARIA attributes to make the component
work with screen readers and other assistive technology.

Example 15-3. Implementing a web component

/**
 * This class defines a custom HTML <search-box> element that displays an
 * <input> text input field plus two icons or emoji. By default, it displays a
 * magnifying glass emoji (indicating search) to the left of the text field
 * and an X emoji (indicating cancel) to the right of the text field. It
 * hides the border on the input field and displays a border around itself,
 * creating the appearance that the two emoji are inside the input
 * field. Similarly, when the internal input field is focused, the focus ring
 * is displayed around the <search-box>.
 *
 * You can override the default icons by including or children
 * of <search-box> with slot="left" and slot="right" attributes.
 *
 * <search-box> supports the normal HTML disabled and hidden attributes and
 * also size and placeholder attributes, which have the same meaning for this
 * element as they do for the <input> element.
 *
 * Input events from the internal <input> element bubble up and appear with
 * their target field set to the <search-box> element.
 *
 * The element fires a "search" event with the detail property set to the
 * current input string when the user clicks on the left emoji (the magnifying
 * glass). The "search" event is also dispatched when the internal text field
 * generates a "change" event (when the text has changed and the user types
 * Return or Tab).
 *
 * The element fires a "clear" event when the user clicks on the right emoji
 * (the X). If no handler calls preventDefault() on the event then the element
 * clears the user's input once event dispatch is complete.
 *
 * Note that there are no onsearch and onclear properties or attributes:
 * handlers for the "search" and "clear" events can only be registered with
 * addEventListener().
 */
class SearchBox extends HTMLElement {
 constructor() {
 super(); // Invoke the superclass constructor; must be first.

 // Create a shadow DOM tree and attach it to this element, setting
 // the value of this.shadowRoot.
 this.attachShadow({mode: "open"});

 // Clone the template that defines the descendants and stylesheet for
 // this custom component, and append that content to the shadow root.
 this.shadowRoot.append(SearchBox.template.content.cloneNode(true));

 // Get references to the important elements in the shadow DOM
 this.input = this.shadowRoot.querySelector("#input");
 let leftSlot = this.shadowRoot.querySelector('slot[name="left"]');
 let rightSlot = this.shadowRoot.querySelector('slot[name="right"]');

 // When the internal input field gets or loses focus, set or remove
 // the "focused" attribute which will cause our internal stylesheet
 // to display or hide a fake focus ring on the entire component. Note
 // that the "blur" and "focus" events bubble and appear to originate
 // from the <search-box>.
 this.input.onfocus = () => { this.setAttribute("focused", ""); };
 this.input.onblur = () => { this.removeAttribute("focused");};

 // If the user clicks on the magnifying glass, trigger a "search"
 // event. Also trigger it if the input field fires a "change"
 // event. (The "change" event does not bubble out of the Shadow DOM.)
 leftSlot.onclick = this.input.onchange = (event) => {
 event.stopPropagation(); // Prevent click events from bubbling
 if (this.disabled) return; // Do nothing when disabled
 this.dispatchEvent(new CustomEvent("search", {
 detail: this.input.value
 }));
 };

 // If the user clicks on the X, trigger a "clear" event.
 // If preventDefault() is not called on the event, clear the input.
 rightSlot.onclick = (event) => {
 event.stopPropagation(); // Don't let the click bubble up
 if (this.disabled) return; // Don't do anything if disabled
 let e = new CustomEvent("clear", { cancelable: true });
 this.dispatchEvent(e);
 if (!e.defaultPrevented) { // If the event was not "cancelled"
 this.input.value = ""; // then clear the input field
 }
 };
 }

 // When some of our attributes are set or changed, we need to set the
 // corresponding value on the internal <input> element. This life cycle
 // method, together with the static observedAttributes property below,
 // takes care of that.
 attributeChangedCallback(name, oldValue, newValue) {
 if (name === "disabled") {
 this.input.disabled = newValue !== null;
 } else if (name === "placeholder") {
 this.input.placeholder = newValue;
 } else if (name === "size") {
 this.input.size = newValue;
 } else if (name === "value") {
 this.input.value = newValue;
 }
 }

 // Finally, we define property getters and setters for properties that
 // correspond to the HTML attributes we support. The getters simply return
 // the value (or the presence) of the attribute. And the setters just set
 // the value (or the presence) of the attribute. When a setter method
 // changes an attribute, the browser will automatically invoke the
 // attributeChangedCallback above.

 get placeholder() { return this.getAttribute("placeholder"); }
 get size() { return this.getAttribute("size"); }
 get value() { return this.getAttribute("value"); }
 get disabled() { return this.hasAttribute("disabled"); }
 get hidden() { return this.hasAttribute("hidden"); }

 set placeholder(value) { this.setAttribute("placeholder", value); }
 set size(value) { this.setAttribute("size", value); }
 set value(text) { this.setAttribute("value", text); }
 set disabled(value) {
 if (value) this.setAttribute("disabled", "");
 else this.removeAttribute("disabled");
 }
 set hidden(value) {
 if (value) this.setAttribute("hidden", "");
 else this.removeAttribute("hidden");
 }
}

// This static field is required for the attributeChangedCallback method.
// Only attributes named in this array will trigger calls to that method.
SearchBox.observedAttributes = ["disabled", "placeholder", "size", "value"];

// Create a <template> element to hold the stylesheet and the tree of
// elements that we'll use for each instance of the SearchBox element.
SearchBox.template = document.createElement("template");

// We initialize the template by parsing this string of HTML. Note, however,
// that when we instantiate a SearchBox, we are able to just clone the nodes
// in the template and do have to parse the HTML again.
SearchBox.template.innerHTML = `
<style>
/*
 * The :host selector refers to the <search-box> element in the light
 * DOM. These styles are defaults and can be overridden by the user of the
 * <search-box> with styles in the light DOM.
 */
:host {
 display: inline-block; /* The default is inline display */
 border: solid black 1px; /* A rounded border around the <input> and <slots> */
 border-radius: 5px;
 padding: 4px 6px; /* And some space inside the border */
}
:host([hidden]) { /* Note the parentheses: when host has hidden... */
 display:none; /* ...attribute set don't display it */
}
:host([disabled]) { /* When host has the disabled attribute... */
 opacity: 0.5; /* ...gray it out */
}
:host([focused]) { /* When host has the focused attribute... */
 box-shadow: 0 0 2px 2px #6AE; /* display this fake focus ring. */
}

/* The rest of the stylesheet only applies to elements in the Shadow DOM. */
input {
 border-width: 0; /* Hide the border of the internal input field. */
 outline: none; /* Hide the focus ring, too. */
 font: inherit; /* <input> elements don't inherit font by default */
 background: inherit; /* Same for background color. */
}
slot {
 cursor: default; /* An arrow pointer cursor over the buttons */
 user-select: none; /* Don't let the user select the emoji text */
}
</style>
<div>
 <slot name="left">\u{1f50d}</slot> <!-- U+1F50D is a magnifying glass -->
 <input type="text" id="input" /> <!-- The actual input element -->
 <slot name="right">\u{2573}</slot> <!-- U+2573 is an X -->
</div>
`;

// Finally, we call customElement.define() to register the SearchBox element
// as the implementation of the <search-box> tag. Custom elements are required
// to have a tag name that contains a hyphen.
customElements.define("search-box", SearchBox);

15.7 SVG: Scalable Vector Graphics

SVG (scalable vector graphics) is an image format. The word “vector” in its name indicates that
it is fundamentally different from raster image formats, such as GIF,
JPEG, and PNG, that specify a matrix of pixel values. Instead, an SVG
“image” is a precise, resolution-independent (hence “scalable”)
description of the steps necessary to draw the desired graphic. SVG
images are described by text files using the XML markup language,
which is quite similar to HTML.

There are three ways you can use SVG in web browsers:

		
You can use .svg image files with regular HTML tags,
just as you would use a .png or .jpeg image.

		
Because the XML-based SVG format is so similar to HTML, you
can actually embed SVG tags directly into your HTML documents. If
you do this, the browser’s HTML parser allows you to omit XML
namespaces and treat SVG tags as if they were HTML tags.

		
You can use the DOM API to dynamically create SVG elements to
generate images on demand.

The subsections that follow demonstrate the second and third uses of
SVG. Note, however, that SVG has a large and moderately complex
grammar. In addition to simple shape-drawing primitives, it includes
support for arbitrary curves, text, and animation. SVG graphics can
even incorporate JavaScript scripts and CSS stylesheets to add
behavior and presentation information. A full description of SVG is
well beyond the scope of this book. The goal of this section is just
to show you how you can use SVG in your HTML documents and script it
with JavaScript.

15.7.1 SVG in HTML

SVG images can, of course, be displayed using HTML tags. But
you can also embed SVG directly in HTML. And if you do this, you can
even use CSS stylesheets to specify things like fonts, colors, and line
widths. Here, for example, is an HTML file that uses SVG to display
an analog clock face:

<html>
<head>
<title>Analog Clock</title>
<style>
/* These CSS styles all apply to the SVG elements defined below */
#clock { /* Styles for everything in the clock:*/
 stroke: black; /* black lines */
 stroke-linecap: round; /* with rounded ends */
 fill: #ffe; /* on an off-white background */
}
#clock .face { stroke-width: 3; } /* Clock face outline */
#clock .ticks { stroke-width: 2; } /* Lines that mark each hour */
#clock .hands { stroke-width: 3; } /* How to draw the clock hands */
#clock .numbers { /* How to draw the numbers */
 font-family: sans-serif; font-size: 10; font-weight: bold;
 text-anchor: middle; stroke: none; fill: black;
}
</style>
</head>
<body>
 <svg id="clock" viewBox="0 0 100 100" width="250" height="250">
 <!-- The width and height attributes are the screen size of the graphic -->
 <!-- The viewBox attribute gives the internal coordinate system -->
 <circle class="face" cx="50" cy="50" r="45"/> <!-- the clock face -->
 <g class="ticks"> <!-- tick marks for each of the 12 hours -->
 <line x1='50' y1='5.000' x2='50.00' y2='10.00'/>
 <line x1='72.50' y1='11.03' x2='70.00' y2='15.36'/>
 <line x1='88.97' y1='27.50' x2='84.64' y2='30.00'/>
 <line x1='95.00' y1='50.00' x2='90.00' y2='50.00'/>
 <line x1='88.97' y1='72.50' x2='84.64' y2='70.00'/>
 <line x1='72.50' y1='88.97' x2='70.00' y2='84.64'/>
 <line x1='50.00' y1='95.00' x2='50.00' y2='90.00'/>
 <line x1='27.50' y1='88.97' x2='30.00' y2='84.64'/>
 <line x1='11.03' y1='72.50' x2='15.36' y2='70.00'/>
 <line x1='5.000' y1='50.00' x2='10.00' y2='50.00'/>
 <line x1='11.03' y1='27.50' x2='15.36' y2='30.00'/>
 <line x1='27.50' y1='11.03' x2='30.00' y2='15.36'/>
 </g>
 <g class="numbers"> <!-- Number the cardinal directions-->
 <text x="50" y="18">12</text><text x="85" y="53">3</text>
 <text x="50" y="88">6</text><text x="15" y="53">9</text>
 </g>
 <g class="hands"> <!-- Draw hands pointing straight up. -->
 <line class="hourhand" x1="50" y1="50" x2="50" y2="25"/>
 <line class="minutehand" x1="50" y1="50" x2="50" y2="20"/>
 </g>
 </svg>
 <script src="clock.js"></script>
</body>
</html>

You’ll notice that the descendants of the <svg> tag are not normal
HTML tags. <circle>, <line>, and <text> tags have obvious
purposes, though, and it should be clear how this SVG graphic
works. There are many other SVG tags, however, and you’ll need to
consult an SVG reference to learn more. You may also notice that the
stylesheet is odd. Styles like fill, stroke-width, and
text-anchor are not normal CSS style properties. In this case, CSS
is essentially being used to set attributes of SVG tags that appear in
the document. Note also that the CSS font shorthand property does
not work for SVG tags, and you must explicitly set font-family,
font-size, and font-weight as separate style properties.

15.7.2 Scripting SVG

One reason to embed SVG directly into your HTML files (instead of just
using static tags) is that if you do this, then you can use
the DOM API to manipulate the SVG image. Suppose you use SVG to
display icons in your web application. You could embed SVG within a
<template> tag (§15.6.2) and then clone the template content
whenever you need to insert a copy of that icon into your UI. And if
you want the icon to respond to user activity—by changing color when
the user hovers the pointer over it, for example—you can often achieve
this with CSS.

It is also possible to dynamically manipulate SVG graphics that are
directly embedded in HTML. The clock face example in the previous section displays a
static clock with hour and minute hands facing straight up displaying
the time noon or midnight. But you may have noticed that the HTML file
includes a <script> tag. That script runs a function periodically
to check the time and transform the hour and minute hands by rotating
them the appropriate number of degrees so that the clock actually
displays the current time, as shown in Figure 15-5.

[image: js7e 1504]
Figure 15-5. A scripted SVG analog clock

The code to manipulate the clock is straightforward. It determines the
proper angle of the hour and minute hands based on the current time,
then uses querySelector() to look up the SVG elements that display
those hands, then sets a transform attribute on them to rotate them
around the center of the clock face. The function uses setTimeout()
to ensure that it runs once a minute:

(function updateClock() { // Update the SVG clock graphic to show current time
 let now = new Date(); // Current time
 let sec = now.getSeconds(); // Seconds
 let min = now.getMinutes() + sec/60; // Fractional minutes
 let hour = (now.getHours() % 12) + min/60; // Fractional hours
 let minangle = min * 6; // 6 degrees per minute
 let hourangle = hour * 30; // 30 degrees per hour

 // Get SVG elements for the hands of the clock
 let minhand = document.querySelector("#clock .minutehand");
 let hourhand = document.querySelector("#clock .hourhand");

 // Set an SVG attribute on them to move them around the clock face
 minhand.setAttribute("transform", `rotate(${minangle},50,50)`);
 hourhand.setAttribute("transform", `rotate(${hourangle},50,50)`);

 // Run this function again in 10 seconds
 setTimeout(updateClock, 10000);
}()); // Note immediate invocation of the function here.

15.7.3 Creating SVG Images with JavaScript

In addition to simply scripting SVG images embedded in your HTML
documents, you can also build SVG images from scratch, which can be
useful to create visualizations of dynamically loaded data, for
example. Example 15-4 demonstrates how you can use JavaScript to
create SVG pie charts, like the one shown in Figure 15-6.

Even though SVG tags can be included within HTML documents, they are
technically XML tags, not HTML tags, and if you want to create SVG
elements with the JavaScript DOM API, you can’t use the normal
createElement() function that was introduced in
§15.3.5. Instead you must use
createElementNS(), which takes an XML namespace string as its first
argument. For SVG, that namespace is the literal string
“http://www.w3.org/2000/svg.”

[image: js7e 1505]
Figure 15-6. An SVG pie chart built with JavaScript (data from Stack Overflow’s 2018 Developer Survey of Most Popular Technologies)

Other than the use of createElementNS(), the pie chart–drawing code
in Example 15-4 is relatively straightforward. There is a little
math to convert the data being charted into pie-slice angles. The
bulk of the example, however, is DOM code that creates SVG elements
and sets attributes on those elements.

The most opaque part of this example is the code that draws the actual
pie slices. The element used to display each slice is <path>.
This SVG element describes arbitrary shapes comprised of lines and
curves. The shape description is specified by the d attribute of the
<path> element. The value of this attribute uses a compact
grammar of letter codes and numbers that specify coordinates, angles,
and other values. The letter M, for example, means “move to” and is
followed by x and y coordinates. The letter L means “line to” and
draws a line from the current point to the coordinates that follow it.
This example also uses the letter A to draw an arc. This letter is
followed by seven numbers describing the arc, and you can look up the
syntax online if you want to know more.

Example 15-4. Drawing a pie chart with JavaScript and SVG

/**
 * Create an <svg> element and draw a pie chart into it.
 *
 * This function expects an object argument with the following properties:
 *
 * width, height: the size of the SVG graphic, in pixels
 * cx, cy, r: the center and radius of the pie
 * lx, ly: the upper-left corner of the chart legend
 * data: an object whose property names are data labels and whose
 * property values are the values associated with each label
 *
 * The function returns an <svg> element. The caller must insert it into
 * the document in order to make it visible.
 */
function pieChart(options) {
 let {width, height, cx, cy, r, lx, ly, data} = options;

 // This is the XML namespace for svg elements
 let svg = "http://www.w3.org/2000/svg";

 // Create the <svg> element, and specify pixel size and user coordinates
 let chart = document.createElementNS(svg, "svg");
 chart.setAttribute("width", width);
 chart.setAttribute("height", height);
 chart.setAttribute("viewBox", `0 0 ${width} ${height}`);

 // Define the text styles we'll use for the chart. If we leave these
 // values unset here, they can be set with CSS instead.
 chart.setAttribute("font-family", "sans-serif");
 chart.setAttribute("font-size", "18");

 // Get labels and values as arrays and add up the values so we know how
 // big the pie is.
 let labels = Object.keys(data);
 let values = Object.values(data);
 let total = values.reduce((x,y) => x+y);

 // Figure out the angles for all the slices. Slice i starts at angles[i]
 // and ends at angles[i+1]. The angles are measured in radians.
 let angles = [0];
 values.forEach((x, i) => angles.push(angles[i] + x/total * 2 * Math.PI));

 // Now loop through the slices of the pie
 values.forEach((value, i) => {
 // Compute the two points where our slice intersects the circle
 // These formulas are chosen so that an angle of 0 is at 12 o'clock
 // and positive angles increase clockwise.
 let x1 = cx + r * Math.sin(angles[i]);
 let y1 = cy - r * Math.cos(angles[i]);
 let x2 = cx + r * Math.sin(angles[i+1]);
 let y2 = cy - r * Math.cos(angles[i+1]);

 // This is a flag for angles larger than a half circle
 // It is required by the SVG arc drawing component
 let big = (angles[i+1] - angles[i] > Math.PI) ? 1 : 0;

 // This string describes how to draw a slice of the pie chart:
 let path = `M${cx},${cy}` + // Move to circle center.
 `L${x1},${y1}` + // Draw line to (x1,y1).
 `A${r},${r} 0 ${big} 1` + // Draw an arc of radius r...
 `${x2},${y2}` + // ...ending at to (x2,y2).
 "Z"; // Close path back to (cx,cy).

 // Compute the CSS color for this slice. This formula works for only
 // about 15 colors. So don't include more than 15 slices in a chart.
 let color = `hsl(${(i*40)%360},${90-3*i}%,${50+2*i}%)`;

 // We describe a slice with a <path> element. Note createElementNS().
 let slice = document.createElementNS(svg, "path");

 // Now set attributes on the <path> element
 slice.setAttribute("d", path); // Set the path for this slice
 slice.setAttribute("fill", color); // Set slice color
 slice.setAttribute("stroke", "black"); // Outline slice in black
 slice.setAttribute("stroke-width", "1"); // 1 CSS pixel thick
 chart.append(slice); // Add slice to chart

 // Now draw a little matching square for the key
 let icon = document.createElementNS(svg, "rect");
 icon.setAttribute("x", lx); // Position the square
 icon.setAttribute("y", ly + 30*i);
 icon.setAttribute("width", 20); // Size the square
 icon.setAttribute("height", 20);
 icon.setAttribute("fill", color); // Same fill color as slice
 icon.setAttribute("stroke", "black"); // Same outline, too.
 icon.setAttribute("stroke-width", "1");
 chart.append(icon); // Add to the chart

 // And add a label to the right of the rectangle
 let label = document.createElementNS(svg, "text");
 label.setAttribute("x", lx + 30); // Position the text
 label.setAttribute("y", ly + 30*i + 16);
 label.append(`${labels[i]} ${value}`); // Add text to label
 chart.append(label); // Add label to the chart
 });

 return chart;
}

The pie chart in Figure 15-6 was created using the pieChart()
function from Example 15-4, like this:

document.querySelector("#chart").append(pieChart({
 width: 640, height:400, // Total size of the chart
 cx: 200, cy: 200, r: 180, // Center and radius of the pie
 lx: 400, ly: 10, // Position of the legend
 data: { // The data to chart
 "JavaScript": 71.5,
 "Java": 45.4,
 "Bash/Shell": 40.4,
 "Python": 37.9,
 "C#": 35.3,
 "PHP": 31.4,
 "C++": 24.6,
 "C": 22.1,
 "TypeScript": 18.3,
 "Ruby": 10.3,
 "Swift": 8.3,
 "Objective-C": 7.3,
 "Go": 7.2,
 }
}));

15.8 Graphics in a <canvas>

The <canvas> element has no appearance of its own but creates a
drawing surface within the document and exposes a powerful drawing API
to client-side JavaScript. The main difference between the <canvas>
API and SVG is that with the canvas you create drawings by calling
methods, and with SVG you create drawings by building a tree of XML
elements. These two approaches are equivalently powerful: either one
can be simulated with the other. On the surface, they are quite
different, however, and each has its strengths and weaknesses. An SVG
drawing, for example, is easily edited by removing elements from its
description. To remove an element from the same graphic in a
<canvas>, it is often necessary to erase the drawing and redraw it
from scratch. Since the Canvas drawing API is JavaScript-based and
relatively compact (unlike the SVG grammar), it is documented in more
detail in this book.

3D Graphics in a Canvas

You can also call getContext() with the string “webgl” to obtain a
context object that allows you to draw 3D graphics using the WebGL
API. WebGL is a large, complicated, and low-level API that allows
JavaScript programmers to access the GPU, write custom shaders, and
perform other very powerful graphics operations. WebGL is not
documented in this book, however: web developers are more likely to
use utility libraries built on top of WebGL than to use the WebGL API
directly.

Most of the Canvas drawing API is defined not on the <canvas> element
itself, but instead on a “drawing context” object obtained with the
getContext() method of the canvas. Call getContext() with the
argument “2d” to obtain a CanvasRenderingContext2D object that you
can use to draw two-dimensional graphics into the canvas.

As a simple example of the Canvas API, the following HTML document
uses <canvas> elements and some JavaScript to display two simple
shapes:

<p>This is a red square: <canvas id="square" width=10 height=10></canvas>.
<p>This is a blue circle: <canvas id="circle" width=10 height=10></canvas>.
<script>
let canvas = document.querySelector("#square"); // Get first canvas element
let context = canvas.getContext("2d"); // Get 2D drawing context
context.fillStyle = "#f00"; // Set fill color to red
context.fillRect(0,0,10,10); // Fill a square

canvas = document.querySelector("#circle"); // Second canvas element
context = canvas.getContext("2d"); // Get its context
context.beginPath(); // Begin a new "path"
context.arc(5, 5, 5, 0, 2*Math.PI, true); // Add a circle to the path
context.fillStyle = "#00f"; // Set blue fill color
context.fill(); // Fill the path
</script>

We’ve seen that SVG describes complex shapes as a “path” of lines and
curves that can be drawn or filled. The Canvas API also uses the notion
of a path. Instead of describing a path as a string of letters and
numbers, a path is defined by a series of method calls, such as the
beginPath() and arc() invocations in the preceding code. Once a path is
defined, other methods, such as fill(), operate on that path. Various
properties of the context object, such as fillStyle, specify how
these operations are performed.

The subsections that follow demonstrate the methods and properties of
the 2D Canvas API. Much of the example code that follows operates on a variable
c. This variable holds the CanvasRenderingContext2D object of the
canvas, but the code to initialize that variable is sometimes not shown.
In order to make these examples run, you would need to add HTML markup
to define a canvas with appropriate width and height attributes, and
then add code like this to initialize the variable c:

let canvas = document.querySelector("#my_canvas_id");
let c = canvas.getContext('2d');

15.8.1 Paths and Polygons

To draw lines on a canvas and to fill the areas enclosed by those
lines, you begin by defining a path. A path is a sequence of one or
more subpaths. A subpath is a sequence of two or more points connected
by line segments (or, as we’ll see later, by curve segments). Begin a
new path with the beginPath() method. Begin a new
subpath with the
moveTo() method. Once you have established the starting point of a
subpath with moveTo(), you can connect that point to a new point with
a straight line by calling lineTo(). The following code defines a
path that includes two line segments:

c.beginPath(); // Start a new path
c.moveTo(100, 100); // Begin a subpath at (100,100)
c.lineTo(200, 200); // Add a line from (100,100) to (200,200)
c.lineTo(100, 200); // Add a line from (200,200) to (100,200)

This code simply defines a path; it does not draw anything on the
canvas. To draw (or “stroke”) the two line segments in the path, call
the stroke() method, and to fill the area defined by those line
segments, call fill():

c.fill(); // Fill a triangular area
c.stroke(); // Stroke two sides of the triangle

This code (along with some additional code to set line widths and
fill colors) produced the drawing shown in Figure 15-7.

[image: js7e 1506]
Figure 15-7. A simple path, filled and stroked

Notice that the subpath defined in Figure 15-7 is “open.” It consists of just
two line segments, and the end point is not connected back to the
starting point. This means that it does not enclose a region. The
fill() method fills open subpaths by acting as if a straight line
connected the last point in the subpath to the first point in the
subpath. That is why this code fills a triangle, but strokes only
two sides of the triangle.

If you wanted to stroke all three sides of the triangle just shown, you
would call the closePath() method to connect the end point of the
subpath to the start point. (You could also call lineTo(100,100), but
then you end up with three line segments that share a start and end
point but are not truly closed. When drawing with wide lines, the
visual results are better if you use closePath().)

There are two other important points to notice about stroke() and
fill(). First, both methods operate on all subpaths in the current
path. Suppose we had added another subpath in the preceding code:

c.moveTo(300,100); // Begin a new subpath at (300,100);
c.lineTo(300,200); // Draw a vertical line down to (300,200);

If we then called stroke(), we would draw two connected edges of a
triangle and a disconnected vertical line.

The second point to note about stroke() and fill() is that neither
one alters the current path: you can call fill() and the path will
still be there when you call stroke(). When you are done with a path
and want to begin another, you must remember to call beginPath(). If
you don’t, you’ll end up adding new subpaths to the existing path, and
you may end up drawing those old subpaths over and over again.

Example 15-5 defines a function for drawing regular polygons and
demonstrates the use of moveTo(), lineTo(), and closePath() for
defining subpaths and of fill() and stroke() for drawing those
paths. It produces the drawing shown in Figure 15-8.

