Java EE 8
Microservices

11

Kamalmeet Singh, Mert Caliskan
Ondrej Mihalyi, and Pavel Pscheidl

Java EE 8 Microservices

Learn how the various components of Java EE 8 can be used
to implement the microservice architecture

Kamalmeet Singh
Mert Caliskan
Ondrej Mihalyi
Pavel Pscheidl

BIRMINGHAM - MUMBAI

Java EE 8 Microservices

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar
Acquisition Editor: Sandeep Mishra

Content Development Editor: Digvijay Bagul
Technical Editor: Aniket Iswalkar

Copy Editor: Safis Editing

Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Tom Scaria

Production Coordinator: Deepika Naik

First published: December 2018
Production reference: 1271218

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-514-3

www.packtpub.com

http://www.packtpub.com

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools, to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans designed especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and, as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Kamalmeet Singh got his first taste of programming at the age of 15, and he immediately
fell in love with it. After spending over 14 years in the IT industry, Kamal has matured into
an ace developer and a technical architect. He is also the co-author of a book on design
patterns and best practices in Java. The technologies he works with range from cloud
computing, machine learning, augmented reality, and serverless applications to
microservices and more.

Mert Caliskan is a coder living in Ankara, Turkey. He has over 10 years experience in
software development in the architectural design of enterprise Java applications. He is an
open source advocate for software projects such as PrimeFaces, and has also contributed to
and been the founder of various others. Currently, he also works as a consultant for Payara
Application Server. He is a co-author of PrimeFaces Cookbook, by Packt Publishing, and a co-
author of Beginning Spring, by Wiley Publications. He is an occasional author for Oracle
Java Magazine. He is the founder of AnkaraJUG, which is the most active JUG in Turkey. In
2014, he was recognized as a Java Champion for his achievements. He is a part-time
lecturer at Hacettepe University on enterprise web application architectures and web
Services. He shares his knowledge at national and international conferences, including
JavaOne 2016, JDays 2015, JavaOne 2013, JDC 2010, and JSFDays'08. You can reach Mert via
his Twitter handle: @mertcal.

Ondrej Mihalyi is a software developer and consultant specializing in combining standard
and proven tools to solve new and challenging problems. He's been developing in Java and
Java EE for 9 years. He currently works as a support engineer and a developer advocate for
Payara Services Ltd. As a scrum master and experienced Java EE developer, he also helps
companies build and educate their development teams. He loves working with the Java EE
community and is a contributor to a number of open source projects in the Java EE
ecosystem, including Payara Server and Eclipse MicroProfile. He's a co-leader of the Czech
Java user group and talks at international conferences such as JavaOne, Devoxx, GeeCon,
and JPrime.

Pavel Pscheidl is a man of many interests. He works as a researcher in the faculty of
informatics at the University of Hradec Krilové. Pavel, with his focus on statistics and
agent-based simulations, currently specializes in smart systems and highly parallel
simulations. In addition, he is usually to be found developing for various big companies as
a consultant. Pavel enjoys the beauty and simplicity of Java EE in many projects on a daily
basis and does his best to pass on his knowledge by teaching students, attending
conferences, and giving talks. He is also a passionate blogger and Java EE article writer.

About the reviewer(s)

Aristides Villarreal Bravo is a Java developer, a member of the NetBeans Dream Team,
and a Java user groups leader. He lives in Panama. He has organized and participated in
various conferences and seminars related to Java, JavaEE, NetBeans, the NetBeans platform,
free software, and mobile devices. He is the author of jmoordb and tutorials, and he blogs
about Java, NetBeans, and web development. Aristides has participated in numerous
interviews on sites about topics including NetBeans, NetBeans DZone, and JavaHispano.
He is a developer of plugins for NetBeans. He is the CEO of Javscaz Software Developers.
He has also worked on Developers of jmoordb.

I would like to thank my mother, father, and all my family and friends.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

N

Chapter 1: From Monoliths to Microservices
What is Monolith design?

The challenges associated with Monolith design
Service-oriented architecture
Understanding Microservices

Advantages of Microservices

Challenges with Microservices
Summary

Chapter 2: Creating your first Microservice
Setting up the Development Environment
Environment installation

Installing Java Development Kit

Installing Apache Maven

Downloading development tools
cURL
Postman

Creating the project with Maven

Your very first Microservice
A Java EE Microservice

Coding the Microservice

Configuring the Microservice

Code summary

Running the Microservice

Building and running the Weather Microservice

Invoking the Microservice

A Spring Boot Microservice
Creating the project with Maven
Coding a Spring Boot Microservice
Building the Spring Boot Weather Microservice
Running the Spring Boot Weather Microservice

Summary

Chapter 3: Connecting Microservices Together
Building a client
Using third-party reactive frameworks
Connecting two Microservices together
Creating and pooling web targets
Making Microservices discoverable

Snoop
Running Snoop and registering our service

o o O

1"
14
15
16

17
18
19

20
21
21
22
22
23
24
24

28
29

31
33
33
37
43
45

47

48
49
53
55
59
60

60
60

Table of Contents

Consuming registered services
Eureka

Installing Eureka Server

Registering the service

Discovering and invoking the service

Summary

Chapter 4: Asynchronous Communication for Microservices

Speeding up services with the Reactive API

Collecting results of multiple parallel calls

Completing a REST response asynchronously

Asynchronous exceptions

Specifying and handling asynchronous timeouts

A complete reactive REST service

Simplifying the code with a third-party reactive framework
Streaming responses with SSE

Building an asynchronous service

Invoking the SSE service

Invoking the SSE service from JavaScript

Building an SSE Java client

Automatically reconnecting of SSE clients
Two-way asynchronous services with WebSocket

A quick comparison between HTTP and WebSockets
Decoupling services with message-oriented middleware

An example of message-oriented middleware
Summary

Chapter 5: Path to Robust Microservices
Building for failure
Isolating the failure
The bulkhead pattern
Stateless services
The robustness principle
Handling the failure
Asynchronous communication
Fail fast
Timeouts
Circuit breakers
A circuit breaker code example
Fan out and fastest response
Recovering from failure
Preparing for failure
Summary

Chapter 6: Scaling Microservices
What is scalability?
Microservices and scalability

63
64
64
66
68

69

70
70
72
74
77
77
78
79
81
81
84
86
87
90
92
93
94
96
99

100
100
101
104
105
106
107
107
108
108
108
112
115
116
116
117

118
118
120

[ii]

Table of Contents

Stateless versus Stateful scalability
Scaling on the cloud

Going serverless with microservices
Scaling databases with Microservices
Scaling Microservices with caching
Summary

Chapter 7: Securing Microservices
Securing Microservices with JWT
Anatomy of a JWT
How does JWT work for Authentication?
Java Security APl - JSR 375
The HTTPAuthenticationMechanism API
Basic HTTP Authentication
Form-based Authentication
Custom form-based Authentication
Identity Store
Built-in and Custom IdentityStores
The security context API
Spring Security with Spring-Boot-based Microservices
Configuring Spring Security with the In-memory realm
Configuring Spring Security with the database realm
HTTPS - The Secured Protocol
Summary

Chapter 8: Monitoring Microservices
What is monitoring and why is it required?
Monitoring Microservices
Understanding core concepts and terms
Taking a closer look using an example
Creating the example services
Monitoring Microservices with Zipkin
Case 1 — service is unresponsive
Case 2 — service responding slowly
Tools for monitoring Microservices
Prometheus for monitoring and alerting
Elasticsearch, Logstash, and Kibana (ELK)
Considering more tools
Summary

Chapter 9: Building, Packaging, and Running Microservices
Introduction to Java Packaging
Understanding Archives
Fat packages
FatWAR packaging
FatJAR packaging

120
125
127
133
138
141

142
142
142
144
144
145
145
146
146
147
147
148
149
154
155
157
158

159
159
160
162
163
164
168
171
173
175
175
177
178
179

180
181
182
184
184
184

[iii]

Table of Contents

Java EE MicroService solutions 186
OpenLiberty 186

The OpenLiberty Maven plugin 187
Configuring OpenLiberty 189

The Weather Microservice with OpenLiberty 191

The Gradle plugin 193

WildFly Swarm 195

The WildFly Swarm generator 195

The WildFly Swarm Maven plugin 196

HollowJAR 201

Payara Micro 202

The Payara Micro Maven plugin 203

The Payara Micro UberJar 206

The Deployment Architecture for Microservices 207
Summary 209
Chapter 10: Documenting and Testing MicroServices 210
Documenting Microservices 211
Swagger 212
APldoc 218
Additional Documentation Frameworks 222
Testing Microservices 222
Unit testing 223
Integration Testing 226
Service Testing 228
End-to-end testing 229
Levels of Testing 230
Summary 232
Other Books You May Enjoy 233
Index 236

[iv]

Preface

Microservices is one of the hot topics in today's IT world. Though the topic is popular, it is
not perfectly understood the majority of the time. Everyone seems to have a different
understanding of the concept. This book tries to simplify the concept and discuss it in a
manner that everyone can understand. It talks about the various basic concepts that each
microservices-based application should implement.

The book starts with an introduction to microservices, and explains why it is de rigueur. It
dwells on the existing challenges being faced by the software industry, and how
microservices can help us to solve them. The book focuses on the Java-based
implementation of microservices, and will help readers to explore different ways of
creating them.

The book covers core concepts, such as creation, scaling, securing, monitoring, building,
deploying, documenting, and testing microservice-based applications. With each of these
concepts being covered, the book provides best practices that can be followed by
developers.

Who this book is for

This book is for anyone who works with microservice-based architecture, or who would
like to learn about it. It covers basic concepts, such as understanding microservice-based
architecture and various ways of implementing a microservice in Java. Then, it moves onto
advanced topics, such as how to create communication channels among microservices,
managing scalability and security in an application based on microservice architecture. The
book also covers topics on monitoring, deploying, documenting, and testing a
microservice-based application.

What this book covers

Chapter 1, From Monoliths to Microservices, covers a brief history of software development,
starting with monolith application design, through to microservice-based design.

Chapter 2, Creating Your First Microservice, introduces the tools that will be used
throughout the book, followed by a hands-on exercise involving
Microservice implementation.

Preface

Chapter 3, Connecting Microservices Together, discusses how microservices can interact with
one another.

Chapter 4, Asynchronous Communication for Microservices, focuses on asynchronous
communication between microservices, and how can it be implemented.

Chapter 5, Path to Robust Microservices, discusses how, in the world of microservices, the
performance and overall availability of one service may affect the performance of other
dependent services. This chapter focuses on developing applications for survival in the real
world.

Chapter 6, Scaling Microservices, demonstrates how to design applications to take full
advantage of the Microservice architecture when optimizing the application for unexpected
loads.

Chapter 7, Securing Microservices, covers the ways of securing Microservices by enabling
authenticated and authorized clients to consume the endpoints in question.

Chapter 8, Monitoring Microservices, discusses how the reader is going to learn how to
gather and view data regarding application performance and health over time.

Chapter 9, Building, Packaging, and Running Microservices, examines the various methods of
building, packaging, and distributing Java EE Microservices.

Chapter 10, Documenting and Testing Your Microservices, deals with various tools that are
available for documenting and testing microservices.

To get the most out of this book

Readers with prior experience of Java stand to gain the most from this book. It is
recommended that readers should try to explore and play around with the code examples
provided in the various chapters.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www.packt . com/support and register to have the files emailed directly to you.

[2]

http://www.packt.com
http://www.packt.com/support

Preface

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Java-EE-8-Microservices. In case there's an update to the code, it will
be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

html, body, #map {
height: 100%;
margin: 0;
padding: 0

}

[3]

http://www.packt.com
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/Java-EE-8-Microservices
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]

exten => s,1,Dial (Zap/1]30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => 1i,1,Voicemail (s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

[4]

http://www.packt.com/submit-errata

Preface

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[5]

http://authors.packtpub.com/
http://www.packt.com/

From Monoliths to
Microservices

Welcome to the exciting world of Microservices! In this chapter, we will try to understand
what Microservices are, how and why we are shifting from age-old practice of creating a
giant monolithic application to Microservices, and the advantages and challenges of using
Microservices.

In this chapter,we will try to answer some of the important questions regarding
Microservices, and then in the rest of the book, we will take a deeper look at things such as
the creation of Microservices, security, communication, monitoring, and documentation.

In this chapter, we will cover the following topics:

What is Monolith design?
The challenges associated with Monolith design

e Service-oriented architecture

Understanding Microservices

The advantages of Microservices

The challenges associated with Microservices

What is Monolith design?

If you have been in the industry for more than six to eight years, monolithic applications
are not new to you. Even today, a lot of old applications that are in production follow
monolith design architecture. Well, let's try to understand what a monolith design is and
what the word monolith means to you.

From Monoliths to Microservices Chapter 1

If you look at these definitions and try to apply them to a software application, it will be
clear what we mean when we say the application follows a monolith design. We are talking
about the following characteristics:

e Single: In the case of an application, we are talking about a single piece of code
or a deployable. An application that can and should be deployed on a single
machine.

e Indivisible: We cannot break the application down; there is no easy way to
divide the application code or deployable.

¢ Slow to change: This is more of an implication of monolith design. It is a well-
known fact that changing a small piece of code is easier than a big, monolith
code, especially since you don't know what implications such a change will have.

The following diagram shows the architecture of a monolithic design based on a Java
application:

Servet Node

Application server

Client —_—

\i

Database
WAR ar EAR

deployabale

[7]

From Monoliths to Microservices Chapter 1

We can see the whole application is deployed as a single deployable, that is, a WAR or EAR
file. The design looks very simple, but it does hide a lot of complexities. The single
deployable, in this case, a WAR file or EAR file, might have a lot of functionality
implemented.

Let's take an example: say we have to implement an application for our company where we
can manage data for employees. Let's call this the Employee Management System, which
should be able to handle core requirements such as maintaining employee data, project
data, hierarchy, attendance, leave data, salary, and financial information. In addition to
these core requirements, our application would also handle additional requirements, such
as reporting needs for management.

In a monolith design, we code all this functionality and build it into a single deployable. If
you have been in the software industry for more than 10 years, you have probably seen and
worked on some applications that follow this design. The design has been good for small
and simple applications, but as the complexity of the application increases, it gets
challenging to manage a monolith design.

The challenges associated with Monolith design

The following challenges make the monolith design unsuitable for large applications:

e Huge code base: As we are developing the application as a single unit,
everything is placed under a single code base. In our previous example, we have
all the Employee-Management-related functionality in a single code base. So,
even if we are making a small change, such as updating a tax slab for employee
salaries, we have to take the whole code for our Employee Data Management
project and build the whole application instead of just the tax-related part.

e Testing: As the application is managed as a single unit, we need to test the whole
application, even if a small change is made, to make sure there are no integration
Or regression issues.

¢ Availability: Let's say that, while updating an employee data report, a developer
introduced an error that caused the system to run out of memory, which will
bring down the whole system. So a report that actually might not add too much
value to the system and may be used rarely by users has the capability of
bringing down the whole system.

[8]

From Monoliths to Microservices Chapter 1

¢ Scalability: The code is deployed as a single unit, hence we can only scale the
application as a whole, making it a heavy operation. For example, if we just need
to execute multiple instances of salary processing on pay day, we cannot do that
in isolation; and we need to scale the whole application by providing more
hardware firepower (vertical scaling) or make copies of the whole application on
different machines (horizontal scaling).

¢ Inflexible: Say we need to create a special reporting feature and we know a tool
or framework is available in a different language than we use. It is not possible in
a monolith architecture to use different programming languages or technologies.
We are stuck with the original choice, which might have been made years ago
and is not relevant anymore.

¢ Difficult to upgrade: Even a small decision, such as moving from Java EE 6 to §,
would mean that the whole application, along with all the features, needs to be
tested and even a small problem would hinder the upgrade, whereas if we were
dealing with multiple small services, we could upgrade them independently and
sequentially.

¢ Slow Development and time to market: For these reasons, it is difficult to make
changes to an application with a monolith design. This approach does not fit well
in today's agile world, where customers need to see changes and modifications as
soon as possible, rather than waiting for a release that takes years.

We have talked about some of the challenges of monolith applications. As the application
size grows and it becomes complex, it is not possible to manage a monolith application
easily. Due to these challenges, the industry has explored different approaches to manage
applications, with Microservices being a very popular solution.

Service-oriented architecture

Before moving to Microservices, it is important to understand what Service-oriented
architecture (SOA) is. SOA is the base on which Microservices are built. As the name
suggests, SOA is about services. With SOA, we try to visualize and design the application
as a combination of services that can talk to each other and to the end user, and fulfill

the user's requirements.

If we go back to our Employee Management System example, we can try to visualize the
application as a set of different services:

¢ Employee Data Management
¢ Salary Management
¢ Project Data Management

[9]

From Monoliths to Microservices Chapter 1
e Attendance and Leave Management
¢ Reporting Management
Based on our needs, we can divide the application into various services.
The following diagram should help us to visualize our application:
Client
\J L \d \J L
Employee Salary roject Data Altendance Reporting
Data and Leave
Management Management Management
Management Management
Y
Database

Again, we do not need to get into complex decisions at this point, such as whether we
should deploy these services as a single application or keep the data in a single
database. Instead, we would like to emphasize the core idea in this section. The base of
SOA is trying to think and visualize your application as a set of different services rather
than a single, monolith deliverable.

Why does breaking the application into services help? A simple example is when we need
to make changes to the code for salaries, the developer does not need to worry about what
is happening in Employee-, project-, or attendance-related code. Also, if we were to get an
error while generating a report for a manager, we would know we need to start looking for
a problem in the reporting service. While testing, we will focus on only one aspect of the
system. So the code becomes easy to manage and maintain.

[10]

From Monoliths to Microservices Chapter 1

Once we understand SOA and start to think of our application as a group of services, we
can take the next step and move toward a Microservices-based architecture, which we'll
discuss in the next section.

Understanding Microservices

Microservices are not a completely new concept. In the past, there have been many
attempts, such as E]Bs,Remote procedure calls (RPC), and implementations of services
through SOAP, that aimed to reduce dependencies among various application components.
Let's look at a formal definition to set the context and then we will try to understand it in
detail:

"Microservices - also known as the microservice architecture - is an architectural style that
structures an application as a collection of loosely coupled services, which implement
business capabilities. The microservice architecture enables the continuous
delivery/deployment of large, complex applications. It also enables an organization to
evolve its technology stack”.

-http://microservices.io/

In the previous section, we discussed SOA. Microservices are the logical next step, where
we extend the SOA and start thinking about dividing the services at a granular level. As the
name suggests, we divide our services down to a Micro level when we are talking about
Microservices. The next most important aspect is to think about these Microservices as
independent entities that can be developed, tested, deployed, and managed as complete
sub-applications in themselves.

If we try to visualize our previous example of the Employee Management System in terms
of design, the following diagram should demonstrate a Microservices-based
implementation:

[11]

http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/

From Monoliths to Microservices

Chapter 1
Client
Serverl Server? Server3
Altendance Employee roject Data
and Leave Data Management
Management Management 9
A A
\i A\
Serverd Servers Server6
‘_
PP
Salary Reporling Document
Management Management Uploader
Server7 Server8
Yy Y \i
PDF Excel
Generator Generator

Let's take a look at the design and how is it different from our previous SOA approach.
First, notice that we have divided our services at a granular level. For example, we are
supporting Excel and PDF-based reporting, but the actual generators need not be part of
the reporting service. The reporting service should only be responsible for generating data,
but how the data is represented should not be part of this service. An additional advantage
it gives us is that, if in future, we want to support other formats, say a Word DOC report,
we don't need to touch any of the existing code; we just create a new service, say Word

Document report generator, and plug it in. So we can say that a Microservices-based
architecture is easy to extend and maintain.

[12]

From Monoliths to Microservices Chapter 1

As we have divided the application into smaller services that can be managed
independently, we also talk about smaller teams and decentralized management. Each
team can take independent decisions on the design and technology stack they want to use,
and hence there is no dependency on other teams. Each service can be easily tested
independently.

Another thing you might have noticed is that each service is deployed independently.
Well, this might not be the exact scenario and you might deploy multiple services on the
same machine, but the idea is that you should have the capacity to deploy each service
independently.

Though we have not looked at the data storage part, ideally, each service will manage its
own data. There should be a single point of managing one data entity. This helps in the
decentralization for data, which helps with easy scalability and maintenance.

Communication between the services is another important aspect you should consider
when choosing a Microservices-based architecture. We need to decide whether the
communication needs to be synchronous or asynchronous, through REST, Queue-based, or
some other communication medium. A well-architected system will be fault-tolerant, as a
failure in no single service can bring down the system as a whole, so there is no single point
of failure.

There are no fixed, industry-wide set of rules to follow for a Microservices-based
architecture. This causes a lot of confusion, as well as flexibility. But to keep it simple, let's
take a look at some of the common characteristics of a good Microservices-based
architecture:

e Decoupled architecture

Independent deployables
Decentralized data

Smaller code bases and teams

Decentralized management
e Fault-tolerant

Next, let's take a look at some of the advantages and challenges that can be expected when
using a Microservices-based architecture.

[13]

From Monoliths to Microservices Chapter 1

Advantages of Microservices

Now that you're comfortable with the concept of Microservices, let's take a look at the
advantages they provide, which has made them so popular over the last few years. We
already discussed the challenges that come with a monolithic architecture. Most of the
challenges of Monolithic applications can be handled by the use of a Microservices-based
approach. The following are some of the advantages of a Microservices-based architecture:

Easy-to-manage Code: As we are able to modularize and divide our huge
application code base into various Microservices, we are not dealing with the
whole application code at any point in time.

Flexibility of choosing the tech stack: As every Microservice we create is
potentially a separate application in itself with a different deployable, it is easy to
choose a technology stack based on need. For example, if you have many Java-
based services in an application, and a new requirement comes in which you feel
can be easily handled by using Python instead of Java, you can go ahead build
that service in Python, and deploy it without worrying about the rest of the
application.

Scalability: As every Microservice can be deployed independently, it is easy to
scale them without worrying about the impact on others. For example, let's say
we know the reporting service is used heavily at every end of a quarter — we can
scale only this Microservice by adding more instances, and the rest of the services
remain unaffected.

Testing: Unit testing, to be more specific, is easy with a Microservices-based
approach. If you are modifying the leave-management service with some new
rules, you need not worry about other services, such as Employee Project
Management. In the worst case, if your leave-management service breaks down
due to faulty code, you can still edit and update the Employee project-related
information without even knowing that some other service is broken.

Faster time to market: As we are dealing with only one part of the application at
a time, it is easier to make changes and move to production. Testing and
deployment efforts are minimal as we are dealing with a subset of the whole
system at a time.

Easy to upgrade or modify: Let's say we need to upgrade a Microservice,
upgrade software or hardware, or completely rewrite the service, this is much
easier in a Microservice based architecture, as we are only upgrading one part of
the application.

[14]

From Monoliths to Microservices Chapter 1

e Higher fault tolerance: In a monolith architecture, one error can cause the whole
system to crash. In a Microservice-based architecture, in the worst case, a single
service will crash, but no other services will be impacted. We still need to make
sure we are managing errors properly to take advantage of Microservice-based
architecture.

Challenges with Microservices

Before concluding the Microservices section, it's important to mention that Microservices
are not a silver bullet. Along with all the advantages that come with Microservices, we need
to be aware of the challenges that they bring if not used properly:

¢ The right level of modularization: You need to be very careful in determining
how your application can be divided into Microservices. Too few would mean
you're not getting the proper advantage of Microservices, and too many services
means a heavy dev-ops requirement, to make sure all the Microservices
work well when deployed together. Too many Microservices can also have a
performance impact due to inter-service communication needs. You need to
carefully analyze the application and break it down into logical entities, based on
what would make sense to be thought of as a separate module.

¢ Different tech stacks to manage: One of the advantages of a Microservices-based
architecture is that you are not dependent on one technical stack or language. For
example, if one of the services is coded in Java, you can easily build another one
in .NET or Python. But if you are not careful, this advantage can quickly become
a problem. You might end up supporting dozens of technical stacks and
managing expertise for each service independently. Movement of team members
between projects or among teams is not an option if required, as one team might
be working on a completely different tech stack than other.

e Heavy reliance on Dev-Ops: If you are using too many Microservices, you need
to monitor each one and make sure all the communication channels are healthy
at all times.

e Difficult fault management: If you have dozens of services communicating with
each other, and one of those goes down or is slow to respond, it becomes difficult
to identify the problem area. Also, you do not want that problem in a single
service to impact other services, so you will need to make sure arrangements are
in place to handle error situations.

e Managing the data: As a rule of thumb, we try to make sure every Microservice
manages its own data. But this is not always easy when data is shared among
services, so we need to determine how much data each service should own and
how the data should be shared among services.

[15]

From Monoliths to Microservices Chapter 1

When you are architecting the system, you need to make sure you understand these
challenges and take care of them before committing to a solution. We will discuss some of
these challenges in this book and approaches to handling them.

Summary

In this chapter, we discussed the basics of Microservices. We started by discussing
Monolith architecture, and challenges that make it unfit for larger applications. After that,
we discussed the SOA, which can safely be considered as the basis of Microservices.
Finally, we talked about a Microservices-based architecture, as well as its characteristics,
advantages, and challenges.

Throughout the rest of the book, we will look at different aspects of Microservices; we will
talk about development, security, monitoring, and other aspects that you will need to be
aware of when you are implementing Microservices. In the next chapter, we will discuss
developing your first Microservice.

[16]

Creating your first Microservice

A Microservice created with Java EE or Spring Boot is easy to implement and fast to code.
The amount of code a developer needs to write while implementing a Microservice is very
little, as most of the boilerplate code is provided by Spring Boot or Java libraries. However,
before a Microservice can be created in both technologies, a few concepts need to be
understood.

In this chapter, the process of building the Microservice project from scratch is described in
detail. First, the tools required for project creation and management are described and
explained. Having the tools installed, the second part of this chapter is a thorough guide on
project creation. With your project created, two dedicated sections follow, providing a
thorough hands-on experience of coding a similar Microservice both with Java EE and
Spring Boot. A simple way to run the Microservices is then described.

The aim of this chapter is to provide the reader with the basics of Microservices creation on
the Java platform, be it with Spring or Java EE. Each step is described in detail to make sure
that the reader understands the concepts well.

The topics to be covered in this chapter are listed as follows:

o Setting up the development environment

Installing the Java Development Kit and Apache Maven

A Java EE Microservice

A Spring Boot Microservice

Creating a project with Maven

Building and running the Spring Boot Microservice

Creating your first Microservice Chapter 2

Setting up the Development Environment

When starting to develop both Java EE and Spring Framework applications, there are few
prerequisites. As both Spring Framework and Java EE are based on Java, the installation of
the artifacts given in the following steps can be used for both:

e Installing a Java development kit
¢ Choosing a Project management and Build tool
e Integrated development environment

In fact, the only step that is truly required is the first one — installing the Java Development
Kit (JDK). JDK is the technological essence of every Java EE or Spring application. It
contains many crucial parts assembling the resulting applications and, among them, the
Java Compiler (javac) dominates.

However, the process of application assembly, be it a plain Java application, Java EE
application, Spring Framework application, or any other framework, is represented by a
complex set of steps. Remembering the sequence of steps is complex and unnecessary. A
well-chosen Project management and build tool automates the process of application
assembly into a single command. This leads to trouble-free and lightning-fast development.
In reality, it is recommended to use a dependency management tool for every project.
Among other lesser-used options, there are two important Project management tools:

L4 Apache Maven (www .maven.apache. org)
¢ Gradle (www.gradle.org)

Creating Microservices with both Java EE and the Spring Framework does not strictly
depend on any build tool. For the sake of simplicity, Apache Maven is going to be used
throughout this book. Apache Maven is well established in the Java ecosystem and has
wide support among Integrated Development Environments (IDE).

The IDE provides assistance during the process of creating the application itself, including
further integration with Project management tools, Code generation, and Auto-completion.
This book respects the choice of each and every reader and is written as completely IDE-
invariant. The code presented in this book relies on JDK and Apache Maven as a build and
dependency management tools.

If you are new to the Java ecosystem, there are several IDEs to choose from:

¢ Apache NetBeans
e Eclipse IDE/Spring Tool Suite
e Intelli] IDEA

[18]

https://maven.apache.org/
https://gradle.org/

Creating your first Microservice Chapter 2

Apache NetBeans, an IDE with origins back in 1996, tends to be the first choice for Java EE
development. Eclipse IDE, first released in 2001, plays a significant role in the lives of
Spring Framework developers. There is a special edition named Spring Tool Suite (STS).
This edition of Eclipse provides extensive support for Spring application development.

Intelli] IDEA is not an IDE available for free when it comes to Java EE or Spring Framework
development. Intelli] IDEA provides the best of both worlds of STS and NetBeans, and can
be recommended for the development of both.

Environment installation

Both Java EE and Spring Boot are Java-based technologies. In order to build an application
with Java, a correctly-configured development environment is a necessity. In this chapter,
we will look at how to obtain and configure the basic tools to develop Microservices on top
of Java EE or Spring, as well as tools to interact with Microservices. This chapter introduces
the tools required for all chapters in this book.

Installing Java Development Kit

Java is a free ecosystem and there are various JDK available. Downloading the official and
most-used JDKs from Oracle is advised. The latest JDK is available for download at
https://www.oracle.com/technetwork/java/javase/downloads/index.html. Java SE is
guaranteed to be backward compatible, thus it is recommended to always download the
latest version. Java is available for all major operating systems, be it Linux, Windows,
macOS, or Solaris.

On Windows, the installation of JDK is a simple process accompanied by an installation
wizard. For macOS developers, there is an Apple Disk Image available to be mounted. On
Linux, due to various distributions and package managers specifically, JDK is not available
for each and every one of them. For distributions with the RPM package manager, there is a
package prepared. For other distributions, there is a generic package made available by
Oracle. The official JDK download site mentioned earlier in this chapter gives sufficient
information on the downloading and installing of the JDK on a given operating system.

There is one goal in common for users of every operating system: to have the JAVA_HOME
environment variable set up, pointing to the folder where JDK was installed.

[19]

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html

Creating your first Microservice Chapter 2

On the Windows operating system, go to Control Panel | System | Advanced Settings |
Environment Variables. Ensure there is a variable named JAVA_HOME with a value
properly set to JDK. On Windows, JDK is most commonly installed under C: \Program
Files\Java\jdk{version}.On Linux, the status of the JAVA_HOME variable can be
checked by opening a Terminal and issuing the echo $JAVA_HOME command.

If the value returned is empty, enter the export JAVA_HOME = /path/to/jdk command
to set the value.

Installing JDK on macQOS is pretty straightforward. First, you need to download the
corresponding . dmg installation file from Oracle. The template of the file is as follows:

jdk—-8uversion—-macosx—-x64.dmg

After downloading the . dmg file, double-click on it and a finder window will appear that
contains the .pkg installer file. Click on the installer and follow the instructions to complete
the installation.

To check the JAVA_HOME environment variable is set up correctly on macOS, edit
the .bash_profile file that resides on the home directory, which can be accessed via ~. It
should contain an entry similar to the following:

export
JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_version.jdk/Contents/H
ome

Here, the version is the current version of JDK downloaded. Also, make sure that the
JAVA_HOME environment variable is exported into the following PATH environment
variable. PATH could contain more than one definition concatenated with semi-colons:

export PATH=$PATH:S$JAVA_HOME/bin

Installing Apache Maven

Apache Maven is used throughout this book to create both Java EE and Spring Boot
applications, manage applications and dependencies, and run applications. It is available
for any operating system that JDK is available for. IDEs tend to contain their own
distribution of Apache Maven. In this book, however, for the sake of neutrality and making
the examples future-proof, Maven is used directly, as a separate installation.

[20]

Creating your first Microservice Chapter 2

The tool can be downloaded at maven.apache.org. Downloading the latest version
available is advised. Several bundles with Maven are available for download. The binary
archive without sources is sufficient. In any package downloaded, executable binaries
named mvn are to be found in the /bin folder. This mvn binary provides a command-line
interface to instruct Maven and represents the very part of Maven used throughout the
book. Since the interface is intended to be used from a command line, appending the path
to the directory of the mvn binary to the PATH system variable is recommended. To check
Maven's availability on the system path, issue the following command:

> mvn —-version

Apache Maven 3.5.0

Maven home: /usr/share/maven

Java version: 1.8.0_131, vendor: Oracle Corporation

Java home: /usr/lib/jvm/java-8-oracle/]jre

Default locale: c¢s_CZ, platform encoding: UTF-8

0OS name: "linux", version: "4.4.0-83-generic", arch: "amd64", family:
"unix"

Maven is a Java-based tool. After issuing the command, Maven should print the following
output, not only stating that Maven itself is available, but also indicating that Java was
found in the filesystem as the JAVA_HOME environment variable was properly set.

Downloading development tools

The process of development may require additional tools to interact with Microservices
being built.

cURL

For transferring data with URLs by means of a command-line, cURL is one of the most-
used tools. Most Linux distributions already have cURL installed. By default, this tool is
present on machines running macOS. Windows users can download the tool from http://
curl.haxx.se. In this book, cURL is used to perform basic interactions with the
Microservice APIs.

[21]

http://maven.apache.org
http://curl.haxx.se
http://curl.haxx.se
http://curl.haxx.se
http://curl.haxx.se
http://curl.haxx.se
http://curl.haxx.se
http://curl.haxx.se
http://curl.haxx.se

Creating your first Microservice Chapter 2

Postman

Postman is a tool for interacting with and building APIs. Since REST APIs are key way to
implement communication with Microservices in most of the cases, Postman is a suitable
tool to test these services. Postman started as a Chrome plugin, but can be downloaded as a
standalone version from www.getpostman. com. It is suitable for interacting with RESTful
APIs, and the tools are available for free. Advanced interaction with Microservice APIs is
performed with and demonstrated on Postman in this book.

Creating the project with Maven

The first use of Maven is to automate the Java project's creation. The procedure for creating
a basic project is the same as for Java EE and Spring. Project configuration, and types and
amounts of dependencies, are different for each of them. We will see an example usage of
Maven in next section, that is Your very first Microservice.

To create a project, the mvn archetype:generate command can be used. This command
requires the project name as input:

e groupld: This identifies the project across all other projects. Often, a reversed
domain name is used.

e artifactld: This represents the name of the project.

o version: This can be omitted. The default value is 1.0-SNAPSHOT.

The following code shows a sample Maven generate command:

mvn archetype:generate \
-DgroupIld=com.packtpub.microservices \
-DartifactId=weather-service \
-DinteractiveMode=false

A folder named after the artifactId property is created by Maven. In this case, it is

the weather-service folder. This a folder created by Maven is referred to as . {project-
root } throughout the book. In . {project-root}, a simple file structure is to be found,
which is shown here:

.{project-root}

I— pom.xml

L src

[22]

https://www.getpostman.com/

Creating your first Microservice Chapter 2

The pom. xm1 file describes project properties and required libraries. Also, the packaging of
the Microservice is defined in this file. In the src/ folder, the source code of the
Microservice will reside.

For the sake of simplicity, there are many nuances of Maven that are not
explained in this book. The ways of generating a project with Maven are
countless. Visit maven.apache.org to obtain a detailed introduction to
Maven. In the Introduction guide, the basic concepts are explained,
including the reasoning behind archetypes, snapshot versions, and
naming conventions.

Your very first Microservice

In the domain of a smart city, there are many sensors measuring local climate conditions,
such as temperature or humidity. Let's assume that the temperature data is used by some
other systems in the city. How do these other systems obtain information about the current
temperature? A dedicated service that does one thing well is a Weather Microservice.
Writing the code over and over again with each new system results in low code reuse, high
additional costs, and difficult maintainability. Thus, the entire logic of dealing with weather
data is extracted into one Microservice that other systems may call at any time. In order for
the other systems to be able to communicate with our Weather Microservice, a means of
communication must be set up. Therefore, the Weather Microservice has a strictly defined
application interface. In the age of the internet and Web 2.0, where HTTP as a protocol is
well established and accepted, choosing a RESTful interface ensures barrier-free access to
the Microservice.

The goal is therefore to create a simple Weather Microservice that provides data about the
temperature in the city. The service is going to communicate with the outer world by means
of a RESTful interface over an HTTP protocol.

The process of creation of this Microservice will be demonstrated with both Java EE and
Spring Boot. The source code of the Microservices created in this chapter are available on
GitHub. The repository contains a finished project with thoroughly commented code, ready
to be run.

[23]

https://maven.apache.org/

Creating your first Microservice Chapter 2

A Java EE Microservice

Java EE as a technology is an excellent choice for Microservices because it provides some off
the shelf functionalities for implementing core requirements of communication, security,
scalability, and so on. Each and every functionality from the Java EE specification can be
plugged into the Microservice when needed, and dropped when it is no longer required. As
there are many implementations of one specification available, support and security
updates, as well as vendor neutrality for any Microservice, is ensured. There are many
ways of building a Microservice with Java EE. In this introductory chapter, a minimalistic
approach with Payara Micro, taking care of application runtime, is presented.

We are moving ahead with the assumption that the reader is aware of the basic usage of
Maven. Though it is not a must to understand the concepts, it is recommended to go
through the basics of Maven if you are new to it: https://maven.apache.org/.

Coding the Microservice

With the project layout created by Maven, the Weather Microservice itself can be
implemented. There are two tasks to accomplish:

e Implement a resource that provides temperature information to the outside
world

e Configure the application's API context path

Each of these steps requires a single class, one for the temperature resource, named
TemperatureResource, and one for the application's context path configuration, named
WeatherApplication.

The temperature resource, which serves information about temperature, is represented by a
Java class, named TemperatureResource, placed into the
com.packtpub.microservices.weather.temperature package. In Maven's project
structure, the package belongs to {project-root}/src/main/java folder. Thisis the
folder where IDEs will create the package as well, as follows:

package com.packtpub.microservices.weather.temperature;
import javax.ws.rs.core.Response;
public class TemperatureResource {

public Response getAverageTemperature () A

//Not yet implemented in this step
}

[24]

https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/

Creating your first Microservice Chapter 2

There is a zero-argument method, named getAverageTemperature (), defined. The
return type of this method is javax.ws.rs.core.Response. The object comes from the
Java API for RESTful Web Services, or JAX-RS for short. The Response object returned
from the method contains mostly HTTP-protocol related information about response
headers, body content, redirects, and much more.

Response is not instantiated explicitly. Instead, the process of Response creation follows a
builder pattern, allowing the developer to obtain an instance from one of the static methods
defined on the Response class. The static methods return a ResponseBuilder instance.
Once the process of building the response with the ResponseBuilder instance is over and
the response contains everything the programmer wants, the final Response object is
constructed by calling the build () method on the ResponseBuilder chain. The process
of building a simple Response is demonstrated in the following code sample:

package com.packtpub.microservices.weather.temperature;
import javax.ws.rs.core.Response;

public class TemperatureResource {

public Response getAverageTemperature () {
return Response.ok ("35 Degrees")
Jbuild() ;

}

The TemperatureResource of the Weather Microservice is implemented, but there are no
instructions under which URI path the resource is available, or in simple words, it is not
clear how to call this service. The resource's paths are declared as any additional metadata
is, by means of a specialized annotation, @Path, from the javax.ws.rs package. This
annotation accepts one string value, defining the path of the underlying resource. By
applying the @Path ("/temperature™) annotation to the TemperatureResource class,
JAX-RS is instructed to make the underlying set of endpoints available under

the {httplhttps}://{host}:{port}/temperature URL

The code with the resource path defined by means of a @Path annotation, is demonstrated
as follows:

package com.packtpub.microservices.weather.temperature;
import javax.ws.rs.Path;
import javax.ws.rs.core.Response;

@Path ("/temperature")
public class TemperatureResource {
public Response getAverageTemperature () {

[25]

Creating your first Microservice Chapter 2

return Response.ok ("35 Degrees")
.build();

}

Defining the unique URI of the TemperatureResource class is not enough for the
getAverageTemperature () method to be recognized by JAX-RS as a RESTful resource.
First of all, the very existence of a Java method on a JAX-RS resource class does not
automatically imply that JAX-RS considers such a method to be a specific resource. Java EE
developers are free to create an arbitrary amount of methods inside a JAX-RS resource class
without introducing any side effects. HTTP protocol declares several methods for client-
server communication, as declared in RFC 2616. Each method has its own pre-defined
purpose. For example, for retrieving information identified by the request URI, the GET
method is intended to be used. Making getAverageTemperature () a JAX-RS resource
available via an HTTP GET call means we put the @GET annotation from javax.ws.rs
package on top of the method.

The final look of TemperatureResource is demonstrated in the following code block:

package com.packtpub.microservices.weather.temperature;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Response;

/**

* RESTful resource providing information about city's temperature
*/

@Path ("/temperature")

public class TemperatureResource {

/**

* Provides average temperature from all the city's sensors. The
temperature

* is artificial.

*

* @return {@link Response} with constant temperature

*/
@GET
public Response getAverageTemperature () A
return Response.ok ("35 Degrees")

.build();

[26]

Creating your first Microservice Chapter 2

The combination of annotation metadata tells JAX-RS that the
getAverageTemperature () method is available via an HTTP GET call under the path
defined by the @Path ("/temperature™") annotation. Other HTTP methods are also
available in the same package.

JAX-RS requires the developer to specify the URI path of resource classes exactly, as JAX-
RS does not try to guess or derive the URI from the resource class name or from the name
of any of its methods. Developers are free to name classes and methods deliberately. This
results in zero interference between Java code and the RESTful interface of the
Microservice.

