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FOREWORD

When Vinod Wadhawan mentioned to me a few years ago that he
was considering writing a book on ferroic materials, I was immediately
enthusiastic about the idea. Why? Well, this is a subject in which many
people are working, often without realising it, and for which there is at
the moment a distinct lack of material written at the level of a textbook.
Most of this topic can be found in research publications as well as in bits in
various textbooks, but hardly in a form that addresses the whole subject
within one place. So the idea of having a book to describe this topic excited
me from the start.

To understand why this should be, I have first to explain that the
term 'ferroic' is all about the potential or actual ability of a material to
switch some of its physical properties from one state to another. A mo-
ment's thought will demonstrate that this is a very wide remit indeed, and
this is why many scientists engaged in materials research are often studying
ferroic materials and ferroic properties without understanding that they ac-
tually form almost a complete scientific discipline. In the 19th century the
ability of certain materials to switch the directions of their magnetisations
under an applied field led to the classification known as ferromagnetism.
The 'ferro' part simply referred to the fact that iron was the most com-
mon type of magnet showing such behaviour, but the term was adopted
to cover all types of switchable magnetic materials. The switching ability
was found to be described by a form of hysteresis curve between applied
field and magnetisation. Then in the early part of the 20th century, it was
discovered that some materials showed a similar sort of switchability, this
time in their electrical polarisation when an electric field was applied. Such
materials were termed ferroelectrics, simply by analogy with ferromagnets
(nothing to do with iron !), and again these showed characteristic hysteresis
curves between field and polarisation. This led to a new science and a new
scientific community, that of ferroelectricity, which then developed largely
independently from ferromagnetism.

More recently, it was realised that there was a third type of switchable
behaviour to consider, this time in the elastic properties. Thus a plot of
applied stress against strain in some crystalline materials again showed a
hysteresis curve, and this then led to the term ferroelasticity being coined.
It then became apparent that it would be possible to unify these three pro-
perties under the overall title of 'ferroics', and in so doing the classification
was then easily extended to cover cross-terms in the above properties. Thus,
for instance, the property of piezoelectricity in which an applied stress cre-
ates an electric charge, well known these days in the kitchen when one
lights a modern gas cooker with a spark generated by a special battery-less

xix
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lighter, is then thought of as indicative of ferroelastoelectricity (provided
one can identify or imagine an acceptable 'prototype' symmetry for the
material). You can see therefore that anyone working on just about any
piezoelectric substance is in fact working on a ferroic material.

Another important aspect of ferroic materials is that they conform to
definite symmetry principles. In general they have symmetries that are
subgroups of others, which in crystal structural terms means that their
structure consists of small deviations from a parent or prototypic structure
- the concept of pseudosymmetry. This means that ferroic materials often
undergo phase transitions as a function of temperature or other variables,
and so the need for an understanding of ferroicity automatically leads one
to the theory and experimental study of phase transitions.

It is important to understand that once one has a scheme to classify
a large number of apparently disparate behaviours of a substance, one can
then look for the relationships between the properties. The concept of fer-
roicity does this in a very successful way and this has enabled much to
be learnt about how the different properties arise. Such knowledge is then
invaluable in meeting the technological challenges of designing new mate-
rials. I believe therefore that the readership of this book will be those who
are already informed about ferroics and those who know little or nothing
about this concept. The first group will be pleased to have the essential
ideas located within one text rather than having them scattered throughout
the scientific literature; and the second are probably in for a surprise when
they discover that all along they too have been working in this field, but
were unaware of it.

Vinod Wadhawan is one of the world's leading authorities on ferroic
materials, as well as being a personal friend for many years. I am very
pleased that he has succeeded in writing such a book, and I think it will have
a lasting influence on those who read it. This is a subject that spans all of
materials science from theory to practice, and involves knowledge of many
disciplines including physics, chemistry, crystallography and engineering.
It is therefore a multidisciplinary subject, making it accessible to scientists
from many backgrounds. Vinod has managed to put together a book that
can be read at all levels, whether as a student or as an active research
scientist. I am particularly delighted by the clarity and at the same time
thoroughness with which the concepts are discussed here.

Clarendon Laboratory A. M. Glazer
Oxford President, B. C. A.

Professor, University of Oxford



PREFACE

Although the term 'ferroic materials' is not very widely familiar yet,
ferroic materials themselves have been known for a long time, especially
because of their device applications. Lithium niobate, the Ni-Ti alloy
NITINOL, chromium dioxide, and quartz are examples of ferroic mate-
rials. Lithium niobate is a ferroelectric, finding a variety of applications in
the manipulation and control of laser radiation. NITINOL is a ferroelastic,
well known for its extensive shape-memory applications. Chromium diox-
ide is a ferromagnetic, used in the recording-tapes industry. Quartz is a
ferrobielastic, having wide-ranging applications as a transducer material.
The special properties of ferroic materials, making them important for de-
vice applications, arise from the presence of a ferroic phase transition. We
call a 'nondisruptive' phase transition a ferroic phase transition if it en-
tails a change of the point-group symmetry of the material with reference
to a certain prototype symmetry. The loss of point-symmetry operators
results in the occurrence of domain structure, and the domain structure
of ferroic materials can be manipulated to advantage, at least in a certain
temperature range. This is one of the salient features of ferroic materials.

Two other important features of ferroic materials arise in the vicin-
ity of the ferroic-transition temperature. One is the enhancement of some
macroscopic properties (e.g. certain generalized susceptibilities, and pro-
perties coupled to them). To mention a familiar example: in the vicinity of
a 'proper' ferroelectric phase transition the polarization is a very sensitive
and nonlinear function of electric field. This means that in the vicinity of
the transition the material develops a large response function (susceptibil-
ity) for the property (polarization) corresponding to the primary instability
driving the transition. And if there is a strong coupling of the spontaneous
polarization with, for example, birefringence, then birefringence also will
exhibit an enhanced sensitivity to electric fields, giving rise to large electro-
optic effects.

The other important feature of ferroics in the vicinity of the ferroic ph-
ase transition is their amenability to certain field-induced phase transitions.
A well-known manifestation of this is the occurrence of the shape-memory
effect in many ferroelastics.

Several excellent texts are available on ferroelectric, ferroelastic, and fe-
rromagnetic materials, as also on the industrial applications of transducer
materials like quartz. But a single book putting the entire field of ferroics in
an adequate, systematic, perspective, and written in a pedagogical manner,
has not been available so far. The present book is intended to meet that
requirement. It is the first of its kind, in that a substantial portion of it (in
fact, much of Part A) deals with the common characteristics of this class of

xxi
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materials. And there is no better way of doing this than through symme-
try considerations. A ferroic phase transition results from a spontaneous
breaking of symmetry. Symmetry considerations, being largely system-
independent, have a great unifying influence on the understanding of large
classes of apparently unrelated phenomena. A wide range of properties
of ferroic materials can be understood in terms of the symmetry-breaking
ferroic transition. This book attempts to explain (at an elementary level)
how this understanding is acquired, with emphasis on the utilitarian role
of symmetry in materials science.

Over the last decade and a half, the field of smart materials and struc-
tures has been progressing at a good pace. A smart material is designed to
alter its properties automatically to suit the changes in environmental con-
ditions. In the so-called actively smart materials, the in situ fine-tuning of
properties is effected through an external biasing mechanism. The highly
nonlinear behaviour of ferroic materials in the neighbourhood of the fer-
roic transition makes them obvious candidates for the field-tuning of their
relevant properties for smart-structure applications. NITINOL, lead lan-
thanum zirconate titanate (PLZT), and lead magnesium niobate (PMN)
are some of the more popular ferroic materials being investigated and used
for this purpose. TERFENOL — D, in many ways the magnetic analogue
of NITINOL, is another promising material in this context. Deeper in-
sights into why ferroic materials behave the way they do will surely lead to
exciting new developments in smart-materials research.

The level of presentation of the book should make it useful to under-
graduate and graduate students of materials science and physics. Basic
physical principles are brought out. A reasonably self-contained and con-
nected account of the subject is attempted. However, the level of presenta-
tion is not uniformly the same throughout. This is because I have tried to
meet two somewhat disparate objectives. One is to expose the beginner to
this field to practically the entire gamut of concepts, definitions, and jar-
gon. The other is to let the experienced worker in one part of the field have
a feel for what other experts have been doing. From the beginner's point of
view the approach adopted is somewhat different from that of many of the
existing texts on crystallography, crystal physics, and phase transitions, in
that the Curie-Shubnikov principle of symmetry is used explicitly, time and
again.

When I was more than half way through with the writing work, I came
across an unusual new book: Principles of Condensed Matter Physics by
Chaikin & Lubensky (1995). This is an excellent text at an advanced level.
What is unusual about it is the subject matter covered under the title of
condensed-matter physics. Practically the entire book is designed to deal
with the consequences of spontaneous breaking of continuous and discrete
symmetries in condensed-matter systems. The similarity of approach with
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the present book is obvious. Ferroic properties are a consequence of spon-
taneous breaking of a specific type of symmetry, namely crystallographic
point-group symmetry. Although the present book has been written at
a more elementary level, and covers very different ground from that of
Chaikin & Lubensky, it reflects a shifting trend in the modern approach
to condensed-matter physics, particularly after the formulation of K. G.
Wilson's renormalization-group theory.
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Part A

GENERAL CONSIDERATIONS

Chapters 1 to 8 comprise Part A of the book. Chapters 1 to 5 deal
with basic condensed-matter physics, covering topics such as crystallogra-
phy, crystal physics, diffraction physics, and phase transitions. Chapter
6 describes a tensor classification of ferroic materials. It also deals with
optical and acoustical ferrogyrotropy. These two topics are not considered
in a separate chapter later because ferrogyrotropy is only an implicit form
of ferroicity, which can occur in a material only as an adjunct to another,
explicitly ferroic, property.

Chapters 7 and 8 deal with the general aspects of domain structure of
ferroics.

Contents of Part A serve to highlight the common features of the wide
variety of ferroic materials.

1
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Chapter 1

INTRODUCTION

This chapter is in two parts. The first provides an overview of what this
book is all about, and how the subject matter is divided among its chapters.
In the second part we trace briefly the historical development of the subject
of ferroic materials.

1.1 OVERVIEW
A large fraction of solids in the inanimate world have a crystalline atomic
structure. This indicates that the most stable arrangement of atoms or
molecules in a solid is frequently that which involves a periodic repetition
of an atom or a group of atoms along three noncoplanar directions. This
arrangement can be viewed as a repeated stacking of a certain building
block (the unit cell) along the three dimensions in a space-filling manner.
Because of their regular atomic structure, crystals usually display a rather
high degree of symmetry, as also anisotropy, in their physical properties.

To understand and describe adequately the repetitive and symmetric
internal structure of crystals, and also the properties resulting from such
a structure, one must use an appropriate mathematical language. Group
theory provides such a language (although not entirely adequately). We
recapitulate in Appendix B the relevant basics of group theory, after listing
some elementary terms and concepts of set theory in Appendix A.

The atomic structure of a crystal possesses symmetry. It always has
at least the translational symmetry. What this means is that if someone
were to translate all the atoms in the crystal by an integral number of re-
peat distances along one or more of the three directions of repetition, the
atomic arrangement would look exactly as before. One expresses this fact
by saying that the crystal structure, because of its translational symmetry,
is invariant under translations corresponding to the repeat-distance vectors.

3



4 1. Introduction

The connection between symmetry and invariance is of a general nature. It
is known in physics as Noether's theorem, which can be stated in a highly
simplified form as follows: Wherever there is a symmetry in Nature, there is
a corresponding conservation law. Somewhat more rigorously: If there ex-
ists an infinitesimal transformation of the dynamical variables which leaves
the Lagrangian invariant, then every parameter of such a transformation
is associated with a conservation law (Noether 1918; also see Kimberling
1972).

In addition to translational symmetry, a crystal may possess rotational
symmetry. That is, its structure and other properties may remain invari-
ant under certain specific rotations (or rotations combined with inversion)
performed about specific axes.

Another type of symmetry that can be possibly associated with a crys-
tal is that involving time inversion. When a crystal possesses this sym-
metry, it is a nonmagnetic crystal, whereas its absence corresponds to the
occurrence of magnetic properties. This is because we associate a mag-
netic moment with the flow of current in a loop, and time reversal and the
concomitant reversal of the direction of flow of current corresponds to a
flipping of the direction of the magnetic moment.

The various types of symmetry possessed by a crystal can occur to-
gether only in certain restricted combinations; the restrictions ensure self-
consistency. The totality of symmetry operations applicable to a crystal
defines its crystallographic space group (cf. Chapter 2).

Now the structure a crystal has at, say, room temperature may not be
the most stable structure at other temperatures. The stable structure or
phase a crystal can possess at a given temperature (and at given values for
other control parameters like hydrostatic pressure, uniaxial stress, electric
and magnetic fields etc.) can be understood in terms of its thermodynamic
free energy. That phase is stable which has the lowest free energy. Fig.
1.1.1 shows schematically the temperature dependence of the free energies
of two competing phases a crystal may exist in. For T > Tc Phase I has
a lower free energy than Phase II, and is therefore more stable. The two
free-energy curves intersect at Tc, and for T < Tc it is Phase II which has a
lower value of the free energy. Consequently, as the crystal is cooled from a
high temperature, it makes a (first order) transition from Phase I to Phase
II at the temperature Tc.

When such a phase transition occurs, there is also a change of the
space-group symmetry of the crystal (though not always a change of the
space-group type', cf. §2.2.4 for a distinction between space groups and
space-group types). Let this change of space group be from S(I) to S(II).
What determines the symmetry group of the new phase after a phase tran-
sition ? This question was first tackled by Landau (1937a, b, c, d). In the
formulation of his landmark theory of phase transitions, he implicitly used
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Figure 1.1.1: Temperature dependence of the Gibbs free energy G of a
crystal for two different phases / and //. For T > Tc, G(I) < G(II)\ and
for T < Tc, G(II) < G(I). For any T less than Tc, AG provides the driving
force influencing the rate of transition from one phase to the other.

the Curie principle of superposition of symmetries. According to the Lan-
dau theory, a symmetry-lowering phase transition in a crystal is heralded
by the emergence of a so-called order parameter. This order parameter has
a certain symmetry of its own, and the symmetry of the resultant phase is
the highest symmetry common to the parent phase and the order parameter
(in accordance with the Curie principle).

The Curie principle was given its extended mathematical formulation
by Shubnikov (see Shubnikov & Koptsik (1974)). We propose to call this
generalized principle the Curie-Shubnikov principle. It is discussed in Ap-
pendix C. It is of fundamental importance, not only to crystal physics and
phase transitions, but also to much else in physics. We shall have occasion
to refer to it repeatedly in this book.

In Chapter 2 we recapitulate the basics of crystallography. How does
a crystal form? What is its smallest size for which the symmetry is the
same as that of the bulk crystal? Such questions are touched upon, and
references are given for further reading.

The 'Suggested Reading' listed at the end of most of the sections is
intended to serve two purposes. It leads the reader into areas which could
not be covered in this book either for reasons of space or of scope. It also
serves as an acknowledgement, in several cases, of the fact that the contents
of the section have been drawn, in some way or the other, from the material
originally published in these references.

Although in the ultimate analysis it is the atomic structure of a crystal
which determines all its properties, including macroscopic physical proper-
ties, for purposes such as device applications it is usually advantageous to

5



6 1. Introduction

view the crystal as an anisotropic continuum. This is the underlying feature
of what has come to be known as crystal physics, and Chapter 3 is devoted
to some salient aspects of this subject. The importance of this branch of
physics has grown enormously as crystals have come to be employed in
ever-increasing and vitally important technology-related applications. Dis-
cussion of crystal physics requires the use of tensors, and we introduce them
briefly in this chapter.

The transition from Chapter 3 to Chapter 4 can be viewed as that of
going over from a macroscopic description of crystals to a microscopic or
space-group level description. Basics of diffraction theory are described,
leading to the introduction of the concept of the reciprocal lattice. Rep-
resentations of translation groups and space groups are described briefly.
This chapter provides the groundwork for Chapter 5, which deals with ph-
ase transitions.

It is instructive and useful to categorize phase transitions in crystals
in terms of the changes of symmetry that accompany them. The primary
subdivision can be on the basis of whether or not there is a change in the
space-group type of the crystal at the phase transition. If the initial and
the final phase have the same space-group type, the two phases are said to
be isomorphous, and one speaks of an isomorphous phase transition. Those
phase transitions for which there is a change of the space-group type are
described as nonisomorphous phase transitions.

The symmetry operations comprising a crystallographic space group
can involve lattice translations, fractional translations, rotational opera-
tions, time-reversal operations, and the allowed combinations of all these.
For the theme of the present book, the most relevant question to ask here is:
In a nonisomorphous phase transition, is there also a change in the point-
group symmetry of the crystal? If the answer is yes, and if this change of
point symmetry occurs in a nondisruptive manner (cf. §5.1 and 5.2), we
are dealing with a ferroic phase transition.

A phase transition is called a ferroic phase transition if: (a)
it can be viewed as a nondisruptive modification of a certain
((prototypic phase", and (b) it involves a loss of one or more
point-symmetry operators present in the prototype.

By "nondisruptive modification" we mean that the new phase can be
described by (i.e. its symmetry elements, Wyckoff positions, atomic pa-
rameters, etc. can be located) in the frame of reference of the other phase,
after making (if necessary) continuous distortions (affine mappings) that
do not themselves entail any additional change of symmetry.

A ferroic material is one which can, or can be conceived to,
undergo one or more ferroic phase transitions.
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Figure 1.1.2: Illustration of how at least two distinct orientation states
must arise in any ferroic phase transition.

(In certain situations a ferroic material may not actually be able to un-
dergo a ferroic phase transition (for example because it decomposes before
attaining the requisite temperature). Nevertheless, the postulation of a hy-
pothetical ferroic phase transition may still be very useful for understanding
several properties of the material (cf. §5.2).)

The motivation behind the above, rather abstract-looking, definition of
ferroic phase transitions becomes clear when we look at the consequences
of such a transition. As a result of the occurrence of a ferroic transition
in a material, the material comes to possess four important features. The
first is that in the phase in which a point-symmetry operator has been
lost the crystal has at least two equivalent states which differ only in their
orientation (either of structure, or of spontaneous magnetic moment, or
both) and/or handedness. Aizu (1962, 1969) therefore spoke of these states
as orientation states. Fig. 1.1.2 provides a simple illustration of why more
than one orientation state must be possible in the ferroic phase. The proto-
type phase, comprised of schematic rectangle-shaped unit cells, undergoes
a transition to a lower-symmetry phase represented by a unit cell that has
the shape of a parallelogram. It is clear that, in this example, the ferroic
phase can arise in two distinct orientations. The ferroic phase is said to pos-
sess domain structure: in the example depicted in Fig. 1.1.2, some regions
of the crystal may exist in Orientation State 1 (or Domain 1), and some
others in Orientation State 2 (or Domain 2), with domain walls separating
the domains. Domain structure of ferroic crystals is considered in detail in
Chapters 7 and 8.

7
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The term "ferroic" was coined by Aizu (1969a, 1970a). He denned a
crystal as being a ferroic "when it has two or more orientation states in
the absence of magnetic field, electric field, and mechanical stress, and can
shift from one to another of these states by means of a magnetic field, an
electric field, a mechanical stress, or a combination of these". In the exam-
ple of Fig. 1.1.2, Orientation State 1 can be changed to Orientation State
2 by a shear stress Fx applied as shown. Similarly, Orientation State 2 can
be shifted to Orientation State 1 by an opposite stress. When orientation
states are thus changed to one another under the action of external fields,
the interfaces (domain walls) separating them move accordingly. Thus, un-
der certain conditions, the domain structure of ferroics can be manipulated
(to advantage) by applying suitable external fields. This is a central feature
of ferroic materials.

The orientation states defined by Aizu (1970a) are identical or enan-
tiomorphous in crystal structure. They can be mapped onto one another
by appropriate transformation operations. In Fig. 1.1.2 the two orientation
states can be mapped onto each other by a mirror operation (mx) normal
to the x-axis. As reflected above in our definition of a ferroic phase tran-
sition, the fact that a ferroic crystal can exist in two or more equivalent
orientation states can be understood by postulating that the ferroic phase
is the result of a transition from a real or hypothetical phase of the crystal
in which all the orientation states of the ferroic structure lose their identity;
that is, not only do the orientation states have the same crystal structure,
they also have the same orientation in this reference phase. In other words,
in the reference phase the whole specimen is just one single crystal, with
no orientation states. Aizu (1970a) called such a reference structure the
prototype. The concept of prototype symmetry plays a central role in the
systematic description of ferroic materials, although Aizu's (1970a, 1975)
definition of it was not rigorous enough. We introduce a new, and more
rigorous, definition of prototype symmetry in §5.1.

Clearly, the prototype has a higher point-group symmetry than the
ferroic phase under consideration. For example, in Fig. 1.1.2 the parent
phase has an additional mirror plane of symmetry, mx, which the ferroic
phase does not have. We also note that the symmetry operation (rax) lost
on passing to the lower-symmetry phase is also the operation which can
map Orientation State 1 to Orientation State 2. This is & general result,
and such operations are called F-operations (F standing for "ferroic").

According to the extended Neumann theorem of crystal physics (cf.
Chapter 3 and Appendix C), the space-time point-group symmetry pos-
sessed by any macroscopic physical property of a crystal cannot be lower
than the point-group symmetry of the crystal. Because of this, some or
all the components of one or more tensor properties can become forbidden
for any particular point-group symmetry. A very simple example is that
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of spontaneous polarization, which cannot exist in any crystal that is cen-
trosymmetric, because the symmetry elements possessed by spontaneous
polarization do not include the inversion-symmetry operation present in a
centrosymmetric crystal (inversion symmetry means that whatever occurs
in a crystal at any point (x, y, z) also occurs at (—x, — y, —z), with a suitable
choice of the origin of the coordinate system). Now, if the crystal undergoes
a (nondisruptive) phase transition which lowers its prototype point-group
symmetry (and a ferroic transition is, by definition, such a transition), one
or more of the forbidden components of the macroscopic tensor proper-
ties can acquire nonzero values if the point-symmetry operators forbidding
their occurrence are lost at the ferroic transition. In our above-mentioned
example, if inversion symmetry is lost at the phase transition, the lower-
symmetry (or ferroic) phase can allow the occurrence of spontaneous po-
larization (if this phase belongs to a "polar" symmetry group), so that we
have what is known as a ferroelectric phase transition. Ferroelectric phase
transitions are a subset of ferroic phase transitions.

The spontaneous polarization, Ps, of a crystal which undergoes a ferro-
electric transition at a certain critical temperature, Tc, is zero in the higher-
symmetry (prototypic) phase, and steeply rises from zero as the temper-
ature is lowered below Tc. Fig. 1.1.3(a) shows the temperature variation
of Ps for the ferroelectric phase of BaTiOs having tetragonal symmetry;
the crystal is centrosymmetric and cubic for a temperature range above
Tc = 393K. We thus see here a second characteristic feature of certain
ferroelectric and other ferroic transitions (the first being the occurrence of
domain structure in the ferroic phase), namely a steep temperature depen-
dence of a macroscopic property (spontaneous polarization in the present
example) for temperatures just below Tc.

We should remember that not in all ferroic phase transitions a macro-
scopic tensor property is the order parameter. But since the transition is
ferroic, there is at least one macroscopic tensor property which is either the
order parameter itself, or couples with the order parameter. Only in the for-
mer case does a macroscopic property necessarily have a steep temperature
dependence just below Tc. In the latter case the temperature dependence
of the property coupled to the order parameter depends on the nature of
the coupling.

The important point is that, in general, in the vicinity of a ferroic
phase transition one or more macroscopic properties become large. For a
"proper" ferroelectric, dD/dT or pyroelectric response becomes large. So
also does the dielectric susceptibility e(= dD/dE). An example is shown
in Fig. 1.1.3(b) for BaTiO3.

It is in the nature of the ferroelectric transition in BaTiOs that the
dielectric constant becomes large in the vicinity of Tc. In practical terms
what this means is that, in the vicinity of Tc, application of even a small
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Figure 1.1.3: Temperature dependence of (a) spontaneous polarization, and
(b) static permittivities e\\ and €33 of BaTiOs. [After Kay & Vousden
(1949) and Merz (1949).]

electric field invokes a large response in the induced polarization. It is as if
the material has become "electrically soft" in the vicinity of this ferroelectric
transition. This is a common feature of certain ferroic phase transitions.
However, we must emphasize that the response function corresponding to
only the order parameter becomes large around Tc; other response functions
do not necessarily blow up in the vicinity of Tc, although it is quite common
that several of them do.

The various physical properties of a crystal are coupled to one another
to a small or large extent. To consider the example of BaTiOs again, in
the cubic, centrosymmetric, prototypic phase, both spontaneous polariza-
tion (Ps) and spontaneous birefringence (An) are zero, and they become
nonzero in the tetragonal, noncentrosymmetric, ferroelectric phase. The
temperature-variation or field-variation of Ps causes a corresponding vari-
ation of An through an internal electrooptic coupling. And since Ps has
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Figure 1.1.4: Salient features of ferroic materials. See text for details.

a strong temperature and electric-field dependence just below Tc, so also
may An. This transmission of anomalous behaviour from the order param-
eter to other properties coupled to it is a fairly common feature of ferroic
materials.

Another quite common feature of ferroics is their tendency to undergo
field-induced phase transitions, particularly in the vicinity of Tc. In other
words, application of certain fields may shift the effective Tc. This property
finds applications, notably in smart structures (employing materials such
as NITINOL and PMN).

Lastly, it is important not to forget that spontaneous breaking of di-
rectional symmetry at a ferroic transition amounts to long-range ordering
with respect to at least one macroscopic tensor property. It is useful to
count this as a distinct salient feature of ferroic materials.

The four characteristic features of ferroic materials are listed in Fig.
1.1.4, and can be summed up as follows:

(a) Long-range ordering of at least one macroscopic tensor property (for
'primary' ferroics; see below). If this property is, for example, spontaneous
polarization, it may indicate larger than normal linear and nonlinear po-
larizabilities.

(b) Occurrence of domain structure (domains and domain boundaries) in
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the ferroic phase, and the possibility of its modification by a field conjugate
to the order parameter. Domain-wall mobilities are high at temperatures
just below Tc1.

(c) Large and nonlinearly varying response functions (or generalized sus-
ceptibilities) corresponding to certain properties, particularly in the vicinity
of Tc. This fact has several practical implications. For instance it makes
it possible to fine-tune certain properties of ferroic materials by applying
suitable biasing fields.

(d) The possibility of field-induced phase transitions.

Ferroic phase transitions involving the emergence of spontaneous po-
larization, or spontaneous strain, or spontaneous magnetization, result in
phases called primary ferroic phases, with "primary" referring to the fact
that the free-energy difference between at least one pair of orientation states
of such a ferroic phase involves the first power of electric, magnetic, or me-
chanical field.

But ferroic phases are possible in which no two orientation states differ
in either spontaneous polarization, or spontaneous strain, or spontaneous
magnetization. The most notable example of these higher-order ferroics is
quartz. At high temperatures this crystal has hexagonal symmetry, and is
known as /3-quartz. On cooling, it undergoes a ferroic transition at 846 K to
a-quartz, which has trigonal symmetry. There is no emergence of 'relative'
spontaneous strain at this transition because there is no shape-changing (in
contrast to size- changing) distortion of the crystal lattice in going from the
hexagonal crystal system to the trigonal system; so the a-phase of quartz is
not a ferroelastic phase. Nor is it a ferroelectric or a ferromagnetic phase,
a-quartz is thus not a primary ferroic. Yet its two orientation states dif-
fer in certain higher-rank tensor coefficients, notably some elastic stiffness
and piezoelectric coefficients. Therefore, if the two orientation states are
subjected to the same mechanical stress, their elastic and piezoelectric re-
sponses will be different. This is an example of secondary ferroic behaviour,
which, in this particular case, is a manifestation of ferrobielasticity and fer-
roelastoelectricity. The term "secondary" refers to the fact that the driving
fields involved are products (self products or cross products) of degree 2 of
the primary fields. In the case of ferrobielasticity, for example, the driv-
ing field needed is the square of uniaxial mechanical stress. In Chapter 6
we discuss a thermodynamic classification of ferroic materials in terms of

lAs we shall see in Chapter 5, for discontinuous phase transitions there is a range
of temperatures in which the parent phase and the daughter phase are both stable; i.e.
they coexist. In this temperature range, we not only have domain boundaries, but also
phase boundaries.
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macroscopic tensor properties of various ranks.
Also considered in Chapter 6 is the property of ferrogyrotropy. This

refers to orientation states differing in optical activity (optical ferrogy-
rotropy) or acoustical activity (acoustical ferrogyrotropy).

In Chapters 7 and 8 we discuss the domain structure of ferroic ma-
terials, with special emphasis on the symmetry aspects of domains and
domain walls. The common features of, as well as the dissimilarities be-
tween, domain structure and twinning are analyzed. Morphology of the
ferroic phase, growing in the matrix of the surrounding parent phase, is de-
scribed. The general atomic mechanism underlying the switching from one
domain state to another is explained. Crystallographic shear planes, irra-
tional shear planes, and chemical twin planes, all arising as compositional
extended defects due to vacancy ordering, are also described briefly.

The next three chapters (9, 10 and 11) deal, respectively, with special
features of the three types of primary ferroic materials, namely ferromag-
netics, ferroelectrics, and ferroelastics. And Chapter 12 is about secondary
and higher-order ferroics.

Chapter 13 deals with some materials-science aspects of ferroics, where
we take cognisance of the fact that, although ferroic phase transitions are
often discussed with reference to single crystals, actual ferroic materials may
also be ceramics or composites. In single-crystal physics we usually assume
that the specimen crystal is large enough to justify our neglect of surface
effects. However, when crystal sizes are small, or when crystallites have
dissimilar neighbours, dramatically new phenomena can emerge. Symmetry
of composite ferroics is an important area of research, the fundamentals of
which are also described in this chapter.

In Chapter 14 we discuss the applications of ferroic materials, high-
lighting the physical principles involved in these applications.

Over the last decade an increasing amount of research effort has been
expended into the development of what are known as smart materials and
structures. These are designed so as to change their properties in a pre-
conceived "intelligent" manner to suit the changing environmental condi-
tions in which they are employed. The need for a continuous fine-tuning
of their properties by suitably configured external fields requires that the
materials have large and nonlinear response functions at the temperature of
application. Ferroic materials, by their intrinsic nature, are ideally suited
for this purpose. In Chapter 14 we also describe the successes achieved, as
also the promise of more to come, in this exciting field of applied research,
where the device-application potential of ferroic materials may truly come
of age.
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1.2 HISTORICAL
In this section we take a look at the major milestones in the history of ferroic
materials. The account is bound to be somewhat sketchy because the range
of materials and phenomena to be covered is very large and diverse, and
only a limited amount of space can be given to this topic in this book. One
way of limiting the requirement on space is by not covering history that is
too recent. By and large we follow this precept here.

In 1970 Aizu introduced the term "ferroic", and presented a unified
treatment of certain symmetry-dictated aspects of ferroelectric, ferroelas-
tic, and ferromagnetic materials. Before the publication of this paper by
Aizu (1970a), although the prefix "ferro" was borrowed from the field of
ferromagnetism to take note of certain similarities of the properties of fer-
roelectrics and ferroelastics with those of ferromagnetics, notably hysteresis
(Fig. 1.2.1) and the Curie-Weiss law, little common ground among them
was emphasized, and these subjects grew more or less independently. We
shall therefore divide our historical narrative into subsections dealing sepa-
rately with each of the major categories of ferroic materials. Their common
features are highlighted where appropriate.

1.2.1 Ferromagnetic Materials
Ferromagnetism is the oldest of the ferroic properties known to science.
The element Fe is ferromagnetic at room temperature (as also are Co and
Ni). And metallic meteorites consist mostly of pure iron. Thus, at least
one ferroic material, iron, existed on earth millions of years before the
emergence of homo sapiens.

Loadstone (FeO.Fe2Oa), a ferrimagnetic material, is said to have been
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Figure 1.2.1: The hysteretic behaviour of ferroelectrics and ferroelastics
is similar to that of ferromagnetics. Mj, Pi? and e^ denote components
of spontaneous magnetization, spontaneous polarization, and spontaneous
strain. These, when plotted against the driving fields conjugate to them,
are non-single-valued functions of the fields.

discovered by the Greeks in the island of Magnesia, over 3500 years ago.
According to Chen (1986), the world's first compass, using a loadstone,
was invented in China about 85 AD. The invention of the compass had
far-reaching consequences for the history of mankind, as it made possible
navigation on the high seas.

Apart from the use of the compass, there are at least three major ar-
eas of technology where ferromagnetic materials have played a vital role in
human progress and welfare. These are: (i) generation and distribution of
electric power; (ii) data storage and processing; and (iii) telecommunica-
tions. Most of these applications involve the use of materials (iron-silicon
alloys, ferrites, garnets, compounds of rare-earths and transition metals,
etc.) which are ferromagnetic (or ferrimagnetic) at room temperature, and
have a substantial saturation magnetization.

In the early part of the 19th century Ampere put forward the hypothesis
that the magnetic moment of a ferromagnetic material arises from internal
electric currents in the molecules of the material. This idea was developed
further by Weber, who could explain the occurrence of saturation magneti-
zation as arising from a situation wherein the molecular magnets have been
aligned almost along the same direction by the external field. A random
distribution of the directions of the these magnets would then correspond
to the unmagnetized state on a macroscopic scale.

Weiss (1907) invoked the presence of an internal effective magnetic
field to explain the occurrence of spontaneous magnetization in ferromag-
netic materials. This work of Weiss was preceded by that of Curie, and of
Langevin, on the response of paramagnetic materials to magnetic fields.

Weiss used the effective-field approach to explain the ferromagnetic
phase transitions in Fe, Co and Ni. He also introduced the concepts of
magnetic domains and domain walls.
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Iron-Silicon Alloys
The low cost of iron due to its abundance on earth, combined with its highly
favourable magnetic properties, made possible the generation of electricity
on a massive scale at low expense. The Westinghouse Electric Company
set up the first AC generating station in 1886. This application of mag-
netic materials requires the largest possible saturation magnetization, and
the least possible loss from causes such as eddy currents. The iron-silicon
alloy has been meeting this need for a long time. Barrett et al. (1900)
found that the presence of about 3% silicon in iron increased its resistivity
and permeability, and reduced the coercive-field value, resulting in reduced
hysteresis and eddy-current losses. The material was used in transform-
ers in the form of hot-rolled polycrystalline sheets, initially with random
orientation of grains (Gumlich & Goerens 1912).

The hysteresis loop of a single crystal of iron-silicon is nearly rectangu-
lar in shape, which means that application of a magnetic field only slightly
higher than the coercive field is sufficient to drive the crystal to a state
of saturated magnetization. This results in a high value for the maximum
induction possible for the crystal. If high cost and other practical problems
were not a consideration, one would like to choose for the core of a trans-
former single-crystal sheets oriented so as to achieve a closed rectangular
flux path along the preferred directions, namely < 100 >. Goss (1935)
developed a cold-rolling and annealing method for achieving a texture in
the polycrystalline Fe-Si alloy such that the grains had their {110} planes
oriented preferentially along the plane of the sheet, with the < 100 > direc-
tions of most of them nearly parallel to one another in this plane. Because of
this grain orientation, the coercive field value dropped to about 0.1 Oe, the
maximum permeability rose to 70,000, the core losses dropped to about 0.6
Watt/kg at 60 cps, and the magnetic induction rose to 10 kG (IWb/m2).
Further advances continue to be made in this direction (see Enz (1982) for
a review).

Fer rites

The relatively low resistivity of iron-silicon alloys results in large eddy-
current losses, particularly in high-frequency applications, even when they
are used in the form of sheets. Attempts to overcome this problem led to
the development of magnetic oxides for high-frequency applications (Hilpert
1909).

Ferrites have emerged as the material of choice for applications in the
frequency range 103 to 1011 Hz. They are now indispensable for several
areas in telecommunication and electronics industries.

Ferrites have the general composition MOFe2Os, where M stands for
divalent metal ions like Ni, Mn, Zn. The ore magnetite (FeO.Fe2C>3) men-
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tioned earlier is also a ferrite. The magnetic structure of ferrites was first
explained by Neel (1948), who introduced the concept of partially com-
pensated antiferromagnetic order, and called this property ferrimagnetism.
Because of their ferrimagnetic nature, the saturation magnetization of fer-
rites is only a fraction of that of iron, but their most useful feature, namely
high resistivity (102 to 1010 ftera), makes them the sole choice for a variety
of technological applications.

The occurrence of nearly rectangular hysteresis loops in certain ferrites
led to their extensive use as cores for computer memories. In fact, until
1970 practically all the main-frame computers had ferrite cores as memory
elements.

Ferrites also played (and continue to play) a major role in the design
considerations for several types of particle accelerators (Brockman et al.
1969). These machines use large transformers acting as resonance cavi-
ties, which accelerate the charged particles. The design is such that the
circulating beam of charged particles acts as the secondary winding of the
transformers. As the particles gain energy in successive cycles, the period
per cycle decreases, which must therefore be continuously compensated for.
This is done by controlling the self-inductance of the core of the transformer
by using a bias field. Ferrites offer a low-eddy-current-loss solution to the
problem.

Garnets

The ferrimagnetic properties of some rare-earth garnets were discovered by
Bertaut & Forrat (1956), and Pauthenet (1956). The best known among
these is yttrium iron garnet (YIG), Y3Fe5Oi2. The most notable property
of YIG is its extremely small ferromagnetic resonance linewidth. This was
discovered by Spencer et al. (1956), and Dillon (1957). Soon, linewidths as
small as 0.1 Oe (8 A/m) at 10 MHz were achieved by improving the quality
of YIG crystals (LeCraw et al. 1958). This made YIG an excellent material
for applications in microwave devices (see Wang (1973) for a review).

Following the work of Bobeck (1967), magnetic garnets were inducted
into another major application, namely as the medium for magnetic-bubble
devices for high-density storage of information. Magnetic bubbles are do-
mains of cylindrical shape, occurring in magnetized thin films of the mate-
rial. One associates a binary number 1 or 0 with the presence or absence
of a bubble at a pre-defined location and time. Nielsen (1976), Malozemoff
& Slonczewski (1979), and Leeuw et al. (1980) have reviewed the use of
various garnets for this application.
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Permanent Magnets

Permanent magnets find a large number of uses in modern science and
technology. Carbon steel was widely used for making permanent magnets
till the development of 'alnico' magnets, following the work of Mishima
(1932) on the alloy AINiFe. The coercive field for alnico is double that of
the materials used earlier. It also has much better mechanical hardness.
This was achieved by special thermal treatment, leading to the precipitation
of a finely dispersed second phase.

Further research for the development of better permanent magnets,
particularly at the Bell Laboratories (Nesbitt et al. 1966), led to the emer-
gence of rare-earth transition-metal compounds (Strnat et al. 1966). The
best known material in this category is SmCos.

Theory of Magnetic Symmetry

The notion of black-and-white symmetry was introduced by Speiser (1927)
and Weber (1929). It was developed further by Heesch (1929, 1930), who
derived the 122 point groups used at present for describing the magnetic
symmetry of crystals (Heesch groups). The work of Heesch, however, was
of a rather abstract nature, and it was left to Shubnikov (1951) to interpret
these groups as involving the operations of antiequality or antisymmetry.
In due course it was realized that the antiequality operation can also serve,
for many purposes, as the time inversion operation, and the groups were
rederived as magnetic point groups (Landau & Lifshitz 1958; Tavger &
Zaitsev 1956).

The derivation (Zamorzaev 1953) of the 1651 space groups of magnetic
symmetry (Shubnikov groups) owes much to the introduction of the time-
inversion operation in the original edition of the book by Landau & Lifshitz
(1958).

1.2.2 Critical-Point Phenomena
Processes occurring in the vicinity of the 'critical point' are called critical-
point phenomena, or critical phenomena. The term critical point was intro-
duced by Andrews (1869), who pioneered the study of critical phenomena
by his extensive measurements on the carbon-dioxide system (see Stanley
1971). He established that there exists a critical point (Tc,Pc,pc) in the
phase diagram of this system at which the identities of the liquid phase
and the gaseous phase merge into a single phase. The theoretical rational-
ization of the critical point was provided by van der Waals (1873) through
his famous equation of state. The idea of universal behaviour also emerged
from this work when it was found that a universal equation of state could
be derived for practically all gases by working with reduced parameters
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(T/Tc,p/pc).
In the vicinity of the critical point a fluid system undergoes large

density fluctuations, giving rise to the phenomenon of critical opalescence
(anomalous scattering of light). A quantitative explanation of this phe-
nomenon was provided by Einstein (1910), who derived an expression for
the mean-square density fluctuation in terms of the isothermal compress-
ibility of the fluid.

The similarity of the critical phenomena in fluids and in ferromagnetic
materials was recognized by Curie around 1895. If we take magnetic field
as corresponding to specific volume Vc, then the paramagnetic and the
ferromagnetic phases can be taken as corresponding to the gaseous and the
liquid phases respectively. A common feature of critical phenomena is that
a certain suitably defined quantity (now called the order parameter) is zero
above the critical temperature, and nonzero below it. For a ferromagnetic
system, the spontaneous magnetization is such a quantity normally, and for
the liquid-gas system it is the density difference PL — PG-

The analogy between fluids and magnetic systems was carried further
by Langevin, who derived a statistical-mechanical equation of state for
magnetic systems which described the response of such systems to magnetic
field.

As mentioned earlier, Weiss (1907) postulated the presence of an in-
ternal mean magnetic field (in analogy with the presence of an internal
pressure in fluids). This field represents the long-range interaction among
the magnetic spins. On substitution of this field into the magnetic equation
of state derived by Langevin, the well-known Curie-Weiss law for magnetic
susceptibility was obtained.

Apart from fluids and magnetic systems, other systems in which critical
phenomena were investigated quite early were binary alloys like CuAu. In
such systems there is a random mixing of the two metallic elements at tem-
peratures above Tc, but a separation and ordering into two phases below Tc.
Just like susceptibility for ferromagnets and isothermal compressibility for
fluids, the specific heat of the alloy becomes anomalously large in the vicin-
ity of Tc. Bragg & Williams (1934, 1935a,b) defined an order parameter as
the difference of the concentrations of, say, Au in the two phases that exist
below Tc. They formulated a mean-field theory similar to the Weiss model
for ferromagnets, and showed that the order parameter should decrease
continuously on raising the temperature towards Tc.

The concept of the order parameter was generalized by Landau (1937a,
b, c, d) to cover all continuous phase transitions in solids. Landau wrote
a Taylor expansion of the Gibbs free-energy density in powers of the order
parameter. Such an expansion assumes analyticity of the free energy in the
neighbourhood of Tc. However, it is exactly in this region that the critical
fluctuations can be dominant. The Landau theory of continuous phase
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transitions is thus not always valid in a certain neighbourhood of the critical
point, although outside this region, and especially for phase transitions
mediated by long-ranged interactions like strain, the theory offers a good
explanation of phase transitions.

The fact that interactions underlying critical phenomena are often not
long-ranged was realized quite early. A simple statistical-mechanical model
for ferromagnetic phase transitions involving only a nearest-neighbour clas-
sical interaction was proposed in 1925 by Ising. In this model one assumes
a spin variable on each lattice site that can take only two values: +1 (up) or
-1 (down). The spins were assumed to interact via an exchange interaction
which gives a lower energy when the spins are parallel, than when they are
antiparallel. A 1-dimensional solution of this model by Ising (1925) did not
predict any phase transition. An exact solution of the Ising model in two
dimensions was given by Onsager (1944). A model wherein spins on lattice
sites were permitted freedom of 3-dimensional orientation was formulated
by Heisenberg (1928).

In the vicinity of the critical point large and correlated fluctuations of
the order parameter can occur. These are ignored by a mean-field theory
like the Landau theory, which therefore predicts only a discontinuity in the
specific heat at Tc for a system of any number of spatial dimensions. Ex-
perimentally, however, a divergence, or at least a logarithmic divergence, is
observed, as predicted by the solution of the 2-dimensional Ising model by
Onsager (1944). Experimental and theoretical evidence mounted in favour
of the general conclusion that, because of the large correlation length of
the order parameter in the vicinity of a continuous phase transition, the
critical-point exponents for the various thermodynamic quantities are quite
insensitive to the small-scale details of the system, but depend on features
such as the effective spatial dimension and symmetry of the system, and
on the dimensionality and symmetry of the order parameter. In particular,
experimental data pointed to the existence of scaling, as was first conjec-
tured by Widom (1965). It was observed that near the critical point the
free-energy density and other thermodynamic functions like susceptibility
are "homogeneous functions" of temperature and of the field conjugate to
the order parameter. Consequently, not all the critical exponents can be
independent. In particular, the correlation length provides a scale for dis-
tances. And its critical exponent is related to the critical exponents for
other thermodynamic quantities, almost irrespective of the value of the
critical temperature and the nature of the atomic interaction involved.

It was also observed, on the other hand, that for a given spatial di-
mension the critical exponents depend sensitively on the symmetry of the
order parameter. And the critical exponents are practically the same (or
universal) for a given symmetry of the order parameter. This is referred to
as the phenomenon of universality.
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A rationalization of scaling in critical phenomena was provided by
Kadanoff (1966). Taking note of the fact that the correlation length be-
comes arbitrarily large at the critical point, and thus allows for averaging
over smaller lengths, he introduced 'block spins' (for the case of the ferro-
magnetic transition) defined by the same Hamiltonian as the actual spins.
This coarse-graining led to a scaling of the free energy. In the so-called
Kadanoff construction the interaction of the actual and the block spins via
the same Hamiltonian was assumed, but not proved. Moreover, Kadanoff
did not describe the procedure for actually calculating the critical expo-
nents.

It was against such a background that K. G. Wilson formulated, in
the early 1970s, his celebrated renormalization-group (RG) theory for sys-
tems possessing a whole range of length scales or time scales, in particular
for critical phenomena (see Wilson (1977) for a general description of this
approach). He made use of Kadanoff's coarse-graining approach (but in
momentum space), and demonstrated that descriptions differing in length
scales possess a certain symmetry, namely the symmetry of the renormal-
ization group.

The RG theory has been applied with great success, not only to critical
phenomena, but also to several other fluctuation-dominated systems.

1.2.3 Ferroelectric Materials
The term "ferroelectric" was first used by Erwin Schrodinger in 1912, al-
though the history of ferroelectricity (or what was earlier called Seignette-
electricity) can be said to have started around 1665 when Elie Seignette
of La Rochelle, France, created "sel polychreste", later known as Rochelle
salt (see Busch 1991). However, it was not until 1920 that Joseph Valasek
(1920, 1921) demonstrated that the direction of spontaneous polarization of
Rochelle salt (sodium potassium tartrate tetrahydrate, NaKC4H4O6.4H2O)
could be reversed by the application of an electric field. He also observed
hysteretic behaviour between 255 K and 297 K, as well as very large dielec-
tric and piezoelectric coefficients.

Pyroelectricity is a phenomenon quite closely connected to ferroelectric-
ity; all ferroelectrics are pyroelectrics (although the converse is not necessar-
ily true). In the 19th century several studies were carried out to understand
pyroelectricity (e.g. Brewster (1824); Gaugain (1856a,b)). A historical re-
view of this work has been given by Lange (1974). Such investigations led
eventually to the discovery of piezoelectricity by Jacques and Pierre Curie
(1880a,b).

For well over a decade, Rochelle salt remained the only known example
of a ferroelectric. Ferroelectricity was therefore taken as a rare phenomenon,
and (erroneously) attributed to dipolar interaction between water molecules



22 1. Introduction

present in Rochelle salt. However, this perception changed when, between
1935 and 1938, a whole series of new ferroelectrics, namely phosphates
and arsenates of potassium, were produced (Busch & Scherrer 1935; Busch
1938). The best known member of this family of crystals is potassium
dihydrogen phosphate, KH2PO4, better known as KDP. This family of
ferroelectrics has a much simpler crystal structure than Rochelle salt, and
does not have any water of crystallization. The crystal structure involves
intermolecular O-H- • -O hydrogen bonding, and the hopping or quantum
tunneling of hydrogen between the donor and acceptor oxygens results in
different orientations of the (E^PC^)" dipoles. This fact formed the basis
of the first microscopic theory of ferroelectricity, given by Slater (1941).

Another decade was to pass before ferroelectricity was discovered in
any other type of crystal structure, and this property therefore continued
to be viewed as a rarity, perhaps requiring hydrogen bonding as an essential
ingredient for its existence. This notion was discarded when BaTiOs, which
has a very simple structure (Megaw 1945) with no hydrogen bonding, was
found to be a ferroelectric (Wainer & Solomon 1942; Wul 1945, 1946; Wul
& Goldman 1945a,b, 1946). Several other members of this structural family
were soon shown to be ferroelectric: KNbO3 and KTaO3 (Matthias 1949);
LiNbO3 and LiTaO3 (Matthias & Remeika 1949); and PbTiO3 (Shirane,
Hoshino & Suzuki 1950).

On the theoretical front, four years before Slater (1941) gave his the-
ory of ferroelectricity in KDP, Landau (1937a, b, c, d) had put forward his
phenomenological theory of phase transitions. Landau's theory had a ther-
modynamic aspect and a symmetry aspect (see Landau & Lifshitz 1958). In
fact, he was the first to apply group-theoretical ideas to thermodynamics.
According to the Landau theory, a symmetry-lowering continuous phase
transition is heralded by the emergence of an order parameter, such that
the symmetry of the daughter phase is given by the intersection group
formed from the symmetry group of the parent phase and the symmetry
group of the order parameter (in accordance with the Curie principle). One
can work out, among other things, the temperature dependence of several
macroscopic properties like the susceptibility of the crystal undergoing the
phase transition by expanding its free energy as a Taylor series in powers
of the order parameter, and then minimizing the free energy with respect
to the order parameter, assuming that the coefficient of only the leading
term in the Taylor expansion has a significant temperature dependence. In
the context of ferroelectric phase transitions, Hans Mueller (1935, 1940a,
b, c, d), in his "interaction theory", applied a similar approach to Rochelle
salt, including in the free energy expansion a term corresponding to the
strain arising from electrostrictive coupling to the spontaneous polariza-
tion. This theory was developed further and applied to the phase tran-
sitions in BaTiO3 by Ginzburg (1945, 1949) and Devonshire (1949, 1951,
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1954); also see Megaw (1952, 1957). Ginzburg (1946) applied the Landau
theory to KDP-type crystals as well. Kittel (1951) extended the ideas to
ant if err oelect r ics.

A major breakthrough in the microscopic understanding of structural
phase transitions came during 1958-1960 when Cochran (1959, 1960) and
Anderson (1958, 1960) provided an interpretation for them in terms of
lattice dynamics, putting forward the notion that the "softening" of a lattice
mode of vibration was responsible for a structural phase transition. It is
often quite straightforward to identify the order parameter of the Landau
theory with an appropriate soft mode driving the phase transition. The
soft-mode theory, when applied to the ferroelectric phase transitions in
BaTiOa, was a vast improvement over the "rattling titanium ion" model
proposed earlier by Slater (1950).

Although the Landau order parameter of a phase transition is not al-
ways a lattice-dynamical soft mode, the overlapping physics of these two
concepts is worth emphasizing. As we shall see in more detail in Chapter
5, the functional dependence of the free energy of a crystal on the order
parameter develops a "flat bottom" at the transition temperature for a con-
tinuous phase transition (cf. Fig. 5.6.1). This implies that large excursions
(critical fluctuations) of the order parameter around its mean value become
possible because of the vanishingly small change of free energy entailed by
them. Also implied in this is the fact that the restoring force for these fluc-
tuations is very small in the vicinity of the phase-transition temperature.
The order parameter corresponds to a particular "normal mode", and this
mode may be either underdamped or overdamped. If it is underdamped,
its frequency of vibration would be low near Tc. On the other hand, if it
is overdamped, there would be a large increase in the relaxation time (also
referred to as critical slowing down). The soft-mode concept has now been
generalized to cover both these possibilities.

Raman & Nedungadi (1940) and Saksena (1940) were the first to re-
port the occurrence, for the a <-> (3 phase transition in quartz, of what is
now called a soft mode. Mason (1947, 1949), who viewed a ferroelectric
transition as an order-disorder transition, proposed a mean-field type of
theory which, on hindsight, appears similar to the notion of critical slowing
down put forward by Landau & Khalatnikov (1954). Mention must also
be made here of the book by Frohlich (1949) (first edition), wherein the
Lyddane-Sachs-Teller equation was invoked to argue that the divergence of
the dielectric susceptibility can be linked to an approach to zero frequency
of a transverse-optical mode of lattice vibration. However, although the
academic air was surcharged with the soft-mode idea for quite some time,
none of the workers before Anderson and Cochran emphasized adequately
the importance of this concept.

A phase transition can be a ferroelectric phase transition even when
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spontaneous polarization is not the order parameter. This was first pointed
out by Indenbom (1960a,b), and materials which undergo such transitions
are now referred to as improper ferroelectrics or faint ferroelectrics (Lev-
anyuk & Sannikov 1969, 1971, 1974, 1975; Pytte 1970; Dvorak, 1970, 1971,
1974; Aizu 1972b,c, 1973b; Kobayashi, Enomoto & Sato 1972). Gadolinium
molybdate (GMO for short), Gd2(MoO4)s, was probably the first improper
ferroelectric to be investigated experimentally (Cross, Fouskova & Cum-
mins 1968; Cummins 1970). Since polarization is not the order parameter
for the ferroelectric transition in this crystal, its dielectric susceptibility
does not obey the Curie-Weiss law in the paraelectric phase; in fact, it
displays only a slight variation with temperature in the entire temperature
range investigated. Several other materials are now known to be improper
ferroelectrics. These include many rare-earth molybdates, boracites, dicad-
mium diammonium sulphate, and ammonium fluoroberylate (see Levanyuk
& Sannikov (1974)).

1.2.4 Ferroelastic Materials
The word "ferroelasticity" has had a number of connotations, all similar,
and yet not quite the same. It was used in physical metallurgy in the early
1950s by F. C. Frank for describing the rubber-like (martensitic) behaviour
of Aui.Q5Cdo.95 and InTl alloys (see Lieberman, Schmerling & Karz (1975)).

In physics, in the pre-1969 period, ferroelastic strains were associated
primarily with ferroelectricity, through electrostriction. (Magnetostriction
also leads to strain in ferromagnetic materials, but the effect is usually much
smaller than that of electrostriction.) Thus, before Aizu (1969a, 1970a)
gave a formal definition of ferroelasticity as a property which can exist on its
own, physicists' perception was that it occurs predominantly as an adjunct
to ferroelectricity or ferromagnetism. In fact, even after the publication
of the work of Aizu (1969a), reluctance to recognize ferroelasticity as an
independent property persisted for some years among some physicists who
were experts on ferroelectrics.

Mention must also be made here of the work of Indenbom (1960) and
Boccara (1968) who, though not using the term "ferroelastic", investigated
in substantial depth phase transitions having spontaneous strain as the
order parameter.

Progress in the symmetry description of ferroelastic materials was pre-
ceded by that on ferroelectric materials. The domain structure of ferroele-
ctrics had been understood in group-theoretical terms, making use of the
Curie principle (Zheludev & Shuvalov 1956, 1957). Symmetry considera-
tions are often system-independent, and were readily extended to ferroelas-
tic materials (Aizu 1970a,b,c; Janovec 1972; Cracknell 1972, 1974).

Aizu (1969a) not only introduced a formal definition of ferroelasticity,
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but also presented a unified symmetry description of ferroelectrics, fer-
roelastics, ferromagnetics, and secondary and higher-order ferroics (Aizu
1970a, 1973a). He did this after introducing the all-important concept of
prototype symmetry (Aizu 1970a, 1975, 1978) mentioned in §1.1. The earlier
literature was rather imprecise on the meaning of the terms "initial phase"
and "parent phase". Introduction of the formally defined notion of proto-
type symmetry should be regarded as one of the major contributions of Aizu
to the field of ferroic materials. However, it is also necessary to mention
here that Aizu's definition of prototype symmetry uses the phrase "slight
distortion", which is not quantified adequately. For certain situations this
leaves room for ambiguity and lack of rigour. A rigorous definition of the
prototype in terms of the nondisruption condition is being introduced in
this book in §5.1.

Aizu (1969b, 1970c) also introduced the concept of antiferroelasticity,
by analogy with antiferroelectricity.

In the same year in which Aizu (1969a) published his first paper on
ferroelasticity, Alefeld et al. (1969) published an analysis of the ferroelas-
tic behaviour of hydrogen-containing metals. Alefeld et al. (1969, 1970,
1971) were investigating the Nb — H system, in which the hydrogen atoms
occupy interstitial sites in the Nb lattice. The hydrogen atoms act like
point defects, creating local strain fields ("elastic dipoles"), as well as a
macroscopic strain field. These elastic dipoles can undergo discrete reori-
entations under the action of an external uniaxial stress. This process,
known as Snoek relaxation (see, e.g., Nowick & Heller (1963)), results in
stress-strain hysteresis that is characteristic of a ferroelastic material. Fur-
ther, the interstitial hydrogens modify the elastic constants of the crystal,
and a Curie-Weiss-type temperature dependence of the appropriate elastic-
compliance coefficients ensues (Alefeld et al. 1969).

Obviously, if these point defects are not present, the related ferroelas-
tic behaviour of the host crystal would disappear. Aizu's (1969a, 1970a)
formalism of ferroelasticity is different from, and more general than, the
treatment given by Alefeld, in that ferroelastic behaviour envisaged by
Aizu exists even in the absence of point defects, as it is a consequence
of the pseudosymmetry resulting from the phase transition from the proto-
type structure.

An interesting situation arises in certain crystals (e.g. YE^CusOr-x,
popularly known as Y — Ba — Cu — O) in which Aizu's and Alefeld's formu-
lations overlap. This happens when a part of the structure itself (e.g. the
basal-plane oxygen atoms in Y-Ba-Cu-0) behaves like point defects (Wad-
hawan 1989; Wadhawan & Bhagwat 1989). Such crystals have been termed
nonstoichiometric ferroelastics (Wadhawan 1991).
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1.2.5 Secondary and Higher-Order Ferroics
During World War II, when mostly natural quartz had to be used for
transducer applications, several attempts were made to obtain twinning-
free crystals of quartz by detwinning its Dauphine twins through the use
of twisting forces and thermal gradients (Wooster & Wooster 1946; also
see Klassen-Neklyudova (1964) for additional references). However, these
attempts met with only partial success, the reason being that they did not
have the most appropriate theoretical basis. The right theoretical basis
was provided much later by Aizu (1970a, 1972a, 1973a), and that too in a
perfectly general way, covering all ferroics, and not just the secondary fer-
roic quartz. He did so by introducing the concept of prototype symmetry.
The ease and the systematic nature of the approach with which one can
now calculate the most appropriate direction in which to apply a field for
detwinning any ferroic crystal should be regarded as one of the triumphs of
the modern theory of ferroic materials. The crux of the matter is the real-
ization of the fact that (to consider the case of quartz) the Dauphine twins
arise from the breaking of a certain prototype symmetry. The knowledge
of the prototype and the ferroic symmetries enables us to write an exact
expression for the difference in the free energies of the two twin states in
terms of the relevant compliance and piezoelectric coefficients, from which
it is straightforward to work out the optimum configuration for applying
electric and/or mechanical fields for effecting detwinning (Indenbom 1960a;
Aizu 1972a, 1973a; Anderson, Newnham & Cross 1977; Bertagnolli, Kit-
tinger & Tichy 1979; Laughner, Wadhawan & Newnham 1981; Wadhawan
1982).

1.2.6 Ferrogyrotropic Materials
Fig. 1.2.1 shows the typical hysteretic behaviour of, respectively, a first-
rank polar, a first-rank axial, and a second-rank polar tensor property,
corresponding to ferroelectricity, ferromagnetism, and ferroelasticity. Can
there be a fourth primary ferroic property, for which a second-rank axial
tensor property shows hysteresis? The answer involves both a 'yes' and a
cno'.

Let us begin by noting that the optical gyration tensor represents a
candidate property for this possibility. Aizu (1970a) did not include it
in his general formalism for ferroic materials. Gyrotropic phase transit-
ions were analysed by Konak, Kopsky & Smutny (1978) and by Wadhawan
(1979). Wadhawan's analysis was mainly from the point of view of ferroic
switching between orientation states differing in their gyration tensors. In
his manuscript, he proposed the term ferroenantiomorphism for the prop-
erty whereby orientation states differing in their gyration tensors could be
switched from one to another. However, he had to settle for the term gy-
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rotropy, because the referee thought that the word 'ferroenantiomorphism'
was too long for comfort ! Later (Wadhawan 1982) the term 'gyrotropy'
was changed to ferrogyrotropy to emphasize the requirement of switchability
between orientation states.

It was also pointed out by Wadhawan (1979, 1982) that optical ferro-
gyrotropy is only an implicit form of ferroicity. What this means is that
although ferrogyrotropic state shifts are a reality (see Konak et al. (1978)
for a review), there is no contribution from the gyrotropy term to the change
of free energy accompanying such state shifts. Therefore, such state shifts
can occur only as an adjunct to some other, explicit, type of ferroic state
shifts.

Optical activity arises from certain peculiarities of the crystal structure
(Devarajan & Glazer 1986) which result in a spatial dispersion of the dielec-
tric tensor. Similarly, acoustical activity arises from the spatial dispersion
of the elastic-stiffness tensor. The notion of optical ferrogyrotropy was
therefore extended to that of acoustical ferrogyrotropy (Wadhawan 1982).
Acoustical ferrogyrotropy, or ferroacoustogyrotropy, is described by a fifth-
rank tensor. It was shown by Bhagwat et al. (Bhagwat, Subramanian &
Wadhawan 1983; Bhagwat, Wadhawan & Subramanian 1986) that, because
of its intrinsic symmetry, this tensor is completely equivalent to a fourth-
rank tensor. It was also shown by these authors that an earlier description
of a similar fourth-rank tensor was, in fact, in error.

In Chapter 6 we shall see that when it comes to the application of
the Hermann theorem for transverse isotropy in crystals, it is important to
work with the lower-rank tensor for drawing correct conclusions from this
theorem about optical or acoustical activity.
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Chapter 2

CRYSTALLOGRAPHY

. . . What immortal hand or eye,
Could frame thy fearful symmetry ?

William Blake, The Tiger

Although a variety of noncrystalline solids exist (glasses, polymers), a basic
knowledge of the crystalline state is necessary for a better understanding of
the condensed state of matter, if only because the properties of crystals of-
ten serve as benchmarks for comprehending the properties of noncrystalline
materials. In this chapter we review briefly the geometrical and symmetry
aspects of the structure of perfect single crystals. It is also instructive to
discuss the question of how a crystal is formed from its building blocks.
Many of the concepts used in the theories of crystal growth are also rel-
evant to the growth of a ferroic phase in the surrounding matrix of the
prototypic phase or the parent phase. The switching of ferroic domains by
driving fields is also akin to crystal growth in many respects. The chapter
ends with a brief description of the structural features of incommensurately
modulated crystals.

2.1 GROWTH OF A CRYSTAL
Here and elsewhere we shall not obtain the best insight into
things until we actually see them growing from the beginning.

William Aristotle, Politics

In a crystal there is a regular and repetitive arrangement of atoms or
molecules. One can identify a certain basic motif or building block, the
unit cell, which occurs again and again in a space-filling fashion along three
noncoplanar (and pairwise noncollinear) directions.

29
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The nucleation and growth of a crystal is a process of phase transition.
The transition can occur from a vapour phase to the solid phase, or from
a liquid phase to the solid phase, or from one solid phase to another. The
last-mentioned case will be taken up in detail in Chapter 5. We discuss
here some basic features of the formation of crystals from the vapour state
or the liquid state.

2.1.1 Nucleation
The creation of an ordered arrangement of atoms or molecules when crys-
tallization occurs from a random or nearly random configuration of the
liquid or vapour state entails a large change (lowering) of entropy. This is
therefore necessarily a first-order phase transition.

Fig. 1.1.1 in Chapter 1 depicts a necessary condition for the occurrence
of a phase transition, namely a lowering of the Gibbs free energy, G. In the
absence of external electric, magnetic or uniaxial-stress fields, G is defined
for a multicomponent system as

G = U-TS + pV + »ini (2.1.1)

Here U denotes the internal energy, T the temperature, S the entropy, p the
ambient hydrostatic pressure, V the volume, and Ui the number of moles of
the ith component having the chemical potential //; (summation over the
repeated index i is assumed). For highlighting the role of the entropy term
in the crystallization process, we rewrite the above expression as

G = H-TS, (2.1.2)

with H denoting the enthalpy.
The coming together of atoms or molecules to form a crystal is a dy-

namic process. Let us call the crystalline phase as Phase 2, and the mother
phase from which the crystal is to be grown as Phase 1. One can view the
process as a two-way chemical reaction, with Fig. 2.1.1 depicting a typi-
cal free-energy vs. reaction-coordinate diagram. The reaction coordinate
can be, for example, the radius (or some other typical size) of the growing
crystal. The reaction 1 —» 2 involves the surmounting of an activation-
free-energy barrier AG^, with AG^i playing a similar role for the process
2 —» 1. Thermal fluctuations provide the necessary energy for overcoming
these barriers.

The net rate J at which the atoms or molecules aggregate into the solid
phase can be written as a Boltzmann relation:

J~Ni exp(-AG*l2/RT) - N2 exp(-&G*2l/RT) (2.1.3)

Here NI and N2 are the numbers of molecules in Phase 1 and Phase 2
respectively.
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Figure 2.1.1: Illustration of the concept of activation free energy for a
chemical reaction or phase transformation. [After Brophy, Rose & Wulff
(1965).]

When thermodynamic equilibrium prevails, we have J = 0, giving

NI/N! = exp(AGi2/#T), (2.1.4)

where

AG12 = AG^ - AGt2 (2.1.5)

An experiment designed for the crystallization of a material must cre-
ate conditions (supersaturation, supercooling, etc.) so that the activation
barrier AG|2 can be overcome. Gibbs (1876-78) was the first to study such
matters in detail, and his work led to the recognition of a very important
aspect of first-order phase transitions, namely nucleation. We can under-
stand the necessity for nucleation by rewriting Eq. 2.1.3 with AT2 = 0, and
substituting for AG^2 from Eq. 2.1.2:

J - 7VX exp(AS*/#) exp(-AJT/flT) (2.1.6)

The activation entropy for the crystal-growth process, as also for any
other first-order phase transition, is thus seen to be negative, and of ex-
tremely large magnitude. (This is in sharp contrast to the situation in a
second-order phase transition, for which AS* = 0.)
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Figure 2.1.2: Dependence of the bulk free energy (Curve I) and the surface
free energy (Curve II) on crystal radius r, and the resultant overall variation
of AG described by Eq. 2.1.7.

Therefore the change of phase must begin on a very small scale, with
the formation of small nuclei of the new phase, followed by the gradual
growth of these nuclei (if the conditions are favourable).

Let us assume, for the sake of simplicity of further discussion, that the
nucleus of the crystal to be grown is of spherical shape, with a radius r.
The so-called Gibbs work of nucleation can then be written as

AG = -47rr3 A/x / (3v) + 4a7rr2, (2.1.7)

with

Af* = ̂ -/ic (2.1.8)

Here \JLV and //c are the chemical potentials for the vapour phase and
the condensed phase, v is the molecular volume, and a the surface energy
per unit area.

The two terms in Eq. 2.1.7 have opposite signs, and their variation with
r goes as r3 and r2 respectively (Fig. 2.1.2). There is thus a critical value of
r (= r*), below which 9(AG)/9r is positive, implying that the system can
lower its free energy by redissolving the newly formed nucleus. However,
if somehow (for example through thermal fluctuations) the radius of the
nucleus can be greater than r*, it will grow into a larger and larger crystal
because the AG(r) function decreases with increasing r in this regime.

As we shall see in more detail in Chapter 5, such considerations are
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applicable to practically all first-order phase transitions. Typical features
of such transitions are:

• Coexistence of the two phases in a certain temperature region.

• The consequent occurrence of interfaces separating the two phases.

• The existence of a nucleation barrier.

It is rather easy to visualize these three features for a crystalline phase
growing in a fluid matrix. But the three features may also be present
in a first-order ferroic phase transition. The main difference is that in a
ferroic transition the new phase is surrounded by a rigid and anisotropic
crystalline matrix of the parent phase. This fact has several important
consequences, including an alteration of the net symmetry of the new phase
(cf. §8.1), as well as a volume-dependent restoring force tending to restrain
the transition. This volume-dependent term is quite different from, and is
in addition to, the surface-energy term included in Eq. 2.1.7.

2.1.2 The Cluster-to-Crystal Transition
At the beginning of the formation of the nucleus, i.e. when r in Eq. 2.1.7
is only a few atomic or molecular dimensions across, the surface-energy
term is very dominant. In fact, for such small dimensions, A/x and a in
this equation cannot even be taken as well-defined constants (Mutaftschiev
1993). One also has to make a distinction between what may properly be
called large molecules on the one hand, and what have come to be known
as clusters on the other. The term clusters is used for aggregates of atoms
that, unlike molecules, are not found in appreciable numbers in vapours in
equilibrium (Martin 1988).

Small clusters undergo a process of reconstruction: Every time a unit
(atom or molecule) of the crystallizing species attaches itself to the cluster,
the units rearrange themselves completely. And the symmetries possessed
by these changing clusters do not necessarily have any resemblance to the
symmetry the bulk crystal would finally acquire. A stage comes in the grad-
ually increasing size of the cluster when it no longer reconstructs drastically
on the attachment of additional units. One then speaks of a microcrystal,
or a microcrystallite, which now has the symmetry of the bulk crystal. A
cluster-to-crystal transition can be said to have taken place at this stage
(Sugano, Nishina & Ohnishi 1987; Jena, Rao & Khanna 1987; Benedeck,
Martin & Pacchioni 1988; Multani & Wadhawan 1990; Haberland 1994).
This is an example of a size-induced phase transition.

Clusters may consist of about 100-1000 growth units, or less. What is
the structural symmetry possessed by them? A number of studies have been
performed, mostly with spherical metallic and rare-gas atoms, to answer
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this question. One fact which emerges is that icosahedral symmetry is
frequently favoured for stable configurations of small clusters (Hoare 1979).
Gold clusters, for example, have icosahedral symmetry in the 4-15 nm size
regime (Renou & Gillet 1981).

As we shall see later in this chapter, icosahedral symmetry is not com-
patible with the translational periodicity of a bulk single crystal. There-
fore, at the microcrystallite stage a major transition must occur to bulk-
crystalline symmetry, sometimes involving multiple twinning as an adjust-
ment mechanism1 (Mackay 1962; Senechal 1986; Ajayan & Marks 1990;
Riley 1990). Gold clusters change from icosahedral symmetry to face-
centered-cubic (fee) symmetry on reaching a size of ~15 nm (Renou &
Gillet 1981).

Certain magic numbers of atoms in some clusters make them excep-
tionally stable, and almost spherical in shape (Mackay 1962; Hoare & Pal
1972). The packing of atoms in many such cases has icosahedral symme-
try, often changing to dodecahedral or cubic configurations on increase of
the particle size (Kimoto & Nishida 1977; Edit, Sattler & Recknagel 1981;
Mort la Brecque 1988).

We shall return to this topic when we discuss size effects in ferroic
materials in Chapter 13.

2.1.3 Growth Mechanisms
How does the nucleus grow into a larger and larger crystal, once it has
crossed the free-energy activation barrier corresponding to the critical size
r* (Fig. 2.1.2)? As mentioned in §2.1.1, the coexistence of the growing
crystal with its mother phase involves the presence of an interface. This
interfacial region is where the various crystal-growth processes occur. The
growth units come and get attached on the interface, from where they may
or may not get knocked off back into the mother phase, depending upon the
sites where they got attached. The net rate at which the interface advances
into the mother phase, and therefore the net growth rate of the crystal,
depends on several parameters, including supersaturation or supercooling
of the solution or melt. To explain the observed growth rates of crystals,
the so-called terrace-ledge-kink (TLK) model was evolved by Stranski and
Volmer during the 1920's (see, for example, Givargizov (1991) for a review).
Fig. 2.1.3 shows the situation schematically, where the growth units are
taken as cubes for simplicity of explanation. A cube attached to Site 1
(a terrace site) is bonded to the growing crystal across only one of its six
faces, and is therefore quite likely to be blown off by the thermodynamic

lAs we shall discuss in §11.6.5, in a realistic modeling of a ferroelastic phase transition,
multiple twinning must be incorporated as an integral part of the phase-transition process
itself.
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Figure 2.1.3: Illustration of the various types of attachment sites for the
growth units (taken as cubelets). Site 1 is a terrace site, Site 2 a ledge site,
and Site 3 a kink site. [After Sangwal & Rodriguez-Clemente (1991).]

fluctuations. But it may also wander on the terrace and succeed in reaching
a ledge site (Site 2), where the bonding is stronger, being on two of the six
faces. The strongest bonding, of course, will occur if it reaches a kink site
(Site 3), where as many as three of the six faces are bonded to the growing
crystal. An important feature of this model is that the kink sites are self-
regenerative: after a unit attaches at Site 3, the resulting configuration is
once again a kink site, ready to receive and bind strongly another growth
unit.

What happens when the entire ledge has grown end to end, and so
also the entire terrace by the successive addition of ledges (or steps) to
it? The crystal will have to start and sustain another layer of growth by
beginning with a terrace site. This would require a rather high degree of
super saturation or supercooling of the mother phase. The growth rates
predicted by this model for given degrees of supersaturation were therefore
found to be far too low compared to experimental observations.

This situation was remedied by the celebrated BCF theory (Burton,
Cabrera & Frank 1951), which, among other things, explained the observed
high rates of crystal growth by invoking the role of screw dislocations for
providing a spiralling (and therefore never-ending) growth ledge. Crystal
growth can advance indefinitely on the helicoidal surface of the screw dis-
location by the addition of growth units at the never-ending source of kink
sites. Thus the need for surface nucleation is eliminated or reduced. Be-
cause of the anchoring of the ledge at the emergence point of the screw
dislocation, the ledge winds up into a growth spiral. Experimental confir-
mation of this model was provided by Verma (1951a, 1951b, 1953).

We shall see in §10.7.1 that the kinetics of domain switching in ferro-
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electrics has several features in common with crystal growth from a fluid
phase.

The Roughening Transition

The phenomenon of the growth of a crystal involves a large ensemble of
atoms or molecules. Extensive use of statistical mechanics for dealing with
it has therefore been made from early times (see, for example, Chernov
(1984) and van der Eerden (1993) for reviews). A variety of Ising models
have been employed for describing the processes occurring in the interface
between the mother phase and the growing crystal. The interface is parti-
tioned into equal cells, each cell being either in the solid state or fluid state.
One of the widely used models is the so-called solid-on-solid (SOS) model
(Temkin 1964). In this model, the material below the interfacial region
is assumed to be completely crystallized, and that above the interface is
assumed to be completely fluid. Within the interface, solid cells can sit on
top of solid cells, but overhangs (i.e. solid cells on top of fluid cells) and
vacancies (i.e. occurrences of one state in the other) are disallowed. One
can thus define a site variable, /i^, which can take all integral values between
—oo and +00 with respect to a reference plane, and which is a measure of
the heights of towers of solid cells.

At T = 0, hi = 0 for all i, corresponding to a completely planar
interface. As T increases, fluctuations of the site occupancy occur more and
more, and the interface becomes increasingly rough. The general expression
for the Hamiltonian has the form

H = 2J Y^ \hi~hj\i (2-1-9)
<»,j>

where < • - - > denotes the thermodynamic expectation value, and the sum
runs over all pairs of nearest-neighbour sites (in a two-dimensional lattice).
For a two-level model (hi = {0,1}), the Hamiltonian becomes the same as
that for a two-dimensional Ising model:

H = -J Y^ SiSJi (2.1.10)
<i,j>

Si = 2hi-l (2.1.11)

This model predicts a second-order phase transition at a temperature
Tc, below which < hi > is less than |, and above which < hi >= \. Above
Tc, a central layer can be identified in the interface, which has 50% solid
cells and 50% fluid cells, and the nucleation barrier for two-dimensional
nucleation does not exist.
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One speaks of a roughening transition occurring at a temperature TR
which is equal to, or slightly above the critical temperature Tc of the two-
dimensional Ising model. Long-ranged fluctuations of the site variable hi
exist for temperatures above TR, which decay very slowly, with a power
law. This means that, above TR, large numbers of kinks can exist on the
crystal surface, even without screw dislocations, leading to a rapid and
non-facetted growth of such surfaces.

The value of TR is different for different habit planes of the crystal. If,
for a given temperature T of crystal growth, T < TR for a particular habit
face, such a face of the crystal will grow as a predominantly smooth face. If
T > TR for a face, the face will be atomically rough, and will grow rapidly,
with a rounded appearance.

The corresponding situation in a first-order crystal-to-crystal phase
transition is more complex. We shall discuss some aspects of phase boun-
daries and polydomain phases in ferroelastics in §11.6.5. The equivalent of
roughening transitions on different facets of a ferroic phase surrounded by
the parent-phase matrix does not appear to have been thoroughly investi-
gated. However, it is interesting to note that in several crystals a ferroic
phase transition is intervened by the occurrence of an incommensurate ph-
ase in a narrow temperature range (§2.4, 4.1.5, 5.8). One of the best inves-
tigated systems of this type is quartz (see Saint-Gregoire (1995) and Dolino
& Bastie (1995) for recent reviews). The ferrobielastic (3 —> a transition in
quartz actually has the sequence (3 —> (incommensurate phase) —» a. A
spectacular high-resolution electron microscopy picture, showing all three
phases at slightly differing temperatures, was published by Amelinckx et al.
(1989) (see Fig. 28 their paper). Although the occurrence of incommensu-
rate phases is normally explained in terms of "competing interactions", one
cannot help noticing a certain amount of similarity between a roughening
transition and an incommensurate transition, particularly in the "discom-
mensuration" regime (cf. §5.8).

Unlike a roughening transition at a solid-fluid interface, an incomme-
nsurate phase has a periodic crystal structure on both ends, a fact which
forces it to adopt a somewhat regular-looking structure. The "triangular 3q
structures" observed in quartz are an example of this (see Fig. 2 of Dolino
& Bastie 1995).

2.1.4 Crystal Morphology
The morphology a crystal adopts is determined by the relative rates of
growth of the various faces. Faces which grow too fast disappear eventually,
and the final shape is determined by the slowest-growing faces.

A very fruitful concept for understanding the growth morphologies of
crystals is that of periodic bond chains (PBCs) (see Hartman (1987) for
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a review of its applications). The growth of a crystal can be viewed as a
process of formation of bonds between the growth units. Mainly strong
bonds, usually those in the first coordination sphere, are relevant in this
context. One can represent a bond between two growth units as a line
segment joining them, with the length of the segment taken as proportional
to the binding energy. Because of the periodic nature of the structure of
the crystal, the line-segments of a specific length and orientation will lie on
uninterrupted periodic chains, namely the PBCs.

In terms of PBCs, three distinct types of crystal faces can be identified:
F-faces (or flat faces), with at least two nonparallel sets of PBCs running
parallel to them; S-faces (or stepped faces), with one set of PBCs running
parallel to them; and K-faces (or kinked faces), with no PBC parallel to
them.

K-faces are atomically rough, with kink sites all over them. Therefore
they have the largest growth rates, and are thus seldom important in de-
termining the final morphology a crystal adopts. S-faces have, generally
speaking, lower growth rates than K-faces, but, because of the presence
of steps or ledges on them, they may still grow fast enough to eventually
disappear. There are several important exceptions to this, however.

F-faces generally have the lowest growth rates, and therefore the high-
est morphological importance. An F-face growing below its roughening
transition temperature, TR, will be smooth, practically at the atomic level,
except for the effects of defects like dislocations.

For computing the theoretical growth morphologies of crystals, several
criteria are in use for determining the relative rates of growth of competing
F-faces (cf. Bennema & van der Eerden 1987). According to one such
criterion, the growth rate is directly proportional to the energy released
when a slice of the crystal parallel to the face under consideration gets
attached to the growing crystal. Another criterion takes the growth rate as
inversely proportional to the value of TR for that face.

The morphology of a crystal reflects its internal symmetry. In partic-
ular, it is in conformity with its point-group symmetry. Implicit in this
statement is the assumption that the crystal grows in an isotropic environ-
ment, which is generally the case for crystals grown from a fluid phase. But
when a crystalline phase is obtained as result of a solid-to-solid phase tran-
sition, the new phase has to grow in the anisotropic environment provided
by the parent phase. Because of the strain fields, as well as other factors
which vary with direction, the morphology of the new phase (e.g. a ferroic
phase growing inside a prototypic phase) is modified. This modification
can be determined by applying the Curie principle. We discuss this in §7.5
and 8.1.
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2.2 SYMMETRY OF A CRYSTAL
2.2.1 The Symmetry Group of a Crystal
The symmetry of a crystal can be discussed in terms of a density function
p(x,7/,z), which defines the electron density at any point (x,y, z) due to
all the atoms in the unit cell. Certain coordinate transformations (trans-
lations, rotations, inversions, and their permitted combinations) leave the
density function of a crystal invariant. The set of all such symmetry trans-
formations for a crystal forms a group called the symmetry group of the
crystal (cf. §B.l).

The symmetry of a crystal can be described at progressively increas-
ing levels of detail. Crystals can be classified into 7 crystal systems, 14
Bravais lattices, 32 point groups, and 230 space groups. Magnetic crystals
have additional features of symmetry, which we shall describe separately in
§2.2.18.
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2.2.2 Translational and Rotational Symmetry
The repetitive (periodic) arrangement of atoms in a crystal can be visual-
ized in terms of a lattice of points, with an atom or a group of atoms (called
the basis) placed at each lattice point in an identical manner. The crystal
lattice is only a mathematical concept, with no physical identity. It is an
infinite array of points in space with the property that all such points have
identical surroundings. In three-dimensional space a lattice can be defined
in terms of three primitive translation vectors, such that any lattice vector,
r, can be expressed as

r = niai + n2a2 + n3a3, (2.2.1)

where ni, n2, n3 can take all possible positive or negative integral values (in-
cluding zero), and ai, a2, a3 are three non-coplanar, pairwise-noncollinear,
basic vectors which are said to span the lattice.

Lattice translations defined by Eq. 2.2.1 generate equivalent points.
The set of all such points defines a lattice. A lattice has translational
symmetry: it is invariant under lattice translations defined by Eq. 2.2.1.

A given lattice may also have rotational symmetry] that is, it may
be also invariant under specific rotations and reflections. The rotational
symmetry of the lattice defines the crystal system.

Crystal systems possess specific point-group symmetries, that is; they
are invariant under coordinate transformations related to specific symmetry
axes and symmetry planes, applied so as to keep at least one point in space
invariant. This invariant point is referred to as a singular point.

2.2.3 Crystal Structure
A crystal structure can be generated by choosing an appropriate set of
atoms (called the basis), and placing it in a fixed orientation at the tip of
each of the lattice vectors given by Eq. 2.2.1. This repetition of a pattern
of atoms can be described mathematically as a convolution (cf. Appendix
D) of a basis function B(r) arid a lattice function L(r) (Lipson & Taylor
1958; Burns & Glazer 1990):

C(r) = B(r) * L(r) = f B(r - r')i(r') drf (2.2.2)

The function <7(r) represents the infinite crystal structure.

2.2.4 Point Space
Mathematically, a crystal lattice can be visualized as a subset of an infi-
nite point space. Those transformations or mappings in this point space
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which preserve distances between points are called isometries, or isometric
mappings, or rigid motions.

A set of points is said to be discrete if the distance between any two of
these points is always larger than some minimum distance r.

A set of points is relatively dense if any sphere (in three dimensions) or
a circle (in two dimensions) that does not contain any point of the set (i.e.
the largest "empty hole") has a radius (R) less than some fixed value.

An (r,R) system of points is that which is both discrete and relatively
dense.

A pattern of points including translations as symmetry operations is
said to be periodic.

When the points of an (r, R) system are such that their configuration
looks the same from any point of the set, the system is said to be regular. A
crystal lattice is an example of a regular (r, R) system of points. All points
of a regular (r, R) system are equivalent. It can be proved that regularity
implies periodicity.

2.2.5 Symmetry Elements in a Crystal
If an object possesses symmetry, it implies that it has 'parts' (or 'asym-
metric units') which are equivalent. The equivalence of parts means that
rigid motions exist which can map any part to the original position of any
other part, with the appearance of the object remaining unchanged. Such
motions are the symmetry operations.

Certain symmetry operations in a crystal leave one or more points fixed
during their action. The set of all such points constitutes the symmetry el-
ement for that symmetry operation. In 3-dimensional space, the symmetry
element of a rotational symmetry operation is a straight line (the rotation
axis). The symmetry element of a reflection operation is a mirror plane.
And the symmetry element of an inversion operation is just a point (rather
than a line or a plane).

2.2.6. Orbits; Stabilizers
If we consider a point r, and apply to it successively the various operations
of the symmetry group G of the crystal, we generate a set of points equiv-
alent to r. This set of equivalent points defines the orbit of G with respect
to the point r. Naturally, the size and appearance of the orbit will depend
on the location of r.

Orbits of a finite group are finite sets of points. By contrast, a regular
(r, R) system is an orbit of an infinite group.

A site in a crystal may be such that some operations of G leave it un-
moved. The totality of all such symmetry operations constitutes a stabilizer
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subgroup, S(r), of G, and is known variously as isotropy group, little group,
or site-symmetry group (Evarestov & Smirnov 1993).

Suppose a symmetry operation g of the group G carries the point r to
r': r' = gr. Then the stabilizer of r', namely S(r'), is given by gS(r)g~1',
i.e. S(r') and 5(r) are equivalent or conjugate subgroups of G (cf. §B.l).

Thus if two or more points are members of the same orbit (as r and
r' are), their stabilizer is the same, except for equivalence transformations.
Therefore one can speak of the stabilizer of an orbit.

2.2.7 Attributes of Space
Four attributes of space are relevant for a discussion of the symmetry of
crystals. The space may be: (i) homogeneous or inhomogeneous; (ii) infinite
or finite; (iii) continuous or discrete; and (iv) isotropic or anisotropic.

The question of homogeneity of space is linked to the scale adopted
for defining it. At the atomic-structure level, the space a crystal exists
in is inhomogeneous, because not all its points are symmetrically equal.
However, at a sufficiently crude or macroscopic level, the same crystal space
may be regarded as homogeneous, though not necessarily isotropic.

The attribute of infiniteness is essential for the purpose of defining
translational invariance or periodicity. Unless the space is infinite in a
given direction, it is not possible to define translational invariance along
that direction or dimension. For example, in the definition of translational
periodicity of a crystal along a particular direction, it is implicitly assumed
that the crystal is of infinite size along that direction; then only can all
lattice translations qualify as symmetry operations. In real-life situations,
of course, the crystal size is always finite, but one can often ensure that the
size is still large enough to make the effect of finiteness negligible in a given
context.

A 3-dimensional crystal also provides an example of discrete space.
Not all its points are equivalent by symmetry. It has a discrete lattice;
any lattice point is equivalent only to those that are related by the discrete
lattice translations. By contrast, in a continuous, homogeneous, space any
point is equivalent or identical to any other point.

The attributes of an mrdimensional space may not be the same along
all its dimensions. Its different n-dimensional subspaces (n < ra) may
have a variety of combinations of attributes, each with its own group of
symmetry. In the context of crystals and other periodic structures, the
symbol G™ is frequently used for denoting these symmetry groups. The
integer n indicates the number of dimensions in which the crystal is periodic
and therefore infinite, as well as (discretely) homogeneous.

A space is said to be fully inhomogeneous if it has no homogeneous
subspaces (n = 0).
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2.2.8 Rational and Irrational Directions
In Eq. 2.2.1, ni,n2,ns are integers, so that r is a lattice vector. A vector
r defines a rational direction in the crystal lattice when ni,712,^3, though
not necessarily integers, are rational numbers. For example, if n\ = 1.1,
n2 = 2.3, and n3 = 7.26, we can write lOOr = llOai + 230a2 + 726a3, so
that although r is no longer a lattice translation, lOOr is still so.

If one or more of the coefficients n\, n2, or 713 is an irrational number
(e.g. \/2), r will define an irrational direction. In this case no multiple or
submultiple of r can be a lattice translation.

2.2.9 The Crystallographic Restriction on Axes of
Symmetry

There are only seven distinct types of Crystallographic unit cells that
remain invariant under the rotational symmetry operations of the crystal
lattice. These define the seven crystal systems: triclinic, monoclinic, or-
thorhombic, tetragonal, cubic, rhombohedral, and hexagonal. To see how
these restrictions arise, consider a lattice vector r, and a rotational symme-
try operator R. Under the action of R, r changes to another lattice vector
r' :

r' = Rr (2.2.3)

One can assume, without loss of generality, that the axis of rotation for
the symmetry operator R is along one of the three basic vectors spanning
the lattice, say along a3. If R denotes a proper rotation through an angle
0, it can be represented by the following matrix with respect to a cartesian
frame of reference:

cos 0 — sin 0 0
M= sin<9 cosO 0

0 0 1 .

We now carry out a coordinate transformation from the cartesian frame
of reference (in which the above representation of the operator R is defined)
to one based on basic vectors ai, a2, as spanning the lattice. The new
coordinate axes need not, in general, be mutually orthogonal.

Since r'and r in Eq. 2.2.3 are both lattice vectors, this equation can
be rewritten as

n(sii + n'2a2 + n'38i3 = R(niax + n2a2 + n3a3) (2.2.4)

Since n^n^n^ni,?^,^ are arbitrary integers, Eq. 2.2.4 can hold
only if all the terms in the new matrix representation (say M') of R are in-
tegers. In particular, the sum of the diagonal elements, i.e. the trace, must
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be an integer. This trace is (2 cos 9 + 1) in the cartesian frame of reference.
However, since a distance-preserving transformation (i.e. a similarity trans-
formation) does not change the trace of R, the trace is (2 cos 6 +1) even for
the coordinate system defined by the basic vectors ai, a2, as. Therefore,
(2cos0 + 1) must be an integer.

Since | cos 9\ cannot exceed unity, the following are the only possibilities:
2 cos 0 + 1 = 3,2,1,0,—!, corresponding to

cos0 = l,i,0,-i,-l (2.2.5)

This implies that the only allowed values of 9 are 2?r, 27T/6, 27T/4, 27T/3,
and 2?r/2. The corresponding rotation axes of symmetry are defined as 1-
fold, 6-fold, 4-fold, 3-fold, and 2-fold respectively. Thus the only rotational
axes of symmetry allowed in a three-dimensional crystal are those denoted
by the symbols 1, 2, 3, 4, and 6. This is sometimes referred to as the
crystallographic restriction.

Apart from these six proper rotation axes of symmetry possible in a
crystal, there are the six improper symmetry axes. These are obtained
by defining a composite symmetry operation consisting of a proper rota-
tion followed (or preceded) by an inversion operation 1. [An inversion
operation through the origin changes all the atomic coordinates (x, y, z) to
(—x, —y, —z).} The composite operation is denoted by putting a "bar" over
the symbol of the proper rotation operator. One gets 1, 2, 3, 4, and 6. It is
readily verified that a 2-fold rotation, followed by inversion through a point
on the rotation axis, is equivalent to a reflection operation across a plane
perpendicular to the 2-fold axis and passing through the inversion point.
Therefore, 2 really represents the mirror-symmetry operation ra.

Thus, a crystal in three dimensions can possess only the following ten
rotational symmetries, or directional symmetries, and their self-consistent
combinations (we use the term "rotational symmetry" to represent both
proper and improper rotations):

1,2,3,4,6,1,2,3,4,6.

2.2.10 Crystal Systems and Crystal Families

In the light of the above, the point-group symmetries possessed by unit
cells of various shapes can be described as follows:

(i) Arbitrary parallelepiped, with edges parallel to the basic lattice vectors
ai, a2, as, such that a\ ^ a<2 ^ as, and a ^ /3 ^ 7. Here a is the angle
between a2 and as, /3 that between as and ai, and 7 that between ai and ai.
Such a unit cell has two symmetry elements, namely the identity operation
1, and the inversion operation 1. Its point symmetry is thus described by
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a group of order 2.
Two main types of notation are in common use for describing symmetry

in crystallography. One is the so-called international or Hermann-Mauguin
notation, which for the point group of the present unit cell is 1.

The other notation is the Schoenflies notation; for the present case it
is d, the two elements of the group being denoted by E and J. In the
symbol Ci, i stands for the inversion operation, and C represents the fact
that it is a cyclic group (cf. §B.l).

(ii) Right parallelepiped, with a\ ^ a<2 ^ a3, and a = 7 = 90° ̂  (3. Such an
object has a 2-fold axis of symmetry, 62, parallel to the a2-axis, as also a
mirror plane of symmetry, cr^, perpendicular to the a2-axis. Its symmetry
group has the elements E, C<2, J, and &h (or 1, 2, 1 and my), and is denoted
by C2h (or 2/m).

(iii) Rectangular parallelepiped, with a\ ^ a^ ^ a3, and a = /3 = 7 = 90°.
Its symmetry group is of order 8, with elements E, 62, C^, C^', J, cr^, av,
a'v (or 1, 2X, 2y, 2Z, 1, mx, my, mz), and is denoted by D^H (or rarara).

(iv) Right square prism, with a\ = a<2 ^ a3 and a = /? = 7 = 90°. Its
symmetry group is denoted by D±h or 4/raram, and it has 16 elements.

(v) Cube, with ai = a2 = a3 and a = (3 = 7 = 90°. The symmetry group of
a cube is of order 48, and is denoted by Oh or raSra. The letter O denotes
"octahedral"; a cube and an octahedron have the same symmetry elements.
More details can be found in, for example, Burns & Glazer (1990) and Hahn
(1992).

(vi) Rhombohedron, with a\ = a<z = as and a = (3 = 7 ^ 90°. Its symmetry
group DM or 3m has 12 elements.

(vii) Regular hexagonal prism, with a\ = a^ ^ as, a = j3 = 90°, and
7 = 120°. The point group for this case is denoted by D$h or 6/rarara, and
has 24 elements.

Each of these seven types of unit cells, if stacked together and repeated
in a space-filling manner along ai, a2 and as, generates the entire crystal.
Every vertex of every unit cell is identical in all respects: configuration
of electrons, atoms, everything. The vertices therefore constitute a set of
equivalent points, related to one another through lattice vectors. Such a
set of points constitutes a lattice.

A crystal may have more equivalent points than those generated through
lattice translations alone. For example, rotational symmetry operations can
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generate additional equivalent points.

A lattice is a set of equivalent points generated by lattice trans-
lations alone.

The seven types of unit cells listed above generate seven of the crystal
lattices, called primitive lattices. The symbol P is used for representing
primitive crystal lattices, except that R is used for denoting the rhombo-
hedral lattice.

These seven types of unit cells also define the seven crystal systems,
each with a distinct essential symmetry, namely Ci (triclinic), C^h (mon-
oclinic), D<2h (orthorhombic), D$d (rhombohedral), D±h (tetragonal), D§h
(hexagonal), and OH (cubic). The seven crystal systems represent the seven
distinct point-group symmetries that crystal lattices can possess.

The concept of crystal families is particularly useful in the context of
ferroelastic phase transitions. The 32 crystallographic point groups are
divided into six crystal families. The crystallographic family of a point
group is the same as the crystal system to which it belongs, except that
point groups under the rhombohedral crystal system are taken as belonging
to the hexagonal crystal system (Hahn 1992; Janovec, Richterova & Litvin
1993). Thus, whereas there are seven crystal systems, there are only six
crystal families.

2.2.11 Primitive and Nonprimitive Bravais Lattices
Of all the lattices which can be generated in 3-dimensional space by three
basic lattice vectors, only 14 are unique or distinct. These are referred to
as the 14 Bravais lattices.

In a primitive Bravais lattice only one lattice point is associated per
crystallographic unit cell. (A crystallographic unit cell is that which pos-
sesses the full point-group symmetry of the crystal.) Thus there are seven
primitime Bravais lattices, one for each crystal system.

There also exist seven nonprimitive Bravais lattices, in which the num-
ber of lattice points associated per crystallographic unit cell is more than
one. (Such a unit cell is referred to as a nonprimitive unit cell.)

An example of a nonprimitive Bravais lattice is the body-centered cubic
(bcc) lattice, in which one can define a unit cell that is a cube, for which
the body centre, i.e. the point (^, \, \] in units of the basic vectors, is also
a lattice point completely equivalent to the lattice points at the corners of
the cube. The symbol / is used for denoting such a Bravais lattice.

Similarly, face-centered cubic (fee) is another nonprimitive Bravais lat-
tice (denoted by the symbol F), with lattice points at the centres of the six
faces of the cubic unit cell, as well as at the corners of the cube.

One can always choose a primitive unit cell (with only one lattice point
associated with every such cell) even for a nonprimitive Bravais lattice.
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But, unlike the nonprimitive or crystallographic unit cell, such a cell does
not possess the full point-group symmetry of the lattice.

It is readily verified that the set of symmetry operations defining any
Bravais lattice constitutes a group, the Bravais group. The basic vectors
ai, a2, a3 are the generators of this group.

2.2.12 Screw Axes and Glide Planes

We conclude our brief introduction to crystal lattices by mentioning the
possibility of occurrence in them of symmetry operations that are combi-
nations of rotations or reflections with fractional translations. There are
two types of such symmetry elements: screw axes and glide planes.

A crystal lattice is said to have a screw axis of order n if it remains
unchanged on rotation through an angle 2?r/n followed by a translation
through a vector pa/n (p = l ,2, . . .n — 1), where a is the smallest period
of the lattice along the direction of the axis. The symbol used for a screw
axis is np. For example, a screw axis of order 3 can be of two kinds, involving
either a fractional translation of a/3, or of 2a/3. n successive applications
of a screw operation of order n simply move the lattice by a nonfractional
distance a.

A glide-plane of symmetry is said to exist in a crystal lattice if the
lattice is invariant to reflection through such a plane combined with a frac-
tional translation A/2 along a specific lattice direction in this plane, A
being the smallest period of the lattice in the direction of the fractional
translation. Two successive operations of this type simply translate the
lattice by a lattice vector A. The repeat vector A may be either a basis
vector ai, a2, or as, or, for certain lattices, a vector like ai 4- a2, or, for
cubic lattices, even ai + a2 + as.

We emphasize that the additional equivalent points of a crystal lattice
arising from the presence of any screw axes or glide planes, being not the
points generated by full lattice translations, do not enter the definition of
the corresponding Bravais lattice.

2.2.13 Wigner-Seitz Cell
This unit cell is constructed as follows: One chooses any of the lattice
points as the origin O, and draws all the planes that are perpendicular
bisectors of the lines joining O with the nearest (and sometimes also the
next nearest) neighbours. Enough number of such planes are drawn to
enclose a polyhedron, which is called the Wigner-Seitz cell. Such a unit cell
contains only one lattice point, and has the same volume as the primitive
unit cell.

With the crystallographic unit cell it shares the property that both
display the full point symmetry of the lattice.
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2.2.14 The Various Types of Unit Cells
We have described three types of unit cells in this section.

The crystallogmphic unit cell (also called the Bravais unit cell, or the
conventional unit celt) possesses the full point-group symmetry of the crys-
tal, but it may contain more than one lattice point in it.

The primitive cell may or may not display the full point symmetry of
the crystal, but it has only one lattice point associated with it.

The Wigner-Seitz cell displays the full point symmetry, and there is
also only one lattice point per cell of this type.

2.2.15 Crystallographic Point Groups
For macroscopic properties like mechanical deformation, thermal expansion
and optical birefringence, crystals, in spite of their discrete atomic struc-
ture, can be treated as homogeneous continuous media. Such properties,
however, need not be the same along all directions in the crystal. On the
other hand, any rotational symmetry possessed by the atomic structure
of a crystal results in a corresponding directional symmetry of its macro-
scopic physical properties. Thus, so far as the macroscopic properties are
concerned, the crystal behaves as an anisotropic continuum, its directional
symmetry determining the symmetry of these properties. The symmetry
of directions in crystals can be described by one or the other of 32 crystal-
lographic point groups. These are symmetry groups, the elements of which
are derived from the 10 proper or improper rotational symmetries possible
in crystals, including their allowed, self-consistent, combinations.

In contrast to rotational symmetry, the translational symmetry of the
crystal does not lead to any symmetry of directions. However, it puts severe
restrictions on the symmetry of directions a crystal can possess. Also, the
fractional translations involved in the operations of screw axes and glide
planes can be ignored when specifying the symmetry of directions of a
crystal. The directional symmetry is thus determined only by the 10 proper
and improper rotational symmetries, with screw axes and glide planes (if
any) replaced by the corresponding simple rotation axes and mirror planes.
The 32 groups of symmetry elements so obtained correspond to the 32
crystal classes.

Derivation of Point Groups
We begin by noting that the symmetry of a crystal class cannot be higher
than that of the crystal system it belongs to; it can at the most be equal to
it. This is because, when we generate a crystal structure by associating a
basis (an atom, or a bunch of atoms) with each lattice point, the symmetry
cannot possibly be enhanced by such a process. This suggests a way of
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deriving the various crystallographic point groups: We take each of the
seven point groups corresponding to the seven crystal systems, and derive
all their trivial and nontrivial subgroups.

On the application of such a procedure, it is bound to turn out that
some of the subgroups so obtained occur in more than one crystal system.
For example, since all the seven primitive Bravais lattices are centrosym-
metric, the group Ci will occur as a subgroup in all the seven crystal sys-
tems. Now, it is physically highly unlikely that a crystal with a given point-
group symmetry should belong to a crystal system of symmetry higher than
the minimum necessary. For instance, it is very improbable that a crystal
with point-group symmetry C<2 should belong to the cubic system (symme-
try Oh), rather than belonging to the monoclinic system (symmetry C2h)-
One can therefore impose the following physically reasonable condition for
deriving the various crystallographic point groups from the symmetry gro-
ups of the seven crystal systems:

Each crystal class shall be assigned to the lowest-symmetry crys-
tal system compatible with it.

We start with the triclinic system, and determine the subgroups of Ci.
There are two of them: C\ and Ci.

The next higher system, monoclinic, contains three crystal classes: C2,
Cs, C2h, not counting the classes C\ and Ci already encountered in the
triclinic system. And so on.

We list below the 32 crystallographic point groups derived in this way.
The international notation is given in brackets.

Triclinic : C\ (1), d (1)

Monoclinic : Cs (m), C2 (2), C2h (2/m)

Orthorhombic : C2v (2mm), D2(222), D2h (mmm)

Tetragonal : C4 (4), S4 (4), C±h (4/ra), C4v (4mm), D2d (42m),
D4 (422), D*h (4/mmm)

Rhombohedral :_ C3 (3), S6 (3), C3v (3m),
D3(32), D3d(3m)

Hexagonal : C3h (6), D3h (6m2), C6 (6),
CQh (6/m), C6v (6mm), D6 (622), D6h (6/mmm)

Cubic : T (23), Th (m3), Td(43m), O (432), O/l(m3m)
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A word about the symbols used here. As mentioned before, C stands
for cyclic, for example, Ca is a cyclic group of order 3.

D denotes dihedral. A dihedral group Dn can be split into a direct
product as follows:

Dn = Cn ® {E, C2[100]} (2.2.6)

Here the n-fold axis is taken along [001], and the 2-fold axis C% is along
[100]. The orders of the groups Cn and Dn are n and 2n respectively.

T stands for "tetrahedron"; this group comprises the rotational (only
the proper rotational) symmetry operations of a tetrahedron. The group
Td describes the full symmetry of a tetrahedron.

O denotes the proper-rotational part of the symmetry of an octahedron
or a cube, and Oh their full symmetry.

There are other ways of deriving the 32 crystallographic point groups.
We mention one more approach here, which helps bring out some geomet-
rical aspects.

We have already come across the result that only the following 10 rota-
tion and roto-inversion axes are possible in a crystal: 1,2,3,4,6,1,2,3,4,6.
These account for 10 of the 32 crystallographic point groups; i.e. a crystal
may have any of these as the only element of directional symmetry. Such
point groups are called monoaxial point groups. In fact, three additional
distinct monoaxial point groups are also possible, namely 22 (or 2/ra), 44
(or 4/m), and 66 (or 6/ra). The corresponding Schoenflies symbols are C^h,
C^h, and C$h> It is readily verified that 33 is not distinct from 3 itself. The
notation nn means that n is parallel to the n-fold axis, and n/ra means
that ra is perpendicular to n.

Having listed the 13 monoaxial point groups for crystals, we consider
next the polyaxial point groups. Suppose we have two nonparallel but in-
tersecting symmetry axes n\ and n2. The net effect of rotation by an angle
2?r/ni about the axis ni, followed by a rotation of 27r/n2 about n2, is a
rotation of 2?r/n3 about a third axis n%. There are three restrictions on 713.

Restriction 1. n% can be 1, 2, 3, 4, 6, 1, 2, 3, 4, or 6 only.

Restriction 2. 713 must be a proper rotation axis if the product n\n^ is so;
improper if the product is so. This means that only the following three
types of combinations are possible:

n\n<2ri3', n\n\ n2n2 ^3^3; n\n^n^ n\nin^ nin2ns

Restriction 3. The interaxial angles among the symmetry axes ni, n2, n%
must obey the Euler formula. For example, the angle c/)ap between the axes
HI and H2 is restricted to the value given by

. cos7/2 + cos a/2 cos/3/2
cos $a(3 = —. . ' /0 ' (2.2.7)

sin a/2 sm/J/2
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Here a = 27r/ni, /3 = lit/n^ and 7 = 2?r/n3.