[image: js7e 1507]
Figure 15-8. Regular polygons

Example 15-5. Regular polygons with moveTo(), lineTo(), and closePath()

// Define a regular polygon with n sides, centered at (x,y) with radius r.
// The vertices are equally spaced along the circumference of a circle.
// Put the first vertex straight up or at the specified angle.
// Rotate clockwise, unless the last argument is true.
function polygon(c, n, x, y, r, angle=0, counterclockwise=false) {
 c.moveTo(x + r*Math.sin(angle), // Begin a new subpath at the first vertex
 y - r*Math.cos(angle)); // Use trigonometry to compute position
 let delta = 2*Math.PI/n; // Angular distance between vertices
 for(let i = 1; i < n; i++) { // For each of the remaining vertices
 angle += counterclockwise?-delta:delta; // Adjust angle
 c.lineTo(x + r*Math.sin(angle), // Add line to next vertex
 y - r*Math.cos(angle));
 }
 c.closePath(); // Connect last vertex back to the first
}

// Assume there is just one canvas, and get its context object to draw with.
let c = document.querySelector("canvas").getContext("2d");

// Start a new path and add polygon subpaths
c.beginPath();
polygon(c, 3, 50, 70, 50); // Triangle
polygon(c, 4, 150, 60, 50, Math.PI/4); // Square
polygon(c, 5, 255, 55, 50); // Pentagon
polygon(c, 6, 365, 53, 50, Math.PI/6); // Hexagon
polygon(c, 4, 365, 53, 20, Math.PI/4, true); // Small square inside the hexagon

// Set some properties that control how the graphics will look
c.fillStyle = "#ccc"; // Light gray interiors
c.strokeStyle = "#008"; // outlined with dark blue lines
c.lineWidth = 5; // five pixels wide.

// Now draw all the polygons (each in its own subpath) with these calls
c.fill(); // Fill the shapes
c.stroke(); // And stroke their outlines

Notice that this example draws a hexagon with a square inside it. The
square and the hexagon are separate subpaths, but they overlap. When
this happens (or when a single subpath intersects itself), the canvas
needs to be able to determine which regions are inside the path and
which are outside. The canvas uses a test known as the “nonzero
winding rule” to achieve this. In this case, the interior of the
square is not filled because the square and the hexagon were drawn in
the opposite directions: the vertices of the hexagon were connected
with line segments moving clockwise around the circle. The vertices of
the square were connected counterclockwise. Had the square been drawn
clockwise as well, the call to fill() would have filled the interior
of the square as well.

15.8.2 Canvas Dimensions and Coordinates

The width and height attributes of the <canvas> element and the
corresponding width and height properties of the Canvas object
specify the dimensions of the canvas. The default canvas
coordinate system places the origin (0,0) at the upper-left corner of
the canvas. The x coordinates increase to the right and the y coordinates
increase as you go down the screen. Points on the canvas can be
specified using floating-point values.

The dimensions of a canvas cannot be altered without completely
resetting the canvas. Setting either the width or height properties
of a Canvas (even setting them to their current value) clears the
canvas, erases the current path, and resets all graphics attributes
(including current transformation and clipping region) to their original
state.

The width and height attributes of a canvas specify the actual
number of pixels that the canvas can draw into. Four bytes of memory
are allocated for each pixel, so if width and height are both set
to 100, the canvas allocates 40,000 bytes to represent 10,000 pixels.

The width and height attributes also specify the default size (in
CSS pixels) at which the canvas will be displayed on the screen. If
window.devicePixelRatio is 2, then 100 × 100 CSS pixels is actually
40,000 hardware pixels. When the contents of the canvas are drawn onto
the screen, the 10,000 pixels in memory will need to be enlarged to
cover 40,000 physical pixels on the screen, and this means that your
graphics will not be as crisp as they could be.

For optimum image quality, you should not use the width and height
attributes to set the on-screen size of the canvas. Instead, set the
desired on-screen size CSS pixel size of the canvas with CSS width
and height style attributes. Then, before you begin drawing in your
JavaScript code, set the width and height properties of the canvas
object to the number of CSS pixels times
window.devicePixelRatio. Continuing with the preceding example, this
technique would result in the canvas being displayed at 100 × 100 CSS
pixels but allocating memory for 200 × 200 pixels. (Even with this
technique, the user can zoom in on the canvas and may see fuzzy or
pixelated graphics if they do. This is in contrast to SVG graphics,
which remain crisp no matter the on-screen size or zoom level.)

15.8.3 Graphics Attributes

Example 15-5 set the properties fillStyle, strokeStyle, and
lineWidth on the context object of the canvas. These properties are
graphics attributes that specify the color to be used by fill() and by stroke(), and the width of the lines to be drawn
by stroke(). Notice that these parameters are not passed to the
fill() and stroke() methods, but are instead part of the general
graphics state of the canvas. If you define a method that draws a
shape and do not set these properties yourself, the caller of your
method can define the color of the shape by setting the strokeStyle
and fillStyle properties before calling your method. This separation
of graphics state from drawing commands is fundamental to the Canvas
API and is akin to the separation of presentation from content achieved
by applying CSS stylesheets to HTML documents.

There are a number of properties (and also some methods) on the context
object that affect the graphics state of the canvas. They are detailed
below.

Line styles

The lineWidth property specifies how wide (in CSS pixels) the lines
drawn by stroke() will be. The default value is 1. It is important
to understand that line width is determined by the lineWidth
property at the time stroke() is called, not at the time that
lineTo() and other path-building methods are called. To fully
understand the lineWidth property, it is important to visualize
paths as infinitely thin one-dimensional lines. The lines and curves
drawn by the stroke() method are centered over the path, with half
of the lineWidth on either side. If you’re stroking a closed path
and only want the line to appear outside the path, stroke the path
first, then fill with an opaque color to hide the portion of the
stroke that appears inside the path. Or if you only want the line to
appear inside a closed path, call the save() and clip() methods
first, then call stroke() and restore(). (The save(),
restore(), and clip() methods are described later.)

When drawing lines that are more than about two pixels wide, the lineCap
and lineJoin properties can have a significant impact on the visual
appearance of the ends of a path and the vertices at which two path
segments meet. Figure 15-9 illustrates the values and resulting
graphical appearance of lineCap and lineJoin.

[image: js7e 1508]
Figure 15-9. The lineCap and lineJoin attributes

The default value for lineCap is “butt.” The default value for
lineJoin is “miter.” Note, however, that if two lines meet at a very
narrow angle, then the resulting miter can become quite long and
visually distracting. If the miter at a given vertex would be longer
than half of the line width times the miterLimit property, that vertex
will be drawn with a beveled join instead of a mitered join. The default
value for miterLimit is 10.

The stroke() method can draw dashed and dotted lines as well as solid
lines, and a canvas’s graphics state includes an array of numbers that
serves as a “dash pattern” by specifying how many pixels to draw, then
how many to omit. Unlike other line-drawing properties, the dash pattern
is set and queried with the methods setLineDash() and getLineDash()
instead of with a property. To specify a dotted dash pattern, you might
use setLineDash() like this:

c.setLineDash([18, 3, 3, 3]); // 18px dash, 3px space, 3px dot, 3px space

Finally, the lineDashOffset property specifies how far into the dash
pattern drawing should begin. The default is 0. Paths stroked with the
dash pattern shown here begin with an 18-pixel dash, but if
lineDashOffset is set to 21, then that same path would begin with a
dot followed by a space and a dash.

Colors, patterns, and gradients

The fillStyle and strokeStyle properties specify how paths are
filled and stroked. The word “style” often means color, but these
properties can also be used to specify a color gradient or an image to
be used for filling and stroking. (Note that drawing a line is basically
the same as filling a narrow region on both sides of the line, and
filling and stroking are fundamentally the same operation.)

If you want to fill or stroke with a solid color (or a translucent
color), simply set these properties to a valid CSS color string. Nothing
else is required.

To fill (or stroke) with a color gradient, set fillStyle (or
strokeStyle) to a CanvasGradient object returned by the
createLinearGradient() or createRadialGradient() methods of the
context. The arguments to createLinearGradient() are the coordinates
of two points that define a line (it does not need to be horizontal or
vertical) along which the colors will vary. The arguments to
createRadialGradient() specify the centers and radii of two
circles. (They need not be concentric, but the first circle typically
lies entirely inside the second.) Areas inside the smaller circle or
outside the larger will be filled with solid colors; areas between the
two will be filled with a color gradient.

After creating the CanvasGradient object that defines the regions of the
canvas that will be filled, you must define the gradient colors by
calling the addColorStop() method of the CanvasGradient. The first
argument to this method is a number between 0.0 and 1.0. The second
argument is a CSS color specification. You must call this method at
least twice to define a simple color gradient, but you may call it more
than that. The color at 0.0 will appear at the start of the gradient,
and the color at 1.0 will appear at the end. If you specify additional
colors, they will appear at the specified fractional position within the
gradient. Between the points you specify, colors will be smoothly
interpolated. Here are some examples:

// A linear gradient, diagonally across the canvas (assuming no transforms)
let bgfade = c.createLinearGradient(0,0,canvas.width,canvas.height);
bgfade.addColorStop(0.0, "#88f"); // Start with light blue in upper left
bgfade.addColorStop(1.0, "#fff"); // Fade to white in lower right

// A gradient between two concentric circles. Transparent in the middle
// fading to translucent gray and then back to transparent.
let donut = c.createRadialGradient(300,300,100, 300,300,300);
donut.addColorStop(0.0, "transparent"); // Transparent
donut.addColorStop(0.7, "rgba(100,100,100,.9)"); // Translucent gray
donut.addColorStop(1.0, "rgba(0,0,0,0)"); // Transparent again

An important point to understand about gradients is that they are not
position-independent. When you create a gradient, you specify bounds
for the gradient. If you then attempt to fill an area outside of those
bounds, you’ll get the solid color defined at one end or the other of
the gradient.

In addition to colors and color gradients, you can also fill and stroke
using images. To do this, set fillStyle or strokeStyle to a
CanvasPattern returned by the createPattern() method of the context
object. The first argument to this method should be an or
<canvas> element that contains the image you want to fill or stroke
with. (Note that the source image or canvas does not need to be inserted
into the document in order to be used in this way.) The second argument
to createPattern() is the string “repeat,” “repeat-x,” “repeat-y,” or
“no-repeat,” which specifies whether (and in which dimensions) the
background images repeat.

Text styles

The font property specifies the font to be used by the text-drawing
methods fillText() and strokeText() (see “Text”). The value of
the font property should be a string in the same syntax as the CSS
font attribute.

The textAlign property specifies how the text should be horizontally
aligned with respect to the X coordinate passed to fillText() or
strokeText(). Legal values are “start,” “left,” “center,” “right,”
and “end.” The default is “start,” which, for left-to-right text, has the
same meaning as “left.”

The textBaseline property specifies how the text should be vertically
aligned with respect to the y coordinate. The default value is
“alphabetic,” and it is appropriate for Latin and similar scripts. The
value “ideographic” is intended for use with scripts such as Chinese and
Japanese. The value “hanging” is intended for use with Devanagari and
similar scripts (which are used for many of the languages of India). The
“top,” “middle,” and “bottom” baselines are purely geometric baselines,
based on the “em square” of the font.

Shadows

Four properties of the context object control the drawing of drop
shadows. If you set these properties appropriately, any line, area,
text, or image you draw will be given a shadow, which will make it
appear as if it is floating above the canvas surface.

The shadowColor property specifies the color of the shadow. The
default is fully transparent black, and shadows will never appear
unless you set this property to a translucent or opaque color. This
property can only be set to a color string: patterns and gradients are
not allowed for shadows. Using a translucent shadow color produces the
most realistic shadow effects because it allows the background to show
through.

The shadowOffsetX and shadowOffsetY properties specify the X and Y
offsets of the shadow. The default for both properties is 0, which
places the shadow directly beneath your drawing, where it is not
visible. If you set both properties to a positive value, shadows will
appear below and to the right of what you draw, as if there were a
light source above and to the left, shining onto the canvas from
outside the computer screen. Larger offsets produce larger shadows and
make drawn objects appear as if they are floating “higher” above the
canvas. These values are not affected by
coordinate transformations
(§15.8.5): shadow direction and “height” remain consistent
even when shapes are rotated and scaled.

The shadowBlur property specifies how blurred the edges of the shadow
are. The default value is 0, which produces crisp, unblurred shadows.
Larger values produce more blur, up to an implementation-defined upper
bound.

Translucency and compositing

If you want to stroke or fill a path using a translucent color, you can
set strokeStyle or fillStyle using a CSS color syntax like
“rgba(…)” that supports alpha transparency. The “a” in “RGBA” stands
for “alpha” and is a value between 0 (fully transparent) and 1 (fully
opaque). But the Canvas API provides another way to work with
translucent colors. If you do not want to explicitly specify an alpha
channel for each color, or if you want to add translucency to opaque
images or patterns, you can set the globalAlpha property. Every pixel
you draw will have its alpha value multiplied by globalAlpha. The
default is 1, which adds no transparency. If you set globalAlpha to 0,
everything you draw will be fully transparent, and nothing will appear in
the canvas. But if you set this property to 0.5, then pixels that would
otherwise have been opaque will be 50% opaque, and pixels that
would have been 50% opaque will be 25% opaque instead.

When you stroke lines, fill regions, draw text, or copy images, you
generally expect the new pixels to be drawn on top of the pixels that
are already in the canvas. If you are drawing opaque pixels, they simply
replace the pixels that are already there. If you are drawing with
translucent pixels, the new (“source”) pixel is combined with the old
(“destination”) pixel so that the old pixel shows through the new pixel
based on how transparent that pixel is.

This process of combining new (possibly translucent) source pixels with
existing (possibly translucent) destination pixels is called
compositing, and the compositing process described previously is the
default way that the Canvas API combines pixels. But you can set the
globalCompositeOperation property to specify other ways of combining
pixels. The default value is “source-over,” which means that source
pixels are drawn “over” the destination pixels and are combined with
them if the source is translucent. But if you set
globalCompositeOperation to “destination-over”, then the canvas will
combine pixels as if the new source pixels were drawn beneath the
existing destination pixels. If the destination is translucent or
transparent, some or all of the source pixel color is visible in the
resulting color. As another example, the compositing mode “source-atop”
combines the source pixels with the transparency of the
destination pixels so that nothing is drawn on portions of the canvas
that are already fully transparent. There are a number of legal values
for globalCompositeOperation, but most have only specialized uses and
are not covered here.

Saving and restoring graphics state

Since the Canvas API defines graphics attributes on the context object,
you might be tempted to call getContext() multiple times to obtain
multiple context objects. If you could do this, you could define
different attributes on each context: each context would then be like a
different brush and would paint with a different color or draw lines of
different widths. Unfortunately, you cannot use the canvas in this way.
Each <canvas> element has only a single context object, and every
call to getContext() returns the same CanvasRenderingContext2D object.

Although the Canvas API only allows you to define a single set of
graphics attributes at a time, it does allow you to save the current
graphics state so that you can alter it and then easily restore it
later. The save() method pushes the current graphics state onto a
stack of saved states. The restore() method pops the stack and
restores the most recently saved state. All of the properties that
have been described in this section are part of the saved state, as
are the current transformation and clipping region (both of which are
explained later). Importantly, the currently defined path and the
current point are not part of the graphics state and cannot be saved
and restored.

15.8.4 Canvas Drawing Operations

We’ve already seen some basic canvas methods—beginPath(), moveTo(),
lineTo(), closePath(), fill(), and stroke()—for defining,
filling, and drawing lines and polygons. But the Canvas API includes
other drawing methods as well.

Rectangles

CanvasRenderingContext2D defines four methods for drawing rectangles.
All four of these rectangle methods expect two arguments that specify
one corner of the rectangle followed by the rectangle width and
height. Normally, you specify the upper-left corner and then pass a
positive width and positive height, but you may also specify other
corners and pass negative dimensions.

fillRect() fills the specified rectangle with the current
fillStyle. strokeRect() strokes the outline of the specified
rectangle using the current strokeStyle and other line attributes.
clearRect() is like fillRect(), but it ignores the current fill
style and fills the rectangle with transparent black pixels (the
default color of all blank canvases). The important thing about these
three methods is that they do not affect the current path or the
current point within that path.

The final rectangle method is named rect(), and it does affect the
current path: it adds the specified rectangle, in a subpath of its own,
to the path. Like other path-definition methods, it does not fill or
stroke anything itself.

Curves

A path is a sequence of subpaths, and a subpath is a sequence of
connected points. In the paths we defined in §15.8.1, those
points were connected with straight line segments, but that need not
always be the case. The CanvasRenderingContext2D object defines a
number of methods that add a new point to the subpath and connect the
current point to that new point with a curve:

		arc()

		
This method adds a circle, or a portion of a circle (an arc),
to the path. The arc to be drawn is specified with six parameters:
the x and y coordinates of the center of a circle, the radius of the
circle, the start and end angles of the arc, and the direction
(clockwise or counterclockwise) of the arc between those two angles.
If there is a current point in the path, then this method connects
the current point to the beginning of the arc with a straight line
(which is useful when drawing wedges or pie slices), then
connects the beginning of the arc to the end of the arc with a
portion of a circle, leaving the end of the arc as the new current
point. If there is no current point when this method is called, then
it only adds the circular arc to the path.

		ellipse()

		
This method is much like arc() except that it adds an
ellipse or a portion of an ellipse to the path. Instead of one
radius, it has two: an x-axis radius and a y-axis radius. Also,
because ellipses are not radially symmetrical, this method takes
another argument that specifies the number of radians by which the
ellipse is rotated clockwise about its center.

		arcTo()

		
This method draws a straight line and a circular arc just
like the arc() method does, but it specifies the arc to be drawn
using different parameters. The arguments to arcTo() specify
points P1 and P2 and a radius. The arc that is added to the path has the specified radius. It begins at the tangent point with the (imaginary) line from the current point to P1 and ends at the tangent point with the (imaginary) line between P1 and P2. This
unusual-seeming method of specifying arcs is actually quite useful
for drawing shapes with rounded corners. If you specify a radius of
0, this method just draws a straight line from the current point to
P1. With a nonzero radius, however, it draws a straight line from
the current point in the direction of P1, then curves that line
around in a circle until it is heading in the direction of P2.

		bezierCurveTo()

		
This method adds a new point P to the subpath and
connects it to the current point with a cubic Bezier curve. The
shape of the curve is specified by two “control points,” C1 and
C2. At the start of the curve (at the current point), the curve
heads in the direction of C1. At the end of the curve (at point P),
the curve arrives from the direction of C2. In between these points,
the direction of the curve varies smoothly. The point P becomes the
new current point for the subpath.

		quadraticCurveTo()

		
This method is like bezierCurveTo(), but it
uses a quadratic Bezier curve instead of a cubic Bezier curve and
has only a single control point.

You can use these methods to draw paths like those in Figure 15-10.

[image: js7e 1509]
Figure 15-10. Curved paths in a canvas

Example 15-6 shows the code used to create Figure 15-10. The methods
demonstrated in this code are some of the most complicated in the Canvas
API; consult an online reference for complete details on the methods and
their arguments.

Example 15-6. Adding curves to a path

// A utility function to convert angles from degrees to radians
function rads(x) { return Math.PI*x/180; }

// Get the context object of the document's canvas element
let c = document.querySelector("canvas").getContext("2d");

// Define some graphics attributes and draw the curves
c.fillStyle = "#aaa"; // Gray fills
c.lineWidth = 2; // 2-pixel black (by default) lines

// Draw a circle.
// There is no current point, so draw just the circle with no straight
// line from the current point to the start of the circle.
c.beginPath();
c.arc(75,100,50, // Center at (75,100), radius 50
 0,rads(360),false); // Go clockwise from 0 to 360 degrees
c.fill(); // Fill the circle
c.stroke(); // Stroke its outline.

// Now draw an ellipse in the same way
c.beginPath(); // Start new path not connected to the circle
c.ellipse(200, 100, 50, 35, rads(15), // Center, radii, and rotation
 0, rads(360), false); // Start angle, end angle, direction

// Draw a wedge. Angles are measured clockwise from the positive x axis.
// Note that arc() adds a line from the current point to the arc start.
c.moveTo(325, 100); // Start at the center of the circle.
c.arc(325, 100, 50, // Circle center and radius
 rads(-60), rads(0), // Start at angle -60 and go to angle 0
 true); // counterclockwise
c.closePath(); // Add radius back to the center of the circle

// Similar wedge, offset a bit, and in the opposite direction
c.moveTo(340, 92);
c.arc(340, 92, 42, rads(-60), rads(0), false);
c.closePath();

// Use arcTo() for rounded corners. Here we draw a square with
// upper left corner at (400,50) and corners of varying radii.
c.moveTo(450, 50); // Begin in the middle of the top edge.
c.arcTo(500,50,500,150,30); // Add part of top edge and upper right corner.
c.arcTo(500,150,400,150,20); // Add right edge and lower right corner.
c.arcTo(400,150,400,50,10); // Add bottom edge and lower left corner.
c.arcTo(400,50,500,50,0); // Add left edge and upper left corner.
c.closePath(); // Close path to add the rest of the top edge.

// Quadratic Bezier curve: one control point
c.moveTo(525, 125); // Begin here
c.quadraticCurveTo(550, 75, 625, 125); // Draw a curve to (625, 125)
c.fillRect(550-3, 75-3, 6, 6); // Mark the control point (550,75)

// Cubic Bezier curve
c.moveTo(625, 100); // Start at (625, 100)
c.bezierCurveTo(645,70,705,130,725,100); // Curve to (725, 100)
c.fillRect(645-3, 70-3, 6, 6); // Mark control points
c.fillRect(705-3, 130-3, 6, 6);

// Finally, fill the curves and stroke their outlines.
c.fill();
c.stroke();

Text

To draw text in a canvas, you normally use the fillText() method,
which draws text using the color (or gradient or pattern) specified by
the fillStyle property. For special effects at large text sizes, you
can use strokeText() to draw the outline of the individual font
glyphs. Both methods take the text to be drawn as their first argument
and take the x and y coordinates of the text as the second and third
arguments. Neither method affects the current path or the current
point.

fillText() and strokeText() take an optional fourth argument. If
given, this argument specifies the maximum width of the text to be
displayed. If the text would be wider than the specified value when
drawn using the font property, the canvas will make it fit by scaling
it or by using a narrower or smaller font.

If you need to measure text yourself before drawing it, pass it to the
measureText() method. This method returns a TextMetrics object that
specifies the measurements of the text when drawn with the current
font. At the time of this writing, the only “metric” contained in
the TextMetrics object is the width. Query the on-screen width of a
string like this:

let width = c.measureText(text).width;

This is useful if you want to center a string of text within a canvas,
for example.

Images

In addition to vector graphics (paths, lines, etc.), the Canvas API
also supports bitmap images. The drawImage() method copies the pixels
of a source image (or of a rectangle within the source image) onto the
canvas, scaling and rotating the pixels of the image as necessary.

drawImage() can be invoked with three, five, or nine arguments. In
all cases, the first argument is the source image from which pixels are
to be copied. This image argument is often an element, but it can
also be another <canvas> element or even a <video> element (from
which a single frame will be copied). If you
specify an or <video> element that is still loading its data,
the drawImage() call will do nothing.

In the three-argument version of drawImage(), the second and third
arguments specify the x and y coordinates at which the upper-left
corner of the image is to be drawn. In this version of the method, the
entire source image is copied to the canvas. The x and y coordinates
are interpreted in the current coordinate system, and the image is
scaled and rotated if necessary, depending on the canvas transform currently
in effect.

The five-argument version of drawImage() adds width and height
arguments to the x and y arguments described earlier. These four
arguments define a destination rectangle within the canvas. The upper-left corner of the source image goes at (x,y), and the lower-right
corner goes at (x+width, y+height). Again, the entire source image is
copied. With this version of the method, the source image will be scaled
to fit the destination rectangle.

The nine-argument version of drawImage() specifies both a source
rectangle and a destination rectangle and copies only the pixels within
the source rectangle. Arguments two through five specify the source
rectangle. They are measured in CSS pixels. If the source image is
another canvas, the source rectangle uses the default coordinate system
for that canvas and ignores any transformations that have been
specified. Arguments six through nine specify the destination rectangle
into which the image is drawn and are in the current coordinate system
of the canvas, not in the default coordinate system.

In addition to drawing images into a canvas, we can also extract the
content of a canvas as an image using the toDataURL() method. Unlike
all the other methods described here, toDataURL() is a method of the
Canvas element itself, not of the context object. You normally invoke
toDataURL() with no arguments, and it returns the content of the
canvas as a PNG image, encoded as a string using a data: URL. The
returned URL is suitable for use with an element, and you can
make a static snapshot of a canvas with code like this:

let img = document.createElement("img"); // Create an element
img.src = canvas.toDataURL(); // Set its src attribute
document.body.appendChild(img); // Append it to the document

15.8.5 Coordinate System Transforms

As we’ve noted, the default coordinate system of a canvas places the
origin in the upper-left corner, has x coordinates increasing to the
right, and has y coordinates increasing downward. In this default
system, the coordinates of a point map directly to a CSS pixel (which
then maps directly to one or more device pixels). Certain canvas
operations and attributes (such as extracting raw pixel values and
setting shadow offsets) always use this default coordinate system. In
addition to the default coordinate system, however, every canvas has a
“current transformation matrix” as part of its graphics state. This
matrix defines the current coordinate system of the canvas. In most
canvas operations, when you specify the coordinates of a point, it is
taken to be a point in the current coordinate system, not in the
default coordinate system. The current transformation matrix is used to
convert the coordinates you specified to the equivalent coordinates in
the default coordinate system.

The setTransform() method allows you to set a canvas’s transformation
matrix directly, but coordinate system transformations are usually
easier to specify as a sequence of translations, rotations, and scaling
operations. Figure 15-11 illustrates these operations and their
effect on the canvas coordinate system. The program that produced the
figure drew the same set of axes seven times in a row. The only thing
that changed each time was the current transform. Notice that the
transforms affect the text as well as the lines that are drawn.

[image: js7e 1510]
Figure 15-11. Coordinate system transformations

The translate() method simply moves the origin of the coordinate
system left, right, up, or down. The rotate() method rotates the axes
clockwise by the specified angle. (The Canvas API always specifies
angles in radians. To convert degrees to radians, divide by 180 and
multiply by Math.PI.) The scale() method stretches or contracts
distances along the x or y axes.

