

 [image: image]

 [image: image]

 In easy steps is an imprint of In Easy Steps Limited

 16 Hamilton Terrace · Holly Walk · Leamington Spa

 Warwickshire · CV32 4LY

 www.ineasysteps.com

 Sixth Edition

 Copyright © 2017 by In Easy Steps Limited. All rights reserved. No part of this book
 may be reproduced or transmitted in any form or by any means, electronic or mechanical,
 including photocopying, recording, or by any information storage or retrieval system,
 without prior written permission from the publisher.

 Notice of Liability

 Every effort has been made to ensure that this book contains accurate and current
 information. However, In Easy Steps Limited and the author shall not be liable for
 any loss or damage suffered by readers as a result of any information contained herein.

 Trademarks

 All trademarks are acknowledged as belonging to their respective companies.

 Contents

 1 Getting started

 Introduction

 Installing the JDK

 Writing a first Java program

 Compiling & running programs

 Creating a variable

 Recognizing data types

 Creating constants

 Adding comments

 Troubleshooting problems

 Summary

 2 Performing operations

 Doing arithmetic

 Assigning values

 Comparing values

 Assessing logic

 Examining conditions

 Setting precedence

 Escaping literals

 Working with bits

 Summary

 3 Making statements

 Branching with if

 Branching alternatives

 Switching branches

 Looping for

 Looping while true

 Doing do-while loops

 Breaking out of loops

 Returning control

 Summary

 4 Directing values

 Casting type values

 Creating variable arrays

 Passing an argument

 Passing multiple arguments

 Looping through elements

 Changing element values

 Adding array dimensions

 Catching exceptions

 Summary

 5 Manipulating data

 Exploring Java classes

 Doing mathematics

 Rounding numbers

 Generating random numbers

 Managing strings

 Comparing strings

 Searching strings

 Manipulating characters

 Summary

 6 Creating classes

 Forming multiple methods

 Understanding program scope

 Forming multiple classes

 Extending an existing class

 Creating an object class

 Producing an object instance

 Encapsulating properties

 Constructing object values

 Summary

 7 Importing functions

 Handling files

 Reading console input

 Reading files

 Writing files

 Sorting array elements

 Making array lists

 Managing dates

 Formatting numbers

 Summary

 8 Building interfaces

 Creating a window

 Adding push buttons

 Adding labels

 Adding text fields

 Adding item selectors

 Adding radio buttons

 Arranging components

 Changing appearance

 Summary

 9 Recognizing events

 Listening for events

 Generating events

 Handling button events

 Handling item events

 Reacting to keyboard events

 Responding to mouse events

 Announcing messages

 Requesting input

 Summary

 10 Deploying programs

 Producing an application

 Distributing programs

 Building Java archives

 Deploying applications

 Creating Android projects

 Exploring project files

 Adding resources & controls

 Inserting Java code

 Testing the application

 Deploying Android apps

 Summary

 Preface

 The creation of this book has provided me, Mike McGrath, a welcome opportunity to
 update my previous books on Java programming with the latest techniques. All examples
 I have given in this book demonstrate Java features supported by current compilers
 on both Windows and Linux operating systems, and the book’s screenshots illustrate
 the actual results produced by compiling and executing the listed code, or by implementing
 code snippets in the Java shell.

 Conventions in this book

 In order to clarify the code listed in the steps given in each example, I have adopted
 certain colorization conventions. Components of the Java language itself are colored
 blue; programmer-specified names are red; numeric and string values are black; and
 comments are green, like this:

 // Store then output a text string value.

 String message = “Welcome to Java programming!” ;

 System.out.println(message) ;

 Additionally, in order to identify each source code file described in the steps, a
 colored icon and file name appears in the margin alongside the steps, like these:

 [image: image]

 App.java

 [image: image]

 App.class

 [image: image]

 App.jar

 [image: image]

 App.xml

 Grabbing the source code

 For convenience, I have placed source code files from the examples featured in this
 book into a single ZIP archive. You can obtain the complete archive by following these
 easy steps:

 [image: image]Browse to www.ineasysteps.com then navigate to Free Resources and choose the Downloads section

 [image: image]Find Java in easy steps, 6th Edition in the list, then click on the hyperlink entitled All Code Examples to download the archive

 [image: image]Now, extract the archive contents to any convenient location on your computer

 I sincerely hope you enjoy discovering the programming possibilities of Java and have
 as much fun with it as I did in writing this book.

 Mike McGrath

 1

 Getting started

 Welcome to the exciting world of Java programming. This chapter shows how to create
 and execute simple Java programs, and demonstrates how to store data within programs.

 Introduction

 Installing the JDK

 Writing a first Java program

 Compiling & running programs

 Creating a variable

 Recognizing data types

 Creating constants

 Adding comments

 Troubleshooting problems

 Summary

 Introduction

 The Java™ programming language was first developed in 1990 by an engineer at Sun Microsystems
 named James Gosling. He was unhappy using the C++ programming language so he created
 a new language that he named “Oak”, after the oak tree that he could see from his
 office window.

 [image: image]

 As the popularity of the World Wide Web grew, Sun recognized that Gosling’s language
 could be developed for the internet. Consequently, Sun renamed the language “Java”
 (simply because that name sounded cool) and made it freely available in 1995. Developers
 around the world quickly adopted this exciting new language and, because of its modular
 design, were able to create new features that could be added to the core language.
 The most endearing additional features were retained in subsequent releases of Java
 as it developed into the comprehensive version of today.

 The essence of Java is a library of files called “classes”, which each contain small
 pieces of ready-made proven code. Any of these classes can be incorporated into a
 new program, like bricks in a wall, so that only a relatively small amount of new
 code ever needs to be written to complete the program. This saves the programmer a
 vast amount of time, and largely explains the huge popularity of Java programming.
 Additionally, this modular arrangement makes it easier to identify any errors than
 in a single large program.

 Java technology is both a programming language and a platform. In Java programming,
 the source code is first written as human-readable plain text files ending with the
 .java extension. These are compiled into machine-readable .class files by the javac compiler. The java interpreter can then execute the program with an instance of the Java Virtual Machine
 (Java VM):

 [image: image]

 [image: image]

 The New icon pictured above indicates a new or enhanced feature introduced with the
 latest version of Java.

 As the Java VM is available on many different operating systems, the same .class files are capable of running on Windows, Linux and Mac operating systems – so Java
 programmers theoretically enjoy the cross-platform ability to “write once, run anywhere”.

 In order to create Java programs, the Java class libraries and the javac compiler need to be installed on your computer. In order to run Java programs, the
 Java™ Runtime Environment (JRE) needs to be installed to supply the java interpreter. All of these components are contained in a freely available package
 called the Java™ Platform, Standard Edition Development Kit (JDK).

 [image: image]

 The Java programs in this book use version JDK 9, which incorporates both the Development
 Kit itself and the Runtime Environment, and can be downloaded from the Oracle® website at www.oracle.com/technetwork/java/javase/downloads

 [image: image]

 [image: image]

 The Oracle download page also features other packages, but only the JDK 9 package
 is required to get started with Java programming.

 The JDK 9 package is available in versions for 32-bit and 64-bit variants of the Linux,
 Mac, Solaris and Windows platforms – accept the Oracle License Agreement, then select
 the appropriate version for your computer to download the Java Development Kit.

 [image: image]

 [image: image]

 There is no truth in the rumor that JAVA stands for “Just Another Vague Acronym”.

 Installing the JDK

 Select the appropriate Java Development Kit (JDK) package for your system from the
 Oracle® downloads page, and then follow these steps to install Java on your computer:

 [image: image]Uninstall any previous versions of the JDK and/or Java Runtime Environment (JRE) from
 your system

 [image: image]Start the installation and accept the License Agreement

 [image: image]When the “Custom Setup” dialog appears, either accept the suggested installation location
 or click the Change button to choose your preferred location – such as C:\Java for Windows systems or /usr/Java for Linux systems

 [image: image]

 [image: image]Ensure that the Public JRE and Development Tools features are selected from the list. Optionally, you may deselect the other features
 as they are not required to start programming with this book

 [image: image]Click the Next button to install all the necessary Java class libraries and tools at the chosen
 location

 [image: image]

 A previous version of the JRE may be installed so your web browser can run Java applets.
 It is best to uninstall this to avoid confusion with the newer version in JDK 9.

 [image: image]

 You can start out by installing just the minimum features to avoid confusion.

 The tools to compile and run Java programs are normally operated from a command-line
 prompt and are located in the bin sub-directory of the Java directory. They can be made available system-wide by adding
 their location to the system path:

 •On Windows, navigate through Control Panel, System, Advanced System Settings, Advanced tab, Environment Variables, then select the system variable named “Path”. Click the Edit button and add the address of Java’s bins sub-directory to the list (e.g. C:\Java\bin), then click OK to apply the change.

 •On Linux, add the location of Java’s bin sub-directory to the system path by editing the .bashrc file in your home directory. For instance, add PATH=$PATH:/usr/Java/bin then save the file.

 [image: image]

 Paths that contain spaces must be enclosed within double quotes and terminated by
 a semicolon on older versions of Windows. For example, with the path “C:\Program Files\ Java\jdk-9\bin”;

 You are now able to test the environment:

 [image: image]Open a command-line prompt window, such as Windows PowerShell or Linux Terminal

 [image: image]Type the command java -version then hit the Enter key to see the Java interpreter’s version number

 [image: image]Next, type the command javac -version then hit the Enter key to see the Java compiler’s version number

 [image: image]Now, type the command jshell -version then hit the Enter key to see the Java shell version number

 [image: image]Ensure that all version numbers match (9), and you’re ready to begin Java programming

 [image: image]

 [image: image]

 If the .bashrc file is not visible in your Linux home directory choose View, Show Hidden Files to
 reveal it.

 [image: image]

 The Java shell jshell is a new feature in Java 9. This interactive tool lets you quickly test snippets
 of code, without the need to first compile the code. It is used in the next chapter
 to demonstrate the various “operators” available in Java programming.

 Writing a first Java program

 All Java programs start as text files that are later used to create “class” files,
 which are the actual runnable programs. This means that Java programs can be written
 in any plain text editor, such as the Windows Notepad application.

 Follow these steps to create a simple Java program that will output the traditional
 first program greeting:

 [image: image]

 Hello.java

 [image: image]Open a plain text editor, like Notepad, and type this code exactly as it is listed
 – to create a class named “Hello”

 class Hello

 {

 }

 [image: image]Between the curly brackets of the Hello class, insert this code – to create a “main” method for the Hello class

 public static void main (String[] args)

 {

 }

 [image: image]Between the curly brackets of the main method, insert this line of code – stating what the program will do

 System.out.println(“Hello World!”) ;

 [image: image]Save the file at any convenient location, but be sure to name it precisely as Hello.java – the complete program should now look like this:

 [image: image]

 [image: image]

 Java is a case-sensitive language where “Hello” and “hello” are distinctly different
 – traditionally, Java program names should always begin with an uppercase letter.

 [image: image]

 Java programs are always saved as their exact program name followed by the “.java”
 extension.

 The separate parts of the program code on the opposite page can be examined individually
 to understand each part more clearly:

 The Program Container

 class Hello { }

 The program name is declared following the class keyword, and followed by a pair of curly brackets. All of the program code that defines
 the Hello class will be contained within these curly brackets.

 [image: image]

 All stand-alone Java programs must have a main method. Java applets are different,
 and their format is explained later.

 The Main Method

 public static void main (String[] args) { }

 This fearsome-looking line is the standard code that is used to define the starting
 point of nearly all Java programs. It will be used in most examples throughout this
 book exactly as it appears above – so it may be useful to memorize it.

 The code declares a method named “main” that will contain the actual program instructions
 within its curly brackets.

 Keywords public static void precede the method name to define how the method may be used, and are explained in
 detail later.

 The code (String[] args) is useful when passing values to the method, and is also fully explained later in
 this book.

 The Statement

 System.out.println(“Hello World!”) ;

 Statements are actual instructions to perform program tasks, and must always end with
 a semicolon. A method may contain many statements inside its curly brackets to form
 a “statement block” defining a series of tasks to perform, but here a single statement
 instructs the program to output a line of text.

 Turn to here
 to discover how to compile and run this program.

 [image: image]

 Create a “MyJava” directory in which to save all your Java program files. On Windows
 use the

 Compiling & running programs

 Before a Java program can run, it must first be compiled into a class file by the Java compiler. This is located in Java’s bin sub-directory, and is an application named javac. The instructions here
 described how to add the bin sub-directory to the system path so that javac can be invoked from any system location.

 Follow these steps to compile the program here
 :

 [image: image]Open a command-line window, then navigate to the directory where you saved the Hello.java source code file

 [image: image]Type javac followed by a space then the full name of the source code file Hello.java and hit the Enter key

 [image: image]

 [image: image]

 On Windows use the Windows PowerShell app or the older Command Prompt app to provide
 a command-line prompt, and on Linux use a Terminal window.

 [image: image]

 At a prompt type javac and hit Return to reveal the Java compiler options.

 If the javac compiler discovers errors in the code it will halt and display a helpful report indicating
 the nature of the error – see here
 for troubleshooting problems.

 If the javac compiler does not find any errors it will create a new file with the program name
 and the .class file extension.

 [image: image]

 [image: image]

 You can also compile the source code from another location if you state the file’s
 full path address to the javac compiler – in this case, C:\MyJava\Hello.java

 When the Java compiler completes compilation, the command-line prompt window focus
 returns to the prompt without any confirmation message – and the program is ready
 to run.

 The Java program interpreter is an application named java that is located in Java’s bin sub-directory – alongside the javac compiler. As this directory was previously added to the system path, here
 , the java interpreter can be invoked from any location.

 Follow these steps to run the program that was compiled using the procedure described
 on the page opposite:

 [image: image]Open a command-line prompt window, then navigate to the directory where the Hello.class program file is located

 [image: image]At the prompt, type java followed by a space then the program name Hello and hit the Enter key

 [image: image]

 [image: image]

 Do not include the .class extension when running a program – only use the program
 name.

 The Hello program runs and executes the task defined in the statement within its main method
 – to output “Hello World!”. Upon completion, focus returns to the prompt once more.

 The process of compiling and running a Java program is typically combined in sequential
 steps, and is the same regardless of platform. The screenshot below illustrates the
 Hello program being compiled and run in combined steps on a Linux system:

 [image: image]

 Creating a variable

 In Java programming, a “variable” is simply a useful container in which a value may
 be stored for subsequent use by the program. The stored value may be changed (vary)
 as the program executes its instructions – hence the term “variable”.

 [image: image]

 A variable is created by writing a variable “declaration” in the program, specifying
 the type of data that variable may contain and a given name for that variable. For
 example, the String data type can be specified to allow a variable named “message” to contain regular
 text with this declaration:

 String message ;

 Variable names are chosen by the programmer but must adhere to certain naming conventions.
 The variable name may only begin with a letter, dollar sign $, or the underscore character
 _ , and may subsequently have only letters, digits, dollar signs, or underscore characters.
 Names are case-sensitive, so “var” and “Var” are distinctly different names, and spaces
 are not allowed in names.

 Variable names should also avoid the Java keywords listed in the table below, as these
 have special meaning in the Java language.

 	
 abstract

 	
 default

 	
 goto

 	
 package

 	
 synchronized

 	
 assert

 	
 do

 	
 if

 	
 private

 	
 this

 	
 boolean

 	
 double

 	
 implements

 	
 protected

 	
 throw

 	
 break

 	
 else

 	
 import

 	
 public

 	
 throws

 	
 byte

 	
 enum

 	
 instanceof

 	
 return

 	
 transient

 	
 case

 	
 extends

 	
 int

 	
 short

 	
 true

 	
 catch

 	
 false

 	
 interface

 	
 static

 	
 try

 	
 char

 	
 final

 	
 long

 	
 strictfp

 	
 void

 	
 class

 	
 finally

 	
 native

 	
 String

 	
 volatile

 	
 const

 	
 float

 	
 new

 	
 super

 	
 while

 	
 continue

 	
 for

 	
 null

 	
 switch

 [image: image]

 Each variable declaration must be terminated with a semicolon character – like all
 other statements.

 [image: image]

 Strictly speaking, some words in this table are not actually keywords – true, false, and null are all literals; String is a special class name; const and goto are reserved words (currently unused). These are included in the table because they
 must also be avoided when naming variables.

 As good practice, variables should be named with words or easily recognizable abbreviations,
 describing that variable’s purpose. For example, “button1” or “btn1” to describe button
 number one. Lowercase letters are preferred for single-word names, such as “gear”,
 and names that consist of multiple words should capitalize the first letter of each
 subsequent word, such as “gearRatio” – the so-called “camelCase” naming convention.

 Once a variable has been declared, it may be assigned an initial value of the appropriate
 data type using the equals sign = , either in the declaration or later on in the program,
 then its value can be referenced at any time using the variable’s name.

 Follow these steps to create a program that declares a variable, which gets initialized
 in its declaration then changed later:

 [image: image]Start a new program named “FirstVariable”, containing the standard main method

 class FirstVariable

 {

 public static void main (String[] args) { }

 }

 [image: image]

 FirstVariable.java

 [image: image]Between the curly brackets of the main method, insert this code to create, initialize,
 and output a variable

 String message = “Initial value” ;

 System.out.println(message) ;

 [image: image]Add these lines to modify and output the variable value

 message = “Modified value” ;

 System.out.println(message) ;

 [image: image]Save the program as FirstVariable.java, then compile and run the program

 [image: image]

 [image: image]

 If you encounter problems compiling or running the program, you can get help from
 Troubleshooting problems here
 .

 Recognizing data types

 The most frequently-used data types in Java variable declarations are listed in this
 table, along with a brief description:

 	
 Data type:

 	
 Description:

 	
 Example:

 	
 char

 	
 A single Unicode character

 	
 ‘a’

 	
 String

 	
 Any number of Unicode characters

 	
 “my String”

 	
 int

 	
 An integer number, from -2.14 billion to +2.14 billion

 	
 1000

 	
 float

 	
 A floating-point number, with a decimal point

 	
 3.14159265f

 	
 boolean

 	
 A logical value of either true or false

 	
 true

 [image: image]

 Due to the irregularities of floating-point arithmetic the float data type should never be used for precise values, such as currency – see here
 for details.

 Notice that char data values must always be surrounded by single quotes, and String data values must always be surrounded by double quotes. Also, remember that float data values must always have an “f” suffix to ensure they are treated as a float value.

 In addition to the more common data types above, Java provides these specialized data
 types for use in exacting circumstances:

 	
 Data type:

 	
 Description:

 	
 byte

 	
 Integer number from -128 to +127

 	
 short

 	
 Integer number from -32,768 to +32,767

 	
 long

 	
 Positive or negative integer exceeding 2.14 billion

 	
 double

 	
 Extremely long floating-point number

 [image: image]

 All data type keywords begin with a lowercase letter except String – which is a special class.

 Specialized data types are useful in advanced Java programs – the examples in this
 book mostly use the common data types described in the top table.

 Follow these steps to create a Java program that creates, initializes, and outputs
 variables of all five common data types:

 [image: image]Start a new program named “DataTypes” containing the standard main method

 class DataTypes

 {

 public static void main (String[] args) { }

 }

 [image: image]

 DataTypes.java

 [image: image]Between the curly brackets of the main method, insert these declarations to create
 and initialize five variables

 char letter = ‘M’ ;

 String title = “Java in easy steps” ;

 int number = 365 ;

 float decimal = 98.6f ;

 boolean result = true ;

 [image: image]Add these lines to output an appropriate text String concatenated to the value of each variable

 System.out.println(“Initial is ” + letter) ;

 System.out.println(“Book is ” + title) ;

 System.out.println(“Days are ” + number) ;

 System.out.println(“Temperature is ” + decimal) ;

 System.out.println(“Answer is ” + result) ;

 [image: image]Save the program as DataTypes.java, then compile and run the program

 [image: image]

 [image: image]

 Notice how the + character is used here to join (concatenate) text strings and stored
 variable values.

 [image: image]

 The Java compiler will report an error if the program attempts to assign a value of
 the wrong data type to a variable – try changing the values in this example, then
 attempt to recompile the program to see the effect.

 .

 Creating constants

 The “final” keyword is a modifier that can be used when declaring variables to prevent
 any subsequent changes to the values that are initially assigned to them. This is
 useful when storing a fixed value in a program to avoid it becoming altered accidentally.

 Variables created to store fixed values in this way are known as “constants”, and
 it is convention to name constants with all uppercase characters – to distinguish
 them from regular variables. Programs that attempt to change a constant value will
 not compile, and the javac compiler will generate an error message.

 Follow these steps to create a Java program featuring constants:

 [image: image]Start a new program named “Constants” containing the standard main method

 class Constants

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Constants.java

 [image: image]Between the curly brackets of the main method, insert this code to create and initialize
 three integer constants

 final int TOUCHDOWN = 6 ;

 final int CONVERSION = 1 ;

 final int FIELDGOAL = 3 ;

 [image: image]Now, declare four regular integer variables

 int td , pat , fg , total ;

 [image: image]Initialize the regular variables – using multiples of the constant values

 td = 4 * TOUCHDOWN ;

 pat = 3 * CONVERSION ;

 fg = 2 * FIELDGOAL ;

 total = (td + pat + fg) ;

 [image: image]Add this line to display the total score

 System.out.println(“Score: ” + total) ;

 [image: image]Save the program as Constants.java, then compile and run the program to see the output, Score: 33

 (4 x 6 = 24, 3 x 1 = 3, 2 x 3 = 6, so 24 + 3 + 6 = 33).

 [image: image]

 The * asterisk character is used here to multiply the constant values, and parentheses
 surround their addition for clarity

 Adding comments

 When programming in any language, it is good practice to add comments to program code
 to explain each particular section. This makes the code more easily understood by
 others, and by yourself, when revisiting a piece of code after a period of absence.

 In Java programming, comments can be added across multiple lines between /* and */ comment identifiers, or on a single line after a // comment identifier. Anything appearing between /* and */, or on a line after //, is completely ignored by the javac compiler.

 When comments have been added to the Constants.java program, described opposite, the source code might look like this:

 [image: image]

 Constants.java (commented)

 /*

 A program to demonstrate constant variables.

 */

 class Constants

 {

 public static void main(String args[])

 {

 // Constant score values.

 final int TOUCHDOWN = 6 ;

 final int CONVERSION = 1 ;

 final int FIELDGOAL = 3 ;

 // Calculate points scored.

 int td , pat , fg , total ;

 td = 4 * TOUCHDOWN ; // 4x6=24

 pat = 3 * CONVERSION ; // 3x1= 3

 fg = 2 * FIELDGOAL ; // 2x3= 6

 total = (td + pat + fg) ; // 24+3+6=33

 // Output calculated total.

 System.out.println(“Score: “ + total) ;

 }

 }

 Saved with comments, the program compiles and runs as normal:

 [image: image]

 [image: image]

 You can add a statement that attempts to change the value of a constant, then try
 to recompile the program to see the resulting error message.

 Troubleshooting problems

 Sometimes, the javac compiler or java interpreter will complain about errors, so it’s useful to understand their cause
 and how to quickly resolve the problem. In order to demonstrate some common error
 reports, this code contains some deliberate errors:

 [image: image]

 Test.java

 class test

 {

 public static void main (String[] args)

 {

 String text ;

 System.out.println(“Test ” + text)

 }

 }

 A first attempt to compile Test.java throws up this error report:

 [image: image]

 •Cause – the javac compiler cannot be found.

 •Solution – edit the system PATH variable, as described here
 , or use its full path address to invoke the compiler.

 [image: image]

 [image: image]

 The path address must be enclosed within quotation marks if it contains any spaces,
 such as the path address “C:\Program Files\ Java”.

 •Cause – the file Test.java cannot be found.

 •Solution – navigate to the directory where the file is located, or use the full path
 address to the file in the command.

 [image: image]

 •Cause – the statement is not terminated correctly.

 •Solution – in the source code add a semicolon at the end of the statement, then save
 the file to apply the change.

 [image: image]

 •Cause – the program name and class name do not match.

 •Solution – in the source code change the class name from test to Test, then save the file to apply the change.

 [image: image]

 •Cause – the variable text has no value.

 •Solution – in the variable declaration assign the variable a valid String value, for instance = “success”, then save the file.

 [image: image]

 [image: image]

 You must run the program from within its directory – you cannot use a path address
 as the Java launcher requires a program name, not a file name.

 Summary

 •Java is both a programming language and a runtime platform.

 •Java programs are written as plain text files with a .java file extension.

 •The Java compiler javac creates compiled .class program files from original .java source code files.

 •The Java interpreter java executes compiled programs using an instance of the Java Virtual Machine.

 •The Java VM is available on many operating system platforms.

 •Adding Java’s bin sub-directory to the system PATH variable allows the javac compiler to be invoked from anywhere.

 •Java is a case-sensitive language.

 •The standard main method is the entry point for Java programs.

 •The System.out.println() statement outputs text.

 •A Java program file name must exactly match its class name.

 •Java variables can only be named in accordance with specified naming conventions,
 and must avoid the Java keywords.

 •In Java programming, each statement must be terminated by a semicolon character.

 •The most common Java data types are String, int, char, float and boolean.

 •String values must be enclosed in double quotes; char values in single quotes; and float values must have an “f” suffix.

 •The final keyword can be used to create a constant variable.

 •Comments can be added to Java source code between /* and */, on one or more lines, or after // on a single line.

 •Error reports identify compiler and runtime problems.

 2

 Performing operations

 This chapter demonstrates the various operators that are used to create expressions
 in Java programs.

 Doing arithmetic

 Assigning values

 Comparing values

 Assessing logic

 Examining conditions

 Setting precedence

 Escaping literals

 Working with bits

 Summary

 Doing arithmetic

 Arithmetical operators, listed in the table below, are used to create expressions
 in Java programs that return a single resulting value. For example, the expression
 4 * 2 returns the value 8.

 	
 Operator:

 	
 Operation:

 	
 +

 	
 Addition (and concatenates String values)

 	
 -

 	
 Subtraction

 	
 *

 	
 Multiplication

 	
 /

 	
 Division

 	
 %

 	
 Modulus

 	
 ++

 	
 Increment

 	
 --

 	
 Decrement

 [image: image]

 Division of int values will truncate any fractional part. For example, 11/4 = 2, whereas division
 of float values 11/4 = 2.75.

 The increment operator ++ and decrement operator -- return the result of modifying a single given operand by a value of one. For example,
 4++ returns the value 5, and 4-- returns the value 3.

 All other arithmetic operators return the result of an operation performed on two
 given operands, and act as you would expect. For example, the expression 5 + 2 returns 7.

 The modulus operator divides the first operand by the second operand and returns the
 remainder of the operation. For example, 32 % 5 returns 2 – five divides into 32 six times, with 2 remainder.

 The operation performed by the addition operator + depends on the type of its given
 operands. Where both operands are numeric values it will return the total sum value
 of those numbers, but where the operands are String values it will return a single concatenated String – combining the text in each String operand. For example, “Java ” + “Arithmetic” returns “Java Arithmetic”.

 [image: image]

 Increment and decrement operators are typically used to count the iterations in the
 for loop constructs, introduced here
 .

 Follow these steps to explore the Java arithmetic operators in the Java shell:

 [image: image]Open a command-line prompt window, then type jshell and hit the Enter key to launch the Java shell

 [image: image]Next, enter statements to initialize three variables

 int num = 100 ; int factor = 20 ; int sum = 0 ;

 [image: image]

 [image: image]Next, separately enter statements to perform addition and subtraction operations,
 displaying each result

 sum = num + factor ;

 sum = num - factor ;

 [image: image]

 [image: image]Now, separately enter statements to perform multiplication and division operations,
 displaying each result

 sum = num * factor ;

 sum = num / factor ;

 [image: image]

 [image: image]

 Java must be installed on your system path to launch the Java shell from any prompt
 – see Installing here
 and Troubleshooting here
 for details.