There are six polyaxial point groups of the type nin^n^. These are:
222 (£>2), 32 (£>3), 422 (£>4), 622 (J96), 23 (T), and 432 (O).

Six additional polyaxial point groups are of the type n\n\ n^n^ n^n^.
These are: mmm(D2h)^ 3m(Z)3d), 4/mmm(£>4/l), 6/mmm(D6/l), 7713(1 )̂
and m3m(O/l).

The symbol 3m is a short form for the full symbol 33 22 22. This
shortening is possible because 33 = 3, and 22 = 2/m. The 3-fold axis is
taken as 'vertical', and therefore the 2-fold axes are horizontal. The m
in 2/m, being perpendicular to the horizontal 2-fold axis, becomes vertical
and hence parallel to the 3-axis. Moreover, the presence of one such vertical
mirror plane leads to the presence of two more such planes, obtained by the
operation of the 3-axis; it is therefore enough to indicate the presence of
one such mirror plane by writing the short symbol 3m. In the Schoenflies
symbol D^d for this point group, d stands for "diagonal"; the vertical m-
planes bisect the angles between the 2-fold axes or diads.

The following relationships involving direct products of groups are in-
structive:

Dnh = Dn ® {E, ah} = Dn ® {£, J] (2.2.8)

Th = T ® {£, ah} = T ® {E, J} (2.2.9)

Oh = O ® {£, ah} = O 0 {E, J} (2.2.10)

The remaining seven polyaxial crystallographic point groups are of the type
nifi2^35 ni7i2fi3, nin^n^. These are: 2mm(C2V), 3m(C3V), 4mm(C4V),
42m(D2d), 6mm(C6v), 6m2(£>3/l), and 43m(Td).

Laue Classes

Centrosymmetric crystal classes (i.e. those possessing the inversion oper-
ation as a symmetry element) are called Laue classes. There are 11 Laue
classes, and they include the seven classes corresponding to the highest
symmetry of the seven crystal systems:

l(Ci), 2/m(C2/i), mmm(D2/i), 4/m(C4/i), 4/mmm(JD4/l),

3(C3i or S6), 3m(D3d), 6/m(C6/i), 6/mmm(D6/l), m3(Th), m3m(Oh)

Polar Groups

A direction in a crystal the two ends of which are not related by any sym-
metry operation of the point group of the crystal is called a polar direction.
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Obviously, such a direction cannot exist for any of the 11 Laue groups.
Out of the 21 noncentrosymmetric crystal classes, only the following 10 can
possess such a direction:

l(Ci), 2(C2), 3(C3), 4(C4), 6(C6)

m(Cs), mm2(C2V), ^m(C^v), kmm(C±v), 6rara(C6«)

These are the 10 crystallographic polar groups, and crystals having any
of these symmetries are said to belong to a polar class. These groups are,
naturally, subgroups of the limit group com (cf. §2.2.19 below).

2.2.16 Simple Forms

Any plane or line in a crystal is repeated by the operations of its point group
into equivalent planes or lines. For example, if we consider a plane (100) in
a crystal having point symmetry ra3ra, identical planes (100), (010), (OlO),
(001), (001), will also occur because of the directional symmetry defined by
ra3m. The entire set of these six planes is denoted by {100}, and together
they enclose a polyhedron or form (a cube in this case), called a simple
form.

A simple form is a polyhedron the faces of which are related by the
symmetry operations of the crystal.

In our example of the simple form (cube) generated by {100}, the initial
face (100) is in a special orientation, namely parallel to (in fact coinciding
with) the mirror plane mx of the group ra3ra. If we choose an initial face in
the most general orientation, so that it does not coincide with any symmetry
element of the crystal, and is also inclined to the three coordinate axes at
different angles, we obtain a general simple form. It is a hexoctahedron (48
faces) for the case of the crystal class ra3ra (Sirotin & Shaskolskaya 1982).
The general simple form has the largest number of faces (or hedrd) for a
given crystal class.

Special simple forms, because of the special choice of the initial face,
have less faces than the general simple form. For the example of ra3ra
symmetry considered here, the number of faces of simple forms is 48 {hkl},
24 {hhl}, 12 {110}, 8 {111}, and 6 {100}.

Simple forms may be either space-enclosing (e.g. a cube or an octahe-
dron), or open (e.g. prisms, pyramids, or pinacoids). Crystals have forms
which are usually combinations of several simple forms. Open forms can
occur in combinations only.
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Holohedry and Merohedry

The number of faces in a general simple form is equal to the order of
the point group of the crystal. Special simple forms have symmetries of
subgroups of the full point-group symmetry.

The 32 crystallographic classes are divided among the 7 crystal systems.
The point-group symmetries of the Bravais lattices underlying the 7 crystal
systems are the highest a crystal belonging to a particular crystal system
can have. These are called holohedml symmetries or holohedries. The 7
holohedral symmetry classes are:

1, 2/m, mrara, 4/ramra, 3m, 6/rarnm, ra3m

The other 25 crystal classes have point-group symmetries that are sub-
groups of the corresponding holohedral symmetry, and are called merohedml
classes, or merohedries.

The possible merohedral forms are: hemihedral (subgroup(s) of index
2), tetartohedral (subgroup(s) of index 4), and ogdohedral (subgroup(s) of
index 8). Hemihedral simple forms can have half the number of faces possi-
ble for the full holohedral symmetry. Tetartohedry amounts to cutting the
possible number of faces by 4, and ogdohedry by 8.

A discussion of simple forms in terms of point-group symmetry is ade-
quate for most purposes. If needed, the full space-group symmetry can be
invoked for dealing with them. A total of 1403 types of simple forms are
possible at the crystallographic space-group level (Shafranovsky 1968).

2.2.17 Crystallographic Space Groups
The full, microscopic, symmetry of a crystal is represented by its space
group. A crystallographic space group is a group, the elements of which
are all the symmetry operations (lattice translations, rotations, reflections,
screw axes, glide planes) that map an infinite crystal onto itself.

The only translational symmetry a crystal can have is that described
by one of the 14 Bravais groups. Therefore, to specify the space-group
symmetry of a crystal, we have to identify its Bravais lattice, as well as the
symmetry operations involving rotations and reflections (including screw
axes and glide planes, if any). It is also necessary to identify the relative
positions of the symmetry elements.

Seitz Operator

Space-group operations can be defined in terms of the widely used Seitz
operator {R|t} (Seitz 1936), where R denotes a point-group operation and
t a translation. The Seitz operator, acting on a position vector r, carries
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out the following transformation:

{R|t}r = Rr + t (2.2.11)

Successive application of two such operators, {Q|u} and {R|t}, has the
following effect:

{R|t}{Q|u}r = (R|t}(QR + u) = RQr + Ru + t (2.2.12)

= {RQ|Ru + t}r (2.2.13)

The inverse of an operator {R|t} is given by

{Rlt}"1 = {R-1! -R-1!} (2.2.14)

This is easily verified from Eq. 2.2.12 by identifying {Q|u} with the inverse
operator and demanding that the result of the product be {1|0}.

The lattice of a crystal is characterized by the Seitz operator {l|tn}
(or {E|tn}), with tn given by

tn = niai + n2a2 + n3a3 (2.2.15)

However, the space-group operations of a crystal can also involve essential
translations T which are fractions of the lattice translations. This comes
from the possible presence of screw axes and/or glide planes of symmetry.
Thus, in general, in Eq. 2.2.11

t = tn + r (2.2.16)

The set of all lattice translations forms a group (the Bravais group or
the translation group), T. It is a subgroup of the full space group, S. Each
element of T forms a class by itself:

{l\tm}-1 {l|tn} {l|tm} - {l|t-m} {l|tn+m} - {l|tn} (2.2.17)

Thus:

The Bravais group or the translation group of a crystal consists
of complete classes, and is therefore a normal subgroup of the
space group of the crystal.

Space Groups and Space-Group Types
Consider the symmetry of Si and Ge crystals. They both have the 'diamond
structure', described by space-group symmetry Fd3m. It is often stated
that they both belong to the same space group. Strictly speaking this is a
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somewhat loose, though widely prevalent, statement. They have different
lattice parameters, and therefore their Bravais groups are not the same.
However, their Bravais groups (as also their space groups) are isomorphic.

Two groups are said to be isomorphic if their elements display the
same relationships. This property of groups allows us to classify them into
isomorphism classes, or abstract groups, or group types.

In our above example, Si and Ge do not belong to the same space group,
but to the same space-group type: There is a one-to-one correspondence
between the symmetry elements of the two crystal structures.

Although this distinction between space groups and space-group types
has already appeared in the new International Tables for Crystallography
(see page 718 of Hahn (1992)), some experts strongly argue in favour of
not making this distinction in most practical situations, pointing out that
it would be desirable to state that the number of crystallographic space
groups is just 230, rather than infinite (Glazer; personal communication).

Symmorphic and Nonsymmorphic Space Groups

In a three-dimensional lattice, apart from the lattice translations, there
are, say, g point-group operations that can transform the contents of the
primitive unit cell onto themselves. The g space-group operations obtained
by combining these with the identity element {1|0} of the translation group
are called essential space-group operations.

There are two types of space groups: symmorphic and nonsymmorphic.
Symmorphic space groups can be entirely specified in terms of rotational
symmetry operators, all acting around a common point. Also, they do not
have to involve any essential fractional translation T. In other words, for
them an appropriate choice of origin can make all the translations primitive
lattice translations. Their Seitz operators can therefore all be written in the
form {R|tn}, with {1|0} necessarily a member of this set (with a suitable
choice of origin). There are 73 symmorphic space groups in all.

For nonsymmorphic space groups, on the other hand, no matter what
point is chosen as the origin, it is necessary to specify at least one operation
involving a fractional translation r, so that a general Seitz operator has the
form {R \tn + r}. There are 157 nonsymmorphic crystallographic space
groups.

Because of the essential presence of fractional translations, the primi-
tive unit cell of a crystal having a nonsymmorphic space group must have
at least two identical sites for every atom in it.

We consider two space groups, P2 and P2i, to illustrate the difference
between symmorphic and nonsymmorphic space groups. P2 is symmor-
phic because its two essential space-group operations are {1|0} and {2|0},
whereas P2\ is nonsymmorphic because its essential space-group operations
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are {1|0} and{2|0±0}.

Point Group of a Space Group

If we replace all the symmetry operations {Ri \ Ti + tn} of a space group S
by {R;|0}, that is if we set all the fractional as well as lattice translations
to zero, the resulting set constitutes a group, Gp, called the point group of
the space group. For example, the point group of the space group Pbca is
rarara.

If 5 is a symmorphic space group, the g operations {Ri|0} of Gp are
always symmetry operations of S also. The term 'symmorphic' is used in
the sense that the space group has a structure similar to that of its point
group Gp.

If S is nonsymmorphic, at least one of the operators {Ri|0} of Gp is
not a symmetry operator of S. For example, suppose 4i is a symmetry
operation of S. Its Seitz operator is {4|r(0,0, |)}. The corresponding
operator in Gp is {4|0}, and this is not a symmetry operator of S.

Derivation of Space Groups

Crystallographic space groups can be derived by forming semi-direct prod-
ucts of the Bravais groups T and appropriate point groups P, and con-
sidering the trivial and nontrivial subgroups of these product groups. All
the trivial subgroups correspond to symmorphic space groups, and certain
nontrivial subgroups correspond to nonsymmorphic space groups.

Consider the following semi-direct product:

SS=T®P (2.2.18)

Geometrically, this amounts to placing the symmetry elements of the point
group P at all the sites of the Bravais lattice described by T; the group P
may either have the full rotational symmetry of T, or a lower symmetry.
T is a normal subgroup of 5S, and P is not. What this means, in effect,
is that whereas T can be identified everywhere, P can be recovered in full
only at those points where all its symmetry elements intersect.

If P has only proper rotations as its symmetry elements, so also will
Ss. Proper rotations are sometimes referred to as transformations of the
first kind, and improper rotations as those of the second kind] superscripts
I and II are used for denoting the respective groups involving them. Thus,
if P = P7, then Ss = S1,. Similarly, Ss = S*1 if P = P11. All the 73
symmorphic space groups can be obtained by this procedure.

To understand how nonsymmorphic space groups arise, we consider a
simple one-dimensional example in three-dimensional space. Let us assume
that T is the translation group {0,x,2x, 3z,... }, and P = {e,2}. The
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2-fold axis in P is taken as parallel to the x-direction. We construct the
semi-direct product Ss:

Ss = TP = {0,z,2z,...} {e,2}

= {O.e, z.e, 2z.e,..., 0.2, z.2,2z.2,3z.2,...} (2.2.19)

This product group contains a new symmetry element, x.2, which corre-
sponds to a screw operation: We can isolate from the symmorphic group
Ss a nonsymmorphic subgroup Sn:

Sn = {O.e, (2x).e,..., 0.21? (2x).2i,...}, (2.2.20)

where the translation group now has the basis {0,2x} (instead of {0, x} for
the original translation group T), and 2i = x.2 = 2.x, is a screw axis.

Thus nonsymmorphic space groups can be derived as proper subgroups,
Sn, of larger symmorphic groups, Ss, obtained by semi-direct product of
a Bravais group and a point group (Sn C Ss = T@P). The groups Sn
have primitive-unit-cell volumes which are some integral multiple of those
for the corresponding supergroups Ss. Both Sn and Ss are homomorphic
to the same point group P, which can now be identified as the point group
Gp underlying the two space groups.

Nonsymmorphic space groups can be of two types: hemisymmorphic,
and asymmorphic. A hemisymmorphic space group, S^7, arises if, during
the process of isolating it as a subgroup of the larger group Sf7, we reject
all those rotational symmetry elements of the second kind which intersect
at the same point where their axes intersect. For such space groups the
highest site symmetry is that of a point group P1 of index 2 of the parent
point group P77.

On the other hand, if, during the process of selecting a nonsymmorphic
subgroup of Ss, we select only those symmetry operations which have no
common point of intersection of the axes along different directions, the
result is an asymmorphic space group 5a.

Out of a total of 157 nonsymmorphic space groups, 54 are hemisym-
morphic (S^7), and 103 are asymmorphic (5a). There are 41 asymmorphic
space groups of the first kind (£7), and 62 of the second kind (577).

Wyckoff Positions

Consider a point r in a crystal. The set of all symmetry operations of the
space group S of the crystal which leave the point r invariant forms a group
called the site-symmetry group S(r) of r with respect to S.

A Wyckoff position is the set of all points r for which the site-symmetry
groups S(r) are conjugate subgroups (§B.l) of the space group S.

The crystallographic community has found it very convenient to label
each Wyckoff position by a specific letter (Hahn 1992), called the Wyckoff
letter, or the Wyckoff notation.
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A point r in a crystal is said to be a Wyckoff point of general position
if no symmetry operation of S (other than the identity operation) leaves it
fixed. If there is at least one such operation, the point is called a Wyckoff
point of special position.

Two distinct types of Wyckoff positions are those without a variable
parameter (e.g. 0, |, 0; |, 0,0), and those with a variable parameter (e.g.
0, \,z\ f ,0 ,* ; . . . ) .

Crystallographic Orbit, or Lattice Complex

For a Crystallographic space group S, the set of all points generated by the
application of its symmetry operations on a point r is called the Crystallo-
graphic orbit or the lattice complex of r with respect to S.

The site-symmetry groups of the various points of a Crystallographic
orbit are conjugate subgroups of S. Therefore the Crystallographic orbit
consists of either points of general position (general Crystallographic orbits),
or points of special position (special Crystallographic orbits). All points of
a Crystallographic orbit belong to the same Wyckoff position of S.

2.2.18 Magnetic Symmetry of Crystals
To provide an adequate description of the symmetry of magnetic crystals it
is necessary to introduce an additional concept, that of antiequality. This
concept was introduced by Shubnikov (1951). Any two figures or entities
which have the same dimensions and other characteristics, but are mutually
opposite in one property, can be considered as antiequal. This property
can be colour (e.g. black and white), sign of electric charge, direction
of magnetic moment, or the direction of flow of time. Time reversal is
particularly relevant for discussing the symmetry of magnetic structures,
because with time reversal the directions of all currents are reversed, and
consequently the signs of magnetic moments, including spins parallel or
antiparallel to a given direction, are reversed.

In this section we make no distinction between the various types of an-
tioperations (colour reversal, time reversal, etc.), and use the same symbol,
1', for all of them. The antisymmetry operator, being a totally different
type of operator, commutes with all orthogonal transformations p:

p.l' = I'.p = p1 (2.2.21)

Two successive applications of the antioperator result in an identity oper-
ation:

I7.!' = 1 (2.2.22)

Because of Eqs. 2.2.21 and 2.2.22, if pipj = pk and pjpi = p^ then:

PiP/
j=PiPj=Pk (2-2.23)
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Figure 2.2.1: Magnetic point groups of the I, II, and III kind, exemplified for
the case of the crystallographic point group C$v (cf. Fig. B.I of Appendix
B). In (a) (C|v), all the entities have the same colour (say white). In
(b) (C^), they are grey (due to superposition of white and black colours
occurring at the same locations). And in (c) (C^7), half the entities are
white, and half are black. [After Ludwig & Falter 1988.]

Pip'j=Pk (2.2.24)

p'jPi=PjPi=p'i (2.2.25)

J/jPi=Pi (2.2.26)

Magnetic Point Groups

The 32 ordinary or chemical point groups can be derived from the following
10 generating elements:

1, 2, 3, 4, 6, 1, 2, 3, 4, 6

We can refer to these as the 10 'rotations' (both proper and improper).
Inclusion of another symmetry operation, namely antiequality, gives rise to
the following 10 additional generating elements called antirotations:

I7, 2, 37, 47, 6', !', 2;, 3;, 4', 67

The 20 generating elements listed here give rise to a total of 122 distinct
magnetic point groups. These can be split into three categories, say I (with
32 point groups), II (also with 32 point groups), and III (with 58 point
groups). Fig. 2.2.1 explains the distinction between the three kinds with
the help of an example.

I. Magnetic Point Groups of the 1st Kind. For groups in this category, also
known as white, or polar, or trivial magnetic, groups (Kopsky 1976), all the
antirotations (including I7) are absent:

Mj = P; I' i Mi (2.2.27)
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II. Magnetic Point Groups of the 2nd Kind. These are also known as neu-
tral, or grey, or paramagnetic, groups, as they possess 1' as an element of
symmetry. This implies that if an element p ('white') is present, so is pr

(black) at the same location. Hence the name 'grey groups' (combination
of white and black). They can always be decomposed into cosets as follows:

M// = P + P'; I' e Mu (2.2.28)

The group P is a normal subgroup of M// of index 2, and M// can therefore
be written as the following direct product:

Mu = P ® {e, I'} (2.2.29)

Fig. 2.2.1(b) shows an example of a group of this kind:

C£ = C3v + rC3v, (2.2.30)

with C$v having the symmetry elements

C3v = (e,C3,Cl,av,af
v,af^ (2.2.31)

Here r stands for the time-inversion operator 1', and the superscripts ' and
" on crv are part of the standard Schoenflies notation for denoting differ-
ent vertical mirror operations (not to be confused with the time-inversion
operation !).

III. Magnetic Point Groups of the 3rd Kind. These are also known as black-
white, or mixed polarity, or nontrivial-magnetic, groups. Here the symmetry
operation 1' is not present by itself, but at least one other antirotation is
present. There are two types of point operations in this kind of magnetic
point groups:

MHI = N + l'(P- N), (2.2.32)

N = hi,h2, ...hk, (2.2.33)

P-N =P(,P'2,...P'k (2.2.34)

If (pr)n = E for odd n, then p'r is not present. This is because

(p'rr = (I')" (Pr)n = 1'E = 1', (2.2.35)

and 1' is not present in this category of groups. It follows that the symmetry
operation 3; (or C3 in Schoenflies notation) is excluded.

Eq. 2.2.32 can be rewritten as follows:

Min = N + IVTV; p7 € (P - N) (2.2.36)
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TV is a normal subgroup of M///. This fact presents a method for con-
structing the magnetic point groups of this kind: One takes a chemical
point group, identifies its normal subgroups of index 2, and replaces the
rest of the symmetry operations by their antioperations. For example, con-
sider the point group (2/ra):

(2/m) - (1,2,1, m) - (1,2) + (1, m) (2.2.37)

The corresponding black-white point group is (2/m7):

(2/m/) = (l,2,l /,m /) (2.2.38)

If a point group has more than one normal subgroups of index 2, we obtain
as many black-white point groups.

Fig. 2.2.l(c) is an illustration of another example of this kind:

C&1 = (e,C3,C3V^,ra;,r<) (2.2.39)

Shubnikov Groups

Space groups for the conventional magnetic or black-white symmetry of
crystals are known as Shubnikov groups. Just as each of the 230 ordinary
crystallographic space groups (Fedorov groups F) can be associated with an
underlying point group (from among the 32 ordinary (or chemical) point
groups, P), each of the 1651 Shubnikov groups, III, can be associated with
one of the 122 crystallographic magnetic point groups, M. This associa-
tion also provides a scheme for classifying the Shubnikov groups into three
categories:

I. White or polar Shubnikov groups. These correspond to the 230 ordinary
space groups, or Fedorov groups. They do not contain any antioperations:

JJli = F; 1' # IU/ (2.2.40)

The underlying point groups for any of these are from among the 32 white
or polar magnetic groups, M/.

II. Neutral or grey Shubnikov groups. In this category of 230 Shubnikov
groups, the presence of any symmetry operation is invariably accompanied
by the presence of the corresponding antioperation at the same location:

m/7 = F+1'F] 1' G m// (2.2.41)

The underlying point group is one of the neutral or grey groups, M//.

III. Black-white or mixed-polarity Shubnikov groups. In this category, time
inversion, I7, is not a symmetry operation by itself, but some other anti-
operations are always present. There are 1191 such groups, in which no
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rotation or translation is accompanied by the corresponding antirotation
or antitranslation. If all the antioperations of such a group are replaced
by the corresponding ordinary operations, one obtains a Fedorov group, F.
With respect to this group, there exists a Fedorov group FN which is a
normal subgroup of F of index 2. [The subscript N stands for 'normal',
not for 'nonsymmorphic'.] This fact provides a method for constructing the
Shubnikov groups of this category. One scans all the subgroups of index 2
of all the Fedorov groups F. The operations corresponding to FN are left
unchanged, and the rest are replaced by the corresponding antioperations;
the result is a Shubnikov group of the third kind.

Suppose P is the point group underlying the Fedorov group F. The
point group underlying FN can be either H, a subgroup of P of index 2 (case
a), or it can be the group P itself (case 6). In case 6, both FN and F have
the same rotational symmetry operations, but the translational symmetry
of FN is half that of F; i.e. the volume of the primitive unit cell of FN is
twice that of F. In case a, FN and F have the same translational symmetry,
but FN has only half the number of rotational symmetry operations.

For case a, the black-white Shubnikov group IU///a has a black-white
underlying point group M///. For case 6, this point group is a grey group
M//. That is,

IUjj/a = FN + 1'(F- FN)', I' i M/jja (2.2.42)

Here the set (F — FN) does not contain pure lattice translations; all colour
reversal or time inversion operations are effected only through rotational
operations.

For the category Illb, the antiequality or time inversion operations are
all associated with lattice translations only; i.e. we have a black-white
lattice in this case. Such a lattice can be defined in terms of the ordinary
Bravais lattice T by augmenting it with a set of antitranslations:

T///6 = r + l'{E|t}, (2.2.43)

where t is a Bravais lattice translation. Accordingly,

IH///6 = FN + 1' {E|t} FN (2.2.44)

Here FN does not contain the element {E|t}. It is a normal subgroup of F
of index 2 with respect to translations:

F = FN + {E|t} FN (2.2.45)

2.2.19 Limit Groups
Nonmagnetic Curie Groups
Point groups involving at least one axis of oo-fold symmetry are called limit
groups, or Curie groups.
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Figure 2.2.2: Geometrical objects having the point-group symmetries of
the seven nonmagnetic Curie groups. The arrows show the directions of
rotation or twisting of the objects.

There are seven nonmagnetic Curie groups in all: oo, oora, oo/ra, oo2,
oo/rara, oooo, and oooora.

It is convenient and instructive to visualize the symmetry represented
by these groups in terms of geometrical objects. Fig. 2.2.2 shows the objects
possessing the point-symmetries corresponding to these groups. Each of the
32 crystallographic chemical point groups is a proper subgroup of at least
one of the seven nonmagnetic Curie groups.

A cone rotating about its central axis (Fig. 2.2.2(a)) has the symmetry
group oo. The oo-fold axis coincides with the central axis, and there is no
other symmetry element present.

A non-rotating cone (Fig. 2.2.2(b)) has a higher symmetry, oora. This
group comprises an oo-fold axis, and an infinite number of planes of mirror
symmetry parallel to this axis. A constant, uniform, electric field has the
symmetry of this limit group. By a process called poling, a ferroelectric
ceramic can be made to acquire a preferred orientation or texture by cooling
it from the paraelectric phase to the ferroelectric phase while under the
action of a sufficiently strong electric field. Such a poled ceramic acquires,
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on an appropriately macroscopic scale, the same symmetry as the electric
field, namely oora.

A uniform magnetic field has the spatial symmetry oo/ra (in fact, it has
an additional symmetry involving time inversion, which we shall describe
presently). Here the mirror plane is not parallel, but perpendicular, to the
axis of oo-fold symmetry. This symmetry can be visualized as that of a
cylinder rotating about its central axis (Fig. 2.2.2(c)).

The limit group oo2 corresponds to the symmetry of a cylinder twisted
as shown in Fig. 2.2.2(d). There are an infinite number of axes of 2-
fold symmetry transverse to the oo-fold axis, the latter coinciding with the
central axis of the cylinder. [The symbol for this group should really be
oo/2, but oo2 is used conventionally].

If a cylinder at rest has no twisting or other forces acting on it (except
hydrostatic pressure), it has the symmetry oo/mra (Fig. 2.2.2(e)). There is
one mirror plane of symmetry perpendicular to the oo-fold axis and passing
through the centre of gravity, and an infinite number of mirror planes co-
inciding with the oo-fold axis. A force field generated by a uniform tensile
or compressive mechanical stress has this symmetry.

The limit group oooo (Fig. 2.2.2(f)) can be visualized as that of a
sphere with all its radii rotating, so that there is an infinite number of oo-
fold axes, but no mirror planes of symmetry. This is called the group of
rotations. An alternative symbol for this group is SO(3) (§B.4).

The orthogonal group, oooora, describes the symmetry of an ordinary,
nonrotating, sphere, with an infinite number of oo-fold axes, all intersecting
at a point (the centre of the sphere), and an infinite number of mirror planes
passing through the centre (Fig. 2.2.2(g)). An alternative symbol for this
group is O(3) (§B.4).

Limit groups oo, oo/2, and oooo, which lack a mirror plane of sym-
metry, are enantiomorphous groups. This means that objects having these
symmetries can be right-handed or left-handed. Those crystallographic
point groups which are subgroups of these groups are therefore also enan-
tiomorphous groups.

All the limit groups described above are subgroups of oooom

Magnetic Curie Groups

So far we have assumed implicitly the existence of time-inversion symmetry.
In other words, we have assumed that for every spatial symmetry element
present in the group, there is another one at the same location for which
time t is replaced by —t. This means that the seven limit groups described
above, and depicted geometrically in Fig. 2.2.2, are really grey groups, or
magnetic point groups of the second kind (cf. §2.2.18). To take cognisance
of this, we must attach the symbol I7 to the symbols of the seven non-
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magnetic Curie groups considered above. For example, we should really be
writing ooooral/, rather than oooora, for the group which represents the
symmetry of an ordinary sphere. Similarly for the other six grey groups.

The magnetic Curie groups are, naturally, proper subgroups of these
seven grey groups. We list them below. The subgroups given in any par-
ticular line are only those which have not appeared in the line(s) above
them.

ooooral/ D oooora/, oooora (2.2.46)

oo/raral' D oo/ra/ra, oo/rara/, oo/ra'ra', oo/rara (2.2.47)

ooral' D oora/, oo', oora

oo2l' D oo2', oo2

ooool' D oooo

oo/ral/ D oo/ra

(2.2.48)

(2.2.49)

(2.2.50)

(2.2.51)

ool' D oo (2.2.52)

There are thus 14 magnetic Curie groups in all. Since the 7 grey or non-
magnetic Curie groups are all subgroups of ooooral', the 14 magnetic Curie
groups are also subgroups of ooooral'.

Coming back to the question of the full symmetry of a uniform magnetic
field, this symmetry is oo/rara7, and not oo/ra.

2.2.20 Layer Groups and Rod Groups
Domain structure is a characteristic feature of ferroic materials. Any two
contiguous domains are separated by a usually planar interface called the
domain wall. Each of the domains separated by the wall has the same
triperiodic crystal structure defined by the space group of the ferroic phase.
Since two such periodic structures meet at the domain wall, the wall itself
will have a periodic structure. But the wall can have periodicity in only
two directions or dimensions. What kind of groups are appropriate for
describing this periodicity? We deal with this question in this section.

Crystallographic groups possible in three dimensions are: G% (space
groups), G\ (layer groups), G\ (rod groups), and GQ (point groups) (cf.
§2.2.7 for notation).
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In the symmetry operations of layer groups, at least one plane remains
invariant. This plane is therefore unique, or singular, there is no other
plane obtainable from it through any of the symmetry operations of the
group C?|.

Similarly, the rod groups G\ involve a singular line, and the point
groups GO a singular point.

A singular plane or a singular line may be either polar or nonpolar,
depending on whether or not its two sides are different or identical.

Types of groups possible in 2-dimensional space are G\, G\, and GQ.
The G\ are plane, groups, and are to be distinguished from the layer

groups G|. The latter describe 2-dimensionally periodic (or "diperiodic")
objects existing in 3-dimensional space (e.g. domain walls in ferroics). By
contrast, plane groups are defined in a 2-dimensional space only. The total
number of groups of type G\ is 17, whereas there are 80 G\ groups. The 17
2-dimensional space groups (or plane groups) are included in the 80 layer
groups, and are derived by confining our attention to only those symmetry
operations which involve motions in strictly two dimensions.

In 1-dimensional space, the possible group types are G\ and G\.
Layer groups are of interest, not only for describing the symmetry of

domain walls in ferroic materials, but also for dealing with certain phase
transitions (Hatch & Stokes 1986; Litvin & Wike 1991).

Although diperiodic systems have periodicity in only two dimensions,
additional symmetry may still be present in the third dimension. For ex-
ample, the singular plane may be a plane of mirror symmetry, making it a
nonpolar plane.

The 80 layer groups (or diperiodic space groups) have been derived
and tabulated by Wood (1964), and Hatch & Stokes (1986). One can
associate a 3-dimensional space group with each layer group. The latter
can be obtained from the former by removing the z-component from all
translations.

2.2.21 Colour Symmetry
The antiequality operator introduced in §2.2.18 allows only two states, say
up and down, or black and white. Some crystal configurations (e.g. helical
magnetic structures, or certain incommensurate phases) require the use
of a more general description of the symmetry involved. This is done by
introducing the concept of colour symmetry (Naish 1963; Koptsik 1975;
Opechowsky 1977).

In addition to the operators which act on atomic coordinates, one intro-
duces a set of rotations fa of the atomic spins. The 1651 Shubnikov groups
then become special cases of this dispensation, with 0 = 0 and 0 = 180°.

Three types of colour groups have been introduced.
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In the so-called Q-groups, a symmetry element can be written in the
form

pg=0(r,S)0(S) (2.2.53)

The first factor on the right acts on the spatial coordinates of atoms and
inverts their spins. The second factor further reorients the spins.

For the so-called P-groups or permutational colour groups the symmetry
elements can be expressed as

9P = g(r) 0(S) (2.2.54)

The first factor, called a base element, acts only on the spatial coordinates.
The second factor is the colour load (a permutation). Permutational colour
groups are the simplest crystallographic colour groups. Several examples
of them have been discussed by Litvin, Kotzev & Birman (1982).

The third type of colour groups are called W-groups. In the Q-groups
and the P-groups all the spins are rotated by the same angle </>. In W-
groups individual angles of rotation have to be assigned to each spin in the
unit cell (see Izyumov & Syromyatnikov (1990) for references to original
work.

Recently, Lifshitz (1997) has formulated a new, and comprehensive,
theory of colour symmetry, which encompasses quasicrystals also.
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2.3 CRYSTAL SYMMETRY AND THE
CURIE SHUBNIKOV PRINCIPLE

All actions take place in time by the interweaving of the forces
of nature.

Bhagavad Gita

... nature does not simply find symmetry a convenient feature
in building physical structures, nature absolutely demands it.

Kaku & Thompson (1997)

Why do crystals possess the symmetries they do? This question does
not yet have an entirely satisfactory answer, but certain apparently reason-
able conclusions have emerged from the work of some investigators (Sheftal
1966a, b, 1976; Vainshtein 1981, 1988).

A crystal is said to have symmetry because, when certain transfor-
mations are applied to it, it transforms back into itself. For the sake of
concreteness, we shall restrict ourselves to coordinate transformations only.

The effect of any nontrivial coordinate transformation is to carry, or
map, one part of the crystal to another. The invariance of the crystal under
a symmetry transformation implies that the crystal consists of equal parts,
which are mapped onto one another under the action of the symmetry
transformations.

However, it is not sufficient that a symmetric object be composed of
equal and identical parts. There must also be an equal (or identical) place-
ment of these equal parts. Any arrangement other than this, for example a
random aggregate of equal parts, cannot allow symmetry transformations
to be applied; such an aggregate can possibly have symmetry only in a
statistical sense. Thus:
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The symmetry of a crystal can be regarded as synonymous with
an identical or equal placement of equal parts.

The 230 crystallographic space groups define exhaustively all possible
site symmetries in any crystal. The symmetry of any site in a crystal has
to be from among the 32 crystallographic point-group symmetries. Any
"particle" (atom or molecule) occupying a given site in the crystal can
only have a point symmetry that is compatible with the site symmetry. If
it had more symmetry than that of the site it occupies, the environment
around that site would tend to distort it. As a result, the symmetry of the
particle would decrease to achieve compatibility with the site symmetry. If
it has less symmetry than the site symmetry, one of two things can happen.
Either the lower symmetry of the particle would distort the crystalline
environment, so that the overall space-group symmetry is reduced; or, else,
the particle would be forced to move to a neighbouring, less symmetric,
site.

It follows that high-symmetry particles have only a few allowed modes
of packing in a crystal. In contrast to this, low-symmetry particles can
crystallize in a richer variety of packing arrangements. High-symmetry
particles can, of course, form low-symmetry combinations for qualifying
for occupying low-symmetry sites. The most familiar example of this are
molecules, which have lower symmetries than the atoms from which they are
formed, the latter having a very high (spherical) symmetry in the isolated
state. This is the reason crystals can even have symmetries as low as
triclinic, even though they are composed of atoms which had spherical
symmetry to start with.

2.3.1 The Asymmetric Unit
We can identify the equal parts that a crystal is composed of as those
(smallest) regions which do not get transformed into themselves under the
operations of the space group of the crystal. Crystallographers refer to such
a region of the unit cell as the asymmetric unit.

It is worthwhile mentioning here that the asymmetric unit, though de-
void of any symmetry described by the space group of the crystal, may
sometimes have (exact or approximate) noncrystallographic symmetry (Fi-
chtner 1986). This usually happens when certain high-symmetry subunits
of the asymmetric unit come together to form an appropriately asymmetric
combination. The meaning of "appropriate" will become clear presently.

2.3.2 Interplay between Dissymmetrization and
Symmetrization

The occurrence of symmetry in crystals can be rationalized in terms of
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the laws of thermodynamics. The most important postulate in this regard
appears to be the following:

A crystal acquires the symmetric configuration it does because
that amounts to a state of least energy for the system.

If an asymmetric unit finds for itself a certain least-energy configura-
tion, other asymmetric units will also usually occur in the same configu-
ration, with the same energy. Furthermore, normally the coming together
(bonding) of all the asymmetric units resulting in the growth of the com-
plete crystal must also occur in an identical or quasi-identical manner,
everywhere, because only this can ensure that the crystal as a whole also
has the least energy. If it occurred in nonidentical ways in different parts,
then either the subunits (asymmetric units) are not identical (which is not
possible), or there is inequality of interaction among identical subsystems
(which is absurd). In this sense, formation of a crystal is a process of
symmetrization (mentioned in the statement of the Curie-Shubnikov pri-
nciple), i.e. development of higher symmetry by the equal placement of
lower-symmetry subsystems, namely the asymmetric units (cf. Appendix
C).

The opposite process of dissymmetrization, i.e. lowering of symmetry
(cf. Appendix C), also occurs in the total process of crystal formation, if
we trace the chain of events from an earlier stage, namely the formation
of molecules or other growth units from the spherically symmetric atoms.
Atoms undergo chemical reactions to form molecules, reducing the total
energy of the system by an amount equal to the binding energy. The
molecules have a lower symmetry compared to the spherically symmetric
atoms, so this is dissymmetrization. A large number of identical or equal
molecules (or asymmetric units) assemble into a crystal in such a way that
they all have identical surroundings. This happens because the overall
energy is minimized by this process. But this also happens to be a process
of symmetry enhancement (symmetrization), because at least one new type
of symmetry arises, namely translational symmetry, which was not present
to start with. New rotational symmetries also arise often.

Apart from the equality of subsystems, another factor which contributes
to the occurrence of symmetry in crystals is the fact that there is only a
finite number of types of equal subsystems. There is a finite number of
types of 'elementary' particles2, atoms, and molecules. When they assem-
ble under the restriction of "equal placement of equal parts" (to ensure
minimization of energy), the possible configurations are not only finite in
number, they also develop additional symmetry. Had the number of avail-
able options been unlimited, crystallographic symmetry need not arise.

2 The superstring theory notwithstanding !



2.4 Incommensurately Modulated Crystals 71

SUGGESTED READING
Sheftal, N. N. (1976). A crystal as a medium that orders phenomena. In
N. N. Sheftal (Ed.), Growth of Crystals, Vol. 10. Consultants Bureau, New
York.

B. K. Vainshtein (1981). Modern Crystallography. I. Symmetry of
Crystals: Methods of Structural Crystallography. Springer-Verlag, Berlin.

2.4 INCOMMENSURATELY
MODULATED CRYSTALS

One can introduce a regular modulation in a periodic signal by super-
imposing on it another periodic signal with a different period. Something
similar happens in certain phases of crystals. The structure C(r) of a
normal crystal is a convolution of the lattice function L(r) with the basis
function B(r) (Eq. 2.2.2). The presence of an additional modulation, say
M(r), over the lattice function L(r) leads to the following mathematical
description of the modulated crystal structure:

Cmod (r) = B (r) * [ L (r). M (r) ] (2.4.1)

It is a convolution of B(r) with a product of two functions in real (or direct)
space.

If it is a so-called deformation-type or displacement-type modulation
(Amelinckx et al. 1989), the average positions of atoms of the basic struc-
ture described by Eq. 2.2.2 are not affected. In other words, the vector sum
of the displacements of all the atoms equivalent under the space-group op-
erations of the basic structure is zero. Therefore, the gross macroscopic (or
point-group) symmetry of the crystal is not changed by such a modulation.

Such modulations can arise when there are two competing interactions,
each tending to lower the overall free energy, but each leading to a different
periodicity. The crystal structure settles for a compromise between the
two, with one dominant interaction defining the basic lattice function L(r),
and the other causing the modulation M(r) of the basic structure. An
example is provided by the Peierls distortion (Peierls 1955), wherein the
total electronic energy can be decreased by the opening up of energy gaps
along certain reciprocal-lattice planes parallel to flat parts of the Fermi
surface, and the resulting mechanical deformation which tends to oppose
this change of structure.

Charge-density waves can also lead to a similar situation sometimes
(Overhauser 1978).

Typically, such a modulation occurs along some specific crystallographic
direction, say along the lattice vector a. If the periodicity (say d) of the
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modulation function M(r) is such that d/a is not a ratio of two integers
(i.e. if it is an irrational number), the crystal structure is said to be incom-
mensurately modulated.

As is the case when two periodic signals are superimposed, the over-
all system is very sensitive to any changes in their periods (like in Moire
fringes). In the case of a modulated crystal structure, even small changes
of, for example, temperature can cause large changes in the relationship of
the modulation to the basic structure. In particular, outside a certain tem-
perature interval, the ratio d/a may become a rational number, leading to
a structure which is commensurate to the basic structure. Such a structure
has a larger period of repetition, and is called a superstructure.

The symmetry of incommensurate phases of crystals can be described
in terms of "superspace groups" (Janner & Janssen 1979; de Wolff, Janssen
& Janner 1981).
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Chapter 3

CRYSTAL PHYSICS

The practical importance of ferroic crystals stems from the occurrence of
ferroic phase transitions in them. We have defined a ferroic phase transition
as one which entails a nondisruptive change of the point-group symmetry
of the prototype of the crystal. A reduction of the point-group symmetry
is necessarily accompanied by the emergence of at least one macroscopic
property coefficient, which was forbidden by the point-group symmetry of
the crystal from being nonzero in the parent phase. The symmetry restric-
tions on physical properties of crystals come from the Neumann theorem
(cf. §C.l of Appendix C).

Since macroscopic physical properties of a crystal are translation in-
variant, it is sufficient and appropriate to consider only its point-group
symmetry for determining the restrictions on these properties, the relevant
point group being the point group underlying the space group of the crystal
(§2.2.17).

Thus the atomic structure of a crystal is taken as having only an indi-
rect bearing on the symmetry of its macroscopic properties. For example,
the translational periodicity of the structure requires that the directional
symmetry of the macroscopic properties be from among the 32 crystallo-
graphic point-group symmetries only (§2.2.15). For the discussion in this
chapter, we therefore take the crystal to be a homogeneous continuum,
which may, however, be anisotropic, in general.

By replacing the actual structure of a crystal by an anisotropic contin-
uum, we are able to determine the effect of external fields on macroscopic
properties in a form that can be related directly to experimental results.
This is an important feature of crystal physics.

73
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3.1 TENSOR PROPERTIES
Macroscopic physical properties are specified in terms of relations between
measurable quantities. For example, the density p of a material is defined
in terms of mass and volume:

m = pV (3.1.1)

Since both V and ra can be defined without reference to any direction in
space, p also does not depend on direction, and can be specified by a single
number. This is an example of a scalar macroscopic property.

Unlike ra and V, there are physical quantities, like the electric field,
for which one must specify not only the magnitude but also the direction.
These are called vector quantities. One way of specifying them is by choos-
ing three mutually perpendicular coordinate axes (the Cartesian axes) 0#i,
0^2, 0#3, and stating the components along these axes:

E = (E1,E2,E3) = (Ei) (3.1.2)

Thus three numbers are required to specify a vector quantity like E in
3-dimensional space.

Electric field is an example of a vector quantity, but it is not a vector
property of a crystal. An example of the latter is provided by the pyroelectric
effect exhibited by crystals belonging to any of the 10 polar classes (§2.2.15).
In such crystals there can exist spontaneously an electric polarization P
(dipole moment per unit volume) which changes with temperature:

Pi = Pi AT, i = l,2,3 (3.1.3)

How do scalar and vector properties behave under transformations of coor-
dinate axes? A transformation from one Cartesian set of axes to another
can be defined as follows:

x'i = aijxj (3.1.4)

Here we have adopted the convention that when a subscript is repeated
(e.g. j in the above equation), a sum over it is implied (j = 1,2,3). There
are three such equations, one for each i.

Under the above transformation, a scalar quantity 0 undergoes no
change at all:

0' = 0 (3.1.5)

A vector property, like the pyroelectric vector, transforms as follows:

Pi = aijPj (3.1.6)

After considering a property (density) which relates two scalars, and a
property (pyroelectric vector) which relates a scalar (AT) to a vector (po-
larization), we consider a property which relates two vectors. An example
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of this is provided by the dielectric response of a crystal. When an elec-
tric field (Ej) is applied to a crystal along a general direction, an electric
displacement (Di) is induced:

Di = eijEj, i = l,2,3 (3.1.7)

Each of these three equations has three terms on the right-hand side, one
each for j = 1,2,3, so that there are, in all, nine coefficients e^ involved in
the relationship between the vectors D and E.

Eqs. 3.1.6 can be solved for p in terms of p'. A similar equation for
electric field can be solved for E in terms of E', to yield

Ei = ajiE'j (3.1.8)

How does the set of quantities (e^) transform under a transformation of
coordinate axes specified by the matrix (%•)?

Let us suppose that, under this transformation, (Di) changes to (D()^
and (Ei) to (Efi. Then

D't = ctijDj = aij6jkEk = aijCjkaikEi (3.1.9)

Here we have made use of Eqs. 3.1.7 and 3.1.8.
We rewrite Eq. 3.1.9 as follows:

D', = <X (3.1-10)

where
€il — aijQ>lktjk (3.1.11)

A physical quantity which transforms according to Eq. 3.1.11, i.e. as a
product of two vectors (or two coordinates), is called a tensor of rank #, or
a second-rank tensor. The dielectric behaviour of a crystal is thus described
by a second-rank tensor. Its components are represented by two indices.

In the same spirit, a vector quantity is a tensor of rank 1, and a scalar
quantity is a tensor of rank zero. We can generalize these considerations to
define tensors of various ranks:

Zero — ranktensor : $ = $ (3.1.12)

First — ranktensor : p^ — a^pj (3.1.13)

Second — rank tensor : e^ = aik&jitki (3.1.14)

Third — ranktensor : d'^k = a>uajmakn dimn (3.1.15)

Fourth - ranktensor : M'ijkl = ai7najnak0Q>ip Mmnop (3.1.16)
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3.1.1 Symmetrized and Alternated Tensors
A tensor B is said to be an isomer of tensor A (and vice versa) if B has
been obtained from A through any permutation(s) of its indices.

Consider a tensor A, and form all its isomers. A tensor B obtained as
the arithmetic mean of all the isomers of A is called a symmetrized form
of tensor A.

If in the above arithmetic mean, the isomers obtained from A by an
even number of permutations are taken with a plus sign, and those by an
odd number of permutations with a minus sign, we obtain an alternated
form of tensor A.

Symmetrization and alternation of tensors can be defined, not only for
the entire set of indices, but also for any subset of these indices.

3.1.2 Polar Tensors and Axial Tensors
Let det A denote the determinant of the transformation matrix in Eq. 3.1.4.
For orthogonal transformations not involving a reflection or inversion oper-
ation, det A = +1, and for those involving such an operation, det A = — 1.

Tensors described by Eqs. 3.1.12 to 3.1.16 are examples of polar tensors:
Their transformation properties do not depend on whether det A = -hi or
det A = — 1. By contrast, the transformation properties of an axial tensor
(or a pseudotensor) A are defined by the following equation:

Aijki... = (det A) aim ajn ako aip ... Amnop... (3.1.17)

3.1.3 Matter Tensors and Field tensors
Tensors which describe properties of crystals and other materials are called
matter tensors. Such tensors must conform to the symmetry of the material.

By contrast, a tensor describing a field applied to a material (electric
field, stress field, etc.) does not represent a property of the material. It
can have any orientation inside the material, and its symmetry is quite
independent of the symmetry of the system on which it is applied. Such a
tensor is called a field tensor.

3.1.4 Intrinsic Symmetry of Tensors; the Jahn Symbol
A tensor is said to be symmetric with respect to two or more of its indices
if all its isomers differing only by permutations of these indices are equal
among themselves. For example, if for a third-rank tensor (d^k) we have

dijk = dikj (3.1.18)

for all values of indices j and fc, it is said to be symmetric with respect to
its last two indices.
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If, on the other hand,
dijk = ~dikj, (3.1.19)

the tensor is said to be antisymmetric (or skew-symmetric) with respect to
its last two indices.

The property of a tensor to be symmetric or antisymmetric with respect
to some or all indices, or groups of indices, can be shown to be independent
of the coordinate system used for defining its components. It is therefore
described as its intrinsic symmetry, or internal symmetry. This symmetry
usually has its origins in the symmetry of the space the tensor is defined
in; it may also result from thermodynamic considerations.

Jahn (1949) introduced an elegant and compact scheme of notations for
representing the intrinsic symmetry of tensors. In this scheme, the symme-
try of a polar vector (first-rank polar tensor) is denoted by the letter V.
Since a polar tensor of rank r transforms as the product of the components
of r polar vectors, its intrinsic symmetry is denoted by Vr.

A tensor of rank r symmetric with respect to all its indices is denoted
by [Vr]. If it is symmetric with respect to only q of its indices, the symbol
used is [F9]Vr~9. For example, the intrinsic symmetry of a tensor satisfying
Eq. 3.1.18 is denoted by V[V2}.

Let us consider a fourth-rank tensor T, such that

Tijki = Tkuj 7^ Tjiki i=- Tijik (3.1.20)

The intrinsic symmetry of such a tensor is denoted by [(V2)2], since it is
symmetric with respect to permutation of only certain pairs of indices, and
not for permutations within a pair.

By contrast, a tensor with the Jahn symbol [[V2]2] is a fourth-rank
tensor symmetric with respect to the permutation of the first and the second
pair of indices, and also with respect to permutation within a pair.

An extra symbol e is used for representing the intrinsic axial or "pseudo"
nature of a tensor. Thus, the intrinsic symmetry of a pseudoscalar is de-
noted by e, that of a pseudovector by eV, that of a symmetric pseudotensor
of rank 2 by e[V2], and so on.

The intrinsic symmetry of an ordinary scalar (like density) is denoted
by the symbol 1.

For representing the intrinsic symmetry of antisymmetric tensors, square
brackets are replaced by braces. For example, the Jahn symbol for a tensor
T, such that Ty = -Tji is {V2}.

3.1.5 Extrinsic Symmetry of Tensors
The intrinsic symmetry of tensors is the same in all coordinate systems of
reference. In addition, properties of a tensor may also exhibit invariance of
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all its components under certain specific coordinate transformations. This
is referred to as the extrinsic symmetry of tensors.

In this section we focus attention on those point groups GQ of orthogo-
nal transformations under which a tensor exhibits invariance of all its com-
ponents. Any such transformation, (aij), is a symmetry transformation for
a polar tensor T if, for all its components T^...,

dmianjaok "• Tijk... = T^no = Tijk... (3.1.21)

We consider here the example of inversion symmetry, which is particu-
larly easy to visualize. For an inversion operation, an = 0,22 — ̂ 33 = —1>
and all other elements of the transformation matrix are zero. Therefore, if
T is a polar tensor of rank r, Eq. 3.1.21 reduces to

rmno... = (-l)rTijfc... (3.1.22)

It follows that if r is even, T possesses inversion symmetry.
Similarly, if P is an axial tensor of rank r, then, under an inversion

operation,

P'mno... = (-l)r+1 Pijk... (3-1.23)

This implies that all odd-rank axial tensors possess inversion symmetry.
Thus, spatial inversion symmetry is possessed by all scalars, axial vec-

tors, second-rank polar tensors, third-rank axial tensors, fourth-rank polar
tensors, and so on.

We now consider some general features of the extrinsic symmetry of
tensors of various ranks.

A zeroth-rank polar tensor, i.e. a scalar, has the symmetry of the full
orthogonal group oooora, or 0(3) (§2.2.19). And a pseudoscalar has the
extrinsic symmetry oooo, or 50(3).

A first-rank polar tensor, i.e. a polar vector, possesses the symmetry
of a non-rotating cone, namely oora.

A first-rank axial tensor, i.e. an axial vector, is centrosymmetric. It has
the symmetry of a cylinder rotating about its central axis, the corresponding
point-group being oo/ra.

A second-rank tensor may be polar or axial, and for each of these
cases one has to consider the possibility of the tensor being symmetric,
antisymmetric, or nonsymmetric. There are thus six different possibilities
to consider.

The case of the second-rank polar tensor is particularly important. It
can be given a geometrical interpretation in terms of a second-degree surface
(or a quadric). Such a surface can be defined by the equation

SijXiXj = 1, (3.1.24)
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with Sij = Sji. If we carry out a coordinate transformation defined by

Xi = akix'k Xj = aijx'h (3.1.25)

Eq. 3.1.24 changes to
Sijakiaijx'kxi = 1 (3.1.26)

We can rewrite this as

S'ux'.x't = 1, (3.1.27)

with
S'kl = akiatjSij (3.1.28)

This transformation law for the coefficients Sij of the quadric is iden-
tical to that of a polar second-rank tensor, provided that the tensor is a
symmetric tensor. Eq. 3.1.24 therefore defines a representation surface
(the representation quadric) for such a tensor.

A quadric has the important property that it possesses principal axes.
These are three mutually perpendicular axes, such that when Eq. 3.1.24 is
referred to them, it assumes the form

Slxl + S*x\ + S3xl = 1 (3.1.29)

Accordingly, Si, 52, 83 correspond to the principal components of the ten-
sor (S^).

If Si, S2, Ss are all positive, Eq. 3.1.29 defines an ellipsoid. If two
of them are positive and one negative, the quadric is a hyperboloid of one
sheet, and if one is positive and two negative, it is a hyperboloid of two
sheets. If all three are negative, the surface is an imaginary ellipsoid. In
all these cases, so long as the three principal components have different
magnitudes the symmetry of the quadric is rarara (D^h)- This is there-
fore also the extrinsic symmetry of the symmetric second-rank polar tensor
represented by the quadric.

If the magnitudes of any two of the principal components are equal, the
representation quadric acquires a circular cross-section perpendicular to the
third axis, and therefore its symmetry is enhanced to that of a spheroid of
revolution, namely oo/rara.

When all three components are equal in magnitude, the symmetry of
the tensor becomes that of a sphere, namely oooora, and the tensor reduces
to a scalar.

We consider next the extrinsic symmetry of an antisymmetric second-
rank polar tensor. The most familiar example of this is the tensor defined
by the vector product of two polar vectors. Let the two polar vectors be p
and q. Their vector product is a second-rank tensor V defined by

Vij = piQj - Qipj (3.1.30)
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Therefore, Vn = 0, and Vji = —Vij. Consequently, this second-rank tensor
has only three nonzero, independent components: Vi2, V23, and V^\. As is
well known (see, for example, Nye 1957), the result of the vector product
is an axial vector. A polar second-rank antisymmetric tensor is thus dual
to an axial vector. We have seen above that the extrinsic symmetry of the
latter is oo/ra. The same is therefore the symmetry of the former also.

It can be shown likewise that an antisymmetric second-rank axial tensor
is dual to a polar vector, and therefore has the symmetry oora.

What is the extrinsic symmetry of a symmetric second-rank axial tensor
P ? Such a tensor can be reduced to the diagonal form, and can be rep-
resented by a second-degree surface. However, unlike a symmetric second-
rank polar tensor, this tensor is not centrosymmetric. Consequently, its
representation quadric lacks a centre of symmetry. We can deduce its sym-
metry properties by removing the inversion operation as a generator from
the symmetry group of the symmetric second-rank polar tensor.

The case P\ ^ PS ^ PS therefore corresponds to extrinsic symmetry
222 (obtained from the group rarara by removing the symmetry operations
generated by the inversion operation).

The case P\ = P<2 = PS corresponds to the symmetry of a pseudoscalar,
namely oooo (instead of oooora for a true scalar).

Lastly, the case \Pi\ = \P%\ ^ PZ corresponds to the symmetry group
oo2.

We now consider nonsymmetric second-rank tensors. To determine
their extrinsic symmetries we invoke the following general result: Any
second-rank tensor can be written as the sum of a symmetric part and
an antisymmetric part:

Ti^Sij+Atj, (3.1.31)

where

S« = 5 Cfy+ !}«), (3.1-32)

Aij = ̂ (Tij-Tji) (3.1.33)

If T is a polar tensor, so also are S and A.
The extrinsic symmetry of T can thus be determined from that of S and

A by applying the Curie principle of superposition of dissymmetries (§C.l).
A number of possibilities can arise depending on the mutual orientations
of the principal axes of S and A.

If each of them possesses an oo-fold axis, and these are parallel, the
intersection group determined by the Curie principle is oo/ra, which is
therefore the extrinsic symmetry of the nonsymmetric second-rank polar
tensor.

If the oo-fold axes are mutually perpendicular, the intersection group
obtained is 2/ra. The group 2/ra is also obtained if the planes and axes of
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symmetry of the two tensors coincide.
Lastly, if there is no coincidence of axes or planes of symmetry, the net

symmetry is just 1.
Similar considerations lead to the result that the extrinsic symmetry of

a nonsymmetric second-rank axial tensor can be oo, 2, 1, mm2, or m (see
Shuvalov 1988).

The extrinsic symmetry of tensors becomes increasingly difficult to de-
termine as the rank increases beyond 2. One can often determine a coor-
dinate system in which the matrix of the tensor components assumes the
simplest form. And the symmetry elements of the tensor can be usually
associated with the principal axes.

3.1.6 Tensor Invariants
A change of coordinate system can, in general, result in a change of the
values of the components of a tensor. Tensor invariants are those linear
combinations of the components of a tensor that remain invariant under all
coordinate transformations.

A tensor component transforms as a product of coordinates, or, what is
the same thing, as a product of vector components. We assign to each index
of the tensor a different vector V, and, for determining the transformation
properties, use the component (V)i or (V)2 or (V)s of the vector depending
on whether the corresponding index labelling the tensor is 1 or 2 or 3.

For example, to a second-rank tensor (Tij) we assign two vectors Vi
and V2. Then, for example, Ti3 will transform as (Vi)i(V2)3, and T2i as
(Vi)2(V2)i, etc.

This rule, which is a part of the definition of any tensor, can be used for
constructing the invariants of the tensor. We simply have to construct those
products of the vectors assigned to the tensor that remain constant under
all coordinate transformations. In other words, we look for all possible
scalars that can be constructed from Vi, V2, V3, etc. We consider some
simple examples.

Only one scalar can be constructed from two vectors Vi and V2 rep-
resenting the two indices of a second-rank tensor (T^). This is the scalar
product Vi.V2. Since

Vi.V2 = (Vi)x(V2)x + (Vi)v(V2),, + (V^Va)*, (3.1.34)

the invariant of the tensor is TH 4- T22 + T^.
Similarly, a third-rank tensor (T^fc) has only one invariant under a

pure rotation of the coordinate system, corresponding to the scalar triple
product Vi x V2 • Vs. This product is:

(ViyVaMVa)* - (VxMVa),,^)* + (Vi)2(V2)x(V3)y -
(VxWVaMVg),, + (Vi)x(V2)y(V3)z - (V,)y(V^x(V3)z
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corresponding to the tensor invariant

^231 — ̂ 321 + ^312 — ̂ 132 + ^123 ~ ^213

For higher-rank tensors, usually more than one scalars can be con-
structed from their assigned vectors. A set of linearly independent invari-
ants has then to be selected (arbitrarily) from among the available invari-
ants.

3.1.7 Equilibrium Properties and Transport
Properties

The tensor properties discussed by us so far in this chapter are equilib-
rium properties. A tensor property T was defined above as relating a force
X to a response Y through a linear constitutive relation:

Y - TX (3.1.35)

There is no restriction here on how slowly X must be applied on the crystal.
This ensures that the system can move from one equilibrium state to the
next, till the final equilibrium state is reached. It also means that the
change of state is of a thermodynamically reversible nature.

Transport properties of crystals (like thermal conductivity, electrical
conductivity, thermoelectric power, diffusivity), though tensor properties,
are of a fundamentally different nature in that they involve thermodynam-
ically irreversible processes (entailing an overall increase of entropy). This
is so even when steady-state conditions prevail (see Nye (1957)). By and
large, we shall not be dealing with such properties in this book. However,
the concept of time-reversal symmetry (or the lack of this symmetry) is
relevant for a discussion of magnetic properties. The irreversible nature of
transport properties implies that they cannot possess time-reversal symme-
try.
3.1.8 i-Tensors and c-Tensors
The tensors in Eq. 3.1.35 may or may not possess time-reversal symmetry.
Magnetic field H, viewed as arising from electric currents, changes its sign
on time reversal:

H(-t) = -H(t) (3.1.36)

Electric field E, on the other hand, is time-symmetric:

E(-t) = E(t) (3.1.37)

The same is true about dielectric permittivity:

€(-t) = e(t) (3.1.38)
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Tensors invariant under time reversal are called i-tensors, and those which
change their sign under time reversal are called c-tensors (Birss 1964). The
magnetic-field tensor is a c-tensor, and the electric field an i-tensor.

3.1.9 Special Magnetic Properties
Consider the basic equation, namely Eq. 3.1.35, defining a matter tensor
T in terms of a force tensor X and a response tensor Y.

When both X and Y are i-tensors, so is T.

When both X and Y are c-tensors, again T is an i-tensor.

When either X, or Y, but not both are c-tensors, T is a c-tensor. In
this case T is a special magnetic property (Nowick 1995), provided it is an
equilibrium or static property, and not a transport property.

For transport properties, because of the irreversible thermodynamics
involved, time-symmetry is not even conceivable, and it is meaningless to
think of a situation where X is an i-tensor and Y a c-tensor, or vice versa.

The magnetic permeability tensor //, provides a good example of what
is not a special magnetic property:

Bi = HijHj (3.1.39)

Since both H and B are c-tensors, // is not a special magnetic property. In
fact it is an i-tensor.

One can generalize and say that in a constitutive relation like Eq. 3.1.39
involving c-tensor components, if these components occur an even number
of times, then the matter tensor involved is not a special magnetic property.
If they occur an odd number of times, the matter tensor represents a special
magnetic property.

An example of the latter type is the magnetoelectric tensor (o^j):

Bi = ctijEj (3.1.40)

One has to use one of the 90 magnetic point groups when dealing with the
symmetry properties of (o^) (§2.2.18). By contrast, the 32 chemical or
ordinary point groups are appropriate for dealing with (/%), in spite of the
fact that the latter connects two magnetic quantities (H and B).
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3.2 RESTRICTIONS IMPOSED BY
CRYSTAL SYMMETRY ON TENSOR
PROPERTIES

3.2.1 Neumann Theorem
All properties of a crystal result from its atomic structure. In accordance
with the Curie principle (Appendix C), the elements of symmetry in the
cause (namely the atomic structure) must be present in the effects (the
properties, including tensor properties).

Since the repeat distances characteristic of translational symmetry of
crystals are in the subnanometer range, they are not considered important
in determining the point-group symmetry of macroscopic tensor properties
of crystals. Therefore the restrictions imposed by crystal symmetry on the
tensor properties can be adequately determined by considering merely the
point-group symmetry of the crystal.

Thus, all the symmetry elements of the point group of the crystal must
be present in the totality of (extrinsic) symmetry elements possessed by
any macroscopic tensor property exhibited by the crystal. There are no
restrictions on a tensor property displaying higher symmetry than that
embodied in the point group of the crystal. The Neumann theorem of
crystal physics expresses this as follows (Nye 1957):

The symmetry elements of any physical property of a crystal
must include the symmetry elements of the point group of the
crystal.

If GcryStai is the point-symmetry group of the crystal, and Gproperty
that of the property under consideration, then the former either coincides
with the latter or is its subgroup:

^property =2 dcrystal (O.2.L)
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In other words, a tensor property can exist in a crystal only if the point
group of the crystal is a subgroup of the symmetry group of the property.

The Neumann theorem must hold even when c-tensors are involved.
The symmetry elements of any physical property of a crystal must include
all the symmetry elements of the point group of the crystal, even those in
space-time, rather than those in space alone.

This statement, however, is valid only for static or equilibrium tensor
properties. It does not hold for transport properties. For such proper-
ties time-symmetry is not an allowed symmetry operation (because of the
preference for that direction of time in which overall entropy increases).

An obvious consequence of the validity of the Neumann theorem in
space-time is that if the point-group symmetry of the crystal includes time
reversal, i.e. if it is a nonmagnetic crystal, then all the matter tensors
that are c-tensors must be identically zero for such a crystal. For example,
all components of the magnetoelectric and piezomagnetic tensor must be
identically zero for such crystals. But the magnetic permeability tensor,
being an i-tensor, is not zero.

3.2.2 Crystallographic System of Coordinates
The symmetry elements of the extrinsic symmetry of a tensor property must
coincide with the respective symmetry elements of the point group of the
crystal. However, the point symmetry of the crystal is often lower than that
of the tensor property under consideration. The crystal classes 1 and 1 do
not provide any internal or natural choice of coordinate axes for relating to
the symmetry elements of their tensor properties. The classes 2, 3, 4, 6, m,
3, 4, 6, 2/m, 4/ra and 6/m provide only one axis of symmetry which may
serve as a principal axis for tensor properties. The principal axes become
available more easily as we consider higher point-group symmetries.

When the point-group symmetry of a crystal does not define uniquely
all the three principal axes for its tensor properties and other anisotropic
properties, it becomes necessary to follow some universally adopted conven-
tion and define the so-called crystallographic system of coordinates (Stan-
dards on Piezoelectric Crystals 1949). This system of coordinates not only
has an arbitrary orientation of axes for crystals of low symmetry, it is also
orthogonal (whereas the angles between basis vectors in some low-symmetry
crystals are not).

We mention here only one example of how such a system Oxix^x^ is
defined with respect to the crystal axes Oxyz: For crystals belonging to
the monoclinic system (point groups 2, m, 2/m), Ox^ is taken either along
the 2-fold axis, or perpendicular to the mirror plane m. And Ox\ and Ox%
are defined in the plane perpendicular to the 2-fold axis, or in the mirror
plane m (if present), such that O#i, Ox<2, Ox% are mutually orthogonal;
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further, Ox\ coincides with Ox.

3.2.3 Some Consequences of the Neumann Theorem
The Neumann theorem (Eq. 3.2.1) puts severe and definite restrictions on
the macroscopic tensor properties a crystal can possess. As a consequence
of this theorem, one can make categorical statements about the tensor
coefficients which must be zero in a crystal of a given point-group symmetry
(magnetic or nonmagnetic).

Any polar vector property (e.g. the pyroelectric tensor) possesses the
extrinsic symmetry oooora. It follows from Eq. 3.2.1 that only those crys-
tallographic point groups are compatible with the occurrence of a first-rank
polar tensor property which are subgroups of the group oooom. There are
10 such groups, and they are called polar groups (cf. §2.2.15):

1,2,3,4,6, m, mm2,3m, 4mm, 6mm (3.2.2)

Since a ferroelectric phase of a crystal is characterized by the occurrence
of a spontaneous polarization vector, it follows that only these 10 crystal
classes can allow ferroelectric behaviour.

Similarly, first-rank axial tensor properties can occur in only those crys-
tal classes the point-symmetry of which is a subgroup of the limit group
oo/m. There are 13 such classes:

1,2,3,4,6,1, m, 3,4,6,2/m, 4/m, 6/m (3.2.3)

For dealing with magnetic macroscopic symmetry, we must use mag-
netic point groups. Ferromagnetic crystals are characterized by the occur-
rence of spontaneous magnetization, the extrinsic symmetry of which is
described by the limit group oo/mm'. Ferromagnetism can therefore oc-
cur in only those crystal classes which are subgroups of this limit group
describing the symmetry of an axial magnetic vector. There are 31 such
classes (Tavger 1958):

1,1, m',2', 27™', m, mr^, 2, m'm'2,2272', 2/m, m'm'm,

4,42'm', 4,4m/m/, 42'2', 4/m, 4/mm'm', 3,3m;, 32', 3,3m',

6,62'2', 6m'm', 6/m, 6/mm'm', 6,6m'2' (3.2.4)

Fumi's Method of Direct Inspection
Continuing our illustration of the applications of the Neumann theorem, we
now consider a more analytical and exhaustive approach to the question of
symmetry of tensor properties. The method involves a transformation of
the axes of reference of the matrix representation of the tensor by one of the
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symmetry operations possessed by the crystal, and to enforce the condition
that the tensor coefficients must be the same before and after the coordinate
transformation. The algebra involved can be reduced very substantially by
applying Fumi's method of direct inspection (Fumi 1952a, b, c; Fieschi &
Fumi 1953). Fumi's method is applicable most conveniently for symmetry
elements 2, ra, and 4, and for the 3-fold axes occurring in the cubic system.
It can be applied to practically all the crystallographic point groups, with
the exception of point group 3.

Fumi's method is based on the fact that tensor components transform
as products of components of vectors. It also makes use of the fact that
components of matter tensors are defined with reference to the crystallo-
physical system of coordinates. This system of coordinates is based on the
symmetry elements of the crystal: the coordinate axes are taken to coin-
cide with symmetry axes, mirror-plane normals, or with directions bisecting
angles between these axes or plane-normals.

We consider the operation of a 4-fold symmetry axis on a second-rank
polar tensor as an example.

Let us consider a position vector r(xi,X2,xa) referred to the mutually
orthogonal basis vectors ei, 62, 63. Under a symmetry operation of the
4-fold axis the basis vectors change to e^, 62, 63, and the vector can be
represented as r (x^x^x^):

x\ ei + x2 e2 + z3 e3 = x'i e( + x'2 e'2 + x'3 e'3 (3.2.5)

It is conventional to take the 4-fold axis along 63. After performing
one symmetry operation with this axis, i.e. after a rotation of 90° about
63, the new basis vectors have the following relationship with the old basis
vectors: 63 = 63; ei = 62; and e'2 — — e\. Therefore, Eq. 3.2.5 can be
rewritten as

#1 61 + #2 ^2 + #3 63 = #! 62 — #2 el + x/3 e3 (3.2.6)

Since the unit basis vectors are linearly independent, Eq. 3.2.6 can be
satisfied only if

Xi = X 2 ] X<2 = —Xi £3 = #3 (3.2.7)

We notice that the components of r either remain unchanged (#3 = #3),
or change into one of the other components, with (x2 = —Xi) or without
(x( = #2) a change of sign. This is because all the direction cosines of
the symmetry transformation under consideration are either 1, or -1, or
0. Fumi's method of direct inspection applies only to symmetry operations
defined by integral direction cosines. This is the case for symmetry elements
J-) ^X"> *"y> "zi "xyi W^xi W^yi ^z? '^xyi ^zi ^-zi and *Jxyz-

To consider how the components of a second-rank polar tensor T trans-
form under the operations of a 4-fold symmetry axis 42, we make use of
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the fact that any component of this tensor will transform as the product of
two vector components. For example, the tensor component with indices
11 will transform as the product x\x\ or x\, and the component 12 as the
product XiX2- It is convenient to denote the tensor component ij by XiXj.
Then, for the 90° rotation operation, x( = x%, x'2 = — #1, and x3 = x3. It
follows that [a^i]' = [#2a;2], implying that T{± = T22. But since the con-
sidered coordinate transformation is a symmetry operation, we must also
have Td = Tn. It follows that Tn = T22.

One can show similarly that T22 = TH, and T33 = T33.
Considering next the nondiagonal coefficient Ti2, we find that [xi£2]' =

-[x2xi], implying that T{2 = T& = -T2i. Similarly T23 = -T23, (implying
that T23 = 0), T32 = -T32 (or T32 = 0), T31 = T32 (= 0), and Ti3 - T23 (=
0).

A second-rank polar tensor for a crystal having point-group symmetry
4 thus has the form

If this tensor is symmetric (i.e. T^ = 7^), then its only nonzero
independent components are TH and T33.

If a crystallographic point group has more than one generators, we work
with them successively, applying its restrictions on the tensor components
obtained by the application of the previous generator (s).
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Tn Tia 0
(TV) = -Tia Tn 0 (3.2.8)

0 0 T33
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3.3 THE HERMANN THEOREM OF
CRYSTAL PHYSICS

Apart from the Neumann theorem, another theorem of basic impor-
tance is the Hermann theorem of crystal physics (Hermann 1934). Accord-
ing to it:

// we consider an r-rank tensor with reference to a material
having an N-fold axis of symmetry, and r < N, then this ten-
sor property effectively conforms to an oo-fold symmetry axis
parallel to the N-fold axis.

We present here an abridged proof of the theorem. The textbook by
Sirotin & Shaskolskaya (1982) should be consulted for more details.

We begin by introducing the notion of cyclic coordinates.

3.3.1 Cyclic Coordinates
One can define cyclic basis vectors, j, j, e, in terms of cartesian basis vectors,
61,62,63, as follows:

J = ^(e i+<e 2 ) (3.3.1)

j = i(e i-fe2) (3.3.2)

e = e3 (3.3.3)

The converse equations are:

e i = j + j (3.3.4)

e2 = -t(j-D (3-3-5)

e3 = e (3.3.6)

For a real position vector r(x, y, z) the following equality holds in terms
of the two sets of basis vectors:

zei + ye2 + ze3 = £ j + £ j + ze (3.3.7)

It follows from Eqs. 3.3.4-7 that

£ = x-iy (3.3.8)

£ = x + iy (3.3.9)

z = z (3.3.10)



90 3. Crystal Physics

Let us perform a rotation </> of the coordinate system about the principal
axis X$. The new basis vectors are given by:

e( = eicos0 + 62 sin 0 (3.3.11)

e2 = —eisin^ + 62 cos 0 (3.3.12)

^ = e3 (3.3.13)

j' = i(ei+u£) (3.3.14)

J' = 5(ei-<ei) (3.3.15)

e' = 4 (3.3.16)

These equations can be solved to yield the following results (with the
help of Eqs. 3.3.4-6):

j' = e-*j, J' = e*j, e' = e (3.3.17)

Since the magnitude and direction of the position vector r do not change
as a result of the coordinate transformation, we can write

a + &+ze = £7 + e7 + *V (3.3.18)

Substitution from Eqs. 3.3.17 yields

f' = j+ £ f = e-^ £ / = z (3.3.19)

We are now ready to derive the law of transformation of the cyclic
components A^^.. jr of a tensor A of rank r under a rotation 0 about the
axis X$. For this it is convenient to give the position vector component £
an index 1, £ an index -1, and z an index 0. Then the direction cosines of
the transformation can be written as

ck>l = eik'*8kfl = Jl*8kfl (3.3.20)

The following result is then evident:

Ak(...k'r = exp[i(/i + • • • + lr)<t>] Sk(ll • • • 6k'rir Ah...lr (3.3.21)

If the rotation 0 is a symmetry operation about an TV-fold axis, then
0 = 27T/7V, and Eq. 3.3.20 becomes

Cfe/i = exp(-^Z)tf fe/i (3.3.22)
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The tensor A, specified by its components ^4^/2.../r, must be invariant
under the symmetry operation defined by 0 = 2ir/N. Eq. 3.3.21 yields the
following condition for this:

2?ri
[exp{— (li + • • • lr)} - 1] Atl...lr = 0 (3.3.23)

Only those cyclic tensor components will be nonzero for which the
expression in the parenthesis is zero. This means that, if a tensor component
Ai^i2...ir is to be nonzero for a crystal having a point-group symmetry with
an JV-fold axis as a generator, the following condition must be satisfied:

li+h + -- + lr = 0 (mod AT) (3.3.24)

3.3.2 Proof of the Hermann Theorem
Since the cyclic-coordinate indices only take values 1, 0, or -1, their absolute
sum for any tensor component cannot exceed the rank r of the tensor. If
r < JV, the only situation in which Eq. 3.3.24 can be satisfied is that when
this sum is zero (only zero, and not zero modulo N). But when this is the
case, Eq. 3.3.23 will be satisfied (for nonzero Ai:i2...ir) for all values of N
(N > r), including N = oo. Q.E.D.

3.3.3 Importance of the Hermann Theorem
The Hermann theorem defines a sufficient condition for transverse isotropy,
i.e. isotropic behaviour of a tensor property of rank r in a plane perpen-
dicular to an TV-fold symmetry axis of the crystal. We shall come across
applications of this theorem in later chapters. By way of illustration, we ap-
ply it here to the birefringence behaviour of crystals of various point-group
symmetries.

Birefringence of a crystal is determined by its dielectric permittivity
tensor (e^), a second-rank polar tensor, i.e. r = 2. Crystals belonging to
triclinic, monoclinic, and orthorhombic systems do not possess any sym-
metry axis of order greater than 2, i.e. for them N < 2. Thus there is
no symmetry axis for them for which N > r, and therefore the provision
N = oo does not exist for them, so far as the dielectric permittivity tensor
is concerned. Such crystals are optically biaxial: One can find two direc-
tions in them (namely the two optic axes) for which there is transverse
isotropy. That is, the crystal is optically isotropic (or the birefringence is
zero) in planes transverse to the two optic axes. But these optic axes do
not coincide with any symmetry element of the crystal, and their directions
change with temperature, wavelength etc.

Crystals belonging to trigonal, tetragonal, and hexagonal systems do
possess one (and only one) symmetry axis of order 3 or more, so that,
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for r = 2, we have N > r for them. The Hermann theorem predicts
transverse isotropy for them with respect to dielectric permittivity, and
thence birefringence, i.e., effectively N = oo so far as the birefringence
behaviour of such crystals is concerned. As is well known, the N = oo axis
is nothing but the optic axis for these crystals. There is only one such axis,
and the crystals are described as optically uniaxial

Lastly, we consider the cubic system. In this case there are four 3-fold
axes of symmetry, directed along the body-diagonals of the cubic unit cell.
The Hermann theorem demands isotropy of dielectric permittivity (i.e. zero
birefringence) in planes normal to each of these four 3-fold axes. The four
conditions can be satisfied simultaneously only if the crystal is optically
isotropic in planes normal to all directions. Cubic crystals are therefore
optically anaxial

To discuss another important feature of the Hermann theorem, we be-
gin by reminding ourselves that if the application of the Neumann theorem
tells us that a physical phenomenon (represented by an appropriate ten-
sor component) is not forbidden from occurring, there is still no guarantee
that the phenomenon would indeed occur; it still may not occur, say, for
thermodynamic reasons. However, the converse situation, whereby a phe-
nomenon or property is forbidden by symmetry, corresponds to absolutely
certain knowledge (regarding the nonoccurrence of the phenomenon).

We notice next the inverse relationship between the order of the point
group of a crystal and the number of independent components of a given
tensor property that the crystal can exhibit. On one extreme we have the
situation wherein the crystallographic point-group symmetry is just 1 (i.e.
no rotational symmetry at all). In this case all the tensor components,
which are nonzero in spite of the intrinsic and extrinsic symmetries of the
tensor, are allowed by the crystal symmetry to be nonzero. The number
of these nonzero independent components decreases as we consider point
groups of higher and higher order. What amounts to the same thing, the
number of zero (or forbidden) tensor components increases as we go up the
symmetry scale.

Now, all the 32 crystallographic point groups are proper subgroups of
one or more of the 7 limit groups. Accordingly, for a particular physical
property, the number of tensor components that is zero by symmetry is
smaller for any crystallographic point group than it is for any of its limiting
supergroups. The Hermann theorem, by stating that if N > r, then N =
oo, increases the domain of certain knowledge (by giving a larger number
of zero components, i.e. certain knowledge), and a correspondingly smaller
number of possibly nonzero components (uncertain knowledge). This is
shown schematically in Fig. 3.3.1. In part (a) of Fig. 3.3.1, the domain
of knowledge about a tensor property of rank r is divided into certain
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Figure 3.3.1: Depiction of how applicability of the Hermann theorem to a
given situation amounts to an effective increase of the domain of certain
knowledge (ck), and a corresponding decrease of the domain of uncertain
knowledge (uk).

knowledge (ck), and uncertain knowledge (uk). The size of the domain ck
is specified by the fraction of tensor components that are zero by. crystal
symmetry. If r < N, so that the Hermann theorem applies, then the
fraction of tensor components that is zero becomes larger, and the domain
ck becomes larger (part (b) of Fig. 3.3.1).

The properties of a crystal (the effects) arise from its structure and
symmetry (the causes). The "minimalistic use" of the symmetry principle
(§C.l) provides a lower bound on the symmetry of an effect. The Hermann
theorem, by requiring that N = oo if N > r, provides an effective raising of
the lower bound on the symmetry of the effect, namely the tensor property
of rank r.

We note in passing that the Hermann theorem applies only for r < N.
It says nothing about the case when r = N. If it can be shown, by going
back to the arguments leading to the proof of the theorem, that, for some
situations N = oo even for r = TV, then once again ck, the domain of certain
knowledge, would expand.
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3.4 REPRESENTATIONS OF CRYSTALLO-
GRAPHIC POINT GROUPS

Representations of crystallographic point groups can be obtained either as
subduced representations (§B.3) of continuous rotation groups (see, for ex-
ample, Ludwig & Falter 1988), or as induced representations (§B.3) of low-
order crystallographic point groups. We outline the latter approach here,
the basis of which is the fact that if a group can be expressed as the direct
product of two groups, its character table can be obtained from those of the
latter groups (§B.3). We shall discuss only characters of representations,
and not actual representations.

The class structure of a group determines its irreducible representations
(IRs). We summarize here the main results (described in more detail in §B.3
for some cases) which are needed for determining the characters of the IRs
of a group:

(A). The number (nr) of the inequivalent IRs (IIRs) a group can have is
equal to the number (nc) of classes in it (Eq. B.3.15):

nr = nc (3.4.1)

(B). The sum of the squares of the dimensions of all the IIRs of a group is
equal to the order (g) of the group (Eq. B.3.18):

Z>M = ^ (3.4.2)
/*=!

(C). The first orthogonality theorem for characters (Eq. B.3.11):

£ 9sXl(Cs)Xn(Cs) = 9^ (3.4.3)
cs=i

It is useful to write down two special cases of Eq. 3.4.3. When // = v
this equation becomes

EW*)]2 =3 (3-4.4)
S

In Eq. 3.4.3 gs is the number of elements in the class (7S, and the summation
is over all the classes. In Eq. 3.4.4 we carry out the summation over all the
elements of the group, which is equally valid. Eq. 3.4.4 states that the sum
of the squares of the characters of any IR of a group is equal to the order
of the group.

The other special case of Eq. 3.4.3 is when i ^ j:

EXM(«)X*(«) = 0 (3-4-5)
S
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In words: Vectors (in the g-dimensional space defined in §B.3) the
components of which are characters of two different IRs are orthogonal to
one another.

(D). The second orthogonality theorem for characters (Eq. B.3.12):

j^x;(Ca)x»(Cb) = ^-6ab (3.4.6)
/*=! 9a

(E). If H is a normal subgroup ofG, and thence G/H the factor group ofG
with respect to H (§B.l), the representations of G/H are also (unfaithful)
representations ofG.

(F). The direct product of representations of two commuting groups is a
representation of the direct-product group.

(G). Direct products of the IRs of two commuting groups exhaust all the IRs
of the direct-product group. In other words, there is no IR of the product
group which cannot be expressed as a direct product of an IR of the first
constituent group and an IR of the second constituent group,

(H). Sometimes it becomes necessary to use the following result, which can
be derived from class-multiplication relationships:

9i 9j X»(Ci) X»(Cj) = n^ 4 gk X»(Ck) (3.4.7)
k

Here c$j are nonnegative integers called class constants. They are defined
by the equation

dCj = 5^4Cfc (3.4.8)
k

which describes the fact that the class Ck appears c^ times in the product
of the classes Ci and Cj. (The product of two classes of a group always
consists of whole classes.) The class constants are symmetric in the indices
i and j.

As an illustration of the use of some of these results, we consider the
point group Csv. For this group g = 6 and nc = 3. It follows that there
are three IIRs (Eq. 3.4.1). Therefore Eq. 3.4.2 has a unique solution:
I2 + I2 + 22 = 6. This means that the group must have two 1-dimensional
IRs and one 2-dimensional IR. The character table for this group is shown
in Table 3.4.1.
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Table 3.4.1: Character table for the point group C^v.

~C^ | E 2C3 = {<?3, Cj} 3<rv = K, <r;, <}"

"Ti Ai I 1 I F
r2 A2 i i -i
r3 E | 2 -i o_

We first describe the notation used in Table 3.4.1 for labelling the IRs.
Several systems of notation are in use in the literature. Two of them,

namely the Mulliken notation and the Bethe notation, are the most com-
mon.

In the Mulliken notation, the symbols used for the IRs are A, £?,
E, T and F, alongwith subscripts and superscripts where necessary. 1-
dimensional IRs are denoted by A or B, 2-dimensional by E, and 3-dimen-
sional by T (or sometimes by F). In the Bethe notation the labels used are
simply r i , r 2 , - - - etc.

1-dimensional real IRs which are symmetric with respect to rotation by
2-K/n about the principal axis Cn are labelled as A, and those antisymmet-
ric with respect to this rotation are labelled B. 'Symmetric' here means
x(Cn) = 1, and 'antisymmetric' means \(Cn) = — 1.

If there is a 2-fold symmetry axis perpendicular to Cn, or if there is
a 'vertical' mirror plane av containing the axis Cn, subscripts 1 or 2 are
attached to A and B to represent symmetry and antisymmetry with respect
to these additional symmetry elements.

If a 'horizontal' mirror-plane of symmetry, cr^, is present, primes and
double primes are attached to A, B, E, T etc. to indicate symmetry and
antisymmetry with respect to operations of o~h-

For groups that include inversion symmetry, the subscript g (from the
German gerade, meaning even) is attached for denoting symmetry under
inversion. The subscript u (for ungerade, meaning uneven or odd) is used
for denoting antisymmetry with respect to the inversion operation.

For 1-dimensional complex IRs the Mulliken and Bethe approaches are
different. On account of time-reversal symmetry a 1-dimensional represen-
tation having a complex character is degenerate with its complex-conjugate
representation. In the Mulliken system it is viewed as a 2-dimensional repre-
sentation in the sense that it is physically irreducible. In the Bethe notation,
on the other hand, the pair is regarded as two independent 1-dimensional
representations.

Several variations of the Mulliken and Bethe notations are also used
for dealing with, for example, IRs of space groups, [see Ludwig & Falter
(1988), page 406, for a comparative description.]
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Continuing with our description of Table 3.4.1, we note that the IR
in the first line, namely I\ or AI, is a property of every group, since the
simplest representation of any group is that homomorphic mapping in which
all the elements of the group are mapped to a unit matrix of order 1 (§B.3).
This is the so-called identity representation, with Xi(5) = 1 for all 5.

For the group C%v there must be two 1-dimensional representations
and one 2-dimensional representations in all. We first look for the second
1-dimensional IR.

The IR FI corresponds to a vector xi in 6-dimensional space (§B.3)
with all its components as +1. A second vector in this space, corresponding
to a 1-dimensional representation and orthogonal to the vector for FI (Eq.
3.4.5) must have its components as either +1 or -1, because the sum of
the squares of these components must equal 6 (Eq. 3.4.4). For this vector
Xi(E) = +1. For satisfying Eq. 3.4.5 three components must be +1 and
the other three -1. Since we already have X^(E) = +1, this is possible only
if the characters X2 for the two elements in the class (63, C|) are +1, and
those in the class (av, a'v, a") are -1. The second 1-dimensional IR (labelled
F2 or AI) therefore has the characters shown in the second line of Table
3.4.1.

The remaining IR is 2-dimensional. For it the label used in Table 3.4.1
is Fa or E, and Xz(E) = 2. To find Xa^a) and Xz(°v) we invoke the
orthogonality relationships expressed by Eq. 3.4.5:

E *i(5) XaOO = 0 = 1 x 2 + 2[1 x X3(C3)] + 3[1 x xaK)] (3.4.9)
s

X>2(s)X3(s) = 0 = l x 2 + 2[lxx3(C3)]+3[(-l)xx3M] (3.4.10)
S

These two equations, when solved, yield Xs(crv) — 0 and Xa(Ca) = — 1-
This completes the explanation of the last line of entries in Table 3.4.1.
Eq. 3.4.4 provides a further check on the correctness of the characters
determined for the IR E [22 + 2(-l)2 + 3(0)2 = 6].

We have so far considered only irreducible representations in this sec-
tion. When dealing with a reducible representation (with characters, say,
x(s)) it is possible to determine readily the number (q^) of times the var-
ious IIRs with characters XM(S) are contained in it by using the following
very important result, which we state without proof:

«/• = ^ E X M M ' X W (3-4-n)
& S

Thus, knowing only the characters of each IR (without having to know the
actual representations) it is possible to calculate the number of times each
IR is contained in a given reducible IR.
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Table 3.4.2: Character table for the point group d.

~C~\ E J
Ag I 1 T

Au I 1 -1

Table 3.4.3: Character table for the point group DW

DM | E 2C3 3C2 J 256 "3^~
~AT9 I i i i I F~

AIU i i i -i -i -i
A2^ i 1 - 1 1 i -i
A2u 1 1 - 1 - 1 - 1 1
Eg 2 - 1 0 2 - 1 0
£M I 2 -1 0 - 2 1 0

Any reducible representation can then be written as a direct sum of
the IRs A:

D(s) = qiDi(s) ® q2D2(s) 0 • • • (3.4.12)

Having constructed all the IRs for the group C$v (or 3ra), we now
illustrate the construction of the IRs of a group which can be obtained as
a direct product of C3v and another group commuting with this group.

Ci (or 1) is a group of order 2 (having elements E, J) which commutes
with C3V, as well as with other point groups. Table 3.4.2 is its character
table, which does not require any additional explanation. The point group
D3d (or 3m) can be obtained as the following direct product:

D3d = C3v 0 d (3.4.13)

Since C3v has three IIRs (Table 3.4.1) and d has two IIRs (Table
3.4.2), D3d must have six, and only six, IIRs. Table 3.4.3 lists these. Half
of them are '#' IIRs, and the other half are V IIRs.

SUGGESTED READING
F. A. Cotton (1971). Chemical Applications of Group Theory, second edi-
tion. Wiley, New York.

W. A. Wooster (1973). Tensors and Group Theory for the Physical Pro-
perties of Crystals. Clarendon Press, Oxford.
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A. S. Nowick (1995). Crystal Properties via Group Theory. Cambridge
University Press, Cambridge.

3.5 EFFECT OF FIELDS ON TENSOR
PROPERTIES

When we speak of the point-group symmetry of a crystal, we implicitly
presume that the crystal exists in an isotropic environment. If the same
crystal is acted upon by a field that is not isotropic, the net symmetry of the
composite system (crystal plus field) is that given by the Curie-Shubnikov
principle of superposition of symmetries (§C.2).

A related question is that of the mutual interaction of the tensor pro-
perties of the crystal. Application of an external force field X leads to a
primary response YI :

Yi = AX (3.5.1)

The same external field can produce another, different, response via a
matter tensor other than A:

Y' = A'X (3.5.2)

And the response Y' can, in turn, act as an internal field, producing an
additional (secondary) response via another tensor property B:

Y2 - BY' = BA'X (3.5.3)

Combining Eqs. 3.5.1 and 3.5.3 we get

Y = Yi + Y2 = (A + BA')X (3.5.4)

Experimental conditions determine the presence or absence of the second
term on the right-hand side of this equation.

We illustrate such a possibility with an example from nonlinear optics.
Example of Pockels Effect

Application of an electric field to a crystal changes its charge distribution,
with a concomitant change of the refractive indices. If the crystal is noncen-
trosymmetric, there can always be a change of refractive index proportional
to the first power of the electric field. This linear electrooptical effect is
called the Pockels effect. In centrosymmetric crystals the Pockels effect is
absent, but a change of refractive index proportional to the square of the
electric field (the Kerr effect) can occur in all crystals.
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Electrooptic effects of various orders are described by the following
equation:

Di = CijEj + TijkEjEk + RijkiEjEkEi + ••• (3.5.5)

The first term on the right-hand side describes the linear part of the di-
electric response. The rest of the terms describe nonlinear effects of various
orders, (r^) is a third-rank, polar, i-tensor governing the Pockels effect.
The Kerr effect is determined by the fourth-rank tensor (Rijki).

For relating the tensor (rijk) to the optical indicatrix, we bring in the
relative dielectric impermeability tensor (Bij), which is defined by (Nye
1957):

Bij = dEi/dDj (3.5.6)

In terms of this tensor the equation of the optical indicatrix (in the
absence of external electric and mechanical fields) takes the form

BijXiXj = 1 (E = 0; a = 0) (3.5.7)

Application of an external electric field E leads to a change ( SBij) in
the tensor (Bij):

SBij = rijkEk (a = 0) (3.5.8)

This equation is valid for a crystal that is free to expand or contract
(cr = 0). However, such an undamped crystal will also exhibit a piezoelec-
tric strain when the electric field is applied:

eij = dkijEk (3.5.9)

This strain causes a further change in (B^) for the undamped crystal via
the elastooptical effect governed by the fourth-rank tensor (P»jjm), so that
the total effect is

SBij = r*jkEk + Pijimeim, (3.5.10)

which on substitution from Eq. 3.5.8 becomes

SBij = (r*ijk + Pijimdkim)Ek (3.5.11)

The first term on the right-hand side describes the primary Pockels
effect, observable if the crystal is prevented from expanding or contracting
when the electric field is applied. The second term defines the secondary
Pockels effect, arising because the strain produced by the electric field via
the (converse) piezoelectric effect causes a further change in (B^) via the
elasto-optic effect.

Thus, if only the primary Pockels effect is to be observed, conditions
amounting to effective clamping must be created. In practice, this can be
realized when the electric field applied is an ac field of a frequency much
higher than the natural frequency of vibrations of the crystal.
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Figure 3.5.1: Direct application of the Curie principle for determining the
change in the symmetry of the optical indicatrix of a KDP crystal when an
electric field is applied along its optic axis.

Direct Application of the Curie Principle

KDP (KH2PO4), or its deuterated analogue, is a crystal commonly used for
making electro-optic modulators, exploiting the Pockels effect mentioned
above. The point-group symmetry of this crystal at room temperature is
42m. In the so-called longitudinal-geometry mode of application, the elec-
tric field is applied along the same direction as that of the propagating laser
beam. This crystal is optically uniaxial, and the laser beam is usually made
to propagate along the optic axis. It can be shown by detailed calculation
that when the electric field is switched on, the crystal becomes optically
biaxial, so that a progressively increasing phase difference gets introduced
between the ordinary wave and the extraordinary wave as the light propa-
gates through the crystal (see, e.g., Yariv 1985). Variations in the applied
electric field thus get translated into corresponding variations in the phase
of the light beam emerging from the crystal.

We show here how a direct application of the Curie principle of super-
position of symmetries (§C.l) leads qualitatively (and quickly) to the same
result.

In terms of the standard coordinate axes shown in Fig. 3.5.1, the
point-group symmetry of the KDP crystal can be expressed as 4z2xmxy.
The electric field, which has the symmetry of a cone, is applied along the z-
axis, so that its point-group symmetry can be written as oozm. According
to the Curie principle, the net symmetry of the composite system (crystal
plus electric field) consists of symmetry elements common to the crystal
and the electric field.

Since the symmetry axis 4Z includes the symmetry axis 22, the inter-
section symmetry along the z-axis is that of the diad 2Z.

In addition, there are an infinite number of mirror planes of symmetry

4 z 2 x m x y ^z™ 2 z m x y m x y



102 3. Crystal Physics

(containing the 2-axis) in the symmetry group of the electric field. But
there are only two such planes in 4z2xmxy (see Fig. 3.5.1). What survives
in the intersection group from this set are thus these two planes only.

The complete intersection group is thus 2zmxymxy^ or 2mm. This
point group belongs to the orthorhombic system, which is optically biaxial.

We also note from Fig. 3.5.1 that the mirror planes of 2mm are in-
clined at ±45° to the o>axis of the unbiased KDP crystal. This again is in
conformity with experiment, as well as with results of detailed calculation.

SUGGESTED READING
A. Yariv & P. Yeh (1984). Optical Waves in Crystals. Wiley, New York.

A. Yariv (1985). Optical Electronics. Holt, Rinehart & Winston, Holt-
Suanders Japan.



Chapter 4

CRYSTALS AND THE
WAVEVECTOR SPACE

To "see" an object we shine radiation on it. The object scatters this radi-
ation, some of which is received and processed by the eye and the brain, or
by some other recording and interpreting device. Determining the internal
structure of a crystal amounts to "seeing" it on an atomic scale. Since the
sizes of atoms, as well as their typical separations, are in the Angstrom
range, the radiation employed should also have a wavelength in this range.
X-rays, thermal neutrons, and electron beams are commonly used for this
purpose.

The radiation waves scattered by an object interfere among themselves
to produce the diffraction pattern of the object. The description of the
diffraction pattern involves introduction of the concept of reciprocal space
or wavevector space. The wavevector k also serves as a natural 'label' for
the irreducible representations of space groups of crystals.

4.1 DIFFRACTION BY A CRYSTAL. THE
RECIPROCAL LATTICE

4.1.1 Diffraction by a General Distribution of
Scatterers

Let p(r) denote the density function for a distribution of scatterers. In a
typical X-ray diffraction experiment, one shines a collimated, monochro-
matic beam of wavelength A on the specimen. Let ko be a vector of magni-
tude 2?r/A along the direction of the incident beam, and ki a similar vector
along any direction of interest. Let us consider scattering from a point
P(r) (Fig. 4.1.1). The path difference between the wave scattered from P,

103
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Figure 4.1.1: Scattering of radiation from a point P, with reference to that
from the origin O.

relative to that scattered from the origin O, is (r • ki — r • ko)A/(27r) (Fig.
4.1.1). And therefore we have the phase difference, £, given by

S = r - ( k i - k o ) = r - k , (4.1.1)

where k (= ki — k0) is called the scattering vector, or the wavevector. It is
readily verified that

k = |k| = 47rsin0/A, (4.1.2)

where 0 is half the angle between ki and ko.
We now consider an element of volume dr at the point P(r). The wave

scattered from this volume of scatterers is given by \p(r) d(r)] exp(z£), with
8 given by Eq. 4.1.1. Integrating over all space, we get the total wave
scattered along ki:

/(k) = / p(r)exp(ir'k)dr (4.1.3)

This is just the Fourier transform of p(r) (cf. Appendix D).
As a special case, if we identify the above general distribution of scat-

terers with that in a single atom, then /(k) given by Eq. 4.1.3 defines the
scattering factor for the atom.

Unit-Cell Transform

Let us consider a set of N atoms, which may either constitute a molecule
in the usual sense, or, else, may comprise the contents of the unit cell of a
crystal. The N atoms are characterized by position vectors rn, and scat-
tering factors /n(k) (n = 1,2, • • • N). The position vectors are, naturally,
referred to a common origin. The position of any general point, P, in, say,
the nth atom can be expressed as

r' = rn + r, (4.1.4)
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where r is the position vector of the same point, referred to the local origin
for that atom, and rn is the position vector of this local origin, referred to
the common origin.

The amplitude of waves scattered from the nth atom is given by

An = f[p(r)dr] exp(tr' - k) (4.1.5)

On substituting from Eq. 4.1.4, and using Eq. 4.1.3, we get

An = /n(k)exp(zrn-k) (4.1.6)

The total wave scattered by all the N atoms is

N
£>o(k) = £ /n(k) exp(zrn - k) (4.1.7)

n=l

A)(k) is referred to as the unit-cell transform.

4.1.2 Diffraction by a Crystal
We first consider scattering of radiation from two unit cells of the crystal
stacked along the direction of the basic translation vector ai. For the first
unit cell, the cell transform is A)(k), given by Eq. 4.1.7. The second cell
is displaced from the first cell by the vector ai, so its cell transform is

N
I>i(k) = ^/n(k)exp(i(rn + ai).k) - A>(k)[l + exp(iai.k)] (4.1.8)

n=l

The total wave scattered from these two cells is the sum of A)(k) and
Di(k). The total wave scattered by MI such cells in a row is

MI-i
DX1 = £ Dm(k)

m=0

= A)(k) ̂  t1 + exP(^ai ' k) + exp(2iai - k) +

• • • + exp((Mi - l)iai • k)] (4.1.9)

This equation can be simplified to yield

DXI (k) = A,(k) dn(Jfiai
1;!ff

) exp(i(fiav^2)) (4.i.io)1 V ' v J sm(ai-k/2) exp(zax • k/2) v '

The last factor in Eq. 4.1.10 is a phase factor, which drops out when
we compute the intensity of the diffracted beam, which is proportional to
|D(k)2|:

|r>Xl(k)|2 = |£»o(k)|2sin2(Miai .k/2)/sm2(ai -k/2) (4.1.11)
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For bulk single crystals, MI is usually a very large number, say of the
order of 106. Eq. 4.1.11 therefore represents a very rapidly oscillating
function. Its numerator is zero whenever Miai • k/2 is an integer. The
intensity of the diffracted beam is then zero, unless ai • k/2?r is also an
integer for that value of k. Thus, nonzero diffracted intensity is observed
only along those directions for which ai • k/2?r is equal to an integer, say h:

ai -k/27r = h (4.1.12)

The whole row of MI cells can be regarded as a single unit, repeated,
say, M2, times along the lattice vector 3.3. The full 3-dimensional crystal
can be constructed by repeating the entire net of MiM2 cells MS times
along aa. The amplitude of the radiation diffracted from such a crystal can
be written by inspection from Eq. 4.1.10:

D (VI = D (M sin(Mi ai ' k/2) sin(M2a2-k/2) sin(M3 ai • k/2)
x( } ° W sin(ai • k/2) sin(a2 • k/2) sin(a3 • k/2)

(4.1.13)
We have dropped the phase factor from this equation, as it does not enter
the expression for the intensity of the diffracted beam.

Laue Equations

By an extension of the reasoning by which Eq. 4.1.12 was arrived at, we
write the following three equations, called the Laue equations, which must
be satisfied simultaneously if nonzero diffracted intensities are possibly to
be observed along directions defined by the scattering vector k:

ai - k/2?r = ft, (4.1.14)

a2 • k/27r = fc, (4.1.15)

a3 - k/2?r = I (4.1.16)

Here ft, &, / can take all possible positive and negative integral values,
including zero. Even when the three Laue equations are satisfied, the
diffracted intensity would be zero if A)(k) in Eq. 4.1.13 is zero.

Bragg Law

Often it is more convenient to combine the three Laue equations into a
single diffraction condition, the Bragg law. Subtracting Eq. 4.1.15 from
4.1.14 we get

(a i / f t -a 2 / fc)-k = 0 (4.1.17)

This equation implies that the vector (ai/ft — a2/fc) is perpendicular to
k. This vector lies in a plane which is a member of a family of parallel
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equidistant planes dividing the cell length ai into h equal parts and the
cell length a<2 into k equal parts. Similarly, k is perpendicular to the vector
(sL2/k — as//) which lies in a plane belonging to a set dividing the basic
repeat distance a^ into k equal parts, and as into / equal parts.

A family of crystallographic planes which divide a\ into /i, a^ into &,
and as into I equal parts is said to have Miller indices /i, A;, Z, and such
planes are denoted by (hkl). [The Miller index k is not to be confused with
the magnitude k of the scattering vector k.]

Thus, for a 3-dimensional crystal, when the three diffraction conditions
are satisfied, k is perpendicular to the planes (hkl). But, since k = ki — ko
and |ki| = |ko| ("elastic scattering"), k has the direction of the bisector
of the angle between k\ and fco- Thus the direction of this bisector of the
incident and diffracted-beam directions can be identified with the normal
to the planes (hkl).

Let dhki denote the spacing between the planes (hkl). It is equal to the
projection of ai/ft, or a2/fe, or as//, along k:

dhki = (a i / fc)-k/fc = 1/fc = X/(2smehki), (4.1.18)

or,
2dhkism0hki = X (4.1.19)

We have made use of Eq. 4.1.14 in the derivation of Eq. 4.1.18. Eq.
4.1.19 is known as the Bragg law, or the Bragg condition for constructive
interference. When this diffraction condition is satisfied, one also speaks
of Bragg reflection because the incident and the diffracted beams make the
same angle, 6hki, with the planes (hkl).

4.1.3 The Reciprocal Lattice
Each of the Laue equations (Eqs. 4.1.14-16) defines a family of parallel
equidistant planes in the space of k. [This space is called the wavevector
space, or Fourier space, or reciprocal space because k (= 4?r sin 0/X) has the
dimensions of L~1.]

For example, the first Laue equation (4.1.14) defines, for h = 0,1,2, • • •,
a family of planes normal to ai (Fig. 4.1.2).

Suppose the spacing between the consecutive planes is d*. Then, as is
clear from Fig. 4.1.2,

d* = k-(ai/ai) = 27r/ai (4.1.20)

(Eq. 4.1.14 has been used here.)
Thus, if we have a system of scatterers which is periodic only in one

direction (that of ai), the diffraction condition for it will be satisfied for all
scattering vectors, k, which terminate on any of the parallel and equidistant
planes having a spacing 2?r/ai (Fig. 4.1.2).
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Figure 4.1.2: A family of parallel equidistant planes in reciprocal space,
normal to the ai axis.

Let us now consider a system for which the second Laue condition is
also satisfied. That is, the system has lattice periodicity in two dimensions.
There will now be a second set of parallel equidistant planes in reciprocal
space, with a spacing 2?r/a2, in addition to the first set shown in Fig.
4.1.2. The two Laue equations will be simultaneously satisfied only for
k terminating on the lines of intersection of the two families of planes
in reciprocal space. These lines are sometimes referred to as rods: the
diffraction pattern of a planar net of scatterers is a set of rods in reciprocal
space.

Finally, all the three Laue equations must be satisfied for a 3-dimensional
crystal lattice, and this will happen when k terminates on points (in fact, a
lattice of points) where all the three families of parallel, equidistant, planes
in reciprocal space, perpendicular respectively to ai, a2, and as, intersect.
This lattice of points in reciprocal space is called the reciprocal lattice.