Passing a negative scale factor to the scale() method flips that axis
across the origin, as if it were reflected in a mirror. This is what
was done in the lower left of Figure 15-11: translate() was
used to move the origin to the bottom-left corner of the canvas,
then scale() was used to flip the y axis around so that y coordinates
increase as we go up the page. A flipped coordinate system like this is
familiar from algebra class and may be useful for plotting data points
on charts. Note, however, that it makes text difficult to read!

Understanding transformations mathematically

I find it easiest to understand transforms geometrically, thinking about
translate(), rotate(), and scale() as transforming the axes of the
coordinate system as illustrated in Figure 15-11. It is also
possible to understand transforms algebraically as equations that map
the coordinates of a point (x,y) in the transformed coordinate system
back to the coordinates (x',y') of the same point in the previous
coordinate system.

The method call c.translate(dx,dy) can be described with these
equations:

x' = x + dx; // An X coordinate of 0 in the new system is dx in the old
y' = y + dy;

Scaling operations have similarly simple equations. A call
c.scale(sx,sy) can be described like this:

x' = sx * x;
y' = sy * y;

Rotations are more complicated. The call c.rotate(a) is described by
these trigonometric equations:

x' = x * cos(a) - y * sin(a);
y' = y * cos(a) + x * sin(a);

Notice that the order of transformations matters. Suppose we start with
the default coordinate system of a canvas, then translate it, and
then scale it. In order to map the point (x,y) in the current
coordinate system back to the point (x'',y'') in the
default coordinate system, we must first apply the scaling equations to
map the point to an intermediate point (x',y') in the
translated but unscaled coordinate system, then use the translation
equations to map from this intermediate point to (x'',y'').
The result is this:

x'' = sx*x + dx;
y'' = sy*y + dy;

If, on the other hand, we’d called scale() before calling
translate(), the resulting equations would be different:

x'' = sx*(x + dx);
y'' = sy*(y + dy);

The key thing to remember when thinking algebraically about sequences
of transformations is that you must work backward from the last (most
recent) transformation to the first. When thinking geometrically about
transformed axes, however, you work forward from first transformation
to last.

The transformations supported by the canvas are known as affine
transforms. Affine transforms may modify the distances between points
and the angles between lines, but parallel lines always remain parallel
after an affine transformation—it is not possible, for example, to
specify a fish-eye lens distortion with an affine transform. An
arbitrary affine transform can be described by the six parameters a
through f in these equations:

x' = ax + cy + e
y' = bx + dy + f

You can apply an arbitrary transformation to the current coordinate
system by passing those six parameters to the transform() method.
Figure 15-11 illustrates two types of transformations—shears and
rotations about a specified point—that you can implement with the
transform() method like this:

// Shear transform:
// x' = x + kx*y;
// y' = ky*x + y;
function shear(c, kx, ky) { c.transform(1, ky, kx, 1, 0, 0); }

// Rotate theta radians counterclockwise around the point (x,y)
// This can also be accomplished with a translate, rotate, translate sequence
function rotateAbout(c, theta, x, y) {
 let ct = Math.cos(theta);
 let st = Math.sin(theta);
 c.transform(ct, -st, st, ct, -x*ct-y*st+x, x*st-y*ct+y);
}

The setTransform() method takes the same arguments as transform(),
but instead of transforming the current coordinate system, it ignores
the current system, transforms the default coordinate system, and makes
the result the new current coordinate system. setTransform() is
useful to temporarily reset the canvas to its default coordinate system:

c.save(); // Save current coordinate system
c.setTransform(1,0,0,1,0,0); // Revert to the default coordinate system
// Perform operations using default CSS pixel coordinates
c.restore(); // Restore the saved coordinate system

Transformation example

Example 15-7 demonstrates the power of coordinate system transformations
by using the translate(), rotate(), and scale() methods
recursively to draw a Koch snowflake fractal. The output of this
example appears in Figure 15-12, which shows Koch snowflakes with 0, 1,
2, 3, and 4 levels of recursion.

[image: js7e 1511]
Figure 15-12. Koch snowflakes

The code that produces these figures is elegant, but its use of
recursive coordinate system transformations makes it somewhat difficult
to understand. Even if you don’t follow all the nuances, note that the
code includes only a single invocation of the lineTo() method. Every
single line segment in Figure 15-12 is drawn like this:

c.lineTo(len, 0);

The value of the variable len does not change during the execution of
the program, so the position, orientation, and length of each of the
line segments is determined by translations, rotations, and scaling
operations.

Example 15-7. A Koch snowflake with transformations

let deg = Math.PI/180; // For converting degrees to radians

// Draw a level-n Koch snowflake fractal on the canvas context c,
// with lower-left corner at (x,y) and side length len.
function snowflake(c, n, x, y, len) {
 c.save(); // Save current transformation
 c.translate(x,y); // Translate origin to starting point
 c.moveTo(0,0); // Begin a new subpath at the new origin
 leg(n); // Draw the first leg of the snowflake
 c.rotate(-120*deg); // Now rotate 120 degrees counterclockwise
 leg(n); // Draw the second leg
 c.rotate(-120*deg); // Rotate again
 leg(n); // Draw the final leg
 c.closePath(); // Close the subpath
 c.restore(); // And restore original transformation

 // Draw a single leg of a level-n Koch snowflake.
 // This function leaves the current point at the end of the leg it has
 // drawn and translates the coordinate system so the current point is (0,0).
 // This means you can easily call rotate() after drawing a leg.
 function leg(n) {
 c.save(); // Save the current transformation
 if (n === 0) { // Nonrecursive case:
 c.lineTo(len, 0); // Just draw a horizontal line
 } // _ _
 else { // Recursive case: draw 4 sub-legs like: \/
 c.scale(1/3,1/3); // Sub-legs are 1/3 the size of this leg
 leg(n-1); // Recurse for the first sub-leg
 c.rotate(60*deg); // Turn 60 degrees clockwise
 leg(n-1); // Second sub-leg
 c.rotate(-120*deg); // Rotate 120 degrees back
 leg(n-1); // Third sub-leg
 c.rotate(60*deg); // Rotate back to our original heading
 leg(n-1); // Final sub-leg
 }
 c.restore(); // Restore the transformation
 c.translate(len, 0); // But translate to make end of leg (0,0)
 }
}

let c = document.querySelector("canvas").getContext("2d");
snowflake(c, 0, 25, 125, 125); // A level-0 snowflake is a triangle
snowflake(c, 1, 175, 125, 125); // A level-1 snowflake is a 6-sided star
snowflake(c, 2, 325, 125, 125); // etc.
snowflake(c, 3, 475, 125, 125);
snowflake(c, 4, 625, 125, 125); // A level-4 snowflake looks like a snowflake!
c.stroke(); // Stroke this very complicated path

15.8.6 Clipping

After defining a path, you usually call stroke() or fill() (or
both). You can also call the clip() method to define a clipping
region. Once a clipping region is defined, nothing will be drawn
outside of it. Figure 15-13 shows a complex drawing produced using
clipping regions. The vertical stripe running down the middle and the
text along the bottom of the figure were stroked with no clipping
region and then filled after the triangular clipping region was defined.

[image: js7e 1512]
Figure 15-13. Unclipped strokes and clipped fills

Figure 15-13 was generated using the polygon() method of
Example 15-5 and the following code:

// Define some drawing attributes
c.font = "bold 60pt sans-serif"; // Big font
c.lineWidth = 2; // Narrow lines
c.strokeStyle = "#000"; // Black lines

// Outline a rectangle and some text
c.strokeRect(175, 25, 50, 325); // A vertical stripe down the middle
c.strokeText("<canvas>", 15, 330); // Note strokeText() instead of fillText()

// Define a complex path with an interior that is outside.
polygon(c,3,200,225,200); // Large triangle
polygon(c,3,200,225,100,0,true); // Smaller reverse triangle inside

// Make that path the clipping region.
c.clip();

// Stroke the path with a 5 pixel line, entirely inside the clipping region.
c.lineWidth = 10; // Half of this 10 pixel line will be clipped away
c.stroke();

// Fill the parts of the rectangle and text that are inside the clipping region
c.fillStyle = "#aaa"; // Light gray
c.fillRect(175, 25, 50, 325); // Fill the vertical stripe
c.fillStyle = "#888"; // Darker gray
c.fillText("<canvas>", 15, 330); // Fill the text

It is important to note that when you call clip(), the current path
is itself clipped to the current clipping region, then that clipped
path becomes the new clipping region. This means that the clip()
method can shrink the clipping region but can never enlarge it. There
is no method to reset the clipping region, so before calling clip(),
you should typically call save() so that you can later restore()
the unclipped region.

15.8.7 Pixel Manipulation

The getImageData() method returns an ImageData object that represents
the raw pixels (as R, G, B, and A components) from
a rectangular region of your canvas. You can create empty
ImageData objects with createImageData(). The pixels in an
ImageData object are writable, so you can set them any way you want,
then copy those pixels back onto the canvas with putImageData().

These pixel manipulation methods provide very low-level access to the
canvas. The rectangle you pass to getImageData() is in the default
coordinate system: its dimensions are measured in CSS pixels, and it is
not affected by the current transformation. When you call
putImageData(), the position you specify is also measured in the
default coordinate system. Furthermore, putImageData() ignores all
graphics attributes. It does not perform any compositing, it does not
multiply pixels by globalAlpha, and it does not draw shadows.

Pixel manipulation methods are useful for implementing image
processing. Example 15-8 shows how to create a simple motion blur or
“smear” effect like that shown in Figure 15-14.

[image: js7e 1513]
Figure 15-14. A motion blur effect created by image processing

The following code demonstrates getImageData() and putImageData()
and shows how to iterate through and modify the pixel values in an
ImageData object.

Example 15-8. Motion blur with ImageData

// Smear the pixels of the rectangle to the right, producing a
// sort of motion blur as if objects are moving from right to left.
// n must be 2 or larger. Larger values produce bigger smears.
// The rectangle is specified in the default coordinate system.
function smear(c, n, x, y, w, h) {
 // Get the ImageData object that represents the rectangle of pixels to smear
 let pixels = c.getImageData(x, y, w, h);

 // This smear is done in-place and requires only the source ImageData.
 // Some image processing algorithms require an additional ImageData to
 // store transformed pixel values. If we needed an output buffer, we could
 // create a new ImageData with the same dimensions like this:
 // let output_pixels = c.createImageData(pixels);

 // Get the dimensions of the grid of pixels in the ImageData object
 let width = pixels.width, height = pixels.height;

 // This is the byte array that holds the raw pixel data, left-to-right and
 // top-to-bottom. Each pixel occupies 4 consecutive bytes in R,G,B,A order.
 let data = pixels.data;

 // Each pixel after the first in each row is smeared by replacing it with
 // 1/nth of its own value plus m/nths of the previous pixel's value
 let m = n-1;

 for(let row = 0; row < height; row++) { // For each row
 let i = row*width*4 + 4; // The offset of the second pixel of the row
 for(let col = 1; col < width; col++, i += 4) { // For each column
 data[i] = (data[i] + data[i-4]*m)/n; // Red pixel component
 data[i+1] = (data[i+1] + data[i-3]*m)/n; // Green
 data[i+2] = (data[i+2] + data[i-2]*m)/n; // Blue
 data[i+3] = (data[i+3] + data[i-1]*m)/n; // Alpha component
 }
 }

 // Now copy the smeared image data back to the same position on the canvas
 c.putImageData(pixels, x, y);
}

15.9 Audio APIs

The HTML <audio> and <video> tags allow you to easily include sound
and videos in your web pages. These are complex elements with
significant APIs and nontrivial user interfaces. You can control
media playback with the play() and pause() methods. You can set the
volume and playbackRate properties to control the audio volume and
speed of playback. And you can skip to a particular time within the
media by setting the currentTime property.

We will not cover <audio> and <video> tags in any further detail
here, however. The following subsections demonstrate two ways to add
scripted sound effects to your web pages.

15.9.1 The Audio() Constructor

You don’t have to include an <audio> tag in your HTML document in
order to include sound effects in your web pages. You can dynamically
create <audio> elements with the normal DOM document.createElement()
method, or, as a shortcut, you can simply use the Audio()
constructor. You do not have to add the created element to your document
in order to play it. You can simply call its play() method:

// Load the sound effect in advance so it is ready for use
let soundeffect = new Audio("soundeffect.mp3");

// Play the sound effect whenever the user clicks the mouse button
document.addEventListener("click", () => {
 soundeffect.cloneNode().play(); // Load and play the sound
});

Note the use of cloneNode() here. If the user clicks the
mouse rapidly, we want to be able to have multiple overlapping copies of
the sound effect playing at the same time. To do that, we need multiple
Audio elements. Because the Audio elements are not added to the document,
they will be garbage collected when they are done playing.

15.9.2 The WebAudio API

In addition to playback of recorded sounds with Audio elements, web
browsers also allow the generation and playback of synthesized sounds
with the WebAudio API. Using the WebAudio API is like hooking up an
old-style electronic synthesizer with patch cords. With WebAudio, you
create a set of AudioNode objects, which represents sources,
transformations, or destinations of waveforms, and then connect these
nodes together into a network to produce sounds. The API is not
particularly complex, but a full explanation requires an understanding
of electronic music and signal processing concepts that are beyond the
scope of this book.

The following code below uses the WebAudio API to synthesize a short chord that
fades out over about a second. This example demonstrates the basics of
the WebAudio API. If this is interesting to you, you can find much more
about this API online:

// Begin by creating an audioContext object. Safari still requires
// us to use webkitAudioContext instead of AudioContext.
let audioContext = new (this.AudioContext||this.webkitAudioContext)();

// Define the base sound as a combination of three pure sine waves
let notes = [293.7, 370.0, 440.0]; // D major chord: D, F# and A

// Create oscillator nodes for each of the notes we want to play
let oscillators = notes.map(note => {
 let o = audioContext.createOscillator();
 o.frequency.value = note;
 return o;
});

// Shape the sound by controlling its volume over time.
// Starting at time 0 quickly ramp up to full volume.
// Then starting at time 0.1 slowly ramp down to 0.
let volumeControl = audioContext.createGain();
volumeControl.gain.setTargetAtTime(1, 0.0, 0.02);
volumeControl.gain.setTargetAtTime(0, 0.1, 0.2);

// We're going to send the sound to the default destination:
// the user's speakers
let speakers = audioContext.destination;

// Connect each of the source notes to the volume control
oscillators.forEach(o => o.connect(volumeControl));

// And connect the output of the volume control to the speakers.
volumeControl.connect(speakers);

// Now start playing the sounds and let them run for 1.25 seconds.
let startTime = audioContext.currentTime;
let stopTime = startTime + 1.25;
oscillators.forEach(o => {
 o.start(startTime);
 o.stop(stopTime);
});

// If we want to create a sequence of sounds we can use event handlers
oscillators[0].addEventListener("ended", () => {
 // This event handler is invoked when the note stops playing
});

15.10 Location, Navigation, and History

The location property of both the Window and Document objects refers
to the Location object, which represents the current URL of the document
displayed in the window, and which also provides an API for loading new
documents into the window.

The Location object is very much like a URL object (§11.9), and you
can use properties like protocol, hostname, port, and path to
access the various parts of the URL of the current document. The href
property returns the entire URL as a string, as does the toString()
method.

The hash and search properties of the Location object are
interesting ones. The hash property returns the “fragment
identifier” portion of the URL, if there is one: a hash mark (#)
followed by an element ID. The search property is similar. It returns
the portion of the URL that starts with a question mark: often some
sort of query string. In general, this portion of a URL is used to
parameterize the URL and provides a way to embed arguments in it. While
these arguments are usually intended for scripts run on a server, there
is no reason why they cannot also be used in JavaScript-enabled pages.

URL objects have a searchParams property that is a parsed
representation of the search property. The Location object does not
have a searchParams property, but if you want to parse
window.location.search, you can simply create a URL object from the
Location object and then use the URL’s searchParams:

let url = new URL(window.location);
let query = url.searchParams.get("q");
let numResults = parseInt(url.searchParams.get("n") || "10");

In addition to the Location object that you can refer to as
window.location or document.location, and the URL() constructor
that we used earlier, browsers also define a document.URL
property. Surprisingly, the value of this property is not a URL object,
but just a string. The string holds the URL of the current document.

15.10.1 Loading New Documents

If you assign a string to window.location or to document.location,
that string is interpreted as a URL and the browser loads it, replacing
the current document with a new one:

window.location = "http://www.oreilly.com"; // Go buy some books!

You can also assign relative URLs to location. They are resolved
relative to the current URL:

document.location = "page2.html"; // Load the next page

A bare fragment identifier is a special kind of relative URL that does
not cause the browser to load a new document but simply to scroll so
that the document element with id or name that matches the fragment
is visible at the top of the browser window. As a special case, the
fragment identifier #top makes the browser jump to the start of the
document (assuming no element has an id="top" attribute):

location = "#top"; // Jump to the top of the document

The individual properties of the Location object are writable,
and setting them changes the location URL and also causes the browser
to load a new document (or, in the case of the hash property, to
navigate within the current document):

document.location.path = "pages/3.html"; // Load a new page
document.location.hash = "TOC"; // Scroll to the table of contents
location.search = "?page=" + (page+1); // Reload with new query string

You can also load a new page by passing a new string to the assign()
method of the Location object. This is the same as assigning the string
to the location property, however, so it’s not particularly
interesting.

The replace() method of the Location object, on the other hand, is
quite useful. When you pass a string to replace(), it is interpreted as
a URL and causes the browser to load a new page, just as assign()
does. The difference is that replace() replaces the current document
in the browser’s history. If a script in document A sets the location
property or calls assign() to load document B and then the user
clicks the Back button, the browser will go back to document A. If you
use replace() instead, then document A is erased from the browser’s
history, and when the user clicks the Back button, the browser returns to
whatever document was displayed before document A.

When a script unconditionally loads a new document, the replace()
method is a better choice than assign(). Otherwise, the Back
button would take the browser back to the original document, and the
same script would again load the new document. Suppose you have a
JavaScript-enhanced version of your page and a static version that does
not use JavaScript. If you determine that the user’s browser does not
support the web platform APIs that you want to use, you could use
location.replace() to load the static version:

// If the browser does not support the JavaScript APIs we need,
// redirect to a static page that does not use JavaScript.
if (!isBrowserSupported()) location.replace("staticpage.html");

Notice that the URL passed to replace() is a relative one. Relative
URLs are interpreted relative to the page in which they appear, just as
they would be if they were used in a hyperlink.

In addition to the assign() and replace() methods, the Location
object also defines reload(), which simply makes the browser reload the
document.

15.10.2 Browsing History

The history property of the Window object refers to the History
object for the window. The History object models the browsing history
of a window as a list of documents and document states. The length
property of the History object specifies the number of elements in the
browsing history list, but for security reasons, scripts are not allowed
to access the stored URLs. (If they could, any scripts could snoop
through your browsing history.)

The History object has back() and forward() methods that behave
like the browser’s Back and Forward buttons do: they make the browser
go backward or forward one step in its browsing history. A third
method, go(), takes an integer argument and can skip any number of
pages forward (for positive arguments) or backward (for negative
arguments) in the history list:

history.go(-2); // Go back 2, like clicking the Back button twice
history.go(0); // Another way to reload the current page

If a window contains child windows (such as <iframe> elements),
the browsing histories of the child windows are
chronologically interleaved with the history of the main window. This
means that calling history.back() (for example) on the main window
may cause one of the child windows to navigate back to a previously
displayed document but leaves the main window in its current state.

The History object described here dates back to the early days of the
web when documents were passive and all computation was performed on the
server. Today, web applications often generate or load content
dynamically and display new application states without actually loading
new documents. Applications like these must perform their own history
management if they want the user to be able to use the Back and Forward
buttons (or the equivalent gestures) to navigate from one application
state to another in an intuitive way. There are two ways to accomplish
this, described in the next two sections.

15.10.3 History Management with hashchange Events

One history management technique involves location.hash and the
“hashchange” event. Here are the key facts you need to know to understand this technique:

		
The location.hash property sets the fragment identifier of the URL
and is traditionally used to specify the ID of a document section to
scroll to. But location.hash does not have to be an element ID: you
can set it to any string. As long as no element happens to have that
string as its ID, the browser won’t scroll when you set the hash
property like this.

		
Setting the location.hash property updates the URL displayed in the
location bar and, very importantly, adds an entry to the browser’s
history.

		
Whenever the fragment identifier of the document changes, the browser
fires a “hashchange” event on the Window object. If you set
location.hash explictly, a “hashchange” event is fired. And, as
we’ve mentioned, this change to the Location object creates a new entry
in the browser’s browsing history. So if the user now clicks the Back
button, the browser will return to its previous URL before you set
location.hash. But this means that the fragment identifier has changed
again, so another “hashchange” event is fired in this case. This
means that as long as you can create a unique fragment identifier for
each possible state of your application, “hashchange” events will notify
you if the user moves backward and forward though their browsing
history.

To use this history management mechanism, you’ll need to be able to
encode the state information necessary to render a “page” of your
application into a relatively short string of text that is suitable for
use as a fragment identifier. And you’ll need to write a function to convert page state into a string and another function to parse the string and re-create the page state it represents.

Once you have written those functions, the rest is easy. Define a
window.onhashchange function (or register a “hashchange” listener with
addEventListener()) that reads location.hash, converts that
string into a representation of your application state, and then takes
whatever actions are necessary to display that new application state.

When the user interacts with your application (such as by clicking a
link) in a way that would cause the application to enter a new state,
don’t render the new state directly. Instead, encode the desired new
state as a string and set location.hash to that string. This will
trigger a “hashchange” event, and your handler for that event will
display the new state. Using this roundabout technique ensures that the
new state is inserted into the browsing history so that the Back and
Forward buttons continue to work.

15.10.4 History Management with pushState()

The second technique for managing history is somewhat more complex but
is less of a hack than the “hashchange” event. This more robust history-management technique is based on the history.pushState() method and the
“popstate” event. When a web app enters a new state, it calls
history.pushState() to add an object representing the state to the
browser’s history. If the user then clicks the Back button, the browser
fires a “popstate” event with a copy of that saved state object, and the
app uses that object to re-create its previous state. In addition to the
saved state object, applications can also save a URL with each state,
which is important if you want users to be able to bookmark and share
links to the internal states of the app.

The first argument to pushState() is an object that contains all the
state information necessary to restore the current state of the
document. This object is saved using HTML’s structured clone
algorithm, which is more versatile than JSON.stringify() and can
support Map, Set, and Date objects as well as typed arrays and
ArrayBuffers.

The second argument was intended to be a title string for the state, but
most browsers do not support it, and you should just pass an empty
string. The third argument is an optional URL that will be displayed in
the location bar immediately and also if the user returns to this state
via Back and Forward buttons. Relative URLs are resolved against the
current location of the document. Associating a URL with each state
allows the user to bookmark internal states of your
application. Remember, though, that if the user saves a bookmark and
then visits it a day later, you won’t get a “popstate” event about that
visit: you’ll have to restore your application state by parsing the URL.

The Structured Clone Algorithm

The history.pushState() method does not use JSON.stringify()
(§11.6) to serialize state data. Instead, it (and other browser
APIs we’ll learn about later) uses a more robust serialization
technique known as the structured clone algorithm, defined by the
HTML standard.

The structured clone algorithm can serialize anything that
JSON.stringify() can, but in addition, it enables serialization of
most other JavaScript types, including Map, Set, Date, RegExp, and
typed arrays, and it can handle data structures that include circular
references. The structured clone algorithm cannot serialize
functions or classes, however. When cloning objects it does not copy
the prototype object, getters and setters, or non-enumerable
properties. While the structured clone algorithm can clone most
built-in JavaScript types, it cannot copy types defined by the host
environment, such as document Element objects.

This means that the state object you pass to history.pushState()
need not be limited to the objects, arrays, and primitive values that
JSON.stringify() supports. Note, however, that if you pass an
instance of a class that you have defined, that instance will be
serialized as an ordinary JavaScript object and will lose its
prototype.

In addition to the pushState() method, the History object also
defines replaceState(), which takes the same arguments but replaces
the current history state instead of adding a new state to the browsing
history. When an application that uses pushState() is first loaded, it
is often a good idea to call replaceState() to define a state object
for this initial state of the application.

When the user navigates to saved history states using the Back or
Forward buttons, the browser fires a “popstate” event on the Window
object. The event object associated with the event has a property named
state, which contains a copy (another structured clone) of the state
object you passed to pushState().

Example 15-9 is a simple web application—the number-guessing
game pictured in Figure 15-15—that uses pushState() to save
its history, allowing the user to “go back” to review or redo their
guesses.