 [image: image]

 The Java shell jshell is a new feature in Java 9. Optionally, the semicolon character may be omitted at
 the end of single statements entered into the shell but these are required when writing
 Java programs for compilation. Semicolons are included in the shell examples in this
 chapter to aid code consistency.

 Assigning values

 Assignment operators, listed in the table below, are used to assign the result of
 an expression. All except the simple = operator are the shorthand form of a longer equivalent expression:

 	
 Operator:

 	
 Example:

 	
 Equivalent:

 	
 =

 	
 a = b

 	
 a = b

 	
 +=

 	
 a += b

 	
 a = a + b

 	
 -=

 	
 a -= b

 	
 a = a - b

 	
 *=

 	
 a *= b

 	
 a = a * b

 	
 /=

 	
 a /= b

 	
 a = a / b

 	
 %=

 	
 a %= b

 	
 a = a % b

 It is important to regard the = operator to mean “assign”, rather than “equals”, to avoid confusion with the == equality operator.

 In the example a = b, the value stored in the variable named b is assigned to the variable named a, so that value becomes the new value stored in a – replacing any value it previously contained.

 The += operator is useful to add a value onto an existing value stored in a variable – keeping
 a “running total”.

 The example a += b first calculates the sum total of the values stored in the variables named a and b, then assigns the resulting total to variable a. A program might then contain a further assignment a += c that calculates the total stored in variables named a and c, then assigns that new total to variable a – adding the value of c to the value it previously contained.

 All the other assignment operators work in the same way by first performing the arithmetical
 calculation on the two stored values, then assigning the result to the first variable
 – to become its new stored value.

 [image: image]

 The == equality operator compares values, and is fully explained here
 .

 Follow these steps to explore the Java assignment operators in the Java shell:

 [image: image]Open a command-line prompt window, then type jshell and hit the Enter key to launch the Java shell

 [image: image]Next, enter statements to initialize two String variables

 String txt = “Super ” ; String lang = “Java” ;

 [image: image]Now, separately enter statements to add and assign a String value, then display the concatenated string result

 txt += lang ; txt ;

 [image: image]

 [image: image]Then, enter statements to initialize two integer variables

 int sum = 10 ; int num = 20 ;

 [image: image]Separately enter statements to add and assign an int value, then display the totaled integer result

 sum += num ; sum ;

 [image: image]

 [image: image]

 The new Java shell feature, introduced in Java 9, creates internal $-prefixed numbered variables containing the result of an evaluation. Here, internal
 variables $3 and $7 contain evaluation results.

 [image: image]

 Assignment of the wrong data type to a variable will cause an error.

 Comparing values

 Comparison operators, listed in the table below, are used to compare two values in
 an expression and return a single Boolean value of true or false – describing the result of that comparison.

 	
 Operator:

 	
 Comparison:

 	
 ==

 	
 Equality

 	
 !=

 	
 Inequality

 	
 >

 	
 Greater than

 	
 >=

 	
 Greater than, or equal to

 	
 <

 	
 Less than

 	
 <=

 	
 Less than, or equal to

 The == equality operator compares two operands, and will return true if both are exactly equal in value. If both are the same number they are equal, or
 if both are String values containing the same characters in the same order they are equal. Boolean operands
 that are both true, or that are both false, are equal.

 Conversely, the != inequality operator returns true if two operands are not equal – applying the same rules as the equality operator.

 Equality and inequality operators are useful in testing the state of two variables
 to perform “conditional branching” of a program – proceeding in different directions
 according to the condition.

 The > “greater than” operator compares two operands, and will return true if the first is greater in value than the second.

 The < “less than” operator makes the same comparison, but returns true if the first operand
 is less in value than the second.

 Adding the = assignment operator after the > “greater than” operator, or after the < “less than” operator, makes it also return true when the two operands are exactly equal in value.

 [image: image]

 The < less than operator is typically used to test a counter value in a loop – an
 example of this can be found here
 .

 Follow these steps to explore the Java comparison operators in the Java shell:

 [image: image]Open a command-line prompt window, then type jshell and hit the Enter key to launch the Java shell

 [image: image]Next, enter statements to initialize two String variables

 String txt = “Super ” ; String lang = “Java” ;

 [image: image]Now, separately enter statements to initialize a boolean variable and display the result of String value comparisons for equality and inequality

 boolean state = (txt == lang) ;

 state = (txt != lang) ;

 [image: image]

 [image: image]In a similar way, separately enter these statements to display the result of int value comparisons for greater and less numeric value

 int dozen = 12 ; int score = 20 ;

 state = (dozen > score) ;

 state = (dozen < score) ;

 [image: image]

 [image: image]

 You can discover more options within the Java shell by entering the /help command.

 [image: image]

 Here it’s untrue (false) that the String values are equal, but it is true that they are unequal.

 [image: image]

 Notice how an expression can be contained in parentheses for better readability.

 Assessing logic

 Logical operators, listed in the table below, are used to combine multiple expressions
 that each return a Boolean value – into a complex expression that returns a single
 Boolean value.

 	
 Operator:

 	
 Operation:

 	
 &&

 	
 Logical AND

 	
 ||

 	
 Logical OR

 	
 !

 	
 Logical NOT

 Logical operators are used with operands that have the Boolean values of true or false, or values that can convert to true or false.

 The logical && AND operator will evaluate two operands and return true only if both operands are themselves true. Otherwise, the logical && operator will return false. This evaluation can be used in conditional branching, where a program will only
 perform a certain action when two tested conditions are both true.

 Unlike the logical && operator that needs two operands to be true, the logical || OR operator will evaluate its two operands and return true if either one of the operands is true – it will only return false when neither operand is true. This is useful in Java programming to perform a certain action when either one of
 two test conditions has been met.

 The logical ! NOT operator is a “unary” operator that is used before a single operand. It returns
 the inverse Boolean value of the given operand – reversing true to false, and false to true. It’s useful in Java programs to toggle the value of a variable in successive loop
 iterations with a statement like goState=!goState. This ensures that on each pass of the loop the value is changed, like flicking a
 light switch on and off.

 [image: image]

 The term “Boolean” refers to a system of logical thought developed by the English
 mathematician George Boole (1815-1864).

 [image: image]

 [image: image]

 The new Java shell feature, introduced in Java 9, is also known as a “REPL” – an acronym
 for Read, Evaluate, Print, Loop that describes this type of interactive tool.

 Follow these steps to explore logical operators in the Java shell:

 [image: image]Open a command-line prompt window, then type jshell and hit the Enter key to launch the Java shell

 [image: image]Next, enter statements to initialize two boolean variables

 boolean yes = true ; boolean no = false ;

 [image: image]Enter statements to test if both two conditions are true

 boolean result = (yes && yes) ; result = (yes && no) ;

 [image: image]

 [image: image]Enter statements to test if either of two conditions is true

 result = (yes || yes) ;

 result = (yes || no) ;

 result = (no || no) ;

 [image: image]Enter statements to show an original and inverse value

 result = yes ; result = !yes ;

 [image: image]

 [image: image]

 Notice that false && false returns false, not true – demonstrating the maxim that “two wrongs don’t make a right”.

 [image: image]

 The value returned by the ! NOT logical operator is the inverse of the stored value
 – the stored value itself remains unchanged.

 Examining conditions

 Possibly the all-time favorite operator of the Java programmer is the ? : conditional operator that makes a powerful statement very concisely. Its unusual
 syntax can seem tricky to understand at first, but it is well worth getting to know
 this useful operator.

 The conditional operator first evaluates an expression for a true or false value, then returns one of two given operands depending on the result of the evaluation.
 Its syntax looks like this:

 (boolean-expression) ? if-true-return-this : if-false-return-this ;

 [image: image]

 The conditional operator is also known as the “ternary” operator.

 Each specified operand alternative allows the program to progress according to the
 Boolean value returned by the tested expression. For instance, the alternatives might
 return a String value:

 status = (quit == true) ? “Done!” : “Continuing...” ;

 In this case, when the quit variable is true the conditional operator assigns the value of its first operand to the status variable; otherwise, it assigns its second operand value instead.

 A shorthand available when coding Java programs allows expressions to optionally omit
 == true when evaluating a simple Boolean value, so the example above can be written simply
 as:

 status = (quit) ? “Done!” : “Continuing...” ;

 The conditional operator can return values of any data type and employ any valid test
 expression. For instance, the expression might use the greater than > operator to evaluate two numeric values then return a Boolean value depending on
 the result:

 busted = (speed > speedLimit) ? true : false ;

 Similarly, the conditional operator might employ the inequality != operator to evaluate a String value then return a numeric value depending on the result:

 bodyTemperature = (scale != “Celsius”) ? 98.6 : 37.0 ;

 [image: image]

 You can also start the Java shell with the command jshell--feedback verbose to receive descriptive output after each evaluation.

 Follow these steps to explore the Java conditional operator in the Java shell:

 [image: image]Open a command-line prompt window, then type jshell and hit the Enter key to launch the Java shell

 [image: image]Next, enter statements to initialize two int variables

 int num1 = 1357 ; int num2 = 2468 ;

 [image: image]Declare a further variable to store a test result String

 String result ;

 [image: image]Enter this statement to determine whether the first integer value is an odd or even
 number

 result = (num1 % 2 != 0) ? “Odd” : “Even” ;

 [image: image]

 [image: image]Now, enter this statement to determine whether the second integer value is an odd
 or even number

 result = (num2 % 2 != 0) ? “Odd” : “Even” ;

 [image: image]

 [image: image]

 Notice that an uninitialized String variable returns a special null value – indicating that it contains nothing whatsoever.

 [image: image]

 Here, the expression evaluates as true when there is any remainder.

 Setting precedence

 Complex expressions, which contain multiple operators and operands, can be ambiguous
 unless the order in which the operations should be executed is clear. This lack of
 clarity can easily cause different results to be implied by the same expression. For
 example, consider this complex expression:

 num = 8 + 4 * 2 ;

 Working left to right 8 + 4 = 12, and 12 * 2 = 24, so num = 24. But working right to left 2 * 4 = 8, and 8 + 8 = 16, so num = 16.

 The Java programmer can explicitly specify which operation should be executed first
 by adding parentheses to signify which operator has precedence. In this case, (8 + 4) * 2 ensures that the addition is performed before the multiplication – so the result
 is 24, not 16. Conversely, 8 + (4 * 2) performs the multiplication first – so the result is 16, not 24.

 Where parentheses do not explicitly specify operator precedence Java follows the default
 precedence order listed in the table below, from first at the top to last at the bottom:

 	
 Operator:

 	
 Description:

 	
 ++ -- !

 	
 Increment, Decrement, Logical NOT

 	
 * / %

 	
 Multiplication, Division, Modulus

 	
 + -

 	
 Addition, Subtraction

 	
 > >=< <=

 	
 Greater than, Greater than or equal toLess than, Less than or equal to

 	
 == !=

 	
 Equality, Inequality

 	
 &&

 	
 Logical AND

 	
 ||

 	
 Logical OR

 	
 ? :

 	
 Conditional

 	
 = += -= *= /= %=

 	
 Assignment

 [image: image]

 Operators of equal precedence are handled in the order they appear in the expression
 – from left to right.

 Follow these steps to explore operator precedence in the Java shell:

 [image: image]Open a command-line prompt window, then type jshell and hit the Enter key to launch the Java shell

 [image: image]Next, enter a statement to display the result of evaluating an expression that uses
 default operator precedence

 int sum = 32 - 8 + 16 * 2 ;

 [image: image]

 [image: image]Now, enter a statement to display the result of evaluating the same expression – but
 giving addition and subtraction precedence over multiplication

 sum = (32 - 8 + 16) * 2 ;

 [image: image]

 [image: image]Finally, enter a statement to display the result of evaluating the same expression
 once more – but now where operation precedence order is first addition, then subtraction,
 and then multiplication

 sum = (32 - (8 + 16)) * 2 ;

 [image: image]

 [image: image]

 Where expressions have multiple nested parentheses, the innermost takes precedence.

 [image: image]

 How it works – Step 2 ...

 16 x 2 = 32, + 24 = 56

 Step 3...

 24 + 16 = 40, x 2 = 80

 Step 4 ...

 32 - 24 = 8, x 2 = 16

 [image: image]

 This chapter has so far used the Java shell jshell to explore the various Java operators by evaluating code snippets. Ensuing examples
 will use the Java compiler javac and Java runtime java to create and execute programs. You can quit the Java shell to return to a regular
 prompt with the command /exit.

 Escaping literals

 The numerical and text values in Java programs are known as “literals” – they represent
 nothing but are, literally, what you see.

 Literals are normally detached from the keywords of the Java language, but where double
 quotes, or single quotes, are required within a String value it is necessary to indicate that the quote character is to be treated literally
 to avoid prematurely terminating the String. This is easily achieved by immediately prefixing each nested quote character with
 the \ escape operator. For example, including a quote within a String variable, like this:

 String quote = “ \”Fortune favors the brave.\” said Virgil ”;

 Additionally, the \ escape operator offers a variety of useful escape sequences for simple output formatting:

 	
 Escape:

 	
 Description:

 	
 \n

 	
 Newline

 	
 \t

 	
 Tab

 	
 \b

 	
 Backspace

 	
 \r

 	
 Carriage return

 	
 \f

 	
 Formfeed

 	
 \\

 	
 Backslash

 	
 \’

 	
 Single quote mark

 	
 \”

 	
 Double quote mark

 [image: image]

 Single quotes can be nested within double quotes as an alternative to escaping quote
 characters.

 The \n newline escape sequence is frequently used within long String values to display the output on multiple lines. Similarly, the \t tab escape sequence is frequently used to display the output in columns. Using a
 combination of \n newline and \t tab escape sequences allows the output to be formatted in both rows and columns –
 to resemble a table.

 Follow these steps to create a Java program using escape sequences to format the output:

 [image: image]Start a new program named “Escape” containing the standard main method

 class Escape

 {

 public static void main(String[] args) { }

 }

 [image: image]

 Escape.java

 [image: image]Between the curly brackets of the main method, insert this code to build a String containing a formatted table title and column headings

 String header = “\n\tNEW YORK 3-DAY FORECAST:\n” ;

 header += “\n\tDay\t\tHigh\tLow\tConditions\n” ;

 header += “\t---\t\t----\t---\t----------\n” ;

 [image: image]Add these lines to build a String containing formatted table cell data

 String forecast = “\tSunday\t\t68F\t48F\tSunny\n” ;

 forecast += “\tMonday\t\t69F\t57F\tSunny\n” ;

 forecast += “\tTuesday\t\t71F\t50F\tCloudy\n” ;

 [image: image]Now, add this line to output both formatted String values

 System.out.print(header + forecast) ;

 [image: image]Save the program as Escape.java, then compile and run the program

 [image: image]

 [image: image]

 In this case, escape sequences add newlines so the print() method is used here – rather than the println() method that automatically adds a newline after output.

 Working with bits

 In addition to the regular operators described earlier in this chapter, Java provides
 special operators for binary arithmetic. These are less commonly used than other operators,
 but are briefly discussed here to simply provide an awareness of their existence.

 The Java “bitwise” operators can be used with the int integer data type to manipulate the bits of the binary representation of a value.
 This requires an understanding of binary numbering, where eight bits in a byte represent
 decimal values zero to 255. For example,

 53 is binary 00110101

 (0 x 128, 0 x 64, 1 x 32, 1 x 16, 0 x 8, 1 x 4, 0 x 2, 1 x 1).

 Binary addition operations are performed like decimal arithmetic:

 	

 	
 53

 	
 =

 	
 00110101

 	
 +

 	
 7

 	
 =

 	
 00000111

 	

 	
 60

 	
 =

 	
 00111100

 The bitwise operators, listed below, allow more specialized operations to be performed
 in binary arithmetic.

 	
 Operator:

 	
 Operation:

 	
 Example:

 	
 Result:

 	
 &

 	
 AND

 	
 a & b

 	
 1 if both bits are 1

 	
 |

 	
 OR

 	
 a | b

 	
 1 if either bit is 1

 	
 ^

 	
 XOR

 	
 a ^ b

 	
 1 if both bits differ

 	
 ~

 	
 NOT

 	
 ~a

 	
 Inverts the bits

 	
 <<

 	
 Left shift

 	
 n << p

 	
 Moves n bits p left

 	
 >>

 	
 Right shift

 	
 n >> p

 	
 Moves n bits p right

 For example, using the bitwise & operator in binary arithmetic:

 	

 	
 53

 	
 =

 	
 00110101

 	
 &

 	
 7

 	
 =

 	
 00000111

 	

 	
 5

 	
 =

 	
 00000101

 [image: image]

 Don’t confuse the logical AND operator && with the bitwise & operator, or the logical OR operator || with the bitwise | operator.

 A common use of bitwise operators combines several values in a single variable for
 efficiency. For instance, a program with eight “flag” int variables, with values of 1 or 0 (representing on and off states), requires 32 bits
 of memory for each variable – 256 bits in total. These values only really require
 a single bit, however, so eight flags can be combined in a single byte variable – using one bit per flag. The status of each flag can be retrieved with
 bitwise operations:

 [image: image]Start a new program named “Bitwise” containing the standard main method

 class Bitwise

 {

 public static void main(String[] args) { }

 }

 [image: image]

 Bitwise.java

 [image: image]Between the curly brackets of the main method, insert this code to declare and initialize
 a byte variable with a value representing the total status of up to eight flags

 byte fs = 53 ; // Combined flag status of 00110101

 [image: image]Add these lines to retrieve the status of each flag

 System.out.println(“Flag 1: “+(((fs&1)>0) ? “ON” : “off”));

 System.out.println(“Flag 2: “+(((fs&2)>0) ? “ON” : “off”));

 System.out.println(“Flag 3: “+(((fs&4)>0) ? “ON” : “off”));

 System.out.println(“Flag 4: “+(((fs&8)>0) ? “ON” : “off”));

 System.out.println(“Flag 5: “+(((fs&16)>0)? “ON” : “off”));

 System.out.println(“Flag 6: “+(((fs&32)>0)? “ON” : “off”));

 System.out.println(“Flag 7: “+(((fs&64)>0)? “ON” : “off”));

 System.out.println(“Flag 8: “+(((fs&128)>0)?“ON”: “off”));

 [image: image]Save the program as Bitwise.java then compile and run the program:

 [image: image]

 [image: image]

 How it works –The binary representation of 53 is 00110101 so the set bits are... 1 + 4 + 16 + 32 = 53

 [image: image]

 Here, the bitwise & operation returns one or zero to determine each flag’s status.

 Summary

 •Arithmetical operators can form expressions with two operands for addition +, subtraction –, multiplication *, division /, or modulus %.

 •Increment ++ and decrement -- operators modify a single operand by a value of one.

 •The assignment = operator can be combined with an arithmetical operator to perform an arithmetical
 calculation then assign its result.

 •Comparison operators can form expressions comparing two operands for equality ==, inequality !=, greater >, or lesser < values.

 •The assignment = operator can be combined with the greater than > or lesser than < operator to also return true when equal.

 •Logical && and || operators form expressions evaluating two operands to return a Boolean value of either
 true or false.

 •The logical ! operator returns the inverse Boolean value of a single operand.

 •A conditional ? : operator evaluates a given Boolean expression and returns one of two operands, depending
 on its result.

 •Expressions evaluating a Boolean expression for a true value may optionally omit == true.

 •It is important to explicitly set operator precedence in complex expressions by adding
 parentheses ().

 •The backslash escape \ operator can be used to prefix quote characters within String values to prevent syntax errors.

 •Escape sequences \n newline and \t tab provide simple output formatting.

 •Bitwise operators can be useful to perform binary arithmetic in specialized situations.

 3

 Making statements

 This chapter demonstrates the various keywords that are used to create branching in
 Java programs.

 Branching with if

 Branching alternatives

 Switching branches

 Looping for

 Looping while true

 Doing do-while loops

 Breaking out of loops

 Returning control

 Summary

 Branching with if

 The if keyword performs a conditional test to evaluate an expression for a Boolean value.
 A statement following the expression will only be executed when the evaluation is
 true, otherwise the program proceeds on to subsequent code – pursuing the next “branch”.
 The if statement syntax looks like this:

 [image: image]

 if (test-expression) code-to-be-executed-when-true ;

 The code to be executed can contain multiple statements if they are enclosed within
 curly brackets to form a “statement block” :

 [image: image]Start a new program named “If” containing the standard main method

 class If

 {

 public static void main (String[] args) { }

 }

 [image: image]

 If.java

 [image: image]Between the curly brackets of the main method, insert this simple conditional test
 that executes a single statement when one number is greater than another

 if (5 > 1) System.out.println(“Five is greater than one.”) ;

 [image: image]Add a second conditional test, which executes an entire statement block when one number
 is less than another

 if (2 < 4)

 {

 System.out.println(“Two is less than four.”) ;

 System.out.println(“Test succeeded.”) ;

 }

 [image: image]Save the program as If.java then compile and run the program to see all statements get executed – because both
 tests evaluate as true in this case:

 [image: image]

 [image: image]

 Expressions can utilize the true and false keywords. The test expression (2 < 4) is shorthand for (2 < 4 == true).

 A conditional test can also evaluate a complex expression to test multiple conditions
 for a Boolean value. Parentheses enclose each test condition to establish precedence
 – so they get evaluated first. The Boolean && AND operator ensures the complex expression will only return true when both tested conditions are true:

 if ((test-condition1) && (test-condition2)) execute-this-code ;

 The Boolean || OR operator ensures a complex expression will only return true when either one of the tested conditions is true:

 if ((test-condition1) || (test-condition2)) execute-this-code ;

 A combination of these can form longer complex expressions:

 [image: image]Inside the main method of If.java insert this line to declare and initialize an integer variable named num int num = 8 ;

 [image: image]Add a third conditional test that executes a statement when the value of the num variable is within a specified range, or when it’s exactly equal to a specified value

 if (((num > 5) && (num < 10)) || (num == 12))

 System.out.println(“Number is 6-9 inclusive, or 12”) ;

 [image: image]Recompile the program, and run it once more to see the statement after the complex
 expression get executed

 [image: image]

 [image: image]Change the value assigned to the num variable so it is neither within the specified range 6-9, or exactly 12. Recompile
 the program, and run it again to now see the statement after the complex expression
 is not executed

 [image: image]

 The range can be extended to include the upper and lower limits using the >= and <= operators.

 [image: image]

 The complex expression uses the == equality operator to specify an exact match, not the = assignment operator.

 Branching alternatives

 The else keyword is used in conjunction with the if keyword to create if else statements that provide alternative branches for a program to pursue – according
 to the evaluation of a tested expression. In its simplest form, this merely nominates
 an alternative statement for execution when the test fails:

 if (test-expression)

 code-to-be-executed-when-true ;

 else

 code-to-be-executed-when-false ;

 Each alternative branch may be a single statement or a statement block of multiple
 statements – enclosed within curly brackets.

 More powerful if else statements can be constructed that evaluate a test expression for each alternative
 branch. These employ nested if statements after each else keyword to specify each further test. When the program discovers an expression that
 evaluates as true, it executes the statements associated with just that test then exits the if else statement without exploring any further branches:

 [image: image]Start a new program named “Else” containing the standard main method

 class Else

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Else.java

 [image: image]Inside the main method, insert this line to declare and initialize an integer variable
 named hrs

 int hrs = 11 ;

 [image: image]Insert this simple conditional test, which executes a single statement when the value
 of the hrs variable is below 13

 if (hrs < 13)

 {

 System.out.println(“Good morning: ” + hrs) ;

 }

 [image: image]Save the program as Else.java then compile and run the program to see the statement get executed

 [image: image]

 Notice that the first statement is terminated with a semicolon, as usual, before the
 else keyword.

 [image: image]

 [image: image]Change the value assigned to the hrs variable to 15, then add this alternative branch right after the if statement

 else if (hrs < 18)

 {

 System.out.println(“Good afternoon: ” + hrs) ;

 }

 [image: image]Save the changes, recompile, and run the program again to see just the alternative
 statement get executed

 [image: image]

 It is sometimes desirable to provide a final else branch, without a nested if statement, to specify a “default” statement to be executed when no tested expression
 evaluates as true:

 [image: image]Change the value assigned to the hrs variable to 21, then add this default branch to the end of the if else statement

 else System.out.println(“Good evening: ” + hrs) ;

 [image: image]Save the changes, recompile, and run the program once more to see just the default
 statement get executed

 [image: image]

 [image: image]

 Conditional branching is the fundamental process by which computer programs proceed.

 Switching branches

 Lengthy if else statements, which offer many conditional branches for a program to pursue, can become
 unwieldy. Where the test expressions repeatedly evaluate the same variable value,
 a more elegant solution is often provided by a switch statement.

 The syntax of a typical switch statement block looks like this:

 switch (test-variable)

 {

 case value1 : code-to-be-executed-when-true ; break ;

 case value2 : code-to-be-executed-when-true ; break ;

 case value3 : code-to-be-executed-when-true ; break ;

 default : code-to-be-executed-when-false ;

 }

 The switch statement works in an unusual way. It takes a specified variable then seeks to match
 its assigned value from among a number of case options. Statements associated with the option whose value matches are then executed.

 Optionally, a switch statement can include a final option using the default keyword to specify statements to execute when no case options match the value assigned
 to the specified variable.

 Each option begins with the case keyword and a value to match. This is followed by a : colon character and the statements, if any, to be executed when the match is made.

 It is important to recognize that the statement, or statement block, associated with
 each case option must be terminated by the break keyword. Otherwise, the program will continue to execute the statements of other
 case options after the matched option. Sometimes, this is desirable to specify a number
 of case options that should each execute the same statements if matched. For example, one
 statement for each block of three options like this:

 switch (test-variable)

 {

 case value1 : case value2 : case value3 :

 code-A-to-be-executed-when-true ; break ;

 case value4 : case value5 : case value6 :

 code-B-to-be-executed-when-true ; break ;

 }

 [image: image]

 Missing break keywords are not syntax errors – ensure that all intended breaks are
 present in switch blocks to avoid unexpected results.

 [image: image]Start a new program named “Switch” containing the standard main method

 class Switch

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Switch.java

 [image: image]Inside the main method, declare and initialize three integer variables

 int month = 2, year = 2018, num = 31 ;

 [image: image]Add a switch statement block to test the value assigned to the month variable

 switch (month)

 {

 }

 [image: image]Inside the switch block, insert case options assigning a new value to the num variable for months 4, 6, 9 and 11

 case 4 : case 6 : case 9 : case 11 : num = 30 ; break ;

 [image: image]Insert a case option assigning a new value to the num variable for month 2, according to the year value

 case 2 : num = (year % 4 == 0) ? 29 : 28 ; break ;

 [image: image]After the switch block, at the end of the main method, add this line to output all
 three integer values

 System.out.println(month+“/”+year+“: “+num+“days”) ;

 [image: image]Save the program as Switch.java then compile and run the program to see the output

 [image: image]

 [image: image]

 Notice how all three integer variables are declared and initialized inline here using
 convenient shorthand.

 [image: image]

 The conditional operator is used to good effect in step 5. You can check back to here
 to be reminded how it works.

 Looping for

 A loop is a block of code that repeatedly executes the statements it contains until
 a tested condition is met – then the loop ends and the program proceeds on to its
 next task.

 [image: image]

 The most frequently-used loop structure in Java programming employs the for keyword and has this syntax:

 for (initializer ; test-expression ; updater)

 {

 statements-to-be-executed-on-each-iteration ;

 }

 The parentheses after the for keyword must contain three controls that establish the performance of the loop:

 •Initializer – assigns an initial value to a counter variable, which will keep count
 of the number of iterations made by this loop. The variable for this purpose may be
 declared here, and it is traditionally a “trivial” integer variable named i.

 •Test expression – evaluated at the start of each iteration of the loop for a Boolean
 true value. When the evaluation returns true the iteration proceeds but when it returns false the loop is immediately terminated, without completing that iteration.

 •Updater – changes the current value of the counter variable, started by the initializer,
 keeping the running total of the number of iterations made by this loop. Typically,
 this will use i++ for counting up, or i-- for counting down.

 The code executed on each iteration of the loop can be a single statement, a statement
 block, or even another “nested” loop.