Thus appreciable diffracted radiation can possibly be observed in only
those directions, and for only those orientations of the crystal with respect
to the incident collimated monochromatic radiation, which make the scat-
tering vector k (= ki — ko) equal to a reciprocal-lattice vector. Let us
denote by a^a^a^ the fundamental translation vectors which span the
reciprocal lattice. Any vector K in this lattice can then be expressed as

K = ftaj + k^ + Jag (4.1.21)

The diffraction condition contained in the Laue equations implies that k
must be equal to one of the Ks:

k = K (4.1.22)

= ftaj + fca£ + /a£, (4.1.23)

ft, fe, / being arbitrary integers.
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It is straightforward to derive a|, a2, a3 in terms of HI , a2,3.3. From
Eqs. 4.1.23 and 4.1.14,

ai • k = 2?r/i = /iai • a£ + ksii • a£ + l&i • B.% (4.1.24)

Since /i, fc, / can take arbitrary (integral) values, this equality can hold only
if

ai • aj = 2?r, ai • a2 = 0, ai • a3 = 0 (4.1.25)

Similarly,
a2 • aj = 0, a2 • a2 = 2?r, a2 - a3 = 0 (4.1.26)

a3 aj = 0, a3 • a2 = 0, a3 - a3 = 2?r (4.1.27)

These equation imply that a^ is perpendicular to both a2 and a3. It can
therefore be expressed as

a* = Ca2 x a3 (4.1.28)

Since ai • a^ = 2?r, the proportionality constant C must be

C = 27r/(ai • a2 x a3) = 27T/F, (4.1.29)

V being the volume of the unit cell. The same proportionality constant
applies for a2 and a?j also, and we finally arrive at the following equations:

aj = 27ra2 x a3/(ai • a2 x a3), (4.1.30)

a^ = 2?ra3 x ai/(ai • a2 x a3), (4.1.31)

a3 = 2?rai x a2/(ai • a2 x a3) (4.1.32)

For any translation tn ( = niai + n2a2 + n3a3) of the direct lattice,
and any reciprocal-lattice vector K (defined by Eq. 4.1.23), the following
relation holds because of Eqs. 4.1.25-27:

K - t n = 27T.M, (4.1.33)

where M is an integer.

Diffraction Pattern as a Sample of the Unit-Cell Transform

Eq. 4.1.13 for the amplitude of the wave diffracted by a crystal has factors
of the form sin MX/ sin x. Now

sin MX sin MX x
= ——— • M • -» M (4.1.34)

sin x MX sin x

for x = HIT and large M.
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Thus for those values of k for which the Laue conditions are satisfied,
i.e. at the reciprocal-lattice points, Eq. 4.1.13 reduces to

£>x(k) - MiM2Af3A)(k) (4.1.35)

This means that, at the reciprocal-lattice points, the crystal transform is
simply M\M^M^ times the unit-cell transform. When molecules or unit
cells come together to form a large crystal, the cell transform gets wiped out
at all points in reciprocal space except near the reciprocal-lattice points, and
at these points it is simply scaled up by a (usually large) factor M^M^M^.
It follows that the recording of the diffraction pattern of a crystal may
be thought of as amounting to sampling the unit-cell transform at the
reciprocal-lattice points. The crystal not only "anchors" the unit-cell con-
tents in position and orientation, it also provides a large amplification of
the diffracted intensities.

The peak of a Bragg reflection varies as M2, and the peak width varies
as M"1, so that the integrated intensity varies as M2/M, or M.

Symmetry of the Reciprocal Lattice

Consider an element g of the point group of the real-space lattice or the
direct lattice. For any lattice translation tn of this lattice, gtn is also a
lattice translation and therefore satisfies Eq. 4.1.33:

K - (gtn) = 2nM (4.1.36)

Operations of the point group of the direct lattice are orthogonal trans-
formations. Therefore the scalar product of two vectors, such as that in Eq.
4.1.36, must remain invariant under them. It follows that, if we apply the
orthogonal transformation g~l to both K and gtn in Eq. 4.1.36, we must
get

g~lK • g-l(gtn) = K • (ptn), (4.1.37)

which, on using Eq. 4.1.36 again, yields

g~lK •tn = 27rM (4.1.38)

Since this is true for any tn, g~lK must be a reciprocal-lattice vector.
And since this is true for any #, any symmetry operation of the direct lattice
must also be a symmetry operation of the reciprocal lattice.

The converse is also true because the direct lattice is the reciprocal of
the reciprocal lattice.

We are therefore led to the following result:

The reciprocal lattice has the same point-group symmetry as the
direct lattice.
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Figure 4.1.3: The Brillouin zone of a simple tetragonal lattice.

4.1.4 The Brillouin Zone
The Brillouin zone is the Wigner-Seitz cell (§2.2.13) of reciprocal space or
k-space. It is defined by all those points of reciprocal space that are closer to
the point k = 0 than to any other reciprocal-lattice point. Like the Wigner-
Seitz cell it is a closed polygon bounded by planes that are perpendicular
bisectors of lines joining the point k = 0 to the nearest and sometimes to
the next nearest reciprocal-lattice points. It exhibits the point symmetry,
Gp, of the reciprocal lattice.

Two vectors ki and k2 in the reciprocal-lattice space are said to be
equivalent if

k2 = kx + K, (4.1.39)

where K is any reciprocal-lattice vector.
No two points in the interior of the Brillouin zone can be equivalent.

However, for every point on the surface of the Brillouin zone there is at
least one point equivalent to it, also on the surface.

Points, Lines, and Planes of Symmetry of the Brillouin Zone.
Lifshitz Points
Fig. 4.1.3 shows the Brillouin zone for a crystal with a simple-tetragonal
lattice.
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Different points in the Brillouin zone have different directional symme-
try Pk. The point group Pk is defined as comprising all those transforma-
tions which either map k back into itself, or change it into an equivalent
vector in reciprocal space. Obviously, Pk £ Gp.

A point k in reciprocal space is said to be a symmetry point (or a point
of symmetry) if there does not exist in the neighbourhood of k any point
k' which has a point-group symmetry Pk' equal to or higher than Pk.

Symmetry points of the Brillouin zone are also called Lifshitz points.
The wavevector k in the Brillouin zone is said to lie on a line (plane)

of symmetry if in the neighbourhood of k there is a line (plane) of points
that passes through k and has the same point-group symmetry Pk as the
point k.

A characteristic feature of Lifshitz points is that they have numerically
fixed coordinates [e.g. (0, |,0)]. By contrast, for non-Lifshitz points some
or all coordinates are running variables.

4.1.5 Diffraction by an Incommensurately Modulated
Crystal

The structure of an incommensurately modulated crystal can be described
by the following function (cf. Eq. 2.4.1):

Cinc(r) = B(r) * (L(r) - M(r)], (4.1.40)

where the ratio of the periods of L(r) and M(r) is an irrational fraction.
The diffraction pattern of the crystal is determined by the Fourier transform
of Cinc(r).

Let Cinc(k), £(k), I/(k) and M(k) denote, respectively, the Fourier
transforms of Cinc(r), J5(r), L(r) and M(r). According to the convolution
theorem (Appendix D), Cinc(k) is equal to the product of #(k) with the
convolution of L(k) and Af (k) (Burns & Glazer 1990):

Cinc(k) = B(k) - [L(k) * M(k)] (4.1.41)

Z/(k) is a set of regular reciprocal-lattice points. Let us assume for
simplicity that M(r) is a sinusoidal modulation along the lattice vector
as. M(k) will then be two delta functions (Appendix D), symmetrically
displaced from the neighbouring basic reciprocal-lattice peak. The convo-
lution of M(k) with L(k) (Eq. 4.1.41) means that this pair of satellite
diffraction peaks repeats around each reciprocal-lattice point (provided, of
course, that B(k) is nonzero for that point).

The modulation function is seldom a pure sine wave. As a result, one
obtains a series of satellite peaks, instead of just one pair, around the main
diffraction peaks.
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SUGGESTED READING
H. Lipson & I. Taylor (1958). Fourier Transforms and X-Ray Diffraction.
G. Bell, London.

G. Burns & A. M. Glazer (1990). Space Groups for Solid State Scientists,
second edition. Academic Press, London.

4.2 REPRESENTATIONS OF CRYSTALLO-
GRAPHIC TRANSLATION GROUPS

A crystallographic translation group T is a subgroup of the general transla-
tion group T(3) (§B.4), and is characterized by the Seitz operator {E|tn},
with tn given by (Eq. 2.2.15):

tn = riiBi (4.2.1)

Since T(3), and therefore T, is a commutative group (§B.4), one can
write the following direct product:

T = Ti <8> T2 <8> T3, (4.2.2)

with {E | Ui a^} as elements of the group Ti.
The definition of the translational symmetry of a crystal requires that

the space occupied by the crystal be infinite in all the dimensions; then
only can all lattice translations qualify as symmetry operations. Real crys-
tals, however, are finite objects, bounded by surfaces. Mathematically, the
problem of the presence of surfaces can be recognized (and overcome) by
introducing the so-called cyclic boundary conditions:

{E|Miai} = {E|M2a2} - {E|M3a3} - {E|0} (4.2.3)

Here MI, MI, M3 are sufficiently large integers (cf. Eq. 4.1.13). The crystal
is thus taken as composed of MiM2M3 unit cells. This finite, though large,
number is also the order of the translation group T.

The cyclic boundary conditions also imply that Ti,T2,T3 are cyclic
groups (§B.l).

A cyclic group has the property that it can be generated by a single
generating element (§B.l). In particular, TI is a cyclic group of order MI,
with lattice translation ai as the generating element (a^1"1"71 = a™). All
cyclic groups are Abelian or commutative.

Because of the commutative nature of the group TI , it follows from Eq.
B.I.3 that each of the elements of this group constitutes a class by itself
(cf. Eq. 2.2.17). Therefore the number of classes in the group TI is equal
to MI (cf. Eq. 3.4.1).
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It follows then from Eq. 3.4.2 that cyclic groups can have only 1-
dimensional irreducible representations (IRs). The characters of the group
TI must therefore satisfy the equation

[x({E|ai})]M' = X({E|Miai}) = 1, (4.2.4)

and can thus be written as

Xmi({E|ai}) - exp(27rfroi/Mi) (4.2.5)

The integer mi characterizes the various IRs of TI.
Similarly, the IRs of T% and T$ can be labelled in terms of integers m<2

and ms, and the set of integers (mi, 7712, ras) labels the IRs of the translation
group T.

We can define a vector k in the reciprocal space as follows:

k = miaJ/Afi + ra2a2/M2 + m^l/M^ (4.2.6)

This vector serves as a label for the IRs of the translation group T,
with characters defined by

Xk({E|an}) = exp(*k.an) (4.2.7)

Because of Eqs. 4.1.25-27 Xk has the following property:

Xk+K = Xk, (4.2.8)

where K is any reciprocal-lattice vector (defined by Eq. 4.1.21). Because
of this property it is sufficient to consider k confined to the Brillouin zone.

Bloch Functions

The energies and wavefunctions of an electron in a crystal are determined
by the Schrodinger equation, 7f^(r) = £^(r). Since the Hamiltonian H is
invariant under the operations of the crystallographic translation group, the
eigenfunctions ^(r) can be used for constructing an IR of the translation
group. The action of any element of the translation group on ̂ (r) is simply
to multiply it by a scalar; this scalar is then the representation of the group
element, with ^(r) as the basis.

We write Eq. B.2.28 of Appendix B for the case when the Seitz operator
is for just a lattice translation, {E|tn}, and the function /(r) is the wave
function ^(r):

{E|tn}V(r) = V(r-tn) (4.2.9)

The IRs of the translation group are specified by the wavevector k. Let
Vfc(r) be the basis functions for the IR labelled by k. Since all the IRs here
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are 1-dimensional, the matrices representing the symmetry operators are of
order 1, and are identical to the characters %k- The Seitz operator for a
lattice translation therefore has the following effect on ifa (cf. Eq. 4.2.7):

{E|tn}V>k - Xk({E|tn})Vk = exp(*k.tn)Vk (4.2.10)

Identifying ^(r) in Eq. 4.2.9 with ^k(r) of Eq. 4.2.10 we arrive at the
so-called Block theorem:

tfk(r-tn) = exp(ik-tn)^k(r) (4.2.11)

The functions ^k(r) satisfying Eq. 4.2.11 are called Block functions.
Block functions are the basis functions of the IRs of the trans-
lation group T.

We can introduce functions u^(r) through the relationship

^k(r) = expHk-r)uk(r) (4.2.12)

Eq. 4.2.11 then yields
Mr-tn) = uk(r) (4.2.13)

In other words, itk(r) is a periodic function.
An alternative expression for Bloch functions is

</>k = 5^expHk-tn)a(r-tn), (4.2.14)
n

implying that k represents the wavevector of Bloch waves propagating in
the periodic potential of the crystal.

4.3 THE GROUP OF THE WAVEVECTOR,
AND ITS REPRESENTATIONS

Group of the Wavevector, and Star of the Wavevector
Consider a wavevector k, and apply on it all the operations s (= {R|t}) of
the space group S of the crystal. The resultant set of wavevectors can be
divided into two categories: those equivalent to k, and those not equivalent
to k.

The symmetry operators that generate the set of wavevectors equivalent
to k constitute a group (a space group) (5k) (Q 5) called the group of the
wavevector k, or the little group.

5k is a subgroup of the full space group 5, and consists of elements
{A|t} taken from the group of elements {R|t} such that

{A|t}k = k + K, (4.3.1)
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where K is any vector of the reciprocal lattice of the crystal. 5k describes
the inherent symmetry of the wavevector k.

Tables for 5k for all distinct (inequivalent) k-vectors can be found in
Kovalev (1993) and Miller & Love (1967).

The set of nonequivalent wavevectors k/, obtained by the action of all
the operators of the space group of the crystal constitutes what is called
the star of the wavevector k, and is denoted by {k} or *k. Members (or
arms, or prongs) of the star of k are wavevectors given by the relation

kL = 5Lk, (4.3.2)

where the operators SL are representative elements of the coset decompo-
sition

Jk

S = £>LSk (4.3.3)
L=l

The SLS are symmetry operators of the type {R|0}, and are nothing but
some or all the elements of the point group Gp underlying the space group
of the crystal (cf. §2.2.17).

If all the k^s are inequivalent, k must be a general point (§4.1.4) of
the Brillouin zone. In such a case the number of arms or prongs of {k} is
equal to the order of the point group Gp. This number can be only 48 at
the most.

If k is invariant under n of the np elements of Gp, i.e. if k corresponds
to a point, line, or plane of symmetry in the Brillouin zone (§4.1.4), its
star has np/n arms (/k = np/n in Eq. 4.3.3). Fig. 4.3.1 shows a couple of
examples of the star of a wavevector. The usage of the term 'star' becomes
obvious from these examples.

If k is a point of symmetry, i.e. if k is a Lifshitz point (§4.1.4), its star
is conveniently referred to as the Lifshitz star (Lifshitz 1941).

To understand better the nature of the little group 5k, we examine its
relationship with the translation group T. T being a subgroup of the full
space group 5, we can write the following coset decomposition:

np

S = ^SiT, si = {E|0} (4.3.4)
1=1

The coset representatives Si can involve, in general, both a rotation
and a fractional translation:

Si = {RilTj (4.3.5)

We have seen in §4.2 that the IRs of the group T have Bloch functions
V>k as the basis. Let us consider a function obtained by the operation of
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Figure 4.3.1: Stars of wavevectors for a 2-dimensional hexagonal lattice.
(a) Star of a general point in the Brillouin zone, (b) Star of a symmetry
point.

any of the s^s on a Bloch function:

0k = stfa = {RilTJ^k (4.3.6)

Any lattice translation operator {E|tn} has the following effect on this
function:

{Etn}0k = {E|tn}{Ri|Ti}^ (4.3.7)

- {R,|T,+tn}^k (cf. Eq. 2.2.13) (4.3.8)
- {RilTJKEIR^tn}^] (cf. Eq. 2.2.13) (4.3.9)

Using Eq. 4.2.10 for the expression in square brackets we get

{E|tn}4>k = {Ri|Ti}exp(ik.(R-1))Vk = exp^R-1^))^ (4.3.10)

Since a scalar product of vectors remains invariant under the orthogonal
transformation defined by R"1, we must have

k-R^tn = Rik-RiR^tn = Rik-tn (4.3.11)

We thus arrive at the following result:

{E|tn}0k - exp(zRik.tn)0k; (4.3,12)

that is, the function 0k defined by Eq. 4.3.6 is the basis function for the IR
R^k of the translation group.

The inequivalent wavevectors in the set R^k (i = 1,2, ..np) constitute
the star of k, and the number of arms of the star is called the order of the
star.
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If k corresponds to a symmetry point of the Brillouin zone, some or all
the operators Si either leave it unchanged, or change it by the addition of
a reciprocal-lattice vector K. Let {Ai|Ti} be one such operation. For the
rotations A; we have

exp(iAik - tn) = exp(ik-tn) (4.3.13)

Therefore, from Eq. 4.3.12

{E|tn}{Ai|Tjt/;k - exp(ik.tn){Ai|Ti}^k (4.3.14)

This implies that {S;|Ti}-0k belongs to the same IR k of T as ifa does. As
stated above, the set of all such operations {Si|Ti} constitutes the group
5k of the wavevector k. When k is a general point of the Brillouin zone,
no point-group operations will leave it unchanged, and 5k will be nothing
but the translation group T.

In general, 5k can consist of several of the cosets in Eq. 4.3.4, and T
is a normal or invariant subgroup of 5k-

5k is a factor group of 5 with respect to T, with T playing the role of
the identity element (cf. Eqs. B.I.11-13).

The following result is readily verifiable:

The order of the point-group underlying 5k, multiplied by the
number of arms in the star of k, is equal to the order of the
point-group underlying the space group of the crystal.

Small Representations

IRs of the group of the wavevector are called small representations. Small
representations can be built up from IRs of point groups (§3.4) and of
translation groups.

Since the basis functions of the IRs of translation groups are Bloch func-
tions satisfying Eq. 4.2.10, we can write down the representation matrix
for a lattice translation tn as

dk({E|tn}) = exp(ik.tn)ld, (4.3.15)

where Id denotes a unit matrix having an order equal to the dimension d
of the representation.

Let F be an IR of the point group Pk of the wavevector. It is pertinent
to see whether the matrices c?k({A|t}), defined by

dk({A|t}) = exp(tk-t)r(A) (4.3.16)

constitute an IR of 5k-
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Since F(A) is taken as irreducible, the irreducibility of d^ can be taken
as granted.

We next compute the matrix products. The product of two such ma-
trices is

dk({A2|t2})dk({Ai|ti}) = exp[<k.(ti+t2)]r(A2Ai) (4.3.17)

And the matrix for the product operation {A2|t2} {Ai|ti} is

dk({A2Ai|A2ti +t2}) - exp[ik. (A2ti +t2)]r(A2Ai) (4.3.18)

The matrices occurring in Eqs. 4.3.17 and 4.3.18 can be identical only
if

exp[i(A^k - k) - ti] = 1 (4.3.19)

If k is inside the Brillouin zone, A^k — k = 0 always, and Eq. 4.3.19
is satisfied, implying that the matrices defined by Eq. 4.3.16 constitute a
valid small representation.

If k is a point on the zone boundary,

A^k-k - K (4.3.20)

where K is some reciprocal-lattice vector. In this case Eq. 4.3.19 will be
satisfied if ti is a primitive lattice translation, i.e. if there is no fractional
lattice translation involved (Tni = 0 in ti = tni + Tni). Such is the case
when the little group 5k is a symmorphic space group.

The case when 5k is a nonsymmorphic space group presents special
problems, and calls for special solutions. One solution is the use of 'ray
representations'. Another is the application of Herring's method (Herring
1942).

SUGGESTED READING
W. A. Wooster (1973). Tensors and Group Theory for the Physical Pro-
perties of Crystals. Clarendon Press, Oxford.

T. Inui, Y. Tanabe & Y. Onodera (1990). Group Theory and Its Applica-
tions in Physics. Springer-Verlag, Berlin.

4.4 REPRESENTATIONS OF SPACE
GROUPS

A detailed discussion of the theory of representations of space groups
falls outside the scope of this book. The reader is advised to consult, for ex-
ample, Koster (1957), Heine (1960), Ludwig & Falter (1988), and Kovalev



120 4. Crystals and the Wavevector Space

(1993) for a formal treatment of the subject. We list here some impor-
tant information, mainly relating to the Landau theory of phase transitions
(Chapter 5).

A basic result of the theory of irreducible representations of space gro-
ups is the following:

An IR of a space group can be obtained from that of the group
of the wavevector. By letting the wavevector run throughout the
inside and the surface of the Brillouin zone one can obtain all
the IRs of the space group.

The translation group T is an invariant subgroup of the space group S.
Therefore an IR of S can be characterized by the group 5k of k and the
star of k.

We recall that T C 5k C S. Similarly, in terms of point groups,
1 C Pk C Gp. And a typical element of 5k has the form {A|t}, where
t = tn + T.

We can rewrite Eq. 4.3.16 as follows:

<M(A | tn + T}) - exp(*k -1) dk|l/({A | T}) (4.4.1)

Here dk,i/({A | T}) is a representation matrix for representation number v
of the point group Pk- These matrices have been derived and tabulated by
Kovalev (1993) for all the inequivalent values of k for all space groups.

Eq. 4.3.3 enables us to derive matrices D^y^(s) of the IRs of 5 from
the representation matrices of the group 5k- The following relation can be
shown to hold between the two:

^fk}5fM(5) = <£',>ZW) foTsllssM E 5k (4.4.2)

^fk}J^OO = ° for^W # 5k (4.4.3)

Here L and M are labels of the star arms involved, and A, // = 1,2,... lv
are the indices of the matrices of the representation d^v.

The choice of the basis functions and the representation determines
the form taken by the various invariants, as also the detailed expression for
physical quantities like strain. Stokes & Hatch (1988), in Table 7 of their
book, list the correspondence between five major space-group representa-
tion tables.

SUGGESTED READING
W. Ludwig & C. Falter (1988). Symmetries in Physics. Springer-Verlag,
Berlin. An excellent book at an advanced level.

Yu. A. Izyumov & V. N. Syromyatnikov (1990). Phase Transitions and
Crystal Symmetry. Kluwer, Dordrecht. For the mathematically-minded
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reader this could be the book of choice for a large number of topics which
are only touched upon in the present book.
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Chapter 5

PHASE TRANSITIONS
IN CRYSTALS

Broken symmetry is actually the basic underlying concept of
solid state physics.

P. W. Anderson

Consider a crystal under the action of external influences (temperature,
pressure, directional force fields). When any of these parameters is varied,
the thermodynamic state of the crystal changes accordingly, tending to
keep the free energy at the minimum value under all conditions. At certain
specific values of the external parameters (or even internal parameters like
composition), the crystal makes a transition to another phase with a lower
free energy than the existing phase (cf. Fig. 1.1.1). We discuss phase
transitions in this chapter.

As described in §1.1, only those phase transitions which are nondisrup-
tive and which involve a change of the point-group symmetry of the crystal
are relevant for discussing ferroic materials. However, for putting ferroic
phase transitions in a proper perspective, we adopt here a somewhat more
general approach to the description of phase transitions in crystals.

5.1 PROTOTYPE SYMMETRY
5.1.1 Guymont's Nondisruption Condition
A phase transition involves a "new" phase and an "old" phase, and there is,
in general, a loss or a gain of symmetry operators in going from one phase
to the other. As rightly emphasized by Guymont (1981), it is only when
the following nondisruption condition is satisfied that we can speak of lost
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or gained symmetry operators at phase transitions.

A phase transition is said to satisfy the nondisruption condi-
tion if the new structure arising from this transition can be de-
scribed (i.e. its symmetry elements, Wyckoff positions, etc. can
be located) in the frame of reference of the old structure, after
making the necessary continuous distortions applied under the
proviso that they themselves do not entail any additional change
of symmetry.

The "continuous distortions" mentioned above are affine mappings (cf.
§B.2), required for annulling the effects of factors such as thermal expansion
or contraction, and possible volume changes at first-order phase transitions,
etc.

We use the term nondisruptive phase transitions (NDPTs) for transit-
ions which obey the nondisruption condition.

Martensitic transitions are examples of situations where the nondisrup-
tion condition is usually violated.

5.1.2 Parent-Clamping Approximation
For NDPTs the emergence of the new phase from the old can be viewed as
a two-step process.

In Step 1 the symmetry group of the new phase is taken as a (hypo-
thetical) strictly isometric subgroup of the old symmetry group, with lattice
parameters (lengths) either exactly the same as, or multiples of, those of
the old phase.

In Step 2 the hypothetical new structure is allowed to undergo a conti-
nuous affine distortion so as to become identical to the new structure. No
additional changes of symmetry accompany Step 2.

If we stop at Step 1, and assume that the resultant structure is the same
as the actual structure obtained at the completion of Step 2, it amounts
to making the so-called parent-clamping approximation (PGA) (Zikmund
1984; Janovec et al. 1989).

The PCA amounts to neglecting distortions that either accompany the
NDPT (e.g. a change of volume at a first-order transition), or have fea-
tures that depend on ambient temperature or pressure (e.g. isotropic and
anisotropic thermal expansion or contraction).

5.1.3 Definition of Prototype Symmetry
The concept of prototype symmetry (Aizu 1970a, 1978; Levanyuk & San-
nikov 1971) is of central importance for a systematic symmetry-based de-
scription of ferroic phase transitions and ferroic materials.
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A symmetry analysis of a symmetry-lowering phase transition, typi-
cally in the spirit of the Landau theory (§5.3), requires that the symmetry
group of the phase after the transition (usually the lower-temperature ph-
ase) be a subgroup of the symmetry group of the phase before the transition.
However, it happens often that this condition is not satisfied. BaTiOs, for
example, has the tetragonal symmetry P4rara at room temperature, and,
on cooling, it makes a transition to an orthorhombic phase of symmetry
Amm2:

BaTiO3 : P4rara 2-̂  AmmZ (5.1.1)

The space group Amm2 is not a subgroup of P4rara.
It so happens that BaTiOa undergoes several NDPTs as a function of

temperature:

BaTiO3 : Pra3ra 3-̂ f P4mm 2-̂ ? Amm2 ̂  R3c (5.1.2)

One can give a satisfactory symmetry-based explanation of this entire se-
quence of phase transitions by taking the cubic phase of symmetry Pm3ra
as the prototypic phase, and assuming that each of the other phases shown
in Eq. 5.1.2 is derived from this phase, rather than from the next neigh-
bouring phase in the sequence shown. The space-group symmetry of each
of these phases is indeed a subgroup of Pra3m.

Aizu (1970a, 1975, 1977, 1978, 1979) defined prototype symmetry as
follows: "In general, a ferroic crystal may be regarded as a slight distortion
(lowering of symmetry) of a certain nonferroic ideal crystal, which is referred
to as the prototype of that ferroic crystal."

If a crystal has a phase which, in the absence of external directional
influences, has the same symmetry as the prototype, such a phase is called a
prototypic phase. The prototypic phase is not always the next neighbouring
higher-symmetry phase in a sequence of phase transitions.

In Eq. 5.1.2 the space group PraSra serves as the prototype symmetry
for all the other space groups listed.

Aizu (1978) made the following stipulations for the definition of proto-
typic and ferroic phases:

• Suppose a crystal has three phases designated I, II and III. If phase
I is a slight distortion of phase II, phase I is said to be ferroic. If II
cannot be regarded as a slight distortion of any other phase (including
phase III), then phase II is the prototype for phase I.

• If, on the other hand, both II and I are slight distortions of phase III,
and III is not a slight distortion of any higher-symmetry phase, then
III, and not phase //, is prototypic to phase I. Phase III is prototypic
to phase II as well, and both I and II are ferroic phases.
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• No phase can be both ferroic for one phase, and prototypic for an-
other.

Some crystals [e.g. BaCl2.2H2O (Wadhawan 1978a, 1982)] melt or
decompose before reaching a temperature at which the prototypic phase
may exist. In such a case we say that the prototypic phase does not exist.
However, a prototype symmetry can still be defined.

According to Aizu (1978), the prototypic phase, being an actual physi-
cal entity, varies with temperature and pressure (as also composition). The
prototype symmetry, on the other hand, is a concept and an idealization,
independent of temperature and pressure. All components of spontaneous
magnetization, spontaneous polarization1, and spontaneous strain are zero
for the prototype at all temperatures.

The prototype is an idealized reference phase.
We return to the example of BaTiOs to illustrate the point that a

crystal can have more than one prototype symmetries. Apart from the per-
ovskite structure which its cubic prototypic phase has, this crystal exists in
another polymorphic form, of symmetry P6s/mmc (Sawaguchi, Akishige &
Kobayashi 1985). This phase is also prototypic, though not to the tetrago-
nal, orthorhombic and rhombohedral phases listed in Eq. 5.1.2. It appears
that, on cooling, this hexagonal form of BaTiOs undergoes a phase tran-
sition at 222 K, and also perhaps at 60 K (Sawaguchi et al. 1985). The
new phase (s), when identified unambiguously, will perhaps be said to have
a hexagonal prototype of space-group symmetry P63/rarac, quite indepen-
dent of the cubic prototype Pm3m.

The concept of orientation states and F-operations was mentioned
briefly in §1.1, and will be discussed in greater detail in Chapter 6. Accord-
ing to Aizu (1970a) an F-operation from an orientation state 5i to another
orientation state 82 of a ferroic phase is any point-group operation of the
crystal which can map Si to 82- Aizu (1970a) imposed the following two
restrictions for a correct identification of prototype symmetry:

(a) The point-group symmetry of the prototype should contain all the F-
operations from all to all the orientation states of the ferroic.

(b) If any symmetry operation of the prototype point group is performed
on any orientation state, the result must be one of the possible orien-
tation states only, and none other.

Condition (b) serves to define a complete set of orientation states, and at
the same time ensures that the chosen prototype does not have superfluous

lAs we shall see in §10.1.7, what Aizu meant by spontaneous polarization is what
we define in this book as relative spontaneous polarization. Similarly for spontaneous
strain.
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or higher point-group symmetry than what is sufficient for an adequate ex-
planation of all the information about the observed orientation-state struc-
ture of the ferroic material.

The "slight distortion" mentioned in Aizu's definition of prototype sym-
metry has to be usually such that there is no rupture and reconstructive
rearrangement of the chemical bonds, or a drastic change of the coordina-
tion numbers of the various atoms of the crystal.

Aizu's formal definition of prototype symmetry, though a substantial
improvement over the somewhat unclearly defined terms such as "initial
phase", "paraphase", " parent phase" used prior to his work, still has the
limitation of not specifying the term "slight distortion" with mathematical
rigour.

We introduce here a rigorous definition of prototype symmetry (Wad-
hawan 1998):

The prototype symmetry for a phase transition, or for a sequence
of phase transitions, in a crystal is the highest space-group (Fe-
dorov, Shubnikov, or colour) symmetry attainable by, or con-
ceivable for, that crystal by an affine mapping of the structure
that does not violate the nondisruption condition.

Affine mappings are coordinate transformations which do not neces-
sarily preserve distances, but which preserve parallelism of straight lines
(Hahn & Wondratschek 1994). Deformation of a cube to a square prism or
a rhombohedron (of same or different volume) is an example of an affine
transformation.

Invocation of the nondisruption condition in our definition of prototype
symmetry ensures that statements about lost or gained symmetry operators
in going from a ferroic phase to the prototypic phase, or vice versa, have
meaning. This condition also puts a natural upper limit on the "slight
distortions" mentioned in Aizu's definition of prototype symmetry; beyond
this limit a correspondence between the Wyckoff positions of the prototypic
phase and a ferroic phase does not exist.
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5.2 A CRYSTALLOGRAPHIC
CLASSIFICATION OF PHASE
TRANSITIONS

We introduce here a comprehensive classification of phase transitions
(Wadhawan 1997) that takes due note not only of the metrical relationship
between the two phases, but also of the presence or absence of a structural
correspondence in terms of crystallographic symmetric elements.

The primary subdivision of phase transitions in this scheme is into
the disruptive and nondisruptive categories (Fig. 5.2.1) A disruptive phase
transition violates the nondisruption condition, and a nondisruptive phase
transition (NDPT) does not.

NDPTs can be either ferroic, or nonferroic-nondisruptive. Ferroic tra-
nsitions are NDPTs entailing a change of point symmetry. And nonferroic
NDPTs are NDPTs in which there is no change of point symmetry.

Ferroic phase transitions can be either ferroelastic, or nonferroelastic-
ferroic. Ferroelastic transitions are ferroic transitions involving a sponta-
neous distortion of the crystal lattice that entails a change of the crystal
family. By 'distortion' of the lattice we mean a change of shape of the crys-
tallographic or conventional unit cell (e.g. a cube changing into a rhombus,
but not a cube changing into a larger or smaller cube).

Nonferroelastic-ferroic transitions are NDPTs with a change of point
symmetry, but no distortion of the crystal lattice.

Nonferroic NDPTs can be either translational NDPTs, or isostructural
phase transitions.

5.2.1 Disruptive Phase Transitions
The conventional definition of crystallographic space groups is in terms of
a set of symmetry operators which carry out a permutation of equivalent
points in a self-consistent manner. A phase transition in a crystal results
in a change of not only the space group, but also usually of the space-group
type (§2.2.17) to which the crystal belongs. In disruptive transitions the
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Figure 5.2.1: A crystallographic classification of phase transitions.

change of space-group type is so drastic that the nondisruption condition is
violated. Both the phases across the transition have at least one symmetry
element not present in the other phase. Classical Landau theory is not
applicable to such transitions. Although there is a loss or gain of point-
symmetry operators, such transitions are not ferroic transitions because a
supergroup prototype symmetry cannot be defined for them.

The transition (3 <-> u; in Ti, Zr and Hf is an example of a disruptive
phase transition (Dmitriev & Toledano 1994). All hep <-> bcc "martensitic"
transitions are disruptive transitions.

What makes a phase transition disruptive ? In other words, what
makes a phase transition violate the nondisruption condition ? To answer
this question, we recall from §2.2.5 that a crystal can have certain spe-
cial points, lines, or planes (called the symmetry elements of the crystal)
which remain fixed under the operations of inversion symmetry, rotational
symmetry, and reflection symmetry respectively. Wyckoff positions (which
feature so importantly in the statement of the nondisruption condition)
are determined directly by the locations of these symmetry elements in the
crystal. If the displacements of all the atoms due to a phase transition are so
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small that all the crystallographic symmetry elements maintain their iden-
tities, the nondisruption condition is not violated, and a group-subgroup
relationship between the symmetry groups of the two phases can exist. On
the other hand, if the displacements of some or all atoms are comparable
to the distances between the crystallographic symmetry elements, a num-
ber of possibilities may arise. For example, some or all atoms may sit on
symmetry elements, giving rise to additional symmetry. Alternatively, old
symmetry elements may disappear and new ones may appear. Any of these
possibilities is enough to violate the nondisruption condition, making the
phase transition disruptive.

5.2.2 Nondisruptive Phase Transitions
Nondisruptive phase transitions (NDPTs) may occur with or without a
change of point symmetry. In the former case we call them ferroic phase
transitions.

Ferroic Phase Transitions

Ferroic phase transitions can be further classified as ferroelastic and non-
ferroelastic ferroic. This division is based on whether or not a spontaneous
distortion of the crystal lattice, entailing a change of crystal family, accom-
panies the transition. Ferroelastic transitions involve such a distortion of
the crystal lattice, and nonferroelastic transitions do not.

The cubic-to tetragonal-transition in BaTiOs is an example of a ferro-
elastic transition. It is an NDPT, and it entails a distortion of the shape
of the unit cell from a cube to a square prism.

Nonferroic Nondisruptive Phase Transitions

Nonferroic NDPTs do not involve a change of point symmetry. There are
two possibilities. There can be a change of translational symmetry (trans-
lational NDPTs), as in the alloy CusAu (Fm3m <-» PraSra). Alternatively,
there may be a change of space group without a change of space-group type.
Such transitions are called isostructural transitions. The phase transition
that occurs in Ce under high pressure is an example of this type. Under
the influence of high hydrostatic pressure the atoms of Ce simply collapse
to a state of lower volume, with no change in the symmetry elements of the
crystal structure. There is a change of lattice parameters, but no change
of the space-group type to which Ce belongs.

Fig. 5.2.2 shows the set-theoretic relationships among the various types
of phase transitions. Nondisruptive and disruptive transitions constitute
disjoint sets.
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Figure 5.2.2: A Venn-Euler diagram for phase transitions.

Martensitic transitions (indicated by the triangular region in this fig-
ure) are generally of the disruptive type, but some are mild enough to
qualify as NDPTs. The latter are the so-called Type MI transitions (see
Izyumov, Laptev &; Syromyatnikov 1994). We shall consider martensitic
transitions in Chapter 11.

5.3 EXTENDED LANDAU THEORY OF
CONTINUOUS PHASE
TRANSITIONS

The Landau theory of continuous phase transitions (Landau 1937a, b,
c, d) embodies the first application of group-theoretical ideas to thermody-
namics. Landau (1937a) emphasized at the outset that transitions between
phases of different symmetry of a crystal are fundamentally different from
those between liquids and gases in that, in the case of crystals, there is
necessarily a disappearance or appearance of symmetry elements, and that
symmetry elements are either present or absent; no intermediate situations
are possible.

Several developments of the Landau theory have taken place after its
original formulation. We shall touch on some of these at appropriate places.
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The book by Izyumov & Syromyatnikov (1990) provides a comprehensive
account of these advances (also see Stokes & Hatch (1984)).

In effect, what we discuss in this section is an extended Landau theory.
And we restrict ourselves to continuous phase transitions here. Discontin-
uous transitions are taken up separately in §5.7.

The Landau theory introduces the concept of the order parameter, a
thermodynamic quantity the emergence of which at the phase transition
results in a lowering of the symmetry of the parent phase. The Gibbs free
energy of the crystal is expressed as a Taylor series in powers of the order
parameter, and minimized with respect to it. The occurrence of the phase
transition corresponds to the taking of a nonzero average value by the order
parameter at a minimum of the free energy.

The setting up of the "Landau expansion" of the free energy in pow-
ers of the order parameter, and its subsequent minimization (§5.3.12) can
be a tedious exercise, especially when one is looking for all possible phase
transitions which can ensue from a given initial symmetry. A number of
'direct' group-theoretical conditions have therefore been formulated by sev-
eral workers, which can shortlist the possible number of Landau expansions
to be considered (Birman 1966; Goldrich & Birman 1968; Jaric & Birman
1977; Birman 1978; Jaric & Birman 1981, 1982a, b). We describe these
conditions, criteria and conjectures here, and consider the thermodynamic
aspects in §5.3.12.

5.3.1 Subgroup Criterion
Let the space group symmetries of the two phases across a phase transition
in a crystal be SQ and S. The Landau theory assumes that S is a proper
subgroup of SQ:

S C So (5.3.1)

If this is not so for a given situation, it is necessary to choose a suitable
prototype symmetry group 5o so that Eq. 5.3.1 is satisfied.

5.3.2 Order Parameter
In the Landau theory the reduction of the symmetry of the crystal from
SQ to S is taken as resulting from the emergence of an order parameter, r/,
with components (771,772, • • • r/m).

The emergence of the order parameter is an example of spontaneous
breaking of symmetry, leading to a phase transition (§5.6).

It is postulated in the theory that space-group symmetry S results as an
intersection group between SQ and the symmetry group of r/, in accordance
with the Curie principle (Eq. C.I.3).

Suppose PQ(T) is the density function of the phase of the crystal in the



5.3 Extended Landau Theory of Continuous Phase Transitions 133

phase of symmetry S0- Naturally, po(r) is invariant under the symmetry
operations of So- The emergence of the order parameter at the phase transi-
tion temperature (the Curie point, Tc) lowers the space-group symmetry to
S, with p(r) as the new density function. One can write, for a temperature
T near Tc,

p(r) - p0(r) + Ap(r), (5.3.2)

where Ap(r) -+ 0 as T -> Tc.
A continuous phase transition is defined as one for which Ap —> 0

continuously as the transition point is approached.
The subgroup criterion puts the restriction that S cannot include any

symmetry operators not present in SQ.
According to the group-theoretical completeness theorem (Wigner 1959;

Lomont 1964), the physical distortion function, Ap(r), can always be ex-
pressed in terms of a complete set consisting of basis functions from all IRs
of S0:

771

Mr) = £$>ni<Mr) (5'3-3)
n i=l

Here the index n runs over the various IRs of SQ, and i runs over the
basis functions of the nth IR. The summation over n does not include the
identity representation. This is because a function transforming as the
identity representation cannot lead to any symmetry change, whereas Ap
is a physical distortion responsible for the change of symmetry from So to
S.

The coefficients 77$ (i — 1,2,... ra) are the components of an m-dimensio-
nal vector, namely the order parameter, in the space spanned by the basis
vectors of the relevant IR. For continuous phase transitions (i.e. for phase
transitions in which 77 acquires a nonzero value continuously on changing
the temperature across Tc), only certain specific directions of r/ are possible.

5.3.3 Isotropy Subgroups
The space group 5 which results from the application of the distortion
Ap(r) on po(r) comprises all elements 5 € So which leave Ap(r) invariant.
Such a group is called an isotropy subgroup of SQ.

The choice of basis functions </>ni in Eq. 5.3.3 is not unique. And
even for a given choice of basis functions, the components rjni may have
different sets of values, corresponding to different directions of r j . However,
a particular direction of 77 in the configuration space always generates the
same isotropy subgroup, irrespective of the choice of basis functions.

The number of isotropy subgroups corresponding to all possible direc-
tions of rj is finite for finite representations of SQ.
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One can list all possible symmetry groups S which can arise from $0
by considering all possible IRs of 5o and all possible directions of r/ . How-
ever, the number of IRs of SQ is infinite, and for purposes of tabulation
some restrictive choice has to be made. One is frequently interested only in
physically irreducible representations of $0 (see below), and only in Lifshitz
points (§4.1.4) (Bradley & Cracknell 1972; Stokes & Hatch 1988). Appli-
cation of these two restrictions limits the possible number of IRs of the 230
crystallographic space groups to 4777, and the total number of nonequiva-
lent isotropy groups associated with these IRs to 15,239. These have been
derived and tabulated by Stokes & Hatch (1988).

An extension of the isotropy subgroups to IRs wherein these two re-
strictions are not imposed has been made in the computer code ISOTROPY
developed by Stokes & Hatch (1988). This code was made available on the
web in 1998, and has been frequently expanded and updated since then. It
can be accessed at
http://www.physics.byu.edu/~ stokesh/isotropy.html

5.3.4 Physically Irreducible Representations
The physical distortion function Ap(r) in Eq. 5.3.3 is a real function.
Therefore, so also are the order-parameter components rjni. This can be
possible only if we choose the basis functions 0m (r) as real. This requires
that we deal only with real representations of SQ. When a particular IR
is complex we can work with real combinations of basis functions, viz.
<t>'ni = <t>m + (/>ni and ̂  = 0ni - 0m in place of </>ni and $*ni. This is pos-
sible because the basis functions 0m are linearly independent of the basis
functions (frni- A real representation Dn = Dn + £>*, with 2m real basis
functions <$ni(i = 1,2,... m) and $^(1 = 1,2,... m) is called a physically
irreducible representation. Since such representations can always be de-
fined, we shall assume henceforward that this has been done before writing
Eq. 5.3.3. In other words, we assume that the coefficients (f)ni are real.

5.3.5 Single-IR Criterion; Active IR
Usually the transformation properties of the order parameter correspond
to a particular, nonidentity, physically irreducible, IR of SQ. Such an IR
is called the active IR (Lyubarskii 1960). Only rarely can it happen that
more than one order parameters (governed by different IRs of SQ) set in
at exactly the same temperature (however, see Janovec (1975)). One can
therefore normally assume that the so-called single IR criterion is obeyed,
and in Eq. 5.3.3 the summation over n can be dropped:

m

Ap(r) = YWi(r) (5.3.4)

http://www.physics.byu.edu/~stokesh/isotropy.html
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Thus we implicitly assume in the Landau theory that all the compo-
nents of the order parameter belong to the same IR of SQ.

5.3.6 Subduction Criterion; Subduction Frequency
The density function p(r), as well as the distortion Ap(r), are invariant
under operations of their own symmetry group S. This fact was exploited
by Birman (1966, 1978) to device the so-called subduction criterion.

We have sp(r) — p(r), and S C SQ. Therefore, the operations s e S
also leave po(r) invariant: spo(r) = Po(r). According to the subduction
criterion, the IR of So which drives the phase transition, i.e. the active
IR Z)(*k, F) (§4.4), must subduce (§B.3) the unit representation, or the
identity representation, (0,1), of the group S.

In other words, the linear combination J^Hi 77t&(r) °fthe basis func-
tions of the active IR should be a basis function of the unit IR of S, implying
that the (reducible) representation subduced from So to S must contain the
unit representation of S.

The notion of subduction frequency, i(S), is relevant in this context. It
is the number of times the unit IR is subduced in 5 by the active IR of So:

*<*> = j^£xrk'r)(s) (5-3-5)
' ' s€S

Here the summation is taken over all elements of S.
The subduction frequency can be identified with the number of indepen-

dent order-parameter vectors r/ which are invariant under the operations
ofS.

The subduction criterion simply requires that the subduction frequency
be nonzero:

i(S) ^ 0 (5.3.6)

5.3.7 Chain Subduction Criterion
The space group S is an isotropy subgroup of So (S C So). All subgroups
of S will also be isotropy subgroups of SQ. The chain-subduction criterion
(Goldrich & Birman 1968; Cracknell 1974; Hosoya 1977; Deonarine & Bir-
man 1983) provides a reasonable-looking recipe for deciding whether or not
a continuous phase transition can occur to any such subgroup of S.

Suppose a space group S' exists such that S' C S C So. We compute
the subduction frequencies i(S) and i(S'). The chain subduction criterion
states that if i(S) = i(S') = 1, then whereas a continuous phase transition
So —» S may occur (if other conditions are satisfied), the transition So —> S'
cannot occur.
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A similar criterion was formulated by Jaric & Birman (1977) for the
multiplicity situation, i.e. when i(S) = i(S') > 1. In this case again, the
transition So —> S may occur, but So —> Sf cannot occur as a continuous
transition.

The case z(S') > i(S) has also been analysed (Birman 1982), and the
following chain subduction criterion with increasing multiplicity has been
proposed:

Ifi(S') > i(S), then So —» S may occur as a simple second-order transition,
and So —> S' may occur as a "higher-order critical transition".

The last case needs further investigation and confirmation.
If i(S') < i(S), then only S must figure in the list of relevant subgroups

of So for further shortlisting.

5.3.8 Landau Stability Condition
The subduction criterion and the chain subduction criterion are not only
necessary but also sufficient for specifying the isotropy subgroups of So for
any of its IRs. The Landau condition (see Landau & Lifshitz 1980), for
a phase transition to be continuous, narrows down the choice still further,
and thus helps further shortlist the specification of the possible active IRs
of 5o. It takes cognisance of the stability of the parent phase of symmetry
SQ- It states that the decomposition of the symmetrized triple Kronecker
product, [£>]3, into IRs must not contain the identity representation of So,
i.e. we must have

7^7 £ 4X(S°} + ^*(*o)x(*§) + ^fo(ao)]3} = 0, (5.3.7)
So^SQ

where the summation is taken over all elements of SQ. When Eq. 5.3.7 is
satisfied, third-order invariants do not occur in the Landau expansion for
the free energy (§5.3.12).

5.3.9 Lifshitz Homogeneity Condition
Like the Landau condition, the Lifshitz condition (cf. Landau & Lifshitz
1980) also helps narrow down the possible choice of (physically irreducible)
active IRs. It stipulates that the lower-symmetry phase be commensurate
with the higher-symmetry phase. It states that the antisymmetric part
{D}2 of the product representation D2 must not contain the IR XI/(SQ) by
which the components of a vector transform. That is, we must have

jjrr £ ^X2(so)-X(so)}x"(*>) = 0 (5.3.8)
soESo
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If this condition is violated, we may get a phase incommensurate with
the parent phase (Dzyaloshinskii 1964; Hass 1965; Janovec et al. 1975;
Levanyuk & Sannikov 1976; Kopsky & Sannikov 1977). Alternatively, the
phase transition may become discontinuous.

General points in the Brillouin zone, as well as lines and planes of
symmetry in it, fail the Lifshitz condition. Thus only the points of special
symmetry (cf. §4.1.4) are relevant for discussing the Lifshitz condition.

However, not all points of symmetry of the Brillouin zone satisfy the
Lifshitz or Landau conditions. Stokes & Hatch (1988) considered all such
points for all the space groups. In Table 1 of their book, the indices resulting
from Eqs. 5.3.7 and 5.3.8 are listed for all subgroups which satisfy the
subduction criterion.

5.3.10 Maximality Conjecture
The subduction criterion and the chain subduction criterion are relevant
even for discontinuous transitions, provided such transitions obey the sub-
group criterion. These criteria select the isotropy subgroups of So corre-
sponding to specific orientations of the order-parameter vector in the rep-
resentation space. The Landau condition (for 3-dimensional systems) and
the Lifshitz condition provide additional necessary restrictions for a ph-
ase transition to be continuous and commensurate. A further selection is
made finally by looking for the absolute minima of the free-energy function.
Ascher (1966a, b, c, 1977) conjectured that the isotropy subgroups of SQ
corresponding to absolute minima of the free energy are maximal subgroups
of So, irrespective of the subduction frequency (also see Ascher & Kobayashi
1977). This is commonly referred to as the maximality conjecture.

The maximality conjecture appears reasonable from energy considera-
tions. It implies that the number of domain walls (cf. Chapter 7) in the
lower-symmetry phase is the minimum necessary. Detailed arguments in
favour of this postulate have been given by Sutton & Armstrong (1982).

An example violating this conjecture has been described by Mukamel
& Jaric (1984). However, the conjecture is expected to be valid in most
situations.

5.3.11 Tensor Field Criterion
So far no information about the crystal structure, or about the physical
nature of the order parameter, has entered our description of the Landau
theory. The tensor field criterion makes use of this information. According
to it: The active IR of SQ must be contained in a "tensor field represen-
tation" of SQ (Birman 1966; Litvin 1982; Litvin, Kotzev & Birman 1982).
The tensor field representation, by definition, is a direct product of a tensor
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representation of So and a "permutation representation" of the atoms of
the crystal.

In a series of papers, Hatch and coworkers have shown how the crystal
structure, and hence the tensor-field criterion, can be taken into account
systematically (Hatch, Stokes & Putnam 1987; Hatch, Stokes, Aleksandrov
& Misyul 1989; Stokes, Hatch & Wells 1991). A variety of local (micro)
site distortions, for example atomic displacements, rigid-unit tilting modes,
and atomic ordering, can be used for inducing the global (field) distortions.
This information is now systematically contained in the computer code
ISOTROPY (Stokes & Hatch 1998).

5.3.12 The Landau Expansion
In the Landau theory the thermodynamic-potential density g (Gibbs free
energy per unit volume of the crystal) is assumed to depend not only on
temperature (and pressure and composition), but also on the order param-
eter 77. For a continuous phase transition the order parameter is zero above
Tc, and rises continuously from zero as the temperature is decreased below
Tc. Therefore, temperature ranges exist on both of Tc in which the order
parameter can be taken to be sufficiently small to ensure the validity of the
following Landau expansion:

9 = 9o + otj] + ^rj2 + /3rj3 + -rj4 + - • • (5.3.9)

Here g$ is the value of the thermodynamic potential in the parent phase or
the disordered phase, and a, a, /?, 6, . . . are functions of temperature, as well
as of functionals of various orders constructed from the basis functions fa
of the active IR £>(*k, F) of the space group So of the disordered phase (cf.
Eq. 5.3.4). This active IR is instrumental in inducing the phase change
from symmetry So to symmetry 5. Since g is invariant under the operations
of So, the only allowed forms of the functionals are those that are invariant
under the operations of SQ.

The equilibrium value of the order parameter is determined by mini-
mizing the free energy with respect to it. That is, the first derivative of g
with respect to it must be zero, and the second derivative positive:

-j- = a + arj + 3/V + brf + • • • = 0, (5.3.10)

-̂| = a + 6/ty + 36ry2 + • • • > 0 (5.3.11)

If Eq. 5.3.11 is not satisfied, the system is unstable. It can therefore
be regarded as a stability condition.
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Since Eq. 5.3.10 must hold even when r\ is zero, we must have

a = 0 (5.3.12)

Eq. 5.3.10 can therefore be rewritten as

77 (a + 3/377 + brf + • • •) - 0 (5.3.13)

This equation has two solutions. One of them, namely rj = 0, corre-
sponds to the disordered phase, and the other to the ordered phase.

Suppose X is the field conjugate to the order parameter. It is defined

I - * <5-3-">
The stability condition (Eq. 5.3.11) can therefore be reexpressed as follows:

0 . « - r' > 0, (5.3,5,

where x ls a generalized susceptibility. Thus, for a phase to be stable, its
inverse generalized susceptibility must be positive.

It follows from Eqs. 5.3.11 and 5.3.15 that for the disordered phase
(77 = 0) to be stable, we must have

X"1 = a > 0 (5.3.16)

5.3.13 Stability Limit of a Phase
We can assume here, without loss of generality, that the transition to the
lower-symmetry or ordered phase occurs on cooling the crystal, rather than
on heating.

The inverse susceptibility is a function of temperature, and it must be
positive for a phase to be stable. For the disordered phase, the stability
limit is the temperature (To) below which its inverse susceptibility with
respect to the order parameter is no longer positive:

XTl(T = TQ) -0 (5.3.17)

In the vicinity of TO, Eq. 5.3.16 for the disordered phase can be written
as

X?1 = * = |£(r - Ib) = a'(T - T0), (5.3.18)

or

XT = =r^=-, T > To, (5.3.19)
1 -Jo
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where

C = ^7 (5.3.20)a'
Eq. 5.3.19 has the form of the well-known Curie-Weiss law for the

generalized susceptibility of the disordered phase.

We consider the lower-symmetry or ordered phase next, for which 77 ^
0.

The Landau condition for a phase transition to be continuous (§5.3.8)
requires that (3 = 0 in Eq. 5.3.9, and therefore in Eq. 5.3.9. Further, in Eq.
5.3.11, the coefficient a is negative for T < T0 (cf. Eq. 5.3.18). It follows
that the crystal cannot be stable below T0 if the coefficient b is negative;
therefore

6 > 0 (T<T0) (5.3.21)

With these stipulations the second solution of Eq. 5.3.13 is the root of
the equation

&772 + a = 0 (T<T0), (5.3.22)

where we have ignored the higher-order terms in the Landau expansion.
Eq. 5.3.22 has the solution (on using Eq. 5.3.21)

77 = (-a/6)1/2 = ((To-TX/fc)1/2 (5.3.23)

To determine the stability limit of the ordered phase, we substitute
the equilibrium value of the order parameter given by Eq. 5.3.23 into Eq.
5.3.11 to get

x~l = a-3a = -2a = 2ax(T0 - T) (5.3.24)

The stability limit for the ordered phase is defined by x^1 = 0, and is
therefore given by T = TQ. TO is also the stability limit of the disordered
phase. Thus:

For a continuous phase transition, the stability limits of the dis-
ordered phase and the ordered phase coincide.

There is thus a temperature Tc, the temperature of the continuous phase
transition, below which the disordered phase is not stable, and above which
the ordered phase is not stable:

Tc = To (5.3.25)

We also note from Eq. 5.3.23 that the order parameter, which is zero
for T > Tc, increases continuously as the temperature is decreased below
the transition temperature. Hence the name "continuous phase transition".
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In view of the above results we can rewrite the Landau expansion (Eq.
5.3.9) for a continuous phase transition as

g = go + ̂ (T-Tc)r,2 + ^r,4 (5.3.26)

And the order parameter is predicted by the Landau theory to have the
following temperature dependence (Eq. 5.3.23):

n = (a'/b)l/2(Tc-T)P, /? = l/2 (5.3.27)

We can also rewrite Eq. 5.3.24 as follows:

XT(T<TC) = j^, (5.3.28)

<? = ± (5-3.29)

Comparison of Eqs. 5.3.20 and 5.3.29 shows that the Curie-Weiss con-
stants above and below Tc are related by

§ = 2 (5.3.30)

Lastly we write Eq. 5.3.28 as follows:

XT = C'(TC-T)\ 7 = -l (5.3.31)

The exponents 7 in Eq. 5.3.31 and /3 in Eq. 5.3.27 are examples of
critical exponents. According to the Landau theory, /? = ^ and 7 = — 1 for
all continuous phase transitions.

Another important critical exponent is 5, which determines the field
dependence of the order parameter at the critical point. To derive its
Landau-theory value, we include a field term — Xrj in the Landau expansion
(Eq. 5.3.26). Then the minimization condition for the free energy reads

r/[a/(T-Tc) + 6r?
2] = X (5.3.32)

Therefore, at T = Tc,

77 = (X/6)1/3 = (X/b)1/6 (5.3.33)

Thus, according to the Landau theory, 6 = 3 for all continuous phase
transitions.

Critical-point exponents (or critical exponents) define the behaviour
of thermodynamic variables in the vicinity of the critical point. Although
their importance was highlighted by the Landau theory, critical fluctuations
were neglected by it. We shall return to this topic in §5.5.4.
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5.3.14 Tricritical Points
Eq. 5.3.26 defines the Landau potential for a continuous phase transition.
[It is convenient to refer to it as the 2-4 potential because it includes con-
tributions from the 2nd and the 4th powers of the order parameter.] The
stability condition for this situation is determined by Eq. 5.3.11 (with
ft == 0 because of the Landau condition (§5.3.8)). It follows from this equa-
tion that the 2-4 potential is adequate provided b > 0. We now discuss the
situation when 6 = 0 (the case when b < 0 will be taken up in §5.7.1).

When 6 = 0 we must include the next (i.e. 6th power) term in the
Landau expansion. In other words we must now work with the 2-6 potential:

g = 9o + ~(T - Tc)r?
2 + 0 + V (5.3.34)

2 b

The minimization condition for this potential with respect to the order
parameter is

r7[a'(T-Tc) + cr74] = 0 (5.3.35)

Therefore, assuming that c > 0, the order parameter is predicted to have
the following temperature dependence:

r? = -(Tc-Ty3, r<T c , (5.3.36)

where
p=\ (5.3.37)

Thus this critical exponent is expected to have the value ^, rather than
\ (cf. Eq. 5.3.27).

Similarly, for b = 0 Eq. 5.3.30 is replaced by

^ = 4 (5.3.38)

As we shall see in §5.7, b < 0 corresponds to discontinuous or first-
order phase transitions. The point 6 = 0 thus represents a crossover from
continuous to discontinuous phase-transition behaviour.

How is this crossover effected experimentally ? There are several exam-
ples. The uniaxial antiferromagnet dysprosium aluminum garnet (DAG)
undergoes a temperature-induced continuous phase transition in the ab-
sence of an external magnetic field, which changes to a discontinuous tran-
sition when a sufficiently high magnetic field is applied along its easy axis
(Landau, Keen, Schneider & Wolf 1971; Giordano & Wolf 1977). Simi-
larly, application of a hydrostatic pressure of about 2 kbar to KDP changes
its discontinuous phase transition to a continuous one (Schmidt, Western
& Baker 1976). PZT (PbZrxTii_xO3) is a crystal in which the order of
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the ferroelectric phase transition changes from first to second at a specific
value of the composition x (Clarke & Glazer 1974, 1976; Whatmore, Clarke
& Glazer 1978). Additional examples have been discussed by Dattagupta
(1981).

Two kinds of external fields must be distinguished when discussing
situations in the vicinity of b = 0. One is the field conjugate to the order
parameter (e.g. electric field in the case of the ferroelectric transition in
KDP). This is referred to as the ordering field. The other field (e.g. pressure
in the KDP example), called the nonordering field, plays, among other
things, the role of driving the coefficient b from a positive to a negative
value. Griffiths (1970) argued that in the 3-dimensional phase diagram in
which the nonordering field constitutes one of the axes, the point 6 = 0
corresponds to the intersection of two lines of continuous or second-order
phase transitions and one line of first-order transitions. Therefore the name
tricritical point was suggested for such a point.
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5.4 LATTICE DYNAMICS, SOFT MODES
The order parameter in the Landau theory of phase transitions is a measure
of the extent to which the atomic configuration of the lower-symmetry
phase (or the ordered phase) has departed from the configuration of the
parent phase. Atoms in a crystal execute vibrations, the eigenfrequencies
and eigenvectors of which are determined by interatomic potentials. The
displacement uis of an atom of mass ms in the lih unit cell of a crystal
consisting of N unit cells can be expressed as a Fourier series, the coefficients
of which are the normal coordinates <2j(k) (Cochran 1973):

uls = (Nms)-l/2 ]T Qj(k)esj cos[k - ru - ^(k)t + a,-(k)] (5.4.1)
kj

Here esj is the polarization eigenvector of a lattice-vibrational mode of
wavevector k and eigenfrequency Uj (k).

Since N is usually a very large number, the displacement uis of an atom
due to any particular normal mode is quite small in general. However, this
is no longer the case if one of the eigenfrequencies tends to zero. To see
how this happens, we quote from lattice dynamics the standard result that
the mean-squared amplitude Qj (k) is determined by the equation

iu,2(k) |g,-(k)|2 = (n,(k) + I) Mk), (5.4.2)

where

^'(k) = exp(^,(k?/fcBT)-l (5'43)

Now suppose one of the eigenfrequencies for a particular wavevector
k tends to zero as the critical temperature is approached: cjj(k) —> 0 as
T-*TC.

To see the effect of this, we first substitute Eq. 5.4.3 into 5.4.2:

i^(k) |Q,(k)|2 = ̂ £1 _ i + lfc,,(k) (5.4.4)

We use the result that ex ~ I + x for small x. Therefore, for small
u;j(k), Eq. 5.4.4 becomes

^2(k)|C?,.(k)|2 = kBT+±huj(k) (5.4.5)
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As cjj(k) —>• 0, the right-hand side of this equation approaches the
constant value fc^T. The amplitude Qj(k) of vibration will therefore tend
to become arbitrarily large, till it is restrained by the anharmonic character
of the interatomic potential.

The reduction of the frequency of a vibration mode implies a reduction
of the effective force constant controlling that mode. Such a mode is referred
to as a soft mode.

We also note from Eq. 5.4.1 that when 0/7 (k) = 0, the atomic dis-
placements caused by this (soft) mode are static, and not vibratory any
more. This freezing of displacements amounts to a phase transition, as it
leads to a reduction of the crystal symmetry. The static displacements are
identified with the order parameter in a structural phase transition. (A st-
ructural phase transition can be defined as one entailing a change of crystal
structure, as opposed to, say, change of magnetic structure.)

5.4.1 Ferrodistortive Transitions
According to Eq. 5.4.1, if the structural distortion introduced by the soften-
ing of a vibrational mode is to be the same in every unit cell of the parent
phase (i.e. if it is to be independent of unit-cell label /), we must have
k = 0 for this mode. Phase transitions occurring as a result of the soft-
ening of such zero-wavevector (or Brillouin-zone-centre) modes are called
ferrodistortive phase transitions (Indenbom 1960; Granicher & Muller 1971;
Aubry & Pick 1971). For such transitions there is no change in the number
of formula units in the primitive unit cell.

The notion of (optical) soft modes was actually introduced in the con-
text of such transitions (Anderson 1958; Cochran 1959). It was stipulated
that the LST relation (Lydanne, Sachs & Teller 1941) provided the connec-
tion between the approach to zero of the transverse optic phonon frequency,
UT, and the anomalous increase near Tc of the low-frequency dielectric con-
stant e(0):

4»2f - 4 (s.«)6(00) UT

Here e(oo) is the high-frequency dielectric constant, and ML is the long-
wavelength longitudinal optical phonon frequency. As e(0) —> oo in a
second-order phase transition, we get u\ —> 0.

5.4.2 Antiferrodistortive Transitions
Phase transitions accompanied by a change in the number of formula units
in the primitive unit cell of the crystal, or phase transitions driven by
soft modes with |k| ^ 0, are called antiferrodistortive phase transitions
(Granicher & Muller 1971).
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Typically, a Brillouin zone boundary mode goes soft, entailing a dou-
bling of the smallest lattice translation in the direction of k. Consequently,
the zone boundary jumps to a position midway to its position for the phase
before the transition. The result is a "folding in" of the mode which soft-
ened, and a soft mode at the zone centre of the new phase with the lower
translational symmetry.

In §5.3.6 we stated Birman's (1966) subduction criterion, according to
which the IR of the parent symmetry group So which drives a continuous
transition, i.e. the active IR, is such that the reducible representation sub-
duced from SQ to the daughter symmetry group S always contains the unit
representation of S. Since the order-parameter concept and the soft-mode
concept cover overlapping grounds, the subduction criterion was restated
by Worlock (1971) as follows:

The soft mode in the daughter phase is a totally symmetric
mode, and is therefore Raman active.

This Birman-Worlock statement was extended to the case of antifer-
rodistortive transitions by Lavrencic & Shigenari (1973). The symmetry of
the soft mode driving a continuous phase transitions must be such that Eq.
5.3.5 is satisfied (irrespective of whether |k| is zero or not). The procedure
described by Lavrencic & Shigenari (1973) makes it possible not only to
identify the wavevector of the soft mode, but also to determine the char-
acters that enter Eq. 5.3.5. Thus the candidate active IRs are identified,
which can then be tested against the Landau condition and other necessary
conditions described in §5.3.

If the wavevector of the soft mode is nonzero, the ordered phase has
lower translational symmetry than the disordered phase. In other words,
some of the lattice translations present in the disordered or parent phase
are not allowed in the ordered or daughter phase.

Let TO and T denote the translation groups underlying the space groups
So and S of the parent phase and the daughter phase respectively. And let
to denote the primitive lattice translations of TO, and t those of T. The
allowed k points of the Brillouin zone of the parent phase are those for
which

e-ik>t = 1, (5.4.7)

and
e-*k'to ^ 1, (5.4.8)

for those to which are not present in T.
The case of the phase transition in GMO provides a simple illustration

of this. Here So = -Dfd (-P42im), and S = <7fv (Pba2). If we denote the
primitive translation vectors of TO by aj, a[>, a§, and those of T by ai, a2, as,
then

ai = a?-a§, a2 = a? + a°, a3 - a° (5.4.9)
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This lattice correspondence can be expressed in terms of reciprocal-
lattice vectors as follows:

bi = ^(b?-b°), b2 = i(b? + b^), b3 = b° (5.4.10)

Use of Eqs. 5.4.7 and 5.4.8 then gives the result that the only allowed
k for the soft mode is that corresponding to the M = (| | 0) point of the
Brillouin zone of the parent phase:

k = ^b° + ^b° (5-4.11)

Using this information one can construct, from the character table for
the small representation of D^d(M), one 2-dimensional real representation
and two 2-dimensional physically irreducible representations (Lavrencic &
Shigenari 1973).

5.4.3 Displacive vs. Order-Disorder Type Phase
Transitions

So far in this section we have implicitly assumed that the dielectric
function and the frequencies of vibration are real, rather than complex,
quantities. For explaining certain properties of ferroelectrics and other
materials it is found expedient to treat them as complex quantities:

e(u) = e'(u) + ie"(u], (5.4.12)

a; = a/ + iu" (5.4.13)

The imaginary parts of the dielectric function and the frequency provide
a measure of the damping and other loss mechanisms.

In particular, for a ferroelectric with no damping (uj" — 0), i.e. for the
'pure resonance' case, the LST relation (Eq. 5.4.6) can be recast as follows:

A . ̂  (5.4.14)
e(oo) u;y

The longitudinal optical phonon frequency UJ'L is normally found to be
quite independent of temperature, so that Eq. 5.4.14 gives

6(0) ~ 4> (5*4-15)
UT

where the constant A is fairly independent of temperature.
The Curie-Weiss law for the temperature dependence of e(0) is

€(0) = -£-, (5.4.16)T — TO
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where TO is the stability limit of the prototypic phase. Comparing Eqs.
5.4.15 and 5.4.16 we get the following temperature dependence for the soft-
mode frequency:

u% = £(T-T0) (5.4.17)

This is the situation for an extreme case in which there is no damping
of the soft mode. The other extreme is that of a purely relaxational ferro-
electric, characterized by u/ = 0, u" / 0. In the simple Debye model (which
we shall describe in Chapter 10), the following relationship is assumed:

eM. eM+4M, (,,18)
with r = 1/uJp for the purely relaxational situation.

The LST relation for such a system is linear (rather than quadratic) in
the frequencies:

A = 1 (5.4.19)
e(oo) u£

Detailed considerations, taking note of the temperature dependence of
o;^, lead to the following equation (which is the counterpart of Eq. 5.4.17):

T - k ~ ̂  (5-"o)

As T —* TO, r —-> oo. This is referred to as the critical slowing down of the
Debye relaxation time r (see Blinc & Zeks 1974).

In the pure resonance case, on the other hand, the critical slowing
down of the fluctuations of the order parameter on approaching the phase-
transition temperature TO appears directly through the frequency of the soft
mode, rather than through a divergence of the Debye relaxation time.

This distinction between resonance behaviour and relaxation behaviour
has its manifestation in the distinction between what are called displacive
phase transitions and order-disorder phase transitions. Real systems usu-
ally are mixtures of the two, but it is instructive to consider the extreme
model systems. The BaTiOs crystal is closer to the former model, and
KDP is closer to the latter.

A theoretical exposition of this many-body problem is a highly com-
plicated task. Some of the simplifications usually introduced are as follows
(see Thomas 1971; Blinc & Zeks 1974; Lines & Glass 1977).

One takes note of the fact that structural phase transitions in a large
number of crystals involve a restructuring of only a small fraction of the
total structure, with the overall edifice remaining intact. To make the the-
ory tractable, one therefore deals with the movements of only this fraction
of atoms in the unit cell, treating the rest of the edifice as providing a 'heat
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bath'. The Hamiltonian for such a model system can be written as a sum
of two parts:

U = XX5) + Hint (5.4.21)
i

Here the summation index I runs over all the N unit cells of the crys-
/ o\

tal. HI is the 'single-particle' part of the Hamiltonian, describing the
contribution from the 'local' normal coordinate Qi and the corresponding
momentum PI. Hint denotes the 'interaction' part of the total Hamiltonian.

A simple form assumed for the single-particle Hamiltonian is

H\S) = ^MPI + V(Qi) (5-4-22)

Here M is an effective mass, and V(Qi) the single-particle potential: it is
the total potential energy corresponding to the normal coordinate Q/, with
all other normal coordinates taken as zero.

The distinction between displacive and order-disorder models of struc-
tural phase transitions can be made in terms of the nature of the potential
V(Qi).

For the displacive case V(Qi) is only slightly anharmonic, and has a
single minimum (at Q = 0, cf. Fig. 5.4.1 (a)). Mode softening and con-
densation in such a system amounts to a shifting of the minimum of the
potential from Q = 0 to a neighbouring nonzero value of Q. By contrast,
the anharmonicity in an order-disorder system is very large, and the atomic
configuration corresponding to Q = 0 is unstable. In the simple example
depicted in Fig. 5.4. l(b), V(Q) has two minima, at Q = ±<2o- Typically
this corresponds to a situation wherein the order parameter, e.g. the spon-
taneous polarization in the case of a proper ferroelectric phase transition,
becomes zero in the prototypic phase only in a statistically averaging sense,
but in reality, at a microscopic level, there exist permanent dipoles. These
dipoles get spontaneously aligned along a specific direction in the ferroelec-
tric phase, giving rise to a macroscopic polarization in a given domain. In
the paraelectric or prototypic phase, their orientation becomes random, av-
eraging to a value zero. An example is that of ordering of hydrogen atoms
in KDP crystals into one of the wells of the double-well potential shown in
Fig. 5.4.l(b) in the ferroelectric phase. In the paraelectric phase the two
well sites are occupied randomly.

Blinc & Zeks (1974) have pointed out another difference between these
two models of phase transitions. The transition entropy is small («
fc# In 2) for predominantly displacive phase transitions, and large (~ fc# In 2)
for predominantly order-disorder transitions.

Real systems are normally a combination of the two extreme models.
The single-particle potential can then be expressed as

V(Q) = aQ2 + 6Q4, (5.4.23)
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Figure 5.4.1: Single-particle potential for the purely displaeive (a), and
purely order-disorder (b) models of structural phase transitions. In (a) the
dashed line depicts the harmonic part of the potential. Part (c) of the figure
shows a more realistic potential for the predominantly displaeive case, with
a substantial anharmonic component, but the potential barrier of which at
Q = 0 is easily overcome by thermal fluctuations.

where a < 0 and b > 0. Depending on the ratio a/b the situation may be
either that in Fig. 5.4.l(b), or that in Fig. 5.4.l(c).

The potential-energy difference between the central maximum and a
neighbouring minimum can be shown to be

A£ = £ (5.4.24)

If AE » fc#T, thermal fluctuations cannot overcome substantially the
central barrier, and we have an order-disorder configuration.

If AE « fc^T, the conditions are more displacive-like.
In several perovskite structures, the soft mode changes its character

from displaeive to order-disorder with rising temperature (see Godefroy &
Jannot 1992).
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5.4.4 Overdamped and Underdamped Soft Modes
Consider a displacive-type structural phase transition. It was for such tra-
nsitions that the soft-mode theory of Cochran and Anderson was originally
formulated.

In Eq. 5.4.23, the first term on the right-hand side represents the
harmonic part of the single-particle potential, and the second term approx-
imately represents the anharmonicity. If only the first term were present,
there would be no mutual interaction among the normal modes of vibration,
and the crystal would not display even the property of thermal expansion
or contraction.2 Some anharmonicity is always present.

The anharmonic part of the interaction becomes particularly impor-
tant when the amplitude of vibration of a mode is large. And this is what
happens to a soft mode in the vicinity of the structural phase transition.
Thus, near the transition the soft mode interacts quite strongly with other
('hard') modes of vibration. Interaction among the modes means an ex-
change of energy. Usually it is the soft mode which loses a large fraction
of its energy to the other modes, particularly because of its weakened force
constant. This results in an additional damping of the soft mode, over and
above the usual damping mechanisms for all the modes. Soft modes are
therefore mostly overdamped.

The opposite process of underdamping of the soft mode can also occur if
there is a predominant mechanism of intermode interaction whereby energy
is transferred to the soft mode, rather than from it.

5.4.5 Hard Modes and Saturation Temperature for the
Order Parameter

Apart from causing an overdamping or underdamping of the soft phonon
mode, hard modes make their presence felt in another significant way when
the temperature of the crystal is decreased to sufficiently low values.

At sufficiently low temperatures the stability of a crystalline phase is
influenced, amongst other things, by the third law of thermodynamics. The
third law states that the configurational entropy must decrease with tem-
perature, eventually becoming zero at T = OK. This means that the change
of entropy with temperature is zero at the absolute zero of temperature. As
a result of this, the order parameter of a structural phase transition does
not increase indefinitely on decrease of temperature below Tc, but rather
approaches a saturation value (Salje, Wruck & Thomas 1991a; Salje, Wruck
& Marais 1991b). The term quantum saturation is also used in this context.

This saturation of the order parameter is with respect to temperature,

2 A soft mode assumed to be devoid of interaction with other modes is referred to as
a bare soft mode.
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and not other control parameters like composition, pressure, or other fields.
Further, the phase transition temperature, Tc, is itself a function of these
control parameters. Since the saturation effects occur at sufficiently low
temperatures, we have to consider situations wherein the control parameters
or fields are so chosen as to reduce the value of Tc. We give here some basic
information from the work of Hayward & Salje (1998).

A qualitative understanding of quantum saturation can be obtained by
invoking the Clausius-Clapeyron equation:

i-g
In the 'classical regime', we often have A5 ~ AV, making Tc vary linearly
with pressure p. But when A5 —> 0 (as demanded by the third law of
thermodynamics), the linearity is broken, and quantum saturation sets in.

A more quantitative treatment is that based on the Landau theory
(Salje et al. 1991a). One begins with the basic Landau expansion, namely
Eq. 5.3.26, which, however, needs to be modified in view of the nonlinearity
resulting from the third law of thermodynamics. Salje et al. (1991a) have
argued that it is reasonably adequate to modify only the quadratic term.
They write:

9 = ̂  [coth (£) - coth (I)] rf + \,f + C-^ + l^ + ... (5.4.26)

Here Ts is the saturation temperature: Typically, the behaviour of the sys-
tem is classical for temperatures T > 3Ts/2, and the order parameter r\ is
totally saturated (i.e. it is independent of temperature) for T < Ts/2.

Ts is also found to have a correlation with the Einstein temperature
TE (Salje, Wruck & Marais 1991b):

Ts ~ TE/2 (5.4.27)

To determine how pressure p or composition x can push Tc towards
Ts, one has to model their effect on the coefficients in Eq. 5.4.26. This is
easily done in the Landau theory by introducing suitable coupling terms
in this equation. The effect of pressure can be modelled (in the harmonic
approximation) by including a term proportional to prj2 in the Landau ex-
pansion. Similarly, the effect of composition variation can be incorporated
by introducing a term proportional to xrf1, and that of uniaxial stress a
by a term proportional to err]2. Using the symbol x to denote any of these
control parameters (and not just composition), Eq. 5.4.26 gets extended
to:

a'Ts \ , /Ts\ , /Ts\l 2 6 4 c 4 c 6 a'T8K 2g = — [coth ̂  j - coth (^ J j rf + -,* + -rj* + -^ + -^-^

(5.4.28)
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Figure 5.4.2: T-x phase diagram depicting the occurrence of quantum sat-
uration. It also shows the plateau effect expected at very dilute concentra-
tions of the solute in the solid solution. The plateau effect is discussed in
§5.9. [After Hayward & Salje (1998).]

Here K is a coupling constant.
In keeping with the usual formulation of the Landau theory, one can

assume that the critical temperature dependence of the order parameter is
carried by the rf term only. The new phase transition temperature, T*, is
therefore determined by equating the prefactor of rf1 to zero:

/T \ (T \
coth -^ - coth -f I + Kx = 0, (5.4.29)

V T j \TC/
or,

T;M - coth-Mhrn/r.,)-^) <5-"-30)

A composition-temperature phase diagram based on this equation is
shown schematically in Fig. 5.4.2. It can be seen that it explains the
quantum saturation of the order parameter.

A lattice-dynamical (soft-mode) interpretation of this saturation be-
haviour has been given by Dove, Giddy & Heine (1992). The total energy
of the crystal can be viewed as a sum of the energies distributed among the
various phonon modes (both soft and hard). If there are a large number
of hard modes, they would saturate individually at rather high tempera-
tures. And if they are coupled substantially to the order parameter (the
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soft mode), Ts would have a high value. If, on the other hand, the hard
modes do not have a strong influence on the mechanism of the phase tran-
sition, the saturation of the order parameter would be determined mainly
by the frequency of the softening mode. Since this frequency has a rather
low value near Tc, a small Ts may ensue.

Hayward & Salje (1998) have listed the value of Ts for a large number
of crystals. It is 0 K for SbSI, and as high as 334 K for quartz.

We return to this topic when we discuss quantum ferroelectrics in §10.5.
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5.5 CRITICAL-POINT PHENOMENA
The Landau theory and the soft-mode theory are essentially mean-field the-
ories: The actual microscopic interactions at any point are replaced by an
interaction between a test unit and the mean field generated by all the other
units constituting the system. These theories thus ignore the fluctuations
of the mean field, and thence of the order parameter. In this section we con-
sider phenomena in the vicinity of the critical temperature, where thermo-
dynamic fluctuations cannot be ignored in general. Phenomena associated
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with these critical fluctuations are referred to as critical-point phenomena,
or critical phenomena.

The reader is advised to read Appendix E, which summarizes some
of the principal concepts and results of thermodynamics and statistical
mechanics, before reading this section.

5.5.1 Critical Fluctuations
As demonstrated in Appendix E (cf. Eq. E.2.45, and the discussion fol-
lowing it), when a large number of particles interact, their macroscopic
thermodynamic properties are usually very close to the mean value or the
ensemble average, and fluctuations from the mean value are normally not
significant. This statement can become inapplicable if any of the prereq-
uisites for its validity is violated. For example, the root-mean-square de-
viation from the mean value would be significantly large if the actual or
effective number of particles involved in the microscopic interactions is not
large. This can happen even in a physically large system if the range of the
microscopic interaction is not large. It can also happen if the effective or
assumed (modelled) dimensionality of the system is not sufficiently large.
An extreme example is that of a 1-dimensional system, in which fluctua-
tions destroy long-range order because the interaction between one part of
the chain and another can only be through successive units of the chain and
a fluctuation can obliterate a long-range ordering tendency or mean-field
behaviour.

This connectivity factor becomes less important for 2-dimensional sys-
tems, wherein many interaction pathways are possible, making it more
likely for the system to stay close to a mean-value configuration.

The number of connectivity pathways increases dramatically as we go
to still higher dimensions, so much so that above a critical dimension, or
marginal dimension, du (usually du = 4), fluctuations become unimportant
and a mean-field theory like the Landau theory provides an analytically
correct description of continuous phase transitions.

Thus, for low-dimensionality systems, or for systems governed by short-
range interactions, or for both, the Landau theory fails to provide a correct
description of critical phenomena for temperatures too close to the critical
temperature. How close is too close? A self-consistency criterion for an-
swering this question was formulated by Ginzburg (1961). We describe here
the essence of the Landau-Ginzburg theory which incorporates partially the
effect of fluctuations also, and then state the Ginzburg criterion.

5.5.2 Landau-Ginzburg Theory
The Landau theory has two main flaws. It neglects fluctuations of the order
parameter, and it assumes that the free energy is an analytic function
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of the order parameter at the critical point. The former assumption is
removed, to a good approximation, in the Landau-Ginzburg formulation of
the theory. In it the spatial nonuniformity of the order parameter is not
ignored, although it is assumed that the fluctuations do not occur on too
fine a scale. The brief description given here follows closely the work of
Plischke & Bergersen (1984).

As in §5.3.12, we assume for simplicity that the order parameter has
only one component. We denote it by rj(r) to express its possible spatial
inhomogeneity. And X(r) is the field conjugate to it.

In view of the spatial dependence of the order parameter, r/(r) now
denotes its local density, and we can write (cf. Eq. E.2.46)

M =< f r j ( r ) d r > (5.5.1)

For writing the free-energy expansion we work with the Helmholtz free
energy, A, rather than the Gibbs free energy G (cf. Eq. 5.3.9). When the
order parameter is spatially homogeneous, the two are related by

A = G + XM (5.5.2)

In view of Eq. E.I. 13,

* = J£ (5.5.3)oM T

The Landau-Ginzburg theory (Ginzburg 1961) assumes that the free
energy can be expressed as the following volume integral (cf. Eq. 5.3.9 for
comparison):

A = |d(r)[4> + \ r/2(r) + ̂  + £,,« + ... + £{Vr,(r)}2] (5.5.4)

Here the last term accounts for the spatial variation of the order parameter.
The coefficient / is taken as positive, to reflect the fact that the free energy
is higher when the order parameter is not the same everywhere.

Since the order parameter and the force conjugate to it are not con-
stant over space, Eq. 5.5.3 must be replaced by the following functional
derivative:

X(r) - Jgj (5.5.5)

Prom Eq. 5.5.4,

6A = I d(r) [&/(r) {a»/(r) + 6r?3(r) + cr/5(r) + - • - } + /V«r/(r) • Vr/(6/r)]

(5.5.6)
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On carrying out an integration by parts, and stipulating that 6rj(r) = 0 at
the surface of the sample, we obtain

X(r) = oTj(r) + fo?3(r) + cr/5(r) + /V2r/(r) (5.5.7)

To bring out the role of spatial fluctuations of the order parameter we
introduce a perturbation

X ( r ) = X06(r) (5.5.8)

at a point r in the sample, and compute its effect throughout the sample
under the purview of the linear response theory (cf. Appendix E.3). We
write

7?(r) - »?o + <Kr), (5.5.9)

and ignore all terms that are not linear in 0. In particular, for use in Eq.
5.5.7, we write

r/3(r) = 7jg + 3»jg0(r) (5.5.10)

Then, from Eq. 5.5.7,

V20(r) - ^(r) - 3770
2^(r) - -fr,0 - -fr,l = -^(r) (5.5.11)

For T > Tc, rjo = 0. And for T < Tc we can obtain the value of 770 for a
continuous phase transition by putting X ( r ) = 0, c = 0 (cf. §5.3.12 where
continuous phase transitions are discussed), and Vry(r) = 0 in Eq. 5.5.7.
The result is

ril = ~, T<T C , (5.5.12)

in agreement with Eq. 5.3.22. Eq. 5.5.11 therefore gives

V20-^0 = -y%)> T>Tc, (5.5.13)

V20 + 2y0 = -y«(r), T<TC (5.5.14)

A solution of these equations after a change to spherical coordinates
yields

, , £L±i,

where
£ = (//a)1/2, T > Tc, (5.5.16)

£ = (-//(20))1/2, T < Tc (5.5.17)
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£ is called the correlation length. Since a = a'(T-Tc] (cf. Eq. 5.3.18),

£ - |T-Tel'1/2 (5.5.18)

The correlation length thus diverges as the critical temperature is ap-
proached from both the higher and the lower sides. And we are led to
another critical exponent, z/:

£ - |T-TC|-" (5.5.19)

v = | according to the Landau-Ginzburg theory, but its actual value is
different if this theory is not applicable.

We next examine the behaviour predicted for the generalized suscepti-
bility by this theory. The order parameter (an extensive quantity) is defined
by the ensemble average expressed by Eq. 5.5.1. In the canonical ensemble
this average is defined by Eq. E.2.37. Therefore,

M _ 1 [ rrfo(r)e-^]
V - Vj dT Tre-W (5'5-20)

We assume that the Hamiltonian H, now includes the term (Eq. 5.5.8)
corresponding to the perturbing field, so that it has the form

U = Ho- f r j ( r ) X ( r ) d r (5.5.21)

The canonical-ensemble average of the order parameter can then be written
in accordance with Eq. E.2.37 (assuming that the system is invariant under
a translation):

<*»-?%£? <«.*>
We get from Eqs. 5.5.22, 5.5.9, 5.5.21, and E.2.47,

6 ^JQ > = ̂  = P(< IJOMO) > - < i/(r) X 77(0) >) = /3T(r)

(5.5.23)
Thus

0(r) - T(r) (5.5.24)

Also, on integrating Eq. 5.5.23, the generalized susceptibility is deter-
mined as

X = 0 Jr(r)dr (5.5.25)

This equation is an example of the fluctuation dissipation theorem (§E.3.3).
It expresses the fact that the generalized susceptibility, i.e. the response to
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a perturbation, is determined by the order-parameter correlations existing
in the system at equilibrium, i.e. when the perturbation is absent.

The correlation length £ is related to F(r), the Fourier transform of
which is given by Eq. E.2.54:

T(k) = <Wk) | 2 > (5.5.26)

Following Huang (1987), we determine here the right-hand side of this
equation in an approximate manner (assuming that the fluctuations are
essentially of an isotropic nature) to get a feel for the energy apportioned
to the fcth Fourier component. Eq. 5.5.4 can be written to lowest order as

A = |dr[|r,2(r) + ^(V77(r))2] (5.5.27)

This integration can be written as an equivalent integration in Fourier
space:

r d\c
A = j ^(a + A2)^)!2 (5.5.28)

Thus the free energy assignable to the fcth mode is

4(k) = i(a + /fc2)|77(k)|2 (5.5.29)

Equating this to ksT ("equipartition of energy"), and referring to Eq.
5.5.26,

< Wk)!2 > = r(k) = ̂ ^ (5.5.30)

This is the so-called Ornstein-Zernike form of F(k).
Taking the inverse Fourier transform of the two sides of Eq. 5.5.30

gives
e-r/£

F(r) = (5.5.31)r
As T —> Tc, the correlation length becomes infinitely large (Eq. 5.5.18),

and F(r) varies as 1/r, i.e. it becomes independent of any other charac-
teristic length of the system. Also, it is the only characteristic length the
system has for these conditions.

We have considered so far only a 3-dimensional system. The results
obtained can be generalized to an arbitrary spatial dimension d. It can be
shown that, instead of Eq. 5.5.15, we have

^ ~ r-(d~2) for r « f, (5.5.32)

and
(/> ~ e~r/t for r » £, (5.5.33)
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so that, in general (and also incorporating Eq. 5.5.24),

0(r) ~ T(r) ~ ̂  (5.5.34)

5.5.3 Ginzburg Criterion
Ginzburg (1961) formulated a self-consistency criterion for the Landau the-
ory, which states that the neglect of critical fluctuations of the order pa-
rameter by the Landau theory is justifiable at those values of temperature,
pressure etc. (with respect to the critical point) for which the fluctuations,
averaged in all directions over distances of the order of the correlation
length £, are small compared to the average value of the order parameter
itself (Bausch 1972):

/ dft [< T7(r)r?(0) > - < rj(r) >< r/(0) >] « / dttril (5.5.35)
J{1(: J&f:

where 770 is the uniform part of the order parameter (cf. Eq. 5.5.9). The
integration is carried out over that part of configuration space for which
the correlations are important.

Eq. 5.5.35 can be rewritten in terms of the order-parameter autocor-
relation function (cf. Eq. E.2.48) as

/ dfiT(r) « C£dr)l (5.5.36)
J^t

where we have assumed the critical fluctuations to be isotropic, and C£d is
the volume of a hypersphere of radius £.

We shall be using this criterion presently for computing the so-called
upper critical dimensionality.

5.5.4 Critical Exponents
The critical exponents are a measure of the singularities of the various
thermodynamic quantities at and near the critical temperature, Tc.

Many of the critical exponents in use express the nature of the tem-
perature dependence of the thermodynamic quantities (in the form of a
power law). For this purpose, and also for highlighting the "universal" na-
ture of critical phenomena (see below), one usually works with the reduced
temperature, a dimensionless parameter:

T1 — T T1

t=1-^ = ̂ -l (5.5.37)
J-c J-c

A critical exponent is formally defined as follows. Let us consider a
thermodynamic function f(t) near t = 0, and assume that it is positive and
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continuous for sufficiently small values of t. We are interested in its critical-
point behaviour. It is found experimentally that f ( t ) can be expressed as

/(t) = Atx(l + Bty+ ' . - ) , 7 / > 0 (5.5.38)

It is also found that for sufficiently small values of t the following equation
is a very good approximation:

f ( t ) = Aty (5.5.39)

Therefore a plot of In / against t will have a straight-line portion near t = 0,
from which the factor AX can be determined. We can identify A as a critical
exponent, formally defined as the following limit (Stanley 1971):

A s iim li/W, (5.5.40)
t->o Int v '

assuming that such a limit exists.
As a short-hand notation one often defines A as a critical exponent such

that
f ( t ) ~ t\ (5.5.41)

although what is really involved is a relationship like Eq. 5.5.38.
We describe here the main critical exponents relevant for static phe-

nomena near ferromagnetic critical points. The order parameter is the
spontaneous magnetization < ra >, and h is the external (magnetic) field
conjugate to it.

The critical exponent (3 describes the temperature variation of the order
parameter (for h = 0) in the vicinity of the critical temperature:

< m > ~ (-tf, t < 0 (5.5.42)

A measure of the breakdown of the Landau theory is the fact that
whereas according to it (3 = 0.5 for all continuous phase transitions (cf. Eq.
5.3.27), some experimental values are: 0.34±0.02 for Fe, 0.33±0.03 for Ni,
and 0.354 ± 0.005 for YFeO3 (Kadanoff et al. 1967).

Another critical exponent associated with the order parameter is £,
which describes its field dependence. For very small h one derives (at the
critical point, cf. Eq. 5.3.33):

< r a > ~ hl/6, i = Q (5.5.43)

Observed values are: 4.2 ± 0.1 for Ni, and 4.0 ± 0.1 for Gd (Kadanoff et al.
1967), whereas the mean-field value is 3 (cf. Eq. 5.3.33).

The third important critical exponent, 7, describes the temperature
dependence of the susceptibility function, %. As Tc is approached from
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either side for a continuous transition, susceptibility is seen to diverge (cf.
Eqs. 5.3.19 and 5.3.28):

X ~ r7, t > 0, (5.5.44)

x ~ H)~7', * < 0 (5.5.45)

The proportionality constants for these two equations are not the same
(cf. Eq. 5.3.30). According to the Landau theory, 7 = 7' = 1. Some
experimental values are as follows: 7 = 1.333 ±0.015 for Fe; 7 = 1.32 ±0.02
for Ni; 7 = 1.33 ± 0.04 and 7' = 0.7 ± 0.1 for YFeO3; and 7 = 1.33 for Gd
(Kadanoff et al. 1967).

The fourth critical exponent we consider is a, which is an indicator of
the temperature dependence of specific heat, C. One observes the following
singular behaviour:

C ~ t~a, t > 0, (5.5.46)

C ~ t~a>', t<0 (5.5.47)

The proportionality constants in the two cases are different. The Landau
theory predicts a = a' = 0. Some experimental values are: a = a' =
-0.12 ± 0.01 for Fe (Lederman et al. 1974); a = a' = -0.10 ± 0.03 for Ni
(Kadanoff et al. 1967); and a = a' = -0.09 ± 0.01 for EuO (Lederman et
al. 1974).

The fifth important critical exponent is connected with the Fourier
transform of the autocorrelation function of the order parameter (cf. Eq.
E.2.54). It is instructive to see how this correlation function is obtained
experimentally.

Let m(r) denote the local density of the order parameter at a point r
in the specimen, with M as its ensemble average (cf. Eq. E.2.46). This
density distribution can be probed by a scattering experiment, e.g. by
neutron scattering. Let k^ and k/ denote the wavevectors of a neutron
beam before and after the scattering, with k = k/ — k^ as the momentum
transferred to the specimen. In the Born approximation the scattering
cross section, F(k), is given by the square of the matrix element between
the initial and the final states:

r 2

F(k) = <|m(k)|2) - { /dre-*k- rra(r) ) (5.5.48)

It is found experimentally that the forward-scattering cross-section
(k —> 0) diverges as T —> Tc. For very small values of k one observes
that

r(fc) ~ p^, * = 0 (5.5.49)

The Landau theory predicts that 77 = 0 for all continuous transitions.
Experimentally, r? = 0.07 ± 0.07 for Fe (Kadanoff et al. 1967).
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We mention lastly the sixth critical exponent, v (cf. Eq. 5.5.19). It cor-
responds to the divergence of the correlation length of the order parameter
as the critical temperature is approached:

£ ~ t~v, t > 0, (5.5.50)

f ~ (-*)-"', t<0 (5.5.51)

According to the Landau theory, v = v1 — 0.5 (cf. Eq. 5.5.18). Ex-
perimentally observed values range between 0.59 and 1.02 (cf. Chaikin &
Lubensky 1995).

5.5.5 Upper and Lower Marginal Dimensionality
The Ginzburg criterion (Eq. 5.5.36) provides a method for calculating
the dimensionality of space, du, at or above which the Landau theory is
adequate for describing critical phenomena. We write, for the right-hand
side of Eq. 5.5.36,

r)l ~ |T-TC|2/3 (5.5.52)

And for the left-hand side we substitute from Eq. 5.5.34. On carrying out
the integration in spherical coordinates we obtain

Cd f drrd-le~r/t-(d-V « Cf* |T - Tc|
2/3 (5.5.53)

Jo

After some further algebra, and making use of Eq. 5.5.50, we get the
following condition for the applicability of the Landau theory (Plischke &
Bergersen 1994):

d > 2 + — (5.5.54)

According to the Landau theory, (3 = \ and v = \ for a continuous
transition, so that, for the equality sign in Eq. 5.5.54,

du = 4 (5.5.55)

For a tricritical point, on the other hand, /3 — \ (Eq. 5.3.37) and
i/= f , giving

dt = 3 (5.5.56)

du and dt are called upper marginal dimensionalities, or upper critical
dimensionalities. For dimensions greater than these, critical fluctuations
are unimportant and the Landau theory provides a correct description of
critical phenomena. When d = du in Eq. 5.5.55 or d = dt in Eq. 5.5.56,
only marginal corrections are required to be made to the critical exponents
predicted by the Landau theory.
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For dimensions less than the upper marginal dimensionality the Lan-
dau theory is inadequate. In fact, one can also define a lower marginal
dimensionality, di. For d < di the critical fluctuations or other factors are
so important that the phase transition does not occur at all.

5.5.6 Models of Phase Transitions

The Landau theory, by making certain sweeping assumptions, attempts to
deal phenomenologically with macroscopic parameters relevant to a conti-
nuous phase transition. With its range of validity defined by the Ginzburg
criterion, the theory is quite simple, and its simplicity gives it power to
deal successfully with several ferroic and other phase transitions, so much
so that for temperatures not too close to the critical temperature and/or
for phase transitions mediated by long-range interactions, there is hardly a
need to invoke other theories for dealing with properties of ferroic materials.

For dealing with situations where the Landau theory is not applicable,
and also for assigning meaning at a microscopic level to situations where the
Landau theory is applicable, it is found useful to explain phase transitions
in terms of one or the other of a variety of models of phase transitions. We
describe the main ones here, albeit very briefly. Historically the subject of
critical phenomena developed with specific reference to ferromagnetic tra-
nsitions, with the net electron spin playing the role of the order parameter.
Generalization to other situations has been carried out in several cases.

At the most fundamental level it should be possible to explain phase
transitions in crystals in terms of the Coulomb interaction between electrons
and nuclei. This, however, is too general a starting point, which does not
make use of the fact that we are dealing with a crystal, with a well-defined
lattice and band structure etc.

Therefore, at the next level of specialization we take the basic features
of the crystal as known beforehand. However, since critical phenomena
involve collective behaviour of electrons over a very large number of unit
cells, it is enough to concentrate only on the unpaired electron spins, and
ignore the effect of band structure etc., except in so far as it affects the
interaction among electron spins.

The complete crystal structure can be built by assigning the contents
of a primitive unit cell to each lattice point, and, for the purpose of deal-
ing with critical phenomena a net electron spin can be assigned to each
primitive unit cell. Different models exist for describing the spin-spin in-
teraction. These models are quite crude, though also very instructive, and
involve parameters which are adjusted to simulate the actual interactions
as closely as possible.
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Ising Model

In the Ising (1925) model the spin associated with each lattice site (or with
each primitive unit cell) can take only two possible values: -j-1 and -1,
and the interaction between spins is assumed to be the nearest-neighbour
exchange interaction. The model thus has Z2 symmetry (cf. §B.l) in the
paramagnetic phase.

Let GI denote the spin associated with the lattice site I. Then the Ising
Hamiltonian is

nlsing = -J Y w> (5-5-57)
<l,V>

the summation being only over nearest-neighbour values of I and /'. The
spins are purely classical in this model.

If d < 2, no phase transition is predicted by the Ising model even at
T = 0. Thus the lower marginal dimensionality di is equal to 1 in this
model.

ZN Models

The Z% symmetry of the Ising model is generalized to the ZN symmetry of
the so-called clock models or ZN models. Here the spin variable si at each
lattice site is constrained to point along any of N equally spaced directions
on a unit circle:

/cos27rnz sin27rnAsi = I ———, — — — J , ni -0,1,... AT- 1 (5.5.58)

The Hamiltonian for the clock models is

Hdock = - J X) *i ' sj = - J Y cos[27r(nj - nO/N] (5.5.59)
<U'> <M'>

Potts Model The TV-states Potts model (Potts 1952; Wu 1982) has ZN
symmetry, like a clock model. It has a spin variable a (I) that can take N
discrete values. The Hamiltonian is

Upotts = ~J Y [NS'i,°l ~ !] (5'5<6°)
<i,i'>

Thus the energy associated with nearest-neighbour interactions is different
depending on whether the neighbours are in the same state or different
states.

The Ising model is a two-state Potts model.
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Heisenberg Model
Heisenberg ferromagnets or antiferromagnets are those in which the crystal
fields are not sufficiently strong to align the spins along crystallographic
axes. The Heisenberg model has O$ symmetry (§B.4), so that the spins are
free to point along any direction in 3-dimensional space. The Hamiltonian
is

^Heisenberg = ~J ^ Sf • sj (5.5.61)
<l,l'>

For this model di = 2.

XY Model
This model is associated with systems which have 02 symmetry, or XY
symmetry in the paramagnetic phase. An example is that of an easy-plane
ferromagnet, in which the spins are constrained by crystal fields to lie in
the XY-plane. Its Hamiltonian can be expressed in terms of a local-angle
variable by taking si = (cos#/, sin0j):

UXY = -J ^2 cos(0z - 00 (5.5.62)
<i,if>

ON Models
The Heisenberg model is an Os model. And the ON model with N = oo
can be solved exactly (see Chaikin & Lubensky (1995) for details).

The model Hamiltonians defined here are unit-cell Hamiltonians or site
Hamiltonians. We shall see presently that, because of the large correlation
lengths near the critical point, we have to resort to "coarse-graining" and
define blocks of spins extending over several unit cells, as also the corre-
sponding block Hamiltonians.

5.5.7 Universality Classes and Scaling
The Landau theory replaces the actual local configurations of the order
parameter by their mean value, and thus ignores fluctuations from the mean
value. Any generalization that incorporates these spatial fluctuations is a
field theory. In such a theory the order parameter is defined as an integral
over all points in space.

The need for a field theory arises because the observed critical expo-
nents close to the critical point do not agree with those predicted by mean-
field theories like the Landau theory, and also because one must explain
the existence of universality classes and scaling.
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Universality Classes

Measurements of critical exponents for a wide variety of systems lead to a
remarkable observation: The critical exponents do not depend significantly
on the detailed nature or strength of the interaction responsible for the
phase transition, or on the value of the critical temperature. Their values
are determined largely by the following three factors:

• The effective spatial dimension, cf, of the system.

• The symmetry and dimensionality (number of components) of the
order parameter.

• The symmetry and range of the interaction.

All continuous phase transitions for which the above three factors are
the same have almost the same or "universal" values of critical exponents;
they constitute a universality class.

For example, for a large class of systems with d = 3 we have: a ~ 0,
(3 ~ ^, 7 ~ |, and ^ — §• And these values are very different from those
for d = I or d = 2, etc.

Similarly, many of the transitions describable by the Ising model (for
which the order parameter corresponds to Z% symmetry) have nearly the
same critical exponents, examples being ferromagnetic transitions in uni-
axial magnetic systems, liquid-gas transitions, and several order-disorder
transitions.

Scaling

We have seen above that phase transitions in the same universality class
have practically the same critical exponents. That is not all. It is also
found that not all the critical exponents are independent of one another. If
d is the effective dimension of a system, the following scaling relations are
found to hold to a good approximation:

7 = i/(2-rj) (5.5.63)

a + 20 + 7 = 2 (5.5.64)

7 = 0(8- 1) (5.5.65)

vd = 2-a (5.5.66)

These relations can be derived under the so-called scaling hypothesis,
according to which the correlation length, £, is the only characteristic length
of a system in the vicinity of the critical point. The validity of such a hy-
pothesis is indicated by Eq. 5.5.19, according to which, as the critical point
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is approached, the correlation length becomes arbitrarily large, irrespective
of other characteristic lengths of the system.

We see from Eq. 5.5.34 that, as £ —> oo, the order-parameter auto-
correlation function becomes a homogeneous function of distance (cf. Eq.
E.1.22) in that

T(r) = b-(d-VT(r/b) (5.5.67)

If the only characteristic length on which F(r) depends is £, and the critical
exponent associated with £ is v (Eq. 5.5.50), then the critical exponent 6
associated with F(r) (Eq. 5.5.49) cannot be independent of v.

And since the susceptibility % is related to F(r) through Eq. 5.5.25,
the critical exponent 7 associated with the former cannot be independent
of v and 77 (Plischke & Bergersen 1994). And so on.

5.5.8 Kadanoff Construction
Near the critical point the only important characteristic length of a system
is the correlation length (this is the scaling hypothesis), and this length
becomes larger and larger as the critical point is approached. Therefore,
as was first suggested by Kadanoff (1966), we can abandon the site Hamil-
tonians described in §5.5.6 in favour of block Hamiltonians. The latter are
obtained by averaging over blocks of unit cells, or blocks of "spins". This
amounts to recognizing the fact that, near the critical point, the spin-spin
correlations are in terms of large blocks (or "patches").

Let us consider a crystal with a cubic lattice (of lattice constant a) in
d-dimensional space. We first take a cube of volume Ld in this crystal. This
can be conveniently referred as an L-system (Toda, Kubo & Saito 1992).

The unit-cell spin, or site spin, s(r) can be expressed as a Fourier series:

5(r) = L-d/2^0fce*k 'r, (5.5.68)
k<A

where A = 2?r/a, and Fourier summation is not carried out for k > A
because we have taken the unit cell as the smallest unit for defining the
spin density.

The number of Fourier components for this system is (L/a)d, because
it is determined for the L-system (under the periodic boundary condition)
by ^

ki = ^~n\ n = l,2, ...n0; i = l ,2, . . .d (5.5.69)
LJ

Here no = L/a. The condition n < no in this equation is equivalent to the
condition k < A in Eq. 5.5.68.

Next we consider a cube of side Lb (b > I). This Lb-system will have
bd times more particles than the L-system. The upper limit (no) in Eq.
5.5.69 is now Lb/a.
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In the Kadanoff construction one chooses a block of unit cells (number-
ing bd in all) as the smallest unit for defining the inter-unit spin values. In
other words, the lattice constant is now 6a, rather than a. Correspondingly
the cutoff wavevector in Eq. 5.5.68 is 27r/(6a), rather than 27r/a. Therefore,
for the I/6-system,

k < A/6, (5.5.70)

or, equivalently,
n = no/6 = L/(ba) (5.5.71)

To achieve this removal or suppression of the irrelevant degrees of free-
dom, one integrates out the Fourier components fa for A/6 < k < A. The
Hamiltonian Ti,Lb for the Lfr-system is therefore determined by

e-pnLb = f . . . fe-PHL -Q dsk (5.5.72)

** ^ A/6<fe<A

The Kadanoff construction amounts to replacing the spins sci in the
various cells i inside a block of side ba by their average:

Si = b-dY^sa, (5.5.73)
cell

and writing

e-PHL* = £ . • • £ e^HL • S(Si - b~d £ sci) (5.5.74)
Ki}

Here the delta-function is n-dimensional if the spins are n-dimensional.
Eqs. 5.5.73 and 74 carry out a transformation which can be expressed

as
HLb = KbUL (5.5.75)

It is called the Kadanoff transformation.
As a result of this transformation the effective number of spins in the

system is reduced by a factor b~d:

Nf = b~dN (5.5.76)

The coarse-graining resulting from the Kadanoff transformation can be
applied repeatedly to obtain Hamiltonians for larger and larger blocks, till
the correlation length is reached, and all the irrelevant variables have been
integrated out.