[image: js7e 1514]
Figure 15-15. A number-guessing game

Example 15-9. History management with pushState()

<html><head><title>I'm thinking of a number...</title>
<style>
body { height: 250px; display: flex; flex-direction: column;
 align-items: center; justify-content: space-evenly; }
#heading { font: bold 36px sans-serif; margin: 0; }
#container { border: solid black 1px; height: 1em; width: 80%; }
#range { background-color: green; margin-left: 0%; height: 1em; width: 100%; }
#input { display: block; font-size: 24px; width: 60%; padding: 5px; }
#playagain { font-size: 24px; padding: 10px; border-radius: 5px; }
</style>
</head>
<body>
<h1 id="heading">I'm thinking of a number...</h1>
<!-- A visual representation of the numbers that have not been ruled out -->
<div id="container"><div id="range"></div></div>
<!-- Where the user enters their guess -->
<input id="input" type="text">
<!-- A button that reloads with no search string. Hidden until game ends. -->
<button id="playagain" hidden onclick="location.search='';">Play Again</button>
<script>
/**
 * An instance of this GameState class represents the internal state of
 * our number guessing game. The class defines static factory methods for
 * initializing the game state from different sources, a method for
 * updating the state based on a new guess, and a method for modifying the
 * document based on the current state.
 */
class GameState {
 // This is a factory function to create a new game
 static newGame() {
 let s = new GameState();
 s.secret = s.randomInt(0, 100); // An integer: 0 < n < 100
 s.low = 0; // Guesses must be greater than this
 s.high = 100; // Guesses must be less than this
 s.numGuesses = 0; // How many guesses have been made
 s.guess = null; // What the last guess was
 return s;
 }

 // When we save the state of the game with history.pushState(), it is just
 // a plain JavaScript object that gets saved, not an instance of GameState.
 // So this factory function re-creates a GameState object based on the
 // plain object that we get from a popstate event.
 static fromStateObject(stateObject) {
 let s = new GameState();
 for(let key of Object.keys(stateObject)) {
 s[key] = stateObject[key];
 }
 return s;
 }

 // In order to enable bookmarking, we need to be able to encode the
 // state of any game as a URL. This is easy to do with URLSearchParams.
 toURL() {
 let url = new URL(window.location);
 url.searchParams.set("l", this.low);
 url.searchParams.set("h", this.high);
 url.searchParams.set("n", this.numGuesses);
 url.searchParams.set("g", this.guess);
 // Note that we can't encode the secret number in the url or it
 // will give away the secret. If the user bookmarks the page with
 // these parameters and then returns to it, we will simply pick a
 // new random number between low and high.
 return url.href;
 }

 // This is a factory function that creates a new GameState object and
 // initializes it from the specified URL. If the URL does not contain the
 // expected parameters or if they are malformed it just returns null.
 static fromURL(url) {
 let s = new GameState();
 let params = new URL(url).searchParams;
 s.low = parseInt(params.get("l"));
 s.high = parseInt(params.get("h"));
 s.numGuesses = parseInt(params.get("n"));
 s.guess = parseInt(params.get("g"));

 // If the URL is missing any of the parameters we need or if
 // they did not parse as integers, then return null;
 if (isNaN(s.low) || isNaN(s.high) ||
 isNaN(s.numGuesses) || isNaN(s.guess)) {
 return null;
 }

 // Pick a new secret number in the right range each time we
 // restore a game from a URL.
 s.secret = s.randomInt(s.low, s.high);
 return s;
 }

 // Return an integer n, min < n < max
 randomInt(min, max) {
 return min + Math.ceil(Math.random() * (max - min - 1));
 }

 // Modify the document to display the current state of the game.
 render() {
 let heading = document.querySelector("#heading"); // The <h1> at the top
 let range = document.querySelector("#range"); // Display guess range
 let input = document.querySelector("#input"); // Guess input field
 let playagain = document.querySelector("#playagain");

 // Update the document heading and title
 heading.textContent = document.title =
 `I'm thinking of a number between ${this.low} and ${this.high}.`;

 // Update the visual range of numbers
 range.style.marginLeft = `${this.low}%`;
 range.style.width = `${(this.high-this.low)}%`;

 // Make sure the input field is empty and focused.
 input.value = "";
 input.focus();

 // Display feedback based on the user's last guess. The input
 // placeholder will show because we made the input field empty.
 if (this.guess === null) {
 input.placeholder = "Type your guess and hit Enter";
 } else if (this.guess < this.secret) {
 input.placeholder = `${this.guess} is too low. Guess again`;
 } else if (this.guess > this.secret) {
 input.placeholder = `${this.guess} is too high. Guess again`;
 } else {
 input.placeholder = document.title = `${this.guess} is correct!`;
 heading.textContent = `You win in ${this.numGuesses} guesses!`;
 playagain.hidden = false;
 }
 }

 // Update the state of the game based on what the user guessed.
 // Returns true if the state was updated, and false otherwise.
 updateForGuess(guess) {
 // If it is a number and is in the right range
 if ((guess > this.low) && (guess < this.high)) {
 // Update state object based on this guess
 if (guess < this.secret) this.low = guess;
 else if (guess > this.secret) this.high = guess;
 this.guess = guess;
 this.numGuesses++;
 return true;
 }
 else { // An invalid guess: notify user but don't update state
 alert(`Please enter a number greater than ${
 this.low} and less than ${this.high}`);
 return false;
 }
 }
}

// With the GameState class defined, making the game work is just a matter
// of initializing, updating, saving and rendering the state object at
// the appropriate times.

// When we are first loaded, we try get the state of the game from the URL
// and if that fails we instead begin a new game. So if the user bookmarks a
// game that game can be restored from the URL. But if we load a page with
// no query parameters we'll just get a new game.
let gamestate = GameState.fromURL(window.location) || GameState.newGame();

// Save this initial state of the game into the browser history, but use
// replaceState instead of pushState() for this initial page
history.replaceState(gamestate, "", gamestate.toURL());

// Display this initial state
gamestate.render();

// When the user guesses, update the state of the game based on their guess
// then save the new state to browser history and render the new state
document.querySelector("#input").onchange = (event) => {
 if (gamestate.updateForGuess(parseInt(event.target.value))) {
 history.pushState(gamestate, "", gamestate.toURL());
 }
 gamestate.render();
};

// If the user goes back or forward in history, we'll get a popstate event
// on the window object with a copy of the state object we saved with
// pushState. When that happens, render the new state.
window.onpopstate = (event) => {
 gamestate = GameState.fromStateObject(event.state); // Restore the state
 gamestate.render(); // and display it
};
</script>
</body></html>

15.11 Networking

Every time you load a web page, the browser makes network
requests—using the HTTP and HTTPS protocols—for an HTML file as well
as the images, fonts, scripts, and stylesheets that the file depends
on. But in addition to being able to make network requests in response
to user actions, web browsers also expose JavaScript APIs for
networking as well.

This section covers three network APIs:

		
The fetch() method defines a Promise-based API for making HTTP and HTTPS
requests. The fetch() API makes basic GET requests simple but has
a comprehensive feature set that also supports just about any
possible HTTP use case.

		
The Server-Sent Events (or SSE) API is a convenient, event-based
interface to HTTP “long polling” techniques where the web server
holds the network connection open so that it can send data to the
client whenever it wants.

		
WebSockets is a networking protocol that is not HTTP but is
designed to interoperate with HTTP. It defines an asynchronous
message-passing API where clients and servers can send and receive
messages from each other in a way that is similar to TCP
network sockets.

15.11.1 fetch()

For basic HTTP requests, using fetch() is a three-step process:

		
Call fetch(), passing the URL whose content you want to retrieve.

		
Get the response object that is asynchronously returned by step 1
when the HTTP response begins to arrive and call a method of this
response object to ask for the body of the response.

		
Get the body object that is asynchronously returned by step 2 and
process it however you want.

The fetch() API is completely Promise-based, and there are two
asynchronous steps here, so you typically expect two then() calls
or two await expressions when using fetch(). (And if you’ve
forgotten what those are, you may want to reread Chapter 13
before continuing with this section.)

Here’s what a fetch() request looks like if you are using then()
and expect the server’s response to your request to be JSON-formatted:

fetch("/api/users/current") // Make an HTTP (or HTTPS) GET request
 .then(response => response.json()) // Parse its body as a JSON object
 .then(currentUser => { // Then process that parsed object
 displayUserInfo(currentUser);
 });

Here’s a similar request made using the async and await keywords
to an API that returns a plain string rather than a JSON object:

async function isServiceReady() {
 let response = await fetch("/api/service/status");
 let body = await response.text();
 return body === "ready";
}

If you understand these two code examples, then you know 80% of what
you need to know to use the fetch() API. The subsections that follow
will demonstrate how to make requests and receive responses that are
somewhat more complicated than those shown here.

Goodbye XMLHttpRequest

The fetch() API replaces the baroque and misleadingly named
XMLHttpRequest API (which has nothing to do with XML). You may still
see XHR (as it is often abbreviated) in existing code, but there is no
reason today to use it in new code, and it is not documented in this
chapter. There is one example of XMLHttpRequest in this book, however,
and you can refer to §13.1.3 if you’d like to see an example
of old-style JavaScript networking.

HTTP status codes, response headers, and network errors

The three-step fetch() process shown in §15.11.1 elides all error-handling
code. Here’s a more realistic version:

fetch("/api/users/current") // Make an HTTP (or HTTPS) GET request.
 .then(response => { // When we get a response, first check it
 if (response.ok && // for a success code and the expected type.
 response.headers.get("Content-Type") === "application/json") {
 return response.json(); // Return a Promise for the body.
 } else {
 throw new Error(// Or throw an error.
 `Unexpected response status ${response.status} or content type`
);
 }
 })
 .then(currentUser => { // When the response.json() Promise resolves
 displayUserInfo(currentUser); // do something with the parsed body.
 })
 .catch(error => { // Or if anything went wrong, just log the error.
 // If the user's browser is offline, fetch() itself will reject.
 // If the server returns a bad response then we throw an error above.
 console.log("Error while fetching current user:", error);
 });

The Promise returned by fetch() resolves to a Response object. The
status property of this object is the HTTP status code, such as 200
for successful requests or 404 for “Not Found” responses. (statusText
gives the standard English text that goes along with the numeric status
code.) Conveniently, the ok property of a Response is true if
status is 200 or any code between 200 and 299 and is false for any
other code.

fetch() resolves its Promise when the server’s response starts to
arrive, as soon as the HTTP status and response headers are available,
but typically before the full response body has arrived. Even though the
body is not available yet, you can examine the headers in this second
step of the fetch process. The headers property of a Response object
is a Headers object. Use its has() method to test for the presence of
a header, or use its get() method to get the value of a header. HTTP
header names are case-insensitive, so you can pass lowercase or
mixed-case header names to these functions.

The Headers object is also iterable if you ever need to do that:

fetch(url).then(response => {
 for(let [name,value] of response.headers) {
 console.log(`${name}: ${value}`);
 }
});

If a web server responds to your fetch() request, then the Promise
that was returned will be fulfilled with a Response object, even if the
server’s response was a 404 Not Found error or a 500 Internal Server
Error. fetch() only rejects the Promise it returns if it cannot
contact the web server at all. This can happen if the user’s computer is
offline, the server is unresponsive, or the URL specifies a
hostname that does not exist. Because these things can happen on any
network request, it is always a good idea to include a .catch() clause
any time you make a fetch() call.

Setting request parameters

Sometimes you want to pass extra parameters along with the URL when you
make a request. This can be done by adding name/value pairs at the end
of a URL after a ?. The URL and URLSearchParams classes (which were
covered in §11.9) make it easy to construct URLs in this form, and
the fetch() function accepts URL objects as its first argument, so you
can include request parameters in a fetch() request like this:

async function search(term) {
 let url = new URL("/api/search");
 url.searchParams.set("q", term);
 let response = await fetch(url);
 if (!response.ok) throw new Error(response.statusText);
 let resultsArray = await response.json();
 return resultsArray;
}

Setting request headers

Sometimes you need to set headers in your fetch() requests. If you’re
making web API requests that require credentials, for example, then you
may need to include an Authorization header that contains those
credentials. In order to do this, you can use the two-argument version
of fetch(). As before, the first argument is a string or URL object
that specifies the URL to fetch. The second argument is an object that
can provide additional options, including request headers:

let authHeaders = new Headers();
// Don't use Basic auth unless it is over an HTTPS connection.
authHeaders.set("Authorization",
 `Basic ${btoa(`${username}:${password}`)}`);
fetch("/api/users/", { headers: authHeaders })
 .then(response => response.json()) // Error handling omitted...
 .then(usersList => displayAllUsers(usersList));

There are a number of other options that can be specified in the second
argument to fetch(), and we’ll see it again later. An alternative to
passing two arguments to fetch() is to instead pass the same two
arguments to the Request() constructor and then pass the resulting
Request object to fetch():

let request = new Request(url, { headers });
fetch(request).then(response => ...);

Parsing response bodies

In the three-step fetch() process that we’ve demonstrated, the
second step ends by calling the json() or text() methods of the
Response object and returning the Promise object that those methods
return. Then, the third step begins when that Promise resolves with the
body of the response parsed as a JSON object or simply as a string of
text.

These are probably the two most common scenarios, but they are not the
only ways to obtain the body of a web server’s response. In addition to
json() and text(), the Response object also has these methods:

		arrayBuffer()

		
This method returns a Promise that resolves to an
ArrayBuffer. This is useful when the response contains binary data. You
can use the ArrayBuffer to create a typed array (§11.2) or a
DataView object (§11.2.5) from which you can read the
binary data.

		blob()

		
This method returns a Promise that resolves to a Blob
object. Blobs are not covered in any detail in this book, but the name
stands for “Binary Large Object,” and they are useful when you expect
large amounts of binary data. If you ask for the body of the response as
a Blob, the browser implementation may stream the response data to a
temporary file and then return a Blob object that represents that
temporary file. Blob objects, therefore, do not allow random access to
the response body the way that an ArrayBuffer does. Once you have a
Blob, you can create a URL that refers to it with
URL.createObjectURL(), or you can use the event-based FileReader API
to asynchronously obtain the content of the Blob as a string or an
ArrayBuffer. At the time of this writing, some browsers also define
Promise-based text() and arrayBuffer() methods that give a more
direct route for obtaining the content of a Blob.

		formData()

		
This method returns a Promise that resolves to a FormData
object. You should use this method if you expect the body of the
Response to be encoded in “multipart/form-data” format. This format is
common in POST requests made to a server, but uncommon in server
responses, so this method is not frequently used.

Streaming response bodies

In addition to the five response methods that asynchronously return some
form of the complete response body to you, there is also an option to
stream the response body, which is useful if there is some kind of
processing you can do on the chunks of the response body as they arrive
over the network. But streaming the response is also useful if you want
to display a progress bar so that the user can see the progress of the
download.

The body property of a Response object is a ReadableStream object. If
you have already called a response method like text() or json() that
reads, parses, and returns the body, then bodyUsed will be true to
indicate that the body stream has already been read. If bodyUsed is
false, however, then the stream has not yet been read. In this case,
you can call getReader() on response.body to obtain a stream reader
object, then use the read() method of this reader object to
asynchronously read chunks of text from the stream. The read() method
returns a Promise that resolves to an object with done and value
properties. done will be true if the entire body has been read or if
the stream was closed. And value will either be the next chunk, as a
Uint8Array, or undefined if there are no more chunks.

This streaming API is relatively straightforward if you use async and
await but is surprisingly complex if you attempt to use it with raw
Promises. Example 15-10 demonstrates the API by defining a
streamBody() function. Suppose you wanted to download a large JSON
file and report download progress to the user. You can’t do that with
the json() method of the Response object, but you could do it with
the streamBody() function, like this (assuming that an
updateProgress() function is defined to set the value attribute
on an HTML <progress> element):

fetch('big.json')
 .then(response => streamBody(response, updateProgress))
 .then(bodyText => JSON.parse(bodyText))
 .then(handleBigJSONObject);

The streamBody() function can be implemented as shown in Example 15-10.

Example 15-10. Streaming the response body from a fetch() request

/**
 * An asynchronous function for streaming the body of a Response object
 * obtained from a fetch() request. Pass the Response object as the first
 * argument followed by two optional callbacks.
 *
 * If you specify a function as the second argument, that reportProgress
 * callback will be called once for each chunk that is received. The first
 * argument passed is the total number of bytes received so far. The second
 * argument is a number between 0 and 1 specifying how complete the download
 * is. If the Response object has no "Content-Length" header, however, then
 * this second argument will always be NaN.
 *
 * If you want to process the data in chunks as they arrive, specify a
 * function as the third argument. The chunks will be passed, as Uint8Array
 * objects, to this processChunk callback.
 *
 * streamBody() returns a Promise that resolves to a string. If a processChunk
 * callback was supplied then this string is the concatenation of the values
 * returned by that callback. Otherwise the string is the concatenation of
 * the chunk values converted to UTF-8 strings.
 */
async function streamBody(response, reportProgress, processChunk) {
 // How many bytes are we expecting, or NaN if no header
 let expectedBytes = parseInt(response.headers.get("Content-Length"));
 let bytesRead = 0; // How many bytes received so far
 let reader = response.body.getReader(); // Read bytes with this function
 let decoder = new TextDecoder("utf-8"); // For converting bytes to text
 let body = ""; // Text read so far

 while(true) { // Loop until we exit below
 let {done, value} = await reader.read(); // Read a chunk

 if (value) { // If we got a byte array:
 if (processChunk) { // Process the bytes if
 let processed = processChunk(value); // a callback was passed.
 if (processed) {
 body += processed;
 }
 } else { // Otherwise, convert bytes
 body += decoder.decode(value, {stream: true}); // to text.
 }

 if (reportProgress) { // If a progress callback was
 bytesRead += value.length; // passed, then call it
 reportProgress(bytesRead, bytesRead / expectedBytes);
 }
 }
 if (done) { // If this is the last chunk,
 break; // exit the loop
 }
 }

 return body; // Return the body text we accumulated
}

This streaming API is new at the time of this writing and is expected to
evolve. In particular, there are plans to make ReadableStream objects
asynchronously iterable so that they can be used with for/await loops
(§13.4.1).

Specifying the request method and request body

In each of the fetch() examples shown so far, we have made an HTTP (or
HTTPS) GET request. If you want to use a different request method (such
as POST, PUT, or DELETE), simply use the two-argument version of
fetch(), passing an Options object with a method parameter:

fetch(url, { method: "POST" }).then(r => r.json()).then(handleResponse);

POST and PUT requests typically have a request body containing data to
be sent to the server. As long as the method property is not set to
"GET" or "HEAD" (which do not support request bodies), you can
specify a request body by setting the body property of the Options
object:

fetch(url, {
 method: "POST",
 body: "hello world"
})

When you specify a request body, the browser automatically adds an
appropriate “Content-Length” header to the request. When the body is a
string, as in the preceding example, the browser defaults the “Content-Type” header to
“text/plain;charset=UTF-8.” You may need to override this default if you
specify a string body of some more specific type such as “text/html” or
“application/json”:

fetch(url, {
 method: "POST",
 headers: new Headers({"Content-Type": "application/json"}),
 body: JSON.stringify(requestBody)
})

The body property of the fetch() options object does not have to be
a string. If you have binary data in a typed array or a DataView object
or an ArrayBuffer, you can set the body property to that value and
specify an appropriate “Content-Type” header. If you have binary data in
Blob form, you can simply set body to the Blob. Blobs have a type
property that specifies their content type, and the value of this
property is used as the default value of the “Content-Type” header.

With POST requests, is it somewhat common to pass a set of name/value
parameters in the request body (instead of encoding them into the query
portion of the URL). There are two ways to do this:

		
You can specify your parameter names and values with URLSearchParams
(which we saw earlier in this section, and which is documented in
§11.9) and then pass the URLSearchParams object as the value of
the body property. If you do this, the body will be set to a string
that looks like the query portion of a URL, and the “Content-Type”
header will be automatically set to
“application/x-www-form-urlencoded;charset=UTF-8.”

		
If instead you specify your parameter names and values with a
FormData object, the body will use a more verbose multipart encoding
and “Content-Type” will be set to “multipart/form-data; boundary=…”
with a unique boundary string that matches the body. Using a FormData
object is particularly useful when the values you want to upload are
long, or are File or Blob objects that may each have its own
“Content-Type.” FormData objects can be created and initialized with
values by passing a <form> element to the FormData()
constructor. But you can also create “multipart/form-data” request
bodies by invoking the FormData() constructor with no arguments and
initializing the name/value pairs it represents with the set() and
append() methods.

File upload with fetch()

Uploading files from a user’s computer to a web server is a common task
and can be accomplished using a FormData object as the request body. A
common way to obtain a File object is to display an <input type="file">
element on your web page and listen for “change” events on that
element. When a “change” event occurs, the files array of the input
element should contain at least one File object. File objects are also
available through the HTML drag-and-drop API. That API is not covered in
this book, but you can get files from the dataTransfer.files array of
the event object passed to an event listener for “drop” events.

Remember also that File objects are a kind of Blob, and sometimes it can
be useful to upload Blobs. Suppose you’ve written a web application that
allows the user to create drawings in a <canvas> element. You can
upload the user’s drawings as PNG files with code like the following:

// The canvas.toBlob() function is callback-based.
// This is a Promise-based wrapper for it.
async function getCanvasBlob(canvas) {
 return new Promise((resolve, reject) => {
 canvas.toBlob(resolve);
 });
}

// Here is how we upload a PNG file from a canvas
async function uploadCanvasImage(canvas) {
 let pngblob = await getCanvasBlob(canvas);
 let formdata = new FormData();
 formdata.set("canvasimage", pngblob);
 let response = await fetch("/upload", { method: "POST", body: formdata });
 let body = await response.json();
}

Cross-origin requests

Most often, fetch() is used by web applications to request data from
their own web server. Requests like these are known as same-origin
requests because the URL passed to fetch() has the same origin
(protocol plus hostname plus port) as the document that contains the
script that is making the request.

For security reasons, web browsers generally disallow (though there are
exceptions for images and scripts) cross-origin network
requests. However, Cross-Origin Resource Sharing, or CORS, enables safe
cross-origin requests. When fetch() is used with a cross-origin URL,
the browser adds an “Origin” header to the request (and does not allow
it to be overridden via the headers property) to notify the web server
that the request is coming from a document with a different origin. If
the server responds to the request with an appropriate
“Access-Control-Allow-Origin” header, then the request
proceeds. Otherwise, if the server does not explicitly allow the
request, then the Promise returned by fetch() is rejected.

Aborting a request

Sometimes you may want to abort a fetch() request that you have
already issued, perhaps because the user clicked a Cancel button or the request is taking too long. The fetch API allows requests to
be aborted using the AbortController and AbortSignal classes. (These
classes define a generic abort mechanism suitable for use by other APIs
as well.)

If you want to have the option of aborting a fetch() request, then
create an AbortController object before starting the request. The
signal property of the controller object is an AbortSignal
object. Pass this signal object as the value of the signal property of
the options object that you pass to fetch(). Having done that, you can
call the abort() method of the controller object to abort the
request, which will cause any Promise objects related to the fetch
request to reject with an exception.

Here is an example of using the AbortController mechanism to enforce a
timeout for fetch requests:

// This function is like fetch(), but it adds support for a timeout
// property in the options object and aborts the fetch if it is not complete
// within the number of milliseconds specified by that property.
function fetchWithTimeout(url, options={}) {
 if (options.timeout) { // If the timeout property exists and is nonzero
 let controller = new AbortController(); // Create a controller
 options.signal = controller.signal; // Set the signal property
 // Start a timer that will send the abort signal after the specified
 // number of milliseconds have passed. Note that we never cancel
 // this timer. Calling abort() after the fetch is complete has
 // no effect.
 setTimeout(() => { controller.abort(); }, options.timeout);
 }
 // Now just perform a normal fetch
 return fetch(url, options);
}

Miscellaneous request options

We’ve seen that an Options object can be passed as the second argument
to fetch() (or as the second argument to the Request() constructor)
to specify the request method, request headers, and request body. It
supports a number of other options as well, including these:

		cache

		
Use this property to override the browser’s default caching
behavior. HTTP caching is a complex topic that is beyond the scope of
this book, but if you know something about how it works, you can use the
following legal values of cache:

		"default"

		
This value specifies the default caching behavior. Fresh
 responses in the cache are served directly from the cache, and stale
 responses are revalidated before being served.

		"no-store"

		
This value makes the browser ignore its cache. The cache
is not checked for matches when the request is made and is not updated
when the response arrives.

		"reload"

		
This value tells the browser to always make a normal
network request, ignoring the cache. When the response arrives,
however, it is stored in the cache.

		"no-cache"

		
This (misleadingly named) value tells the browser to not
serve fresh values from the cache. Fresh or stale cached values are
revalidated before being returned.

		"force-cache"

		
This value tells the browser to serve responses from
the cache even if they are stale.

		redirect

		
This property controls how the browser handles redirect
responses from the server. The three legal values are:

		"follow"

		
This is the default value, and it makes the browser follow
redirects automatically. If you use this default, the Response objects you
get with fetch() should never have a status in the 300 to 399
range.

		"error"

		
This value makes fetch() reject its returned Promise if
the server returns a redirect response.

		"manual"

		
This value means that you want to manually handle redirect
responses, and the Promise returned by fetch() may resolve to a
Response object with a status in the 300 to 399 range. In this
case, you will have to use the “Location” header of the Response to
manually follow the redirection.

		referrer

		
You can set this property to a string that contains a
relative URL to specify the value of the HTTP “Referer” header
(which is historically misspelled with three Rs instead of four). If you
set this property to the empty string, then the “Referer” header will
be omitted from the request.

15.11.2 Server-Sent Events

A fundamental feature of the HTTP protocol upon which the web is built
is that clients initiate requests and servers respond to those
requests. Some web apps find it useful, however, to have their server
send them notifications when events occur. This does not come naturally
to HTTP, but the technique that has been devised is for the client to
make a request to the server, and then neither the client nor the server
close the connection. When the server has something to tell the client
about, it writes data to the connection but keeps it open. The effect is
as if the client makes a network request and the server responds in a
slow and bursty way with significant pauses between bursts of
activity. Network connections like this don’t usually stay open forever,
but if the client detects that the connection has closed, it can simply
make another request to reopen the connection.

This technique for allowing servers to send messages to clients is
surprisingly effective (though it can be expensive on the server side
because the server must maintain an active connection to all of its
clients). Because it is a useful programming pattern, client-side
JavaScript supports it with the EventSource API. To create this kind of
long-lived request connection to a web server, simply pass a URL to the
EventSource() constructor. When the server writes (properly formatted)
data to the connection, the EventSource object translates those into
events that you can listen for:

let ticker = new EventSource("stockprices.php");
ticker.addEventListener("bid", (event) => {
 displayNewBid(event.data);
}

The event object associated with a message event has a data property
that holds whatever string the server sent as the payload for this
event. The event object also has a type property, like all event
objects do, that specifies the name of the event. The server determines
the type of the events that are generated. If the server omits an event
name in the data it writes, then the event type defaults to “message.”

The Server-Sent Event protocol is straightforward. The client initiates
a connection to the server (when it creates the EventSource object),
and the server keeps this connection open. When an event occurs, the
server writes lines of text to the connection. An event going over the
wire might look like this, if the comments were omitted:

event: bid // sets the type of the event object
data: GOOG // sets the data property
data: 999 // appends a newline and more data
 // a blank line marks the end of the event

There are some additional details to the protocol that allow events to
be given IDs and allow a reconnecting client to tell the server what the
ID of the last event it received was, so that a server can resend any
events it missed. Those details are invisible on the client side,
however, and are not discussed here.

One obvious application for Server-Sent Events is for multiuser
collaborations like online chat. A chat client might use fetch() to
post messages to the chat room and subscribe to the stream of chatter
with an EventSource object. Example 15-11 demonstrates how easy it
is to write a chat client like this with EventSource.