Configuring the Microservice

After the temperature resource has been finished, it is necessary to define the context path
of the final URL where the temperature resource will be available. Start with creating the
JAX-RS configuration class, named WeatherApplication, in

the com.packtpub.microservices.weather package. In order

for WeatherApplication to be recognized as a JAX-RS configuration class, it must extend
the javax.ws.rs.core.Application class. The configuration of the application's path is
achieved with the javax.ws.rs.ApplicationPath annotation. The annotation takes a
String that represents the context path root of the application's resources. Annotating the
class with @ApplicationPath ("/weather") tells the JAX-RS implementation to expose
all resources under the /weather base context path. The slash in the path is optional; its
absence is automatically resolved:

package com.packtpub.microservices.weather;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

/o

* Configuration of Weather Service's REST API's context path.
*/

@ApplicationPath ("/weather")

public class WeatherMicroService extends Application {

}

[27]

Creating your first Microservice Chapter 2

Code summary

A Weather Microservice with a basic RESTful endpoint providing information about a
city's average temperature has been created. There were two classes created, each with a
unique role in the system:

® WeatherMicroService

® TemperatureResource

The WeatherMicroservice class holds a minimalistic configuration of the Weather
Microservice. It is required to explicitly state the basic context path of the Microservice URI.

The TemperatureResource class represents a specific resource within the Microservice
itself. It contains one endpoint returning the mentioned average temperature in the city,
represented by the getAverageTemperature () method. We introduced two additional
pieces of metadata written in the form of an annotation:

e The javax.ws.rs.Path annotation, which defines the path of the temperature
resource. The path is relative to the application path defined in the
WeatherMicroService class.

e The javax.ws.rs.GET annotation, which tells us to user the GET HTTP method
to make a call to getAverageTemperature () service.

With all these steps taken, the Microservice is entirely implemented and ready to be run.

The final outline of the project with packages and classes in {project-
root}/src/main/java is demonstrated by the following directory tree:

com
L—— packtpub
L— microservices
L— weather
F——— temperature
| L TemperatureResource.java

L WeatherApplication.java

[28]

Creating your first Microservice Chapter 2

Running the Microservice

Java EE enables the developer to choose from many ways of running the Microservice. As
the architecture of Java EE uses layers, where standards and their implementations act as
one layer and the Microservice itself is built on top of the standards, the developer has
many options. Among other things, it is now possible to do the following:

¢ Deploy to a classical application server.

e Create an UberJar that contains all the necessary functionality within one easily-
runnable Java Archive.

¢ Create a hollow jar (which is the same as UberJar but does not contain the
application code), which provides all the dependencies for the Microservice to be
deployed on top of it.

¢ Run Microservices directly from the command line with Payara Micro.

An easy way of running Java EE Microservices or just about any Java EE applications is
using Payara Micro and the command line. To download Payara Micro, visit
payara.fish/downloads. Backward compatibility is part of the Java EE contract, thus
downloading the latest version is an obvious step.

Payara Micro is a Java application that is able to run other Java EE applications. It provides
a Command-Line Interface (CLI). Interacting with Payara Micro means running it as an
ordinary Java program; nothing more is required. The readiness of the environment can be
tested by asking for a Payara version:

> java -jar /path/to/payara-micro-{version}.jar —--version
Payara Micro 4.1.2.173 Build Number 235

A list of Payara Micro's services can be displayed by means of the ——help flag:
> java -jar /path/to/payara-micro-4.1.2.173.jar --help

Among the many options, the -~~deploy option followed by a path to the Java EE
Microservice is designed to simply run any Java EE Microservices. Payara Micro invoked
with the —-deploy option is used to deploy the Weather Microservice. It even has the
ability to deploy multiple Microservices at once, if required.

[29]

http://www.payara.fish/downloads

Creating your first Microservice Chapter 2

Building and running the Weather Microservice

Before running the Microservice, it has to be compiled and packaged. Maven, the project
management tool, automates this process. The whole project is represented by Maven's
.pomn file, named pom. xm1. This file is present in the project 's root folder. Maven, when
executed, searches for pom.xml in the very folder in which it has been executed. In the
example application, there is only one folder and one file to be found. First and most
important is the src/ folder, with the application's code and resources. The name of this
folder, src, is standardized by Maven unless updated to some custom folder; the sources
of the application are expected to be there:

.{project-root}

— pom.xml

In order to build the project, change the working directory to . {project-root}. After
changing the working directory, the next step is to instruct Maven to compile, verify, and
package the whole application in one instruction. After the packaging is completed, Maven
reports a BUILD SUCCESS:

> mvn package
[INFO] Scanning for projects...
...... several output omitted......

[INFO] BUILD SUCCESS
[INFO] mmmm oo

After mvn package is executed, Maven downloads all the necessary dependencies,
compiles the Java code, and packages the result into a Java Web Archive (WAR). The
resulting WAR is placed by Maven into a unified directory, named target/, in the
.{project-root} folder:

.{project-root}
F——— pom.xml
F— src

o target

The name of the WAR placed inside the target/ directory consists of several parts:
{artifactId}.{version}.{packaging}. These variables are placed in the pom.xm1l file
itself during the project creation phase. Maven uses them to construct the name of
application artifacts during the build process.

[30]

Creating your first Microservice Chapter 2

Since Java EE is used, there is only one dependency, Java EE API. This
dependency is scoped as provided, telling Maven not to include it in the
resulting WAR. Therefore, no additional code is bundled in the resulting
WAR, only the Microservice itself, resulting in a very small deployment
unit of several kilobytes.

With the Weather Microservice built in the /target folder, the Microservice is now ready
to be run in Payara Micro. To run the Microservice, do the following:

1. Start Payara Micro.
2. Deploy the Microservice.

Both steps can be executed with a single command:

java -jar /path/to/payara-micro-{version}.jar --deploy /path/to/weather-
service-1.0.war

By issuing that command, Payara Micro is invoked as a standard Java application and
instructed to deploy a single WAR. The process of startup and deployment is automatic
and does not require user interaction. The first phase is the start of Payara Micro itself.
When Payara Micro is successfully started, the second phase, where deployment units are
handled, is initiated. The set of deployment units is defined by the ——deploy
{deployment-unit}.{war|jar|ear} flag.

If there is a problem with running Payara Micro, the cause is usually other
applications bound to ports used by Payara Micro. Typically, Payara
Micro listens on port 8080, which is commonly used by many other
programs.

Invoking the Microservice

For each successfully deployed application, Payara Micro prints information about the URI
the application can be accessed under, as well as a list of REST endpoints exposed by the
application and their URLs.

[31]

Creating your first Microservice Chapter 2

After invoking java -jar payara-micro-4.1.2.172.jar --deploy {deployment-—
name}.{jar|war|ear} from the command line, the output at the very end of the Payara
Micro startup process contains the following information:

Payara Micro URLs
http://localhost:8080/weather-service-1.0

'weather-service-1.0"' REST Endpoints
GET /weather-service-1.0/weather/temperature

With Payara Micro and the Weather Microservice up and running, the Microservice itself
can be invoked. From the console output provided by Payara Micro, the final path, or more
precisely the URL of the average temperature endpoint, can be assembled.

Payara Micro, as the majority of other Microservice solutions, binds to the localhost
interface on port 8080 by default. The so-called context part of the URL is composed of
several parts. The URL parts for the Temperature resource are composed as follows:

e /weather-service-1.0 : This represents the name of the Java Web Archive
deployed to Payara Micro. This part can be removed by renaming the
deployment unit to ROOT. { jar|war|ear}.

e /weather : This represents the base context path for all Weather Microservice
RESTful endpoints, as defined in the weatherMicroservice class.

e /temperature : This represents the path to the final temperature resource, as
defined by the TemperatureResource class in the code.

The final URL for the average temperature resource is derived from the preceding
information to create the following URL:

http://localhost:8080/weather—-service-1.0/weather/temperature

As expected, the endpoint is reachable by means of an HTTP protocol. To invoke the
Microservice, a tool able to make requests with the HTTP protocol is required. A
widespread utility, named cURL (to download, check out https://curl.haxx.se/
download.html), is capable, in its own words, of transferring data to and from a server
while using many protocols, and HTTP is one of them. Invoking the endpoint with cURL
means passing the URL of the average temperature endpoint to the utility:

> curl http://localhost:8080/weather—-service-1.0/weather/temperature
{"temperature":60.0, "temperatureScale":"CELSIUS"}

[32]

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Creating your first Microservice Chapter 2

The Weather Microservice immediately responds with the temperature in JSON format.

cURL automatically recognizes the protocol from the URL passed as a
parameter. Also, when no HTTP method is specified, cURL uses the HTTP
GET method by default. As the endpoint is available via HTTP GET, this is
desired behavior.

A Spring Boot Microservice

Spring Boot represents an evolutionary phase of the Spring Framework. Spring Boot does
not introduce vastly new functionality, its focus is to make the process of creation and
running of Spring-Framework-based applications easier. It is defined by a curated set of
techniques and tools working together to provide a better experience throughout the
application's life cycle.

Spring Boot is not restricted to Microservices. All the functionality of the Spring Framework
is still available.

Creating the project with Maven

Spring Boot is a Java-based technology, therefore creating a Java project is required. Maven
is going to be used as a project management tool. The process of creating a basic Java
project with Maven is explained at the beginning of this chapter, under the Setting up the
development environment section, since the process is the same for both Java EE and Spring
applications. As a result, a project with an almost empty pom. xm1 file should be created:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.packpub.microservices</groupIld>
<artifactId>weather-service-spring</artifactId>
<version>1.0-SNAPSHOT</version>

<packaging>jar</packaging>

<name>02-Smart City Weather Microservice with Spring Boot</name>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
</project>

[33]

Creating your first Microservice Chapter 2

Having created a basic project with Maven, Spring Framework support can be integrated
by making several changes to pom.xml. As a bare minimum, it is required to do the
following;:

¢ Add a Spring Boot Starter parent, that is, a parent tag with group and version
details

e Add Spring Boot dependencies
¢ Add the Spring Boot Maven plugin

Spring Boot dependencies provide a curated set of Spring Framework parts with the
functionality required. The Spring Boot Maven plugin is required to package the Spring
application into a Java Archive (JAR) and make it runnable. In order for the Spring Boot
Maven plugin to work, additional Maven configurations and dependencies are required.
However, developers are not forced to configure Maven builds to provide a suitable
environment for Spring Boot to work. All the required functionality and settings are hidden
in a single Maven parent, named the Spring Boot Starter parent.

Adding the Spring Boot Starter parent is the first logical step, since the rest of the steps are
dependent on its presence:

<?xml version="1.0" encoding="UTF-8"7?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>com.packpub.microservices</groupId>
<artifactId>weather-service-spring</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

<name>02-Smart City Weather Microservice with Spring Boot</name>

<parent>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.6.RELEASE</version>
<relativePath/>

</parent>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

</properties>

</project>

[34]

Creating your first Microservice Chapter 2

Spring Boot applications are subject to a unique packaging system, where all the
dependencies, including the optional Java EE parts that Spring is dependent on, are
included and compressed into a single Java Archive. Such a JAR is then easily runnable.
Maven on its own does not contain the functionality to create such a package. To create a
Spring-Boot-runnable JAR, a Maven plugin is required. It is therefore necessary, after the
Spring Boot Starter parent is in place, to input the Spring Boot Maven plugin, which
provides the functionalities required. This plugin is added to the <plugins> section of
the <build> settings section:

<?xml version="1.0" encoding="UTF-8"7?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.packpub.microservices</groupld>
<artifactId>weather-service-spring</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

<name>02-Smart City Weather Microservice with Spring Boot</name>

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter—-parent</artifactId>
<version>1.5.6.RELEASE</version>
<relativePath/>

</parent>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>1.5.6.RELEASE</version>
</plugin>
</plugins>
</build>

</project>

[35]

Creating your first Microservice Chapter 2

In the current state, the Spring-Boot-runnable JAR can be created, but there are no Spring
Framework libraries to provide any functionality whatsoever. With Spring Boot, adding
Spring Framework functionality is much easier than ever before. Spring itself has many
modules with lots of useful functionality, but resolving mutual dependencies could be
quite difficult at times. Spring Boot introduces a new system of dependencies, representing
a more curated set of Spring Framework functionality. The goal is to create a very basic
Microservice that communicates with other participants by means of a RESTful interface.
With Spring Boot, this goal requires only one dependency:

<?xml version="1.0" encoding="UTF-8"7?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>com.packpub.microservices</groupId>
<artifactId>weather-service-spring</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

<name>02-Smart City Weather Microservice with Spring Boot</name>

<parent>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.6.RELEASE</version>
<relativePath/>

</parent>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

<dependencies>
<dependency>
<groupld>org.springframework.boot</groupIld>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>1.5.6.RELEASE</version>

[36]

Creating your first Microservice Chapter 2

</plugin>
</plugins>
</build>

</project>

The created . pom file describes a basic Spring Boot application completely. Nothing more is
required.

It is also possible to use a dedicated web tool named Spring Initializr,
available from http://start.spring.io. Spring Initializr is an interactive
tool to generate Maven- or Gradle-based Spring Boot projects. For more
complex projects with non-trivial functionality, project outline creation is
greatly simplified. It also provides an overview of available functionality,
which can be added to the project by simply clicking on a checkbox. If you
would like a similar experience for your JavaEE projects, WildFly Swarm
provides the same capabilities. With WildFly Swarm, you don't need to
specify an exhaustive set of required dependencies, as there is automatic
detection available. For more information, visit http://wildfly-swarm.

io/generator/.

Coding a Spring Boot Microservice

To create a Weather Microservice with Spring Boot providing the actual temperature by
means of a RESTFul endpoint, the following steps are necessary:

1. Create an application entry point to explicitly start the Spring Boot application.
2. Perform a basic configuration of the application.
3. Create a RESTful resource-controller class.

In the example, all classes belong to a com.packtpub.microservices.weatherservice
package. In Maven's project structure, the package belongs to {project-
root}/src/main/java folder. When a Java IDE is used, packages are automatically put
in this folder.

Spring Boot applications require an explicit entry point in the form of the public static
void main () method, as any Java application does. In this main () method, the Spring
Boot application is started and configured. The beginning of a Spring Boot project is very
similar to creating a Java SE application:

package com.packpub.microservices.weatherservice;

public class WeatherServiceApplication {

[371]

http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/

Creating your first Microservice Chapter 2

public static void main(String[] args) {
//Start & configure Spring Boot application
}
}

The next step is to turn a common Java SE application into a Spring-Framework-enabled
Java application. Spring Boot is a very convenient tool for doing that.

The SpringApplication class from the org. springframework.boot package
instantiates the Spring Framework. Its public static method, run (. . .), takes care of
everything required. The run () method is overloaded multiple times. A simple variant
covering most use cases is invoked in the SpringApplication.run (Object []

sources, String... args) version. The very first argument is the Class object of the
Spring Boot application configuration. This points to a class holding the Spring Boot
application configuration and there can be multiple such classes in a project if required. For
the example project, the configuration class is the WeatherServiceApplication class,
which by no coincidence also hosts the main () method. It is a common practice to unite the
Spring Boot configuration class with a class hosting the main () method, even though it is
not necessary.

As already mentioned, a Spring Framework application needs to be configured. With
Spring Boot, the whole framework has evolved into a convention-over-configuration
approach. This means a reasonable default configuration, with changes made only to the
parts as necessary. Most of the times, there are no changes at all. The default configuration
comes with a SpringBootApplication annotation from

the org.springframework.boot .autoconfigure package. By applying it to

the WeatherServiceApplication configuration class, the Spring Boot Microservice
startup procedure is defined and complete:

package com.packpub.microservices.weather;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class WeatherServiceApplication {

public static void main(String[] args) {
SpringApplication.run (WeatherServiceApplication.class);

}

[38]

Creating your first Microservice Chapter 2

From the example, it can be observed that the array of String arguments is a purely optional
argument. Only the Class object of the WeatherServiceApplication configuration class
is passed as an argument to the SpringApplication.run () method.

The @springBootApplication configuration annotation represents a union of classical
Spring Framework annotations:

® @SpringBootConfiguration
® @EnableAutoConfiguration

e @ComponentScan

@SpringBootConfiguration helps Spring Boot to identify the annotated class as a
configuration class. The remaining two annotations, @EnableAutoConfiguration and
@ComponentScan, affect the behavior of Spring Dependency Injection and the bean-
configuration mechanisms present inside a Spring application. This makes Spring
Framework discover all possible beans on the classpath and attempt to resolve the
dependency-injection tree automatically, without manually adding each and every bean.

With Spring Boot Microservice configured, the Weather Microservice functionality can be
straightforwardly implemented. The Weather Microservice is going to provide one simple
endpoint that returns an average temperature in the whole city. The service contract, that is,
the method returning the temperature, promises to provide the temperature value. The
service supports two scales, namely CELSIUS and FAHRENHEIT. This is the whole domain
model of the Microservice. The package chosen for the entire domain model in the
following examples is com. packpub.microservices.weather.domain, the same
package as the Spring Boot main and configuration class.

There is one enumeration to be created, representing the temperature scales available. For
simplicity, the CELSIUS and FAHRENHEIT scales are used. The enumeration is
named TemperatureScale:

package com.packtpub.microservices.weather.domain;

public enum TemperatureScale {
CELSIUS, FAHRENHEIT

}

Afterward, an object representation of the temperature itself, named
the Tempterature class, is created:

package com.packpub.microservices.weather.domain;
public class Temperature {

private Double temperature;

[39]

Creating your first Microservice Chapter 2

private TemperatureScale temperatureScale;

public Double getTemperature() |

return temperature;

public void setTemperature (Double temperature) {

this.temperature = temperature;

public TemperatureScale getTemperatureScale () {

return temperatureScale;

public void setTemperatureScale (TemperatureScale temperatureScale) {

}

this.temperatureScale = temperatureScale;

With the Object representation of the Microservice's domain model sealed, the structure of
the average temperature resource is known and all the necessities for a successful average-
temperature resource implementation are completed. The spring Framework leverages the
functionality of the Spring REST MVC to enable developers to create RESTful services. An
average temperature resource requires a new class placed in

a com.packpub.microservices.weather package, named TemperatureResource. The
TemperatureResource class hosts one method, named getAverageTemperature (),
with a return type of ResponseEntity<T> from the org. springframework.http

package:

package com.packpub.microservices.weather.domain;

import com.packtpub.microservices.domain.weather.Temperature;
import com.packtpub.microservices.domain.weather.TemperatureScale;
import org.springframework.http.ResponseEntity;
public class TemperatureResource {

public ResponseEntity<Temperature> getAverageTemperature () {

// Not yet implemented in this step

[40]

Creating your first Microservice Chapter 2

The ResponseEntity class has one generic parameter, T, defined. This generic parameter
represents the type of the Java object serialized in the HTTP response body. For the
average-temperature resource, the type is Temperature. In other words, if there are no
errors during the getAverageTemperature () method invocation, an instance of
ResponseEntity containing the Temperature class object is set. The HTTP 200 OK status
code is set for ResponseEntity. Fulfilling this contract instantiates the Temperature
object, sets its properties, and returns it wrapped by a ResponseEnt ity object:

package com.packpub.microservices.weather;

import com.packtpub.microservices.domain.weather.Temperature;
import com.packtpub.microservices.domain.weather.TemperatureScale;
import org.springframework.http.ResponseEntity;

public class TemperatureResource {

public ResponseEntity<Temperature> getAverageTemperature () {
Temperature temperature = new Temperature();
temperature.setTemperature (35D) ;
temperature.setTemperatureScale (TemperatureScale.CELSIUS) ;

return ResponseEntity.ok (temperature);
}

The instantiation of the Temperature object, and the setting of its properties, are parts of

a standard Java code. The created Temperature instance is wrapped by ResponseEntity
with the ResponseEntity.ok (temperature) method. This entry tells Spring to return an
HTTP response with HTTP status 200 OK and serialize an instance of Temperature in the
method body. In fact, it is a convenient shortcut

for ResponseEntity.status (HttpStatus.OK) .body (temperature).
ResponseEntity follows a very common builder pattern, making it easy and quick to
configure the response.

The Microservice functionality is defined; however, there is no way for Spring Framework
to recognize, under which URL the temperature resource is available. First, Spring has to be
told that the TemperatureResource class is a RESTful controller by using the
@RestController annotation. A rest controller is an internal naming related only to the
Spring Framework, marking a class as a web controller and marking a method's return
value as serialized in the HTTP response body.

[41]

Creating your first Microservice Chapter 2

The origin of this annotation can be found in Spring MVC, a mature Spring component
supporting the famous Model-View-Controller pattern. Spring REST MVC builds on top of
this historical functionality. In reality, @RestController combines two older

annotations: @Controller and @ResponseBody.

The basic context path of all endpoints regarding the temperature resource should be
"/temperature". To achieve this, a @RequestMapping annotation from

the org.springframework.web.bind.annotation package may be used. The average
temperature endpoint is available via the HTTP GET method, as defined in RFC 2616. To
define the state method, the @RequestMapping attribute is used once again, this time the
method attribute is filled with the GET value from the RequestMethod enumeration,
present in the same package as the @RequestMapping annotation itself:

package com.packpub.microservices.weather;

import com.packtpub.microservices.domain.weather.Temperature;
import com.packtpub.microservices.domain.weather.TemperatureScale;
import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping (path = "/temperature")
public class TemperatureResource {

@RequestMapping (method = RequestMethod.GET)

public ResponseEntity<Temperature> getAverageTemperature () A
Temperature temperature = new Temperature();
temperature.setTemperature (35D) ;
temperature.setTemperatureScale (TemperatureScale.CELSIUS) ;

return ResponseEntity.ok (temperature);

}

It should be noted that method namings are not considered in any way when Spring REST
MVC assembles the final URL to the endpoint. The getAverageTemperature () method
can be renamed without any impact on the RESTful interface whatsoever.

With TemperatureClass being implemented and the required Spring REST MVC
metadata in a form of annotations being added, the final step has been reached and the
Weather Microservice implemented with Spring Boot is ready to be run.

[42]

Creating your first Microservice Chapter 2

The final outline of the project using the example package naming is demonstrated in the
following filesystem tree:

F— main
F— java

|

|

| | O packpub

| | L— microservices

| | L— weather

| | — domain

| | | —— Temperature.java

| | | O TemperatureScale. java

| | F——— TemperatureResource. java

| | L WeatherServiceApplication.java

Building the Spring Boot Weather Microservice

Spring Boot applications are primarily distributed as a standard Java application packed
inside a JAR. The JAR of any Spring Boot application contains all the dependencies
required for Spring Framework applications to be run. To build a Spring Boot application,
Maven can be utilized. The Spring Boot Maven plugin, which has been present in Maven's
pom. xml file since the development phase, automatically hooks onto the build process and
creates a directly executable Spring Boot JAR.

The whole process is triggered by instructing Maven to package the application. Executing
the maven package command should be either done on the {project-root} folder, or by
pointing Maven to {project-root} using the mvn package -f

path/to/pom.xml parameter. {project-root} stands for the folder where the pom.xml
of the Spring Boot Weather Microservice resides:

> mvn package
..several output omitted...
[INF O] ———mmm oo oo o
[INFO] BUILD SUCCESS
[INF O] ———mmm oo oo o

After Maven is instructed to package the application, a new folder appears in {project-
root }. In this folder, the Spring Boot Microservice build can be found:

.{project-root}
F——— pom.xml
F— src

F——— target

[43]

Creating your first Microservice Chapter 2

Inside the target/ folder, several sub-folders and files emerge. Most of the folders are a
standard output of the Java application-compilation and -assembly process, such as
generated sources or Javadoc documentation. The structure of the target/ folder is
demonstrated here:

{project-root/target}

—— classes

—— generated-sources

—— maven-archiver

—— maven-status

—— weather-service-spring-1.0-SNAPSHOT.jar

L— weather-service-spring-1.0-SNAPSHOT.jar.original

Two files are of particular interest regarding Spring Boot: there are two JAR to be found.
Those JARs almost have the same name, but one of them is suffixed with the .original
string:

e weather-service-spring-1.0-SNAPSHOT. jar

® weather—-service-spring—-1.0-SNAPSHOT.jar.original

The suffixed original JAR is built first. This JAR is the output of the standard Maven build
pipeline when the MVN package command is invoked. This archive is only a few kilobytes in
size, containing nothing but the business logic of the application. There is no Spring
Framework library included. This archive is taken by the Spring Boot Maven plugin and
transformed into a new JAR, called Fat JAR. The old one is then kept aside at the same
location with the afore-mentioned .original suffix.

A Fat JAR is a common name for a Java application packed in a single JAR with all the
dependencies required. The process of transforming a simple Java Archive into a Spring
Boot Fat JAR includes importing the required libraries into the newly-created JAR.
Everything from Spring Framework libraries to the Java EE specification implementations
that Spring Framework depends on is included. With Spring Boot, the Spring Framework
core principles remain. Years ago, Spring Framework applications were dependent on
several Java EE specifications, most noticeably on the servlet specification. As a result,
Spring Framework was commonly deployed to an Application Server or a Servlet
Container. This dependency on Java EE remains. However, the days of direct interaction
with a servlet container, which is just enough for Spring Microservice to run, are over.
There are three servlet containers to choose from with Spring Boot:

e Apache Tomcat (tomcat .apache.orq)
[Eclipse Jetty (eclipse.org/jetty)
e Undertow (undertow.io)

[44]

http://tomcat.apache.org
http://eclipse.org/jetty
http://undertow.io

Creating your first Microservice Chapter 2

Each of these servlet containers has specific strengths. By default, Apache Tomcat is
included in the Spring Boot Fat JAR. However, Spring Boot takes care of the instantiation
and configuration. You no longer need to start an application server or a servlet container
and then deploy a Spring application. The startup configuration and deployment steps are
fully automated.

Because Spring Boot represents a way of application packaging and distribution, a common
Spring Boot application can always be converted into a traditional Spring Framework
application and deployed as a Web Archive into a Servlet Container or Application server.
This can be achieved by editing Maven's POM, modifying the dependencies and way of
packaging.

Running the Spring Boot Weather Microservice

Once the Spring Boot Microservice is developed and assembled, it is ready to run. There are
several ways of running a Spring Boot Microservice:

¢ Executing a Spring Boot Java Archive in a JVM
¢ Using Maven to run the Spring Boot application
¢ Using the Spring Boot CLI

Since the Spring Boot Maven Plugin produces a JAR with all the dependencies found in the
{project-root}/target/ folder, an obvious choice is to run it with java -jar
weather-service-spring-1.0-SNAPSHOT. jar. As a necessity, Java must be available
on the PATH, otherwise, a path to the java binary folder must be provided explicitly:

> java —-jar weather-service-spring-1.0-SNAPSHOT. jar

...several output omitted...

Tomcat started on port(s): 8080 (http)

Started WeatherServiceApplication in 2.305 seconds (JVM running for 2.601)

As a default behavior, Spring Boot starts a Tomcat container included in the Java Archive,
registers Spring-Framework-specific servlets, and constructs application context. The
default interface Apache Tomcat listens to is 127.0.0.1 (localhost) using port 8080. If the
Spring Boot application is successfully deployed into the bundled servlet container, an
information message about the successful start of an application appears.

The initial ASCII art logo of Spring Boot can be disabled in many ways.
One simple way is to construct the Spring Boot application using

the SpringApplicationBuilder class from

the org.springframework.boot .builder package. The
showBanner (false) method of this builder saves console space.

[45]

Creating your first Microservice Chapter 2

After a successful start, the Weather Microservice can be invoked. The final URL of a
RESTful resource is assembled as {protocol}://{host}:{port}/{base—context-
path}/{resource-path}. By default, a plain HTTP protocol without any SSL/TLS
capabilities is used when Tomcat is started. As already mentioned, the default interface
Tomcat, or any other servlet container available with Spring Boot, binds to is localhost,
using port 8080. The base context path is empty by default; however, in the Weather
Microservice, a domain-descriptive prefix is bound using
'server.contextPath=/weather' in the application.properties file. The
Temperature resource is available under the /temperature context path, which is
appended to {base-context-path}. As the average temperature endpoint resides on the
/temperature address, there's nothing more to append to the final URL.

To invoke WeatherMicroService, specifically the average temperature endpoint, any tool
with support for an HTTP protocol can be used. One such tool is cURL. The Average
temperature endpoint is reachable from the preceding URL by making an HTTP request
using the GET method. If there is no cURL tool available for your operating system, for this
simple request, any web browser can be utilized:

> curl http://localhost:8080/weather/temperature
{"temperature":35.0, "temperatureScale":"CELSIUS"}

The operation is successful if Spring Framework replies with a Temperature object
serialized as JSON, as demonstrated in the preceding code. There is also an option for
Maven to start any Spring Boot Microservice. With the Spring Boot Maven plugin present
in the project, Maven goals prefixed with Spring Boot can be used to start, stop, and
repackage the application:

> mvn spring-boot:run
..several output omitted...
Tomcat started on port(s): 8080 (http)
Started WeatherServiceApplication in 2.305 seconds (JVM running for 2.601)

The Spring Boot Maven plugin executes the very same java -jar command already
demonstrated, only the process is more automated.

[46]

Creating your first Microservice Chapter 2

Summary

Java is a rich platform and there are numerous ways to achieve the same goal. This
introductory chapter presented an opinionated view on the process of creating a
Microservice from scratch. As a first step, the very basic process of general Java project
creation was explained. We saw that both Java EE and Spring grow from the same Java
roots. In general, as a consequence of the richness of the Java ecosystem, even the project-
creation phase can be performed in various ways, not to mention the steps of actually
implementing the Microservice. The approaches shown in this chapter are time-proven,
universal, and most likely to be applied on a real project.

The Weather Microservice implemented with Java EE demonstrates its long-term focus on
convention over configuration. Besides the actual Temperature resource, represented by a
single class complemented with very few JAX-RS metadata annotations, there it was only
one value configured. The value is the context path of the REST API within the
Microservice, nothing more. RESTful resources implemented with JAX-RS are
automatically discovered and integrated with the rest of Java EE's functionality. After the
implementation phase, it was shown how Maven, the project management tool, can be used
to build a thin Java Web Archive. With the Weather Microservice built and packaged into a
WAR, we saw how a Microservice can be deployed and run by a single command using a
Payara Micro instance.

A Spring-Framework-based implementation of the Weather Microservice was performed
on the same roots. Creating the actual resource required only one class, complemented with
some metadata in the form of Spring REST MVC annotations. The next series of steps
aimed to explain how modern Spring Framework applications are built, packaged, and run
in an opinionated way named Spring Boot. First, we looked at how simple it is to configure
Maven to produce a Spring Boot Java Archive. We emphasized how Spring Boot's JAR can
be simply executed, as it contains all the dependencies required, including the parts of a
servlet container. Finally, we saw how to implement a class that contains an entry point to
the Spring Boot Microservice. We explained how the convention-over-configuration
approach has reached the Spring world and which configuration steps are being done for
the developer automatically.

Both Java EE and Spring Framework are very rich platforms, each with unique strengths.
This chapter showed you a minimalistic use case for both platforms. The world of
Microservices brings with it many new ideas and possibilities. In the chapters to come, such
possibilities will be revealed and demonstrated. In the next chapter, we will discuss how
various Microservices would interact with each other.

[47]

Connecting Microservices
Together

In the previous chapter, we set up our development environment, chose Maven to create
the skeleton of our project, and implemented a RESTful web service to provide average
temperature information.

In this chapter, we'll start by creating a client that consumes the temperature service we
created. We will be using a JAX-RS client API and Jersey open source reference
implementation under the hood. We will use JAX-RS 2.1, which is a part of Java EE 8 and
Jersey 2.26.

Jersey version 2.26 is the JAX-RS 2.1-compliant version and the latest
available version at the time of writing.

It's also possible to use any JAX-RS-compliant implementations instead of
Jersey, such as RESTEasy (http://resteasy.jboss.org) or Apache Wink
(https://wink.apache.org).

We will also show how to implement the same logic for the client in an asynchronous way.
We'll continue by implementing an interaction between two Microservices to demonstrate
methods for integration. And finally, for discovering services, we'll register the services that
we created into service discovery mechanisms that are available, such as Eureka and
SnoopEE.

In this chapter, we are going to cover following topics:

e Building a client
e Connecting two Microservices

http://resteasy.jboss.org
http://resteasy.jboss.org
http://resteasy.jboss.org
http://resteasy.jboss.org
http://resteasy.jboss.org
http://resteasy.jboss.org
http://resteasy.jboss.org
http://resteasy.jboss.org
http://resteasy.jboss.org
https://wink.apache.org
https://wink.apache.org
https://wink.apache.org
https://wink.apache.org
https://wink.apache.org
https://wink.apache.org
https://wink.apache.org
https://wink.apache.org
https://wink.apache.org

Connecting Microservices Together Chapter 3

Running Snoop and registering our service

Installing and registering Eureka
¢ Consuming registered services
¢ Discovering and invoking the service

Building a client

To implement the client, we are going to create a standalone Java application that connects
to our temperature service implemented in chapter 1, From Monoliths to Microservices. We
will consume the service with a JAX-RS-based client implementation. Let's start by defining
the dependencies needed to implement this client application.

We are assuming that you've already created an empty Maven application of the jar
packaging with your favorite IDE. You can also create the project with Maven Archetype,
as shown in chapter 2, Creating Your First Microservice. Since we are using Jersey as the
reference implementation, its Maven dependency should be added, as follows:

<dependency>
<groupId>org.glassfish.jersey.core</groupId>
<artifactId>jersey-client</artifactId>
<version>2.26</version>
</dependency>

The Jersey client dependency transitively depends on javax.ws.rs-api, which is the
dependency of the JAX-RS API version 2.1. We don't need to define the JAX-RS 2.1
dependency explicitly, since it will be resolved by Maven.

In order to use this dependency in a standalone console project, the Jersey-HK2
dependency should be also added, as follows:

<dependency>
<groupId>org.glassfish.jersey.inject</groupId>
<artifactId>jersey-hk2</artifactId>
<version>2.26</version>

</dependency>

Jersey uses HK2 (also known as Hundred-Kilobyte Kernel) by default for
the dependency injection. You can find more details about HK2 at
https://javaee.github.io/hk2.

[49]

https://javaee.github.io/hk2
https://javaee.github.io/hk2
https://javaee.github.io/hk2
https://javaee.github.io/hk2
https://javaee.github.io/hk2
https://javaee.github.io/hk2
https://javaee.github.io/hk2
https://javaee.github.io/hk2
https://javaee.github.io/hk2
https://javaee.github.io/hk2
https://javaee.github.io/hk2

Connecting Microservices Together Chapter 3

The client implementation for consuming the Temperature service is implemented as
follows:

public class TemperatureResourceClient {

public static void main(String... args) A
Client client = ClientBuilder.newClient ();
WebTarget target = client.target ("http://localhost:8080/" +
"weather—-service/weather/temperature");

Invocation.Builder builder = target.request();
Temperature result = builder.get (Temperature.class);

System.out.println (result);
client.close();
}

This is a console application that can be run directly without providing any parameters.
Within the implementation, we first create a container instance of
javax.ws.rs.client.Client by simply invoking the newClient () method on

the javax.ws.rs.client.ClientBuilder;class.;ClientBuilder is the main entry point
for using the client API, which itself is an abstract class. For ClientBuilder an
implementation is to be provided. In our case, Jersey provides the implentation in the form
of JerseyClientBuilder. Then we create an instance of
javax.ws.rs.client.WebTarget by setting the target URL for the client. By calling

the request () method on the target, we're starting to build a request for the targeted web
resource. After having an instance of javax.ws.rs.client.Invocation.Builder at
hand, calling the get () method with the Temperature.class parameter invokes the
HTTP GET method on the URL synchronously. This is the default behavior of the client
container, and invoking the get () method is a blocking call until the response has been
sent by the remote endpoint.

We will be covering asynchronous client implementation in the following section. The
parameter passed to the get () method states the class of the response type, which is an
instance of the Temperature class in our case. As a final step, we close the client instance
and all of its associated resources.

[50]

Connecting Microservices Together Chapter 3

The aforementioned synchronous client implementation can also be implemented in a non-
blocking way, as follows:

public class TemperatureResourceAsyncClientl {

public static void main(String... args)
throws ExecutionException, InterruptedException {

Client client = ClientBuilder.newClient ();
WebTarget target = client.target ("http://localhost:8080/" +
"weather-service/weather/temperature");

Invocation.Builder builder = target.request();
Future<Temperature> futureResult = builder
.async ()
.get (Temperature.class);
System.out.println (futureResult.get ());
client.close();

}

The preceding client implementation enables us to consume the REST endpoint
asynchronously. The usage of the API is exactly the same as we did in the synchronous call,
but we only specified the async () method call to the builder. As soon as we invoke the
get () method, we use an asynchronous invoker, and the method will execute and return
directly with an instance of java.util.concurrent.Future. So, in the next step, we are
using that instance to actually retrieve the result or the async REST invocation.

One problem that can be faced when we invoke the get () method on futureResult is
that if the method takes a long time to respond, our client code will be blocked. A timeout
could be set on the get () method call, as follows:

try {

System.out.println (futureResult.get (5, TimeUnit.SECONDS)) ;
} catch (TimeoutException e) {

// Handle timeout gracefully
}

The client application will not be blocked forever if a problem occurs on the server side. But
in the worst-case scenario, the client will be blocked for five seconds at most. A better
approach for implementing a non-blocking client would be using the
InvocationCallback interface from JAX-RS 2.0, as follows:

public class TemperatureResourceAsyncClient3 {

public static void main(String... args)

[51]

Connecting Microservices Together Chapter 3

throws ExecutionException, InterruptedException {

Client client = ClientBuilder.newClient ();
WebTarget target = client.target ("http://localhost:8080/" +
"weather-service/weather/temperature");
Invocation.Builder builder = target.request();
builder.async() .
get (new InvocationCallback<Temperature> () {
@Override
public void completed (Temperature t) {
System.out.println(t);
t

@Override

public void failed(Throwable throwable) {
// method that will be invoked
// when something goes wrong

1)

client.close () ;

}

The InvocationCallback interface provides two methods, completed () and failed(),
which will be invoked when the call to the endpoint is completed or failed,

respectively. Having reactive-style programming for this scenario will allow you to have a
simpler implementation to surmount such programming difficulties. So JAX-RS 2.1 takes
the client implementation one step further by introducing this reactive-style programming.
Here is an example implementation of a reactive client approach:

public class TemperatureResourceAsyncClientd {

public static void main(String... args)
throws ExecutionException, InterruptedException {
Client client = ClientBuilder.newClient ();

WebTarget target = client.target ("http://localhost:8080/" +
"weather-service/weather/temperature");

Invocation.Builder builder = target.request();
CompletionStage<Response> response =
builder.rx () .get () ;

response.thenAccept (res —> {
Temperature t = res.readEntity(Temperature.class);
System.out.println(t);

F) i

new Thread(() -> {

[52]

Connecting Microservices Together Chapter 3

try {
for (int seconds = 3; seconds > 0; seconds—--) {
System.out.println(seconds + " seconds left");
Thread.sleep (1000);

}

System.out.println ("Finished!");
client.close();

}

catch (Exception ignored) {}
}) .start ();

}

The rx () method invoked on the builder is introduced with JAX-RS 2.1, and its job is to get
a reactive invoker that exists on the client's runtime. Since we are using Jersey on the
classpath, an instance of JerseyCompletionStageRxInvoker will be returned in this
implementation. Invoking the get () method on the reactive invoker will result in an
instance of CompletionStage<Response>. CompletionStage<T> is a new interface
introduced with Java 8, and it represents a computation stage that needs to be executed
when another CompletionStage completes. Then we can invoke the thenAccept () method
on the response to retrieve the result of the service call as an argument, named res.

We implemented a timer thread at the end of the client's main method to print out a
countdown timer by starting from three seconds. So while counting down the seconds, we
will also see the response of the service call printed out to the console. The whole output of
the client would be as follows when executed:

3 seconds left

Temperature{temperature=35.0, temperatureScale=CELSIUS}
2 seconds left

1 seconds left

Finished

Using third-party reactive frameworks

It's also possible to use third-party reactive frameworks with JAX-RS to instantiate a
reactive invoker. RxJava (https://github.com/ReactiveX/RxJava) is one one of the most
advanced reactive libraries for Java, and Jersey provides support for it by offering a custom
client artifact. We will implement a reactive client by using RxJava under the hood. The
client's Maven dependency definition is as follows:

<dependency>
<groupId>org.glassfish.jersey.ext.rx</groupIld>
<artifactId>jersey-rx-client-rxjava2</artifactId>

[53]

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava

Connecting Microservices Together Chapter 3

<version>2.26</version>
</dependency>

jersey-rx-client-rxjava2 transitively depends on RxJava 2.0.4, so we don't need to
define it in our dependency graph.