Kadanoff argued that, so long as the size of the block is smaller than the
correlation length, the block Hamiltonian is as good as the site Hamiltonian
for describing the system in the vicinity of the critical point, and the two
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descriptions should have the same partition function. Therefore, in view of
Eq. 5.5.76, the Gibbs free-energy densities before and after the Kadanoff
transformation should be related by

g(h,t) = b-dg(h',t') (5.5.77)

We can assume that

t' = bAt, hf = bBh, (5.5.78)

so that

g(t,h) = b-dg(b\bBh) (5.5.79)

This equation expresses the homogeneous dependence of the free-energy
density on distance. A similar expression can be obtained for the order-
parameter autocorrelation function (cf. Eq. 5.5.67).

5.5.9 Renormalization-Group Theory
Since coarse-graining to the extent of the correlation length provides a
description equivalent to that by the site-spin Hamiltonian, one can shrink
the length Lr of the block, at any stage of the iteration, back to the length
L before the application of the Kadanoff construction: I/ = L/6, or

L -+ bL' (5.5.80)

As a result of this rescaling, the spin-density changes to

s = Xbs' (5.5.81)

Kadanoff coarse-graining followed by rescaling, as above, is called a
renormalization-group (RG) transformation, and is denoted by Rb. Its ap-
plication changes the Hamiltonian as follows:

Ub = RbH (5.5.82)

The RG transformation is usually nonlinear, but the following relation
holds:

Rw = RbRv (5.5.83)

The transformations Rb form a semigroup. It is not a full group because
the inverse elements are missing.
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Fixed Points

Eq. 5.5.83 indicates that application of a large number of successive RG
transformations amounts to taking b —> oo. If the Hamiltonian tends to an
invariant value 7i* as a result of this, we can write

lim RbH = H* (5.5.84)
6—KX>

Such a Hamiltonian is called a fixed-point Hamiltonian.
At a fixed point the system is invariant to a change of length scale, im-

plying a correlation length that is either 0 or oo. And the latter corresponds
to a critical point.

The trajectory adopted by the Hamiltonian in reaching the fixed point
corresponding to a phase transition carries information about critical ex-
ponents etc. The critical exponents are the same for all systems in the
universality class defined by the critical surface containing the fixed point
(cf. Huang 1987).

We stated in §5.5.2 that the Landau theory has two main flaws, namely
neglect of fluctuations of the order parameter, and its assumption that the
free energy is an analytical function of the order parameter at the critical
point. The modification of the Landau potential by Ginzburg (§5.5.2) takes
care of the first flaw, and Wilson's RG theory takes care of the second. The
resulting Hamiltonian is commonly referred to as the Landau- Ginzburg-
Wilson (LGW) Hamiltonian.

Stable fixed points for all Hamiltonians for phase transitions involving
4-, 6- and 8-component order parameters were investigated by Hatch and
coworkers for all the crystallographic space groups (Kim, Stokes & Hatch
1986; Hatch, Kim, Stokes & Felix 1986; Stokes, Kim & Hatch 1987). All
IRs at points of special symmetry, and all LGW Hamiltonians inducing
transitions to commensurate phases were considered. In the book by Stokes
& Hatch (1988), those Hamiltonians which have a stable fixed point, and
can therefore lead to continuous phase transitions according to the RG
theory, are marked by a double asterisk in Column 7 of Table I.
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5.6 SPONTANEOUS BREAKING OF
SYMMETRY

The more theoretical physicists penetrate the ultimate secrets
of the microscopic nature of the universe, the more the grand
design seems to be ultimate symmetry and ultimate simplicity.
But all of the interesting parts of the universe, at least to us,
are, like the earth itself as well as our own bodies, markedly
complex and markedly unsymmetric. In the most elementary
sense, then, we are surrounded by "broken symmetry", the result
undoubtedly of some sequence of catastrophes.

P. W. Anderson

The laws of motion do not prefer one direction in space over any
other, but perch a ball symmetrically on the apex of a cone, and
it will surely fall in one direction or the other. All the directions
are equally probable, none has any special significance: but this
symmetry will be hidden by the particular motion that results in
any outcome governed by the law.

J. D. Barrow (1988)

The symmetry principle (Eq. C.1.6) states that the effect cannot be of
a lower symmetry than the cause. It might appear that there is a violation
of this principle when, on cooling or heating, a crystal makes a transition
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to a phase of lower symmetry. The "cause" (temperature) in this case
is apparently a scalar, and therefore isotropic, and the effect (lowering of
crystal symmetry) appears to be contrary to what we would expect from
the symmetry principle. In reality there is no violation of the principle, and
what we have here is an example of "spontaneous" breaking of symmetry
(see, for example, Boccara 1981).

The concept of temperature is of a macroscopic and statistical nature.
At a microscopic level a system undergoes thermal fluctuations (§5.5 and
§E.2). These fluctuations increase in magnitude when the temperature of
the continuous phase transition is approached. Each such fluctuation is a
symmetry-breaking spontaneous perturbation, which is not at all isotropic,
unlike the overall temperature itself. A symmetry-lowering phase transi-
tion occurs on varying the temperature if the system is unstable, rather
than stable, under such spontaneous perturbations. Thus, even though
temperature as a scalar and isotropic influence is present all through, it is
not the only underlying cause. The overall cause incorporates the perturb-
ing fluctuations also, and when these are taken into account, the symmetry
principle is salvaged, as always.

5.6.1 Continuous Broken Symmetries; Goldstone
Modes

Physical laws might have more symmetry than physical states.

L. Michel (1981)

The spontaneous breaking of symmetry, or the spontaneous emergence
of an order parameter which breaks the symmetry of the parent configura-
tion, is a central feature of most of the phase transitions. The symmetry
broken may be either continuous or discrete. The notion of broken symme-
tries and of symmetry-restoring fluctuations called Goldstone modes, was
first put forward for the case of continuous broken symmetries (Goldstone
1961).

To understand the basic ideas involved, consider a system with a La-
grangian density C. Let GO be the (continuous) symmetry group of the
system, so that £ is invariant under its operations. The system may have
either a single nondegenerate ground state, or more than one degenerate
ground states. In the former case the single-valued ground state is invariant
under the operations of GO, and has the same symmetry as the Lagrangian
density. For example, the s-state of a free atom possesses the full spherical
symmetry of the potential.

However, if the system possesses degenerate ground states, then the
possibility becomes available that some operation(s) of GO will transform
one such state to another, rather than leaving it invariant. We then say
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that the symmetry of the Lagrangian density is spontaneously broken in
this state.

Goldstone's theorem (in the nonrelativistic limit) states that when a
system has spontaneously broken symmetry of the type described above,
long-wavelength (|k| —» 0) excitations exist, with a mode of frequency u;(k)
which tends to zero in the limit k —> 0. This zero-frequency mode (the
Goldstone mode) constitutes the limit of a continuous spectrum cj(k) of
modes, the energy of which increases with increasing k .

Such considerations have played, and continue to play, a crucial role
in the development of high-energy physics (see e.g. Mannheim (1986) and
Gross (1995) for reviews).

Application of similar ideas to condensed-matter physics can be traced
back to the work of Landau (see Anderson 1981; Chaikin & Lubensky
1995). The group GO introduced above now describes the symmetry of a
medium that is anisotropic, homogeneous, time-symmetric, and, in certain
cases, invariant under spin-rotations etc. As pointed out by Landau, the
symmetry of a particular ground state of the condensed-matter system is
often lower than GQ. An example is the symmetry of the ground state of
a crystal of ice, compared to that of the liquid water from which it formed
on freezing. The loss of translational and rotational symmetry of the fluid
leads to the occurrence of u(k —> 0) —* 0 acoustic phonons.

Apart from the existence of such long-wavelength low-frequency dy-
namical modes, there are two other consequences of the spontaneous break-
ing of a continuous symmetry. One is the existence of a rigidity (e.g. the
elastic modulus), and the other is the existence of topologicd defects (dis-
locations) in the broken-symmetry phase (see Chaikin & Lubensky 1995).

Landau (1937a, b, c, d) paid special attention to those situations in
which the symmetry G of the ground state is a proper subgroup of GO, and
made the following very important observation:

Symmetry cannot change continuously.

Anderson (1981) calls this the First Theorem of condensed matter physics.
Landau also introduced in a general way the notion of the order pa-

rameter, a new thermodynamic variable the emergence of which at a phase
transition heralds the broken-symmetry situation.

The magnitude of the order parameter is a measure of not only the
degree of broken symmetry, but usually also of the degree of ordering of the
system.

We consider now the example of a Heissenberg ferromagnet to illustrate
some of the key features of such a broken-symmetry situation. Instead of
treating the ferromagnetic phase as arising through a phase transition from
a paramagnetic phase, we take the initial symmetry to be the continuous
symmetry of the molten state of the material.
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The ferromagnetic phase is governed by the Hamiltonian (cf. Eq.
5.5.61)

H = - ]T Jw si - si/ (5.6.1)
<uf>

Here Si and s^/ are spin operators on sites / and /', and Jw denotes the
exchange interaction between spins on these two sites.

In the ferromagnetic phase, stable below a temperature Tc, a spon-
taneous magnetization M appears which has a certain specific direction
locally, and there is thus a breaking of the initial isotropic symmetry GQ.
However, all possible orientations of M correspond to the same energy,
and a normal mode costing zero energy to excite can therefore exist, which
results in the precession of the magnetization as a whole. This is the spin-
wave mode with w(k = 0) = 0.

There exists thus a symmetry-restoring mode (corresponding to the
precession of the magnetization as a whole) which sends the system through
the entire set of degenerate states, and which costs zero energy to excite.

We note that this becomes possible because the broken symmetry is
described by a continuous group, so that there are an infinite number of
minima (ground states) for the free-energy density g. The separations of
these minima in configuration space are arbitrarily small because GO is a
continuous group, and the symmetry operators of GO lost on the formation
of the ferromagnetic phase are the operators that map one such ground
state to another.

Now the general condition for a minimum of to occur is (cf §5.3.12)

0 > 0 (5.6.2)

Here 77 is the order parameter of the phase transition. Since the various
minima are infinitesimally close to one another, we must have, for T < Tc:

W = ° (5-6'3)

Fig. 5.6.1 depicts the difference between the situations described by
|̂ f > 0 and |̂ f = 0. In both cases f| = 0 at r/ = 770, but in the latter

case even the rate of variation of |̂  is zero at 77 = 770; g(rj) has a flat bottom
in the latter case.

Since the frequency u; of a mode is determined by the relationship

«> ~ 0, (5.6.4)

the frequency of the symmetry-restoring fluctuation is thus also zero for all
T <TC.
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Figure 5.6.1: Dependence of free-energy density g on order parameter 77. In
both (a) and (b) a minimum occurs at rj = 770- In (b), however, even the
second derivative of #(77) is zero at 77 = 770-

5.6.2 Discrete Broken Symmetries
In the case of a transition from one phase of a crystal to another, the initial
or prototype symmetry is described by a discrete symmetry group. The
extension of the broken-symmetry ideas to such cases was carried out by
Blinc & Zeks (1974).

The fact that the initial symmetry group GO is a discrete group makes
the following qualitative difference to the situation: There is now only a
finite number of minima of the function #(77). These minima, as before, can
be mapped onto one another by those symmetry operators of GO which are
lost on transition to the ferromagnetic or some other daughter phase. As we
approach Tc from below, the magnitude of the order parameter decreases,
and correspondingly the discrete minima come closer. If we are dealing
with a continuous phase transition, uj —> 0 continuously as T —> Tc from
below, and the minima of #(77) merge into a single minimum at T = Tc.

It is important to note that we once again have the situation where
d2g/drj2 = 0, albeit only at T = Tc (and not for all T < Tc, as is the case
for continuous broken-symmetry). Thus:

For a continuous phase transition in a crystal, occurring at a
temperature Tc, there is no difference at T = Tc between the
breaking of a continuous symmetry and a discrete symmetry.

For T < Tc, however, the difference is of a fundamental nature. For
the case of continuous broken symmetry, u;(k) is still zero at k = 0 (Fig.
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Figure 5.6.2: Dispersion curves for symmetry-restoring normal modes for
T <TC. Curve (a) is for the case of continuous broken symmetry, and curve
(b) for a discrete broken symmetry. [After Blinc & Zeks (1974).]

5.6.2a). By contrast, for the case of discrete broken symmetry the frequency
of the symmetry-restoring mode is no longer zero at k = 0 (Fig. 5.6.2b).
This frequency does, of course, go to zero as T -» Tc for a continuous phase
transition. To summarize the above reasoning:

For a continuous phase transition, the existence of a mode of
nonzero frequency, which becomes zero as T —> Tc, is a con-
sequence of the breaking of a discrete symmetry (Blinc & Zeks
1974).

The symmetry-breaking mode of the high-temperature phase becomes
the symmetry-restoring mode of the low-temperature phase, provided the
soft mode above Tc is nondegenerate. If it is degenerate, it splits into a
number of modes when the symmetry is lowered at the phase transition,
and the symmetry-restoring mode is then a linear combination of all these
modes.

When a discrete symmetry is broken, there are only a finite number of
ground states in the lower-symmetry phase, and there are, in general, no
low-frequency excitations taking the system from one such state to another.
Domain walls can be regarded as the elementary excitations separating the
distinct ground states. There are no low-frequency hydrodynamic modes
or low-energy excitations characterized by a rigidity, as there are for cases
of breaking of continuous symmetries (see Chaikin & Lubensky 1995).
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5.7 DISCONTINUOUS PHASE
TRANSITIONS

In the context of the Landau theory of phase transitions, a continuous
transition is one for which the order parameter rises continuously from
the value zero as the system is taken away from the critical point into
the ordered phase. Transitions for which the order parameter acquires a
nonzero value in a discontinuous manner are called discontinuous phase
transitions.

Two fundamentally different types of discontinuous transitions can be
identified: those for which Guymont's nondisruption condition is obeyed
(§5.1.1), and those for which it is not. For the former category, i.e. for
NDPTs, the formalism of the Landau theory is applicable. For the latter
category, which includes the so-called reconstructive phase transitions, as
also most of the martensitic phase transitions, an order parameter cannot
be defined in terms of the conventional Landau theory.

5.7.1 Nondisruptive Discontinuous Transitions
The classical Landau theory is applicable to NDPTs. If any of the con-
ditions described in §5.3 is violated, it can only be a discontinuous or a
first-order transition. We describe here some thermodynamic aspects of
such transitions.
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We start with Eq. 5.3.13, which can be rewritten as

[a'(T - To) + brj2 + crf\n = 0 (5.7.1)

Here TO is the stability limit of the higher-symmetry or disordered phase.
And the coefficients a1 and c are positive.

We have already considered in §5.3 the cases when b > 0 (continuous
transitions), and 6 = 0 (tricritical points). We now take up the case when
6 < 0 .

Apart from the solution 77 = 0 (which corresponds to the disordered
phase), Eq. 5.7.1 has two real solutions:

* = ± [-£ (l + V/I-^£(T-TO))] 2 ' (5-7-2)

and

,-±[4(i-V'-35<r-*w)] <'.«>
The solution given by Eq. 5.7.3 can be discarded. It corresponds to a

free-energy maximum, rather than a minimum.
We next determine the stability limit of the ordered phase. It is deter-

mined by the condition expressed by Eq. 5.3.11. We rewrite it here, after
assuming that [3 = 0, although the Landau condition (§5.3.12) does not
require this for a discontinuous transition:

Xrl = |4 = a + 36r?2 + 5c7?4 > ° (5-7'4)

Note that, unlike for continuous phase transitions, we have not assumed
here that c = 0. This is because a = 0 at the transition point, and b < 0;
therefore Eq. 5.7.4 can be satisfied only if c > 0.

Substituting Eq. 5.7.2 into 5.7.4 we obtain

tf' - £ \A-^(T-ro) [^-^(T-Ti) + l] (5.7.5)

The stability limit of the ordered phase is the temperature (T0~) above
which Xr1 ls no longer positive, i.e. Xr1 (^ ~ ^o~) = 0. Eq. 5.7.5 gives

T0- = To + ̂  (5.7.6)

Thus TJ~ does not coincide with the stability limit TO of the disordered
phase, and is higher than it. [We have assumed implicitly that the transition
to the ordered phase occurs on cooling, rather than on heating.] Thus:
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Figure 5.7.1: Temperature dependence of the order parameter for a discon-
tinuous NDPT. See text for details.

For a discontinuous NDPT, the stability limits of the disordered
phase and the ordered phase do not coincide.

If the two stability limits do not coincide, what is the phase transition
temperature? It is the temperature Tc at which the free-energy curves of
the two phases cross (cf. Fig. 1.1.1). It can be shown that (cf. Blinc &
Zeks 1974):

T- = T° + 7 TT (5'7'7)4 4a'c

As we cool the crystal from the disordered phase, we have 77 = 0 up to
T = Tc because Tc is greater than the stability limit TO of the disordered
phase. At Tc, 77 (discontinuously) rises to a nonzero value because the
ordered phase has a lower free energy for T < Tc, and the ordered phase is
stable for temperatures less than TQ~, and Tc < T0~. Fig. 5.7.1 illustrates
the relative values of the various temperatures involved.

Between the temperatures TO and T^~ the two phases coexist. Co-
existence of phases in a certain temperature range is a typical feature of
discontinuous NDPTs3.

5.7.2 Disruptive Discontinuous Transitions
We define disruptive phase transitions (DPTs) as those which violate Guy-
mont's nondisruption condition (§5.1.1). They are necessarily of first order.

3It is important to point out here that, although there is a range of temperatures
over which the two phases coexist, there is still a sharp transition at a temperature Tc.
By contrast, in certain systems a diffuse transition occurs for which there is a range of
Tc values. We consider ferroelectric transitions of this type in §10.3.
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They include all reconstructive transitions. Most of the martensitic transi-
tions are also of a reconstructive nature, and are therefore DPTs (cf. Fig.
5.2.2).

The classical Landau theory cannot be applied to DPTs. This is be-
cause they not only do not display a group-subgroup relationship between
the phases involved, they do not permit the postulation of a prototype
symmetry in the strict sense in which we have defined this concept in §5.1.

Are such transitions amenable to symmetry analysis at all? This ques-
tion can be answered in the affirmative, particularly in view of the work
of Toledano, Dmitriev and colleagues over the last decade (for some of the
more recent accounts of this work, see Toledano & Dmitriev (1993, 1995,
1997) and Dmitriev & Toledano (1994)). They introduce a nonlinear (tran-
scendental) "order parameter" in terms of stationary density waves which
depend on the variational parameter associated with the mechanism of the
transition. Emergence of such an order parameter results in a drastic up-
heaval of the crystal structure, and for certain specific values of the atomic
displacements new crystallographic symmetry elements can arise. [Inci-
dentally, this is a real-life example of the phenomenon of symmetrization
depicted in Fig. C.2.I.] Needless to say, change of coordination numbers of
atoms is the rule, rather than the exception.

An early attempt to rationalize symmetrization in a reconstructive ph-
ase transition was made by Cahn (1977) for explaining the fcc-bcc transition
in the element Fe (also see Wadhawan (1985)). Cahn explained the origin
of new symmetry elements in Fe crystals in terms of the dominant lattice
strain characteristic of a martensitic transition (cf. Chapter 11). Emer-
gence of the martensitic phase in the matrix of the parent phase leads to
a large strain field. In accordance with the Curie principle, the net sym-
metry of the martensitic phase is the intersection of the symmetry of the
unstrained martensitic phase and the symmetry of the strain field. The
latter is either D^h or D^h- Therefore, normally the net symmetry of the
strained phase cannot be higher than D%h or D^h, of which it is a sub-
group. This can be called the process of subgroup formation, and is the
same as the process of dissymmetrization described in Appendix C.

According to Cahn (1977), the opposite process of supergroup forma-
tion, or symmetrization, occurs in the case of Fe as follows: The atom-
by-atom correspondence between the two phases of Fe is given the usual
explanation for martensitic transitions, namely in terms of a unit-cell trans-
formation, a homogeneous strain (the "Bain strain"), and "shuffles" (i.e.
a periodic inhomogeneous strain). To understand the occurrence of the
4-fold axes of the bcc phase, the Bain strain is assumed to have symmetry
Dooh (rather than D^h), with its unique axis parallel to a 4-fold axis of
the fee phase. Under the action of this lattice strain only this 4-fold axis
survives. The other two 4-fold axes of the bcc phase cannot arise unless
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some additional mechanism is invoked. In the absence of such a mecha-
nism, the resultant symmetry should be D^h (body-centered tetragonal,
bet), and not bcc. The bcc structure can arise as follows: The c/a ratio of
the bet structure is also a function of the additional strain experienced by
the growing embryo because of the crystalline environment. For a certain
special configuration of the strain the c/a ratio can become unity and the
four 3-fold axes necessary for the bcc structure can appear.

A similar analysis of the sequence of transitions in Fe has also been
carried out by Toledano & Dmitriev (1993) in terms of the periodic char-
acter of the strain, which can be described in terms of the angle between
the diagonals in the (110) cubic plane. Symmetry enhancement for special
values of this angle is rather like that depicted in Fig. C.3.1 for a geomet-
rical example. The "order parameter" in Toledano & Dmitriev's formalism
is a sine function of this angle.
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5.8 TRANSITIONS TO AN
INCOMMENSURATE PHASE

Incommensurate phases of crystals were described in §2.4 and 4.1.5. If
the Lifshitz condition (§5.3.9) is not obeyed, we have a phase transition to
an incommensurate phase.

Usually an incommensurate phase (/-phase) is straddled by a parent
phase (P-phase) on the higher-temperature side and a commensurate (C)
phase, or a lock-in phase, on the lower-temperature side. In other words,
on cooling, the crystal undergoes the following sequence of transitions:

P ^ I ^ C (5.8.1)
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Here TI is the temperature of transition to the /-phase, and Tc is the tem-
perature at which the crystal locks-in to the C-phase.

The P-phase can be regarded as the prototypic phase for the lower-
symmetry phase C commensurate to it, and a standard Landau-theory
analysis can be carried out for the hypothetical P-C phase transition in
terms of an order parameter labelled by a specific wavevector index k. By
contrast, the wavevector associated with the /-phase is not unique; it is
strongly temperature dependent. The /-phase is therefore described by
a continuous set of order parameters, which can often be interpreted in
terms of a spatial modulation of the order parameter associated with the
hypothetical P-C transition.

The spatial modulation of the order parameter can be modelled by
including gradient invariants of the order parameter in the Landau expan-
sion. According to the Lifshitz condition of the Landau theory (§5.3.9),
such antisymmetric invariants (invariant with respect to the operations of
the symmetry group of the P-phase) must be identically equal to zero if
a phase transition is to be continuous and commensurate (cf. Kopsky &
Sannikov 1977).

If the Lifshitz condition is not obeyed, a continuous phase transition
associated with a given IR does not occur. What occurs is an incommen-
surate transition associated with some other IR.

The temperatures T; and Tc in Eq. 5.8.1 usually differ by only a few
degrees. Why do some crystals pass through an /-phase, rather than mak-
ing a transition directly from the P-phase to the C-phase ? The answer lies
in the coupling between competing transition parameters. This is particu-
larly easy to visualize in terms of the soft-mode theory of phase transitions
(§5.4). The various normal modes of vibration couple with one another
to small or large extents. For example, a so-called improper ferroelectric
transition occurs, not because the order parameter has the symmetry of
a polarization component P, but because the order parameter, say (??,£),
couples with P, and an invariant term of the type rj£P is allowed by sym-
metry in the Landau expansion. Similarly, the emergence of an internal
macroscopic electric field associated with spontaneous polarization P may
have the effect of splitting a phase transition, which would have otherwise
occurred at a single temperature, into two neighbouring transitions because
of the removal of degeneracy (Dvorak et al. 1975). /-phases may arise for
similar reasons, except that the coupling terms are not of the type r?£P,
but rather involve gradients (cf. Eq. 5.8.2 below).

Incommensurate transitions can be classified in terms of the forms of
the gradient invariants that can occur in the Landau expansion (Sannikov
1993). The inclusion of such gradient invariants in the Landau-Ginzburg
expansion amounts to allowing the order parameter to be spatially inhomo-
geneous. This approach was adopted for magnetic helicoidal structures by
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Dzyaloshinskii (1964a, b, c), and for ferroelectrics by Levanyuk & Sannikov
(1976).

The most important gradient invariant is the Lifshitz invariant (or L-
invariant):

° (% - •>§) ™
It corresponds to a 2-component complex order parameter (77, £), transform-
ing according to a 2-dimensional IR of the P-phase. An /-phase arising from
an L-invariant is described as Type I. For it, 77 and £ belong to the same
IR, and the gradient invariant is linear in the spatial derivatives.

Gradient invariants are, however, possible for which 77 and £ belong to
different IRs, and only one of them (say 77) is the order parameter. These
have been called Lifshitz-type invariants, or LT-invariants, and the /-phase
resulting from their existence is called Type II.

Other types of /-phases have been described by Sannikov (1993).
The presence of an L-invariant or an LT-invariant term in the Landau-

Ginzburg expansion implies that the free-energy minimum at the transition
point occurs, not for transition to a commensurate phase, but to a phase
(the /-phase) with inhomogeneous displacements. By 'inhomogeneous dis-
placements' we mean that no two unit cells of the P-phase undergo the
same atomic displacements.

So much for the P-I transition. To account for the I-C transition (Eq.
5.8.1), we must include at least one more term which reflects the variation
of the wavevector. It has the general form (77n±£n), with n determining the
translational symmetry of the C-phase. It can be rewritten as pn cos n0,
and is called the anisotropic term because of its 0-dependence.

Near Ti (the temperature of the P-I transition) the amplitude p of the
anisotropic term is small, and the solution minimizing the Landau-Ginzburg
potential is sinusoidal.

As the temperature is decreased further, i.e. towards Tc, there is a com-
petition between the //-invariant term and the anisotropic term, resulting in
a change of the wavevector, and of the form of the modulation. Near Tc the
modulation corresponds to wide domain-like regions of the C-phase, sepa-
rated by narrow, shrinking, regularly-spaced, and transient "domain walls"
(called discommensurations). Finally, below Tc the structure acquires the
normal domain structure determined by the lost symmetry operators of the
P-phase.
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5.9 INFLUENCE OF IMPURITIES ON
STRUCTURAL PHASE
TRANSITIONS

Real crystals are never perfect. The defects present may be of physical
or chemical nature. We briefly review here the effect of low-concentration
(less than 1 mole percent) impurities or dopants on the nature of phase
transitions. Only structural phase transitions are considered here. The
corresponding question in magnetic systems (spin glasses etc.) is discussed
in Chapter 9.

The influence of impurities on a structural phase transition depends on
a large number of factors, and the overall situation can be too complicated
and diverse for a general theoretical analysis. Nevertheless some common
trends can be seen for relatively simple, idealised, situations.

The classic paper by Halperin & Varma (1976) can be taken as marking
the beginning of the present sophisticated theoretical analyses of the effect
of defects on structural phase transitions. In general terms, the location
of the defect in the crystal determines the nature of its coupling with the
order parameter of the transition. The defect site may be interstitial or
substitutional. And the defect may be either able to 'relax', or it may be a
'frozen' defect. In the former case it may order itself in a way that tends to
match with the orientation of the order parameter, causing a 'stabilization'
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of the daughter phase, i.e. increasing the value of Tc. The opposite may
often occur in the case of frozen defects, although the net outcome is a
function of many parameters like: the time scale of the defect dynamics;
whether or not the defect breaks the symmetry of the parent phase; the
relative size of the defect; the average distance between defects; the nature
of their interactions; etc. (Levanyuk & Sigov 1988).

Taking the results of conventional Landau theory as benchmarks, the
influence of impurities and other defects in concentrations as small as ~ 1018

defects/cm3 may be more important than that of critical fluctuations, so
far as the various anomalies related to the structural phase transition are
concerned (Lebdev, Levanyuk & Sigov 1984).

Fig. 5.4.2 provides an example of this. Prom Vegard's law one would
expect that, at least for very low values of impurity or dopant concentration
x, Tc would vary linearly with x. What we see instead is a saturation effect
or plateau effect (Salje, Bismayer, Wruck & Hensler 1991c; Salje 1993a,
1995b; Redfern & Schofield 1996; Hayward & Salje 1996).

According to Salje (1995b) the plateau effect, which occurs typically
for 10~4 < x < 10~2, can be expected for practically all solid solutions.
Its main basis is that, for very low values of x, the disturbance caused
to the crystal structure may have a large local component (around the
solute atom), rather than a strong long-ranged component encompassing
the entire crystal. The result is the occurrence of short-ranged random
fields, with competing interactions, a situation amenable, for example, to
random-field Ising modeling (Imry & Ma 1975).
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Chapter 6

CLASSIFICATION OF
FERROIC MATERIALS.
FERROGYROTROPY

In this chapter we describe a macroscopic (or thermodynamic) classification
of ferroic materials, based mainly on the work of Aizu (1970a, 1970b, 1972a,
1973a). The concept of prototype symmetry (§5.1) plays a central role in
this scheme.

The notions of optical and acoustical ferrogyrotropy were not included
by Aizu in his formalism for ferroic materials. They were defined formally
by Wadhawan (1979, 1982), and have their practical utility. Their recog-
nition and formulation as distinct physical properties enables us to evolve
a complete picture of ferroic materials. We discuss ferrogyrotropy in a
separate section in this chapter.

6.1 FERROIC SPECIES
A ferroic phase of a crystal arises as a result of an actual or notional lowering
of the point-group symmetry of the prototype. Since a point group can, in
general, have more than one nontrivial or proper subgroups, a number of
distinct group-subgroup pairs are possible for each prototype point group.
Each such pair can describe a possible ferroic species (or Aizu species, as
we call it sometimes). Aizu (1970a) derived 773 possible species of ferroic
phases of crystals (212 of which are nonmagnetic) by making the following
three stipulations:

• Every time-symmetric point group can become the prototype point
group in some species of ferroic crystals.

189
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• When a prototype point group is specified, every proper subgroup of it
can become the ferroic point group in some species with this prototype
point group.

• When a prototypic and a ferroic point group are specified, all different
ways in which the elements of the ferroic point group correspond to the
elements of the prototype point group give so many possible species.

A time-symmetric point group is one which includes time inversion as
one of its elements.

Aizu's (1970a) derivation of the 773 ferroic species involves a straight-
forward enumeration of all the distinct subgroups of the various prototype
point symmetries. A more compact and instructive approach to this prob-
lem can be through the use of irreducible property tensors (Jerphagnon,
Chemla & Bonneville 1978; Paquet & Jerphagnon 1980; Kopsky 1979a,b).

6.1.1 Aizu Symbol for Ferroic Species
According to Aizu (1970a), ferroic crystals are said to belong to the same
species if they have the same point-group symmetry, the same prototype
symmetry, and the same correspondence between the symmetry elements of
the prototype and ferroic point groups. He therefore introduced a compact
symbol for each ferroic species, in which the letter F (standing for "ferroic")
is put in the middle, the point group of the prototype is written at the left
of F, and the point group of the ferroic phase is written to its right.

An example of the Aizu symbol is AlmVFm'm'l. The symbol to the
left of F has 1' included in it to denote the fact that the prototype is time-
symmetric. The prototype is always time-symmetric, and it is customary to
drop V from the full Aizu symbol when dealing with nonmagnetic ferroics.

In the above example there is no ambiguity about the fact that the
mf planes of the ferroic phase can only correspond to the m' planes of the
prototype, and the 2-fold axis of the ferroic phase can only originate from
the 4-axis of the prototype.

An ambiguity can, however, arise in certain cases. An example of this
is the symbol 42ral'F2'. The 2'-axis of the ferroic phase may correspond ei-
ther to the principal axis (the 4-axis) of the prototype, or it may correspond
to one of the 2'-axes perpendicular to the principal axis. One makes this
distinction by writing the Aizu symbol for the former case as 42ral'F2'(p),
and for the latter case as 42ral'F2'(s), where p stands for "principal" and
s for "side".

As emphasized by Aizu (1970a), these two situations provide two dis-
tinct ferroic species.
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6.1.2 Orientation States
The change of directional or orientational symmetry at a ferroic phase tran-
sition implies that, in the ferroic phase in question, the crystal must have
at least two equivalent states which have the same atomic structure, and
differ only in their orientation (Fig. 1.1.2) (and possibly chirality) . Aizu
(1962, 1969a) called them orientation states.

Since the prototype point-group symmetry P0 is, by definition, a proper
supergroup of the point group P of the ferroic phase, the validity of the
following theorem (Aizu 1970a; Janovec 1972) is almost self-evident:

The number (rid) of possible orientation states of a ferroic crystal equals
the order of the prototype point group divided by the order of the ferroic
point group:

n*=™\ (6'L1)

6.1.3 F-Operations
In Eq. 6.1.1, n^ > 2 always. Let us first consider the case when rid = 2.
This means that a point operation p% exists (p2 $. P, P2 £ PQ) such that

Po = P + PiP (6.1.2)

In this case there are two orientation states of the ferroic crystal. Let us
call them Si and 82- We can take either of them (say Si) as the "initial"
state. The other state (82) is then obtained (under the PC A, cf. §5.1.2)
by applying the operator p2 on Si. This is an example of an F-operation,
with F standing for "ferroic" (Aizu 1970a).

In the general case, when rid > 2, Eq. 6.1.2 becomes

Po = piP + PiP + • • • + PndP (Pi = 1) (6.1.3)

In this coset decomposition, pi, P2? • • 'Pnd (& P, except for pi) consti-
tute a representative set of F-operations. The choice of the members of this
set is not unique.
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6.2 MACROSCOPIC CLASSIFICATION OF
FERROIC MATERIALS

Tensor properties like polarization, magnetization, strain, and compliance
have translational invariance. Therefore it is not necessary to invoke the
full space-group symmetry of the crystal for describing such properties,
and it is sufficient to work at the point-group level. Since, by definition,
a transition to a ferroic phase always involves a lowering of the prototype
point symmetry, ferroic phases can be adequately classified in terms of their
tensor properties.

6.2.1 Thermodynamic Considerations
Let us consider a ferroic crystal under the influence of an external electric
field (Ei], a magnetic field (Hi), and a uniaxial stress (a^) (i, j = 1,2,3).
Its generalized Gibbs free-energy density can be written as follows (Cady
1946; Nye 1957; Newnham 1974):

g = U-TS- EiDi - HiBi - a^-e^- (6.2.1)

Here 5 denotes entropy, Di the electric displacement, Bi the magnetic
induction, and e^ the strain.

From the first law of thermodynamics, if a small amount of heat, dQ,
flows into a unit volume of the system, and a small amount of work, dW,
is done on it by the external forces, then the increase in its internal energy
U is a perfect differential, given by

dU = dW + TdS, (6.2.2)

where we have replaced dQ by TdS, in accordance with the second law of
thermodynamics for a system undergoing a reversible change.

The work done per unit volume can be written as

dW = EidDi + HidBi + Vijdeij (6.2.3)

Differentiating Eq. 6.2.1, and substituting from Eqs. 6.2.2 and 6.2.3, we
get

dg = -SdT - DidEi - BidHi - e^da^ (6.2.4)

Since we have taken T, (Ei), (Hi) and (<jjj) as the independent variables
on which g depends, we can write

dg =

(dg\ JT±(d9\ w+(99\ w±(99\ A\~&r] dT+( — I dEi +{ —— dHi+( -— dv^
\dTJE,H,a \dEi/H,a,T \9Hi/E,^T \d^}JE,HT

(6.2.5)
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Comparing Eqs. 6.2.4 and 6.2.5, we get

S - - (I) <**<>\0± / E,H,a

A = - (i-) (̂ .7)
\°EiJ H^T

A = - Q|) (6.2.8)
\oHlJ E(jT

e, = - (^-} (6.2.9)
\^ij/ EtH,T

Eqs. 6.2.6 to 6.2.9 provide precise definitions of the dependent variables
5, (Di), (Bi) and (e^-) when interplay between the various thermodynamic
quantities has to be recognized explicitly.

We now write the electric displacement A as a sum of a spontaneous
part D(8)i, if any, and the induced parts that may arise from the presence
of external fields:

A = D(a)i + CijEj + OLijHj + dijkajk + • • • (6.2.10)

Here e^, o^- and d^fc are elements of, respectively, the dielectric permit-
tivity tensor, the magnetoelectric tensor, and the piezoelectric tensor. We
ignore higher-order contributions to the induced electric displacement vec-
tor, involving higher powers of E, H and a and the cross terms between
them.

Contributions to the total magnetic induction can be described simi-
larly:

Bi = B(s}i + frjHj + aijEj + QijkVjk + • • • (6.2.11)

Here inj and Qijk are, respectively, the magnetic permeability and piezo-
magnetic coefficients.

The contributions to the strain term in Eq. 6.2.4 are:

eij = e(8)ij + Sijkicrki + dkijEk + QkijHk + • • • (6.2.12)

Here Sijki are coefficients of the elastic-compliance tensor.

It should be noted that we have used the same tensor coefficients o^
in Eqs. 6.2.10 and 6.2.11, the same dijk in Eqs. 6.2.10 and 6.2.12, and the
same Qijk in Eqs. 6.2.11 and 6.2.12. The justification for a^, for example,
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can be obtained readily as follows. We differentiate Eq. 6.2.7 with respect
to Hji

( d*9 \ (dDi\ (f{()^~ I WfTWp I = (WfT I (6.2.13)
V °HJ °&i J <r,T V °H3 / <r,T

Next, we change the index i to j in Eq. 6.2.8, and differentiate it with
respect to Ei\

-(ww) =(H) (6-2-14'V V&i vUj J <T,T \ °̂  / <r,T

Since the left-hand side in Eqs. 6.2.13 and 6.2.14 is the same, we get

(w) -($0 ••S- (6-2-I5>\°HjJ<T,T \dEiJa,T

which means that the coefficients of the magnetoelectric tensor are numer-
ically the same as those of the converse magnetoelectric tensor.

Similarly, the coefficients of the converse piezoelectric-effect tensor can
be shown to be numerically equal to those of the direct-effect tensor:

( Q29 \ _ (^\ _ (9D,\ = T

~ (daijdEk)TtH ~ (dEk)H,T ~ UJ*.T ~ ^ ( }

Lastly, for the piezomagnetic tensor we have the following equivalence
relationship:

_ (-*i—\ = (°«L\ = (°*!L\ =QT (6217)
{davdHkJ^ \dHk)E^T \datjEtT ~ ^kij (" <}

6.2.2 Tensor Classification of Ferroics
Let us consider any pair (Si, 82) of the orientation states of a ferroic crystal.
For Si we can write the free-energy density, dpi, as given by Eq. 6.2.4, with
Eqs. 6.2.10-12 providing the detailed contributions to D$, Bi and e^. The
expression for dgi can be integrated to obtain an expression for the free-
energy density gi for the orientation state Si. A similar expression can be
obtained for g% for state S%.

The difference A# (= g% — gi) has the following form:

- A0 = &P(8)iEi + &M(s]iHi + AetfijVij +

-AeijEiEj + -AfrjHiHj + -Asijkiaijcrki +

ActijEiHj + MijkEi(Tjk + AQijkHiajk +

^OijkEiEjEk + • • • (6.2.18)
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In writing this equation we have made use of the fact that D^L =
eo-Ei + P/L^ for orientation state Si, and D^L = eo#; + P/s

2A for orientation

state S2, so that £>gj. - £>gj. = Pg. - pg. = AP(a)i. Similarly, ft =
^#i 4- Mi by definition, and AS(s)i = AM(s)j. AP(s)i thus denotes the
difference (with proper sign) between the values of the 2th component of
spontaneous polarization between orientation states 82 and Si. Similarly
for the other difference terms in Eq. 6.2.18. The 0^ in this equation are
components of the third-rank electric permittivity tensor.

Eq. 6.2.18 is of central importance in the theory of ferroic materials. It
provides the basis for the classification of these materials in terms of their
tensor properties. We describe this classification now.

Full and Partial Primary Ferroics

If for at least one pair of orientation states, we have AP(s)i ^ 0 (for one or
more values of i), the crystal is said to be a ferroelectric. [One can make
a further distinction between actual and potential ferroelectrics, depending
on whether or not it is possible to switch (reverse, or reorient by discrete
amounts) the spontaneous polarization by applying an electric field lower
than the electrical breakdown limit under "reasonable" experimental con-
ditions. However, our definition of prototype symmetry and ferroic phase
transitions in terms of the nondisruption condition is so strict that it is un-
likely that the need for a distinction between actual and potential ferroics
will ever arise.]

If AP(s)i is nonzero for all pairs of orientation states, the crystal is said
to be a in a full ferroelectric phase. If for at least one pair of states (but not
all), AP(s)i = 0, i = 1,2,3, the crystal is said to be in a partial ferroelectric
phase (Aizu 1970a, 1973a, Litvin 1984).

Full and partial ferromagnetics can be defined similarly by reference to
the AM^ term in Eq. 6.2.18.

If there are at least two orientation states which differ in at least one
component of the spontaneous strain tensor, i.e. Ae(s)^ ^ 0, the crys-
tal is said to be in a ferroelastic phase. Like the distinction between real
and potential ferroelectrics, we could impose the additional requirement of
switchability of spontaneous strain for calling a crystal a ferroelastic. How-
ever, it is not very likely that a ferroelastic phase which arises in conformity
with the nondisruption condition would resist ferroelastic switching, except
perhaps when it is at a temperature far removed from the temperature of
the ferroelastic phase transition.

If no two orientation states of the ferroelastic have all their correspond-
ing nonzero spontaneous strain components identical, it is called a full ferro-
elastic] otherwise it is a partial ferroelastic.
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Ferroelastics, ferromagnetics, and ferroelastics are called primary ferro-
ics. For them, A<? is a linear function of either E, or H, or a.

Secondary Ferroics

There can be six types of secondary ferroics:

Ferrobielectrics (A# ~ E"2);

Ferrobimagnetics (A# ~ H2)-,

Ferrobielastics (A# ~ cr2);

Ferromagnetoelectrics (A# ~ ##);

Ferroelastoelectrics (A# ~ crE);

Ferromagnetoelastics (A</ ~ crff).

For secondary ferroics, A# varies either as the square of the external
field, or as one of their pairwise products.

In a ferrobielastic there is at least one pair of orientation states for which
Asijki 7^ 0 (cf. Eq. 6.2.18). A ferrobielastic is said to be only potentially
so until a change of one orientation state to another ("switching") has been
demonstrated experimentally by applying a suitable uniaxial stress to the
crystal (at a suitable temperature) without causing its rupture.

Full and partial ferrobielastics are defined in a way similar to that for
primary ferroics.

Ferrobielectrics and ferrobimagnetics are defined in terms of Ae^ and
A//ij respectively. Both (e^) and (Hij) are polar second-rank tensors, and so
is the spontaneous strain tensor (e^). Therefore, ferroelastic state shifts are
always conterminous with ferrobielectric and ferrobimagnetic state shifts,
although the former are brought about a uniaxial stress and the latter by
E2 or H2.

If for at least two of the orientation states of the crystal, one or more
of the magnetoelectric tensor components, a^, have different values, and if
switching between the two states can be effected by a suitable combination
of EI and Hj, the crystal is said to be in a ferromagnetoelectric phase.

We note that even when o^- ^ 0 in Eq. 6.2.18 for a pair of orientation
states, its contribution to A# would be zero if either EI or Hj is zero.
The electric and the magnetic fields must be applied simultaneously for
ferromagnetoelectric state shifts to occur.

We note further that a ferromagnetoelectric phase of a crystal need not
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also be a ferromagnetic-ferroelectric phase at the same time. The latter
corresponds to the simultaneous presence of terms AM(s)ij- and AP(S)^
in Eq. 6.2.18, and this may happen with or without the presence of the
ActijEiHj term governing ferromagnetoelectric behaviour.

Ferroelastoelectrics are defined in terms of Ad^, and ferromagnetoe-
lastics in terms of AQijk-

Tertiary Ferroics

For tertiary ferroics,

A# - E3, #3, a3, E2a, E2h, Ea2, EH2, EaH, • • • (6.2.19)

For example, ferrotrielastics would be ferroics in which state shifts in-
volve changes of free energy (or overcoming of enthalpy barriers) that are
proportional to crij(?kiVmn>

The presence of lower-order ferroic behaviour can mask a higher-order
effect. For example, it would be difficult to observe the ferrobielastic effect
in a crystal that is also a ferroelastic with reference to the same pair of
orientation states.

Demonstration of ferrotrielasticity may ordinarily require the absence
of both ferroelasticity and ferrobielasticity. In any case, this question has
to be addressed with reference to a specific pair of contiguous orientation
states.

Stokes & Hatch (1988) have indicated, in Table I of their book, the
primary or higher-order character of phase transitions arising due to points
of special symmetry in the Brillouin zone (cf. §4.1.4). A more detailed
description of higher-order ferroic properties, including a determination of
their full or partial character etc., can be obtained easily from the computer
code ISOTROPY (Stokes & Hatch 1998).

Order of a Ferroic State Shift

Aizu (1972a) has given definitions of orders of various types of ferroic state
shifts.

If a shift (switching) from one orientation state to another involves a
full primary ferroic property, it is called a first-order state shift. The change
of free energy for such a state shift is proportional to the first power of the
driving field.

Consider a full ferroelastic. In it, all mechanical state shifts will involve
enthalpy barriers proportional to a^.

Next consider a partial ferroelastic. Let us assume that the only exter-
nal field present is a uniaxial stress; i.e. c r ^ O , E — # = 0 in Eq. 6.2.18.
In this case at least one, but not all, state shifts will be of mechanical first



198 6. Classification of Ferroic Materials. Ferrogyrotropy

order state shifts. Other state shifts, not of this type, will be of second or
higher orders, i.e. induced by cr2, a3 terms, etc.

We next consider a situation where cr ̂  0, E ^ 0, and H = 0. For a
nonmagnetic partial primary ferroic, some but not all its electrical and/or
mechanical state shifts will be first-order. Aizu (1972a) introduced a so-
called electromechanical order of a state shift in this context. If for a state
shift, at least one AP(S); and Ae(s)^ is nonzero, its electromechanical order
is unity. If AP(S)^ and Ae(s)ij are all zero and at least one of Ae^, Ad^
and Asijki is nonzero, then it is an electromechnically second order state
shift. Similarly for still higher orders.

The above definitions can be extended to cases where H also is nonzero.
For first-order state shifts, if the applied driving forces alternate in

sign too rapidly, they become ineffective due to "inertial clamping" (Aizu
1973a).

This is generally not the case for second-order state shifts because they
either depend on the square of the applied field (in which case they are
independent of sign), or involve cross-terms like Ea, Ha or EH. When
cross-terms are involved, it is necessary to apply the two fields in a syn-
chronous manner if their products are not to average out to zero. For the
EH combination the synchronicity requirement is automatically satisfied
when an electromagnetic field is used.

Illustrative Examples

We now discuss illustrations of some of the concepts described in this sec-
tion.

Consider a crystal belonging to the ferroic species rara2F2. The groups
mm2 and 2 are of orders 4 and 2 respectively, so that two orientation states
are possible in the ferroic phase. Let us call these states Si and $2 (Fig.
6.2.1(1)).

We work under the parent-clamping approximation (PGA) in this dis-
cussion (cf. §5.1.2), and choose a cartesian coordinate system fixed in the
prototype such that the z-axis is along the diad of rara2, and the x- and
y-axes are perpendicular to the two mirror planes.

The point group 2 of the ferroic phase is a polar group, so that a
spontaneous polarization P(s) can exist. The ferroic phase is thus at least
pyroelectric. Is it also ferroelectric ? To answer this question, we first note
that, in view of the point-group symmetry 2, the spontaneous polarization
can only have the components (0, 0, ^(5)3), i-e. P(s)i = P(s)2 = 0.

All the orientational states are equivalent, and any of them can be
chosen as the "initial" state for determining the components of the various
property tensors for each of the states. It is customary to choose Si as the
initial state.
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Figure 6.2.1: Ferroic state shifts possible in a monoclinic crystal of sym-
metry 2(62). In (i) the ferroic phase is taken as derived from a prototype
symmetry mm^C^v)- Only ferroelastic state shifts are possible in this case
between the orientation states Si and 62. (FS denotes " ferroelastic"). In
(ii) the same monoclinic symmetry is taken as derived from a higher sym-
metry, namely mmm(D2h)- The possible number of orientation states is
now four (Si, #2, SB, S±). Purely ferroelectric switching can now occur
between Si and 54, and between $2 and 83 (FE denotes "ferroelectric").
Similarly, purely ferroelastic switching can occur between Si and $2, and
between 83 and 64. State shifts between Si and £3, and between $2 and
^4, are simultaneously ferroelectric and ferroelastic, even when only one
kind of field (electric or mechanical) is applied.
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If (0, 0, P(8)3) are the components of the spontaneous polarization for
Si, what are its components for $2 ? These are determined by applying a
representative set of F-operations on the matrix for the relevant property
tensor. For the present example, a reflection in the yz-pl&ne is the only
distinct F-operation. It takes a material point (x, y, z) in Si to (#, y, z) in
82- Under its action the spontaneous polarization tensor with components
(0,0, P(s)3) is not changed at all. This means that AP(S^ = 0 for state
shifts in crystals belonging to the ferroic species ram2F2, and such crystals
are therefore not ferroelectric. They are only pyroelectric, as no electrical
state shifts of first order are possible.

We next examine the behaviour of the polar second-rank property (e^),
the dielectric permittivity. Its symmetry-adapted form for Si is

€11 €12 0
€12 ^22 0

0 0 €33
(6.2.20)

On applying the only distinct F-operation available for this species,
namely a reflection across the yz-plane, we obtain the form of the dielectric-
permittivity tensor for the orientation state S21:

en -€12 0
-€12 ^22 0

0 0 e33

(6.2.21)

Therefore, in going from Si to S2, we have Aei2 = — 2ei2 ^ 0. All other
Ae^-s are zero. Since at least one second-order electrical state shift is pos-
sible, the state shift is ferrobielectric. Such a state shift can, in principle,
be effected by an electric field, E, of appropriate magnitude and direction.

We now focus our attention on the possibility of ferroelastic behaviour
in this species.

The spontaneous strain tensor, e(s), has the same transformation pro-
perties as the tensor e, both being second-rank, polar, symmetric tensors.
It follows that Ae(s)i2 = — 2e(s)12 ^ 0, and all other Ae(s)^ are zero. Ferro-
elastic behaviour is therefore allowed by symmetry for this species, and the
state shifts are mechanically first order.

Similar arguments also hold for the magnetic permeability tensor. Thus
ferroelastic, ferrobielectric, and ferromagnetic state shifts always occur con-
comitantly, and they are allowed by symmetry to occur for the species
mm2F2.

1To understand how this form arises, we begin by noting the fact that dielectric per-
mittivity is represented by a (polar) tensor of rank 2, and therefore its components must
transform like the products of two coordinates (cf. Pumi's method of direct inspection
in §3.2.3). Under the considered F-operation, (x,y,z) —>• (x,j/, z). Therefore: x2 —»• x2,
y2 —> t/2, z2 —»• z2, xy —»• —xy, yz —> yz, and zx —*• — zx. Therefore, for Eq. 6.2.20 the
only change is that 612 — £21 —* —£12-
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Fig. 6.2(ii) depicts another situation in which the point-group symme-
try of the ferroic phase is still 2, but the prototype happens to have the
symmetry rarara (D<2h), instead of rara2 for Fig. 6.2(i). Since rarara is a
group of order 8, the possible number of distinct orientation states is now
8/2 or 4. We call them 5i, 52, 5s, 64. There is a one-to-one correspondence
between them and the cosets in the following coset decomposition:

(rarara) = (2Z) + mx (2Z) + i(2z) + 2X (2Z) (6.2.22)

The F-operation rax is the same as in the previous example and takes
51 to ^2, resulting in a ferroelastic state shift.

The inversion operation i in Eq. 6.2.22 takes 5i to 83. This state shift
is simultaneously ferroelastic and ferroelectric.

The remaining F-operation, 2X, takes 5i to 64 in a purely ferroelectric
state shift.

Thus a phase belonging to the rararaF2 ferroic species is not only
pyroelectric, but also ferroelectric. (It is also ferroelastic, ferrobielectric
and ferrobimagnetic.) Some state shifts are purely ferroelectric (5i <-> 64;
52 <-» 5a), some are purely ferroelastic (5i <-> #2; 5s <-» £4); some are both
(Si <-> 53; 52 <-» 54).

The state shifts Si <->• 83 and 52 <-> 54 involve an inversion operation.
These were defined by Aizu (1972a) as mechanically infiniteth order. They
are also always electrically odd order. In rararaF2 they are electrically first
order.

In the case of the species rararaF222 (Aizu 1972a), the state shifts
between the two possible orientation states are electrically third order, me-
chanically infiniteth order, and electromechanically second order. Since
both rarara and 222 belong to the same crystal family (orthorhombic), this
is a nonferroelastic species. The F-operation here is an inversion operation:

(rarara) - (222) + i (222) (6.2.23)

This F-operation, though not affecting the strain tensor, changes the hand-
edness or chirality of the crystal structure. The two orientation states
therefore differ in the optical gyration tensor, which governs optical activ-
ity. The ferroic species ra3raF432 is another example of this type. Crystals
belonging to such species were called ferrogyrotropic by Wadhawan (1979,
1982). Aizu did not recognize this as a separate, distinct, ferroic property.
We go into the reasons of this in the next section.
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6.3 FERROGYROTROPY

Several optically active ferroic crystals are known to exhibit a reversal of
the sign of spontaneous optical rotatory power in certain directions when
a suitable driving field is applied. This is the property of optical ferrogy-
rotropy (Wadhawan 1979, 1982).

At certain phase transitions involving the loss of a symmetry operator,
an axial second-rank i-tensor develops non-zero components. The optical
gyration tensor is such a tensor. Such transitions are therefore described as
gyrotropic phase transitions (Konak, Kopsky & Smutny 1987; Wadhawan
1979).

Apart from the optical gyration tensor, another axial second-rank ten-
sor is the linear magnetoelectric susceptibility tensor (Freeman & Schmid
1975). However, unlike the optical gyration tensor, it is not an z-tensor,
but a c-tensor. It is thus identically equal to zero in nonmagnetic crys-
tals. Therefore, as suggested by Wadhawan (1979), optical ferrogyrotropy
should be defined only with reference to the optical gyration tensor, even
for crystals which can exhibit the linear magnetoelectric effect.

It has been generally believed till recently that linear birefringence,
if present for light propagating in a given direction, normally makes it
difficult to measure the considerably smaller effect of circular birefringence
(optical activity) in the same direction. The development of an apparatus
called the High Accuracy Universal Polarimeter (HAUP) by Kobayashi &;
Uesu (1983) has overcome this difficulty. With the HAUP one can measure
accurately all the coefficients of optical activity, linear birefringence, and
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rotation of the indicatrix of any crystal, even for a crystal belonging to
low-symmetry systems like monoclinic and triclinic. This development has
made it possible to make accurate measurements on optical ferrogyrotropy.

6.3.1 The Optical Gyration Tensor
Optical activity arises from the spatial dispersion of the dielectric permit-
tivity tensor (see, e.g., Ramachandran & Ramaseshan 1961; Jerphagnon
& Chemla 1976; Glazer 1988). The spatial dispersion of the permittivity
tensor implies that the crystal structure is such that the polarization P
at a point in the crystal depends not only on the electric field E at that
point, but also on the field in the neighbourhood of that point (Devarajan
& Glazer 1986). For such a crystal the dielectric permittivity exhibits not
only the usual dispersion with respect to frequency, but also with respect
to the wavevector k of the electromagnetic wave. One can thus write the
following Taylor expansion in powers of k (Juretschke 1974; Portigal &
Burstein 1968):

6ij(u, k) = 6ij(u) + rjiji(w)ki + hijimkikm + • • • (6.3.1)

Optical activity (optical gyration) arises from the first-order terms
rjijiki.

The electrical field energy stored in a medium is given by

we = ^ E - D (6.3.2)

If we assume that the medium is nonattenuating, the requirement of con-
servation of stored field energy can be written as follows (Landau & Lifshitz
1958):

We = W\ (6.3.3)

This provides the following permutation symmetry for the permittivity ten-
sor:

Ci>,k) = e*f(u;,k) (6.3.4)

The stored free energy must also have time-reversal symmetry (Portigal
& Burstein 1968; Juretschke 1974):

We(t) = We(-t), (6.3.5)

which leads to
€ij(u, k) = €ji(v, -k) (6.3.6)

Substitution of Eqs. 6.3.4 and 6.3.6 in Eq. 6.3.1 reveals the following
symmetry of the optical gyration tensor:

i&M = -%•'(") (6-3-7)
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This means that each component of this tensor is pure imaginary, so that
we can introduce a real tensor (7^7(u)) as follows:

%-zM = «7*jiM (6-3.8)

We can now rewrite Eq. 6.3.1 as follows:

6ij(u, k) = €ij((jj) + ijijl(u)ki + hijimkikm + ••• (6.3.9)

To get a further feel for the fact that the second term on the right-hand
side in this equation indeed corresponds to spatial dispersion, we shall now
arrive at it through a somewhat different route by using the direct (literal)
interpretation of spatial dispersion, namely the rate of variation of the
electric field with space coordinates:

3F
A = d j E j + Tyi-^- (6.3.10)

Assuming the propagation of a plane wave, we have

3F
-Q£ = iEjki, (6.3.11)

which means
A - (dj +i-Yijiki)Ej, (6.3.12)

or
A = evfa k)^, (6.3.13)

where
Cy(cj, k) = tij(u) + iiiji(u)ki, (6.3.14)

which is the same as Eq. 6.3.9.
Going back to the question of the intrinsic symmetry of the gyration

tensor, it follows from Eqs. 6.3.4, 6.3.6 and 6.3.9 that

7j« = ~7uz (6.3.15)

Because of the antisymmetry of this tensor with respect to the first two
indices, we can substitute it with a lower-rank (second-rank) tensor (gmi)
such that

7iji = uijrngmi (6.3.16)

Here (uijm) is the Levi-Civita tensor or the alternating tensor (see Ju-
retschke 1974). It is a fully antisymmetric unit tensor.

Let (li) denote a unit vector along the direction of propagation of the
electromagnetic beam. The optical rotatory power, p, of the medium along
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this direction can be shown to be proportional to the pseudoscalar G, called
the gyration, and defined by (see Nye 1957):

G = Qmklmlk (6.3.17)

Since G is a pseudotensor, (gmk) must be a pseudotensor or axial tensor.
We can finally write Eq. 6.3.9 as follows, retaining only the (first-order)

terms responsible for optical activity:

6ij(u, k) - €ij(J) + lUijmGm, (6.3.18)

where
Gm = 9mklk (6.3.19)

Both the tensors (jiji) and (gmi) in Eq. 6.3.16 have the same maximum
number (9) of independent components, as they should. The natural optical
rotatory power of crystals is described by the symmetric part of the tensor
(9mi), which can have only 6 independent components (see Nye 1957; Konak
et al. 1978). The antisymmetric part of the tensor describes the polar or
"weak" optical activity (Zheludev 1978; Sirotin & Shaskolskaya 1982), and
accounts for the remaining three components.

The Jahn symbol for the tensor governing natural optical activity is
e[F2].

6.3.2 The Hermann Theorem and Optical Gyration
We have seen above that natural optical gyration can be described either in
terms of the third-rank tensor (jiji) or in terms of the second-rank tensor
(9mi) (cf. Eq. 6.3.16). Is the optical gyration tensor a second-rank tensor
(r = 2) or a third-rank tensor (r = 3) ? This question has to be faced when
we want to make use of the Hermann theorem of crystal physics (§3.3). It
turns out on detailed analysis that we have to take r = 2 to draw correct
conclusions from the Hermann theorem.

Consider the question of optical activity in crystal classes 3ra, 4rara and
6mm. For these classes, N > 3 (cf. the statement of the Hermann theorem
in §3.3). The theorem tells us that for tensors with r = 2 these classes have
the same symmetry as the point group oom. And for this point group all
components of the tensor g are zero (see, e.g., Sirotin & Shaskolskaya 1982).
Optical activity should thus be absent in the crystal classes 3m, 4mm and
6mm. This conclusion is in agreement with the results of detailed analysis
carried out by applying the Neumann theorem. We could not have been
able to apply the Hermann theorem if we had taken r = 3 for this problem.

For similar reasons, natural optical activity should be absent in the
crystal classes 6, 6m2 and 43m (Sirotin & Shaskolskaya 1982). Here also,
taking r — 2 (rather than 3), we can replace the 3-fold axes in these point
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groups by oo-fold axes. The resulting point groups are oo/ra, oo/rara and
oooora, which are all centrosymmetric, and therefore do not allow the oc-
currence of optical gyration.2

Assumption of the lower of the two possible ranks for the optical gy-
ration tensor always leads to correct results when the Hermann theorem is
applied.

6.3.3 Optical Ferrogyrotropy as an Implicit Form of
Ferroicity

We combine Eqs. 6.3.13 and 6.3.18 to obtain

Di = €ij(u)Ej + i(E x G)i (6.3.20)

When this is substituted in Eq. 6.3.2, an interesting result is obtained
(Juretschke 1974):

We = ^EidjEj + 0 (6.3.21)
2i

Thus the first-order spatial dispersion term contributes nothing to the
stored field energy. This has an important implication in the context of
ferroic state shifts.

Suppose two orientation states differ in one or more components of the
optical gyration tensor. Application of an external field can develop an
enthalpy difference between the two states. However, the above result (Eq.
6.3.21) means that the contribution to this enthalpy difference from the
spatial-dispersion term is zero. The driving force for switching one domain
state to the other must therefore be provided by some other term occurring
in Eq. 6.2.18. This fact, first pointed out by Wadhawan (1979), can be
stated as follows:

Ferrogyrotropic state shifts cannot be mediated by the gyrotropic
tensor. They can only be effected through an accompanying,
explicitly ferroic, property tensor.

Each term in Eq. 6.2.18 represents an explicitly ferroic property. There
is no term possible in it for exclusively ferrogyrotropic state shifts because
ferrogyrotropy is only an implicit form of ferroicity.

Nevertheless, ferrogyrotropic state shifts do occur in many ferroics. We
list several examples here, grouping them under the accompanying explic-
itly ferroic property.

2What the Hermann theorem is saying here, in effect, is that, even though the crystal
classes 6, 6m2 and 43m are not centrosymmetric, they are effectively centrosymmetric so
far as optical activity is concerned. Such a result, though quite striking, is not unusual
in crystal physics. A similar, albeit trivial, example of this type is that of density: it is
a centrosymmetric property, even in noncentrosymmetric crystals.
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Ferroelectrics. TGS (Shuvalov, Aleksandrov & Zheludev 1959; Hermel-
bracht & Unruh 1970; Kobayashi, Uesu & Takehara 1983); LiH3(SeO3)2

(Futama & Pepinsky 1962a,b); Pb5Ge3Oii (Iwasaki & Sugi 1971); and
NaNC>2 (Chern & Phillips 1972). General papers dealing with changes in
optical activity resulting from polarization reversal include those by Pepin-
sky (1962, 1963), Shuvalov & Ivanov (1964), and Aizu (1964a, b, c).

We consider the case of NaNO2 to illustrate some features of the
coupling between ferroelectric and ferrogyrotropic state shifts (Wadhawan
1982).

NaNC>2 belongs to the ferroic species mmmFmm2. As both the proto-
type and the ferroic phase belong to the same crystal family (orthorhombic),
the ferroic phase is not ferroelastic.

The possible number of orientation states is 2, and the ferroic phase
is polar. This means that ferroelectric switching is permitted by symme-
try considerations, the two orientation states differing in the sign of the
spontaneous polarization component P3.

The two orientation states also differ in the sign of the gyration-tensor
component #12 (Nye 1957), or, through a similarity transformation, in the
signs of the components gu and #22- The change of sign is brought about
by the F-operation which is either inversion or a reflection across the plane
z = 0.

The gyration surface for a crystal of point-symmetry mm2 is shown
in Fig. 6.3.1 (Shubnikov 1960). It is a polar plot of the pseudoscalar G
(optical rotatory power), defined by Eq. 6.3.17 in the coordinate system
defined by the principal axes:

G = -g^ll +022/1 (6.3.22)

The gyration surface is shown as white for directions along which G
has a positive sign, and black when it has a negative sign.

The state shifts fo*r the species mmmFmml are first-order electric,
ooth-order mechanical, and first-order electromechanical (Aizu 1972a). The
ferroelectric state shifts are responsible for the concomitant ferrogyrotropic
state shifts depicted in Fig. 6.3.1.

Ferroelastics. Dicalcium strontium propionate (DSP) (Sawada, Ishibashi
& Takagi 1977; Wadhawan 1979). This crystal is also a ferroelectric below
281.7 K.

Ferromagnetics. No experimental investigation appears to have been
reported, but a number of ferromagnetic crystals have been predicted to
exhibit ferrogyrotropic state shifts (Wadhawan 1979): Ni — Cl boracite
(NisByOis); Ni — I boracite; and BaMnC>4.
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Figure 6.3.1: The optical gyration surface, and its ferroic switching, for a
crystal belonging to the species mmmFmmZ. The ferrogyrotropic state
shift from (a) to (b), or vice versa, corresponds to a reflection operation in
the plane of the diagram. According to Eq. 6.3.22, such an F-operation
changes the sign of the gyration tensor. This is represented by colour
reversal (black to white, and white to black) in going from (a) to (b) and
vice versa.

Secondary and Higher-Order Ferroics. Gyrotropic phase transitions
accompanied by the onset of neither ferroelectricity nor ferroelasticity have
been described by Konak et al. (1978) as pure gyrotropic phase transitions.
The ferroic phase in such cases can only undergo second or higher-orders
of electric, mechanical, or electromechanical state shifts. Several crystals
which undergo such transitions have been identified (Cross & Newnham
1974; Konak et al. 1978): ZrOS; CO; N2O; Na2ThF6; A1F3; Cs3As2Cl9;
TeO2; RbBeF3; and HgClBr. All of them, except ZrOS, are ferroelas-
toelectrics. ZrOS belongs to the ferroic species 43mF23, for which the
electric order of state shifts is 5 or higher, mechanical order is 3 or higher,
and the electromechanical order is 3 or higher.

Other ferroelastoelectrics that exhibit ferrogyrotropic state shifts are
CuCsCls (Hirotsu 1975; Sano, Ito & Nagata 1986); and (C5HiiNH3)2ZnCl4

(Cuevas et al. 1984).

6.3.4 Optical Ferrogyrotropy vs. Ferroelasticity
The optical gyration tensor (gij) is a second-rank axial i-tensor. Under
an F-operation represented by a matrix A its components transform as
follows:

g'ij = (detA)aikajigki (6.3.23)

Here the a's are elements of the matrix A, and det A = +1 if the F-
operation is of the proper type, and det A = — 1 if the F-operation is an
improper operation like reflection or inversion.
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The spontaneous strain tensor, which governs ferroelastic state shifts,
transforms as follows:

e^ = aikajieki (6.3.24)

Unlike the gyration tensor, it is invariant under an inversion operation.
It follows from Eqs. 6.3.23 and 6.2.24 that for proper F-operations,

i.e. those involving only pure rotations (no reflection or inversion), ferrogy-
rotropic state shifts are not distinct from ferroelastic state shifts. In view
of the fact that ferroelasticity is an explicitly ferroic property, whereas fer-
rogyrotropy can occur only as an adjunct to some other explicitly ferroic
property, it is appropriate not to regard such state shifts as ferrogyrotropic,
and regard them only as ferroelastic.

For F-operations that are improper coordinate transformations, ferro-
gyrotropic state shifts are indeed distinct from ferroelastic state shifts.

The case of DSP provides an illustration of this (Wadhawan 1979;
Glazer, Stadnicka & Singh 1981). It belongs to the nonmagnetic ferroic
species ra3ra.F422 at room temperature. We can write the following direct
product:

(m3m) = (422) x (3) x (I) (6.3.25)

The point groups (m3ra) and (422) are of orders 48 and 8, so that 6 orienta-
tion states are possible. Since the spontaneous strain tensor is a symmetric
second-rank polar tensor, it is invariant under space-inversion. It follows
from the presence of the group (1) on the right-hand side of Eq. 6.3.25 that
the number of ferroelastically distinct orientation states is only half of the
maximum number (6) of orientation states possible.

This crystalline phase is thus a partial ferroelastic phase. Let us call
the ferroelastically distinct orientation states 5i(e), 52(e), 5s (e). It is clear
from Eq. 6.3.25 that they correspond to the three elements of the group
(3), namely 1, 3, and 32.

For the gyration tensor, on the other hand, all the six states are distinct.
Three of these, say 5i(0), 52(0), $3(9), correspond to the F-operations
1, 3, 32, and are thus identical to 5i(e), 52 (e), 5s (e). These can be de-
scribed in terms of tensor components as follows (Nye 1957):

5i(0) = diag fan 011333) (6.3.26)

52(0) = diag (933911911) (6.3.27)

53(0) = diag (0ii 033 011) (6.3.28)

Here diag(0n 0n 033) denotes a diagonal matrix with 0n, 0n, 033 as the
diagonal components.

The remaining three ferrogyrotropic orientation states are obtained by
applying the inversion operation to 5i, 52, 83:

54(0) - diag (-0n -0n -033) (6.3.29)
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S5(ff) = diag(-£33 -9u -911) (6.3.30)

S6(0) - diag(-pii -233 -911) (6.3.31)

State shifts within the set Si, S2, Ss, or within the set £4, £5, SG, are
only ferroelastic, and are not ferrogyrotropic. State shifts from one set to
the other are ferrogyrotropic; they are also ferroelastic if, say, Si goes to
Ss or SQ. But Si going to S4 does not constitute a ferroelastic state shift.
All these state shifts can be effected by applying an appropriate uniaxial
stress.

State shifts in which no gyration component changes sign (like Si (</) <->
S2(#), or S4(#) <-> SG(^)) are indistinguishable from the corresponding
ferroelastic state shifts, and should not be referred to as ferrogyrotropic
state shifts.

In the light of the above discussion, we can now formulate the following
definition of a ferrogyrotropic phase of a crystal (Wadhawan 1979, 1982):

An optical ferrogyrotropic crystal is a ferroic (primary or of
higher order), at least two orientation states of which have op-
tical gyration tensors differing in the signs of one or more of
their corresponding components.

If the optical gyration tensors differ only in the magnitudes (and not
the signs) of one or more of their corresponding components, the state shifts
are not ferrogyrotropic; they are ferroelastic state shifts.

6.3.5 Partial Ferrogyrotropics
The example of DSP considered above is very suitable for introducing the
notion of partial ferrogyrotropy.

On cooling, DSP undergoes a phase transition to a ferroelectric phase
at 281.7 K, and its point-symmetry lowers from 422 to 4 (Kobayashi &
Yamada 1962). This phase thus belongs to the ferroic species m3mF4.

For this species, 48/4 or 12 orientation states are possible. It is thus
a partial ferroelectric partial ferroelastic phase. It is also a partial ferrogy-
rotropic phase because the number of distinct gyration-tensor states is still
6 (and not 12), the same as in the phase above 281.7 K, which belongs to
the ferroic species m3mF422. This follows from the decomposition of the
prototype point group m3m:

(m3ro) = (4) x (3) x (2/m) (6.3.32)

Kobayashi & Yamada (1962) reported the occurrence of occasional
"spontaneous" racemization in this phase, with the tetragonal c-axes in
the dextro and laevo domains remaining parallel. This can be understood
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in terms of ferrogyrotropic d <-» / state shifts, brought about by the F-
operation m in 2/m in Eq. 6.3.32. The arrangement of symmetry elements
implies that the number of distinct ferrogyrotropic states in only 6.

The concept of partial ferrogyrotropy described here runs parallel to
that of partial ferroelasticity and partial ferroelectricity defined by Aizu
(1970a).

6.3.6 The Acoustical Gyration Tensor
Acoustical activity (or acoustogyrotropy) is the mechanical analogue of
optical activity. But whereas optical activity is governed by a third-rank
pseudotensor, acoustical activity is governed by a fifth-rank pseudotensor.
The higher rank of the latter results in a greater diversity and complexity of
behaviour. In particular, all the 21 noncentrosymmetric crystal classes are
acoustically active, whereas optical activity can occur in only 15 of them.

One of the manifestations of acoustical activity is that in a crystal that
possesses this property, the plane of polarization of a transverse acoustic
wave traveling along the acoustic axis (the mechanical analogue of an optic
axis) gets progressively rotated as the wave passes through the crystal. If
the propagation direction is different from an acoustic axis, the transverse
and the longitudinal components generally get coupled in a complex way.
In the optical case, by contrast, the longitudinal component is missing, and
the effect of optical activity (circular birefringence) is simply superimposed
on that of linear birefringence. However, in spite of the complexity of
behaviour, use of acoustical activity as a diagnostic tool offers some distinct
and unique advantages over optical activity, and interest in its study and
use continues to grow (Pine 1970; Belyi 1982; Bialas & Schauer 1982).

Just as optical activity arises from first-order spatial dispersion of the
dielectric permittivity tensor, acoustical activity is taken as arising from
first-order spatial dispersion of the elastic-stiffness tensor. The meaning
of spatial dispersion is that the interaction between stress (cr^) and strain
(CM) is not only through the elastic-stiffness tensor (c^), but also through
other terms involving nonlocal interactions:

f\
Oij = Cijki eki + dijkim -£— (6.3.33)oxrn

The tensor (d^kim) is the acoustical gyration tensor.
Since (cr^) and (eki) are generally assumed to be symmetric tensors,

the acoustical gyration tensor has the following intrinsic symmetry:

dijkim — djiklm = dijikm (6.3.34)

As in the optical case, the spatial-dispersion effects are taken into ac-
count by allowing for a wavevector dependence of the elastic-stiffness tensor,
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apart from its usual frequency dependence (Portigal & Burstein 1968):

Cyfcj(o;,k) = cijki(<jj) + idijkim(u}km + ••• (6.3.35)

Assuming time-reversal symmetry and causality, the tensor d can be
shown to have the following antisymmetry (Portigal & Burstein 1968):

dijkim(u) = -dkiijm(u) (6.3.36)

A similar antisymmetry of the third-rank optical gyration tensor en-
abled us to introduce an equivalent tensor of lower (second) rank. In the
acoustical case also, a lower (fourth) rank tensor has been introduced by
Bhagwat, Subramanian & Wadhawan (1983), which is completely equiva-
lent to the fifth-rank tensor d.

The new tensor, G, is defined through the following equation:

Gqkmn = ~ ^ilq diklmn (6.3.37)
£

Because of the fact that uuq = —unq, and because of Eq. 6.3.36, the
following intrinsic symmetry of G follows from Eq. 6.3.37:

Gqkmn = Gqrnkn (6.3.38)

Another set of constraining equations can be derived by putting q = k
in Eq. 6.3.37, summing over &, and using Eqs. 6.3.34 and 6.3.36. We get

53 Gkkrnn = 0 for each m, n = 1,2,3 (6.3.39)
k

Because of Eq. 6.3.38, the tensor G has only 54 nonzero components,
and these are subject to 9 constraining equations (Eq. 6.3.39). The net
number of independent components is therefore 45. This number is the
same as that for the tensor d (which has the intrinsic symmetry embodied
in Eqs. 6.3.34 and 6.3.36).

By employing some tensor algebra described by Bhagwat et al. (1983),
Eq. 6.3.37 can be inverted to yield

diklmn = V>uq Gqkmn + UkmqGqUn (6.3.40)

It can be readily verified that if we take Eq. 6.3.40 as the defining
equation for d in terms of a tensor G satisfying Eqs. 6.3.38 and 6.3.39,
then d satisfies Eqs. 6.3.34 and 6.3.36.

The tensors d and G are thus completely equivalent, and acoustical
activity can be described equally well by either of them. Dealing with G
offers the advantage that it is of a lower rank than d, and thus somewhat
more convenient to use.
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More importantly, taking r = 4 (rather than 5) for the acoustical ac-
tivity tensor leads to correct predictions when the Hermann theorem is
applied, just like the case of natural optical activity.

The 45 nonvanishing independent components of the fifth-rank tensor
d have been identified by Kumaraswamy & Krishnamurthy (1980). The
corresponding work for the fourth-rank tensor G has been carried out by
Bhagwat et al. (1986).

Srinivasan (1988) has derived the form of the "irreducible" spectrum of
a general fifth-rank tensor, using the formalism developed by Jerphagnon,
Chemla & Bonneville (1978). The intrinsic symmetry of the tensor d is
then brought in to determine the specific forms of the irreducible parts
describing acoustical activity in various crystal classes.

6.3.7 Ferroacoust ogy rot ropy
The notion of acoustical ferrogyrotropy (or ferroacoustogyrotropy) was in-
troduced by Wadhawan (1982) by analogy with that of optical ferrogy-
rotropy. A ferroacoustogyrotropic crystal is an acoustically active ferroic
crystal in which at least one direction exists such that the acoustical rota-
tory power along this direction undergoes either a switching of sign, or a
finite discrete jump in magnitude, or both, when a suitable driving force is
applied.

Switching of sign, with no change of magnitude of acoustical rotatory
power, has been described as pure ferroacoustogyrotropy by Bhagwat, Wad-
hawan & Subramanian (1986).

Waterman (1959) examined the existence of pure mode axes in crys-
tals. If a certain direction is to be a pure mode axis for the propagation
of acoustic waves, the longitudinal polarization component must be inde-
pendent of the transverse polarization component, and vice versa. This
requires that the crystal symmetry be such that certain components of the
elastic-stiffness tensor and the acoustic gyration tensor are zero. In the
absence of spatial dispersion the following two conditions are sufficient for
a propagation direction #3 in a crystal to be a pure mode axis:

• #3 should be a proper axis of 2-fold or higher rotational symmetry;
or

• £3 should be normal to a reflection plane, or normal to a proper axis
of 6-fold symmetry.

An analysis of how these conditions get modified in the presence of
spatial dispersion has been given by Bhagwat et al. (1986). They have
shown that pure mode axes continue to be pure mode axes even in the
presence of spatial dispersion if they are along axes of 2-fold or higher
rotational symmetry. However, the same may not be the case if the pure
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mode axis in the absence of spatial dispersion is perpendicular to a mirror
plane of symmetry, or perpendicular to a 6-fold axis.

An acoustic axis is a degenerate pure mode axis (Waterman 1959; Por-
tigal & Burstein 1968). Pure transverse acoustic waves traveling along an
acoustic axis are not only completely decoupled from the pure longitudi-
nal mode, but also have the same phase velocity in the absence of spatial
dispersion.

The term pure acoustical activity has been introduced by Bhagwat et
al. (1986) for describing acoustical activity along an acoustic axis. These
authors introduce a coordinate transformation, so that the #3 axis is along
the direction of propagation of the acoustic wave. The following expression
is derived for the rotation of the plane of polarization of a plane-polarized
transverse acoustic wave on traversing a length / along the acoustic axis:

(f> = u2lpG3333/2c2
2323 (6.3.41)

Thus <t> = 0 if GSSSS = 0. And this happens for the following eight crystal
classes:

4, 4mm, 42m, 3m, 6, 6mm, 6m2, 43m.

In addition, there are 11 centrosymmetric point groups, for which
£73333 = 0. Let us call this set of 19 point groups Set A. Crystals belonging
to any class in Set A cannot show pure acoustical activity.

It is also found from the list of nonzero independent components of G
tabulated by Bhagwat et al. (1986) that 63333 7^ 0 for the following eight
crystal classes:

4, 422, 3, 32, 6, 622, 23, 432.

Let us call this Set B.
Coming back now to the question of pure ferroacoustogyrotropy, a pure

ferroacoustogyrotropic state shift is one which involves only a change of
sign of 0 (Eq. 6.3.41), without any change of its magnitude. For this, 0
should be identically equal to zero in the prototypic phase, and nonzero in
the ferroic phase. This would be so if the prototypic point group is from
among the members of Set A, and the ferroic point group belongs to Set B
and is a proper subgroup of the prototype. There are 29 ferroic species of
this type (Bhagwat et al. 1986):

m3mF4, m3mF422, m3mF3, m3mF32, m3mF23, m3mF432,

m3F3, m3F23, 43mF3, 43mF23,
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6/rararaF3, 6/ramraF32, 6/rararaF6, 6/rararaF622,

6/raF3, 6/raF6, 6ra2F3, 6ra2F32, 6F3, 6mmF3, 6ramF6,

3mF3, 3raF32, 3mF3, 3F3,

4/raramF4, 4/rararaF422, 4/raF4, 4raraF4

Examples of crystals belonging to one or the other of these species
include DSP, KA1O2, CsCuCl3, TeO2, ZrOS and Pb5Ge3Oii (see Bhagwat
et al. (1986) for more details).

a-quartz is not mentioned in this list because, although it is ferroacous-
togyrotropic, it is not pwe-ferroacoustogyrotropic (Bhagwat et al. 1983).

6.3.8 Acoustical Ferrogyrotropy as an Implicit Form
of Ferroicity

Changes of stored enthalpy during optical ferrogyrotropic state shifts get
their entire contribution from terms other than the one responsible for op-
tical activity (cf. Eq. 6.3.21). A similar statement applies to acoustical
ferrogyrotropic state shifts. This can be seen by computing the contribu-
tion, say V, from the acoustical activity term in Eq. 6.3.35 to the potential
energy of deformation per unit volume (Bhagwat, Subramanian &; Wad-
hawan 1983):

V = -dijkimkmCijeki (6.3.42)

This can be written in terms of the fourth-rank tensor G by using Eq.
6.3.40:

^ — 9 [UikqGqjlm + UjiqGqikm] km &ij ^kl (6.3.43)

All the indices in this equation are repeated indices, and therefore a
summation over all of them is carried out. It makes no difference as to
what symbol is used for an index over which summation has to be carried
out. We interchange the indices i and fc, and also j and /, to get

V = g [~UikqGqljm ~ UjlqGqkim] km 6kl Cij (6.3.44)

The tensor G satisfies Eq. 6.3.38. Therefore we can rewrite Eq. 6.3.44
as

V = -^[UikqGqjlm + UjiqGqikm] ^m ekl Zij (6.3.45)

Comparison of Eqs. 6.3.43 and 6.3.45 leads to the result V = — V, or

V = 0 (6.3.46)



216 6. Classification of Ferroic Materials. Ferrogyrotropy

Thus, like the optical case, acoustical ferrogyrotropy is also an implicit
form of ferroicity. It can therefore be exhibited by only those crystals which
are explicitly ferroic with respect to some other tensor property. For exam-
ple, such state shifts in a-quartz are mediated either by ferrobielasticity or
by ferroelastoelectricity.
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Chapter 7

DOMAINS

The orientational, chiral, and translational variants present in a given spec-
imen of a ferroic material, alongwith the interfaces separating the variants,
constitute its domain structure. We arbitrarily divide the discussion of
domain structure into two parts, and put off a detailed discussion of the
interfaces to Chapter 8. In this chapter we focus attention predominantly
on the characteristics of the variants or domain states themselves.

Further, Chapters 7 and 8 deal mainly with the broad, common, fea-
tures of domain structure of ferroics. Properties specific to the domain
structure of ferromagnetics are described in Chapter 9. Similarly, Chapters
10, 11 and 12 deal, among other things, with features of domain struc-
ture peculiar to ferroelectrics, ferroelastics, and secondary and higher-order
ferroics respectively.

The various domain states of a ferroic have the same crystal structure,
but differ in their mutual orientation, chirality, and/or location. Therefore,
when referred to a common coordinate system, they may possess different
tensor coefficients. Analysis of the relationship among these tensor compo-
nents enables us to devise experiments for observing and investigating the
various domains. It also enables us to compute average tensor properties
of poly domain materials.

The tensor classification of ferroic materials, discussed in Chapter 6, is
also based on the underlying presence of domain structure. An advantage
of this classification is that it provides a direct correspondence between
domain structure and free energy, from which one can determine the opti-
mum configuration of external fields needed for manipulating the domain
structure to advantage.

219
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7.1 SOME SYMMETRY ASPECTS OF
DOMAIN STRUCTURE

A symmetry analysis of domain structure helps establish the mutual re-
lationships and regularities, and makes it easier to understand the observed
domain structure.

7.1.1 Derivative Structures and Domain States
Derivative structures arise as a result of loss of symmetry operators. It
is generally very useful to interpret a given derivative structure as having
been derived from an adequately selected prototype symmetry (§5.1).

A domain state is a homogeneous portion of a given derivative struc-
ture, which may normally coexist, either with a different phase of the crys-
tal, or with other domain states having the same crystal structure but dif-
ferent orientations, chiralities, and/or locations. Variants is another term
for domain states (van Tendeloo & Amelinckx 1974).

7.1.2 Domain Pairs
An unordered pair of domain states, Di, Dk, considered irrespectively of
their coexistence, constitutes a domain pair.

Domain pairs have an algebraic aspect, and a geometric aspect. Alge-
braically, they constitute an unordered set (Janovec 1972; Zikmund 1984;
Janovec, Richterova & Litvin 1992):

{A, Dk} = {Dk, Di} (7.1.1)

Geometrically, they amount to a superposition of domain states DI and
Dk- Therefore the symmetry group, J^, of a domain pair has two types of
contributions:

• the symmetry group Hi of Di\ and

• an operator jik of the prototype group G, which transforms A to D&:

Jik = ̂  + jikHk (7.1.2)

Here
Hi = {g£G\gDi = Di} (7.1.3)

Domain pairs are similar in concept to "dichromatic complexes" (§7.3.4).
The latter concept (Pond & Vlachavas 1983) has a more general range of
applicability, and applies, for example, even to grain boundaries in ceram-
ics.
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Transposable Domain Pairs

If there exists an operation j^ e G such that jikDi = D^ and jikDk = A,
then {Di, D^} is a transposable or ambivalent domain pair.

Nonferroelastic and Ferroelastic Domain Pairs

Let eW and e^ be the spontaneous deformations, or spontaneous strains,
of the domain states A and D/-, referred to a common coordinate system.
The two domain states constitute a nonferroelastic domain pair if e^ =
e(fe\ and a ferroelastic domain pair if eW ^ e^k\

7.1.3 Single-Domain States
A phase transition from a prototype structure results in the formation of
a heterogeneous aggregate of homogeneous regions (domains). The nature
of the aggregate (the poly domain specimen), apart from depending on the
space-group symmetries before and after the phase transition, can also de-
pend on the presence or absence of specific domain pairs. If none of the
domain pairs present is a ferroelastic domain pair, the mutual orientations
of the domains present are not affected by the presence or absence of any
of them. In such a case each domain state is identical to what it would
be if it were the only domain present (ignoring any surface effects). Such
domain states are referred to as single-domain states.

7.1.4 Disorientat ions
Because of the spontaneous lattice distortion involved in a ferroelastic phase
transition, members of a ferroelastic domain pair undergo (usually small)
rotations to make physical contact at domain boundaries and to minimize
the overall strain energy of the specimen. These rotations are referred to
as disorient at ions. Their magnitudes and directions are generally a compli-
cated function of sample history.

Single-domain states correspond to configurations for which all the dis-
orientations are either actually zero, or are treated as zero (under the PCA)
for the sake of simplicity of analysis.

7.1.5 Antiphase Domains
Antiphase domains, or out-of-phase domains, have parallel axis systems
(under the PCA) (Wondratschek & Jeitschko 1976). They arise when there
is a lowering of the translational symmetry of a crystal at a phase transition.
We also use the term translation twins, or T-twins, for them (cf. §7.4).



222 7. Domains

7.1.6 Orientational Twins
We define orientational twins as consisting of two contiguous domains re-
lated by a constant and recurring orientation-changing Seitz operator (in-
volving a rotation, or inversion, or both). Their axis systems are at least
partially nonparallel or antiparallel (even under the PC A).

7.1.7 Rotational Domains
We use the term rotational domains for contiguous or noncontiguous do-
main pairs related by a Seitz operator with a rotational component. The
rotation involved may be proper or improper.

Contiguous rotational domains constitute an orientational twin (pro-
vided the orientational relationship is of a constant and recurring nature).

The term 'domain' is normally used only in the context of transforma-
tion twinning. Therefore, not all orientational twins are contiguous rota-
tional domains. For example, nonferroelastic mechanical twins like those
occurring in a cubic or hexagonal phase of a crystal are not rotational
domains, but they are orientational twins.

7.1.8 Domain Structure and the Curie Principle
The whole process of a phase transition obeys the astonishing
law discovered by philosophers - the symmetry compensation
law: // symmetry is reduced at one structural level, it arises
and is preserved at another !

A. V. Shubnikov & V. A. Koptsik (1974)

When the symmetry of a crystal changes from G to H on cooling
through the transition temperature Tc, the phenomenon can be formally
regarded as occurring under a scalar influence, namely temperature (Zhe-
ludev 1971). Assuming that this scalar has the symmetry of the continuous
group 0(3) (cf. §B.4), the Curie principle (§C.l) tells us that the net sym-
metry below Tc should

Gd = G H O(3) = G (7.1.4)

Thus, below Tc, the average symmetry as a whole should still be G.
However, we know that the microscopic symmetry below Tc is H, and H C
G. The situation can be reconciled only if the crystal splits into domains
below Tc. Assuming that all domains are able to develop to the same extent,
the average symmetry can then be G, even though the symmetry group of
each domain is H (or a group conjugate to it through elements of G).

It also follows that, since each domain has symmetry JjT, symmetry
operators which can map one single-domain state to another (under the
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PGA) are those which are present in G but not in H, i.e. the symmetry
operators lost at the phase transition. We are thus led to the following
result (Aizu 1970a; Janovec 1972, 1976):

For a crystal that undergoes a phase transition with a space-
group symmetry reduction from G to H, whereas H determines
the symmetry of the order parameter (or vice versa) (cf. §5.3),
it is the symmetry operations lost in going from G to H which
determine the domain structure in the phase with symmetry H.

We have already come across an elementary example of this in the
description of Fig. 1.1.2. As another example we consider the cubic-to-
tetragonal phase transition in BaTiOa. The spontaneous polarization vec-
tor Ps in the tetragonal phase can point along any of the six directions
+x, +y, +z, —x, —j/, or — z in the Cartesian frame of reference of the pro-
totypic (in this case the cubic) phase. It is readily verified that these six
possible configurations of Ps (and therefore of the corresponding ferroelec-
tric domains) can be transformed among one another by only six distinct
symmetry operations which belong to the group Pm3m of the prototypic
phase, but not to the group P4mm of the tetragonal ferroelectric phase.

7.1.9 Symmetry of Single-Domain States
The symmetry group H o f a , single-domain state is determined by the group
G of the prototype phase and the group F of the order parameter, in ac-
cordance with the Curie principle:

H = G H F (7.1.5)

Since a change of space-group symmetry is involved at the phase tran-
sition, it is better to choose a frame of reference in the prototype phase, and
refer all transformations in any of the phases to this common coordinate
system.

The order-parameter vector can have more than one orientations in
representation space (§5.3.3). F in Eq. 7.1.5 is the symmetry group of the
order parameter for a definite orientation of it.

The intersection group H, as determined by Eq. 7.1.5, is the highest
common subgroup of G and F. It is thus a maximal subgroup of G which
leaves the order parameter invariant, and Eq. 7.1.5 is in conformity with
the maximality conjecture (§5.3.10).

The creation of domain walls costs energy. The maximality conjecture
implies that the number of domain types, and therefore the number of
domain walls, is the minimum necessary.

We consider phase transitions in BaTiOs for illustrating the applica-
bility of Eq. 7.1.5.
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Figure 7.1.1: A Curie-principle interpretation of the phase transition in
BaTiOs from the cubic (prototypic) phase of symmetry m3m to the tetrag-
onal phase of symmetry 4mm. Spontaneous polarization P (having the
symmetry oomm (Coov) of a cone or a single-headed arrow) is the order
parameter of this transition. [After Perelomova & Tagieva 1983.]

Fig. 7.1.1 provides a (point-group level) Curie-principle interpretation
of the cubic-to-tetragonal phase transition in this crystal.

Since the tetragonal phase, as well as the other two phases occurring
at lower temperatures (Eq. 5.1.2), are ferroelectric phases, they are all
described by polar symmetry groups. The Curie principle, alongwith the
maximality conjecture, enables us to make the following statement (Ascher
1966): The symmetry group of a ferroelectric phase o/BaTiOs is a maximal
polar subgroup of the prototype group.

The prototype space group O\ (Pm3m) has only three maximal polar
subgroups, namely C\v (P4mm), C\^ (^Lmm2), and C\v (R3c). The three
observed ferroelectric phases of BaTiOs have exactly these symmetries (Eq.
5.1.2).

The tetragonal phase is obtained when the order parameter (sponta-
neous polarization) is directed along a < 100 > direction of the prototype
(Fig. 7.1.1). The orthorhombic phase of symmetry C\^ is obtained when
the polarization vector points along a < 110 > direction. And the trigonal
phase of symmetry C\v is obtained as an intersection symmetry when the
polarization vector points along any of the < 111 > directions.

The tetragonal space group C\v can be obtained as a maximal polar
subgroup of O\ in three ways, corresponding to the three equivalent polar
directions [100], [010] and [001], Following Ascher (1966), we denote the
corresponding point groups as C|v, C\v and Cf^, where the superscript
denotes the polar axis. [Actually, the possible number of equivalent orien-
tation states is 6, and not 3, because, e.g. [100] and [100] are distinct polar
directions; however, the point-group symbol for both is just C±v or C%v.]

We now consider the phase transition to the orthorhombic phase. The
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point group Oh has 12 subgroups C<zv. Six of these have an intermediate
supergroup, namely C±v (and therefore are not maximal subgroups), and
the other six are direct or maximal subgroups of Oh-

We first consider the former. Fig. 7.1.2 describes how the point-group
symmetry C\v can be lowered to orthorhombic symmetry C^v hi two possi-
ble ways. The resultant subgroups are denoted as C^ and C ,̂ , where
e = [110] and / = [110]. In both cases the spontaneous polarization is di-
rected along the [001] direction or the 2-axis, although the mirror-planes of
symmetry are oriented differently. This amounts to nonuniqueness because
two different types of domains are possible, both having the same direc-
tion of the spontaneous polarization. Such configurations have not been
found to exist. Similarly, C%v and C\v each can give rise to two nonmax-

Figure 7.1.2: Derivation of polar, orthorhombic, nonmaximal subgroups of
the point group Oh via one of the intermediate groups C±v

imal, polar, orthorhombic subgroups of Oh- These also have never been
observed.
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Figure 7.1.3: Derivation of the six maximal, polar, orthorhombic subgroups
of the prototype group Oh- [After Ascher (1966).]

Experimentally, one observes only the six maximal polar orthorhombic
subgroups of Oh depicted in Fig. 7.1.3. Each of these corresponds to a
unique direction of the spontaneous-polarization vector.

7.1.10 Enumeration of Single-Domain States
The space group G of the prototype phase and the space group H of the
distorted phase determine the possible number, n, of single-domain states
(Aizu 1970a, 1974; Janovec 1972, 1976):

n = (\GP\ : \HP\) (ZH : ZG) (7.1.6)

Here \GP\ is the order of the point group Gp underlying the space group
G, and \HP\ is the same for the space group H. The ratio ZH • ZG is the
number of times the primitive unit cell of the distorted phase is larger than
that of the prototype. ZH and ZG can also be identified with the number
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of formula units of the crystal in the primitive unit cells of the distorted
and prototype phases respectively.1

The single-domain states can be numbered as D\, D^, • • - Dn, with n
given by Eq. 7.1.6.

All the domain states have the same symmetry described by the group
H. However, because they differ in orientation, chirality, and/or relative
location, the positions and orientations of the symmetry elements in each
domain are different. We can specify this by saying that the symmetry
groups of D\, DI, • • • Dn are H\, HI, • • • Hn, all referred to a common
frame of coordinates fixed in the prototype.

Let us consider the group H\ for the domain state D\. All symmetry
operators of H\ will transform DI back into itself. Symmetry operators
belonging to G but not belonging to H\ will transform D\ into other domain
states £>2, -Ds, • • • Dn. It can be shown readily (Aizu 1970a; Janovec 1972)
that all operations of G that transform D\ to a particular state Dj are given
by the left coset gjH\:

Dj = (gjHJDi, 9j £ G, j = l,2,. . .n (7.1.7)

The choice of operators QJ is not unique. However, there can be only n,
and exactly n, of them. This statement is made under the parent-clamping
approximation (cf. §5.1.2).

Since H\ is a proper subgroup of G, the following coset decomposition
can be written:

G = giHi + #2#i + • • • £n#i (7.1.8)

There is a one-to-one correspondence between the domain states D\,
£>2, • • • Dn and the left cosets in Eq. 7.1.8. This also means that we can
identify g\ with the identity operator {E | 0}.

As mentioned earlier, the domain states DI, DI, • • • Dn have identical
inherent symmetry. The set {D\, DI, • - - Dn} forms an orbit of DI in G
(§2.2.6).

With reference to our discussion in §5.3.3 we can identify the group
of all elements g e G that leave the domain state DI, and therefore the
order-parameter vector for that state, invariant as the isotropy group, also
called the stabilizer (§2.2.6) of DI in G.

We note that H\ can be a subgroup of G only if the translation subgroup
of HI is also a subgroup of G. Unless stated otherwise, we assume that

1A phase transition from one ferroic phase to another ferroic phase is conceivable
such that the daughter phase has a smaller Z-number in Eq. 7.1.6 than the starting
phase, making the second factor in this equation less than unity. In such a situation,
n in this eqation is not a product of the two factors. The important rule to follow is:
single-domain states are determined by lost symmetry operators (including translational
symmetry operators), and not by gained symmetry operators (cf. Guymont 1981).
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this is indeed the case. We also assume that the nondisruption condition is
satisfied, and that the parent-clamping approximation can be made (§5.1.2).

We now describe an alternative procedure, due to Guymont (1981),
for the symmetry analysis of domain structures. In this there is no need
to make a reference to the prototype symmetry. We simply assume that
the phase transition G «-> H is such that the nondisruption condition is
obeyed. We do not assume that G is the prototype symmetry for H] in the
most general case H (jt G and G <f. H.

The first step in this procedure is to choose a sufficiently large and
common unit cell, such that the symmetry elements of both the phases can
be described with reference to it. The fact that the nondisruption condition
is satisfied ensures that this is possible.

The second step is to write down the symmetry operators of the groups
G and H with respect to this common unit cell.

The third step is to identify the intersection group /:

I = G H H (7.1.9)

In going from the initial phase (either G or H) to the final phase, only the
lost operators are relevant for enumerating the domain states or variants.
We do not take any special note of gained operators.

For the phase transition G —» H, the lost symmetry operators are
members of the set (G — /). And for the transition H —> G, the lost
operators are members of the set (H — I).

Suppose g is a lost operator for the transition G —> H. Then the coset
gl contains only lost operators. If |G| : |/| = 2, then gl contains all the
lost operators.

If |G| : |/| > 2, the lost operators are distributed among the cosets
gl, g'I, </'/, • • •, where g, gf, g" • • • are symmetry operators present in G
but not in H.

A domain boundary is fully characterized by the corresponding lost
operator.

We illustrate this procedure with the example of the phase transition
Pnam <-> P112i/ra in KClOs, a ferroelastic crystal (Wadhawan 1980;
Guymont 1981).

First a common unit cell has to be chosen. As shown in Fig. 7.1.4(a),
a C-centered orthorhombic cell serves the purpose. This cell represents the
following lattice correspondence between the two phases:

am = a0; bm = -(-a0 + b0; cm = c0) (7.1.10)

The chosen unit cell has twice the volume of the primitive unit cell of
the monoclinic phase (under the PC A). Therefore the number of symmetry
operators with reference to this (common) unit cell is double of what it is
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Figure 7.1.4: (a) Choice of a common unit cell for the orthorhombic and
monoclinic phases of KClOs. The common cell is the C-centered or-
thorhombic cell defined by a0, 60, c0. (b) Symmetry elements of the mon-
oclinic phase, (c) Symmetry elements of the orthorhombic phase. [After
Guymont (1981).]

for the conventional cell:

H = P2i/ra = P112i/m =

[{1|000}, {I|000}, {21[00i]|00^}, {m[00i]|0oi}] +

[{11^0}, {1|~0}, {21[0oi]|~i},{n[0oi]|~^}] (7.1.11)

Similarly, for the orthorhombic phase,

G = Pnam =
[{1|000}, {1|000}, {21[00i]|0oi}, {m[0oi]|0oi}] +

K2i [ioo] 12 2 2), {Violl^0}' HIM]13^T^'Hiio]^^}]

(7.1.12)

It is now straightforward to pick out the common operators between
Eqs. 7.1.11 and 12 to identify the intersection group:

/ = G H H = {1|000}, {1|000}, {21[0oi]|0oi}, {m[00i]|0oi} (7.1.13)

For the transition Pnam —> P2i/m, the lost operators are those within
the second square bracket in Eq. 7.1.12. They all involve rotational oper-
ators, so that orientational twinning is expected in the monoclinic phase.
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The point group of the orthorhombic phase is rarara, and that of the mon-
oclinic phase is 2/ra. These are of orders 8 and 4 respectively, so that
two orientation states are expected in the monoclinic phase. Therefore the
four lost operators in Eq. 7.1.12 can give only two (and not four) distinct
orientation states. We can take {a[oio]li^0} as a representative variant-
producing operator. The two variants are then described by the cosets
P2i/m and {a[0io]liiO}P2i/ra.

On a macroscopic scale the second variant corresponds to a reflection
across the plane y = 0 (under the PC A). This plane thus defines one type
of domain wall. Another domain-wall type, perpendicular to the first, and
defined by the equation x = 0, can also be expected (Wadhawan 1980).
This corresponds to the lost operator {n[10o]|||^} in Eq. 7.1.12.

We next consider the reverse transition P2i/m —> Pnara. Here there
is no loss of point-symmetry operators in going from the initial phase to
the final phase. No orient at ional variants are therefore expected in the
final (orthorhombic) phase. Translational symmetry of the final phase is,
however, lower (by a factor of 2) compared to the initial phase, so that
antiphase domains (or T-twins, cf. §7.4.4) can be expected in the final
phase. The relevant lost operator can be taken as any of the four inside the
second square bracket in Eq. 7.1.11. We can take, for example, {1||̂ 0}
as a representative operator describing the formation of T-twins in the
orthorhombic phase.

7.1.11 Symmetry-Labeling of Domain States and
Domain Walls

Domain States

The symmetry operations lost in going from the prototype symmetry to
the symmetry of a ferroic phase may be both orientational and transla-
tional. Ignoring disorientations (§7.1.4) if any, i.e. working under the
parent-clamping approximation, these lost operations are precisely those
which can map one domain state to another. Domain states which can be
mapped onto one another by merely a translational operator lost at the
ferroic transition are said to belong to the same orientation state. Only
orientational operators lost at the transition can map a domain state be-
longing to one orientation state to a domain state belonging to another
orientation state.

These symmetry-related facts enable us to label domain states in a
unique and complete manner (Janovec & Dvorak 1986).

Let p be the number of orientation states, and t the number of trans-
lational states possible in each orientational state. With reference to Eq.
7.1.6, n = p.t, p = \GP\ : \HP\, and t = ZH ' ZG- Any domain state can
then be given a label Aa, where A — 1,2, - • • p, and a — 1,2, • • • t.
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For example, if for a given ferroic phase, p — 2 and t — 4, then it has
the following 8 possible domain states: li, 12, la, 14, 2i, 22, 2a, 24.

Domain Walls
Two contiguous states meet at an interface which is usually planar, and is
called a domain wall.

Clearly, a domain wall is characterized by its orientation and by the two
domains it separates. Therefore it can be specified by a symbol Aa/n/Bb,
or simply Aa/Bb (Janovec & Dvorak 1986). Here n denotes a unit vector
normal to the domain wall, Aa is the domain at the negative end of this
vector, and B^ the domain at its positive end.

The symmetry of the slice of the crystal structure which constitutes
a domain wall is determined not only by n, but also by the position of
the central plane of the wall with respect to the intersecting lattices of the
domains separated by it. This symmetry is diperiodic, and is defined by a
layer group (Janovec 1981; Pond & Vlachavas 1983; Zikmund 1984).

Prominent Orientation of a Wall
A domain wall is said to have a symmetrically prominent orientation if a
small change of this orientation results in a lowering of its symmetry.

One can associate an energy a per unit area of a domain wall. This
energy passes through an extremum at the prominent orientation of the
wall.
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7.2 TWINNING

Twinning in crystals is a more general phenomenon than the occurrence of
domain structure. Domain structure is "transformation twinning" (Wad-
hawan & Boulesteix 1992), in the sense that lowering of the prototype
symmetry at a phase transition (or phase transformation) results in the
occurrence of two or more equivalent domain states or twins. But twin-
ning can occur even when there is no relevance of a phase transition; e.g.
"mechanical twinning". Another type of twinning with features quite dif-
ferent from those of transformation twinning is "growth twinning". The
Brazil twins of quartz are growth twins, whereas its Dauphine twins are
transformation twins.
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Although our main interest in this book is in transformation twinning,
we take a more general approach in this chapter, so that the reader can
view transformation twinning in a proper perspective.