Example 15-11. A simple chat client using EventSource

<html>
<head><title>SSE Chat</title></head>
<body>
<!-- The chat UI is just a single text input field -->
<!-- New chat messages will be inserted before this input field -->
<input id="input" style="width:100%; padding:10px; border:solid black 2px"/>
<script>
// Take care of some UI details
let nick = prompt("Enter your nickname"); // Get user's nickname
let input = document.getElementById("input"); // Find the input field
input.focus(); // Set keyboard focus

// Register for notification of new messages using EventSource
let chat = new EventSource("/chat");
chat.addEventListener("chat", event => { // When a chat message arrives
 let div = document.createElement("div"); // Create a <div>
 div.append(event.data); // Add text from the message
 input.before(div); // And add div before input
 input.scrollIntoView(); // Ensure input elt is visible
});

// Post the user's messages to the server using fetch
input.addEventListener("change", ()=>{ // When the user strikes return
 fetch("/chat", { // Start an HTTP request to this url.
 method: "POST", // Make it a POST request with body
 body: nick + ": " + input.value // set to the user's nick and input.
 })
 .catch(e => console.error); // Ignore response, but log any errors.
 input.value = ""; // Clear the input
});
</script>
</body>
</html>

The server-side code for this chat program is not much more complicated
than the client-side code. Example 15-12 is a simple Node HTTP
server. When a client requests the root URL “/”, it sends the chat
client code shown in Example 15-11. When a client makes a GET
request for the URL “/chat”, it saves the response object and keeps that
connection open. And when a client makes a POST request to “/chat”, it
uses the body of the request as a chat message and writes it, using the
“text/event-stream” format to each of the saved response objects. The
server code listens on port 8080, so after running it with Node, point
your browser to http://localhost:8080 to connect and begin chatting
with yourself.

Example 15-12. A Server-Sent Events chat server

// This is server-side JavaScript, intended to be run with NodeJS.
// It implements a very simple, completely anonymous chat room.
// POST new messages to /chat, or GET a text/event-stream of messages
// from the same URL. Making a GET request to / returns a simple HTML file
// that contains the client-side chat UI.
const http = require("http");
const fs = require("fs");
const url = require("url");

// The HTML file for the chat client. Used below.
const clientHTML = fs.readFileSync("chatClient.html");

// An array of ServerResponse objects that we're going to send events to
let clients = [];

// Create a new server, and listen on port 8080.
// Connect to http://localhost:8080/ to use it.
let server = new http.Server();
server.listen(8080);

// When the server gets a new request, run this function
server.on("request", (request, response) => {
 // Parse the requested URL
 let pathname = url.parse(request.url).pathname;

 // If the request was for "/", send the client-side chat UI.
 if (pathname === "/") { // A request for the chat UI
 response.writeHead(200, {"Content-Type": "text/html"}).end(clientHTML);
 }
 // Otherwise send a 404 error for any path other than "/chat" or for
 // any method other than "GET" and "POST"
 else if (pathname !== "/chat" ||
 (request.method !== "GET" && request.method !== "POST")) {
 response.writeHead(404).end();
 }
 // If the /chat request was a GET, then a client is connecting.
 else if (request.method === "GET") {
 acceptNewClient(request, response);
 }
 // Otherwise the /chat request is a POST of a new message
 else {
 broadcastNewMessage(request, response);
 }
});

// This handles GET requests for the /chat endpoint which are generated when
// the client creates a new EventSource object (or when the EventSource
// reconnects automatically).
function acceptNewClient(request, response) {
 // Remember the response object so we can send future messages to it
 clients.push(response);

 // If the client closes the connection, remove the corresponding
 // response object from the array of active clients
 request.connection.on("end", () => {
 clients.splice(clients.indexOf(response), 1);
 response.end();
 });

 // Set headers and send an initial chat event to just this one client
 response.writeHead(200, {
 "Content-Type": "text/event-stream",
 "Connection": "keep-alive",
 "Cache-Control": "no-cache"
 });
 response.write("event: chat\ndata: Connected\n\n");

 // Note that we intentionally do not call response.end() here.
 // Keeping the connection open is what makes Server-Sent Events work.
}

// This function is called in response to POST requests to the /chat endpoint
// which clients send when users type a new message.
async function broadcastNewMessage(request, response) {
 // First, read the body of the request to get the user's message
 request.setEncoding("utf8");
 let body = "";
 for await (let chunk of request) {
 body += chunk;
 }

 // Once we've read the body send an empty response and close the connection
 response.writeHead(200).end();

 // Format the message in text/event-stream format, prefixing each
 // line with "data: "
 let message = "data: " + body.replace("\n", "\ndata: ");

 // Give the message data a prefix that defines it as a "chat" event
 // and give it a double newline suffix that marks the end of the event.
 let event = `event: chat\n${message}\n\n`;

 // Now send this event to all listening clients
 clients.forEach(client => client.write(event));
}

15.11.3 WebSockets

The WebSocket API is a simple interface to a complex and powerful network
protocol. WebSockets allow JavaScript code in the browser to easily
exchange text and binary messages with a server. As with Server-Sent
Events, the client must establish the connection, but once the
connection is established, the server can asynchronously send messages
to the client. Unlike SSE, binary messages are supported, and messages
can be sent in both directions, not just from server to client.

The network protocol that enables WebSockets is a kind of extension to
HTTP. Although the WebSocket API is reminiscent of low-level network
sockets, connection endpoints are not identified by IP address and
port. Instead, when you want to connect to a service using the WebSocket
protocol, you specify the service with a URL, just as you would for a
web service. WebSocket URLs begin with wss:// instead of https://,
however. (Browsers typically restrict WebSockets to only work in pages
loaded over secure https:// connections).

To establish a WebSocket connection, the browser first establishes an
HTTP connection and sends the server an Upgrade: websocket header
requesting that the connection be switched from the HTTP protocol to the
WebSocket protocol. What this means is that in order to use WebSockets
in your client-side JavaScript, you will need to be working with a web
server that also speaks the WebSocket protocol, and you will need to
have server-side code written to send and receive data using that
protocol. If your server is set up that way, then this section will
explain everything you need to know to handle the client-side end of the
connection. If your server does not support the WebSocket protocol,
consider using Server-Sent Events (§15.11.2) instead.

Creating, connecting, and disconnecting WebSockets

If you want to communicate with a WebSocket-enabled server, create a
WebSocket object, specifying the wss:// URL that identifies the server
and service you want to use:

let socket = new WebSocket("wss://example.com/stockticker");

When you create a WebSocket, the connection process begins
automatically. But a newly created WebSocket will not be connected when
it is first returned.

The readyState property of the socket
specifies what state the connection is in. This property can have the
following values:

		WebSocket.CONNECTING

		
This WebSocket is connecting.

		WebSocket.OPEN

		
This WebSocket is connected and ready for communication.

		WebSocket.CLOSING

		
This WebSocket connection is being closed.

		WebSocket.CLOSED

		
This WebSocket has been closed; no further
communication is possible. This state can also occur when the initial
connection attempt fails.

When a WebSocket transitions from the CONNECTING to the OPEN state, it
fires an “open” event, and you can listen for this event by setting the
onopen property of the WebSocket or by calling addEventListener() on
that object.

If a protocol or other error occurs for a WebSocket connection, the
WebSocket object fires an “error” event. You can set onerror to define
a handler, or, alternatively, use addEventListener().

When you are done with a WebSocket, you can close the connection by
calling the close() method of the WebSocket object. When a WebSocket
changes to the CLOSED state, it fires a “close” event, and you can set
the onclose property to listen for this event.

Sending messages over a WebSocket

To send a message to the server on the other end of a WebSocket
connection, simply invoke the send() method of the WebSocket
object. send() expects a single message argument, which can be a
string, Blob, ArrayBuffer, typed array, or DataView object.

The send() method buffers the specified message to be transmitted and
returns before the message is actually sent. The bufferedAmount
property of the WebSocket object specifies the number of bytes that are
buffered but not yet sent. (Surprisingly, WebSockets do not fire any
event when this value reaches 0.)

Receiving messages from a WebSocket

To receive messages from a server over a WebSocket, register an event
handler for “message” events, either by setting the onmessage property
of the WebSocket object, or by calling addEventListener(). The object
associated with a “message” event is a MessageEvent instance with a
data property that contains the server’s message. If the server sent
UTF-8 encoded text, then event.data will be a string containing that
text.

If the server sends a message that consists of binary data instead of
text, then the data property will (by default) be a Blob object
representing that data. If you prefer to receive binary messages as
ArrayBuffers instead of Blobs, set the binaryType property of the
WebSocket object to the string “arraybuffer.”

There are a number of Web APIs that use MessageEvent objects for
exchanging messages. Some of these APIs use the structured clone
algorithm (see “The Structured Clone Algorithm”) to allow complex data structures as the
message payload. WebSockets is not one of those APIs: messages exchanged
over a WebSocket are either a single string of Unicode characters or a
single string of bytes (represented as a Blob or an ArrayBuffer).

Protocol negotiation

The WebSocket protocol enables the exchange of text and binary messages,
but says nothing at all about the structure or meaning of those
messages. Applications that use WebSockets must build their own
communication protocol on top of this simple message-exchange
mechanism. The use of wss:// URLs helps with this: each URL will
typically have its own rules for how messages are to be exchanged. If
you write code to connect to wss://example.com/stockticker, then you
probably know that you will be receiving messages about stock prices.

Protocols tend to evolve, however. If a hypothetical stock quotation
protocol is updated, you can define a new URL and connect to the updated
service as wss://example.com/stockticker/v2. URL-based versioning is
not always sufficient, however. With complex protocols that have evolved
over time, you may end up with deployed servers that support multiple
versions of the protocol and deployed clients that support a different
set of protocol versions.

Anticipating this situation, the WebSocket protocol and API include an application-level protocol negotiation feature. When you call the
WebSocket() constructor, the wss:// URL is the first argument, but
you can also pass an array of strings as the second argument. If you do
this, you are specifying a list of application protocols that you know
how to handle and asking the server to pick one. During the connection
process, the server will choose one of the protocols (or will fail with
an error if it does not support any of the client’s options). Once the
connection has been established, the protocol property of the
WebSocket object specifies which protocol version the server chose.

15.12 Storage

Web applications can use browser APIs to store data locally on the
user’s computer. This client-side storage serves to give the web
browser a memory. Web apps can store user preferences, for example, or
even store their complete state, so that they can resume exactly where
you left off at the end of your last visit. Client-side storage is
segregated by origin, so pages from one site can’t read the data stored
by pages from another site. But two pages from the same site can share
storage and use it as a communication mechanism. Data input in a
form on one page can be displayed in a table on another page, for
example. Web applications can choose the lifetime of the data they
store: data can be stored temporarily so that it is retained only until
the window closes or the browser exits, or it can be saved on the user’s
computer and stored permanently so that it is available months or years
later.

There are a number of forms of client-side storage:

		Web Storage

		
The Web Storage API consists of the localStorage and
sessionStorage objects, which are essentially persistent objects
that map string keys to string values. Web Storage is very easy to
use and is suitable for storing large (but not huge) amounts of
data.

		Cookies

		
Cookies are an old client-side storage mechanism that was
designed for use by server-side scripts. An awkward JavaScript API
makes cookies scriptable on the client side, but they’re hard to
use and suitable only for storing small amounts of textual
data. Also, any data stored as cookies is always transmitted to the
server with every HTTP request, even if the data is only of interest
to the client.

		IndexedDB

		
IndexedDB is an asynchronous API to an object database that
supports indexing.

Storage, Security, and Privacy

Web browsers often offer to remember web passwords for you, and they
store them safely in encrypted form on the device. But none of the forms
of client-side data storage described in this chapter involve
encryption: you should assume that anything your web applications save
resides on the user’s device in unencrypted form. Stored data is
therefore accessible to curious users who share access to the device
and to malicious software (such as spyware) that exists on the
device. For this reason, no form of client-side storage should ever be
used for passwords, financial account numbers, or other similarly
sensitive information.

15.12.1 localStorage and sessionStorage

The localStorage and sessionStorage properties of the Window object
refer to Storage objects. A Storage object behaves much like a regular
JavaScript object, except that:

		
The property values of Storage objects must be strings.

		
The properties stored in a Storage object persist. If you set a
property of the localStorage object and then the user reloads the
page, the value you saved in that property is still available to your
program.

You can use the localStorage object like this, for example:

let name = localStorage.username; // Query a stored value.
if (!name) {
 name = prompt("What is your name?"); // Ask the user a question.
 localStorage.username = name; // Store the user's response.
}

You can use the delete operator to remove properties from
localStorage and sessionStorage, and you can use a for/in loop or
Object.keys() to enumerate the properties of a Storage object. If you
want to remove all properties of a storage object, call the clear()
method:

localStorage.clear();

Storage objects also define getItem(), setItem(), and deleteItem()
methods, which you can use instead of direct property access and the
delete operator if you want to.

Keep in mind that the properties of Storage objects can only store
strings. If you want to store and retrieve other kinds of
data, you’ll have to encode and decode it yourself.

For example:

// If you store a number, it is automatically converted to a string.
// Don't forget to parse it when retrieving it from storage.
localStorage.x = 10;
let x = parseInt(localStorage.x);

// Convert a Date to a string when setting, and parse it when getting
localStorage.lastRead = (new Date()).toUTCString();
let lastRead = new Date(Date.parse(localStorage.lastRead));

// JSON makes a convenient encoding for any primitive or data structure
localStorage.data = JSON.stringify(data); // Encode and store
let data = JSON.parse(localStorage.data); // Retrieve and decode.

Storage lifetime and scope

The difference between localStorage and sessionStorage involves the
lifetime and scope of the storage. Data stored through localStorage
is permanent: it does not expire and remains stored on the user’s
device until a web app deletes it or the user asks the browser
(through some browser-specific UI) to delete it.

localStorage is scoped to the document origin. As explained in
“The same-origin policy”, the origin of a document is defined by its
protocol, hostname, and port. All documents with the same origin share
the same localStorage data (regardless of the origin of the scripts
that actually access localStorage). They can read each other’s
data, and they can overwrite each other’s data. But documents with
different origins can never read or overwrite each other’s data (even if
they’re both running a script from the same third-party server).

Note that localStorage is also scoped by browser implementation. If
you visit a site using Firefox and then visit again using
Chrome (for example), any data stored during the first visit will not be
accessible during the second visit.

Data stored through sessionStorage has a different lifetime than data
stored through localStorage: it has the same lifetime as the
top-level window or browser tab in which the script that stored it is
running. When the window or tab is permanently closed, any data stored
through sessionStorage is deleted. (Note, however, that modern
browsers have the ability to reopen recently closed tabs and restore
the last browsing session, so the lifetime of these tabs and their
associated sessionStorage may be longer than it seems.)

Like localStorage, sessionStorage is scoped to the document origin
so that documents with different origins will never share
sessionStorage. But sessionStorage is also scoped on a per-window
basis. If a user has two browser tabs displaying documents from the
same origin, those two tabs have separate sessionStorage data: the
scripts running in one tab cannot read or overwrite the data written by
scripts in the other tab, even if both tabs are visiting exactly the
same page and are running exactly the same scripts.

Storage events

Whenever the data stored in localStorage changes, the browser triggers
a “storage” event on any other Window objects to which that data is
visible (but not on the window that made the change). If a browser has
two tabs open to pages with the same origin, and one of those pages
stores a value in localStorage, the other tab will receive a “storage” event.

Register a handler for “storage” events either by setting window.onstorage or
by calling window.addEventListener() with event type “storage”.

The event object associated with a “storage” event has some important
properties:

		key

		
The name or key of the item that was set or removed. If the
clear() method was called, this property will be null.

		newValue

		
Holds the new value of the item, if there is one. If
removeItem() was called, this property will not be present.

		oldValue

		
Holds the old value of an existing item that changed or was
deleted. If a new property (with no old value) is added, then this
property will not be present in the event object.

		storageArea

		
The Storage object that changed. This is usually the
localStorage object.

		url

		
The URL (as a string) of the document whose script made this
storage change.

Note that localStorage and the “storage” event can serve as a
broadcast mechanism by which a browser sends a message to all windows
that are currently visiting the same website. If a user requests that a
website stop performing animations, for example, the site might store
that preference in localStorage so that it can honor it in future
visits. And by storing the preference, it generates an event that
allows other windows displaying the same site to honor the request as
well.

As another example, imagine a web-based image-editing application
that allows the user to display tool palettes in separate windows. When
the user selects a tool, the application uses localStorage to save
the current state and to generate a notification to other windows that
a new tool has been selected.

15.12.2 Cookies

A cookie is a small amount of named data stored by the web browser and
associated with a particular web page or website. Cookies were designed
for server-side programming, and at the lowest level, they are
implemented as an extension to the HTTP protocol. Cookie data is
automatically transmitted between the web browser and web server, so
server-side scripts can read and write cookie values that are stored on
the client. This section demonstrates how client-side scripts can also
manipulate cookies using the cookie property of the Document object.

Why “Cookie”?

The name “cookie” does not have a lot of significance, but it is not
used without precedent. In the annals of computing history, the term
“cookie” or “magic cookie” has been used to refer to a small chunk
of data, particularly a chunk of privileged or secret data, akin to a
password, that proves identity or permits access. In JavaScript,
cookies are used to save state and can establish a kind of identity for
a web browser. Cookies in JavaScript do not use any kind of
cryptography, however, and are not secure in any way (although
transmitting them across an https: connection helps).

The API for manipulating cookies is an old and cryptic one.
There are no methods involved: cookies are queried, set, and deleted by
reading and writing the cookie property of the Document object using
specially formatted strings. The lifetime and scope of each cookie can
be individually specified with cookie attributes. These attributes are
also specified with specially formatted strings set on the same
cookie property.

The subsections that follow explain how to query and set cookie values
and attributes.

Reading cookies

When you read the document.cookie property, it returns a string that
contains all the cookies that apply to the current document. The string
is a list of name/value pairs separated from each other by a semicolon
and a space. The cookie value is just the value itself and does not
include any of the attributes that may be associated with that
cookie. (We’ll talk about attributes next.) In order to make use of the
document.cookie property, you must typically call the split() method
to break it into individual name/value pairs.

Once you have extracted the value of a cookie from the cookie
property, you must interpret that value based on whatever format or
encoding was used by the cookie’s creator. You might, for example, pass
the cookie value to decodeURIComponent() and then to JSON.parse().

The code that follows defines a getCookie() function that parses the
document.cookie property and returns an object whose properties
specify the names and values of the document’s cookies:

// Return the document's cookies as a Map object.
// Assume that cookie values are encoded with encodeURIComponent().
function getCookies() {
 let cookies = new Map(); // The object we will return
 let all = document.cookie; // Get all cookies in one big string
 let list = all.split("; "); // Split into individual name/value pairs
 for(let cookie of list) { // For each cookie in that list
 if (!cookie.includes("=")) continue; // Skip if there is no = sign
 let p = cookie.indexOf("="); // Find the first = sign
 let name = cookie.substring(0, p); // Get cookie name
 let value = cookie.substring(p+1); // Get cookie value
 value = decodeURIComponent(value); // Decode the value
 cookies.set(name, value); // Remember cookie name and value
 }
 return cookies;
}

Cookie attributes: lifetime and scope

In addition to a name and a value, each cookie has optional attributes
that control its lifetime and scope. Before we can describe how to set
cookies with JavaScript, we need to explain cookie attributes.

Cookies are transient by default; the values they store last for the
duration of the web browser session but are lost when the user exits the
browser. If you want a cookie to last beyond a single browsing session,
you must tell the browser how long (in seconds) you would like it to
retain the cookie by specifying a max-age attribute. If you specify a
lifetime, the browser will store cookies in a file and delete them only
once they expire.

Cookie visibility is scoped by document origin as localStorage and
sessionStorage are, but also by document path. This scope is
configurable through cookie attributes path and domain. By default,
a cookie is associated with, and accessible to, the web page that
created it and any other web pages in the same directory or any
subdirectories of that directory. If the web page
example.com/catalog/index.html creates a cookie, for example,
that cookie is also visible to example.com/catalog/order.html
and example.com/catalog/widgets/index.html, but it is not
visible to example.com/about.html.

This default visibility behavior is often exactly what you want.
Sometimes, though, you’ll want to use cookie values throughout a
website, regardless of which page creates the cookie. For instance, if
the user enters their mailing address in a form on one page, you may
want to save that address to use as the default the next time they
return to the page and also as the default in an entirely unrelated
form on another page where they are asked to enter a billing address. To
allow this usage, you specify a path for the cookie. Then, any web
page from the same web server whose URL begins with the path prefix you
specified can share the cookie. For example, if a cookie set by
example.com/catalog/widgets/index.html has its path set to “/catalog”, that cookie is also visible to example.com/catalog/order.html. Or, if
the path is set to “/”, the cookie is visible to any page in the
example.com domain, giving the cookie a scope like that of
localStorage.

By default, cookies are scoped by document origin. Large websites may
want cookies to be shared across subdomains, however. For example, the
server at
order.example.com may need to read cookie values set from
catalog.example.com. This is where the domain attribute comes in.
If a cookie created by a page on catalog.example.com sets its path
attribute to “/” and its domain attribute to “.example.com,” that
cookie is available to all web pages on catalog.example.com,
orders.example.com, and any other server in the example.com domain.
Note that you cannot set the domain of a cookie to a domain other than a
parent domain of your server.

The final cookie attribute is a boolean attribute named secure that
specifies how cookie values are transmitted over the network. By
default, cookies are insecure, which means that they are transmitted
over a normal, insecure HTTP connection. If a cookie is marked secure,
however, it is transmitted only when the browser and server are
connected via HTTPS or another secure protocol.

Cookie Limitations

Cookies are intended for storage of small amounts of data by server-side
scripts, and that data is transferred to the server each time a relevant
URL is requested. The standard that defines cookies encourages browser
manufacturers to allow unlimited numbers of cookies of unrestricted size
but does not require browsers to retain more than 300 cookies total, 20
cookies per web server, or 4 KB of data per cookie (both name and value
count toward this 4 KB limit). In practice, browsers allow many more
than 300 cookies total, but the 4 KB size limit may still be enforced by
some.

Storing cookies

To associate a transient cookie value with the current document, simply
set the cookie property to a name=value string. For example:

document.cookie = `version=${encodeURIComponent(document.lastModified)}`;

The next time you read the cookie property, the name/value pair you
stored is included in the list of cookies for the document. Cookie
values cannot include semicolons, commas, or whitespace. For this
reason, you may want to use the core JavaScript global function
encodeURIComponent() to encode the value before storing it in the
cookie. If you do this, you’ll have to use the corresponding
decodeURIComponent() function when you read the cookie value.

A cookie written with a simple name/value pair lasts for the current
web-browsing session but is lost when the user exits the browser. To
create a cookie that can last across browser sessions, specify its
lifetime (in seconds) with a max-age attribute. You can do this by
setting the cookie property to a string of the form: name=value;
max-age=seconds. The following function sets a cookie with an optional
max-age attribute:

// Store the name/value pair as a cookie, encoding the value with
// encodeURIComponent() in order to escape semicolons, commas, and spaces.
// If daysToLive is a number, set the max-age attribute so that the cookie
// expires after the specified number of days. Pass 0 to delete a cookie.
function setCookie(name, value, daysToLive=null) {
 let cookie = `${name}=${encodeURIComponent(value)}`;
 if (daysToLive !== null) {
 cookie += `; max-age=${daysToLive*60*60*24}`;
 }
 document.cookie = cookie;
}

Similarly, you can set the path and domain attributes of a cookie
by appending strings of the form ;path=value or ;domain=value to
the string that you set on the document.cookie property. To set the
secure property, simply append ;secure.

To change the value of a cookie, set its value again using the same
name, path, and domain along with the new value. You can change the
lifetime of a cookie when you change its value by specifying a new
max-age attribute.

To delete a cookie, set it again using the same name, path, and domain,
specifying an arbitrary (or empty) value, and a max-age attribute of
0.

15.12.3 IndexedDB

Web application architecture has traditionally featured HTML, CSS, and
JavaScript on the client and a database on the server. You may find it
surprising, therefore, to learn that the web platform includes a simple
object database with a JavaScript API for persistently storing
JavaScript objects on the user’s computer and retrieving them as
needed.

IndexedDB is an object database, not a relational database, and it is
much simpler than databases that support SQL queries. It is more
powerful, efficient, and robust than the key/value storage provided by
the localStorage, however. Like the localStorage, IndexedDB
databases are scoped to the origin of the containing document: two web
pages with the same origin can access each other’s data, but web pages
from different origins cannot.

Each origin can have any number of IndexedDB databases. Each one has a
name that must be unique within the origin. In the IndexedDB API, a
database is simply a collection of named object stores. As the name
implies, an object store stores objects. Objects are serialized into
the object store using the structured clone algorithm (see
“The Structured Clone Algorithm”), which means that the objects you store can have
properties whose values are Maps, Sets, or typed arrays. Each object
must have a key by which it can be sorted and retrieved from the
store. Keys must be unique—two objects in the same store may not have
the same key—and they must have a natural ordering so that they can be
sorted. JavaScript strings, numbers, and Date objects are valid
keys. An IndexedDB database can automatically generate a unique key
for each object you insert into the database. Often, though, the
objects you insert into an object store will already have a property
that is suitable for use as a key. In this case, you specify a “key
path” for that property when you create the object
store. Conceptually, a key path is a value that tells the database how
to extract an object’s key from the object.

In addition to retrieving objects from an object store by their primary
key value, you may want to be able to search based on the value of
other properties in the object. In order to be able to do this, you can
define any number of indexes on the object store. (The ability to
index an object store explains the name “IndexedDB.”) Each index
defines a secondary key for the stored objects. These indexes are not
generally unique, and multiple objects may match a single key value.

IndexedDB provides atomicity guarantees: queries and updates to the
database are grouped within a transaction so that they all succeed
together or all fail together and never leave the database in an
undefined, partially updated state. Transactions in IndexedDB are
simpler than in many database APIs; we’ll mention them again later.

Conceptually, the IndexedDB API is quite simple. To query or update a
database, you first open the database you want (specifying it by name).
Next, you create a transaction object and use that object to look up
the desired object store within the database, also by name. Finally,
you look up an object by calling the get() method of the object store
or store a new object by calling put() (or by calling add(), if
you want to avoid overwriting existing objects).

If you want to look up the objects for a range of keys, you create an
IDBRange object that specifies the upper and lower bounds of the range
and pass it to the getAll() or openCursor() methods of the object
store.

If you want to make a query using a secondary key, you look up the
named index of the object store, then call the get(), getAll(),
or openCursor() methods of the index object, passing either a single
key or an IDBRange object.

This conceptual simplicity of the IndexedDB API is complicated,
however, by the fact that the API is asynchronous (so that web apps
can use it without blocking the browser’s main UI thread). IndexedDB
was defined before Promises were widely supported, so the API is
event-based rather than Promise-based, which means that it does not
work with async and await.