The following code gives implementation of Temperature Client:

public class TemperatureResourceAsyncClient5 {

public static void main(String... args)
throws ExecutionException, InterruptedException {

Client client = ClientBuilder.newClient ()
.register (RxFlowableInvokerProvider.class);
WebTarget target = client.target ("http://localhost:8080/" +
"weather-service/weather/temperature");

Invocation.Builder builder = target.request();
Flowable<Response> flowable = builder
.rx (RxFlowableInvoker.class)

.get () ;
flowable.subscribe (res —> {
Temperature t = res.readEntity(Temperature.class);

System.out.println(t);
)i

new Thread (() —> {
try {
for (int seconds = 3; seconds > 0; seconds——) {
System.out.println(seconds + " seconds left");

Thread.sleep(1000);
}
System.out.println ("Finished!");
client.close();
}
catch (Exception ignored) {}
}) .start () ;

[54]

Connecting Microservices Together Chapter 3

We first register a custom JAX-RS component, the RxFlowableInvokerProvider class, to
our client container by calling the register () method. This integrates an instance of
JerseyRxFlowableInvoker, which is an implementation of a reactive invoker specialized
for io.reactivex.Flowable. Invoking the rx () method with

the RxFlowableInvoker.class parameter returns the reactive invoker subclassed to
RxFlowableInvoker, which in our case, is the same instance of
JerseyRxFlowableInvoker.

Connecting two Microservices together

In chapter 2, Creating Your First Microservice, where we implemented our first
Microservice, we created a REST-based Microservice that returns artificial temperature
information when requested. In this chapter, we are going to implement three core services,
one will be the modified version of the temperature service where it gets a location as a
path parameter and returns an artificial temperature related to that location. The other
service will be the location service, which returns three defined locations. Our third service
will be the forecast service, which fetches all locations from the location service we
implemented and requests the temperature service for each location. All these calls will be
done in synchronous mode.

The resource configuration for the application is as follows:

@ApplicationPath ("/smartcity")
public class SmartCityServices extends Application {

@Override
public Set<Class<?>> getClasses() {
Set<Class<?>> classes = new HashSet<>();

classes.add (LocationResource.class);
classes.add (TemperatureResource.class) ;
classes.add (ForecastResource.class);

return classes;
}

With the advent of new Java EE 8 specifications, the object of JSON mapping will be taken
care of by JSON-B, the Java API for JSON Binding. The reference implementation of JSON-B
is Yasson RI and it's being used implicitly. We are not using any implementations from
Jackson, which is a well-known JSON library for Java, to handle the mapping.

[551]

Connecting Microservices Together Chapter 3

You can find more details about JSON-B at http://json-b.net ; for more
information about Yasson, check out https://github.com/eclipse/
yasson.

The location service implementation is given as follows. It just returns three cities with their
names defined inside instances of the Location class. The response is wrapped with
GenericEntity to overcome the type-erasure problem, since the type will be removed at
runtime, meaning that List<Location> will be setas List<?>.

The code below gives implementation of the Location service:

@Path ("/location™")
public class LocationResource {

QGET
@Produces (MediaType .APPLICATION_JSON)
public Response getLocations () {
List<Location> locations = new ArrayList<>();

locations.add (new Location ("London"));
locations.add (new Location ("Istanbul"));
locations.add (new Location ("Prague"));

return Response
.0k (new GenericEntity<List<Location>> (locations){})
.build();

}

The temperature service retrieves the city name as a path parameter, and randomly
generates a temperature in degrees Celsius for the requested city. In order to simulate the
temperature-measuring process, a delay of 500 milliseconds is added to the execution. Since
we are doing service executions synchronously, the delay will accumulate for the forecast
service. We will discuss asynchronous methods of communication among services in
Chapter 4, Asynchronous communication in Microservices.

The following code showcases the delay in response:

@Path ("/temperature")
public class TemperatureResource {

QGET

@Path ("/{city}™")

@Produces (MediaType .APPLICATION_JSON)
public Response getAverageTemperature (

[561]

http://json-b.net
http://json-b.net
http://json-b.net
http://json-b.net
http://json-b.net
http://json-b.net
http://json-b.net
http://json-b.net
http://json-b.net
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson

Connecting Microservices Together Chapter 3

@PathParam("city") String cityName) {

Temperature temperature = new Temperature();
temperature.setTemperature (calculateTemperature());
temperature.setTemperatureScale (TemperatureScale.CELSIUS) ;

try A
Thread.sleep (500);
} catch (InterruptedException ignored) {}

return Response.ok (temperature) .build();

private Double calculateTemperature () {
Random r = new Random() ;
int low = 30, high = 50;
return (double) (r.nextInt (high - low) + low);

}

The Forecast service that bundles both the location and temperature services is given in the
preceding code snippet. We define the web targets for both the location and temperature
services with @Uri, and then within the getLocationsWithTemperature () method.
First, we invoke the location service, and then for each location that we have, we request
the temperature service with that location.

The following code shows getLocationWithTemprature method implementation:

@Path ("/forecast™")
public class ForecastResource {

@Uri("location")
private WebTarget locationTarget;

@Uri ("temperature/{city}")
private WebTarget temperatureTarget;

QGET

@Produces (MediaType .APPLICATION_JSON)

public Response getLocationsWithTemperature () {
long startTime = System.currentTimeMillis ();
ServiceResponse response = new ServiceResponse();
List<Location> locations = locationTarget.request ()

.get (new GenericType<List<Location>> () {});

locations.forEach (location —-> {

[571

Connecting Microservices Together Chapter 3

Temperature temperature = temperatureTarget
.resolveTemplate ("city", location.getName ())
.request ()

.get (Temperature.class);

response.getForecasts ()
.add (new Forecast (location, temperature));

1)
long endTime = System.currentTimeMillis();
response.setProcessingTime (endTime - startTime);

return Response.ok (response) .build();

}

After deploying the artifact onto Payara Micro, requesting the
http://localhost:8080/forecast-service/smartcity/forecast URL will result
in the following excerpt. Keep in mind that temperature values are randomly generated. So
in our sample response, the processing time is 1,542 milliseconds, which is a total of 3
consecutive calls to the temperature service.

The following JSON shows the expected response:

{
"processingTime":1542,
"forecasts": [
{
"location":{
"name":"London"
}I
"temperature": {
"temperature":30.0,
"temperatureScale" :"CELSIUS"

"location":{
"name":"Istanbul"

}I

"temperature": {
"temperature":30.0,
"temperatureScale" :"CELSIUS"

"location":{
"name":"Prague"

[581]

Connecting Microservices Together Chapter 3

}I

"temperature":{
"temperature":30.0,
"temperatureScale":"CELSIUS"

]
}

When we implement this in an asynchronous way in Chapter 4, Asynchronous
Communication for Microservices, the processing time will reduce drastically.

Creating and pooling web targets

JAX-RS provides a Client API for creating clients to connect to the services with its fluent
API approach. The instances of C1ient are expensive to initialize, so there should be a
minimum set of it for reuse. WebTarget represents the specific URI that will be invoked so
it can easily be set into the instance of the C1ient before requesting. For the Forecast
service given in the previous section, we can implement a web target producer to create the
location web target when requested.

The following code showcases the implementation of produceLocationWebTarget :

@ApplicationScoped
public class WebTargetProducer {

private Client client;

@PostConstruct
private void postConstruct () {
this.client = ClientBuilder.newClient ();
}
@Produces
@Dependent

public WebTarget producelLocationWebTarget () {
return client.target ("http://localhost:8080")
.path("forecast-service")
.path("smartcity")
.path("location");

[591]

Connecting Microservices Together Chapter 3

And the web target can be produced within the Forecast service, as follows:

List<Location> locations = producer.producelLocationWebTarget ()
.request ()
.get (new GenericType<List<Location>> () {});

Making Microservices discoverable

Within a monolith application, services/code parts call each other through method calls at
the implementation level. In a distributed environment, this won't be the case, since
services will be running in a well-known location, and that location would be pointed out
with a hostname and related port information within an HTTP-based implementation.
Things will get more complicated in a Microservices-based architecture, where services can
be virtualized or containerized. This would lead to an even more dynamic environment
where the number of service instances and their deploy locations change frequently. To
overcome this problem by addressing these insufficiencies, we will introduce the concept of
service discovery. Service discovery is a mechanism that allows other execution blocks to
discover information about our registered service.

We will demonstrate the Service discovery mechanisms by employing two frameworks:
Snoop and Eureka. Snoop will be used for Java-EE-based Microservices, and Eureka will be
used for Spring-based Microservices.

Snoop

Snoop is a framework that provides a service registration and lookup mechanism for
Microservices based on Java EE. We will register our existing temperature service to
Snoop and consume it via a Snoop-powered client. Snoop currently provides two versions:
1.x and 2.x. The 2.x version is a work in progress, so we will continue with the latest 1.x
release that is available.

Running Snoop and registering our service

First, we need to download Snoop Service, which is available as a . war file, and deploy it
onto Payara Micro with our sample service, packaged as .war.

The latest version of Snoop Service is 1.3.4 and it available to download
from http://central.maven.org/maven2/eu/agilejava/snoop-service/

1.3.4/snoop-service-1.3.4.war

[60]

http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war
http://central.maven.org/maven2/eu/agilejava/snoop-service/1.3.4/snoop-service-1.3.4.war

Connecting Microservices Together Chapter 3

Then, we are going to implement a modified version of our Temperature service. We'll start
by adding the Snoop artifact dependency, as follows:

<dependency>
<groupId>eu.agilejava</groupId>
<artifactId>snoop</artifactId>
<version>1.3.4</version>
</dependency>

The project structure for the Temperature service is as follows. We'll have an application
configuration class, WeatherMicroService, a service implementation
;TemperatureResource, and a Snoop configuration file, snoop. ym1:

03-connecting-microservices-together-snoop-service
(s
main
java
com.packtpub.microservices.weather
temperature
€) s TemperatureResource
€ & WeatherMicroService
Zresources
snoop.yml|

The application configuration of the deployed service will be changed a little bit to contain
the Snoop-specific @EnableSnoopClient annotation. This annotation enables a web
application to act as a Snoop client and it helps to register our application as a service under
the Snoop Service Registry. serviceName is the unique identifier for this service when it is
registered with Snoop Service:

@EnableSnoopClient (serviceName = "weatherSnoop")
@ApplicationPath ("/weather")
public class WeatherMicroService extends Application {

}

[61]

Connecting Microservices Together Chapter 3

The TemperatureResource class implementation would be the same as we had in the
previous chapter, chapter 2, Creating your first Microservice. The Snoop configuration can
either be done in the following order, with the priority of system properties, environment
variables, or a provided . YML file. We used the following . YML file as our service
registration configuration:

snoop:
host: http://localhost
port: 8080

serviceRoot: weather—-snoop-service/weather
snoopService: localhost:8080/snoop-service/

After wrapping up the implementation, it's time to deploy it onto Payara Micro, along with
the Snoop Service:

java -jar /path/to/payara-micro.jar --deploy /path/to/weather-snoop-
service.war —--deploy /path/to/snoop-service-1.3.4.war

After deployment, the URL for the dashboard of Snoop service will be http://
localhost:8080/snoop-service, which lists all registered services. As you can see,
our weatherSnoop service got registered with its home URL:

[) ® (< localhost & M o o»

Apple Yahoo! YouTube Wikipedia News v Popular v Wikipedia
SnoopEE Service —+

Welcome to SnoopEE Service

Registered Services

Service Name Service Home

weatherSnoop http://localhost:8080/weather-snoop-service/weather
@ivar_grimstad
Licensed under the MIT License.

[62]

Connecting Microservices Together Chapter 3

Consuming registered services

Now, it's time to consume our registered service. To achieve this, we implement another
REST service, which acts as a client. The project structure for the client is as follows:

03-connecting-microservices-together-snoop-client
¢4
main
java
com.packtpub.microservices.weather
temperature
©) & ClientlnvokerResource
¢ & ClientInvokerApplication
Zresources
snoop.yml|

ClientInvokerResource is the actual service, with the implementation given in the
following code block. We are injecting a Snoop-based client with the help of the @snoop
annotation, and the serviceName attribute matches the name that we used when
registering the service:

@Path ("/invoke")

@RequestScoped

public class ClientInvokerResource {
@Inject
@Snoop (serviceName = "weatherSnoop")

private SnoopServiceClient client;

QGET
@Produces (MediaType .APPLICATION_JSON)
public String invoke () {
String response = client.simpleGet ("temperature")
.filter(r -> r.getStatus () == 200)
.map(r —-> r.readEntity(String.class))
.orElse ("Problem occurred!");
return response;

}

The following command shOws deploying the application onto Payara micro with port
auto-binding enabled:

java -jar /path/to/payara-micro.jar --deploy /path/to/weather-snoop-
client.war —-—autoBindHttp

[63]

Connecting Microservices Together Chapter 3

We can use the
URL http://localhost:8081/weather—snoop-client—-1.0/client/invoke and it
gives us the response from the Temperature service we deployed before.

SnoopEE is not a load-balancer, so if you are running multiple instances of
the same Microservice, it should be load balanced with a load-balancer
framework.

Eureka

Eureka is a service from Netflix (https://netflix.github.io) that provides features for
locating services to handle load balancing and failover mechanisms. Eureka is being
actively developed in two separate branches: version 1.x and 2.x. The 2.x version is a work
in progress, and it's an evolution of the 1.x version. We'll stick with the 1.x version for its
maturity, wide usage, and integration with Spring Cloud services.

Installing Eureka Server

First, we're going to create the server project to initialize the Eureka Server by adding the
Spring Cloud dependency, as follows:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka-server</artifactId>
<version>1.4.0.RELEASE</version>

</dependency>

At the time of writing, the latest available version of Spring Cloud services
is 1.4.0.RELEASE.

Within the code of a Spring Boot application, we are going to enable the Eureka Server
related configuration by adding the @EnableEurekaServer annotation:

@SpringBootApplication
@EnableEurekaServer
public class EurekaWeatherServiceServer {
public static void main(String... args) {
SpringApplication.run (EurekaWeatherServiceServer.class);

}

[64]

https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io

Connecting Microservices Together Chapter 3

The application.properties file for configuring the Eureka Server is as shown in the
following code. server.port defines the port that will be used by the server. 8761 is the
most commonly used port number used for the server; if it's not provided, the Server will
allocate 8080 by default. With eureka.client.register-with-eureka, we are telling
the Eureka built-in client not to register itself since our application should be acting as a
server:

server.port=8761
eureka.client.register-with-eureka=false

After invoking the main method on the EurekaWeatherServiceServer class, and then
requesting http://localhost:8761, you should see the dashboard of Eureka Server, as
follows:

e®e® < | > mMm localhost ¢ (] th ()

Bonjour ¥ Apple Yahoo! YouTube Wikipedia Newsv Popular v
Eureka -+

&) spring HOME LASTI000 SINCE STARTU

System Status

Environment test

Data center default
Current time 2017-08-08T12:03:22 +0300
Uptime 00:00

Lease expiration enabled false

Renews threshold 1

Renews (last min) 0

DS Replicas

localhost

[65]

Connecting Microservices Together Chapter 3

Registering the service

Next, we are going to reuse the Spring Boot-based temperature service that we created in
Chapter 1, From Monoliths to Microservices.

First, we'll define the Maven dependencies for Eureka as shown here:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka</artifactId>
<version>1.4.0.RELEASE</version>

</dependency>

<dependency>
<groupId>com. fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.9.0</version>

</dependency>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-netflix-eureka-client</artifactId>
<version>1.4.0.RELEASE</version>

</dependency>

Then, we'll add the @EnableEurekaClient annotation to our application configuration:

@EnableEurekaClient
@SpringBootApplication
public class EurekaWeatherService {
public static void main(String... args) A
SpringApplication.run (EurekaWeatherService.class);

}

To make our temperature service aware of the Eureka Server, we are going to add some
configurations, defined in a . YML file, as follows:

spring:
application:
name: spring-cloud-eureka-client
server:
port: O
eureka:
client:
serviceUrl:
defaultZone: ${EUREKA_URI:http://localhost:8761/eureka}
instance:
preferIpAddress: true

[66]

Connecting Microservices Together Chapter 3

After invoking the main method on the EurekaWeatherService class and then requesting
http://localhost:8761, you should see that our application is registered with the

server:

(} ® < il localhost [(4] t]

Bonjour v Apple Yahoo! YouTube Wikipedia News v Popular v
Eureka i+

&) spring T ORI

System Status

Environment test
Data center default
Current time 2017-08-08T13:02:26 +0300
Uptime 00:25
Lease expiration enabled true
Renews threshold 3
Renews (last min) 4
DS Replicas

localhost

Instances currently registered with Eureka

Application AMIs Availability Zones Status

SPRING-CLOUD-EUREKA-CLIENT n/a(1) (1) UP (1) - 192.168.2.70:spring-cloud-eureka-client:0

General Info

[671]

Connecting Microservices Together Chapter 3

Discovering and invoking the service

Now it's time to consume our registered service. We'll discover it and then consume it with
Spring's Rest Template by providing the host and port values of the service:

@EnableEurekaClient
@SpringBootApplication
public class EurekaWeatherServiceClient {
public static void main(String... args) A
SpringApplication.run (EurekaWeatherServiceClient.class);
}
@Autowired
private EurekaClient eurekaClient;
@Bean
public RestTemplate restTemplate (RestTemplateBuilder builder) {
return builder.build();

@Bean
public CommandLineRunner run (RestTemplate restTemplate)
throws Exception {
Application application = eurekaClient
.getApplication ("spring-cloud-eureka-client");

InstanceInfo instanceInfo = application.getInstances().get (0);
String hostname = instanceInfo.getHostName () ;
int port = instanceInfo.getPort();

return args —> {
String result = restTemplate.getForObject (
"http://" + hostname +
":" 4+ port + "/temperature", String.class);
System.out.println (result);
bi

[68]

Connecting Microservices Together Chapter 3

Summary

In this chapter, we created a client to consume a service by using Jersey. We also

showed how the client could be implemented asynchronously. Then, we introduced third-
party reactive frameworks, and detailed how they integrate with the latest version of JAX-
RS.

To connect Microservices together, we created a Forecast service that consumes our location
and Temperature services under the hood. The Forecast service synchronously consumes
the location service, and for each location it returns, it invokes the Temperature service to
fetch the temperature of that location. The next chapter will introduce asynchronous
approaches for connecting the Microservices.

To demonstrate service discovery mechanisms, we looked at the Snoop and Eureka
frameworks by registering Java-EE-based and Spring-based Microservices. Then we
demonstrated how services can be discovered and invoked by implementing client code.

In the next chapter, we will show you ways to integrate asynchronous communication
mechanisms between our demonstrated services, ranging from simple scenarios to more
complex ones.

[69]

Asynchronous Communication
for Microservices

In the previous chapter, we created a Forecast service that consumes Location and
Temperature services to produce results showcasing the weather forecast. We also explored
ways to register and discover services that are available on the network. All of that is very
easy and straightforward. Very often, however, you'll need to optimize the communication
between services, which is where asynchronous communication can be helpful.

In this chapter, we'll discuss how we can introduce asynchronous processing and
communication to our services. There are many levels of asynchronous communication,
from simpler ones to more robust and complex ones. Complexity has its own costs,
therefore we'll start by adding asynchrony to the communication in a couple of small steps.

We'll modify the Forecast REST service to call other services more effectively, calling them
in parallel and receiving their responses asynchronously when they are ready. Then, we'll
modify it further to return a stream of data via the Server-Sent Events (SSE) protocol so
that the data can be processed immediately when available.

We will discuss WebSocket-based communication and look into the details of message-
oriented and queue-based communication. We will also cover point-to-point and publisher-
subscriber patterns of communication.

In a nutshell, the following topics will be covered in this chapter:

¢ Speeding up services with a Reactive API

e Streaming responses with SSE

e Two-Way Asynchronous services with WebSocket

¢ Decoupling services with Message-Oriented Middleware

Asynchronous Communication for Microservices Chapter 4

Speeding up services with the Reactive API

Services can often be optimized with asynchronous processing, even without changing
their behavior toward the outside world. The reason why some services aren't efficient is
that they need to wait for other services to provide a result to continue further. This is
especially true when a service executes several calls to other services that don't have to wait
for each other. Since the calls are independent, they can be executed in parallel and produce
results much faster than if called sequentially.

Looking at the Forecast service in detail, we'll find out that it calls the Temperature service
multiple times sequentially in a loop for each city. It waits for each call to finish and return
results before doing another call. The following diagram illustrates what's happening:

REST Client Forecast Temperature

|

|

GET /forecast |
>—

|

|

|

|
GET /temperature/{city} JI_

temperature

GET /temperature/{cit
p {city} >J_

|
I
I
[
[
I
I
I
I
I
I
I
| temperature
I

I

|4_Iist of forecasts
I

In order to be more efficient, the Forecast service could do all the calls to the Temperature
service in parallel. All the calls are completely independent of each other so there's no need
to wait for one to return results before doing another call. The following diagram shows
our goal:

[71]

Asynchronous Communication for Microservices Chapter 4

REST Client Forecast Temperature(1) Temperature(2)

| |

| |

GET /forecast | |
|

|

L

Ll

GET /temperature/{city}

»

L |

A 4

temperature

temperature

< ________________

|
|
|
[
|
|
|
| GET /temperature/{city}
|
|
|
|
|
|
|

|<_Iist of forecasts

Since the calls to the Temperature service happen simultaneously, they can finish much
faster than in the sequential scenario. The Forecast service can, therefore, produce the final
list of forecasts in a shorter time.

The Building a client section in chapter 3, Connecting Microservices Together, explained how
to use the JAX-RS request builder's async () or rx () methods to retrieve the results of a
single asynchronous call. We now need to compose the results of multiple asynchronous
calls. Therefore, we will use the rx () method, which provides an easy way to do it with a
convenient, fluent API.

Collecting results of multiple parallel calls

We will use a combination of Java streams and CompletionStage to build a pipeline that
processes the results as they arrive, and merges them into a single response. The first part
of the pipeline will call the Temperature service for each location in parallel and specify
what to do with each received result. Using the rx () method on the temperature request
builder allows us to call a version of the get method, which immediately returns a
CompletionStage result. We can then chain a Lambda expression that converts a received
temperature into a forecast when the result of the call arrives, as in the following code
snippet:

CompletionStage<Forecast> forecastStage = request.rx()
.get (Temperature.class)
.thenApply (temperature -> new Forecast (location, temperature));

[72]

Asynchronous Communication for Microservices Chapter 4

Note that the value in forecastStage isa CompletionStage of Forecast, and not a
Forecast itself. It is used to build the asynchronous pipeline, while the value of the
forecast will be available to other chained lambda expressions as their argument when it's
available.

The complete first part of the pipeline is implemented as follows:

CompletionStage<List<Forecast>> initialStage
= CompletableFuture.completedFuture (new ArrayList<>());
CompletionStage<List<Forecast>> finalStage = locations.stream()
.map (location -> {
return temperatureTarget
.resolveTemplate ("city", location.getName ())
.request () .rx () .get (Temperature.class)
.thenApply (temperature -> new Forecast (location, temperature));

H)

.reduce (initialStage, (combinedStage, forecastStage) -> {
return combinedStage.thenCombine (forecastStage, (forecasts,
forecast) -> {

forecasts.add (forecast);
return forecasts;
)i

Hy
(stagel, stage2) —-> null); // combiner won't be used, return null

Since we need to execute multiple calls in parallel, we execute single asynchronous calls in
a stream of locations to process all locations and their temperatures. Running the
asynchronous rx () .get () method on a stream of locations executes the calls to the
Temperature service in parallel. Each call to the Temperature service is followed by
building an asynchronous pipeline for each returned CompletionStage. An asynchronous
pipeline is a chain of lambdas that is automatically executed on a different thread later,
when the result of an asynchronous call is available. In the end, we reduce a stream of
CompletionStage results into a single CompletionStage thatis completed after all
individual asynchronous executions are complete. This is to synchronize the parallel
execution and merge the results into a list of forecasts.

[73]

Asynchronous Communication for Microservices Chapter 4

Completing a REST response asynchronously

After all parallel executions are synchronized to a single stage, and the results combined
into a list, we can chain more lambda callbacks to process the final list of forecasts and send
it as a REST response. Because asynchronous callbacks are executed in a different thread,
we need a way to finalize the REST response other than returning a final value from the
REST method. Although we could put the initial thread to sleep and wait until the
asynchronous result is available, it has serious disadvantages. One of them is that we need
two threads to finalize the response, while only one of them is working at a given time.
Another problem is that we need to synchronize the threads and pass the list of forecasts
from one to the other. Synchronization between threads is an additional overhead, which
slows things down and should be avoided if possible. A better solution is to return from the
initial method and complete the response later in another thread. This is called
asynchronous request processing.

The JAX-RS REST API supports asynchronous processing and allows us to provide a
response even after a resource method returns. If we return CompletionStage directly
from a resource method, the container will understand it, complete it, and send the HTTP
response after the returned CompletionStage completes.

CompletionStage as a return value in resource methods has only been
supported since Java EE 8. JAX-RS also supports a lower-level way of
returning responses asynchronously, using an AsyncResponse argument
in resource methods, which can also be used in older versions of Java EE.

Therefore, to make our method asynchronous, we just replace the Response return type
with CompletionStage<Response>:

QGET
@Produces (MediaType .APPLICATION_JSON)
public CompletionStage<Response> getLocationsWithTemperature ()

Our returned CompletionStage can hold any type that's allowed as a return value of a
synchronous method. It can hold any Java type that can be mapped to a REST response.
Therefore, instead of Response, we will use a custom ServiceResponse class, which will
be automatically mapped to JSON using the JSON-Binding mechanism available in Java EE
8:

QGET
@Produces (MediaType .APPLICATION_JSON)
public CompletionStage<ServiceResponse> getLocationsWithTemperature ()

[74]

Asynchronous Communication for Microservices Chapter 4

Lastly, we need to return the final stage of our asynchronous computation. In our previous
example, this is stored in the finalStage variable:

QGET
@Produces (MediaType .APPLICATION_JSON)
public CompletionStage<ServiceResponse> getLocationsWithTemperature () {

return finalStage;

}

In our case, the type of the finalStage variable is different than the type of
CompletionStage returned from the method. Therefore, we're going to
convert finalStage with its apply method:

return finalStage.thenApply (forecasts —-> {
ServiceResponse response = new ServiceResponse();
response.getForecasts () .addAll (forecasts);
return response;

)i

We closed the loop by finishing our asynchronous callback chain and returning the final
CompletionStage from the REST resource method. The container does the rest; it waits
for CompletionStage to complete and either sends an expected response when it's
completed (OK), or it sends an error response and logs the error when it's completed with
an exception.

As an alternative to returning CompletionStage, we can use a supplied AsyncResponse
object. This is useful if we need to access the JAX-RS API that isn't available with plain
CompletionStage. It may also be convenient if we don't use CompletionStage during
our processing (at all), and we don't want to create an instance of CompletionStage (for
example, CompletableFuture) just so that we can return it.

An alternative asynchronous definition of our get LocationsWithTemperature method
with an AsyncResponse argument looks as follows:

QGET
@Produces (MediaType .APPLICATION_JSON)
public void getLocationsWithTemperature (@Suspended AsyncResponse ar) A

}

[75]

Asynchronous Communication for Microservices Chapter 4

This asynchronous method should do the following:

¢ Return no value (the return type is void)
¢ Contain an argument of the javax.ws.rs.container.AsyncResponse type

¢ Make sure that the AsyncResponse argument is annotated with
javax.ws.rs.container.Suspended

The method doesn't return anything immediately, hence the calling method is not blocked
and it continues with other commands. The container understands that the method is
asynchronous and that a response will be provided via the AsyncResponse object later,
from another thread. In our case, the response will be provided from a thread that is
created for us automatically to handle asynchronous responses from remote REST services.

It's possible to complete the response using AsyncResponse within the
method call on the same thread before the method returns. In this case,
the container will complete the response right after the resource method
returns. However, the method then behaves like a usual synchronous
method and there's no advantage to using the asynchronous API.

When the final result is ready, we complete the response by calling the resume method of
our AsyncResponse object. This method accepts the same values, which can be returned
from a usual synchronous REST method. Therefore, we can call it with the same value, as in
our previous synchronous version of the Forecast service:

response.getForecasts () .addAll (forecasts);
asyncResponse.resume (Response.ok (response) .build());

To summarize, asynchronous methods are supposed to return quickly, to allow further
execution on the current thread. Since I/O operations and some other actions may take a
while, the result may not be available without waiting. The result is available later and very
often in another thread. Therefore, asynchronous methods can't return the result directly as
the return value. They either don't return any value and provide the result using an
additional argument (callback), or they return an object (future or promise) that will allow
us to handle the result when it's available in the future.

An asynchronous JAX-RS method can have both forms. It either doesn't return any value
and a final result or exception is provided by methods of the AsyncResponse argument,
which is annotated with @suspended to turn on asynchronous processing. This is suitable
if we need more control over when and how we complete processing a request with a result
or an exception, or if we need to specify a timeout or register life cycle callbacks.
Alternatively, an asynchronous method simply returns CompletionStage, which either
completes with a response or results in an exception.

[76]

Asynchronous Communication for Microservices Chapter 4

Asynchronous exceptions

We're almost done, but we need to cover two important things that we have to remember
when writing asynchronous code: exceptions and timeouts. In synchronous code, we catch
exceptions by using a try. . catch block. Timeouts also trigger exceptions, so we can
handle them in the same way. With asynchronous invocations, we catch exceptions in a
different way. Exceptions are handled in callbacks, in a similar way to how we handle a
future return value if the execution completes normally. The CompletionStage interface
provides methods to register exception callbacks. Unless we return CompletionStage
from a method, we have to remember to register an exception callback to handle
exceptions, otherwise they would be silently ignored.

This is very different from a synchronous execution, where exceptions are propagated out
of a method and are either caught in another component, by a container, or by the JVM as a
last resort. In the asynchronous world, if there's no callback to handle an exception, we risk
that nothing else will handle it and we won't find out about it at all. Ignoring exceptions
may lead to lots of negative consequences, so we should always remember to add an
exception callback at the end of asynchronous execution.

The simplest way of catching exceptions with CompletionStage in an asynchronous JAX-
RS method is to return CompletionStage. In this case, the container will register an
exception handler and properly handle the exception, usually by printing an error message
into the log. If we want to handle the exception ourselves, we can provide an exception
handler with the exceptionally method. This method expects a lambda function that
accepts a Throwable argument. The lambda function is executed if any of the previous
stages ends with an exception, skipping all the intermediate stages. We will use this
method to complete the REST response with an exception by calling the re sume method
with an exception instead of a result value, as follows:

finalStage.exceptionally (e —> {

Throwable cause = (e instanceof CompletionException) ? e.getCause()
ey

asyncResponse.resume (cause) ;

return null;

)i

Because the exceptionally method almost always wraps the original exception

into CompletionException, we retrieve the original exception with the getCause
method. We also return the null value, just to satisfy the contract of the callback, as no
further stage will use that value.

[77]

Asynchronous Communication for Microservices Chapter 4

Specifying and handling asynchronous timeouts

In synchronous execution, default timeouts usually exist to avoid blocking a thread
eternally. Even if there's no timeout, there's always a thread waiting for a result or an
exception that indicates something is going on. This is not the case in asynchronous
execution because no thread is waiting. If no callback or exception is triggered, there's
nothing to indicate that a request is still in progress. Adding a timeout is essential to ensure
a request is completed at some point, and we don't lose track of it.

In an asynchronous JAX-RS method, setting a timeout is as easy as calling the set Timeout
method on the AsyncResponse object. We call this method as soon as possible at the
beginning of an asynchronous method to start the timeout scheduler. If the specified time
elapses since the set Timeout method was called, the REST response is completed with an
exception even without calling the resume method, as follows:

public void getLocationsWithTemperature (@Suspended AsyncResponse
asyncResponse) {
asyncResponse.setTimeout (5, TimeUnit .MINUTES) ;

A complete reactive REST service

Here's a complete method in the ForecastResource. java file:

QGET
@Produces (MediaType .APPLICATION_JSON)
public void getLocationsWithTemperature (@Suspended AsyncResponse
asyncResponse) {
asyncResponse.setTimeout (5, TimeUnit.MINUTES) ;

// initial completed stage to reduce all stages into one
CompletionStage<List<Forecast>> initialStage
= CompletableFuture.completedFuture (new ArrayList<>());
CompletionStage<List<Forecast>> finalStage = locations.stream()
// for each location, call a service and return a CompletionStage
.map (location -> {
return temperatureTarget
.resolveTemplate ("city", location.getName ())
.request ()
.rx ()
.get (Temperature.class)
.thenApply (temperature -> new Forecast (location,
temperature));

[78]

Asynchronous Communication for Microservices Chapter 4

H)
// reduce stages using thenCombine, which joins 2 stages into 1
.reduce (initialStage,

(combinedStage, forecastStage) -> {
return combinedStage.thenCombine (forecastStage,
(forecasts, forecast) —-> {

forecasts.add (forecast);
return forecasts;
)i

}, (stagel, stage2) -> null); // a combiner is not needed

// complete the response with forecasts
finalStage.thenAccept (forecasts —> {
asyncResponse.resume (Response.ok (forecasts) .build());
H)
// handle an exception and complete the response with it
.exceptionally (e —> {
// unwrap the real exception if wrapped in CompletionException)
Throwable cause = (e instanceof CompletionException) ?
e.getCause () : e;
asyncResponse.resume (cause) ;
return null;

1)

Simplifying the code with a third-party reactive
framework

Although we've improved the performance of our service, you must have noticed that the
code became a lot more complex. We can simplify it by using a framework that provides an
alternative API to CompletionStage for chaining asynchronous callbacks and joining
results of parallel executions.

In chapter 3, Connecting Microservices Together, you learned how to use RxJava with a JAX-
RS client. We're going to use RxJava now, to replace CompletionStage with Flowable,
and simplify our code.

[79]

Asynchronous Communication for Microservices Chapter 4

The first part, which calls remote REST services in parallel, will be very similar to what we
already have. The difference is mostly in using RxFlowableInvoker to retrieve a stream of
Flowable instead of CompletionStage. We don't need to reduce the stream into a single
Flowable; because Rx]Java provides a much more convenient way to join Flowable:

Stream<Flowable<Forecast>> futureForecasts = locations.stream()
.map (location -> {
return temperatureTarget

.register (RxFlowableInvokerProvider.class)
.resolveTemplate ("city", location.getName ())
.request ()
.rx (RxFlowableInvoker.class)
.get (Temperature.class)
.map (temperature —-> new Forecast (location, temperature));

1)

In the second part, we use the static concat method on the Flowable class to join all
flowables into a single one:

Iterable<Flowable<Forecast>> iFutureForecasts = futureForecasts::iterator;
Flowable.concat (iFutureForecasts)
.doOnNext (forecast —-> {
response.getForecasts () .add (forecast);

})
.doOnComplete (() —-> {
asyncResponse.resume (Response.ok (response) .build());

})

.doOnError (asyncResponse: : resume)
.subscribe () ;
}

Unlike the final CompletionStage we had before, which worked with the final list of
results, the Flowable we get now is a stream that produces multiple values. We handle
each of them with the doonNext method. A similar method wasn't available with
CompletionStage, and that's why we had to concatenate all results in a list in a single
CompletionStage instance.

Using RxJava and Flowable enables us to process results of multiple
parallel calls as a stream of results, immediately after individual results
are available. This makes the code more efficient and is simpler than
reducing all results into a CompletionStage.

Another new thing is that we call subscribe after we build the execution pipeline. This is
because a call with RxFlowableInvoker is executed lazily only after we declare interest in
the values of the returned Flowable, for example, by calling the subscribe method.

[80]

Asynchronous Communication for Microservices Chapter 4

Finally, similarly to using CompletionStage, we complete the response within the
doOnComplete method and handle exceptions within the doOnError method.

Streaming responses with SSE

In the previous chapters, you learned how to create a REST service that returns a complete
response at once. Most REST services work like this because of the nature of the underlying
HTTP protocol. In this chapter, you've learned how to optimize the execution of such a
REST service if it has to wait for other services. However, even optimized services may
become slow to respond, because they can't be faster than the slowest call to another
service. When completing a response takes a while, the client has to wait until all the data is
prepared and the response is finally sent. This may have a range of negative consequences,
which we can avoid if we send the data as soon as it's available in a stream of messages.
The most natural way to do it in a REST service is using SSE, which works over the same
HTTP protocol.

Building an asynchronous service

SSE is a web standard (https://www.w3.0org/TR/eventsource/) that specifies how web
servers can send a stream of messages during a potentially unlimited period of time. The
connection has to be initiated by a client, and then the client only listens for messages
received from the server. It works very similarly to a standard HTTP request, with the
exception that the response can be sent in multiple chunks.

In chapter 3, Connecting Microservices Together, we built a Forecast service, which retrieves
data from location and temperature services and sends a list of forecasts in the response.
Now, we're going to implement the same Forecast service as an asynchronous service. We
will be providing forecasts as messages using SSE instead of sending all as a single
response. Individual forecasts will be sent immediately when retrieved from the
Temperature service, without waiting for other forecasts to be ready.

The same JAX-RS mechanism we used in chapter 3, Connecting Microservices Together, to
build simple REST services also supports building SSE server endpoints. Therefore, we can
reuse a big portion of the code we built in the chapter 3, Connecting Microservices Together.

The support for SSE is completely new in Java EE 8. The JAX-RS
component added support for building SSE endpoints in the latest
version, 2.1, which is part of Java EE 8.

[81]

https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/

Asynchronous Communication for Microservices Chapter 4

We're going to start with the services we created in the chapter 3, Connecting Microservices
Together. We'll be using the same LocationResource, TemperatureResource,

and ForecastResource classes. We'll need the same Forecast, Temperature, and
Location data objects, which will be mapped to the JSON payload of the SSE messages.
And we'll need the same configuration we've already used in the SmartCityServices
class.

In order to make the Forecast service asynchronous, we're going to modify the
ForecastResource class. Let’s start with a skeleton of this class, which is already modified
to send SSE events in the response.

This is the initial skeleton of the ForecastResource class:

@Path ("/forecast™")
public class ForecastResource {
@Uri ("location")
private WebTarget locationTarget;

@Uri ("temperature/{city}")
private WebTarget temperatureTarget;

QGET
@Produces (MediaType.SERVER_SENT_EVENTS)
public void getLocationsWithTemperature (
@Context SseEventSink eventSink,
@Context Sse sse) {
// ... method body

}

The method body will do a very similar job as the simple synchronous ForecastResource
class in chapter 3, Connecting Microservices Together. The difference is that it will send the
response using the injected SseEventSink instead of returning the response as a result of
the method. We'll use the send method of the SseEventSink object to send the data. And
we need to create a data object that holds the message to be sent. For that, we'll use a
builder acquired from the second injected object of the Sse type.

Here's an example of sending a message in JSON format with a payload in a variable
named response and with anID set as "event1":

OutboundSseEvent .Builder sseDataEventBuilder = sse.newEventBuilder ()
.mediaType (MediaType.APPLICATION_JSON_TYPE) ;
eventSink.send (
sseDataEventBuilder
.data (response)

[82]

Asynchronous Communication for Microservices Chapter 4

.id (“event1”)
.build()

Keep in mind that every method call on

the OutboundSseEvent .Builder builder object modifies its internal
structure. Make sure that you overwrite all previously set values if you
don't want to set them for the new event, or use a new instance of the
event builder.

All the steps in the new method body can be summarized into the following points:

¢ The list of locations is retrieved from the Location service as in the previous
Chapter 3, Connecting Microservices Together.

e For every location, the forecast temperature will be retrieved using the
Temperature service, again as in previous chapter.

e Every retrieved temperature will be sent as an event, using the send method of
SseEventSink.

e After all the locations are processed, a final event with an ID of completed will be
sent to indicate the end of the event stream.

e The SSE connection is closed by calling the close method of SseEventSink.

For a finite stream of events, we recommend sending a termination event
after all data events are sent. This is to detect the end of the event stream
on the client side safely and without any doubt. Some SSE clients don't
detect the end of the stream correctly and try reconnecting infinitely after
the connection is closed, assuming the connection was prematurely
interrupted and new data is still to come.

And here is the complete source code of the get LocationsWithTemperature method,
which executes the preceding points:

QGET

@Produces (MediaType.SERVER_SENT_EVENTS)

public void getLocationsWithTemperature (
@HeaderParam (HttpHeaders.LAST_EVENT_ ID_ HEADER) Integer lastEventId,
@Context SseEventSink eventSink,
@Context Sse sse) {

OutboundSseEvent .Builder sseDataEventBuilder = sse.newEventBuilder ()
.mediaType (MediaType .APPLICATION_JSON_TYPE) ;

List<Location> locations = locationTarget.request ()
.get (new GenericType<List<Location>>() {});

int eventId = 0;

for (Location location : locations) {

[83]

Asynchronous Communication for Microservices Chapter 4

eventId++;
if (lastEventId != null && eventId <= lastEventId) {
continue; // skip to the last ID before reconnection
t
Temperature temperature = temperatureTarget
.resolveTemplate ("city", location.getName ())
.request ()
.get (Temperature.class);
ForecastResponse response = new ForecastResponse ()
.forecast (new Forecast (location, temperature));
eventSink.send (
sseDataEventBuilder
.data (response)
.id (String.valueOf (eventId))
build());
ti
eventSink.send (
sse.newEventBuilder ()

.id("completed") // final event

.mediaType (MediaType.APPLICATION_JSON_TYPE)

.data("{}") // empty JSON data required by some browsers
Jbuild());

eventSink.close () ;

}

This code even does a little bit more in order to support reconnection to an SSE event
stream in case of a network failure. This allows clients to resume receiving events from the
point when the connection was interrupted, and is supported by the SSE protocol out of the
box. We'll talk more about automatic reconnection with SSE later.

Invoking the SSE service

Accessing our new SSE forecast service is very simple. The SSE protocol uses the same
underlying HTTP protocol as any other REST service; therefore, it can be invoked just like
any other REST service. The only difference is that the response would be in a different
format than JSON. You can quickly observe it when you invoke the service from a REST
client, such as Postman, with a GET method
athttp://localhost:8080/forecast—-service—-async/smartcity/forecast.