7.2.1 Definition of Twinning
A rigorous and unique definition of twinning is not easy to give. We could
adopt, for example, the following definition given by Cahn (1954) on the
basis of the work of Priedel (1926):

Definition 1. A twin is a poly crystalline edifice, built up of two or more
homogeneous portions of the same crystal species in juxtaposition, and ori-
ented with respect to each other according to well-defined laws?

The twin laws do not comprise any symmetry operators of the crystal
species. If they did, it would not be possible to define a twin boundary,
and a single, untwinned, crystal would ensue.

The "well-defined" nature of the twin law implies a constant and recur-
ring orientational relationship between the component crystals of the twin.
The emphasis on the constancy of orientational relationship is necessary to
distinguish between twin walls and, for example, grain boundaries. How-
ever, as discussed by Wadhawan & Boulesteix (1992) by considering the ex-
ample of (Y-Ba-Cu-O), a whole gradation of situations are possible between
the so-called "true twins" defined by Priedel (1926) and a grain-boundary
type configuration. The complications arise because of local stresses and/or
stoichiometry variations. Taking resort to the PCA (§5.1.2) is not an en-
tirely satisfactory solution to the problem of defining twinning rigorously
in terms of a well-defined twin law.

The term bicrystal is convenient to use when one does not, or cannot,
make a distinction between a twin boundary (in terms of a well-defined
twin law) and a grain boundary.

It has been pointed out by Bendersky, Cahn & Gratias (1989) that G.
Priedel had initially proposed the following definition of twinning:

Definition 2. A twin is a homogeneous crystalline aggregate in which one
observes so large a number of identical mutual orientations between crystals
that one can rule out a random cause.

In this definition the emphasis is on the orientation of variants, and
there is no mention of the crystal lattice which is merely a geometrical
construct.

2 Continuity of the strength of bonding across the twin interface can be introduced as
an additional requirement for defining a twin.
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Consider an aggregate of N variants of a crystal. If their mutual ori-
entations are totally random, 3N linearly independent reciprocal-lattice
vectors would be required for indexing the diffraction pattern of the ag-
gregate. Any nonrandom relationship between even one pair of variants
would make it possible to index the diffraction pattern with less than 3N
reciprocal-lattice vectors. Bendersky et al. (1989), generalizing on the work
of Gratias & Thalal (1988), have therefore proposed the following definition
of twinning, which also conforms in spirit with the initial definition given
by Friedel (Definition 2 above):

Definition 3. If the diffraction pattern of a poly crystalline edifice of N
orientational variants with a fixed, not random, orientational relationship
between pairs can be indexed with less than 3N reciprocal-lattice vectors,
twinning (or "hypertwinning") can be said to exist.

7.2.2 Transformation Twins
Various terminologies are in use in the literature for the description of twi-
nning in crystals (for reviews, see Cahn 1954; Klassen-Neklyudova 1964;
Wadhawan 1987b; Wadhawan & Boulesteix 1992). It is necessary for the
student of this subject to be familiar with the main descriptions and clas-
sification schemes, and the jargon employed.

Twinning caused by, or attributable to, phase transitions is called trans-
formation twinning. The term "domain structure" normally refers to this
type of twinning.

The concept of prototype symmetry (§5.1) is very important for ex-
plaining systematically the occurrence of transformation twins in a crystal.
And the prototype structure can sometimes be a hypothetical one (Dvo-
rak 1978). This is best exemplified by the case of twinning observed in
(NH4)2SO4 (Cahn 1954; Makita, Sawada & Takagi 1976; Sawada, Makita
& Takagi 1976; Izyumov & Syromyatnikov 1990). On cooling, this crystal
undergoes a phase transition at about — 50° C from a paraelectric phase
of orthogonal symmetry D^ to a ferroelectric (or rather ferrielectric) ph-
ase of monoclinic symmetry C%v. The phase stable at room temperature
is the orthorhombic phase, and no further phase transitions are observed
on raising the temperature, before decomposition occurs. However, the
room-temperature orthorhombic phase exhibits ferroelastic switching, and
has a domain structure such that, normal to the a0-axis, the orientations
of domains differ by an angle very close to 60°. The lattice parameters
b0 and c0 are such that b0/c0 = 1.774, which is very close to the value
\/3 expected for the unit cell of a lattice with hexagonal symmetry. One
therefore describes this orthorhombic lattice as pseudo-hexagonal. Prom
an analysis of the domain structure and the observed metrics it is possi-
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ble to deduce the hypothetical hexagonal prototype symmetry (D^h). The
transformation twinning observed at room temperature is then explained
in a very satisfactory manner in terms of a hypothetical phase transition:
Din - D%.

7.2.3 Growth Twins
Crystal growth from the liquid phase or the vapour phase is also a process of
phase transformation, and in that very broad sense growth twins could also
be regarded as transformation twins. However, certain bonds (particularly
covalent bonds), once formed in the crystal, cannot be broken easily during
a solid-to-solid phase transformation. By contrast, even such bonds can
be altered at the stage of formation of the crystal from the liquid or the
vapour phase (Cahn 1954), particularly at the nucleation stage (§2.1.1) of
the overall crystal-growth process. Thus it makes sense to treat growth
twins as distinct from transformation twins.

When the atomic bonding allows it, even growth twins can exhibit
ferroic switching. The ferroelastic behaviour of (NE^) 280)4 described above
is an example of this.

By contrast, the Brazil twins of quartz are more typical of what we
normally observe in the case of growth twins. It is almost impossible to
detwin a crystal of quartz having Brazil twins. Extreme measures like high
temperatures and large mechanical shearing stresses are often needed for
detwinning growth twins, if at all such procedures are successful.

Cahn (1954) has described several varieties of growth twins: annealing
twins, repeated twins, mimetic twins, contact twins, lamellar twins, and
polysynthetic twins.

7.2.4 Mechanical Twins
For certain crystals it is possible to cause a cooperative movement of atoms
by applying mechanical stress of appropriate magnitude and direction such
that the atom movements result in a new crystal of different orientation but
identical structure. Thus a portion of the parent crystal is changed into its
twin, and the two together constitute a mechanical twin. The changed
part of the crystal undergoes a macroscopic change of shape called a simple
shear. A lattice of points is said to undergo a simple shear if each lattice
point moves parallel to a certain direction (called the shear direction 771,
see Fig. 7.2.1) by a distance proportional to the distance of the point from
a particular plane called the habit plane, or the twin plane K\.

The habit plane is the interface between the parent crystal and its
twin produced by the shear deformation. It thus remains invariant during
the gliding of the lattice planes that results finally in the formation of the
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Figure 7.2.1: Description of the symmetry elements in mechanical twinning.
KI is the habit plane, or twin plane, K% the second undeformed plane, and
771 the shear direction. The shear plane is perpendicular to the plane K\
and contains the direction 771. 772 is the intersection of the shear plane with
K2. [After Hall (1954) and Stark (1988).]

mechanical twin.
We can imagine a reference sphere in the parent crystal, divided into

two equal parts by the twin plane KI. After mechanical twinning the
hemisphere belonging to the parent crystal remains undeformed, and the
other hemisphere deforms to a spheroid. In this spheroid one can identify
a plane (K^) which is also an invariant plane like K\.

The shear plane. A, is perpendicular to the twin plane K\ and contains
the shear direction 171.

The intersection of the plane of shear with the invariant plane K<2 de-
fines a direction, 772, which is an invariant direction.

The shear plane has the property that it contains the normals K£ and
K^ to the invariant planes K\ and K^.

With reference to the Bravais lattice of the parent crystal, the invariant
planes K\ and K% may or may not have rational Miller indices. Similarly,
the invariant directions 771 and 772 may or may not be rational directions
with respect to the crystal lattice.

Type 1 mechanical twins are defined as those for which KI and 772 and
the plane of shear, A, have rational indices.

Type 2 mechanical twins are characterized by a rational plane K<2 and
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a rational direction 771.
For a compound twin (Cahn 1954), K\, K^, 771, 772 all have rational

indices.
Type 1 twins are also called mirror twins (Cahn 1954) because for them

the twin plane K\ is a mirror plane of symmetry. As emphasized by Cahn
(1954), the mirror operation defining the twin law must be parallel to a
lattice plane in both components of the twin.

Type 2 twins are also called rotational twins (Cahn 1954), with 771
acting as the direction of 2-fold rotation axis providing the twin law. This
2-fold axis must be parallel to a lattice row common to both components
of the twin.

Following Stark (1988), we can express the twinning operator for Type
1 and Type 2 twins, respectively, as follows:

on = {m/cjti} (7.2.1)

<*2 = {2^112} (7.2.2)

For compound twins, Stark (1988) has provided detailed verification
for the validity of the following statement:

The only way in which a compound twin is possible in a crystal
is when the mirror, m,A, associated with the plane of shear (A)
is a member of the space group of the parent crystal:

{mA\r} e Si (7.2.3)

Here Si is the space group of the parent crystal. Thus it is not sufficient for
a compound twin that the shear plane be a mirror plane in a macroscopic
(point group) sense. It must also conform to the space group symmetry of
the parent crystal.

If the parent crystal structure is such that a mirror plane of symmetry
and a 2-fold axis perpendicular to the mirror plane exist simultaneously,
then the rotation twin and the mirror twin for such a case are said to be
reciprocal to each other. Their shear elements are determined at the same
time: K\ for one corresponds to K% for the other, and vice versa; similarly,
771 and 772 have mutually reciprocal roles.

7.2.5 FriedePs Four Twin Types
G. Friedel (1926) specified four categories of twinning in crystals (see Cahn
1954). For describing these it is necessary to define the concepts of twin
index E, and twin obliquity u .

S is the inverse of the fraction of lattice sites common to the two
components of the twin.
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And twin obliquity a; is a measure of the disorientation of one compo-
nent with respect to the other.

The primary subdivision of twinning in Friedel's scheme is in terms of
whether E = 1, or E > 1. And for each case one has to consider whether
(jj = 0, or w ̂  0. Four types of twinning are thus recognized.

Twinning by merohedry (E = 1, w = 0). This concept of twinning
(attributed to the work of Bravais) corresponds to situations where the
crystal structure has a lower symmetry than the Bravais lattice on which
it is based. Because of the lower symmetry of the crystal structure, the
morphology of the individual crystal displays a smaller number of faces
than would be possible for the full symmetry of the lattice on which it is
based. The additional symmetry elements present in the lattice provide the
twin laws.

An example is that of pyrite, having point-group symmetry ra3, whereas
the symmetry of the underlying lattice is ra3ra. The additional plane of
symmetry, mjno], present in the lattice provides the twinning operator.

Another well-known example is that of Dauphine twinning in quartz.

Twinning by pseudomerohedry (E = 1, u ̂  0). This type of twinning
was first recognized by Mallard. Here we can have either a twin plane or
a twin axis such that they are, respectively, parallel to a lattice plane or
lattice row which are almost a symmetry plane or a symmetry axis of the
crystal structure.

Twinning by reticular merohedry (E > 1, u = 0). Here, although the
lattices of the component individuals are not parallel, a larger unit cell can
be identified for the twin which continues without disturbance across the
twin boundary. In this context one speaks of a lattice of coincidence sites,
or a coincidence lattice, with E providing a measure of the fraction of the
lattice sites that are coincident for the entire twin. This type of twinning is
common in crystals belonging to the cubic system. Growth twins in galena,
fluorite, diamond, silicon and germanium are examples (Chen et al. 1992).

Twinning by reticular pseudomerohedry (E > 1, u; ^ 0). Twinning
in aragonite (CaCOs) provides an example of this type. The symmetry of
the crystal is orthorhombic pseudohexagonal, and the planes of pseudosym-
metry act as twin planes. Here, rather than the crystal lattice itself, a small
multiple of the lattice coincides approximately with the corresponding mul-
tiple of the lattice of the other component.
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7.2.6 Manifestation of Twin Type in the Diffraction
Pattern

Before the advent of X-ray crystallography, optical and contact goniome-
try were the main tools for studying twinning in crystals. Priedel's rules,
described above, were largely based on such information. Donnay & Don-
nay (1974) proposed a classification of twinned crystals which is based on
distinctive features of the diffraction pattern of the twinned crystal. The
obvious characteristic to look for in the diffraction pattern is whether or
not there is a splitting of the diffraction spots. This depends on whether
or not the twin obliquity, a;, is zero or nonzero.

If (jj = 0, we have twinning by twin-lattice symmetry (TLS).
If (jj 7^ 0, we have twinning by twin-lattice quasi symmetry (TLQS).
For each of these broad categories, further subdivision is made in terms

of the twin index S.

7.2.7 Hypertwins
Rapidly solidified aggregates of Al — Mn — Fe — Si display twinning such
that the icosahedral motifs in all the twin components are parallel (Bender-
sky, Cahn & Gratias 1989). The point-group symmetry of the individual
components is ra3, and any two such components are related by a rotation
of 72° (or its multiples) about an irrational direction (1, r, 0), where r is
the Golden mean (= 1.61803..). Thus, although each aggregate comprises
hundreds of crystals, only five orientations of the variants occur. Further
rotations about any of the six < 1, r, 0 > axes do not produce any addi-
tional orientations for the variants.

We have seen above that merohedral twinning occurs when the lattice
has a higher symmetry than the crystal structure. The additional symmetry
operators of the lattice flip the crystal structure across the twin interface
without disturbing the lattice orientation and continuity. In the case of the
Al — Mn — Fe — Si alloy, it is the lattice which gets flipped around across
the twin interfaces, and the orientation of the icosahedral motif remains
unchanged.

Bendersky et al. (1989) (also see Thalal & Gratias 1988) have given a
general prescription for describing an aggregate of N individuals of a crys-
tal. We know that the lattice vectors of each component crystal provide
the geometrical basis in the actual 3-dimensional space. Simplification oc-
curs when the six basis vectors corresponding to any particular bicrystal
are taken as defining a 6-dimensional hyperspace, in which each component
crystal is represented as a 3-dimensional facet. There can be a maximum
of 37V independent lattice vectors for the entire aggregate, the maximum
corresponding to the situation in which the orientations of all the compo-
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Table 7.2.1: Examples of hypertwinning. [After Bendersky et al. (1989).]

Type of boundary N Rank r Reduction (3N — r)

General grain 2 6 0

Special grain 2 3 3
(3-D coincidence lattice)

Merohedral twin 2 3 3

Twin aggregate N 3 37V - 3

Mechanical twin 2 4 2
(2-D coincidence lattice)

Transformation Twinning
6/rarara — » mmm
8/771771771 — > 4/771771771

10/771771771 — > 771771771

12/771771771 — -> 6/771771771
ra35 — » STTI
ra35 — •> ra3

r
>

3
2
5
2

10
5

3
5
5
5
6
6

6
1

10
1

24
9

nents are entirely random. For a nonrandom configuration the rank r of
the matrix describing the lattice relationships will be less than 37V. The
condition

3 < r < 37V (7.2.4)

thus defines a hypertwin. Table 7.2.1 gives a number of examples of the
reduction (37V — r) of the rank r.

In this table, the transformation m35 —> ra3 describes the situation
for Al — Mn — Fe — Si. For any bicrystal of the aggregate of this mate-
rial the interface contains a 3-fold axis (corresponding to a 1-dimensional
coincidence lattice). Therefore only five lattice vectors (instead of six) are
independent. If we attach another component to this bicrystal, only one
new basis vector is added because two of the 3-fold axes of the third crystal
are already specified, and the third crystal has therefore only one degree
of freedom. Addition of a fourth and a fifth variant adds no new degrees
of freedom because their orientations are fully specified by the 3-fold axes
they have in common with the first three variants. Therefore r= 6, and
37V — r — 9. The diffraction pattern of this 5-component hypertwin can
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thus be indexed, not by 15, but only 6 reciprocal-lattice vectors.

7.2.8 Hermann's Space-Group Decomposition
Theorem

For a symmetry analysis of the observed or expected domain structure
of a given crystal, once the prototype symmetry has been selected with due
care and certitude, the next question is that of the various modes available
for the lowering of this symmetry. Hermann's space-group decomposition
theorem has a valuable systematizing influence in this respect (Hermann
1929; Wondratschek & Jeitschko 1976; Deonarine & Birman 1983). Ac-
cording to this theorem:

Every subgroup H of a space group G is a class-equivalent sub-
group of a translation-equivalent subgroup Z of the parent group
G:

H C Z C G (7.2.5)

In other words, there always exists a space group Z such that G and
Z have the same translational symmetry, and Z and H have the same
point-group symmetry.

There are thus three ways in which the prototype space-group symme-
try G can be lowered:

H = Z C G (7.2.6)

H c Z = G (7.2.7)

H c Z c G (7.2.8)

Eqs. 7.2.6 and 7.2.8 correspond to ferroic phase transitions, because
the point-group symmetry of H is lower than that of G.

If Eq. 7.2.7 applies we have a nonferroic phase transition, resulting in
antiphase domain boundaries only.

Eq. 7.2.6 would give only rotational domains (with no translation do-
mains present), whereas both rotational domains and antiphase domains
would be present in a crystal that undergoes a phase transition that con-
forms to Eq. 7.2.8.

Fig. 7.2.2 provides a schematic illustration of the three types of situa-
tions described by Eqs. 7.2.6-8.

An example of the occurrence of only rotational domains is provided
by the domain structure of a-quartz, resulting from the /? —> a phase
transition, when the symmetry changes from P6222 (Dg) to P3221 (D%).

An example of the occurrence of purely translational domains (Eq.
7.2.7) is that of the ordered phase of the alloy Cus Au. In this case an order-
disorder, nonferroic, phase transition occurs, with symmetry changing from
Fm3m (O\) for the disordered phase to Pm3m (O\) for the ordered phase.
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Figure 7.2.2: Three possible ways in which a prototype symmetry can be
lowered at a phase transition. Part (a) shows a prototypic structure, having
plane-group symmetry pm. If the point-group symmetry continues to be m
after the phase transition, and there is a lowering of only the translational
symmetry, (a' = 2a), we have a nonferroic phase transition ((a) —> (c)).
Thick vertical lines represent domain walls. The domain wall in (c) is
purely of the antiphase type. If the point-group symmetry is lowered (from
m to 1 in (b) and (d)), we have a ferroic phase transition. This transition
occurs without a lowering of translational periodicity in (b). In (d) there is
a lowering of both translational and point symmetry. Both rotational do-
mains and antiphase domains occur in (d), whereas only rotational domains
occur in (b). [After Wondratschek & Jeitschko (1976).]
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J3 — Gd2MoO4 (GMO), having space-group symmetry Pba2 (Cfv), pro-
vides an example of domain structure in which both rotational domains
and antiphase domains occur together. The prototype symmetry in this
case is P42im (£>|d), and the unit cell of the lower-symmetry phase has a
volume twice that of the prototype. The intermediate space group Z of
Eq. 7.2.8 can be identified as Cmm2 (Dvorak 1971; Levanyuk & Sannikov
1974; Wondratschek & Jeitschko 1976; Janovec 1976).

SUGGESTED READING
R. W. Cahn (1954). Twinned crystals. Adv. Phys., 3, 363.

V. Janovec (1976). A symmetry approach to domain structures. Ferroele-
ctrics, 12, 43.

V. K. Wadhawan & C. Boulesteix (1992). Transformation twinning and
related phenomena. Key Engg. Materials, 68, 43.

7.3 BICRYSTALLOGRAPHY
Any two crystals sharing an interface constitute a bicrystal. For mathe-
matical convenience the interface is usually taken as planar, and a bicrystal
is defined as two semi-infinite crystals sharing a planar interface.

Two basic types of bicrystals are possible: those having two different
crystalline species across the interface, and those having the same crystal (in
two different orientations, chiralities and/or locations) across the interface
(Fig. 7.3.1). In the first case the interface is a heterophase interface or an
interphase boundary. In the second case we have a homophase interface.

Interphase boundaries can arise during phase transitions, or in epi-
taxial crystal growth. We shall also come across them when we discuss
morphology of the ferroic phase, in the next chapter.

Homophase boundaries are encountered as domain walls in domain
twins, interfaces in stacking faults, and as grain boundaries in general. Low-
angle and high-angle grain boundaries, particularly the latter, continue to
be the subjects of substantial interest (Fischmeister 1985).

The subject of the domain structure of ferroic materials overlaps con-
siderably with bicrystallography, although the latter does not depend on
the notion of prototype symmetry as its central premise. Bicrystallography
has a rather large range of applicability in physics and materials science.
For example, it is relevant to crystal growth and characterization. Even
a carefully grown crystal may contain growth-sector boundaries, growth
bands, misfit dislocations, etc. (see, for example, Bhat 1985). The for-
malism and the language of bicrystallography can be used for a detailed
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Figure 7.3.1: Schematic depiction of the two basic types of bicrystals. In
(a) the two crystals across the interface are different. In (b) we have the
same crystal on the two sides, but the two individuals may have different
orientations, chiralities, and/or mutual disposition.

description of an as-grown crystal. Similarly, information about the sym-
metry group of a bicrystal (see below) can enable us to predict and classify
comprehensively the types of extended defects that can exist in the inter-
face (Pond & Vlachavas 1983; Kalonji 1985). Phase transitions occurring
at interfaces, and the resultant domain structure at these interfaces, can be
described quite adequately in bicrystallographic terminology. Constraints
on the vibrational modes of the interface can be derived from a knowledge
of the space-group symmetry of the interface. This information can be used
for understanding not only interfacial phase transitions, but also diffusion
and other migration mechanisms at the interface.

Looking at history that is not too distant, Bollmann's (1970) book on
crystal defects and crystalline interfaces marked the beginning of many of
the current geometrical ideas of bicrystallography. His latter book (Boll-
mann 1982) further consolidated this work. However, his analysis applied
only to symmorphic structures with one atom per primitive unit cell. Pond
& Bollmann (1979) defined the notion of the dichromatic pattern (described
below). This was extended later to the concept of the dichromatic complex
by Pond & Vlachavas (1983). This notion overlaps substantially with that
of domain pairs defined by Janovec (1972).

Cahn & Kalonji (1981), Fayard, Portier & Gratias (1981), Gratias &
Portier (1982), Kalonji & Cahn (1982), and Kalonji (1985) developed alter-
native formalisms for bicrystallography, with special attention to interfacial
properties of bicrystals.

The English edition of Shubnikov & Koptsik's book on symmetry in
science and art appeared in 1974. This book forms the basis of the bicrys-
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tallographic formalism developed by Pond & Vlachavas (1983), which we
sketch very briefly in this section. We also draw from the work of Gratias
and coworkers, as well as Kalonji and Cahn.

7.3.1 General Methodology
Intersection Group
The symmetry group of a bicrystal that has two different crystals across the
interface comprises symmetry elements (if any) common to the component
crystals. It is thus the intersection group (/) of the groups G\ and G<2
describing the symmetry of the component crystals, in accordance with the
Curie principle (§C.l):

/ = Gi H G2 (7.3.1)

The symmetry of such a bicrystal (Fig. 7.3.l(a)) is always lower than that
of the components, and exemplifies the process of dissymmetrization (§C.l).

Operations of / simultaneously map each component crystal back onto
itself.

Intersection groups are of central importance to bicrystallography, just
as crystallographic point groups are to monocrystallography (Cahn & Kalonji
1981). We shall have occasion to refer to them frequently.

Symmetrizer

When the two parts of a bicrystal are comprised of the same crystalline
species, the possibility of an additional type of symmetry operation arises,
which can map each component crystal to the other. The overall symmetry,
say Gs, of such a bicrystal can thus be higher than the intersection-group
symmetry /. This is a case of symmetrization, occurring in accordance
with the Curie-Shubnikov principle (§0.2). One obtains Gs from / as an
extended group (cf. Eq. 0.2.2):

G9 = I\J M', (7.3.2)

where M' is an appropriate symmetrizer (§0.2).
The mutual symmetry relationship between Crystal 1 and Crystal 2

comprising such a bicrystal can be specified by the Seitz operator {R|T/rac},
where R is a point-group operator that maps the lattice of Crystal 1 to
the lattice of Crystal 2, and T/rac is an additional rigid-body translation
that might be needed for superimposing the corresponding ("homologous")
atomic sites.

Any point ri in Crystal 1 is related to the corresponding point r2 in
Crystal 2 as follows:

r2 = {R|T/mc}n = Rn + Tfrac (7.3.3)
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Therefore the space group G<i of Crystal 2 is related to space group G\
of Crystal 1 as follows (the two groups are isomorphic):

G2 = {R|T/rac} Gi {RIT^J-1 (7.3.4)

The intersection group / (Eq. 7.3.1) is therefore the following:

/ = Gi n {R|T/rac}Gi{R|T/rac}-1 (7.3.5)

The groups GI, G<2 and I are ordinary or classical space groups (Fe-
dorov groups). The elements of the symmetrizer M in Eq. 7.3.2 are also
ordinary coordinate transformations, but with the distinctive feature that
they interchange the identities of Crystal 1 and Crystal 2. It is found use-
ful to keep track of those symmetry operators of the bicrystal which map
Crystal 1 onto Crystal 2, and Crystal 2 onto Crystal 1. This is easily done
by arbitrarily calling Crystal 1 "white" and Crystal 2 "black", and treating
the operations involving the symmetrizer M' as antisymmetry operations,
or colour-reversal operations (§2.2.18).

With this proviso we can write the following defining equation for the
symmetrizer:

M' = {R'\T'frac} x /, (7.3.6)

where we write R' and T^rac instead of R and T/rac to represent the fact
that they are colour-reversal operators.

The group Gs is thus made into a Shubnikov group, although it is
possible to design an alternative formalism wherein one deals with Fedorov
groups only.

In the case of a bicrystal comprising two different crystals, M' is an
empty set, and Gs = I.

The Maximum Symmetry Group

The groups GI and G% can be, in general, nonsymmorphic (§2.2.17), and
nonholohedral (§2.2.16). In the approach of Pond & Vlachavas (1983), the
first stage in the symmetry analysis of a bicrystal is the determination of
the maximum symmetry group for the problem at hand. For this, one
has to first obtain from G\ and G% the corresponding symmorphic and
holohedral space groups. These latter are nothing but the symmetry groups
of the underlying lattices of Crystal 1 and Crystal 2. These are denoted
by symbols <J>j and $2, where the use of the letter $ signifies the fact
that these are Fedorov groups (and not Shubnikov groups; see below). For
dealing with magnetic crystals the Fedorov groups must be replaced by
Shubnikov groups. The superscript '*' is used consistently for symmetry
groups of lattices, rather than of crystal structures.
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The following intersection group is constructed next:

$(p) = $* n *; (7.3.7)

The maximum symmetry group is then obtained as the following ex-
tended group:

HT(p) = *(P) U M7(p), (7.3.8)

where
M'(p) = *(p) x {R'|T'/rac} (7.3.9)

The maximum symmetry group III* (p) describes the symmetry of the
dichromatic pattern (DCP). The DCP is the lattice defined by the super-
position of the white lattice and the black lattice.

The idea behind establishing the maximum-symmetry group (or the
universal group) is that the various stages of symmetry-descent from this
group (due to various internal causes to be described below) provide ex-
haustively the complete set of variants or domain states.

Symmetry Descent

Having determined the symmetry group of the DCP, the next step is to
determine the symmetry group of the dichromatic complex (DCC). The
DCC is the superposition of the white and the black lattice complexes. [A
lattice complex, we may recall (§2.2.17), is a set of points obtained by
applying on any point in a crystal all the symmetry operations of the space
group of the crystal.] We first construct the following intersection group:

$(c) = $! n $2, (7.3.10)

where $1 and $2 are the space groups of the white and the black crystal
structures.

The Fedorov group 4>(c) defined by Eq. 7.3.10 does not take cognisance
of any colour-reversal symmetry that may be present. A suitably extended
group, III(c), is therefore constructed from $(c) (Pond & Vlachavas 1983).

The group IH(c) so constructed may or may not be holosymmetric, i.e.
its symmetry may be equal to, or may be less than, that of the underlying
lattice. In the latter case we determine, from the knowledge of III(c), the
holosymmetric group HI*(c) for the DCC.

So far we have dealt only with the interpenetrating white and black
lattice complexes. The next step is to introduce the interface. This is done
in two steps. First an unrelaxed or idealized interface is defined, and then
atoms near the interface are allowed to relax.

Fig. 7.3.2 shows the stepwise construction of the idealized homophase
interface. We begin with two superimposed crystals, as in part (a) of the
figure. A rotation or reflection (R) is carried out next, as in (b). Part (c)
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Figure 7.3.2: Idealized construction of a homophase interface in a bicrystal.
See text for description. [After Kalonji (1985).]

shows the operation of the translation T/rac (cf. Eq. 7.3.6). An unrelaxed
interface is brought in next, as shown in (d). Finally black atoms are wiped
out on one side of the interface, and white atoms on the other, as in (e).

Operations of the space group 3H(c) that leave the interface invariant
define the bicrystal group 111(6). Knowing 111(6), one can construct the
holohedral group III* (6), in case the former is not already so.

The arbitrary introduction of the interface into the DCC can result
in a thermodynamically metastable configuration. The structure near the
interface therefore relaxes to a stable state, with a concomitant lowering of
the symmetry III* (6).

Fig. 7.3.3 summarizes the entire procedure, involving the construction
of the maximum symmetry group U[*(p), and the various stages of the
descent of this symmetry. Symmetry operators lost at each stage result in
variants or domain states. Extension of such a formalism to tricrystals has
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Figure 7.3.3: The various types of variants possible in a bicrystal, as deter-
mined by successive loss of symmetry operators. [After Pond & Vlachavas
1983.1

been carried out by Dimitrakopulos & Karakostas (1996).

7.3.2 Dichromatic Pattern
The concept of the dichromatic pattern (DCP) is fundamental to the sym-
metry description of bicrystals. Eq. 7.3.8 defines the symmetry group of
the DCP, with Eq. 7.3.9 defining the symmetrizer M'(p).

Pond & Vlachavas (1983) have derived the 12 possible symmetry groups
{l,M'(p)} for bicrystals. A typical example is the group {1, 4/(mod2)}.
Here the second operation can be expressed in the axis-angle notation
{[uvw] 9}' as {[001] 90°}'. Its meaning is that there is a 90° rotation about
the [001] axis, followed by colour reversal. Obviously, if this operation is
carried out twice, there is no change of colour, and such a double operation
cannot qualify as a symmetrizing factor. Hence the need to put 'mod 2'
(modulo 2) in 4' (mod 2). Similarly, the operator 12' (mod 6) implies
that alternate operations of the 12-fold colour-reversing rotation axis are
excluded.

Let T be the translation group underlying the symmetry group GI
of Crystal 1 in Eq. 7.3.5. Then, from this equation, the translational
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symmetry group of the DCP can be written as

T(p) = T n {R\Tfrac}T{R\Tfrac}-1 (7.3.11)

The translation group T(p) is an infinite set in 1, 2 or 3 dimensions, or
it is an empty set (corresponding to no periodicity at all). Patterns with
no translational symmetry are described by point groups. Patterns with 1-
dimensional translational symmetry are described by rod groups, and those
with 2-dimensional periodicity by layer groups (§2.2.20; also see Shubnikov
& Koptsik 1974).

7.3.3 Coincidence Lattice
A 3-dimensional T(p) implies the existence of a coincidence lattice.

Vectors of the coincidence lattice are solutions of the equations

t2j = R'tii, (7.3.12)

where tu and t<2j are vectors spanning the lattices TI of Crystal 1 and T%
of Crystal 2:

Ti = {E|tii}, (7.3.13)

T2 - {E|t2i} (7.3.14)

The vector T/roc in Eqs. 7.3.3 and 7.3.11 denotes any displacement of
the black lattice (or Crystal 2) with respect to the white lattice (Crystal
1), away from a reference pattern in which at least one black lattice site is
coincident with a white lattice site.

T(p) defined by Eq. 7.3.11 is independent of T/rac. To prove the
validity of this statement, we note that, for a coincidence lattice to exist,
we must have

{E|tii} = {KIT,™}-1 {E|t2j} {R|T/rac} (7.3.15)

On using Eqs. 2.2.13 and 2.2.14 we get

{E|tii} = {R-1|-Rr1T/rac} + {E\R~lTfrac + R~lt2j - R-lTfrac}

= {E\R-lt2j} (7.3.16)

The terms involving the displacement vector T/rac thus cancel out. For
this reason, Gratias & Portier (1982) and Kalonji (1985) have advocated the
use of the term 'coincidence lattice', rather than 'coincidence site lattice'.
The coincidence lattice is the same, no matter which site in it is chosen for
coincidence; the translational symmetry T(p) is independent of T/rac.

We consider coincidence lattices again in §7.4.



7.3 Bicrystallography 251

7.3.4 Dichromatic Complex
Eq. 7.3.10 defines the Fedorov-group symmetry, $(c), of the dichromatic
complex (DCC). Its translational symmetry is the same as that of the DCP,
and is therefore given by the group T(p) (Eq. 7.3.11).

From 3>(c) one constructs the Shubnikov group III(c) of the DCC, so
as to take cognizance of any antisymmetry operations (Pond & Vlachavas
1983).

The group III(c) may or may not be the same as the corresponding
holosymmetric symmorphic group HI*(c).

Unlike the DCC, the symmetry group HI*(p) of the DCP is constructed
from two space groups that are both holohedral and symmorphic. The sym-
morphic nature of the two constituent groups ensures that, for each of them,
at least one point exists at which all the point symmetry elements intersect
(§2.2.17). The coincidence of one such point in Crystal 1 with a similar
point in Crystal 2 provides a natural reference pattern, corresponding to
Tfrac = 0 in Eq. 7.3.3.

In nonsymmorphic lattice complexes the symmetry elements do not all
intersect at a single point. In the work of Pond & Vlachavas (1983), a
particular nonsymmorphic complex is taken as based on the symmorphic
complex to which it is isomorphic, so as to define the reference structure
corresponding to Tfrac = 0.

For nonsymmorphic bicrystals a whole set of equivalent DCCs can oc-
cur. These are given by the coset decomposition of III* (c) with respect to
HI(c).

7.3.5 Unrelaxed or Ideal Bicrystal
Introduction of an interface into the interpenetrating white and black lattice
complexes, followed by wiping out of the black lattice complex on one side
of the interface and the white on the other, gives us a bicrystal (unrelaxed
or ideal) of translational symmetry T(b):

T(b) = T{p) H Ginterface (7.3.17)

The possible bicrystal groups can be classified in terms of the dimen-
sionality of the group T(b): If this group has 2-dimensional periodicity,
the symmetry group of the bicrystal is a two-sided layer group. If it is 1-
dimensional, the symmetry is that of a two-sided band in the terminology
of Shubnikov & Koptsik (1974). If T(b) has no translational symmetry, one
speaks of a two-sided rosette symmetry.

The following symmetry operations of the DCP can survive the intro-
duction of an interface (Kalonji 1985): classical (i.e. non-colour-reversing)
rotation axes and mirrors perpendicular to the interface; classical transla-
tions lying in the (planar) interface; antimirrors with any glide component
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parallel to the interface; antidiads of any orientation parallel to the inter-
face; and antiinversion centres lying on the interface.

7.3.6 Relaxed Bicrystal
The holosymmetric ideal bicrystal of symmetry III* (6) described above may
be only a metastable structure, which tends to relax to a thermodynami-
cally more stable configuration, with a concomitant reduction of symmetry
from III* (6) to 111(6). Pond & Vlachavas (1983) have considered the fol-
lowing routes of relaxation:

• Rigid-body translation;

• Movement of the interface to a more stable position;

• Local atomic relaxation; and

• Insertion or removal of material at the interface.

7.3.7 The Six Bicrystal Systems
The possible bicrystal space groups have been derived and tabulated by
Pond & Vlachavas (1983). For a more fundamental discussion of such
groups the book by Shubnikov & Koptsik (1974) should be consulted.

Bicrystals belong to one or the other of six bicrystal systems. A bicrys-
tal belonging to a particular system must possess the minimum essential
point symmetry compatible with that system. The cubic system is not al-
lowed. This is because a bicrystal must always have a unique plane (namely
the interface), whereas the cubic system cannot allow a unique plane. The
six bicrystal systems are: monadic (triclinic), diagonal (monoclinic), ortho-
diagonal, tetragonal, trigonal, and hexagonal.

Rosettes (an empty set T(b)) and layers (a 2-dimensional T(6)) can
be associated with any of the six bicrystal systems, whereas bands (1-
dimensional T(6)) can be compatible with only monadic, diagonal and
orthodiagonal systems. This brings up an interesting difference between
monocrystals and bicrystals. Whereas for the former it is possible to assign
a crystal system unambiguously, for the latter the translational symmetry
must also be specified simultaneously to avoid ambiguity. For example, the
diagonal band bicrystal system is different from the diagonal layer system;
the former is 1-dimensional, and the latter 2-dimensional, although both
are monoclinic.

7.3.8 Bicrystallographic Variants
Spontaneous loss of a symmetry operator results in the occurrence of two
or more equivalent states or variants. Fig. 7.3.3 lists the various types of
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variants possible in a bicrystal. Variants for each symmetry descent can
be enumerated by writing a coset decomposition of the higher symmetry
group with respect to the lower.

Orientational Variants

These variants can be mapped on to one another by those symmetry op-
erators of <I>i and $2 which are not present among the ordinary (classical)
operators of $(p).

Complex Variants

The symmetry reduction, if any, in going from III* (p) to III* (c) leads to
the formation of complex variants. Although III*(c) is, by definition, a
holosymmetric group, complex variants can arise if either the white or the
black crystal is nonholosymmetric. They can also arise if one or both the
crystals are nonsymmorphic.

Morphological Variants

These arise due to dissymmetrization from III*(c) to III* (b) (Fig. 7.3.3).
They are called morphological variants because they either correspond to
different orientations, or to different locations, of the interface. The vari-
ous equivalent configurations of the interface have a one-to-one correspon-
dence with the cosets in the coset decomposition of III* (c) with respect to
II[*(6). Grain-boundary facetting and precipitate morphology are directly
determined by the number and mutual disposition of morphological vari-
ants.

Relaxational Variants

Symmetry reduction from III* (b) to 111(6) leads to relaxational variants.
Since the relaxational processes occur around the interface only, these vari-
ants occur only on the (2-dimensional) interface, and are separated by 1-
dimensional or line defects.

An Illustrative Example

We illustrate some of the concepts described above by considering the ex-
ample of epitaxial growth of thin films of CdS on an NaCl substrate (Holt
& Wilkox 1971; Multi & Holt 1972; Pond & Vlachavas 1983).

Since the interface is between two different crystals (interphase bound-
ary), no antisymmetry operations are involved in this example.

CdS has the sphalerite structure. Let us first suppose that a thin layer
of CdS in the (001) plane is deposited on the (001) plane of the NaCl
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substrate. It is observed in practice that the [110] direction of CdS is
parallel to the [110] direction of the NaCl substrate.

For the substrate,
$*(A) = Fm3m, (7.3.18)

and
$(A) = F43m, (7.3.19)

and for the CdS deposit,

$*(fi) = $(//) = Fm3m (7.3.20)

A and JJL refer to the white and the black members of the bicrystal.
The translation group, T(p), of the DCP for this problem is an empty

set. Therefore the maximum symmetry group, m*(p), is the same as the
underlying point group C?(p), namely m3m. For the same reason, the group
of the holosymmetric DCC can be identified with its underlying point group:
m*(c) = G(c) = 43m. And the group of the bicrystal is III* (6) = G(V) =
2mm. Thus the bicrystal belongs to the orthodiagonal rosette system.

There are no orientational variants in this case because IU*(p) =
$*( A) = $*(//).

There can be two complex variants because

(m3m) = (43m) U (1) (7.3.21)

One complex variant is related to the other through an inversion operation.
Similarly, the possible morphological variants are given by the following

coset decomposition:

(43m) = (2mm) U (1, 2X, m(i0i), m(i0i), ^(oii)* ^(011)) (7.3.22)

These can be visualized as the six {001} interfaces bounding a CdS crystal
in the shape of a cube embedded in the NaCl matrix.

As a variation of this example, let us now suppose that the NaCl crystal
chosen for depositing the thin film is parallel to the plane (110), instead
of (001). The CdS film in this case is found to be oriented such that its
(110) plane is parallel to the (110) plane of the substrate. The DCP and
the DCC symmetries are the same as before. But the bicrystal now has the
symmetry of a diagonal rosette:

G(b) = (m) = (1, m(ilo)) (7.3.23)

Coset decomposition of G(c) with respect to G(b) now gives 12 morpholog-
ical variants. These correspond to dodecahedral facetting, compared to the
cubic facetting described above.
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7.4 A TENSOR CLASSIFICATION OF
TWINNING

Several classification schemes for twinning in crystals are in use. The
simplest way of distinguishing between various types of twins is in terms
of physical appearance: contact twins, lamellar twins, polysynthetic twins,
mimetic twins, penetration twins, etc. (see Cahn 1954; Klassen-Neklyudova
1964; Milovsky & Kononov 1985).

Another classification is in terms of the origin of twins: transformation
twins, mechanical twins, growth twins. These were considered in §7.2.

The pioneering and systematic work of G. Friedel (1926) resulted in
the recognition of four twin types (§7.2): twinning by merohedry (E = 1,
(jj = 0); twinning by pseudomerohedry (E = 1, LU ^ 0); twinning by reticular
merohedry (£ > 1, u = 0); and twinning by reticular pseudomerohedry
( £ > l , u ; ^ 0 ) .

Friedel's classification was based on data obtained by optical and con-
tact goniometry. After the advent of X-ray crystallography, another clas-
sification scheme was proposed by Donnay & Donnay (1974), cf. §7.2. It
differed from Friedel's classification in that it interchanged the importance
attached to the parameters E and u. The primary subdivision of twin-
ning in this scheme was done in terms of u (rather than E, as in Friedel's
scheme). If LJ = 0, we have twinning by twin-lattice symmetry (TLS), and
if (^ ^ 0 we have twinning by twin-lattice quasisymmetry (TLQS). Further
subdivision was done for each of these main categories in terms of the twin
index E.

All these classification schemes, though serving their intended purposes
very well, do not pack a large amount of crystallophysical information, and
are therefore not very discriminative. For example, both Dauphine and
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Brazil twins of quartz come under the TLS category of Donnay & Donnay
(1974), in spite of the fact that the response of these two types of twins
to mechanical stress is very different. Dauphine twins are transformation
twins, and can be readily detwinned (Chapter 12). Brazil twins, on the
other hand, are growth twins, and it is almost impossible to detwin them
because of the nature of the bonding frozen into the interface at the nucle-
ation/growth stage of the crystal.

Similarly, twinning (domain structure) resulting from a nondisruptive
phase transition has several features quite distinct from those of twinning
due to a reconstructive phase transition (§5.7.2). The very process of recon-
struction in the latter case makes movement of twin walls under the action
of applied forces very difficult, if not impossible. The old classification
schemes for twinning have no provision for making use of such information.

Twinning in NEUC1 is another example. Here the twin individuals
differ in the sign of the piezoelectric coefficient ^123- However, neither
the description "twinning by merohedry" (Friedel), nor "twinning by TLS"
(Donnay & Donnay) conveys any information about this fact.

To absorb such additional information, one of the things one must
do is to invoke the full space-group symmetry of the crystal. Twinning is
determined by crystal structure, and crystal structure is properly described
by the space group to which a crystal belongs.

A classification scheme for twinning based on space-group considera-
tions has to deal with relationships between two space groups: the actual
space-group type of the individual components comprising the twin, and an-
other space group (not necessarily a supergroup of the first space group),
which has at least one additional symmetry operator among its elements.
This additional operator maps one twin individual to the other. Quite of-
ten, it is desirable, even indispensable, to choose the space group containing
the twin-mapping operator as a supergroup of the other space group. One
can then bring in the important notion of prototype symmetry, defined by
us rigorously in §5.1 in terms of Guymont's nondisruption condition.

We introduce here a classification scheme for twinning that is centered
around the important notion of prototype symmetry, and is designed to
absorb information about the tensor distinction of domains and twin com-
ponents (Wadhawan 1997).

We begin by dividing all twins into two main categories: those which
differ in at least one tensor coefficient, and those for which all macroscopic
tensor coefficients are the same (with reference to a common frame of ref-
erence) (Fig. 7.4.1). We call the latter translation twins or T-twins.

Twins which differ in at least one macroscopic tensor property (i.e.
rotational twins, cf. §7.1.1) can be of two types: those for which a proto-
type symmetry is definable (we call them Aizu twins), and those for which
the prototype is not definable (we call them Bollmann twins or B-twins).
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Figure 7.4.1: Tensor classification of twinning.

[Bollmann's (1970) book on crystalline interfaces marked the beginning of
many of the current geometric ideas in bicrystallography. We propose to
associate non-Aizu rotational twins with the name of Bollmann.]

For Aizu twins, within the parent-clamping approximation (§5.1.2),
all the twin mapping operators are from among the n domain mapping
operators gj occurring in Eq. 7.1.8. Since we have already recognized T-
twins as a separate category, all Aizu twins are necessarily ferroic twins,
i.e., for them the mapping operator necessarily has a rotational component
(in addition to the fact that it belongs to the prototype group); it may also
have a fractional-translation component sometimes, arising from a screw-
axis or glide-plane operation (Guymont, Gratias, Portier & Fayard 1976).

Aizu twins can be of two inherently different types: ferroelastic twins
(or S-twins), and nonferroelastic-ferroic twins (or N-twins).
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An S-twin can be considered as arising from a ferroelastic phase tran-
sition. Proper ferroelastic transitions are well described by mean-field the-
ories like the Landau theory. This is because of the long-ranged nature
of the elastic interaction. The same cannot be said, in general, about
nonferroelastic-ferroic transitions, from which N-twins arise.

All twins can thus be divided into four fundamentally different classes:
S-twins, N-twins, B-twins, and T-twins (Fig. 7.4.1). We shall refer to it as
the SNBT classification.

This classification is based on concepts drawn from the theory of trans-
formation twinning. But what is its validity for mechanical twins (§7.2.4),
and for growth twins (§7.2.3)?

Two types of mechanical twins can be distinguished. Those correspond-
ing to ferroelastic domain pairs, and the rest. The former are just S-twins,
and the latter should be classifiable as B-twins. The validity of the second
part of this statement follows from the description of mechanical twins in
§7.2.4. The twin operator for Type 1 mechanical twins, Type 2 mechanical
twins, and compound twins is a Seitz operator defined respectively by Eqs.
7.2.1, 7.2.2 and 7.2.3. If this operator can be identified with one of the gjS
in Eq. 7.1.8, we have an S-twin; otherwise a B-twin. But in either case the
SNBT classification scheme covers mechanical twins adequately.

We consider growth twins next. Twinning can occur both during the
nucleation stage and the growth stage of a crystal (§2.1). The cluster-to-
crystal transition (§2.1.2) necessarily involves a change of symmetry (Mul-
tani & Wadhawan 1990; Haberland 1994). For every symmetry operator
lost at such a transition, equivalent configurations (twins) can appear in
the microcrystal, and the possible twin states can be enumerated by using
Eq. 7.1.8.

The symmetry of the clusters need not be from among the 32 crystal-
lographic point groups. Icosahedral symmetry is favoured quite frequently.
Gold clusters, for example, have icosahedral symmetry in the 4-15 nm
regime. Since icosahedral symmetry is not compatible with translational
periodicity of a bulk crystal in 3-dimensional space, the cluster-to-crystal
transition in such a case is not at all a nondisruptive phase transition. It
may also involve multiple twinning as an adjustment mechanism (§2.1.2).

In the ultimate analysis, peculiarities of the atomic structure determine
the laws of twinning at the nucleation or growth stages. For example, the
energy of formation of a faulted 2-dimensional embryo having the configu-
ration of a rotational twin is very low for Si and Ge crystals (Tiller 1991a).
Twinning at even the nucleation stage is therefore quite likely to occur for
them.

Twinning can occur not only during the nucleation stage, but also
during the growth stage of a crystal. The likelihood of a particular habit
face becoming a twin plane is high if it has a high density of atoms and if a
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large fraction of the atomic sites is common to the individuals comprising
the twin. For example, in crystals with fee symmetry the twin plane is
parallel to the octahedral face, which has the maximum density of atoms.
This is typical of the spinel law of twinning. Similarly, in aragonite twins
a fraction of the structure of CaCOs has a common orientation in the two
components (Milovsky & Kononov 1985).

In growth twins, a twin-operation configuration can provide additional
reentrant corners or junctions where the growth units can bind more strongly,
resulting in enhanced growth rates compared to surface or terrace sites.
However, since dislocations are also normally present in real specimens, the
generation rate of layers of the growing crystal is determined by three pri-
mary competing mechanisms: (i) 2-dimensional or "pill-box" nucleation;
(ii) screw dislocations; and (iii) twin-plane reentrant corners (Sunagawa
1987). In both (i) and (iii), layers are initiated by nucleation of 2-dimensional
pill-boxes, but in (iii) only a partial pill-box, with a lower formation energy,
is needed (Tiller 1991a).

Mechanical twinning can also occur during the growth of a crystal due
to internal mechanical and thermal stresses (Tiller 1991b).

In the laboratory large crystals are often grown by starting with a
seed crystal, which grows in size on being surrounded by the nutrient fluid
under appropriate conditions. Twinning may exist beforehand in the seed
selected. For example, the microtwins observed in hydrothermally grown
quartz mainly originate at the surface of the seed, having been produced by
the stress at high temperatures generated by the sawing procedures used for
obtaining the seed from a larger crystal. The mechanical twins so produced
on the surface of the seed crystal are not always dissolved away fully by the
etching practices adopted (Kotru & Raina 1982; Kotru, Kachroo & Raina
1985).

To sum up, twinning can occur both during the nucleation stage and
the growth stage of a crystal obtained from a liquid or a vapour state. The
formation of variants at the cluster-to-crystal transition is not a thoroughly
investigated subject yet. However, in view of the noncrystallographic sym-
metry often adopted by clusters, such growth twins are not very likely to be
S-twins or N-twins. After the nucleation has occurred and growth is pro-
gressing, twinning can also arise as a result of "probability accidents" (Tiller
1991b), especially when such "accidents" can lead to increased growth rates
because of the peculiarities of the atomic structure at certain habit faces.
And the reentrant sites appearing as a result of such twinning operations
can serve as ledges where attachment of growth units can occur at a faster
rate than on the surface or terrace sites of the growing crystal.

We conclude that growth twins can be expected to be B-twins, in gen-
eral (although exceptions are possible). The twinning operations involved
in them are normally not traceable to a prototype symmetry group in the
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spirit of Eq. 7.1.8. We have already mentioned the case of Brazil twins in
quartz. Another example is that of twins in III-V compound semiconduc-
tors, which have been identified by Chen et al. (1992) to be 60°-rotation
twins, a nonferroic operation in the present context.

Before we discuss the characteristics of each of the four types of twins
identified in the SNBT scheme, it remains to deal with one more aspect of
twinning, namely that related to coincidence lattices.

The notion of the dichromatic pattern (DCP) was explained in §7.3.2.
The translation group of the DCP is the translation group (T/) underlying
the intersection group / (Eq. 7.3.5). If T is the translation group underlying
the group G of Component 1 of the twin, Eq. 7.3.5 gives

T/ = T n [{R.\Tfrac}T{R.\Tfroc}-1] (7.4.1)

A 3-dimensional T/ corresponds to the existence of a coincidence lattice,
running right across the interface in the twin.

Although the group T/ comprises only lattice translations, the presence
of the Seitz operator {R|T/rac} (and its inverse) in Eq. 7.4.1 makes it pos-
sible to identify point-group operations which achieve the same invariance
of the interpenetrating lattices of the bicrystal as that achieved by pure
lattice translations of T/. This is represented conveniently in terms of the
axis-angle pair {[uvw] 9} , where 0 denotes the misorientation of Crystal 2
with respect to Crystal 1 through a rotation about an axis [uvw] defined
in the coordinate system of Crystal 1 (Pumphrey & Bowkett 1971).

Certain axis-angle pairs can result in twinning configurations (Woir-
gard & de Fouquet 1972; Ranganathan & Roy 1992). Coincidence lattices
with twin index E can be generated from the Ranganathan equation (Ran-
ganathan 1966):

E - x2 + TV?/2, (7.4.2)

where x and y are integers, and TV — u2 + v2 + w2. If Eq. 7.4.2 gives
an even value for E, it is repeatedly divided by 2 until an odd number
is obtained. The rotation angle 0 which results in a twin configuration is
given by (Woirgard & de Fouquet 1972; Pumphrey & Bowkett 1972):

0 = 2tan~1(2//x)V/7V: (7.4.3)

Coincidence lattices can occur for both Aizu twins and Bollmann twins.
The presence or absence of a coincidence lattice makes no difference to our
tensor classification of twinning. If a coincidence lattice is present in a twin
(whether of type S, N, B or T), this is an additional piece of information
which can have a bearing on, for example, the energy of formation of the
composition plane: the smaller the value of E, the more stable may be the
composition plane (Gratias et al. 1979).
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A crystal structure can be considered as consisting of a number of
sublattice structures corresponding to the various sets of Wyckoff positions.
Often, even a subset of one type of Wyckoff positions can constitute a
sublattice (with an underlying translation group) (Gratias et al. 1979;
Doni et al. 1985). A sublattice L is called a total sublattice by Gratias et al.
(1979) if it consists of one or more complete sets of Wyckoff positions. If at
least one set of Wyckoff positions is included only partially in the sublattice,
it is a partial sublattice. Any number of sublattices can be constructed from
a total or partial sublattice.

Several important features of total sublattices have been discussed by
Gratias et al. (1979). The space group of a crystal is always a subgroup of
the space group of any of its total sublattices. Further, if a total sublattice
consists of only one set of Wyckoff positions, the twin mapping operation
(if present) is always "translation reducible" (comprises only a point oper-
ation).

Available information about the total or partial nature of a sublattice
in a given twinned crystal can be readily incorporated in the SNBT classifi-
cation scheme by appending a subscript t (for total) or p (for partial) to the
symbols S, N or B. For T-twins the twinning operation is only a rigid-body
translation of one component with respect to the other, and a coincidence
lattice is independent of such an operation (cf. §7.3.2).

The (110) mirror twins of pyrite (FeS2) are an example of twins with
a total underlying sublattice (Gratias et al. 1979). They are also B-twins.
One can therefore represent them by the twin symbol Bt (cf. §7.4.5 below).

The (111) mirror twins commonly found in fee metals are B-twins hav-
ing a partial underlying coincidence lattice (twin symbol Bp).

7 A.I S-TWINS

The distinguishing feature of S-twins is that they differ in at least one
component of all second-rank polar tensor properties. Their presence is
readily revealed under the polarizing microscope because of the relative
disorient at ion of the optical indicatrices, or in a diffraction experiment be-
cause of the difference in the orientations of the respective crystallographic
axes. Examples of purely ferroelastic S-twins are: BaCl2.2H2O, BiVO/i,
and Pb3(PO4)2.

Table 7.4.1 provides a comparison of the attributes of the four ba-
sic types of twinning. S-twins may differ not only in second-rank polar
tensor properties, but also in other macroscopic properties like sponta-
neous polarization, spontaneous magnetization, spontaneous optical ac-
tivity, compliance-tensor coefficients, etc. For example, ferroelectric S-
twins occur in BaTiOa, ferromagnetic S-twins in Mn3O4, and ferroelectric-
ferromagnetic S-twins in Ni — I boracite. Some of the twins occurring in
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Table 7.4.1: Comparison of attributes of the four basic types of twinning.

Attribute
->

Twin
type 1

S

N

B

T

Is a pro-
totype
structure
conceiva-
ble?

Yes

Yes

No

'Yes' in
some
cases, 'no'
in others

Twins
differ in
which
macro-
scopic
tensor
property?

Second-
rank
polar.
May differ
in other
properties
also

Other
than
second-
rank
polar

No re-
striction
on rank,
but such
twins
are not
derivative
structures

None

Generalized
suscep-
tibilities
near Tc

At least
one of
them
becomes
arbi-
trarily
large

At least
one of
them
becomes
arbi-
trarily
large

?

There
is no
relevant
gen-
eralized
susceptibi-
lity

Is detwin-
ning pos-
sible?

Yes. The-
ory of
ferroic
tran-
sitions
provides
a sys-
tematic
approach

Yes. The-
ory of
ferroic
tran-
sitions
provides
a sys-
tematic
approach

Very diffi-
cult. No
general
theo-
retical
approach
exists

No

Origin of
the twin

Phase
transi-
tion from
the pro-
totypic
phase

Phase
transi-
tion from
the pro-
totypic
phase

Growth
twin; non-
ferroelastic
mechani-
cal twin;
disruptive
phase
transition

Transfor-
mation
twin,
or some
types of
stacking
fault
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dicalcium strontium propionate (DSP) are ferrogyrotropic S-twins (Glazer,
Stadnicka & Singh 1981).

The spontaneous distortion of the prototype lattice, responsible for
the occurrence of S-twins, necessitates the occurrence of disorientations
(§7.1.4). Another consequence of this distortion is the formation of a variety
of "tweed structures" (Salje 1990, 1994). Also, the critical fluctuations
near the Curie temperature are influenced strongly by this distortion. The
emerging phase tends to suppress the critical fluctuations because of the
mismatch between the lattices of the old phase and the new phase. This
has a bearing, not only on the critical fluctuations, but also on response
functions of the crystal in the vicinity of the phase transition (Priedel 1981;
Wadhawan 1985; Salje 1995).

7.4.2 N-Twins

N-twins differ in at least one macroscopic tensor property other than a
second-rank polar tensor property, and, in addition, their twinning pattern
is describable in terms of a prototype space group. We mention here some
examples of N-twins: ferroelectric-ferrobielastic twins in PbsGesOn, TGS,
SbSI, LiNbOs and BaTiOs (180° twins); ferrobielastic-ferroelastoelectric
twins (Dauphine twins) in a-quartz; ferromagnetoelastic twins in CoF2 and
FeCOs; ferromagnetoelectric twins in C^Os; and several types of inversion
twins.

Twins related purely by an inversion operation can be either N-twins or
B-twins. They cannot be S-twins; this is because second-rank polar tensors
are invariant under an inversion operation.

7.4.3 B-Twins
Unlike for S-twins and N-twins, a meaningful prototype structure is not
conceivable for B-twins. Their main subclasses are as follows:

(i) Twinning occurring in a prototypic phase, rather than in a ferroic phase.
For example, mechanical twinning in crystals with a cubic or a hexagonal
point symmetry. A case in point is that of twinning induced in Mg crystals
across (10l2) planes by a shear force along [1011] (Laves 1975).

(ii) Most growth twins are likely to be B-twins. An example is that of
60° rotation-twins in crystals of GaAs, GaP and InAs (Chen et al. 1992).
Another example is that of Brazil twins in a-quartz and /?-quartz.

(iii) Twinning configurations arising from special coincidence-lattice situa-
tions (cf. Eqs. 7.4.2 and 7.4.3).
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(iv) Twins resulting from any phase transition in which the nondisruption
condition is violated, and in which there is a loss of at least one rotational-
symmetry operator.

B-twins differ from S-twins in that the latter are transformation twins
which disappear on heating to the prototypic phase. That is, the atomic
displacements involved in S-twinning are thermodynamically reversible; this
is not the case for B-twins.

A symmetry analysis of B-twins can be carried out in terms of the
intersection-group approach (cf. §7.3.1). The intersection group is deter-
mined by Eq. 7.3.5, which we rewrite here after replacing the symbol G\
for the space group of Component 1 of the twin by the symbol G:

/ = G H {R\Tfrac}G{n\Tfrac}-1 (7.4.4)

Seitz operators QJ present in G but absent in / define the possible
variants of the B-twin. The variants can be identified with the cosets in
the following coset decomposition:

G = I + 92I + • • • + 9jl + - - -gml (7.4.5)

Here ra is the ratio of the orders of the groups G and /.
If the B-twins have resulted from a disruptive phase transition, the

intersection group is the intersection of two distinct space-group types, and
is given by Eq. 7.3.1. For the transition G\ —» G<2 the B-twin states in the
phase with symmetry G% have a one-to-one correspondence with the cosets
in the following equation:

Gi = I + gi2I + • • • + 91 j I + • • • gikl (7.4.6)

Here k is the index of / in G\.
Similarly, the reverse transition G^ —> G\ can result in variants identi-

fiable with the cosets in the following:

G2 = I + 922! + • • • + 92 j I + • • • 921! (7.4.7)

Here / is the index of / in Go •

7.4.4 T-Twins
T-twins do not differ in any macroscopic tensor property at all. Their
detection requires the use of techniques like HRTEM, etching, and X-ray
diffraction topography with a superlattice reflection.

A familiar example of T-twins is the twinning observed across antiphase
boundaries in the alloy CuaAu below 667 K. The lowering of symmetry
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from Fm3m(O^) to Pm3m(O^) at the disorder-order transition leads to
the occurrence of four possible translation states. With reference to Eq.
7.1.8 these correspond to

01 = {1|000}, 52 = {1\~Q}, 93 = {1|̂ }, 54 = {1|0~} (7.4.8)

A surprisingly large number (about 50) of crystals (mainly organic
compounds and metallic alloys) in which nonferroic phase transitions oc-
cur, leading to the formation of T-twins, have been listed by Toledano &
Toledano (1982). These authors also establish the following theorem in this
context:

A nonferroic phase transition can only be induced by an IR
whose small representation rn is 1-dimensional (real or com-
plex).

7.4.5 A Symbol for Twinning
A good notation has a subtlety and suggestiveness which at times
make it seem like a live teacher.

Bertrand Russell

We introduce a compact and informative symbol for twinning. It consists
of one of the four letters S, N, B or T corresponding to the four types
of twinning, followed by one or more lower-case letters in brackets which
represent the tensor properties in which the twins differ (Wadhawan 1997).

Consider the case of twinning in en-quartz. This crystal is ferrobielastic,
as well as ferroelastoelectric. Our twin symbol for its Dauphine twins is
therefore JV(d, s), where d denotes the fact that the two components of the
twin differ in at least one piezoelectric coefficient, and s represents their
difference with respect to the compliance tensor. This type of twinning
disappears when the crystal makes a transition to the higher-symmetry
/3-phase on heating.

By contrast, the Brazil twins of quartz are growth twins, with a mirror
operation parallel to the optic axis as the twinning operation. This type
of twinning does not disappear on transition to the /3-phase. In any case,
mirror symmetry is not present in the space-group symmetry P6222 (or
P6422) of /3-quartz, and cannot be a ferroic mapping operation QJ of Eq.
7.1.8. These are thus B-twins, and not N-twins, and their twin symbol is
B(g), where g denotes the difference of the twin components with respect
to the optical gyration tensor. Depending on the context, as well as the
availablity of information, this symbol can be expanded to include other
tensor properties in which the twins differ (e.g. the acoustical gyration
tensor).
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Table 7.4.2 shows several examples of the twin symbol in use. It also
serves to demonstrate the higher information content of the tensor clas-
sification scheme described here. In this table, when the twins differ in
spontaneous polarization, the letter p appears in the twin symbol. Simi-
larly, e denotes that the twins differ in spontaneous strain, ra stands for
spontaneous magnetization, g for a coefficient of the optical-gyration ten-
sor, d for a piezoelectric coefficient, s for compliance, q for magnetoelastic,
and a for magnetoelectric coefficient (s). The subscripts t and p denote the
existence of total and partial coincidence sublattices, respectively, across
the twin interface.

The SNBT classification scheme for twinning in terms of tensor pro-
perties makes it possible to make practical use of the results of group-
theoretical analyses of tensor distinction of domains resulting from ferroic
phase transitions (Janovec, Richterova & Litvin 1993; Litvin, Litvin &
Janovec 1995).
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7.5 THE GROUP-TREE FORMALISM
Consider a crystal the symmetry of which decreases from GO to G\ on
cooling through a phase transition temperature Tc. The lower-symmetry
phase has to arise and grow in the anisotropic crystalline environment of
the parent phase. Therefore its actual symmetry is different, usually lower,
than the inherent symmetry G\ it would have in an isotropic environment
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Table 7.4.2: Comparison of the SNBT classification scheme for twinning
with two other schemes. See text for details.

Twin

a-quartz (Dauphine)

Pb5Ge3Oii

BaTiO3 (180° twin)

NH4C1

CuCsCLs

CoF2, FeCOa

Cr2O3

a-quartz (Brazil)

Pyrite [(110) mirror
twin]

F.c.c. metals [(111)
mirror twin]

Mg

CuaAu

BaTiO3 (90° twin)

Fe3O4

Ni-I boracite

Aragonite

Present
scheme
(twin
type)

N(d,s)

N(p,s,g)

N(p,g)

N(d)

N(d,g)

N(q)

N(a)

B(g)

Bt

Bp

B

T

S(p,e)

S(m,e)

S(p,m,e)

S(e)

Friedel's
scheme
(twinning
by)

Merohedry

Merohedry

Merohedry

Merohedry

Merohedry

Merohedry

Merohedry

Merohedry

Merohedry

Reticular
merohedry

?

?

Pseudo-
merohedry

Pseudo-
merohedry

Pseudo-
merohedry

Reticular
pseudo-
merohedry

Donnay &;
Donnay's
scheme
(twinning
by)

TLS

TLS

TLS

TLS

TLS

TLS

TLS

TLS

TLS

TLS

TLQS

TLS

TLQS

TLQS

TLQS

TLQS

Refe-
rences

1,2

3,4

1,4

1,4

1,4,5

1,6

1,6

2

7,8

7

1

9

1

10

10

8

1. Wadhawan (1982); 2. Donnay & Donnay (1974); 3. Toledano &
Toledano (1976); 4. Aizu (1972); 5. Wadhawan (1979); 6. Newnham
& Cross (1974); 7. Gratias et al. (1979); 8. Cahn (1954); 9. Portier &
Gratias (1982); 10. Aizu (1970a).
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(e.g. on growth from a fluid phase). Sometimes the dissymmetrizing in-
fluence is external (e.g. an applied field), rather than, or in addition to,
internal. Irrespective of the nature of the influence, the net symmetry of
any crystal (e.g. a ferroic phase coexisting in an anisotropic environment
with its parent phase) can be determined by invoking the Curie princi-
ple (§C.l). Such considerations have been developed by Portier & Gratias
(1982) for determining the enhanced number of variants possible for the
daughter phase because of the additional loss of symmetry elements caused
by the anisotropic influences. Their procedure has come to be known as
the group-tree formalism (cf. Fig. 7.5.1 below, which has the appearance
of a tree).

For describing this procedure we begin by noting that the internal or
external influence is present, not only for the daughter phase, but also for
the parent phase. Let (g) be the symmetry group of the environment or
"solicitation". For example, (g) may be the symmetry of just a scalar field
like temperature if the system is simply cooled or heated through the phase
transition and it is assumed that no other influences are present. Or (g)
may be either the group mmm or oo/rara if some internal or external strain
field is present.

We first construct the following intersection group:

/o - Go n GI (7.5.1)

Portier & Gratias (1982) call IQ the group of isoprobability of nucleation.
This is because if a particular nucleus of the daughter phase can be formed,
so also can, with equal probability, all other nuclei obtainable from it by
application of the operations of IQ. When (g) has the symmetry of a scalar,
/o is the same as GQ.

Effectively, the final phase of symmetry GI arises from the initial phase
of symmetry /o, rather than from GQ.

To find out how many variants of the final phase can form, we have
to identify symmetry elements present in JQ but absent in GI . For this we
construct another intersection group NQI:

NQl - /o H GI (7.5.2)

The subscripts 0 and 1 refer to the initial and final phases.
The group NQI comprises elements common to both /0 and GI, and

a representative set of noi symmetry elements present in J0 but absent in
GI will provide, through their action on GI, all the distinct variants of the
final phase, with noi given by

noi = |/o|/|Gi| (7.5.3)
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Figure 7.5.1: Depiction of the basic group-tree formalism. [After Portier &
Gratias 1982.1

The group /o can be split into noi left cosets with respect to the inter-
section group TVoi, and there is a one-to-one correspondence between the
left cosets and the variants.

We depict in Fig. 7.5.1 the complete group-tree for the symmetry
descent from GO to Gi. We shall have occasion to use this formalism later
in the book (e.g. when discussing martensitic phase transitions in Chapter
11). However, it is necessary to sound here a word of caution regarding
its indiscriminate use based on symmetry arguments alone, as pointed out
by Wadhawan (1988) by considering the example of the possible number
of variants in the ferroelastic superconductor Y — Ba — Cu — O (also see
Wadhawan & Boulesteix (1992)).

This crystal has a tetragonal phase of symmetry GO = 4z/ra2;raa;raX2/

at high temperatures. On cooling from this phase, an apparently continuous
phase transition occurs to a ferroelastic phase of symmetry G\ = mxmymz.
We can assume, for the sake of simplicity of argument, that the tetragonal
phase is prototypic for this crystal (see Wadhawan & Glazer 1989; Tiwari
& Wadhawan 1991).

As the crystal is cooled from above the transition temperature, its
spontaneous strain increases gradually from the value zero at the Curie
temperature Tc. The point groups 4/rarara and rarara are of orders 16 and
8 respectively, so that 16/8 or two ferroelastic orientation states (differing
in the interchange of mx and my) are possible. However, because of the
nonzero spontaneous strain, a rotation or disorientation (of 0.45° at room
temperature) must occur about the z-axis if the domains are to make con-
tact with one another without developing cracks at the domain boundaries
(Wadhawan 1988). Therefore the true point-group symmetry of a domain
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has to be taken as MxMymz, where Mx and My denote mirror planes not
strictly parallel to mx and my.

The group tree for this system can therefore be drawn as in Fig. 7.5.2.

Figure 7.5.2: Group tree for the ferroelastic superconductor Y—Ba—Cu—O.

In this group tree the solicitation (g) is shown as having the symmetry
of a cylinder (ooz/razrax), which is taken as representing the symmetry
of the strain field in which the ferroelastic domains exist. We see that
^o = 42/razraxraX2/, so that

NQI = 4z/mzmxmxy n MxMymz = 2z/mz (7.5.4)

The number of disorientation states predicted by this simplified analysis
is the index of the group 4z/mzmxmxy in the group 2z/mz^ namely 4.
However, from a more detailed analysis which takes due note of the physics
of the problem, the possible number of disorientation states has been shown
to be a function of sample history, and in any case much larger than 4
(Wadhawan 1988). The general result is that suborientation states can
occur, in principle, at any of the following orientations:

[(1 ± 2n) 0] or [(1 ± 2n)0 + 90°] [modlSO0],

with e = 0.45° and n = 0,1,2,. . .
The reason for the failure of the group-tree formalism is that the sym-

metry arguments given above cannot make a distinction between one disori-
entation operation (a rotation of 0.45°) and multiple disorientations which
can occur in a real specimen. We get 1MX not parallel to mx irrespective



7.5 The Group-Tree Formalism 271

of the number of times the basic disorientation (of 0.45°) is repeated. Only
physical arguments can make this distinction.

Symmetry arguments alone, though elegant and systematizing, cannot
be trusted always to produce the right numbers.

SUGGESTED READING
R. Portier & D. Gratias (1982). Symmetry and phase transformation. J.
de Physique, Colloque C4, 43, 17.
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Chapter 8

DOMAIN WALLS

In Chapter 7 we focussed attention on domains themselves, and not so
much on the interfaces that separate one domain from another. We take
a closer look at interfaces in this chapter. As in Chapter 7, we adopt a
somewhat general approach, and discuss not only domain walls in ferroics
but also interfaces in nonferroic materials, as well as interfaces between
non-identical structures. This would help us in viewing phase boundaries
and domain boundaries in ferroics in the larger perspective of heterophase
and homophase interfaces in materials.

8.1 ORIENTATIONAL DEPENDENCE OF
PROPERTIES OF INTERFACES

8.1.1 Morphology of Crystals Grown from Crystalline
Matrices

Group of the Wulff Plot

A crystalline phase of a material can grow either from a fluid phase (vapour,
melt, solution), or from another solid phase. In the former case the morphol-
ogy that the crystal adopts is in conformity with the point-group symmetry
underlying the space-group of the crystal. In fact, not only shape, but also
all other macroscopic properties of the crystal have directional symmetry
that is equal to, or higher than, the point-group symmetry, in accordance
with the Neumann theorem.

What is the symmetry of the shape of a crystal that grows, as a result
of a phase transition, inside a crystalline parent phase? Which point-group
does this morphology conform to? The answer is provided by the simple
notion of intersection-group symmetry, which we encounter repeatedly in

273
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our discussion of domain boundaries and phase boundaries in this and the
previous chapter (see Eq. 7.3.1, for example) (Cahn & Kalonji 1981; Portier
& Gratias 1982; Kalonji & Cahn 1982; Kalonji 1985).

Let the old or parent phase be called Crystal 1, and the new or daughter
phase Crystal 2. We are interested in knowing the directional symmetry of
the interfaces between the two phases, or the growth morphology of Crystal
2 that has grown inside Crystal 1.

Let Si and S® denote the symmetry groups of Crystal 1 and Crystal 2.
The symmetry operators of Si are defined with reference to the coordinate
axes oriented and located with respect to atomic positions in Crystal 1.
Similarly the symmetry elements of Sf are defined with respect to Crystal
2. To determine the intersection group for the bicrystal, we must first
obtain the symmetry group (say 8*2) for Crystal 2 in the frame of reference
of Crystal 1, so that their elements are defined in a common frame of
reference.

Let {R|T/rac} be the Seitz operator which, when applied to Crystal
1 (the coordinate system of which we have chosen as a common frame of
reference for defining all symmetry elements and operators, including R
and T/rac), maps it to Crystal 2. The symmetry group (82) of Crystal 2
in the common frame of reference is then given by

S2 = {H\Tfrac}S${R,\Tfrac}-1 (8.1.1)

We next single out those symmetry operators (if any) which map Crys-
tal 1 onto itself and, simultaneously, Crystal 2 onto itself. These operators
define the intersection group /:

/ = Si n S2, (8.1.2)

with 82 given by Eq. 8.1.1, so that

/ - Si H {R\Tfrac}S${R\Tfrac}-1 (8.1.3)

Let a unit vector n define the orientation of the (planar) interface
between Crystal 1 and Crystal 2. We define n in the common frame of
reference chosen above, which is also the frame of reference inherent to
Crystal 1.

Operators of the group / leave both Crystal 1 and Crystal 2 invariant,
but can flip around and translate the interface defined initially by its normal
n. The set of planes defined by all the distinct directions of the plane-
normals obtained by the operations of / defines a closed or open simple
form (§2.2.16). Cahn & Kalonji (1981) call / the group of the Wulff plot.

The use of the name Wulff refers to the well-known Wulff theorem
(sometimes called the Gibbs- Curie- Wulff theorem in the theory of crystal
morphology (see Chernov 1984; Pimpinelli & Villain 1998)).
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Figure 8.1.1: The Wulff construction.

The Wulff theorem determines the growth morphology of a crystal
which is at equilibrium with its fluid (isotropic) surroundings. Imagine
a crystal of volume V, having facets of area Ai and surface-free-energy
densities cr^. At thermodynamic equilibrium, we must have

S^o-iAi = 0, (8.1.4)
i

subject to the constraint 6V = 0. Solution of these simultaneous equations
leads to the following result:

(Ji : (72 : ... = hi : h<i : ... (8.1.5)

Here the hi are distances from a point P inside the crystal (Fig. 8.1.1),
and are defined by the following statement which embodies the Wulff con-
struction or the Wulff theorem:

When a crystal is in its equilibrium shape in an isotropic en-
vironment, there exists a point inside it whose perpendicular
distances (hi) from all faces of the crystal are proportional to
their specific surface free energies.

The directional symmetry of the Wulff construction is equal to, or
higher than, the point-group symmetry of the crystal, in conformity with
the Neumann theorem.

The group of the Wulff plot consists of symmetry operators which gen-
erate from a given interface or surface the entire set of surfaces physically
equivalent to the initial surface.
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The operations of / are symmetry operations for the simple form de-
fined by the Wulff plot or the Wulff construction. The group of the Wulff
plot therefore represents the symmetry of all interfacial properties.

It is often justifiable to ignore translational operations, and work only
with the point groups underlying the space groups 5i and 82-

We see that the group of the Wulff plot has a direct bearing on the
morphology of the simple forms which appear when a new crystalline phase
emerges in the crystalline environment of the parent crystal. This group
thus plays a role similar to that played by the full point group of a crystal
that grows in an isotropic environment, i.e. from a fluid phase.

8.1.2 Homophase Interfaces
For heterophase interfaces discussed above, because of the different crystal
lattices across the interface, very little symmetry may survive when the
intersection group / (Eq. 8.1.3) is constructed. This symmetry can be
substantially higher when we have the same crystalline material on the two
sides of the interface, i.e. when the interface is a homophase interface. Do-
main walls and grain boundaries are examples of this type of an interface.
The enhancement of symmetry results from the fact that now an additional
set of symmetry operations (equal in number to the order of the intersec-
tion group /) can arise which map Crystal 1 to the other member of the
bicrystal, namely Crystal 2, and Crystal 2 to crystal 1. These were called
the antisymmetry or colour-reversal operations in §7.3.1. We examine here
the effect of this additional symmetry on the orientational dependence of
the properties of the homophase interface.

Let us arbitrarily call Crystal 1 white, and Crystal 2 black. This makes
it convenient for us to describe the symmetry of the homophase interface
in terms of a Shubnikov group III. The group / is a classical (or Fedorov)
subgroup of III.

If we operate on the bicrystal by any operator of /, each member crystal
maps back onto itself, and the interface moves to an equivalent orientation
and position.

The colour-reversing operations are all contained in the set (III — /),
with the group III defined by Eqs. 7.3.2 and 7.3.6. Any operation from
this set, followed by an inversion of the planar interface, will map Crystal 1
to Crystal 2, Crystal 2 to Crystal 1, and the interface to a new, equivalent,
orientation and position.

The group of the Wulff plot for a bicrystal with a homophase interface
is thus the following:

W = I U (III - 7)1, (8.1.6)

where the inversion operator is required to be introduced if we follow the



8.1 Orientational Dependence of Properties of Interfaces 277

convention that the normal to the interface be taken as pointing from the
white member to the black member. [Any colour-reversal operation on the
bicrystal will invert the sense of this normal.]

We combine Eqs. 7.3.2 and 7.3.6 to write the following coset decom-
position:

HI = I+ (HI- / ) = / + {R'|T'/rac}I (8.1.7)

Thus there are only two cosets in the decomposition of III with respect
to its subgroup /.

For further analysis, we first recall here that any two cosets have either
all elements in common, or none at all (§B.l).

Case 1: 1 G (IU — /). Since the inversion operator is in the coset (III — /),
it cannot be in the other coset in Eq. 8.1.7, namely the group /. Also, if
(III — /) contains the inversion operator, then (III — /)! must contain
the identity element E (because 11 = E). But the identity element is also
present in coset (/), the latter being a group. Since the two cosets cannot
share an element, unless they are identical, it follows that, for Case 1, the
group of the Wulff plot is

Wi = (I) (J (I) = I (8.1.8)

Thus, although we have a bicrystal with a homophase interface, the
possible morphological symmetry of the interface is still only / in this case,
in spite of the fact that additional symmetry exists in the form of inter-
changeability of the member crystals.

Case 2: 1 G (/). Here, since the inversion operator cannot be in the coset
(III — /), the identity element E cannot be in the set (III — /)!, which is
therefore not a group; it is thus distinct from the coset (I) which is a group.
Eq. 8.1.4 therefore reduces to

W2 = IU (8.1.9)

Case 3: 1 0 III. Here inversion symmetry is absent from the intersection
group, as well as from the colour-reversing operations. The morphological
group is therefore that given by Eq. 8.1.6:

W3 = (I) U (III - 1)1 (8.1.10)

We shall have occasion to refer to the Wulff plot when we consider
martensitic transformations (Chapter 11).

It is important to mention here that the symmetry groups of Wulff plot
derived so far are correct only for an isotropic ambient for the specimen as a
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whole. If an additional anisotropic force field, e.g. a uniaxial stress (say of
symmetry F) is present, another intersection group has to be constructed,
in accordance with the Curie principle, to determine the net symmetry of
the Wulff plot:

W1 = W H F, (8.1.11)

with W given by Eqs. 8.1.8, 8.1.9, or 8.1.10.

8.1.3 Symmetry-Dictated Extrema
The use of variational principles in physics is well known. For example,
equilibrium states of a system can be determined by first defining its free
energy, $(-X"), in terms of all the relevant parameters, and then determining
those values of the parameters which correspond to minima of 3>(X) in
the configuration space defined by the parameters X. Often an analytical
solution of such a problem can be an extremely complex exercise, and one is
then interested in knowing only the minimal symmetry possessed by 3>(X).
The idea behind such an approach is the following (Cahn & Kalonji 1981;
Kalonji 1982, 1985; Gratias & Portier 1982; Portier & Gratias 1982):

Suppose the scalar ®(X) is invariant under operations of a group G
operating on the configuration space defined by the parameters X. G is also
the symmetry group of the constant-^ surface defined in the configuration
space. Certain special points on this surface are symmetry-dictated extrema.
This comes about because of the following theorem (for the proof of which
the paper by Portier & Gratias (1982) may be consulted):

The little group of the gradient of a G-invariant scalar function
at a point X is the same as the little group of the point X.

Symmetry dictated extrema, or special points, are those points X in
configuration space which do not remain invariant under operations of G.
At such points the gradient of a scalar function like $(X) must vanish,
implying that $(X) has a maximum, or a minimum, or a saddle point.
Further, if an extremum is found experimentally, it must be a minimum.

Cahn & Kalonji (1981) have analysed the occurrence of symmetry dic-
tated extrema in bicrystals as a function of their relative orientation (spec-
ified by R in the Seitz operator {R|T/rac}). The dependence of symmetry-
dictated extrema on rigid-body translations T/rac (e.g. when stacking
faults occur) has been examined by Gratias & Portier (1982). Several
other applications of this approach for interfaces in bicrystals have been
mentioned by Kalonji (1985).

Symmetry dictated extrema are an important concept for analysing
precipitate morphology, facetting, eutectic solidification, and martensite
morphologies.
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8.2 STRUCTURAL EXTENDED
DEFECTS

Domain walls and other interfaces in a crystalline specimen can be
viewed as defects, in the sense that the atomic structure in these regions is
not the same as the regular structure in regions far away from them. It is
instructive to view them from the perspective of an overall classification of
defects in crystals.

Defects in crystals can be divided into four broad categories: point
defects, line defects, defect clusters, and extended defects (see Alario-Pranco
(1987) for a review).

Extended defects are defined as those having more than one dimen-
sion (Alario-Franco 1987). There are two main types: structural extended
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defects (SEDs), and compositional extended defects (CEDs).
SEDs are also called conservative or physical defects. By contrast,

CEDs are nonconservative ( Synkers, Delavignette & Amelinckx 1971) or
chemical defects because they produce (or accommodate) a variation of
composition where they occur. We discuss CEDs in a separate section
(§8.3).

The main types of SEDs are: antiphase boundaries, stacking faults,
twin walls, and grain boundaries. We have already dealt with their symme-
try aspects in §7.3 and 7.4. Some additional structural aspects are described
here from a different vantage point.

8.2.1 Aristotype and Hettotype Structures
Certain SEDs can be regarded as special or limiting cases of CEDs, and it
is useful to describe such SEDs in the terminology of CEDs.

Very often the description of CEDs can be systematized by taking re-
course to the notions of structural families, aristotypes, and hettotypes.

Structures may be said to belong to the same structural family
if there is a one-to-one correspondence between all their atoms
and between all their interatomic bonds (Megaw 1973).

For example, a-quartz and /?-quartz belong to the same structural fam-
ily, even though their crystal structures are different. Similarly, diamond
and zinc blende belong to the same structural family. But zinc blende is not
in the same structural family as wurtzite which has a topologically different
linkage pattern.

The aristotype is the simplest and the most symmetrical member of
a structural family (Megaw 1973). It is a parent structure with perfect
stoichiometry, from which a whole family of structures can be derived by
a variety of "shear" displacements on appropriate planes, alongwith the
requisite elimination of excess atoms from the initial structure (Wadsley
1964; Anderson & Hyde 1965, 1967).

A hettotype is a member of a structural family with a symmetry lower
than that of the aristotype. Hettotypes are derivative structures of an
aristotype.

Fig. 8.2.1 shows an example of an aristotype, namely the structure of
ReOa. We shall consider below, as well as in the next section, a number of
hettotypes that can be derived from this aristotype.

8.2.2 Antiphase Boundaries
Antiphase boundaries (APBs) are interfaces between antiphase or out-of-
step domains (or T-twins). They can arise, for example, when there is a
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Figure 8.2.1: Unit cell of an idealized aristotype structure of ReOa. (a)
3-dimensional view; (b) projection along [001]. This projection is used in
Fig. 8.2.2 and in subsequent figures in this section.

lowering of translational symmetry (cf. Fig. 7.2.2).
Fig. 8.2.2 shows how an APB can arise from an ReOa type of aristo-

type structure. Starting from the ideal initial structure (Fig. 8.2.2a), with
corner-sharing octahedra [M —OG], we imagine (101) as the slip plane (Fig.
8.2.2b). The structure to the left of this plane is kept fixed, and that to its
right is given a translation \ < 101 >, resulting in an APB in Fig. 8.2.2c.

Before the imaginary formation of the APB, the coordination number
for metal atoms is 6 [M-Oe, octahedral], and that for oxygen atoms is 2
[O-M2, linear]. As seen from Fig. 8.2.2(c), these numbers do not change at
the APB. This means that the introduction of the APB does not lead to
any change in the overall composition, in keeping with its description as a
structural extended defect, rather than a compositional extended defect.
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Figure 8.2.2: Construction of an antiphase boundary in the ReOs structure
by the crystallographic operation ^ < 101 > (101). [After Alario-Pranco
1987.]

8.2.3 Stacking Faults
In certain close-packed structures, a sequence ..ABC ABC ABC., of layers
is sometimes broken by a stacking fault to become, say, ..ABCABABC..
This extended defect is again of a conservative nature, with no net change
of composition around it.

8.2.4 General Twin Walls
Structural twinning (as opposed to chemical twinning described in the
next section) preserves coordination numbers, on the whole, in the twin-
boundary region. The reasons for this are similar to those depicted in Fig.
8.2.2 for the case of an APB.
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8.2.5 Grain Boundaries
Grain boundaries are similar to twin boundaries (in terms of stoichiometry
conservation), but the mapping operations for them are not of a constant
or recurrent nature. The non-constancy of the mapping operation usually
does not have a serious effect on the overall constancy of the composition
of the material in regions near or away from the grain boundary.

SUGGESTED READING
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8.3 COMPOSITIONAL EXTENDED
DEFECTS

Compositional extended defects (CEDs) are relevant in the context of vari-
ation of stoichiometry in crystals. When the deviations from perfect stoi-
chiometry are small, the point-defect model of Schottky & Wagner (1931) is
adequate. However, if the number of sites with vacancies or interstitials ex-
ceeds a fraction of a percent, the point-defect model is no longer appropriate
(see, e.g., Rao 1984). Usually an ordering of such defects takes place, giving
rise to a rich variety of structures, microstructures, and nanostructures.

For a large class of materials, especially oxides of mixed-valence cations,
overall nonstoichiometry is widely prevalent. The cation in such (usually
binary) compounds can adopt suitable oxidation states to match the local
valence requirements of nonstoichiometry.

The nonstoichiometry results in vacant cation sites. These vacancies
are seldom distributed randomly, except at very high temperatures and/or
for very small deviations from perfect stoichiometry. The third law of ther-
modynamics (cf. §5.4.5) is partly responsible for this (Anderson 1973;
Khachaturyan 1983). It leads to a tendency for ordering (reduction of
entropy). Vacancy ordering results in regions of different compositions,
separated by CEDs. Wadsley's (1964) work marked some major initial
advances in the understanding of CEDs.

We now consider, very briefly, some specific CEDs, following mainly
the description given by Alario-Franco (1987).

8.3.1 Crystallographic Shear Planes
To illustrate how compositional variations are produced or accommodated
at CEDs, we consider again the aristotype ReOs depicted in Fig. 8.2.2(a)



284 8. Domain Walls

Figure 8.3.1: Formal construction of a rational (or crystallographic) shear
plane through the crystallographic operation | < 101 > (103). [After
Alario-Franco 1987.1

(and redrawn in Fig. 8.3.1 (a)). The difference we introduce here is that
the shear plane is taken as (103), rather than (101) taken for Fig. 8.2.2.
The displacement vector is the same as before, namely ^ < 101 >. In other
words, the displacement vector is no longer parallel to the slip plane. This
can be possible only if certain selected atoms near the slip plane are absent
(which amounts to a local change of composition); otherwise some atoms
will lie too close to each other. This is shown in Fig. 8.3.1(b).

Fig. 8.1.3(c) shows the final result of the shear applied on the crys-
tallographic slip plane (CSP) (103). There is a faulted region, a slice of
the structure parallel to the slip plane, in which the coordination numbers
stand altered because the [M-Oe] octahedra share edges rather than cor-
ners. The coordination number of some anions has changed from 2 [M-C^]
to 3 [M-Os], although the coordination number of cations still remains 6
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Figure 8.3.2: Variation of orientation and stoichiometry of an ReOa struc-
ture with index / for the crystallographic slip plane \ < 101 > (10 /). [After
Alario-Franco 1987.]

[M-Oe]. There is thus an altered stoichiometry, a feature characteristic of
CEDs.

A whole set of off-stoichiometric configurations can be obtained by
varying the index / of the slip plane (10/); / = 1 for Fig. 8.2.2, and I = 3
for Fig. 8.3.1.

Fig. 8.3.2 shows the situation for a number of values of I, all corre-
sponding to the same displacement vector ^ < 101 >. The orientation, and
therefore the stoichiometry, of the CSP changes with /. It can be verified
that the number of octahedra sharing edges in each case is 21.

The structure of WO2.90 can be viewed as resulting from WOs by a
| < 101 > (103) crystallographic shear operation on one out of every ten
oxygen-only planes (Magneli 1950).

One can obtain a homologous series of structures by varying the spacing
between the ordered CSPs. And by changing the orientation of the CSPs,
as in Fig. 8.3.2, a "family of families" of crystalline solids can be obtained,
all having the same structural basis but different physical and chemical
properties. Aperiodic configurations are also quite common in systems
such as WO3 and TiO2.

8.3.2 Irrational Shear Planes
The existence of irrational (or noncrystallographic) shear planes was rec-
ognized by Anderson (1973) in the so-called infinitely adaptive structures.
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Certain composition ranges, such as TinO2n-i for n = 10 to 14, exhibit
such structures. For them, every composition orders into a perfect but dif-
ferent superlattice. There is neither a discrete succession of phases, nor a
forming of nonstoichiometric or solid solutions with disordered defect stru-
ctures. Instead, each composition exhibits a diffraction pattern that can
be indexed in terms of a single phase with a (usually) large unit cell. The
situation is analogous to that of polytypism in SiC, ZnS, Cdl etc.

In such structures there exist, say, i basic subunits, each with a unique
configuration derived from the aristotype with specific site occupancies,
CSP orientations, and stacking sequences. Suppose these subunits con-
stitute a set with unit cells that are rai,ra2,- • -mi times the unit cell of
the aristotype, with xi,X2, • • • Xi as the corresponding compositions. Then
the overall multiplicity ra*, and the composition x* are built up from
ai, a2, • • • di of these subunits (Anderson 1973):

m* = a\mi + o.^ra^ + • • • a^raf, (8.3.1)

x* = ai#i + a2#2 + • • • Q>i%i (8.3.2)

Any atomic ratio can give an adaptive structure by a choice of a suffi-
ciently large value of m*.

8.3.3 Chemical Twin Planes
Chemical twins differ from the usual structural twins in that certain atoms
at the twin plane must be absent for stereochemical registry to occur. The
notion of chemical twins was introduced by Anderson & Hyde (1974). The
example of the NaCl structure can be used for illustrating its meaning
(Baker & Hyde 1978; Alario-Pranco 1987).

If we reflect the NaCl structure across the plane (113), and eliminate
one member of each pair of atoms which lie too close to each other as a
result of this operation, and allow the remaining atoms at the interface
to relax to equilibrium positions, an acceptable trigonal configuration is
obtained (Fig. 8.3.3). Such twinning at the unit-cell level can result in a
variety of new structures and stoichiometries. For example, we can obtain
the structure of CaTi2C>4 from the NaCl structure by alternating twinning
every four (113) planes. Repeating the chemical twinning every three (113)
planes gives the structure of ResB (Alario-Franco 1987; Andersson & Hyde
1974).

The fascinating concepts developed in the field of CEDs have direct
relevance to the subject of the domain structure of nonstoichiometric ferro-
ics. Much remains to be done in this direction, although several detailed
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Figure 8.3.3: Illustration of chemical twinning, (a) Projection of the NaCl
structure on the (110) plane, (b) Reflection of the structure across the
plane (113). (c) Elimination of half the atoms at the interface that are
unphysically close to each other as a result of the reflection across (113).
[After Hyde et al. 1974.]

studies on the microstructure and nanostructure of rare-earth-oxide ferro-
ics already exist (see Boulesteix (1983), Schweda (1992), and Ben Salem &
Yangui (1995)).
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8.4 ATOMIC DISPLACEMENTS
UNDERLYING THE MOVEMENT OF
DOMAIN WALLS

Under the action of an appropriate driving field, a ferroic domain can
be often made to grow at the expense of a neighbouring domain. When
this happens, the wall separating the domains moves away from the domain
growing in size, and towards the domain decreasing in size. If we know the
crystal structures of the prototype and the ferroic phases, we can readily
determine the net atomic displacement vectors, A, instrumental in the
switching of one domain to the other.

Two basic types of information are used in a formal (group-theoretical)
analysis of the problem (Wadhawan & Somayazulu 1986). One is that the
symmetry group of the ferroic phase is a subgroup of the prototype space
group G (Eq. 7.1.8). The other is that the atomic structure is only a slight
distortion of the prototype structure, brought about by a nondisruptive
phase transition. Consequently, apart from the symmetry relations which
exist in the ferroic structure in keeping with its space-group symmetry
H, there exist pseudosymmetry relations (Abrahams 1971; Abrahams &
Keve 1971). The latter are really the symmetry relations of the higher-
symmetry group G of the prototype, but are approximately true even for
the ferroic phase because the ferroic phase is only a slight distortion of
the prototype structure. Each such pseudosymmetry relation determines
an atomic displacement vector A for every atom. Atoms of the ferroic
phase undergo these (net) displacements when a ferroic domain changes to
another ferroic domain.

We first consider a very simple example to illustrate these ideas.
BaCl2.2H2O is a nonferroelectric ferroelastic crystal (Wadhawan 1978a,

1982). It has been assigned the Aizu symbol mmmFI/m. The space-
group symmetry of the room-temperature monoclinic phase is P2i/n(Cf/l).
Purely from an inspection of its atomic coordinates it is readily inferred that
the following pseudosymmetry relation holds for it:

£2 ,2 /2 ,^2 = (| -zi, 2/1, f + z i ) + A, (8.4.1)

where the magnitude of A varies between 0.265 and 1.018 A for the various
atoms.

Eq. 8.4.1 with A = 0 is not a symmetry operation of the ferroic-phase
space group P2i/n. The existence of such a relation is indicative of a
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higher, but approximate, symmetry.
The crystal structure with space-group P2i/n symmetry has four gen-

eral Wyckoff positions. Therefore, we can generate three more pseudosym-
metry relations similar to Eq. 8.4.1 by using the other three members of
the Wyckoff set generated from the general point #1, 7/1, z\. By putting
A = 0 in all these, we obtain a total of 8 equivalent points, four of them
belonging to the group P2i/n, and four additional ones. These 8 points
are readily seen to comprise the general Wyckoff set for the space group
Pcnb (D\fy. This space group has been therefore assigned as the prototype
symmetry for this structure (Wadhawan 1978a).

On heating, the crystal gradually loses its water molecules, and finally
decomposes. The prototypic phase is thus hypothetical in this case, and
its space group has been inferred from the pseudosymmetry displayed by
the atomic coordinates in the ferroelastic phase at room temperature, with
further corrobomtion provided by the observed domain structure.

Two mutually perpendicular types of ferroelastic domain walls can be
easily created and moved in this crystal by applying a small uniaxial stress.
The domain walls are defined by the equations x = 0 and z = 0 (under the
PGA).

On a macroscopic level, the point group 2/ra of the ferroic phase has
only one plane of mirror symmetry, namely y = 0. And the point group
mrara of the prototype has three such planes: x = 0, y = 0, and z = 0.
The mirror planes x = 0 and z = 0 are lost on going to the ferroic ph-
ase, and therefore become candidates as domain walls, as indeed observed
experimentally (see Wadhawan 1982). Although Eq. 8.4.1 with A = 0
represents the operation of a c-glide normal to the z-axis, on a macroscopic
(point-group) level, it corresponds to a reflection across the plane x = 0.
Therefore the various values of A in this equation for various atoms give
the (net) atomic displacement vectors responsible for the movement of the
domain wall x = 0. The movement of the other domain wall, namely z = 0,
is brought about by atomic displacement vectors A' given by a pseudosym-
metry relation corresponding to a different operation of the prototype space
group Pcnfr, namely

a?2, 2/2, 22 = (xi, \ +1/1, zi) + A', (8.4.2)

This corresponds to the 6-glide normal to the z-axis.
The procedure for calculating A and A' for various atoms is quite

simple: We generate the atomic positions (#252/2,22) by using Eq. 8.4.1
and 8.4.2 with A = A7 =0. Since the two ferroelastic orientation states
are only slight distortions of the prototype, and therefore of each other, the
calculated positions (#2,2/2,^2) will be found to be close to actual coordi-
nates of atoms of the same species. The difference between (#2, 2/2, z%) and
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Figure 8.4.1: Atomic positions in BaCl2.2H2O before (solid lines) and af-
ter (dashed lines) a ferroelastic state shift accompanying the movement of
a domain wall perpendicular to the a-axis. The monoclinic 2-fold axis is
perpendicular to the plane of the diagram. The atomic displacement vec-
tors A are determined by Eq. 8.4.1 as atoms move from (#1, 3/1, z\) to
(#2 5 2/2, ^2). The numbers near the atomic positions are the ^-coordinates
in A units. Atoms move in the (net) directions of the arrows when the
domain wall moves.

A special and very interesting situation arises sometimes, wherein there
is no actual atom of the same species close to the calculated position
(#2, 2/2 > £2)- This was first noted by Wadhawan (1978b) in the case of

the actual coordinates of the atom nearby gives the displacement vectors
A or A'. Atoms move by vectors A (or A' ) across the domain wall when
the old ferroic domain becomes the new domain under the influence of the
driving field. Fig. 8.4.1 shows this for the case of the movement of the
domain wall x = 0 in BaCk^HbO.
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Figure 8.4.2: Effect of a pseudosymmetry operation on a hypothetical O\ —
H "-O2 hydrogen bond in the rry-plane. O\ is the donor and 0% the
acceptor oxygen before the pseudosymmetry operation, namely a reflection
(mx) normal to the x-axis, is applied. This operation maps the coordinates
of 0i, H and 02 to O(, H' and O'2 respectively. The oxygen atom closest
to the generated position O( is 02, so 02 moves to the position O{ when
the domain wall moves. Similarly O\ moves to the generated position O'2.
But the situation is different for the hydrogen atom. Whereas there are
two oxygen atoms, there is only one hydrogen. And whereas the oxygen
atoms are quite distant from rax, the hydrogen atom is close to it. The
fact there are two oxygen atoms makes it possible for their identities to be
interchanged by the pseudosymmetry operation. By contrast, since there is
only one atom H, the same atom must move to the new position H'. As a
result, the roles of the donor and acceptor oxygen atoms are interchanged.
This also illustrates a very important difference between a pseudosymmetry
operation and a real symmetry operation. The latter can never lead to an
interchange of the roles of donor and acceptor atoms, whereas the former
can do so.

HaBOs crystals, and has since been reported for n-heptyl- and n-octyl-
ammonium dihydrogen phosphate crystals also (Fabry et al. 1997). Urea
inclusion compounds may present another such possibility (Brown & Ho-
llingsworth 1995). In all such cases the concerned atoms are hydrogen
atoms, involved in hydrogen-bonding.

The stress-induced movement of the hydrogen atoms to the calculated
sites (#2, 2/2, ^2) in all these cases has the effect of interchanging the roles
of donor and acceptor atoms in the hydrogen bond. Fig. 8.4.2 illustrates
this schematically, and its caption explains why this happens.

What happens to hydrogen atoms during ferroelastic switching in crys-
tals like HsBOs happens to the basal-plane oxygen atoms in the case of
the high-Tc superconductor Y — Ba — Cu — O, which is also a ferroelastic
at room temperature (Somayazulu, Rao &; Wadhawan 1989). This crystal
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is a nonstoichiometric ferroelastic (Wadhawan 1991). The stress-induced
hopping of basal-plane oxygen atoms in it is analogous to 'Snoek relaxation'
(§11.1.4). We could turn the analogy around, and call the hydrogen-hopping
in HsBOs an example of Snoek relaxation within hydrogen bonds.

All in all, a reasonably accurate, though somewhat idealized, calcula-
tion of atomic displacement vectors can be carried out (under the PCA)
from all possible relations of the type

£2, 2/2, 22 = 5(xi, 3/1, 2i) + A, (8.4.3)

where S(xi, yi, z\) is a space-group operation of the prototype symmetry
that is not an operation of the space-group symmetry of the ferroic phase
in question.

Group-Theoretical Determination of Atomic Displacement
Vectors

The above approach, though simple, is not very general. It may also
not always ensure completeness. The most general approach is through the
use of domain-structure systematics (Wadhawan & Somayazulu 1986).

One begins by writing the following left-coset decomposition (Eq. 7.1.8):

G = H + 92H + ••• 9nH (8.4.4)

Here n is the index of H in G, and the #'s are a representative set of
elements of G not belonging to H (Aizu 1974; Guymont 1981). Each coset
corresponds to a particular domain-type or variant.

Let Gp and Hp denote the point groups underlying the space groups G
and H. One can write a coset decomposition in terms of the point groups
also:

Gp = Hp + hHp + • • • fqHp (8.4.5)

Here q is related to n in Eq. 8.4.4 through

n = qm, (8.4.6)

where ra is the number of times the primitive unit cell of the ferroic phase
is larger than that of the prototype.

Eq. 8.4.4 provides a complete set of pseudosymmetry relations for
determining the atomic displacement vectors, one for each coset in this
equation. One identifies the #'s with the operation 5 in Eq. 8.4.3 one by
one, and determines the displacement vectors in each case for every atom
in the asymmetric unit of the ferroic phase.

If H is not a normal subgroup of G, several conjugate subgroups are
possible. A coset decomposition must be made with respect to each of these
(Guymont 1978).
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For writing a coset decomposition like Eq. 8.4.4, one has to deal with
two space groups, namely the prototype group and the ferroic group. It
is necessary to choose a common origin for this purpose, as also a com-
mon coordinate system (see Wadhawan & Somayazulu 1986 for a detailed
example).

If one is dealing with a ferroelastic domain pair, disorientations of the
domains introduce a complication in the choice of common coordinate axes.
Various approximations have been employed for dealing with this problem
(Guimaraes 1979a; David, Glazer & Hewat 1979).

Ferroelastic Switching and Acoustic Emission

We conclude this section by pointing out that pseudosymmetry relations
described above give only the net displacement vectors A for the atoms in a
unit cell after a ferroic switching of a domain has occurred. One determines
by the above procedure the total vector displacement each atom undergoes
for the domain switching to occur. These net displacement vectors are
actually made up of a number of zigzag displacement vectors:

A = Ai + A2 + ... (8.4.7)

This is because during ferroic switching a domain wall has to move across
the crystal, and the domain wall has a symmetry group different from those
of the domains separated by it. The symmetries of the sites occupied by the
atoms can change several times when the domain wall is passing through
their positions, especially if the domain wall has substantial effective thick-
ness. The net atomic displacement vectors can therefore be composed of a
whole series of successive components (Eq. 8.4.7). This has a bearing on,
for example, the acoustic emission that accompanies ferroic switching (Mo-
hamad, Zammit-Mangion, Lambson & Saunders 1982; Zammit-Mangion &
Saunders 1984).
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8.5 DOMAIN STRUCTURE OF
INCOMMENSURATE PHASES

Several ferroic materials pass through an incommensurate phase (I)
before making a transition to the parent phase (P) on heating (cf. Eq.
5.8.1):

P ^ I ^ C (8.5.1)

Notwithstanding some thermal hysteresis ( Janovec, Godefroy & Gode-
froy 1984), the I-phase can be taken as existing between the temperatures
Ti and Tc. At Tc it changes to the C-phase, which is commensurate to the
parent phase or the P-phase.

Near the T^-end the I-phase has a sinusoidal modulation with respect
to the C-phase, and near the Tc-end one usually sees discommensurations
(cf. §5.8). The latter are narrow transient domain walls which separate
wide domain-like regions.

The C-phase is usually a ferroic derivative of the prototypic P-phase.
This means that the C-phase can exist in two or more orientation states. In
the I-phase, near its Tc-end, orientation states or domains appear which are
almost commensurate regions, with discommensurations serving as domain
walls.

Since several orientations are possible for the domains and the domain
walls in the I-phase (near the Tc-end), the term domain texture of the
I-phase has been used in the literature for describing the microstructure
(Janovec & Dvorak 1986).

Janovec (1981, 1983) has developed a pictorial representation for do-
mains and domain walls in general, which is particularly useful in visualizing
the discommensuration texture in an incommensurate phase.

The P — I — C sequence of phase transitions is typically induced by a
two-component order parameter rj(p, #), and in the I-phase there occurs a
modulation of this order parameter.

Following Janovec (1981), we shall consider the concrete example of the
ammonium fluoberyllate (AFB) crystal (lizumi & Gesi 1977) to illustrate
the symmetry analysis of domain texture in an I-phase.