Creating transactions and looking up object stores and indexes are
synchronous operations. But opening a database, updating an object
store, and querying a store or index are all asynchronous
operations. These asynchronous methods all immediately return a
request object. The browser triggers a success or error event on the
request object when the request succeeds or fails, and you can define
handlers with the onsuccess and onerror properties. Inside an
onsuccess handler, the result of the operation is available as the
result property of the request object. Another useful event is the
“complete” event dispatched on transaction objects when a transaction
has completed successfully.

One convenient feature of this asynchronous API is that it simplifies
transaction management. The IndexedDB API forces you to create a
transaction object in order to get the object store on which you can
perform queries and updates. In a synchronous API, you would expect to
explicitly mark the end of the transaction by calling a commit()
method. But with IndexedDB, transactions are automatically committed
(if you do not explicitly abort them) when all the onsuccess event
handlers have run and there are no more pending asynchronous requests
that refer to that transaction.

There is one more event that is important to the IndexedDB API. When
you open a database for the first time, or when you increment the
version number of an existing database, IndexedDB fires an
“upgradeneeded” event on the request object returned by the
indexedDB.open() call. The job of the event handler for
“upgradeneeded” events is to define or update the schema for the new
database (or the new version of the existing database). For IndexedDB
databases, this means creating object stores and defining indexes on
those object stores. And in fact, the only time the IndexedDB API
allows you to create an object store or an index is in response to an
“upgradeneeded” event.

With this high-level overview of IndexedDB in mind, you should now be
able to understand Example 15-13. That example uses IndexedDB to
create and query a database that maps US postal codes (zip codes) to US
cities. It demonstrates many, but not all, of the basic features of
IndexedDB. Example 15-13 is long, but well commented.

Example 15-13. A IndexedDB database of US postal codes

// This utility function asynchronously obtains the database object (creating
// and initializing the DB if necessary) and passes it to the callback.
function withDB(callback) {
 let request = indexedDB.open("zipcodes", 1); // Request v1 of the database
 request.onerror = console.error; // Log any errors
 request.onsuccess = () => { // Or call this when done
 let db = request.result; // The result of the request is the database
 callback(db); // Invoke the callback with the database
 };

 // If version 1 of the database does not yet exist, then this event
 // handler will be triggered. This is used to create and initialize
 // object stores and indexes when the DB is first created or to modify
 // them when we switch from one version of the DB schema to another.
 request.onupgradeneeded = () => { initdb(request.result, callback); };
}

// withDB() calls this function if the database has not been initialized yet.
// We set up the database and populate it with data, then pass the database to
// the callback function.
//
// Our zip code database includes one object store that holds objects like this:
//
// {
// zipcode: "02134",
// city: "Allston",
// state: "MA",
// }
//
// We use the "zipcode" property as the database key and create an index for
// the city name.
function initdb(db, callback) {
 // Create the object store, specifying a name for the store and
 // an options object that includes the "key path" specifying the
 // property name of the key field for this store.
 let store = db.createObjectStore("zipcodes", // store name
 { keyPath: "zipcode" });

 // Now index the object store by city name as well as by zip code.
 // With this method the key path string is passed directly as a
 // required argument rather than as part of an options object.
 store.createIndex("cities", "city");

 // Now get the data we are going to initialize the database with.
 // The zipcodes.json data file was generated from CC-licensed data from
 // www.geonames.org: https://download.geonames.org/export/zip/US.zip
 fetch("zipcodes.json") // Make an HTTP GET request
 .then(response => response.json()) // Parse the body as JSON
 .then(zipcodes => { // Get 40K zip code records
 // In order to insert zip code data into the database we need a
 // transaction object. To create our transaction object, we need
 // to specify which object stores we'll be using (we only have
 // one) and we need to tell it that we'll be doing writes to the
 // database, not just reads:
 let transaction = db.transaction(["zipcodes"], "readwrite");
 transaction.onerror = console.error;

 // Get our object store from the transaction
 let store = transaction.objectStore("zipcodes");

 // The best part about the IndexedDB API is that object stores
 // are *really* simple. Here's how we add (or update) our records:
 for(let record of zipcodes) { store.put(record); }

 // When the transaction completes successfully, the database
 // is initialized and ready for use, so we can call the
 // callback function that was originally passed to withDB()
 transaction.oncomplete = () => { callback(db); };
 });
}

// Given a zip code, use the IndexedDB API to asynchronously look up the city
// with that zip code, and pass it to the specified callback, or pass null if
// no city is found.
function lookupCity(zip, callback) {
 withDB(db => {
 // Create a read-only transaction object for this query. The
 // argument is an array of object stores we will need to use.
 let transaction = db.transaction(["zipcodes"]);

 // Get the object store from the transaction
 let zipcodes = transaction.objectStore("zipcodes");

 // Now request the object that matches the specified zipcode key.
 // The lines above were synchronous, but this one is async.
 let request = zipcodes.get(zip);
 request.onerror = console.error; // Log errors
 request.onsuccess = () => { // Or call this function on success
 let record = request.result; // This is the query result
 if (record) { // If we found a match, pass it to the callback
 callback(`${record.city}, ${record.state}`);
 } else { // Otherwise, tell the callback that we failed
 callback(null);
 }
 };
 });
}

// Given the name of a city, use the IndexedDB API to asynchronously
// look up all zip code records for all cities (in any state) that have
// that (case-sensitive) name.
function lookupZipcodes(city, callback) {
 withDB(db => {
 // As above, we create a transaction and get the object store
 let transaction = db.transaction(["zipcodes"]);
 let store = transaction.objectStore("zipcodes");

 // This time we also get the city index of the object store
 let index = store.index("cities");

 // Ask for all matching records in the index with the specified
 // city name, and when we get them we pass them to the callback.
 // If we expected more results, we might use openCursor() instead.
 let request = index.getAll(city);
 request.onerror = console.error;
 request.onsuccess = () => { callback(request.result); };
 });
}

15.13 Worker Threads and Messaging

One of the fundamental features of JavaScript is that it is
single-threaded: a browser will never run two event handlers at the same
time, and it will never trigger a timer while an event handler is
running, for example. Concurrent updates to application state or to the
document are simply not possible, and client-side programmers do not
need to think about, or even understand, concurrent programming. A
corollary is that client-side JavaScript functions must not run too
long; otherwise, they will tie up the event loop and the web browser will
become unresponsive to user input. This is the reason that fetch() is
an asynchronous function, for example.

Web browsers very carefully relax the single-thread requirement with the
Worker class: instances of this class represent threads that run
concurrently with the main thread and the event loop. Workers live in a
self-contained execution environment with a completely independent
global object and no access to the Window or Document objects. Workers
can communicate with the main thread only through asynchronous message
passing. This means that concurrent modifications of the DOM remain
impossible, but it also means that you can write long-running functions
that do not stall the event loop and hang the browser. Creating a new
worker is not a heavyweight operation like opening a new browser window,
but workers are not flyweight “fibers” either, and it does not make
sense to create new workers to perform trivial operations. Complex web
applications may find it useful to create tens of workers, but it is
unlikely that an application with hundreds or thousands of workers would
be practical.

Workers are useful when your application needs to perform computationally
intensive tasks, such as image processing. Using a worker moves tasks
like this off the main thread so that the browser does not become
unresponsive. And workers also offer the possibility of dividing the
work among multiple threads. But workers are also useful when you have
to perform frequent moderately intensive computations. Suppose, for
example, that you’re implementing a simple in-browser code editor, and
want to include syntax highlighting. To get the highlighting right, you
need to parse the code on every keystroke. But if you do that on the
main thread, it is likely that the parsing code will prevent the
event handlers that respond to the user’s key strokes from running
promptly and the user’s typing experience will be sluggish.

As with any threading API, there are two parts to the Worker API. The
first is the Worker object: this is what a worker looks like from the
outside, to the thread that creates it. The second is the
WorkerGlobalScope: this is the global object for a new worker, and it is
what a worker thread looks like, on the inside, to itself.

The following sections cover Worker and WorkerGlobalScope and also explain
the message-passing API that allows workers to communicate with the main
thread and each other. The same communication API is used to exchange
messages between a document and <iframe> elements contained in the
document, and this is covered in the following sections as well.

15.13.1 Worker Objects

To create a new worker, call the Worker() constructor, passing a
URL that specifies the JavaScript code that the worker is to run:

let dataCruncher = new Worker("utils/cruncher.js");

If you specify a relative URL, it is resolved relative to the URL of
the document that contains the script that called the Worker()
constructor. If you specify an absolute URL, it must have the same
origin (same protocol, host, and port) as that containing document.

Once you have a Worker object, you can send data to it with
postMessage(). The value you pass to postMessage() will be copied
using the structured clone algorithm (see “The Structured Clone Algorithm”), and the
resulting copy will be delivered to the worker via a message event:

dataCruncher.postMessage("/api/data/to/crunch");

Here we’re just passing a single string message, but you can also use
objects, arrays, typed arrays, Maps, Sets, and so on. You can receive
messages from a worker by listening for “message” events on the Worker
object:

dataCruncher.onmessage = function(e) {
 let stats = e.data; // The message is the data property of the event
 console.log(`Average: ${stats.mean}`);
}

Like all event targets, Worker objects define the standard
addEventListener() and removeEventListener() methods, and you can
use these in place of the onmessage.

In addition to postMessage(), Worker objects have just one other
method, terminate(), which forces a worker thread to stop running.

15.13.2 The Global Object in Workers

When you create a new worker with the Worker() constructor, you
specify the URL of a file of JavaScript code. That code is executed in
a new, pristine JavaScript execution environment, isolated
from the script that created the worker. The global object for that new
execution environment is a WorkerGlobalScope object. A
WorkerGlobalScope is something more than the core JavaScript global
object, but less than a full-blown client-side Window object.

The WorkerGlobalScope object has a postMessage() method and an
onmessage event handler property that are just like those of the
Worker object but work in the opposite direction: calling
postMessage() inside a worker generates a message event outside the
worker, and messages sent from outside the worker are turned into events
and delivered to the onmessage handler. Because the WorkerGlobalScope
is the global object for a worker, postMessage() and onmessage look
like a global function and global variable to worker code.

If you pass an object as the second argument to the Worker()
constructor, and if that object has a name property, then the value of
that property becomes the value of the name property in the worker’s
global object. A worker might include this name in any messages it
prints with console.warn() or console.error().

The close() function allows a worker to terminate itself, and it is
similar in effect to the terminate() method of a Worker object.

Since WorkerGlobalScope is the global object for workers, it has all of
the properties of the core JavaScript global object, such as the JSON
object, the isNaN() function, and the Date() constructor. In
addition, however, WorkerGlobalScope also has the following properties
of the client-side Window object:

		
self is a reference to the global object itself. WorkerGlobalScope
is not a Window object and does not define a window property.

		
The timer methods setTimeout(), clearTimeout(), setInterval(),
and clearInterval().

		
A location property that describes the URL that was passed to the
Worker() constructor. This property refers to a Location object, just
as the location property of a Window does. The Location object has
properties href, protocol, host, hostname, port, pathname,
search, and hash. In a worker, these properties are read-only,
however.

		
A navigator property that refers to an object with properties like
those of the Navigator object of a window. A worker’s Navigator object
has the properties appName, appVersion, platform, userAgent, and
onLine.

		
The usual event target methods addEventListener() and
removeEventListener().

Finally, the WorkerGlobalScope object includes important client-side
JavaScript APIs including the Console object, the fetch() function,
and the IndexedDB API. WorkerGlobalScope also includes the Worker()
constructor, which means that worker threads can create their own
workers.

15.13.3 Importing Code into a Worker

Workers were defined in web browsers before JavaScript had a module
system, so workers have a unique system for including additional
code. WorkerGlobalScope defines importScripts() as a global function
that all workers have access to:

// Before we start working, load the classes and utilities we'll need
importScripts("utils/Histogram.js", "utils/BitSet.js");

importScripts() takes one or more URL arguments, each of which should
refer to a file of JavaScript code. Relative URLs are resolved relative
to the URL that was passed to the Worker() constructor (not relative
to the containing document). importScripts() synchronously loads and
executes these files one after the other, in the order in which they
were specified. If loading a script causes a network error, or if
executing throws an error of any sort, none of the subsequent scripts
are loaded or executed. A script loaded with importScripts() can
itself call importScripts() to load the files it depends on. Note,
however, that importScripts() does not try to keep track of what
scripts have already loaded and does nothing to prevent dependency
cycles.

importScripts() is a synchronous function: it does not return until
all of the scripts have loaded and executed. You can start using the
scripts you loaded as soon as importScripts() returns: there is no
need for a callback, event handler, then() method or await. Once you
have internalized the asynchronous nature of client-side JavaScript, it
feels strange to go back to simple, synchronous programming
again. But that is the beauty of threads: you can use a blocking
function call in a worker without blocking the event loop in the main
thread, and without blocking the computations being concurrently
performed in other workers.

Modules in Workers

In order to use modules in workers, you must pass a second argument to
the Worker() constructor. This second argument must be an object with
a type property set to the string “module.” Passing a type:"module"
option to the Worker() constructor is much like using the
type="module" attribute on an HTML <script> tag: it means that the
code should be interpreted as a module and that import declarations
are allowed.

When a worker loads a module instead of a traditional script, the
WorkerGlobalScope does not define the importScripts() function.

Note that as of early 2020, Chrome is the only browser that supports
true modules and import declarations in workers.

15.13.4 Worker Execution Model

Worker threads run their code (and all imported scripts or modules)
synchronously from top to bottom, and then enter an asynchronous phase
in which they respond to events and timers. If a worker registers a
“message” event handler, it will never exit as long as there is a
possibility that message events will still arrive. But if a worker
doesn’t listen for messages, it will run until there are no further
pending tasks (such as fetch() promises and timers) and all
task-related callbacks have been called. Once all registered callbacks
have been called, there is no way a worker can begin a new task, so it
is safe for the thread to exit, which it will do automatically. A worker
can also explicitly shut itself down by calling the global close()
function. Note that there are no properties or methods on the Worker
object that specify whether a worker thread is still running or not, so
workers should not close themselves without somehow coordinating this
with their parent thread.

Errors in Workers

If an exception occurs in a worker and is not caught by any catch
clause, then an “error” event is triggered on the global object of the
worker. If this event is handled and the handler calls the
preventDefault() method of the event object, the error propagation
ends. Otherwise, the “error” event is fired on the Worker object. If
preventDefault() is called there, then propagation ends. Otherwise, an
error message is printed in the developer console and the onerror
handler (§15.1.7) of the Window object is invoked.

// Handle uncaught worker errors with a handler inside the worker.
self.onerror = function(e) {
 console.log(`Error in worker at ${e.filename}:${e.lineno}: ${e.message}`);
 e.preventDefault();
};

// Or, handle uncaught worker errors with a handler outside the worker.
worker.onerror = function(e) {
 console.log(`Error in worker at ${e.filename}:${e.lineno}: ${e.message}`);
 e.preventDefault();
};

Like windows, workers can register a handler to be invoked when a
Promise is rejected and there is no .catch() function to handle
it. Within a worker you can detect this by defining a
self.onunhandledrejection function or by using addEventListener()
to register a global handler for “unhandledrejection” events. The
event object passed to this handler will have a promise property
whose value is the Promise object that rejected and a reason
property whose value is what would have been passed to a .catch()
function.

15.13.5 postMessage(), MessagePorts, and MessageChannels

The postMessage() method of the Worker object and the global
postMesage() function defined inside a worker both work by invoking
the postMessage() methods of a pair of MessagePort objects that are
automatically created along with the worker. Client-side JavaScript
can’t directly access these automatically created MessagePort objects,
but it can create new pairs of connected ports with the
MessageChannel() constructor:

let channel = new MessageChannel; // Create a new channel.
let myPort = channel.port1; // It has two ports
let yourPort = channel.port2; // connected to each other.

myPort.postMessage("Can you hear me?"); // A message posted to one will
yourPort.onmessage = (e) => console.log(e.data); // be received on the other.

A MessageChannel is an object with port1 and port2 properties that
refer to a pair of connected MessagePort objects. A MessagePort is an
object with a postMessage() method and an onmessage event handler
property. When postMessage() is called on
one port of a connected pair, a “message” event is fired on the other
port in the pair. You can receive these “message” events by setting the
onmessage property or by using addEventListener() to register a
listener for “message” events.

Messages sent to a port are queued until the onmessage property is
defined or until the start() method is called on the port. This
prevents messages sent by one end of the channel from being missed by
the other end. If you use addEventListener() with a MessagePort, don’t
forget to call start() or you may never see a message delivered.

All the postMessage() calls we’ve seen so far have taken a single
message argument. But the method also accepts an optional second
argument. This second argument is an array of items that are to be
transferred to the other end of the channel instead of having a copy
sent across the channel. Values that can be transferred instead of
copied are MessagePorts and ArrayBuffers. (Some browsers also
implement other transferable types, such as ImageBitmap and
OffscreenCanvas. These are not universally supported, however, and are
not covered in this book.) If the first argument to postMessage()
includes a MessagePort (nested anywhere within the message object),
then that MessagePort must also appear in the second argument. If you
do this, then the MessagePort will become available to the other end of
the channel and will immediately become nonfunctional on your
end. Suppose you have created a worker and want to have two channels
for communicating with it: one channel for ordinary data exchange and
one channel for high-priority messages. In the main thread, you might
create a MessageChannel, then call postMessage() on the worker to
pass one of the MessagePorts to it:

let worker = new Worker("worker.js");
let urgentChannel = new MessageChannel();
let urgentPort = urgentChannel.port1;
worker.postMessage({ command: "setUrgentPort", value: urgentChannel.port2 },
 [urgentChannel.port2]);
// Now we can receive urgent messages from the worker like this
urgentPort.addEventListener("message", handleUrgentMessage);
urgentPort.start(); // Start receiving messages
// And send urgent messages like this
urgentPort.postMessage("test");

MessageChannels are also useful if you create two workers and want to
allow them to communicate directly with each other rather than requiring
code on the main thread to relay messages between them.

The other use of the second argument to postMessage() is to transfer
ArrayBuffers between workers without having to copy them. This is an
important performance enhancement for large ArrayBuffers like those
used to hold image data. When an ArrayBuffer is transferred over a
MessagePort, the ArrayBuffer becomes unusable in the original thread
so that there is no possibility of concurrent access to its contents.
If the first argument to postMessage() includes an ArrayBuffer, or
any value (such as a typed array) that has an ArrayBuffer, then that
buffer may appear as an array element in the second postMessage()
argument. If it does appear, then it will be transferred without
copying. If not, then the ArrayBuffer will be copied rather than
transferred. Example 15-14 will demonstrate
the use of this transfer technique with ArrayBuffers.

15.13.6 Cross-Origin Messaging with postMessage()

There is another use case for the postMessage() method in client-side
JavaScript. It involves windows instead of workers, but there are enough
similarities between the two cases that we will describe the
postMessage() method of the Window object here.

When a document contains an <iframe> element, that element acts as an
embedded but independent window. The Element object that represents the
<iframe> has a contentWindow property that is the Window object for
the embedded document. And for scripts running within that nested
iframe, the window.parent property refers to the containing Window
object. When two windows display documents with the same origin, then
scripts in each of those windows have access to the contents of the
other window. But when the documents have different origins, the browser’s same-origin policy prevents JavaScript in one window from accessing
the content of another window.

For workers, postMessage() provides a safe way for two independent
threads to communicate without sharing memory. For windows,
postMessage() provides a controlled way for two independent origins to
safely exchange messages. Even if the same-origin policy prevents your
script from seeing the content of another window, you can still call
postMessage() on that window, and doing so will cause a “message”
event to be triggered on that window, where it can be seen by the event
handlers in that window’s scripts.

The postMessage() method of a Window is a little different than the
postMessage() method of a Worker, however. The first argument is still an
arbitrary message that will be copied by the structured clone
algorithm. But the optional second argument listing objects to be
transferred instead of copied becomes an optional third argument. The
postMessage() method of a window takes a string as its required second
argument. This second argument should be an origin (a protocol, hostname,
and optional port) that specifies who you expect to be receiving the
message. If you pass the string “https://good.example.com” as the second
argument, but the window you are posting the message to actually
contains content from “https://malware.example.com,” then the message
you posted will not be delivered. If you are willing to send your
message to content from any origin, then you can pass the wildcard “*”
as the second argument.

JavaScript code running inside a window or <iframe> can receive
messages posted to that window or frame by defining the onmessage
property of that window or by calling addEventListener() for “message”
events. As with workers, when you receive a “message” event for a window,
the data property of the event object is the message that was sent. In
addition, however, “message” events delivered to windows also define
source and origin properties. The source property specifies the
Window object that sent the event, and you can use
event.source.postMessage() to send a reply. The origin property
specifies the origin of the content in the source window. This is not
something the sender of the message can forge, and when you receive a
“message” event, you will typically want to verify that it is from an
origin you expect.

15.14 Example: The Mandelbrot Set

This chapter on client-side JavaScript culminates with a long example
that demonstrates using workers and messaging to parallelize
computationally intensive tasks. But it is written to be an engaging,
real-world web application and also demonstrates a number of the other
APIs demonstrated in this chapter, including history management; use of
the ImageData class with a <canvas>; and the use of keyboard, pointer,
and resize events. It also demonstrates important core JavaScript
features, including generators and a sophisticated use of Promises.

The example is a program for displaying and exploring the Mandelbrot set,
a complex fractal that includes beautiful images like the one shown
in Figure 15-16.

[image: js7e 1515]
Figure 15-16. A portion of the Mandelbrot set

The Mandelbrot set is defined as the set of points on the complex plane,
which, when put through a repeated process of complex multiplication and
addition, produce a value whose magnitude remains bounded. The contours
of the set are surprisingly complex, and computing which points are
members of the set and which are not is computationally intensive: to
produce a 500×500 image of the Mandelbrot set, you must individually
compute the membership of each of the 250,000 pixels in your image. And
to verify that the value associated with each pixel remains bounded, you
may have to repeat the process of complex multiplication 1,000 times or
more. (More iterations give more sharply defined boundaries for the
set; fewer iterations produce fuzzier boundaries.) With up to 250
million steps of complex arithmetic required to produce a high-quality
image of the Mandelbrot set, you can understand why using workers is a
valuable technique. Example 15-14 shows the worker code we
will use. This file is relatively compact: it is just the raw
computational muscle for the larger program. Two things are worth noting
about it, however:

		
The worker creates an ImageData object to represent the rectangular
grid of pixels for which it is computing Mandelbrot set
membership. But instead of storing actual pixel values in the
ImageData, it uses a custom-typed array to treat each pixel as
a 32-bit integer. It stores the number of iterations required for each
pixel in this array. If the magnitude of the complex number computed
for each pixel becomes greater than four, then it is mathematically
guaranteed to grow without bounds from then on, and we say it has
“escaped.” So the value this worker returns for each pixel is the
number of iterations before the value escaped. We tell the worker the
maximum number of iterations it should try for each value, and pixels
that reach this maximum number are considered to be in the set.

		
The worker transfers the ArrayBuffer associated with the ImageData back
to the main thread so the memory associated with it does not need to
be copied.

Example 15-14. Worker code for computing regions of the Mandelbrot set

// This is a simple worker that receives a message from its parent thread,
// performs the computation described by that message and then posts the
// result of that computation back to the parent thread.
onmessage = function(message) {
 // First, we unpack the message we received:
 // - tile is an object with width and height properties. It specifies the
 // size of the rectangle of pixels for which we will be computing
 // Mandelbrot set membership.
 // - (x0, y0) is the point in the complex plane that corresponds to the
 // upper-left pixel in the tile.
 // - perPixel is the pixel size in both the real and imaginary dimensions.
 // - maxIterations specifies the maximum number of iterations we will
 // perform before deciding that a pixel is in the set.
 const {tile, x0, y0, perPixel, maxIterations} = message.data;
 const {width, height} = tile;

 // Next, we create an ImageData object to represent the rectangular array
 // of pixels, get its internal ArrayBuffer, and create a typed array view
 // of that buffer so we can treat each pixel as a single integer instead of
 // four individual bytes. We'll store the number of iterations for each
 // pixel in this iterations array. (The iterations will be transformed into
 // actual pixel colors in the parent thread.)
 const imageData = new ImageData(width, height);
 const iterations = new Uint32Array(imageData.data.buffer);

 // Now we begin the computation. There are three nested for loops here.
 // The outer two loop over the rows and columns of pixels, and the inner
 // loop iterates each pixel to see if it "escapes" or not. The various
 // loop variables are the following:
 // - row and column are integers representing the pixel coordinate.
 // - x and y represent the complex point for each pixel: x + yi.
 // - index is the index in the iterations array for the current pixel.
 // - n tracks the number of iterations for each pixel.
 // - max and min track the largest and smallest number of iterations
 // we've seen so far for any pixel in the rectangle.
 let index = 0, max = 0, min=maxIterations;
 for(let row = 0, y = y0; row < height; row++, y += perPixel) {
 for(let column = 0, x = x0; column < width; column++, x += perPixel) {
 // For each pixel we start with the complex number c = x+yi.
 // Then we repeatedly compute the complex number z(n+1) based on
 // this recursive formula:
 // z(0) = c
 // z(n+1) = z(n)^2 + c
 // If |z(n)| (the magnitude of z(n)) is > 2, then the
 // pixel is not part of the set and we stop after n iterations.
 let n; // The number of iterations so far
 let r = x, i = y; // Start with z(0) set to c
 for(n = 0; n < maxIterations; n++) {
 let rr = r*r, ii = i*i; // Square the two parts of z(n).
 if (rr + ii > 4) { // If |z(n)|^2 is > 4 then
 break; // we've escaped and can stop iterating.
 }
 i = 2*r*i + y; // Compute imaginary part of z(n+1).
 r = rr - ii + x; // And the real part of z(n+1).
 }
 iterations[index++] = n; // Remember # iterations for each pixel.
 if (n > max) max = n; // Track the maximum number we've seen.
 if (n < min) min = n; // And the minimum as well.
 }
 }

 // When the computation is complete, send the results back to the parent
 // thread. The imageData object will be copied, but the giant ArrayBuffer
 // it contains will be transferred for a nice performance boost.
 postMessage({tile, imageData, min, max}, [imageData.data.buffer]);
};

The Mandelbrot set viewer application that uses that worker code is
shown in Example 15-15. Now that you have nearly reached the end of
this chapter, this long example is something of a capstone experience that
brings together a number of important core and client-side JavaScript
features and APIs. The code is thoroughly commented, and I encourage you to
read it carefully.