[84]

Asynchronous Communication for Microservices Chapter 4

Here is the result of invoking the Forecast service in Postman:

No Environment
http:iflocalhost 8080/ @

GET http:/localhost:8080orecast-service-async/smarteity/forecast Params Save

Authorization
Type No Aut

Body

I

Pretty

id: 1
data: {"forecast":{"location":{"name":"London"}, "temperature":{"temperature"”:34.0,"temperatureScale":"CELSIUS"}},"processingTime":517}

W

4 id: 2

5 data: {"forecast":{"location":{"name":"Istanbul"},"temperature":{"temperature”:33.0,"temperatureScale":"CELSIUS"}},"processingTime":1025}
7 id: 3

8 data: {"forecast":{"location":{"name":"Prague"},"temperature":{"temperature":31.0,"temperatureScale”:"CELSIUS"}}, " "processingTime":1532}
9

10 1id: completed
11 data: {}

You can see that the response contains multiple chunks that contain data in JSON format.
These represent all the SSE events sent by the service. Postman doesn't recognize them as
events and waits until the response is complete.

On the other hand, if you invoke the service using the curl command-line utility, which
recognizes SSE events in the response, you will see a different behavior.

When you invoke the curl utility from the command line, you'll see the following output:

> curl http://localhost:8080/forecast-service-async/smartcity/forecast

id: 1

data:

{"forecast":{"location":{"name":"London"}, "temperature":{"temperature":37.0
, "temperatureScale":"CELSIUS"}}, "processingTime":515}

id: 2

data:

{"forecast":{"location":{"name":"Istanbul"}, "temperature":{"temperature":44
.0, "temperatureScale":"CELSIUS"}}, "processingTime":1028}

id: 3

data:

{"forecast":{"location":{"name":"Prague"}, "temperature":{"temperature":44.0
, "temperatureScale":"CELSIUS"}}, "processingTime":1538}

id: completed
data: {}

[85]

Asynchronous Communication for Microservices Chapter 4

The response will be in the same format, but the chunks for separate events will be printed
immediately when they arrive, without waiting until the response is completed. This is
because the cURL utility recognizes the "text /event-stream" media type of the response
and understands the format of the response.

Invoking the SSE service from JavaScript

It's very common to invoke SSE services from JavaScript code in a browser to update the
page as the keep coming from the service. Most modern browsers support the SSE protocol
and provide the Event Source object, which makes invoking an SSE service very simple.

To invoke our forecast service, we only need the following code:

var source = new
EventSource ("http://localhost:8080/forecast-service—async/" +
"smartcity/forecast");

source.onmessage = function (event) {
if (event.lastEventId === "completed") {
source.close () ;
} else {
alert ("Received: " + event.data);

}
bi

The preceding code will do the following:

¢ Create an instance of the Event Source object and immediately open a
connection to the SSE service.

e Provide a function to handle messages as the onmessage property of our
EventSource instance.

¢ The handler validates the value of 1astEventId to detect the final message, and
closes the Event Source object when the final message is received.

If a browser doesn't provide the EventSource object with access to SSE
services, it's possible to use a polyfill library, which will seamlessly add it.
A collection of various polyfill libraries can be found in a wiki of the
Modernizr project at https://github.com/Modernizr/Modernizr/wiki.

[86]

https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki
https://github.com/Modernizr/Modernizr/wiki

Asynchronous Communication for Microservices Chapter 4

Building an SSE Java client

To consume our asynchronous SSE forecast service from Java code, we're going to create a
standalone Java application that will connect to it and print the data received as events.
We're again going to use the JAX-RS client API we used in the previous chapter, Chapter 3,
Connecting Microservices Together, to access a standard REST service.

Remember that SSE is just an extension of the standard HTTP protocol, and the JAX-RS
client API for SSE also works as an extension to the standard client API. We're going to use
the sseEventSource class from the JAX-RS API to extend the standard webTarget object

and to add listeners to handle SSE events.

To build our SSE client, we need to create a Java project and add some required
dependencies that provide the Java EE functionality to a plain Java application. We'll need
the following dependencies:

e jersey-client
® jersey—hk2
® jersey-media-json-binding

® jersey-media-sse

The first three are the same dependencies that were needed in the Building a Client section
of the chapter 3, Connecting Microservices Together. The only new dependency is jersey-
media-sse, which provides the SSE portion of the standard JAX-RS client APL

If you want to invoke an SSE service from a web application deployed to a
Java EE container, all of the required dependencies are provided by the
container, and none of the Jersey dependencies are needed in your
application.

The Maven dependency for jersey-media-sse can be added as follows:

<dependency>
<groupId>org.glassfish.jersey.media</groupId>
<artifactId>jersey-media-sse</artifactId>
<version>2.26</version>

</dependency>

In the Java client, we'll create an instance of SseEventSource. We'll do this by first
creating an SSE builder from an instance of webTarget using the static target method.
This builder will then create an instance of SseEventSource while it allows us to configure
the event source before it's created.

[871]

Asynchronous Communication for Microservices Chapter 4

This is the simplest example of creating SseEvent Source from an instance of webTarget,
which is stored in the webTarget variable:

SseEventSource sseEventSource = SseEventSource.target (webTarget) .build() ;

Unlike the JavaScript Event Source object, the creation of an SseEvent Source instance
won't open the connection automatically. We should first call the register method to
register an event callback and, optionally, error and completion callbacks. Only then will
we open the connection with the open method.

Use the register and open methods to initiate a connection, and register callbacks, as
follows:

sseEventSource.register (onEvent, onError, onComplete);
sseEventSource.open();

The callbacks passed to the register method can be simple lambda expressions that
implement particular functional interfaces, as follows:

® Consumer<InboundSseEvent> onEvent
® Consumer<Throwable> onError

e Runnable onComplete

Finally, we need to make sure that both the SseEvent Source instance and the original
JAX-RS client instance are closed once the client stops consuming SSE events in order to
close the connection and release unused resources. In order to synchronize the main thread
of our Java client with the callbacks that are going to be executed in different threads, we'll
use CompletableFuture, which provides a simple thread-safe API to complete execution
and wait for its completion in a different thread. If CompletableFuture. join () is called,
the main thread will wait until SSE processing is finished.

The client can receive the following events:

e The onComplete callback is triggered, meaning the client detected the end of the
response.

e The onError callback is triggered, meaning the client detected an unrecoverable
erTor.

e The onEvent callback is triggered by a termination event, meaning that the
server sent the last event.

[881]

Asynchronous Communication for Microservices Chapter 4

The last condition doesn't apply to every SSE service. The Forecast service
is designed to send a termination event with a special event ID so that the
client can easily detect the end of the event stream. This is because we've
seen that SSE clients detect the end of SSE event stream ambiguously,
sometimes hanging and waiting for more events to come.

Here is the complete code for ForecastResourceSseClient. java, which is a standalone
Java program that connects to the Forecast service and prints the received data, as follows:

public class ForecastResourceSseClient {
public static void main(String... args) throws Exception {
Client restClient = ClientBuilder.newClient ();
WebTarget target = restClient.target ("http://localhost:8080/"
+ "forecast-service-async/smartcity/forecast");
SseEventSource sseEventSource = SseEventSource.target (target)
Jbuild();
CompletableFuture<String> asyncProcessing = new
CompletableFuture<>();

Consumer<InboundSseEvent> onEvent = (InboundSseEvent event) -> {
if ("completed".equals (event.getId())) {
asyncProcessing.complete ("complete event received");
} else {

ForecastResponse forecastResponse =
event .readData (ForecastResponse.class,
MediaType .APPLICATION_JSON_TYPE) ;
System.out.println ("Event received: " + forecastResponse);

}i
Consumer<Throwable> onError = (Throwable error) -> {
asyncProcessing.completeExceptionally (error);
}i
Runnable onComplete = () —-> {
asyncProcessing.complete ("OnComplete") ;
bi
sseEventSource.register (onEvent, onError, onComplete);
sseEventSource.open();
asyncProcessing.join();
sseEventSource.close ()
restClient.close();

’

[891]

Asynchronous Communication for Microservices Chapter 4

The SSE client can be summarized into the following steps:

1. A standard JAX-RS WiebTarget is created for the URL of an SSE service.

2. An SseEventSource is created from WebTarget
uﬁngSseEventSource.target

3. Aninstance of CompletableFuture is created for later synchronization.

4. Callbacks are attached using the register method; callbacks complete the
future appropriately.

5. The SSE service is invoked by calling the open method.

6. The main thread waits until the SSE event stream is processed by waiting for the
future to complete.

7. The SseEventSource and Client resources are closed.

When using CompletableFuture, as in our example, we can chain
closing of the sseEventSource and Client resources right after the
future call is completed, with a method such as thenRun

of CompletableFuture. This will ensure that the resources are closed
without the main thread waiting for the completion of the future.

Alternatively, we can chain the closing of resources after the future is completed with the
thenRun method, like this:

asyncProcessing.thenRun(() —-> {
sseEventSource.close () ;
restClient.close();

H)

Automatically reconnecting of SSE clients

One of the standard features of SSE, which works out of the box, is automatic reconnection.
SSE clients always try reconnecting to the same stream of events when a connection is
unexpectedly lost. If the server includes the ID attribute in events, then the client will
automatically include the last known ID into the new connection. The client adds it to a
new request as a value of the LAST_EVENT_ID HTTP header. This may be used to start
sending new events to the client from this ID, or replay all past events that happened since
an event with this ID was sent.

[90]

Asynchronous Communication for Microservices Chapter 4

Special care has to be taken if we can't handle reconnection on the server. Ignoring the
LAST_EVENT_ID header may lead to multiple invocations of our service in case of a failure.
In case the service is supposed to send a sequence of requested results, such as our Forecast
service, a connection failure and subsequent reconnection would cause all the results to be
sent again. If the header is present in the request, we should take it into account and only
send the events that haven't been received by the client. If that's not possible — for example,
if the order of events isn't always the same, we should ignore all requests that contain the
header because they come from a reconnect. This would disable the reconnect feature and a
call to the service would fail and disconnect immediately after a failure message is received
from the server without any chance to recover automatically.

The synchronous version of the Forecast service can easily support auto-reconnect. It
executes external services in the same order, one after the other, and the order of results is
always the same. Therefore, we can skip all the results that were already sent.

Any asynchronous version of the Forecast service that calls external services in parallel
produces events in an unpredictable and non-deterministic order. It's then very hard to find
out which events were sent based just on the ID of the last request. To avoid calling the
same service repeatedly upon connection failure, we ignore all reconnection requests by
requiring that the LAST_EVENT_1ID header is empty, as follows:

public void getLocationsWithTemperature (
@Null @HeaderParam (HttpHeaders.LAST_EVENT_ID_HEADER) Integer
lastEventId, ...)

Even if we won't use the value of LAST_EVENT_ID in the method, declaring it as a header
with @HeaderParam and placing the @Null validation constraint allows us to execute the
method only if the header is empty. If a connection is dropped during receiving events,
clients that attempt to reconnect would receive an error status and would stop reconnecting
further.

In order to support reconnecting asynchronous calls correctly, the event ID would have to
encode all events already sent, to avoid sending them again. However, this can get too
complicated and the event ID would grow with the number of events sent. Therefore, it's
simpler and safer to raise an error and make the client handle the problem, for example, by
restarting the connection from the beginning.

[91]

Asynchronous Communication for Microservices Chapter 4

SSE is often used to send an infinite stream of events to which clients can
connect at any time. This is where auto-reconnect makes the most sense
and helps a lot. Receivers would just reconnect and continue receiving
future events as they are produced. This pattern would fit a scenario
where the Temperature service should send the current temperature at a
regular interval.

For building SSE endpoints that produce an infinite stream of events, JAX-
RS provides SseBroadcaster, which you can use to distribute events
from a single source of data to every connected SSE client.

Two-way asynchronous services with
WebSocket

So far, we've improved our Forecast service asynchronously, to communicate with other
services and to send data to the client. What we haven't changed is the underlying HTTP
protocol, which is used to invoke REST services and SSE endpoints. If we want to optimize
the communication further, we have to start thinking about the limitations of HTTP and
replacing it with something more powerful and efficient.

Another technology that can help us improve our performance is WebSocket, which is also
a web standard, like HTTP. Unlike HTTP, it supports two-way (full-duplex)
communication over a single session. This allows us to initiate multiple subsequent calls to
a web service, without creating a separate session for each, and it also allows us to control
the flow of data to or from the service in a single session. WebSocket also allows sending
streams of data, such as SSE, and it allows us to send both text and binary data. This is
unlike SSE, which requires the data to be sent in text form.

[92]

Asynchronous Communication for Microservices Chapter 4

The following diagram shows how WebSocket-based communication works:

Service A Service B

Request to Open Connection

Y

A

Connection Openend

L i 1

1 1

1 1)

1 Message 1 Multiple messages
TTTpTToTommmamm oo msommsees i in both the
oot Message . Lol directions till the

1 1 i i

I L connection is open

\ Message 1

1 1

1 1

1 1

N, a

—

Any side can close the connection

A quick comparison between HTTP and
WebSockets

There are several reasons why the HTTP protocol is so widespread: it's the protocol used by
the web; there are many tools that support working with it; and it's textual and very
straightforward, which makes it easy to understand and troubleshoot even without
complex tools. In Microservices architectures, it's often the primary choice for
communication because it's also easy to monitor, secure, and control in distributed
environments. However, it has multiple limitations that make it less efficient than other
alternatives.

[93]

Asynchronous Communication for Microservices Chapter 4

The most obvious downside of the HTTP protocol is that it allows only one-way
communication. Although HTTP/2 allows some two-way communication, it's limited only
for the purpose of requesting multiple resources more efficiently.

Another drawback is that the protocol is inherently textual. Although it's possible to send
binary data over plain HTTP, the data is always wrapped in a text envelope, which means
that a lot of metadata about the request and response are still in text form. Furthermore,
SSE only allows us to send text data.

On the other hand, the advantage of the HTTP protocol is its simplicity and transparency.
Because it's so widespread, it works well with firewalls and often works out of the box in
any infrastructure. WebSockets, which don't have the limitations of the HTTP protocol, are
often limited by the infrastructure. They require a separate port to create connections and
often require adjustments in the infrastructure to allow us to establish a connection. Unlike
HTTP, WebSocket is designed to keep long-lived TCP connections. The WebSocket-based
communication consumes more resources and causes some trouble if the connections are
dropped by the infrastructure policy or a failure. This is not a big issue with SSE, which
expects connection failures and includes an inherent auto-reconnect mechanism.

In the end, WebSocket provides a lot more flexibility than REST or SSE endpoints

Decoupling services with message-oriented
middleware

So far in this chapter, we've discussed direct communication between client and server or
between services. Another important way to implement asynchronous communication is
through the use of middleware, or more specifically, by implementing asynchronous
communication through the use of queues. To start with, let's take a classic publisher-
consumer problem, where service A is responsible for generating some information, which
is to be consumed by another service, B. Though the communication can be synchronous as
well, where we can configure our application in a way that the communication is deemed
completed when a successful acknowledgment is received by calling the service, this kind
of communication is best suited to asynchronous communication.

We can implement two major types of communications patterns using messaging: point-to-
point and publisher-subscriber. In point-to-point communication, as the name suggests, we
have two endpoints. One would serve as publisher, sending messages to the listener point,

known as a consumer.

[94]

Asynchronous Communication for Microservices Chapter 4

The following diagram shows a simple point-to-point communication:

== -

sewice A _PUbl‘Shes_- E E E)‘iconsumes_ Sewice B

A simple example is an order-management service and an inventory-management service
in an e-commerce system. Whenever an order is executed, the order-management service
would add a message to the queue that the order was successfully executed. The message is
read by the inventory service, which in turns updates inventory. The advantage of using a
queue-based approach is that it removes any dependency between the two services.

The order-management service doesn't need be aware of the inventory service. All it is
aware of is a middleware queue that it needs to add the message to; what happens with the
message is not its responsibility. So, even if an inventory management service is down or
broken, the order management will work fine without any disruption. The messages will be
available in the queue, and when the inventory service is fixed, it will consume all the
messages.

This example highlights a couple of important aspects of this kind of communication. We
can see very clearly that order-management system will keep on working without even
knowing whether inventory is being updated properly. It is important to understand our
use case: do we actually want this level of decoupling? This brings another aspect, which is
that even if the inventory service were down for some time, we have actually not missed
any updates. When the service was up, it consumed all the messages and data was
eventually corrected.

If we were just logging the order details for reporting purposes, we could have used queue-
based communication without giving it a second thought. But, if our use case can result in
incorrect data in the system, we should be carefully accessing our tolerance of the delay in
receiving the data.

So far, we've looked into cases where we had one publisher and one consumer. Say we
have a case where more than one services wants to take an action on a message. In the
preceding example, we have both log-management and inventory-management systems,
which are interested in an order-completion event. In such cases, we use an approach
known as publisher-subscriber or pub-sub. In this approach, instead of publishing to a
queue, we publish to a specific topic — for example, order-completion can be a topic.
Multiple publishers can publish to a topic and multiple subscribers can listen to a topic.

[95]

Asynchronous Communication for Microservices Chapter 4

The following diagram shows a pub-sub architecture:

W
W

Publisher A Subscriber X

- -
Messaging Middleware
Topics and Queues

1
i

Publisher B [— Publishes—p» Subscriber Y

4+——Consumes.

- —
- -

11
I

Publisher C Subscriber Z

f
f

In our example case, the order-management service would be publishing a message to the
order completed, whenever an order is executed successfully, and services, such as logging
service and inventory-management service, listen on this topic. Whenever a new message is
published, these services consume the message and take appropriate action.

An example of message-oriented middleware

Let's look at a code example that publishes and consumes a message. Java Message Service
(JMS) has been the industry standard for years. For sake of this example, we will use
Amazon's Simple Queue Service (5QS) to avoid the additional overhead of setting up
middleware and the queue infrastructure.

AWS provides us with a simple mechanism to create the queue, but you can use any
provider of your choice.

[961]

Asynchronous Communication for Microservices

Chapter 4

The following screenshot shows how a queue is created in AWS-SQS:

Create New Queue

Queue Name @

What do you want to name your queue?

[testqueuel

Region @ US East (N. Virginia)

Standard Queue

Unlimited Throughput: Standard queues support a nearly unlimited number of
transactions per second (TPS) per AP action.

At-Least-Once Delivery: A message is delivered at least once, but occasionally more
than one copy of a message is delivered.

Best-Effort Ordering: Occasionally, messages might be delivered in an order different
from which they were sent.

1 5

Send data between applications when the throughput is important, for example:

Decouple live user requests from intensive background work: let users upload media
while resizing or encoding it.

Allocate tasks to multiple worker nodes: process a high number of credit card
validation requests.

Batch messages for future processing: schedule multiple entries to be added to a
database.

What type of queue do you need?

FIFO Queue

High Throughput: FIFO queues support up to 300 messages per second (300 send,
receive, or delete operations per second). When you batch 10 messages per operation
(maximum), FIFO queues can support up to 3,000 messages per second. To request a
limit increase, file a support request.

First-In-First-out Delivery: The order in which messages are sent and received is strictly
preserved.

Exactly-Once Processing: A message is delivered once and remains available until a
consumer processes and deletes it. Duplicates are not introduced into the queue.

Send data between applications when the order of events is important, for example:

« Ensure that user-entered commands are executed in the right order.
« Display the correct product price by sending price modifications in the right order.

« Prevent a student from enrolling in a course before registering for an account.

For more information, see the Amazon SQS FAQs and the Amazon SQS Developer Guide.

To create a new queue, choose Quick-Create Queue. To configure your queue's parameters, choose Configure Queue.

Cancel | Configure Queue |[eINT2 el YA TTEITTS

As you can see, all we need to provide is a queue name and a Quick Create Queue. If
required, you can update default configurations, such as how long you want the message to
be available in the queue, by clicking the Configure Queue button. Also, you can use the
FIFO queue, which guarantees the order of messages being sent is in the form of "first in
first out." For the sake of this example, we will use the default configurations.

Here is the code to demonstrate the read and write operations on the AWS queue:

import java.util.List;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.AWSCredentialsProvider;

import

[97]

com.amazonaws .auth.BasicAWSCredentials;

Asynchronous Communication for Microservices Chapter 4

import com.amazonaws.internal.StaticCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.sdgs.AmazonSQS;
import com.amazonaws.services.sgs.AmazonSQSClientBuilder;
import com.amazonaws.services.sgs.model.Message;
import com.amazonaws.services.sgs.model.SendMessageRequest;
public class SendReceiveMessages
{

public static void main(String[] args)

{

AWSCredentialsProvider provider;

AWSCredentials credentials = newBasicAWSCredentials ("Key", "Secret");

provider = new StaticCredentialsProvider (credentials);

AmazonSQS sgs =
AmazonSQSClientBuilder.standard() .withCredentials (provider) .withRegion (Regi
ons.US_EAST_1) .build();

String queueUrl =
"https://sgs.us—east-1.amazonaws.com/305881070752/TestQueue";

SendMessageRequest send_msg_request = new SendMessageRequest ()
.withQueueUrl ("https://sgs.us-east-1.amazonaws.com/305881070752/TestQueue")
.withMessageBody ("hello world")

.withDelaySeconds (5);

sgs.sendMessage (send_msg_request) ;

// receive messages from the queue

List<Message> messages = sgs.receiveMessage (queueUrl) .getMessages();

System.out.println ("message:"+messages.toString());

// delete messages from the queue

for (Message m : messages)

{

sgs.deleteMessage (queueUrl, m.getReceiptHandle());

}

This code sends and receives a message from the AWS queue. This is a straightforward
implementation of point-to-point communication. AWS also supports the creation of topics
through its Simple Notification Service (SNS). These topics can then be attached to
queues, so when a new message comes into the system for a topic, it's delivered to all the
queues listening to that topic, and hence delivered to listeners of the queue.

[981]

Asynchronous Communication for Microservices Chapter 4

Summary

In this chapter, we discussed the importance of asynchronous communication when using a
Microservices-based design. We discussed various ways of implementing asynchronous
communication. We started by discussing a simple REST-based implementation of APS,
which helps us to communicate asynchronously among services. Then we looked at web
sockets for maintaining persistent connections. This kind of communication is good when
we need to send multiple messages asynchronously among services. Finally, we looked at
message-oriented middleware to implement asynchronous communication, and hence
decouple our services. This kind of communication helps us send messages to a single
service through point-to-point communication or multiple services through the publisher-
subscriber pattern.

In the next chapter, we will discuss best practices for building a robust set of
MicroServices.

[991]

Path to Robust Microservices

So far, we've talked about Microservices and how they can help us create stable
applications. But, we need to understand that Microservices do bring their own challenges.
Since we now are dealing with multiple services that are executing independently of each
other, rather than a single application, we need to make sure that there is no single point of
failure. We need to make sure that a problem in one service does not impact the system as a
whole. Additionally, how should we handle failures in our application? Can our
application self-heal? In this chapter, we will talk about some of the techniques that will
help us to create a robust application using Microservices.

We will cover the following topics in this chapter:

e Building for failure

Isolating the failure

Handling the failure
¢ Recovering from failure

Preparing for failure

Building for failure

No software can be 100% error-free, but we always try to make it as stable as possible while
ensuring that if an error occurs, it will be handled gracefully. You must have heard the term
build for failure. The idea is that you cannot assume that your applications or services will
never fail. Instead, you should assume that they will fail no matter how carefully you have
built and tested your services.

Path to Robust Microservices Chapter 5

There are different types of failures. A common failure case is when the developer has
missed handling some edge condition such as an invalid value received as input, or a
memory leak due to too many unused objects, or your application is facing more load than
expected. Then we can have hardware failures, where a server or a cloud node goes down.
We cannot handle all issues beforehand, so we need to plan for failure cases and design the
architecture so that our overall service is stable even if an issue occurs.

A cascading failure would look as follows:

Service 2 Service 3 Service 4

.
1
1
External call _!

4. ________
Fa

ilure Response

- -
ailure

|- -
Failure

|- - -
Failure

There are techniques such as an implementation of the circuit breaker pattern,the fail fast
pattern, the fan out pattern, and so on, which can help us manage this kind of failure.We
will discuss these later in this chapter in the Handling the failure section.

So far, we've discussed why it is important to know that there are various best practices
and patterns that we can (and should) follow in order to make our services robust and
ready for failure. We will discuss the important practices in the rest of this chapter.

Isolating the failure

If you can take only one thing from this chapter, take this always design your system in a
way that failure in one service or business area should not get propagated to other areas. In
short, isolate the failure.

Years ago, plugging in a faulty electronic device at home could cause a house-wide power
outage. It could even cause a short circuit or fire. Then came Miniature Circuit Breakers
(MCB), so if something goes wrong, only a single MCB that pertains to the area where the
faulty device was used would trip. This is a good example of isolating the failure; if
something goes wrong in one area, it is not able to impact other areas. Not surprisingly, we
have a pattern for failure handling in services, called the circuit breaker pattern, which we
will discuss later in this chapter in the Handling the failure section.

[101]

Path to Robust Microservices Chapter 5

What I am trying to emphasize here is that one should make sure that there is no single
point of failure in the system, or that a failure in one service should not impact other
services. One simple example of having a single point of failure is depending on a single
database server. If the database server is down, the whole system is down. The idea behind
Microservices is that each service should be looked at as an independent unit.

The following scenario depicts a case where, due to a failed common database node, all the
services dependent on it have failed too:

Request
Service 1

Failure

Requesl Node Failure

TN
-~ A

Service 2

Common Database
Request
Service 3

Failure

N~

Request

Service 4

Failure

K

Clearly, we have not implemented the Microservices architecture properly and are not
taking advantage of using Microservices. Microservices are supposed to be built
independently, in a manner that failure in one does not cause failure in the others.

[102]

Path to Robust Microservices Chapter 5

Let's revisit the problem with an updated design:

—_
‘\._____________/
. Request
Service 1 > Service 1
R IRy — Database
Response

——

—_
e 4

. Request
Setrvice 2 - Service 2
B Database
Response

\-.______________./

T
fe— A

Request Node Failure
Service 3 - Service 3
Database

Failure

\-.______________/

Ty
'\._____________/
. Request
Service 4 > Service 4

- ------mm—-mmm - Database
Response

i

\-.____________/

We can see that, if properly isolated, a failure will only impact a single service. In the
preceding diagram, we have isolated all four services, and a failure in the database for
service three only impacts service three; the other services keep on working smoothly.

Failure isolation needs to be handled at multiple levels; we need to handle it at the service
level itself. So if there is a buggy service, say a search service is buggy in an e-commerce
site, it should not impact the checkout or catalog view. Additionally, we need to handle
failure at the service instance level. For example, if we had five instances of a search service,
and one of them goes down, it should not impact the other four instances.

When starting to build an application, you need to design for isolation. We need to make
sure that even if a problem occurs, it is isolated and does not impact the system as a whole.
In short, we need to avoid cascading failures. The age-old principle of Low Coupling and
High Cohesion helps here. That is, only the features that are alike and must be put together
should be together; otherwise, we should keep them separate.

We will now talk about concrete patterns and techniques for how to isolate a failure.

[103]

Path to Robust Microservices Chapter 5

The bulkhead pattern

The bulkhead is the most common and basic pattern when we discuss isolation. The term
itself has an interesting origin. The term is borrowed from cargo ships. A bulkhead is a wall
built between different cargo sections in the ship. This wall ensures that if one of the
sections gets flooded or catches fire, other sections do not get impacted. The idea is to build
a similar partition between our services, so that failure in one area does not propagate to
others.

We need to implement a bulkhead pattern at multiple levels, development as well as
deployment. While developing, we need to make sure that we build our services in a
manner that they are logically independent of each other. Moreover, while deploying, we
need to make sure that we deploy each service independently so one node failure does not
bring down all critical services.

Let's look at the following simple example to understand the power of the bulkhead
pattern:

Application Server

Service 1

Service 3

Service 2

[104]

Path to Robust Microservices Chapter 5

Say we have deployed multiple services in the same application server. Now, an
application server can manage a fixed number of connections at a time. Say one of the
services has buggy code, slowing it down, which results in blocking the threads for a longer
duration. This will cause other services to suffer as they will not have adequate resources.

To tackle this, we need to use the bulkhead approach and create isolated blocks:

Application Server 1 Application Server 2

Service 1 Service 2

Application Server 3

Service 3

We have handled the scenario by isolating each service. Now, if one of the services gets into
trouble and blocks all the threads, we will end up losing only one service and the other
services will keep working fine.

Stateless services

It is important to understand the power of stateless services. Think of a scenario where a
service is maintaining some kind of state; say a user can fill in form 2 only if they have filled
in form 1, and we are trying to keep this information within the application, say in a
session. The problem is that we will need to make sure that the same service instance
receives a request from the same user. There are solutions, such as sticky sessions or
replication of session, but they add to the overhead and complexity of the system.

[105]

Path to Robust Microservices Chapter 5

Using stateful services makes it difficult to isolate the failure. If the service is in an error
state or responding slowly, it is not easy to redirect the traffic to some other node or simply
restart the node, as we will lose the information state information maintained locally.

We will talk more about stateless services with an example in Chapter 6, Scaling
Microservices, when we discuss scaling Microservices.

The robustness principle

"Be liberal in what you accept, and conservative in what you send”.
Source for this statement: https://devopedia.org/postel-s-law

Though at first glance this does not seem to be directly related to the topic of isolation, this
age-old principle helps to define the core of Microservices.

Let's break the statement down into two parts:
"Be conservative in what you send”.

This is what Microservices are all about: focusing on a fixed set of responsibilities and being
responsible for communicating with other services. When we say to be conservative in
what you send, we are also accepting the fact that we are doing a limited, fixed set of
activities in the service. Ideally, one Microservice should be focusing on one task. So, when
we say we have a TaxCalculator service or a PhotoUploader service, we know that the
service is going to calculate tax or upload a photo, and nothing else. In other words, this is
in sync with our Single Responsibility Principle, that is, one service is handling one
responsibility. This is a very important concept when it comes to implementing isolation.
Let's say we have a service, EmployeeDataUpdateAndPhotoUploader. For some reason, the
photo-uploader part is broken (say due to a developer mistake, it goes into a loop or out of
memory). Now the photo-uploader part can slow down or break the employee-data-update
part as well. So if all I needed was to update the address for an employee, I cannot do it
because the photo-uploader code is broken.

Whenever you feel that your service is doing too much work, break it into multiple
services. A simple rule is to try to write down the role that the service is playing. If there are
too many ands, for example, we are writing that this service does this and this, you know it
will be difficult to manage.

[106]

https://devopedia.org/postel-s-law
https://devopedia.org/postel-s-law
https://devopedia.org/postel-s-law

Path to Robust Microservices Chapter 5

Let's look at the other part of the rule.
"Be liberal in what you accept from others.”

You cannot control how your service is going to be used, but you can manage the behavior
on your end, by keeping a check on which input your service is going to accept. So if your
service needs four parameters to work properly, build it in a manner that it can receive
three or five parameters. What should our service do in case incorrect input is recieved?
Can we somehow manage and convert the input into the required format? If not, we should
gracefully send back the required messages. The idea is that your service should never be
caught unprepared. Unplanned input can break down your service to get infinite loops or a
memory leak situation, where one faulty request is making others suffer.

Handling the failure

In the Isolating the failure section, we talked about practices that help us to isolate the failure.
That is, if service is a failing, it should fail independently without impacting the rest of the
system. But, just isolation might not be a complete solution in itself. We still need to handle
the failure. We need to see how our application will behave if a service fails.

There are multiple ways in which we can make sure we handle failures gracefully. We will
discuss some of these options now, starting with Asynchronous Communication.

Asynchronous communication

Whenever possible, we should go for asynchronous communication with clients and other
services. Asynchronous communication helps us to decouple code and does not block the
calling service. For example, if your frontend UI goes for asynchronous communication
with backend services, we make sure the system remains usable while we are loading the
required data at the backend. The end user is still able to interact with the system. Even if a
service or two are failing, we are making sure other services are returning information and
are usable by the end user even if the unresponsive service blocks a couple of threads.

We should use an asynchronous queue or middleware-based communication when an
immediate action or response is not required. Say we are logging; we will add the data to
queue or broker instead of the service directly.

[107]

Path to Robust Microservices Chapter 5

Fail fast

This is an important concept in today's world, where performance is of the utmost
importance. A very simple example would be that you hit a link on a website, it starts
loading the page, shows you a loader on a blank page, you wait patiently for seconds or
maybe for minutes, and then you get the message Could not retrieve data, please try again
later. It's like rubbing salt in a wound. If you had to show the error message, why did you
make the user wait?

So if the service has to fail, it should fail fast. But how do we achieve that? There are
multiple ways, based on your service. If your service is going to call another service, you
can keep a check on the health of the other service, maybe by a handshake or ping call, so
you are aware of the fact that the other service is in a position to handle your calls.

An additional approach is the use of the bounded queue. Any request reaching to the
service is queued, and this queue is bounded. So, if we know that our service can handle
10,000 calls in an acceptable amount of time without getting slow, we will only queue
10,000 requests and then reject additional requests. This way, the additional calling services
can retry after some time and do not get blocked.

Timeouts

Timeouts are a simple yet very powerful tool for handling failures in calling services that
are into an error condition. For example, if we are calling a service, that is facing a
performance issue, our timeout checks at the calling service end will save us from the pain
of waiting infinitely for a response. This is in sync with the fail fast approach, but this time
we are implementing the solution at the client side or at the calling service end.

Circuit breakers

A circuit breaker is a term borrowed from electronic circuits. Whenever a circuit gets in a
faulty situation, the role of a circuit breaker is to cut it off from the supply to make sure it
does not impact other areas. In other words, the problem is restricted to one part and
cannot propagate. Using the same idea, we are talking about a technique to develop over
Microservices in such a way that a problem in one Microservice should not propagate to
other services, and that the impact of a failure is restricted to one area.

[108]

Path to Robust Microservices

Let's take an example. Say we have a service that is supposed to return data about an
employee's tax details. This service fetches some tax rules from another service and then
works on the salary details provided. After calculating the tax details, the service returns
the tax to be applied on the salary.

The following diagram highlights how tax and salary services interact:

Salary and
Tax Service

2. Calculate tax on Salary

Salary
Service

1. Fetch Salary details for an employee

- Ea Tax

Calculator

I:E Service

Employee

Salary
Details

Separate Cluster

Tax Rules
Service

[109]

Path to Robust Microservices Chapter 5

Now, let's say the Tax Rules Service stops responding; it might be dealing with a huge load
or some code error. This would mean that our Tax Calculator Service would call the Tax
Rules Service but will keep on waiting until it errors out, so we can see that a faulty service
is actually impacting other services.

Both the calls will timeout, resulting in overall failure, as shown here:

Employee

Salary
Details

1. Fetch Salary details for an employee
External Request

—

Salary and
Tax Service

2. Calculate tax on Salary Separate Cluster

- Tax

Tl' ----------- Calculator
imeout :
Service
- --]

Timeout

Tax Rules
Service

[110]

Path to Robust Microservices Chapter 5

A circuit breaker can help in this case by creating a protective layer across the services. This
will help to break the connection between the calling service and the faulty service:

External Request

T L]

Employee

Salary
Details

1. Feteh Salary details for an employee

Salary and
Tax Service

-
esponse

.: | -1 =l -
' 2. Calculate tax on Salary Separate Cluster

> Tax

............ Calculator ——
Handles the response Service

Tax Rules

Service

4
Logical
Circuit

Breaker

A circuit breaker would help us to isolate the faulty service.

The circuit breaker can be in three states:

¢ Closed: When everything is working normally. At this time, the circuit breaker is
in the closed state, all the calls are being made successfully to the service, and we
are getting proper responses. We can add a threshold number for errors before
the circuit breaker gets into the open state.

e Open: As the name suggests, the circuit is open or we are in an error state, so
none of the calls will be made to the service being called.

e Half-open: Once our circuit goes into the open state, the circuit breaker will keep
a check on the service being called to make sure things work normally once the
service is healthy again. To do so, the circuit breaker gets into the half-open state
after staying for a predefined period of time in the open state. In the half-open
state, the circuit breaker will try calling the end service again; if the call succeeds,
the circuit will go back to the closed state; otherwise, it will go into the open state
again.

[111]

Path to Robust Microservices Chapter 5

A circuit breaker code example

As you may have guessed, the circuit breaker is a very important pattern when it comes to
handling service failures. It is worth spending some more time understanding how to
implement it. Let's take a hypothetical problem; say we have a movie recommendation
service. Users will make a call to our service, which in turn gets the recommendation for the
current user from a sophisticated machine learning implementation. In case the external
recommendation service goes down, we still want our users to be able to get
recommendations.

We will try implementing the following solution:

—] — -
Personalized
- - - Recmmmefndation ircuit Breake Recommgndarion
Service | Presonalized Engine
[%:] Recommendation Yes
Available?

Internal
Recommendations

E}]

To get started, we will create a couple of Spring Boot applications, as will do in the rest of
the book. Here is the recommendation engine service:

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.client.RestTemplate;

/***

* This class is responsible for applying machine learning algorithm for

* the current user and find out personalized algorithm.
*

*/
@RestController
public class RecommendationController {

private final RestTemplate restTemplate;

[112]

Path to Robust Microservices Chapter 5

public RecommendationController (RestTemplate restTemplate) {
this.restTemplate = restTemplate;

/***

* This method calculates and return movies recommendation
* @return Movies

*/

@GetMapping (" /movies")

public String getRecommendedMovies () {

// Applies number cruncher algo and come up with movies for logged in
used

// For sake of thie example we are returning fixed set of movies
return ("Movies Recommended for you. \n 1. Jumanji: Welcome to the
Jungle. \n2. Inception \n3. The Dark knight.");
}

}

But we are more interested in the calling method, where we will implement our circuit
breaker. We will include a Netflix Hystrix implementation to use the circuit breaker:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>

And here is the controller API and service class that implements the circuit breaker:

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.web.client.RestTemplateBuilder;
import
org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker;
import org.springframework.context.annotation.Bean;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

import org.springframework.web.client.RestTemplate;

@EnableCircuitBreaker
@RestController
@SpringBootApplication

public class ServiceoneApplication {

@Autowired
private RecommendationService recommendationService;

[113]

Path to Robust Microservices Chapter 5

public static void main(String[] args) {
SpringApplication.run(ServiceoneApplication.class, args);

@Bean

public RestTemplate rest (RestTemplateBuilder builder) {
return builder.build();

}

@RequestMapping ("/movies")

public String getRecommendedMovies () {
return recommendationService.recommend() ;

}

}

The following is the for the recommendation service:

import com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestTemplate;

import java.net.URI;

@Service
public class RecommendationService {

private final RestTemplate restTemplate;

public RecommendationService (RestTemplate rest) {
this.restTemplate = rest;

@HystrixCommand (fallbackMethod = "reliable")

public String recommend() {
URI uri = URI.create("http://localhost:8081/movies");
return this.restTemplate.getForObject (uri, String.class);

public String reliable() {
return "Top 3 Movies for the month. \n 1. Batman Begins\n 2.
Interstellar\n 3. Justice League. ";
}

[114]

Path to Robust Microservices Chapter 5

Fan out and fastest response

This approach is a bit costly in terms of computing power, but is useful in case response
time is critical for our application. The idea in this approach is to have multiple replicas of
our service. The caller will simultaneously call all these instances and accept the response
from the one that responds fastest. As there is additional overhead in the use of this
approach, caution is recommended.

Let's take a look at an example scenario:

Reqguest
g
ettt il Service B
: Response takes 700 ms- Discarded Instance 1
1
1
1
1
1
1
1
1
1
: ————
i Service B
¥ pooooTTTTTrE Instance 2
Request |,
1
1
Response takes 2200 ms- Discarded
Service A
4 -------mmmmmes
1
E':I Request |!
i] Service B
. Response - Error Instance 3
' >
1
1
1
1
1
1
i
1
: Response lakes 400 ms- processed Service B
e -
Instance 4
o
Request

The example given here shows that Service A needs to call Service B and fetch a response.
Calling the service would send simultaneous requests to multiple instances of services
being called. The response received fastest will be processed by the calling service. We can
see the advantage of this approach is that if some instances are in an error state or taking
too much time to respond, it will not impact our service as long as any one of the instances
being called is able to send the response in a timely manner. As already mentioned, this
approach adds to the cost of the overall system in terms of a greater hardware power
requirement, so caution is required when using this approach.

[115]

Path to Robust Microservices Chapter 5

Recovering from failure

So far, we have discussed isolating the failure and handling it. So now we are handling our
failures gracefully, but what about fixing them? We cannot let the system remain in an error
state forever. We will need to bring back our filed services and make sure our system is in a
healthy state again.

Well, how exactly we recover from failures will depend on the system. How much manual
effort would be required to fix the issues? For example, we cannot of course fix the code
issue on the fly. But, we can take some steps to help and speed up the recovery process.

The most important tool we have for recovery from a failure is monitoring. Proper
monitoring of our services would let us know about the services facing issues. We need to
monitor whether a service is responding correctly or with error codes. We need to monitor
logs for exceptions and errors. We need to monitor the hardware health of the nodes, such
as memory and CPU usage. If the services are throwing too many errors, above an
acceptable threshold, or other parameters such as memory or CPU usage are beyond
acceptable levels, the monitoring script can trigger an action. An action could be as simple
as raising a trigger to concerned teams by sending emails, messages, or escalations to
restart nodes. The automated scripts can also take a call on whether we need to scale up the
service by adding additional nodes. We will talk more about monitoring and scaling in
chapters dedicated to these topics. Chapter 8, Monitoring Microservices and Chapter

6, Scaling Microservices.