For AFB the P-phase has the symmetry Pnara, and the symmetry
group of the (ferroelectric) C-phase is Pn2ia. The primitive unit cell of
the C-phase is twice as large as that of the P-phase. The ferroic species
mmmFm2m to which this crystal belongs has two orientation states, say
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Figure 8.5.1: Order-parameter-space representation of domain states, do-
main walls, and incommensurate modulations in an ammonium fluoberyl-
late crystal. [After Janovec (1981).]

1 and 2. The cell-doubling along the x-axis on transition to the C-phase
means that two translational domain-states are possible for each of the
two orientation states. Therefore, in terms of the notation introduced in
§7.1.11, we can represent the four domain states as li, b, 2i, and 22. In
the C-phase the states li and 12 have the same spontaneous-polarization
vector, pointing in the a-direction, opposite to that for states 2i and 22.

The order parameter for the hypothetical P —> C phase transition has
two components (Ishibashi & Dvorak 1978), which we denote by 77 and £. In
the pictorial representation introduced by Janovec (1981), a domain state
corresponds to a point in the order-parameter space spanned by rj and £.
The four single-domain states are represented by the points marked li, 12,
2i, and22 in Fig. 8.5.1.

A finite-thickness domain wall between any two domain states is repre-
sented by a directed line segment connecting the points which represent the
domain states. Such a depiction takes note of the fact that a thick domain
wall has a continuously varying structure.

Note that in Fig. 8.5.1 the straight lines joining li with 12, and 2i with
22 represent antiphase domain walls. In the notation of §7.1.11 we denote
these walls by Ii/l2 and 2i/22 respectively.

Similarly, the walls li/2i, 2i/l2, 12/22, and 22/li separate (ferroelec-
tric) orientational twins.

Let x = 0 represent the central plane of a domain wall. The atomic
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structure varies most rapidly in the vicinity of this plane, and the variation
becomes small for large values of x. The following function provides a good
description of the rate of change of structure with x:

r o on 1/2«•> - [(I) + (1)1
This function is large for small x, and small for large x. The local sym-
metry of a domain wall can be described by a layer group only for posi-
tions for which h is large; otherwise the symmetry is that described by a
3-dimensional space group (Janovec 1981).

Near the Tc-end of the range of existence of the I-phase the domain
walls are quite thick, and occur in sufficiently large numbers to be viewed
as a lattice of domain walls of negative energy (Bruce, Cowley & Murray
1978). This is sometimes referred to as the multidomain approximation, or
the soliton approach.

The sequence P — I — C of phase transitions is described in terms of a
complex order parameter p(x) e1^^ (rj = pcos0, £ = psin</> in Fig. 8.5.1).
The four domain states (or discommensurations) of AFB correspond to
</>(x) = 7T/4, 37T/4, 57T/4 and 77T/4. In the I-phase the domain walls are
represented by a closed oriented curve, the shape and location of which
changes with temperature. Two such curves, ra and n, are shown in Fig.
8.5.1, the former for temperatures near Tc, and the latter for temperatures
near T;.

Loop ra corresponds to the occurrence of sequence of domains li / 2i
/ l 2 / 2 2 / l i . . . , with spontaneous polarization alternating in sign over
successive domains.

Since the walls (discommensurations) separating these domains have a
transient character, the average of any spontaneous quantity like polariza-
tion over a period of this siding-phase lattice is zero. This implies that the
macroscopic or point-group symmetry of the I-phase is the same as that of
the P-phase, namely rarara.

Although the average spontaneous polarization is zero, application of an
electric field nevertheless has the effect of favouring the growth of domains
with spontaneous polarization oriented along it. This domain growth occurs
by the movement of domain walls, the energy of which varies with position.
They may get pinned at pinning sites like defects, impurities, etc. Thus the
system can exhibit hysteresis in the I-phase, even though its macroscopic
spontaneous polarization is zero (Hamano et al. 1980).

When phase modulations exist along more than one directions, the
permitted (i.e. energetically favourable) sequences of regularly spaced dis-
commensurations or domain walls occur along each of them. The resulting
domain texture of the I-phase has been analysed for several situations by
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Janovec & Dvorak (1986) and Saint-Gregoire (1995).
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Part B

CLASSES OF FERROICS, MICROSTRUCTURE, NANOSTRUCTURE,
APPLICATIONS

The pedagogical approach adopted in this book is as follows. In Part
A the general, and mostly common, features of ferroic phase transitions
and ferroic materials were introduced, with the barest minimum details.
In Chapters 9 to 12 of Part B we concretize the treatment of the subject
to, respectively, ferromagnetics, ferroelectrics, ferroelastics, and secondary
and higher-order ferroics. By and large, we do not deal with the effects of
particle size in these four chapters.

Size effects are very important, and are described in Chapter 13, which
deals with microstructure and nanostructure.

Finally, in Chapter 14 we explain how the special properties of ferroics,
including those determined by particle size and coexisting phases, can be
exploited for practical applications.
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Chapter 9

FERROMAGNETIC
CRYSTALS

9.1 SOME MAGNETIC PROPERTIES OF
ORDERED CRYSTALS

9.1.1 Magnetic Moment and Exchange Interaction

The charge-density function p(r) describes the atomic structure of a crys-
tal, and the current-density function j(r) describes its magnetic structure.
Unless cancelled by opposing influences, magnetic moments can arise in a
crystal because a moving or spinning charge has a magnetic moment asso-
ciated with it.

A crystal can be thought of as consisting of atomic and/or molecular
ionic cores and a set of completely or partially delocalized electrons. Apart
from contributions from nuclear magnetic moments, the magnetic moment
of a crystal can arise from either the orbital motion or the spin of the
electrons in it.

The magnetic properties of materials can be understood in terms of two
basic notions: (i) One can associate a magnetic moment with the atoms
or ions constituting the materials; and (ii) the interaction among these
magnetic moments is predominantly of quantum-mechanical origin, includ-
ing exchange forces. The Pauli exclusion principle forms the basis of all
exchange forces between fermions.

An atom has a net magnetic moment when an inner cf-shell or /-shell
of electrons is not filled completely, resulting in only a partial cancellation
of the spins and orbital moments of the electrons in that shell. Across the
Periodic Table, the electron shells for which this may happen are: 3d, 4d,
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4/, 5d, and 5/. The electrons in such shells are commonly referred to as
magnetic electrons. It is assumed that the magnetic moment of an atom
persists to a large extent when it is incorporated in a solid.

The usual ferromagnetic materials possess spontaneous magnetization
and exhibit hysteresis in their magnetization or magnetic induction versus
magnetic-field plots (B-H curves) (cf. Fig. 1.2.1; we shall discuss this
in more detail presently). Further, above a temperature T/, called the
ferromagnetic Curie temperature, the spontaneous magnetization vanishes
and the material becomes paramagnetic.

For temperatures substantially above T/ the magnetic -susceptibility
obeys the Curie-Weiss law:

X = ̂ r (9.1-1)
J- — J-p

C is called the Curie constant, and Tp the paramagnetic Curie temper-
ature (Tp > T f ) .

Several basic features of ferromagnetic materials were explained by
Weiss (1907) in terms of the following two postulates:

• A ferromagnetic crystal comprises several domains, each having a
spontaneous magnetization, the direction of which is different in dif-
ferent domains. The net magnetization of a specimen crystal is the
vector sum of the magnetization vectors of the various domains, and
is thus of small magnitude in the absence of a substantial applied
magnetic field.

• The spontaneous magnetization of a domain arises from the existence
of a molecular field which tends to align the atomic magnetic moments
parallel to one another.

Weiss (1907) assumed that the effective molecular field acting at a point
in a ferromagnetic domain can be expressed as

Hm = H + AM, (9.1.2)

where H is the applied magnetic field, and M is the magnetization (mag-
netic moment per unit volume). A is called the Weiss constant, and is a
measure of the long-ranged cooperative ordering of the atomic magnetic
moments.

For the paramagnetic phase (in which there is no long-ranged ordering),
the extent of alignment of magnetic moments on application of the magnetic
field is small, and we can assume that the magnetization can be written as
a constant x times the field. Further, the temperature dependence of x is
given by the Curie law: x = C/T. Thus, MT = C(H + AM), giving

M(T-CA) - CH (9.1.3)
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Therefore,

* " f = T^A' (9"L4)

which is the Curie-Weiss law (Eq. 9.1.1), with CX = Tp.
A rough estimate of the magnitude of the molecular field Hm can be

made by noting that the energy of an atomic magnetic moment in this field
should be of the order of ksTp:

VsHm ~ kBTp (9.1.5)

Here HB is the Bohr magneton. Taking Tp = 1000 K gives Hm ~ 107 gauss.
It follows that the molecular field is not due to simple (classical) dipole-

dipole interactions; such interactions are mediated by fields of the order of
103 gauss only.

An attempt to explain the nature of the Weiss molecular field was first
made by Heisenberg (1928) in terms of the quantum-mechanical exchange
interaction between electrons. In Heisenberg's model, the interaction en-
ergy between the spin S; of an atom and the spins Sj on neighbouring
atoms was written as

U = -2J^Si - SJ5 (9.1.6)
3

where J is the exchange integral. It is determined by the degree of overlap
of the charge distributions of the atoms involved.

Magnetization of a Virgin Ferromagnetic Specimen

Fig. 9.1.1 shows a typical magnetization curve of a virgin specimen of a
ferromagnetic crystal. The shape of such a curve was first explained by
Weiss (1907) by postulating the existence of domains and domain walls.

In the absence of an applied magnetic field, the domains may be ori-
ented randomly, so that the vector sum of their individual magnetic mo-
ments is zero, or nearly so.

Application of an external field results in an increase of the net mag-
netization of the polydomain specimen.

It is often more convenient to deal with magnetic induction B, rather
than with magnetization M. The two are related by

B = Mo(H + 7BM) (9.1.7)

Here //o is the permeability of free space, and 75 is a multiplier which takes
care of the system of units used (Brown 1962). 75 = 1 for the SI units,
and 75 = 4?r (and /XQ = 1) for the CGS gaussian units.
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Figure 9.1.1: A representative B-H curve for a virgin specimen of a fer-
romagnetic crystal. Regions OA, AB and BC correspond to the different
magnetization processes dominating at different values of the driving mag-
netic field H. [After Kittel (1949) and Valenzuela (1994).]

To the extent that Eq. 9.1.7 is a valid expression for a given crystal,
and this is indeed the case for diamagnetic and paramagnetic crystals, one
can also write

B - //H, (9.1.8)

with
p, = //0(1 + 7sX) = Mo Mr (9.1.9)

IJL is the magnetic permeability of the medium, and //r is the relative mag-
netic permeability. ^r is a dimensionless quantity, independent of the sys-
tem of units used. //r = 1 for empty space.

Because of their domain structure, and the resultant highly nonlinear
response to magnetic field, ferromagnetic materials are not well-described
by Eq. 9.1.7 (M is not linearly proportional to H).

The effective permeability of a ferromagnetic specimen depends on its
history and on the value of the field applied. It is therefore defined as a
derivative:

3B
Veff = Qjj (9.1.10)

A typical ferromagnetic specimen has its share of defects like impurities,
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dislocations, inclusions, etc., which tend to pin the domain walls to their
existing locations. With reference to Fig. 9.1.1, when the field applied
is smaller than a critical value Hcr (called the critical field), it does not
result in the movement of the domain walls because the pinning centres
resist their movement. Instead, only a (reversible) bowing of the domain
walls takes place. Further, because of the smallness of the field applied, the
magnetization curve is a straight line for H < Hcr, the slope of this line
defining the initial permeability.

For a chosen direction of the applied field the spins in some domains
will be closer in their orientation with respect to that of the field than
others. The field tends to alter the directions of all spins to make them
closer to its own direction. As a consequence, the total volume of some
domains will grow at the cost of others. For H < Hcr, this happens mainly
by the mechanism of bowing of domain walls mentioned above. For higher
values of the field the pinning centres give way, successively, resulting in
a sharp upward change in the slope of the B-H curve (region AB in Fig.
9.1.1). This region is characterized by a movement of domain walls, and
the process is largely irreversible because there may be hardly any reason
for the domain walls to retrace their paths when the field is decreased or
switched off.

The region AB is characterized by the occurrence of Barkhausen effect
(see Jiles 1991): Every time a pinning centre gives way, allowing a domain
wall to move, there is a discontinuous change in the flux density B in the
specimen. If Fig. 9.1.1 were to be plotted on a sufficiently expanded scale,
part AB would appear zigzag because of the Barkhausen effect, rather than
continuous as shown.

In addition to the Barkhausen effect there is also an acoustic emission
of pulses in part AB, connected with discontinuous changes in the magne-
toelastic energy as the pinning centres let go the domain walls, successively
(see Jiles 1991).

The point B in Fig. 9.1.1 is a point of inflexion, beyond which move-
ment of domain walls is not the main mechanism of magnetization because
practically all the domains unfavourably oriented- with respect to the field
direction have been already obliterated, and any further increase of mag-
netization can occur only by a rotation of the .domains towards the field
direction. Point B corresponds to the maximum slope of the curve, and
defines the maximum permeability, Umax-

The point C in the magnetization curve defines the saturation magne-
tization, Ms, which is almost as large as the spontaneous magnetization in
any of the individual ferromagnetic domain states.



306 9. Ferromagnetic Crystals

Easy Directions of Magnetization

The energy required for the creation of a domain with spontaneous mag-
netization pointing along a specific direction depends on the existence of
the so-called easy directions of magnetization. For example, for a crys-
tal of Fe, which has cubic symmetry, [100] directions are easy directions.
By comparison, [111] directions are hard directions. For a crystal of Co,
which has hexagonal symmetry, the hexagonal axis is the direction of easy
magnetization.

The existence of directions of easy magnetization is related to the exis-
tence of a magnetocrystalline or anisotropy energy, which in turn is deter-
mined to a large extent by the anisotropy of overlap of electron distributions
on neighbouring ions.

The Anisotropy Energy

Spin-orbit coupling of electrons results in a non-spherical charge distribu-
tion, which influences the anisotropy energy through electrostatic fields and
overlapping wavefunctions between neighbouring atoms (van Vlack 1947).

The expression for this energy naturally satisfies the symmetry require-
ments of the crystal. For example, for a crystal with cubic symmetry,
if «i, 0:2 ? as are the direction cosines of the magnetization vector, the
anisotropy energy has the form

Uaniso = Ki (ct\al + alal + a\a\) (9.1.11)

Similarly, for a crystal like Co with hexagonal symmetry, if 0 is the
angle between the magnetization vector and the axis of 6-fold symmetry,

Uaniso = Kism20 + K2Bin*0 (9.1.12)

The constants KI and K^ are sensitive functions of temperature.
In view of the anisotropy energy, Eq. 9.1.6 must be generalized suitably.

In the most general case (e.g. in partially ordered or completely disordered
systems) the crystal field may vary from point to point. There is then a
local easy direction of magnetization, determined by the local crystal field.
Assuming a cylindrical local symmetry (Kanamori 1963), the anisotropy
energy at a site i can be expressed as DiS^ where Di is the strength of
the local field, and SZi is the component of the spin along the local easy
direction of magnetization.

The total interaction energy in a magnetic system thus has an anisotropy
contribution and an exchange contribution:

U = - £ A(&)? - £ J(rtj) Si • 8j, (9.1.13)
i ij
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where we have further generalized Eq.9.1.6 by not assuming J to be a
universal constant.

9.1.2 Magnetic Ions in Solids
The electron has not only a charge, but also a spin or magnetic moment. In
a crystal, whereas the ions are practically immobile, some of the electrons
are highly mobile, and thus act as carriers of both charge and magnetic
moment.

Electrons in the valence shells of neighbouring ions interact strongly,
especially in metals, resulting in their delocalization and in the formation
of energy bands. The relevant shells are 3d, 4d, 5d, and 4/, 5/.

The Kondo Effect

The /-shell is more localized than the d-shell, and it is the d-shell which is
more affected by the bonding between neighbouring ions.

There are various s — d interaction models for the interaction between
a magnetic ion and the delocalized electrons. We speak of s-d mixing,
rather than hybridization, when the s-conduction levels and the local d-
levels overlap in energy.

In a metal the itinerant s-electrons spend some time in the vicinity of
the d-electrons of the magnetic ion. During this period their spin is polar-
ized antiferromagnetically to that of the magnetic moment of the ion. After
a temporary stay in the d-level of the magnetic ion the electrons tunnel back
to delocalized states. The term Kondo effect is used for the localization of a
cloud of antiferromagnetically polarized conduction-electron spins around
an isolated magnetic ion (Bell & Caplin 1975).

The Kondo binding disappears above the Kondo temperature TK- Be-
low TK the antiparallel spins of the electron charge cloud effectively cancel
the observable moment of the magnetic ion. The so-called Kondo regime is
an idealization, which can be realized or approached in very dilute magnetic
alloys at very low temperatures.

The Kondo effect hinders interactions between the spins on the mag-
netic ions.

Itinerant-Electron Magnetism

When the percentage of magnetic ions is very high, there is sufficient inter-
action between neighbouring magnetic ions to make the magnetic electrons
itinerant, occupying energy states in narrow bands formed by the interac-
tion between the neighbouring ions. One then speaks of itinerant-electron
magnetism.



308 9. Ferromagnetic Crystals

This type of magnetic ordering is the result of a trade-off between
exchange energy and kinetic energy. The exchange effects are a consequence
of the Pauli exclusion principle: electrons with parallel spins avoid one
another. This results in the creation of local exchange holes or Fermi holes:
each electron is surrounded by a void due to a local depletion of electrons of
spins parallel to its spin. An exchange hole around an electron has the effect
that the electron experiences a less repulsive or more attractive Coulomb
potential in the presence of parallel-spin electrons.

In addition to the exchange hole, there is also a correlation hole around
an electron, resulting from the ordinary Coulomb repulsion between elec-
trons of any spin.

The decrease in the potential energy due to the existence of the ex-
change hole and the correlation hole must be compensated by a correspond-
ing increase in the kinetic energy. There is thus a competition between
exchange and kinetic energies.

The magnetism of ions in such systems is due to the exchange hole.
Although the magnetic electrons are itinerant to a substantial extent, there
is also an interchange of the electron population between the delocalized
band-electrons and the localized shell electrons, and, statistically speaking,
some of the electrons may stay long enough in the atom shell to align
the other spins on the atom, giving it a net local magnetic moment (the
itinerant-electron magnetic moment).

Dependence of Ionic Magnetic Moment on Environment

The magnetic moment of an ionic species in a solid is not a unique quantity;
it depends on the environment of the ion. And the environmental conditions
depend, for example, on the degree of dilution of the magnetic ions in
the nonmagnetic host crystal (e.g. Mn ions in a Cu host crystal). The
main reason for the dependence of the magnetic moment of ions on the
separation and geometrical arrangement of their ligands is the anisotropic
nature of the charge distribution of the unfilled d-shell or /-shell. Although
this variation occurs even in normal crystalline materials, it is particularly
striking in disordered solids (cf. §9.2), especially for d-shell ions.

9.1.3 Coupling Between Magnetic Moments
In ferromagnetic crystals, the ferromagnetic ordering arises due to a coop-
erative exchange coupling among the magnetic moments. There are two
types of exchange interaction: direct and indirect.
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Direct Exchange

Direct-exchange coupling between magnetic moments occurs when they are
close enough to have overlapping wave functions. This strong coupling
decreases rapidly with distance between the interacting ions.

In a simple situation it may be isotropic, depending only on the distance
Tij between the two atoms or ions. If S^ and Sj are the spins of these atoms,
the exchange energy has the form

« = -$>(»•«) S* -S,- (9.1.14)

The exchange parameter J may be positive or negative, depending on the
competition between the Coulomb energy and the kinetic energy.

Indirect Exchange

The indirect-exchange coupling can occur between ions that are not in
nearest-neighbour configurations. It naturally requires an intermediary,
which may be itinerant electrons (as in metals), or nonmagnetic ions (as
in insulators). It is known as RKKY coupling in the former case, and
superexchange in the latter.

The RKKY Interaction

In the Ruderman-Kittel-Kasuya-Yosida interaction (Ruderman & Kittel
1954; Kasuya 1956; Yosida 1957), the exchange parameter J (cf. Eq.
9.1.14) oscillates in sign as the distance between the ions changes. Itin-
erant electrons are the intermediaries for this interaction. To understand
why the RKKY interaction has an oscillatory character even for an ordered
magnetic crystal, we recall that whereas a periodic or oscillatory function
can be expressed as a Fourier series, a nonoscillatory function must be writ-
ten as a Fourier integral, implying that the number of Fourier components
for the latter case is infinite. If we are compelled to express a nonoscillatory
function as an incomplete set of Fourier components, the representation is
at best a poor approximation, resulting in an artificially oscillatory be-
haviour of the nonoscillatory function. Something similar happens in the
case of an itinerant-electron system. Just as these electrons tend to screen
out the charge on a positive ion, they also tend to screen out its magnetic
moment by preferentially adopting antiparallel spin configurations in its
vicinity. But a complete screening of the magnetic moment of the ion will
require the presence of electrons of all possible wavenumbers, whereas in
reality the maximum wavenumber available is only 2fcjp, where kp is the
wavenumber of an electron on the Fermi surface. As a result, the magnetic
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ion induces an oscillatory spin polarization in the mobile electrons in its
neighbourhood. The effect of this oscillating spin polarization is felt by the
magnetic moments of other ions even at substantial distances from a given
ion, resulting in an indirect exchange coupling that oscillates in sign. This
is a unique feature of the RKKY interaction.

Superexchange

Indirect exchange coupling of non-nearest-neighbour magnetic moments via
a nonmagnetic ligand, rather than via conduction electrons, is referred to
as superexchange (White & Geballe 1979). A typical situation is that of a
pair of magnetic cations separated by, or coupled by, a diamagnetic anion.
The R3+ — Fe3+ coupling in a garnet crystal is an example of this, with R3+

denoting a rare-earth cation. The coupling in this case is a hybridization
of the orbitals of Fe3+ and R3+ with that of the intervening O2~ anion.
Because of the superexchange coupling via the O2~ anion, any reorientation
of the magnetic moment on the ferric ion changes the degree of the overlap
of the charge clouds of the three ions, leading to a strongly anisotropic
exchange energy.

9.1.4 Diamagnetism and Paramagnetism
Diamagnetism is present in all materials, and is a manifestation of Lenz's
law. All materials get a small, negative, temperature-independent contribu-
tion to their overall magnetic susceptibility, this being the result of shielding
currents induced in the filled shells of an ion by the applied magnetic field
(Fig. 9.1.2(a)).

If at least some of the constituents of a crystal have spontaneous mag-
netic moments, and if there is very little exchange coupling between them,
the resulting (paramagnetic) magnetic susceptibility is positive and follows
the Curie law (x = C/T). If some exchange coupling is present, the tem-
perature dependence of the susceptibility is described by the Curie-Weiss
law: (x = C/(T — 0)), where 0 is a measure of the cooperative coupling of
the magnetic moments (Fig. 9.1.2(b)).

9.1.5 Ferromagnetism, Antiferromagnetism, and
Ferrimagnetism

Ferromagnetism is a manifestation of long ranged cooperative coupling
among the constituent magnetic moments in a crystal. A ferromagnetic
crystal possesses a spontaneous magnetic moment M on a macroscopic
scale, although the magnetic moments of the various domains, pointing in
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Figure 9.1.2: The five 'classical' types of magnetism in crystals, (a) Diamag-
netism; (b) paramagnetism; (c) ferromagnetism; (d) antiferromagnetism;
and (e) ferrimagnetism. x ls tne magnetic susceptibility, T the tempera-
ture, and Ms the saturation value of the magnetization M (also equal to the
magnetization in a single domain. The reduced magnetization is M/M3.
Tc is the Curie temperature, and TN the Neel temperature. [After Hurd
(1982).]

different directions, may lead to a zero or nearly zero vector sum. Ap-
plication of even a moderate magnetic field is then sufficient to make the
net magnetization rise to the final, saturation value Ms, which changes
little on further increase of the applied field as it is already close to the
single-domain-state value of the spontaneous magnetization (Fig. 9.1.2(c)).
Above a certain temperature Tc the thermal effects overcome the ordering
tendency of the crystal, and it becomes a paramagnetic crystal, with the
susceptibility obeying the Curie-Weiss law.

The long-ranged cooperative interaction leading to ferromagnetic order-
ing may be either through nearest-neighbour exchange, or through itinerant
electrons. Fe, Co and Ni are examples of itinerant-electron ferromagnetic
crystals.

Like ferromagnetism, antiferromagnetism is also a manifestation of
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long-ranged cooperative ordering of magnetic moments, except that neigh-
bouring magnetic moments adopt an antiparallel (rather than parallel) con-
figuration. The overall spontaneous magnetization is therefore zero.

Above a certain temperature called the Neel temperature, T/v, an an-
tiferromagnet behaves like a paramagnet, with its susceptibility exhibiting
Curie-Weiss behaviour (Fig. 9.1.2(d)). As the temperature is lowered be-
low T/v, the susceptibility falls, reaching its lowest value at T — 0, at which
temperature all the magnetic moments are aligned in a perfect antiparallel
configuration.

When the long-ranged antiparallel ordering of spins involves unequal
spins, we speak of ferrimagnetic ordering (Fig. 9.1.2(e)), rather than an-
tiferromagnetic ordering. The most familiar ferrimagnetic crystal is mag-
netite (FeO.Fe2O3). The antiparallel ordering in it is between the unequal
spins of the Fe2+ and Fe3+ ions. These two types of ions occupy different
Wyckoff sites in the crystal (say sites A and B). Ions on Site A are fer-
romagnetically aligned among themselves (below Tc), and so are those on
Site B. But the coupling between ions on Site A and those on Site B is
of the antiferromagnetic type. Since the moments on sites A and B have
different magnitudes, a net spontaneous magnetization results.

Above Tc the magnetic susceptibility of a ferrimagnet follows the Curie-
Weiss law only approximately, particularly for temperatures not far above
Tc (Fig. 9.1.2(e)).

9.1.6 Molecular Ferromagnets
Apart from the conventional atom-based ferromagnets involving d-shell or
/-shell atoms, molecular ferromagnets based on organic compounds have
also been synthesized and are, in fact, an area of intense current research.

A charge-transfer salt, namely decamethylferrocenium tetracyanoethe-
nide, [Fem(C5Me5)2]+[TCNE]~, was the first organic ferromagnet to be
synthesized (Chittipedi et al. (1987), Miller et al. (1988)).

Other approaches for synthesizing molecular ferromagnets have been
those employing bimetallic ferrimagnetic chains, and the metal-radical ap-
proach (see Chavan, Yakhmi & Gopalakrishnan (1995) for a review).

9.1.7 Metamagnetism and Incipient Ferromagnetism
In the usual ferromagnets and antiferromagnets the exchange fields and the
anisotropic crystal fields are very strong. In the so-called metamagnets and
incipient ferromagnets the exchange and anisotropy effects are generally
rather weak.

A metamagnet is basically an antiferromagnet, except that the magne-
tocrystalline anisotropy forces in it are only moderately strong (Stryjewski
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& Giordano 1977). As a result, an external magnetic field can easily dis-
turb its antiferromagnetic ordering below the Neel temperature, causing a
transition from a phase of low magnetization (of the component antiparallel
configurations) to a phase of high magnetization. The magnetic suscepti-
bility, however, continues to be low before and after the field-induced phase
transition.

Metamagnetic behaviour can result not only from the overcoming of
the anisotropic internal fields by an external field, but also by the effect
of (rather large) external fields on itinerant electrons (Wohlfarth 1980).
Systems in which this occurs are typically 3d-transition metal compounds
(YCO2, TiBe2, FePt3).

Apart from metamagnetism, another variation on the normal ferro-
magnetic behaviour occurs in what are called incipient ferromagnets. An
incipient ferromagnet, or an exchange-enhanced metal, is a metal in which
the effect of itinerant electrons on magnetic ordering is not strong, but it is
nevertheless nonzero. Therefore, at sufficiently low temperatures, this or-
dering tendency manifests itself over small regions of the metal, leading to
a localized alignment of magnetic moments for substantial periods of time.
Such regions of magnetic order are known as paramagnons or localized spin
fluctuations. Palladium and platinum are examples of metals in which this
occurs (Kurd 1982).

9.1.8 Helimagnetism
MnAu2 is an example of a helimagnetic crystal. It has a body-centered
tetragonal structure. The magnetic moments on the Mn ions point along
directions normal to the c-axis, and the direction rotates by about 50°
from plane to plane normal to the c-axis, thus tracing out a spiral or a
helix. Above a certain disordering temperature, this ordered orientation of
spins is destroyed and the crystal enters a paramagnetic phase.

Some rare-earth metals exhibit a different form of helimagnetism, wherein
the spins rotate along the surface of a cone, rather than in a plane.

Weak Ferromagnetism
Weak ferromagnetism (also known as canted ferromagnetism) involves two
or more antiferromagnetic configurations canted at an angle, rather than
being collinear, so that there is a net spontaneous magnetization (Moriya
1963).

Two factors may contribute singly or jointly to the occurrence of weak
ferromagnetism. One is the difference between the local anisotropies for
the two sublattices. The other is the so-called Dzyaloshinsky-Moriya (DM)
interaction (Moriya 1963). The DM interaction results from the asymmetric
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upsetting of the indirect coupling between cations by spin-orbit interactions.
Examples of weak ferromagnets include NiF2, /? — MnS, a — Fe2Oa,

MnSi, CrF3, and CoCOs (Kurd 1982). Since weak ferromagnetism is a
result of a delicate trade-off between opposing forces, many of these crystals
are also metamagnets.
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9.2 SPIN GLASSES AND CLUSTER
GLASSES

The history of spin glass may be the best example I know of
the dictum that a real scientific mystery is worth pursuing to
the ends of the Earth for its own sake, independently of any
obvious practical importance or intellectual glamour.

P. W. Anderson

So far in this chapter we have considered only the more conventional
types of magnetism. A fascinating new world of condensed-matter physics
comes into view when we introduce a certain amount of random magnetic
(or spin) disorder into an otherwise nonmagnetic crystal.

Glasses are the very antithesis of perfect single crystals, in that they
lack the order responsible for the translational and certain other symmetries
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Figure 9.2.1: Typical M(T) and M(H) curves for a spin- or cluster-glass
crystal. Curve A is for a crystal cooled without the influence of an external
magnetic field, and Curve B is for a field-cooled specimen. [After Hurd
(1982).]

possessed by crystals. The term spin glasses is used for crystals in which
a small fraction of lattice sites are occupied randomly by magnetic ions,
and the magnetic ions are oriented randomly in the absence of an external
magnetic field. A classic example of this is a crystal of Cu, alloyed with a
small amount of Mn. Cu is nonmagnetic, whereas Mn carries a spin of 5/2.
In this magnetic alloy the magnetic and nonmagnetic ions are distributed
quite randomly. There is thus positional disorder, in addition to other kinds
of disorder.

Spin glasses generally have small linear magnetic susceptibilities (com-
parable to those of paramagnetic crystals). But they also exhibit, at low
temperatures, features like hysteresis and remanence which are characteris-
tic of ferromagnets. In fact, in a certain sense they are even more hysteretic
than conventional ferromagnetics in that a field-cooled specimen of a spin
glass exhibits a hysteresis curve that is shifted along the #-axis (see Fig.
9.2.1, and §9.2.10), indicating that the specimen has a memory of the di-
rection in which the field was applied while cooling it.

The essence of a spin glass is the presence of an exchange interaction
that is random in sign and magnitude. Further, the net interaction is the
result of competing interactions, resulting in "frustration" (see below).

Investigations on spin glasses have led to the introduction of con-
cepts which have far-reaching consequences, not only for condensed-matter
physics, but also for neural networks, protein folding, etc. (Theumann &
Koberle 1990; Stein 1992).

The behaviour of the host crystal, which is nonmagnetic to start with,



316 9. Ferromagnetic Crystals

and in which a certain fraction of lattice sites are occupied randomly by
magnetic dopants or impurities, depends on the concentration of these
dopants, as also on several other factors. We get giant-moment and spin-
glass characteristics at low concentrations, cluster-glass characteristics at
intermediate concentrations, and percolation and long-range magnetic or-
der at still higher concentrations.

9.2.1 Giant-Moment Ferromagnetism
This is a phenomenon involving long-ranged but nonuniform alignment of
spins parallel to one another, mediated by conduction electrons. A typical
example is that of the dilute transition-metal alloy Pd-(0.1at%Fe) (see
Mydosh & Nieuwenhuys 1980). The dopant Fe has a magnetic moment
of about 4 Bohr magnetons. However, the host lattice of Pd has a highly
polarizable population of itinerant electrons. The magnetic dopant there-
fore induces indirectly (via itinerant electrons) a large magnetic moment
in the host atoms, resulting in a "giant" total (dopant plus host) magnetic
moment of about 12 Bohr magnetons. The induced polarization extends to
about 10 A around the Fe impurity, affecting about 200 Pd atoms.

9.2.2 Characteristics of Spin Glasses

Like giant-moment ferromagnetism, spin-glass behaviour is also mediated
by itinerant electrons.

A typical spin glass exhibits the following properties:

(a) There is a sharp cusp in the low-field low-frequency a.c. susceptibility
x(T) at a certain temperature Tsp, called the spin-glass transition temper-
ature (Fig. 9.2.2). This is a defining feature of a spin glass.

(b) A magnetic field as small as 50 gauss is able to flatten the cusp (Fig.
9.2.2)(Canella, Mydosh & Budnick 1971; also see Weissman 1998). This
again is a very characteristic feature of a spin glass.

(c) In the absence of an external magnetic field, no sharp anomaly is ob-
served at Tsg in the temperature dependence of the specific heat.

(d) The magnetic susceptibility at Tsg depends on experimental conditions
and on sample history. The susceptibility measured in a zero-field-cooled
sample is lower than that in a field-cooled sample.

(e) The remanent magnetization below Tsg decays very slowly with time.
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Figure 9.2.2: Temperature variation of low-frequency susceptibility of the
alloy Auo.95Feo.os- The sharp cusp at the spin-glass transition temperature
Tsg becomes flattened even when a biasing magnetic field as small as 50-100
G is applied. [After Canella & Mydosh (1972).]

(f) Spin glasses display hysteresis below Tsg, but the M-H curve is shifted
laterally from the origin.

(g) No long-ranged order is generally observed below Tsg in the neutron-
diffraction pattern of spin glasses. There are no Bragg peaks attributable
to the magnetic contribution to the diffraction pattern. There is, however,
a splitting of some Mossbauer lines near Tsg, indicative of a quasi-static
internal field below Tsg (see Fischer (1983) for a review).

(h) Even for temperatures far above Tsg, a deviation from Curie-Weiss
behaviour begins to occur on cooling.

(i) The range of dopant concentrations over which spin-glass behaviour is
observed is quite restricted. At large dopant concentrations, either ferro-
magnetic or antiferromagnetic ordering occurs.

(j) There is a very large range of relaxation times, extending from 10~13

sec to several hours. Postulation of the existence of clusters of spins of
various sizes, rather than the existence of only isolated spins, can explain
this (Binder 1979). Reorientation of clusters of spins is necessarily a slower
process compared to flipping of single spins.

The structure of spin glasses has two key features. One is the presence
of quenched disorder, and the other is the presence of competing interactions
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(e.g. ferromagnetic and antiferromagnetic) between the spins, resulting in
a, frustration configuration (cf. §9.2.6 below).

By quenched disorder we mean that the disorder is of a nonthermal na-
ture and comprises a frozen random occupation and/or random orientation
of the spins.

We give here a very elementary and introductory account of concepts
and models, many of them from other fields, that have been used for trying
to explain the properties of spin glasses.

9.2.3 The Glassy Phase and the Glass Transition
There are several definitions of glass. In general terms, any noncrystalline
solid is a glass.

An empirical definition of glass, due to Vogel (1921) and Fulcher (1925),
assumes that a glass is one which obeys the following equation (now called
the Vogel-Fulcher equation) for the temperature dependence of relaxation
time:

r = TQeT°KT-Tf\ (9.2.1)

with TO, TO and T/ as 'best-fit' parameters.
However, the Vogel-Fulcher (V-F) law is not obeyed universally, and

several other empirical relationships have been proposed (see, e.g., Cheng
et al. 1997). Further, the parameters TO and T0 are found to be dependent
on the temperature range in which measurements are made (see Bessada
et al. 1987).

A thermodynamic definition of glass, based on experimental criteria,
was introduced by Suga & Seki (1974, 1981). The two experimental criteria
specified are: existence of a glass transition, and the existence of a residual
entropy at T = OK.

We summarize here the main features of a glass transition (see Rao &
Rao (1978) for more details).

A conventional or canonical glass is usually obtained by a rapid cool-
ing or "quenching" of a melt. When the melt is cooled, its volume V
decreases, or the density increases. As the density approaches the single-
crystal value, the rate of decrease of volume becomes smaller. A temper-
ature Tg, called the glass-transition temperature, can be usually identified
such that \dV / dT\ for temperatures above Tg is substantially higher than
for temperatures below Tg.

Other differences can also be observed above and below Tg. There is a
large increase in the viscosity below Tg. The specific heat suddenly drops
to a lower value on cooling to Tg (Fig. 9.2.3(b)).

The glassy state has frozen disorder. Its configurational entropy can
therefore be expected to be nonzero at T = OK, as stipulated in the Suga-
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Figure 9.2.3: Temperature dependence (schematic) of the entropy (a) and
specific heat (b) of a glass-forming material. Tg is the glass-transition tem-
perature, and Tm the temperature below which there is a marked departure
from melt-like behaviour. [After Rao & Rao (1978).]

Seki definition of glass, stated above.
Although there are several points of similarity between canonical glas-

ses and spin glasses (as also orientational glasses to be described in Chapters
10 and 11), there is also a very important point of difference. Canonical
glasses are obtained from a melt by quenching. Quenching is resorted to
for preventing crystallization through diffusion processes. By contrast, the
glass transition in a spin glass or orientational glass does not involve dif-
fusion, and can take place at any cooling rate. Thus, although there is
quenched disorder in the latter case also, sudden cooling or quenching is
not necessary for effecting it.

9.2.4 Two-Level Model for Tunneling or Thermal
Hopping in Glasses

At low temperatures the specific heat of a variety of glasses, including
spin glasses, is observed to have a contribution that varies linearly with
temperature. A two-level-tunneling (or thermal-hopping) model, based on
a statistical distribution of localized tunneling levels, was advanced by An-
derson, Halperin & Varma (1972) to explain this fairly universal phenomena
(see Chowdhury (1986) for a more detailed discussion of this than is pre-
sented here).
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Figure 9.2.4: Representation of a two-level system, depicting the depen-
dence of the energy E of a glassy system on a generalized coordinate x,
measuring position along a line connecting two nearby local minima of E.
[After Anderson, Halperin & Varma (1972).]

The main stipulation of this model is that in any disordered or glassy
system there are a certain fraction of atoms or groups of atoms which can
occur, with almost equal probability, in two equilibrium sites or orienta-
tions.

We can imagine a SAT-dimensional configuration space for a set of N
atoms constituting a glass, and take a section along some appropriate po-
sition or orientation coordinate x for a relevant atom or group of atoms.
There will then be two local minima for the energy E(x)^ with a barrier
separating the two minima (Fig. 9.2.4).

Those atoms make a contribution to the linearly temperature-dependent
specific heat for which the energy barrier is sufficiently small for substan-
tial tunneling to occur between the two levels, so that thermal equilibrium
is reached during the time required for a typical specific-heat experiment
(from 10~10 sec to 103 sec). For the relevant atoms there is not only an
upper limit for the energy barrier, but also a lower limit, which is set by the
requirement that the barrier should be sufficiently large so that "resonant
tunneling" between the two local minima does not occur.

For low temperatures in the range O.IK to KXKT, the "window" for
acceptable energy barriers is provided by those atoms for which the energies
for the two local minima are accidentally degenerate to within an energy
of the order of fc#T.
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Because of the quenched disorder, the splitting of the two minima, Ax,
is a random function. Anderson et al. (1972) assumed that the distribution
function, p, for this is a constant. Then the energy is determined by

E - /><AE) [l + exp^/M-)] "<A£>' <9'2'2'

which leads to the following (linear) temperature dependence for specific
heat:

C(T) ~ Tp (9.2.3)

Several other results also follow from this model. For example, it ex-
plains the T2-variation of the thermal conductivity of glasses at low tem-
peratures.

9.2.5 Broken Ergodicity
In the Gibbs-Boltzmann formulation of statistical mechanics one makes the
ergodicity hypothesis (§E.2), according to which a system in equilibrium can
find itself in any of the microscopic states allowed to it, the probability of
occupation of any such state being given by the Boltzmann factor e~^H (Eq.
E.2.19). In other words, a system is said to be ergodic if its macroscopic
properties are in conformity with the corresponding ensemble averages.

In spin glasses there is no simple long-ranged ferromagnetic or antifer-
romagnetic order. The quenched or static nature of the disorder, coupled
with the presence of very long relaxation times, leads to a breaking of er-
godicity (Palmer 1982).

Fig. 9.2.5 shows schematically the variation of free-energy density of
such a glassy system with some phase-space coordinate. It typically has
a number of minima (<t>j , vf , • • • )» separated by large barriers. In con-
travention of the ergodicity hypothesis, all states of the system may not
be accessible with a probability determined by the Boltzmann factor (al-
though around a particular energy minimum they are). And yet, although
there may be no apparent breaking of symmetry, and no conventional phase
transition at Tsp, several metastable states can exist below Tsg.

This is inherently a very complex problem. For example, does one
explain the existence of a wide range of relaxation times in terms of static
correlations, or does one invoke the presence of dynamic effects ? Not all
answers are known yet.

9.2.6 Frustration
A key feature of spin glasses is the presence of competing interactions,
leading to frustration (Toulouse 1977). Frustration is a cause of broken
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Figure 9.2.5: Schematic depiction of the dependence of the free-energy
density of a glassy system at low temperature on a phase-space coordinate.
[After Binder (1980).]

ergodicity in spin glasses. The presence of frustration is believed to be a
necessary condition for a system to behave like a spin glass, because it leads
to the occurrence of a highly degenerate ground state.

To understand how that happens, we refer to Fig. 9.2.6. Shown there
is a unit of a square lattice for two different situations. Such a unit is called
a plaquette.

At the corners of the square are spins, and the line segments joining
them are labelled either '+' or '-', the former representing a ferromagnetic
interaction, and the latter an antiferromagnetic interaction.

Figure 9.2.6: Unfrustrated (a) and frustrated (b) plaquettes on a square
lattice.
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In Fig. 9.2.6(a) the number of negative bonds is even, and it is odd
in Fig. 9.2.6(b). In the former case, if we start from any spin (or cor-
ner of the square), and move around the square, assigning to each spin a
value determined by that of the previous spin multiplied by the sign of the
bond connecting them, we end up in a self-consistent configuration when
we return to the spin we started with. This is therefore an unfrustrated
plaquette.

By contrast, Fig. 9.2.6(b), which has an odd number of antiferromag-
netic bonds on a square lattice, is an example of a frustrated plaquette.
This is because when we go around it to arrive at the initial spin, the spin
has to be the opposite of what we started with. There is thus a conflict
(leading to frustration, just like in a sociological situation) regarding what
should be the actual configuration.

On generalizing this to a real 3-dimensional structure, one can conclude
that a frustrated system (e.g. a spin glass) has a large number of equally
likely but distinct ground states. Thus, competing interactions lead to
frustration, and thence to a strong degeneracy of the ground state.

9.2.7 Edwards Anderson Model and Sherrington
Kirkpatrick Model

The basic model for dealing with quenched-spin systems is the Edwards-
Anderson (EA) model (Edwards & Anderson 1975). It has also been ex-
tended to other glassy crystals like orientational glasses (see, e.g., Binder
& Reger (1992) for a review).

The essence of the model is best introduced with the help of an analogy
given by Edwards & Anderson (1975). The analogy is that of gelation in
a polymer. As the temperature of a solution of very long molecules is de-
creased, its density increases, and the mobility of the molecules decreases.
Near a particular density the mobility of the molecules drops to zero, and
the molecules nearly freeze to a random-orientation static (or "quenched")
configuration. This static or quenched disorder differs from disorder pro-
duced by thermal causes in that, if we view it at a later instant, it has the
same random configuration.

According to the Edwards-Anderson (1975) theory, since the interac-
tion between the spins in a spin glass oscillates in sign with distance, there
is little ferromagnetic or antiferromagnetic ordering, but there is still a def-
inite ground state, with spins pointing in a specific set of directions. It
was shown by them that the existence of such a ground state is sufficient
to cause the existence of a cusp in the susceptibility curve at a critical
temperature, and that the cusp can be smoothed by an external magnetic
field.
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Let a particular spin be measured as S^ at time zero. And let S^ be
the result of a measurement of the same spin at a later time t. The theory
shows that the following probability is nonzero:

q(T) = lim < Sf} - Sf} > ^ 0, (9.2.4)
t—XX)

One expects that q = 1 at T = 0. And for temperatures above the
susceptibility-cusp temperature Tc , q = 0. The parameter q is thus the
local order parameter for the spin-glass transition. It provides a measure of
the local order, without our having to specify the nature of any long-range
correlations in the random system of spins. It is an indicator of the long-
time correlations, rather than long-ranged spatial correlations, among the
spins.

The absence (or near-absence) of long-ranged spatial ordering and the
presence of long-time ordering was aptly described as nonergodicity by
Palmer (1982) because such a system does not 'visit' all possible states
available to it in the course of time (cf. Fig. 9.2.5).

In an actual spin glass the spins randomly occupy lattice sites, and are
few and far between. In the EA model a great simplification is introduced
by replacing the actual system by a system in which the spins lie on the sites
of a regular (i.e. translationally invariant) lattice, and it is the interactions
between them that are random. There is thus a replacement of the random
site problem by a random bond problem.

The Hamiltonian is assumed to be the random Heisenberg Hamiltonian:

U = -1/2 £ Jy ̂  • Sj-, - D £ 5?, (9.2.5)
ij i

where the exchange constants J^ have a random distribution, specified by
a density function p(Jij). A symmetric Gaussian distribution function is a
natural choice to start with:

'«'> • VStf*'"I**1 <9'2'6>

In this case the strength of the short-ranged exchange interaction de-
pends only on the distance, r, between the spins.

Let Cij be a parameter which is unity or zero depending on whether or
not the sites i and j are occupied by spins. In the EA model the average
exchange parameter J is zero on any length scale, i.e.

j = Y^Ji^ = °> (9-2-7)
ij
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although the variance, Var (J), is nonzero. In fact, it is shown that

/ \ V2

M,g = E<§4C«> (9-2-8)
\i,J I

An infinite-range version of the EA model was formulated by Sher-
rington & Kirkpatrick (1975), and is commonly called the SK model. In
this model the same distribution p(Jij) is assumed to hold for any pair of
spins, irrespective of the distance between them. This infinite-range model
is important because it carries the essence of a mean-field theory of spin
glasses.

To compute the macroscopic thermodynamic properties from the EA
or SK models, one must first calculate averages of extensive quantities like
free energy and entropy (cf. §E.2). These can be determined from the
logarithm of the partition function (Eq. E.2.35):

Z = Tr(e-PH} (9.2.9)

This function grows exponentially with the size of the system, char-
acterized by the number N of lattice sites (each having effectively a spin,
which interacts with other spins through the random-exchange integral). It
also fluctuates widely because of the random nature of the interaction, and
the fluctuations grow with TV. For these reasons the conventional statistical-
mechanical method of obtaining the ensemble average is not applicable to
spin glasses.

The origin of the difficulty lies in the fact that we are dealing with
a quenched random system: the J^ in Eq. 9.2.5 are fixed for all time
by the way the specimen was prepared. And yet we want to compute
an ensemble average for a macroscopically large crystal (in which several
different distributions for J^ occur in different parts of the crystal) such
that the ensemble average is sensibly representative of the crystal as a
whole. We also want that our statistical averages should not diverge as
TV ^oo.

In the EA model this objective was sought to be achieved by the so-
called replica method.

The initial step in this method is to take note of the identity

InZ = lim Zn~l (9.2.10)
n-+0 n

which means that averaging over In Z can be achieved if we can average
over Zn for n = 1,2,3,.., and then extrapolate the results to the limit
n->0.
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The averaging over Zn is made tractable by the fact that Z is defined
by Eq. 9.2.9, and thus has an exponential dependence on the Hamiltonian,
and thence on a random Jij (cf. Eq. 9.2.5).

For carrying out the averaging, one considers n identical replicas of the
system (labelled by an index a, a = 1,2, ..n. The result is

< Zn > = Tr(s«} /exp(-/3^]r J^Sf -S?)p(Jtf) d(Jij) (9.2.11)
J ot=l ij .

This integration is easy to carry out if p(J»j) is a Gaussian, given by
Eq. 9.2.6. We get

/92 72 n

<Zn>= rr(s.) exp P^-(£ Sf • S«)2] (9.2.12)
a=l

The main assumption of the replica method is that the various replicas
(a,/3,..) are coupled, and that the replica-replica correlation function

qaf3 =<S?S?> (9.2.13)

behaves the same way as the EA order parameter defined by the time-
correlation function < 5^(0) Si(oo) >. What this means is that the various
replicas correspond to the same spatially frozen configuration probed at
widely separated times.

Eq. 9.2.12 is difficult to evaluate, except mainly for the mean-field
approximation of the SK model. One can make the further simplifying
assumption that Sf and 5" are uncorrelated.

While the application of the replica method to the EA (or rather the
SK) model explains qualitatively the cusp in the susceptibility curve, and
also some other observations, it ends up with the so-called negative entropy
catastrophe at low temperatures. In the SK model each of the N spins
interacts through a random exchange interaction, Jij/^/N, with every other
spin. Application of the replica method leads to a solution of the SK
model in which the entropy approaches zero and then a negative value
as T —> 0. This is not acceptable because in statistical mechanics entropy
is the logarithm of an integer.

We touch on two attempted solutions of this problem. One is due to
Parisi (1979, 1980a-e, 1983), and the other is the "TAP" theory (Thouless,
Anderson & Palmer 1977), which avoids the use of the replica trick.
9.2.8 Breaking of Replica Permutation Symmetry

The Edwards-Anderson-Sherrington-Kirkpatrick (EA-SK) model operates
in the infinite-range mean-field (Gaussian) approximation. It also uses the
random Ising Hamiltonian, which is simpler than the random Heisenberg
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Hamiltonian. It applies the replica method for computing the partition
function for the random-interaction system that a spin-glass crystal is. The
replica method introduces an order-parameter matrix (qa/3) (Eq. 9.2.13) as
a limit (n —» 0) of an n x n symmetric matrix. The diagonal elements of
this matrix are zero; i.e. qaa = 0 for a = 1,2, • • -n (otherwise we would
have q = qaa = 0). The assumed permutation symmetry in replica space
(qa/3 = q/3a) is commonly referred to as the replica symmetry. There is
a possibility that the ansatz regarding this symmetry may be the reason
for unacceptable results like negative entropy mentioned above. That is, a
breaking of the replica permutation symmetry may actually be taking place
in a spin glass as one cools it below the spin-glass transition.

It was proved by Thouless & Almeida (1978) that this is indeed the
case: Not all pairs of replicas produce the same average correlation q^p.
They found that the reason for the failure for of the replica method was
that below a certain line (now called the AT instability line) in the 7i versus
T diagram, a replica-symmetric solution of the EA-SK model is dynamically
unstable against replica-symmetry breaking. Above the AT line the EA-SK
solution is stable.

Parisi (1979, 1980a-e, 1983) proceeded to achieve a breaking of the
permutation symmetry of the replicas by first imposing the requirement
that all quantities (e.g. magnetic moment m) involving any particular
replica be replica-independent. In other words, for any integer k and any
replica pair (/3,7), we must have

rap = m7, (9.2.14)

X><*)* = X>«-r)fc (9-2-15)
a=l a=l

Parisi's ansatz for the degree of resemblance among replicas (or the
replica-replica correlation) can be represented in the form of an ultrametric
tree (Fig. 9.2.7).

The circles at the top (corresponding to the maximum values of the
order parameters) are the n replicas. The fact that the exponent k in Eq.
9.2.15 can take any value (up to infinity) corresponds to having an infinite
number of bifurcations of the ultrametric tree. What this means is that
there is no unique locally stable state of the spin glass. Instead, there are
many such states, with varying degrees of replica-overlap or resemblance.
The various solutions of the replica method can be viewed as clusters of
states in the TV-dimensional space of the N spins. At the highest level
in the ultrametric tree, let q\ denote the overlap or correlation between
any pair of states in the same cluster. The overlap between two states or
replicas belonging to two different clusters (say a and (3 in Fig. 9.2.7) is
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Figure 9.2.7: Parisi's ultrametric-tree scheme for breaking the permutation
symmetry of replicas. The circles at the top are the n replicas. To find a
particular replica-replica correlation, say qap between two replicas a and
/?, we trace downwards from the circles for a and /3 along the branches of
the tree until they join.

obtained by tracing downwards from the circles for a and (3 along branches
of the tree until they meet a node. If #2 is the order parameter for this
node, then q^ < q\. Similarly, the overlap between any of the 7 states in
the left part of Fig. 9.2.7 with any of the 6 states on the right is #3 < #2-

This procedure works for n > 0 and k finite in Eq. 9.2.15. It is assumed
next that the limits n —» 0 and k —> oo exist, corresponding to an infinite
number of order parameters.

This theory provides a stable solution for the spin-glass transition, over-
comes the negative-entropy problem, and, as we shall see later, has several
other important fallouts.

9.2.9 Thouless-Anderson-Palmer Theory
The TAP (1977) theory of spin glasses is a mean field, infinite range inter-
action, theory which was formulated with the express purpose of avoiding
the use of the replica method.

A mean-field treatment of a conventional ferromagnetic phase transi-
tion leads to the result that the macroscopic spontaneous magnetization M
is given by the stable solution of the equation (Stanley 1971):

M = tanh(/?JM), (9.2.16)
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where ra; =< Si > is the local expectation value of the spin at a particular
lattice site.

The TAP theory extended this approach to spin glasses by working out
the site magnetizations within a configuration valley (cf. Fig. 9.2.5). The
replica method of averaging was sought to be avoided by deferring it till
the end.

The theory incorporated a local-field correction to Eq. 9.2.17 by adopt-
ing the cavity-field method of Onsager and Bethe (cf. Brout & Thomas
1967). The correction (of the order of l/N) accounts for the response of
all the N spins affected by the fluctuations of a particular spin. Whereas
N —> oo for a conventional ferromagnet, such is not the case for a local
spin-glass configuration in a "rugged energy landscape".

The results of this formulation agree with those of the EA-SK model for
T > Tsg. Moreover, below Tsg several new features emerge. In particular,
it gets rid of the negative-entropy problem.

9.2.10 Cluster Glasses, Mictomagnets,
Superparamagnets

In canonical spin glasses the interaction between magnetic ions is usu-
ally mediated by itinerant electrons, and is thus, by and large, an indirect in-
teraction. The occurrence of direct interaction by overlap of wave functions
of the 3d electrons belonging to nearest-neighbour (nn) or next-nearest-
neighbour (nnn) magnetic ions increases as the concentration of these ions
is increased. This short-ranged (usually ferromagnetic) interaction results
in the formation of magnetic clusters of various sizes and wide-ranging re-
laxation times (Levin, Soukoulis & Grest 1979; Fischer 1983). Even phase
separation (chemical clustering) can occur at suitably high dopant concen-
trations. The net result can be the occurrence of extremely large effective
magnetic moments, ranging up to 20,000 Bohr magnetons (see Mydosh
& Nieuwenhuys (1980) and Kurd (1982) for reviews). Such systems are
referred to as cluster glasses or mictomagnets.

For a given cluster size there is a freezing temperature, or a glass-
transition temperature, below which clusters of that or larger size freeze
into a random-orientation configuration. A cluster glass is thus akin to a
spin glass in certain respects, but its magnetic moments reside mostly in

where J^X^.Jij.
A generalized version of the above equation is

mi = tanh(/3^ J^mj), (9.2.17)
3
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clusters (of different sizes) arising from direct exchange interactions.
Levin et al. (1979) have performed extensive calculations on the cluster

model for spin glasses, assuming a Heisenberg Hamiltonian of the form

H = -1/2^J^SM.S, - 1/2^J°-S^SJV - X>S-> (9-2-18)
IJLI> iiJiV i,v

and a Gaussian distribution for the inter-cluster exchange integral J^.
Here the first term takes account of inter-cluster interactions, the second
that of intra-cluster (ferromagnetic) interactions, and the third recognizes
the presence of a magnetic or 'ordering' field h (internal or external).

A typical ferromagnetic crystal splits into an optimum configuration of
domains (and domain walls) to minimize the overall free energy. As the
size of the crystal is reduced, its surface energy becomes more and more
dominant compared to the bulk energy. Below a certain size of the crystal,
domain walls are not favoured and the whole crystallite exists as a single
domain. Such a situation is also encountered in certain small-sized magnetic
particles embedded in rock materials. Here the role of the surface energy of
free magnetic crystallites is replaced by that of interfacial energy between
the magnetic particle and the rock material, with additional contributions
to the overall energy coming from factors such as magnetostrictive strain
anisotropy, as also shape anisotropy. Further, at high temperatures the
magnetic particles cannot behave like normal paramagnets with thermally
disordered orientations of individual atomic magnetic moments. Instead,
they are constrained by the surrounding material to have all the magnetic
moments point in the same easy direction of magnetization. Because of
the resulting large magnetic moment (which can be several thousand Bohr
magnetons), the term superpammagnets is used for such particles.

It may be mentioned here that, since ferromagnetic ordering is a coop-
erative effect, the energies involved scale with the volume of the particle. As
particle size decreases, the energy barrier opposing a flipping from one easy
direction of magnetization to another becomes comparable to fc^T, and the
giant superparamagnetic moment can orient as a whole, quite easily, from
one energy minimum to another.

Under the action of an external magnetic field these ferromagnetically
ordered moments rotate coherently as a whole, a process opposed by the
various anisotropies mentioned above. A strong enough magnetic field can
even induce domain reversal (without a movement of domain walls because
none exists). Therefore the B-H curve of a superparamagnet at a given
temperature does not display a sizeable hysteresis (Bean & Livingston 1959;
Cullity 1972).

Because of the increasing effect of thermal fluctuations at higher tem-
peratures, the field H(T) required for effecting domain reversal decreases
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with increasing T. In fact, the total magnetization is found to be a universal
function of H/T.

As a superparamagnetic particle is cooled, at a certain temperature
called the blocking temperature (Neel 1949) its magnetization freezes to a
stable state. The blocking temperature varies linearly with the volume V of
the particle. It is the temperature below which the relaxation time (see Eq.
9.2.20 below) becomes larger than the observation time of the experimental
probe used.

There are several points of similarity between superparamagnets and
cluster glasses (Wohlfarth 1977), although the two are quite different from
the point of view of atomic structure. For instance, the spread of blocking
temperatures in cluster glasses is related to the spread in their volumes V.

We next consider the effect of an external magnetic field on a cluster
glass. Field-cooling of a cluster glass (in a relatively small field of the order
of 1 tesla) through the average freezing or blocking temperature results in a
configuration with a frozen preferred orientation of magnetic moments for
a certain fraction of the clusters. This leads to a shifting of the hysteresis
loop along the field axis. Let Ms denote the saturation magnetization at
the temperature at which the field is switched off. The relaxation rate for
the remanent magnetization Mr has typically the following form:

Mr = Mse't/r, (9.2.19)

with r given by

l/r = (l/T0)e-KV/kBT (9.2.20)

Here K is some appropriate anisotropy constant, and TO is of the order of
10~9 sec.

If Tm is a typical measurement time, clusters for which the product
KV in Eq. 9.2.20 is larger than a certain critical value will, for all practical
purposes, act like frozen clusters because r > rm for them.

Since a whole range of cluster sizes exists, the glass transition for a
cluster glass has a somewhat smeared appearance. Let /(T) denote the
distribution function for glass-transition temperatures or blocking temper-
atures. The susceptibility is then determined by the equation (Wohlfarth
1979):

X(T) = (C/T) y/(T')dr', (9.2.21)

where C is the Curie constant.
Only those clusters contribute to the susceptibility which have not

frozen at the temperature of the experiment, and which have a response
time smaller than the probing time.
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9.2.11 Percolation-Related Magnetic Order

If we start with a cluster glass, and increase progressively the concentration
of the randomly distributed magnetic dopant, a concentration level will be
reached above which practically every magnetic ion will have at least one
nearest-neighbour magnetic ion. This is the so-called percolation limit:
for concentrations higher than it an uninterrupted chain of magnetic ions
extends in the crystal from end to end, resulting in long-ranged magnetic
order.

Such an order is, however, different from the order in conventional
ferromagnetic or antiferromagnetic crystals, in that it is highly inhomo-
geneous spatially. In addition to the 'central' chain(s), there may exist
spins and/or clusters of spins, some of which may be coupled to the central
chains (see Mydosh & Nieuwenhuys 1980). Such configurations can be rich
in interesting possibilities. For example, Gabay & Toulouse (1981), while
studying a system of m-component spins in the SK-model, reported a co-
existence of the spin-glass ordering with a ferromagnetic ordering. Using
the Sherrington-Kirkpatrick replica trick, they found that, for m ^ 1, there
are two mixed phases, MI and MI, in the region where there is a tran-
sition from spin-glass ordering to ferromagnetic ordering. The transition
region is a mixed-phase region. The mixed phase M\ is characterized by
a coexistence of spontaneous magnetization and spin-glass ordering of the
transverse components of the spins. The mixed phase M^ has the same co-
existence of orderings as MI , and, in addition, has a spontaneous breaking
of replica symmetry.

The term re-entrant spin glass is sometimes used in the literature in
the context of such mixed phases.

There exist a number of experimental results, particularly for metal-
lic systems, which can be interpreted in terms of the above model for the
magnetic structure, employing the 'transverse spin-component freezing' ap-
proach (see Campbell & Senoussi (1992)).

A very similar coexistence of long-ranged magnetic order and frozen
transverse-spin components had been predicted earlier by Mookerjee for
a quenched random Heissenberg model with isotropic RKKY interaction
(Mookerjee 1979). This alternative approach did not take recourse to the
replica trick, and involved a mean-field effective-medium approximation.
The free energy was minimized with respect to the local magnetization
prior to configuration averaging. The various phases in this scheme were
characterized by the probability distribution of the local molecular field or,
equivalently, the local magnetization. Mookerjee & Roy (1983,1984) have
applied this approach explicitly to the Au-Fe system.
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9.2.12 Speromagnets and Sperimagnets
Speromagnets
The general term 'Speromagnets' has been used in the literature (Coey
1978) for covering both spin glasses and cluster glasses (conductors as well
as insulators). It applies to crystalline as well as amorphous materials.

Sperimagnets
Crystals of FePdi.ePti.4 are examples of Sperimagnets (Coey 1978). In
them the spins on only the Fe ions are predominantly frozen in random
orientations. The other magnetic species (Pd, Pt) has predominantly a
long-ranged order of the conventional ferromagnetic variety. The structure
thus has a net spontaneous magnetization. Sperimagnets are the glassy
counterpart of ferrimagnets.

9.2.13 Nonexponential Relaxation in Materials
Relaxation phenomena in spin glasses are a good example of what may
be called 'dynamical heterogeneity'. Several aspects of their dynamical re-
sponse to small perturbations have much in common with what is observed
in many other condensed-matter systems (liquids, glasses, polymers, and
certain 'mixed crystals'). When any such system is disturbed from its
equilibrium state by a small perturbing field, it tends to relax back to equi-
librium. And as it is doing so, its various properties display a characteristic
time-evolution towards equilibrium (§E.3). Let <£(£) denote one such func-
tion of time. The simplest possible situation one can imagine is that in
which the rate of relaxation towards equilibrium is linearly related to the
existing deviation of the property from its equilibrium value $(oo):

d$ = $(t)-$(oo)
dt r

If the 'time constant' r is really a constant, and there is only one such time
constant involved, an ordinary exponential relaxation can be expected:

$(*) - expH/r) (9.2.23)

Such a Debye-like relaxation is generally only an idealization. Real systems
generally exhibit nonexponential relaxation.

This very old field of enquiry has been reviewed recently by Chamberlin
(1998). A remarkable general observation is the high degree of universal-
ity exhibited by diverse systems. In fact the relaxation may be one of
just two main types, namely KWW relaxation and CvS relaxation. Even
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the deviations from these two types show a notable degree of universality
(Chamberlin 1998).

The KWW (Kohlrausch-Williams-Watts) response (Kohlrausch 1854)
is of the 'stretched exponential' type:

$(*) - exp[-(t/f f ] (9.2.24)

Here f is a characteristic relaxation time, and /3 is the stretching exponent
(0 < (3 < 1).

The (less common) CvS response (Curie-von Schweidler response) (Cu-
rie 1889; von Schweidler 1907) involves a power-law relaxation:

*(*) ~ (t/f)-a, a > 0 (9.2.25)

A general theory of these two fairly universal rates for slow response
has not been available for a long time. Such a theory, with a thermody-
namic backing, has been recently formulated by Chamberlin (Chamberlin
& Haines 1990; Chamberlin 1993, 1994, 1996, 1998).

Chamberlin & Haines (1990) made three basic postulates in their model:

• Nonexponential relaxation is due to a distribution of relaxation times.

• Relaxation rates vary exponentially with inverse size.

• The argument in the exponent of the relaxation rates can be either
positive or negative.

Thus the theory works on the concept that the primary response of the
perturbed system is dynamically heterogeneous. It is assumed that there
are dynamically correlated domains (DCDs) which relax 'independently'.
The relaxation of the specimen as whole is parametrized in terms of the
distribution (ns) of domain sizes (s), with a size-dependent relaxation rate

us = l/r (9.2.26)

The net relaxation rate is then determined by the product of the prob-
ability (sns) that a given particle belongs to a DCD of size s and the
probability (e~"st) that this domain has not yet relaxed, summed over all
sizes:

00

$(*) ~ ^[sns]e-"st (9.2.27)
5=1

According to Chamberlin, the observed nature of the slow dynamics in
most condensed materials is well characterized by one of just two distinct
size distributions.
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For ergodic systems (like liquids) the Gaussian distribution applies for
BCD sizes:

ns ~ e~(s-^2^2 (9.2.28)

Here <j has the usual meaning of standard deviation, and s is an average or
characteristic size.

For glasses which can be modelled as quenched systems with isotropic
local order, the following Poisson-like function from percolation theory is
appropriate:

n.~sl/0e-W° (9.2.29)

The scaling parameter a in this equation diverges at the percolation thresh-
old.

Thus, relaxation rates are (inversely) size dependent, and the sizes of
the DCDs may have either a Gaussian or a Poisson-like distribution.

The size-dependent relaxation rate is often expressed in the literature
by the Arrhenius equation:

us ~ e-"*-/**T, (9.2.30)

where SES is an appropriate 'activation' energy, and ks is Boltzmann con-
stant. According to Chamberlin (1996), the more common KWW-like re-
sponse corresponds to an inverse Arrhenius law, i.e. 6ES is negative for it.
He writes

F T - T- <9'2'31'KB! s
where the correlation coefficient C is negative. The justification for this
assignment of sign (and later rationalization in terms of a thermodynamic
theory) is that, since the Gaussian distribution is symmetric, the observed
asymmetry in the dynamic response (which is skewed towards high frequen-
cies) must be attributed to the size-dependent energy scale postulated in
Eq. 9.2.31.

For CvS-like response, which is skewed towards lower frequencies, C
must be positive, corresponding to the usual Arrhenius law (rather than
the inverse law).

A thermodynamic theory, which leads to energy scales which vary in-
versely with domain size, and which also yields direct or inverse Arrhenius
laws in appropriate limits, has been proposed by Chamberlin (1998).
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9.3 FERROMAGNETIC PHASE
TRANSITIONS

The prototype of every ferroic crystal, whether magnetically ordered or
not, is nonmagnetic. A phase transition from a prototype to a ferromagnetic
phase involves a loss of time-reversal symmetry of the underlying point
group. Such a transition, unlike many structural phase transitions, does
not involve a drastic change of the atomic (structural) configuration if it is
of the proper ferromagnetic type. Therefore it usually satisfies the rather
strict nondisruption condition imposed by us in the definitions of prototype
symmetry and ferroic phase transition in §5.1.

For describing magnetic structures in general, and ferromagnetic phases
in particular, one has to specify two sets of parameters, namely the atomic
coordinates r^ and the spin (or rather magnetic moment) vectors S^. If the
spins adopt only two configurations, namely 'up' and 'down', the symmetry
of the ferromagnetic phase of a crystal is given by one of the 1651 Shubnikov
groups described in §2.2.18.

However, some ferromagnetic phases adopt more complicated arrange-
ments of spins, and Shubnikov groups are not adequate for describing them.
For example, ZnCr2Se4, which has the Fedorov-group symmetry O£, adopts
a helical configuration of spin orientations, with an angle 0 specifying the
successive spin orientations. A Shubnikov-group symmetry can allow for
only two values of 0, namely 0 = 0 and 0 = 180°. Here we shall briefly
touch on transitions to such phases also, which require the use of colour-
symmetry groups (§2.2.21) for their description and analysis.

9.3.1 Prototype Symmetry for a Ferromagnetic Tran-
sition

Aizu (1970a) carried out a symmetry analysis for determining all possible
species of full or partial primary ferroics. He also identified the species in
which two or all three of the properties of ferromagnetism, ferroelectricity
and ferroelasticity can couple completely or incompletely with one another.

We introduced in §5.1.3 a rigorous definition of prototype symmetry.
Similarly, ferroic phase transitions were defined according to the new ap-
proach in §1.1 and §5.2.2. We introduce here an even more comprehensive
definition (which covers magnetic ordering explicitly):

A ferroic phase transition is a nondisruptive phase transition,
either from the prototypic phase, or from another ferroic phase,
involving a change of chemical, magnetic, or colour point-group
symmetry of the crystal.
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For such a transition, a prototype symmetry (as defined by us) can be
always assigned.

Aizu (1970a) stipulated that the prototype of every ferroic crystal, ir-
respective of whether the ferroic phase is magnetic or not, is nonmagnetic.
This means that the prototype symmetry is nonmagnetic even for a ferro-
magnetic phase transition. The argument for this rests on the belief that
if a certain domain state exists with a certain configuration of spins, then
a domain state with the same atomic coordinates, but with all spins re-
versed in sign, is also equally likely to occur. [Such a domain pair, with
time-inversion as an F-operation, is described as a time conjugate domain
pair.]

When there is a phase transition from a nonmagnetic prototype to a
ferromagnetic ferroic phase, the two types of time-conjugate domains are
equally likely to appear, and there may only be a small enthalpy barrier
for state shifts between them. However, it must be remembered that time-
inversion is not a control parameter available to the experimenter in the
laboratory. What is available in this context is magnetic field, reversing the
sign of which may not always achieve the desired ferromagnetic state shift.
For example, if the ferromagnetic phase has colour symmetry, instead of
black-white symmetry, a properly configured magnetic field is hardly ever
available to the experimenter for effecting a reversal of all the spins in the
ferromagnetic domain to be switched.

Starting from each of the 32 time-symmetric crystallographic point gro-
ups, Aizu (1970a) worked out a total of 773 group-subgroup combinations
(ferroic species) in accordance with the criteria described in §6.1. Out of
these, 327 species are ferromagnetic.

9.3.2 Ferromagnetic Species of Crystals
There are 327 possible species of ferromagnetic crystals. Out of these, 126
are full, and 201 are partial ferromagnetic species.

Aizu's (1970a) definition for partial ferroelectric and partial ferroelastic
species which are also ferromagnetic is slightly different from his definition
when ferromagnetic order is absent, in that time-conjugate pairs of orien-
tation states are treated as single entities for determining the full or partial
status of a species with respect to ferroelectricity or ferroelasticity.

If the prototype and ferroic point groups involved are such that the
ratio of their orders is q, then the possible q orientation states are divided
into q/2 time-conjugate pairs. The species is considered as full ferroelectric
if the q/2 pairs all have different spontaneous-polarization vectors. If any
two of the pairs have the same spontaneous polarization vector, the species
is regarded as partial-ferroelectric. Similarly for the full or partial character
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of a ferroelastic species.
The reason for this distinction compared to nonmagnetic species is that

polarization and strain tensors are time-symmetric (they are z-tensors).
Therefore it makes sense to treat time-conjugate domain pairs as nondis-
tinct for determining the full or partial character of such species with respect
to ferroelectric and/or ferroelastic state shifts.

It is instructive to consider here some results and examples from Aizu's
(1970a) symmetry analysis of ferroic species.

(i) The spontaneous magnetization vector is invariant under space inversion;
i.e. the presence or absence of the space-inversion operator in the symmetry
group of the crystal makes no difference to the magnitude and sign of the
spontaneous magnetization of an orientation state. Therefore, if the space-
inversion operator is lost at a ferromagnetic phase transition, those domain
pairs which are related by the F-operation of space inversion will be degen-
erate with respect to spontaneous magnetization. Therefore such a species
cannot be full ferromagnetic. For example, the species 2/ral' FI has four
pairs of time-conjugate orientation states, and is a partial ferromagnetic,
full ferroelectric, and partial ferroelastic species.

(ii) If a species is full ferromagnetic and has more than two orientation
states, then it is a full ferroelastic species. For example, the species 4/ral'Fl
possesses four pairs of time-conjugate orientation states, and is full ferro-
magnetic, nonferroelectric, and full ferroelastic.

(iii) In any species that is simultaneously full ferromagnetic and full ferro-
elastic, there is a complete coupling of the spontaneous magnetization vec-
tor and the spontaneous strain tensor. Similarly for simultaneously full
ferromagnetic and full ferroelectric species.

(iv) The species 41' F 2' serves to illustrate several concepts. It has four
orientation states, which can be divided into two pairs of time-conjugate
states.

The ferroic phase can allow a spontaneous polarization, but it is the
same for all the four states. Thus, although there is a nonzero absolute
spontaneous polarization, the relative spontaneous polarization for any do-
main pair is zero because all domains have the same absolute spontaneous
polarization (cf. §10.1.7). Therefore it is a pyroelectric but nonferroelectric
species.

It is a full ferromagnetic species; the four orientation states are related
by 90° rotations and/or time-inversion operations.

It is also a full ferroelastic species; the spontaneous strain tensors of
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the two time-conjugate pairs of states are related by a 90° rotation.

(v) Crystals of Fe have a ferromagnetic tetragonal phase at room temper-
ature, which changes to a nonferromagnetic bcc phase at 1183 K. The bcc
phase is prototypic, and Fe at room temperature belongs to the Aizu species
ra3ral'F4/rara'ra', which is full ferromagnetic, nonferroelectric, and full
ferroelastic.

(vi) Cobalt belongs to the species 6/rararal' jF 6/rara'ra' at room tempera-
ture, which is a full ferromagnetic, nonferroelectric, nonferroelastic species.

9.3.3 Proper Ferromagnetic Transitions and Critical
Phenomena

The Landau theory of phase transitions is a mean-field theory, and there-
fore has a greater chance of success in dealing with transitions driven by
long-ranged interactions in high-dimensional space. The exchange inter-
action is an extremely short-ranged interaction, and if it is the primary
interaction responsible for the occurrence of a ferromagnetic transition, the
Landau theory cannot be expected to provide a satisfactory explanation of
the observed critical exponents in the close vicinity of the critical point. For
this reason, when theories of critical phenomena, including the RG theory
(§5.5.9) were developed, they made repeated reference to experimental re-
sults in the vicinity of ferromagnetic phase transitions. For the same reason,
when we discussed critical phenomena in a general way in §5.5, many of the
results stated were for ferromagnetic transitions. Nevertheless, it is instruc-
tive to recapitulate here the basic approach specifically for ferromagnetic
transitions.

In the theory of proper ferromagnetic transitions the observed critical
transitions are sought to be explained by making two main assumptions:

(i) For temperatures sufficiently close to Tc the asymptotic behaviour of the
thermodynamic properties always varies as a power law in \t\ (Eq. 5.5.42),
where t = (T/TC) - I (Eq. 5.5.37).

(ii) In the close vicinity of Tc, the temperature dependence of all the rel-
evant thermodynamic properties is only through their dependence on the
correlation length of the order parameter (cf. Eqs. 5.5.16 and 5.5.17).

The second assumption is equivalent to accepting the validity of the
scaling hypothesis described in §5.5.7.

The critical exponents for different universality classes of ferromagnetic
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transitions (§5.5.7) are calculated using the RG theory (§5.5.9).
Actual values of the critical exponents for several ferromagnetic tran-

sitions were given in §5.5.4.
Aharony (1996) has drawn attention to the inherent complexity of the

experimental situation pertaining to ferromagnetic phase transitions when
it comes to measuring critical exponents. The quantum-mechanical ex-
change interaction responsible for causing ferromagnetic ordering at and
below Tc is a function of temperature, and its value at Tc and at a tem-
perature slightly away from Tc may not be the same. This can happen,
for example, because interatomic distances vary with temperature, and the
exchange interaction is a very sensitive function of distance. Such effects
can distort the effective values of critical exponents, especially if they are
determined, not by a simpler relationship like that expressed by Eq. 5.5.39,
but by a more complex one like

/(*) = Atx | lnt|" (l + Btv + ~ •) (9.3.1)

As t —> 0, a plot of In / against t may not necessarily have a straight-line
portion from which to extract a 'constant' and meaningful value of the
critical exponent A.

Unless due care is taken in the planning and execution of experiments,
further complications can come from the assumption usually made in the
theoretical calculation of critical exponents that the specimen under inves-
tigation is a single-domain specimen of infinite size.

9.3.4 Colour Symmetry and the Landau Potential

In §5.3 we described the extended Landau theory of continuous phase tra-
nsitions. A number of criteria and conditions were discussed there for
shortlisting the Landau expansions to be considered for enumerating the
possible phase transitions from a given initial symmetry.

These considerations have been extended to crystallographic colour gro-
ups (§2.2.21) by Litvin et al. (1982). These authors also introduced an
additional criterion, called the kernel-core criterion, which further limits
the groups and IRs which can be associated with a phase transition.

This subject has been further discussed in considerable depth by Izyu-
mov & Syromyatnikov (1990), who have specifically constructed the Landau
potential for crystals of FeSn2 and FeGe2.

9.3.5 Incommensurate Ferromagnetic Transitions
It can happen that an interaction causing a magnetic ordering of a crystal
results in a period that is not commensurate with that of the underlying
crystal structure. The result is an incommensurate magnetic transition.
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The incommensurate nature of the configuration is usually a conse-
quence of competing interactions. Several types of interactions are possible.
One such example occurs in crystals of MnSi and FeGe, which belong to
the Fedorov or chemical space group T4, with a simple-cubic Bravais lattice
(see Landau, Lifshitz & Pitaevsky 1984). Here the competing interactions
are the exchange interaction and the non-exchange relativistic interaction
involving (symmetry-permitted) products of spatial derivatives of the spon-
taneous magnetization. The crystal class T allows the existence of a term
of the form M-curlM.

The presence of this small extra term in the Landau-Ginzburg expres-
sion results in the occurrence of a helicoidal magnetic structure, over and
above the basic ferromagnetic structure. One can identify planes in which
the magnetic moments lie, such that as we go from one plane to the next,
the net magnetic moment reorients gradually, like in a helix. The pitch of
the helix is large compared to the lattice period normal to these planes,
and is, in general, incommensurate with the crystal structure.
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9.4 DOMAIN STRUCTURE OF
FERROMAGNETIC CRYSTALS

The various domains existing in a specimen of a ferromagnetic crystal,
together with the domain walls separating them, constitute the domain
structure of the crystal.

The domain structure of a ferromagnetic crystal, like that of any other
type of ferroic crystal, has a symmetry aspect and a thermodynamic aspect.
The symmetry aspect is that the number and type of single-domain states
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or variants is determined by the symmetry operators lost in going from the
prototype symmetry to the ferroic-phase symmetry. The thermodynamic
(or rather the thermostatic) aspect is that the actual shapes and sizes of the
domains and domain walls are determined by the criterion of minimization
of the overall free energy.

9.4.1 The Various Contributions to the Internal
Energy

The free energy has a contribution from the entropy term, and various
contributions from the internal-energy terms. We summarize here some
salient features of the latter. For more details, the excellent recent texts by
Jiles (1991), Valenzuela (1994), and Aharony (1996) should be consulted.
Exchange Energy

The dominant interaction involved in ferromagnetic ordering is the (quan-
tum mechanical) exchange interaction. It is a very strong, and very short-
ranged, interaction, hardly extending beyond nearest neighbours. We have
already discussed some aspects of it in §9.1.1 (cf. Eq. 9.1.6).

Anisotropy Energy

The magnetocrystalline anisotropy energy was discussed in §9.1.1, and Eq.
9.1.13 was written as an extension of the original Heisenberg exchange
integral.

Magnetostriction

Magnetization, whether spontaneous or induced, results in a change of phys-
ical dimensions (strain). The change of dimensions gets contributions from
various effects. That part which depends linearly on the magnetization
is called the linear piezomagnetic effect, and the part which depends on
second-degree terms is called magnetostriction. The latter has an isotropic
(or volume) part and an anisotropic part (see, for example, du Tremolet de
Lacheisserie 1993). The anisotropic part is described by a polar tensor of
rank 4 through the equation

eij = XijkiMkMt (9.4.1)

The magnetostriction tensor (\ijki) is an i-tensor (like the electrostric-
tion tensor), even though it connects a c-tensor (magnetization) to an i-
tensor (strain). This is because it describes the quadratic part of the de-
pendence of strain on magnetization, rather than the linear (or odd-order)
part.
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The anisotropic part of magnetostriction has a small contribution and a
large contribution. The small part comes from the magnetic dipole-dipole
interaction, and is a 'form' effect. The larger part, called Joule magne-
tostriction, stems from the much stronger short-ranged exchange interac-
tion.

Two types of magnetostriction can be identified: spontaneous and in-
duced, depending on whether the magnetization causing the strain is spon-
taneous or induced.

When spontaneous magnetization arises as a result of a proper ferro-
magnetic phase transition, there is an accompanying onset of spontaneous
strain as a faint variable, the two being related at least by Eq. 9.4.1, if not
by terms involving other powers of the order parameter.

By contrast, consider a specimen which is already in a ferromagne-
tic phase, and we apply a magnetic field to it. The various domains are
randomly oriented to start with, and we can regard this as the zero relative-
strain state so far as the induced magnetostriction effect is concerned. Ap-
plication of the magnetic field induces a net magnetization, which results
in a net induced strain, again via Eq. 9.4.1. This is the phenomenon of
induced magnetostriction.

The strain produced by magnetostriction is generally a small effect (of
the order of 10~5 or less) when compared to strain via elect restrict ion. For
a crystal of Fe, for example, en = 21 x 10~6 (cf. Jiles 1991). An exception
is the alloy Tbo.3Dyo.7Fe2, also known as TERFENOL-D (see du Tremolet
de Lacheisserie 1993; Chaudhry & Rogers 1995). For it the saturation value
of the strain produced by Joule magnetostriction is of the order of 10~3.

Like magnetocrystalline anisotropy, magnetostriction is also related to
spin-orbit coupling. Changes in spin lead to changes in orientations of
orbitals, with a concomitant change of physical dimensions of the material.

Magnetostriction results in a complex internal-stress pattern in a poly-
domain crystal. Landau et al. (1984) have discussed some salient aspects
of how one can model this contribution to the total internal energy of a
magnetic crystal.

Demagnetization-Field Energy

If there are no domain walls and the whole specimen is just a single ferro-
magnetic domain, there will be a large magnetic field outside the specimen,
extending over a large region of space. It is called the demagnetization
field, Hd, because it acts in opposition to the field used for magnetizing the
finite-sized specimen, i.e. for turning a whole polydomain specimen into
a single domain. The energy associated with this field is (l/8?r) f H%dV,
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and it depends on the magnetization effected:

Hd = NdM (9.4.2)

Nd is a factor determined by the shape of the specimen crystal (see Jiles
1991). The term shape anisotropy is used in this context. In particular,
Nd = 0 for a very long and thin specimen.

Because of the existence of H^, the net field Hin inside the specimen
is different from the applied field Ha:

Hin = Ha - Hd (9.4.3)

Also, M = xRin- Therefore,

Hin = Ha/(l + XNd) (9.4.4)

Near Tc, % —*• inf for a proper ferromagnetic phase transition. This means
that Hin —> 0 as Tc is approached, making it problematic to measure %
accurately in the close vicinity of Tc.

Demagnetization-field energy is mainly a result of long-ranged dipole-
dipole type interactions. The system can minimize this energy very substan-
tially by splitting, if possible, into differently oriented domains, separated
by domain walls. This results in a great reduction of the spatial extension
of the lines of force outside the crystal. However, the creation of domain
walls costs energy, and the system settles for an optimum number and con-
figuration of domain walls. An interesting configuration often encountered
is that of "closure domains" (see Kittel 1949).

Application of a magnetic field disturbs the existing optimum domain
structure, resulting in the creation of a demagnetization field which opposes
the magnetizing field.

Prediction or rationalization of the domain structure of a ferromagnetic
specimen comprising two or more domains involves free-energy minimiza-
tion, taking due note of the various contributions to the total energy. This
is a highly complex problem, far from understood properly at present.

9.4.2 Orientations of Walls between Ferromagnetic
Domain Pairs

Walls between ferromagnetic domain pairs are usually planar. And
their orientations are determined predominantly by constraints ensuring a
minimization of the magnetoelastic energy for the domain pair in question.
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9.4.3 Thickness of Walls Separating Ferromagnetic
Domain Pairs

The ferromagnetic exchange interaction tends to align spins in a parallel
arrangement. Imagine a ferromagnetic domain pair separated by a domain
wall. How thick is this wall ?

One possibility we should examine is that of a wall thickness of the
order of an inter-atomic spacing, or, in the case of a ferrimagnetic rather
than a ferromagnetic crystal, a unit-cell spacing. In each of the two domains
separated by the wall the spins are likely to be aligned along an easy direc-
tion, so that the situation is favourable in terms of the magnetocrystalline-
anisotropy contribution to the total energy. But it is highly unfavourable
so far as the much stronger exchange energy is concerned.

We next consider another possibility, in which the rotation of the spins
(say by 180°) in going from one domain to the other across the wall is
spread over a large number, TV, of unit cells. The spins in the unit cells in
the domain wall are now inclined at nonzero angles to the easy directions
of magnetization, resulting in an increase in the magnetocrystalline energy.
But the exchange energy decreases dramatically for large N. The system
settles for a compromise value of TV, which may be as high as 100-200.

These Block walls separating ferromagnetic domains in bulk crystals
are very thick. This situation is very different from that in ferroelectric or
ferroelastic domain twins.

9.4.4 The Ferromagnetic Hysteresis Loop
We have already discussed, in §9.1.1 using Fig. 9.1.1, the magnetization
process for a virgin ferromagnetic multidomain crystal. The dashed line in
Fig. 9.4.1 shows the virgin magnetization curve again.

Also shown in Fig. 9.4.1 is a small loop around the origin. It is called
a minor loop] it depicts what happens when the gradual increasing of the
driving magnetic field is stopped at a value less than what is needed to
achieve a state of saturation magnetization (cf. §9.1.1). When this inter-
mediate field is decreased to the value zero, the specimen has a reduced, but
nonzero, magnetization, and therefore magnetic induction B. The induc-
tion can be brought to zero only by further decreasing the applied field H
to a suitable negative value. The sign of the induction becomes negative on
still further decrease of the applied field. If we stop decreasing the applied
field before reaching the saturation magnetization in the opposite direction,
and start increasing it towards the origin, and beyond on the positive-H
side, the rest of the minor loop is traced.

By increasing the maximum magnitude of the applied field, successively
larger minor loops can be traced, till the field applied is so high that the



9.4 Domain Structure of Ferromagnetic Crystals 347

Figure 9.4.1: A typical limiting hysteresis loop for a ferromagnet. Also
shown is the virgin hysteresis curve (dashed line), as well as a minor loop.

saturation magnetization Ms (or the corresponding saturation induction
Bs) is reached. This outermost hysteresis loop is called the limiting hys-
teresis loop. Its interception on the B-axis defines the remanent induction
Br (and the corresponding remanent magnetization). Br is the maximum
attainable magnetic induction at H = 0.

And Hc in Fig. 9.4.1 is the coercive field needed to bring to zero the
net induction in the specimen.

Soft and Hard Ferromagnetic Materials

A soft ferromagnetic material (single crystal or polycrystal) is one which has
a high initial permeability Hi (cf. Fig. 9.1.1), a high maximum permeability
Umax, and a low coercive field Hc (lower than ~ IQA/m).

A ferromagnetic material not meeting the above criteria is a hard fer-
romagnetic material.

Hardness of ferromagnetic materials is particularly important in the
context of making permanent magnets, i.e. magnets which provide a fairly
constant (and large) magnetic field without requiring a real-time use of
electric current, and which do not deteriorate excessively or too soon with
the passage of time.

A permanent magnet, by its very nature, possesses stored energy, which
was spent on it at the time of magnetizing it. Since it is desirable to
produce the highest possible magnetic field from the permanent magnet, the
material used should have a high Bs. It should also be stable against high
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external magnetic fields, which means that it should have a high coercivity,
Hc. The product (S#)max, which has the dimensions of energy, is a good
measure of the quality of a permanent magnet. This product varies directly
with the area enclosed by the BH-curve. A large remanent induction, jBr,
is therefore desirable for a permanent magnet.
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9.5 DYNAMICS OF FERROMAGNETIC
BEHAVIOUR

The response of a ferromagnetic specimen to an oscillating magnetic field is
a complex phenomenon, involving a variety of processes, each with its own
characteristic time constant. In the sub-giga-Hertz regime of frequencies,
the response is determined mainly by domain-wall dynamics, especially for
insulator ferromagnets.

We have seen in §9.1.1 and 9.4.4 that, except for high applied fields,
bowing of the domain walls and domain-wall motion are the two main
processes responsible for the magnetization behaviour, with the former as
the only process at low applied fields. The following equation of motion
serves to model the main features (Valenzuela 1994):

d x dx
m-jp + /3— + ax = 2M3H(i) (9.5.1)

The first term models the wall inertia, with x as the wall displacement
coordinate, and m the effective mass. The second is a damping term, with
/3 denoting a 'viscosity' factor. The third term stands for the restoring
force, associated with pinning centres.
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For a sinusoidal driving field of angular frequency a;, the real and the
imaginary parts of the complex susceptibility have the following forms:

*' = X°(1-U,VU>S
2)2+VM)2' (9-5>2)

X" = Xo(l-u*/uW + (U/Uxr' (9'5-3)

Here xo is the static susceptibility. And u;s and ux are the resonance and
the relaxation frequencies:

us = (a/ra)1/2, (9.5.4)

ux = a/(3 (9.5.5)

For very high frequencies, the domain walls do not respond significantly,
and spin rotation within the domains is almost the only magnetization
mechanism. The applied magnetic field tends to reorient the spins towards
itself, and away from the easy direction of magnetization. The spins precess
around the field direction (with the well-known Larmor frequency O>L) for
a certain relaxation time r, before settling in the new orientation. By
choosing LJ = ML, resonant absorption (ferromagnetic resonance) can be
achieved. Such experiments can provide data regarding the anisotropy fields
present in the specimen.
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Cambridge.
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Chapter 10

FERROELECTRIC
CRYSTALS

We have defined ferroic phase transitions as nondisruptive phase transitions
involving a change of point-group symmetry. For transitions defined in this
way a prototype symmetry can always be assigned or chosen. Ferroelectric
phase transitions are a subset of ferroic transitions such that the ferroic
phase belongs to one of the 10 polar classes, namely l , 2 ,3 ,4 ,6 , r a , rara2,
3?7i, 4771771, 6777-771.

These 10 crystallographic point groups are subgroups of the limit group
oom (§2.2.19).

A ferroelectric material is one which can, or can be realistically con-
ceived to, undergo one or more ferroelectric phase transitions.

We begin this chapter with a description of some basic properties of
dielectric crystals.

10.1 SOME DIELECTRIC PROPERTIES
OF ORDERED CRYSTALS

10.1.1 Polarization
Crystals and several other forms of matter are composed of positively and
negatively charged particles (nuclei and electrons), with a tendency towards
overall balancing of charge. The main identifiable units are: neutral atoms,
positive ions, negative ions, molecules, and electrons. A molecule may be
neutral, and yet the centres of mass of its positive and negative constituents
may not coincide. If their separation is, say, /, and the charges are ±#, the
molecule has a dipole moment p, defined by the product ql.

351
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Such a dipole can exist even when no field is applied. A simple example
is that of the HC1 molecule. Because of the different electronegativities of
H and Cl, there is a shift of the electronic charge cloud towards Cl, giving
rise to a permanent dipole moment. Molecules with a permanent dipole
moment are called polar molecules.

For a molecule composed of identical atoms, symmetry prevents the
existence of a spontaneous dipole moment. The same is true of an isolated
atom or ion. But an induced dipole moment can exist under the action of
an external field. The charge separation comes from the net movement of
the valence electrons and the atomic cores. The induced dipole moment is
given by

Pi = atjEj (10.1.1)

(otij) is called the polarizability tensor of the atom or the molecule.
The spontaneous or induced separation between positive and negative

charges in matter is called polarization. It is defined quantitatively in a
general way as follows:

Imagine a charge +q at a position ri, and a charge — q at r^. The
dipole moment of this pair is

p = qn - qr2 = Q(TI -r2), (10.1.2)

and is directed from the negative charge toward the positive charge.
Eq. 10.1.2 can be rewritten as

p = qn + (-q)r2 (10.1.3)

This admits of a generalization. Imagine a set of charges q^ with position
vectors r^. The total dipole moment of this set is defined as

p = ^qsrs (10.1.4)
s

The polarization P is
P = p/V, (10.1.5)

where V is the volume occupied by the charge distribution.
P can also be defined as the polarization charge per unit area perpen-

dicular to the direction of total dipole moment.

10.1.2 Pyroelectric Effect
For a crystalline phase belonging to any of the 10 polar classes, there exists
a direction (the polar axis) that is not equivalent to any other direction
under the operations of the point group of the crystal. The charge con-
figuration along the two ends of this direction is therefore not the same,
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resulting in a net dipole moment for the unit cell, even in the absence of
an external electric field. Such a dipole moment, Ps, called the sponta-
neous polarization, naturally varies with temperature, giving rise to the
pyroelectric effect:

APsi = Pi AT (10.1.6)

[The symbol pi used for the components of the pyroelectric-effect tensor is
not to be confused with the symbol used in Eqs. 10.1.2-4 for the dipole
moment.]

There are two types of contributions to (APSi) when the temperature
is changed. One is due to the thermal expansion or contraction of the
free or undamped crystal, resulting in its deformation. This 'piezoelectric'
contribution to the pyroelectric effect is called the spurious or secondary
pyroelectric effect, with (p") denoting the corresponding tensor coefficients.

The true or primary pyroelectric effect occurs even when the crystal is
clamped and thus prevented from deforming, and is the result of a genuine
change in the charge distribution on change of temperature. Denoting the
corresponding tensor by (p^), the total pyroelectric effect can be written as

APsi = (pJ+p?)AT (10.1.7)

Here we have neglected the possible dependence of APS; on higher
powers of AT. In this linear pyroelectric effect, the primary contribution
is usually much smaller than the secondary contribution.

A pyroelectric phase is also a ferroelectric phase if it possesses at least
two orientation states which differ in spontaneous polarization. In other
words, there should be at least one domain pair for which the 'relative'
spontaneous polarization is nonzero (cf. §10.1.7 below). In view of the def-
inition adopted by us for prototype symmetry and ferroic phase transitions
in terms of the nondisruption condition, a switching from one orientation
state to another should be always possible (under the action of a suitable
external field).

10.1.3 Effect of Static Electric Field
Dielectric Permittivity
Let E denote the intensity of the electric field. The electric displacement,
or electric flux density, is defined as

Di = e0Ei + P^ t = l,2,3 (10.1.8)

Here eo denotes the permittivity of free space.
The polarization may have an induced part and a spontaneous part:

Pi = PEi + Psi (10.1.9)
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If the field E is not too strong, the following linear relationship holds for
induced polarization:

PEI = toXijEj, (10.1.10)

where (xij) is the dielectric susceptibility tensor. Then, from Eq. 10.1.8,

A - e0(«tf + Xij)Ej + Psi = eijEj + P8i, (10.1.11)

where
€tj = €o(«tj + Xij) (10.1.12)

(eij) is called the dielectric permittivity tensor of the medium.
Since CQ is a scalar constant, it is convenient to introduce a dimension-

less tensor
*ij = etj/eo, (10.1.13)

called the relative-dielectric-permittivity tensor, or simply the 'dielectric-
constant' tensor.

From Eqs. 10.1.10 and 10.1.12, the following relationship can be arrived
at:

eofo - fcj) = Psi/Ej (10.1.14)

For an isotropic medium this reduces to

PE = eQ(e-l)E (10.1.15)

Depolarizing Field

Consider a finite-sized dielectric crystal (pyroelectric or nonpyroelectric),
to which an external field Ea is applied. The applied field induces charges
on the surface of the crystal. In addition, surface charges may exist because
of the spontaneous polarization, if any. The field produced in the interior
of the crystal by these surface charges is called the depolarizing field, E^.
It is called a depolarizing field because it acts in opposition to the applied
field, as well as to the spontaneous polarization if any.

The surface charge density obeys the Poisson equation:

p = V D (10.1.16)

Substituting for D from Eq. 10.1.11,

p = e V - E + V-P S (10.1.17)

This can be rewritten as

V - E = (p- V-P.)/c (10.1.18)
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The spontaneous polarization Ps, which is nonzero for a pyroelectric
crystal, has no macroscopic spatial variation inside the bulk of an (infinite)
crystal; therefore V • Ps = 0, leading to

V-E = p/e (10.1.19)

This result for the interior of the crystal is thus the same as for a nonpy-
roelectric crystal.

However, the situation becomes radically different in the vicinity of the
surface of a pyroelectric dielectric, where P5 has a strong spatial variation,
dropping sharply to zero at the surface. The V • Ps term then becomes a
major contributor to the depolarizing field.

The energy associated with the depolarizing field is given by (Lines &
Glass 1977):

WE = I I D - Edr (10.1.20)
2 Jv

When a crystal is cooled from a paraelectric phase to a pyroelectric (or
a ferroelectric) phase, it tends to split into a domain configuration which
can annul, or at least minimize, the overall depolarizing field. In addition,
the depolarization effect may also tend to be compensated by those mobile
charges which can reach the surface, either by electrical conduction within
the crystal, or by their trapping from the surroundings, or both.

Internal Field

Compared to magnetic susceptibility, electrical susceptibility of crystals is
generally quite large (xij » 1). Therefore the internal field, i.e. the local
field (E/oc) at a point inside a dielectric crystal, can be very different from
the applied field (Ea) at the same point in the absence of the crystal.

To calculate E/oc(r), the following procedure was adopted by Lorentz
(see, e.g., Dekker (1957)). A small sphere (the Lorentz cavity) is imagined
to be constructed around the point r. The radius of the sphere is chosen
to be the smallest possible for which the region outside it can be regarded
as a polarized continuum, making a contribution EL to E/oc(r). And the
atoms inside the sphere are treated individually for their contribution (Ec)
to E/oc at the centre of the imaginary sphere.

To conduct measurements of polarization and permittivity etc., one
applies a voltage Va between two plates of a capacitor. Let Ea be the field
generated by the applied voltage before the crystal specimen is inserted
between the plates. On insertion of the specimen, a depolarization field
Ed is induced on the surface of the crystal (corresponding to a surface
polarization P), and this field is neutralized by a flow of current in the
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capacitor circuit. There are thus four contributions to E/oc(r):

E/oc(r) = (E0 + P/e0) + Ed + EL + Ec (10.1.21)

The depolarization field E^ is defined by Eq. 10.1.17.
EL is the field (the Lorentz field) resulting from the charges (sponta-

neous or induced) on the inner surface of the Lorentz cavity.
And Ec is the field contributed at the centre of the (spherical) Lorentz

cavity by the atoms filling this cavity.
The Lorentz field is proportional to the polarization of the crystal:

EL = 7PAo, (10.1.22)

where 7 is a constant, called the Lorentz factor.
The value of Ec in Eq. 10.1.21 depends on the crystal structure, and

on the position vector r. One gets Ec = 0 for several special situations (see
Dekker (1957)).

The depolarizing field E^ depends on the shape of the specimen. For
a flat isotropic specimen in a uniform field Ea perpendicular to its faces,

Ed = -P/e0 (10.1.23)

One can therefore write the following expression for the local field (with
Ec = 0):

E/oc - Ea 4- (P - P + 7P)Ao (10.1.24)

For certain simple situations, 7 = 1/3 (see Dekker (1957)); thence

E/oc = Ea + P/(3e0) (10.1.25)

We can express this in terms of the static dielectric function by noting
that D = eoEa + P, and also D = eEa, so that

P = 60(£-l)Ea (10.1.26)

Then

E(oc = Ea + ̂ ^ = ^(e - 1 + 3) = ?f.(e + 2) (10.1.27)

It is important to make a clear distinction between two types of electric
field. One is the average field EM, which enters Maxwell's equations. The
other is the local or internal field E/oc(r) experienced by a small positive
test charge at a point r inside the crystal. EM is the sum of the applied
field Ea and the average field produced by the charges at all the points in
the crystal. E/oc(r), on the other hand, is the field experienced at the point
r due to the external field Ea and all the charges in the crystal, except the
charge at r (if any).
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10.1.4 Thermodynamics and Symmetry of Dielectric
Properties

We have already discussed in §6.2.1 several thermodynamic aspects of fer-
roic crystals. We note, in particular, that entropy S (Eq. 6.2.6) and electric
displacement D (Eq. 6.2.7) are first derivatives of the Gibbs free-energy
density.

The dielectric permittivity is a second derivative of the free-energy den-
sity:

e« = |£ = - T/fc (10.1-28)°EJ H,V,T oEidEj H^T

Another example of a second derivative of g is the isothermal piezo-
electric tensor:

,H,T _ dDk _ _ d2g
kij " da* H,T ~ dai3dEk HT

 (1(U'29)

An example of a property defined by a third derivative of free energy
is electrostriction. This property, which is a measure of the quadratic de-
pendence of strain on electric field, is present in all materials:

eij = MijklEkEl (10.1.30)

The electrostriction tensor is defined in differential form as follows:

MH,T _ d2
eij _ d3g doi3i]

Mijki ~ dEkdEl HT ~ QEkdEtdaij HjT ' UU.i.,5ij

where we have made use of Eq. 6.2.9.
In contrast to electrostriction, which is present in all materials, piezo-

electricity (Eq. 10.1.29), which is a measure of the linear dependence of
strain on electric field (or of electric displacement on stress), is absent in
the 11 centrosymmetric crystal classes. This is because, in Eq. 10.1.29,
(Dk) (being a polar vector) vanishes in centrosymmetric crystals, and (0"ij)
is invariant under an inversion operation.

In addition to the 11 Laue classes, the piezoelectric tensor is also zero
for the crystal class 432. It is nonzero for the remaining 20 noncentrosym-
metric crystal classes, which are therefore referred to as the 20 piezoelectric
classes. They include all the 10 polar classes.

10.1.5 A Crystallophysical Perspective for Ferroelect-
rics

Figure 10.1.1 provides a perspective for ferroelectric phases of materials.
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Figure 10.1.1: Ferroelectric and nonferroelectric phases of crystals. Only
the hatched regions represent ferroelectric phases. See text for details.

Ferroelectric phases are a subset of ferroic phases. Ferroic phases can
be of two types: nonpiezoelectric and piezoelectric. Piezoelectric phases
may be either nonpolar or polar; only the polar subset can possibly be
ferroelectric.

The division of ferroic phases into ferroelastics and nonferroelastics is
in accordance with our crystallographic classification of phase transitions
(cf. Fig. 5.2.1).

It follows from Fig. 10.1.1 that polar phases can be of three types:

(a) Ferroelastic-ferroelectric, An example is the room-temperature tetrag-
onal phase of BaTiOa (Aizu species m3mF4mm).

(b) Nonferroelastic-ferroelectric. The room-temperature phase of triglycine
sulphate (TGS) is an example of this (Aizu species 2/mF2).

(c) Nonferroelectric-polar. An example of this would be any crystal in a
polar prototypic phase.

10.1.6 Dielectric Response and Relaxation
The reader is advised to go through §E.3 before reading this section.
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Stationary Processes

Consider a dielectric crystal at equilibrium. At a time t = ti an 'up-step'
electric field of moderate magnitude is switched on, and kept at a constant
value indefinitely. After a sufficiently long time all transients die out and a
steady state is reached, and only the so-called stationary processes survive.

Two distinct types of stationary processes can be recognized. Charges
which cannot be dislodged from their sites of occupancy by the applied
field occupy new sites nearby, and stay there (we ignore thermal vibra-
tions). This is the process of polarization (or, more generally, change of
polarization).

By contrast, charges which are mobile acquire a certain constant aver-
age velocity This is the process of conduction.

We consider the two stationary processes in turn.

Change of Polarization

There are two basic kinds of change of polarization on application of electric
field. Although they occur concomitantly, it is convenient to consider them
separately.

One type is the relative separation of the positive and negative charges.
This is induced polarization.

The other is the change of orientation (on the whole) of any existing
permanent dipole moments. This is orientational polarization.

Induced Polarization. The external electric field can cause a relative
shift of the electrons with respect to the nuclei, giving rise to electronic-
displacement polarization, Pe. The field can also cause a shift of the ions
with respect to one another, resulting in ion-displacement polarization, or
atom-displacement polarization, Pa. Both these processes are fairly inde-
pendent of temperature.