 Every loop must, at some point, enable the test expression to return false – otherwise, an infinite loop is created that will relentlessly execute its statements.
 Commonly, the test expression will evaluate the current value of the counter variable
 to perform a specified number of iterations. For example, with a counter i initialized at one and incremented by one on each iteration, a test expression of
 i < 11 becomes false after 10 iterations – so that loop will execute its statements 10 times
 before the loop ends.

 [image: image]

 The updater is often referred to as the “incrementer” as it more often increments,
 rather than decrements, the counter variable

 [image: image]Start a new program named “For” containing the standard main method

 class For

 {

 public static void main (String[] args) { }

 }

 [image: image]

 For.java

 [image: image]Inside the main method, declare and initialize an integer variable to count the total
 overall number of iterations

 int num = 0 ;

 [image: image]Add a for loop to perform three iterations and display the current value of its counter variable
 i on each iteration

 for (int i = 1 ; i < 4 ; i++)

 {

 System.out.println(“Outer Loop i=” + i) ;

 }

 [image: image]Inside the for loop block insert a nested for loop to also perform three iterations, displaying the current value of its counter
 variable j and total overall number of iterations

 for (int j = 1 ; j < 4 ; j++)

 {

 System.out.print(“\tInner Loop j=” + j) ;

 System.out.println(“\t\tTotal num=”+ (++num)) ;

 }

 [image: image]Save the program as For.java then compile and run the program to see the output

 [image: image]

 [image: image]

 The increment ++ and decrement -- operators can prefix a variable, to change its value immediately, or postfix the
 variable – so its value becomes changed when next referenced. Try changing the increment
 operators in this example to ++i and ++j to see the difference.

 Looping while true

 An alternative loop structure to that of the for loop, described here
 , employs the while keyword and has this syntax:

 while (test-expression)

 {

 statements-to-be-executed-on-each-iteration ;

 }

 Like the for loop, a while loop repeatedly executes the statements it contains until a tested condition is met
 – then the loop ends and the program proceeds on to its next task.

 Unlike the for loop, the parentheses after the while keyword do not contain an initializer or updater for an iteration counter variable.
 This means that the test expression must evaluate some value that gets changed in
 the loop statements as the loop proceeds – otherwise, an infinite loop is created
 that will relentlessly execute its statements.

 The test expression is evaluated at the start of each iteration of the loop for a
 Boolean true value. When the evaluation returns true the iteration proceeds but when it returns false the loop is immediately terminated, without completing that iteration.

 Note that if the test expression returns false when it is first evaluated, the loop statements are never executed.

 A while loop can be made to resemble the structure of a for loop, to evaluate a counter variable in its test expression, by creating a counter
 variable outside the loop and changing its value within the statements it executes
 on each iteration. For example, the outer for loop in the previous example can be recreated as a while loop, like this:

 int i = 1 ;

 while (i < 4)

 {

 System.out.println(“Outer Loop i=” +i) ;

 i++ ;

 }

 This positions the counter initializer externally, before the while loop structure,
 and its updater within the statement block.

 [image: image]

 An infinite loop will lock the program as it continues to perform iterations – on
 Windows, press Ctrl + C to halt.

 [image: image]Start a new program named “While” containing the standard main method

 class While

 {

 public static void main (String[] args) { }

 }

 [image: image]

 While.java

 [image: image]Inside the main method, declare and initialize an integer variable named num

 int num = 100 ;

 [image: image]Add a while loop to display the num variable’s current value while it remains above zero

 while (num > 0)

 {

 System.out.println(“While Countdown: ” + num) ;

 }

 [image: image]Insert an updater at the end of the while loop block to decrease the num variable’s value by 10 on each iteration – thereby avoiding an infinite loop

 num -= 10 ;

 [image: image]Save the program as While.java then compile and run the program to see the output

 [image: image]

 [image: image]

 The assignment in this updater is shorthand for num = (num - 10).

 Doing do-while loops

 A variation of the while loop structure, described here
 , employs the do keyword to create a loop with this syntax:

 do

 {

 statements-to-be-executed-on-each-iteration ;

 }

 while (test-expression) ;

 Like the for loop and while loop, a do while loop repeatedly executes the statements it contains until a tested condition is met
 – then the loop ends and the program proceeds to its next task.

 Unlike the for loop and while loop, the do while test expression appears after the block containing the statements to be executed.
 The test expression is evaluated at the end of each iteration of the loop for a Boolean
 true value. When the evaluation returns true the next iteration proceeds but when it returns false the loop is immediately terminated. This means that the statements in a do while loop are always executed at least once.

 Note that if the test expression returns false when it is first evaluated, the loop statements have already been executed once.

 A do while loop can be made to resemble the structure of a for loop, to evaluate a counter variable in its test expression, by positioning the counter
 initializer outside the loop structure and its updater within the statement block
 – just as with a while loop.

 All for, while, or do while loop structures containing just one statement to execute may, optionally, omit the
 curly brackets around the statement. But, if omitted, you will need to add curly brackets
 if additional statements are added to the loop later.

 The choice of for, while, or do while loop is largely a matter of personal coding preference and purpose. A for loop structure conveniently locates the counter initializer, test expression, and
 updater in the parentheses after the for keyword. A while loop structure can be more concise – but you must remember to include an updater
 in the loop’s statements to avoid an infinite loop. A do while loop simply adds the benefit of executing its statements once before evaluating its
 test expression – demonstrated by the do while loop described opposite.

 [image: image]

 Always enclose the statements to be executed by a loop within curly brackets – for
 clarity and improved code maintainability.

 [image: image]Start a new program named “DoWhile” containing the standard main method

 class DoWhile

 {

 public static void main (String[] args) { }

 }

 [image: image]

 DoWhile.java

 [image: image]Inside the main method, declare and initialize an integer variable named num

 int num = 100 ;

 [image: image]Add a do while loop to display the num variable’s current value while it is below 10

 do

 {

 System.out.println(“DoWhile Countup: ” + num) ;

 }

 while (num < 10) ;

 [image: image]Insert an updater at the end of the do while loop block to change the num variable’s value on each iteration – thereby avoiding an infinite loop

 num += 10 ;

 [image: image]Save the program as DoWhile.java then compile and run the program – see that the num variable never meets the test condition, but the statement executes once anyway

 [image: image]

 [image: image]

 The assignment in this updater is shorthand for num = (num + 10).

 Breaking out of loops

 The break keyword can be used to prematurely terminate a loop when a specified condition is
 met. The break statement is situated inside the loop statement block, and is preceded by a test
 expression. When the test returns true, the loop ends immediately and the program proceeds on to its next task. For example,
 in a nested loop it proceeds to the next iteration of its outer loop.

 [image: image]Start a new program named “Break” containing the standard main method

 class Break

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Break.java

 [image: image]Inside the main method, create two nested for loops that display their counter values on each of three iterations

 for (int i = 1 ; i < 4 ; i++)

 {

 for (int j = 1 ; j < 4 ; j++)

 {

 System.out.println(“Running i=”+i+“ j=”+j) ;

 }

 }

 [image: image]Save the program as Break.java then compile and run the program to see the output

 [image: image]

 This program makes three iterations of the outer loop, which executes the inner loop
 on each iteration. A break statement can be added to stop the second execution of the inner loop.

 [image: image]Add this break statement to the beginning of the inner loop statement block, to break out of the
 inner loop – then recompile and re-run the program

 if (i == 2 && j == 1)

 {

 System.out.println(“Breaks innerLoop when i=” +i+ “ j=” +j) ;

 break ;

 }

 [image: image]

 [image: image]

 Here, the break statement halts all three iterations of the inner loop when the outer loop tries
 to run it the second time.

 The continue keyword can be used to skip a single iteration of a loop when a specified condition
 is met. The continue statement is situated inside the loop statement block and is preceded by a test expression.
 When the test returns true, that iteration ends.

 [image: image]Add this continue statement to the beginning of the inner loop statement block, to skip the first iteration
 of the inner loop – then recompile and re-run the program

 if (i == 1 && j == 1)

 {

 System.out.println(“Continues innerLoop when i=” +i+ “ j=” +j) ;

 continue;

 }

 [image: image]

 [image: image]

 Here, the continue statement skips just the first iteration of the inner loop when the outer loop tries
 to run it for the first time.

 Returning control

 The default behavior of the break and continue keywords can be changed to explicitly specify that control should return to a labeled
 outer loop by stating its label name.

 [image: image]Start a new program named “Label” containing the standard main method

 class Label

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Label.java

 [image: image]Inside the main method, create two nested for loops that display their counter values on each of three iterations

 for (int i = 1 ; i < 4 ; i++)

 {

 for (int j = 1 ; j < 4 ; j++)

 {

 System.out.println(“Running i=”+i+ “ j=”+j) ;

 }

 }

 [image: image]Save the program as Label.java then compile and run the program to see the output

 [image: image]

 The syntax to label a loop requires a label name, followed by a : colon character, to precede the start of the loop structure

 [image: image]Edit the start of the outer loop to label it “outerLoop”

 outerLoop : for (int i = 1 ; i < 4 ; i++)

 To explicitly specify that the program should proceed in the outer loop, state that
 loop’s label name after the continue keyword

 [image: image]Add this continue statement to the beginning of the inner loop statement block, to proceed at the next
 iteration of the outer loop – then recompile and re-run the program

 if (i == 1 && j == 1)

 {

 System.out.println(“Continues outerLoop when i=” +i+ “ j=” +j) ;

 continue outerLoop ;

 }

 [image: image]

 [image: image]

 Here the continue statement halts all three iterations of the inner loop‘s first run – by returning
 control to the outer loop.

 To explicitly specify that the program should exit from the outer loop, state that
 loop’s label name after the break keyword

 [image: image]Add this break statement to the beginning of the inner loop statement block, to exit the outer loop
 – then recompile and re-run the program

 if (i == 2 && j == 3)

 {

 System.out.println(“Breaks outerLoop when i=” +i+ “ j=” +j) ;

 break outerLoop ;

 }

 [image: image]

 [image: image]

 Here the break statement halts all further iterations of the entire loop structure – by exiting
 from the outer loop.

 Summary

 •The if keyword performs a conditional test to evaluate an expression for a Boolean value
 of true or false.

 •An if statement block can contain one or more statements, which are only executed when
 the test expression returns true.

 •The else keyword specifies alternative statements to execute when the test performed by the
 if keyword returns false.

 •Combined if else statements enable a program to proceed by the process of conditional branching.

 •A switch statement can often provide an elegant solution to unwieldy if else statements by offering case options.

 •Each case option can be terminated by the break keyword so only statements associated with that option will be executed.

 •The default keyword can specify statements to be executed when all case options return false.

 •A loop repeatedly executes the statements it contains until a tested expression returns
 false.

 •The parentheses that follow the for keyword specify the loop’s counter initializer, test expression, and counter updater.

 •Statements in a while loop and a do while loop must change a value used in their test expression to avoid an infinite loop.

 •The test expression is evaluated at the start of for loops and while loops – before the first iteration of the loop.

 •The test expression is evaluated at the end of do while loops – after the first iteration of the loop.

 •A loop iteration can be skipped using the continue keyword.

 •A loop can be terminated using the break keyword.

 •Nested inner loops can use labels with the break and continue keywords to reference the outer loop.

 4

 Directing values

 This chapter demonstrates how to direct data values using various Java programming
 constructs.

 Casting type values

 Creating variable arrays

 Passing an argument

 Passing multiple arguments

 Looping through elements

 Changing element values

 Adding array dimensions

 Catching exceptions

 Summary

 Casting type values

 Handling values in Java programming requires correct data typing to be closely observed
 to avoid compiler errors. For example, sending a float type value to a method that requires an int type value will produce a compiler error. This means it is often necessary to convert
 a value to another data type before it can be processed.

 Numeric values can be easily “cast” (converted) into another numeric data type using
 this syntax:

 (data-type) value

 Some loss of precision will occur when casting float floating point values into an int data type, as the number will be truncated at the decimal point. For example, casting
 a float value of 9.9 into an int variable produces an integer value of nine.

 Interestingly, character values of the char data type can automatically be used as int values because they each have a unique integer representation. This is their numeric
 code value in the ASCII character set, which is supported by Java. The uppercase letter
 A, for instance, has the code value of 65.

 Numeric values can be converted to the String data type using the toString() method of that value’s data type class. This takes the numeric value as its argument,
 within the parentheses. For example, convert an int num variable to a String with Integer.toString(num). Similarly, convert a float num variable to a String with Float.toString(num). In practice, this technique is not always required because Java automatically converts
 concatenated variables to a String if any one of the variables has a String value.

 More frequently, you will want to convert a String value to a numeric data type so the program can use that value arithmetically. A
 String value can be converted to an int value using the Integer.parseInt() method. This takes the String value as its argument, within the parentheses. For example, convert a String msg variable to an int with Integer.parseInt(msg). Similarly, convert a String msg variable to a float with Float.parseFloat(msg). When converting a String value to a numeric data type, the String may only contain a valid numeric value, or the compiler will report an error.

 [image: image]

 All numeric classes have a parse... method and a toString method allowing conversion between String values and numeric data types.

 [image: image]Start a new program named “Convert” containing the standard main method

 class Convert

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Convert.java

 [image: image]Inside the main method, declare and initialize a float variable and a String variable

 float daysFloat = 365.25f ;

 String weeksString = “52” ;

 [image: image]Cast the float value into an int variable

 int daysInt = (int) daysFloat ;

 [image: image]Convert the String value into an int variable

 int weeksInt = Integer.parseInt(weeksString) ;

 [image: image]Perform arithmetic on the converted values and display the result

 int week = (daysInt / weeksInt) ;

 System.out.println(“Days per week: “ + week) ;

 [image: image]Save the program as Convert.java then compile and run the program to see the output

 [image: image]

 Creating variable arrays

 An array is simply a variable that can contain multiple values – unlike a regular
 variable that can only contain a single value.

 The declaration of an array first states its data type, using one of the data type
 keywords, followed by square brackets [] to denote that it will be an array variable.
 Next, the declaration states the array variable name, adhering to the normal naming
 conventions.

 [image: image]

 An array can be initialized in its declaration by assigning values of the appropriate
 data type as a comma-delimited list, enclosed within curly brackets. For example,
 the declaration of an integer array variable initialized with three values might look
 like this:

 int[] numbersArray = { 1, 2, 3 } ;

 The array is created of the length of the assigned list, allowing one “element” per
 value – in this case, an array of three elements.

 Stored values are indexed starting at zero, and each value can be addressed by its
 element index position. The syntax to do so requires the array name to be followed
 by square brackets containing the element index. For instance, numbersArray[0] would address the first value stored in the example above (1).

 Although the values stored in each element can be changed as simply as those of regular
 variables, the size of an array is determined by its declaration and cannot be changed
 later. Usefully, the total number of elements in an array is stored as an integer
 in the length property of that array. The syntax to address this figure just tacks a period and
 “length” onto the array name. For example, numbersArray.length would return the size of the array in the example above – in this case, the integer
 3.

 Arrays can also be declared without assigning a list of initial values by using the
 new keyword to create an empty array “object” of a specified size. The number of required
 empty elements is stated in the assignment within square brackets after the appropriate
 data type. For example, the declaration of an empty integer array variable with three
 elements might look like this:

 int[] numbersArray = new int[3] ;

 The elements are assigned default values of zero for int and float data types, null for String data types, \0 for char data types, and false for boolean data types.

 [image: image]

 Remember that array indexing starts at zero. This means that index[2] addresses the third element in the array, not its second element.

 [image: image]Start a new program named “Array” containing the standard main method

 class Array

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Array.java

 [image: image]Inside the main method, declare and initialize a String array with three elements

 String[] str = { “Much ”, “More”, “ Java” } ;

 [image: image]Declare an empty integer array with three elements

 int[] num = new int[3] ;

 [image: image]Assign values to the first two integer array elements

 num[0] = 100 ;

 num[1] = 200 ;

 [image: image]Assign a new value to the second String array element

 str[1] = “Better” ;

 [image: image]Output the length of each array and the content of all elements in each array

 System.out.println(“String array length is “ + str.length) ;

 System.out.println(“Integer array length is “+ num.length) ;

 System.out.println(num[0] + ”,” +num[1]+ ”,”+num[2]) ;

 System.out.println(str[0] + str[1] + str[2]) ;

 [image: image]Save the program as Array.java then compile and run the program to see the output

 [image: image]

 [image: image]

 String values need to be enclosed within quotes.

 Passing an argument

 The standard Java code that declares the program’s main method includes an argument within its parentheses that creates a String array, traditionally named “args”:

 public static void main(String[] args) { }

 The purpose of the args[] array is to allow values to be passed to the program when it is called upon to run.
 At the command line, a value to be passed to the program is added after a single space
 following the program name. For example, the command to pass the String “Java” to a program named “Run” would be Run Java.

 A single value passed to a program is automatically placed into the first element
 of the args[] array, so it can be addressed by the program as args[0].

 It is important to recognize that the args[] array is of the String data type – so a numeric value passed to a program will be stored as a String representation of that number. This means that the program cannot use that value
 arithmetically until it has been converted to a numerical data type, such as an int value. For example, Run 4 passes the number four to the program, which stores it as the String “4”, not as the int 4. Consequently, output of args[0]+3 produces the concatenated String “43”, not the sum 7. The argument can be converted with the Integer.parseInt() method so that Integer.parseInt(args[0])+3 does produce the sum 7.

 A String containing spaces can be passed to a program as a single String value by enclosing the entire String within double quotes on the command line. For example, Run “Java In Easy Steps”.

 Passing an argument to a program is most useful to determine how the program should
 run by indicating an execution option. The option is passed to the program as a String value in args[0] and can be evaluated using the String.equals() method. The syntax for this just tacks a period and “equals()” onto the array name,
 with a comparison String within the parentheses. For example, args[0].equals(“b”) evaluates the argument for the String value “b”.

 [image: image]Start a new program named “Option” containing the standard main method

 class Option

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Option.java

 [image: image]Inside the main method, write an if statement to seek an argument of “-en”

 if (args[0].equals(“-en”))

 {

 System.out.println(“English option”) ;

 }

 [image: image]Add an else alternative onto the if statement to seek an argument of “-es”

 else if (args[0].equals(“-es”))

 {

 System.out.println(“Spanish option”) ;

 }

 [image: image]Add another else alternative onto the if statement to provide a default response

 else System.out.println(“Unrecognized option”) ;

 [image: image]Save the program as Option.java then compile and run the program to see the output

 [image: image]

 [image: image]

 This example will throw an ArrayIndexOutOfBounds exception if you attempt to execute the program without any argument. See here
 for details on how to catch exceptions.

 Passing multiple arguments

 Multiple arguments can be passed to a program at the command line, following the program
 name and a space. The arguments must be separated by at least one space and their
 values are placed, in order, into the elements of the args[] array. Each value can then be addressed by its index number as with any other array
 – args[0] for the first argument, args[1] for the second argument, and so on.

 The program can test the length property of the args[] array to ensure the user has entered the appropriate number of arguments. When the
 test fails, the return keyword can be used to exit the main method, thereby exiting the program:

 [image: image]Start a new program named “Args” containing the standard main method

 class Args

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Args.java

 [image: image]Inside the main method, write an if statement to output advice and exit the program when there are not the required number
 of arguments – in this case, three

 if (args.length != 3)

 {

 System.out.println(“Wrong number of arguments”) ; return ;

 }

 [image: image]Below the if statement, create two int variables – initialized with the values of the first argument and third argument
 respectively

 int num1 = Integer.parseInt(args[0]) ;

 int num2 = Integer.parseInt(args[2]) ;

 [image: image]Add a String variable, initialized with a concatenation of all three arguments

 String msg = args[0] + args[1] + args[2] + “=” ;

 [image: image]

 The return keyword exits the current method. It can also return a value to the point where the
 method was called. See here
 for more details.

 [image: image]Add this if else statement to perform arithmetic on the arguments and append the result to the String variable

 if (args[1].equals(“+”)) msg += (num1 + num2);

 else if (args[1].equals(“-”)) msg += (num1 - num2) ;

 else if (args[1].equals(“x”)) msg += (num1 * num2) ;

 else if (args[1].equals(“/”)) msg += (num1 / num2) ;

 else msg = “Incorrect operator” ;

 [image: image]Insert this line at the end of the main method to display the appended String

 System.out.println(msg) ;

 [image: image]Save the program as Args.java then compile and run the program with three arguments – an integer, any arithmetical
 symbol + - x /, and another integer

 [image: image]

 [image: image]Now, run the program with an incorrect second argument and with the wrong number of
 arguments

 [image: image]

 [image: image]

 This program will report an error if non-numeric values are entered. See here
 for details on how to catch errors.

 Looping through elements

 All types of loop can be used to easily read all the values stored inside the elements
 of an array. The loop counter should start with the index number of the first element
 then proceed on up to the final index number. The index number of the last element
 in an array will always be one less than the array length – because the index starts
 at zero.

 [image: image]

 It is useful to set the array length property as the loop’s conditional test determining when the loop should end. This
 means that the loop will continue until the counter value exceeds the index number
 of the array’s final element.

 [image: image]Start a new program named “Loops” containing the standard main method

 class Loops

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Loops.java

 [image: image]Inside the main method, write an if statement to test whether any argument values have been entered into the args[] array from the command line

 if (args.length > 0) { }

 [image: image]Insert a for loop inside the curly brackets of the if statement to output the value stored in each element

 for (int i = 0 ; i < args.length ; i++)

 {

 System.out.println(“args[“ +i+ “] is | “+ args[i]) ;

 }

 [image: image]Save the program as Loops.java then compile the program and run it with the arguments Java in easy steps

 [image: image]

 [image: image]Edit Loops.java to add a String array and a while loop to output the value stored in each element

 String[] htm = { “HTML5”, “in”, “easy”, “steps” } ;

 int j = 0 ;

 while (j < htm.length)

 {

 System.out.println(“htm[“ +j+ “] is | “ + htm[j]) ;

 j++ ;

 }

 [image: image]Save the changes, then recompile and re-run the program

 [image: image]

 [image: image]Edit Loops.java to add another String array and a do while loop to output the value stored in each element

 String[] xml = { “XML”, “in”, “easy”, “steps” } ;

 int k = 0 ;

 if (xml.length > 0) do

 {

 System.out.println(“\t\txml[“+k+“] is | “+xml[k]) ;

 k++ ;

 } while (k < xml.length) ;

 [image: image]Save the changes, then recompile and re-run the program

 [image: image]

 [image: image]

 Notice that the do statement is preceded by a conditional test to ensure the array is not empty before
 attempting to output the value of the first element.

 Changing element values

 The value stored in an array element can be changed by assigning a new value to that
 particular element using its index number. Additionally, any type of loop can be used
 to efficiently populate all the elements in an array from values stored in other arrays.
 This is especially useful to combine data from multiple arrays into a single array
 of totaled data.

 [image: image]Start a new program named “Elements” containing the standard main method

 class Elements

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Elements.java

 [image: image]In the main method, add initialized int arrays representing monthly kiosk sales from all four quarters of a year

 int[] kiosk_q1 = { 42000 , 48000 , 50000 } ;

 int[] kiosk_q2 = { 52000 , 58000 , 60000 } ;

 int[] kiosk_q3 = { 46000 , 49000 , 58000 } ;

 int[] kiosk_q4 = { 50000 , 51000 , 61000 } ;

 [image: image]Add initialized int arrays representing monthly outlet sales from all four quarters of a year

 int[] outlet_q1 = { 57000 , 63000 , 60000 } ;

 int[] outlet_q2 = { 70000 , 67000 , 73000 } ;

 int[] outlet_q3 = { 67000 , 65000 , 62000 } ;

 int[] outlet_q4 = { 72000 , 69000 , 75000 } ;

 [image: image]Now, create an empty int array of 12 elements in which to combine all the monthly sales figures and an int variable in which to record their grand total value

 int[] sum = new int[12] ;

 int total = 0 ;

 [image: image]Add a for loop to populate each element of the empty array with combined values from the other
 arrays

 for (int i = 0 ; i < kiosk_q1.length ; i++)

 {

 sum[i] = kiosk_q1[i] + outlet_q1[i] ;

 sum[i+3] = kiosk_q2[i] + outlet_q2[i] ;

 sum[i+6] = kiosk_q3[i] + outlet_q3[i] ;

 sum[i+9] = kiosk_q4[i] + outlet_q4[i] ;

 }

 [image: image]Next, add a second for loop to output each of the combined monthly sales totals, and to calculate their
 grand total

 for (int i = 0 ; i < sum.length ; i++)

 {

 System.out.println(“Month “+ (i+1) + ” sales:\t” + sum[i]) ;

 total += sum[i] ;

 }

 [image: image]Insert a final statement at the end of the main method to output the grand total

 System.out.println(“TOTAL YEAR SALES\t” + total) ;

 [image: image]Save the program as Elements.java then compile the program and run it to see the output

 [image: image]

 [image: image]

 The counter number gets increased by one to produce the month numbers 1-12.

 Adding array dimensions

 Arrays can be created to store multiple sets of element values, each having their
 own index dimension. Individual values are addressed in a multi-dimensional array
 using the appropriate index numbers of each dimension. For example, num [1] [3].

 A two-dimensional array might be used to record an integer value for each day of a
 business year, organized by week. This requires an array of 52 elements (one per week)
 that each have an array of seven elements (one per day). Its declaration looks like
 this:

 int[][] dailyRecord = new int [52] [7] ;

 [image: image]

 Avoid using more than three dimensions in arrays – it will be confusing.

 This “array of arrays” provides an element for each business day. Values are assigned
 to a multi-dimensional array by stating the appropriate index numbers of each dimension.
 With the example above, for instance, a value can be assigned to the first day of
 the sixth week like this:

 dailyRecord [5] [0] = 5000 ;

 Each array has its own length property that can be accessed by specifying the dimension required. For the example
 above, the syntax dailyRecord.length returns a value 52 – the size of the first dimension. To access the size of the second
 dimension, the syntax dailyRecord[0].length returns the value of seven.

 [image: image]

 Two-dimensional arrays are often used to store grid coordinates, where one dimension
 represents the X axis and the other dimension represents the Y axis. For example,
 point[3][5].

 Three-dimensional arrays can be used to store XYZ coordinates in a similar way, but
 it can be difficult to visualize point[4][8][2].

 Nested loops are perfectly suited to multi-dimensional arrays, as each loop level
 can address the elements of each array dimension.

 [image: image]Start a new program named “Dimensions” containing the standard main method

 class Dimensions

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Dimensions.java

 [image: image]In the main method, create a two-dimensional array to store Boolean flats relating
 to XY coordinates

 boolean[][] points = new boolean[5][20] ;

 [image: image]Define one Y point on each X axis

 points[0][5] = true ;

 points[1][6] = true ;

 points[2][7] = true ;

 points[3][8] = true ;

 points[4][9] = true ;

 [image: image]Add a for loop to iterate through the first array index, adding a newline character at the
 end of each iteration

 for (int i = 0 ; i < points.length ; i++)

 {

 System.out.print(“\n”) ;

 }

 [image: image]Within the curly brackets of the for loop, insert a second for loop to iterate through the second array index

 for (int j = 0 ; j < points[0].length ; j++) { }

 [image: image]Within the curly brackets of the second for loop, insert a statement to output a character for each element according to that
 element’s Boolean value

 char mark = (points[i][j]) ? ‘X’ : ‘-’ ;

 System.out.print(mark) ;

 [image: image]Save the program as Dimensions.java then compile and run the program to see the output

 [image: image]

 [image: image]

 Boolean variables are false by default.

 Catching exceptions

 A program may encounter a runtime problem that causes an “exception” error, which
 halts its execution. Often, this will be created by unexpected user input. A well-written
 program should, therefore, attempt to anticipate all possible ways the user might
 cause exceptions at runtime.

 Code where exceptions might arise can be identified and enclosed within a try catch statement block. This allows the program to handle exceptions without halting execution
 and looks like this:

 try

 {

 statements where an exception may arise

 }

 catch(Exception e)

 {

 statements responding to an exception

 }

 The parentheses following the catch keyword specify the class of exception to be caught and assign it to the variable
 “e”. The top-level Exception class catches all exceptions. Responses can be provided for specific exceptions,
 however, using multiple catch statements to identify different lower-level exception classes.