Preparing for failure

So, we have talked about handling and fixing failures. They say the more you sweat in
peace, the less you bleed in war. So, it is a good idea to keep yourself prepared for any
expected or unexpected failures.

We need to make sure we have a recovery process in place. A simple example is that when
we are moving to a newer version of a service, it will make sense to keep the older version
live for some time so that if something goes wrong, we can quickly move back to an older
version.

Netflix, which relies heavily on Microservices for their system to work properly, came up
with the approach of Chaos Monkey. The idea is simple, yet powerful: randomly bring
down instances of services in place and see how your system behaves. Does it completely
shut down or is it able to handle the situation? Is the service be able to heal itself? Is the
system be able to take the required actions to bring it into a healthy state?

[116]

Path to Robust Microservices Chapter 5

This way, we will can determine our weaknesses and take the required actions in time.

Summary

In this chapter, we talked about how to make our microservices-based application reliable.
We discussed different aspects, such as isolating, handling, recovering from, and preparing
for failure.

For isolating failure, we explored techniques such as the bulkhead pattern, stateless
services, and the Robustness Principle. When discussing Handling failure, we touched
upon the approaches of Asynchronous communication, Fail fast, Timeouts, circuit breakers,
and fan out and fastest response.

We talked about the importance of monitoring logs and hardware performance when we
discussed recovering from failure. Finally, we talked about steps such as simulating
production failures so that we are better prepared for a failure situation.

In the next chapter, we will discuss about the Scaling of Microservices.

[117]

Scaling Microservices

An important aspect that has made Microservices popular is the ease with which they can
be scaled. In this chapter, we will study the scalability aspect of Microservices. We will look
at what makes Microservices the best fit for applications that need quick scalability. The
following topics will be covered in this chapter:

e What is scalability?
* Microservices and scalability
Stateless versus Stateful Microservices

e Microservices on the cloud
¢ Going serverless with Microservices

Scaling databases with Microservices

Scaling Microservices with caching

What is scalability?

Has this ever happened to you:, you created an application that worked well in a controlled
test environment but when it got deployed to the production environment, parts of the
application stopped responding? Or the application works well for the first few days, when
the load or number of users is low, but as the load increases, the application stops
responding or slows down? These are very common scenarios if you created an application
without thinking about the scalability aspect of it.

So, what exactly is scalability?

Scaling Microservices Chapter 6

Scalability can be defined as the ability to scale your operations as per increases in

demand. With respect to a computer system, it would mean the application adapting to
increased load. I would say this definition is simple, crisp, and covers the gist, but it is still a
bit incomplete. The explanation given for scalability talks about handling increased
demand, but what about decreased demand? Let's hold on to that thought. We will come
back to it later but first, let's consider a case of increased demand and scalability.

Let's take a case; there is a website that handles 1,000 users daily. We have a fixed Linux
server of a specific capability that is happily handling this load. Let's leave out the database,
application server, other tools, and technology-related complexity for now. Assume that
slowly and steadily, the website is getting popular and the number of users doubles. But
we realize the machine we have deployed it on is not able to handle this load and chokes.
You could handle the situation by adding more power to the machine or moving to an
upgraded one. Say we used 8 GB of RAM earlier and we moved to 16 GB RAM, that would
solve our problem.

Next, we see an increase in load and we again double the capacity. This is called vertical
scaling, which is where we add more power to our machine and the same instance of the
application handles more load. This is good, but requires manual effort and is not cost-
effective. We know that having a high-end server machine is costlier than having two low-
configuration machines. To take advantage of this concept, we would like to be able to add
more instances of our application and get better performance than by adding more power
to the same machine. This is called horizontal scaling.

So, for the purpose of this book, we will define scalability as the ability of the system to
adapt to increased or decreased demand, with the optimum use of resources available.

Note that I am also emphasizing a decrease in demand. This is one aspect that can be
neglected when we talk about scalability. This is understandable, as everyone would like to
think of scenarios where the applications are becoming popular and the load is increasing.
But in the real world, we have to deal with temporary loads at times; for example, an e-
commerce site would see a heavy load for an online sale period. That's why, when I started
discussing scalability, I mentioned that you should architect for scaling down along with
scaling up. At the end of the day, we do not want to pay for resources that we are not using.

[119]

Scaling Microservices Chapter 6

Microservices and scalability

At the start of the chapter, I mentioned Microservices are a natural fit for scalable
applications. Well, it is always easier to make copies of a smaller piece of code than a huge,
monolith application, and as we have seen so far in this book, Microservices is all about
breaking a monolithic application into smaller and more meaningful services.

Most importantly, Microservices can scale independently. Let's take an example: we have a
huge e-commerce application that has multiple services, such as search, payment gateway,
product catalog, and shopping cart. We are observing a lot of load on search due to the
launch of new product lines. It is easier to just create replicas of search services and let the
search functionality scale independently without worrying about the rest of the services.
Here's another example: on a college admission day, we see a lot of load on the admission
form-submission service, whereas the rest of the services, such as attendance or exam
scheduling are seeing an almost negligible load. We can upscale the admission service
without impacting the rest of the services.

Due to this independent nature of services, Microservices are a good fit for environments
where one or more services is required to scale independently, without impacting the rest
of the application.

Stateless versus Stateful scalability

We can write our services either in a stateful or stateless manner. I am referring to session
state here. For example, at times we need to make sure that the user is logged in before we
let them access a resource or perform an operation. Or we might want to maintain the
previous state of operations; for example, you can submit form 2 only if you have
submitted form 1.

To understand statelessness, let me show you a very vanilla service example. The following
code shows a service to add up, two numbers:

package com.calculate.sum;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class SumController {
@GetMapping (" /sum")
public Integer addNumbers (@RequestParam Integer numl, @RequestParam

[120]

Scaling Microservices Chapter 6

Integer num2) {
return numl+num?2;

}

This is a simple Spring REST service that takes two parameters, num1 and num2, and
returns the sum. This is a completely stateless service, which is easy to scale. It is stateless
because this service does not care about who is requesting, what call was made before and
after this service was called, and so on. All it does is take an input and return the output.

Why do we say it is easy to scale? Well, I can add dozens of instances of the service behind
a load balancer URL, it doesn't matter which instance serves the request as the result will
always be same.

But, let's say we have a condition that only logged in users, that is, authenticated users,
should be able to access this sum service. This adds complexity as now we somehow need
to check that the user is indeed logged in before serving the sum. Traditionally, if we are
dealing with a simple application getting deployed on a single server, an easy way out is
the use of sessions:

package com.serviceone.serviceone;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class SumSessionController {

@GetMapping ("/sum2")
public Integer addNumbers (HttpServletRequest req, @RequestParam Integer
numl, @RequestParam Integer num2) {

HttpSession sess = reqg.getSession(false);

if (sess!=null) {
Boolean authVal = (Boolean) sess.getAttribute ("isAuthenticated");
if (authval)

return numl+num2;

}
return -9999;

[121]

Scaling Microservices Chapter 6

In the preceding code, we are making sure only an authenticated user is able to use the
service. Sessions are maintained at the server level. The problem with this implementation
is that it is hard to scale. For example, say we added multiple instances of the application
on different servers. Now the initial login request, where we are setting the session
information after a successful login, goes to Server 1. And after that, a subsequent request
goes to Server 2, which does not have any details on user login (as that information is with
Server 1), so it will assume the user is not authenticated and throw an error:

Server 1 Validates user

and stores login
| | —
| Application |

details in session

Login Request Instance 1
Login Request
- Login Successful
Load
Balancer
= Sum Reqguest
user A Sum Request Server 2
Application
Instance 2 |
Error- Unknown use | Tries to
authenticate the user
e

by validating session
information

The problem with this implementation is that we need to make sure that all the requests
from the same user are received by the same server instance.

There are solutions, such as sticky sessions, that would make sure all the requests coming
from one IP address go to the same server, which would solve our problem. But this is not a
perfect scenario as we are adding the limitation that all the requests from one user need to
go to the same server, so we will not be able to make sure we are evenly distributing the
load to our servers.

[122]

Scaling Microservices Chapter 6

To solve this problem, we can use token-based authentication. Let's take an example of an
implementation that is based on JwT to make it clear:

package com.statemanager;

import Jjava.util.Calendar;
import java.util.Date;

import com.authO.jwt.JWT;

import com.authO.jwt.JWICreator;

import com.authO.jwt.JWIVerifier;

import com.authO.jwt.algorithms.Algorithm;
import com.authO.jwt.interfaces.DecodedJWT;

public class JWTUtil |

// You will use a application secret stored in properties file or database.
s

String secret = "KeepSecretKeySameAccrossServers";

/**
* This method takes a user object and returns a token.
* @param user
* @return
*/
public String createAccessJwtToken (User user) {
Date date = new Date();

Calendar c¢ = Calendar.getlInstance();
c.setTime (date) ;
c.add (Calendar.DATE, 1);
// Setting expiration for 1 day
Date expiration = c.getTime ();
JWTCreator.Builder builder = com.authO.jwt.JWT.create();
builder.withSubject (user.getName ())
.withKeyId(user.getId())
.withIssuedAt (date)
.withExpiresAt (expiration)
.withClaim("canAccessSum", true);
String token = builder.sign (Algorithm.HMAC256 (secret));
return token;

/**

* This method takes a token and returns User Object.
* @param token

* @return

*/

public User parsedwtToken (String token) <

[123]

Scaling Microservices Chapter 6

JWTIVerifier verifier = JWT.require (Algorithm.HMAC256 (secret)) .build();

DecodedJWT Jjwt =verifier.verify (token);

Boolean sumAccess = jwt.getClaim("canAccessSum") .asBoolean();
User user = new User();

user.setId (jwt.getId());

user.setName (jwt.getSubject ());

user.setSumAccess (sumAccess) ;
return user;

}

The preceding code helps us generate a token that can keep all the mandatory information
required to serve the user. We can pull the required information at runtime from the token,
so there is no need to maintain internal state and store user data on the server as part of
session information.

The following code showcases the use of a JWT token:

package com.statemanager;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class SumSessionController {

@GetMapping ("/sum2")
public Integer sayHello (@RequestParam String token, @RequestParam Integer
numl, @RequestParam Integer num2) {
User user = new JWTUtil () .parsedJwtToken (token);
if (user.getSumAccess ()) {
return numl+num?2;
t
return -9999;

[124]

Scaling Microservices Chapter 6

This helps us keep services stateless and hence independently scalable:

Validates user
and retturns a
JWT taken

Server 1

[

Login Request

Application
Instance 1

Login Request
JWT Token

Load
Balancer

Sum Request + Token

§ - >
user A Sum Request + Token Server 2

Application
Instance 2

Sum Result | Authenticates using

L | token and returns
result

We can see how tokens can help us keep our services session free, so there is no need to
store information in server-side sessions. At the same time, we make sure that we can pass
state information along with each request. We will look at JWT again in chapter 7, Securing
Microservices, where we will focus on the security aspect of tokens.

Scaling on the cloud

With the popularity of the cloud, scaling Microservices has become even easier. In fact, it
would not be completely inappropriate if we say that the cloud is one major reason for the
popularity of Microservices based design. Cloud services providers, such as Amazon Web
Services (AWS), provide us with mechanisms to autoscale the deployed services.

For example, let's see how this is done in AWS. If you are familiar with Microsoft Azure,
Google Cloud, or any other cloud service provider, you will find similar steps there. We are
just trying to get a high-level idea here, for which I am using AWS.

[125]

Scaling Microservices Chapter 6

Let's say you have created a set of Elastic Cloud Compute (EC2), or simply a virtual
machine instance, that is servicing a Microservice or set of Microservices. You can create an
Auto-scaling Group that helps us to set a minimum number of instances available for the
service, or group of services, that is deployed:

Services v Resource Groups v * Q kamalmeet ~ N. Virginia v Support ¥

Placement Groups

Key Pairs 4 © Launch Templates have arrived!

The EC2 Auto Scaling console now has full support for launch templates. Launch templates can be updated and versioned, and include support for
the latest features of Amazon EC2. Create an Auto Scaling group to get started or Learn more.

Network Interfaces

=/ LOAD BALANCING

Load Balancers

Welcome to Auto Scaling Additional Information
Target Groups
You can use Auto Scaling to manage Amazon EC2 capacity automatically, maintain the right number of instances for Getting Started Guide
=) AUTO SCALING your application, operate a healthy group of instances, and scale it according to your needs. Documentation
Launch Configurations Learn more
) All EC2 Resources
Auto Scaling Groups Create Auto Scaling group Forums
- Pricing
Note: To create your Auto Scaling groups in a different region, select your region from the navigation bar.
Contact Us
Run Command Benefits of Auto Scaling
State Manager Automated Provisioning Adjustable Capacity Launch Template Support

Configuration

Compliance ﬂ I ,
Automations ‘

Patch Compliance V ®

Patch Baselines

Y/

Keep your Auto Scaling group Maintain a fixed group size or Provision instances easily using
SYSTEMS MANAGER healthy and balanced, whether you adjust dynamically based on EC2 Launch Templates.
SHARED RESOURCES need one instance or 1,000. Amazon CloudWatch metrics. L
earn more

Next, all you need to do is set a rule for the creation of more instances. In short, we can
autoscale based on rules, and no human interaction is required:

Details Activity History Scaling Policies Instances Monitoring Notifications Tags Scheduled Actions Lifecycle Hooks

(¥

Create Scaling policy Cancel [0

Name: scalegroupt

Metric type: | Average CPU Utilization v

Target value: 75
Instances need: 300 seconds to warm up after scaling

Disable scale-in:

[126]

Scaling Microservices Chapter 6

Going serverless with microservices

If you're working in the software industry, you've probably already heard of serverless
services and design. Serverless architecture takes the Microservices-based approach to the
next level. With the use of serverless architecture, we are completely moving away from
managing any hardware. This also means that we do not need to worry about our
scalability needs as scaling up or down will be taken care of by the service provider.

Let's take a quick look at how can we create a serverless implementation of a

Microservice that can be used to sum up any two numbers. For the sake of this example, we
will use the AWS Lambda serverless implementation, but you can use equivalent services
in Microsoft Azure, Google Cloud, or other providers.

First, we will create a class file for the Lambda function's implementation:

package com.test;

import java.io.BufferedReader;
import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

import org.json.simple.JSONObject;
import org.json.simple.parser.JSONParser;
import org.json.simple.parser.ParseException;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestStreamHandler;

/**

* Class to implement simple hello world example

*

*/

public class LambdaMethodHandler implements RequestStreamHandler {

public void handleRequest (InputStream inputStream, OutputStream
outputStream, Context context) throws IOException {

BufferedReader reader = new BufferedReader (new
InputStreamReader (inputStream)) ;

JSONObject responsedson = new JSONObject ();

int numl =0;

int num2 = 0;

String responseCode = "200";

[127]

Scaling Microservices Chapter 6

try {
// First parse the request
JSONParser parser = new JSONParser () ;
JSONObject event = (JSONObject)parser.parse (reader);

if (event.get ("queryStringParameters") != null) {
JSONObject queryStringParameters =
(JSONObject) event.get ("queryStringParameters") ;

if (queryStringParameters.get ("numl") != null) {
String temp = (String)queryStringParameters.get ("numl");
numl = Integer.parselnt (temp);

}

if (queryStringParameters.get ("num2") != null) {
String temp = (String)qgqueryStringParameters.get ("num2");
num2 = Integer.parselnt (temp);

}

// Prepare the response. If name was provided use that else use
default.
String sum = "Sum is " + (numl+num?2);

JSONObject responseBody = new JSONObject ();
responseBody.put ("message", sum);

JSONObject headerJdson = new JSONObject () ;
responseJson.put ("isBase64Encoded", false);
responsedson.put ("statusCode", responseCode);
responseJdson.put ("headers", headerJson);
responsedson.put ("body", responseBody.toString());

} catch (ParseException parseException) {
responseJdson.put ("statusCode™, "400");
responsedson.put ("exception", parseException);

OutputStreamWriter writer = new OutputStreamWriter (outputStream,
"UTF-8") ;

writer.write (responsedson.toJSONString());

writer.close();

[128]

Scaling Microservices Chapter 6

Next, we will execute the build using the following command:

mvn clean package shade:shade

Go to Amazon Lambda. From there, select the AWS account, choose Lambda service |
Create function | Author from scratch, and provide the required values.

The following screenshot shows the screen from AWS Lambda:

Author from scratch o Blueprints Serverless Application Repository
Start with a simple "hello world" example. Choose a preconfigured template as a starting Find and deploy serverless apps published by
point for your Lambda function. developers, companies, and partners on AWS.
= Oy
= k3
Author from scratch info
Name
SumFunction
Runtime
Java 8 v
Role

Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Learn more about Lambda
execution roles.

Choose an existing role v

Existing role
You may use an existing role with this function. Note that the role must be assumable by Lambda and must have Cloudwatch Logs permissions

service-role/TestLambda v

[129]

Scaling Microservices

Chapter 6

Next, it will ask us to upload the . Jar file we created for our sum function:

SumFunction l Throttle H Qualifiers v H Actions ¥ ‘ Select a test event.. v Test m

AUU uIyyers>

Click on a trigger from the list below ’
to add it to your function.

API| Gateway

AWS loT

Alexa Skills Kit

Alexa Smart Home

CloudFront

CloudWatch Events

Function code info

Code entry type Runtime

Upload a .ZIP or JAR file v Java 8

Function package*

[® Upload LambdaExample-0.0.1-SNAPSHOT jar (26.8 kB)

For files larger than 10 MB, consider uploading via S3

“E SumFunction
@ Unsaved changes

Add triggers from the list on the left

‘ Amazon CloudWatch Logs
>
. Amazon DynamoDB

Resources the function's role has access to will be
shown here

Handler Info

example.Hello::handleRequest

Update the handler function, under the Handler section. For example, in this case,
provide com.test.LambdaMethodHandler: :handleRequest.

[130]

Scaling Microservices Chapter 6

After uploading . Jar, the last step is to configure the API gateway. The following
screenshot shows the configuration screen:

add it to your

function.
L1l API Gateway ‘ Amazon CloudWatch Logs
L P!
API Gateway @ Configuration required ~
AWS loT
Add triggers from the list on the left . Amazon DynamoDB

Alexa Skills Kit

Resources the function's role has access to will be shown here
Alexa Smart Home

Configure triggers

‘We'll set up an API Gateway endpoint with a proxy integration type (learn more about the input and output format). Any method (GET, POST, etc.) will trigger your integration. To set up

more advanced method mappings or subpath routes, visit the Amazon API Gateway console.

API

Pick an existing API, or create a new one.

Create a new API v

Security

Configure the security mechanism for your API endpoint.
Open v

Warning: Your APl endpoint will be publicly available and can be invoked by all users.

P Additional settings

Lambda will add the necessary permissions for Amazon API Gateway to invoke your Lambda function from this trigger. Learn more about the Lambda permissions model.

Cancel Add

[131]

Scaling Microservices Chapter 6

After filling in the details, we will be provided with the URL,which can be used to call the
Microservice we created.

The following screenshot shows the API URL provided by AWS:

SumFunction-API Enabled Delete

arn:aws:execute-api:us-east-1:305881070752:9 1nvlnpp85/*/*/SumFunction
P APl api-gateway/91nvinpp85/*/*/SumFunction APl endpoint: https://91nvinpp85.execute-api.us-east-

1.amazonaws.com/default/SumFunction APl name: SumFunction-API

In this example, AWS provided us the following URL to call our service:

https://91nvlinpp85.execute—api.us—east—1.amazonaws.com/default/SumFunct
ion?numl=1l&num2=4

The advantage of this approach is that we are not worried about where the service is
deployed, or how to scale up or down. The cloud service provider will automatically take
care of all our scaling needs. In this model, you only need to pay for the infrastructure you
are using; in other words, you will be charged based on the number of calls your
Microservice is receiving.

Though a serverless based approach looks very good, you need to be careful when selecting
a solution approach. One needs to look at the pros and cons of any solution being finalized.
The serverless approach might have some limitations from the service provider end, for
example, currently Amazon has a limitation that a service should run in a maximum of five
minutes.

[132]

Scaling Microservices Chapter 6

Scaling databases with Microservices

One of, Microservices rules is that every service is supposed to manage its own data, which
makes it easy to scale data. The idea is that managing and handling a smaller set of data is
easier than managing a monolithic database. For example, in our example of an e-
commerce application, say we have one product service that manages product-related
information, another for users, and so on. The first thing to note is that we are not trying to
keep all the data in one database machine. Each service can scale independently with its
own data.

How you manage your data will depend on the kind of application you are trying to build.
But it is worth spending some time understanding the scalability aspects of a database.
Traditionally, when designing for scalability, databases were the most difficult part of an
application to scale and used to usually be the bottleneck. I remember in the early days of
my career — when NoSQL (we will come to this soon) databases were not so popular, and
we used to rely more on Relational or SQL databases — scaling was a nightmare. It wasn't
impossible, but it was definitely tricky. Let me explain what I'm talking about.

Imagine we have this e-commerce application that has different important aspects, such as
products (details of products being sold), inventory, users, shopping cart, orders, and
transactions. Everything works fine until we have a few thousand products with a few
thousand users. Imagine the site starts getting more popular, which of course we want, and
the number of products and users is getting into the millions. We had our relations
database on 100 GB of storage, which is no longer sufficient. Ages ago, the obvious solution
was to move our database to a bigger machine, with more disk, memory, and
computational power. But, as already discussed, this approach has its limitations. A single
high-power machine is usually costlier than multiple low-power machines. And, more
importantly, there is a limit to increasing the power of a single machine; that is, you can
add only a limited amount of CPU or RAM to a system.

There are solutions to this problem; two of the most common are read replicas and
sharding.

Read replicas are a solution where we create additional database imagread-only only
copies. The replicas would only serve read requests. This solution usually helps in cases
where we expect more read operations than data manipulation operations. For example,
when people are browsing products on a website, they are actually not modifying any data.
The idea is to distribute these search requests across read-only database images.

[133]

Scaling Microservices Chapter 6

The following diagram shows the use of read replicas:

Masler

Application Write Request

Database
Server

~
e

—| Read Replica
1

ot

Read Request
Load ——
Balancer

Ty
Pr—

—| Read Replica
2

\-________________‘.-‘

Though read replicas help to speed up fetch queries, the design is not without its
drawbacks. For example, if we added a new product or an existing product goes out of
stock, the information first gets updated to the main database and then copied over to read
replicas. There is some lag in this operation; copying from the main database to replicas
will take some time. The delay can last anywhere from a few seconds to a few minutes,
based on the business logic applied. So while this data is getting updated, users are seeing
stale data. Imagine the frustration of users who saw a product, added it to their cart, but
when they were checking out they got a message that the product was out of stock.

[134]

Scaling Microservices Chapter 6

Another important and useful aspect that helps to scale a database is sharding. The idea
behind the concept of sharding is to logically divide data into multiple databases, where it
helps to keep the data in different machines. A simple example would be in that the case of
an e-commerce site, we would like to keep data from different countries in different
database instances. Another common way to divide data is through a primary key or some
other logical divider. For example, in a database that manages employee data, we might
want to keep data for employees whose surnames start from A-H in one database, I-P in
another, and Q-Z in another.

The following diagram shows how a sharded database appears:

Application Instance

Database reqguest based on sharding logic

Shard 1 Shard 2 Shard 3

Though sharding is another important and widely-used approach for scaling databases, it
comes with its own problems. The most common one is joining the tables. In a single
database instance, it would be easy to join multiple tables and generate reports, whereas if
data for one table is in one machine and another table is in the second machine, it is difficult
to join the two tables and fetch any meaningful data.

NoSQL databases have given us many options in managing database scalability. Before
going into detail, let me take a moment here to explain what NoSQL databases are, and
how they help us manage scalability. I believe NoSQL itself is a somewhat misunderstood
the concept. A lot of the time, I have heard of Not-SQL being referred to as something that
would simply solve all your scalability problems automatically.

[135]

Scaling Microservices Chapter 6

So, what is NoSQL? Literally, it would mean No-SQL. But I actually prefer the term non-
relational database. Let's look into this concept. NoSQL actually is an umbrella term, which
groups all the databases that do not keep data in traditional relational or table-based

formats.

There are four major types into which we can classify NoSQL databases, based on the
approach they use to store the data:

¢ Key-value based database: This is perhaps the simplest kind of database. We are

storing data in the form of key-value combinations. Think of a hashmap kind of
structure, where we are adding a unique identifier as a key and data objects as
values. It is very easy to scale, as long as we have unique keys. Examples of this
kind of database include Redis and Riak.

Column-based databases: We have been using row-based relational databases
for a long time. In row-based databases, we think of a record as a single object
that can be stored in a database's table row. For example, an employee record
that has the ID, name, department, salary, and joining date can be thought of as a
single record of a relational database:

ID Name Department [Salary Joining date
1211 Joe Finance 70000 29-07-2014
1212 David IT 77000 17-09-2016

Let's say most of our requirements are around grouping data based on different
aspects, such as, fetch how many employees are in IT, how many employees earn
more than $75,000?, or, find the average salary. Row-based storage is not very
effective in such cases.

In contrast, a database with column-based storage stores data based on the
columns. For example, think of all the salary data is present independently and
can be accessed for independent calculation without worrying about what extra
data like department, joining date etc is available. This makes the calculations and
access much easier based on a particular column.

Examples of databases using a column-based storage mechanism are Cassandra
and Vertica.

[136]

Scaling Microservices Chapter 6

¢ Document-based databases: This can be thought of as an extension to key-value-
based storage. In a key-value-based system, a value can be anything, but a
document-based database adds a restriction for proper formatting to be followed
for data being stored. The data that is stored as documents. Metadata is provided
for each document being stored, for better indexing and searching. Examples of
document-based storage databases are MongoDB and CouchDB.

e Graph-based databases: This kind of database is useful when our data records
are connected to other records in some way and we need a method to parse this
connectivity. A simple example is when we are storing information for people,
and we need to capture friendship information, such as P1 is a friend of P2, who
in turn is a friend of P4 and P6, so we can capture some relationship between P1,
P2, P4, P6, and so on. Examples of databases that use graph-based storage are
Neo4] and OrientDB.

A complete discussion on databases is outside the scope of this book, so we will quickly
jump back to our core topic, the scalability of Microservices and databases.

As we have already mentioned, with a Microservices-based architecture, it is recommended
that each Microservice be responsible for its own data. The first advantage we get with this
approach is that we are not dealing with a huge set of data in one go.

The second important advantage we get is that because each Microservice is independent, it
is easy to manage different types of data stores. For example, you might want to keep
product data in a document-based database, such as MongoDB, whereas you keep user
information in traditional relational databases, such as Oracle RDBMS or MySQL.

Command Query Responsibility Segregation (CQRS): We are used to looking at any
entity as having four core operations, known as CRUD operations. These are Create, Read,
Update, and Delete. Normally, we would have a single service, model, and database
managing all these operations, but sometimes it makes sense to segregate Command
(Create, Update, and Delete) and Query (Read) operations. This approach can have many
advantages, such as we can manage the Read or Query operation in multiple ways; for
example, at some places we need only a subset of data in list form, and at other places we
might need a more detailed version.

The approach also has additional advantages as we are segregating the read operations
from the update operations. We can use Read replicas of the database to achieve better
performance. CQRS also helps in segregating Ul views. An update to the data can trigger
an event to update the view.

Though CQRS is helpful in separating Read and Update concerns, and hence supports the
Single Responsibility principle, we need to be careful in implementing this as we are
adding complexity to the system.

[137]

Scaling Microservices Chapter 6

If the entity is simple and does not need too many customized operations, it might be a
good idea to stick with a simple CRUD operation implementation.

Scaling Microservices with caching

We have talked about various aspects that help to scale Microservices-based applications.
But our discussion is not complete without touching upon Caching. Caching is an
important aspect that helps to manage load on the services, and hence helps to scale the
application.

Caching can be done at different levels, most importantly on the client side and the server
side. To understand how caching will help us to scale our applications easily, let's look at

an example. Let's say we have a simple service that returns data for an employee ID. That
is, the service takes an employee ID and returns employee data. For the sake of simplicity,
let's assume this is a stateless Microservice.

The following diagram shows the scaling of stateless Microservices:

] I

client 1
Server 1

®

_/——I- Load Balancer —

client 2 Server 2

—_—

Server 3

client 3

[138]

Scaling Microservices Chapter 6

Let's say we have a multiple clients that are making a call to our employee data service. Say
we have getEmployeeData service, which takes an employee ID. This service is called
using API /Employee/{ID}.

Now, imagine there are multiple clients making calls to the service. In this context, we can
cache at the client level or the server level:

¢ Client-side cache: The client will maintain their own cache. For this example,
let's say the client is maintaining a simple hashtable, with a key-value pair, where
the key is the employee ID and the value is the employee data. Whenever the
client needs data for an employee, it will first check its internal cache, and if the
employee ID is found in the client-side cache, it would not need to make a call to
the server, saving a round trip to the server. The results will be lightning fast in
this case, as the client is serving the results internally. As with any cache, we will
need to take care of certain aspects, such as an expiring cache and limiting the
number of records that can be cached. The number of records that can be cached
is critical in client-side caching as we are dependent on the user's machine. If the
caller to the employee service is another service, we can have a greater number of
records in the cache, depending on who is calling and the business requirements.
Similarly, we need to make sure to expire cache records. Again, this is dependent
on our business needs, such as how often we expect our employee records to be
updated.

¢ Server-side cache: Caching is done at the service level rather than the caller level.
The Microservice will maintain a cache on its own. There are many libraries that
provide caching off the shelf, such as Jcache or Memcached. You can also use
third-party caching, such as a Redis cache, or build a simple caching mechanism
within the code, as per your application's need. The core idea is that we need not
do all the work again while refetching some data. For example, when we ask for
an employee record against an employee ID, we might be fetching data from one
or more databases and doing several calculations. The first time, we will do all
the tasks, but then store the record in cache. Next time, when the data is asked for
against the same employee id, we will just send back the record in the cache.
Again, we need to consider aspects such as expiration and cache size, as we
discussed in the case of a client-side cache.

e Proxy caching: Proxy caching is another technique that is gaining popularity. The
idea is not to directly hit the main application server. The request first goes to a
Proxy Server, and if the required data or artifact is available on the Proxy Server,
we can avoid a call to the main server. The Proxy Server is usually close to the
client, mostly in the same geographical area, so it is faster to access. Moreover, it
helps us reduce the load on the main server. The following diagram shows how a
proxy cache works:

[139]

Scaling Microservices Chapter 6

I —

'; -
AQ’ Proxy Main
Illl==’_4____ e S
A— Server Server

The proxy cache is more popular with static content, such as images, scripts, and HTML.
We will need to apply expiration criteria for the contents. Mostly, a versioning system is
used to manage various updates to content, such as scripts and images, to make sure that
the changes get reflected immediately.

e Distributed caching: As the name suggests, distributed caching is a mechanism
for maintaining a cache in more than one place. There are multiple ways to
implement a distributed cache. In its simplest form, we just keep a copy of the
cache in multiple places, which helps us to divide the load among multiple
sources. This approach is useful when we are expecting too much load and the
amount of data to be cached is not too great. The other example of distributed
caching is when we have lots of data to cache, and we cannot create a single
cache. We would divide the data to be cached into multiple caching servers. The
division can be based on application requirements. In some cases, we can have
the cache distributed based on geography. For example, users in India are being
served from a different cache than users in the US. Another simple piece of logic
for cache distribution can be based on data. For example, we cache employee
details based on employee IDs on different machines, based on the first letters of
their first names such as A to F on machine 1, G to M on machine 2, and N to Z
on machine 3. The method can be devised based on application requirements, but
the core idea is to cache data on multiple distributed machines for easy access.

[140]

Scaling Microservices Chapter 6

Summary

In this chapter, we discussed scalability and why Microservices-based applications are a
natural fit for scaling. We looked at various aspects of scalability. We talked about why
stateless services are easier to scale than stateful services. Also, we discussed scaling with
respect to databases, and highlighted why NoSQL databases are easier to scale. Finally, we
looked at the importance of caching when scaling our application. Overall, this chapter
should have given you a good idea of how to scale an application that is composed of
Microservices.

In the next chapter, we will talk about securing our Microservices.

[141]

Securing Microservices

Due to the nature of the internet, applications are publicly served and are being accessed by
a large number of users; therefore, security requirements are vital and they need to be
implemented in the very early stages of the project development process — these practices
should also be followed in a microservices ecosystem. In this chapter, we will show you
how to secure your Microservices, by demonstrating with both Java-EE- and Spring-based
implementations.

We will cover the following topics in this chapter:

¢ Securing Microservices with JSON Web Token (JWT)
e Java Security API - JSR 375

¢ Spring Security with Spring-Boot-based Microservices
e HTTPS - the secured protocol

Securing Microservices with JWT

In an architecture based on Microservices, there will definitely be a number of services that
will be communicating with each other. To establish a secure medium of communication
between those channels, JWT is a common and well-adopted practice to apply.

Anatomy of a JWT

JWT is an open standard (RFC 7519: https://tools.ietf.org/html/rfc7519) and it is
represented as a JSON object that is shared safely between two parties. A JWT is a compact
set of information, meaning that it's small in size. It consists of three parts: a header, a
payload, and a signature. These parts get encoded and then concatenated with a dot

as header.payload.signature to form the token. Since tokens are small in size, they can
be either sent as an HTTP POST parameter or can be added as an HTTP header field

itself. Small sizing will also enable a faster mode of communication.

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

Securing Microservices Chapter 7

Let's continue with the anatomy of JWT by detailing its aforementioned subparts: header,
payload, and signature. The header defines the type and the hashing algorithm for the
signature. Here is an example:

{
"typ" . n JWT n ,
"alg": "HS256"
}

In the example, the type is defined as JWT and the hashing algorithm is set to HMAC-
SHA256. It could alternatively be set as Rsa, where a public/private key pair would be used
to create the signature. The payload is the actual content, and it will usually be a bunch of
claims that point to the information that is being transmitted. Here is an example of the
payload that contains a user identification value:

{
"userId": "6562ce85-7fce-4f02-a68c-17£37609d2aa"

}

A standard set of JWT claims are provided by default; they are not mandatory but their
names are reserved, as follows:

¢ aud: The audience of the token

e exp: The expiration date of the token

e iss: The issuer of the token

e sub: The subject of the token

¢ nbf: Defines the time on which the JWT will start to be accepted for processing
e iat: The time the token was issued

e jti: The unique identifier for the JWT to prevent replay attacks

The pseudo code snippet given here demonstrates how a signature gets created, with the
encoding first and then the hashing;:

data = baseb64urlEncode (header) + “.” + base64urlEncode (payload)
signature = hash(data, "secret");

The hashing algorithm uses a key, which is set as secret in our case, to compute the
signature.

It's important to understand that the data with JWT is encoded and then
signed, which confirms the authenticity of the data. But this does not
secure the data, since encryption didn't take place in the given example
snippet.

[143]

Securing Microservices Chapter 7

How does JWT work for Authentication?

When a user logs into the system by providing their credentials, a JWT will be created and it
will be returned to the user. This token should be saved locally on the browser and should
be sent back to the server with each request that tries to access a protected resource. JWT is
usually transferred in an Authorization HTTP header with the Bearer schema:

Authorization: Bearer <token>

This approach enables a stateless authentication mechanism where the user state is never
stored on the server's memory. The bearer tokens should be protected in storage and
transport in order to prevent any misuse. An important advantage we get with this
approach is implementing scalability. We have already covered the JWT in the context of
scalable Microservices in Chapter 6, Scaling Microservices, with examples.

Java Security APl - JSR 375

Until recently, there were no standards for implementing Java Security. Don't get me
wrong, there were many libraries and frameworks available, but a formal standard
specification was missing. Java Specification Request (JSR) 375 deals with the problems
caused by a lack of standards. In this section, we will discuss JSR 375 in detail and we will
also take a look at its reference implementation Soteria. To get started with Soteria, all you
need to do is add the following dependencies in your Maven:

<dependency>
<groupld>org.glassfish.soteria</groupId><artifactId>javax.security.enterpri
se</artifactId><version>1.0</version>

</dependency>

Check out https://mvnrepository.com/artifact/org.glassfish.soteria/javax.
security.enterprise for the latest Soteria implementations.

JSR 375 is focused on the following core aspects:

e Providing an API for authentication through the
interface HTTPAuthenticationMechanism

¢ Anidentity store API through IdentityStore
e A security context API through SecurityContext

We will cover these three APIs in subsequent subsections.

[144]

https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise
https://mvnrepository.com/artifact/org.glassfish.soteria/javax.security.enterprise

Securing Microservices Chapter 7

The HTTPAuthenticationMechanism API

As a part of the Java Security API, the container must provide
HttpAuthenticationMechanismimplementations for three authentication mechanisms.
The three implementations are:

e Basic HTTP authentication
e Form-based authentication

® Custom—form authentication

Each of these implementations can be triggered by the use of the following annotations:

® @BasicAuthenticationMechanismbDefinition
® @QFormAuthenticationMechanismDefinition

® QCustomFormAuthenticationMechanismDefinition

When we use any of these annotations in the code, the container will instantiate an instance
of the associated implementation.

Let's take a look at these three mechanisms, one by one.

Basic HTTP Authentication

Usage of @BasicAuthenticationMechanismDefinition informs the container that code
would the be using BasicHTTPAuthentication mechanism. This has one optional
parameter, realmName, which contains the name of the realm that is sent along with www—
Authentication Header, as follows:

@BasicAuthenticationMechanismbDefinition (
realmName = "userRealm")
@ApplicationScoped
public class AppConfig{

}

When the code given here is used, if the container receives an unauthenticated request, it
will inform the client to send the authentication details with WiWiWw-Authentication
header. The client then needs to provide authentication details for the successful execution
of the request.

[145]

Securing Microservices Chapter 7

Form-based Authentication

@FormAuthenticationMechanismDefinition lets the container know that the web
application is using form-based authentication. The annotation has one mandatory
parameter, loginToContinue, which in turn takes the annotation details

of @LoginToContinue. @LoginToContinue can provide details of login and error pages.
The client would be sent to a login or error page based on the state of authentication, as
follows:

@FormAuthenticationMechanismDefinition (
loginToContinue = (@LoginToContinue (
loginPage = "/login.html",
errorPage = "/login-error.html"))
@ApplicationScoped
public class AppConfig{

}

Custom form-based Authentication

Like form-based authentication, @CustomFormAuthenticationMechanismDefinition
provides flexibility to add a custom way of authentication using J2EE technologies, such as
JSF, as follows:

@CustomFormAuthenticationMechanismDefinition (
loginToContinue = @LoginToContinue (loginPage = "/login.do"))
@ApplicationScoped

public class AppConfig

{

}

We can see that this is similar to the form-based authentication, the only difference is we
are specifying a custom server link that is responsible for providing form details and the
underlying authentication mechanism.

[146]

Securing Microservices Chapter 7

Identity Store

Identity Store is basically a data store that keeps information such as usernames, group
memberships, and credentials. The Java Security API provides IdentityStore abstraction
in the form of IdentityStore. IdentityStore can work well with
HTTPAuthenticationMechanism, but you are free to use any other authentication
mechanism. The IdentityStoreHandler API provided with IdentityStore manages
instances of IdenityStore. The Java Security API comes with a default implementation of
IdentityStoreHandler. The default implementation can authenticate against multiple
instances of IdentityStore and is sufficient in most cases, though one can implement a
custom IdentityStoreHandler. IdentityStoreHandler would iterate over stores and
return CredentialvValidationResult, which in its simplest form would return a status
value as one of three states: NOT_VALIDATED, INVALID, or VALID. If a VALID state is
returned by IdentityStore, no more stores are checked and the result is returned. If
INVALID is returned by IdentityStore, further stores are checked. If all the states are
INVALID, it is considered the final state, otherwise NOT_VALIDATED is returned.

Built-in and Custom IdentityStores

There are two major built-in identity stores available, for RDBMS and LDAP.
The @DataBaseIdentityStoreDefinition annotation is used to configure an RDBMS-
based Identity Store, as follows:

@DatabaseIdentityStoreDefinition (dataSourceLookup =
"jndiPathForDataStore",callerQuery = "Query to fetch user
details",groupsQuery = "Query to fetch group details",priority=30)

Similar to database-based identity stores, we can use a built-in
annotation, @LdapIdentityStoreDefinition, for an LDAP-based Identity Store:

@LdapIdentityStoreDefinition (url = "ldap://localhost:10389",callerBaseDn =
"ou=caller,dc=example,dc=com",groupSearchBase =
"ou=group, dc=example, dc=com")

[147]

Securing Microservices Chapter 7

In most cases, built-in stores are sufficient for IdentityStore, but if required, one can
create a custom implementation. The IdentityStore interface provides four methods, all
of which have default implementations. One can override one or all of the methods based
on requirements. Here are the four methods:

e default CredentialValidationResult wvalidate (Credential
credential): This is a validate method, which as the name suggests, is
responsible for validating the given credentials and returns
CredentialValidationResult.

e default Set<String> getCallerGroups (CredentialValidationResult
validationResult):The method getCallerGroups, is responsible for
returning set a of groups which the user is associated with.

e default int priority ():The priority method, only comes into play if more
than one IdentityStore is available; the one with the lowest value will be
given the highest priority.

e default Set<ValidationType> validationTypes (): Here,
validationTypes returns a set of ValidationType being implemented by the
current setup.