Atoms and molecules can be regarded as consisting of internal ionic
cores and weakly bound valence electrons, and an applied electric field
causes a shift between the two. This means that electronic-displacement
polarizability is nonzero for all dielectrics. It is the smallest in the noble
gases because the completely filled electron shells provide quite effective
shielding of the nuclei. By contrast, an atom like sodium has a very large
electronic polarizability because of its highly polarizable valence electron.
Similarly, compared to single atoms or ions, the polarizabilities of molecules
are larger because of the greater spatial freedom their bond electrons have
for getting displaced in response to an electric field.

Crystals involving ionic bonding (e.g. NaCl) respond to an applied
field through the additional mechanism of ion-displacement polarization or
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atomic-displacement polarization, Pa.

Orientational Polarization. This mode of change of polarization has a
strong temperature dependence. Another name for it is dipolar polarization,
Pd. This name is given because the two main phenomena occurring here
are: reorientation of free or weakly bound permanent dipoles; and net
change of polarization by the hopping of charge carriers. [We are considering
only a static external field.]

The case of net reorientation or relaxation (Debye relaxation) of freely
rotating polar molecules on application of an electric field was first analyzed
in the classic work of Debye (1945). Assuming that the polar molecules
exist in a dielectrically inert non-polar fluid, and are non-interacting (an
assumption that can be substantially valid only for dilute gases), the follow-
ing Debye-Langevin equation can be derived for the average dipole moment
per unit volume under the action of an electric field (cf. Jonscher 1983):

P = P(cotha-l/a) - PL(a) (10.1.32)

Here P is the permanent dipole moment of the molecule (per unit volume),
and

a = PE/(kBT), (10.1.33)

E being the electric field. L(d) is called the Langevin function.
Under the low-field approximation (a « 1, or PE « fc^T), Eq.

10.1.32 implies a linear dependence of the average dipole moment on inverse-
temperature:

P = P2E/(3kBT) (10.1.34)

Under this approximation the static (zero-frequency) dielectric suscep-
tibility for N non-interacting dipoles is given by

X(0) - NP2/(3t0kBT) (10.1.35)

In our discussion of dielectric response and relaxation, we have consid-
ered, so far, systems in which the positive and negative charges are bonded
quite strongly to one another, and the identities of the positive-negative
units (whether atoms, or ion-pairs, or molecules) are preserved before and
after the application of the electric field. Another quite common situation is
encountered, particularly in dielectrics with impurities, as also in strongly
disordered solids, wherein certain charged species are localized most of the
time, but may occasionally make a hopping transition to a different local-
ized site (or sites). This phenomenon is well-known in the field of ionic
conduction. It also occurs in strongly disordered solids, for which standard
band theory cannot be invoked for understanding electronic conduction;
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the electrons responsible for conduction can only hop from one localized
site to another (Mott & Davis 1979).

The rate at which the thermally activated hopping transitions occur is
determined by the enthalpy barriers to be overcome, and by the distances
between the sites involved. Application of the electric field leads to a mod-
ification of the activation energies, favouring some hopping transitions over
others, resulting in a net change of polarization.

Clausius-Mosotti Equation

As discussed above, application of electric field can effect three different
types of change of polarization. These must be summed to obtain the total
change:

P - Pe + Pa + Pd (10.1.36)

Here Pe is the electronic polarization, Pa the ionic or atomic polarization,
and Pd the orientational or dipolar polarization (including any contribution
from hopping of charge carriers).

Let us first consider a simple case when Pa = Pd = 0, so that P = Pe.
This can happen only in elemental crystals, such as silicon. Pe is determined
by the internal or local electric field £"/oc, and the electronic polarization is:

Pe = e0NaeEioc, (10.1.37)

ae being the contribution from the electronic polarizability of atoms. Sub-
stituting from Eq. 10.1.27,

Pe = 7VaeE0(£ + 2)/3 (10.1.38)

Eliminating Pe from Eqs. 10.1.38 and 10.1.26 we obtain the well-known
Clausius-Mosotti equation:

(e-l)/(e +2) = Nae (10.1.39)

In crystals such as Na+Cl~, which contain more than one type of ions
but no permanent dipole moment, Pe ^ 0, Pa ^ 0 in Eq. 10.1.36, but Pd =
0. Eq. 10.1.39 then generalizes to the following approximate expression
(see Dekker 1957):

(e-l)/(e + 2) - N(ae+ + ae- + e2//) (10.1.40)

Here ae+ is the polarizability of the positive ion, and ae- that of the nega-
tive ion; e is the magnitude of the charge on each ion; and / is the restoring
force constant operative when the oppositely charged ions are displaced in
opposite directions by the applied field.

The case when all three contributions to polarization in Eq. 10.1.36
are nonzero is quite complicated, and will not be discussed here.
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Electrical Conduction

Apart from change of polarization, another stationary process brought
about by a static electric field applied to a dielectric is that of conduction.
For dielectric crystals the principal mechanism is that of ionic conduction,
although for strong fields substantial electronic conduction also occurs.

The conductivity is defined by the relation

<r = net*, (10.1.41)

where n is the number density of charge carriers, each of charge e and
average mobility //.

The electrical conductivity of a dielectric may have a contribution both
from lattice ions and impurity ions, with, say B\ and £2 as the correspond-
ing activation energies. The temperature dependence of the overall process
is therefore described by an equation of the type

a = Aie-B>/T + A2e~B^T (10.1.42)

Time-Dependent Processes

Application of a time-varying field E(£) to a dielectric invokes a delayed
response because of the inherent inertia of the processes involved. By con-
trast, the response of free space to such a field is relatively instantaneous,
and therefore in phase with the applied field. Eq. 10.1.8 can therefore be
generalized to

D(t) = €0E + P(t) (10.1.43)

The dielectric response function, x(£), f°r a delta-function type of per-
turbation is defined by the relation

P(t) = eo(£At)X(t), (10.1.44)

where (JSAt) approaches a constant value as At —> 0.
Under the assumption that linear response theory (LRT) is applicable

(cf. §E.3), the time-dependence of the polarization is given by (cf. Eq.
E.3.20)

f*P(t) = 60 / dt' x(t') E(t - 0 (10.1.45)
J — oo

The electric field, as a general function of time, can be expressed as a
Fourier integral (cf. Eq. E.3.30):

E(t) = ^- I E(u)eiujtdu, (10.1.46)
2n J-oo
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which can be Fourier-inverted to yield

E(v) = I E(t)e~iujtdt (10.1.47)
J—oo

Similar equations can be written for P(t) and P(CJ):

P(t) = ±- I" PMe^dw, (10.1.48)
IK 7-00

P(u) = / P(t)e~iu;tdt (10.1.49)
J — 00

To obtain the Fourier transform of Eq. 10.1.45, we substitute it into
Eq. 10.1.49, and use Eq. 10.1.46 (cf. Eq. E.3.35):

P(u) = €QX(U)E(U>) (10.1.50)

Here x(u;), called the frequency-dependent susceptibility, is the Fourier
transform of the response function x(£):

xM = r\(t)^dt = x'M + ix"(") (io.i.5i)
Jo

It follows that the real and the imaginary parts of the dielectric sus-
ceptibility are defined by

/•oo

x'(u) = I x(t)coswtdt, (10.1.52)
^o

/•oo

X7/(w) = / x(t)sfavtdt (10.1.53)
Jo

Fourier inversion of these two equations yields

/»00 />00

x(t) = I x'M cosujtduj = I x" (a;) sin a;* do; (10.1.54)
Jo Jo

Thus a knowledge of either x'(u) or X"(M) is sufficient to determine
x(£). X7^) and X"(M) are not independent of each other. This fact is also
reflected in the well known Kramers-Kronig dispersion relations (see, for
example, Bonin & Kresin (1997)):

e»-*(oo) = y'/"'"^^. (10-1-55)

^)-v.f '""V-y" (io-i-56>
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Dielectric Losses
The appearance of heat on application of an electric field to a dielectric
constitutes a 'loss'. Two principal mechanisms of loss are: nonzero resis-
tivity, and nonzero inertia (and viscosity) of the system in following the
time-variations of the applied field.

Under the assumption of the validity of the linear response theory, it
is sufficient to consider the behaviour of the system for any one frequency
(say cj); the effect of all the other harmonics can then be compounded by
linear superposition. Let the electric field, and the resulting polarization,
have the following time dependence:

E - E0e
ia;t, (10.1.57)

P = P0e*"t + * (10.1.58)

In conformity with Eq. 10.1.10, the dielectric susceptibility is

X = Po/(eoE0)e^ = (P0/(e0E0)) (cos^ + tsin^) (10.1.59)

A comparison with Eq. 10.1.51 yields

tan-0 = x"/X* (10.1.60)

Similarly, if the phase of the electric displacement vector is shifted with
respect to the electric applied field by an angle <5, we have

D = De^ + 6) (10.1.61)

We can Fourier-invert Eq. 10.1.11, and use Eq. 10.1.51 to get

D(u) = e0(l + x/(w) + tx"(w))'-EM = e(w)£7(w) (10.1.62)

If there are several mechanisms contributing to the overall susceptibil-
ity, this equation has to be generalized to

D(u>) = ed(l + £XM + t£x£M)£M = c(w)E(w) (10.1.63)
771 771

The dielectric function is thus a complex quantity, with a real part and
an imaginary part:

e(o>) = eV) + *'e"Mi (10.1.64)

e'M = e0(l + $>»), (10.1.65)
771

e» = eo$>» (10.1.66)
771
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With reference to Eq. 10.1.61 and 10.1.57,

e = (DQ/E0)e6 = (D0/E0)(cos6 + isinS) (10.1.67)

A comparison with Eq. 10.1.64 yields

tan 6 = e"(u}/t'(u} (10.1.68)

To demonstrate that tan 6 is a measure of dielectric loss (it is called
the loss factor), we write the total current as a sum of the direct current
and the displacement current:

r\ T-N

I = aE + — (10.1.69)ot

Fourier inversion and use of Eq. 10.1.61 gives

I(u) = aE(u) + iuD(u) (10.1.70)

On substituting from Eq. 10.1.63 this becomes

I(u>) = [{a + £(,«;$>»} + *weo{l + £>;>)}]£(") (10.1.71)
m m

Use of Eq. 10.1.65 and 10.1.66 gives

J(cj) = [{a + we"(o;)} + iue'(u)]E(u) (10.1.72)

Thus the real part of the dielectric permittivity (which also incorpo-
rates the contribution from free space) is responsible for the displacement
current without a power loss. And the imaginary part, alongwith the dc
conductivity, is a measure of the dielectric loss.

Dielectric Relaxation

Application of electric field causes a change of polarization in a dielectric
crystal. The electronic polarization, Pe, follows the variations of the field
almost instantaneously. For frequencies considerably smaller than IR fre-
quencies, the ionic or atomic polarization Pa can also be taken as following
the field variations almost instantaneously. The dipolar polarization, P^,
on the other hand, can display a wide range of response times, anywhere
from a few picoseconds to several days. Debye (1945) gave the basic theory
of dielectric response of dipolar molecules suspended in a fluid. Although
the theory was initially formulated for liquids, it provides an important
reference point for discussing crystals with dipolar molecules.
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Debye introduced a relaxation time, r, such that the value of the dipolar
polarization at a time t can be expressed as

Pd = P(oo) (1 - e~t/r) (10.1.73)

Assuming that the applied field has the time variation given by E =
Eoeiu>t, Debye derived the following expression for the polarizability asso-
ciated with the dipolar part of the change of polarization:

aH = ̂  = «±M do.1.74)
1 - IUJT 1 + U2T2

In the presence of dielectric relaxation and loss, the dielectric permit-
tivity is a complex quantity (e*(u;) = e'(u;) -I- ze"(o;)). The following Debye
equations can be derived:

«'W = <'(oo) + j^L (10.1.75)

«•<"" - ̂  "°''-™>

It follows from Eq. 10.1.76 that e"(o;) (and therefore the dielectric loss)
is maximum at u; = 1/r.

Also, for (jj « 1/r, e'(u;) becomes independent of a;, approaching its
value for static fields. For such frequencies, t"(u) —> 0.

And for w » 1/r, the dipoles are no longer able to follow the rapid
variations of the field; thence e"(u;) —> 0.

10.1.7 Absolute and Relative Spontaneous
Polarization

Spontaneous polarization is polarization in the absence of an applied
electric field. In the context of ferroelectric phase transitions, and to make
clear the meaning of the phrase 'nonferroelectric pyroelectric', we introduce
here a distinction between absolute and relative spontaneous polarization.

Absolute spontaneous polarization is simply the ordinary spontaneous
polarization possessed by any pyroelectric (whether ferroelectric or not).
It can be defined without any reference to the spontaneous polarization of
other domain states (if any exist).

We define relative spontaneous polarization by analogy with relative
spontaneous strain (cf. §11.1.3). For defining relative spontaneous polar-
ization it is mandatory to make a reference to the prototype symmetry, from
which a given ferroelectric phase can be taken to have arisen through loss
of point-symmetry operators in a nondisruptive manner, so that there are,
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say, q equivalent and distinct ferroelectric orientation states. We calculate
the average spontaneous polarization of these q states, and then subtract
this average from the absolute spontaneous polarization of each orientation
state to obtain the relative spontaneous polarization for that orientation
state:

P(.)«» = !>(&/« (10.1.77)
i=l

Pr(!)i = P«i - P«-« (10-1-78)
Unlike relative spontaneous polarization, no need was felt to introduce

the concept of relative spontaneous magnetization in Chapter 9. This is be-
cause ferromagnetic materials always have (or can be reasonably conceived
to have) a nonmagnetic (time-symmetric) prototype. Therefore, examples
of pyromagnetic nonferromagnetic materials are unlikely to exist (unless we
insist on the switchability condition for calling a crystal a ferromagnet).

Purely ferromagnetic transitions can be expected to be always of the
nondisruptive variety. Normally this should ensure switchability between
contiguous ferromagnetic domain pairs. An exception can occur in the case
of a crystal with a helical (or more complex) ferromagnetic configuration.
In such a system, although ferromagnetic switching may not be experi-
mentally feasible, the crystal still has two or more orientation states, and
each orientation state has a nonzero relative spontaneous magnetization
(which we can define by replacing p by m in Eqs. 10.1.77 and 10.1.78).
By contrast, a nonferroelectric pyroelectric has zero relative spontaneous
polarization because q = 1 for it in Eq. 10.1.77.
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10.2 STRUCTURAL CLASSIFICATION OF
FERROELECTRICS

In view of the diversity of crystal structures which exhibit the property of
ferroelectricity, it is helpful to classify them in terms of various criteria.



368 10. Ferroelectric Crystals

There are at least two classification schemes based on the nature of
the structural phase transition giving rise to a ferroelectric phase. One is
depicted in Fig. 10.1.1, according to which a ferroelectric phase may be
either ferroelastic (as in BaTiOs), or nonferroelastic (as in TGS).

Another classification scheme divides ferroelectrics (or rather ferroelec-
tric phases) into proper, pseudoproper, and improper categories, depending
on the nature of the order parameter driving the ferroelectric phase transi-
tion. A description of these will be given in §10.3.

Crystal structure and the nature of bonding form another useful basis
for classifying ferroelectrics (Jona & Shirane 1962; Lines & Glass 1977).
Classifications along these lines have been influenced by the historical de-
velopment of the subject (§1.2). A particularly comprehensive structural
classification has been given by Bunget & Popescu (1984), which we sum-
marize here; we also update and expand it, although not exhaustively.

In this scheme, all ferroelectrics are first recognized as either hydrogen-
bonded, or non-hydrogen-bonded. The former may be either structures
with linear ordering of protons, or structures with ordering of radicals.
The non-hydrogen-bonded ferroelectrics may be either structures with oxy-
gen octahedra, or without oxygen octahedra. Further subcategories are
recognized for most of these categories.

10.2.1 Hydrogen-Bonded Ferroelectrics
Ferroelectrics with Linear Ordering of Protons
Four subcategories are possible.

(a) Structures with chains of ions. The triglycine sulphate (TGS) fam-
ily is an example of this type. The general formula is (NH2CH2COOH)3.H2AB4,
with A = S, Se, Ba, or B, and B = O or F. The crystal structure consists of
chains of dipolar ions of NH^CE^ and SOJ.

(b) Structures with tetrahedral units. This group includes dibasic or
dihydrogenated phosphates or arsenates of alkali metals and ammonium;
ammonium sulphate; and ammonium fluoberyllate ((NH4)2BeF4). The
best known member is KDP (KH2PO4).

(c) Structures with octahedral units. Some members of this group are:
methyl-ammonium alum ((CH3NH3)A1(SO4)2.12H2O); KA1(SO4)2.12H2O;
hexacyanides of potassium and metals of the 8th group (K4Fe(CN)6.3H2O);
and periodated compounds of ammonium ((NH^HsIOe) and silver.

(d) Structures with pyramidal units. Lithium hydrogen selenate, LiH3(SeOs)2,
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and sodium selenate are examples of this type of ferroelectrics. The ions of
(SeOa)2" have a pyramidal structure.

Ferroelectrics Having Ordered Radicals
Rochelle salt is the best known example of this class. It is a tart rate of
sodium and potassium, alongwith water molecules of crystallization (NaKC4
H4Oe.4H2O). Other members are: double tartrates of Li and Tl; dicalcium
strontium propionate (Ca2Sr(C2H5CO2)6); and tetra-methyl-ammonium
bromo- or chloro mercurate (N(CH3)4Hg(Br or Cl)s).

10.2.2 Non-Hydrogen-Bonded Ferroelectrics
It is convenient to divide this class of ferroelectrics into two: those with
oxygen octahedra, and those without them.

Ferroelectrics with Oxygen Octahedra
There are four groups in this category: the perovskite group, the pyrochlore
group, the pseudo-ilmenite group, and the tungsten-bronze group.

(a) Perovskite group. Perovskite is the name of the mineral
The general formula for this group is ABXa, where A is a large-radius
cation (Ba, Ca, Pb, Na, K) having a coordination number of 12, and B is
a small-radius cation (Ti, Zr, Nb, Ta) having a coordination number of 6.
X is generally oxygen, although there are some important members of this
group for which X is, for example, a halogen atom. The structure can be
viewed as a network of corner-sharing oxygen octahedra, with B-ions lying
at or near the centres of the octahedra, and A-ions occupying empty sites
between the octahedra.

The onset of ferroelectric ordering in such crystals is accompanied by a
variety of structural changes leading to new polar phases. One mechanism
is the movement of B-ions inside the oxygen octahedra (e.g. Ti ions in
BaTiOa) along a specific crystallographic direction, which then becomes the
polar axis. Such a displacement is also accompanied by changes in oxygen
positions, and may even involve a disorder-order transition regarding site
occupancy.

Alternatively, or even in addition to the above, the oxygen octahedra
may rotate or distort to reduce the A-O distance (Glazer 1975).

(b) Pyrochlore group. Cadmium niobate (Cd2Nb2O7) is a typical ferro-
electric with a pyrochlore structure. A general structure A2B2Oy of this
kind has two types of oxygen atoms: those occurring as BOe octahedra,
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and others. The structure consists of corner-sharing BOe octahedra, form-
ing -O-B-O- zigzag chains, with A-ions and the remaining oxygen atoms
occupying sites between the octahedra.

(c) Pseudoilmenite group. Ilmenite is the mineral FeTiOs. Some fer-
roelectrics with formula ABOs (B = Nb, Ta) have a structure similar to
ilmenite. LiNbOa is one such example, with space-group symmetry R3c. It
can be viewed as a highly distorted perovskite structure. Along the polar
oaxis, face-sharing oxygen octahedra repeat, with their centres occupied
successively by an Nb ion, a vacancy, and an Li ion.

(d) Tungsten-bronze group. The general formula of structures belonging
to this group is A5Bi0O3o or AeBioOso, with A = Pb, Sb, Li, Na, K, Ba,
Sr, ..., and B = Nb, Ta, or W. They have a tunnel structure, and the
A-atoms generally occupy sites in these tunnels or channels. The oxygen
octahedra are quite highly distorted, and the channels may be 3-, 4-, or
5-sided. Examples are Bao.25Sr0.75^266, Ba2NaNb5Oi5, and PbNb2Oe.

Ferroelectrics without Oxygen Octahedra

This class includes the nitrite group, the chalcohalide group, and the bo-
racite group.

Some members of the nitrite group of ferroelectrics are NaNC>2 and
KNC>2 (we may also include KNOa here).

The chalcohalide group has the general formula ABX, with A = Sb, Bi;
B = S, Se; and X = Cl, Br, I. SbSI is a well-known member of this group.

Bunget & Popescu (1984) also include the chalcogenides and the halides
under the chalcohalide category. Some of the relevant chalcogenides are:
Sn2P2Se, SbSs, AgaAsSs (proustite), and AgaSbSa (pyrargyrite). The
halides form quite large families. One of them has the general formula
A2BX4, with typical members like R^ZnCU and (NH^ZnCU. Another
family has the general formula ABF4, with A = Ba and Sr, and B = Mn,
Fe, Co, Ni, Mg, and Zn. BaMnF4 is the best known member of this family.

Lastly we have the boracite group, which has the general formula
Mij+B7Oi3X-, with M = Mg, Ni, Co, Fe, Zn, Cd, Cu, and Cr, and X
= Cl, Br, I. The mineral boracite has the general formula MgaByOiaCl.

Members of the boracite group have the interesting feature that, for
some of them (e.g. Ni-Cl boracite, Cr-Cl boracite and Mg-Cl boracite), a
large number of ferroic properties (two or more out of ferroelectricity, ferroe-
lasticity, ferromagnetism and ferrogyrotropy) coexist (Torre, Abrahams &
Barns 1972; Toledano, Schmid, Clin & Rivera 1985; Ye, Burkhardt, Rivera
& Schmid 1995; Castellanos-Guzman, Campa-Molina & Reyes-Gomez 1997).

Similarly, BaMnF4 is a much investigated crystal because of its peculiar
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combination of ferroic properties (see Asahi et al. 1992).
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10.3 FERROELECTRIC PHASE
TRANSITIONS

Ordinary dielectrics, described in §10.1, may be regarded as linear di-
electrics, in the sense that, unless the electric field applied is exceedingly
high, the response of the material is related linearly to the field (cf. Eq.
10.1.10). We also assumed in that section (except for the discussion leading
to the Clausius-Mosotti equation in §10.1.6) that the inter-dipole interac-
tions are negligible. One class of dielectrics for which this is certainly
not the case are ferroelectrics. In them, there is a long-ranged coopera-
tive interaction of the spontaneous polarization, generally extending over
macroscopic distances. This interaction, or ordering, exists in opposition
to the depolarizing fields and the thermal disordering processes, up to a
temperature Tc, above which the disordering forces overcome the ordering
forces. When this happens, there is a phase transition (a 'ferroelectric to
paraelectric phase transition').

The disordered phase naturally has a higher point-group symmetry. If
we start from such a phase of a dielectric, and cool the crystal through the
ferroelectric phase transition, the crystal splits into domains to minimize the
overall depolarizing field. And application of a sufficiently strong electric
field to the ferroelectric phase can make some domains grow at the cost of
others (cf. §10.7 below), giving rise to the well-known hysteretic behaviour
(Fig. 1.2.1).

The following salient features of ferroelectrics emerge because of the
facts outlined above:
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(i) Ferroelectrics have a spontaneous-polarization component which can be
reversed by the application of a strong enough electric field.

(ii) The spontaneous-polarization vector of a ferroelectric specimen has at
least one component which is a nonlinear and a double-valued function of
electric field (Fig. 1.2.1).

(iii) The long-ranged cooperative interaction of the reversible part of the
spontaneous polarization in unit cells separated by macroscopic distances is
overcome by thermal fluctuations at the ferroelectric to paraelectric phase
transition.

The prototype symmetry for a ferroelectric phase transition may be
either centrosymmetric or noncentrosymmetric. And in the latter case it
may be either nonpolar or polar. We illustrate the three possibilities with
examples:

(a) The cubic-to-tetragonal ferroelectric-ferroelastic transition in BaTiOs
has a centrosymmetric prototype (of symmetry raSra).

(b) KDP belongs to the ferroelectric-ferroelastic species 42raFrara2. The
prototype symmetry 42ra is nonpolar, rather than centrosymmetric.

(c) A phase transition from a polar prototypic phase to another polar
(ferroelectric) phase is also conceivable; for example for the Aizu species
mm2Fm. In this case, the spontaneous polarization of the ferroelectric ph-
ase has a nonreversible part and a reversible part, the former correspond-
ing to that which continues to be nonzero when the crystal passes from
the ferroelectric phase to the prototypic phase on change of temperature.
When an electric field is applied on the crystal in its ferroelectric phase
for reversing the reversible component of the spontaneous polarization, the
net result is a reorientation, rather than reversal, of the total spontaneous
polarization (Fig. 10.3.1). Such a ferroelectric is called a reorientable ferro-
electric.

In certain situations a reorientable ferroelectric phase can arise even
from a nonplar prototype, an example being the ferroic species 32F2 (Aizu
1967). The three 2-fold axes in the prototype are perpendicular to the
3-fold axis, and only one of these survives in the ferroelectric phase. Conse-
quently, the ferroelectric phase has three orientation states, related by the
F-operations consisting of rotations by 0°, 120°, and 240° in the plane nor-
mal to the 3-fold axis of the prototype. Clearly, since a rotation by 180° is
not an F-operation, only reorientation, and not reversal, of the spontaneous



10.3 Ferroelectric Phase Transitions 373

Figure 10.3.1: Illustrating the difference between a reversible ferroelectric
(a), and a reorientable or divertible ferroelectric with a polar prototype (b).

polarization is possible.
There are a total of 33 species of reorientable ferroelectrics; these have

been derived and tabulated by Aizu (1967).

The next question to consider is regarding the nature of the order
parameter of a ferroelectric phase transition. It is a ferroic phase transition,
and therefore at least one macroscopic tensor property coefficient must
emerge in the lower-point-symmetry (i.e. ferroelectric) phase. There are
three possibilities:

(i) Spontaneous polarization, a macroscopic tensor property, may itself be
the order parameter. We then speak of a proper ferroelectric transition.

(ii) The order parameter is something other than spontaneous polariza-
tion, and the two have different symmetries. In this case the spontaneous
polarization arises only because of its nonlinear coupling with the order
parameter. This is a case of an improper or faint ferroelectric transition.

(iii) It can also happen that, though spontaneous polarization is not the or-
der parameter, it has the same symmetry as the order parameter. Although
there is a (bilinear) coupling between the two, the critical temperature de-
pendence (responsible for the phase transition in the Landau picture) is
carried by the order parameter (that is why it is called the order parame-
ter), and not by the polarization. Such transitions are termed pseudoproper
ferroelectric transitions (Dvorak 1974).
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10.3.1 Proper Ferroelectric Phase Transitions
Ferroelectric phase transitions are a subclass of structural phase transitions,
and therefore the general theories of phase transitions outlined in Chapter
5 are applicable to them. They are also a subclass of ferroic phase transit-
ions; for them the change of point symmetry with respect to the prototype
is such that the ferroic (ferroelectric) phase has a spontaneous-polarization
component not present in the prototype. For a proper ferroelectric tran-
sition this component is the order parameter. Therefore the ferroelectric
(polar) phase has the symmetry resulting from the intersection of the sym-
metry group of the prototype and the symmetry group of an appropriately
oriented polar vector. Thence the number of ferroelectrically distinct ori-
entation states in a proper ferroelectric is equal to the maximum number of
orientation states possible (cf. Eq. 6.1.1). Such a phase is a full ferroelectric
phase (cf. §6.2.2).

BaTiOa is a thoroughly investigated example of a proper ferroelectric.
All the ferroic phase transitions that occur in it, with the cubic phase as
the prototypic phase, are proper ferroelectric transitions (Devonshire 1949,
1951). They are also (weakly) first-order transitions. Since a polarization
component is the order parameter, the Landau expansion (Eq. 5.3.9) can
be written as

9 = 5o + |P2 + ̂ 4 + ̂ 6 + - - - , (10.3.1)

where we have retained only even-power terms because g(P) = g(—P).
In the ferroelectric phase the order parameter is predicted to have the

following temperature dependence by the Landau theory (Eq. 5.7.2):

P = ±[-|(I + V/I-^£(T-TO))] ' (10-3-2)

and the inverse dielectric susceptibility in the ferroelectric phase is given
by Eq. 5.7.5:

-i b2 J,4a/c
fT TM L/i 4a'crr 7Mj- i l n n i < r tXT = — y l~-jp-( T-TO) yl--^-(r-T0) + l (10.3.3)

Here TO is the stability limit of the prototypic phase. And the stability
limit of the ferroelectric phase is given by Eq. 5.7.6:

r°~ = T° + 4^ (1°'3-4)

The stability limits of the two phases do not coincide. The phase-
transition temperature (Tc) is the temperature at which the two phases
have the same free energy. This temperature is determined by Eq. 5.7.7.



10.3 Ferroelectric Phase Transitions 375

At Tc the order parameter (spontaneous-polarization component P)
changes discontinuously from a finite value, (—(36)/(4c))1/2, to zero. And
the dielectric susceptibility has a finite value at this temperature.

By contrast, if the proper ferroelectric transition is a continuous tran-
sition, the Landau theory predicts (cf. Eqs. 5.3.27 and 5.3.28):

p = (a'/^CTc-T)1/2, (10.3.5)

XT = C"/(TC-T), (10.3.6)

so that XT —> oo as T —» Tc.
Moreover, for a continuous transition, the stability limits of the pro-

totypic phase and the ferroelectric phase coincide at Tc; in this Landau-
theoretic picture there is no temperature interval in which the two phases
coexist.

The Elastic Ferroelectric

In this chapter we have not considered the nature of elastic anomalies in
the vicinity of a proper ferroelectric transition. This problem has been
analyzed in great detail by Devonshire (1949, 1951), and the treatment
will not be repeated here. However, we must mention here an important
distinction one makes in this context. This is regarding the nonpiezoelectric
or piezoelectric nature of the prototype. The presence or absence of certain
invariant terms in the Landau expansion depends on this distinction. If
the prototype is nonpiezoelectric, a typical 'mixed' term in the Landau
potential, which (along with other elastic-energy terms) can account for
the broad features of the elastic behaviour, has the form PxPyexy. Such a
phase transition is an improper or faint ferroelastic transition, (apart from
being a proper ferroelectric transition). We return to this topic in Chapter
11.

10.3.2 Improper or Faint Ferroelectric Phase
Transitions

In the example of BaTiOa mentioned above, the primary instability, namely
the emergence of spontaneous polarization, is accompanied by a crystal-
family-changing distortion of the crystal This is therefore not only a ferro-
electric transition, but also a ferroelastic transition, although its ferroelastic
nature is entirely because of a coupling of the spontaneous strain with the
primary instability driving the transition, namely the spontaneous emer-
gence of polarization. Such a transition is called a proper ferroelectric im-
proper (or faint) ferroelastic transition.
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Similarly, situations are possible (e.g. in the case of gadolinium molyb-
date (GMO)), wherein a spontaneous polarization arises as a result of its
coupling with some other primary instability (order parameter) with geo-
metrical or other transformation properties different from those of electric
polarization. These are improper ferroelectric phase transitions.

One immediate consequence of such a situation is that domain pairs
are possible which do not differ in any spontaneous-polarization compo-
nent, although they differ with respect to the order parameter. Thus, un-
like proper-ferroelectric phases, which are always full-ferroelectric phases,
improper-ferroelectric phases can be partial ferroelectric phases (cf. §6.2.2).
This is because, whereas a pair of variants must differ in the order param-
eter, there is no necessary condition that it must also differ in another,
arbitrarily chosen, characteristic.

Another property of improper ferroelectrics is that if we consider the
space groups So and S of the prototypic and ferroelectric phases, then

S0 n rp ^ 5, (10.3.7)

where Tp is the symmetry group of the reversible component of the spon-
taneous polarization. This again is only a manifestation of the fact that
polarization is not the order parameter of this transition.

GMO is a better known example of a crystal which undergoes an im-
proper ferroelectric transition. The prototype symmetry is P42ira (D^d),
which changes at 432K to Pba2 (CfJ (Dvorak 1971; Levanyuk & Sannikov
1974). The order parameter in this case is a soft mode corresponding to
the (^ ^ 0) point of the Brillouin zone of the prototype. It is thus an an-
tiferrodistortive phase transition (k ^ 0) (cf. §5.4.2), entailing a two-fold
increase in the volume of the primitive unit cell in going to the ferroic ph-
ase. Moreover, the point group 42m of the prototype has twice the order
of the point group mm2 of the ferroic phase. Therefore, 2 x 2 or 4 distinct
types of domains are possible in the ferroic phase. The order parameter of
this transition is 2-dimensional. Let 771 and 772 be the two components. The
four domain types correspond to the four combinations (7/1,772)? (^7i? —^2)5
(—7715^2)5 and (—771, —772). The spontaneous polarization P% is proportional
to the product of the two components, so that only two distinct configu-
rations are possible for it, namely 771772 (or P3) and —771772 (or —PS). Thus
there are domain types (e.g. (771,772) and (—771,—772)) which do not differ
in spontaneous polarization.

Moreover, electric polarization, being a macroscopic tensor property,
is invariant under a translation, whereas the order parameter, which cor-
responds to a zone-boundary soft mode (rather than a zone-centre soft
mode), is not invariant under a translation operation. This fact also im-
plies that we cannot explain the observed symmetry P6a2 (with a prim-
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itive unit cell twice as large as that of the prototype) as an intersection
group of the prototype group P42im and the symmetry group oomz of the
spontaneous-polarization component.

There are some other distinctive features of improper ferroelectrics
which we can establish by carrying out a simple Landau-theoretic anal-
ysis. However, we must first do some additional spadework before writing
the Landau expansion.

Two characteristics of the phase transition in GMO are representative
of practically all improper ferroelectric transitions. One is that they are
generally of the antiferrodistortive type (Toledano & Toledano 1976). The
other is that their order parameter must have at least two components
(Levanyuk & Sannikov 1974). Before going into the details of this we first
describe the notion of the 'faintness index' of an improper ferroelectric
transition.

Faintness Index

The onset of the order parameter at a phase transition can induce the onset
of additional microscopic or macroscopic variables which do not necessar-
ily belong to the IR of the prototype symmetry group to which the order
parameter belongs. These are called faint variables (Aizu 1972b). An ex-
ample is the onset of electrostrictive strain that accompanies the emergence
of spontaneous polarization in BaTiOa.

As mentioned above, improper ferroelectric transitions are generally
driven by zone-boundary modes. Even when a phase transition is driven
by a zone-centre mode, the properties corresponding to the faint variables
will, by definition, be improper (or pseudoproper). What is more, even for a
given physical property, not all its tensorial components may belong to the
same IR (Aizu 1972c; Dvorak 1974). It is possible to split the macroscopic
property tensor into a part that has the symmetry of the order parame-
ter (the proper or pseudoproper part), and an improper part. Proper and
improper parts of spontaneous polarization and spontaneous strain for fer-
roic transitions have been tabulated by Janovec et al. (1975). Toledano &
Toledano (1976) have given a general treatment of order-parameter sym-
metries of nonferroelastic improper ferroelectric transitions.

A commonly used term for faint variables is "secondary order param-
eters", with the actual order parameter referred to as the "primary order
parameter". We avoid such usage in this book, and take the view that the
order parameter of a phase transition is one which carries the critical de-
pendence on temperature (or on whatever is the controlling variable), and
is exactly compatible with the observed symmetry change across the phase
transition (cf. §5.3.2); its symmetry is neither less nor more than what is
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needed for this compatibility. The order parameter is the order parameter;
there is nothing primary or secondary about it. The so-called secondary
order parameters are faint variables which arise at a phase transition be-
cause of their coupling with the order parameter emerging at the phase
transition as the instability driving the transition. Only in the case of a
pseudoproper phase transition (see below) do we have a situation wherein
more than one parameters have the symmetry expected of the order pa-
rameter. One has to then identify the primary instability among these, and
call the other same-symmetry quantities arising at the phase transition as
secondary order parameters. In fact, the order parameter in this case is a
linear combination of all the same-symmetry parameters.

If a crystal is to undergo an improper ferroelectric transition, its Landau
expansion must contain terms of coupling between polarization (which is
the relevant faint variable in this case) and the order parameter. One can
formulate a general coupling term as follows:

Let F be the IR of the prototype symmetry group according to which
the order parameter transforms, and F' the IR according to which a polar-
ization component (or any other faint variable of interest) transforms. With
reference to Eq. 5.3.3, let 77^ and $( be the quantities in F', corresponding
to f]i and fa in F. A general coupling term then has the form

T/V71' X>« /a^'^ $) (10-3'8)
Ot

Here f(N>n ) is an invariant of order N and n1 with respect to fa and <^
respectively.

In a coupling term the smallest value (say n) of N when nf = I is called
the faintness index of that faint property (for which n' — 1) (Aizu 1972b,
c, 1973b, d, 1974; Dvorak 1974).

For an improper ferroelectric, n is the lowest degree of the polynomial
in the order-parameter components to which the spontaneous-polarization
component couples.

According to Toledano & Toledano (1976), most of the ferroelectric
transitions are of the proper type, and most of the nonferroelastic improper
ferroelectric transitions are those for which faintness index is equal to 2
(n = 2), although the value n = 3 is also possible occasionally.

The versatile and comprehensive computer code ISOTROPY by Stokes
& Hatch (1998) has been mentioned at several places in this book. Using
this code, the characterization of a property (polarization, strain, etc.) as
proper or improper, as well as the determination of its faintness index, can
be made easily.
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Dimensionality of the Order Parameter of an Improper
Ferroelectric Transition

The dimensionality of the order parameter of an improper ferroelectric
transition must be greater than unity (Levanyuk & Sannikov 1974; Gufan
& Sakhnenko 1973).

This can be explained as follows.
In the Landau expansion the leading term responsible for improper-

ferroelectric behaviour is linear in the spontaneous-polarization component
(i.e. n' = I in expression 10.3.8). That is why the faintness index is defined
with respect to it.

Let P be the spontaneous-polarization component emerging at the
ferroelectric phase transition. If the order parameter has only one com-
ponent, say 77, the leading term would be of the form Prf1, n being the
faintness index for ferroelectricity. If n is odd, Prf1 would have the same
symmetry as Pr/, so that the latter term would also occur in the Landau
expansion. But this is not possible because 77 and P do not have the same
symmetry for an improper ferroelectric transition. An odd value of n is
therefore ruled out.

If n is even, rjn would be invariant under all operations of the prototype
group, and therefore, in Prf1, P also would be invariant, and more than
one orientation states differing in P would not be possible. But this cannot
be so for a ferroelectric phase, so an even value of n is also ruled out if the
order parameter has only one component.

Thus the order parameter cannot be 1-dimensional for an improper
ferroelectric transition. For nonferroelastic phase transitions of this type
the order parameter is usually 2-dimensional, although a 3-dimensional or-
der parameter is also encountered sometimes (Toledano & Toledano 1976).
Some Landau-Theory Results

We can now write a typical Landau expansion for an improper ferroelectric
transition. The Landau free-energy density has three types of contributions:
motive, interactive, and electric:

9 ~ 9motive H~ ^interactive H~ Qelectric (1U.G.9)

To concretize the meaning of this equation, we consider the specific
example of GMO, and describe some salient features of the analysis car-
ried out by Dvorak (1974) and Levanyuk & Sannikov (1974). This crystal
belongs to the Aizu species 42mFmm2. The polar axis is along 22, and
normal to this direction the primitive unit cell has twice the area of the
corresponding cell in the parent phase.

As discussed above, being an antiferrodistortive transition, it is nec-
essarily an improper transition with respect to polarization or any other
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macroscopic (i.e. translationally invariant) property.
It may be mentioned here that the converse need not be true always:

A ferrodistortive ferroelectric transition is not always a proper ferroelectric
transition (see Indenbom 1960a, b).

In Eq. 10.3.9, g-motive stands for the order-parameter part of the Landau
potential. The active IR is 2-dimensional. We denote by j]\ and 772 the two
components of the order parameter. Detailed analysis leads to the following
expression:

***** = f (rf + ril) + §(2r?17?2)
2 + §(„?- %

2)2

+ § 2rM2(77
2 - T?2) + l^2 + r?2)3 (10.3.10)

The ginteractive part of the free energy pertains to 'mixed components',
i.e. terms involving products of the order parameter and the spontaneous
polarization P, each term being invariant under operations of the prototype
symmetry group. Restricting ourselves to terms linear in P, a general
expression for ginteractive has the form

ginteractive = # P/(f?l , f f t) (10.3.11)

For example, for gmotive defined by Eq. 10.3.10, the following expression
has been arrived at by Dvorak (1971):

ginteractive = P [2di7/17/2 + ^(ql ~ 7/f)] (10.3.12)

The remaining term in Eq. 10.3.9 can be written as

gelectric = ̂  - PE (10.3.13)

Substituting Eqs. 10.3.10, 10.3.11 and 10.3.13 into Eq. 10.3.9, the
spontaneous polarization for the improper ferroelectric phase is given by

E = w = ° - PsC + Kf^1'^ (10-3-14)
so that

Ps = -Rf^ (10.3.15)
G

The degree, n, of the functional /(7/1,772) is the faintness index with
respect to ferroelectricity. If 71, 72 are the basis vectors spanning the order-
parameter space, we can write

/fai,%) = f?n/(n)(7i,72) (10.3.16)
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Therefore,
Ps ~ r]n (10.3.17)

The higher the value of n, the smaller (or more faint) is the spontaneous
polarization. This explains why n is called the faintness index.

An alternative (and better) term faint ferroics was coined by Aizu
(1972b) for what are now generally known as improper ferroics.

Substituting from Eq. 5.3.27 into Eq. 10.3.17, we obtain the following
temperature dependence for the faint variable Ps:

Ps ~ (Tc-T)n/2, T<TC (10.3.18)

Most frequently, n = 2, so that, for a continuous improper ferroelectric
phase transition,

Ps ~ Tc - T (10.3.19)

10.3.3 Pseudoproper Ferroelectric Phase Transitions
Improper ferroelectric phase transitions having faintness index equal to
unity are called pseudoproper ferroelectric transitions (Dvorak 1974).

If Q denotes the order parameter of such a transition, the leading cou-
pling term between the order parameter and electric polarization P has the
bilinear (i.e. linear in both Q and P) form KiQP, K\ being the coupling
constant.

If the coupling constant is large, it becomes difficult to distinguish
between a pseudoproper and true-proper ferroelectric transition. Such is
indeed the case for the transition in KDP (Dvorak 1972).

Although both Q and P have the same symmetry, it is Q which carries
the critical temperature dependence, and is therefore the order parameter.
P is taken as arising as a result of its coupling with the order parameter. A
typical Landau expansion therefore has the following form (Dvorak 1974):

^
9 = 9o + fCT-T0)Q2 + ^g4 + |Q6 + K,QP + *|-P2 (10.3.20)

The inverse dielectric susceptibility for such a system can be shown to
have the following temperature dependence:

*" - *«'+ 3$3- (10'3'21)

where
Tc = To + Kfxo/a (10.3.22)

There is thus a shift of the transition temperature, the shift depending
quite strongly on the magnitude of coupling between the order parameter
and the polarization component.
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If the coupling is large (as in KDP), there is not only a shift in the
temperature at which the susceptibility diverges, the divergence behaviour
itself is practically the same as in a true-proper ferroelectric transition.

If the coupling coefficient K\ is small, as in (NEU^SCU (Ikeda et al.
1973; Sawada et al. 1973), the divergence of susceptibility is insignificant;
in fact the susceptibility is almost independent of temperature, as is typical
of many improper ferroelectrics.

Thus, pseudoproper ferroelectric phase transitions may have features
overlapping with both proper and improper ferroelectric phase transitions.

10.3.4 Ferroelectric Diffuse Transitions
A sharp ferroelectric phase transition occurs at a specific Curie temperature
Tc, at which both e'(u;o, T) and e"(u;o, T) have their peak values, as expected
from the Kramers-Kronig relations (cf. Eqs. 10.1.55 and 10.1.56).

By contrast, we may have a diffuse transition (which may not be a phase
transition in the strict thermodynamic sense), as a function of temperature,
such that there is no sharp rise in e'(u;o,T) and €."(&$,T) at a specific
temperature Tc. What we may have instead is a smeared or 'humped'
curve for e'(T), with a maximum occurring at, say, a temperature T^.
Similarly, the smeared curve for e"(T) may peak at a temperature T^. For
a sharp phase transition, T^l=T^n =TC. But for a diffuse transition, T£ <
T^. And if the crystal develops localized regions which have spontaneous
polarization below a certain temperature Tp, it is a case of a ferroelectric
diffuse transition (FDT).

A broad hump in the temperature variation of e' may also be indicative
of dipolar-glass behaviour, and we shall discuss this class of crystals in §10.4.
Both FDTs and dipolar-glass transitions involve some kind of freezing of
dynamical modes, but there is a qualitative difference between the two
phenomena. We describe in this subsection some underlying features of the
former.

We begin by considering the case of BaTiOs, which exhibits a sharp-
looking ferroelectric phase transition involving 'critical slowing down' (cf.
§5.4.3) and 'critical freezing'.

In the cubic phase of this crystal, the Ti ion is nominally taken as sitting
at the centre of the octahedral cage defined by oxygen atoms. In reality,
however, even far above the cubic-tetragonal phase transition temperature
Tc, this ion is found to be shifted along any of the eight < 111 > directions
(Comes, Lambert &; Guinier 1968; Maglione & Jannot 1991). And these
shifts are correlated in neighbouring unit cells, the correlations extending
over about 100 A in the < 100 > directions. There are thus polar clusters
even in the 'centrosymmetric' cubic phase, which is therefore centrosym-
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metric only on a crude enough scale. As the temperature Tc is approached
from above, the correlation length becomes larger and larger, and the soft
mode gets more and more overdamped, implying critical slowing down.
Finally, critical freezing occurs at Tc.

This phase transition is predominantly of the displacive type, although
there is also an order-disorder component near Tc (cf. §5.4.3). For displacive
transitions (Lines & Glass 1977):

eM = e(oo) + KQ-*»)l"g. (10.3.23)
UJQ — u2 + zo;7

where U>Q is the resonance frequency for the damped harmonic oscillator
representing the soft mode (cf. §5.4.3), and 7 is the damping factor.

On the other hand, for order-disorder dynamics,

eH = e(oo) + * ,̂ (10.3.24)

r being the relaxation time.
In the case of BaTiOa, the increasing overdamping of the soft mode on

approaching Tc from above results in a crossover from resonant or displacive
behaviour to relaxational or order-disorder behaviour (cf. Eq. 5.4.23). This
occurs at a temperature as high as 100 K above Tc. It is presumably caused
by an anharmonicity of the potential experienced by Ti ions at the centres of
the TiOe groups; the Ti ions shift from the centres of the octahedra to any
of the 8 equivalent positions along a < 111 > direction. This can be looked
upon as the formation of TiOe clusters (with a nonzero dipole moment),
signalling some loss of atomic mobility, and a corresponding overdamping
of the transverse-optic soft mode. With decrease of temperature there is a
gradual increase in the life time of any particular orientation of these polar
clusters. Schmidt (1990) refers to this as a phenomenon tending to stabilize
the cubic parent phase. The cluster sizes increase on cooling, until the
system freezes suddenly to the macroscopically polar phase of tetragonal
symmetry (Blinc & Zeks 1974).

We must mention here that there is no general agreement yet about
when is a transition sharp, and not diffuse (see Schmidt (1990) for a review).
The rather sharp-looking transition in BaTiOs from cubic to tetragonal
macroscopic symmetry occurs nominally at Tc = 393K. It is a discontin-
uous transition. Therefore the stability limits of the two phases do not
coincide. In other words, there is a range of temperatures around Tc over
which the two phases coexist (cf. §5.7.1). It is therefore a phase transition
which starts at a temperature above Tc, say Ms, when the crystal is cooled
from the cubic phase. As the temperature is lowered further, more and more
of the cubic phase transforms to the tetragonal phase. The transformation
is completed (or 'finished') at a temperature M/ (Ms > Tc > M/).
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As the crystal is cooled from a high temperature, precursor effects
begin to appear even at temperatures far above Tc. At about 623X, the
temperature dependence of the refractive index (Burns & Dacol 1981), as
well as of the reciprocal of the real part of the dielectric function (Kersten
et al. 1988), begins to deviate from linearity, and the elastic compliance
sn begins to increase (Beige 1980).

At high enough temperatures there is good atomic mobility (for rota-
tions or oscillations etc.) and the TiOe groups have octahedral symmetry.
Had this continued down to Tc, the crystal would have undergone a normal
displacive phase transition. What actually happens, however, at tempera-
tures as high as WOK above Tc, is that there is a crossover from displacive
to order-disorder behaviour. With decrease in temperature there is a grad-
ual increase in the life time of any particular dipolar orientation, i.e. there
is an increase in the time spent by the Ti ion at any of the 8 equivalent
sites in the oxygen cage, and this life time gradually becomes larger than
the characteristic lattice vibration time periods. There is thus an inelastic
(and cooperative) coupling among the dipoles, setting in at temperatures
far above Tc, which even affects the Ba positions. The larger and varied
time scales introduced by this formation of clusters is a factor responsible
for the coexistence of the paraelectric and ferroelectric phases over a range
of temperatures around Tc.

The formation of dipolar clusters also results in an enhanced response
to external electric fields. The response function (permittivity) gets an ad-
ditional contribution from the tendency of the clusters to align as a whole
along the applied field, with a concomitant movement of interphase boun-
daries.

Unlike the case of the phase transition in 'pure' BaTiOs, FDTs with
a large degree of difuseness generally occur in 'mixed crystals', in which
crystallographically equivalent sites are occupied randomly by two or more
types of cations. An example is that of the crystal (Bai_xSrx)TiO3 (BST),
with x = 0.12 (Tiwari, Singh & Pandey 1995; Singh & Pandey 1996; Singh,
Singh, Prasad & Pandey 1996).

BST is a member of the class of mixed-crystal ferroelectrics with isova-
lent substitutions at 'A' and/or 'B' sites of the general perovskite structure
ABOs. This class can be represented by the general formula (Ai_xAx)
(Bi_yB^) O3, with A, A7 = Ba, Sr, Ca etc., and B, B' = Ti, Zr, Sn, Hf
etc. Here A and A', and similarly B and B', are isovalent atoms, which dif-
fer in size. This size difference causes local distortions of the lattice, with
the concomitant possibility of local dipolar configurations.

Compositions of BST with 0 < x < 0.12 behave almost like pure
BaTiOs with respect to some properties. For example, T^ = T^, and
both T'm and T^ are independent of the frequency of the probing electric
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field (in the radio frequency range). Further, even for x as high as 0.08,
e'(T) shows a fairly sharp peak at T^. But for x = 0.12 this temperature
dependence has a diffuse character, typical of an FDT. It has been argued
by Singh et al. (1996) that the smeared dielectric behaviour for x = 0.12
is due to some peculiar order-parameter fluctuations occurring over a wide
range of temperatures around T^.

Compositions of BST with x > 0.12 display dipolar-glass behaviour
(§10.4).

Another member of the class of mixed ferroelectrics to which BST
belongs is BCT [(Bai_xCax)TiO3]. It also exhibits FDT behaviour (Tiwari,
Singh & Pandey 1994; Tiwari & Pandey 1994). When the ceramic of BCT is
prepared by the conventional dry route, the solubility limit for introducing
Ca in crystalline BaTiOa is x = 0.12 for a firing temperature of 1200°C.
However, a solubility limit of x = 0.16 is achieved if the so-called 'semiwet'
method is adopted for preparing the material (Tiwari, Singh & Pandey
1994). And it is the ceramic prepared by the latter method which exhibits
an FDT, the diffuseness increasing with increasing values of x. Further, it
is found that, whereas T^ = T^ for the former ceramic, T^ < T^ for the
latter (Tiwari & Pandey 1994).

We consider PZT [Pb(Zri_xTix)O3] next. The x - T phase diagram
of PZT has a nearly vertical 'morphotropic' phase boundary (MPB) near
x = 0.48 (see, for example, Lines & Glass 1977). The room temperature
structure of PZT has tetragonal symmetry for x > 0.48, and it is rhom-
bohedral for x < 0.470 (Mishra, Singh & Pandey 1997). For x = 0.475
the rhombohedral phase (R phase) and tetragonal phase (T phase) coex-
ist at room temperature. Thus the MPB represents a two-phase regime,
and is therefore not sharp. It tilts towards the Zr-rich side as one goes up
along the temperature axis in the phase diagram. The structure has the
prototypic cubic symmetry at high temperatures.

Recently, a monoclinic ferroelectric phase has been discovered in PbZro.52
Tio.48Os at about 250 K (Noheda, Cox, Shirane, Gonzalo, Cross & Park
1999).

The dielectric function e(T) of PZT exhibits a rather sharp ferroelectric
phase transition for the composition with x = 0.515, for a ceramic of very
high density (7.94#cm~3) and reasonably large grain size (Mishra & Pandey
1997). A lower density (7.82gcm~3) results in a more diffuse transition.

The polar axis of the R phase of PZT has been conventionally believed
to be along any of the [lll]p axes of the cubic prototype. A recent neutron
diffraction study has revealed the occurrence of random shifts of the order
of 0.2 A for the Pb ions along < 100 >p directions, superimposed on the
shifts along [lll]p (Corker, Glazer, Whatmore, Stallard & Fauth 1998).
There is thus a domain-like 'local' structure, in which there are additional
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'ordered' displacements of cations. This can be expected to contribute to
the diffuseness of the FDT.
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10.4 DIPOLAR GLASSES. RELAXOR
FERROELECTRICS

Orientational glasses are crystals, some Wyckoff sites of which are as-
sociated randomly with dipole, quadrupole, or higher-order multipole mo-
ments which have orientational degrees of freedom, and which interact with
one another sufficiently to undergo, below some freezing temperature T/, a
relaxational freezing into a state devoid of spatial long-range correlations.
An article by Hochli, Knorr & Loidl (1990) provides an excellent review of
the subject.
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It is obvious from the above definition that orientational glasses must
have several features in common with spin glasses and cluster glasses dis-
cussed in §9.2. As we shall see below, there is also a very important dif-
ference between spin glasses and the materials we discuss in this section.
The difference has to do with the fact that spin-glass transitions, by and
large, do not entail serious structural upheavals, whereas transitions in other
glassy crystals do.

Orientational glasses may be dipolar glasses, or quadrupolar glasses, or
both. We consider dipolar glasses here, and quadrupolar glasses in Chapter
11.

A typical example of a dipolar-glass crystal is that of KCli_x(OH)x,
i.e. KC1 with some of the Cl~ ions substituted randomly by OH~ ions,
resulting in dipole moments at and around the substituted sites. At 1QK
these dipoles can reorient rapidly, whereas at 0.1 K they are frozen into a
practically static configuration, although there is no net macroscopic po-
larization. Such systems have typically a phase diagram depicted in Fig.
10.4.1. For x > xc the interaction between the dopant ions becomes ef-
fective enough to produce long-range ordering (for T < Tc), resulting in a
ferroelectric and/or ferroelastic phase.

We may also sometimes have a system Ai_xBx, in which not only
B but also A may be capable of orientational ordering (Fig. 10.4.2). A
well-investigated example is that of the mixed crystal RADP (rubidium
ammonium dihydrogen phosphate). The end member RDP of this mixed

Figure 10.4.1: Typical phase diagram of a system like KCli_x(OH)x. The
Cl~ ions do not possess an orientational degree of freedom; only the dopant
(OH)~ ions do. Contrast this with Fig. 10.4.2, which is for a system with
orientational degrees of freedom for two types of ions. [After Hochli et al.
1990.]
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Figure 10.4.2: Schematic phase diagram for a system Ai_xBx such that
both A and B are orientationally ordered crystals. For example, A may be
a ferroelectric, and B an antiferroelectric (like in RADP). [After Hochli et
al. 1990.1

crystal has a ferroelectric phase, whereas the other end member ADP has
an antiferroelectric phase. Near x = 0 and x = 1 the ordering tendency
prevails (for T less than the respective Tc). There is a certain minimum
threshold of dopant concentration for glassy behaviour to occur, i.e. glassy
behaviour exists only for xc\ < x < xC2 (Fig. 10.4.2). This is a consequence
of competing ferroelectric and antiferroelectric tendencies resulting in a
disordered state, with degeneracy born out of frustration (cf. §9.2 for the
corresponding situation in spin glasses). This quenched disorder is of a
different nature from that existing for T > Tc because of the dominant
thermal fluctuations at high temperatures.

One of the characteristics of a ferroelectric with a glassy phase is the
'smearing' of the ferroelectric transition: There is no sharp phase transition
at a particular temperature Tc. Instead, one observes a 'hump' in the tem-
perature dependence of the dielectric susceptibility, and therefore speaks of
a diffuse transition (cf. §10.3.4).

Orientational-glass behaviour in a variety of crystal families has been
reviewed by Hochli et al. (1990).

We begin by describing the main classes of perovskite crystals which
exhibit a glassy phase.
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10.4.1 Classes of Glassy, Compositionally Modified, Fe-
rroelectrics with Perovskite Type Structure

Perovskite structures have the composition ABO3. Random substitution of
a sufficiently large (but not too large) fraction of atoms by other suitable
atoms can result in competing interactions, frustration, and consequent
glassy behaviour.

Structures with Isovalent Substitution of 'A' and/or 'B' Sites

This is a class of mixed-crystal ferroelectrics with isovalent substitutions at
CA' and/or 'B' sites of the general perovskite structure ABOs. The class can
be represented by the general formula (Ai_xAx)(Bi_yBy)O3, with A, A'
= Ba, Sr, Ca etc., and B, B7 = Ti, Zr, Sn, Hf etc. Here A and A',
and similarly B and B', are isovalent atoms, which differ in sizes. This
size difference causes local distortions of the lattice, with the concomitant
possibility of local dipolar configurations.

As described in §10.3.4, BST (Bai_xSrxTiO3) with x < 0.12 exhibits
an FDT, but no glassy behaviour. However, for x > 0.16 the interaction
among the dipolar clusters becomes strong enough for a dipolar glass state
to ensue (Singh & Pandey 1996).

Structures with Offvalent Substitutions at ;A' and/or 'B' Sites

In this class, not only the sizes, but also the valencies of the substituent
atoms are different from those in the host crystal. Consequently, the range
of solubility can be quite limited, in general. Moreover, when A' and/or B'
has a lower valency than A and B, respectively, an appropriate number of
vacancies must be created at oxygen sites for maintaining charge neutrality.
In the opposite case, when the substituent ion, say A', has a higher valence
than A, the structure has to alternate between A'-rich and A'-deficient
regions.

The best known example of this class, which exhibits glassy behaviour
for certain compositions, is (Pbi_3x/2Lax)(ZryTii_y)O3 (or PLZT), the
valence of Pb and La being 2 and 3 respectively.

Complex Compounds with Disorder at 'B' Sites

Unlike the solid solutions mentioned above, this category comprises com-
pounds, with a disordered arrangement of B-site ions. The best known
examples of this class are PMN (Pb(Mg1/3Nb2/3)O3), and PST (Pb(Sci/2

Tai/2)O3). Another much-investigated material is 0.9PMN-0.1PT, i.e. PMN
with 10% doping with lead titanate.
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The term reloxor ferroelectrics is commonly used for this and other
classes of ferroelectrics which exhibit a glassy-crystal phase. However, it
must be emphasized that not all structural configurations in this class ex-
hibit glassy or relaxor behaviour. For example, PST displays regular ferro-
electric behaviour when in the phase in which the Sc and Ta ions are fully
ordered. It is in the disordered phase that it undergoes a dipolar glass
transition (Stenger, Scholten & Burggraaf 1979; Setter & Cross 1980).

10.4.2 Salient Features of Ferroelectric Crystals with
a Dipolar-Glass Transition

Some features of ferroelectrics with a dipolar glass transition are similar to
those which undergo ferroelectric diffuse transitions (§10.3.4). However, as
we shall see here, there are some very important differences too (see the
review by Pandey (1995) for a more detailed exposition).

Dielectric and Optical Properties

(a) Because translational periodicity is violated for a fraction of the Wyckoff
sites, all properties of the crystal are affected to a small or large extent.
In particular, the dielectric permittivity, instead of displaying a sharp peak
around a phase-transition temperature Tc, exhibits a smeared-out variation
with temperature (i.e. we have a diffuse transition). The temperature
dependence of the real part of the permittivity has a humped appearance,
with, say, T^ as the temperature at which it has the maximum value e^.

For T > TM, e'(T) can be described by the following equation (Mar-
tirena & Burfoot 1974; Tiwari & Pandey 1994):

1 1 (T — TM7

- = - + i± ±m) (1041)
e'(o,,T) 0,T) + C> (L()A'L)

The critical exponent 7 (1 < 7 < 2) is a measure of the degree of
diffuseness or smearing. 7 = 1 corresponds to Curie-Weiss behaviour (cf.
Eq. 5.5.44). The value 7 = 2 is expected for a 'quantum ferroelectric'
(Rytz, Hochli & Bilz 1980). We consider quantum ferroelectrics in §10.5.

7 and C' are both found to increase with increasing diffuseness.

(b) In conventional ferroelectrics, the real part e'(T') and the imaginary part
e"(T) of the dielectric permittivity generally exhibit a similar temperature
dependence. For sharp phase transitions, both should peak at the same
temperature, in accordance with the Kramers-Kronig relations (see Lines
& Glass 1977). For a ferroelectric crystal displaying a diffuse transition the
respective temperatures T^ and T^ at which they peak may be different
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(irrespective of the presence or absence of glassy behaviour), the difference
increasing with increasing diffuseness; generally T^(u) < T'^u) for a given
frequency a;.

(c) Conventional ferroelectrics display a P versus E hysteresis loop (Fig.
1.2.1), which may be described as 'fat', in comparison to the slim hysteresis
loops characteristic of ferroelectrics in a glassy phase. Moreover, these
slim loops generally do not show saturation with electric field, unless the
specimen crystal is at a temperature well below T^.

(d) For normal ferroelectrics with a sharp transition, e'~l (Tc) = e'~l (T^) =
PS(T^) = 0; i.e. the spontaneous polarization Ps drops to zero as the tem-
perature of the crystal is raised to Tc (= T^). By contrast, the (local)
spontaneous polarization of a glassy ferroelectric becomes zero at a tem-
perature Tp which is much higher than T^.

(e) Unlike FDTs, glass transitions in a ferroelectric exhibit a strong fre-
quency dispersion, particularly in the RF region. Both e' and the loss factor
tan6 exhibit this. And both T^(u) and T!^(u) increase with increasing v.

In the Debye model for dielectrics (see Jonscher 1983), the dipolar units
are free to rotate, all units have the same (temperature independent) dipole
moment, and there is no inter-dipole interaction. The dipolar relaxation in
this model is purely a thermally activated process, with relaxation time r
given by an Arrhenius equation (cf. Eq. 9.2.30):

r = — exp(kBT0/kBT) = — exp(T0/T) (10.4.2)
UQ ^0

The frequency CJQ is the attempt frequency or the Debye frequency, and T0

is the equivalent temperature of the activation energy.
In this model the permittivity is given by Eq. 10.1.75, which we rewrite

as follows:
e/H = e'(°°) + T^VF (10-4.3)

Here Ae' is the contribution of the freely reorientable dipoles to the static
(a; = 0) dielectric function, and e'(oo) is the high-frequency dielectric func-
tion.

Ae' has the following temperature dependence in the Debye model:

Ae' = C'lT (10.4.4)

Since the dipoles are non-interacting in this model, their motion can
be frozen (apart from zero-point motion) only at T = 0, a fact correctly
reflected by Eq. 10.4.2, according to which r —> oo as T —> 0. Thus the
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glass transition temperature, or the freezing temperature, T/, is zero in this
model:

T/(Arrhenius) = 0 (10.4.5)

For solids the Debye model is an unphysical model, though a useful
idealization for reference purposes. The inter-dipole interaction in glassy
solids is certainly nonzero, making them 'freeze' (i.e. undergo the glass
transition) at a temperature Tf greater than the absolute zero. The relax-
ation time for solids has therefore been often modelled by a Vogel-Pulcher
equation, i.e. Eq. 9.2.1 (Hochli et al. 1990; Viehland et al. 1990, 1991):

r = M-1 exP[T0/(Tm - T/)], (10.4.6)

implying that r —> oo (freezing) as Tm —» T/; T/ ^ 0.
The temperature T/ is an empirical ('best-fit') Vogel-Fulcher temper-

ature. For T > Tf the dielectric response is predominantly fluctuation-
driven, and for T < Tf it is predominantly interaction-driven. However,
below Tf the dipoles are not completely static and frozen. In any case, in
dipolar cluster glasses T/ is found to depend on the range of u; values inves-
tigated, even down to the lowest practical probing frequencies (~ ImHz).

The ^-dependence of Tf reflects the fact that there is a whole range
of activation energies and corresponding relaxation times, and that the
fluctuation-driven and the interaction-driven regimes do not have a sharp
boundary; they overlap over a considerable temperature range. We can
interpret (c^o)"1 m Eq. 10.4.6 as a typical leading relaxation time.

Eq. 10.4.6 does not always provide a satisfactory fit to the observed
dielectric relaxation in glassy ferroelectrics, and other empirical relation-
ships have been proposed. For example Cheng et al. (1997, 1998) used the
following equation:

r = M-1 exp(T0/I^)p, (10.4.7)

where p is an adjustable parameter. It has been suggested by these authors
that: p~l = 0 for a normal ferroelectric; p~l = I for a Debye medium; and
p~l = 2 for a glass. A relaxor ferroelectric like PMN-PT falls somewhere
in-between a normal ferroelectric and a Debye medium.

(f) PMN has a cubic symmetry at high temperatures. For it, T^ = — 5°C.
If a field of 20 kV/m is applied to a crystal of it at, say, 90°C in the [110]
direction, and the system is cooled through T^ down to, say, —80°C, one
observes a second peak in e'(T) at T/ == — 60° C, in addition to the larger
peak at -5°C (Arndt et al. 1988).

The main peak at T^ and the additional peak at T/ for the field-cooled
(FC) crystal decrease in magnitude with increase of probing frequency.

On decreasing the temperature through T/ there is a sudden appearance
of a remanent (spontaneous) polarization at T/. We may also regard T/
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as a depolarization temperature, above which the disordering forces (e.g.
thermal fluctuations) win over the ordering forces; below T/ the ordering
forces establish a long-range order characteristic of a normal ferroelectric.

The peak in e'(T) at T/ is not present if the crystal is not under the
influence of a poling field; i.e. if it is a zero-field-cooled (ZFC) specimen.

A similar behaviour is also observed for PLZT ceramic (Haertling &
Land 1971a, b; Randall et al. 1987; Viehland et al. 1992). The X-ray
diffraction pattern of the ZFC ceramic displays cubic symmetry down to
the liquid-nitrogen temperature, whereas the FC ceramic has rhombohedral
symmetry. This difference is attributed to a breakdown of ergodicity in the
frozen state (cf. §9.2.5) (Hochli, Kofel & Maglione 1985).

(g) Refractive-index measurements made on PLZT as a function of tem-
perature and composition provide evidence for local dipolar ordering, even
at temperatures several hundred degrees above T^ (Burns 1985; Burns fe
Dacol 1983). The macroscopic symmetry is cubic above Tc, and above a
temperature Td (Td ^> T^), the refractive index varies linearly with tem-
perature. However, at and below Td a deviation from linearity is observed,
which can be explained by postulating the formation of localized clusters
of dipoles.

A similar behaviour is also exhibited by PMN.

Structural Properties

The most striking feature of ferroelectrics with a glassy phase is that the
local-symmetry breaking temperature does not coincide with T^. In solid
solutions like PLZT this temperature (Td) is higher than T^. The same is
also true about the complex perovskite compound PMN (Burns & Dacol
1983). As stated above, application of an electric field induces a structural
change discernible by X-ray diffraction.

10.4.3 Spin Glasses vs. Dipolar Glasses

Dipolar glasses can be regarded as the electrical analogues of magnetic spin
glasses described in §9.2. The main point of similarity is the random nature
of the competing interactions in both cases (Brout 1965; Toulouse 1977).

Replacing the symbol Si for spin by pi for dipole moment, we can write
by analogy with Eq. 9.2.5 the basic Edwards-Anderson type Hamiltonian
for a dipolar glass as

H = -^JijPiPj + £$>, (10.4.8)
ij i
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where E denotes the external field, if any. We have chosen the Ising model,
rather than the isotropic vector model.

Similarly, in analogy with Eq. 9.2.4 the following local order parameter
can be defined:

q(T) = lim < p<1} - pf) > (10.4.9)
t—>oc

On cooling the crystal below a freezing temperature T/, this parameter,
which is zero above T/, acquires a nonzero value.

Similarities apart, there is at least one important point of dissimilar-
ity between spin glasses and orientational glasses. In spin glasses there
is, relatively speaking, very little spin-lattice coupling. By contrast, in
orientational glasses reorientation of moments (dipolar, quadrupolar, or
higher-order) involves a movement of atoms, with the attendant effect on
neighbouring atoms. Moment-lattice coupling is an important effect in the
case of orientational glasses.

This moment-lattice coupling, unless it is very large, induces an order-
ing tendency in the crystal. The average interaction, J, can be taken as a
measure (or indicator) of this ordering tendency.

10.4.4 Dipolar-Glass Transitions vs. Ferroelectric
Phase Transitions

Being a subset of structural transitions, dipolar-glass transitions are
characterized by a strong coupling of the crystal lattice with local dipole
moments. This is in contrast to what usually happens in spin-glass transi-
tions and ferromagnetic or antiferromagnetic transitions.

We can make a comparative assessment of the various structural ten-
dencies in terms of four parameters (Hochli et al. 1990): the pairwise
interaction J; its average J; its variance Var(J); and a moment-lattice
coupling parameter (say K).

We first consider situations in which K is neither too small nor too
large. Dipolar-glass transitions occur when J is small and Var (J) is large.
A regular (conventional) ferroelectric phase transition is favoured when J
is large and Var (J) is small. A small J and a small Var (J) correspond to a
superparaelectric configuration; the term 'superparaelectric' can be under-
stood by analogy with the term superparamagnetic, described in §9.2.10.

When K is small, the following four combinations are possible: super-
paramagnet (J small, Var (J) small); ferromagnet (J large, Var (J) small);
spin glass (J small, Var (J) large); and canonical glass (large but ill-defined
interaction).

Lastly, we consider a system for which J is small and Var (J) is large.
When such a system is cooled from a high enough temperature, a spin-glass
transition corresponds to a small K, a dipolar-glass transition to a medium
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K, and a 'glassy crystal' (or strongly disordered) phase to a large K (larger
than J and Var (J)).

To compare some typical features of dipole-glass transitions (DGTs)
with those of ferroelectric phase transitions (FPTs) in the vicinity of the
ordering temperature T/, we first recall some theoretical results for the
latter (cf. §10.3 and §5.3).

(a) Static linear susceptibility:

Xs = m ~ (T~T^"7' (10A1°)
(b) Correlation length (< P(0)P(z) >):

£ - \T-Tf\-" (10.4.11)

(c) Time decay of the order parameter:

P(t) = P(0)e~a*, T>Tf (10.4.12)

Typical values for critical exponents in the above equations are: 7 = 1;
i/ = 0.5; a ~ (T — Tf)z near T/, z being a dynamic exponent (Kadanoff et
al. (1967); Hohenberg & Halperin (1977)).

Fig. 10.4.3 shows schematic plots of Eqs. 10.4.10-12. Also shown are
the corresponding plots for dipolar-glass transitions (DGTs). The linear
susceptibility for DGTs (the Parisi susceptibility) (Parisi 1979, 1983; Som-
polinsky 1981; Fischer 1983) has the following temperature dependence
near T) (Fig. 10.4.3(a)):

X ~ (T-T/)-1, T>T / ; (10.4.13)

X ~ constant, T < T/ (10.4.14)

The spatial correlation length, £ (Fig. 10.4.3(b)), for spin glasses is
small, and has only a weak dependence on temperature (Carmesin & Binder
1988).

Lastly, the decay rate of the order parameter (Fig. 10.4.3(c)) has a
complicated nonexponential character (Binder & Young 1986).

A universal theory of the dipolar-glass transition is not in sight yet
(however, see Chamberlin 1998).

10.4.5 Relaxor Ferroelectrics
Although ferroelectric crystals with a glassy phase have several properties
in common with spin glasses, important differences exist. The differences
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Figure 10.4.3: Comparative plots for ferroelectric phase transitions (FPTs,
dashed lines) and dipolar-glass transitions (DGTs, solid lines) in the vicin-
ity of the ordering temperature T/: (a) linear (static) susceptibility; (b)
correlation length; and (c) decay rate of order parameter. [Adapted from
Hochli et al. 1990.]

arise because in ferroelectrics there are strong dipole-lattice coupling ef-
fects. These effects are not only of an electrical nature, but also have a
very significant elastic or inelastic component. Because of the ordering ef-
fect of the dipole-lattice coupling, and the consequent formation of dipolar
clusters, dipolar glasses are more akin to magnetic cluster glasses, than to
magnetic spin glasses. And because of the rather strong local piezoelectric
and electrostrictive effects, and the long-ranged nature of the mechanical
interaction, dipolar (cluster) glass transitions also have much in common
with martensitic phase transitions. This last aspect has emerged quite
strongly from the work of Schmidt and coworkers (see Schmidt (1990) for
an overview of this work).

Relaxor perovskite ferroelectrics like PMN thus present a fascinating
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(and technologically important) field of study in which concepts from di-
verse subjects have been invoked, although the overall situation is still far
from clear. We discuss here some of the key aspects of their behaviour.

Relaxor ferroelectrics differ from conventional ferroelectrics in at least
four important dielectric characteristics (Cross 1987, 1994): (i) the phase
transition involved is diffuse, and the dielectric susceptibility is markedly
dispersive below the temperature T^ at which it peaks; (ii) T^ itself is
frequency-dependent, increasing with increasing frequency; (iii) the dielec-
tric response above T^ is not of the Curie-Weiss type; (iv) whereas the
mean spontaneous polarization decays to zero at a temperature T/ (the
freezing temperature) which is well below Z^, the mean square polariza-
tion is nonzero even at temperatures 200 to 300 K above T^.

We still do not have a thorough understanding of the properties of
relaxor ferroelectrics. Smolenskii & Agranovskaya (1958) explained the ex-
istence of a whole range of Curie points around T^ in terms of coexisting
phases having differing levels of composition and homogeneity. In terms
of this composition-variation model, various static and dynamic properties
of relaxors have been calculated using Rolov's (1965) method (see Pandey
1995). It turns out that the smearing or broadening of the transition tem-
perature over such a wide range cannot be explained quantitatively in terms
of Smolenskii's model. In any case the situation is far too complex to be
explainable in terms of a single factor, namely local compositional inhomo-
geneity.

Several features of relaxor ferroelectrics are reminiscent of magnetic
spin glasses and cluster glasses (§9.2). Cross (1987, 1994) advanced ar-
guments in favour of a superparaelectric-behaviour model, by analogy with
superparamagnetism (§9.2.10). The model moots the presence of small
polar clusters, which undergo thermally-driven polarization reorientations
among crystallographically equivalent directions.

It is pertinent to recall here that ferroelectric ordering is a cooperative
effect. Therefore the involved energies scale with the volume of the ordered
region, or the number of dipoles ordered. At sufficiently small volumes
the barrier to polarization flipping becomes comparable to fc^T, and then
the giant dipole moment of the entire cluster can reorient as a whole (i.e.
coherently) from one direction to another equivalent direction.

The experimental evidence for the smallness of the dipolar clusters
in PMN has been reported from transmission-electron microscopy (TEM)
studies by Chen, Chan & Harmer (1989), Randall et al. (1990), and Bur-
sill (1997). They observed ^[111] superlattice reflections, indicating the
presence of short-range-ordered regions extending over 2-5 nm. What is
more, heat treatment did not result in coarsening of these ordered regions,
pointing to a certain self-limiting mechanism.
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The self-limiting effect can be rationalized in terms of local charge
imbalances (Chen et al. 1989). Although the global value of the Mg:Nb
ratio in PMN is 1:2, the local value in a unit cell of an ordered cluster is
1:1. This results in a net charge for the unit cell, a situation that cannot
persist over too large a number of contiguous unit cells. This is the factor
preventing coarsening of these nonstoichiometrically ordered domains by
heat treatment. Further evidence in support of this interpretation comes
from the fact that if some of the Pb2"1" ions on the A-sites are replaced by
La3+, there is an increase in the size of these clusters. And replacement
by monovalent ions Li14" has the opposite effect. Additional evidence for
the validity of this line of reasoning has been reported recently by Gupta
& Viehland (1997).

The case of another relaxor ferroelectric, namely PbSci/2Tai/2O3 (PST),
provides an interesting contrast. In this crystal there is no charge-imbalance
for the unit cell, and heat-treatment does result in an increase in the degree
of cooperative ordering (Setter & Cross 1980).

It is worth pointing out that, whereas the nanoclusters of various sizes
in a PMN crystal have quite well-defined boundaries, as well as dynamic
interactions among themselves, the edifice of the oxygen ions runs continu-
ously across the entire crystal. The term mictoelectric may be appropriate
for such a system, by analogy with mictomagnets (§9.2.10).

As the temperature of a relaxor ferroelectric like PMN is lowered from
a value far above T^, there occurs a strong dispersion of the weak-field
permittivity. As in the magnetic analogue (§9.2), a Vogel-Fulcher type
relationship is observed in the temperature dependence of the relaxation
frequency in the vicinity of the freezing temperature T/ (Viehland et al.
1990):

u> = - = lc-^/**<T-T/> (10.4.15)
T TO

The similarity of relaxor ferroelectrics with magnetic cluster glasses
has been brought out by a large number of other studies as well, including
the observation of a qualitative change in properties when a biasing field is
applied. As the temperature is lowered below T4, more and more dipolar
clusters undergo a glass-like freezing. They also have random orientations
when cooled under zero field. Such randomly oriented dipoles generate
a random internal field. Application of a field takes the system from a
nonergodic (cf. §9.2.5) to a partially or a fully ergodic state, with the
attendant formation of macroscopic domains (Imry & Ma 1975; Kleemann
1998). Several studies confirm this (Viehland et al. 1992; Ye & Schmid
1993; Park et al. 1995).

It is important to take note of two different types of polar clusters or do-
mains in PMN: frozen polar domains (FPDs), and dynamical polar domains
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(DPDs) (Qian & Bursill 1996a,b). Their existence and preponderance de-
pends on temperature and on the degree of global charge compensation.
At temperatures far above T^ there is absence of order or coupling among
the dipole moments. As the temperature is lowered, nanoclusters, with
sizes limited by charge imbalance, form. Defects (e.g. chemical domain
walls) act as pinning and aligning sites. The local fields at such sites, if
they are strong enough, lead to the occurrence of FPDs in their vicinity.
And in regions far from them, DPDs occur, the configurations of which
fluctuate quite freely among the equivalent orientations available to them.
In a certain finite temperature range the FPDs and the DPDs coexist. For
temperatures below this range, as the cluster sizes increase with decreasing
temperature, a percolation threshold is reached, such that the FPDs touch
one another, and conventional ferroelectric behaviour sets in.

The models discussed above in this subsection are rather simplistic. A
more realistic description of relaxor behaviour in PMN may be that in terms
of the general Chamberlin theory outlined in §9.2.13. This is indicated by
the experimental work of Kleemann (1998), who measured the time-decay
of the polarization of zero-field-cooled PMN under isothermal conditions,
in the temperature range 180-230 K. The polarization was deduced from
birefringence data, via the relationship An ~< P >2. A rather small
field of 1.2 kV/cm was applied parallel to the cubic [110] direction, and
the time-decay of the induced birefringence was minitored after switching
off the applied field. This was done at various fixed temperatures. The
observations were found to be explained well by Chamberlin's theory. It is
instructive to recapitulate some basic facts in this context.

When PMN is zero-field-cooled through the temperature T = 210K,
there is no global breaking of the cubic symmetry; in fact, it is not a
regular thermodynamic phase transition. Therefore, some authors refer to
the high-temperature phase as the ergodic phase, and the low-temperature
one as the nonergodic phase.

Owing to the chemical structure of this crystal, it has a quenched disor-
der, or a quenched random field configuration at all temperatures. There-
fore, even for temperatures above Tm correlations exist between the fluctu-
ations of the order parameter and those of the random electric fields in the
crystal. This explains the occurrence of domain-like precursor phenomena
in the ergodic phase (Glazounov, Tagantsev & Bell 1996). This phase also
corresponds to a positive sign for the correlation coefficient C in Eq. 9.2.31.

In the nonergodic phase, C acquires a negative sign. According to
the Chamberlin theory described in §9.2, there are only two 'universality
classes' of slow-dynamics response: the KWW-like response class (C > 0),
and the CvS-like response class (C < 0). There is thus a crossover from
the KWW class to the CvS class when PMN enters the nonergodic phase.
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Kleemann (1998) explains this as follows:
In the ergodic phase, as stated above, the nanometer sized polar do-

mains or clusters have a dynamic existence because of their correlation with
the quenched random fields. The probing electric field used by him causes
a thermal-activation assisted reorientation of the cluster polarization, the
relaxation of which is described by (cf. Eqs. 9.2.30 and 9.2.31)

w(s) = cj(oo)e-c/s, (10.4.16)

with C > 0 (CvS dynamics). This means that, contrary to commonsense
expectation, the shortest relaxation times are expected for the largest clus-
ters (s —> oo) because, unlike small clusters, there are multiple ways for
them for overcoming energy barriers.

By contrast, in the nonergodic phase there is a nearly frozen configu-
ration of (fractal-like) domains. The small probing electric field therefore
causes only a quasi-reversible movement of domain walls, the quenched ran-
dom field providing a framework for the pinning forces which tend to pull
the domain walls back to the zero-external-field configuration. This relax-
ation is predominantly of a non-activated nature, with relaxation rates still
determined by the above equation, but with C < 0 (Glazounov, Tagantsev
& Bell 1996).

Among the recent entrants to the growing family of relaxor ferroele-
ctrics are: Pbo.sCao.sTiOa (Ranjan et al. 1997); and Pbo.roBao.soZrOs
(Pokharel et al. 1999).

10.4.6 Field-Induced Phase Transitions in Relaxor
Ferroelectrics

By analogy with the theories of magnetic spin and cluster glasses, dipo-
lar cluster glasses can also be expected to undergo a decrease in their non-
ergodic character in the presence of a biasing field. Moreover, changes in
the magnitude and orientation of electric dipoles involve changes in the
positional coordinates of ions, with the attendant strong (electric, as well
as elastic) coupling with the crystal lattice. Therefore, tendency towards
macroscopic ordering, which is anyway more prominent in dipolar and other
orientational glasses compared to spin glasses, gets further accentuated by
a biasing field, resulting in a structural phase transition at a low-enough
temperature. When this happens, the global symmetry which is not low-
ered on the occurrence of the glass transition, gets lowered and the crystal
behaves like a conventional ferroelectric. We have already described above
(in §10.4.2) the occurrence of such a field-induced phase transition at a
temperature T/.

As emphasized by Schmidt (1990), this situation is closely analogous to
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the well-known stress-induced martensitic phase transitions in some metal-
lic alloys (cf. §11.5).

Cu — Zn — Al is a typical alloy which undergoes a martensitic ph-
ase transition, i.e. it has a high-temperature 'austenitic' phase and a
low-temperature 'martensitic' phase: On cooling the austenitic phase, the
martensitic phase starts forming at a temperature Ms. The proportion
of the martensitic phase increases with cooling (in a 'burst-like' manner);
this increase stops if the cooling is stopped. It is described as an athermal
transition, not involving a diffusion of atoms. It has also been described
as a diffuse transition in the sense that it extends over a whole range of
temperatures, namely from Ms to M/. M/ is the temperature at which the
transformation process is finished (the transformation may not be 100%),
and further cooling does not lead to an increase of the fraction of the
martensitic phase.

Similarly the reverse transition from the martensitic phase to the aus-
tenitic phase starts at a temperature As on heating, and finishes at a tem-
perature A f .

The temperatures Ms, M/, As and Af can be altered by the application
of an external stress field. Additives, as well as grain-size control, are
also used for altering the range of temperatures over which the two phases
coexist. In particular, one can stabilize the parent (austenitic) phase, i.e.
one can prevent the occurrence of the transformation to the martensitic
phase, by using suitable additives and/or manipulating the grain size. A
fully stabilized system is also referred to as a nontransforming system.

The analogy with PMN, as also with certain compositions of PLZT, is
obvious.

In PMN, there is no phase transition, i.e. no lowering of global sym-
metry, when only temperature is varied. Schmidt (1990) has therefore
suggested that it should be described as a 'fully stabilized paraelectric'.

The effect of electric field on such a system is very different from that
on a conventional ferroelectric. At temperatures below T't the field induces
a transition to a phase of lower (rhombohedral) global symmetry, from
the cubic-symmetry phase. This is reflected not only in the X-ray diffrac-
tion pattern, but also in the shape of the hysteresis loop, which acquires a
square-shaped or 'fat' appearance, similar to that of a conventional ferro-
electric.

Since the rhombohedral phase is a field-induced phase, it reverts to the
cubic phase when the field passes through the zero value in a hysteresis-loop
experiment. This transient occurrence of the nonpolar parent phase has
been confirmed by birefringence measurements on another similar system,
namely PLZT8/65/35 (Schmidt 1981). In it the polarization reversal occurs
via a nonpolar, optically isotropic, state or phase.
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Whereas in a conventional ferroelectric, polarization reversal is accom-
panied by movement of domain boundaries, in a relaxor ferroelectric the
occurrence of the field-induced transition implies that the polarization re-
versal is accompanied by the creation and/or movement of phase bounda-
ries.

As the temperature is raised from T[ towards T^, the hysteresis loop be-
comes slimmer and slimmer. In addition, no saturation of the polarization
is observed even for fairly large-amplitude fields. Instead, the polarization
continues to increase with the amplitude of the applied field.
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10.5 QUANTUM FERROELECTRICS
Quantum ferroelectrics are ferroelectrics in which fluctuations of the elec-
tric polarization are governed by zero-point motion and other quantum-
mechanical effects. Consequently, their critical exponents are different from
those in the classical regime. The relevant temperature in this context is
the saturation temperature, Ts, discussed in §5.4.5. Below this tempera-
ture, quantum effects become increasingly important as the temperature is
lowered towards the absolute zero (Hayward & Salje 1998).

The most relevant quantity to investigate for a ferroelectric phase tran-
sition is the dielectric response. The effect of quantum phenomena on dielec-
tric response was first studied by Barrett (1952), who derived an expression
for the dielectric function of a system of harmonic oscillators obeying Bose
statistics. His predictions were verified for SrTiOs by Sawaguchi, Kikuchi &
Kodera (1952). Barrett's quantum-mechanical model was improved upon
by Pytte (1972) by taking explicit account of the dipole-dipole interactions.

Interest in quantum ferroelectrics received a fresh impetus through the
work of Oppermann & Thomas (1975) and Schneider, Beck & Stoll (1976),
who employed renormalization-group techniques.

10.5.1 Displacive Limit of a Structural Phase
Transition

The notion of a 'displacive limit' of a structural phase transition was in-
troduced by Oppermann & Thomas (1975). The critical temperature Tc of
a structural phase transition in general, and a ferroelectric phase transition
in particular, is determined by a balance between two types of opposing
influences. For T > Tc > 0 the disordering forces, which are predominantly
of a thermal nature, prevail over long-ranged ordering forces like dipole-
dipole coupling interactions. As the temperature is lowered towards Tc, the
disordering tendencies are gradually overcome by the ordering interactions.
The value of Tc for a crystal can be decreased by modifying the ordering in-
teractions by parameters such as stress and composition. For a few crystals,
conditions exist, or can be created by the influence of such parameters, such
that Tc = 0. Such a critical temperature is called the displacive limit of a
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structural phase transition. In other words, the displacive limit is defined
by that set of coupling parameters for which Tc — 0.

We have seen in Chapter 5 that critical fluctuations of thermal origin
can become very dominant in the vicinity of Tc. But if Tc = 0, thermal
fluctuations in the vicinity of Tc die out. One consequence of this is that,
if we make only the classical calculations, i.e. if we do not take note of
quantum fluctuations, a loss of universality is predicted for the critical
phenomena (Morf, Schneider & Stoll 1977). This is because universality
is mainly a result of a large order-parameter order-parameter correlation
length, making a system practically independent of the microscopic details
of the interactions involved.

However, quantum-mechanical fluctuations caused by zero-point mo-
tion reintroduce universality (but of a different class) (Morf et al. 1977).
Consequences of quantum-mechanical fluctuations are very different from
those of thermal fluctuations. For example, there is little or no dependence
on temperature. That is, a quantum ferroelectric is characterized by the
temperature independence of response functions (for T substantially below
Ts). It follows that critical exponents for the displacive limit are not the
same as those in a regime dominated by thermal fluctuations. There is thus
a crossover of critical exponents when the displacive limit is approached.

For the lattice-dynamical model investigated by Morf et al. (1977), if
a d-dimensional system has Tc = 0, then it corresponds to the Wilson fixed
point of a (d + l)-dimensional system. In other words, when the effect of
quantum fluctuations is included, the critical exponents for a d-dimensional
system correspond to the Wilson exponents of a (d+l)-dimensional classical
system. This amounts to an increase by unity of the effective dimensions
of the lattice.

In particular, the predictions of the quantum-mechanical vector model
near the displacive limit are about the same as those of the mean-field
theory for d = 4.

Some important predictions of the model of Morf et al. (1977) at T = 0
are as follows:

Ps ~ (x-xcyS /?* = l/2, (10.5.1)

6-1 - (x-acF
x, 7x = l, (10.5.2)

Tc ~ (x-Xc)1/^, 0 = 2 (10.5.3)

Here x denotes the general coupling parameter, and xc its limiting or critical
value. In to Eq. 10.5.3, 0 = 1 for the classical case.

The term quantum limit is used in the literature in the context of quan-
tum ferroelectrics (Rytz et al. 1980). Near T = 0, although the disordering
influence of thermal fluctuations dies out, the quantum fluctuations may
take over and may be so dominant for a system that it is prevented from
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undergoing a phase transition. It is then called an incipient ferroelectric. If,
on the other hand, a critical composition a;c, or a critical pressure pc, exists
such that a ferroelectric phase transition does occur (at a low temperature)
in spite of the quantum fluctuations, then this critical parameter defines
the quantum limit for the system. That is, at the quantum limit the polar
order has at least a marginal stability against quantum fluctuations.

It was believed at one stage that the number of different ferroelectric
crystal systems for which quantum effects can be observed is not likely to
be large (Hochli & Boatner 1979). However, the present thinking is differ-
ent. We give an outline of the present viewpoint in the next subsection.

10.5.2 Modern Approach to Quantum Ferroelectrics
This subject is still in a stage of active development. Several aspects of the
present position have been described in Kleemann & Salje (1998). Some
conclusions from the work of Hayward & Salje (1998) are mentioned here.

A low-temperature extension of the Landau theory was outlined in
§5.4.5 (Salje, Wruck & Thomas 1991). In particular, the saturation temper-
ature Ts was introduced. This is the temperature characterising crossover,
on cooling the crystal, from classical behaviour to quantum mechanical be-
haviour. Typically, the classical regime prevails for T > 3Ts/2, and the
order parameter is totally saturated (i.e. is totally independent of temper-
ature) for T < Ts/2 (Salje, Wruck & Thomas 1991). In the latter regime,
quantum fluctuations are entirely responsible for determining the univer-
sality class of the system.

Eq. 5.4.26 is exact in the displacive limit defined in §10.5.1. For other
situations, this equation still provides a good approximation for the solution
of self-consistency equations (Salje, Wruck & Marais 1991). The formalism
of Salje and coworkers has the merit that it is applicable to the entire
relevant range of temperatures above and below Ts.

The value of Ts has been derived and tabulated by Hayward & Salje
(1998) for a large number of crystals, not all of which are ferroelectrics.
Ts = OK for SbSI, but can be as high as 334 K for quartz.

The theory of Chamberlin (1998), described in §9.2.13, marks a definite
advance in understanding the (slow) dynamics of quantum ferroelectrics,
as also of several other condensed-matter systems.

We discuss some specific quantum ferroelectrics below.

10.5.3 Strontium Calcium Titanate
Bednorz & Muller (1984) established that Sri_xCaxTiO3 (SCT) is a quan-
tum ferroelectric, the critical exponents of which can be explained by an
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XY model (cf. §5.5.2).
Pure SrTiOs is an incipient ferroelectric. It has cubic symmetry at

room temperature, and undergoes, on cooling, an antiferrodistortive phase
transition to a tetragonal phase of symmetry /4/mcra at 105 K (Fleury &
Worlock 1968). For this transition, Ts = 60 K (Hayward & Salje 1998).
The unit cell of the tetragonal phase is rotated by 45° with respect to the
cubic parent phase.

On further cooling, the relative dielectric function perpendicular to the
tetragonal axis increases to a very high value, reaching 30,000 at about 3
K. At this temperature thermal fluctuations are very weak, and quantum
fluctuations take over, so that the dielectric function becomes independent
of temperature (see Bednorz & Muller (1984) for experimental data).

By analogy with PbTiOa, this crystal should undergo a paraelectric-to-
ferroelectric phase transition on cooling to 20 K (Cowley 1962). However,
the dominant quantum fluctuations at such low temperatures stabilize the
paraelectric phase. Ts = 20 K for this transition (Hayward & Salje 1998). It
has turned out that application of the requisite amount of uniaxial stress can
convert this incipient ferroelectric to a real, uniaxial (n = 1) ferroelectric.

Another method of inducing quantum-ferroelectric behaviour in this
crystal is by replacing some of the Sr2+ ions randomly by Ca2+ ions. The
mixed crystal Sri_xCaxTiO3 is a quantum ferroelectric for xc < x < xr,
where xc = 0.002, and xr = 0.016, with the spontaneous polarization,
Ps, oriented along the pseudocubic directions [110] or [110] (Bednorz &
Muller 1984; Bianchi, Dec, Kleemann & Bednorz 1995). Thus, in this
range of x-values, SCT is an XY-ferroelectric, with a two-component order
parameter (n = 2). It attains a very high peak value for the dielectric
function (e(T) = 110,000 at about 20 K) for x = 0.0107.

For x > xr the peak in e(T), instead of being sharp as in a conven-
tional ferroelectric, acquires a rounded appearance characteristic of a dif-
fuse transition. Bednorz & Muller (1984) attributed this to the onset of a
random-field domain state stipulated by Imry & Ma (1975). Although Sr2+

and Ca2+ ions have the same charge, their sizes are different (1.12 A and
0.99 A respectively). This results in the introduction of random strains
locally, which couple with the electric polarization. Alternatively, some of
the Ca2+ ions may also sit on Ti4+ sites, leading to local charge imbalance,
which may be restored by the occurrence of vacancies on neighbouring oxy-
gen sites. The random formation of such Ca2+-vacancy dipoles results in a
random electric field.

For such a random system the lower marginal dimensionality, d/, is ex-
pected to be 4 (Imry & Ma 1975; Aharony 1978). Therefore, no ferroelectric
ordering is expected for d — 3, but only a random-field domain state, as
observed.
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Another phase transition apparently occurs at T = 3.69 K in SCT
with x = 0.002. In the recent work of Kleemann, Albertini, Chamberlin
& Bednorz (1997) and Kleemann (1998), the real and imaginary parts of
the dielectric function of this crystal were measured for the temperature
range 1.5 < T < 15 K and frequency range 10~3 < / < 107 Hz. For the
high-frequency regime, the system is found to relax in a CvS-like manner,
with a positive correlation factor C. This factor reaches its maximum value
of 68 at T = 3.8 K. Thus the high-frequency high-temperature (T > 4 K)
response is characterized by the existence of an ergodic regime, involving
activated flipping of clusters (just like in PMN).

At lower frequencies a crossover to nonactivated KWW-like behaviour
appears to occur. This regime is characterized by a 3-dimensional percola-
tion distribution function, ns (cf. Eq. 9.2.29), with C < 0. Here also, the
maximum magnitude of C, viz. \C\ = 172, is observed near T = 3.69 K. For
very low temperatures, the relaxation rates of large static domains acquire
a surprisingly high value: c^oo ~ 2 x 10~5 Hz. Dissipative quantum tunnel-
ing is conjectured to determine this (Kleemann, Albertini, Chamberlin &
Bednorz 1997).

10.5.4 Potassium Tantalate Niobate
KTai_xNbxO3 (KTN) is a much investigated quantum ferroelectric. Unlike
SCT described above, it does not suffer from the complications of a struc-
tural phase transition before entering the quantum-ferroelectric regime. It
is an n = 3 system, with xc = 0.008. Classical ferroelectricity is exhibited
by it for the entire range of compositions 0.008 < x < 1. The composition
with x — 0.1 exhibits the highest known value for the dielectric function
(e(Tc) = 160,000), which is obtained in this case at the cubic-to-tetragonal
phase transition (Kind &; Muller 1976).

As pointed out by Hochli, Weibel & Boatner (1977), KTN is the only
known example of a cubic solid solution which exhibits a second-order ferro-
electric phase transition the Tc of which can be varied continuously by
varying x over a wide range.

Pure KTaOa (z = 0) does not display a ferroelectric phase transition,
although there is a dielectric anomaly near T = 0 (Burkhard & Muller
1976).

KTao.gsNbo.osOs is a ferroelectric, with Tc ~ 6QK. And for x > 0.05,
Tc increases almost linearly with #, reaching the value of 700 K for KNbOs.
The Nb concentration, x, serves as the control parameter (like high pres-
sure) governing the quantum-ferroelectric behaviour.

For x = Xc = 0.008 the system becomes a quantum ferroelectric, with
Tc = 0. The saturation temperature, Ts, estimated for KTN by Hayward
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& Salje (1998), is 20 K. At T = 0 the spontaneous polarization varies as
(Hochli et al. 1977):

P,(x,0) ~ (x-xcf*, PX = \ (10.5.4)

This is in agreement with the prediction that in the quantum regime the ef-
fective dimensionality of the lattice is increased by unity. (Morf et al. 1977).
The upper marginal dimensionality, dn, which sets the limit for mean-field
behaviour, gets increased by unity when long-range interactions, as well
as quantum-mechanical fluctuations, are incorporated in the calculation.
Classical critical indices such as (3X in Eq. 10.5.4 are therefore applicable
to quantum ferroelectrics down to d = 2 (instead of d = 3), except that
logarithmic corrections are needed for d = 2. This is also true for the
following:

e-1 - (z-Zc)7*, 7* = 1, (10.5.5)

Tc(x) ~ (x-Xc)1/^, 0 = 2 (10.5.6)

Theoretical and experimental results are similar for both KTai_xNbxO3
and Ki-yNayTaOs, except that xc = 0.008, whereas yc = 0.12 (Hochli &
Boatner 1979; Rytz, Hochli & Bilz 1980). At y = yc = 0.12 the theoretical
and experimental critical indices correspond to a Gaussian fixed point for
a d = 4 isotropic system (Hochli & Boatner 1979).

Unlike SCT (§10.5.2), there is apparently no experimental evidence
for the effect of random electric fields in KTN. Hochli & Boatner (1979)
attribute this to the long range of the dipolar forces, which average out the
local variations of the field.

10.5.5 Potassium Dihydrogen Phosphate
This well-known and popular nonlinear-optical crystal also exhibits quan-
tum ferroelectric behaviour when subjected to a certain hydrostatic pres-
sure. It is a uniaxial ferroelectric, for which Tc becomes zero at a pressure
p = Pc = 16.9 kbar (Samara 1971, 1974, 1978; Nelmes et al. 1991). At the
quantum limit, i.e. at p = pc, the relation e"1 ~ T2 is found to apply, in
contrast to the relation e~l ~ T for a classical ferroelectric. The saturation
temperature, Ts, for this crystal is 49 K (Hayward &; Salje 1998).
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10.6 DOMAIN STRUCTURE OF
FERROELECTRIC CRYSTALS

10.6.1 Domains in a Ferroelectric Crystal
A ferroelectric phase transition is characterized by the appearance of spon-
taneous polarization Ps (with respect to the prototype). Being a vector
this polarization has a magnitude and a direction. This direction, when
referred to the prototype, may or may not be equivalent to other directions
(depending on the ferroic species involved). Also, this direction may be
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either along a polar or a nonpolar direction of the prototype. Thus there
are four distinct possibilities to consider.

(i) Ps emerges along a unique but nonpolar axis of the prototype. An
example is that of KDP. The Aizu species is 42mFmm2(p). The prototype
or paraelectric point group is nonpolar. And the polar 2-fold axis of the
ferroelectric phase coincides with the 4-axis of the prototype. The crystal
has no preference for the two ends of the 4-axis when it makes the transition
to the polar phase. Thus two orientation states are available, and the
possibility exists for reversing the spontaneous polarization of a particular
orientation state by applying a strong enough electric field in the opposite
direction. And there is only one such axis along which this can happen.
KDP is thus a unioxial ferroelectric.

(ii) Ps develops along a nonunique and nonpolar axis of the prototype.
This happens, for example, at the cubic-tetragonal transition in BaTiOs.
The three equivalent < 100 > axes in the cubic phase give rise to a total
of six possible orientations along which Ps can develop in the ferroelectric
tetragonal phase, making it a multiaxial ferroelectric phase.

(iii) In the above two cases, Ps is zero in the prototypic phase. It can also
happen that the prototype already has a spontaneous polarization (but only
one orientation state), and an additional spontaneous polarization develops
at the ferroelectric phase transition along a direction different from that of
the polar axis of the prototype.

In terms of the distinction made by us between absolute and relative
spontaneous polarization in §10.1.7, the absolute spontaneous polarization
is nonzero in both the phases. The relative spontaneous polarization is zero
in the prototypic phase and nonzero in the ferroelectric phase.

In this case, the absolute spontaneous polarization in the ferroelectric
phase has a non-reversible part (which carried through across the transi-
tion from the prototypic phase), and a reversible part (which arose at the
phase transition). When these two are superimposed and one looks at their
vector sum, an applied electric field can only reorient the net spontaneous
polarization (in discrete steps), rather than reverse it. One therefore speaks
of a reorientable ferroelectric (cf. Fig. 10.3.1) (Shuvalov 1970).

Relative spontaneous polarization is always reversible, even for a re-
orientable ferroelectric, except for some trigonal or hexagonal prototype
symmetries (cf. Aizu 1967).

Such a situation occurs in some boracites, wherein the prototype sym-
metry is 43m (Td), and the ferroelectric-phase symmetry is 3m (Csv),
brought about by the emergence of a spontaneous polarization along any
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of the directions [111], [111], [111], or [111]. (In fact there are 8 such direc-
tions, the other four being obtained by reversing these four.)

Several other such group-subgroup combinations have been tabulated
by Blinc & Zeks (1974).

(iv) A fourth situation is conceivable in which additional spontaneous po-
larization develops at a phase transition along a unique polar axis. That
is, in the lower-symmetry phase the spontaneous polarization has a non-
reversible component carried over from the prototypic phase, and another
non-reversible component along the same axis. However, this is not a fer-
roic (and therefore not a ferroelectric) phase transition because there is no
change of point-group symmetry across it. The term coelectric phase tran-
sitions can be introduced for such phase transitions, by analogy with what
Salje (1993a) calls coelastic phase transitions.

The various kinds of symmetry changes at ferroelectric phase transit-
ions have been tabulated by Blinc & Zeks (1974).

10.6.2 Orientation of Walls Between Ferroelectric
Domain Pairs

The orientation of the transition region (domain wall) between a ferro-
electric domain pair is determined by two main factors: minimization of
electrostatic energy and minimization of elastic energy. The latter comes
from the fact that, associated with the relative spontaneous polarization
is the relative spontaneous strain, arising from piezoelectric and/or elec-
trostrictive effects. Generally, the elastic-energy term is more important
than the electrostatic term because, even for a charged domain wall, the
free carriers of charge (electrons) manage to achieve a high degree of effec-
tive charge neutrality (Arlt 1990).

A domain wall along which the mechanical or elastic-strain compatibil-
ity requirement is satisfied is called a permissible wall (Fousek & Janovec
1969; Wiesendanger 1973). This wall has such an orientation that com-
ponents of spontaneous strain along it have the same value from the two
domains separated by it.

Let a plane in the prototypic phase be specified by indices /i, fc,/ (not
necessarily the Miller indices) with reference to a standard Cartesian system
of coordinates. Let ds(si, $2? £3) be an infinitesimal vector in the prototype,
which changes (because of the real or notional phase transition from the
prototypic phase) to dls and cJ2s in the two ferroelectric domains separated
by the plane (/i, fc, /). The condition of mechanical compatibility can be
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then expressed as (Fousek & Janovec 1969; Fousek 1971):

dls2 - ds2 = d2s2 - ds2, (10.6.1)

with
hdsi + kds2 + Ids3 = 0 (10.6.2)

Detailed analysis shows that there are two types of permissible domain
walls: W-walls and S-walls. In addition, sometimes, no wall may exist
which obeys the mechanical compatibility condition for permissibility; the
term R-walls has been used by Fousek & Janovec (1969) for the walls that
exist in such a case.

W-walls may be either Wf-w&lls or W^-walls:
If an F-operation for the domain pair is a 2-fold rotation or a mirror

operation, then the domains are separated by a W^-wall (perpendicular to
the 2-fold axis, or parallel to the mirror plane). W/-walls are prominent
crystallographic planes; they have fixed and rational indices (h, fc, /). Their
orientation is independent of the spontaneous strain involved, and therefore
does not vary with temperature.

If the F-operation is an inversion operation, symmetry considerations
do not put any restriction on the orientation of a W-wall, and the sym-
bol Woo is used in such a case. Other (physical) factors determine the
orientations adopted by such walls.