 The most common exceptions are the NumberFormatException, which arises when the program encounters a value that is not of the expected numeric
 type, and the ArrayIndexOutOfBoundsException, which arises when the program attempts to address an array element number that is
 outside the index size. It is helpful to create a separate response for each of these
 exceptions to readily notify the user about the nature of the problem.

 Optionally, a try catch statement block can be extended with a finally statement block, containing code that will always be executed – irrespective of whether
 the program has encountered exceptions.

 [image: image]

 The e.getMessage() method returns further information about some captured exceptions.

 [image: image]Start a new program named “Exceptions” containing the standard main method

 class Exceptions

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Exceptions.java

 [image: image]Inside the main method, write a try statement to output a single integer argument

 try

 {

 int num = Integer.parseInt(args[0]) ;

 System.out.println(“You entered: “+ num) ;

 }

 [image: image]Add a catch statement to handle the exception that arises when the program is run without an
 argument

 catch(ArrayIndexOutOfBoundsException e)

 { System.out.println(“Integer argument required.”) ; }

 [image: image]Add a catch statement to handle the exception that arises when the program is run with a non-integer
 argument

 catch(NumberFormatException e)

 { System.out.println(“Argument is wrong format.”) ; }

 [image: image]Add a finally statement at the end of the program

 finally { System.out.println(“Program ends.”) ; }

 [image: image]Save the program as Exceptions.java then compile and run the program, trying to cause exceptions

 [image: image]

 Summary

 •Numeric values can be converted to other numeric data types by casting, and to the
 String type using the toString() method.

 •A String value can be converted to an int value using the Integer.parseInt() method, and to a float using Float. parseFloat().

 •An array is a variable that can contain multiple values, initialized as a list within
 curly brackets in its declaration.

 •An empty array object can be created using the new keyword.

 •The length property of an array stores an integer, which is the number of elements in that array.

 •Each element of an array can be addressed by its index number.

 •A program’s main method creates a String array, traditionally named “args”, to store command line arguments.

 •The first command line argument gets automatically stored in the args[0] element – as a String data type.

 •Multiple arguments being passed to a program from the command line must each be separated
 by a space.

 •Loops are an ideal way to read all the values stored within array elements.

 •Data from multiple arrays can be combined to form a new array of totaled data in each
 element.

 •Multi-dimensional arrays can store multiple sets of element values, each having their
 own index dimension.

 •A try catch statement block is used to anticipate and handle runtime exceptions that may arise.

 •The Exception class catches all exception errors, including NumberFormatException and ArrayIndexOutOfBoundsException.

 •A try catch statement can be extended with a finally statement block, containing code that will always be executed.

 5

 Manipulating data

 This chapter demonstrates how to manipulate program data using various Java library
 methods.

 Exploring Java classes

 Doing mathematics

 Rounding numbers

 Generating random numbers

 Managing strings

 Comparing strings

 Searching strings

 Manipulating characters

 Summary

 Exploring Java classes

 Java has a vast library of pre-tested code packages, which are arranged in modules.
 Those providing functionality that is fundamental to the Java language itself are
 contained in the java.lang package, within the java.base module. These are automatically accessible to the Java API (Application Programming
 Interface). This means that the properties and methods provided by the java.lang package are readily available when creating programs. For example, the mathematic
 functionality provided by the abs() method of the Math class, which is part of the java.lang package, in the java.base module.

 [image: image]

 Modules are a new feature introduced in Java 9 to improve scalability and increase
 performance.

 Package contents are arranged in hierarchical order, allowing any item to be addressed
 using dot notation. For example, the System class contains an out property (field), which in turn contains a println() method – so can be addressed as System.out.println().

 The Java documentation provides information about every item available, and can be
 used to explore the Java classes. It is available online at docs.oracle.com/javase/9/docs/api or can be downloaded for offline reference. The documentation is understandably large,
 but familiarity with it is valuable. A good starting point is the API Overview page
 containing a list of every module in each of three sections, together with a brief
 description of each module:

 [image: image]Start a web browser and open the API Overview page at docs.oracle.com/javase/9/docs/api

 [image: image]See the Modules listed alphabetically in each section – scroll down the page to the “Java SE” section
 and find the java.base module, then click its hyperlink

 [image: image]

 [image: image]

 You can click on the Frames link to see a multi-pane view of the documentation.

 [image: image]See the module’s Packages listed alphabetically in each section – scroll down the page to the “Exports” section
 and find the java.lang package, then click its hyperlink

 [image: image]

 [image: image]See the package’s Classes listed alphabetically in each section – scroll down the page to the “Class Summary”
 section to find the Math class, then click its hyperlink

 [image: image]

 [image: image]See the class’s Methods listed alphabetically in the “Method Summary” section – click on any hyperlink to
 discover the purpose of that method and its syntax

 [image: image]

 [image: image]

 [image: image]

 You can also use the Search box to find information on any item.

 [image: image]

 Examine the information available via other items on the page menu to become more
 familiar with the documentation.

 Doing mathematics

 The Math class within the java.lang package provides two constant values that are often useful to perform mathematical
 calculations. Math.PI stores the value of Pi, and Math.E stores the value that is the base of natural logarithms. Both these constant values
 are stored as double precision data types with 15 decimal places.

 [image: image]Start a new program named “Pi” containing the standard main method

 class Pi

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Pi.java

 [image: image]Inside the main method, declare and initialize a float variable from a command line argument, and cast the double Math.PI constant into a second float variable

 float radius = Float.parseFloat(args[0]) ;

 float shortPi = (float) Math.PI ;

 [image: image]Perform mathematical calculations using the cast value, assigning the results to more
 float variables

 float circ = shortPi * (radius + radius) ;

 float area = shortPi * (radius * radius) ;

 [image: image]Output the value of Math.PI and its cast float equivalent, followed by the results of the calculations

 System.out.print(“With Pi commuted from “ + Math.PI) ;

 System.out.println(“ to “ + shortPi + “...”) ;

 System.out.println(“A circle of radius “ + radius + “ cm”) ;

 System.out.printIn(“has a circumference of “ + circ + “ cm”) ;

 System.out.println(“ and an area of “ + area + “ sq.cm”) ;

 [image: image]Save the program as Pi.java then compile and run the program to see the output

 [image: image]

 [image: image]

 The commuted value of Pi usually provides sufficient precision.

 The Math class within the java.lang package provides many methods that are useful to perform mathematical calculations.
 Using Math.pow(), a given number can be raised to a specified power. The parentheses require the number
 as its first argument and the power by which it is to be raised as its second argument.
 The Math.sqrt() method returns the square root of the number specified as its sole argument. Both
 methods return a double type.

 [image: image]Start a new program named “Power” containing the standard main method

 class Power

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Power.java

 [image: image]Inside the main method, declare and initialize an int variable from a passed command line argument

 int num = Integer.parseInt(args[0]) ;

 [image: image]Perform mathematical calculations, casting the results into more int variables

 int square = (int) Math.pow(num , 2) ;

 int cube = (int) Math.pow(num , 3) ;

 int sqrt = (int) Math.sqrt(num) ;

 [image: image]Output the results of the calculations

 System.out.println(num + ” squared is “ + square) ;

 System.out.println(num + ” cubed is “ + cube) ;

 System.out.println(“Square root of “ + num + ” is “+ sqrt) ;

 [image: image]Save the program as Power.java then compile and run the program to see the output

 [image: image]

 [image: image]

 Both these examples could be improved by adding try catch statement blocks to anticipate user errors – see here
 for details.

 Rounding numbers

 The Math class within the java.lang package provides three methods to round floating-point numbers to the nearest integer.
 Simplest of these is the Math.round() method that rounds a number stated as its argument up, or down, to the closest integer.

 The Math.floor() method rounds down to the closest integer below, and Math.ceil() rounds up to the closest integer above.

 While the Math.round() method returns an int data type, both Math.floor() and Math.ceil() methods return a double data type.

 [image: image]Start a new program named “Round” containing the standard main method

 class Round

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Round.java

 [image: image]Inside the main method, declare and initialize a float variable

 float num = 7.25f ;

 [image: image]Output the rounded float value as an int value

 System.out.println(num+” rounded is “+Math.round(num)) ;

 [image: image]Output the rounded float value as double values

 System.out.println(num+” floored is “ +Math.floor(num));

 System.out.println(num+“ ceiling is “ + Math.ceil(num)) ;

 [image: image]Save the program as Round.java then compile and run the program to see the output

 [image: image]

 [image: image]

 By default, Math.round() will round up – so 7.5 would be rounded up to 8.

 The Math class within the java.lang package provides two methods to compare two numerical values. The Math.max() method and the Math.min() method each require two numbers to be stated as their arguments. Math.max() will return the greater number and Math.min() will return the smaller number.

 The numbers to be compared can be of any numerical data type, but the result will
 be returned as a double data type.

 [image: image]Start a new program named “Compare” containing the standard main method

 class Compare

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Compare.java

 [image: image]Inside the main method, declare and initialize a float variable and an int variable

 float num1 = 24.75f ;

 int num2 = 25 ;

 [image: image]Output the greater value

 System.out.println(“Most is “ + Math.max(num1, num2)) ;

 [image: image]Output the lesser value

 System.out.println(“Least is “ + Math.min(num1, num2)) ;

 [image: image]Save the program as Compare.java then compile and run the program to see the output

 [image: image]

 Generating random numbers

 The Math class within the java.lang package provides the ability to generate random numbers with its Math.random() method, which returns a double precision random number between 0.0 and 0.999. Multiplying the random number will
 specify a wider range. For example, multiplying by 10 will create a random number
 in the range of 0.0 to 9.999. Now rounding the random number up with Math.ceil() will ensure it falls within the range of 1-10 inclusive.

 [image: image]Start a new program named “Random” containing the standard main method

 class Random

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Random.java

 [image: image]Inside the main method, assign a random number to a float variable, and output its value

 float random = (float) Math.random() ;

 System.out.println(“Random number: “ + random) ;

 [image: image]Assign a multiplication of the random number to a second float variable, and output its value

 float multiplied = random * 10 ;

 System.out.println(“Multiplied number: “ + multiplied) ;

 [image: image]Assign a rounded integer of the multiplied random number to an int variable, and output its value

 int randomInt = (int) Math.ceil(multiplied) ;

 System.out.println(“Random Integer: “ + randomInt) ;

 [image: image]Save the program as Random.java then compile and run the program to see the output

 [image: image]

 [image: image]

 The Lottery program described opposite combines all three steps from this example
 into a single statement.

 A sequence of six non-repeating random numbers within the range 1-59 inclusive can
 be generated using Math.random() to produce a random lottery selection.

 [image: image]Start a new program named “Lottery” containing the standard main method

 class Lottery

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Lottery.java

 [image: image]Inside the main method, create an int array of 60 elements, then fill elements 1-59 with integers 1-59

 int[] nums = new int[60] ;

 for(int i = 1 ; i < 60 ; i++) { nums[i] = i ; }

 [image: image]Shuffle the values in elements 1-59

 for(int i = 1 ; i < 60 ; i++)

 {

 int r = (int) Math.ceil(Math.random() * 59) ;

 int temp = nums[i] ;

 nums[i] = nums[r] ;

 nums[r] = temp ;

 }

 [image: image]Output only those values contained in elements 1-6

 for (int i = 1 ; i < 7 ; i++)

 {

 System.out.print(Integer.toString(nums[i]) + “ “) ;

 }

 [image: image]Save the program as Lottery.java then compile it and run the program three times to see three different sequences

 [image: image]

 [image: image]

 This program is revisited with a graphical user interface in Chapter 10.

 Managing strings

 In Java programming, a String is zero or more characters enclosed within quotation marks. So, these are all valid
 String values:

 String txt1 = “My First String” ;

 String txt2 = “” ;

 String txt3 = “2” ;

 String txt4 = “null” ;

 [image: image]

 Array.length is a property but String.length() is a method – so it must have trailing parentheses.

 The empty quotes of txt2 initialize the variable as an empty String value. The numeric value assigned to txt3 is a String representation of the number. The Java null keyword, which normally represents the absence of any value, is simply a String literal when it is enclosed within quotes.

 Essentially, a String is a collection of characters; each character containing its own data – just like
 elements in a defined array. It is, therefore, logical to regard a String as an array of characters and apply array characteristics when dealing with String values.

 The String class is part of the fundamental java.lang package and provides a length() method that will return the size of a String, much like the length property of an array. Each String variable is created as an “instance” of the String class so its methods can be used by tacking their name onto the variable name using
 dot notation. For example, the syntax to return the size of a String variable named txt is txt.length().

 The String class within the java.lang package also provides an alternative to the + concatenation operator for joining String values together. Its concat() method requires a single argument specifying the second String to be appended. In use it is tacked onto the variable name of the first String using dot notation. For example, append txt2 onto txt1 using txt1.concat(txt2).

 [image: image]Start a new program named “StringLength” containing the standard main method

 class StringLength

 {

 public static void main (String[] args) { }

 }

 [image: image]

 StringLength.java

 [image: image]Inside the main method, create and initialize two String variables

 String lang = “Java” ;

 String series = “ in easy steps” ;

 [image: image]Add another String variable and assign it the concatenated value of the other two String variables

 String title = lang.concat(series) ;

 [image: image]Output the concatenated String within quotation marks, together with its size

 System.out.print(“\”” + title + “\” has “) ;

 System.out.println(title.length() + “ characters”) ;

 [image: image]Save the program as StringLength.java then compile and run the program to see the output

 [image: image]

 [image: image]

 Spaces are part of the String so are included in the character count – but the quotation marks are not included.

 Comparing strings

 The String class within the java.lang package provides the useful equals() method that was introduced here
 to evaluate a command line argument in the args[0] element. This can also be used to compare any two String values by tacking the method name onto the first String variable using dot notation, and specifying the String to be compared as its argument. For example, the syntax to compare txt2 to txt1 is txt1.equals(txt2). When both String values have identical characters, in the same order, the method returns true – otherwise, it returns false.

 [image: image]

 Be sure to observe correct capitalization using a capital “C” in the toUpperCase and
 toLowerCase methods.

 String values that use different letter case, such as “Java” and “JAVA”, are not considered
 equal because the ASCII code values of the characters differ. For instance, the value
 of uppercase “A” is 65, whereas lowercase “a” is 97.

 To compare an input String value, where the letter case entered by the user is uncertain, against a String value in the program it is often useful to transform the input into a particular
 case. For this purpose, the String class provides a toUpperCase() method and a toLowerCase() method. The input String is specified as the argument, and the method returns the transformed String.

 A typical example might force a user-input password String to lowercase before comparing it to the correct password stored in all lowercase
 in a String variable within the program. This would allow the user to enter their password in
 uppercase, lowercase, or a mixture of both cases where case-insensitive passwords
 are permissible.

 Dot notation allows methods to be tacked onto other methods so their operations can
 be performed in sequence. This means that toLowerCase().equals() can be used to transform a String value to lowercase and then compare that lowercase version against a specified argument.

 [image: image]Start a new program named “StringComparison” containing the standard main method

 class StringComparison

 {

 public static void main (String[] args) { }

 }

 [image: image]

 StringComparison.java

 [image: image]Inside the main method, create and initialize a String variable with a correct lowercase password

 String password = “bingo” ;

 [image: image]Add a try catch statement to catch the exception that occurs when no password argument is entered

 try { }

 catch(Exception e)

 {

 System.out.println(“Password required.”) ;

 }

 [image: image]Insert this if else statement into the try statement block to evaluate the password argument entered by the user

 if (args[0].toLowerCase().equals(password))

 {

 System.out.println(“Password accepted.”) ;

 }

 else

 {

 System.out.println(“Incorrect password.”) ;

 }

 [image: image]Save the program as StringComparison.java then compile and run the program with various arguments

 [image: image]

 Searching strings

 The String class within the java.lang package provides startsWith() and endsWith() methods to compare portions of a String value. These are especially useful to compare a number of String values and select those with common beginnings or common endings. When the String section matches the specified argument, the method returns true – otherwise, it returns false.

 A portion of a String value can be copied by stating the position number of the first character to be copied
 as the argument to its substring() method. This will return a substring of the original String value, starting at the specified start position and ending at the end of the original
 String.

 Optionally, the substring() method can take a second argument to specify the position number of the final character
 to be copied. This will return a substring of the original String value, starting at the specified start position and ending at the specified end position.

 A String value can be searched to find a character or substring specified as the argument
 to its indexOf() method. Unusually, this method returns the numeric position of the first occurrence
 of the matched character or substring within the searched String value. Where no match is found, the method returns the negative integer value of
 -1.

 [image: image]Start a new program named “StringSearch” containing the standard main method

 class StringSearch

 {

 public static void main (String[] args) { }

 }

 [image: image]

 StringSearch.java

 [image: image]Inside the main method, create an initialized String array of book titles

 String[] books =

 { “Java in easy steps”, “XML in easy steps” ,

 “SQL in easy steps” , ”CSS in easy steps” ,

 “Gone With the Wind” , “Drop the Defense” } ;

 [image: image]Create and initialize three int counter variables

 int counter1 = 0 , counter2 = 0 , counter3 = 0 ;

 [image: image]Add a for loop to iterate through the String array, listing as output the first four characters of each title

 for (int i = 0 ; i < books.length ; i++)

 {

 System.out.print(books[i].substring(0,4) + “ | “) ;

 }

 [image: image]Insert a statement in the for loop block to count the titles found with a specified ending

 if (books[i].endsWith(“in easy steps”)) counter1++ ;

 [image: image]Insert a statement in the for loop block to count the titles found with a specified beginning

 if (books[i].startsWith(“Java”)) counter2++ ;

 [image: image]Insert a statement in the for loop block to count the titles found not containing a specified substring

 if (books[i].indexOf(“easy”) == -1) counter3++ ;

 [image: image]At the end of the main method, add these statements to output the results of each
 search

 System.out.println(“\nFound “ + counter1 + “ titles from this series”) ;

 System.out.println(“Found “ + counter2 + “ Java title”) ;

 System.out.println(“Found “ + counter3 + “ other titles”) ;

 [image: image]Save the program as StringSearch.java then compile and run the program to see the output

 [image: image]

 [image: image]

 The ! NOT operator cannot be used to test if the indexOf() method has failed – because it returns an integer value, not a Boolean value.

 Manipulating characters

 The String class within the java.lang package provides the trim() method that is used to remove any whitespace from the beginning and end of the String specified as its argument. This method will remove all extreme spaces, newlines,
 and tabs, returning the trimmed version of that String.

 An individual character in a String can be addressed by stating its index position within that String as the argument to its charAt() method. This method treats the String as an array of characters where the first character is at position zero – just like
 other arrays whose elements are indexed starting at zero. The first character in a
 String can be addressed as charAt(0), the second character as charAt(1), and so on.

 As character indexing begins at zero, the final character in a String will always have an index number that is one less than the total number of characters
 in the String. This means that the final character in any String has the index number equivalent to length() - 1. The final character in a String named “str” can, therefore, be addressed as str.charAt(str.length() - 1).

 All occurrences of a particular character in a String can be replaced by another character using its replace() method. This method requires two arguments that specify the character to be replaced
 and the character that is to take its place. For example, to replace all occurrences
 of the letter “a” with the letter “z”, the syntax would be replace(‘a’ , ‘z’).

 The isEmpty() method can be used to discover if a String contains no characters. This method will return true if the String is absolutely empty, otherwise it will return false.

 [image: image]Start a new program named “CharacterSwap” containing the standard main method

 class CharacterSwap

 {

 public static void main (String[] args) { }

 }

 [image: image]

 CharacterSwap.java

 [image: image]Inside the main method, declare and initialize an empty String variable

 String txt = ““ ;

 [image: image]Assign some characters to the String variable, if it is indeed empty, with both leading and trailing spaces

 if (txt.isEmpty()) txt = “ Borrocudo “ ;

 [image: image]Output the String value and the number of characters it contains

 System.out.println(“String: “ + txt) ;

 System.out.println(“Original String Length: “ + txt.length()) ;

 [image: image]Remove the leading and trailing spaces, then output the String value and its size again

 txt = txt.trim() ;

 System.out.println(“String: “ + txt) ;

 System.out.println(“String Length: “ + txt.length()) ;

 [image: image]Output the first character in the String

 char initial = txt.charAt(0) ;

 System.out.println(“First Letter: “ + initial) ;

 [image: image]Now, output the last character in the String

 initial = txt.charAt((txt.length() -1));

 System.out.println(“Last Letter: “ + initial) ;

 [image: image]Replace all occurrences of the letter “o” with letter “a”

 txt = txt.replace(‘o’ , ’a’) ;

 System.out.println(“String: “ + txt) ;

 [image: image]Save the program as CharacterSwap.java then compile and run the program to see the output

 [image: image]

 Summary

 •The Java documentation provides information about the methods and properties in each
 Java class.

 •Java classes that are fundamental to the Java language are contained in the java.lang package, in the java.base module.

 •The Math class provides Math.PI and Math.E constants.

 •Math.pow() raises to a specified power and Math.sqrt() returns the square root of a specified number.

 •Numbers can be rounded to an integer value with Math.round(), Math.floor(), and Math.ceil().

 •Numbers can be compared with Math.max() and Math.min().

 •Math.random() returns a double precision random number between 0.0 and 0.999999999999999.

 •A String is zero or more characters enclosed in quote marks.

 •The length() method returns the size of its String, much like the length property of an array.

 •The concat() method of a String appends another String value.

 •The equals() method of a String only returns true when two String values have identical characters, in the same order.

 •Character case of a String can be changed using its toUpperCase() method and toLowerCase() method.

 •String values can be compared using the startsWith() and endsWith() methods of a String.

 •A substring can be sought in a String using its indexOf() and substring() methods.

 •The isEmpty() method only returns true when the String contains absolutely nothing.

 •Characters can be manipulated within a String value using its trim(), charAt(), and replace() methods.

 6

 Creating classes

 This chapter demonstrates how to create Java programs that employ multiple methods
 and classes.

 Forming multiple methods

 Understanding program scope

 Forming multiple classes

 Extending an existing class

 Creating an object class

 Producing an object instance

 Encapsulating properties

 Constructing object values

 Summary

 Forming multiple methods

 Programs are typically split into separate methods in order to create modules of code
 that each perform tasks, and that can be called repeatedly throughout the program
 as required. Splitting the program into multiple methods also makes it easier to track
 down bugs, as each method can be tested individually. Further methods may be declared,
 inside the curly brackets that follow the class declaration, using the same keywords
 that are used to declare the main method. Each new method must be given a name, following
 the usual naming conventions, and may optionally specify arguments in the parentheses
 after its name.

 [image: image]Start a new program named “Methods” containing the standard main method

 class Methods

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Methods.java

 [image: image]Between the curly brackets of the main method, insert statements to output a message
 and to call a second method named “sub”

 System.out.println(“Message from the main method.”) ;

 sub() ;

 [image: image]After the main method, before the final curly bracket of the class, add the second
 method to output a message

 public static void sub()

 {

 System.out.println(“Message from the sub method.”) ;

 }

 [image: image]Save the program as Methods.java then compile and run the program to see the output

 [image: image]

 [image: image]

 The syntax to call a method without arguments just needs the method name, followed
 by parentheses.

 A class may even contain multiple methods of the same name providing they each have
 different arguments – requiring a different number of arguments, or arguments of different
 data types. This useful feature is known as method “overloading”.

 [image: image]Start a new program named “Overload” containing the standard main method

 class Overload

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Overload.java

 [image: image]Between the curly brackets of the main method, insert three statements calling different
 overloaded methods and passing them argument values

 System.out.println(write(12)) ;

 System.out.println(write(“Twelve”)) ;

 System.out.println(write(4 , 16)) ;

 [image: image]After the main method, before the final curly bracket of the class, add the three
 overloaded methods to each return a String to the caller

 public static String write(int num)

 { return (“Integer passed is “ + num) ; }

 public static String write(String num)

 { return (“String passed is “ + num) ; }

 public static String write(int num1 , int num2)

 { return (“Sum Total is “ + (num1 * num2)) ; }

 [image: image]Save the program as Overload.java then compile and run the program to see the output

 [image: image]

 [image: image]

 The declaration for each of the overloaded methods must indicate that the method returns
 a String value, not void.

 Understanding program scope

 A variable that is declared inside a method is only accessible from inside that method
 – its “scope” of accessibility is only local to the method in which it is declared.
 This means that a variable of the same name can be declared in another method without
 conflict.

 [image: image]Start a new program named “Scope” containing the standard main method

 class Scope

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Scope.java

 [image: image]Between the curly brackets of the main method declare and initialize a local String variable, then output its value

 String txt = “This is a local variable in the main method”;

 System.out.println(txt) ;

 [image: image]After the main method, before the final curly bracket of the class, add another method
 named “sub”

 public static void sub() { }

 [image: image]Between the curly brackets of the sub method, declare and initialize a local String variable of the same name as the variable in the main method

 String txt = “This is a local variable in the sub method” ;

 System.out.println(txt) ;

 [image: image]Insert a call to the sub method at the end of the main method

 sub() ;

 [image: image]Save the program as Scope.java then compile and run the program to see the output

 [image: image]

 [image: image]

 A counter variable declared in a for loop cannot be accessed outside the loop – its scope is limited to the for statement block.

 The static keyword that is used in method declarations ensures that the method is a “class method”
 – globally accessible from any other method in the class.

 Similarly, a “class variable” can be declared with the static keyword to ensure it is globally accessible throughout the class. Its declaration
 should be made before the main method declaration, right after the curly bracket following
 the class declaration.

 A program may have a global class variable and local method variable of the same name.
 The local method variable takes precedence unless the global class variable is explicitly
 addressed by the class name prefix using dot notation, or if a local variable of that
 name has not been declared.

 [image: image]Edit Scope.java by inserting a global class String variable constant of the same name as the local method variables

 final static String txt = “This is a global variable of the Scope class” ;

 [image: image]Add a statement at the end of the main method to output the value of the global class
 variable

 System.out.println(Scope.txt) ;

 [image: image]Comment out the line that declares the local variable in the sub method – so the output
 statement will now address the global variable of the same name

 //String txt = “This is a local variable in the sub method” ;

 [image: image]Save the changes, then recompile the program and run it once more to see the revised
 output

 [image: image]

 [image: image]

 Use local method variables wherever possible to avoid conflicts – global class variables
 are typically only used for constants.

 Forming multiple classes

 In the same way that a program may have multiple methods, larger programs may consist
 of several classes – where each class provides specific functionality. This modular
 format is generally preferable to writing the entire program in a single class as
 it makes debugging easier and provides better flexibility.

 The public keyword that appears in declarations is an “access modifier” that determines how
 visible an item will be to other classes. It can be used in the class declaration
 to explicitly ensure that class will be visible to any other class. If it is omitted,
 the default access control level allows access from other local classes. The public keyword must always be used with the program’s main method, however, so that method
 will be visible to the compiler.

 [image: image]Start a new program named “Multi” containing the standard main method – including
 the public keyword as usual

 class Multi

 {

 public static void main (String[] args) { }

 }

 [image: image]

 Multi.java

 [image: image]Between the curly brackets of the main method, declare and initialize a String variable, then output its contents

 String msg = “This is a local variable in the Multi class” ;

 System.out.println(msg) ;

 [image: image]Output the contents of a class String variable constant named “txt” from a class named “Data”

 System.out.println(Data.txt) ;

 [image: image]Call a method named “greeting” from the Data class

 Data.greeting() ;

 [image: image]Call a method named “line” from a class named “Draw”

 Draw.line() ;

 [image: image]Save the program as Multi.java

 [image: image]

 The compiler will automatically find classes in adjacent external .java files – and create compiled .class files for each one.