The security context API

The security context provides access to security-related information about the current user.
SecurityContext consists of five methods, as follows:

e getCallerPrincipal: If the current user is authenticated, this method returns
the container-specific principal to the user.

® getPrincipalsByType: Returns all the principals of the given type.

e isCallerInRole: Returns true if the current user is part of the role sent as a
parameter.

® hasAccessToWebResource: Determines whether the current user has access to
the web resource passed as a parameter.

e authenticate: Triggers the authentication method set up for the application.

[148]

Securing Microservices Chapter 7

Spring Security with Spring-Boot-based
Microservices

Spring Security is an authentication and authorization framework for Java-EE-based
applications. It provides a comprehensive set of features that handle your security
requirements and also offers extension points in order to apply application-specific
customizations easily. We will use Spring Boot to create Spring-based applications, and we
will use the starter kit for Spring Security that Spring Boot provides.

At the time of writing, the current version of Spring Boot is
2.0.0.RELEASE.

Spring Boot simplifies the process of applying security measures to the application by
simply adding its dependency to the Maven POM file:

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
<version>2.0.0.RELEASE</version>

</dependency>

Version 2.0.0.RELEASE of spring-boot-starter—security defines
Spring security version 5.0.3.RELEASE as a transitive dependency under
the hood.

When the spring-boot-starter-security artifact is added to the classpath, the entire
application is protected with HTTP Basic Authentication.

HTTP Basic Authentication is one of the most widely used authentication
mechanisms; it secures web resources by requesting the username and
password sent by a client. It uses standard fields in the HTTP header and
doesn't require any cookies or session identifiers. With HTTP Basic
Authentication, the username and password are passed as Base64-
encoded, and due to Base64 being a reversible encoding mechanism, it's
important to mention that the HTTP Basic Authentication scheme is not
secure and HTTPS/TLS should be used in conjunction with it to secure the
transport layer.

[149]

Securing Microservices Chapter 7

To secure a Spring-Boot-based REST service implementation, we are going to use the same
implementation that we had in chapter 2, Creating Your First Microservice and we will just
add the spring-boot-starter-security dependency. The
WeatherServiceApplication class contains the following executable main () method.
The example contains the temperature Microservice implemented in chapter 2, Creating
Your First Microservice.

@SpringBootApplication
public class WeatherServiceApplication {
public static void main(String[] args) {
SpringApplication.run (WeatherServiceApplication.class);
}
}

After executing the method on WeatherServiceApplication and requesting the
http://localhost:8080/temperature REST endpoint, we'll come across the following
login page:

e e ‘ Log in to localhost XJ / th 3 | »

Log in to localhost:8080
Your password will be sent unencrypted.

I|User Name

| Password

[Remember this password

Cancel

[150]

Securing Microservices Chapter 7

By accessing a secured endpoint, we will be prompted with a login page that asks us to
input our credentials. The default User Name for this login will be user. The Password
will be printed on the console while executing the main () method as:

Using default security password: 7b559a60-1673-4308-8dd4-c441732b0c70

It's a password that was generated randomly while the application was starting so it should
change at each execution of the method. It's also possible to request the endpoint with curl
by providing the credentials, as follows:

curl -u user:7b559a60-1673-4308-8dd4-c441732b0c70
http://localhost:8080/temperature

Having dynamically generated a password for your application will not necessarily get it
into a production-ready state, so you set the password could by providing the username
and password through a configuration file. Spring Boot has a key-value file template,
application.properties, to externalize the configuration and it should reside under the
root folder of the classpath by default. In our example, its content will define the default
username and its corresponding password as follows:

spring.security.user.name=user
spring.security.user.password=secret

[151]

Securing Microservices Chapter 7

After creating this properties file under the src/main/resources folder of our
application, we can try to request the endpoint with Postman (https://www.getpostman.
com) this time. To provide the credentials, we need to set the authentication type as Basic
Auth and provide the Username and Password defined in the properties file. The final task
should be to update the request before clicking the Update Request button:

[JOX) Postman

Runner Import D Builder

No Environment
[J http://localhost:8080/ @

GET http://localhost:8080/temperature Params Save

Authorization @ (1) Cookies Code

Type Basic Auth Clear

The authorization header will be generated and
Username user added as a custom header

Password secret Save helper data to request

Show Password
Body 1) 1 Status: 401 Unauthorized Time: 59 ms Size: 540 B

Pretty JSON =

[152]

https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com

Securing Microservices Chapter 7

As you can see on the Headers tab in the following image, the Authorization header is set
to Basic type along with a Base64-encoded value:

[JoX J Postman

Runner Import D Builder

No Environment
[J http://localhost:8080/ @

GET http://localhost:8080/temperature Params Save

[) Headers (1) Cookies Code
Key Value Description Bulk Edit Presets v

Authorization Basic dXNlcjpzZWNyZXQ=
Body) (10) Status: 200 0K Time: 30 ms Size: 426 B

Pretty JSON =

1-4

2 "temperature": 35,

5l "temperatureScale": "CELSIUS"

4 [

If we decode that encoded value, we will see that the Username and Password are
concatenated with :, as follows:

user:secret

In a real-world scenario, you will probably want to match your user's credentials across to a
database or an LDAP realm, instead of a configuration file. To tighten your security
measures, we will look at an example for an In-memory user realm, and then enhance it
with a database-based realm.

[153]

Securing Microservices Chapter 7

Configuring Spring Security with the In-memory
realm

In order to have the user's credentials defined In-memory, first we need to provide a
custom Spring Security configuration:

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

@Override
protected void configure (AuthenticationManagerBuilder auth) throws
Exception {
auth.inMemoryAuthentication ()

.passwordEncoder (passwordEncoder ())
.withUser ("userl")
.password (passwordEncoder () .encode ("secretl"))
.roles ("USER") ;

@Bean
public PasswordEncoder passwordEncoder () {
return new BCryptPasswordEncoder () ;

@Override

protected void configure (HttpSecurity http) throws Exception {
http.authorizeRequests () .anyRequest () . fullyAuthenticated();
http.httpBasic () ;
http.csrf () .disable();

[154]

Securing Microservices Chapter 7

The SecurityConfig class extends WebSecurityConfigurerAdapter, which is a base
class for creating the WebSecurityConfigurer instance, and it will allow us to perform
the customization by overriding its methods. The first configure () method allows us to
configure an authentication manager by passing AuthenticationManagerBuilder asa
parameter. That will help us build an in-memory authentication, LDAP authentication, or a
JDBC-based authentication. We are also providing a custom password encoder that is
created by the passwordEncoder () method. With Spring Security 5, we need to set the
password encoder, thus BCryptPasswordEncoder is used for demonstration purposes.
The second configure () method configures an instance of Ht tpSecurity by providing
an HTTP authentication mechanism. The @EnableWebSecurity annotation is a marker
annotation added onto the securityConfig configuration class to execute the customized
configuration methods.

So, we will have user1 defined in our In-memory realm and we can send requests to our
protected Temperature Microservice, as follows:

curl -u userl:secretl http://localhost:8080/temperature

In the next section, we will integrate a database realm in order to store the credentials of the
user in a persistence mechanism.

Configuring Spring Security with the database
realm

To make our application product-ready, we need to enhance the storage of the
configurations. One of the most common ways to store user credentials is to use a database
to handle user information, roles, and their mappings between each other. In order to have
our database configuration ready, we first need to add the spring-boot-starter-data-
jpa dependency, which provides a set of convenient dependency descriptors that help us
use JPA for database connectivity:

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
<version>2.0.0.RELEASE</version>

</dependency>

spring-boot-starter-data-jpa uses the Hibernate object/relational
mapping tool (http://hibernate.org/orm) under the hood.

[155]

http://hibernate.org/orm
http://hibernate.org/orm
http://hibernate.org/orm
http://hibernate.org/orm
http://hibernate.org/orm
http://hibernate.org/orm
http://hibernate.org/orm
http://hibernate.org/orm
http://hibernate.org/orm

Securing Microservices Chapter 7

We will use the H2 database in our example for its simplicity and its In-memory database
support. You can use your favorite database instead by simply changing the Datasource
configuration. Here is the Maven dependency for H2:

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<version>1.4.197</version>
</dependency>

First, we need to define the JPA entities for the User and Role classes, as follows:

@Entity

@Table (name = "app_user")

public class User {
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
@Column (name = "id")

private Long id;

@Column (name = "username")
private String username;

@Column (name = "password")
private String password;

@Column (name = "name")
private String name;
@ManyToMany (fetch = FetchType.EAGER)

@JoinTable (name = "user_role", joinColumns =
@JoinColumn (name = "user_id",
referencedColumnName = "id"),
inverseJoinColumns =
@JoinColumn (name = "role_id",
referencedColumnName = "id"))

private List<Role> roles;

// getters & setters
}

@Entity

@Table (name="app_role")

public class Role {
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
private Long id;

@Column (name="role_name")

[156]

Securing Microservices Chapter 7

private String roleName;

// getters & setters

HTTPS - The Secured Protocol

Before closing this chapter, we would like to touch upon one of the simplest tools we have
to secure communication between client and server, or between different Microservices
while communicating through REST. The tool we are referring to here is the secured
HTTPS protocol. It is almost always recommended to use HTTPS for production-level
REST communications where data is of importance. Let's take a look at what HTTPS is and
how it helps.

HTTP stands for Hypertext Transfer Protocol, over which most communication happens
on the internet. HTTPS can be thought of as HTTP + Security, or HTTP over SSL (Secure
Socket Layer) or TLS (Transport Layer Security, the successor of SSL).

The oldest and most trustworthy form of data security is encryption, which can be
implemented in two ways: a symmetric manner or an asymmetric manner. Asymmetric
encryption is implemented using a single key, for both the encryption and decryption
processes. To implement asymmetric encryption, we use a set of keys, namely a public and
a private key. The data encrypted through one key can be decrypted through the other.
Asymmetric communication is slightly slower due to the additional complexity.

Another important aspect we need to understand is certificates. There are various
certification authorities that provide certificates for domains. Whenever you visit an HTTPS
link, you see a small lock icon on the left side of the address bar; if you click on this icon,
you will see certificate details, which include the authenticity of the website and the
authority that is providing this certificate. If you click a spam link by accident, validating
the certificate might help you save yourself.

So how can https make sure two services communicate in a secured manner? Let's take a
step-by-step look at what happens behind the scenes when we use HTTPS-supported
URLs:

1. When a call is made through the HTTPS URL, the server treats this as a special
request that needs security.

2. The server returns a certificate to the calling service or browser, along with a
public key. Note that the server will never share a private key.

[157]

Securing Microservices Chapter 7

3. The calling service or browser authenticates the certificate and makes sure the
communication is being done with the correct server.

4. The calling service or browser generates a symmetric key, encrypts it using the
public key it received from the server, and sends the encrypted key to the server.

5. The server receives the encrypted symmetric key and decrypts it using its private
key.

6. Both the client and server have a symmetric key that was transferred securely.
Now both parties use this symmetric key for the rest of the communication.

We can see the usage of HTTPS adds a very strong layer of security for communications
happening over the internet.

Summary

In this chapter, we covered the basics of security requirements while we are building an
application with a Microservices-based design. We started with a JWT-based security
implementation, and then discussed JSR 375 (the Java Security API). Following that, we
talked about Spring Security and its implementation with respect to Spring-Boot-based
Microservices. Finally, we discussed the usage of HTTPS when communicating over the
internet.

In the next chapter, we will focus on monitoring Microservices-based applications.

[158]

Monitoring Microservices

So far, we have discussed the creation, scalability, and security of Microservices. In this
chapter, we will focus on the monitoring of Microservices.

Monitoring Microservices is important, as you would definitely like to keep tabs on the
health of services to make sure all requests are served without any errors and in a timely
manner. Monitoring an application that uses Microservices is different from monitoring a
monolithic application where everything is deployed on a single instance.

In this chapter, we will discuss monitoring Microservices, the challenges that can be
expected, and how to overcome these challenges. We will be using certain tools and see
examples to showcase the implementation of monitoring in an application built using
Microservices, but, the user is free to use any tools or methods they like. The idea of this
chapter is to explain the importance of monitoring Microservices, the core principles, and
the challenges involved.

The following topics will be covered in this chapter:

¢ What is monitoring and why is it required?

Understanding the core concepts and terms

Taking a closer look using an example

Tools for monitoring Microservices

What is monitoring and why is it required?

Whenever we create an application, it goes through multiple phases, such as requirement
analysis, design, development, and finally deployment. The real test of an application starts
after deployment. Think of a scenario where a user of an application comes to a
development team complaining that they are not able to access the application, or some of
the pages are throwing an error or behaving in an unexpected manner.

Monitoring Microservices Chapter 8

Where should we start looking for the problem? Is there a problem with the current user
account or with the application itself? Is some code not behaving as it should?

Monitoring the application comes to the rescue. It not only helps us to find issues in cases
such as those just mentioned, but also helps us to proactively understand the problems in
our application, such as whether a service is down or taking too much time to respond.

Monitoring Microservices

Let's look at a scenario where we are dealing with a very simple monolithic application
deployed on a single server:

]

Laptop Device

Server

We can see all the user requests through the browser or other clients will directly hit our
application deployed on the server. So when an issue or latency is reported, we know
where to look for the problem: you log in to the server, and look at logs and server health.
We know where to add all the monitoring and profiling. Well, in the real world, a
deployment will be more complex as it will have databases, log files, clusters, load
balancers, and so on, but, it is still possible to monitor applications with a monolithic
architecture.

Now, let's think about a simple Microservices-based application. An application that
implements Microservices will often have multiple Microservices, each one focused on one
core solution and interacting with other services to pass on or fetch information.

[160]

Monitoring Microservices Chapter 8

Take a look at the following diagram to get an idea of the complexity that Microservices can

add to the system:

User

User

Box 1 Box 3 Box 5

4

Service 2 Service 1

Service 1

Service 3

Box 2 Box 4 Box 6

Service 1
Service 3
Service 3

Service 2

In the preceding diagram, we are trying to show instances of three services deployed on six
boxes. Again, to keep things simple, we won't get into Database, Queue, or scalability
details. Think of a scenario where you get a call from a user saying that they are not able to
access a page or are facing some latency. We don't even know where to start, which box to
look at, or which service is down or slow to respond.

Consider the fact that the preceding design is simple compared to a real-world scenario
where there might be tens of services with auto-scaling, queues, and messaging, and where
services will be spawning up or down as required. Think of the mess we will be dealing
with.

These complexities make it very important that we add, monitor, and profile carefully
when dealing with Microservices. Now, let's deal with the actual implementation of
monitoring in Microservices.

[161]

Monitoring Microservices Chapter 8

Understanding core concepts and terms

Before getting into an example to see how monitoring is done, let's discuss a few core
concepts and terms that will help us understand the monitoring and profiling of
Microservices:

¢ Monitoring is an umbrella term that is used to talk about various aspects, such as
general health checks of services, latency, logging, resource usage, and checking
the well-being of the services and applications.

e Profiling is about observing delays and understanding how much time each
service is taking. It will help us to understand which services are taking time and
pinpoint the problem areas.

¢ Tracing is more about tracking the flow of control when a request is fired, more
or less similar to profiling but with some different details. Distributed tracing
extends the concept to a distributed system that has multiple Microservices
deployed independently. For example, when the user hits a URL, which APl is
getting executed, which might call another service, and so on. We would like to
know how the flow is moving and about the health of each service. Is there a
service that is not responding or is slow? Distributed tracing will help us with
this.

¢ Logging can be anything; we just log all the events with parameter details. We
can also log critical areas of the service or application, which can later help us
understand what happened behind the scenes. Log monitoring can be done
manually, or be automated through the use of log monitoring tools.

e Metrics are another important way to look at the health of your system. These
can be produced using logs or tracing data that show how much time various
services are taking, to see whether something needs special attention. Different
types of metrics can be generated on an as per-need basis and provide
information about the general health of the system at a glance.

[162]

Monitoring Microservices Chapter 8

¢ Health checks are automated scripts or tools that keep tabs on the health of the
services. This includes the health of hardware infrastructure as well as the
availability of different services.

¢ Alerting is the system that helps trigger an action when an unwanted or error
condition is observed in the system. Email or messaging alerts can be sent based
on need, and an escalation policy can be set up as per the system's requirements.

If you are using a third-party cloud service provider, such as Amazon Web Services
(AWS), Google Cloud, or Microsoft Azure, you might be getting some of the services as
part of these package to monitor Microservices.

Taking a closer look using an example

The best way to understand monitoring is through an example. We will take a very simple
scenario where we have three services; these services will be calling each other sequentially:

O

J

Servicel Service2 Service3

User

We will try to look at various problem scenarios and monitor them with a tool called
Zipkin.

[163]

Monitoring Microservices Chapter 8

Creating the example services

Let's create our first service. We will create the service using Spring initializer (http://
start.spring.io/).

The following screenshot shows the start.spring.io interface where we are creating the

service:

C O Not Secure = start.spring.io

SPRING INITIALIZR

Generate @ vawenroiec: With 22 ¢ and Spring Boot 203 :

Project Metadata Dependencies

Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
com.serviceone Yeb, Security, JPA, Act or, Devtools...

Artifact Selected Dependencies

Generate Project % + «

Don't know what to look for? Want more options? Switch to the full version

We can import this service to the IDE as a Maven project. We can see a Spring Boot

application is created.

We have used Actuator and Devtools dependencies for generating. Here are some sample
dependencies you might see in pom. xm1:

<dependencies>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-web</artifactId>
</dependency>

<dependency>
<groupld>org.springframework.boot</groupId>

<artifactId>spring-boot-devtools</artifactId>

[164]

http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/

Monitoring Microservices Chapter 8

<scope>runtime</scope>
</dependency>

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

The preceding code gives us an autogenerated class, as follows:

@SpringBootApplication
public class ServiceoneApplication
{
public static void main(String[] args)
{
SpringApplication.run(ServiceoneApplication.class, args);
}
}

Next, we create a simple controller:

@RestController

public class HelloController
{

@GetMapping ("/sayhello")
public String sayHello()

{

return ("Hello");
}
}

We can run the application and access the service at http://localhost:8080/sayhello.

Now, we will add a couple more services. We will use the same approach as before to
create a Spring Boot application. We will create two additional projects to implement the
hello2 and hello3 Microservices.

Starting from service 3, we will make a simple service returning a string for the sake of
this example, as follows:

@RestController
public class HelloController

{
@GetMapping ("/sayhello3")
public String sayHello()

[165]

Monitoring Microservices Chapter 8

{
return ("Hello from service 3.");
}
t

service 2 will call service 3 and add its own input along with that, as follows:

@RestController
public class HelloController
{
private final RestTemplate restTemplate;
public HelloController (RestTemplate restTemplate)
{
this.restTemplate = restTemplate;
}
@GetMapping ("/sayhello2")
public String sayHello()
{
String responseFromService =
restTemplate.getForObject ("http://localhost:8082/sayhello3",
String.class);
return ("Hello from service 2. " + responseFromService);
}
}

Similarly, our main service will call service 2:

@RestController
public class HelloController
{
private final RestTemplate restTemplate;
public HelloController (RestTemplate restTemplate)
{
this.restTemplate = restTemplate;
}
@GetMapping ("/sayhello")
public String sayHello ()
{
String responseFromService =
restTemplate.getForObject ("http://localhost:8081/sayhello2",
String.class);
return ("Hello from service 1. " + responseFromService);
}
}

Now, let's try calling our service:

curl http://localhost:8080/sayhello

[166]

Monitoring Microservices Chapter 8

This will return the Hello from service 1. Hello from service 2. Hello from
service 3 string.

If one of the services is responding slowly, or has stopped responding, we will get a
delayed response or no response at all. For example, let's stop service 3 and try calling
the main service.

We

receive {"timestamp":"2018-07-22T12:47:54.792+0000", "status":500, "error":
"Internal Server Error","message":"500 null","path":"/sayhello"} asa
response.

Looking at this response, we cannot make any sense out of it. This only says that the service
responded with an error, but if the main service or any other service,is failing we cannot
make any sense out of the response.

Similarly, if one of the services is responding slowly, we will not know what is causing the
delay. Let's modify the service:

@GetMapping ("/sayhello3")
public String sayHello ()
{

try

{

Thread.sleep (2000);

}

catch (InterruptedException e)

{

e.printStackTrace();

}

return ("Hello from service 3.");

}

We can see the main service has been responding with a delay of two seconds, but we do
not know why.

We have seen the problems that can occur with Microservices and we will be clueless
without proper monitoring implemented. There are multiple ways to implement
monitoring and tracing. We can add manual code snippets as logs and monitor logs later,
we can use aspect-oriented programming (AOP) to generate logs, or we can use any of the
tools available to implement tracing and monitoring.

[167]

Monitoring Microservices Chapter 8

There are a lot of tools available to implement the monitoring of services; for this chapter,
we will focus more on the approach and the reader can use the tool of their choice. We will
try to understand how to implement monitoring using certain tools. Let's take a look at
Zipkin to implement monitoring and tracing.

Monitoring Microservices with Zipkin

One of the most important aspects of monitoring while dealing with Microservices is the
implementation of tracing or distributed tracing. We need to understand the availability of
various services, check whether a service is slow, and take action accordingly. To showcase
the use and importance of distributed tracing, we will implement it in our previous
example using Zipkin. Zipkin is a popular and easy-to-use tool that help us implement
tracing in Microservices.

"Zipkin is a distributed tracing system. It helps gather timing data needed to troubleshoot
latency problems in Microservice architectures. It manages both the collection and lookup
of this data. Zipkin's design is based on the Google Dapper paper.” - https://zipkin.

io/

This definition mentions Google's Dapper paper. This paper talks about the
implementation of tracing in distributed systems that consist of multiple Microservices.
This concept forms the basis of many modern tracing systems, such as Zipkin and
OpenTracing. A complete discussion on Dapper is outside of scope of this chapter, but the
following example should give an idea. For readers interested in the paper, check it out

at https://static.googleusercontent.com/media/research.google.com/en//archive/

papers/dapper—-2010-1.pdf.

Coming back to Zipkin, you can download and install the Zipkin tool using the following
command:

curl -sSL https://zipkin.io/quickstart.sh | bash -s
To start Zipkin independently, run the following:
java —-jar zipkin.jar

Getting to the code for Microservices, we will reuse the code from the previous example.
We just need to add zipclient to our dependencies. We can either do this while creating
the project on http://start.spring.io/ or add the dependencies to pom. xm1.

[168]

https://zipkin.io/
https://zipkin.io/
https://zipkin.io/
https://zipkin.io/
https://zipkin.io/
https://zipkin.io/
https://zipkin.io/
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/

Monitoring Microservices Chapter 8

The following screenshot shows the start.spring.io interface, this time with Zipkin Client:

* BT O e ?» 8 ©0

C © Not Secure | start.spring.io

SPRING INITIALIZR

Generate @ wvavenrriec: With = ¢ and Spring Boot 203

Dependencies

Add Spring Boot Starters and dependencies to your application

Project Metadata

Artifact coordinates
Group Search for dependencies
Web, Security, JPA, Actuator, Devtools...

com.servicethree
Selected Dependencies

Artifact
Generate Project ® + «

Don't know what to look for? Want more options? Switch to the full version

The Zipkin interface lets you filter out various options:
* BT Qo€ P 8 O (¢

< C @ localhost:9411/zipkin/

Zipkin Investigate syste

Service Name Span Name Lookback
[l all v 1 hour
Annotations Query Duration (ps) >= Limit
p.path=/foo/bar cluster=foo anc mi 10
Sort

Find Traces |2}
Newest First

Please select the criteria for your trace lookup.

Normally, we use Sort based on Newest First to view the latest services at the top.

[169]

Monitoring Microservices Chapter 8

The following screenshot shows various traces, with the latest listed first:

& C' | @ localhost:9411/zipkin/?serviceName=all&spanName=all&lookback=3600000&start Ts=1532271745894&endTs=153227534589... ¢ [] ¥ ® 0

Zipkin Investigate system behavic Find a trace

Service Name Span Name Lookback

all v all M 1 hour

Annotations Query Duration (ps) >= Limit

. Sort
Find Traces i}
Newest First
Showing: 4 of 4
Services: [E) [Json)

14.860ms 3 spans
all 0%

30.679ms 3 spans
all 0%
default x3 30ms

We are looking at a happy case here with services returning normally. This also shows that
sometimes, the same flow might be taking more time than others. We can click on a row to
further explore the flow and the time taken by different services.

The following screenshot shows a flow and how much time each Microservice is taking;:

Duration: Services: €) Depth: @& Total Spans: @)

Expand All | Collapse All v

i

Services 2.972ms 5.944ms 8.916ms 11.888ms 14.860ms

i

14.860ms : get /sayhello
10.489ms : get /sayhello2 .
4.545ms : get /sayhello3 -

[170]

Monitoring Microservices Chapter 8

We can see the complete details for the call we made; it shows the internal calls and how
much time each call is taking.

To see the advantages of Zipkin in terms of analyzing problems, let's take a look at two
different cases.

Case 1 — service is unresponsive

To simulate a real-world scenario, let's say one of our services is down or is corrupted due
to a recent update. In such a case, our main sayhello service will return an error, likely a
five hundred internal server error, but it will not tell us what's happening behind the
scenes. We are not sure which service has a problem. Let's see whether taking a look at the
Zipkin interface can helps us.

The following screenshot shows the Zipkin interface when service 3 is not responding
properly:

<« C @ localhost:9411/zipkin/traces/9ab30eb7323a5bae Yo (O] 0 (CIN+]
Zipkin Inves system behavior ~ Findatrace View Saved Trace Dependencies
Duration: Services: €) Depth: €) Total Spans: €) m
Expand All | Collapse All
Services 6.188ms 12.375ms 18.563ms 24.750ms 30.938ms
B dofault 30.938ms : get /sayhello
-3 . 25.105ms: get /sayhello2
. 12.792ms : get /sayhello3

[171]

Monitoring Microservices Chapter 8

It highlights the sayhello3 service to indicate there is a problem. In addition, you can click
on each row and see the error details at each step. For example, the following lists the
details of the error in service3:

default.get /sayhello3: 12.792ms
AKA: default
Date Time Relative Time Annotation Address
7/22/2018, 10:14:48 PM 3.384ms Client Send 192.168.20.178 (default)
7/22/2018, 10:14:48 PM 5.396ms Server Receive 192.168.20.178 (default)
7/22/2018, 10:14:48 PM 10.776ms Server Send 192.168.20.178 (default)
7/22/2018, 10:14:48 PM 16.176ms Client Receive 192.168.20.178 (default)
Key Value
error Handler dispatch failed; nested exception is java.lang.Error: Unresolved compilation p
roblem:
This method must return a result of type String
http.method GET
http.path /sayhello3
http.status_code 500
mvc.controller.class HelloController

This clearly shows that there was a developer error, and a new update has made the
sayhello3 service uncompilable and hence not reachable. Zipkin helped us understand
what and where the problem was with a few simple clicks.

[172]

Monitoring Microservices Chapter 8

Case 2 - service responding slowly

Let's try another case. Here, the API is responding very slowly. To simulate that, let's say
we introduce an artificial delay of five seconds in service3:

@GetMapping ("/sayhello3")
public String sayHello()
{
try
{
Thread.sleep (5000);

}

catch (InterruptedException e)

{

e.printStackTrace();

}

return ("Hello from service 3.");

}

When we call the sayhello service, we see it is responding slowly. But again, we are not
sure what is making the service so slow to respond. Again, let's take a look at Zipkin to see
whether it can help us understand where the problem is.

The following screenshot shows the Zipkin interface:

& C @ localhost:9411/zipkin/traces/f20137dd3f9a2ad7 hx¢ [§ ®

Zipkin Investigate system behavior Findatrace View Saved Trace

Duration: Services: @) Depth:) Total Spans:)
Expand All | Collapse Al
Services 1.004s 2.009s 3.013s 4.018s 5.0225
N defaut | 5.022s : get /sayhello
— 5.016s : get /sayhello2
m 15.007s : get /sayhello3

This indicates the sayhello3 service has taken a good amount of time. To see more details,
we can click on the third row for sayhello3.

[173]

Monitoring Microservices

Chapter 8

The following screen appears when we click on the third row:

default.get /sayhello3: 5.007s
AKA: default

Date Time

7/22/2018, 10:22:23 PM
7/22/2018, 10:22:23 PM
7/22/2018, 10:22:29 PM

7/22/2018, 10:22:29 PM

Key

http.method

http.path
mvc.controller.class
mvc.controller.method

Client Address

Relative Time

9.384ms

10.543ms

5.017s

5.017s

Annotation Address
Client Send 192.168.20.178 (default)
Server Receive 192.168.20.178 (default)
Client Receive 192.168.20.178 (default)
Server Send 192.168.20.178 (default)
Value
GET
/sayhello3

HelloController
sayHello

127.0.0.1:50241

We can see most of the time is being taken by service 3 and the response time of the other
two services is in milliseconds. This helps us isolate the problem area, which is service 3 in

this case.

We have seen how a tool such as Zipkin can help us track errors at the Microservice level.
This can be very useful in a production environment when we face an issue and need to
validate which service is in a problem state.

There can be cases where you do not want to apply to trace to all the request as of course
tracing comes at a cost in terms of performance (though negligible, in a production
environment you want to be extra careful). Zipkin comes with an option of tracing only a
sample of requests, which is configurable, such as only tracing 10% of requests.

[174]

Monitoring Microservices Chapter 8

Tools for monitoring Microservices

We have already talked about a couple of tools, Zipkin and OpenTracing, that can help us
to implement the monitoring of Microservices. We also looked at a detailed example of the
use of Zipkin, which helps us trace error scenarios.

We will take a look at a couple of additional tools that can help us to monitor
Microservices. We do not claim to cover all tools or recommend any tools to readers, as use
of tools depends on the situation and personal preference. We are trying to get an idea at a
high level about these tools and their uses.

Prometheus for monitoring and alerting

Prometheus is an open source monitoring and alerting tool. It gathers time series-based
numerical data from the applications being monitored. Written in the GO language, the tool
captures metrics in the metrics 2.0 format (http://metrics20.0org/): the metrics have a
name, a description, dimensions, and values. The only thing missing is a unit for the
metrics.

Prometheus is used for Whitebox monitoring, where, the application being monitored is
aware that it is being monitored. Endpoint-defining metrics are exposed over HTTP by the
application. Prometheus uses various exporters that can share data with the server. One of
the most widely used exporters is NodeExporter. When NodeExporter is run on a host, it
will provide details on I/O, memory, disk, and CPU pressure. You can create exporters to
monitor almost anything in the service, such as API calls, method calls, or database
interactions.

The tool provides PromQL, a sophisticated query language to fetch time series data is
stored.

[175]

http://metrics20.org/
http://metrics20.org/
http://metrics20.org/
http://metrics20.org/
http://metrics20.org/
http://metrics20.org/
http://metrics20.org/
http://metrics20.org/

Monitoring Microservices Chapter 8

The following diagram shows the high-level architecture of Prometheus:

]

Short-lived jobs Service Discovery PagerDuty Email
F 3
« DNS T f
+ Kubernetes
] + Consul notify
» Custom integration
Pushgateway
find Alertmanager
targets
__ A
Prometheus Server push alerts
pull metrics] :
3 Retrieval Storage PromQL]
“l_ . - Web UI
1 . — PromDash

A4 1

- Grafana
|
_I— Node HDD / SSD
Jobs / Exporters — API clients

h 4

Y |

Prometheus Server

Image Source :
https://prometheus.io/docs/introduction/overview/#architecture

The architecture showcases the following components:

¢ Prometheus server: This server collects the metrics from applications and stores
them locally. The Prometheus server works on the principle of scraping, that is,
invoking the metrics endpoints of the various nodes that it is configured to
monitor. It collects these metrics at regular intervals and stores them locally.

¢ Push gateway: There are the cases when an endpoint cannot be exposed by the
application due to nature of its work, such as static jobs. The Push gateway
captures the data, transforms that data into the Prometheus data format, and
then pushes that data onto the Prometheus server.

e Alert manager: Can deliver alerts to multiple channels, such as SMS, email, and
Slack, based on alerting rules.

[176]

https://prometheus.io/docs/introduction/overview/#architecture

Monitoring Microservices Chapter 8

Elasticsearch, Logstash, and Kibana (ELK)

ELK is a combination of three open source tools: Elasticsearch, Logstash, and Kibana:

¢ Logstash is an open source tool for collecting, parsing, and storing logs for future
use.

e Elasticsearch is a search and analytics engine. It works on logs collected by
Logstash.

¢ Kibana is a web interface that can be used to view data in a useful and appealing
format.

The following diagram shows how the three tools work together:

Node 1

Service

Logs

A

Node 2

Service

[-

User
[Frenay

USER Interface

Logs

KIBANA
Y
ELASTIC SEARCH
Y
LOGSTASH
Y

Node 3

Service

Logs

gl

[177]

Monitoring Microservices Chapter 8

As the preceding architecture explains, the three tools of ELK work together to fetch and
showcase the analytics information to the end user. Logstash is responsible for fetching logs
from a distributed system, where different Microservices might be deployed on different
machines.

Once the logs are available, Elasticsearch helps to implement search and analysis
capabilities. Finally, Kibana displays the data in various graphs or diagrams, which are
more meaningful to the user and gives easily actionable items.

Considering more tools

We have talked about a few important tools for monitoring Microservices. There are
additional tools one can consider based one's need. Splunk can be used for logging,
indexing, and fetching information, somewhat similarly to ELK. Fluentd can be used to
implement a logging layer. Logspout can be used to collect and forward logs. We already
looked at Zipkin and OpenTracing for tracing; some similar tools are Appdash and
Phosphor. We talked about alerting with Prometheus, but you can use other tools, such as
PagerDuty, for alerting. For simple checks, such as service availability, try Pingdom.

In addition, if you are using a cloud service provider, such as Amazon Web Services,
Google Cloud, or Microsoft Azure, you might get some tools out of the box, which will help
you monitor and manage your Microservices.

A complete discussion on all these tools is outside the scope of this chapter, but the
information shared should give you an idea of the core concepts and considerations you
need to be aware of when you implement monitoring for Microservices-based applications.

[178]

Monitoring Microservices Chapter 8

Summary

In this chapter, we talked about monitoring and profiling Microservices. Monitoring
Microservices brings its own challenges, as different Microservices might be deployed on
separate machines, so we have to deal with a distributed infrastructure and a number of
services. You need to keep tabs on how much time a service is taking to respond; you don't
want your end user to wait too long for a response.

In addition, you need to understand which services are on a critical path, and which
services are more important than others, so that we can take a call on the severity of the
issue.

We talked about tools that can provide us the data required for analysis. We can use these
tools to fetch data for historical analysis, and for health monitoring. The retention of data is
another important factor. For how long do you want to keep the data? All these decisions
one needs to take based on specific needs.

We have not yet talked about services deployed in containers, such as Docker and
Kubernetes. Container-based deployments bring their own advantages and challenges. This
is what we will be looking at in the next chapter.

[179]

Building, Packaging, and
Running Microservices

The Microservices architecture emerged as a result of overall advances in software
architecture and the build process. With Microservices, the responsibility for solving the
problem domain is no longer delegated to a single monolithic system with many
functionalities.

A Microservice is bound to a specific context in the problem domain. As a purely
architectural approach, building a Microservice does not imply any way of assembling the
application, building it, or running it. There are no technical implications whatsoever. In
order to build a Microservice, the problem domain must be analyzed, then a set of mutually
exclusive services is shaped and developed. It can be programmed in the same language as
a monolith, built in the same way as a monolith and, of course, run in the very same
manner. The Microservices internal architecture may be arbitrary, and the same
architectural principles for building monoliths may be leveraged when building
Microservices.

However, Microservices and the way applications are built nowadays allow strong
paradigm shifts.The aim of this chapter is to provide the reader with a thorough
understanding of the various possibilities of the Java Microservices shipment. The reader is
able to recognize attributes of different ways of packaging Java applications. The goal of
this chapter is to teach the reader to be able to evaluate the benefits and disadvantages of
each and every Java application distribution model. Therefore, we will look at how
packaging affects the process of the Microservice development, packaging, and
distribution.

The following topics will be covered in this chapter:

e Introduction to Java Packaging
¢ Java EE MicroService Solution
¢ Deployment Architecture for Microservices

Building, Packaging, and Running Microservices Chapter 9

Introduction to Java Packaging

In the Java universe, there are three basic types of files:

e (Class files
e Other applications' resources, such as scripts and images
¢ Meta-information files

Class files contain Java source code translated into bytecode. Bytecode is then executed by
JVM. Such files are easily recognized by their . class suffix. The Java code is solely
contained in those classes. However, a Java application may require additional resources
during the application's runtime: websites may require images to be served to the client, or
a simulation may require a file with an initial simulation state. Simply put, any non-Java-
related file is considered to belong to the group of other application resources, with one
exception: files that contain meta-information about the application itself. Security-related
information, information about an application's version, or application configuration data
are considered meta-information. Developers mostly influence class files and application
resources, as these directly reflect the application being written. The application is a general
term we are using, Microservices can also be considered as Java applications when it comes
to packaging.

An application is a set of directories that contain classes and related resources. For an
application's users, it is easier to obtain one archive with the whole deployable. There are
more types of archives in the world of Java:

e Java Archive (JAR)
¢ Java Web Archive (WAR)
¢ Java Enterprise Archive (EAR)

A JAR is a basic form of packaging used in the Java universe. Other forms of packaging
build on top of the JAR, extending functionality. A JAR contains all application classes and
some meta-information, such as the application version. Also, the whole JAR, as well as any
other archive, can be digitally signed using the Public key infrastructure (PKI). A JAR file
can be considered as a ZIP file with a standardized inner layout. Compression is completely
optional.

[181]

Building, Packaging, and Running Microservices Chapter 9

A WAR uses the same principle as a JAR. It was first introduced with the Servlets standard.
The main benefit of introducing WAR files is new types of web-related content, such as
servlets or web pages. A web archive may also contain multiple JARs. Commonly, these are
libraries or different parts of the application.

The most complex and rarely used type of packaging is an EAR. An EAR file provides a
means to bundle multiple WARs and JARs into a single package. An EAR provides means
to define the deployment order of the archives contained in it.

Understanding Archives

The JAR and WAR files mostly do not come with a complete set of libraries required for
code to run. In practice, programs rely on common libraries. In Java, the standard library is
a perfect example. Java programs rely on the standard library to operate. Packages
beginning with java.*, such as java.io or java.lang, are part of the standard library
and are not bundled with the application. The separated distribution of common libraries is
a general concept practiced for decades. Package managers in Linux operating systems only
load shared libraries for each program once. When a program is installed, the package
manager iterates over libraries required for the installed application to be present on the
system and only download the missing ones. This way, the computer's persistent storage is
not easily bloated with many instances of the same library. The same principle is applied in
the Java world. If every Java application, including Microservices, depends on the standard
library, there is no reason to distribute the standard library with the application, but instead
install it once on the system Java applications are expected to run. This makes the Java-
based application archives much smaller and faster to distribute.

[182]

Building, Packaging, and Running Microservices Chapter 9

The principle of the class loaders hierarchy in Java reflects the pattern of shared or common
dependencies. Class loaders are special classes dedicated to loading the resources required
for a Java application to run, including the application classes. There are more types of class
loaders, each type being represented by one or more classes, as shown here:

Classloader delegation model

Bootstrap classloader

Y

Extension classloader

Y

System-wide classloader

Y

Specific classloaders

Different classloaders load different parts of code from different places. There is no
inheritance among classloaders, only delegation. The structure is represented by a directed
acyclic graph. The principle of class loaders can be summed up in the following statements:

e Different resources are loaded by different class loaders.
e Different class loaders are invoked at different times.
¢ One type of class loader may be invoked zero or multiple times.

The bootstrap, also called the primordial, class loader is not distributed with the
application. As the Java standard library is distributed as a separate package, the bootstrap
class loader is also part of the Java Runtime Environment package. Other class loaders may
be distributed with an application server or servlet container; some may even be part of the
final application, if required.

[183]

Building, Packaging, and Running Microservices Chapter 9

The principle of shared dependencies can be generalized even further. Another place where
sharing libraries is a big concern is memory management. For any program to be executed,
it is first loaded from persistent storage into a significantly faster memory, nowadays
usually a RAM. Different components of each application are loaded on demand, so-called
lazily, that is loaded only when required. It is common for two or more applications to
require the same library to be loaded in memory, and it is a common feature of

the operating system's memory management to load the library only once. Unlike in the
case of persistent storage, volatile memory is much more limited in space. As the operating
system loads common libraries only once, the goal is for the Java runtime only to load the
same libraries once.

Next, we will discuss fat packages and the creation of fat JAR.

Fat packages

Sometimes, the separation of resources is not required. In such cases, it is possible to reduce
the number of layers used and simply join two or more layers into one. Historically, there
are more use cases for this.

FatWAR packaging

FatWAR in the Java world are almost exclusively the domain of Spring Framework. In
order to understand the reasons for the existence of FatWAR, we must understand the
architectural decision made in the process of Spring Framework creation.