Example 15-15. A web application for displaying and exploring the Mandelbrot set

/*
 * This class represents a subrectangle of a canvas or image. We use Tiles to
 * divide a canvas into regions that can be processed independently by Workers.
 */
class Tile {
 constructor(x, y, width, height) {
 this.x = x; // The properties of a Tile object
 this.y = y; // represent the position and size
 this.width = width; // of the tile within a larger
 this.height = height; // rectangle.
 }

 // This static method is a generator that divides a rectangle of the
 // specified width and height into the specified number of rows and
 // columns and yields numRows*numCols Tile objects to cover the rectangle.
 static *tiles(width, height, numRows, numCols) {
 let columnWidth = Math.ceil(width / numCols);
 let rowHeight = Math.ceil(height / numRows);

 for(let row = 0; row < numRows; row++) {
 let tileHeight = (row < numRows-1)
 ? rowHeight // height of most rows
 : height - rowHeight * (numRows-1); // height of last row
 for(let col = 0; col < numCols; col++) {
 let tileWidth = (col < numCols-1)
 ? columnWidth // width of most columns
 : width - columnWidth * (numCols-1); // and last column

 yield new Tile(col * columnWidth, row * rowHeight,
 tileWidth, tileHeight);
 }
 }
 }
}

/*
 * This class represents a pool of workers, all running the same code. The
 * worker code you specify must respond to each message it receives by
 * performing some kind of computation and then posting a single message with
 * the result of that computation.
 *
 * Given a WorkerPool and message that represents work to be performed, simply
 * call addWork(), with the message as an argument. If there is a Worker
 * object that is currently idle, the message will be posted to that worker
 * immediately. If there are no idle Worker objects, the message will be
 * queued and will be posted to a Worker when one becomes available.
 *
 * addWork() returns a Promise, which will resolve with the message recieved
 * from the work, or will reject if the worker throws an unhandled error.
 */
class WorkerPool {
 constructor(numWorkers, workerSource) {
 this.idleWorkers = []; // Workers that are not currently working
 this.workQueue = []; // Work not currently being processed
 this.workerMap = new Map(); // Map workers to resolve and reject funcs

 // Create the specified number of workers, add message and error
 // handlers and save them in the idleWorkers array.
 for(let i = 0; i < numWorkers; i++) {
 let worker = new Worker(workerSource);
 worker.onmessage = message => {
 this._workerDone(worker, null, message.data);
 };
 worker.onerror = error => {
 this._workerDone(worker, error, null);
 };
 this.idleWorkers[i] = worker;
 }
 }

 // This internal method is called when a worker finishes working, either
 // by sending a message or by throwing an error.
 _workerDone(worker, error, response) {
 // Look up the resolve() and reject() functions for this worker
 // and then remove the worker's entry from the map.
 let [resolver, rejector] = this.workerMap.get(worker);
 this.workerMap.delete(worker);

 // If there is no queued work, put this worker back in
 // the list of idle workers. Otherwise, take work from the queue
 // and send it to this worker.
 if (this.workQueue.length === 0) {
 this.idleWorkers.push(worker);
 } else {
 let [work, resolver, rejector] = this.workQueue.shift();
 this.workerMap.set(worker, [resolver, rejector]);
 worker.postMessage(work);
 }

 // Finally, resolve or reject the promise associated with the worker.
 error === null ? resolver(response) : rejector(error);
 }

 // This method adds work to the worker pool and returns a Promise that
 // will resolve with a worker's response when the work is done. The work
 // is a value to be passed to a worker with postMessage(). If there is an
 // idle worker, the work message will be sent immediately. Otherwise it
 // will be queued until a worker is available.
 addWork(work) {
 return new Promise((resolve, reject) => {
 if (this.idleWorkers.length > 0) {
 let worker = this.idleWorkers.pop();
 this.workerMap.set(worker, [resolve, reject]);
 worker.postMessage(work);
 } else {
 this.workQueue.push([work, resolve, reject]);
 }
 });
 }
}

/*
 * This class holds the state information necessary to render a Mandelbrot set.
 * The cx and cy properties give the point in the complex plane that is the
 * center of the image. The perPixel property specifies how much the real and
 * imaginary parts of that complex number changes for each pixel of the image.
 * The maxIterations property specifies how hard we work to compute the set.
 * Larger numbers require more computation but produce crisper images.
 * Note that the size of the canvas is not part of the state. Given cx, cy, and
 * perPixel we simply render whatever portion of the Mandelbrot set fits in
 * the canvas at its current size.
 *
 * Objects of this type are used with history.pushState() and are used to read
 * the desired state from a bookmarked or shared URL.
 */
class PageState {
 // This factory method returns an initial state to display the entire set.
 static initialState() {
 let s = new PageState();
 s.cx = -0.5;
 s.cy = 0;
 s.perPixel = 3/window.innerHeight;
 s.maxIterations = 500;
 return s;
 }

 // This factory method obtains state from a URL, or returns null if
 // a valid state could not be read from the URL.
 static fromURL(url) {
 let s = new PageState();
 let u = new URL(url); // Initialize state from the url's search params.
 s.cx = parseFloat(u.searchParams.get("cx"));
 s.cy = parseFloat(u.searchParams.get("cy"));
 s.perPixel = parseFloat(u.searchParams.get("pp"));
 s.maxIterations = parseInt(u.searchParams.get("it"));
 // If we got valid values, return the PageState object, otherwise null.
 return (isNaN(s.cx) || isNaN(s.cy) || isNaN(s.perPixel)
 || isNaN(s.maxIterations))
 ? null
 : s;
 }

 // This instance method encodes the current state into the search
 // parameters of the browser's current location.
 toURL() {
 let u = new URL(window.location);
 u.searchParams.set("cx", this.cx);
 u.searchParams.set("cy", this.cy);
 u.searchParams.set("pp", this.perPixel);
 u.searchParams.set("it", this.maxIterations);
 return u.href;
 }
}

// These constants control the parallelism of the Mandelbrot set computation.
// You may need to adjust them to get optimum performance on your computer.
const ROWS = 3, COLS = 4, NUMWORKERS = navigator.hardwareConcurrency || 2;

// This is the main class of our Mandelbrot set program. Simply invoke the
// constructor function with the <canvas> element to render into. The program
// assumes that this <canvas> element is styled so that it is always as big
// as the browser window.
class MandelbrotCanvas {
 constructor(canvas) {
 // Store the canvas, get its context object, and initialize a WorkerPool
 this.canvas = canvas;
 this.context = canvas.getContext("2d");
 this.workerPool = new WorkerPool(NUMWORKERS, "mandelbrotWorker.js");

 // Define some properties that we'll use later
 this.tiles = null; // Subregions of the canvas
 this.pendingRender = null; // We're not currently rendering
 this.wantsRerender = false; // No render is currently requested
 this.resizeTimer = null; // Prevents us from resizing too frequently
 this.colorTable = null; // For converting raw data to pixel values.

 // Set up our event handlers
 this.canvas.addEventListener("pointerdown", e => this.handlePointer(e));
 window.addEventListener("keydown", e => this.handleKey(e));
 window.addEventListener("resize", e => this.handleResize(e));
 window.addEventListener("popstate", e => this.setState(e.state, false));

 // Initialize our state from the URL or start with the initial state.
 this.state =
 PageState.fromURL(window.location) || PageState.initialState();

 // Save this state with the history mechanism.
 history.replaceState(this.state, "", this.state.toURL());

 // Set the canvas size and get an array of tiles that cover it.
 this.setSize();

 // And render the Mandelbrot set into the canvas.
 this.render();
 }

 // Set the canvas size and initialize an array of Tile objects. This
 // method is called from the constructor and also by the handleResize()
 // method when the browser window is resized.
 setSize() {
 this.width = this.canvas.width = window.innerWidth;
 this.height = this.canvas.height = window.innerHeight;
 this.tiles = [...Tile.tiles(this.width, this.height, ROWS, COLS)];
 }

 // This function makes a change to the PageState, then re-renders the
 // Mandelbrot set using that new state, and also saves the new state with
 // history.pushState(). If the first argument is a function that function
 // will be called with the state object as its argument and should make
 // changes to the state. If the first argument is an object, then we simply
 // copy the properties of that object into the state object. If the optional
 // second argument is false, then the new state will not be saved. (We
 // do this when calling setState in response to a popstate event.)
 setState(f, save=true) {
 // If the argument is a function, call it to update the state.
 // Otherwise, copy its properties into the current state.
 if (typeof f === "function") {
 f(this.state);
 } else {
 for(let property in f) {
 this.state[property] = f[property];
 }
 }

 // In either case, start rendering the new state ASAP.
 this.render();

 // Normally we save the new state. Except when we're called with
 // a second argument of false which we do when we get a popstate event.
 if (save) {
 history.pushState(this.state, "", this.state.toURL());
 }
 }

 // This method asynchronously draws the portion of the Mandelbrot set
 // specified by the PageState object into the canvas. It is called by
 // the constructor, by setState() when the state changes, and by the
 // resize event handler when the size of the canvas changes.
 render() {
 // Sometimes the user may use the keyboard or mouse to request renders
 // more quickly than we can perform them. We don't want to submit all
 // the renders to the worker pool. Instead if we're rendering, we'll
 // just make a note that a new render is needed, and when the current
 // render completes, we'll render the current state, possibly skipping
 // multiple intermediate states.
 if (this.pendingRender) { // If we're already rendering,
 this.wantsRerender = true; // make a note to rerender later
 return; // and don't do anything more now.
 }

 // Get our state variables and compute the complex number for the
 // upper left corner of the canvas.
 let {cx, cy, perPixel, maxIterations} = this.state;
 let x0 = cx - perPixel * this.width/2;
 let y0 = cy - perPixel * this.height/2;

 // For each of our ROWS*COLS tiles, call addWork() with a message
 // for the code in mandelbrotWorker.js. Collect the resulting Promise
 // objects into an array.
 let promises = this.tiles.map(tile => this.workerPool.addWork({
 tile: tile,
 x0: x0 + tile.x * perPixel,
 y0: y0 + tile.y * perPixel,
 perPixel: perPixel,
 maxIterations: maxIterations
 }));

 // Use Promise.all() to get an array of responses from the array of
 // promises. Each response is the computation for one of our tiles.
 // Recall from mandelbrotWorker.js that each response includes the
 // Tile object, an ImageData object that includes iteration counts
 // instead of pixel values, and the minimum and maximum iterations
 // for that tile.
 this.pendingRender = Promise.all(promises).then(responses => {

 // First, find the overall max and min iterations over all tiles.
 // We need these numbers so we can assign colors to the pixels.
 let min = maxIterations, max = 0;
 for(let r of responses) {
 if (r.min < min) min = r.min;
 if (r.max > max) max = r.max;
 }

 // Now we need a way to convert the raw iteration counts from the
 // workers into pixel colors that will be displayed in the canvas.
 // We know that all the pixels have between min and max iterations
 // so we precompute the colors for each iteration count and store
 // them in the colorTable array.

 // If we haven't allocated a color table yet, or if it is no longer
 // the right size, then allocate a new one.
 if (!this.colorTable || this.colorTable.length !== maxIterations+1){
 this.colorTable = new Uint32Array(maxIterations+1);
 }

 // Given the max and the min, compute appropriate values in the
 // color table. Pixels in the set will be colored fully opaque
 // black. Pixels outside the set will be translucent black with higher
 // iteration counts resulting in higher opacity. Pixels with
 // minimum iteration counts will be transparent and the white
 // background will show through, resulting in a grayscale image.
 if (min === max) { // If all the pixels are the same,
 if (min === maxIterations) { // Then make them all black
 this.colorTable[min] = 0xFF000000;
 } else { // Or all transparent.
 this.colorTable[min] = 0;
 }
 } else {
 // In the normal case where min and max are different, use a
 // logarithic scale to assign each possible iteration count an
 // opacity between 0 and 255, and then use the shift left
 // operator to turn that into a pixel value.
 let maxlog = Math.log(1+max-min);
 for(let i = min; i <= max; i++) {
 this.colorTable[i] =
 (Math.ceil(Math.log(1+i-min)/maxlog * 255) << 24);
 }
 }

 // Now translate the iteration numbers in each response's
 // ImageData to colors from the colorTable.
 for(let r of responses) {
 let iterations = new Uint32Array(r.imageData.data.buffer);
 for(let i = 0; i < iterations.length; i++) {
 iterations[i] = this.colorTable[iterations[i]];
 }
 }

 // Finally, render all the imageData objects into their
 // corresponding tiles of the canvas using putImageData().
 // (First, though, remove any CSS transforms on the canvas that may
 // have been set by the pointerdown event handler.)
 this.canvas.style.transform = "";
 for(let r of responses) {
 this.context.putImageData(r.imageData, r.tile.x, r.tile.y);
 }
 })
 .catch((reason) => {
 // If anything went wrong in any of our Promises, we'll log
 // an error here. This shouldn't happen, but this will help with
 // debugging if it does.
 console.error("Promise rejected in render():", reason);
 })
 .finally(() => {
 // When we are done rendering, clear the pendingRender flags
 this.pendingRender = null;
 // And if render requests came in while we were busy, rerender now.
 if (this.wantsRerender) {
 this.wantsRerender = false;
 this.render();
 }
 });
 }

 // If the user resizes the window, this function will be called repeatedly.
 // Resizing a canvas and rerendering the Mandlebrot set is an expensive
 // operation that we can't do multiple times a second, so we use a timer
 // to defer handling the resize until 200ms have elapsed since the last
 // resize event was received.
 handleResize(event) {
 // If we were already deferring a resize, clear it.
 if (this.resizeTimer) clearTimeout(this.resizeTimer);
 // And defer this resize instead.
 this.resizeTimer = setTimeout(() => {
 this.resizeTimer = null; // Note that resize has been handled
 this.setSize(); // Resize canvas and tiles
 this.render(); // Rerender at the new size
 }, 200);
 }

 // If the user presses a key, this event handler will be called.
 // We call setState() in response to various keys, and setState() renders
 // the new state, updates the URL, and saves the state in browser history.
 handleKey(event) {
 switch(event.key) {
 case "Escape": // Type Escape to go back to the initial state
 this.setState(PageState.initialState());
 break;
 case "+": // Type + to increase the number of iterations
 this.setState(s => {
 s.maxIterations = Math.round(s.maxIterations*1.5);
 });
 break;
 case "-": // Type - to decrease the number of iterations
 this.setState(s => {
 s.maxIterations = Math.round(s.maxIterations/1.5);
 if (s.maxIterations < 1) s.maxIterations = 1;
 });
 break;
 case "o": // Type o to zoom out
 this.setState(s => s.perPixel *= 2);
 break;
 case "ArrowUp": // Up arrow to scroll up
 this.setState(s => s.cy -= this.height/10 * s.perPixel);
 break;
 case "ArrowDown": // Down arrow to scroll down
 this.setState(s => s.cy += this.height/10 * s.perPixel);
 break;
 case "ArrowLeft": // Left arrow to scroll left
 this.setState(s => s.cx -= this.width/10 * s.perPixel);
 break;
 case "ArrowRight": // Right arrow to scroll right
 this.setState(s => s.cx += this.width/10 * s.perPixel);
 break;
 }
 }

 // This method is called when we get a pointerdown event on the canvas.
 // The pointerdown event might be the start of a zoom gesture (a click or
 // tap) or a pan gesture (a drag). This handler registers handlers for
 // the pointermove and pointerup events in order to respond to the rest
 // of the gesture. (These two extra handlers are removed when the gesture
 // ends with a pointerup.)
 handlePointer(event) {
 // The pixel coordinates and time of the initial pointer down.
 // Because the canvas is as big as the window, these event coordinates
 // are also canvas coordinates.
 const x0 = event.clientX, y0 = event.clientY, t0 = Date.now();

 // This is the handler for move events.
 const pointerMoveHandler = event => {
 // How much have we moved, and how much time has passed?
 let dx=event.clientX-x0, dy=event.clientY-y0, dt=Date.now()-t0;

 // If the pointer has moved enough or enough time has passed that
 // this is not a regular click, then use CSS to pan the display.
 // (We will rerender it for real when we get the pointerup event.)
 if (dx > 10 || dy > 10 || dt > 500) {
 this.canvas.style.transform = `translate(${dx}px, ${dy}px)`;
 }
 };

 // This is the handler for pointerup events
 const pointerUpHandler = event => {
 // When the pointer goes up, the gesture is over, so remove
 // the move and up handlers until the next gesture.
 this.canvas.removeEventListener("pointermove", pointerMoveHandler);
 this.canvas.removeEventListener("pointerup", pointerUpHandler);

 // How much did the pointer move, and how much time passed?
 const dx = event.clientX-x0, dy=event.clientY-y0, dt=Date.now()-t0;
 // Unpack the state object into individual constants.
 const {cx, cy, perPixel} = this.state;

 // If the pointer moved far enough or if enough time passed, then
 // this was a pan gesture, and we need to change state to change
 // the center point. Otherwise, the user clicked or tapped on a
 // point and we need to center and zoom in on that point.
 if (dx > 10 || dy > 10 || dt > 500) {
 // The user panned the image by (dx, dy) pixels.
 // Convert those values to offsets in the complex plane.
 this.setState({cx: cx - dx*perPixel, cy: cy - dy*perPixel});
 } else {
 // The user clicked. Compute how many pixels the center moves.
 let cdx = x0 - this.width/2;
 let cdy = y0 - this.height/2;

 // Use CSS to quickly and temporarily zoom in
 this.canvas.style.transform =
 `translate(${-cdx*2}px, ${-cdy*2}px) scale(2)`;

 // Set the complex coordinates of the new center point and
 // zoom in by a factor of 2.
 this.setState(s => {
 s.cx += cdx * s.perPixel;
 s.cy += cdy * s.perPixel;
 s.perPixel /= 2;
 });
 }
 };

 // When the user begins a gesture we register handlers for the
 // pointermove and pointerup events that follow.
 this.canvas.addEventListener("pointermove", pointerMoveHandler);
 this.canvas.addEventListener("pointerup", pointerUpHandler);
 }
}

// Finally, here's how we set up the canvas. Note that this JavaScript file
// is self-sufficient. The HTML file only needs to include this one <script>.
let canvas = document.createElement("canvas"); // Create a canvas element
document.body.append(canvas); // Insert it into the body
document.body.style = "margin:0"; // No margin for the <body>
canvas.style.width = "100%"; // Make canvas as wide as body
canvas.style.height = "100%"; // and as high as the body.
new MandelbrotCanvas(canvas); // And start rendering into it!

15.15 Summary and Suggestions for Further Reading

This long chapter has covered the fundamentals of client-side JavaScript
programming:

		
How scripts and JavaScript modules are included in web pages and how
and when they are executed.

		
Client-side JavaScript’s asynchronous, event-driven programming model.

		
The Document Object Model (DOM) that allows JavaScript code to inspect
and modify the HTML content of the document it is embedded
within. This DOM API is the heart of all client-side JavaScript
programming.

		
How JavaScript code can manipulate the CSS styles that are applied to
content within the document.

		
How JavaScript code can obtain the coordinates of document elements
in the browser window and within the document itself.

		
How to create reusable UI “Web Components” with JavaScript, HTML, and CSS
using the Custom Elements and Shadow DOM APIs.

		
How to display and dynamically generate graphics with SVG and the
HTML <canvas> element.

		
How to add scripted sound effects (both recorded and synthesized) to
your web pages.

		
How JavaScript can make the browser load new pages, go backward and
forward in the user’s browsing history, and even add new entries to
the browsing history.

		
How JavaScript programs can exchange data with web servers using the
HTTP and WebSocket protocols.

		
How JavaScript programs can store data in the user’s browser.

		
How JavaScript programs can use worker threads to achieve a safe form
of concurrency.

This has been the longest chapter of the book, by far. But it cannot
come close to covering all the APIs available to web browsers. The web
platform is sprawling and ever-evolving, and my goal for this chapter
was to introduce the most important core APIs. With the knowledge you
have from this book, you are well equipped to learn and use new APIs as
you need them. But you can’t learn about a new API if you don’t know
that it exists, so the short sections that follow end the chapter with a quick
list of web platform features that you might want to investigate in the
future.

15.15.1 HTML and CSS

The web is built upon three key technologies: HTML, CSS, and JavaScript,
and knowledge of JavaScript can take you only so far as a web developer
unless you also develop your expertise with HTML and CSS. It is
important to know how to use JavaScript to manipulate HTML elements and
CSS styles, but that knowledge is is much more useful if you also know
which HTML elements and which CSS styles to use.

So before you start exploring more JavaScript APIs, I would encourage
you to invest some time in mastering the other tools in a web
developer’s toolkit. HTML form and input elements, for example, have
sophisticated behavior that is important to understand, and the flexbox and grid layout modes in CSS are incredibly powerful.

Two topics worth paying particular attention to in this area are
accessibility (including ARIA attributes) and internationalization
(including support for right-to-left writing directions).

15.15.2 Performance

Once you have written a web application and released it to the world,
the never-ending quest to make it fast begins. It is hard to optimize
things that you can’t measure, however, so it is worth familiarizing
yourself with the Performance APIs. The performance property of the
window object is the main entry point to this API. It includes a
high-resolution time source performance.now(), and methods
performance.mark() and performance.measure() for marking critical
points in your code and measuring the elapsed time between them. Calling
these methods creates PerformanceEntry objects that you can access with
performance.getEntries(). Browsers add their own PerformanceEntry
objects any time the browser loads a new page or fetches a file over the
network, and these automatically created PerformanceEntry objects
include granular timing details of your application’s network
performance. The related PerformanceObserver class allows you to specify
a function to be invoked when new PerformanceEntry objects are created.

15.15.3 Security

This chapter introduced the general idea of how to defend against
cross-site scripting (XSS) security vulnerabilities in your
websites, but we did not go into much detail. The topic of web
security is an important one, and you may want to spend some time
learning more about it. In addition to XSS, it is worth learning about
the Content-Security-Policy HTTP header and understanding how CSP
allows you to ask the web browser to restrict the capabilities it
grants to JavaScript code. Understanding CORS (Cross-Origin Resource
Sharing) is also important.

15.15.4 WebAssembly

WebAssembly (or “wasm”) is a low-level virtual machine bytecode format
that is designed to integrate well with JavaScript interpreters in web
browsers. There are compilers that allow you to compile C, C++, and
Rust programs to WebAssembly bytecode and to run those programs in
web browsers at close to native speed, without breaking the browser
sandbox or security model. WebAssembly can export functions that can
be called by JavaScript programs. A typical use case for WebAssembly
would be to compile the standard C-language zlib compression library
so that JavaScript code has access to high-speed compression and
decompression algorithms. Learn more at https://webassembly.org.

15.15.5 More Document and Window Features

The Window and Document objects have a number of features that were not
covered in this chapter:

		
The Window object defines alert(), confirm(), and prompt()
methods that display simple modal dialogues to the user. These methods
block the main thread. The confirm() method synchronously returns a
boolean value, and prompt() synchronously returns a string of user
input. These are not suitable for production use but can be useful
for simple projects and prototypes.

		
The navigator and screen properties of the Window object were
mentioned in passing at the start of this chapter, but the Navigator
and Screen objects that they reference have some features that were
not described here that you may find useful.

		
The requestFullscreen() method of any Element object requests that
that element (a <video> or <canvas> element, for example) be
displayed in fullscreen mode. The exitFullscreen() method of the
Document returns to normal display mode.

		
The requestAnimationFrame() method of the Window object takes a
function as its argument and will execute that function when the
browser is preparing to render the next frame. When you are making
visual changes (especially repeated or animated ones), wrapping your
code within a call to requestAnimationFrame() can help to ensure
that the changes are rendered smoothly and in a way that is optimized
by the browser.

		
If the user selects text within your document, you can obtain details
of that selection with the Window method getSelection() and get the
selected text with getSelection().toString(). In some browsers,
navigator.clipboard is an object with an async API for reading and
setting the content of the system
clipboard to enable copy-and-paste
interactions with applications outside of the browser.

		
A little-known feature of web browsers is that HTML elements with a
contenteditable="true" attribute allow their content to be
edited. The document.execCommand() method enables rich-text editing
features for editable content.

		
A MutationObserver allows JavaScript to monitor changes to, or
beneath, a specified element in the document. Create a
MutationObserver with the MutationObserver() constructor, passing
the callback function that should be called when changes are
made. Then call the observe() method of the MutationObserver to
specify which parts of which element are to be monitored.

		
An IntersectionObserver allows JavaScript to determine which document
elements are on the screen and which are close to being on the
screen. It is particularly useful for applications that want to
dynamically load content on demand as the user scrolls.

15.15.6 Events

The sheer number and diversity of events supported by the web platform
can be daunting. This chapter has discussed a variety of event types,
but here are some more that you may find useful:

		
Browsers fire “online” and “offline” events at the Window object when
the browser gains or loses an internet connection.

		
Browsers fire a “visiblitychange” event at the Document object when
a document becomes visible or invisible (usually because a user has
switched tabs). JavaScript can check document.visibilityState to
determine whether its document is currently “visible” or “hidden.”

		
Browsers support a complicated API to support drag-and-drop UIs and to
support data exchange with applications outside the browser. This API
involves a number of events, including “dragstart,” “dragover,”
“dragend,” and “drop.” This API is tricky to use correctly but useful
when you need it. It is an important API to know about if you want to
enable users to drag files from their desktop into your web
application.

		
The Pointer Lock API enables JavaScript to hide the mouse pointer and
get raw mouse events as relative movement amounts rather than absolute
positions on the screen. This is typically useful for games. Call
requestPointerLock() on the element you want all mouse events
directed to. After you do this, “mousemove” events delivered to that
element will have movementX and movementY properties.

		
The Gamepad API adds support for game controllers. Use
navigator.getGamepads() to get connected Gamepad objects, and listen
for “gamepadconnected” events on the Window object to be notified when
a new controller is plugged in. The Gamepad object defines an API for
querying the current state of the buttons on the controller.