 [image: image]Start a new file creating the Data class

 class Data

 {

 }

 [image: image]

 Data.java

 [image: image]Declare and initialize a public class variable constant

 public final static String txt = “This is a global variable in the Data class” ;

 [image: image]Add a public “greeting” class method

 public static void greeting()

 {

 System.out.print(“This is a global method “) ;

 System.out.println(“of the Data class”) ;

 }

 [image: image]Save the file as Data.java in the same directory as the Multi.java program

 [image: image]Start a new file creating a Draw class and a class “line” method for default access
 – without the public keyword

 class Draw

 {

 static void line()

 {

 System.out.println(“ ”) ;

 }

 }

 [image: image]

 Draw.java

 [image: image]Save the file as Draw.java in the same directory as the Multi.java program, then compile and run the program to see the output

 [image: image]

 [image: image]

 The public keyword allows access from any other class, but default access only allows access
 from classes in the same package.

 Extending an existing class

 A class can inherit the features of another class by using the extends keyword in the class declaration to specify the name of the class from which it should
 inherit. For example, the declaration class Extra extends Base inherits from the Base class.

 The inheriting class is described as the “sub” class, and the class from which it
 inherits is described as the “super” class. In the example declaration above, the
 Base class is the super class and the Extra class is the sub class.

 Methods and variables created in a super class can generally be treated as if they
 existed in the sub class providing they have not been declared with the private keyword, which denies access from outside the original class.

 A method in a sub class will override a method of the same name that exists in its
 super class unless their arguments differ. The method in the super class may be explicitly
 addressed using its class name and dot notation. For example, SuperClass.run().

 It should be noted that a try catch statement in a method within a super class does not catch exceptions that occur in
 a sub class – the calling statement must be enclosed within its own try catch statement to catch those exceptions.

 [image: image]Start a new class named “SuperClass”

 class SuperClass { }

 [image: image]

 SuperClass.java

 [image: image]Between the curly brackets of the class, add a method that outputs an identifying
 String

 public static void hello()

 {

 System.out.println(“Hello from the Super Class”) ;

 }

 [image: image]Add a second method that attempts to output a passed argument, then save the file
 as SuperClass.java

 public static void echo(String arg)

 {

 try

 { System.out.println(“You entered: “ + arg) ; }

 catch(Exception e)

 { System.out.println(“Argument required”) ; }

 }

 [image: image]Start a new program named “SubClass” that extends the SuperClass class

 class SubClass extends SuperClass

 {

 public static void main (String[] args) { }

 }

 [image: image]

 SubClass.java

 [image: image]After the main method, add a method that outputs an identifying String, overriding the inherited method of the same name

 public static void hello()

 {

 System.out.println(“Hello from the Sub Class”) ;

 }

 [image: image]Between the curly brackets of the main method, insert a call to the overriding method
 and then explicitly call the method of the same name in the super class

 hello() ;

 SuperClass.hello() ;

 [image: image]Add a call to the other inherited method

 echo(args[0]) ;

 [image: image]Save the program as SubClass.java then compile and run the program without a command line argument

 [image: image]

 [image: image]Edit SubClass.java to enclose the method call in Step 7, to place it within its own try catch statement to catch exceptions, then recompile and re-run the program to see the problem
 resolved

 [image: image]

 You can find more information about catching exceptions here
 .

 Creating an object class

 Real-world objects are all around us, and they each have attributes and behaviors
 that we can describe:

 •Attributes describe the features that an object has

 •Behaviors describe actions that an object can perform

 For example, a car might be described with attributes of “red” and “coupe”, along
 with an “accelerates” behavior.

 These features could be represented in Java programming with a Car class containing variable properties of color and bodyType, along with an accelerate() method.

 [image: image]

 Java is said to be an Object Oriented Programming (OOP) language because it makes
 extensive use of object attributes and behaviors to perform program tasks.

 Objects are created in Java by defining a class as a template from which different
 copies, or “instances”, can be made.

 Each instance of the class can be customized by assigning attribute values and behaviors
 to describe that object.

 The Car class is created as a class template in the steps described opposite – with the default
 attributes and behavior outlined above. An instance of the Car class is created in the steps described here
 , inheriting the same default attributes and behavior.

 [image: image]Start a new template class named “Car”

 class Car

 {

 }

 [image: image]

 FirstObject.java

 [image: image]Between the curly brackets of the Car class, declare and initialize two global String constants describing attributes

 public final static String color = “Red” ;

 public final static String bodyType = “Coupe” ;

 [image: image]Add a global method describing a behavior

 public static String accelerate()

 {

 String motion = “Accelerating...” ;

 return motion ;

 }

 [image: image]After the Car class, start a new program class named “FirstObject” containing the standard main
 method

 class FirstObject

 {

 public static void main (String[] args) { }

 }

 [image: image]Between the curly brackets of the main method, insert statements to output the value
 of each Car attribute and call its behavior method

 System.out.println(“Paint is “ + Car.color) ;

 System.out.println(“Style is “ + Car.bodyType) ;

 System.out.println(Car.accelerate()) ;

 [image: image]Save the program as FirstObject.java then compile and run the program to see the output

 [image: image]

 [image: image]

 The static keyword declares class variables and class methods – in this case, as members of
 the Car class.

 [image: image]

 Object classes are normally created before the program class containing the main method.

 Producing an object instance

 Each class has a built-in “constructor” method that can be used to create a new instance
 of that class. The constructor method has the same name as the class, and is invoked
 with the new keyword.

 Each instance of a class inherits the object’s attributes and behaviors. The principle
 of inheritance is used throughout Java so that programs can use ready-made properties.

 To be more flexible, object class templates can be defined in a file other than that
 containing the program. This means they can be readily used by multiple programs.

 [image: image]Start a new file, repeating the Car class object template from the previous example here

 class Car

 {

 public final static String color = “Red” ;

 public final static String bodyType = “Coupe” ;

 public static String accelerate()

 {

 String motion = “Accelerating...” ;

 return motion ;

 }

 }

 [image: image]

 Car.java

 [image: image]Save the file as Car.java

 [image: image]Start a new program named “FirstInstance” containing the standard main method

 class FirstInstance

 {

 public static void main (String[] args) { }

 }

 [image: image]

 FirstInstance.java

 [image: image]Between the curly brackets of the main method, insert statements to output the value
 of each attribute of the Car class and call its behavior method

 System.out.println(“Car paint is “ + Car.color) ;

 System.out.println(“Car style is “+ Car.bodyType) ;

 System.out.println(Car.accelerate()) ;

 [image: image]Now, add a statement to create a Porsche instance of the Car class

 Car Porsche = new Car() ;

 [image: image]Add statements to output the inherited value of each Porsche attribute and call its behavior method

 System.out.println(“Porsche paint is “ + Porsche.color) ;

 System.out.println(“Porsche style is “ + Porsche.bodyType) ;

 System.out.println(Porsche.accelerate()) ;

 [image: image]Save the program as FirstInstance.java alongside the Car.java template file, then compile and run the program to see the output

 [image: image]

 [image: image]

 You cannot address the motion variable directly – it is out of scope within the method declaration.

 A virtual class is created for the new Porsche object that replicates the original Car class. Both these objects contain static “class variables” and a “class method”,
 which are addressed using the class name and dot notation – as these members are globally
 accessible, this is not considered good programming practice.

 Whilst this example demonstrates how instances of an object inherit properties of
 the original class, it is improved in the next example here
 that uses non-static members to create “instance variables” and an “instance method”,
 which cannot be addressed from outside that class – as these members are not globally
 accessible, this is considered good programming practice.

 [image: image]

 The compiler automatically finds the Car class in the external .java file – and creates a compiled .class file for it.

 Encapsulating properties

 The private keyword can be used when declaring object variables and methods to protect them from
 manipulation by external program code. The object should then include public methods to retrieve the values and call the methods. This technique neatly encapsulates
 the variables and methods within the object structure. It is demonstrated in the following
 steps that reproduce the previous example – but with encapsulated attributes and method:

 [image: image]Start a new class named “Car”

 class Car

 {

 }

 [image: image]

 SafeInstance.java

 [image: image]Between the curly brackets of the class, declare three private String variables to store object attributes

 private String maker ;

 private String color ;

 private String bodyType ;

 [image: image]Add a private method describing a behavior

 private String accelerate()

 {

 String motion = “Accelerating...” ;

 return motion ;

 }

 [image: image]Add a public method to assign passed argument values to each private variable

 public void setCar(String brand , String paint , String style)

 {

 maker = brand ;

 color = paint ;

 bodyType = style ;

 }

 [image: image]Add another public method to retrieve the private variable values and to call the
 private method

 public void getCar()

 {

 System.out.println(maker + ” paint is “ + color) ;

 System.out.println(maker + “ style is “ + bodyType) ;

 System.out.println(maker + “ is “ + accelerate() + ”\n”) ;

 }

 [image: image]After the end of the Car class, start another class named “SafeInstance” containing the standard main method

 class SafeInstance

 {

 public static void main (String[] args) { }

 }

 [image: image]Between the curly brackets of the main method, insert a statement to create an instance
 of the Car class

 Car Porsche = new Car() ;

 [image: image]Add a statement that calls a public method of the Car class to assign values to its private variables

 Porsche.setCar(“Porsche” , ”Red” , ”Coupe”) ;

 [image: image]Now add a statement to call the other public method of the Car class to retrieve the stored attribute values and call the private behavior method

 Porsche.getCar() ;

 [image: image]Create another instance, assigning and retrieving values

 Car Bentley = new Car() ;

 Bentley.setCar(“Bentley” , ”Green” , ”Saloon”) ;

 Bentley.getCar() ;

 [image: image]Save the program as SafeInstance.java then compile and run the program to see the output

 [image: image]

 [image: image]

 An uninitialized String variable has a null value – so calling the getCar() method before setCar() will return a null from each variable.

 Constructing object values

 An object’s constructor method can be called directly in the object class to initialize
 object variables. This helps to keep the declarations and assignments separate, and
 is considered to be good programming style. It is demonstrated in the following steps
 that reproduce the previous example here
 with encapsulated attributes and method – together with initialization by the constructor:

 [image: image]Start a new class named “Car”

 class Car

 {

 }

 [image: image]

 Constructor.java

 [image: image]Between the curly brackets of the class, declare three private String variables to store object attributes

 private String maker ;

 private String color ;

 private String bodyType ;

 [image: image]Add a constructor method that initializes all three variables with attribute values

 public Car()

 {

 maker = “Porsche” ;

 color = “Silver” ;

 bodyType = “Coupe” ;

 }

 [image: image]Add a private method describing a behavior

 private String accelerate()

 {

 String motion = “Accelerating...” ;

 return motion ;

 }

 [image: image]Add a public method to assign passed argument values to each private variable

 public void setCar(String brand , String paint , String style)

 {

 maker = brand ;

 color = paint ;

 bodyType = style ;

 }

 [image: image]

 Constructor method declarations do not state any return data type.

 [image: image]Add another public method to retrieve the private variable values and to call the
 private method

 public void getCar()

 {

 System.out.println(maker + ” paint is “ + color) ;

 System.out.println(maker + “ style is “ + bodyType) ;

 System.out.println(maker + “ is “ + accelerate() + ”\n”) ;

 }

 [image: image]After the end of the Car class, start another class named “Constructor” containing the standard main method

 class Constructor

 {

 public static void main (String[] args) { }

 }

 [image: image]Between the curly brackets of the main method, insert statements to create an instance
 of the Car class and retrieve the initial default values

 Car Porsche = new Car() ;

 Porsche.getCar() ;

 [image: image]Create another instance, assigning and retrieving values

 Car Ferrari = new Car() ;

 Ferrari.setCar(“Ferrari” , ”Red” , ”Sport”) ;

 Ferrari.getCar() ;

 [image: image]Save the program as Constructor.java then compile and run the program to see the output

 [image: image]

 Summary

 •Splitting programs into multiple methods, which can be called upon when required,
 increases flexibility and makes it easier to track down bugs.

 •Overloaded methods have the same name but take different arguments.

 •Variables declared within a method have local scope, but class variables have global
 scope throughout that class.

 •The static keyword is used to declare class methods and class variables – having global scope
 throughout that class.

 •The public keyword explicitly allows access from any class.

 •A class declaration can include the extends keyword to nominate a super class from which it will inherit.

 •The class name and dot notation can be used to explicitly address a particular class
 method or class variable.

 •Real-world objects have attributes and behaviors that can be represented in programs
 by variables and methods.

 •Java objects are created as a template class from which instance copies can be made.

 •Each class has a constructor method that can be invoked using the new keyword to create an instance copy of that class.

 •Instances inherit the attributes and behaviors of the class from which they are derived.

 •Encapsulation protects instance variables and instance methods from manipulation by
 external classes.

 •The private keyword denies access from outside the class where the declaration is made.

 •An object’s constructor method can be called to initialize variable attributes of
 that object.

 7

 Importing functions

 This chapter demonstrates how to import additional program functionality from specialized
 Java classes.

 Handling files

 Reading console input

 Reading files

 Writing files

 Sorting array elements

 Making array lists

 Managing dates

 Formatting numbers

 Summary

 Handling files

 Java contains a package named java.io that is designed to handle file input and output procedures. The package can be made
 available to a program by including an import statement at the very beginning of the .java file. This can use the * wildcard character to mean “all classes” in the statement
 import java.io.* ; .

 The java.io package has a class named “File” that can be used to access files or complete directories.
 A File object must first be created using the new keyword and specifying the filename, or directory name, as the constructor’s argument.
 For example, the syntax to create a File object named “info” to represent a local file named “info.dat” looks like this:

 File info = new File(“info.dat”) ;

 This file would be located in the same directory as the program, but the argument
 could state the path to a file located elsewhere. Note that the creation of a File object does not actually create a file, but merely the means to represent a file.

 Once a File object has been created to represent a file, its methods can be called to manipulate
 the file. The most useful File object methods are listed in this table, together with a brief description:

 	
 Method:

 	
 Returns:

 	
 exists()

 	
 true if the file exists – false if it does not

 	
 getName()

 	
 the filename as a String

 	
 length()

 	
 number of bytes in the file, as a long type

 	
 createNewFile()

 	
 true if able to create the new unique file

 	
 delete()

 	
 true if able to successfully delete the file

 	
 renameTo(File)

 	
 true if able to successfully rename the file

 	
 list()

 	
 an array of file or folder names as Strings

 [image: image]

 The filename specified as the constructor argument must be enclosed within quotes.

 [image: image]Start a new program that imports the functionality of all the java.io classes

 import java.io.* ;

 [image: image]

 ListFiles.java

 [image: image]Add a class named “ListFiles” containing the standard main method

 class ListFiles

 {

 public static void main(String[] args) { }

 }

 [image: image]Between the curly brackets of the main method, insert a statement to create a File object for a directory folder named “data”

 File dir = new File(“data”) ;

 [image: image]Add an if statement to output the names of all files in that folder, or a message if the folder
 is empty

 if (dir.exists())

 {

 String[] files = dir.list() ;

 System.out.println(files.length + “ files found...”) ;

 for (int i = 0 ; i < files.length ; i++)

 {

 System.out.println(files[i]) ;

 }

 }

 else

 { System.out.println(“Folder not found.”) ; }

 [image: image]Save the program as ListFiles.java alongside a “data” folder containing some files, then compile and run the program
 to see the filenames listed as output

 [image: image]

 Reading console input

 The java.io package allows a program to read input from the command line – interacting with the
 user. Just as the System.out field can send output to the command line, the System.in field can be used to read from it with an InputStreamReader object. This reads the input as bytes, which it converts into integer values that
 represent Unicode character values.

 In order to read an entire line of input text, the readLine() method of a BufferedReader object reads the characters decoded by the InputStreamReader. This method must be called from within a try catch statement to catch any IOException problems.

 Typically, the readLine() method will assign the input to a String variable for manipulation by the program.

 [image: image]Start a new program that imports the functionality of all the java.io classes

 import java.io.* ;

 [image: image]

 ReadString.java

 [image: image]Add a class named “ReadString” containing the standard main method

 class ReadString

 {

 public static void main(String[] args) { }

 }

 [image: image]Between the curly brackets of the main method, insert a statement to output a message
 prompting the user for input

 System.out.print(“Enter the title of this book: “) ;

 [image: image]Add a statement creating an InputStreamReader object, enabling input to be read from the command line

 InputStreamReader isr = new InputStreamReader(System.in) ;

 [image: image]Create a BufferedReader object to read the decoded input

 BufferedReader buffer = new BufferedReader(isr) ;

 [image: image]Declare and initialize an empty String variable in which to store the input

 String input = ““ ;

 [image: image]Add a try catch statement to read the input from the command line and store it in the variable

 try

 {

 input = buffer.readLine() ;

 buffer.close() ;

 }

 catch (IOException e)

 {

 System.out.println(“An input error has occurred”) ;

 }

 [image: image]Output a message that includes the stored value

 System.out.println(“\nThanks, you are reading “ + input) ;

 [image: image]Save the program as ReadString.java then compile and run the program

 [image: image]

 [image: image]Enter text as prompted, then hit Return to see the output message containing your
 input text

 [image: image]

 [image: image]

 It is good practice to call the close() method of the BufferedReader object when it is no longer needed.

 Reading files

 The java.io package contains a class named FileReader that is especially designed to read text files. This class is a subclass of the InputStreamReader class that can be used to read console input by converting a byte stream into integers
 that represent Unicode character values.

 A FileReader object is created using the new keyword, and takes the name of the file to be read as its argument. Optionally, the
 argument can include the full path to a file outside the directory where the program
 is located.

 In order to efficiently read the text file line-by-line, the readLine() method of a BufferedReader object can be employed to read the characters decoded by the FileReader object. This method must be called from within a try catch statement to catch any IOException problems that may arise.

 Reading all lines in a text file containing multiple lines of text is accomplished
 by making repeated calls to the readLine() method in a loop. At the end of the file the call will return a null value, which can be used to terminate the loop.

 [image: image]Open a plain text editor, such as Windows Notepad, and write a few lines of text –
 for example, a famous verse from “The Ballad of Reading Gaol” by Oscar Wilde

 [image: image]

 [image: image]Save the text file as Oscar.txt then start a new program that imports the functionality of all the java.io classes

 import java.io.* ;

 [image: image]

 ReadFile.java

 [image: image]Add a class named “ReadFile” containing the standard main method

 class ReadFile

 { public static void main(String[] args) { } }

 [image: image]Between the curly brackets of the main method, insert a try catch statement

 try { }

 catch (IOException e)

 {

 System.out.println(“A read error has occurred”) ;

 }

 [image: image]Between the curly brackets of the try block, insert a statement to create a FileReader object

 FileReader file = new FileReader(“Oscar.txt”) ;

 [image: image]Create a BufferedReader object to read the file

 BufferedReader buffer = new BufferedReader(file) ;

 [image: image]Declare and initialize an empty String variable in which to store a line of text

 String line = ““ ;

 [image: image]Add a loop to read the text file contents into the variable and output each line of
 text

 while ((line = buffer.readLine()) != null)

 { System.out.println(line) ; }

 [image: image]Remember to close the BufferedReader object when it is no longer needed

 buffer.close() ;

 [image: image]Save the program as ReadFile.java alongside the text file, then compile and run the program to see the output

 [image: image]

 [image: image]

 The text file specified as the FileReader argument must be enclosed within quotation marks.

 Writing files

 In the java.io package the FileReader and BufferedReader classes, which are used to read text files, have counterparts named FileWriter and BufferedWriter that can be used to write text files.

 A FileWriter object is created using the new keyword, and takes the name of the file to be written as its argument. Optionally,
 the argument can include the full path to a file to be written in a directory outside
 that in which the program is located.

 The BufferedWriter object is created with the new keyword, and takes the name of the FileWriter object as its argument. Text can then be written with the write() method of the BufferedWriter object, and lines separated by calling its newLine() method. These methods should be called from within a try catch statement to catch any IOException problems that may arise.

 If a file of the specified name already exists, its contents will be overwritten by
 the write() method, otherwise a new file of that name will be created and its contents written.

 [image: image]Start a new program that imports the functionality of all the java.io classes

 import java.io.* ;

 [image: image]

 WriteFile.java

 [image: image]Add a class named “WriteFile” containing the standard main method

 class WriteFile

 {

 public static void main (String[] args) { }

 }

 [image: image]Between the curly brackets of the main method, insert a try catch statement

 try { }

 catch (IOException e)

 {

 System.out.println(“A write error has occurred”) ;

 }

 [image: image]Between the curly brackets of the try block, insert a statement to create a FileWriter object for a text file named “Tam.txt”

 FileWriter file = new FileWriter(“Tam.txt”) ;

 [image: image]Create a BufferedWriter object to write the file

 BufferedWriter buffer = new BufferedWriter(file) ;

 [image: image]Add statements to write lines of text and newline characters into the text file –
 for example, a translated verse from “Tam O’Shanter” by Robert Burns

 buffer.write(“The wind blew as if it had blown its last”) ;

 buffer.newLine() ;

 buffer.write(“The rattling showers rose on its blast”) ;

 buffer.newLine() ;

 buffer.write(“The speedy gleams the darkness swallowed”) ;

 buffer.newLine() ;

 buffer.write(“Loud, deep and long the thunder bellowed”) ;

 buffer.newLine() ;

 buffer.write(“That night a child might understand”) ;

 buffer.newLine() ;

 buffer.write(“The devil had business on his hand.”) ;

 [image: image]Remember to close the BufferedWriter object when it is no longer needed

 buffer.close() ;

 [image: image]Save the program as WriteFile.java then compile and run the program to write the text file alongside the program

 [image: image]

 [image: image]

 [image: image]

 You can call the append() method of the BufferedWriter object to add text – rather than overwriting text with the write() method.

 Sorting array elements

 Java contains a package named java.util that provides useful utilities for handling collections of data. The package can
 be made available to a program by including an import statement at the very beginning of the .java file. This can use the * wildcard character to mean “all classes” in the statement
 import java.util.* ; .

 The java.util package has a class named “Arrays” that has methods which can be used to manipulate
 arrays. Its functionality can be made available to the program by importing all classes
 from the java.util package or, where the program only requires a single class, the import statement can import just that specific class. For example, the program can import
 the Arrays class with the statement import java.util.Arrays ;.

 The Arrays class has a sort() method that can rearrange the contents of array elements alphabetically and numerically.

 [image: image]Start a new program that imports the functionality of all methods in the java.util.Arrays class

 import java.util.Arrays ;

 [image: image]

 Sort.java

 [image: image]Add a class named “Sort” containing the standard main method

 class Sort

 { public static void main(String[] args) { } }

 [image: image]After the main method, insert a method to display all element contents of a passed
 String array

 public static void display(String[] elems)

 {

 System.out.println(“\nString Array:”) ;

 for (int i = 0 ; i < elems.length ; i++)

 System.out.println(“Element ”+i+“ is ”+elems[i]) ;

 }

 [image: image]Add an overloaded version of the display() method to display all element contents of a passed int array

 public static void display(int[] elems)

 {

 System.out.println(“\nInteger Array:”) ;

 for (int i = 0 ; i < elems.length ; i++)

 System.out.println(“Element ”+i+“ is ”+elems[i]) ;

 }

 [image: image]

 See here
 for more on overloading methods.

 [image: image]Between the curly brackets of the main method, declare and initialize a String array and an int array

 String[] names = { “Mike” , “Dave” , “Andy” } ;

 int[] nums = { 200 , 300 , 100 } ;

 [image: image]Output the contents of all elements in each array

 display(names) ;

 display(nums) ;

 [image: image]Sort the element contents of both arrays

 Arrays.sort(names) ;

 Arrays.sort(nums) ;

 [image: image]Output the contents of all elements in each array again

 display(names) ;

 display(nums) ;

 [image: image]Save the program as Sort.java then compile and run the program to see the output

 [image: image]

 [image: image]

 The for loops in this example each execute a single statement so no curly brackets are required
 – but they could be added for clarity.

 Making array lists

 The java.util package contains a class named ArrayList that stores data in an ordered “Collection” (resizable sequence) of list elements.
 This can be made available to a program by importing the specific class with import java.util.ArrayList;. A list may contain duplicate elements, and an ArrayList object has useful methods that allow manipulation of stored values by specifying
 their element index number. For example, the list’s method call get(0) will retrieve the value stored in the first element whereas remove(1) will remove the second list element.

 Element values can be modified by specifying the index number and new value as arguments
 to the list’s set() method. Elements can be added to the list at a particular position by specifying
 the index number and value as arguments to the list’s add() method. The list expands to accommodate additional elements by moving the element
 values along the index.

 [image: image]

 You can discover how many elements a list currently has by calling its size() method.

 An ArrayList object is simply created using the new keyword but, like other Java collections, the statement must specify which generic
 type of item the list may contain. Typically, a list may contain String items, so ArrayList must have a <String> suffix.

 Collections, such as ArrayList, have a forEach() method that iterates over each element in the list. This makes it easy to loop through
 all items contained in the list.

 Each stored list item can be conveniently referenced in turn by specifying a “lambda
 expression” as the argument to the forEach() method. Lambda expressions are simply short, anonymous (un-named) methods that can
 be specified in the location they are to be executed. They begin with parentheses,
 to contain any arguments, then have a -> character sequence followed by the statement block, with this syntax:

 (argument/s) -> { statement/s }

 The data type of the arguments can be explicitly declared, or it can be inferred from
 the context – (String x) can be simply (x). Additionally, the curly brackets can be omitted if the lambda expression statement
 block contains only one statement.

 With a list’s forEach() method the value of the current element in the iteration can be passed to the lambda
 expression as its argument, then displayed in output by its statement.

 [image: image]

 Lambda expressions were introduced in Java 8 to enable succinct anonymous methods.

 [image: image]Start a new program that imports the functionality of all methods in the java.util.ArrayList class

 import java.util.ArrayList ;

 [image: image]

 Lists.java

 [image: image]Add a class named “Lists” containing the standard main method

 class Lists

 { public static void main(String[] args) { } }

 [image: image]Between the curly brackets of the main method, insert a statement to create a String ArrayList object named “list”

 ArrayList<String> list = new ArrayList<String>() ;

 [image: image]Next, add statements to populate the list elements with String values then display the entire list

 list.add(“Alpha”) ;

 list.add(“Delta”) ;

 list.add(“Charlie”) ;

 System.out.println(“List: ” + list) ;

 [image: image]Now, identify the current value in the second element then replace it with a new String

 System.out.println(“Replacing: ” + list.get(1) + “\n”) ;

 list.set(1, “Bravo”) ;

 [image: image]Finally, iterate through the list and display the String value now stored in each element

 list.forEach((x) -> System.out.println(“Item: “ + x)) ;

 [image: image]Save the program as Lists.java then compile and run the program to see the output

 [image: image]

 [image: image]

 As with regular arrays, elements in an ArrayList have a zero-based index.

 [image: image]

 The graphical Java Swing JComboBox component that is introduced here
 holds a drop-down list of options, so must also specify its generic data type when
 that object gets created.

 Managing dates

 The java.time package contains a class named LocalDateTime that has useful methods to extract specific fields from a LocalDateTime object that describe a particular point in time. These can be made available to a
 program by importing the specific class with import java.time.LocalDateTime; or by importing all classes in this package using the wildcard with import java.time.* ; .

 [image: image]

 The java.time package was introduced in Java 8 to make it easier to work with dates and times.

 A new LocalDateTime object can be created with fields describing the current date and time using its
 now() method. The fields are initialized from the system clock for the current locale.

 The value within an individual field can be retrieved using an appropriate method
 of the LocalDateTime object. For example, the value of the year field can be retrieved using its getYear() method. Similarly, any field can be changed using an appropriate method of the LocalDateTime object to specify a replacement value. For example, the value of the year field can
 be changed by specifying a new year value as an argument to its withYear() method.