FatJAR packaging

In this chapter, the reasoning behind the FatJAR packaging style is explained. The road
leading to Fat]JAR packaging is explained, as are the advantages and disadvantages of a
FatJAR solution. In the world of Java EE Microservices, both pure Java EE and additionally
Spring Framework is represented by a set of libraries. Even though Java EE gives us an
option of separating the code and dependent libraries, in the end, both the API and the
libraries with implementations contained inside are required for the application to run. In
the previous era of Application servers, the APIs and their implementations were already
contained within the application server. The applications deployed onto the application
server did not carry such libraries inside. Those dependencies were provided by the
application server as a runtime environment for the application. In fact, most modern
application servers do not load all the libraries at startup, but leverage dynamic loading to
create a rightsized environment that is a perfect fit for the application running on it, which
also results in resource savings.

[184]

Building, Packaging, and Running Microservices Chapter 9

For historical reasons, an application server usually hosted more than one application. The
process of extracting shared libraries into a common place led to various optimizations:

¢ Persistent storage space savings
¢ Memory savings

¢ Application-size shrinks

e Deployment time is reduced

A first observation is simple: the library only has to be distributed once. This paradigm is
used across many fields in computer science and is generally considered a good practice.
Linux package managers serve as a perfect example. Many user-space programs rely on the
same libraries. Those are only downloaded once and are shared by all other

dependent deployables.

Memory savings follow the same principle. When one or more deployment units require
the same library, there is a possibility of only loading such a library into memory once. A
common enhancement practiced by almost every application server is only to load the
libraries truly required by applications deployed to a fast, nonpersistent memory. Dozens,
or even hundreds, of applications, could be deployed onto a single application server. In
general, if the number of applications deployed is more than one, cost savings occur by
sharing a common library.

As aresult, the size of the deployment unit containing the application, usually in the form
of a Java Web Archive, is significantly lower. The application is only compiled against Java
EE APIs. The Java EE APIs are only required during the process of compilation and are not
included in the deployment unit. When no special third-party libraries were used, the
deployment unit archive contained only classes with business logic and nothing more. The
resulting size was in units of kilobytes. Not more. Naturally, when an application is
deployed into an application server, the classloader, which happens to be specific to each
application server, loads all the classes included in the deployment unit. Assuming loading
a single class has a fixed computational complexity of O(n), loading k classes results in a
computational complexity of O(k*n). In other words, the time required to load classes
grows linearly with the number of classes included. Having the number of libraries loaded
with each deployment reduced from potentially hundreds of megabytes to a few kilobytes
significantly reduces the deployment time, usually down to dozens of milliseconds in the
case of small changes.

With Microservices, each instance of a service exists in an isolated environment. Therefore,
the situation with one application server having n > 1 applications deployed becomes
obsolete. Each Microservice is packaged and scaled independently, with dedicated
resources allocated for each instance, preventing resource sharing in ways an old-fashioned
application server used to do.

[185]

Building, Packaging, and Running Microservices Chapter 9

Discarding the concept of separation of runtime dependencies and business logic
represents a significant simplification. In the Java world, a self-sufficient JAR with all
runtime dependencies packaged into one package is known as FatJAR. Often, alternative
names, such as UberJAR, are used.

Java EE MicroService solutions

Java provides a lot of solutions that can help us develop, package, and run Microservices.
We will now discuss a few solutions available for packaging and running Microservices.

OpenLiberty

OpenlLiberty is a Java EE solution for running Microservices made by IBM. OpenLiberty
was introduced as an evolution of the former WebSphere Liberty in 2017. As its name
suggests, it is available under an open source license, without any warranties implied. IBM
was quick to deliver basic support for crucial Java EE 8 parts, including Servlet 4.0, CDI 2.0,
and JPA 2.2, even though the whole set of Java EE 8 specifications wasn't supported at the
time. What really stands out is the support for the Eclipse MicroProfile specification in its
latest version, 1.2, implying health checks, fail-safe mechanisms, circuit breakers, and
configuration APIs are fully supported.

The following are key factors of OpenLiberty:

¢ Homepage: https://openliberty.io/

Eclipse Public License 1.0

MicroProfile 1.2 full support
Java EE 7
e Partial support for Java EE 8

OpenlLiberty is available in two flavors. First, it is available for download as a whole
package, acting as an application server with all the dependencies in one place. Second,
there is a plugin for both Maven and Gradle that downloads only the parts required by the
actual application, producing a rightsized package.

One of the comparative advantages of OpenLiberty is fast redeployments. IBM designed
OpenlLiberty with fast redeployments in mind, resulting in almost instant code changes
without the need to redeploy the application or even restart it.

[186]

https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/

Building, Packaging, and Running Microservices Chapter 9

The OpenLiberty Maven plugin

With the OpenLiberty Maven plugin, it is possible to manage compilation, deployment,
and packaging by executing Maven goals. Besides other service-level tasks, the following
maven goals are considered to be the pillars of Microservice handling with OpenLiberty:

¢ Generate a self-contained, executable archive with 1iberty:package-server.
e Start a rightsized OpenLiberty.io for automatic fast redeployments with
liberty:run-server

e Start or stop new OpenLiberty instance in a separate process with
liberty:start-server

¢ Deploy/undeploy Microservice with liberty:deploy and liberty:undeploy.

In order for OpenLiberty.io to provide all the functionality, these three steps must be
taken:

1. Declare an OpenLiberty Maven parent.
2. Declare and configure the OpenLiberty plugin.
3. Create the OpenLiberty configuration.

All three steps are required. The first two steps are to be taken in Maven's pom. xm1 file. To
fulfill the third step, creating a server.xml file with the OpenLiberty configuration is
necessary. The OpenLiberty Maven parent is a convenient way to provide all the tooling
required for the Maven plugin to work and not to force the developer to learn the internal
mechanisms of OpenLiberty.

The code below shows a <parent> XML tag:

<parent>
<groupId>net.wasdev.wlp.maven.parent</groupId>
<artifactId>liberty-maven-app-parent</artifactId>
<version>2.0</version>,

</parent>

At the time this book was written, the latest version of 1iberty-maven—app-parent was
2.0. However, it is anticipated that there will be a significant number of improvements
introduced in the future. Using the latest version may be an advantage as it will provide the
latest code with bug fixes.

[187]

Building, Packaging, and Running Microservices Chapter 9

As a second step, the OpenLiberty Maven plugin is declared and configured. In a typical
Maven project, there is more than one plugin involved. In the following example, the
OpenLiberty Maven plugin declaration is placed into the <plugin> XML tag, among other
commonly used plugins, such as the compiler plugin or war-plugin:

<plugin>

<groupId>net.wasdev.wlp.maven.plugins</groupId>
<artifactId>liberty-maven-plugin</artifactId>
<version>2.0</version>
<configuration>

<assemblyArtifact>

<groupId>io.openliberty</groupId>
<artifactId>openliberty-runtime</artifactId>
<version>${openliberty.runtime.version}</version>
<type>zip</type>

</assemblyArtifact>
<serverName>${project.artifactId}Server</serverName>
<stripVersion>true</stripVersion>
<configFile>src/main/liberty/config/server.xml</configFile>
<packageFile>${package.file}</packageFile>
<include>${packaging.type}</include>

<bootstrapProperties>

<default.http.port>${testServerHttpPort}</default.http.port>
<default.https.port>${testServerHttpsPort}</default.https.port>
<app.context.root>${project.artifactId}</app.context.root>

</bootstrapProperties>
</configuration>
<executions>

<execution>

<id>package-server</id>

<phase>package</phase>

<goals>
<goal>package-server</goal>

</goals>

<configuration>
<outputDirectory>target/wlp-package</outputDirectory>

</configuration>

</execution>
</executions>

</plugin>

[188]

Building, Packaging, and Running Microservices Chapter 9

The plugin introduces several configuration variables and behaviors. The behaviors are
binded to various Maven goals. The preceding code provides a more advanced example of
many useful configuration options OpenLiberty provides. There are reasonable defaults for
most of the properties mentioned. The plugin declaration contains the following:

¢ The plugin itself, including a group identifier, artifact identifier, and version
¢ Binding of the package-server goal to the standard Maven package goal

¢ The path to the server configuration file

¢ Additional properties, including server name or startup port to bind to

Plugin declaration is a self-explaining step and easy for readers with previous knowledge
of Maven. In the <execution> section, a Maven goal named liberty:package-server,
introduced by the OpenLiberty Maven plugin is bound to the standard Maven's package
goal. As the 1iberty:package-server goal produces a self-contained application with a
rightsized OpenLiberty runtime inside, binding it to Maven's package goal ensures that an
up-to-date version of such self-contained Microservices is produced every time a standard
WAR is produced. This enables developers to automate the OpenLiberty solution creation.

If we remove this binding, a manual invocation of 1iberty:package-server is required
to produce a self-contained, distributable application based on OpenLiberty. It is left to the
user's discretion whether they want to go for automated or manual invocation of package-
server.

Example command:

mvn liberty:package-server -DserverHome=/path/to/home -
DserverName=somenamehere
-DpackageFile=/filename.zip

Configuring OpenLiberty

OpenLiberty provides a rightsized server. In order for the Maven/Gradle plugin to
incorporate the libraries required for the application, a configuration file named
server.xml is introduced. A standard Java project layout, as defined by Maven, contains
two folders in the main/ folder:

¢ Java folder with . java files
¢ Resources folder with files related to the application, but not containing code

[189]

Building, Packaging, and Running Microservices Chapter 9

When OpenlLiberty is used, a third directory named 1iberty/ must be placed into the
main/ folder. Within the 1iberty/ directory, there is one more subdirectory, named
config/, to be found, which is where the OpenLiberty server.xml configuration file
resides. The hierarchy can be observed in the following filesystem tree:

src
main
Java
liberty
config
o server.xml
resources

test

A minimalistic version of server.xml contains only a list of features required to be present
for the application during its deployment. For a simple RESTful Microservice, there is only
one feature to add. If more features are required, for example CDI for dependency injection
or JPA for object-relational mapping and persistence, then including more <feature> tags
with feature names inside is the obvious choice. Each feature contains the name of the
feature complemented with a version. An exhaustive list of existing features can be found
on OpenLiberty's GitHub page: github.com/OpenLiberty/open-liberty.

<server>
<featureManager>
<feature>jaxrs—2.0</feature>
</featureManager>
</server>

The destination of the server.xml file can be changed in Maven's pom.xm1 where
the liberty-maven-plugin is configured. Inside the 1iberty-maven-plugin
configuration, there is a <configFile> tag to be found. The value used for this book
corresponds with the path described in this chapter and is configured as
<configFile>src/main/liberty/config/server.xml</configFile>

[190]

https://github.com/OpenLiberty/open-liberty

Building, Packaging, and Running Microservices Chapter 9

The Weather Microservice with OpenLiberty

In this chapter, a simple temperature Microservice already known from previous chapters
is going to be implemented, demonstrating the simplicity of creating a Microservice with
IBM's OpenLiberty. The Microservice built is available in this book's source code for a
review and trial.

To create the Weather MicroService with OpenLiberty, you only need Java EE's JAX-RS and
OpenlLiberty configuration, which is described in this chapter. The code for the temperature
Microservice created in the chapter 2, Creating your first Microservice may be reused
without any modifications whatsoever. First, you need to create the configuration:

package com.packtpub.Microservices.openliberty;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath ("/weather")
public class WeatherMicroservice extends Application {

}

This configures the basic path for a weather service. The next step is to implement a
RESTful endpoint, introduced in the second chapter, returning artificial average
temperature whenever HTTP GET is issued upon the endpoint. Only a Java class decorated
with annotations from the javax.ws.rs package is required:

package com.packtpub.Microservices.openliberty;

import com.packtpub.Microservices.domain.weather.Temperature;
import com.packtpub.Microservices.domain.weather.TemperatureScale;
import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

/**
* RESTful resource providing information about city's temperature
*/

@Path ("/temperature")

public class TemperatureResource {

/**
* Provides average temperature from all the city's sensors. The
temperature
* is artificial.

[191]

Building, Packaging, and Running Microservices Chapter 9

*

* @return {@link Response} with constant temperature
*/
QGET
@Produces (MediaType .APPLICATION_JSON)
public Response getAverageTemperature () A
Temperature temperature = new Temperature();
temperature.setTemperature (35D) ;
temperature.setTemperatureScale (TemperatureScale.CELSIUS) ;

return Response.ok (temperature) .build();

}

Both classes (the configuration and the endpoint itself) are located in

the com.packtpub.Microservices.openliberty package. The package name is
completely arbitrary and does not influence the functionality of the resulting OpenLiberty
Microservice.

In order to run the Microservice in a rightsized OpenLiberty runtime environment, two
Maven commands must be issued:

mvn package

mvn liberty:run-server

Or simply execute the command mvn package 1iberty:run-server. The Maven package
builds and packages the Java EE Microservice with the temperature endpoint inside and
produces a WAR. Such a WAR can be deployed to any existing application server and is
not modified in any way. However, as the OpenLiberty Maven plugin is attached to the
package phase of the build process, a self-contained zip file with both Microservice and
OpenlLiberty inside is generated.

During development, running a self-contained application over and over again is repetitive
and may affect the developer's performance. The role of 1iberty:run-server is to create
an instance of OpenLiberty and keep it running during the whole development process.
During startup, OpenLiberty scans for archives created with the mvn package. Even when
the Microservice is not yet packaged, once OpenLiberty is running, it scans the target/
folder in Maven's hierarchy for new applications to deploy. Once the application is
deployed, it scans for changes in classes and resources. Once a class is recompiled,
OpenlLiberty detects the changes and instantly applies the new classes only. No complete
redeployment happens. This way, code changes are visible almost instantly. It usually takes
only dozens of milliseconds for OpenLiberty to apply the changes. From a developer's
perspective, the process is instant.

[192]

Building, Packaging, and Running Microservices Chapter 9

After OpenLiberty is started and the temperature Microservice is packaged, simply
invoking the http://localhost:9080/10-OpenLiberty.io/weather/temperature
endpoint results in an immediate response. By default, OpenLiberty binds to localhost on
port 9080. The port can be explicitly configured in the OpenLiberty Maven plugin
configuration, as demonstrated in this chapter. The application context is by default the
name of the application/ Microservice artifact being deployed, without any suffix. It can
be controlled both in the server.xml configuration or by means of the Maven plugin
configuration. The expected output is demonstrated in the following code block:

{

"temperature":35.0,
"temperatureScale":"CELSIUS"
}

OpenLiberty represents a way of rightsizing the application runtime. It may no longer be
considered a pure application server only. If required, OpenLiberty can act as an
application server, hosting a number of applications at once, providing many features up to
the point where it is a full-blown Java EE 8 Application Server.

The Gradle plugin

The primary build tool used in this book is Maven. With Gradle getting more and more
popular, it should be mentioned that OpenLiberty also provides full support for Gradle.
The OpenLiberty Gradle plugin can be used in the following ways:

e Apply the OpenLiberty Gradle plugin to the project.
¢ Define the OpenLiberty.io runtime as a runtime dependency.
e Instruct Gradle to invoke OpenLiberty with common Gradle goals.

It all starts the standard Gradle way, by applying a plugin:
apply plugin: 'liberty

The plugin must be made available to the build strict. A typical Gradle build script block
contains a Maven central repository, as demonstrated here. In addition, the OpenLiberty's
Gradle plugin is applied as a dependency on the classpath:

buildscript {
repositories {
mavenCentral ()
}

dependencies {

[193]

Building, Packaging, and Running Microservices Chapter 9

classpath 'net.wasdev.wlp.gradle.plugins:liberty-gradle-plugin:2.1"

}

OpenLiberty does not force the resulting artifact to contain OpenLiberty-specific libraries.
The OpenLiberty plugin introduces a special dependency scope, named libertyRuntime.
The name is self-describing; it tells the reader such dependencies are only bundled inside
the OpenLiberty runtime. Such a dependency is often accompanied by other dependencies.
In the case of Java EE 8, the whole API may be included as a provided dependency:

dependencies{

providedCompile 'Jjavax:javaee-api:8.0'

libertyRuntime group: 'io.openliberty', name: 'openliberty-runtime',
version: '[17.0.0.4,)"

}

As in the case of Maven, OpenLiberty offers a convenient way to configure default
properties. The properties are an exact copy of those described in the Maven section. The
server name, default ports, context root, or name of resulting archive, everything may be
reconfigured. Java EE 8 projects tend to evolve rapidly, so are OpenLiberty plugins for
Gradle and Maven. For a complete list of features, configurables, and settings, please visit
the reference guide at https://openliberty.io/docs/.

liberty {
server {
name = "$OpenLiberty Server"
configFile = file("src/main/liberty/config/server.xml")
bootstrapProperties = ['default.http.port': 8080,

'default.https.port': 8443,
'app.context.root': ${appName}]
packagelLiberty {
archive = "$buildDir/${appName}.zip"
include = "usr"

}
To run the application, the following Gradle tasks similar to Maven's goals are available:
libertyStart

libertyStop

[194]

https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/

Building, Packaging, and Running Microservices Chapter 9

WildFly Swarm

With its recent update, WildFly Swarm has been renamed Thorntail. A among developers,
the name of WildFly Swarm is still commonly used. WildFly Swarm represents an excellent
approach to create deployables for Java EE Microservices. WildFly Swarm stands on the
shoulders of a WildFly Application server, which itself stands on the shoulders of one of
the most famous names in Java EE world: JBoss. As explained in first section of this chapter,
runtimes for Microservices in the Java EE world, be it any product (including Spring Boot),
are only repacked application servers with just enough of the runtime dependencies the
actual application requires. Additional services, plugin support, cloud integration, and
available support make all the difference. And WildFly Swarm offers an excellent package.

The release cycle of WildFly Swarm is considerably faster than a full-blown WildFly
Application service. There are monthly updates to be found, not only containing bug fixes,
but coming with many improvements and support for new features. In general, WildFly is
evolving very rapidly. In the MicroService environment, the WildFly swarm makes it easy
to use an application throughout different environments, as it automatically configures
thread pool sizes at startup based on available resources. At startup, a message revealing
the actual configuration can be found:

Worker 'default' has auto-configured to 16 core threads with 128 task threads based on
your 8 available processors.

In this case, WildFly detected eight physical cores with 18 threads available, resulting in 128
threads available in the default pool. This way, neither developers nor administrators have
to worry about resource allocation configuration, as the application is deployed in vastly
different environments.

The WildFly Swarm generator

It is a usual feature of Microservice-related products in the Java EE world to provide a
project generator. WildFly Swarm also provides one. One thing to notice is the number of
services provided, which is outstanding. A unique feature is automatic dependency
detection. WildFly plugins automatically scan the project's source code and include
dependencies required at runtime, without any need for explicit specification.

Here is a link for the generator tool:

https://thorntail.io/generator/

[195]

https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/

Building, Packaging, and Running Microservices Chapter 9

Besides traditional Java EE dependencies, there are more or less expected dependencies.
Support for RedHat's Cloud is expected, as such products are a way for companies to bring
new users to their Cloud ecosystems, as Pivotal does with Spring, and IBM with
OpenlLiberty, by providing an easy means of integration. RedHat's name for the cloud is
OpenShift. In the case of WildFly, OpenShift support is excellent, including in-cloud service
discovery. Another very strong aspect of WildFly Swarm is the Apache Camel integration,
with many modules for practically every massively used technology, including databases.
Database support includes standard JPA datasources, extended with OrientDB, MongoDB,
Cassandra or several other in-memory databases. WildFly Swarm also provides support for
MicroProfile.

The WildFly Swarm dependencies are categorized by their level of maturity. Stable
dependencies are tested and ready to use in a production environment. Most of the
dependencies are this mature. The other two levels for dependencies are unstable and
experimental. These are common found for new and leading-edge functionality.

The WildFly Swarm Maven plugin

WildFly Swarm offers a Maven plugin solely. At the time of writing, there is no Gradle
plugin available for WildFly Swarm. In general, Maven projects may be generated by
means of a project generator. In this section, a very minimalistic temperature Microservices
with minimal runtime using WildFly Swarm is demonstrated. Also, Swarm's ability to
detect dependencies is leveraged to produce a project with minimal configuration
overhead.

The first step is to create a brand new Java EE project with Maven, using the war
packaging:

<packaging>war</packaging>

In Maven's properties section, a version of WildFly is defined as a project-wide variable.
Such an approach is advantageous as version upgrades would mean minimum change in
Maven :

<properties>
<version.thorntail>2.2.1.Final</version.thorntail>
<!—— Other properties omitted —--—>

</properties>

[196]

Building, Packaging, and Running Microservices Chapter 9

Wildfly Swarm Maven dependencies are contained in a single Bill of Materials (BOM). All
the dependencies are defined in a single entry, using the previously-defined version
property:

<dependencyManagement>
<dependencies>
<dependency>
<groupId>io.thorntail</groupId>
<artifactId>bom-all</artifactId>
<version>${version.thorntail}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

The WildFly Swarm Maven plugin is required to be activated explicitly. In the following
example, a standalone executable artifact is created whenever the package goal is invoked.
This also includes the install goal. The standalone artifact is to be found in {project-
root}/target/ folder. It always has a suffix of swarm. jar. Such a Microservice only
requires a standard JDK to run, everything else is included inside the artifact. A simple
java -jar application-name-swarm.jar is enough for the Microservice to run:

<pbuild>
<finalName>wildfly-swarm-temperature-Microservice</finalName>
<plugins>
<plugin>
<groupId>io.thorntail</groupId>
<artifactId>thorntail-maven-plugin</artifactId>
<version>${version.thorntail}</version>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

[197]

Building, Packaging, and Running Microservices Chapter 9

The structure of project dependencies is simple. The Java EE 8 API as a provided
dependency is standard and expected. The temperature Microservice used throughout this
book requires Plain Old Java Objects (POJO) contained in the common module and will
probably not be part of the reader's Microservice. These are simply extracted to a separate
module for readability and easy reuse. Note that there no WildFly Swarm dependencies are
explicitly declared. WildFly Swarm is able to automatically detect the required
dependencies:

<dependencies>
<dependency>
<groupld>javax</groupld>
<artifactId>javaee—api</artifactId>
<version>8.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>${project.groupld}</groupIld>
<artifactId>common</artifactId>
<version>1.0</version>
</dependency>
</dependencies>

The resulting Maven's pom. xml file used in the example project is demonstrated as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>javaee8-Microservices-book</artifactId>
<groupIld>com.packtpub.Microservices</groupId>
<version>1.0</version>
</parent>
<modelVersion>4.0.0</modelVersion>

<artifactId>10-wildfly-swarm-temperature</artifactId>
<packaging>war</packaging>

<properties>
<version.thorntail>2.2.1.Final</version.thorntail>
<!-—— Other properties omitted —-—>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

<failOnMissingWebXml>false</failOnMissingWebXml>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

[198]

Building, Packaging, and Running Microservices Chapter 9

<dependencyManagement>
<dependencies>
<dependency>
<groupId>io.thorntail</groupId>
<artifactId>bom-all</artifactId>
<version>${version.thorntail}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement >

<build>
<finalName>wildfly-swarm-temperature-Microservice</finalName>
<plugins>
<plugin>
<groupId>io.thorntail</groupId>
<artifactId>thorntail-maven-plugin</artifactId>
<version>${version.thorntail}</version>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

<dependencies>
<dependency>
<groupld>javax</groupld>
<artifactId>javaee-api</artifactId>
<version>8.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>${project.groupIld}</groupIld>
<artifactId>common</artifactId>
<version>1.0</version>
</dependency>
</dependencies>

</project>

[199]

Building, Packaging, and Running Microservices Chapter 9

Before the application is run, a RESTful endpoint with JAX-RS inside is added. First, a
simple JAX-RS configuration is required. This empty configuration class that extends the
javax.ws.rs.core.Application class uses the @ApplicationPath annotation from the
same package to configure a basic Microservice context root:

@ApplicationPath ("/weather")
public class WeatherMicroservice extends Application {

}

Finally, the static temperature service is added:

package swarm;

import com.packtpub.Microservices.domain.weather.Temperature;
import com.packtpub.Microservices.domain.weather.TemperatureScale;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

@Path ("/temperature")
public class TemperatureResource {

/**
* Provides average temperature from all the city's sensors. The
temperature
* is artificial.
*
* @return {@link Response} with constant temperature
*/
QGET
@Produces (MediaType .APPLICATION_JSON)
public Response getAverageTemperature () {
Temperature temperature = new Temperature();
temperature.setTemperature (35D) ;
temperature.setTemperatureScale (TemperatureScale.CELSIUS) ;

return Response.ok (temperature) .build();

[200]

Building, Packaging, and Running Microservices Chapter 9

Automatic dependency-discovery may be the observer when invoking the wildfly-
swarm: run Maven goal. In the case of the sample MicroService, there is only one REST
endpoint using JAX-RS to expose itself. Therefore, WildFly correctly detects JAX-RS.
Undertow is used to serve HTTP requests. It is worth mentioning that Undertow is a high-
performance product, dominating many benchmarks. The rest are services required to run.
For example, logging functionality is used even at the application start itself:

INFO: Installed fraction: Logging - STABLE
org.wildfly.swarm:logging:2018.3.3

INFO: Installed fraction: Elytron - STABLE
org.wildfly.swarm:elytron:2018.3.3

INFO: Installed fraction: JAX-RS - STABLE
org.wildfly.swarm:jaxrs:2018.3.3

INFO: Installed fraction: Undertow - STABLE
org.wildfly.swarm:undertow:2018.3.3

The default context root is set to / and the default port that WildFly Swarm listens on is
8080. Therefore, the example temperature endpoint can be found under
the http://localhost:8080/weather/temperature URL.

As additional functionality is plugged-in, WildFly will automatically detect it and bundle
corresponding modules. This approach works flawlessly with the Java EE functionality. A
sample Microservice that provides a static temperature measurement is available in the
code samples bundled with this book.

HollowJAR

Not only in the of Microservices, the actual business logic changes often, but the libraries
not related to the business logic do not. Such a concept is very well-known in the domain of
operating systems, where common libraries are not only installed once to conserve space on
the persistent storage (typically a hard drive) but are also loaded once into memory to
achieve the same amount for savings. Java EE implementation libraries, MicroProfile
libraries, or even Spring Framework libraries are in the very same relation to Java
Microservices or applications in general. These common libraries, changes occur much less
often than changes that are done in the internal business logic of an application built by
using the common libraries. The libraries are updatable, interchangeable, and distributable
in a complete separation from the actual Microservice.

In RedHat, they made it possible for a Java EE Microservice to create a separate runtime
environment and only deploy the application to that environment. This way, one of the
biggest disadvantages of monolithic solutions is removed:

e Fast redeploys

[201]

Building, Packaging, and Running Microservices Chapter 9

e Small distribution overhead
¢ Layering principle is not broken
e Fast changes in Docker images

The libraries representing the actual runtime environment for a Microservice are hollow, as
there is no Microservice or application added to the JAR. This is where the name hollow jar
originates. WildFly Swarm makes it easy to create such artifacts with just enough
dependencies to run a Microservice, but without the actual Microservice inside. To produce
a Hollow]JAR with WildFly Swarm, simply set the ~-Dswarm.hollow=true Maven property
before the application is built by Maven. Or add the <hollow>true</hollow> option to
the WildFly Swarm plugin configuration in pom. xm1. WildFly Swarm will detect this
property and produce a separate JAR with the hollowswarm. jar suffix in Maven's
target/ folder.

In order to deploy an application to the hollow environment, simply pass the application's
name as an argument:

java —jar weather-service-hollowjar.jar weather-service.war

Payara Micro

Traditionally, Payara is an application server derived from Glassfish, the reference
implementation of Java EE standards. The latest version to officially support Java EE 8 is
Payara 5. As Payara is directly derived from Glassfish, it is quick to implement new
functionalities defined in various standards.

Payara's opinionated approach to Java EE Microservices is named Payara Micro. The very
basics of Payara's approach are the same as Spring Boot, WildFly Swarm, or OpenLiberty:
to repackage an application server and omit functionality not required in the modern
environment of Microservices, making the resulting package thinner. However, Payara
Micro lacks the feature of rightsizing. Instead, all the functionality is packed in a single
artifact, resulting in size under 70 MB. Payara Micro supports Java EE 8, together with the
latest MicroProfile specification.

There are three major ways of running Payara Micro:

e Start the Payara Micro instance, then perform the deployment from a command
line.

¢ Use programmatic startup, and run and configure Payara Micro at application
startup.

¢ Create an Uber Jar with Payara Micro and the Microservice/application.

[202]

Building, Packaging, and Running Microservices Chapter 9

The Payara Micro Maven plugin

The Maven plugin is capable of automatically downloading, starting, and stopping a
managed instance of Payara Micro. Besides that, it is also able to automatically deploy
Microservices built with Maven. The creation of Payara Micro Uberjar is also one of the
capabilities of the Maven plugin.

As a good practice, before the plugin declaration itself, create a build-wide property that
contains the plugin's version.

The following code shows properties tab for Maven:

<properties>

<payaramicro.maven.plugin.version>1.0.0</payaramicro.maven.plugin.version>
<!—— Other properties omitted —-—>

</properties>

As a next step, the declaration of the plugin itself in pom. xm1 is necessary. This is also the
final step. Standard Maven requirements for a plugin, such as a group identifier and artifact
identifier, distinguished by a plugin version, are necessary. Everything happens
automatically. The only configuration required is to tell Payara to deploy WAR files on
startup. The execution phase is set to package in order to automatically generate an Uber]ar
with both the Microservice and Payara inside every time the Maven package or install goals
are executed:

<pbuild>
<plugins>
<plugin>
<groupId>fish.payara.maven.plugins</groupId>
<artifactId>payara-micro-maven-plugin</artifactId>
<version>${payaramicro.maven.plugin.version}</version>
<configuration>
<deployWar>true</deployWar>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>bundle</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

[203]

Building, Packaging, and Running Microservices Chapter 9

All WAR are bundled and deployed automatically with such settings. If a WAR is required,
instructing Maven to use the WAR packaging is necessary:

<packaging>war</packaging>

Dependencies are standard. The Java EE 8 API as a provided dependency is required for
the sample Weather Microservice used throughout this book, as well as the common POJOs
used for this project specifically. The final POM with the preceding dependencies is
demonstrated as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>javaee8-Microservices-book</artifactId>
<groupIld>com.packtpub.Microservices</groupId>
<version>1.0</version>
</parent>
<modelVersion>4.0.0</modelVersion>

<artifactId>10-payara-micro</artifactId>
<packaging>war</packaging>

<properties>
<payaramicro.maven.plugin.version>1.0.0</payaramicro.maven.plugin.version>
<!—— Other properties omitted —-—>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

<failOnMissingWebXml>false</failOnMissingWebXml>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

<build>
<plugins>
<plugin>
<groupld>fish.payara.maven.plugins</groupId>
<artifactId>payara-micro-maven-plugin</artifactId>
<version>${payaramicro.maven.plugin.version}</version>
<configuration>
<deployWar>true</deployWar>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>bundle</goal>

[204]

Building, Packaging, and Running Microservices Chapter 9

</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

<dependencies>
<dependency>
<groupld>javax</groupld>
<artifactId>javaee-api</artifactId>
<version>8.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>${project.groupIld}</groupId>
<artifactId>common</artifactId>
<version>1.0</version>
</dependency>
</dependencies>

</project>

In the target/ folder created by Maven, there is the WAR file with the Microservice.
Additionally, with the plugin settings demonstrated, there is an UberJar with the -
microbundle. jar suffix. In the case of the sample project, its name is 10-payara-
micro-1.0-microbundle. jar. The sample project with Payara Micro is, of course,
available in the package bundled to this book.

The UberJar may be executed manually by using the CLI To do this, simply run the
Uber]ar as any other Java application: java -jar application-name-
microbundle.jar. The sample application is run by issuing the java -jar 10-payara-
micro-1.0-microbundle.jar command. Alternatively, the payara-micro:start
Maven goal can be used.

The started Microservice binds itself to port 8080, using the name of WARS as application
context roots. During startup, Payara Micro informs what all internal Microservices are
deployed. The simple Weather Microservice that provides an arbitrary temperature is
available at /weather/temperature, as in other projects in this book. Therefore, the
resulting URL for the Weather Microservice is
http://localhost:8080/10-payara-micro-1.0/weather/temperature. Sending an
HTTP GET request to this URL returns an arbitrary temperature:

Deployed: 10-payara-micro-1.0.war (l0-payara-micro-1.0.war war /10-payara-

[205]

Building, Packaging, and Running Microservices Chapter 9

micro-1.0)

Payara Micro URLs
http://localhost:8080/10-payara-micro-1.0
11

Payara Micro will download the latest stable release by default. Alternatively, the plugin
can be pointed to a local instance of Payara Micro, or instructed to download a different
version, if required. To instruct Payara Micro to download and manage a specific version,
use Maven's standard plugin configuration block:

<artifactItem>
<groupId>fish.payara.extras</groupId>
<artifactId>payara-micro</artifactId>
<version>4.1.1.171</version>
</artifactItem>

In the rare case that there is a Payara Micro instance available on the filesystem and
intended to be used, an absolute path to the Payara MicroJAR can be specified as well:

<payaraMicroAbsolutePath>/path/to/payara-
micro.jar</payaraMicroAbsolutePath>

The Payara Micro UberJar

Inside the Payara Micro Uber]ar, there is a folder named MICRO-INF/. The configuration of
Payara Micro, as well as Microservices deployed at startup, are present in this folder. And
much more. A typical structure of this folder is demonstrated as follows:

F——— classes

F——— deploy

F——— domain

— 1lib

F——— payara-boot .properties
F——— post-boot-commands.txt
F——— pre—-boot—-commands.txt
L— runtime

The names are self-descriptive. Microservices to be deployed are placed in the deploy/
folder. There may be additional libraries used by those services. Those are placed in

the 1ib/ folder and typically configured in the Payara Micro Maven plugin configuration.
The runtime/ folder is of no interest to developers, as it contains implementations of the
core functionalities Payara uses. Commands to invoke prior to boot and after the server has
booted are placed in separate text files.

[206]

Building, Packaging, and Running Microservices Chapter 9

The Deployment Architecture for
Microservices

A partial shift to the Microservices architecture in the world of enterprise Java, either
driven by serious needs or by a desire to try something new, changed the way applications,
now specialized as Microservices, are handled. In the old world, a curated set of common
runtime libraries required for a usually monolithic application was represented by an
application server. From a developer's point of view, an application server may have been
viewed as a simple collection of Java libraries that implements a standardized API a
developer could always rely on being there. Application servers provide much more
functionality than that, such as the following:

e Clustering

Load-balancing
Fault-tolerance

¢ Diagnostics
e Security

Java applications could be automatically distributed among cloud nodes, while the
application servers resolved load-balancing issues, reported errors, and operations were
able to administrate all of the functionality easily.

In a Cloud environment, these functionalities, among many others, are usually moved to
another layer. Even end-to-end security is often not left for the application server to
manage. Load-balancing and clustering are managed by tools specific to the chosen cloud
environment. In a stateless world, where the number of active nodes changes rapidly based
on current load, such functionality is obsolete. There are built-in tools to perform health
checks, handle TLS/SSL and provide fault-tolerance monitoring or even testing. Docker
especially has taken the role of a universal container handled by many cloud environments
with ease. Applications are just deployed to the cloud and scaled in the cloud. And the
cloud environment is completely abstracted from the application by thin, self-managing
wrappers, which are mostly Docker containers. However, moving solutions from these
problem domains to outside of the application server does not mean the problems are gone,
only that they're handled by different code on a different layer.

[207]

Building, Packaging, and Running Microservices Chapter 9

As applications, and especially Microservices, are deployed and scaled independently
(especially in a cloud environment), the need for a big, heavy application server that is
ready to host multiple applications at once, while being able to connect and maintain a
connection with a cluster of other servers, support replication, and security realms is gone.
Likewise, replicating it multiple times across the cloud is gone. Having just the amount of
functionality that is required for an application to run is an important optimization.

However, looking at application servers and getting an impression of them being big, slow
to start, and difficult to manage may be just a wrong impression. First, application servers
are smart and use lazy loading. They load only the libraries required to run the deployed
applications into memory; not everything is loaded at startup. This concept of lazy loading
may result in the same or only slightly higher memory usage than a rightsized runtime
environment. There may be situations where an application server, even though considered
big and heavy, may eventually save resources. Having a single physical machine with
many applications or Microservices deployed, as those do not require much computational
power, requires only one application server to be up and running. When compared to the
memory footprint and the footprint on a persistent storage of multiple Microservices, each
running in their own dedicated environment, an application server might actually win in
absolute numbers.

Solutions such as Spring Boot or OpenLiberty may reach down to 15 megabytes of artifact
size and require approximately 25-30 MB of memory on startup. On the other hand, a full-
blown application server with all the functionality is often slightly more than 100 MB on the
hard drive and takes about 40-50 MB of memory on startup with the same application
deployed, due to lazy loading. However, such low numbers apply to rightsized solutions
only in the case of the simplest applications. In the real world, Microservices use databases,
thread pool management, and bean pooling, as well as publishing REST APIs and
generating logs, and many other functionalities. The more functionality it has, the less
difference can be measured in size between a rightsized solution and an application server,
as we end up creating a MicroService which more or less provides functinality of a
complete application.

An application server also held on the principle of layering. The need for layers is not gone
in the world of Microservices. In fact, it is more essential than ever. A simple yet very
important piece of advice for developers is to seek vendors who do not break the principle
of layering. Forcing developers to restart the whole environment due to changes in one
class of one deployment unit may be considered poor engineering compared to standards
used in the rest of the industry for several years. Being forced to upload dozens or
hundreds of megabytes into Docker hub due to a small change in a small Microservice is
not ideal either.

[208]

Building, Packaging, and Running Microservices Chapter 9

Pure Java EE solutions usually respect layering principles or even provide multiple ways
for fast redeployments and tiny changes. OpenLiberty has a very clever class loader and
Maven/Gradle plugins, making it easy for developers to see changes instantly during the
development phase. WildFly Swarm offers hollow JARs, which are rightsized exactly for
the Microservice. Payara Micro also acts as a separate runtime for
applications/Microservice, event if not rightsized. The situation is a little less optimal with
Spring Boot; running and stopping a Spring Boot Java Archive may be time-consuming.
However, Spring offers a solution named Spring Loaded (github.com/spring-
projects/spring-loaded). This is an open source project that enables developers to reload
classes at runtime. It is not as advanced as other commercial alternatives, yet it rapidly
reduces the number of restarts required, reducing non-productive time.

The Java EE solutions for the new era of Microservices are very mature, including Spring
Boot. There is no longer any need to explicitly declare every runtime-required library.
There are mature project generators and plugins to assist in creating self-contained
Microservices during the build phase. Usually, the service providing vendors include
packages to make deployment in their very own cloud environment, which is a factor to
consider in the process of choosing the right solution. This way, even when programming
against a fully-standardized Java EE environment, some amount of vendor lock may be
introduced.

Summary

In this chapter, we looked at archive-generation in Java. Then, we discussed in detail of
some of the solutions available to run and manage MicroServices in Java. We had a detailed
discussion about OpenLiberty, Wildfly Swarm, and Payara Micro. Finally, we discussed the
changes being observed in deployment architectures due to the popularity of
MicroServices.

In the next chapter, we will cover the documenting and testing aspects of MicroServices.

[209]

https://github.com/spring-projects/spring-loaded
https://github.com/spring-projects/spring-loaded

10

Documenting and Testing
MicroServices

In this chapter, we will talk about two important aspects of a Microservices-based
application: documentation and testing. The documentation tells us what this service
would do and how it can be used. Without this information, it is not possible for an end
user to take advantage of the services you created.

The second aspect we will cover in this chapter is testing. Testing, as we know, is an
important factor for any application code you write. You should never ship untested code.
The age-old golden rule of software engineering, or any engineering for that matter, is to
catch the errors early in the development, as the cost to fix things increases over time due to
the impact a change will have on the overall application.

We will cover the following topics in this chapter:

e Documenting Microservices

e Swagger

e ApiDoc

¢ Additional Documentation Frameworks
e Testing Microservices

e Unit Testing

¢ Integration Testing

e Service Testing

¢ End-to-end Testing

e Exploring what to Test

Documenting and Testing MicroServices Chapter 10

Documenting Microservices

Documentation is often a neglected topic in the software world. In a hurry to deliver the
end product to the user or get the applications deployed, we tend to ignore the importance
of documentation, as it is not something that the end user will directly view. But as the
application grows, we start feeling the pain of missing documentation. Imagine you are
given a code without any documentation: it will take you more time to go through the code
and understand it. Whereas if code, classes, and methods are properly documented, it
becomes much easier to understand the code. If you already have experience with Java,
you've probably used JavaDocs, which is a very strong and easy way to document code.

We will not get into the details of JavaDocs here, instead we'll focus more on the
Microservices documentation, and particularly on API-level documentation, which is
important, as often the users of these APIs are not the same developers who have
implemented the APIs. These will be used by frontend developers or other teams using
your API, so we need ways in which we can convey how to use a Microservice API
properly to the teams and fellow developers.

Let's start with a simple calculator Microservice. Say we are exposing four basic operations:
add, subtract, multiply, and divide, as follows:

package com.packt.Microservices.calculator;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class CalculatorController
{
@GetMapping ("/add")
public int addNumber (int numl, int num2)
{
return (numl+num?2) ;
}
@GetMapping ("/subtract")
public int subtractNumber (int numl, int num?2)
{
return (numl-num2) ;
}
@GetMapping ("/multiply")
public int multiplyNumber (int numl, int num?2)
{
return (numl*num2) ;
}
@GetMapping ("/divide")
public float divideNumber (float numl, float num2)
{

[211]

Documenting and Testing MicroServices Chapter 10

return (float) (numl/num2?) ;
3
}

This is a completely working service, but this does not tell users how to use it. How do we
call a service? How many arguments will it take? Does it take decimals?