15.15.7 Progressive Web Apps and Service Workers

The term Progressive Web Apps, or PWAs, is a buzzword that describes web
applications that are built using a few key technologies. Careful
documentation of these key technologies would require a book of its own,
and I have not covered them in this chapter, but you should be aware of
all of these APIs. It is worth noting that powerful modern APIs like
these are typically designed to work only on secure HTTPS
connections. Websites that are still using http:// URLs will not be
able to take advantage of these:

		
A ServiceWorker is a kind of worker thread with the ability to
intercept, inspect, and respond to network requests from the web
application that it “services.” When a web application registers a
service worker, that worker’s code becomes persistent in the browser’s
local storage, and when the user visits the associated website again,
the service worker is reactivated. Service workers can cache network
responses (including files of JavaScript code), which means that web
applications that use service workers
can effectively install themselves onto the user’s computer for rapid
startup and offline use. The Service Worker Cookbook at
https://serviceworke.rs is a valuable resource for learning about
service workers and their related technologies.

		
The Cache API is designed for use by service workers (but is also
available to regular JavaScript code outside of workers). It works
with the Request and Response objects defined by the fetch() API and
implements a cache of Request/Response pairs. The Cache API enables a
service worker to cache the scripts and other assets of the web app it
serves and can also help to enable offline use of the web app (which
is particularly important for mobile devices).

		
A Web Manifest is a JSON-formatted file that describes a web
application including a name, a URL, and links to icons in various
sizes. If your web app uses a service worker and includes a <link
rel="manifest"> tag that references a .webmanifest file, then
browsers (particularly browsers on mobile devices) may give you the
option to add an icon for the web app to your desktop or home screen.

		
The Notifications API allows web apps to display notifications using
the native OS notification system on both mobile and desktop
devices. Notifications can include an image and text, and your code
can receive an event if the user clicks on the notification. Using
this API is complicated by the fact that you must first request the
user’s permission to display notifications.

		
The Push API allows web applications that have a service worker (and
that have the user’s permission) to subscribe to notifications from a
server, and to display those notifications even when the application
itself is not running. Push notifications are common on mobile
devices, and the Push API brings web apps closer to feature parity
with native apps on mobile.

15.15.8 Mobile Device APIs

There are a number of web APIs that are primarily useful for web apps
running on mobile devices. (Unfortunately, a number of these APIs only
work on Android devices and not iOS devices.)

		
The Geolocation API allows JavaScript (with the user’s permission) to
determine the user’s physical location. It is well supported on
desktop and mobile devices, including iOS devices. Use
navigator.geolocation.getCurrentPosition() to request the user’s current
position and use navigator.geolocation.watchPosition() to register a
callback to be called when the user’s position changes.

		
The navigator.vibrate() method causes a mobile device (but not iOS)
to vibrate. Often this is only allowed in response to a user gesture,
but calling this method will allow your app to provide silent feedback
that a gesture has been
recognized.

		
The ScreenOrientation API enables a web application to query the
current orientation of a mobile device screen and also to lock
themselves to landscape or portrait orientation.

		
The “devicemotion” and “deviceorientation” events on the window
object report accelerometer and magnetometer data for the device,
enabling you to determine how the device is accelerating and how the
user is orienting it in space. (These events do work on iOS.)

		
The Sensor API is not yet widely supported beyond Chrome on Android
devices, but it enables JavaScript access to the full suite of mobile
device sensors, including accelerometer, gyroscope, magnetometer, and
ambient light sensor. These sensors enable JavaScript to determine
which direction a user is facing or to detect when the user shakes
their phone, for example.

15.15.9 Binary APIs

Typed arrays, ArrayBuffers, and the DataView class (all covered in
§11.2) enable JavaScript to work with binary data. As
described earlier in this chapter, the fetch() API enables JavaScript
programs to load binary data over the network. Another source of binary
data is files from the user’s local filesystem. For security reasons,
JavaScript can’t just read local files. But if the user selects a file
for upload (using an <input type="file> form element) or uses
drag-and-drop to drop a file into your web application, then JavaScript
can access that file as a File object.

File is a subclass of Blob, and as such, it is an opaque representation
of a chunk of data. You can use a FileReader class to asynchronously get
the content of a file as an ArrayBuffer or string. (In some browsers, you
can skip the FileReader and instead use the Promise-based text() and
arrayBuffer() methods defined by the Blob class, or the stream()
method for streaming access to the file contents.)

When working with binary data, especially streaming binary data, you may
need to decode bytes into text or encode text as bytes. The TextEncoder
and TextDecoder classes help with this task.

15.15.10 Media APIs

The navigator.mediaDevices.getUserMedia() function allows JavaScript
to request access to the user’s microphone and/or video camera. A
successful request results in a MediaStream object. Video streams can be
displayed in a <video> tag (by setting the srcObject property to the
stream). Still frames of the video can be captured into an offscreen
<canvas> with the canvas drawImage() function resulting in a
relatively low-resolution photograph. Audio and video streams returned
by getUserMedia() can be recorded and encoded to a Blob with a
MediaRecorder object.

The more complex WebRTC API enables the transmission and reception of
MediaStreams over the network, enabling peer-to-peer video conferencing,
for example.

15.15.11 Cryptography and Related APIs

The crypto property of the Window object exposes a getRandomValues()
method for cryptographically secure pseudorandom numbers. Other methods for
encryption, decryption, key generation, digital signatures, and so on are
available through crypto.subtle. The name of this property is a
warning to everyone who uses these methods that properly using
cryptographic algorithms is difficult and that you should not use those
methods unless you really know what you are doing. Also, the methods
of crypto.subtle are only available to JavaScript code running
within documents that were loaded over a secure HTTPS connection.

The Credential Management API and the Web Authentication API allow
JavaScript to generate, store, and retrieve public key (and other types
of) credentials and enables account creation and login without
passwords. The JavaScript API consists primarily of the functions
navigator.credentials.create() and navigator.credentials.get(), but
substantial infrastructure is required on the server side to make these
methods work. These APIs are not universally supported yet, but have the
potential to revolutionize the way we log in to websites.

The Payment Request API adds browser support for making credit card
payments on the web. It allows users to store their payment details
securely in the browser so that they don’t have to type their credit
card number each time they make a purchase. Web applications that want
to request a payment create a PaymentRequest object and call its
show() method to display the request to the user.

1 Previous editions of this book had an extensive reference section covering the JavaScript standard library and web APIs. It was removed in the seventh edition because MDN has made it obsolete: today, it is quicker to look something up on MDN than it is to flip through a book, and my former colleagues at MDN do a better job at keeping their online documentation up to date than this book ever could.

2 Some sources, including the HTML specification, make a technical distinction between handlers and listeners, based on the way in which they are registered. In this book, we treat the two terms as synonyms.

3 If you have used the React framework to create client-side user interfaces, this may surprise you. React makes a number of minor changes to the client-side event model, and one of them is that in React, event handler property names are written in camelCase: onClick, onMouseOver, and so on. When working with the web platform natively, however, the event handler properties are written entirely in lowercase.

4 The custom element specification allows subclassing of <button> and other specific element classes, but this is not supported in Safari and a different syntax is required to use a custom element that extends anything other than HTMLElement.

 Prev
 Previous Chapter
 Metaprogramming

 Next
 Next Chapter
 Server-Side JavaScript with Node

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/#simplepath_png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/#polygons.png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/#guessinggame.png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/cover.png
JavaScript

The Definitive Guide

Master the World's Most-Used
Programming Language

David Flanagan

OEBPS/Images/#linestyles.png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/#curves.png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/#smear.png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/#console.png

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		For Government

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

[image: Cover image for JavaScript: The Definitive Guide, 7th Edition]

 JavaScript: The Definitive Guide, 7th Edition

 by
 David Flanagan

 Publisher:
 O'Reilly Media, Inc.

 Release Date: May 2020

 ISBN: 9781491952023

 Topic:

			JavaScript

	Start reading now

 View table of contents

 Publisher Resources

 Book Description

JavaScript is the programming language of the web and is used by more software developers today than any other programming language. For nearly 25 years this best seller has been the go-to guide for JavaScript programmers. The seventh edition is fully updated to cover the 2020 version of JavaScript, and new chapters cover classes, modules, iterators, generators, Promises, async/await, and metaprogramming. You’ll find illuminating and engaging example code throughout.

This book is for programmers who want to learn JavaScript and for web developers who want to take their understanding and mastery to the next level. It begins by explaining the JavaScript language itself, in detail, from the bottom up. It then builds on that foundation to cover the web platform and Node.js.

Topics include:

		Types, values, variables, expressions, operators, statements, objects, and arrays

		Functions, classes, modules, iterators, generators, Promises, and async/await

		JavaScript’s standard library: data structures, regular expressions, JSON, i18n, etc.

		The web platform: documents, components, graphics, networking, storage, and threads

		Node.js: buffers, files, streams, threads, child processes, web clients, and web servers

		Tools and language extensions that professional JavaScript developers rely on

 Publisher Resources

 		Supplemental Content: https://oreil.ly/javascript_defgd7_examples

 		Errata Page: http://oreilly.com/catalog/0636920048633/errata

 About the Publisher

 [image:]

 O’Reilly Media spreads the knowledge of innovators through online and in-person training, books, videos, research, and conferences. Since 1978, O’Reilly has been a chronicler and catalyst of leading-edge development, homing in on the technology trends ...

 More about O'Reilly Media, Inc.

 Table of Contents

		Preface		Conventions Used in This Book

		Example Code

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		Introduction to JavaScript		1.1 Exploring JavaScript

		1.2 Hello World

		1.3 A Tour of JavaScript

		1.4 Example: Character Frequency Histograms

		1.5 Summary

		Lexical Structure		2.1 The Text of a JavaScript Program

		2.2 Comments

		2.3 Literals

		2.4 Identifiers and Reserved Words		2.4.1 Reserved Words

		2.5 Unicode		2.5.1 Unicode Escape Sequences

		2.5.2 Unicode Normalization

		2.6 Optional Semicolons

		2.7 Summary

		Types, Values, and Variables		3.1 Overview and Definitions

		3.2 Numbers		3.2.1 Integer Literals

		3.2.2 Floating-Point Literals

		3.2.3 Arithmetic in JavaScript

		3.2.4 Binary Floating-Point and Rounding Errors

		3.2.5 Arbitrary Precision Integers with BigInt

		3.2.6 Dates and Times

		3.3 Text		3.3.1 String Literals

		3.3.2 Escape Sequences in String Literals

		3.3.3 Working with Strings

		3.3.4 Template Literals

		3.3.5 Pattern Matching

		3.4 Boolean Values

		3.5 null and undefined

		3.6 Symbols

		3.7 The Global Object

		3.8 Immutable Primitive Values and Mutable Object References

		3.9 Type Conversions		3.9.1 Conversions and Equality

		3.9.2 Explicit Conversions

		3.9.3 Object to Primitive Conversions

		3.10 Variable Declaration and Assignment		3.10.1 Declarations with let and const

		3.10.2 Variable Declarations with var

		3.10.3 Destructuring Assignment

		3.11 Summary

		Expressions and Operators		4.1 Primary Expressions

		4.2 Object and Array Initializers

		4.3 Function Definition Expressions

		4.4 Property Access Expressions		4.4.1 Conditional Property Access

		4.5 Invocation Expressions		4.5.1 Conditional Invocation

		4.6 Object Creation Expressions

		4.7 Operator Overview		4.7.1 Number of Operands

		4.7.2 Operand and Result Type

		4.7.3 Operator Side Effects

		4.7.4 Operator Precedence

		4.7.5 Operator Associativity

		4.7.6 Order of Evaluation

		4.8 Arithmetic Expressions		4.8.1 The + Operator

		4.8.2 Unary Arithmetic Operators

		4.8.3 Bitwise Operators

		4.9 Relational Expressions		4.9.1 Equality and Inequality Operators

		4.9.2 Comparison Operators

		4.9.3 The in Operator

		4.9.4 The instanceof Operator

		4.10 Logical Expressions		4.10.1 Logical AND (&&)

		4.10.2 Logical OR (||)

		4.10.3 Logical NOT (!)

		4.11 Assignment Expressions		4.11.1 Assignment with Operation

		4.12 Evaluation Expressions		4.12.1 eval()

		4.12.2 Global eval()

		4.12.3 Strict eval()

		4.13 Miscellaneous Operators		4.13.1 The Conditional Operator (?:)

		4.13.2 First-Defined (??)

		4.13.3 The typeof Operator

		4.13.4 The delete Operator

		4.13.5 The await Operator

		4.13.6 The void Operator

		4.13.7 The comma Operator (,)

		4.14 Summary

		Statements		5.1 Expression Statements

		5.2 Compound and Empty Statements

		5.3 Conditionals		5.3.1 if

		5.3.2 else if

		5.3.3 switch

		5.4 Loops		5.4.1 while

		5.4.2 do/while

		5.4.3 for

		5.4.4 for/of

		5.4.5 for/in

		5.5 Jumps		5.5.1 Labeled Statements

		5.5.2 break

		5.5.3 continue

		5.5.4 return

		5.5.5 yield

		5.5.6 throw

		5.5.7 try/catch/finally

		5.6 Miscellaneous Statements		5.6.1 with

		5.6.2 debugger

		5.6.3 “use strict”

		5.7 Declarations		5.7.1 const, let, and var

		5.7.2 function

		5.7.3 class

		5.7.4 import and export

		5.8 Summary of JavaScript Statements

		Objects		6.1 Introduction to Objects

		6.2 Creating Objects		6.2.1 Object Literals

		6.2.2 Creating Objects with new

		6.2.3 Prototypes

		6.2.4 Object.create()

		6.3 Querying and Setting Properties		6.3.1 Objects As Associative Arrays

		6.3.2 Inheritance

		6.3.3 Property Access Errors

		6.4 Deleting Properties

		6.5 Testing Properties

		6.6 Enumerating Properties		6.6.1 Property Enumeration Order

		6.7 Extending Objects

		6.8 Serializing Objects

		6.9 Object Methods		6.9.1 The toString() Method

		6.9.2 The toLocaleString() Method

		6.9.3 The valueOf() Method

		6.9.4 The toJSON() Method

		6.10 Extended Object Literal Syntax		6.10.1 Shorthand Properties

		6.10.2 Computed Property Names

		6.10.3 Symbols as Property Names

		6.10.4 Spread Operator

		6.10.5 Shorthand Methods

		6.10.6 Property Getters and Setters

		6.11 Summary

		Arrays		7.1 Creating Arrays		7.1.1 Array Literals

		7.1.2 The Spread Operator

		7.1.3 The Array() Constructor

		7.1.4 Array.of()

		7.1.5 Array.from()

		7.2 Reading and Writing Array Elements

		7.3 Sparse Arrays

		7.4 Array Length

		7.5 Adding and Deleting Array Elements

		7.6 Iterating Arrays

		7.7 Multidimensional Arrays

		7.8 Array Methods		7.8.1 Array Iterator Methods

		7.8.2 Flattening arrays with flat() and flatMap()

		7.8.3 Adding arrays with concat()

		7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()

		7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()

		7.8.6 Array Searching and Sorting Methods

		7.8.7 Array to String Conversions

		7.8.8 Static Array Functions

		7.9 Array-Like Objects

		7.10 Strings as Arrays

		7.11 Summary

		Functions		8.1 Defining Functions		8.1.1 Function Declarations

		8.1.2 Function Expressions

		8.1.3 Arrow Functions

		8.1.4 Nested Functions

		8.2 Invoking Functions		8.2.1 Function Invocation

		8.2.2 Method Invocation

		8.2.3 Constructor Invocation

		8.2.4 Indirect Invocation

		8.2.5 Implicit Function Invocation

		8.3 Function Arguments and Parameters		8.3.1 Optional Parameters and Defaults

		8.3.2 Rest Parameters and Variable-Length Argument Lists

		8.3.3 The Arguments Object

		8.3.4 The Spread Operator for Function Calls

		8.3.5 Destructuring Function Arguments into Parameters

		8.3.6 Argument Types

		8.4 Functions as Values		8.4.1 Defining Your Own Function Properties

		8.5 Functions as Namespaces

		8.6 Closures

		8.7 Function Properties, Methods, and Constructor		8.7.1 The length Property

		8.7.2 The name Property

		8.7.3 The prototype Property

		8.7.4 The call() and apply() Methods

		8.7.5 The bind() Method

		8.7.6 The toString() Method

		8.7.7 The Function() Constructor

		8.8 Functional Programming		8.8.1 Processing Arrays with Functions

		8.8.2 Higher-Order Functions

		8.8.3 Partial Application of Functions

		8.8.4 Memoization

		8.9 Summary

		Classes		9.1 Classes and Prototypes

		9.2 Classes and Constructors		9.2.1 Constructors, Class Identity, and instanceof

		9.2.2 The constructor Property

		9.3 Classes with the class Keyword		9.3.1 Static Methods

		9.3.2 Getters, Setters, and other Method Forms

		9.3.3 Public, Private, and Static Fields

		9.3.4 Example: A Complex Number Class

		9.4 Adding Methods to Existing Classes

		9.5 Subclasses		9.5.1 Subclasses and Prototypes

		9.5.2 Subclasses with extends and super

		9.5.3 Delegation Instead of Inheritance

		9.5.4 Class Hierarchies and Abstract Classes

		9.6 Summary

		Modules		10.1 Modules with Classes, Objects, and Closures		10.1.1 Automating Closure-Based Modularity

		10.2 Modules in Node		10.2.1 Node Exports

		10.2.2 Node Imports

		10.2.3 Node-Style Modules on the Web

		10.3 Modules in ES6		10.3.1 ES6 Exports

		10.3.2 ES6 Imports

		10.3.3 Imports and Exports with Renaming

		10.3.4 Re-Exports

		10.3.5 JavaScript Modules on the Web

		10.3.6 Dynamic Imports with import()

		10.3.7 import.meta.url

		10.4 Summary

		The JavaScript Standard Library		11.1 Sets and Maps		11.1.1 The Set Class

		11.1.2 The Map Class

		11.1.3 WeakMap and WeakSet

		11.2 Typed Arrays and Binary Data		11.2.1 Typed Array Types

		11.2.2 Creating Typed Arrays

		11.2.3 Using Typed Arrays

		11.2.4 Typed Array Methods and Properties

		11.2.5 DataView and Endianness

		11.3 Pattern Matching with Regular Expressions		11.3.1 Defining Regular Expressions

		11.3.2 String Methods for Pattern Matching

		11.3.3 The RegExp Class

		11.4 Dates and Times		11.4.1 Timestamps

		11.4.2 Date Arithmetic

		11.4.3 Formatting and Parsing Date Strings

		11.5 Error Classes

		11.6 JSON Serialization and Parsing		11.6.1 JSON Customizations

		11.7 The Internationalization API		11.7.1 Formatting Numbers

		11.7.2 Formatting Dates and Times

		11.7.3 Comparing Strings

		11.8 The Console API		11.8.1 Formatted Output with Console

		11.9 URL APIs		11.9.1 Legacy URL Functions

		11.10 Timers

		11.11 Summary

		Iterators and Generators		12.1 How Iterators Work

		12.2 Implementing Iterable Objects		12.2.1 “Closing” an Iterator: The Return Method

		12.3 Generators		12.3.1 Generator Examples

		12.3.2 yield* and Recursive Generators

		12.4 Advanced Generator Features		12.4.1 The Return Value of a Generator Function

		12.4.2 The Value of a yield Expression

		12.4.3 The return() and throw() Methods of a Generator

		12.4.4 A Final Note About Generators

		12.5 Summary

		Asynchronous JavaScript		13.1 Asynchronous Programming with Callbacks		13.1.1 Timers

		13.1.2 Events

		13.1.3 Network Events

		13.1.4 Callbacks and Events in Node

		13.2 Promises		13.2.1 Using Promises

		13.2.2 Chaining Promises

		13.2.3 Resolving Promises

		13.2.4 More on Promises and Errors

		13.2.5 Promises in Parallel

		13.2.6 Making Promises

		13.2.7 Promises in Sequence

		13.3 async and await		13.3.1 await Expressions

		13.3.2 async Functions

		13.3.3 Awaiting Multiple Promises

		13.3.4 Implementation Details

		13.4 Asynchronous Iteration		13.4.1 The for/await Loop

		13.4.2 Asynchronous Iterators

		13.4.3 Asynchronous Generators

		13.4.4 Implementing Asynchronous Iterators

		13.5 Summary

		Metaprogramming		14.1 Property Attributes

		14.2 Object Extensibility

		14.3 The prototype Attribute

		14.4 Well-Known Symbols		14.4.1 Symbol.iterator and Symbol.asyncIterator

		14.4.2 Symbol.hasInstance

		14.4.3 Symbol.toStringTag

		14.4.4 Symbol.species

		14.4.5 Symbol.isConcatSpreadable

		14.4.6 Pattern-Matching Symbols

		14.4.7 Symbol.toPrimitive

		14.4.8 Symbol.unscopables

		14.5 Template Tags

		14.6 The Reflect API

		14.7 Proxy Objects		14.7.1 Proxy Invariants

		14.8 Summary

		JavaScript in Web Browsers		15.1 Web Programming Basics		15.1.1 JavaScript in HTML <script> Tags

		15.1.2 The Document Object Model

		15.1.3 The Global Object in Web Browsers

		15.1.4 Scripts Share a Namespace

		15.1.5 Execution of JavaScript Programs

		15.1.6 Program Input and Output

		15.1.7 Program Errors

		15.1.8 The Web Security Model

		15.2 Events		15.2.1 Event Categories

		15.2.2 Registering Event Handlers

		15.2.3 Event Handler Invocation

		15.2.4 Event Propagation

		15.2.5 Event Cancellation

		15.2.6 Dispatching Custom Events

		15.3 Scripting Documents		15.3.1 Selecting Document Elements

		15.3.2 Document Structure and Traversal

		15.3.3 Attributes

		15.3.4 Element Content

		15.3.5 Creating, Inserting, and Deleting Nodes

		15.3.6 Example: Generating a Table of Contents

		15.4 Scripting CSS		15.4.1 CSS Classes

		15.4.2 Inline Styles

		15.4.3 Computed Styles

		15.4.4 Scripting Stylesheets

		15.4.5 CSS Animations and Events

		15.5 Document Geometry and Scrolling		15.5.1 Document Coordinates and Viewport Coordinates

		15.5.2 Querying the Geometry of an Element

		15.5.3 Determining the Element at a Point

		15.5.4 Scrolling

		15.5.5 Viewport Size, Content Size, and Scroll Position

		15.6 Web Components		15.6.1 Using Web Components

		15.6.2 HTML Templates

		15.6.3 Custom Elements

		15.6.4 Shadow DOM

		15.6.5 Example: a <search-box> Web Component

		15.7 SVG: Scalable Vector Graphics		15.7.1 SVG in HTML

		15.7.2 Scripting SVG

		15.7.3 Creating SVG Images with JavaScript

		15.8 Graphics in a <canvas>		15.8.1 Paths and Polygons

		15.8.2 Canvas Dimensions and Coordinates

		15.8.3 Graphics Attributes

		15.8.4 Canvas Drawing Operations

		15.8.5 Coordinate System Transforms

		15.8.6 Clipping

		15.8.7 Pixel Manipulation

		15.9 Audio APIs		15.9.1 The Audio() Constructor

		15.9.2 The WebAudio API

		15.10 Location, Navigation, and History		15.10.1 Loading New Documents

		15.10.2 Browsing History

		15.10.3 History Management with hashchange Events

		15.10.4 History Management with pushState()

		15.11 Networking		15.11.1 fetch()

		15.11.2 Server-Sent Events

		15.11.3 WebSockets

		15.12 Storage		15.12.1 localStorage and sessionStorage

		15.12.2 Cookies

		15.12.3 IndexedDB

		15.13 Worker Threads and Messaging		15.13.1 Worker Objects

		15.13.2 The Global Object in Workers

		15.13.3 Importing Code into a Worker

		15.13.4 Worker Execution Model

		15.13.5 postMessage(), MessagePorts, and MessageChannels

		15.13.6 Cross-Origin Messaging with postMessage()

		15.14 Example: The Mandelbrot Set

		15.15 Summary and Suggestions for Further Reading		15.15.1 HTML and CSS

		15.15.2 Performance

		15.15.3 Security

		15.15.4 WebAssembly

		15.15.5 More Document and Window Features

		15.15.6 Events

		15.15.7 Progressive Web Apps and Service Workers

		15.15.8 Mobile Device APIs

		15.15.9 Binary APIs

		15.15.10 Media APIs

		15.15.11 Cryptography and Related APIs

		Server-Side JavaScript with Node		16.1 Node Programming Basics		16.1.1 Console Output

		16.1.2 Command-Line Arguments and Environment Variables

		16.1.3 Program Life Cycle

		16.1.4 Node Modules

		16.1.5 The Node Package Manager

		16.2 Node Is Asynchronous by Default

		16.3 Buffers

		16.4 Events and EventEmitter

		16.5 Streams		16.5.1 Pipes

		16.5.2 Asynchronous Iteration

		16.5.3 Writing to Streams and Handling Backpressure

		16.5.4 Reading Streams with Events

		16.6 Process, CPU, and Operating System Details

		16.7 Working with Files		16.7.1 Paths, File Descriptors, and FileHandles

		16.7.2 Reading Files

		16.7.3 Writing Files

		16.7.4 File Operations

		16.7.5 File Metadata

		16.7.6 Working with Directories

		16.8 HTTP Clients and Servers

		16.9 Non-HTTP Network Servers and Clients

		16.10 Working with Child Processes		16.10.1 execSync() and execFileSync()

		16.10.2 exec() and execFile()

		16.10.3 spawn()

		16.10.4 fork()

		16.11 Worker Threads		16.11.1 Creating Workers and Passing Messages

		16.11.2 The Worker Execution Environment

		16.11.3 Communication Channels and MessagePorts

		16.11.4 Transferring MessagePorts and Typed Arrays

		16.11.5 Sharing Typed Arrays Between Threads

		16.12 Summary

		JavaScript Tools and Extensions		17.1 Linting with ESLint

		17.2 JavaScript Formatting with Prettier

		17.3 Unit Testing with Jest

		17.4 Package Management with npm

		17.5 Code Bundling

		17.6 Transpilation with Babel

		17.7 JSX: Markup Expressions in JavaScript

		17.8 Type Checking with Flow		17.8.1 Installing and Running Flow

		17.8.2 Using Type Annotations

		17.8.3 Class Types

		17.8.4 Object Types

		17.8.5 Type Aliases

		17.8.6 Array Types

		17.8.7 Other Parameterized Types

		17.8.8 Read-Only Types

		17.8.9 Function Types

		17.8.10 Union Types

		17.8.11 Enumerated Types and Discriminated Unions

		17.9 Summary

		Index

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