 [image: image]Start a new program that imports the functionality of all methods in the java.time.LocalDateTime class

 import java.time.LocalDateTime ;

 [image: image]

 DateTime.java

 [image: image]Add a class named “DateTime” containing the standard main method

 class DateTime

 {

 public static void main (String [] args) { }

 }

 [image: image]Between the curly brackets of the main method, insert a statement to create a current
 LocalDateTime object

 LocalDateTime date = LocalDateTime.now() ;

 [image: image]Output the current date and time details

 System.out.println(“\nIt is now ” + date) ;

 [image: image]Increment the year, and output the revised date and time

 date = date.withYear(2019) ;

 System.out.println(“\nDate is now ” + date) ;

 [image: image]Output individual LocalDateTime fields of the revised date

 String fields = “\nYear:\t\t\t” + date.getYear() ;

 fields + = “\nMonth:\t\t\t” + date.getMonth() ;

 fields + = “\nMonth Number:\t\t” + date.getMonthValue() ;

 fields + = “\nDay:\t\t\t” + date.getDayOfWeek() ;

 fields + = “\nDay Number:\t\t” + date.getDayOfMonth() ;

 fields + = “\nDay Number Of Year:\t” + date.getDayOfYear() ;

 fields + = “\nHour (0-23):\t\t” + date.getHour() ;

 fields + = “\nMinute:\t\t\t” + date.getMinute() ;

 fields + = “\nSecond:\t\t\t” + date.getSecond() ;

 System.out.println(fields) ;

 [image: image]Save the program as DateTime.java then compile and run the program to see the output

 [image: image]

 [image: image]

 Concatenating a String like this means the program makes just one call to println() to output field details – this is more efficient than calling println() many times to output each individual field separately.

 [image: image]

 You can alternatively use the ZonedDateTime class instead of LocalDateTime if you also require a time zone field.

 Formatting numbers

 Java contains a package named java.text that provides useful classes for formatting numbers and currency. The package can
 be made available to a program by including an import statement at the very beginning of the .java file. This can use the * wildcard character to mean “all classes” in the statement
 import java.text.* ;. Alternatively, specific classes can be imported by name.

 The java.text package has a class named “NumberFormat”, which has methods that can be used to format
 numerical values for output – adding group separators, currency signs, and percentage
 signs.

 The method used to create a new NumberFormat object determines its formatting type – getNumberInstance() for group separators, getCurrencyInstance() for currency signs, and getPercentInstance() for percentage signs. Formatting is applied by specifying the numerical value to
 be formatted as the argument to the format() method of the NumberFormat object.

 [image: image]

 The java.time.format package was introduced in Java 8 to make it easier to specify date format patterns.

 The java.time.format package has a DateTimeFormatter class that can be used to format java.time dates and time objects. A DateTimeFormatter object contains a formatter pattern that is specified as a string argument to its
 ofPattern() method. The formatter comprises letters, defined in the Java documentation, and your
 choice of separators. For example, “M/d/y” specifies the month, day, and year, separated by slashes. The format is applied by
 specifying the formatter as the argument to the format() method of a java.time date and time object.

 [image: image]Start a new program that imports the functionality of all methods of the NumberFormat class in the java.text package and all methods of the DateTimeFormatter class in the java.time.format package

 import java.text.NumberFormat ;

 import java.time.format.DateTimeFormatter ;

 [image: image]

 Formats.java

 [image: image]Add a class named “Formats” containing the standard main method

 class Formats

 {

 public static void main (String [] args)

 {

 }

 }

 [image: image]Between the curly brackets of the main method, insert statements to output a number
 with group separators

 NumberFormat nf = NumberFormat.getNumberInstance() ;

 System.out.println(“\nNumber: “ + nf.format(123456789)) ;

 [image: image]Add statements to output a number with a currency sign

 NumberFormat cf = NumberFormat.getCurrencyInstance() ;

 System.out.println(“\nCurrency: “ + cf.format(1234.50f)) ;

 [image: image]Add statements to output a number with a percent sign

 NumberFormat pf = NumberFormat.getPercentInstance() ;

 System.out.println(“\nPercent: “ + pf.format(0.75f)) ;

 [image: image]Add a statement creating a current LocalDateTime object

 java.time.LocalDateTime now =

 java.time.LocalDateTime.now() ;

 [image: image]Add statements to output a formatted numerical date

 DateTimeFormatter df = DateTimeFormatter.ofPattern(“MMM d, yyy”) ;

 System.out.println(“\nDate: “ + now.format(df)) ;

 [image: image]Add statements to output a formatted numerical time

 DateTimeFormatter tf = DateTimeFormatter.ofPattern(“h:m a”) ;

 System.out.println(“\nTime: “ + now.format(tf)) ;

 [image: image]Save the program as Formats.java then compile and run the program to see the formatted output

 [image: image]

 [image: image]

 A statement can address a class that has not been imported by using its full package
 address – as seen here in the statement creating a LocalDateTime object.

 [image: image]

 Pattern letters are case sensitive – refer to the documentation to discover the full
 details of possible patterns.

 Summary

 •One or more import statements can be included at the start of a program to make the functionality of
 other classes available.

 •An import statement can import all classes in a package with a * wildcard character, or individual
 classes by name.

 •The java.io package has classes that are designed to handle input and output procedures.

 •A File object can be used to access files and directories.

 •The InputStreamReader object decodes input bytes into characters, and the BufferedReader reads its decoded characters.

 •A FileReader object can be used to decode text file bytes into characters for reading by a BufferedReader object.

 •A FileWriter object and BufferedWriter object can create and update text files.

 •The java.util package contains utilities for handling collections of data, such as array manipulation
 with its Arrays class.

 •The java.util package also contains an ArrayList class that has methods to easily manipulate sequenced list items.

 •An ArrayList object is a Collection that must specify the generic type of item that list may contain,
 such as <String>.

 •A lambda expression is an anonymous method that can be specified where it is to be
 executed.

 •The java.time package contains a LocalDateTime class that provides fields for date and time components.

 •The java.text package contains a NumberFormat class that can format numbers and currency.

 •The java.time.format package contains a DateTimeFormatter class that can specify patterns to format dates and times.

 8

 Building interfaces

 This chapter demonstrates how to use Java Swing components to create a graphical program
 interface.

 Creating a window

 Adding push buttons

 Adding labels

 Adding text fields

 Adding item selectors

 Adding radio buttons

 Arranging components

 Changing appearance

 Summary

 Creating a window

 Programs can provide a graphical user interface (GUI) using the “Swing” components
 of the Java library. The javax.swing package contains classes to create a variety of components using the style of the
 native operating system. These can be made available to a program by including the
 initial statement import javax.swing.*;.

 A class must be created to represent the GUI to which components can be added to build
 the interface. This is easily achieved by declaring it a subclass of Swing’s JFrame class using the extends keyword – thereby inheriting attributes and behaviors that allow the user to move,
 resize, and close the window.

 [image: image]

 Remember the letter x in javax.swing by thinking of JAVA eXtra.

 The class constructor should include statements to set these minimum requirements:

 •The title of the window – specified as a String argument to the inherited super() method of the JFrame class.

 •The size of the window – specified as width and height in pixels as arguments to its
 setSize() method.

 •What to do when the user closes the window – specified as a constant argument to its
 setDefaultCloseOperation() method.

 •Display the window – specified as a Boolean argument to its setVisible() method.

 Additionally, the constructor can add a JPanel container component to the window, in which smaller components can be added, using
 the inherited add() method of the JFrame class.

 By default, a JPanel container employs a FlowLayout layout manager that lays out components in left-to-right lines, wrapping at the right
 edge of the window.

 The steps opposite describe how to create a basic window containing a JPanel container with a FlowLayout layout manager. This window is featured in subsequent examples in this book that
 demonstrate how to add various components to the JPanel container.

 [image: image]

 Layout managers are described in more detail here
 .

 [image: image]Start a new program that imports all Swing components

 import javax.swing.* ;

 [image: image]

 Window.java

 [image: image]Create a subclass of the JFrame class named “Window” containing the standard main method

 class Window extends JFrame

 {

 public static void main (String[] args) { }

 }

 [image: image]Before the main method, create a JPanel container object

 JPanel pnl = new JPanel() ;

 [image: image]Next, insert this constructor method to specify window requirements and to add the
 JPanel object to the JFrame

 public Window()

 {

 super(“Swing Window”) ;

 setSize(500 , 200) ;

 setDefaultCloseOperation(EXIT_ON_CLOSE) ;

 add(pnl) ;

 setVisible(true) ;

 }

 [image: image]Create an instance of the Window class by inserting this line into the main method

 Window gui = new Window() ;

 [image: image]Save the program as Window.java then compile and run the program to see the basic window appear

 [image: image]

 [image: image]

 [image: image]

 The EXIT_ON_CLOSE operation is a constant member of the JFrame class. It exits the program when the window gets closed.

 [image: image]

 Notice how the add() method is used here to add the JPanel object to the JFrame window.

 Adding push buttons

 The Swing JButton class creates a push-button component that can be added to a graphical interface.
 This lets the user interact with the program by clicking on a button to perform an
 action.

 The JButton object is created with the new keyword, and its constructor takes a String argument specifying text to be displayed on that button.

 Images can appear on buttons too. An ImageIcon object must first be created to represent the image, specifying the image file name
 as the argument to its constructor. Typically, the image will be located alongside
 the program but the argument can include the path for images outside the local directory.

 [image: image]

 Details of how to create event-handler methods to respond to user actions, such as
 a button click, can be found in the next chapter.

 Specify the name of the ImageIcon object as the argument to the JButton constructor to display that image on the button, or specify a String and ImageIcon as its two arguments to display both text and the image.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “Buttons”

 [image: image]

 Buttons.java

 [image: image]Before the Buttons() constructor, create two ImageIcon objects

 ImageIcon tick = new ImageIcon(“Tick.png”) ;

 ImageIcon cross = new ImageIcon(“Cross.png”) ;

 [image: image]Next, create three JButton objects to display text, an image, and both text and an image respectively

 JButton btn = new JButton(“Click Me”) ;

 JButton tickBtn = new JButton(tick) ;

 JButton crossBtn = new JButton(“STOP” , cross) ;

 [image: image]Inside the Buttons() constructor, insert three statements to add the JButton components to the JPanel container

 pnl.add(btn) ;

 pnl.add(tickBtn) ;

 pnl.add(crossBtn) ;

 [image: image]Save the program as Buttons.java then compile and run the program to see push buttons appear in the window

 [image: image]

 The JPanel object has an add() method – to add components to that panel.

 [image: image]

 [image: image]

 [image: image]

 Details of how to create a Java Archive (JAR) can be found here
 .

 The buttons respond graphically when they are clicked, but will not perform an action
 until the program provides an event-handler method to respond to each click event.

 Where the program is intended for deployment in a single Java archive (JAR), image
 resources must be loaded by a ClassLoader object before creating the ImageIcon objects to represent them.

 Specifying the resource file name or path to the getResource() method of a ClassLoader returns a URL, which can be used as the argument to the ImageIcon constructor. The java.net package provides a useful URL class to which these may first be assigned.

 [image: image]Before the Buttons() constructor, create a ClassLoader object

 ClassLoader ldr = this.getClass().getClassLoader() ;

 [image: image]Load the URLs of the image resources

 java.net.URL tickURL = ldr.getResource(“Tick.png”) ;

 java.net.URL crossURL = ldr.getResource(“Cross.png”) ;

 [image: image]Edit the ImageIcon() constructors in Step 2 opposite to use URLs

 ImageIcon tick = new ImageIcon(tickURL) ;

 ImageIcon cross = new ImageIcon(crossURL) ;

 [image: image]Save the changes then recompile and re-run the program – it will run as before but
 can now be deployed in a JAR

 [image: image]

 Notice how the getClass() method and this keyword are used here to reference this class object.

 Adding labels

 The Swing JLabel class creates a label component that can be added to a graphical interface. This
 can be used to display non-interactive text or image, or both text and an image.

 The JLabel object is created with the new keyword, and its constructor takes a String argument specifying text to be displayed on that label, or the name of an ImageIcon object representing an image to display. It can also take three arguments to specify
 text, image, and horizontal alignment as a JLabel constant value. For example, JLabel(“text”, img, JLabel.CENTER) aligns centrally.

 Where a JLabel object contains both text and an image, the relative position of the text can be
 determined by specifying a JLabel constant as the argument to setVerticalPosition() and setHorizontalPosition() methods of the JLabel object.

 Additionally, a JLabel object can be made to display a ToolTip when the cursor hovers over, by specifying
 a text String as the argument to that object’s setToolTipText() method.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “Labels”

 [image: image]

 Labels.java

 [image: image]Before the Labels() constructor, create an ImageIcon object

 ImageIcon duke = new ImageIcon(“Duke.png”) ;

 [image: image]Next, create three JLabel objects to display an image, text, and both text and an image respectively

 JLabel lbl1 = new JLabel(duke) ;

 JLabel lbl2 = new JLabel(“Duke is the friendly mascot of Java technology.”) ;

 JLabel lbl3 = new JLabel(“Duke” , duke , JLabel.CENTER) ;

 [image: image]Inside the Labels() constructor, insert this statement to create a ToolTip for the first label

 lbl1.setToolTipText(“Duke - the Java Mascot”) ;

 [image: image]Add these two statements to align the text centrally below the third label

 lbl3.setHorizontalTextPosition(JLabel.CENTER) ;

 lbl3.setVerticalTextPosition(JLabel.BOTTOM) ;

 [image: image]Now, add three statements to add the JLabel components to the JPanel container

 pnl.add(lbl1) ;

 pnl.add(lbl2) ;

 pnl.add(lbl3) ;

 [image: image]Save the program as Labels.java then compile and run the program, placing the cursor over the first label

 [image: image]

 [image: image]

 [image: image]

 JLabel alignment constants include LEFT, CENTER, RIGHT, TOP and BOTTOM.

 Where the program is intended for deployment in a single Java archive (JAR), the image
 resource must be loaded by a ClassLoader object before creating the ImageIcon object to represent it.

 Specifying the resource file name or path to the getResource() method of a ClassLoader returns a URL, which can be used as the argument to the ImageIcon constructor.

 [image: image]Before the Labels() constructor, create a ClassLoader object

 ClassLoader ldr = this.getClass().getClassLoader() ;

 [image: image]Edit the ImageIcon() constructor in Step 2 opposite to load the URL of the image resource using the ClassLoader object

 ImageIcon duke = new ImageIcon(ldr.getResource(“Duke.png”)) ;

 [image: image]Save the changes, then recompile and re-run the program – it will run as before, but
 can now be deployed in a JAR

 [image: image]

 Details of how to create a Java Archive (JAR) can be found here
 .

 Adding text fields

 The Swing JTextField class creates a single-line text field component that can be added to a graphical
 interface. This can be used to display editable text, and allows the user to enter
 text to interact with the program.

 The JTextField object is created with the new keyword, and its constructor can take a String argument specifying default text to be displayed in that field. In this case, the
 component will be sized to accommodate the length of the String. Alternatively, the argument may be a numeric value to specify the text field size.
 The constructor can also take two arguments, specifying both default text and the
 text field size.

 [image: image]

 Use the JPasswordField class instead of the JTextField class where input characters are needed to be not visible.

 A multiple-line text field can be created with the JTextArea class, whose constructor takes two numerical arguments specifying its number of lines
 and its width. Alternatively, three arguments can be supplied specifying default text,
 line number, and width. Text can be made to wrap at word endings within this field
 by specifying true as the argument to the setLineWrap() method and setWrapStyleWord() method of the JTextArea object.

 Where text entered into a JTextArea component exceeds its initial size, the component will expand to accommodate the
 text. To make the component a fixed size with scrolling capability, it can be placed
 in a JScrollPane container. This is created with the new keyword, and takes the name of the JTextArea as its argument.

 Scroll bars will, by default, only appear when the field contains text that exceeds
 its initial size – but they can be made to appear constantly by specifying a JScrollPane constant as the argument to the snappily-named setVerticalScrollBarPolicy() or setHorizontalScrollBarPolicy() methods of the JScrollPane object. For example, to always display a vertical scrollbar use the JScrollPane.VERTICAL_SCROLLBAR_ALWAYS constant as the argument.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “TextFields”

 [image: image]

 TextFields.java

 [image: image]Before the TextFields() constructor, create two JTextField objects

 JTextField txt1 = new JTextField(38) ;

 JTextField txt2 = new JTextField(“Default Text” , 38) ;

 [image: image]Create a JTextArea object five lines high

 JTextArea txtArea = new JTextArea(5 , 37) ;

 [image: image]Add a JScrollPane object – to contain the JTextArea created in Step 3, above

 JScrollPane pane = new JScrollPane(txtArea) ;

 [image: image]In the TextFields() constructor method, insert statements to enable the JTextArea object to wrap at word endings

 txtArea.setLineWrap(true) ;

 txtArea.setWrapStyleWord(true) ;

 [image: image]Insert a statement to always display a vertical scrollbar for the JTextArea object

 pane.setVerticalScrollBarPolicy (JScrollPane.VERTICAL_SCROLLBAR_ALWAYS) ;

 [image: image]Insert two statements to add the JTextField components to the JPanel container

 pnl.add(txt1) ;

 pnl.add(txt2) ;

 [image: image]Insert another statement to add the JScrollPane container, (containing the JTextArea field) to the JPanel container

 pnl.add(pane) ;

 [image: image]Save the program as TextFields.java then compile and run the program, entering some text into the text area

 [image: image]

 [image: image]

 [image: image]

 A JTextArea component has no scrolling ability unless it is contained within a JScrollPane component.

 Adding item selectors

 The Swing JCheckBox class creates a checkbox component that can be added to a graphical interface. This
 can be used to allow the user to select or deselect individual items in a program.

 The JCheckBox object is created with the new keyword, and its constructor takes a String argument specifying text to be displayed alongside that checkbox. It can also take
 a second true argument to make the checkbox be selected by default.

 A choice of items can be offered by the JComboBox class that creates a drop-down list from which the user can select any single item.
 This object is created with the new keyword, and its constructor typically takes the name of a String array as its argument. Each element in the array provides an item for selection in
 the drop-down list. Similarly, a choice of items can be offered by the JList class that creates a fixed-size list from which the user can select one or more items.
 It is created with the new keyword, and its constructor also takes an array as its argument, with each element
 providing an item for selection. As both JList and JComboBox are “Collections” they must specify the generic type they may contain when they get
 created, such as <String>.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “Items”

 [image: image]

 Items.java

 [image: image]Before the Items() constructor, create a String array of items for selection

 String[] toppings = { “Pepperoni” , “Mushroom” , “Ham” , “Tomato” } ;

 [image: image]Next, create four JCheckBox objects to present each array item for selection – with one selected by default

 JCheckBox chk1 = new JCheckBox(toppings[0]) ;

 JCheckBox chk2 = new JCheckBox(toppings[1] , true) ;

 JCheckBox chk3 = new JCheckBox(toppings[2]) ;

 JCheckBox chk4 = new JCheckBox(toppings[3]) ;

 [image: image]Add a second String array of items for selection

 String[] styles = { “Deep Dish” , “Gourmet Style” , “Thin & Crispy” } ;

 [image: image]Create a JComboBox object to present each item in the second array for selection

 JComboBox<String> box1 = new JComboBox<String>(styles) ;

 [image: image]Add a JList object to present each item in the first array for selection from a list

 JList<String> lst1 = new JList<String>(toppings) ;

 [image: image]In the Items() constructor method, insert statements to add each JCheckBox component to the JPanel container

 pnl.add(chk1) ;

 pnl.add(chk2) ;

 pnl.add(chk3) ;

 pnl.add(chk4) ;

 [image: image]Insert statements to make a default selection and to add the JComboBox component to the JPanel container

 box1.setSelectedIndex(0) ;

 pnl.add(box1) ;

 [image: image]Now, insert a statement to add the JList component to the JPanel container

 pnl.add(lst1) ;

 [image: image]Save the program as Items.java then compile and run the program, selecting items from the lists

 [image: image]

 [image: image]

 [image: image]

 Only one item can be selected from a JComboBox component – multiple items can be selected from a JList component.

 [image: image]

 Details of how to create event-handler methods to respond to user actions, such as
 an item selection, can be found in Chapter 9.

 Adding radio buttons

 The Swing JRadioButton class creates a radio button component that can be added to a graphical interface.
 This can be used to allow the user to select an item from a group of radio buttons.

 The JRadioButton object is created with the new keyword, and its constructor takes a String argument specifying text to be displayed alongside that radio button. It can also
 take a second true argument to make a radio button be selected by default.

 A ButtonGroup object logically groups a number of radio buttons so that only one button in that
 group can be selected at any time. Each radio button is added to the ButtonGroup object by specifying its name as the argument to the group’s add() method.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “Radios”

 [image: image]

 Radios.java

 [image: image]Before the Radios() constructor, create three JRadioButton objects – with one selected by default

 JRadioButton rad1 = new JRadioButton(“Red” , true) ;

 JRadioButton rad2 = new JRadioButton(“Rosé”) ;

 JRadioButton rad3 = new JRadioButton(“White”) ;

 [image: image]Next, create a ButtonGroup object with which to group the radio buttons

 ButtonGroup wines = new ButtonGroup() ;

 [image: image]In the Radios() constructor method, insert statements to add each JRadioButton component to the JButtonGroup

 wines.add(rad1) ;

 wines.add(rad2) ;

 wines.add(rad3) ;

 [image: image]Insert statements to add the JRadioButton components to the JPanel container

 pnl.add(rad1) ;

 pnl.add(rad2) ;

 pnl.add(rad3) ;

 [image: image]Save the program as Radios.java then compile and run the program, selecting any one radio button after the default

 [image: image]

 The ButtonGroup object only groups the buttons logically, not physically.

 [image: image]

 [image: image]

 [image: image]

 Details of how to create event-handler methods to respond to user actions can be found
 in the next chapter.

 The examples on the previous pages have demonstrated the most common Swing components
 – JButton, JLabel, JTextField, JCheckBox, JComboBox, JList and JRadioButton. There are many more specialized components available in the javax.swing package, whose details can be found in the Java documentation. For example, the JSlider, JProgressBar, and JMenuBar components below:

 [image: image]

 [image: image]

 [image: image]

 [image: image]

 Try using the Java documentation to add a JSlider component to the Radios program – see here
 for details on how to use the documentation.

 Arranging components

 The java.awt package (Abstract Window Toolkit) contains a number of layout manager classes that
 can be used to place components in a container in different ways.

 A layout manager object is created using the new keyword, and can then be specified as the argument to a JPanel constructor to have the panel use that layout. When components get added to the panel
 they will be placed according to the rules of the specified layout manager.

 	
 Layout Manager:

 	
 Rules:

 	
 BorderLayout

 	
 Places North, South, East, West and Center (the content pane default)

 	
 BoxLayout

 	
 Places in a single row or column

 	
 CardLayout

 	
 Places different components in a specified area at different times

 	
 FlowLayout

 	
 Places left to right in a wrapping line (the JPanel default)

 	
 GridBagLayout

 	
 Places in a grid of cells, allowing components to span cells

 	
 GridLayout

 	
 Places in a grid of rows and columns

 	
 GroupLayout

 	
 Places horizontally and vertically

 	
 SpringLayout

 	
 Places by relative spacing

 The top level JFrame object has a “content pane” container that places components using the BorderLayout layout manager by default. This can be used to place up to five JPanel containers, which may each use their default FlowLayout layout manager, or any of the layout managers in the table above. Using a variety
 of layout managers accommodates most layout requirements.

 The content pane can be represented by a java.awt.Container object, whose add() method can specify the position and name of a component to be placed within the content
 pane.

 [image: image]

 You can find further details of each layout manager in the java.awt section of the Java documentation.

 [image: image]Edit a copy of Window.java from here
 , changing the class declaration, constructor, and instance from “Window” to “Layout”,
 then add a statement at the start of the program to import the functionality of the
 java.awt package

 import java.awt.* ;

 [image: image]

 Layout.java

 [image: image]Before the Layout() constructor, create a Container object representing the JFrame content pane container

 Container contentPane = getContentPane() ;

 [image: image]Create a second JPanel object using a GridLayout layout manager in a 2 x 2 grid

 JPanel grid = new JPanel(new GridLayout(2 , 2)) ;

 [image: image]In the Layout() constructor method, insert statements adding JButton components to both JPanel objects

 pnl.add(new JButton(“Yes”)) ;

 pnl.add(new JButton(“No”)) ;

 pnl.add(new JButton(“Cancel”)) ;

 grid.add(new JButton(“1”)) ;

 grid.add(new JButton(“2”)) ;

 grid.add(new JButton(“3”)) ;

 grid.add(new JButton(“4”)) ;

 [image: image]Now, insert statements adding both panels and a button to the content pane

 contentPane.add(“North” , pnl) ;

 contentPane.add(“Center” , grid) ;

 contentPane.add(“West” , new JButton(“West”)) ;

 [image: image]Save the program as Layout.java then compile and run the program to see the component layout

 [image: image]

 [image: image]

 While the FlowLayout maintains the JButton size, other layout managers expand the components to fill their layout design.

 Changing appearance

 The java.awt package (Abstract Window Toolkit) contains “painting” classes that can be used to
 color interface components. These can be made available to a program by including
 the initial statement import java.awt.* ; .

 Included in the java.awt package is a Color class that has constants representing a few basic colors, such as Color.RED. Additionally, instances of the Color class can be created using the new keyword to represent custom colors. The constructor can take three integer arguments
 between zero and 255 to represent red, green, and blue (RGB) values to form the custom
 color.

 Each component has a setBackground() method and a setForeground() method that take a Color object as their argument to paint that component with the specified color.

 Note that the background of JLabel components are transparent by default, so it is recommended that their setOpaque() method should be called to set the opacity to true before they are painted.

 Also in the java.awt package is a Font class that can be used to modify the font displaying text. A Font object represents a font, and its constructor can take three arguments to specify
 name, style and size:

 •The specified name should be one of the three platform-independent names “Serif ”,
 “SansSerif ” or “Monospaced”.

 •The specified style should be one of the following three
constants: Font.PLAIN, Font.BOLD or Font.ITALIC

 •The specified size should be an integer of the point size.

 Each component has a setFont() method that takes a Font object as its argument to paint that component with the specified font.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “Custom”

 [image: image]

 Custom.java

 [image: image]Add a statement at the very start of the program to import the functionality of all
 classes in the java.awt package

 import java.awt.* ;

 [image: image]Before the Custom() constructor, create three JLabel objects

 JLabel lbl1 = new JLabel(“Custom Background”) ;

 JLabel lbl2 = new JLabel(“Custom Foreground”) ;

 JLabel lbl3 = new JLabel(“Custom Font”) ;

 [image: image]Next, create Color, Font, and Box layout objects

 Color customColor = new Color(255 , 0 , 0) ;

 Font customFont = new Font(“Serif” , Font.PLAIN , 64) ;

 Box box = Box.createVerticalBox() ;

 [image: image]In the Custom() constructor method, insert statements to color a JLabel background using a Color constant

 lbl1.setOpaque(true) ;

 lbl1.setBackground(Color.YELLOW) ;

 [image: image]Insert a statement to color a JLabel foreground using a custom Color object

 lbl2.setForeground(customColor) ;

 [image: image]Insert a statement to paint text on a JLabel component using a custom font

 lbl3.setFont(customFont) ;

 [image: image]Add each label to the layout container

 box.add(lbl1) ; box.add(lbl2) ; box.add(lbl3) ;

 [image: image]Then, add the layout container to the JPanel container

 pnl.add(box) ;

 [image: image]Save the program as Custom.java then compile and run the program to see the effect

 [image: image]

 [image: image]

 In this case, the custom color is equivalent to Color.RED as the RGB value specifies the maximum red value with no green or blue.

 [image: image]

 A Box object is a handy lightweight container that uses BoxLayout as its layout manager. The Box object’s createVerticalBox() method individually displays its components from top to bottom.

 Summary

 •The javax.swing package contains the Java Swing classes that are used to create GUI components.

 •A window is created as a top-level JFrame container.

 •The JFrame constructor should specify the window’s title, size, default close operation and
 visibility.

 •A JPanel container displays smaller components in a wrapping line using its default FlowLayout layout manager.

 •The JButton constructor can specify text and images to be displayed on a push button component.

 •An ImageIcon object represents an image to use in the program.

 •Programs that are to be deployed as a single Java archive (JAR) should use a ClassLoader object to specify an image source.