So without proper documentation, a service is not in a usable state. Anyone trying to use
this service would be confused about what the service does and how to use it, so we need
to make sure we provide proper documentation to fellow developers and end users.

Let's start with the easiest option, that is, Swagger.

Swagger

Swagger is an auto-documentation-generation tool. It is simple to use.

To start with, we need to add maven dependencies, as follows:

<dependency>
<groupId>io.springfox</groupId>
<artifactId>springfox-swagger-ui</artifactId>
<version>2.6.1</version>
<scope>compile</scope>

</dependency>

<dependency>
<groupId>io.springfox</groupId>
<artifactId>springfox-swagger2</artifactId>
<version>2.6.1</version>
<scope>compile</scope>

</dependency>

And next, we will add the configuration:

package com.packt.Microservices.calculator;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import springfox.documentation.builders.RequestHandlerSelectors;
import springfox.documentation.service.ApiInfo;

import springfox.documentation.service.Contact;

import springfox.documentation.spi.DocumentationType;

import springfox.documentation.spring.web.plugins.Docket;

import springfox.documentation.swagger2.annotations.EnableSwagger2;
import static springfox.documentation.builders.PathSelectors.regex;

[212]

Documenting and Testing MicroServices Chapter 10

/**** This is main configuration class for spring boot application.*/
@Configuration

@SpringBootApplication

@EnableSwagger?2

public class CalculatorApplication

{

/**** Swagger configuration**/

@return

@Bean

public Docket SwaggerDocumentationApi ()

{

return new

Docket (DocumentationType.SWAGGER_2) .select () .apis (RequestHandlerSelectors.b
asePackage ("com.packt .Microservices.calculator")) .paths (reg
ex("/.*")).build() .apiInfo (metaData());

}

private ApiInfo metaData()

{

ApiInfo apiInfo = new ApiInfo ("Microservices Example REST API","Spring
Boot based REST API for Calculator","1.0","Terms of service- NA",new
Contact ("Packt Team", "https://packt.com", "admin@packt.com"), "Apache
License Version 2.0","https://www.apache.org/licenses/LICENSE-2.0");

return apiInfo;

}

/**** Main method to initialize spring boot application.* Q@param args*/
public static void main(String[] args)

{

SpringApplication.run(CalculatorApplication.class, args);
}
}

You can see that all we have done is added a configuration for Swagger, and no code
changes are done.

[213]

Documenting and Testing MicroServices Chapter 10

After the application is deployed locally, if we open the Swagger link,
http://localhost:8080/swagger—ui.html#/, we can see the documentation shown
by Swagger. The following image shows a sample documentation:

¢} swagger ot papicocs) F—

Microservices Example REST API
Spring Boot based REST API for Calculator

Created by Packt Team
See more at https://packt.com

Contact the developer
Apache License Version 2.0

calculator-controller : Calculator Controller Show/Hide | List Operations =~ Expand Operations
(3 /add addNumber
GET /divide divideNumber
/multiply multiplyNumber
(38 /subtract subtractNumber

[BASE URL: /, AP1 VERSION: 1.0]

[214]

Documenting and Testing MicroServices Chapter 10

Swagger gets us to the next level; that is, click on any service and Swagger will give you
more details about the service. For example, if we click on add service, we get to see
something like the following on screen:

Created by Packt Team
See more at https://packt.com

Contact the developer
Apache License Version 2.0

calculator-controller : Calculator Controller Show/Hide List Operations | Expand Operations
/add addNumber

Response Class (Status 200)
int32

Response Content Type *+ [
Parameters

Parameter Value Description Parameter Type Data Type

numl num1 query integer

num2 num2 query integer
Response Messages

HTTP Status Code Reason Response Model Headers

401 Unauthorized
403 Forbidden

404 Not Found

Try it out!

[215]

Documenting and Testing MicroServices Chapter 10

When you click on a particular service, Swagger gives us complete details about the service.
In addition, to just view the details, you can also try out the service in the Swagger interface
itself. The image below shows how to use the service:

Try it out!
Curl

curl =X GET —-header 'Accept: application/json' 'http://localhost:8080/add?numl=33&num2=67"

Request URL

http://localhost:8080/add?numl=33&num2=67

Request Headers

"Accept": "k/x"
Response Body

100

Response Code

200

Response Headers

{
"date": "Sat, 20 Oct 2018 ©3:23:24 GMT",
"transfer-encoding": "chunked",
"content-type": "application/json;charset=UTF-8"

So far, we have looked at the default documentation provided by Swagger, but it also gives
us additional options where we can add more details to our documentation. Let's take a
look at a few available options.

You can use the @Api and @Apioperations annotations, as shown in the following code,
to add information at the API class and operation levels, respectively:

@Api (value="SimpleCalculator", description="Manages basic calculator
operation on two numbers")

@RestController
public class CalculatorController
{
@ApiOperation(value = "Add given two numbers", response = Integer.class)

@GetMapping ("/add")
public int addNumber (int numl, int num2)

{

return (numl+num?2) ;

[216]

Documenting and Testing MicroServices Chapter 10

@ApiOperation (value = "Subract second number from first", response =
Integer.class)

@GetMapping ("/subtract")

public int subtractNumber (int numl, int num?2)

{

return (numl-num?2) ;

@ApiOperation(value = "Multiply two numbers", response = Integer.class)
@GetMapping ("/multiply")

public int multiplyNumber (int numl, int num?2)

{

return (numl*num?2) ;

@ApiOperation(value = "Number one divided by second number", response =
Float.class)

@GetMapping ("/divide")

public float divideNumber (float numl, float num2)

{

return (float) (numl/num2) ;
}
}

This will add additional information to the documentation, as shown here:

Microservices Example REST API
Spring Boot based REST API for Calculator

Created by Packt Team
See more at https://packt.com

Contact the developer
Apache License Version 2.0

calculator-controller : Manages basic calculator operation on two numbers

Show/Hide List Operations = Expand Operations

E /add Add given two numbers

ﬂ /divide Number one divided by second number
ﬂ /multiply Multiply two numbers
ﬂ /subtract Subract second number from first

[BASE URL: /, API VERSION: 1.0]

[217]

Documenting and Testing MicroServices Chapter 10

Additionally, we can provide more information related to the service response, as shown in
the following code:

@ApiResponses (value = {

@ApiResponse (code = 200, message = "Successfully Added two numbers."),
@ApiResponse (code = 401, message = "You are not authorized to view the
resource"),

@ApiResponse (code = 403, message = "Accessing the resource you were trying
to reach is forbidden"),

@ApiResponse (code = 404, message = "The resource you were trying to reach

is not found")

})

Most of the time, the default Swagger documentation will suffice, but as mentioned above,
we can enhance the documentation by adding more details through annotations.

While we are talking about annotations, there is another simple way to document your
APIs - through a tool called APIdoc, which provides us simple annotations that can help us
with to document our Microservice APIs. Let's take a look at this in the next section.

APldoc

We have talked about Swagger, which is more of an automated way of generating
documentation and is useful in most cases, but there are times when you would like to
have more control over what information you document and share with users. APIdoc
(http://apidocis.com/) is a very simple tool that helps us generate the documentation
based on annotations. It gives us a lot of control, and it is similar to JavaDocs, which
developers are already used to.

To get started, install APIdoc using the following command:

sudo npm install apidoc -g

Once APIdoc is installed, we are provided with a set of parameters that can be used to
define documentation.

The following code showcases use of APIdoc:

package com.packt.Microservices.calculator?2;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
/***** This class implements Calculator functions***/

@author packt

[218]

http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/

Documenting and Testing MicroServices

Chapter 10

@RestController
public class CalculatorController

{

/***Request to add 2 numbers*/

@api {get} /add?numl={numl}&num2={num?}
* @apiName Add

* @apiGroup Calculate

* @apiVersion 1.0.0

** @apiParam {Number} numl first number
* @apiParam {Number} num2 second number
** @apiSuccess {Number}

@GetMapping ("/add")

public int addNumber (int numl, int num2)
{

return (numl+num?2) ;

/***Request to subtract 2 numbers*/

@api {get} /subtract?numl={numl}&num2={num? }
* @apiName Subtract

* @apiGroup Calculate

* @apiVersion 1.0.0

** @apiParam {Number} numl first number

* @apiParam {Number} num2 second number

** @apiSuccess {Number}

@GetMapping ("/subtract")

public int subtractNumber (int numl, int num?2)
{

return (numl-num?2) ;

/***Request to multiply 2 numbers*/

@api {get} /multiply?numl={numl}&num2={num? }
* QapiName Multiply

* @apiGroup Calculate

* @apiVersion 1.0.0

** @apiParam {Number} numl first number

* @apiParam {Number} num2 second number

** @apiSuccess {Number}

@GetMapping ("/multiply")

public int multiplyNumber (int numl, int num?2)
{

return (numl*num?2) ;

/***Request to divide 2 numbers*/
@api {get} /divide?numl={numl}&num2={num?2 }

[219]

Documenting and Testing MicroServices Chapter 10

* QapiName Divide
* @apiGroup Calculate
* @apiVersion 1.0.0
** @apiParam {Number} numl first number
* @apiParam {Number} num2 second numbe
** @apiSuccess {Number}
@GetMapping ("/divide")
public float divideNumber (float numl, float num?2)
{
return (float) (numl/num2) ;
3
}

Finally, add apidoc. json with basic properties, as follows:

{
"name": '"Calculator App",
"version": "1.0.0",
"description": "This app is used to implement Calculator functions",
"title'": "Calculator",
"url" : "https://packt.mycalculator.com/v1"
}

Now, we just need to generate the documentation, as follows:

apidoc -1 /Users/kamalmeetsingh/Downloads/calculator2/ -o
/Users/kamalmeetsingh/Downloads/calculator2/docs/

This will generate the documentation in the output directory. We can open index.html to
view the documentation. We can deploy the documentation directory on a server to make it
publicly available.

[220]

Documenting and Testing MicroServices

Chapter 10

An image of the output is as follow:

numbers

numbers

numbers

Calculator App

Calculate

This app is used to implement Calculator functions

Request to add 2 numbers

Request to divide 2

Request to multiply 2 Ca lcu late

Request to subtract 2

Calculate - Request to add 2 numbers

https://packt.mycalculator.com/vl/add?numl={numl}&num2={num2}

Parameter
Field Type
numl Number
num2 Number
Success 200
Field Type
Sum Number

Description

first number

second number

Description

of the two numbers.

1.0.0~

1.0.0~

This kind of documentation gives us complete control over the documentation that we are

creating. APIdoc gives us some core attributes, which can be used to generate

documentation.

You can see how we have used some attributes in the following:

@api: Signature of API

@apiName: Name of API
QapiGroup: Group-related APIs
@apiVersion: Versions of API
@apiParam: Define parameters
@apiSuccess: Response on success

Apart from the preceding ones, there are a few more important attributes to mention,
which you might want to use as and when needed:

[221]

Documenting and Testing MicroServices Chapter 10

e QapiError: Error return parameter.

® GapiErrorExample: Example of an error return message, output as a
preformatted code.

® QapiHeader: Describe a parameter passed to your API-Header, such as for
authorization.

® QapiHeaderExample: Example showcasing the headers.
® QapiSampleRequest: Example showcasing the sample request.

You can learn more about APIdocs at http://apidocjs.com/. This can be a very powerful
tool for API documentation, which allows us to provide as much detail as we would like.

Additional Documentation Frameworks

So far, we have looked at the Swagger and APIdoc libraries. There are many additional
tools that can help us in documenting our services and Microservices. In the end, it will
come down to the preference of the development team. It is worth talking about Enunciate
and the Spring REST docs before we move ahead to the next topic:

¢ Enunciate: This is an open source project, licensed under Apache License. It is
easy to integrate with existing web projects and has a set of annotations available
to support documentation. More information can be found at http://enunciate.
webcohesion.com/,https://github.com/stoicflame/enunciate/wiki, which
has a sample project code as well.

¢ Spring REST docs: Will it be beneficial if we can create our documentation while
we are implementing our test cases? That is the thought behind Spring REST
docs. Though it does add some dependency on unit testing, it is like killing two
birds with one stone. If you are already using the Spring framework, you should
definitely give the Spring REST docs a try. For more details and some sample
usage, check out nttps://spring.io/projects/spring-restdocs.

Testing Microservices

Testing is an important factor for any application. You want to make sure that your
application and Microservices will work fine and withstand cases when things go wrong.
We can look at testing at different levels, such as unit testing, integration testing, service-
level testing, and end-to-end testing.

[222]

http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://apidocjs.com/
http://enunciate.webcohesion.com/
http://enunciate.webcohesion.com/
http://enunciate.webcohesion.com/
http://enunciate.webcohesion.com/
http://enunciate.webcohesion.com/
http://enunciate.webcohesion.com/
http://enunciate.webcohesion.com/
http://enunciate.webcohesion.com/
http://enunciate.webcohesion.com/
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://github.com/stoicflame/enunciate/wiki
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs
https://spring.io/projects/spring-restdocs

Documenting and Testing MicroServices Chapter 10

We will cover each of these aspects in detail.

Unit testing

The idea is to test each unit of your application independently. This is mostly easy to
implement, as we are focusing on only one unit at a time. For each unit, we need to think
about all the cases that can occur. For example, let's take the simple division method from
our previous example, as follows:

public float divideNumber (float numl, float num2)
{
return (float) (numl/num?) ;

}

We will need to think whether the divide by zero error is handled. Can I divide negative
numbers? Are fractions being handled? For a simple single-line method, we can think of so
many scenarios. So, let's take a look at what our Unit-testing class would look like:

package com.packt.Microservices.calculator?2;
import static org.junit.Assert.assertEquals;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
QRunWith (SpringRunner.class)
@SpringBootTest
public class Calculator2ApplicationTests
{

/*** This method tests division of 2 integers*/

@Test

public void divideIntegerSuccessTest ()

{

CalculatorController calculatorController = new

CalculatorController();

int numl = 10;

int num2 = 5;

float expectedResult = 2;

float actualResult = calculatorController.divideNumber (numl, num2);

assertEquals (expectedResult, actualResult, 0);
t
/*** This method tests for division of two float numbers*/
@Test
public void divideFloatSuccessTest ()
{
float numl = (float) 55.5;
float num2 = (float) 11.1;

[223]

Documenting and Testing MicroServices Chapter 10

float expectedResult = 5;
float actualResult = calculatorController.divideNumber (numl, num2);
assertEquals (expectedResult, actualResult, 0);
t
/*** This method tests for division by negative numbers*/
@Test
public void divideFloatNegativeSuccessTest ()
{
CalculatorController calculatorController = new
CalculatorController () ;

float numl = (float) -55.5;

float num2 = (float) -11.1;

float expectedResult = 5;

float actualResult = calculatorController.divideNumber (numl, num2);

assertEquals (expectedResult, actualResult, 0);

}

/*** This method tests for division by negative numbers*/
@Test

public void divideByZeroTest ()

{

CalculatorController calculatorController = new CalculatorController();

int numl = 30;

int num2 = 0;

float expectedResult = Float.POSITIVE_INFINITY;

float actualResult = calculatorController.divideNumber (numl, num2);

assertEquals (expectedResult, actualResult, 0);

}
}

We have written so many test cases for a single line of code. One important question that
comes up time and time again is, "How much unit testing is sufficient?" One way to track
that is through code coverage. We should normally target for 90% code coverage. But this
number can go up or down based on your application. For example, in our case, we have
only a single line of code, so we will definitely achieve 100% coverage with just a single test
case. But it is good to cover just as many corner cases as well, for example, if an error occurs
at some point, how the application would behave.

When talking about Unit testing, another important factor is mocking. Let's say your code
interacts with additional code, which might be a part of the same service or a different
service. We would ideally like to mock any such outsider service, as all we want to test
right now is a current unit in hand, that is the unit we want to validate.

[224]

Documenting and Testing MicroServices Chapter 10

To understand the power of mocking, let's extend our previous example a little bit. Let's say
we need to divide a number by a constant value, and this value will be supplied by another
third-party service. We will use the constructor injection to add the third-party
dependency, as follows:

FetchConstantService fetchConstantService = new FetchConstantService();
CalculatorController (FetchConstantService fetchConstantService)
{
this.fetchConstantService = fetchConstantService;
}
/***Request to divide 2 numbers*/
@api {get} /dividebyconstant?numl={numl}&num2={num?2}
* @apiName Divide
* @apiGroup Calculate
* @apiVersion 1.0.0
** @apiParam {Number} numl first number
** @apiSuccess {Number} Quotient when numl is divided by constant.
@GetMapping ("/dividebyconstant")
public float divideNumberByConstant (float numl)
{
float num2 = fetchConstant ();
return (float) (numl/num?) ;
}
/**** This method return a constant value based on a third party service*/
* @return
public float fetchConstant ()
{
return fetchConstantService.getConstantValue();

}

The divideNumberByConstant method is of interest to us. We would like to test how this
method would work. But we can clearly see that this method calls another method, and that
another method calls a third-party service. Now we do not have any control over the third-
party services; moreover, we might not want to test them, as they would be tested by the
team providing them. So, why waste time testing something that is already tested! In such
cases, it is logical to mock any dependencies that we don't want to test.

There are many libraries to implement mocking. As an example, we will use Mockito, as
follows:

/*** This method tests divide by constant*/
@Test
public void divideByConstantSuccessTest ()
{
FetchConstantService fetchConstantService =
Mockito.mock (FetchConstantService.class);
when (fetchConstantService.getConstantValue ()) .thenReturn((float) 2);

[225]

Documenting and Testing MicroServices Chapter 10

CalculatorController calculatorController = new
CalculatorController (fetchConstantService);

int numl = 10;

// define return value for method

getUniqueId ()

float expectedResult = 5;

float actualResult = calculatorController.divideNumberByConstant (numl) ;

assertEquals (expectedResult, actualResult, 0);

}

The idea is to assume that, when the third-party service works fine, our code should work
well.

Integration Testing

In the last section, we talked about unit testing, where we tested each individual unit
independently and recommended mocking any external services. With integration testing,
our focus is the reverse, that is, we actually want to test whether our service is able to
communicate with any outside resources or services. If the other service is down or not
reachable, will our service handle the scenario gracefully?

So, revisiting our example, where we talked about fetching a constant value from a third-
party service, we have the following:

FetchConstantService fetchConstantService = new FetchConstantService();
CalculatorController (FetchConstantService fetchConstantService)
{

this.fetchConstantService = fetchConstantService;

/**Request to divide 2 numbers*/
* @api {get} /dividebyconstant?numl={numl}&num2={num2}
* @apiName Divide
* @apiGroup Calculate
* @apiVersion 1.0.0
** @apiParam {Number} numl first number
** @apiSuccess {Number}
@GetMapping ("/dividebyconstant")
public float divideNumberByConstant (float numl)
{
float num2 = fetchConstant ();
return (float) (numl/num?) ;
}
/**** This method return a constant value based on a third party service
* @return*/

[226]

Documenting and Testing MicroServices Chapter 10

public float fetchConstant ()
{

return fetchConstantService.getConstantValue();

}

We are using a service that is a black box to us. We do not know what is happening behind
the scenes; it might be fetching the data from some file, some database, some third-party
service, or so on. This black box can fail or behave in an unanticipated manner. That is what
integration testing is all about! We will not mock fetchConstant this time, and see what
will happen in the following code:

/*** This method tests divide by constant—- no mocks*/
@Test

public void divideByConstantSuccessNoMockTest ()

{

FetchConstantService fetchConstantService = new FetchConstantService();

CalculatorController calculatorController = new
CalculatorController (fetchConstantService);
int numl = 10;
// define return value for method
getUniquelId()
float expectedResult = 2;
float actualResult = calculatorController.divideNumberByConstant (numl) ;

assertEquals (expectedResult, actualResult, 0);
}

This test case actually brings out a lot of flaws in our code. For example, we have not
handled the cases where the black box service is not responding or taking a lot of time.
When we start integration testing, we will be forced to harden our service, to make sure we
handle all the corner cases.

The following code shows an example of an integration test:

@GetMapping ("/dividebyconstant")
public float divideNumberByConstant (float numl)
{
float num2;
try
{
num?2 = fetchConstant ();
}
catch (Exception e)
{
// In real code we will handle multiple exceptions expected
// and not just the high level exception
// Once an error occur, we will need to handle it.
// We will need to log the proper error and handle it gracefully

[227]

Documenting and Testing MicroServices Chapter 10

// so that or code does not break.
num2 = 2;
t

return (float) (numl/num2) ;

}

We also need to add timeouts to make sure our services do not get stuck for long periods
of time. These best practices help our code to be robust and disaster-ready. A good
integration test brings out loopholes in your code and fixes the problems before end users
start reporting them.

Service Testing

Here, we are talking about testing our Microservice as a whole. For example, in the
calculator service example we used throughout the chapter, we talked about making sure
all the methods in the service are tested. Well, this is a very simple service, but in most
cases, it would mean that all the layers (data, business, and so on) in a service work fine. A
more real-world example would be that we are updating data for an employee and we hit a
service with some data, which in turn calls a business validation layer to validate the
correctness of the data. After validation, a data layer would be called and, finally, the data
is stored. A service-level test would mean testing all these layers. We will discuss these
layers in detail in the Levels of testing section.

Testing a Microservice from end to end can be complicated, as at times it might mean we
need to bring up the service, make calls to the endpoint, and make sure things work fine.
There are many tools available for our help. Here, I will use MockMVC, which integrates
well with Spring Boot. This will demonstrate how we can test an end-to-end service. We

will use the previous example for the calculator service, specifically the add operation, as
follows:

@GetMapping ("/add")
public int addNumber (int numl, int num2)
{

return (numl+num?2) ;

}

Here is the code to test the preceding service:

//We will create a simple test to do end to end testing

package com.packt.Microservices.calculator?2;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;

[228]

Documenting and Testing MicroServices Chapter 10

import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.request.MockMvcRequestBuilders;
import org.springframework.test.web.servlet.result.MockMvcResultMatchers;
QRunWith (SpringRunner.class)
@WebMvcTest (CalculatorController.class)
public class RestTest
{

@Autowired

private MockMvc mvc;

@Test

public void testRESTAdA()

throws Exception

{

mvc.perform(MockMvcRequestBuilders.get ("/add?

numl=1&num2=2")) .andExpect (MockMvcResultMatchers.status () .1is0k ()) .andExpect
(MockMvcResultMatchers.content () .string("3"));

}
}

The code that we are interested to test is the way we made a call to our add service. We
make a mock call to the service and validated the end result, that is, we sent 1 and 2 as an
input to the service and validated 3 as an output of the add operation.

End-to-end testing

Our application is not a standalone Microservice but a combination of multiple
Microservices, which are supposed to work together to make sure the end user gets the
results for which the application is created. With the end-to-end test, we try to think from
the end user's perspective and make sure the application works as a whole. This is the most
tricky and time-consuming test.

In a web application, the end-to-end testing would mean that all features, services,
database, queues, and external dependencies in the application work fine. So, if we have a
simple form to be submitted through an interface, and we have a Microservice or a bunch
of Microservices to receive, validate, and manipulate the data provided, end-to-end testing
would mean making sure that everything is working fine as a whole system.

At times, we will focus on negative testing. Say one of many services is down, how will it
impact our application as a whole? Will our application handle such a scenario gracefully,
or will it bring our whole application down?

[229]

Documenting and Testing MicroServices Chapter 10

At times, we will rely upon manual testing to make sure our application works from end to
end. But again, there are tools that help us test an application from end to end. A popular
one is Selenium (https://www.seleniumhq.org). Tools such as Selenium help us automate
the browser testing, that is, we can define the user flow right from entering the URL into
the browser, fill in the forms, click the submit buttons, and validate resultant responses.
Selenium has gained a lot of popularity recently because of it's open source and has strong
community support. You can also go for licensed solutions, such as Unified Functional
Testing (which used to be popularly known as QTP).

The bottom line is that you can go for an open source or licensed solution, or even for
manual end-to-end testing, but it is very important to make sure that we look at the
solution from an end user's perspective.

Levels of Testing

We talked about different levels of testing that can be done when we create an application
that uses Microservices. Let's take an example to clarify the difference between different
types of testing and how useful each is. Say we have a form that lets the user enter
employee details that get saved to a database and a success message is returned to the
calling client. Additionally, say we use a layered design, with Controller, Service,
Business, and Data.

The following diagram should make the design clear:

ul Controller Service Business ata
JEU A . T __...._EndToEnd
[B e [P i
I . . I
' A . | |_Units | _____Integration
1 Request 1 If """""""""""""""" 1| :
| -
| T Request f "
! 1 Request | v
I : 1 » [
1 I 1 [
I | 1 [
1 . [N T [
1 1 [
1 ! L N S L R, LI
1 : _ | Vo
X 1 - Response | Database -
1 - ! Response 1 [
! Response | S e R !
| e e | __service ... |
S F [R I) R

[230]

https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.seleniumhq.org

Documenting and Testing MicroServices Chapter 10

Unit Testing: Each class and each method is a unit in itself and can be tested
independently. For example, say we take a look at the business layer, which
might have many classes. We will take each class, and then try to test each
method. In an ideal world, we would test each unit independently, but this might
be time-consuming. So, based on time availability, it might make sense to
understand core areas of your application and implement unit testing for those.
Integration Testing: Most of the time, our services cannot work in isolation. In
the preceding example, our service is actually talking to a database. We need to
test whether our service will work when the database is available and able to
handle cases when the database is not responding or is slow.

Service Testing: Here we will focus on the service as a whole. We might want to
mock any external dependencies, but we will make sure all the code that is part
of our service — all the layers — should be tested.

End-to-end Testing: This includes testing from the first layer — the UI — until the
last layer — the database.

Putting it all together, the following diagram should give you a clearer picture about what
different levels of testing indicate:

ul Controller Service Business ata
.- L ~____..._EndToEnd
i B - 1 i
] R]
. N | Integration
1 REqLIEST. o] ;'______" I T _____'::
: : = Request _ | 1
! 1 > Request | .
- | | -
1 f 1 [}
1 f | [
1 f 1 [}
1 f 1 [
1 f - | le [
, 1 - Response | alabase
1 ! Response | 11
' Response | e e e e '
' ST .. | _service | '
oo | [e T T T T]
1 1 1 1 1

The preceding markings should help you visualize the different layers of testing.

[231]

Documenting and Testing MicroServices Chapter 10

Summary

In this chapter, we discussed two important aspects of Microservices: documentation and
testing. Documentation is important for any software so that others can understand how to
use the services you have created. Without proper documentation, it will be hard for
anyone to understand how to use the services properly, what types of input are expected,
what outputs are returned, and what kind of error messages to anticipate. We talked about
Swagger and APIdocs for documentation and touched upon a few additional frameworks
that can help.

We talked about the various levels of testing that can be done for a Microservices-based
architecture. In unit testing, we would try to test each class and method as independent
units and make sure each smallest unit works fine independently, by mocking any
unnecessary dependencies. While implementing integration testing, we would make sure
that our service is able to interact with external dependencies and handle the problem
scenarios gracefully. Service-level testing is responsible for testing the complete
Microservice. Finally, end-to-end testing makes sure the system will work fine as a whole
for the end user.

[232]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Cloud Native
Architectures

Dosign Ngh-avalabity and cost edfective appications for the coud

b

Cloud Native Architectures
Tom Laszewski

ISBN: 9781787280540

Learn the difference between cloud native and traditional architecture
Explore the aspects of migration, when and why to use it

Identify the elements to consider when selecting a technology for your
architecture

Automate security controls and configuration management

Use infrastructure as code and CICD pipelines to run environments in a
sustainable manner

Understand the management and monitoring capabilities for AWS cloud native
application architectures

https://www.packtpub.com/application-development/cloud-native-architectures

Other Books You May Enjoy

Microservices
Development

Microservices Development Cookbook
Paul Osman

ISBN: 9781788479509

¢ Learn how to design microservice-based systems

e Create services that fail without impacting users

¢ Monitor your services to perform debugging and create observable systems
Manage the security of your services

Create fast and reliable deployment pipelines
¢ Manage multiple environments for your services

Simplify the local development of microservice-based systems

[234]

https://www.packtpub.com/application-development/microservices-development-cookbook

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[235]

A

additional documentation frameworks
Enunciate 222
Spring REST docs 222
Amazon Web Services (AWS) 125, 163
Apache Maven
installing 20
URL 18
Apache Tomcat
URL 44
APIdoc
about 218
installing 218
URL 218
using 218,220, 221
Archives 182, 183
aspect-oriented programming (AOP) 168
asynchronous communication, for Microservices
responses, streaming with SSE 81
services, decoupling with message-oriented
middleware 94
services, speeding up with Reactive APl 71
two-way asynchronous services, with
WebSocket 92
asynchronous services, speeding up with Reactive
API
about 71, 72
asynchronous exceptions 77
asynchronous timeouts, handling 78
asynchronous timeouts, specifying 78
code, simplifying with third-party reactive
framework 79, 80
multiple parallel call results, collecting 72, 73
reactive REST service 78

REST response, completing asynchronously 74,

75,76

Index

asynchronous services
decoupling, with message-oriented middleware
94, 96

B

Bill of Materials (BOM) 197
bulkhead pattern 104

C

caching 138
cascading failure 101
circuit breaker pattern 101
circuit breakers
about 109
circuit breaker code example 112, 113
closed state 111
example 109, 110, 111
fan out and fastest response 115
half-open state 111
open state 111
states 111
client-side cache 139
client
building 49, 50, 51, 52, 53
building, third-party reactive frameworks used
53, 55
Cloud
scalingon 125, 126
column-based databases 136
Command Query Responsibility Segregation
(CQRS) 137
Command-Line Interface (CLI) 29
core concepts of monitoring, Microservices
alerting 163
health checks 163
logging 162
metrics 162

monitoring 162

profiling 162

tracing 162
cURL

about 21

URL 21

D

database realm
used, for configuring Spring Security 155
databases
scaling, with Microservices 133
deployment architecture, for Microservices 207,
209
development environment, Microservices
Apache Maven, installing 20
development tools, downloading 21
environment installation 19
Java Development Kit, installing 19
settingup 18
development tools
about 21
cURL 21
Postman 22
project, creating with Maven 22
distributed caching 140
document-based databases 137
documentation
Microservices 211

E

Eclipse Jetty
URL 45
Elastic Cloud Compute (EC2) 126
ELK
about 177
Elasticsearch
Kibana 177
Logstash 177
working 178
Employee Management System 8
end-to-end testing 229
Enunciate
about 222
URL 222

177

Eureka
about 64
Eureka Server, installing 64, 65
registered service, discovering 68
registered service, invoking 68
service, registering 66
URL 64
example, monitoring
about 163
services, creating 164, 165, 166, 167
exceptions 77

F

failure handling
about 107
asynchronous communication 107
circuit breakers 108
fail fast 108
timeouts 108
failure isolation
bulkhead pattern 104, 105
performing 101, 103
robustness principle 106
stateless services 105
failure
building for 101
preparing for 116
recovering from 116
Fat JAR 44
fat packages
about 184
FatJAR packaging 184, 185
FatWAR packaging 184

G

Gradle plugin 193, 194
Gradle

URL 18
graph-based databases 137

H

HollowJAR 201
horizontal scaling 119
HTTP

about 157

[237]

versus, WebSockets 93
HTTPAuthenticationMechanism API

about 145

Basic HTTP Authentication 145

Custom form-based Authentication 146

Form-based Authentication 146
HTTPS 157

Identity Store
about 147
built-in Identity Store 147
custom Identity Store 147
In-memory realm
used, for configuring Spring Security 154

Integrated Development Environments (IDE) 18

integration testing 226, 227, 228

J

Java Archive (JAR) 34, 181
Java Compiler (javac) 18
Java Development Kit
about 18
installing 19
URL 19
Java EE Microservice solutions
about 186
OpenLiberty 186
Payara Micro 202
Java EE Microservice
about 23, 24
code summary 28
coding 24, 25, 26, 27
configuring 27
invoking 31, 33
running 29
Spring Boot Microservice 33
Weather Microservice, building 30
Weather Microservice, running 31
Java Enterprise Archive (EAR) 182
Java Message Service (JMS) 96
Java packaging
about 181
Archives 182
class file 181

[238]

EAR 182

JAR 181

WAR 182
Java Security API

about 144

HTTPAuthenticationMechanism APl 145
Java Specification Request (JSR) 375 144
Java Web Archive (WAR) 30, 182
JSON-B

URL 55
JWT

anatomy 142, 143

working, for authentication 144

K

key-value based database 136

L

levels of testing
about 230
end-to-end testing 231
integration testing 231
service testing 231
unit testing 231

message-oriented middleware
example 96, 98

used, for decoupling asynchronous services 94,

95
metrics 2.0 format
URL 175
Microservice building
development environment, settingup 18
Java EE Microservice 23
process 17
Microservices, connecting
about 55
Microservices, making discoverable 60
web targets, creating 59
web targets, pooling 59
Microservices
about 11, 12
advantages 14
asynchronous communication 70

challenges 15 WildFly Swarm 195

characteristics 13 WildFly Swarm generator 195
connecting together 55, 56, 57, 58 WildFly Swarm Maven plugin 196
databases, scaling with 133, 134, 136, 137
deployment architecture 207 P
documenting 211, 212 Payara Micro Maven plugin 203, 204, 205, 206
monitoring 160, 161 Payara Micro UberJar 206
monitoring, with Zipkin 168, 170, 171 Payara Micro
scalability 120 about 29, 202
scaling, with caching 138, 139, 140 Payara Micro Maven plugin 203
securing, with JWT 142 Payara Micro Uberdar 206
serverless architecture, using 127, 129, 130, URL 29
131,132 ways, of running 202
testing 222 Plain Old Java Objects (POJO) 198
Miniature Circuit Breakers (MCB) 101 Postman
monitoring, with Zipkin about 22
cases 171,172,173,174 URL 22
monitoring primordial 183
about 159 project
core concepts 162 creating, with Maven 22
example 163 Prometheus
tools 175 about 175
monolith design alert manager 176
about 6 high-level architecture 176
architecture 7 Prometheus server 176
challenges 8 Push gateway 176
characteristics 7 Proxy caching 139
Proxy Server 139
N Public key infrastructure (PKI) 181
NoSQL databases
column-based databases 136 R
document-based databases 137 read replicas 133
graph-based databases 137 Remote procedure calls (RPC) 11
key-value based database 136 responses, streaming with SSE
O about 81
asynchronous service, building 81, 82, 84
OpenLiberty Maven plugin 187, 188, 189 SSE clients, reconnecting automatically 90, 91
OpenlLiberty SSE Java client, building 87, 88, 90
about 186 SSE service, invoking 84, 86
configuring 189, 190 SSE service, invoking from JavaScript 86
Gradle plugin 193 robustness principle 106
key factors 186 RxJava
OpenLiberty Maven plugin 187 URL 53
URL 186

Weather Microservice 191, 193

[239]

S

scalability 118
security context API
about 148
authenticate method 148
getCallerPrincipal method 148
getPrincipalsByType method 148
hasAccessToWebResource method 148
isCallerInRole method 148
Selenium
URL 230
Server-Sent Events (SSE)
about 70, 81
URL 81
server-side cache 139
service testing 228, 229
Service-oriented architecture (SOA) 9, 10
sharded database 135
sharding 135
Simple Notification Service (SNS) 98
Simple Queue Service (SQS) 96
Snoop
about 60
registered services, consuming 63
running 60
service, registering 61, 62
Spring Boot Microservice
about 33
coding 37, 39, 40, 41, 42
project, creating with Maven 33, 34, 35, 36, 37
Spring Boot Weather Microservice, building 43
Spring Boot Weather Microservice
building 43, 45
running 45, 46
spring initializer
URL 164
Spring Loaded
URL 209
Spring REST docs
about 222
URL 222
Spring Security
about 149
configuring, with database realm 155

[240]

configuring, with In-memory realm 154, 155
with Spring-Boot-based Microservices 150, 151,
153
Spring Tool Suite (STS) 19
SSL 157
stateless Microservices
scaling 138
stateless scalability
versus, stateful scalability 120, 122, 124, 125
Swagger
about 212
using 212, 214,216,217, 218

T

testing, Microservices
about 222
end-to-end testing 229
integration testing 226
levels 230
service testing 228
unit testing 223
third-party reactive frameworks
using 53
timeouts 77
TLS 157
tools, for monitoring Microservices
about 175
Appdash 178
Elasticsearch, Logstash, and Kibana(ELK) 177
Fluentd 178
Logspout 178
OpenTracing 178
PagerDuty 178
Phosphor 178
Pingdom 178
Prometheus 175
Splunk 178
two-way asynchronous services
with WebSocket 92

U

Undertow

URL 45
Unified Functional Testing 230
unittesting 223, 224, 225

\'

vertical scaling 119

W

Weather Microservice
building 30
running 31
with OpenLiberty 191, 192
WebSocket-based communication
working 92

WildFly Swarm 195
WildFly Swarm generator 195
WildFly Swarm Maven plugin 196, 198, 200, 201

V4
Zipkin
about 168
Microservices, monitoring with 168, 169, 170,
171
URL 168

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: From Monoliths to Microservices
	What is Monolith design?
	The challenges associated with Monolith design

	Service-oriented architecture
	Understanding Microservices
	Advantages of Microservices
	Challenges with Microservices

	Summary

	Chapter 2: Creating your first Microservice
	Setting up the Development Environment
	Environment installation
	Installing Java Development Kit
	Installing Apache Maven
	Downloading development tools
	cURL
	Postman

	Creating the project with Maven

	Your very first Microservice
	A Java EE Microservice
	Coding the Microservice
	Configuring the Microservice
	Code summary
	Running the Microservice
	Building and running the Weather Microservice
	Invoking the Microservice
	A Spring Boot Microservice
	Creating the project with Maven
	Coding a Spring Boot Microservice
	Building the Spring Boot Weather Microservice
	Running the Spring Boot Weather Microservice

	Summary

	Chapter 3: Connecting Microservices Together
	Building a client
	Using third-party reactive frameworks

	Connecting two Microservices together
	Creating and pooling web targets
	Making Microservices discoverable
	Snoop
	Running Snoop and registering our service
	Consuming registered services

	Eureka
	Installing Eureka Server
	Registering the service
	Discovering and invoking the service

	Summary

	Chapter 4: Asynchronous Communication for Microservices
	Speeding up services with the Reactive API
	Collecting results of multiple parallel calls
	Completing a REST response asynchronously
	Asynchronous exceptions
	Specifying and handling asynchronous timeouts
	A complete reactive REST service
	Simplifying the code with a third-party reactive framework

	Streaming responses with SSE
	Building an asynchronous service
	Invoking the SSE service
	Invoking the SSE service from JavaScript
	Building an SSE Java client
	Automatically reconnecting of SSE clients

	Two-way asynchronous services with WebSocket
	A quick comparison between HTTP and WebSockets

	Decoupling services with message-oriented middleware
	An example of message-oriented middleware

	Summary

	Chapter 5: Path to Robust Microservices
	Building for failure
	Isolating the failure
	The bulkhead pattern
	Stateless services
	The robustness principle

	Handling the failure
	Asynchronous communication
	Fail fast
	Timeouts
	Circuit breakers
	A circuit breaker code example

	Fan out and fastest response

	Recovering from failure
	Preparing for failure
	Summary

	Chapter 6: Scaling Microservices
	What is scalability?
	Microservices and scalability
	Stateless versus Stateful scalability
	Scaling on the cloud
	Going serverless with microservices
	Scaling databases with Microservices
	Scaling Microservices with caching
	Summary

	Chapter 7: Securing Microservices
	Securing Microservices with JWT
	Anatomy of a JWT
	How does JWT work for Authentication?

	Java Security API – JSR 375
	The HTTPAuthenticationMechanism API
	Basic HTTP Authentication
	Form-based Authentication
	Custom form-based Authentication

	Identity Store
	Built-in and Custom IdentityStores

	The security context API

	Spring Security with Spring-Boot-based Microservices
	Configuring Spring Security with the In-memory realm
	Configuring Spring Security with the database realm

	HTTPS – The Secured Protocol
	Summary

	Chapter 8: Monitoring Microservices
	What is monitoring and why is it required?
	Monitoring Microservices

	Understanding core concepts and terms
	Taking a closer look using an example
	Creating the example services
	Monitoring Microservices with Zipkin
	Case 1 – service is unresponsive
	Case 2 – service responding slowly

	Tools for monitoring Microservices
	Prometheus for monitoring and alerting
	Elasticsearch, Logstash, and Kibana (ELK)
	Considering more tools

	Summary

	Chapter 9: Building, Packaging, and Running Microservices
	Introduction to Java Packaging
	Understanding Archives
	Fat packages
	FatWAR packaging
	FatJAR packaging

	Java EE MicroService solutions
	OpenLiberty
	The OpenLiberty Maven plugin
	Configuring OpenLiberty
	The Weather Microservice with OpenLiberty
	The Gradle plugin
	WildFly Swarm
	The WildFly Swarm generator
	The WildFly Swarm Maven plugin
	HollowJAR

	Payara Micro
	The Payara Micro Maven plugin
	The Payara Micro UberJar

	The Deployment Architecture for Microservices
	Summary

	Chapter 10: Documenting and Testing MicroServices
	Documenting Microservices
	Swagger
	APIdoc
	Additional Documentation Frameworks
	Testing Microservices
	Unit testing
	Integration Testing
	Service Testing
	End-to-end testing

	Levels of Testing
	Summary

	Other Books You May Enjoy
	Index