 •A JLabel object displays non-interactive text and image content.

 •Editable text can be displayed in JTextField and JTextArea fields.

 •A JScrollPane object provides scrollbars for a JTextArea field.

 •Items for selection can be displayed with JCheckBox, JComboBox and JList components.

 •A ButtonGroup object logically groups a number of JRadioButton components so only one can be selected.

 •Specific RGB colors can be represented by the Color class of the java.awt package.

 •The java.awt package has a Font class that can be used to create objects representing a particular font name, style,
 and size.

 •Multiple JPanel containers can be added to a JFrame container by using the Container class of the java.awt package to represent the content pane of the JFrame.

 •When creating a JPanel container object, its argument may optionally specify a layout manager.

 9

 Recognizing events

 This chapter demonstrates how to create Java program event-handlers that respond to
 user interface actions.

 Listening for events

 Generating events

 Handling button events

 Handling item events

 Reacting to keyboard events

 Responding to mouse events

 Announcing messages

 Requesting input

 Summary

 Listening for events

 A user can interact with a program that provides a graphical user interface (GUI)
 by performing actions with a mouse, keyboard, or other input device. These actions
 cause “events” to occur in the interface, and making a program respond to them is
 known as “event-handling”.

 For a program to recognize user events it needs to have one or more EventListener interfaces added from the java.awt.event package. These can be made available to the program by adding an initial statement
 to import java.awt.event.* ; .

 The desired EventListener interface can be included in the class declaration using the implements keyword. For example, a class declaration to listen for button clicks might look
 like this:

 class Click extends JFrame implements ActionListener { }

 The Java documentation describes many EventListener interfaces that can listen out for different events, but the most common ones are
 listed in the table below, together with a brief description:

 	
 EventListener:

 	
 Description:

 	
 ActionListener

 	
 Recognizes action events that occur when a push button is pushed or released

 	
 ItemListener

 	
 Recognizes item events that occur when a list item gets selected or deselected

 	
 KeyListener

 	
 Recognizes keyboard events that occur when the user presses or releases a key

 	
 MouseListener

 	
 Recognizes mouse button actions that occur when the user presses or releases a mouse
 button, and when the mouse enters or exits a component

 	
 MouseMotionListener

 	
 Recognizes motion events that occur when the user moves the mouse

 [image: image]

 Multiple EventListeners can be included after the implements keyword as a comma-separated list.

 Generating events

 Components need to generate events that the EventListener interfaces can recognize if they are to be useful. Having added the appropriate EventListener to the program, as described opposite, an event generator must be added to the component.

 For example, in order to have the program respond to a button click, the ActionListener interface is added to the program and the button’s addActionListener() method must be called, specifying the this keyword as its argument. This makes the button generate an event when it gets clicked,
 which can be recognized by the ActionListener interface.

 Statements creating a button that generates events look like this:

 JButton btn = new JButton(“Click Me”) ;

 btn.addActionListener(this) ;

 When the user clicks a button that generates an event, the ActionListener interface recognizes the event and seeks an event-handler method within the program
 to execute a response.

 Each EventListener interface has an associated event-handler method that is called when an event is
 recognized. For example, when a button gets clicked, the ActionListener interface calls an associated method named actionPerformed() and passes an ActionEvent object as its argument.

 An ActionEvent object contains information about the event and the source component from where it
 originated. Most usefully, it has a getSource() method that identifies the object that generated the event. This can be used to create
 an appropriate response for that component.

 An event-handler method to create a response for a specific button click could look
 like this:

 public void actionPerformed(ActionEvent event)

 {

 if (event.getSource() == btn)

 {

 Statements to be executed for this button click event

 }

 }

 Handling button events

 A Swing JButton component that is set to generate an ActionEvent event when it gets clicked can be recognized by the ActionListener interface, which will pass the event to its actionPerformed() event-handler method. The ActionEvent object has a getSource() method that identifies the originating component, and a getActionCommand() method that returns a String. This will be the text label for a button component, or the content for a text field
 component.

 One response to a button might be to disable a component by calling its setEnabled() method with a false argument. Conversely, the component can be enabled once more by specifying a true argument to its setEnabled() method.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “Actions”

 [image: image]

 Actions.java

 [image: image]Add a statement at the very start of the program to import the functionality of all
 classes in the

 java.awt.event package

 import java.awt.event.* ;

 [image: image]Edit the class declaration to add an ActionListener interface to the program

 class Actions extends JFrame implements ActionListener

 [image: image]Before the Actions() constructor, create two JButton push buttons and a JTextArea text field

 JButton btn1 = new JButton(“Button 1”) ;

 JButton btn2 = new JButton(“Button 2”) ;

 JTextArea txtArea = new JTextArea(5 , 38) ;

 [image: image]Add the buttons and text area to the JPanel container

 pnl.add(btn1) ;

 pnl.add(btn2) ;

 pnl.add(txtArea) ;

 [image: image]Insert statements to set the initial state of two components

 btn2.setEnabled(false) ;

 txtArea.setText(“Button 2 is Disabled”) ;

 [image: image]In the Actions() constructor, insert statements to make each button generate an ActionEvent event when clicked

 btn1.addActionListener(this) ;

 btn2.addActionListener(this) ;

 [image: image]After the constructor method, add an event-handler method for the ActionListener interface – to display text identifying which button has been clicked

 public void actionPerformed(ActionEvent event)

 {

 txtArea.setText(event.getActionCommand()

 + “ Clicked and Disabled”) ;

 }

 [image: image]Insert if statements in the event-handler method – executing a specific response to each button
 click

 if (event.getSource() == btn1)

 { btn2.setEnabled(true) ; btn1.setEnabled(false) ; }

 if (event.getSource() == btn2)

 { btn1.setEnabled(true) ; btn2.setEnabled(false) ; }

 [image: image]Save the program as Actions.java then compile and run the program, clicking the push buttons

 [image: image]

 [image: image]

 [image: image]

 [image: image]

 The components are declared before the constructor so they are globally accessible
 to the event-handler method.

 [image: image]

 It’s sometimes useful to disable a component until the user has performed a required
 action.

 Handling item events

 Swing JRadioButton, JCheckBox and JComboBox components maintain states whose change can be recognized by the ItemListener interface, which will pass the ItemEvent to its itemStateChanged() event-handler method. The ItemEvent object has a getItemSelectable() method that identifies the originating component and a getStateChange() method that returns its status. This will determine if the change is selecting or
 deselecting an item, and can be compared to an ItemEvent.SELECTED constant.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “States”. Then, add a statement at the very start of the program
 to import the functionality of the java.awt.event package

 import java.awt.event.* ;

 [image: image]

 States.java

 [image: image]Edit the class declaration to add an ItemListener interface to the program

 class States extends JFrame implements ItemListener

 [image: image]Before the States() constructor, create these components

 String[] styles = { “Deep Dish” , “Gourmet Style” , “Thin & Crispy” } ;

 JComboBox<String> box = new JComboBox<String> (styles) ;

 JRadioButton rad1 = new JRadioButton(“White”) ;

 JRadioButton rad2 = new JRadioButton(“Red”) ;

 ButtonGroup wines = new ButtonGroup() ;

 JCheckBox chk = new JCheckBox(“Pepperoni”) ;

 JTextArea txtArea = new JTextArea(5 , 38) ;

 [image: image]In the States() constructor, insert statements to group the two JRadioButton components

 wines.add(rad1) ;

 wines.add(rad2) ;

 [image: image]Insert statements to add the components to the JPanel container

 pnl.add(rad1) ;

 pnl.add(rad2) ;

 pnl.add(chk) ;

 pnl.add(box) ;

 pnl.add(txtArea) ;

 [image: image]

 Note how this example uses the append() method to add further text to the text area.

 [image: image]Insert statements to make selectable components generate an ItemEvent event when an item is selected or deselected

 rad1.addItemListener(this) ;

 rad2.addItemListener(this) ;

 chk.addItemListener(this) ;

 box.addItemListener(this) ;

 [image: image]After the constructor method, add an event-handler method for the ItemListener interface – identifying items selected by the JRadioButton components

 public void itemStateChanged(ItemEvent event)

 {

 if (event.getItemSelectable() == rad1)

 txtArea.setText(“White wine selected”) ;

 if (event.getItemSelectable() == rad2)

 txtArea.setText(“Red wine selected”) ;

 }

 [image: image]Add an if statement to the event-handler method to indicate the status of the JCheckBox component

 if ((event.getItemSelectable() == chk) &&

 (event.getStateChange() == ItemEvent.SELECTED))

 txtArea.append(“\nPepperoni selected\n”) ;

 [image: image]Add an if statement to the event-handler method to indicate the status of the JComboBox component

 if ((event.getItemSelectable() == box) &&

 (event.getStateChange() == ItemEvent.SELECTED))

 txtArea.append(event.getItem().toString() + “ selected”) ;

 [image: image]Save the program as States.java then compile and run the program, selecting various items from left to right

 [image: image]

 [image: image]

 The JComboBox fires two ItemEvents when an item gets selected – one selecting the item and one
 deselecting the previously selected item. That is why steps 8 & 9 must identify both
 the originating component and the type of ItemEvent.

 [image: image]

 Notice that the getItem() method returns the item affected by the change.

 Reacting to keyboard events

 Swing components that allow the user to input text can recognize user key strokes
 with the KeyListener interface, which will pass the KeyEvent event to these three event-handler methods:

 	
 Event-handler:

 	
 Description:

 	
 keyPressed(KeyEvent)

 	
 Called when a key is pressed

 	
 keyTyped(KeyEvent)

 	
 Called after a key is pressed

 	
 keyReleased(KeyEvent)

 	
 Called when a key is released

 When a program implements the KeyListener interface it must declare these three methods – even if not all are actually used.

 The KeyEvent object has a getKeyChar() method, which returns the character for that key, and a getKeyCode() method, which returns an integer Unicode value representing that key. Additionally,
 a getKeyText() method takes the key code value as its argument and returns a description of that
 key.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “Keystrokes”. Then, add an initial statement to import the functionality
 of the java.awt.event package

 import java.awt.event.* ;

 [image: image]

 Keystrokes.java

 [image: image]Edit the class declaration to add a KeyListener interface to the program

 class Keystrokes extends JFrame implements KeyListener

 [image: image]Before the Keystrokes() constructor, create a JTextField component and a JTextArea component

 JTextField field = new JTextField(38) ;

 JTextArea txtArea = new JTextArea(5 , 38) ;

 [image: image]Insert statements to add these two components to the JPanel container

 pnl.add(field) ; pnl.add(txtArea) ;

 [image: image]In the Keystrokes() constructor, insert a statement to make the JTextField component generate KeyEvent events

 field.addKeyListener(this) ;

 [image: image]After the constructor method, add an event-handler that acknowledges when a key gets
 pressed

 public void keyPressed(KeyEvent event)

 {

 txtArea.setText(“Key Pressed”) ;

 }

 [image: image]Add a second event-handler that displays the key character after the key has been
 pressed

 public void keyTyped(KeyEvent event)

 {

 txtArea.append(“\nCharacter : ” + event.getKeyChar()) ;

 }

 [image: image]Add a third event-handler that displays the key code and key text when the key gets
 released

 public void keyReleased(KeyEvent event)

 {

 int keyCode = event.getKeyCode() ;

 txtArea.append(“\nKey Code : ” + keyCode) ;

 txtArea.append(“\nKey Text : ” + event.getKeyText(keyCode)) ;

 }

 [image: image]Save the program as Keystrokes.java then compile and run the program, typing in the top text field

 [image: image]

 [image: image]

 The getKeyCode() method only returns the key code if called from within the keyPressed() or keyReleased() event-handlers – not from the keyTyped() event-handler.

 [image: image]

 Run this program and press a non-character key, such as Backspace, to see its key
 text name.

 Responding to mouse events

 Swing components can recognize user mouse actions with the MouseListener interface, which will pass the MouseEvent event to these five event-handler methods:

 	
 Event-handler:

 	
 Description:

 	
 mousePressed(MouseEvent)

 	
 Button is pressed

 	
 mouseReleased(MouseEvent)

 	
 Button is released

 	
 mouseClicked(MouseEvent)

 	
 Button has been released

 	
 mouseEntered(MouseEvent)

 	
 Mouse moves on

 	
 mouseExited(MouseEvent)

 	
 Mouse moves off

 Mouse movements can be recognized by the MouseMotionListener interface, which passes MouseEvent events to two event-handlers:

 	
 Event-handler:

 	
 Description:

 	
 mouseMoved(MouseEvent)

 	
 Mouse is moved

 	
 mouseDragged(MouseEvent)

 	
 Mouse is dragged

 When a program implements the MouseListener or MouseMotionListener interface, it must declare all its associated event-handler methods – even if not
 all are actually used.

 The MouseEvent object passed by the MouseMotionListener interface has getX() and getY() methods, which return the current mouse coordinates relative to the component generating
 the event.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “Mouse”. Then, add an initial statement to import the functionality
 of the java.awt.event package

 import java.awt.event.* ;

 [image: image]

 Mouse.java

 [image: image]Edit the class declaration to add a MouseListener interface and MouseMotionListener interface to the program

 class Mouse extends JFrame implements MouseListener , MouseMotionListener

 [image: image]Before the Mouse() constructor, create a JTextArea component and two integer variables to store coordinates

 JTextArea txtArea = new JTextArea(8 , 38) ;

 int x , y ;

 [image: image]In the Mouse() constructor, insert statements to add the JTextArea component to the JPanel container and to make it generate MouseEvent events

 pnl.add(txtArea) ;

 txtArea.addMouseMotionListener(this) ;

 txtArea.addMouseListener(this) ;

 [image: image]After the constructor method, add the two event-handlers for the MouseMotionListener interface

 public void mouseMoved(MouseEvent event)

 { x = event.getX() ; y = event.getY() ; }

 public void mouseDragged(MouseEvent event) { }

 [image: image]Add five event-handlers for the MouseListener interface

 public void mouseEntered(MouseEvent event)

 { txtArea.setText(“\nMouse Entered”) ; }

 public void mousePressed(MouseEvent event)

 { txtArea.append(“\nMouse Pressed at X: “ +x+ “Y: “ +y) ; }

 public void mouseReleased(MouseEvent event)

 { txtArea.append(“\nMouse Released”) ; }

 public void mouseClicked(MouseEvent event) { }

 public void mouseExited(MouseEvent event) { }

 [image: image]Save the program as Mouse.java, then compile and run the program, clicking on the JTextArea component

 [image: image]

 [image: image]

 Rollover effects can be created by swapping images with the mouseEntered() and mouseExited() event-handler methods.

 Announcing messages

 The Swing JOptionPane class is designed to create a standard dialog box centered on its parent window.
 Its showMessageDialog() method displays a message to the user providing information, warning, or error description.

 The showMessageDialog() method can take four arguments:

 •Parent object – typically referenced by the this keyword

 •Message String to be displayed

 •Dialog title String

 •One of the JOptionPane constants:

 INFORMATION_MESSAGE

 WARNING_MESSAGE or ERROR_MESSAGE

 The dialog box will display an appropriate icon according to which JOptionPane constant is specified.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “Messages”

 [image: image]

 Messages.java

 [image: image]Add an initial statement to import the functionality of the java.awt.event package

 import java.awt.event.* ;

 [image: image]Edit the class declaration to add an ActionListener interface to the program

 class Messages extends JFrame implements ActionListener

 [image: image]Before the Messages() constructor, create three JButton components

 JButton btn1= new JButton(“Show Information Message”) ;

 JButton btn2= new JButton(“Show Warning Message”) ;

 JButton btn3= new JButton(“Show Error Message”) ;

 [image: image]Insert statements to add the button components to the JPanel container

 pnl.add(btn1) ;

 pnl.add(btn2) ;

 pnl.add(btn3) ;

 [image: image]In the Messages() constructor, insert statements to make each button generate an ActionEvent event

 btn1.addActionListener(this) ;

 btn2.addActionListener(this) ;

 btn3.addActionListener(this) ;

 [image: image]After the constructor method, add an event-handler method for the ActionListener interface

 public void actionPerformed(ActionEvent event) { }

 [image: image]Between the curly brackets of the event-handler, insert if statements to display a dialog when a button gets clicked

 if (event.getSource() == btn1)

 JOptionPane.showMessageDialog(this , “Information...” , “Message Dialog”, JOptionPane.INFORMATION_MESSAGE) ;

 if (event.getSource() == btn2)

 JOptionPane.showMessageDialog(this , “Warning...” , “Message Dialog” , JOptionPane.WARNING_MESSAGE) ;

 if (event.getSource() == btn3)

 JOptionPane.showMessageDialog(this , “Error...” , “Message Dialog” , JOptionPane.ERROR_MESSAGE) ;

 [image: image]Save the program as Messages.java then compile and run the program, clicking on each button

 [image: image]

 [image: image]

 [image: image]

 [image: image]

 [image: image]

 You can also simply specify the parent and message as two arguments to create a dialog
 with the default information icon and the default “Message” title.

 Requesting input

 The Swing JOptionPane class can request information from the user by opening a dialog box with its showConfirmationDialog() method, requesting a decision, or with its showInputDialog() method, requesting user input.

 Both these methods can take four arguments:

 •Parent object – typically referenced by the this keyword

 •Request String to be displayed

 •Dialog title String

 •One of the JOptionPane constants such as PLAIN_MESSAGE or to specify dialog decision buttons as YES_NO_CANCEL_OPTION

 The dialog box will return the input String from an input dialog or an integer from a decision button – zero for yes, 1 for no,
 or 2 for cancel.

 [image: image]Edit a copy of Window.java from here
 , changing the class name in the declaration, the constructor, and the instance statement
 from “Window” to “Request”. Then, add an initial statement to import the functionality
 of the java.awt.event package

 import java.awt.event.* ;

 [image: image]

 Request.java

 [image: image]Edit the class declaration to add an ActionListener interface to the program

 class Request extends JFrame implements ActionListener

 [image: image]Before the Request() constructor, create a JTextField and two JButton components

 JTextField field = new JTextField(38) ;

 JButton btn1 = new JButton(“Request Decision”) ;

 JButton btn2 = new JButton(“Request Input”) ;

 [image: image]Add each component to the JPanel container

 pnl.add(field) ; pnl.add(btn1) ; pnl.add(btn2) ;

 [image: image]In the Request() constructor, insert statements to make each button generate an ActionEvent event

 btn1.addActionListener(this) ;

 btn2.addActionListener(this) ;

 [image: image]After the constructor method, add an event-handler method for the ActionListener interface

 public void actionPerformed(ActionEvent event) { }

 [image: image]Between the curly brackets of the event-handler, insert an if statement to respond to a decision button click

 if (event.getSource() == btn1)

 {

 int n = JOptionPane.showConfirmDialog(this ,

 “Do you agree?” , “Confirmation Dialog” ,
JOptionPane.YES_NO_CANCEL_OPTION) ;

 switch(n)

 {

 case 0 : field.setText(“Agreed”) ; break ;

 case 1 : field.setText(“Disagreed”) ; break ;

 case 2 : field.setText(“Canceled”) ; break ;

 }

 }

 [image: image]Insert an if statement to handle user input

 if (event.getSource() == btn2)

 field.setText(JOptionPane.showInputDialog(this ,

 “Enter your comment” , “Input Dialog” ,
JOptionPane.PLAIN_MESSAGE)) ;

 [image: image]Save the program as Request.java then compile and run the program, clicking on each button

 [image: image]

 [image: image]

 [image: image]

 [image: image]

 [image: image]

 [image: image]

 The OK_CANCEL constant provides two decision buttons – OK returns zero and CANCEL returns 2. Refer to the documentation for the full range of constants.

 Summary

 •The implements keyword can be used in a class declaration to add one or more EventListener interfaces.

 •A component’s addActionListener() method takes the this keyword as its argument – to make that component generate an ActionEvent event when it is activated.

 •The ActionListener interface passes a generated ActionEvent event as the argument to its actionPerformed() event-handler, which can respond to a push button click made by the user.

 •The getSource() method of an ActionEvent event can be used to identify the originating component that generated the event.

 •An ItemListener interface passes a generated ItemEvent event as the argument to its itemStateChanged() event-handler, which can respond to an item selection made by the user.

 •The getItemSelectable() method of an ItemEvent event can be used to identify the component that generated the event.

 •A KeyListener interface passes a generated KeyEvent event as the argument to three required event-handler methods, which can respond
 to a key press and reveal that key’s character.

 •A MouseListener interface passes a generated MouseEvent event as the argument to five required event-handler methods, which can respond to
 mouse actions made by the user.

 •A MouseMotionListener interface passes a generated MouseEvent event as the argument to two required event-handlers, which can respond to mouse
 movement.

 •The showMessageDialog() method of the JOptionPane class creates a dialog displaying a message to the user, and its showInputDialog() and showConfirmationDialog() methods can be used to request user input.

 •Audio resources can be represented by the AudioClip class of the java.applet package, and played using its play() method.

 10

 Deploying programs

 This chapter demonstrates how to deploy Java programs – both as Java archives (JAR)
 and Android application packages (APK).

 Producing an application

 Distributing programs

 Building Java archives

 Deploying applications

 Creating Android projects

 Exploring project files

 Adding resources & controls

 Inserting Java code

 Testing the application

 Deploying Android apps

 Summary

 Producing an application

 Java applications for both desktop and handheld devices can be created from common
 code – like the Lotto.java program below:

 import javax.swing.* ;

 import java.awt.event.* ;

 Components

 public class Lotto extends JFrame implements ActionListener

 {

 ClassLoader ldr = this.getClass().getClassLoader() ;

 java.net.URL iconURL = ldr.getResource(“Lotto.png”) ;
ImageIcon icon = new ImageIcon(iconURL) ;

 JLabel img = new JLabel(icon) ;
JTextField txt = new JTextField(“” , 18) ;

 JButton btn = new JButton(“Get My Lucky Numbers”) ;
JPanel pnl = new JPanel() ;

 Constructor

 public Lotto()

 {

 super(“Lotto App”) ; setSize(260 , 210) ;
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;
pnl.add(img) ; pnl.add(txt) ; pnl.add(btn) ;
btn.addActionListener(this) ; add(pnl) ; setVisible(true) ;

 }

 Event-handler

 public void actionPerformed(ActionEvent event)

 {

 if (event.getSource() == btn)

 {

 int[] nums = new int[60] ; String str = “” ;
for (int i = 1 ; i < 60 ; i++) { nums[i] = i ; }
for (int i = 1 ; i < 60 ; i++)

 { int r= (int) (59 * Math.random()) + 1 ;

 int t= nums[i] ; nums[i]= nums[r] ; nums[r]= t ;

 }

 for (int i = 1 ; i < 7 ; i++)

 { str += “ ” + Integer.toString(nums[i]) + “ ” ; }

 txt.setText(str) ;

 }

 }

 Entry-point

 public static void main (String[] args)

 { Lotto lotto = new Lotto() ; }

 }

 [image: image]

 Lotto.java

 [image: image]

 The algorithm in this event-handler shuffles integers 1-59 in an array, then assigns
 those integers in the first six elements to a string.

 The Lotto program begins with import statements to make Swing components and the ActionListener interface available.

 [image: image]

 Lotto.png – Checkered areas are transparent

 Components

 The program comprises a single panel component containing a label component to display
 an image, a text field component to display output, and a button component for user
 interaction.

 Constructor

 The Lotto() constructor builds a simple Swing interface that loads the panel into a window frame
 measuring 260 x 210.

 Event-handler

 The button’s event-handler method executes an algorithm to select a sequence of six
 unique random numbers in the range of 1-59 for display in the text field component.

 Entry-point

 The main() method creates an instance of the app, and calls upon ClassLoader() to seek the image file resource Lotto.png in the same directory as the program file. The files must be arranged in this way
 before attempting to compile the program.

 [image: image]

 [image: image]

 The Lotto program is used throughout this chapter to create apps for desktop and handheld
 devices.

 Observing the required file arrangement, the javac compiler can be employed in the usual way to create a Lotto.class file, then the java interpreter can be employed to execute the program:

 [image: image]

 Distributing programs

 The Lotto program opens a new window of the specified size containing the Swing interface components.
 Each time the user clicks the push button, its event-handler displays six new random
 numbers in the range 1-59 within the text field component:

 [image: image]

 As with all other examples in this book, the example Lotto program has been compiled here for Java 9 and can be distributed for execution on
 other computers where the Java 9 Runtime Environment is present – regardless of their
 operating system. For example, in the screenshots below, Lotto.class and Lotto.png files have been copied to the desktop of a computer running the Linux operating system
 with the Java 9 runtime installed. The Lotto program can, therefore, be executed by the java interpreter in the same way as on the originating Windows system.

 [image: image]

 [image: image]

 [image: image]

 The .java source code file need not be included when distributing a program – only .class and resource files are needed.

 There is, however, a danger in distributing Java programs this way as the program
 will fail to execute if resource files become unavailable – in this case, removing
 Lotto.png produces this error:

 [image: image]

 The JDK contains a jar utility tool that allows program class and resource files to be bundled into a single
 Java ARchive (JAR) file. This compresses all program files, using the popular ZIP
 format, into a single file with a .jar file extension. A JAR file stores the program efficiently and helps ensure that resource
 files do not become accidentally isolated. The java interpreter fully supports JAR files so Java applications can be executed without
 extracting the individual files. Like the java interpreter and javac compiler, the jar tool is located in Java’s bin directory and runs from the command line to perform these common jar operations:

 	
 Command syntax:

 	
 Operation:

 	
 jar cf jar-file input-file/s

 	
 Create a JAR file

 	
 jar cfe jar-file entry-point input-file/s

 	
 Create a JAR file with a specified entry point in a stand-alone application

 	
 jar tf jar-file

 	
 View contents of a JAR file

 	
 jar uf jar-file

 	
 Update contents of JAR file

 	
 jar ufm jar-file attribute-file

 	
 Update contents of JAR file manifest, adding attribute/s

 	
 jar xf jar-file

 	
 Extract all contents of JAR

 	
 jar xf jar-file archived-file/s

 	
 Extract specific files from JAR

 [image: image]

 Larger programs may use many resource files whose location can easily be disrupted
 by a user – the solution is to package the program and all its resources into a single
 executable archive file.

 [image: image]

 For larger programs, the * wildcard character can be used to archive multiple files
 within the directory – for instance, jar cf Program.jar *.class archives all class files in the current directory.

 Building Java archives

 Follow these steps to create a JAR file for the Lotto program described at the start
 of this chapter:

 [image: image]Open a command-line/terminal window, then navigate to the directory where the Lotto
 program files are located – Lotto.class and Lotto.png

 [image: image]

 Lotto.jar

 [image: image]Enter jar cfe Lotto.jar Lotto Lotto.class Lotto.png, then hit the Enter key to create a Lotto.jar archive

 [image: image]Next, enter jar tf Lotto.jar to see all contents of the JAR

 [image: image]

 Notice that the jar tool automatically creates a META-INF directory alongside the archived files. This contains a text-based manifest meta
 file named MANIFEST.MF that you can examine:

 [image: image]Now, enter jar xf Lotto.jar META-INF to extract a copy of the META-INF directory

 [image: image]Finally, enter type META-INF\MANIFEST.MF to see the text contained within the archive manifest

 [image: image]

 [image: image]

 The JAR manifest can be modified for advanced purposes, such as the addition of permissions
 to use system resources.

 Deploying applications

 Java JAR files are executable on any system on which the appropriate version of the
 Java Runtime is installed:

 [image: image]At the command line, navigate to the directory where the Lotto.jar file is located, then type java -jar Lotto.jar and hit the Enter key to run the Lotto application

 [image: image]

 [image: image]

 [image: image]

 [image: image]

 [image: image]Alternatively, double-click or right-click the Lotto.jar file icon, and choose to “Open With” the Java Runtime

 [image: image]

 [image: image]

 [image: image]

 [image: image]

 The .jar file extension is required when executing JAR files from a prompt.

 [image: image]

 Set the JRE as the default JAR file handler on your system for permanent double-click
 execution.

 Creating Android projects

 The Android operating system, prevalent on handheld devices, includes a set of core
 libraries that provide most of the functionality of those in the Java programming
 language. This means that Java programs can be readily converted for Android.

 [image: image]

 Android Studio is available free from developer.android.com/studio This example describes version 2.3.3 – instructions may vary for other versions.
 Android Studio is a sizeable download of around 1.9GB, and may require additional
 downloads to complete setup. Check the system requirements to ensure your computer
 can run Android Studio before downloading.

 Android app development is best undertaken using the official Android Studio Integrated
 Development Environment (IDE). This provides a unified environment where you can develop
 apps for all Android devices, and provides extensive testing tools. Completed apps
 are distributed as an Android Application Package (APK) archive file, which is similar
 to a Java archive (JAR) file. This compresses all program files, using the popular
 ZIP format, into a single file with a .apk file extension. Each app is first created in Android Studio as a “project”, to which
 the developer adds code and resources:

 [image: image]Launch Android Studio, then choose to Start a new Android Studio project in the “Welcome” dialog options – to open the “New Project” dialog

 [image: image]Enter an Application name (for example, “Lotto”) and a Company Domain, then choose your preferred Project location at which to save the project on your computer

 [image: image]

 [image: image]Click Next to open the “Target Android Devices” dialog

 [image: image]Select the device type and platform level (for example, “Phone and Tablet” running
 “Ice Cream Sandwich”)

 [image: image]

 The Package name is an automatically assigned unique identifier for the app, comprised
 of com.domain.appname

 [image: image]

 [image: image]Click Next to open the “Add an Activity to Mobile” dialog, and simply select the Empty Activity option

 [image: image]Click Next to open the “Customize the Activity” dialog

 [image: image]

 [image: image]Click Finish to accept the suggested configuration – Android Studio will now generate several
 files and folders for the new project (this can take a while) then eventually open
 the IDE interface

 [image: image]

 Choose API 15 if you would like the app to run on 100% of devices active on the Google
 Play Store.

 [image: image]

 You can change the suggested names here, but be sure to leave the Generate Layout
 File and Backwards Compatibility boxes checked.

 Exploring project files

 The Android Studio IDE provides a Project window that displays an expandable tree
 view of all files and folders within the project. You can click any arrow in the Project
 window to expand a folder, and double-click on any file in the Project window to open
 it in the tabbed Editor window.

 [image: image]

 Despite its initial appearance of complexity, only two files need modification by
 the developer to create a customized application:

 •MainActivity.java – the Java file that loads controls into the app interface and can contain event-handler
 code to respond to user actions within the app interface.

 •activity_main.xml – the XML file that defines each control to appear in the app interface and their
 layout.

 [image: image]

 If the Project window is not immediately visible click the Project button in the left
 sidebar, or open it using the shortcut keys Alt + F1.

 Selecting the activity_main.xml file in the Project window presents it in the Editor window in one of two possible
 views – visually in Design view or programmatically in Text view. There are tabs at
 the bottom of the window to switch between views.

 [image: image]

 Design view provides a Palette of controls that can be dragged onto a graphical representation
 of the app, a Component Tree to select any added control, and a Properties window
 in which to modify the appearance of a selected control.

 Text view provides a “code-behind” version of the layout that describes each aspect
 of added controls using XML attributes.

 [image: image]

 Controls can be added to the app interface and modified either visually in Design
 view or programmatically in Text view.

 Adding resources & controls

 Image Resources

 To begin customizing the default Android Studio empty app for the Lotto program, the
 image can first be added as a “resource”:

 [image: image]Right-click on the Lotto.png image, and choose Copy

 [image: image]Next, right-click on the app>res>drawable folder and choose Paste – to see a “Copy” dialog appear

 [image: image]Rename the file to lowercase Lotto.png

 [image: image]Click OK to see the file now appear in the drawable folder

 [image: image]

 [image: image]

 Android only supports lowercase filenames for resource items.

 [image: image]

 Interface Controls

 The Lotto app will require three interface controls aligned one above the other in
 a vertical layout. An ImageView control is required for the logo, a TextView control
 is required for the output, and a Button control is required for user interaction:

 [image: image]Open the activity_main.xml file in the Editor’s Text view

 [image: image]

 activity _main.xml

 [image: image]Insert this ImageView control element immediately before the existing default TextView
 element

 <ImageView

 android:layout_width=”match_parent”
android:layout_height=”wrap_content”
app:srcCompat=”@drawable/lotto”
android:id=”@+id/imageView”
app:layout_constraintTop_toTopOf=”parent” />

 [image: image]

 The app:srcCompat attribute references the image resource added to the drawable folder.

 The attributes in this element fit the control to the width of the layout container,
 and position the control at the top of the container. The image resource is defined
 as the content source, and the element is given an id for reference by other elements.

 [image: image]Edit the existing TextView element to look like this

 <TextView

 android:layout_width=”match_parent”
android:layout_height=”wrap_content”
android:id=”@+id/textView
android:height=”60dp”
android:textSize=”36sp”
android:gravity=”center_horizontal” app:layout_constraintTop_toBottomOf = ”@+id/imageView”
 />

 [image: image]Insert this element right after the TextView element

 <Button

 android:layout_width=”match_parent”
android:layout_height=”wrap_content”
android:id=”@+id/button”
android:textSize=”24sp”
android:onClick=”lotto”
android:text=”GET MY LUCKY NUMBERS” app:layout_constraintTop_toBottomOf = ”@+id/textView”
 />

 [image: image]

 The android:id attribute in each element specifies a unique name by which the element can be referenced
 in Java code.

 [image: image]

 The android:onClick attribute specifies the name of an event-handler to be called.

 String Resources

 The strings assigned to describe the image content and to specify the button text
 should each be converted to a string resource:

 [image: image]Click within the “Lotto Logo” string assignment to give it focus, then press Alt + Enter to see a QuickFix dialog

 [image: image]

 [image: image]Choose Extract string resource, then provide a resource name in the “Extract Resource” dialog that now appears

 [image: image]

 [image: image]Click OK to close the dialog, and see the assigned string get replaced by a reference to the
 new string resource

 [image: image]

 [image: image]Repeat this for the “GET MY LUCKY NUMBERS” string

 Inserting Java code

 After adding resources and controls here
 , the app interface should now resemble that of the Lotto.jar application:

 [image: image]

 [image: image]

 If the controls do not look like this screenshot, you should return to here
 and carefully check each element’s attributes.

 Functionality can next be added to the app by inserting an event-handler into the
 MainActivity.java file that will respond to the button’s onClick event when the user pushes the button. This event automatically passes one argument
 to the event-handler, which is an identifying reference to the control that has been
 clicked. Consequently, the event-handler signature must accommodate the argument by
 including a parameter for the View class – the base class of all widgets. The method must also have a void return type:

 [image: image]Insert this event-handler signature into the MainActivity class, immediately after its onCreate() method block

 public void lotto(View vue) { }

 [image: image]

 MainActivity.java

 Interface controls can be referenced in code by specifying their identity as the argument
 to a findViewById() method. This is the name assigned to their android:id attribute in activity_main.xml prefixed by R.id. :

 [image: image]Inside the event-handler block, assign a reference to the <TextView> control element to a variable

 TextView txt = (TextView) findViewById(R.id.textView) ;

 [image: image]Finally, inside the event-handler block, copy the code from the event-handler in the
 Lotto.java program (listed here
) that outputs six unique random numbers

 int[] nums = new int[60] ; String str = “ ” ;
for (int i = 1 ; i < 60 ; i++) { nums[i] = i ; }
for (int i = 1 ; i < 60 ; i++)

 {

 int r= (int) (59 * Math.random()) + 1 ;

 int t= nums[i] ; nums[i]= nums[r] ; nums[r]= t ;

 }

 for (int i = 1 ; i < 7 ; i++)

 {str += “ ” + Integer.toString(nums[i]) + “ ” ; }

 txt.setText(str) ;

 [image: image]

 In this case, there is no need for the code to check the source of the call as the
 event-handler is explicitly assigned to the button by the android:onClick attribute in activity_main.xml

 Now that the Lotto app has all resources, controls, and functional code in place,
 an attempt can be made to build the project:

 [image: image]On the Android Studio main toolbar, click View, Tool Windows, Messages – to open the “Messages” window

 [image: image]Then, click Build, Make Project (or press the Ctrl + F9 shortcut) to start building

 [image: image]The “Messages” window will soon display a confirmation of success, or report any errors
 that need fixing

 [image: image]

 [image: image]Fix any reported errors if necessary, then build again until you see a confirmation
 of success

 [image: image]

 If the build attempt fails, look for red lightbulb icons in the code – Android Studio
 adds these so you can easily find and correct errors.

 Testing the application

 Once an application project has built successfully, it is ready to be tested. Testing
 can be performed on a real Android device, connected to your computer via a USB socket,
 or on an Android Virtual Device (AVD) emulator. AVDs allow you to test how the app
 will perform on a range of devices, but they do use more system resources and can
 be painfully slow. Applications should be tested on at least one phone device and
 one tablet device:

 [image: image]Click Run, Run ‘app’ (or press the Shift + F10 shortcut) to open the “Select Deployment Target” dialog

 [image: image]

 [image: image]Select an AVD phone emulator to connect, then click OK to install the Lotto app on the emulator

 [image: image]

 [image: image]Push the app button to see the TextView content unhappily wrap on this small device
 screen

 [image: image]Edit activity_main.xml to reduce the text size android:textSize=”32sp”

 [image: image]Click Build, Rebuild Project to apply the change, then run the app in the emulator once more to see the solution

 [image: image]

 [image: image]

 [image: image]

 Creation of each AVD emulator may require a large system image file to be downloaded.
 You may prefer to test on a real Android device. Also note that accelerated emulators
 will only run if your computer has a CPU that supports hardware virtualization (Intel
 VT-x or AMD SVM).

 [image: image]

 Android Studio has an Instant Run feature that automatically updates changes to the
 app so they appear in the test device more quickly.

 [image: image]

 It is better to test on real devices rather than the emulators. Ideally, you should
 test on as many different devices as possible before final deployment of apps.

 [image: image]Take an Android tablet and enable “USB Debugging” on the Settings, Developer Options menu

 [image: image]Connect the tablet to your computer via a USB port to see this notification

 [image: image]

 [image: image]Click Run, Run ‘app’ (or press the Shift + F10 shortcut) to open the “Select Deployment Target” dialog

 [image: image]

 [image: image]Select the connected tablet device, then click OK to install the Lotto app on the tablet

 [image: image]Push the app button to see the Lotto app happily perform as expected – a successful
 test

 [image: image]

 [image: image]

 [image: image]

 The test processes provide an application launcher so the tablet can be disconnected
 and the app launched by tapping the launcher icon – but remember, this is a Debug
 build of the app.

 [image: image]

 If you cannot see Developer Options on the Android Settings you can enable it by tapping
 on the Build Number seven times – typically found at Settings, About, Software Information,
 Build Number.

 [image: image]

 Android Studio provides a default image launcher icon, but you can use your own image.
 In the Project window, right-click on the res folder then choose New, Image Asset to open the Asset Studio, then select Image and browse to an image you wish to import into the project.

 Deploying Android apps

 After successful testing, the development Debug version of an app should be changed
 to a Release version before deployment as an Android Application Package (APK). Android
 requires that all APKs must be digitally signed with a certificate, and Android Studio
 allows you to easily generate a signed APK:

 [image: image]Click Build, Select Build Variant, then choose the release version option

 [image: image]

 [image: image]Next, click Build, Generate Signed APK

 [image: image]

 [image: image]Enter existing keystore details or click Create new...

 [image: image]Choose a location at which to save the keystore, then enter passwords

 [image: image]

 [image: image]Select your preferred validity period, then enter certificate information

 [image: image]Click OK to create the new keystore

 [image: image]

 [image: image]Click Next to use the new keystore to generate a signed APK for the app

 [image: image]

 Additional steps are required if you wish to distribute your apps via the Google Play
 Store. You can discover what is needed online at developer.android.com/distribute/tools/launch-checklist.html

 [image: image]

 A keystore holds one or more corresponding public/private key pairs. You, as the owner
 of the certificate, retain the private key while the Android Studio signing tool attaches
 the public key certificate to the APK. This uniquely associates the APK to you and
 your corresponding private key to ensure that any future updates to the APK come from
 the original developer.

 [image: image]Choose a location at which to save the APK and be sure the Build Type is “release”,
 then click Finish to generate a signed APK named app-release.apk

 [image: image]

 [image: image]Upon success, change the APK name to a more meaningful Lotto.apk

 [image: image]

 [image: image]

 A product flavor can be specified to define different customized builds of the app.
 For example, the button text on a Spanish language flavor as “Consigue mis números
 de la suerte”.

 The Android app APK can now be deployed in several ways:

 •App Marketplace – publish on Google Play Store

 •Email – send direct as an attachment

 •Website – host online for download

 Installation of APKs from sources other than Google Play is blocked unless the user
 opts to allow them:

 [image: image]On an Android device, go to Settings, Security and opt to “Allow installation of apps from unknown sources”

 [image: image]Next, download Lotto.apk to the Android device

 [image: image]Navigate to the download folder and click Install, then tap the [image: image] launcher icon to run the app

 [image: image]

 [image: image]

 Summary

 •Java programs can be deployed as stand-alone desktop applications running on an appropriate
 version of the JRE.

 •Application files can be distributed for execution on other operating systems using
 the appropriate java interpreter.

 •Bundling all program files into a single JAR archive file helps ensure resource files
 do not become accidentally isolated.

 •Executable JAR applications can be executed from a prompt with the java -jar command or by clicking on their file icon.

 •Java programs can be readily converted for the Android operating system as it includes
 similar core libraries.

 •Android Studio is the official IDE for the development of Android applications.

 •APK and JAR archive files are both compressed in ZIP format.

 •Each Android app is first created as a project to which the developer adds code and
 resources.

 •The most used windows in the Android Studio interface are the Project window and the
 Editor window.

 •Functional code can be added to the MainActivity.java file and interface components added to the activity_main.xml file.

 •An Android app can store images and strings as resources.

 •The signature of a button’s onClick event-handler must include a parameter for a View class object.

 •Interface components can be referenced in code by specifying their identity as the
 argument to findViewById().

 •Android Studio provides AVD emulators for testing and also allows testing to be performed
 on real connected devices.

 •The Release version of an Android app must be digitally signed with a public key certificate.

 [image: image]

 [image: image]

 [image: image]

 OEBPS/images/4g.jpg

OEBPS/images/4o.jpg

OEBPS/images/4p.jpg

OEBPS/images/4g1.jpg

OEBPS/images/4lg.jpg

OEBPS/images/7.jpg

OEBPS/images/pg176_1.jpg

OEBPS/images/7b.jpg

OEBPS/images/pg177_1.jpg

OEBPS/images/7bl.jpg

OEBPS/images/pg177_2.jpg

OEBPS/images/7g.jpg

OEBPS/images/6o.jpg

OEBPS/images/pg174_1.jpg

OEBPS/images/6p.jpg

OEBPS/images/pg174_2.jpg

OEBPS/images/6r.jpg

OEBPS/images/pg175_1.jpg

OEBPS/images/6v.jpg

OEBPS/images/pg175_2.jpg

OEBPS/images/pg173_4.jpg

OEBPS/images/6g.jpg

OEBPS/images/pg173_5.jpg

OEBPS/images/6lg.jpg

OEBPS/images/pg173_6.jpg

OEBPS/images/4.jpg

OEBPS/images/4b.jpg

OEBPS/images/3r.jpg

OEBPS/images/3v.jpg

OEBPS/images/4bl.jpg

OEBPS/images/4br.jpg

OEBPS/images/3o.jpg

OEBPS/images/3p.jpg

OEBPS/images/3g1.jpg

OEBPS/images/3lg.jpg

OEBPS/images/8bl.jpg

OEBPS/images/pg182_1.jpg

OEBPS/images/8g.jpg

OEBPS/images/pg182_2.jpg

OEBPS/images/8lg.jpg

OEBPS/images/7r.jpg

OEBPS/images/pg179_3.jpg

OEBPS/images/7v.jpg

OEBPS/images/pg17_1.jpg

OEBPS/images/8.jpg

OEBPS/images/pg180_1.jpg

OEBPS/images/8b.jpg

OEBPS/images/pg181_1.jpg

OEBPS/images/pg178_1.jpg

OEBPS/images/7lg.jpg

OEBPS/images/pg178_2.jpg

OEBPS/images/7o.jpg

OEBPS/images/pg179_1.jpg

OEBPS/images/7p.jpg

OEBPS/images/pg179_2.jpg

OEBPS/images/3.jpg

OEBPS/images/3b.jpg

OEBPS/images/2r.jpg

OEBPS/images/2v.jpg

OEBPS/images/3g.jpg

OEBPS/images/3bl.jpg

OEBPS/images/3br.jpg

OEBPS/images/2o.jpg

OEBPS/images/pg169_3.jpg

OEBPS/images/2p.jpg

OEBPS/images/2lg.jpg

OEBPS/images/pg165_4.jpg

OEBPS/images/pg9_1.jpg

OEBPS/images/pg165_5.jpg

OEBPS/images/pg9_2.jpg

OEBPS/images/pg169_1.jpg

OEBPS/images/pg9_3.jpg

OEBPS/images/pg169_2.jpg

OEBPS/images/pinkbox.jpg

OEBPS/images/pg163_4.jpg

OEBPS/images/pg93_1.jpg

OEBPS/images/pg165_1.jpg

OEBPS/images/pg95_1.jpg

OEBPS/images/pg165_2.jpg

OEBPS/images/pg98_1.jpg

OEBPS/images/pg165_3.jpg

OEBPS/images/pg99_1.jpg

OEBPS/images/pg8_2.jpg

OEBPS/images/pg163_3.jpg

OEBPS/images/pg91_1.jpg

OEBPS/images/2.jpg

OEBPS/images/2b.jpg

OEBPS/images/1r.jpg

OEBPS/images/1v.jpg

OEBPS/images/2g.jpg

OEBPS/images/2g1.jpg

OEBPS/images/2bl.jpg

OEBPS/images/2br.jpg

OEBPS/images/1o.jpg

OEBPS/images/1p.jpg

OEBPS/images/pg173_1.jpg

OEBPS/images/pg173_1a.jpg

OEBPS/images/pg173_2.jpg

OEBPS/images/pg173_3.jpg

OEBPS/images/pg170_3.jpg

OEBPS/images/ycap.jpg

OEBPS/images/pg171_1.jpg

OEBPS/images/pg6_2.jpg

OEBPS/images/pg172_1.jpg

OEBPS/images/pg6_3.jpg

OEBPS/images/pg172_2.jpg

OEBPS/images/pg6_4.jpg

OEBPS/images/snake.jpg

OEBPS/images/1lg.jpg

OEBPS/images/pg170_1.jpg

OEBPS/images/title.jpg

OEBPS/images/pg170_2.jpg

OEBPS/images/xml.jpg

OEBPS/images/17b.jpg

OEBPS/images/1b.jpg

OEBPS/images/16b.jpg

OEBPS/images/16r.jpg

OEBPS/images/1g.jpg

OEBPS/images/1g1.jpg

OEBPS/images/1bl.jpg

OEBPS/images/1br.jpg

OEBPS/images/15r.jpg

OEBPS/images/logo.jpg

OEBPS/images/pg29_2.jpg

OEBPS/images/new.jpg

OEBPS/images/pg31_1.jpg

OEBPS/images/pg100_1.jpg

OEBPS/images/pg31_2.jpg

OEBPS/images/pg101_1.jpg

OEBPS/images/intro_1.jpg

OEBPS/images/pg27_1.jpg

OEBPS/images/jar.jpg

OEBPS/images/pg27_2.jpg

OEBPS/images/15b.jpg

OEBPS/images/java.jpg

OEBPS/images/pg27_3.jpg

OEBPS/images/15o.jpg

OEBPS/images/line.jpg

OEBPS/images/pg29_1.jpg

OEBPS/images/pg23_2.jpg

OEBPS/images/hot.jpg

OEBPS/images/pg23_3.jpg

OEBPS/images/icon.jpg

OEBPS/images/pg23_4.jpg

OEBPS/images/14b.jpg

OEBPS/images/14b1.jpg

OEBPS/images/13r.jpg

OEBPS/images/13v.jpg

OEBPS/images/14r.jpg

OEBPS/images/14v.jpg

OEBPS/images/14g.jpg

OEBPS/images/14o.jpg

OEBPS/images/pg113_1.jpg

OEBPS/images/pg39_1.jpg

OEBPS/images/pg117_1.jpg

OEBPS/images/pg41_1.jpg

OEBPS/images/pg119_1.jpg

OEBPS/images/13p.jpg

OEBPS/images/pg107_1.jpg

OEBPS/images/pg35_2.jpg

OEBPS/images/pg109_1.jpg

OEBPS/images/pg37_1.jpg

OEBPS/images/13g.jpg

OEBPS/images/pg10_1.jpg

OEBPS/images/pg37_2.jpg

OEBPS/images/13o.jpg

OEBPS/images/pg111_1.jpg

OEBPS/images/pg37_3.jpg

OEBPS/images/pg32_1.jpg

OEBPS/images/pg103_1.jpg

OEBPS/images/pg33_1.jpg

OEBPS/images/pg105_1.jpg

OEBPS/images/pg33_2.jpg

OEBPS/images/pg106_1.jpg

OEBPS/images/pg35_1.jpg

OEBPS/images/12o.jpg

OEBPS/images/12p.jpg

OEBPS/images/12g.jpg

OEBPS/images/13b.jpg

OEBPS/images/13bl.jpg

OEBPS/images/12r.jpg

OEBPS/images/12v.jpg

OEBPS/images/9lg.jpg

OEBPS/images/pg184_3.jpg

OEBPS/images/9o.jpg

OEBPS/images/9.jpg

OEBPS/images/pg183_4.jpg

OEBPS/images/9b.jpg

OEBPS/images/pg183_5.jpg

OEBPS/images/9bl.jpg

OEBPS/images/pg184_1.jpg

OEBPS/images/9g.jpg

OEBPS/images/pg184_2.jpg

OEBPS/images/12b.jpg

OEBPS/images/8o.jpg

OEBPS/images/pg182_4.jpg

OEBPS/images/12bl.jpg

OEBPS/images/8p.jpg

OEBPS/images/pg183_1.jpg

OEBPS/images/11r.jpg

OEBPS/images/8r.jpg

OEBPS/images/pg183_2.jpg

OEBPS/images/11v.jpg

OEBPS/images/8v.jpg

OEBPS/images/pg183_3.jpg

OEBPS/images/pg182_3.jpg

OEBPS/images/10v.jpg

OEBPS/images/11b.jpg

OEBPS/images/11o.jpg

OEBPS/images/11p.jpg

OEBPS/images/11bl.jpg

OEBPS/images/11g.jpg

OEBPS/images/10bl.jpg

OEBPS/images/10b.jpg

OEBPS/images/10lg.jpg

OEBPS/images/10g.jpg

OEBPS/images/10p.jpg

OEBPS/images/10o.jpg

OEBPS/images/10r.jpg

OEBPS/images/forget.jpg

OEBPS/images/arrowp.jpg

OEBPS/images/pg21_1.jpg

OEBPS/images/back1.jpg

OEBPS/images/pg22_1.jpg

OEBPS/images/back2.jpg

OEBPS/images/pg22_2.jpg

OEBPS/images/box.jpg

OEBPS/images/pg23_1.jpg

OEBPS/images/9r.jpg

OEBPS/images/pg185_2.jpg

OEBPS/images/9v.jpg

OEBPS/images/pg185_3.jpg

OEBPS/images/array.jpg

OEBPS/images/pg185_4.jpg

OEBPS/images/arrowg.jpg

OEBPS/images/pg19_1.jpg

OEBPS/images/pg184_4.jpg

OEBPS/images/9p.jpg

OEBPS/images/pg185_1.jpg

OEBPS/images/1.jpg

OEBPS/images/bcover.jpg

OEBPS/images/pg147_1.jpg

OEBPS/images/pg149_1.jpg

OEBPS/images/pg14_1.jpg

OEBPS/images/pg14_2.jpg

OEBPS/images/pg145_2.jpg

OEBPS/images/pg145_3.jpg

OEBPS/images/pg145_4.jpg

OEBPS/images/pg145_5.jpg

OEBPS/images/pg143_2.jpg

OEBPS/images/pg145_1.jpg

OEBPS/images/pg161_1.jpg

OEBPS/images/pg163_1.jpg

OEBPS/images/pg163_2.jpg

OEBPS/images/cover.jpg

OEBPS/images/pg157_1.jpg

OEBPS/images/pg159_1.jpg

OEBPS/images/pg15_1.jpg

OEBPS/images/pg15_2.jpg

OEBPS/images/pg155_1.jpg

OEBPS/images/pg155_2.jpg

OEBPS/images/pg155_3.jpg

OEBPS/images/pg129_1.jpg

OEBPS/images/pg56_1.jpg

OEBPS/images/pg12_1.jpg

OEBPS/images/pg123_1.jpg

OEBPS/images/pg49_1.jpg

OEBPS/images/pg123_2.jpg

OEBPS/images/pg51_1.jpg

OEBPS/images/pg125_1.jpg

OEBPS/images/pg53_1.jpg

OEBPS/images/pg127_1.jpg

OEBPS/images/pg55_1.jpg

OEBPS/images/pg119_2.jpg

OEBPS/images/pg45_1.jpg

OEBPS/images/pg11_1.jpg

OEBPS/images/pg47_1.jpg

OEBPS/images/pg120_1.jpg

OEBPS/images/pg47_2.jpg

OEBPS/images/pg121_1.jpg

OEBPS/images/pg47_3.jpg

OEBPS/images/pg44_1.jpg

OEBPS/images/pg143_1.jpg

OEBPS/images/pg139_1.jpg

OEBPS/images/pg65_1.jpg

OEBPS/images/pg139_2.jpg

OEBPS/images/pg67_1.jpg

OEBPS/images/pg141_1.jpg

OEBPS/images/pg69_1.jpg

OEBPS/images/pg141_2.jpg

OEBPS/images/pg69_2.jpg

OEBPS/images/pg135_1.jpg

OEBPS/images/pg58_1.jpg

OEBPS/images/pg135_2.jpg

OEBPS/images/pg59_1.jpg

OEBPS/images/pg137_1.jpg

OEBPS/images/pg59_2.jpg

OEBPS/images/pg137_2.jpg

OEBPS/images/pg63_1.jpg

OEBPS/images/pg57_1.jpg

OEBPS/images/pg131_1.jpg

OEBPS/images/pg57_2.jpg

OEBPS/images/pg81_1.jpg

OEBPS/images/pg81_2.jpg

OEBPS/images/pg73_1.jpg

OEBPS/images/pg75_1.jpg

OEBPS/images/pg77_1.jpg

OEBPS/images/pg80_1.jpg

OEBPS/images/pg6_1.jpg

OEBPS/images/pg70_1.jpg

OEBPS/images/pg71_1.jpg

OEBPS/images/pg71_2.jpg

OEBPS/images/pg8_1.jpg

OEBPS/images/pg85_1.jpg

OEBPS/images/pg86_1.jpg

OEBPS/images/pg87_1.jpg

OEBPS/images/pg89_1.jpg

OEBPS/images/pg81_4.jpg

OEBPS/images/pg82_1.jpg

OEBPS/images/pg83_1.jpg

OEBPS/images/pg84_1.jpg

OEBPS/images/pg81_3.jpg

OEBPS/images/6b.jpg

OEBPS/images/6bl.jpg

OEBPS/images/5v.jpg

OEBPS/images/6.jpg

OEBPS/images/5br.jpg

OEBPS/images/5g.jpg

OEBPS/images/5p.jpg

OEBPS/images/5r.jpg

OEBPS/images/5lg.jpg

OEBPS/images/5o.jpg

OEBPS/images/5.jpg

OEBPS/images/5b.jpg

OEBPS/images/4r.jpg

OEBPS/images/4v.jpg

OEBPS/images/5bl.jpg