S-walls have a temperature dependent orientation, and may have ra-
tional or irrational indices. Six categories (Si to SQ) for them have been
identified by Fousek & Janovec (1969).

Excluding the case of Woo-walls, permissible domain walls for a domain
pair can occur in mutually perpendicular pairs. The following possible
situations arise for the pairs: WfWf, WfSj, and SjSj.

The Wall Charge

The electric charge on a domain wall is determined by V • Ps. If the
mechanical compatibility requirement does not conflict with that of charge
neutrality, a charge-neutral wall would have an orientation defined by a
unit vector n normal to it such that

(P, - P'J - n = 0, (10.6.3)

where Ps and P^ are the absolute spontaneous polarizations in the domains
separated by the wall. A wall would be a charged wall if the component of
polarization normal to it is discontinuous across the wall.

If (x, y, z) and (#', y', z1) denote the direction cosines of the spontaneous-
polarization vector in the two domains, the charge neutrality condition can
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be expressed as follows (Fousek 1971):

h(x - x') + k(y - yf) + l(z - zf) = 0 (10.6.4)

If the prototype has hexagonal or trigonal symmetry (for which 4-figure
indices (hkil), (xyuz) and (x'y'u'z'} are used), the above condition changes
to:

2(2/i + k)(x - x'} + 2(h + 2k)(y - y') + 31 (z - z') = 0 (10.6.5)

If this condition is not satisfied, the wall has a charge.
A Woo-wall may have any orientation (so far as symmetry considera-

tions are concerned), and may therefore be either charged or uncharged.
For a W/-wall, if the F-operation is a mirror operation, the wall is

charged. If the wall is perpendicular to a 2-fold axis of the prototype, it is
charge-neutral.

For a mutually perpendicular W/ Si pair of walls, if one is charged, the
other is neutral.

Expected orientations of domain walls for all the 88 full-ferroelectric
species have been derived and tabulated by Fousek (1971).

A head-to-tail configuration of the polarization vectors at a domain
wall is energetically favourable, as it results in an uncharged wall. How-
ever, head-to-head and tail-to-tail arrangements have also been observed
in BaTiOs and KNbOs, with charge compensation by free electrons as a
possible stabilization mechanism (Peng & Bursill 1983; Janovec & Dvorak
1986).

Coherent, Semicoherent, and Incoherent Boundaries

If all crystallographic planes run continuously from one side to the other
across a domain boundary or a phase boundary, it is called a coherent
boundary.

If some but not all crystallographic planes do so, it is a semicoherent
boundary.

If no crystallographic plane runs continuously across the boundary, it
is an incoherent boundary.

10.6.3 Thickness of Walls Between Ferroelectric
Domain Pairs

The domain structure of ferroelectrics, which incorporates the thickness
of domain walls, differs qualitatively from that of ferromagnetics. There are
some basic reasons for this:



414 10. Ferroelectric Crystals

Firstly, in ferroelectrics there exist free carriers of charge, namely elec-
trons, which can screen polarization; there are no magnetic monopoles,
although electrons can still play the role of carriers of spin.

Secondly, electrostriction strains are one to two orders of magnitude
larger than magnetostriction strains. Therefore, in ferroelectrics interac-
tions with defects etc. generally have a more serious effect on the domain
structure, compared to the situation in ferromagnets.

Thirdly, in ferroelectrics we do not have the equivalent of the quantum-
mechanical exchange interaction responsible for long-range ordering in fer-
romagnets. Therefore, ferroelectric domain walls do not have to be thick,
unlike Bloch walls in ferromagnets (§9.4.3). However, depending on the
probe used for 'measuring' the thickness of a wall between ferroelectric
domains, a distinction may have to be made between the 'effective' wall
thickness and the 'real' wall thickness. All in all, it is a rather complex
problem (Fousek 1992a), although important insights have been obtained
in recent years (see Salje 1994).

X-ray diffraction has been used by several workers for determining the
effective wall thickness in ferroelectrics and ferroelastics (see, e.g., Andrews
& Cowley (1986); Wruck et al. (1994); Locherer et al. (1996)).

As the critical temperature Tc is approached, the effective wall thick-
ness, W, tends to diverge (Salje 1994):

W = WQy/Tc/(\T-Tc\) (10.6.6)

The parameter WQ is a measure of the intrinsic wall thickness. It may be
expected to be comparable to the lattice periodicity ao- In real systems,
however, wall bending, intersection of walls, defects, and several other fac-
tors can lead to a very different effective value for WQ. Andrews & Cowley
(1986) arrived at a value WQ = 4.2a0 for KDP.

Similarly, Cao & Barsch (1990) determined W0 = 3.1a0 for SrTiO3, us-
ing data from elastic properties, as well as curvatures of phonon-dispersion
curves.

High-resolution electron microscopy (HREM) has emerged as an impor-
tant experimental technique for determining the 'real' thickness of domain
walls in ferroelectrics and other ferroics1. However, even here complications
can arise from the charge carried by the probing beam of electrons. More-
over, wall thicknesses in the interior of a bulk specimen may be different
from their values near the surface, or values for ultra-thin specimens (see,
e.g., Lin & Bursill 1991; Bursill & Lin 1992).

1It must be mentioned here that, compared to electron diffraction, X-ray diffraction
is better suited for obtaining certain types of information. X-ray diffraction gives infor-
mation which is less localized, thus averaging the local structural parameters over fairly
large volumes of the crystal. This enables one to perform a quantitative analysis of the
strain fields associated with the microstructure (Locherer et al. 1996).
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HREM reveals that for 180° domain walls, e.g. in Ba2NaNb5Oi5 (BNN)
crystals (Lin & Bursill 1991; Bursill & Lin 1992), the domain-wall thickness
is virtually zero. The absolute spontaneous strain associated with the two
domains separated by the wall is the same (so the relative spontaneous
strain is zero), and the registry of the two crystal lattices is easy to achieve.
The domain wall is elongated parallel to the polar axis, and sublattice steps
and ledges occur.

When the F-operation between domains is other than a 180° rotation,
misfit dislocations provide a possible mechanism for achieving registry of
the two lattices at the domain wall (see Salje 1993a). The associated strain
fields, as well as other factors like disorientations and warping of the wall
lead to an increase in the effective or apparent wall thickness.

Mention must be made here of two basic models proposed for under-
standing domain-wall thicknesses, one due to Zhirnov (1959), and the other
due to Kinase & Takahashi (1957). Zhirnov's model is of the Landau-
Ginzburg type (cf. §5.5.2). For a scalar non-degenerate order parameter P
one writes the following Landau-Ginzburg potential:

g = ^(T-TC)P2 + |P4 + |(VP)2 (10.6.7)

The domain wall is assumed to exist perpendicular to the x-axis, with its
mid-plane at x = 0. On solving the Euler-Lagrange equation

5 [£]-£-«- "°68>
the following order-parameter profile is obtained (see Salje 1993a; Hatch et
al. 1997):

P = Potanh-^, (10.6.9)
W

where W is the wall thickness, and PQ is the value of the order parameter
at large x. For a continuous phase transition, W is given by Eq. 10.6.6,
with

W0 = \^c (10.6.10)

This model predicts a domain-wall thickness of 5-20 A for the 180° domains
in BaTiO3, and 50-100 A for the 90° domains.

In Zhirnov's (1959) model the polarization vector does not rotate sud-
denly across the domain wall: rather it changes gradually. By contrast,
there is an abrupt change in the direction of the polarization at the domain
wall in the molecular model of Kinase & Takahashi (1957). Computation
of the competing dipole-dipole interaction energy and the elastic energy in
this model predicts a negligible thickness for the 180° walls in BaTiOa.
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More recently, Huang et al. (1997) have made a Landau-Ginzburg type
calculation which predicts the occurrence of a structural transition within
a 180° wall in a perovskite ferroelectric from an 'Ising-type' configuration
to a 'Bloch-type' configuration on cooling, the latter being more stable in
a wide temperature range.

Moving Domain Walls

So far we have considered widths of domain walls under static equilibrium
conditions. Application of a driving field, e.g. during hysteresis-loop mea-
surements, can make the domain walls move. In general the width of moving
domain walls is greater than that at rest. Sidorkin (1997) has recently given
a detailed theoretical treatment of this subject.

For thick domain walls one can work in the continuum approximation
of the basic Zhirnov (1959) formalism by adding a kinetic-energy density
term to the Landau-Ginzburg thermodynamic potential. For thin walls,
due note has to be taken of the wall-surface energy.
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10.7 FERROELECTRIC DOMAIN
SWITCHING

10.7.1 Kinetics of Domain Switching in Ferroelectrics
The time and field dependence of polarization reversal, or domain switching,
in a ferroelectric is determined by a large number of complex processes, and
cannot be described by a single model. The situation is complex, not only
from the point of view of theory, but also of experiment; there are too many
factors influencing any experimental measurement (Fatuzzo & Merz 1967;
Lines & Glass 1977; Burfoot & Taylor 1979).

Merz (1954) was probably the first to conduct, on BaTiOa, quantita-
tive experiments to determine the switching time ts, and its dependence
on the applied electric field. The basic experiment was quite simple in
design: Apply a step-function field and measure the displacement-current
density as a function of time. For a strong-enough electric-field (at a given
temperature) the direction of spontaneous polarization is reversed, and the
displacement current is a measure of the rate of domain switching, assum-
ing that the conduction current is negligible. For conducting specimens
other techniques, which make a more direct measurement of the remanent
polarization, have to be used (Chynoweth 1956; Husimi & Kataoka 1960;
Ballman & Brown 1972).

For BaTiOa the observed kinetics of domain switching falls into two
regimes, depending on whether the applied field E is less or more than
about 10 kV/cm. For less than this value (Merz 1954):

imaz = toe-a/E, (10.7.1)
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ts = tQea/E (10.7.2)

Here imax is the maximum value attained by the displacement current,
before it starts decaying with time.

For E > 10 kV/cm (Stadler 1958):

ta = kE~l* (10.7.3)

A similar field dependence is observed for TGS crystals for E > 20
kV/cm (Fatuzzo & Merz 1959):

ts = kE~l (10.7.4)

When ferroelectric domain switching occurs under the action of a driv-
ing field, the process involved may be either the nucleation and growth of
regions with the new domain orientation, or, alternatively, a sideways move-
ment of existing domain walls such that the domains oriented favourably
with respect to the driving field grow at the cost of those less favourably ori-
ented. In most situations, the latter mechanism is less likely, for the follow-
ing reason (Landauer 1957): Unlike Bloch walls in ferromagnetic crystals,
domain walls in ferroelectric crystals are usually only a few lattice-spacings
thick. Therefore the energy required for a ferroelectric domain wall to move
by one lattice spacing is not very different from the wall energy itself; i.e.
it is a large quantity. By comparison, the energy gained by the process
of domain-wall movement by one lattice spacing is not very large. It is
therefore not a very probable mechanism of polarization reversal.

The more likely mechanism is similar to crystal growth (cf. §2.1), i.e. by
nucleation and growth of regions with the new orientation of polarization
(Miller & Weinreich 1960; Stadler & Zachmanidis 1963; Hayashi 1972).
If the nucleation and growth occurs on existing domain walls, the whole
process would mimic sideways motion of domain walls.

Crystal growth from a fluid phase is necessarily a first-order process.
Therefore, as discussed in §2.1.1, nuclei of size greater than a critical value
must form first, which can then grow into a larger crystal. The driving
force for this process is provided by supercooling or supersaturation. The
corresponding driving force for domain switching comes from the applied
electric field. Unless the field applied is very large, nucleation of the new
orientation state is expected to be only one lattice-spacing thick (see Lines
& Glass 1977). According to Hayashi's (1972) model, 2-dimensional nuclei
are formed on a 180° wall at a constant rate. They spread along the wall
with different velocities in different directions. This growth of the domain
wall parallel to its own plane can be quite fast because of the ledges and
kinks available for the easy growth of regions with the new polarization
orientation. When the entire surface of the wall is covered up by the new
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growth, the next stage is the formation and growth of another 2-dimensional
nucleus (by thermal activation) on a flat terrace site (cf. §2.1.3). This is a
slow and therefore the rate-determining process. Hayashi's (1972) analysis
gives the following expression for the nucleation rate 1/r:

1/r - e~WE\ (10.7.5)

where 6 is fairly independent of E. This equation describes correctly the
observed switching rate l/ts (cf. Eq. 10.7.2).

The situation becomes more complex in the high-field regime, just as it
does for the growth of a crystal from a highly supersaturated or highly su-
percooled fluid phase. Nuclei can now form even on top of other nuclei (see
Chernov 1989). The corresponding situation in domain switching is that
the apparent wall velocity now depends not only on the rate of nucleation,
but also on the growth velocity of the already formed nuclei. Hayashi's
(1972) analysis shows that, in the high-field regime, the exponential field
dependence described by Eq. 10.7.5 is replaced by a power-law dependence.
In fact, three regimes can be identified, each with its own field dependence
for the wall velocity v:

(i) Thin wall; E ~ 200 V/cm:

v = hE^e-VW (10.7.6)

(ii) Thick wall; step-like structure; E ~ 1 kV/cm:

v = k2E-l/2e~6/E (10.7.7)

(iii) Thin wall; E > 30 kV/cm:

v = k3En (10.7.8)

10.7.2 The Ferroelectric Hysteresis Loop
The characteristics of a typical hysteresis loop of a ferroelectric crystal
(Fig. 10.7.1) are quite similar to those of a ferromagnetic crystal (Figs.
9.1.1 and 9.6.1). The coercive field Ec, the spontaneous polarization Ps,
and the remanent polarization Pr have meanings similar to those of the
corresponding ferromagnetic parameters (see, e.g., Lines & Glass 1977).

Fig. 10.7.1 also shows the D-E curve for a virgin (depolarized) specimen
of a ferroelectric (curve OABC). Its interpretation is quite similar to that of
the ferromagnetic analogue shown in Fig. 9.1.1. The segments OA, AB, and
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Figure 10.7.1: A typical ferroelectric hysteresis loop. As in the ferroma-
gnetic analogue shown in Fig. 9.1.1 (and discussed in §9.1.1), the curve
OABC is for a virgin specimen, having randomly oriented domains to start
with. And like in Fig. 9.6.1 for a ferromagnetic crystal, the outermost en-
velope (on which the points marked Ec and Pr lie) is the so-called limiting
hysteresis loop. The fields marked E\, E^ and E% are discussed in §14.2.1.

BC correspond, respectively, to reversible domain-wall bowing, irreversible
domain-wall movement, and domain rotation. Also, by analogy with Fig.
9.1.1 again, the slope of the straight line defines the initial permittivity e*.
And the inflexion point B corresponds to the maximum slope of the curve,
and defines the maximum permittivity, emax.
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Chapter 11

FERROELASTIC
CRYSTALS

We define ferroelastic crystals as those which undergo, or can be deemed
to have undergone, at least one ferroelastic phase transition.

Ferroelastic phase transitions are a subset of ferroic phase transitions
(cf. Fig. 5.2.2). Apart from the fact that they are nondisruptive phase
transitions (NDPTs), they have the distinctive feature that they always in-
volve a spontaneous shear distortion of the crystal lattice, such that there is
a change of the shape (rather than the size) of the crystallographic unit cell.
The case of the cubic-to-tetragonal phase transition in BaTiOa illustrates
the point. It is a first-order phase transition, so that there is a change
in the volume of the crystallographic unit cell. This fact is unimportant
and irrelevant from the point of view of defining it as a ferroelastic phase
transition.1 What is relevant is that there is a change of the shape of the
unit cell: from a cube to a square prism, brought about by an elongation
of the cell edge along one of the basis vectors, say as, and a reduction of
the repeat distance along ai and a2. Since the elongation can occur along
any of the basis vectors ai, a2, as, domain pairs can exist in the tetragonal
phase, members of which differ in the direction chosen by the crystal for
elongation. Such domain pairs are said to differ in relative spontaneous
strain (cf. §11.1.3). If a phase transition results in the occurrence of at
least one such domain pair, it is called a ferroelastic phase transition.

We begin this chapter by recapitulating some elastic properties of or-
dered crystals.

1We must emphsize that volume effects are important and relevant when it comes to
determining the kinetics and energetics of a ferroelastic phase transition (Salje 1990).

421
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11.1 SOME ELASTIC PROPERTIES OF
ORDERED CRYSTALS

11.1.1 Strain, Stress, Compliance
A crystal is said to be deformed or strained when there is a change of
the relative mean positions of its atoms. In crystal physics we replace the
actual atomic structure of a crystal by a homogeneous continuum, which is
anisotropic in general. In such a continuum we can define strain at a point
in terms of the position vector x of that point.

As a result of the deformation or strain this position vector changes to,
say, x'. The vector

u = x7 - x, (11.1.1)

called the displacement vector, is a measure of the displacement of the
material point positioned initially at x. The displacement vector can be
expressed either as a function of the initial position vector x (the Lagrangian
form of strain, or of the final position vector x7 (the Eulerian form of strain
(see, e.g., Mase 1970)). We shall adopt the Lagrangian form.

For defining the components of the strain tensor one introduces a Carte-
sian system of coordinates with respect to a certain point inside the con-
tinuum, taken as the origin O. Since the deformation or strain is defined in
terms of relative distances between points, we can ignore any translation of
the continuum as a whole. That is, we can assume without loss of general-
ity that the origin O is not affected (moved) by the deformation. Therefore
the components of the vectors x, x7 and u can be defined with respect to
the same origin O.

Thence, in the Lagrangian formulation, components of u can be written
as

HI = Ui(xi, x2, x3), i = 1,2,3 (11.1.2)

As shown in several standard texts (Nye 1957; Bhagavantam 1966),
the state of deformation of a continuum can be described in terms of a
symmetrical second-rank tensor, (e^), called the strain tensor. Depending
upon the situation, several such tensors can be introduced.

When the relative displacements are vanishingly small, the relevant
strain tensor is the linear Lagrangian strain tensor.

<-K£j+£)
For larger displacements, one describes strain in terms of the finite

Lagrangian (or Green's) strain tensor.

1 /'dui duj dukduk\ /,, . ^
^ = o (ir- + "**- + IT" IT* (11.1.4)J 2 \dxj dxi dxi dxj J
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We shall be concerned mainly with linear Lagrangian strain, defined by
Eq. 11.1.3. It is a polar tensor of rank 2. Unlike the electric polarization
tensor, the strain tensor has nonzero components even for centrosymmetric
crystals.

When a crystal is deformed, its lattice parameters undergo changes.
The lattice parameters are easily determined by an XRD or neutron diffrac-
tion experiment. It is therefore useful to derive the strain-tensor coefficients
in terms of lattice parameters before and after a deformation. Such a deriva-
tion for several types of strain tensors has been carried out by Schlenker,
Gibbs & Boisen (1978). We quote from their work for the linear Lagrangian
strain tensor:

ajsin/ysinV*
eil = :—7T~. 1 1> (ll.l.OJaisinpsm7*

do sin a' ., ,+ + + ^
e22 = -*—. 1, 11.1.6)

a2 sin a '

e33 = — - 1, (11.1.7)
as

1 \a'2 sin a'cos 7'* ax sin /? sin 7* ]
612 = 621 = o : : * . Q . ~ , (11.1.8)2 [ c*2 sin a sin 7* aismpsm7*J

1 f aicos/3'
ei3 = e3i = - —5-^ +

2 L«i sin p sin 7*
cos 7* /a^cosa' a'3 cos a \ agcos/? 1
sin 7* \ a2 sin a a3 sin a / a3 sin /3 sin 7* J '

1 Taocoso;' Oocosal ,^ , ^.
e23 = e32 = - -*—. —. 11.1.10)

2 [ «2 sin a 03 sin a J

Here (ai,a2,a3,a:,/3,7) are the lattice parameters before the deformation
of the crystal, and (a'^a^a^, a7, /?',7') are their values after the deforma-
tion. A * superscript stands for corresponding parameters of the reciprocal
lattice. The Cartesian system of coordinates (for defining components of
the strain tensor) is chosen as follows: The z-axis is taken along as; the
x-axis is taken along aj; and the 7/-axis is perpendicular to the z-axis and
the x-axis, i.e. a2 is in the yz-plane.

Stress
Stress is force per unit area. A body in which one part exerts a force on
neighbouring parts is said to be in a state of stress. Following Nye (1957),
we can define stress at a point P in a material as follows: We consider an
element of surface area 6S passing through P, and imagine a unit vector
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1 drawn perpendicular to this area. Let f 6S be the force across this area.
Then, it can be shown that (cf. Nye 1957), as 6S —> 0, the components of
force are related to the direction cosines of the area normal by

fi = (Tijlj (11.1.11)

The nine coefficients (cr^), which can be shown to form a tensor, define the
stress tensor.

Imagine a cube embedded in the material, with its edges parallel to the
Cartesian axis. It can be shown then that (an) are the normal components
of stress, and (o~ij, i ^ j) are the shear components.

If body torques are absent, the stress tensor has the following permu-
tation symmetry:

<Tij = Vji (11.1.12)

Such a symmetric second-rank tensor can be represented by a surface
called the stress quadric, defined by the relation

(TijXiXj = 1 (11.1.13)

The stress tensor is a field tensor (cf. §3.1.3), and not a matter tensor.
Therefore the symmetry of the stress quadric does not have to conform to
the point-group symmetry of the material to which the stress is applied.
Of course, the net symmetry of the stressed system (material plus applied
stress) does depend on the initial symmetry of the material.

Through a coordinate transformation, the stress quadric can be referred
to its principal axes, and, in the most general case, has the following form
(triaxial stress):

' (7n 0 0

KO = 0 (722 0 (11.1.14)

0 0 a33 _

Uniaxial Stress

A system is said to be under uniaxial stress when Eq. 11.1.14 has the
following special form:

" a 0 0 "
(o-ij) = 0 0 0 (11.1.15)

[ 0 0 0
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Biaxial Stress
This corresponds to the following representation:

"an 0 0 "
K-) = 0 a22 0 (11.1.16)

0 0 0

Compliance
Application of stress to a body produces strain in it, with a resultant change
of shape and/or size. Below a certain elastic limit, and for sufficiently short
durations of stress application, the body is able to return to its original
shape and size when the stress is removed. Also, in the so-called linear
regime, the strain is found to be linearly proportional to the applied stress
(Hooke's law). In this regime, components of the strain tensor are related
to those of the stress tensor through the following set of equations:

tij = Sijki o~ki (11.1.17)

This set of 9 equations can be inverted to yield the following:

<?ij = Cijkitki (11.1.18)

The coefficients (sijki) in Eq. 11.1.17 define a fourth-rank tensor called
the elastic-compliance tensor. Similarly, stress depends on strain through
the 81 components of a fourth-rank elastic stiffness tensor (cijki).

In the-absence of body torques, the stress tensor in Eq. 11.1.17 is
symmetric: a^i = oik- Under these conditions,

Sijki = Sijik (11.1.19)

Similarly, if conditions exist such that the strain tensor is also symmet-
ric, we have

Sijki = sjiM (11.1.20)

Because of Eqs. 11.1.19 and 11.1.20, the number of nonzero indepen-
dent components of the elastic-compliance tensor comes down from 81 to
36. This is intrinsic symmetry (§3.1.4).

The compliance tensor also possesses extrinsic symmetry. For example,
if both the stress and the strain tensors can be assumed to be invariant
under an inversion operation of the spatial coordinates, the compliance
tensor would also have this symmetry. Inversion of coordinates therefore
makes no difference to any component of the elastic-compliance tensor.

Other crystallographic operations, however, do impose restrictions on
the components of the compliance tensor (in accordance with the Neumann
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theorem), bringing down the number of independent nonzero components.
The results are tabulated in, for example, Nye (1957) and Sirotin & Shaskol-
skaya (1982).

Further restrictions are imposed by physical requirements. For exam-
ple, the energy stored in a strained crystal must be positive definite if the
configuration is to be stable one (see Nye 1957).

11.1.2 Absolute Spontaneous Strain
Strain in the absence of external stress is called spontaneous strain. This
is also the meaning we assign in this book to absolute spontaneous strain.
We append the adjective 'absolute' to make a distinction from what we call
relative spontaneous strain in §11.1.3.

Strain must be defined with respect to a certain reference state in which
all its components are zero. We can illustrate the notion of absolute sponta-
neous strain by considering the ferroelectric phase transition in TGS. The
ferroic species involved is 2/raF2. The emergence of spontaneous polariza-
tion P% in the polar phase of point-symmetry 2y gives rise to a strain with
reference to the prototypic phase (through the relation 622 = $2222P$)-
This strain occurs in the absence of any applied stress, and is thus a spon-
taneous strain.

The ferroelectric phase of TGS has two orientation states, with space
inversion as an F-operation that can map one state to the other. The two
orientation states have parallel but oppositely oriented polarization vectors,
and the F-operation reverses the orientation of this polarization when it
maps one orientation state to the other.

The two states also possess (absolute) spontaneous strain, but the
strain-tensor components are identical for them. This is because this strain
varies as P2, and not as P. Since the two states do not differ in spontaneous
strain, the polar phase of TGS is a nonferroelastic phase.

The F-operation is an inversion operation, and a strain tensor is in-
variant under this operation. Thus everything is self-consistent: The F-
operation changes the sign of the polarization vector, as expected; and it
does not alter any component of the spontaneous-strain tensor, again as
expected.

The R3m —> R3c phase transition in calcite provides an example of a
nonferroelastic phase transition, which is nonferroelectric at the same time.
In fact, it is a nonferroic phase transition because it does not involve any
change of point-group symmetry. On account of ordering of the orienta-
tions of the carbonate groups, the symmetry changes from R3m to #3c,
accompanied by the emergence of absolute spontaneous strain. In this case
there are no orientation states; only antiphase domains.
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The need for making a distinction between absolute and relative spon-
taneous strain will become clear in the next section.

11.1.3 Relative Spontaneous Strain
The relative spontaneous strain tensor was introduced by Aizu (1970b)
to meet the special requirements of ferroelastic state shifts. We consider
the example of TGS again. As explained above, it is a nonferroelastic
ferroelectric. Its two orientation states do not differ in spontaneous strain,
so external stress cannot cause a state shift.

Other ferroic crystals in which the same situation occurs are SbSI (fer-
roic species mmmFmm2), and LiNbOa (ferroic species 3mF3m).

Clearly, the definition of spontaneous strain must be modified to ex-
clude any orientational state shifts in such crystals from the ambit of ferro-
elastic state shifts.

Before describing Aizu's prescription, we draw attention to an addi-
tional problem which must also be attended to for defining spontaneous
strain relevant to ferroelastic state shifts.

Strain, and therefore spontaneous strain, can be defined only with ref-
erence to some initial reference state. Suppose we define the reference state
(with all elements of the spontaneous strain tensor equal to zero) at some
particular temperature. The Curie temperature Tc can be a natural choice.
However, because of thermal expansion, this reference state does not con-
tinue to have all its strain-tensor coefficients zero for T > Tc. This problem
is more acute for ferroelasticity, and does not arise in the case of ferromag-
netism. It also does not arise in the case of ferroelectrics with a nonpolar
prototypic phase. This is a basic difference between spontaneous strain on
one hand, and spontaneous polarization and spontaneous magnetization on
the other. Given the point-group symmetry of a phase of a crystal, it is
possible to tell whether or not this phase can have spontaneous polariza-
tion and/or spontaneous magnetization, and what are their magnitudes.
The answer to this question does not require a reference to any prototype
symmetry. For spontaneous strain, however, the questions cannot even be
formulated adequately without reference to a prototype symmetry (Crack-
nell 1974).

Aizu (1970b) introduced a modified (i.e. relative) spontaneous-strain
tensor which is appropriate for specifying ferroelastic state shifts uniquely.
Aizu's formulation also includes a definition of magnitude of spontaneous
strain for a full ferroelastic. All this is achieved by requiring that the
magnitude of spontaneous strain be so defined as to be: (i) independent
of the choice of the coordinate system; (ii) the same for all the orientation
states of the full ferroelastic; and (iii) zero over the whole temperature
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range in the prototypic phase.
Consider a full ferroelastic with q orientation states Si, 6*2, • • •, Sq. Let

e(Si) be the symmetry-adapted strain tensor for the orientation state S».
The relative spontaneous strain tensor e^(Si) for this state is defined as
(Aizu 1970b):

e(s)(S,) = e(Si) - -£>(Sfc), < = l,2,..g (11.1.21)
q k=i

If the ( i , j ) element of e^(Sk) is denoted by e^)^, the magnitude es
of relative spontaneous strain is defined by

3 3

<% - EE^w f11-1-22)
t=i j=i

These definitions satisfy all the three conditions stated above.
Application of Eq. 11.1.21 to the two orientation states of TGS gives

us the result that the Aizu spontaneous strain for both the states is zero
(even though they have nonzero absolute spontaneous strain).

For defining the Aizu (or relative) spontaneous strain for an orientation
state, one takes the absolute spontaneous strain tensor for that state, and
subtracts from it a tensor that is an average over the absolute spontaneous
strain tensors of all the orientation states of the full ferroelastic. In other
words, that part of the absolute spontaneous strain is subtracted that is
common to all the orientation states.

In the case of TGS, the common part is equal to the full strain tensor
itself, so the relative spontaneous strain part is zero, making it a nonferro-
elastic.

We consider the case of SrTiOs for illustrating the computation of the
relative spontaneous strain tensor for a full ferroelastic. This crystal belongs
to the ferroic species m3mF4/mmm, with 48/16 or 3 orientation states.
For any of the states, say Si, the absolute spontaneous strain tensor can be
written in the following form (which conforms to the symmetry 4/rarara of
the ferroelastic phase):

/ en 0 0 \
e(Si) = 0 en 0 (11.1.23)

V 0 0 e33 /

The absolute spontaneous strain tensors for the other two orientation
states are as follows (Aizu 1970b; Wadhawan 1982):

/ e33 0 0 \
e(S2) = 0 en 0 , (11.1.24)

V 0 0 en /
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/ eu 0 0 \
e(S3) = 0 ess 0 , (11.1.25)

V 0 0 en J

The average or mean (absolute) strain tensor over the three states is

j / 2en +e33 0 0 \
em = - 0 2eii+e33 0 (11.1.26)

\ 0 0 2en+e 33/

By subtracting this tensor from the absolute spontaneous strain tensors
given by Eqs. 11.1.23-25, we obtain the relative spontaneous strain tensors
for the three states:

(BO 0 \
e(a)(5i) = I 0 B 0 , (11.1.27)

\ 0 0 -25 /

/ -2B 0 0 \
ew(S2) = 0 B O , (11.1.28)

\ 0 O B /

/ B 0 0 \
e(.)(S3) = 0 -2B 0 , (11.1.29)

\ 0 0 B /

where

B = i(en - e33) (11.1.30)

The magnitude of relative spontaneous strain, as defined by Eq. 11.1.22,
can be calculated from any of the Eqs. 11.1.27-29. In each case we get

ea = V6\B\ = V^/3|(cii - g33)| (11.1.31)

In the cubic phase, en = 633, giving B = 0 over the entire temperature
range of this prototypic phase.

Further, none of the nonzero elements of the relative spontaneous strain
tensor has the same value in all the orientation states. These elements can
thus be regarded as a kind of thermodynamic state parameters for full
ferroelastics. They have been derived and tabulated for each of the 94
species of full ferroelastics by Aizu (1970b).

Salje (1993a) has given details for determining the elements of the spon-
taneous strain tensor in terms of the lattice parameters of a crystal.
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11.1.4 Anelast icity
The movement or migration of atoms, defects (including domain boundaries
and phase boundaries) through a material on application of stress depends
not only on the stress applied, but also on time. The strain produced is
not instantaneous, but lags behind the applied stress, and may approach
the equilibrium value only asymptotically. The elastic (i.e. recoverable)
dependence of strain on both stress and time is called anelasticity. Elastic
after-effect is another term used, with practically the same meaning.

And the term creep is used for the time-dependent strain that is plastic
or nonrecoverable.

Anelastic effects in a crystal involve two types of diffusion: diffusion
of thermal energy, and diffusion of atoms, with corresponding thermal hys-
teresis and mechanical hysteresis effects.

Thermal hysteresis arises when the loading and/or unloading rates are
too fast compared to processes such as thermal conduction.

Mechanical or elastic hysteresis is associated mainly with the diffusion
rates of foreign atoms or other defects in the crystal, and depends strongly
on temperature. In addition, there may also be a defect-independent ferro-
elastic response in certain crystals.

When a small compressive stress is applied to a defect-free nonferro-
elastic crystal, its length along the direction of the stress decreases, with
a corresponding increase in lateral directions through the Poisson effect.
When the stress is removed, such a crystal recovers its original shape quite
quickly.

The situation changes very substantially if, for example, some intersti-
tial atoms are present. Examples of such systems are: carbon atoms in a
crystal of Fe; hydrogen atoms in a crystal of Nb; and basal-plane oxygen
atoms in a Y — Ba — Cu — O crystal (Wadhawan & Bhagwat 1989). When
compressive stress is applied to such a crystal in a direction parallel to a
unit-cell edge which has interstitial impurities, the rate of compressive de-
formation is affected by the rate at which the interstitial atoms can hop
to interstitial sites in the plane normal to the direction of the compressive
stress. Similarly, application of compressive stress in the lateral plane forces
the interstitial impurities to hop back to their original sites (in a statistical
sense). This is the essence of ferroelastic hysteresis described by Alefeld
(1971) for some metal-hydrogen systems.

Snoek Relaxation and Gorsky Relaxation

Consider a crystal which is at equilibrium, and on which no stress or any
other field has been applied. Let us assume that a small number of point
defects (e.g. interstitial impurities or dopant atoms) have been introduced
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in the crystal. These point defects are assumed to be distributed ran-
domly over crystallographically equivalent sites. Let us now apply a uniax-
ial stress. The crystal will respond by undergoing stress-induced ordering of
these point defects by a mechanism whereby an impurity atom makes a spe-
cific choice from among the crystallographically equivalent sites available
to it for occupation (Nowick & Heller 1963). Two main types of relaxation
phenomena, with very different time scales, are involved, which we describe
briefly.

A point defect in a crystal creates a strain field around it. The local
distortion produced in the lattice can be visualized as an elastic dipole
described by a polar second-rank tensor (Zener 1948; Nowick & Heller 1963;
Kroner 1964; Alefeld 1971).

The concept of the elastic dipole has been introduced by analogy with
electric dipoles. In fact, they are more similar to magnetic dipoles, than
to electric dipoles. But there are important differences among all three.
While electric monopoles (charges) exist, magnetic and elastic monopoles
do not. The elastic dipole is described by a polar second-rank tensor. By
contrast, the electric dipole is described by a polar first-rank tensor, and
the magnetic dipole by an axial first-rank tensor. Whereas electric and
elastic dipoles possess time-inversion symmetry, magnetic dipoles do not.
There are important consequences of all these differences. For example,
since both stress and strain are second-rank tensors, they are connected by
a fourth-rank tensor, namely the compliance tensor. The higher ranks of
the tensors involved result in a much richer and more complex mechanical
behaviour compared to the electric and magnetic analogues.

The existence of a point defect and the elastic field associated with it
usually lowers the local symmetry of the crystal lattice. Being a symmetric
second-rank polar tensor, the general representation surface often associ-
ated with the strain tensor is an ellipsoid. Under the action of external
stress, the elastic dipoles get reoriented, typically over a picosecond time
scale. This orientational relaxation is called Snoek relaxation (Snoek 1941,
1942).

By and large, interstitial defects cause an expansion of the crystal. By
contrast, the effect of substitutional defects on the density of the crystal
may be quite small. The actual situation, of course, is a complex interplay
of these two types of effects. If there is a net expansion or contraction,
then an external stress field, producing a gradient in this dilatation or
contraction, results in diffusional relaxation or Gorsky relaxation (Gorsky
1935; Alefeld, Volkl & Schaumann 1970).

Whereas a lowering of the local site symmetry around the defect site
is a prerequisite for the occurrence of the Snoek effect, this is not the case
for the Gorsky effect.
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The Snoek and Gorsky relaxations can be distinguished experimentally
on the basis of the time scales involved. To take the example of hydrogen
in Nb, the typical time for the Snoek hopping of hydrogen atoms under
stress is of the order of 10~12 — 10~n seconds. On the other hand, Gorsky
diffusion over a crystal size of 1 mm needs 1012 — 1013 hoppings of a point
defect, which works out to a relaxation time of the order of 10 to 100
seconds.

Lattice Gas

Another relevant concept in the present context is that of a lattice gas
(Lee & Yang 1952). A lattice gas is a gas of particles constrained to exist
only on lattice sites. Hydrogen atoms in a crystal of Nb can be viewed as
constituting a lattice gas (Alefeld et al. 1969). Their presence and mutual
interactions modify the compliance tensor of the host crystal. They also
display critical phenomena and phase transitions, just as ordinary gases do
at high-enough densities and low-enough temperatures.

A phase separation occurs below a critical temperature. That is, there
occur regions of increased hydrogen concentration (positive spontaneous
strain), coexisting with regions of reduced hydrogen concentration (negative
spontaneous strain).
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11.2 STRUCTURAL CLASSIFICATION OF
FERROELASTICS

Ferroic phase transitions can be either ferroelastic or nonferroelastic (cf.
§5.2). Ferroelastic phase transitions involve a distortion of the shape of
the crystallographic unit cell; e.g. a cube changing into a rhombus. What
kind of crystal structures are more prone to spontaneous ferroelastic dis-
tortions? Which ferroelastic phases have large magnitudes of spontaneous
strain? There are no systematic answers to such questions yet, although
some progress has been made in this direction.

Our understanding of the corresponding questions in the case of ferro-
electric crystals is somewhat better. Abrahams & Keve (1971) conducted a
fairly comprehensive survey of ferroelectric crystal structures and arrived at
some general conclusions. For example, they could classify a large number
of ferroelectrics into three categories: one-dimensional, two-dimensional,
and three-dimensional, depending on whether the atomic displacement vec-
tors (with reference to the prototypic structure; cf. §8.4) responsible for
the net spontaneous polarization are confined predominantly to one direc-
tion, one plane, or not confined to any of these. They observed that the
spontaneous polarization is the largest for the first category, and smallest
for the third.

A different approach for a structural classification of ferroelastic crys-
tals could be in terms of the chemical groupings of the atoms involved, to
see if the relevant elastoactive atomic groupings can be located. A good
attempt in this direction was made by Dudnik & Kiosse (1983), although
much more needs to be done. Progress in this area can enable us to tailor-
make ferroelastics for specific applications.

We summarize here the work of Dudnik & Kiosse (1983), whom we shall
call DK for short. Their work deals only with inorganic nonferroelectric
ferroelastics.

DK identify 15 structural families of ferroelastics according to their st-
ructural type. In addition, they mention 8 individual ferroelastics which
cannot be assigned to these 15 families, and, when more examples are
available, they may become representatives of additional structural fami-
lies. These 8 crystals are: H3BO3, Sb5O7I, KIO2F2, Mg2B2O5, PtGeSe,
K2Ba(NO2)4, ZnGeF6.6H2O, and KC1O3.

Two of these, namely H3BO3 (Wadhawan 1978b) and KC1O3 (Wad-
hawan 1980) have the special feature that the magnitude of spontaneous
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strain is extremely large for them. Another crystal for which this is the case
is 9-hydroxy-l-phenalenone (Svensson & Abrahams 1984). Stress-induced
creation and/or movement of domain walls is naturally more difficult in
such crystals, particularly in thick specimens. It is possible that, in addi-
tion to genuine ferroelastic switching, the phenomenon of slip may also be
involved, making the experimental study of their domain-wall movement a
very complicated proposition.

DK conclude from their crystal-chemical survey that an elastoactive
grouping of atoms can normally be identified in each of the 15 ferroelastic
families. These groupings of atoms can easily change their orientation and
shape under an applied stress. They usually include the anion or cation
complexes which are dominant in determining the packing of the building
blocks of the crystal structure; hence their key role in determining the
ferroelastic response to the applied stress.

Most of the 15 ferroelastic families and some of the 8 other special
types of pure ferroelastic crystals can be assigned to one or the other of five
crystal-chemical classes. Very briefly, these classes are as follows:

1. Ferroelastics containing isolated or 'zero-dimensional' (mostly tetrahe-
dral) anionic complexes.

2. Ferroelastics with anion or cation complexes connected to each other
and forming infinite chains, bands, or layers.

3. Ferroelastics with anion complexes connected by hydrogen bonds into
chains, bands or layers.

4. Ferroelastics with a 3-dimensional framework formed by corner-sharing
anionic octahedral complexes.

5. Ferroelastic molecular-ionic crystals.

Class 1 incorporates seven of the 15 ferroelastic families: palmierites;
fergusonites; teilorites; langbeinites; complex cyanides; and double trigonal
molybdates and tungstates. We mention one example from each of these
seven families in the same sequence: Pb3(PO4)2, BiVO4, K2CrO4, LiTlSO4,
K2Mn2(SO4)3, K2Hg(CN)4, and NaFe(MoO4)2.

Class 2 covers four of the 15 families: pentaphosphates (e.g. LaP5Oi4),
fresnoites (e.g. Ba2TiGe2O8), M4A(XO4)3 (e.g. K4Zn(MoO4)3), and ditel-
lurites (e.g. SrTe2Os). This class also includes SbsOyl.

Class 3 incorporates the alkali trihydro-selenites (e.g. KH3(SeO3)2),
and also H3BO3.
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Class 4 comprises the perovskite-family ferroelastics, an example being
LaAlOa. Elpasolites like Cs2NaBiCl6 are taken as a subfamily of this family.

Lastly, Class 5 consists of the calomel family, represented by Hg2Cl2.
There is some difficulty in putting compounds of the type PbsX2Oi3,

with X = P, V, As, into any of the above classes. They can perhaps be
assigned to Class 1.
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11.3 FERROELASTIC PHASE
TRANSITIONS

Ferroelastic phase transitions are ferroic phase transitions involving a
change of the crystal family. Our crystallographic classification of phase
transitions, described in §5.2, divides all ferroic transitions into two classes:
ferroelastic and nonferroelastic-ferroic, thus assigning a pride of place to
ferroelastic transitions (compared to other ferroic transitions like ferroelec-
tric or ferromagnetic). There is a fundamental reason for doing this, which
is connected with the nature of critical fluctuations in the vicinity of such
transitions (Bruce 1976; Cowley 1976; Folk, Iro & Schwabl 1976a, b, 1979).
For a continuous or quasi-continuous phase transition the fluctuations of
the order parameter become increasingly large and correlated as Tc is ap-
proached. The fluctuations are 'premonitory' in nature, in the sense that
small regions of the crystal are locally transformed into the new phase even
before the critical point is actually reached. It is as if the structure has
a premonition of the phase it is heading for. If homogeneous strain is the
order parameter (as for proper ferroelastic phase transitions), the appear-
ance of these fluctuating regions of the new (ferroelastic) phase results in
a lattice mismatch between the new phase and the old phase, which has
a curbing effect on the critical fluctuations. [Thus, these fluctuations are
not only premonitory, they are also suicidal !] Moreover, the strain fields
are of a long-ranged nature. For all these reasons, ferroelastic phase tra-
nsitions, particularly proper ferroelastic transitions, are well-described by
mean-field theories like the Landau theory (Cowley 1976; Salje 1991). This
is irrespective of whether or not the transition is also concurrently a ferro-
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electric transition. Thus, ferroelastic phase transitions are a class apart, as
reflected in our classification.

11.3.1 True-Proper and Pseudoproper Ferroelastic
Phase Transitions

Ferroelastic phase transitions with homogeneous strain as the order
parameter, or with homogeneous strain having the same symmetry as the
actual order parameter, are called proper ferroelastic phase transitions.

If the order parameter can be identified with a component of the strain
tensor, we speak of a true-proper ferroelastic transition.

If the primary instability driving the proper ferroelastic transition is
some parameter other than homogenous strain, but the strain emerging at
the phase transition has the same symmetry as the order parameter, we
speak of a pseudoproper ferroelastic transition.

If a true-proper ferroelastic transition is driven by a lattice-dynamical
soft mode, the soft mode is a zone-centre (k = 0) acoustic phonon.

When an optical phonon mode softens, its frequency tends to zero. But
the frequency of an acoustic phonon is anyway zero at k = 0. What then
is the meaning of softening of such a mode? The softening of such a mode
means that its velocity (du/dk) tends to zero at the ferroelastic transition
(Rehwald 1973; Cowley 1976). Stated differently, although the frequency
of an acoustic phonon mode is zero at k = 0, when such a mode softens, its
frequency becomes zero even in the neighbourhood of k = 0.

True-Proper Ferroelastic Transitions and Critical Fluctuations

A ferroelastic phase transition involves a lattice mismatch between the par-
ent phase and the daughter phase.

Pretransitional (or premonitory) fluctuations set in even before the
critical temperature Tc is actually reached. Because of the lattice mismatch
the critical fluctuations tend to be self-curbing (suicidal), making critical
phenomena less prominent for true-proper ferroelastic transitions. If we add
to this the fact that strain fields are long-ranged fields, mean-field theories
like the Landau theory can be expected to be more applicable to them than
to other types of phase transitions (Patashinskii & Pokrovskii 1979). This
is indeed found to be the case by detailed analyses (Cowley 1976; Folk, Iro
& Schwabl 1976a, b, 1979; Als-Nielsen & Birgeneau 1977; Salje 1991).

As stated earlier, softening of an acoustic mode (at k = 0) means that
its velocity becomes vanishingly small. If we couple this to the fact that
acoustic velocities in crystals are generally direction-dependent, we arrive at
the possibility that mode softening may occur in certain selected directions
only. In fact, it is possible to split the d-dimensional acoustic wavevector
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k into an m-dimensional soft component and a (d — m)-dimensional hard
component. Renormalization-group considerations then lead to the follow-
ing expression for the upper marginal dimensionality (Folk et al. 1976a,
b):

777

du = 2 + - (11.3.1)

We recall from §5.5.5 that if the dimensionality d of a system is such
that d > du, results of the Landau theory are valid, and there is no need
for a recourse to a renormalization-group theory treatment. If d = du, the
Landau theory works in a 'marginal' way, its results requiring only minor
'logarithmic' corrections (Wegner & Riedel 1973; Stephen, Abrahams &
Straley 1975).

According to Eq. 11.3.1, for systems with d = 3 a mean-field theory
should work well for a proper ferroelastic phase transition if m = 1; and it
should require only small (logarithmic) corrections if m = 2.

The case m = 0 corresponds to no critical fluctuations with wave-
lengths less than the dimensions of the specimen crystal, and we can expect
completely classical (mean-field) behaviour. And m = 3 (isotropic elastic
crystal) will certainly entail nonclassical critical behaviour.

The case m = 1 corresponds to one-dimensional soft sectors; i.e. the
wavevector of an acoustic soft mode is confined to specific directions in
reciprocal space. Similarly, m = 2 means two-dimensional soft sectors, with
the wavevector of the soft mode confined to specific planes of reciprocal
space. Only those wavevector components are 'relevant' for the critical
phenomena which approach the static spontaneous strain in the limit k —» 0.
This restricts greatly the size of the correlated region in reciprocal space,
thus bringing down the value of du for proper ferroelastic phase transitions.

True-Proper Ferroelastic Transitions

For these transitions, onset of homogeneous strain itself is the primary insta-
bility driving the transition. For quite some time, hardly any temperature-
induced transition of this type could be identified, and the only known
example was the pressure-induced transition in paratellurite, TeC>2 (Peercy
& Fritz 1974; Worlton & Beyerlein 1975; Uwe & Tokumoto 1979). How-
ever, some genuine, temperature-induced, transitions of this type do occur
in a few crystals. These crystals are: lithium ammonium tartrate monohy-
drate (LAT-monohydrate) (Sawada, Udagawa & Nakamura 1977; Sawada &
Nakamura 1985); and 2,2,6,6-tetramethyl piperidino oxy(tanane) (Sawada
& Nakamura 1985).

Since critical fluctuations are expected to be unimportant for true-
proper ferroelastic transitions, the critical exponents predicted by the Lan-
dau theory apply. In particular, the order-parameter critical exponent (3
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has the value \ for a continuous transition of this type.
Since a component of the strain tensor is the order parameter, if exten-

sive thermodynamic variables other than that conjugate to the spontaneous
strain are held constant, the generalized susceptibility corresponding to the
relevant strain component, i.e. a principal component of the elastic compli-
ance tensor, is predicted by the Landau theory to diverge at Tc, with 7 = 1
in Eq. 5.5.44. In fact, observation of such a divergence constitutes one part
of the proof for the occurrence of such a transition. The other part of the
proof is to demonstrate that there is no other (primary) instability (e.g.
softening of an optical mode coupled to the acoustic mode) which forces
the compliance coefficient (s) to diverge (see Sawada & Nakamura 1985, and
Bulou et al. 1992).

Pseudoproper Ferroelastic Transitions

Most of the known proper ferroelastic transitions are of the pseudoproper
variety, rather than of the true-proper variety. For the former, the order
parameter has the same symmetry as the homogeneous strain arising at
the transition, but the order parameter is not homogeneous strain itself. In
many cases the order parameter is an optical soft mode, and the sponta-
neous strain arises because of its bilinear coupling with the order parameter;
the faintness index is equal to unity.

Aizu (1971) divided ferroelastic transitions into the elastic type and the
optical type. The former can now be identified with true-proper ferroelastic
transitions. They represent "elastically soft and optically hard" behaviour
near Tc. If they are continuous transitions, at least one sound velocity
always passes through zero at Tc (Aubry & Pick 1971).

Ferroelastic transitions of the optical type occur in crystals which are
"optically soft and elastically hard". We can regard them as a subclass of
pseudoproper ferroelastic transitions.

The following crystals have been investigated for the occurrence of a
pseudoproper ferroelastic transition in them:

BiVO4 (Daviji 1983; David & Wood 1983; Bulou et al. 1992).

LaNbO4 (Brixner et al. 1977; Mariathasan, Finger & Hazen 1985).

LaPsOi4 and other rare-earth pentaphosphates (Weber, Tofield & Liao
1975; Toledano, Errandonea & Jaguin 1976; Errandonea 1980; Schwabl
1980).

Na5Al3Fi4 (see Bulou et al. 1992).
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Nb3Sn (Schwabl 1980).

NaOH (Schwabl 1980).

In - Tl alloy (Liakos & Saunders 1982).

KDP (Brody & Cummins 1968).

DyVO4, TbVO4, TmVO4 (Sandercock 1972).

KH3(SeO3)2 (Shuvalov, Ivanov & Sitnik 1967; Toledano & Toledano 1980).

CaCl2, CaBr2 (Unruh 1993, 1995).

Betaine fumarate (Unruh 1995).

Betaine borate (Unruh 1995).

For BiVC>4, LaNbO4, LaP^Ou and NasAlaF^, softening of an optical
phonon mode provides the order parameter, and the spontaneous strain
arises as a result of its bilinear coupling with the optical mode.

However, other primary instabilities are also possible. In KDP the ph-
ase transition is triggered by the ordering of protons. In DyVO4 and other
rare-earth vanadates the primary cause of the transition is the cooperative
Jahn-Teller effect (see Gehring & Gehring 1975).

As in the case of pseudoproper ferroelectric phase transitions (§10.3.3),
the presence of a bilinear coupling term between the strain and the order
parameter in the Landau potential for a ferroelastic transition has the effect
of shifting the transition temperature, the shift depending on the square of
the coupling coefficient (see Bulou et al. (1992) for a detailed discussion). If
the coupling coefficient is small, it becomes difficult to distinguish between
a true-proper and a pseudoproper ferroelastic transition.

The case of LaNbO4 presents a peculiar situation. Here, although there
is an optical soft mode of the same symmetry as the spontaneous strain
emerging at the phase transition, the optical mode undergoes only a small
degree of softening.

11.3.2 Improper Ferroelastic Phase Transitions
Ferroelastic phase transitions in which the strain-tensor component emerg-
ing at the transition does not have the same symmetry as the order param-
eter are called improper ferroelastic transitions. The spontaneous strain
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arises as a result of its coupling with the order parameter, and the faint-
ness index (§10.3.2) is equal to or greater than 2.

Since homogeneous strain is a macroscopic parameter, its symmetry in
a ferroelastic phase cannot be the same as that of the order parameter of any
antiferrodistortive (i.e. k ^ 0) ferroelastic transition. Therefore all anti-
ferrodistortive ferroelastic transitions are necessarily improper. Even when
k = 0 for a ferroelastic transition, it would still be improper-ferroelastic if
the order parameter is a component of a tensor of rank other than 2, i.e.
if the tensor rank is different from that of the strain tensor (Toledano &
Toledano 1980; Izyumov & Syromyatnikov 1990). The cubic-tetragonal ph-
ase transition in BaTiO3 is an example of this, wherein the order parameter
(Ps) is a component of a tensor (polarization) of rank 1.

Most of the ferroelastic transitions are of the improper type (Toledano
& Toledano 1980). Those which are not simultaneously ferroelectric, i.e.
the so-called purely ferroelastic transitions, have been analyzed by Toledano
& Toledano (1980), who have also tabulated a large number of crystals
in which they occur. Additional examples of improper ferroelastics are:
LaAlO3, RbCaF3, KMnF3, RbAlF4, T1A1F4, ReO3, MF3 (with M = Al,
Ga, Cr, ..), CoZrF6, ZnZrF6 (see Bulou et al. 1992), Rb3H(SeO4)2 (Schranz
et al. 1991) and GMO (see Bulou et al. (1992) for a large list of references
on this well-investigated improper ferroelectric-ferroelastic).

We dwell on the example of GMO to illustrate a number of typical
features of improper ferroelastics.

GMO undergoes an antiferrodistortive (cell-doubling) phase transition
at 432 K, the symmetry group of the crystal changing from P42im (D^^)
to Pba2 (CfJ (Borchardt & Bierstedt 1966, 1967). The order parameter
for this transition is a doubly degenerate soft mode corresponding to the
(^, 7^,0) point, or the M-point, of the Brillouin zone of the parent phase
(Axe, Dorner & Shirane 1971; Dvorak, Axe & Shirane 1972; Dvorak 1974).

Since there is a change of the crystal family from tetragonal to or-
thorhombic, the transition is ferroelastic.

And since it entails cell doubling, the soft mode involved is a zone-
boundary mode, making it an improper ferroelastic transition.

Since the point group of the ferroic phase is a polar group, it is also a
ferroelectric (improper ferroelectric) transition. What lends further support
to such a conclusion is the absence of large dielectric anomalies in the
vicinity of the transition (Cross, Fouskova & Cummins 1968; Levanyuk &
Sannikov 1970; Pytte 1970; Dvorak 1971a, b).

Because of the improper character of the transition not only with re-
spect to ferroelectricity, but also with respect to ferroelasticity, the elastic
response also shows a non-divergent behaviour in the vicinity of the tran-
sition.
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For an antiferrodistortive transition, all macroscopic physical properties
emerging in the ferroic phase as a result of the transition, i.e. arising as a
result of their coupling with the order parameter, are faint variables. For
most of the improper ferroelastic transitions the faintness index for strain
is expected to have the value 2 (from group-theoretic analysis), although
the values 3 and 4 are also possible in a few cases (Toledano & Toledano
1980; Aizu 1973b; Janovec, Dvorak & Petzelt 1975).

A faintness index of 2 means that the spontaneous strain is coupled to
the square of the order parameter. Since the critical exponent /? for the
order parameter has the value \ in the Landau theory, this coupling implies
that the strain varies linearly with temperature for T < Tc.

Antiferrodistortive phase transitions are not necessarily driven by long-
ranged interactions (because the wavevector k is not zero for them). One
would therefore expect that critical phenomena would be more important
for them, and thence for improper ferroelastic transitions. However, the
work of Salje (1990, 1991) indicates that practically all ferroelastic tra-
nsitions are well-described by mean-field theories. This is related to the
long-ranged nature of strain fields.
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11.4 QUADRUPOLAR GLASSES
The general term 'orientational glasses' (Sullivan et al. 1978) is used for
dipolar, quadrupolar, and higher multipole-moment glasses which are the
electrical and/or mechanical analogues of magnetic spin glasses. We have
already considered spin glasses in §9.2, and dipolar glasses in §10.4. We
take a brief look at quadrupolar glasses in this section.

Quadrupolar glasses are mixed crystals with a random distribution of
local strain fields, which undergo a glass transition at a certain low tem-
perature. At high temperatures the quadrupolar moments associated with
the molecules or molecular ions can rotate quite freely. At low-enough
temperatures they undergo a transition to a phase which has orientational
order.

Examples of such host crystals are KCN, N2 and ortho-E^. Their long-
range ordering can be disturbed by introducing atoms which either differ in
size (e.g. Na+ ions replacing some of the K+ ions in KCN), or result in the
replacement of some of the quadrupolar units by non-quadrupolar units.
Examples of the latter kind are: random replacement of some of the CN~
ions in KCN by Br~ ions; random replacement of N2 by Ar; and random
replacement of ortho-H2 by para-E^. We shall concentrate on KCN because
it is also a ferroelastic crystal.



The CN molecular ions in KCN have a small (electric) dipole moment,
and the dipole-dipole interaction is quite weak compared to the elastic
quadrupole interaction. The mixed crystal K(CN)i_xBrx has been investi-
gated very extensively because the rod-shaped CN~ ion has a size similar
to that of the Br~ ion, and therefore good-quality crystals can be grown
easily over the entire range of compositions 0 < x < 1.

Fig. 11.4.1 shows the phase diagram for this system. Pure KCN has
cubic symmetry Fm3m above 168 K (Durant et al. 1980). The phases
below 168 K are ferroelastic. The symmetry of the phase between 168 K
and 83 K is Immm. At 83 K the crystal undergoes an antiferroelectric
phase transition, with symmetry changing to Pmmm.

The transition from Fm3m to Immm symmetry is the result of align-
ing of the axes of the CN~ groups by the elastic quadrupolar interaction,
without introduction of any electric dipolar order. The transition from
Immm to Pmmm symmetry is the result of antiferroelectric ordering of
the CN~ groups.

We next see the effect of randomly substituting Br~ ions at CN~ sites.
In K(CN)i_xBrx, so long as (1 — x) > 0.57, the crystal still possesses long-
range order. Below this limit, and for sufficiently low temperatures (cf.
Fig. 11.4.1), a glassy phase is more stable.

This glassy phase (or quadrupolar-glass phase) exhibits the usual uni-
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Figure 11.4.1: Phase diagram for K(CN)i_xBrx. [After Anderson (1985).]
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versal properties of a glasses, like the linear temperature dependence of
specific heat, and T2 dependence of thermal conductivity at low tempera-
tures (cf. §9.2.4).

Sethna et al. (1984) gave a mean-field theory for the ferroelastic
phase transition in pure KCN. This theory was extended to the glassy
state of K(CN)i_xBrx for explaining some of its properties in terms of the
quadrupolar interaction (Sethna & Chow 1985). The quadrupole is defined
in terms of the vector n pointing from the C to the N atom in (CN)~.
Experiments indicate that 180° flipping of the (CN)~ dipoles dominates
the dielectric-loss mechanism even in the glassy phase (Bhattacharya et al.
1982; Birge et al. 1984), implying that the difference between the n and
-n configurations can be ignored, and the Hamiltonian must be invariant
under an inversion of the vector n.

In the mean-field approximation, a cyanide ion experiences an effective
quadrupolar field Q due to long-ranged elastic forces transmitted by lattice
strains. This field is defined by (Chowdhury 1986):

Qaft = K^ - \Sa0] (11-4.1)

The Hamiltonian is expressed as

H = -^E^SViC;, (H.4.2)

where c* and Cj are the occupation probabilities for the sites i and j.
In spite of the fact that this mean-field theory ignored frustration

(§9.2.6), it could explain correctly the distribution of barrier heights hin-
dering the rotation of the cyanide ions.

A model incorporating frustration was formulated by Ranter & Som-
polinsky (1986). Several other models have been reviewed by Binder &
Reger (1992). The problem is inherently very complex, and a general the-
ory does not exist yet, although several useful results have been obtained
by adopting a mean-field approach; this approach is not too bad because
of the generally long range of the elastic interaction.

Although analogies have been drawn from the Sherrington-Kirkpatrick-
Parisi formalism developed for spin glasses (§9.2.7-8), one basic difference is
that, whereas spin-glass systems possess inversion symmetry for the spins,
the orientational glasses lack this symmetry. The effect of competing in-
teractions leading to frustration is also very different here. The frustration
effect in quadrupolar glasses generally decays rapidly with the length of the
frustration loop (cf. Fig. 9.2.6), and is thus not present at all length scales.

On the whole the mean-field approximation has a better validity for
quadrupolar glasses, than for spin glasses.
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11.5 MARTENSITIC PHASE
TRANSITIONS

11.5.1 General Features
Typically, a martensitic phase transition is a diffusionless, first-order, struc-
tural phase transition in which the kinetics and morphology are dominated
by the strain energy arising from 'shear-like' displacements of atoms. Spon-
taneous shear strain is an essential feature of martensitic transitions. Since
spontaneous shear strain is also central to ferroelastic phase transitions,
it is natural to wonder about the relationship, or the degree of overlap,
between these two kinds of phase transitions (Wadhawan 1985). It turns
out that some types of martensitic transitions are of the nondisruptive type
(cf. §5.2), and therefore are no different from ferroelastic transitions. The
rest are of the disruptive type, and cannot be equated with ferroelastic
transitions. This situation is depicted in our Venn-Euler diagram for ph-
ase transitions (Fig. 5.2.2), wherein a certain (small) subset of martensitic
transitions is shown to overlap with a subset of ferroelastic transitions.

In martensitic transitions there is a definite orientational relationship
between the parent phase and the daughter phase. There is a definite
planar interface (called the habit plane) between the two phases. Theories
of martensitic transitions lay great stress on the notion of invariant-plane
strain, as the habit plane is found to remain invariant with respect to
spontaneous shear and rotation relative to the crystallographic axes of the
two phases (Roytburd 1978, 1993; Wayman 1981).

The martensitic phase transition has been exploited for several decades
for the quench-hardening of steels. The basic transition, on cooling, is from
the parent phase austenite to the daughter phase martensite. The transition
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involves both a change of density, and a shearing of the lattice.
Martensitic transitions have been investigated in a large number of

other alloys also, and, more recently, even in some nonmetallic systems. The
terms 'austenitic' and 'martensitic' are commonly used in a generic sense,
to apply to all transitions similar to the austenite-martensite transition
in steel, referring respectively to the high-temperature phase and the low-
temperature phase.

In the metals and alloys investigated the austenitic phase commonly
has bcc symmetry, which is a more open structure compared to the close-
packed fee or hep structures.

Spontaneous strain plays a central role in determining all the main fea-
tures of martensitic phase transitions. Such transitions can be therefore
divided into three types: MI, M^ and MS, depending on the magnitude
of the spontaneous strain (Krumhansl 1989; Lindgard & Mouritsen 1990;
Izyumov, Laptev & Syromyatnikov 1994). Type MI transitions involve
small spontaneous strains and are nondisruptive. The other two types are
disruptive, with MS involving very large strains, and M% involving mod-
erate strains. The MI type are the same as quasi-continuous ferroelastic
transitions.

The classical Landau theory can be applied to MI transitions (Horovitz,
Murray & Krumhansl 1978; Cao & Barsch 1990), and not at all to the M3

type. With due care the M^ type is sometimes amenable to such a treatment
(Gunton & Saunders 1973; Madhava & Saunders 1976).

Fig. 11.5.1 shows schematically what happens to properties like electri-
cal resistance, or change of length, or change of volume, when an austenitic
phase of an alloy is cooled through the martensitic phase transition.

At a temperature Ms, called the martensite-start temperature, the
martensitic phase starts forming. On further cooling, more and more of
martensite forms, till a temperature called martensite-finish temperature,
M/, is reached. Typically, no diffusion of atoms is involved, and the tran-
sition is athermal. If we dwell at some temperature between Ms and M/,
the fraction of martensite formed stops changing. The transformed fraction
increases further if the cooling is resumed. For the MS type transition, be-
cause of the large strains involved, the transformed fraction increases (on
cooling) predominantly in a burst-like manner, by the sudden appearance
of new plate-like regions of martensite, rather than by growth of the exist-
ing regions. The difference Ms — M/ is typically about 20 K, and in this
temperature range the austenitic phase and the martensitic phase coexist.

When the martensitic phase is heated, the austenitic phase starts form-
ing at a temperature A3 (austenite-start temperature), which is higher than
Ms. On further raising of temperature, the fraction of the austenitic phase
continues to increase till a temperature A f , called austenite-finish temper-
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Figure 11.5.1: Typical plot of the temperature variation of some property
like fractional change of length (A///), or volume (AV/V), or electrical
resistance #, for a thermally driven martensitic phase transition. [After
Wayman (1992).]

ature, is reached.
Except for the Mi-type martensitic transitions, the occurrence of a

lattice-dynamical soft mode may not be invoked, in general, for explaining
their mechanism. Since they occur at high temperatures and involve large
displacements of atoms, anharmonic effects are expected to play a dominant
role.

Lindgard & Mouritsen (1990) explained the occurrence of martensitic
transitions in M% and M% systems in terms of an interplay between two
fluctuating strain components, the fluctuations being caused by the anhar-
monicity of the interactions involved. This two-strain theory also explained
the occurrence of pre-transition phenomena at temperatures far above Ms.
Such precursor phenomena (e.g. appearance of distorted clusters of the
martensitic phase) are easier to appreciate in terms of critical fluctuations
heralding continuous phase transitions. Their occurrence for a strongly dis-
continuous transition, involving atomic displacements comparable to unit-
cell dimensions, is indeed a peculiar feature of M2 and MS type martensitic
transitions. They are explained as metastable formations (rather than crit-
ical fluctuations) resulting from the strong anharmonicity of the operative
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interactions.

11.5.2 Pseudoelasticity and Pseudoplasticity
Pseudoelasticity
Since strain energy plays a dominant role in the occurrence and kinetics
of a martensitic phase transition, it is only natural that application of
mechanical stress has a dramatic effect on the entire process.

Assuming that the martensitic phase has a higher density than the
austenitic phase, stress has the effect of raising Ms to a higher value, say
M*. We thus have a stress-induced martensitic transition, starting at a
temperature Mj. Because of this transition, the strain produced in the
specimen is much more (as high as 16%), than what can be expected from
a purely elastic response. And when the stress is released, the reverse phase
transition occurs, and the highly deformed specimen rebounds to its original
shape and size. The terms pseudoelasticity or superelasticity are used for
such behaviour (see, for example, Boyko, Garber & Kossevich 1994).

Since this process occurs as a consequence of the stress-induced ph-
ase transformation, one speaks of pseudoelasticity by transformation (Fig.
11.5.2 (a)). The term superelasticity is used for it because of the very large
elastic response to stress.

If the external stress is applied at a temperature at which the system
is already in the martensitic phase, we have the phenomenon of pseudoe-
lasticity by reorientation, which is no different from ferroelastic switching
(Fig. 11.5.2(b)).

Pseudoplasticity

The word 'elasticity' has two different connotations, depending on the con-
text. We may use it to specify the nature of an interaction. For example,
an interaction may be elastic (or mechanical), rather than, say, electric or
magnetic.

Alternatively, we may wish to make a distinction between elasticity and
plasticity. If a body changes its shape and size when a stress is applied,
and bounces back to its original shape and size when the stress is removed,
we speak of elastic behaviour (which may be linear or nonlinear). If the
property of bouncing back or regaining the original configuration on release
of external stress is missing, the response is said to be plastic, rather than
elastic.

The term pseudoelasticity has been used for the two systems shown in
Fig. 11.5.2 because in each case, on application of stress, the new config-
uration is surrounded by the old configuration, which provides a restoring
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Figure 11.5.2: (a) Pseudoelasticity by transformation (or superelasticity),
and (b) pseudoelasticity by reorientation (or ferroelasticity).

force, roughly proportional to the volume fraction of the new configura-
tion. When the external stress is removed, the restoring force causes the
material to exhibit the 'bouncing back', or 'elastic', or 'rubber-like' feature
(Lieberman et al. 1975).

By contrast, Fig. 11.5.3 depicts situations in which there is a single,
planar interface between the initial and the transformed or reoriented con-
figuration, and there is no rubber-like or bouncing-back action expected
when the external stress is released. We therefore have the phenomena
of pseudoplasticity by transformation (part (a)), and pseudoplasticity by
reorientation (or 'ferroplasticity') (part (b)) (Warlimont 1976).

In physics (though not so much in physical metallurgy) the term ferroe-
lasticity is frequently used to cover both ferroelasticity and ferroplasticity.

11.5.3 Crystallographic Reversibility of a Phase
Transition

When a symmetry operation is lost at a phase transition, the phase in
which this symmetry element is absent develops domain types or variants
related by this symmetry operation. In other words, starting from a single
variant in the initial phase, one ends up with two or more variants in the
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Figure 11.5.3: (a) Pseudoplasticity by transformation, and (b) pseudoplas-
ticity by reorientation (also called 'ferroplasticity', or 'plasticity related to
domain-wall movement').

final phase. If this final phase is made to undergo the reverse transition,
the initial single-variant configuration may or may not be recovered. A
phase transition is said to be crystallographically reversible if, on going
through the forward and reverse transitions, one ends up with the same
configuration of domain states one started with (Portier & Gratias 1982).
The concept of crystallographic reversibility is particularly relevant in the
context of the shape-memory effect associated with martensitic phase tra-
nsitions (§11.5.4). We consider here an example of a crystallographically
reversible phase transition. However, it is not a martensitic transition be-
cause there is no spontaneous strain involved.

The group-tree formalism described in §7.5 is ideally suited for analyz-
ing the crystallographic reversibility of a phase transition. We apply it here
to the transition Fm3m <-» PraSra, which occurs in AusCu (cf §7.4.4).

The forward transition is brought about by merely cooling the crys-
tal, with no anisotropic external influence present, so that the solicitation
symmetry (g) is that of a sphere, i.e. 80$. Therefore the group tree is as
shown in Fig. 11.5.4(a). We see that noi = 4, implying that, starting from
a single variant in the initial phase, we end up with 4 variants in the final
phase, described by Eq. 7.4.8.

We now consider the reverse transformation, depicted in Fig. 11.5.4(b).
Since nio = 1, we conclude that all the four variants of the ordered phase
end up in the same unique variant of the disordered (prototypic) phase.



11.5 Martensitic Phase Transitions 451

The phase transition from the disordered phase to the ordered phase and
back is therefore crystallographically reversible.

11.5.4 Shape-Memory Effect
One-Way Shape-Memory Effect
The shape-memory effect (SME) is usually associated with a martensitic
phase transition, although it can also occur in other situations. A mate-
rial is said to exhibit the one-way SME if, after it has been pseudoplasti-
cally deformed, it recovers its original shape on heating slowly through the
martensitic phase transition to the higher-symmetry phase.

In a typical SME cycle (Fig. 11.5.5(a)), a specimen is first cooled
to the martensitic phase, resulting in the appearance of domain structure,
possibly having a self-accommodating 'diamond' morphology for minimizing
the overall strain energy. The specimen is then subjected to a deforming
stress. The deformation is abnormally high for the stress applied, because
of the property of pseudoelasticity by reorientation (cf. §11.5.2). This

Figure 11.5.4: Group trees for the forward (a), and reverse (b), phase
transition in the alloy AuaCu.
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Figure 11.5.5: The typical SME cycle, (a) One-way SME; (b) two-way
SME.

deformation reduces the number of domains. Ideally, for a perfect SME,
one would like this number to be just unity.

When the stress is removed, and the specimen heated back through
the phase transition to the parent phase, it reverts to its initial shape, as
if it remembers its initial shape in spite of the large deformation it went
through.

If the deforming stress is applied at a temperature above Ms, then
pseudoplasticity by transformation, as well as pseudoelasticity by trans-
formation, also contribute to the set of processes responsible for the SME
(Warlimont 1976).

Strains as high as 10% can be recovered in this manner in some systems
exhibiting the one-way SME (Warlimont 1992).

There is a range of temperatures over which the austenitic and the
martensitic phases coexist, with phase boundaries separating them. Fur-
ther, there are domain boundaries within the martensitic phase. For good
shape recovery it is necessary that the phase boundaries, as well as the
domain boundaries, are created, moved, and/or annihilated in a reversible
manner. A number of contributing factors must exist if this is to happen
to a substantial extent (Nakanishi 1975; Wasilewski 1975).

For example, plastic deformation, which is by and large an irreversible
process involving creation and/or movement of dislocations, should not
occur. [By contrast, pseudoplastic deformation can be a reversible process
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in certain situations, involving movement of phase boundaries and domain
boundaries.] Thus a high yield strength of the parent phase is desirable
from this point of view. But this requirement clashes with the need for a
low driving force for the nucleation and/or growth of the martensitic phase
inside the austenitic phase. The main contribution to the enthalpy barrier
opposing the nucleation of the martensitic plates in the parent matrix comes
from a term of the form Ce^, where C is the appropriate shear elastic
stiffness constant of the parent phase, and em is the effective martensitic
strain. If C is small, even a low value of applied stress can induce the
nucleation of the martensitic phase, but a low C also means a low yield
strength, with the attendant increased possibility of plastic deformation
involving dislocations. These two conflicting requirements can be met by
applying the deforming stress at a temperature only slightly above Ms
(Wasilewsky 1975).

A vanishingly small value of C indicates the presence of a proper ferro-
elastic phase transition. All materials for which this is the case are thus
candidates for the occurrence of the SME (Nakanishi 1975). A case in point
is that of the ferroelastic superconductor Y — Ba — Cu — O (Somayazulu,
Rao & Wadhawan 1989), for which the SME was anticipated from such
considerations, and then demonstrated (Tiwari & Wadhawan 1991).

Another important factor influencing efficient shape recovery in SME
systems is that of the degree of crystallographic reversibility of the phase-
transition process (cf. §11.5.3). An ideal situation for the reversible move-
ment of all interfaces involved in the SME cycle would be one in which,
starting from a single domain or crystal of the parent phase, one ends up
with the same single domain on completing the shape-memory cycle; i.e.
nio = 1 in Fig. 11.5.4(b). If it is not possible to make nio = 1, one should
at least try to make it as small as possible. We illustrate this with an
example.

In the alloy NiAl (Chakravorty & Wayman 1976) there is a marten-
sitic phase transition, with point-group symmetry changing from m3m
to 4/rarara on cooling through the transition, but the 4-fold axis of the
martensitic phase does not coincide with any 4-fold axis of the parent ph-
ase. Therefore, in terms of the notation used in §7.5 for constructing a
group tree, HQ = GO = ra3ra, G\ = 4/rarara, and 7V"oi = 1. The group tree
therefore looks as in Fig. 11.5.6(a) for the martensitic transition brought
about by cooling, i.e. under the influence of only a scalar, namely tempera-
ture (with nominal symmetry (g) = SO^). We find that noi = 24, meaning
that as many as 24 domain types can exist in the martensitic phase.

What happens when we heat this system back to the parent phase?
Fig. 11.5.6(b) describes it pictorially. We end up with 8 variants. The
fact that nio = 8, rather than 1, means that if one were to start with a
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Figure 11.5.6: Group trees for the martensitic phase transition in NiAl. (a)
Phase transition on cooling, (b) Reverse phase transition on heating, (c)
Same as (a), except that the martensitic transition on cooling occurs in the
presence of a uniaxial stress parallel to a 4-fold axis of the cubic phase.

single-domain crystal of the NiAl alloy in the austenitic phase and cool it
to the martensitic phase, and then heat it back to the austenitic phase, one
would not recover a single-domain crystal, and the transition is therefore
not crystallographically reversible.

But we have not yet considered the effect of uniaxial stress on this
system (the stress may be either internal, or externally applied). Let us
assume that the stress is directed along a 4-fold axis of the cubic phase, i.e.
we take the solicitation to have the symmetry

(d) = Ax>/i[100] (11.5.1)

We assume that the stress does not alter the nature of the phase transition;
i.e. G\ — 4/mrara, as before. The group tree can now be constructed as
in Fig. 11.5.6(c), with noi = 8. Thus the application of the specified stress
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brings down the number of variants in the martensitic phase from 24 (as in
Fig. 11.5.6(a)) to 8.

Choice of a different direction for the application of uniaxial stress (or
a suitable combination of stresses) could perhaps bring down this number
still further.

For efficient shape recovery in the one-way SME in a material, the ideal
goal to be achieved (through a judicious choice of internal or external stress
patterns) is the formation of only a single variant in the martensitic phase,
having just one interface with the parent phase.

In the case of the Y—Ba—Cu—O ceramic, crystallographic reversibility
was demonstrated by a group-tree analysis by Tiwari & Wadhawan (1991).

It is pertinent to note here that the one-way SME occurs not only in
alloys, but also in insulators like PLZT (Kimura et al. 1981; Wadhawan et
al. 1981) and Y - Ba - Cu - O (Tiwari & Wadhawan 1991). The maximum
recoverable strain in these and other ceramics is in the range of quarter of
a percent to half a percent (also see Virkar et al. 1991).

Compared to alloys, the occurrence of the SME in ferroelectric in-
sulators offers the possibility of using electric field as an additional con-
trol parameter. The first such study was on PLZT (Wadhawan et al.
1981). Its composition x/65/35 is close to the morphotropic phase bound-
ary (Haertling & Land 1971; Haertling 1971). It is both a ferroelectric and
a ferroelastic. In fact, it is a relaxor ferroelectric in a certain composition
range. For x > 4.5 it undergoes a phase transition (Keve & Annis 1973)
which is similar to a martensitic phase transition. Above Tc the material be-
haves almost like a normal paraelectric. However, the dielectric behaviour
immediately below Tc is not that of a normal ferroelectric, but rather that
of a 'quasiferroelectric', in which there are polar distorted microregions
shorter than the wavelength of light. Application of an electric field be-
tween Tc and a certain lower temperature Tp changes the microdomains
to macrodomains. If the electric field is switched off the macrodomains
revert back to randomly oriented and distributed microdomains, giving a
macroscopically nonferroelectric state. The observation of slim ferroelec-
tric hysteresis loops is evidence for this (Carl & Geisen 1973). When the
electric field is applied at a temperature below Tp, stable macrodomains,
indicative of long-ranged order, are induced and the material behaves like
a normal ferroelectric and ferroelastic, exhibiting fat hysteresis loops. For
temperatures between Tc and Tp, microdomains of polar short-range or-
der coexist with the paraelectric matrix, just as martensite coexists with
austenite over a certain temperature range.

The effect of electric field on the SME in PLZT of composition 6.5/65/35
was studied by Wadhawan et al. (1981). The modification introduced by
the electric field, applied in conjunction with bending stress on thin bars of



456 11. Ferroelastic Crystals

the ceramic, could be interpreted in terms of the above-mentioned model.
In the temperature region in which the microdomains exist, the system is
'electrically soft' but 'mechanically hard', and the load does not produce a
large bending. However, when the electric field is switched on, it changes
the microdomains to macrodomains, and the material becomes mechani-
cally soft also; consequently the same load produces an additional amount
of bending.

Two-Way Shape-Memory Effect
In the two-way SME (Fig. 11.5.5(b)) the specimen, after a repeated pro-
cess of "training", can be made to remember its shape in both the phases
(Schroeder & Wayman 1977). What the training achieves is crystallo-
graphic reversibility, with either phase as the starting phase (Guenin 1989).

The usual procedure is to train or programme a specimen by thermo-
mechanical treatment. When in the martensitic phase, it is deliberately
constrained during heating to the austenitic phase, so as to suppress the
usual one-way shape memory. This results in a movement of defects to
certain sites so as to generate built-in microstresses in the austenitic phase,
which programme the specimen to behave as in a stress-induced martensitic
transition. In other words, the internal microstresses favour the formation
of only (or mainly) a single variant of the martensite when cooled to the
martensitic phase, resulting in macroscopic spontaneous deformation of the
specimen on cooling. After a large number of such training cycles the built-
in stresses correspond to a solicitation such that crystallographic reversibil-
ity is attained with either phase as the starting phase. In particular, during
the heating part of the two-way shape-memory cycle, the original shape is
regained through the usual shape-memory process involving a phase tran-
sition to the parent phase.

Guenin (1989) has adduced evidence which points to the formation of
oriented structural defects like dislocations in the austenitic phase. Such
defects act as internal biasing fields, resulting in the nucleation and/or
growth of specific variants when the system is cooled to the martensitic
phase.

11.5.5 Falk's Universal Model for Shape-Memory
Alloys

The Landau theory of phase transitions was originally formulated for
continuous transitions, whereas martensitic transitions, even of the MI
type, are discontinuous transitions. One has to therefore employ Devon-
shire's (1954) generalization of the theory for dealing with them. Further,
in writing a typical Landau expansion we assume that the order parameter
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is a slowly varying function of distance, whereas for a martensitic transition
there is a range of temperatures in which the system has phase boundaries
and domain boundaries at which there is a sharp variation of the order pa-
rameter. One must therefore include terms in the Landau expansion which
involve spatial derivatives of the order parameter, in the spirit of Ginzburg's
(1955, 1961) extension of the Landau theory (cf. §5.5.2). Such a treatment
for martensitic transitions was given in the pioneering work of Falk (1980,
1982a, b, 1983, 1984).

Falk (1980, 1982b) proposed a simple, but fairly universal, model Lan-
dau expansion, taking a suitably defined strain as the order parameter.
This model explains a large number of features for a whole group of alloys
exhibiting the SME. This calculation is the mechanical counterpart of De-
vonshire's (1954) treatment of discontinuous ferroelectric phase transitions
driven by temperature and electric field. The martensitic alloys NiTi, NiAl,
CuZn, CuAINi, AgCd, and CuAuZn2 are treated together in this theory,
ignoring the differences in the stacking sequence of their close-packed layers.

After a suitable rescaling, the following ansatz is made for the Landau
free energy:

/(e,*) = /0(t) + (t+ \)e2 - e4 + e6 + e'2 (11.5.2)

Here /, e, e' and t stand, respectively, for scaled values of free-energy
density, shear strain, strain gradient, and temperature. It is a universal
equation for a large number of alloys. The properties of specific mate-
rials enter through the scaling constants. It is remarkable that such a
simple one-component one-dimensional model leads to qualitative agree-
ment with numerous experiments on shape-memory alloys: stress-strain
curves exhibiting elasticity, ferroelasticity and superelasticity in the appro-
priate temperature regions; the mode softening; the SME; the occurrence of
stress-induced and temperature-induced phase transitions; and the latent
heat of the transition.
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11.6 DOMAIN STRUCTURE OF
FERROELASTIC CRYSTALS

11.6.1 Domains in Ferroelastic Crystals
The number of variants in the ferroelastic phase of a crystal is given by the
ratio of the orders of the point group of the prototype and the point group
of the ferroelastic phase in question.

For a full ferroelastic, any domain pair is a ferroelastic domain pair.
For a partial ferroelastic, a domain pair may be either ferroelastic or non-
ferroelastic.

Whereas the possible number of variants in a ferroelastic phase can
be determined from group-theoretical considerations, the actual number of
domains in a given specimen depends on the history of the specimen and on
external conditions. For example, the number of domains can be reduced
by cooling the crystal through the ferroelastic phase transition under a
uniaxial stress.
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11.6.2 Suborientation States
Consider a ferroelastic domain pair having a common domain wall. Because
the two domains differ in spontaneous strain, they must undergo a small
mutual rotation to make physical contact at the domain wall. The term
disorientations is used for such rotations (cf. §7.1.4). They depend on
sample history and external conditions.

Working under the parent-clamping approximation (PCA) (§5.1.2) am-
ounts to ignoring the disorientations. If we do not ignore them, an F-
operation for a ferroelastic domain pair is no longer exactly equal to a sym-
metry operation of the prototype group. Moreover, the difference between
the two operations can occur in more than one symmetry-equivalent ways,
as exemplified by the case of the ferroelastic superconductor Y—Ba—Cu—O
(Wadhawan 1988). In other words, disorientations can have (and do have)
symmetry-equivalent counterparts, as a result of which the actual number
of orientation states in a ferroelastic phase can be more than that calcu-
lated under the PCA. The term suborientation states (as against orientation
states) has been introduced to take cognisance of this possibility (Boulesteix
1984; Shuvalov, Dudnik & Wagin 1985; Dudnik & Shuvalov 1989).

Because of the complex nature of strain fields in a ferroelastic specimen,
a rigorous group-theoretical enumeration of suborientation states is a very
difficult, if not impossible, task.

11.6.3 Double Ferroelasticity
It has been argued by Guymont (1981, 1991) that it is not necessary to
refer to a supergroup prototype symmetry for defining spontaneous strain
and, in a more general sense, for rationalizing the domain structure of a
ferroic phase of a crystal: it is enough that the nondisruption condition
(§5.1.1) be satisfied, so that one can make a meaningful statement about
lost or gained symmetry operators at the phase transition. For any phase
transition, the lost symmetry operators determine the variants.

Consider two phases of symmetry G and H. And let / be their inter-
section group:

/ = G H H (11.6.1)

The symmetry operators lost at the phase transition G —> H are (G — /),
and the number of variants is G/I (= #12, say).

Let these variants be called Si, $2, ... Sqi2. One can choose any of
them, say Si, as the 'initial' variant, and define a spontaneous-strain tensor
for it, symmetry-adapted with respect to the group /. The relative sponta-
neous strain can then be defined for each of the #12 variants, as discussed
in §11.1.3. The phase of symmetry H is then a full or partial ferroelastic
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phase, depending on whether all the variants have, or do not have, distinct
relative spontaneous strain tensors. No reference to a prototype supergroup
is required for this procedure.

Now consider the reverse transition H —> G. The symmetry operators
lost in this are (H — /), and the number of variants is H/I (= q<2\, say).
Let these variants be called Vi, V^, .. Vq2l. We can once again choose
any of them, say Vi, as the initial variant, and assign a spontaneous-strain
tensor to it, symmetry-adapted for the symmetry group /. After this the
relative spontaneous strain tensor can be computed for each of the variants.
If there is at least one pair of variants or domains, say (Vi, V^), which is a
ferroelastic domain pair, the phase G is a ferroelastic phase, just as phase
H is a ferroelastic phase if at least one domain pair, say (Si,£2), *s a

ferroelastic domain pair. Thus, in principle, ferroelastic state shifts can be
expected in both the phases. The term 'double ferroelasticity' was coined
by Guymont (1981, 1991) for this property.

Alternatively, if possible, both G and H can be regarded as subgroups
of a certain suitably chosen prototype symmetry group, and such an ap-
proach may end up providing a more comprehensive explanation of the to-
tality of the observed domain structure than that possible from Guymont's
prescription.

Guymont was not able to identify a real-life example of double fer-
roelasticity, although he constructed theoretical examples. A possible ac-
tual example was suggested by Wadhawan (1991), namely the NiAl alloy.
However, in view of the rather strict definition of ferroic phase transitions
adopted in this book (in terms of the nondisruption condition) it appears
that the phase transition in NiAl cannot qualify to be called a ferroic phase
transition, and is therefore also not a ferroelastic phase transition. The
reasons are as follows.

As depicted in Fig. 11.5.6, for this system G = ra3m and H = 4/ramra.
But the 4-fold axis of the phase with symmetry H does not coincide with
any symmetry axis of the phase with symmetry G, and therefore 7 = 1
(Fig. 11.5.6(a)). The point groups G, H, and / are of orders 48, 16 and 2.
Therefore 24 orientational variants are possible in the phase H, and 8 orien-
tational variants are possible in phase G, purely on the basis of symmetry
operators lost in going from one phase to the other. Although one can
work out relative-strain tensors for the two phases, the phase transition is
probably reconstructive, and therefore disruptive. In our scheme of things,
only nondisruptive phase transitions can be ferroic, and thence ferroelastic
if they entail a change of crystal family.
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11.6.4 Orientation of Walls Between Ferroelastic
Domain Pairs

The strain compatibility criterion used by Fousek & Janovec (1969) for
determining the orientations of walls between ferroelectric domain pairs
(§10.6.2) was employed by Sapriel (1975) for all the 94 full-ferroelastic
species of crystals. According to this criterion, a permissible domain wall
between a contiguous domain pair can exist only along that plane which,
as a result of the ferroelastic phase transition, undergoes equal deformation
in the two domains separated by it.

Let 6ij and e'^ denote the components of the relative spontaneous strain
tensor for the two contiguous orientation states. Then, Sapriel's (1975)
formulation leads to the following equation determining the orientations of
permissible domain walls:

Y,(eij ~ e^XiXj = 0 (11.6.2)
*,j

Here Xi (i=l, 2, 3) are the coordinates of a point on the domain wall, mea-
sured with respect to an origin on the mid-plane of the wall, in a Cartesian
frame fixed in the prototype.

Eq. 11.6.2 is a second-degree equation, representing a conical surface.
It splits into a product of two linear equations (representing two planar
surfaces or walls) if the following condition for permissibility of the walls is
satisfied (Sapriel 1975):

det|(ey)-(ek)| = 0 (11.6.3)

The relative spontaneous strain tensor is defined (§11.1.3) by subtract-
ing out the average value of absolute spontaneous strain from the strain
tensors of all the orientation states. Therefore, (e^) and (e^) in Eq. 11.6.3
are traceless matrices.

When we deal with absolute strain tensors, rather than relative strain
tensors, even when the two individual strain matrices are not traceless, the
difference may still be so. The tracelessness of the strain-difference matrix
is, in fact, the second part of Sapriel's strain-compatibility condition:

1*[(e«)-(^-)] = 0 (11.6.4)

The fact that the matrix for the strain-difference tensor in Eq. 11.6.3
is traceless leads to the result that the two permissible planar walls must
be mutually perpendicular.

If Eqs. 11.6.3 and 11.6.4 are not satisfied, and the two domains under
consideration happen to be contiguous, the wall between them is said to be
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an impermissible wall. It is likely to be nonplanar, stressed, and/or diffuse.
It may also be less mobile, or even immobile.

Two types of permissible domain walls were defined by Fousek & Janovec
(1969): W/-walls and S-walls (§10.6.2). The corresponding nomenclature
introduced by Sapriel (1975) is: W-walls and W-walls.

lii addition, Woo-walls have the same meaning in the work of Fousek
& Janovec (1969) and Sapriel (1975).

We illustrate the use of this formalism by considering the case of
Pbs(PO4)2 discussed by Sapriel (1975). It belongs to the pure ferroelastic
Aizu species 3raF2/ra, for which the number of orientation states is 3 (say
Si, 52, 83). The monoclinic ferroelastic phase is assumed to have its 2-fold
axis along the t/-axis of the Cartesian frame of reference chosen in the pro-
totype. Therefore, for the 'initial' state Si the symmetry-adapted relative
spontaneous strain tensor has the representation (Aizu 1970b):

/ -A 0 C \
e(5)(5i) = 0 A 0 (11.6.5)

\cooj
The following three can be taken as a representative set of F-operations

for this species: rotations by 0°, 120°, and —120°, resulting in orientation
states Si, 52, Sa, respectively. The relative spontaneous strain tensors for
52 and 83 therefore have the following forms (Aizu 1970b):

/ IA &A -\c\
e(s)(S2) = &A -\A ^C , (11.6.6)

\ -\C &C 0 /

/ \A -$A -1C \
ew(^) = -$A -iA -f C (11.6.7)

\ ~\C ~2C ° /

Let o, b, c, and f) denote the lattice parameters of the monoclinic phase
at room temperature. Then A and C are given by (Toledano et al. 1975):

A = (y- «/V3)/26, (11.6.8)

C = (z + 3acos/3)/6asin/3 (11.6.9)

We now have all the information needed for writing down the equations
determining the orientations of permissible domain walls. For example, for
walls between 62 and 53, Eq. 11.6.2 takes the form

xyA + yzC = 0, (11.6.10)
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which splits into two linear equations:

y = 0, (11.6.11)

zA + zC = 0 (11.6.12)

We notice that Eq. 11.6.11 represents a W^-wall, whereas Eq. 11.6.12
represents a W'-wall. The orientation of the latter depends on lattice pa-
rameters, and therefore varies with temperature. The two walls are mutu-
ally perpendicular.

The spontaneous deformation of the lattice does not affect the z-axis.
The angle made by the W-wall with this axis is given by tan0 = — c/a.
Substituting A = 21.8 x 10~3 and C = 6.6 x 10~3 into this equation
(Toledano et al. 1975), one gets 0 = 17°, in agreement with experiment
(Brixner et al. 1973).

SapriePs formulation is based on several simplifying assumptions, which
must be dealt with, wherever necessary:

(a) It ignores disorientations (§7.1.4 and 11.6.2), i.e. it works under the
parent-clamping approximation (PCA).

(b) The magnitude of spontaneous strain is assumed to be small. Correc-
tions have to introduced if this is not the case.

(c) If the ferroelastic domain pair is also a ferroelectric domain pair, the
electrostatic-energy contribution to the free energy is zero only for elec-
trically neutral walls. For a charged wall the optimum orientation can be
different from that obtained from Sapriel's formalism.

(d) The presence of twinning dislocations and the interactions among them
can result in wedge-shaped or lenticular domains. This requires a more
elaborate calculation of the shape and orientation of the domain walls in-
volved (Bornarel 1972; Bornarel & Lajzerowicz 1972; Fousek, Glogarova &
Kursten 1976; Salje 1993a).

11.6.5 Phase Boundaries and Poly domain Phases in
Ferroelastics

As discussed in §5.3.13, for a discontinuous phase transition there is a range
of temperatures in which both the parent phase and the daughter phase
are stable, i.e. the two phases can coexist. Naturally, there are walls or
boundaries between them. The nature, orientation, and location of these
phase boundaries has a role to play in determining the domain structure of
the daughter phase at temperatures below the stability limit of the parent
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phase (Roytburd 1974). It is important to understand the phase boundaries
if one wishes to understand and control the final domain structure of the
daughter phase or the ferroic phase.

The phase boundaries have a symmetry aspect and a structural aspect.
We have already considered the symmetry aspect in a general way in §8.1.1.
We now discuss the structural aspect, in which strain considerations play
a dominant role, not only for ferroelastics but also for ferroelectrics.

There have been at least three approaches to the problem of determin-
ing the orientation and location of phase boundaries in ferroelastics (see Dec
(1993) for a review). In an increasing order of complexity and sophistica-
tion these are: the modified Sapriel formulation (Boulesteix et al. 1986);
the Metrat formulation (Metrat 1980); and the Roytburd formulation (see
Roytburd (1993) for an update on this approach).

We have described in §11.6.4 SapriePs (1975) theory of domain-wall
orientations in full ferroelastics. Sapriel adopted the criterion that the
orientation of the wall separating a ferroelastic domain pair must be such
as to make it strain-free. Boulesteix et al. (1986) applied the same criterion
for determining the orientations of walls which separate an orientation state
of the ferroelastic phase, not from another orientation state of the same
phase, but from the prototypic phase.

The relative spontaneous strain for the prototypic phase is zero, by
definition. Therefore, if we equate to zero one of the two strain-tensor
matrices in Eq. 11.6.2, say (e^-), we get the following condition for a strain-
free heterophase interface:

$>,*«*, = 0 (11.6.13)
ij

As in Sapriel's approach for ferroelastic domain pairs, solutions of Eq.
11.6.13, corresponding to mutually perpendicular phase boundaries, are
determined when the following condition is satisfied (cf. Eq. 11.6.3):

det|(cij)l = 0 (11.6.14)

This extension of Sapriel's theory suffers from the flaw that it assumes
that there is no change of specific volume (or density) at the phase transi-
tion.

We turn to the Metrat (1980) approach next. Here one takes note
of the fact that phase boundaries may be between phases, one or both
of which may be twinned. For example, in KNbOa (which undergoes the
same sequence of phase transitions as BaTiOa), the tetragonal phase is
twinned because it is a derivative structure of the cubic phase. And the
next phase on cooling, namely the orthorhombic phase, is twinned because
some rotational symmetry elements are lost in going from the tetragonal
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symmetry to the orthorhombic symmetry. The twinning at each phase
transition occurs to minimize the overall energy, particularly the strain
energy.

Because of the twinning at each ferroelastic phase transition (which is
sample dependent), one defines a mean spontaneous strain for the tetrag-
onal phase (M) and for the orthorhombic phase (TV). Both M and TV
are defined with respect to the prototypic cubic phase of lattice parameter
a0 = V^:

M = ^m&iMi, (11.6.15)

N = ^rnOiNi, (11.6.16)

where m^, Ui are the relative fractions of the individual domains; M*, Ni are
the respective spontaneous strains; and $i, Oi their rotations with respect
to the cubic phase.

Choosing, as is usual, a common Cartesian system of coordinates,
(xi, X2, xs), in the cubic phase (in which all spontaneous strains are zero, by
definition), the strain compatibility condition leads to the following equa-
tions for the phase boundary between the two twinned phases:

DijXiXj = 0, (11.6.17)

Dij = NikNjk - MikMjk (11.6.18)

Eq. 11.6.17 reduces to the product of two plane-surface solutions,

(hix + kiy + liz) (h2x + k2y + I2z) = 0, (11.6.19)

if the following conditions are obeyed (for i ^ j ) :

det|Aj| = 0, (11.6.20)

Ug = (D^ - Ai£#) > 0 (11.6.21)

The direction cosines of the plane-normals are given by (Metrat 1980):

Dn D12 + D'u Di3±D'l3 m fi 99^
hl = A"' fcl = ~~D^ ' h = A ' ( }

where
D\ = D2

U + (D12 + D'l2)2 + (D13 ± £>;3)
2; (11.6.23)

and
Dn £>i2 - IXi2 , £>i3Tl?i3 M 1 R 9 ^

h2 = ~D~^^= D, ' h = D2 ' (1L6-24)

where
D\ = D2

n + (D12 - D'12)
2 + (£>13 T £>'i3)

2 (11.6.25)

An illustration of the Metrat-type analysis is provided by the work of
Topolov et al. (1990) on twinning in the in the orthorhombic phases of
PbHfO3.
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Polydomain Phases

The importance of twinning in determining the heterophase and homophase
boundaries in ferroelastics was recognized in its most general form in the
work of Roytburd (1974, 1983, 1993; also see Roytburd & Yu 1994). Royt-
burd developed the concepts of elastic domains and polydomain phases.
The original motivation for this work was to deal with the polydomain
structure related to martensitic phase transitions. In most cases such tra-
nsitions give rise to B-twins (§7.4.3), rather than S-twins associated with
ferroelastic phase transitions. However, the theory is general enough to
cover both types (see Roytburd 1978).

A ferroelastic phase transition is characterized by a spontaneous de-
formation of the crystal lattice, resulting in a change of the crystal family.
Consequently the emergence and propagation of the ferroelastic phase in
the restricted volume of the parent matrix creates a strain field. Beyond a
certain amount of growth of the ferroelastic phase the strain energy in the
surrounding matrix becomes so large that the system has to reduce it by
opting for a self-induced ferroelastic switching of the daughter phase to a
domain of opposite spontaneous strain. The growth of the new ferroelas-
tic domain again causes an increasing amount of strain in the surrounding
matrix. When this strain becomes unbearable the system opts for another
spontaneous ferroelastic switching, this time back to the original state of
spontaneous starin. This can occur repeatedly, so that what we have is a
polysynthetic twin, or a polytwin, which is a plane-parallel plate comprising
alternating plane-parallel domains.

The same reasoning can be applied, not only to the homophase inter-
faces within the ferroelastic phase, but also to the phase boundaries. In
the vicinity of the ferroelastic phase transition the system is in a state of
upheaval (e.g. because of lattice-dynamical mode softening), and mechan-
ical stress (internal or external) may easily suppress the phase transition,
or shift or extend the temperature range over which it occurs. One is thus
led to the concept of polydomain phases, which has turned out to be a
fundamental concept in the theory of ferroic phase transitions in crystals
(Roytburd 1993).

The basic idea in this theory is that, although there may be a discon-
tinuous change of lattice parameters at the martensitic and/or ferroelastic
phase transition, there must be a continuity of the two lattices at the phase
boundary. It is assumed further that, during the phase transition, there is
neither a creation nor a movement of dislocations.

Similarly, one imposes the condition of lattice continuity at domain
boundaries as well.

In continuation of this basic assumption, and in keeping with exper-
imental observations on a large number of systems, one postulates that
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the polytwin and/or the polydomain phase is the result of self-induced de-
formation twinning, subject to the constraint that the overall strain is an
invariant-plane strain. What the latter means is that, not only does the
product phase or domain meet the parent phase or domain in a coherent
manner (i.e. across a continuous lattice), the intervening plane is also an
undistorted and unrotated plane (on an average). Such a plane is known as
an invariant plane (Weschler, Lieberman & Read 1953; Bowles & Mackenzie
1954).

Over the years there has been a change in the perception regarding
the physics of the processes leading to the formation of polytwins. Rather
than treating polytwinning as a process of deformation twinning, it is now
considered as an integral part of the process of phase transition. In other
words, a theory of a ferroelastic phase transition must take explicit note of
the formation of structural domains at the free-energy-minimization stage
itself. The structural domains (and, for that matter, even ferroelectric and
ferromagnetic domains) must be viewed as so configured as to minimize
the overall free energy (Barsch & Krumhansl 1984). This configuration has
very different properties from those of a single-domain state, and the special
term elastic domains has been coined by Roytburd (1974) to emphasize
their different identity.

Since the basic physics of coherent phase boundaries and domain boun-
daries is not very different (Boulesteix et al. 1988), the terms 'elastic do-
mains' and 'polydomain phases' are used interchangeably sometimes.

Virtual phase is another relevant term. A virtual phase can exist only
as a part of a polydomain structure (Roytburd 1971).

An elastic domain, or a polydomain phase, or a virtual phase, has pro-
perties which depend on sample history. The existence of interfaces provides
a large number of extra degrees of freedom, not available for single-domain
states (Khachaturyan, Shapiro & Semenovskaya 1991). These extra degrees
of freedom also interact in a highly nonlinear way with external fields, mak-
ing such systems strong candidates for smart-structure applications (§14.3).
The shape-memory effect is the best known example of this.

Let us call the parent (higher point-group symmetry) phase as Phase
1, and the daughter phase as Phase 2, with es as the spontaneous strain
of a single-domain state of Phase 2. There can, in general, be a change of
lattice-translation vectors at the ferroelastic phase transition. Therefore,
to achieve continuity of the lattices at the interfacial or phase-boundary
region, both phases must undergo an additional spontaneous deformation.
Let the strain in Phase 1 at the interface be ei, and let 62 be the additional
strain occurring in Phase 2 for achieving matching of lattice parameters at
the interface.

In spite of these additional spontaneous strains, the orientations of the
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two lattices may not match at the interface. One can treat Phase 1 as the
reference phase, and introduce the necessary rotational strain w in Phase
2 only.

Thus the total spontaneous strain of Phase 2 is:

D2 = es + e2 + w (11.6.26)

And for Phase 1:
Di = 1 + ei (11.6.27)

A coherent (or lattice-matched) phase boundary implies that if we con-
sider an arbitrary vector R on the invariant plane, the change in this vector
because of the lattice strains is the same for Phase 1 and Phase 2:

(Di-D2) • R = 0 (11.6.28)

Let n denote a unit vector along the normal to the interface. Since R
is a vector in the interface, we have R • n = 0.

It helps to visualize the invariant plane as 'vertical', so that n is 'hori-
zontal' for this plane. There is a transition layer of finite thickness (with the
invariant plane located near the half-thickness point), such that the lattice
planes on the two sides of the invariant plane are displaced in the verti-
cal direction by amounts proportional to their distance from the invariant
plane. Let the vector s denote this displacement; s = 0 for the invariant
plane, and this vector points in opposite directions on the two sides of this
plane.

The condition of continuity of the two lattices (Eq. 11.6.28) implies
that the net strain (D2 — DI) at any lattice plane parallel to the invariant
plane should be proportional to the distance of this plane from the invariant
plane; i.e.

(Ds-Di)^ = SiTij, t , j = l,2,3 (11.6.29)

The strain SiHk is the invariant-plane strain. It has a pure-strain part,
and a rotation part:

Aetf = ^(sinj+msj), (11.6.30)

Wij = -(siTij-niSj) (11.6.31)

In some ferroelastic phase transitions the relative spontaneous strain
es itself is an invariant-plane strain; i.e. 62 = 0 in Eq. 11.6.26 and e\ = 0
in Eq. 11.6.27. Then

esij = -(siUj+mSj), (11.6.32)
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and there is a lattice plane which is identical for the parent phase and
the daughter phase. This happens in the case of Pbs(VO4)2, Pba(PO4)2
(Shuvalov et al. 1985; ), and NaNbO3 (Dec & Kwapulinski 1989).

In a more general case, i.e. when the relative spontaneous strain is not
an invariant-plane strain, a combination of two mechanisms can operate:
(a) both the parent and the daughter lattices undergo additional strains to
achieve their gradual matching on the two sides of the invariant plane; (b)
the daughter phase breaks into a twinned structure to effectively become
an elastic domain. This elastic domain has a mean spontaneous strain es,
which plays the role of the relative spontaneous strain in Eq. 11.6.32:

ea(o) ~ (l-a)esi + aes2, (11.6.33)

where (1 — a) and a are the volume fractions of the two domain states com-
prising the elastic domain. Several examples of such situations, including
a comparison between theory and experiment, have been discussed by Dec
(1993).

The concepts of optimum domain fraction a and effective (or average)
macroscopic spontaneous strain es are capable of further generalization, in
the sense that they can be treated as thermodynamic variables determining
the actual evolution of a phase transition in a solid (Roytburd 1978). The
contributions of electric and/or magnetic fields (internal or external) to the
overall free energy can also be included. A general observation is that the
elastic interaction dominates over the electric and magnetic interactions.

The system can minimize its free energy not only by creating elastic
(parallel-plate) domains, but also by creating higher-order domain structu-
res (see Roytburd 1993, 1994). The polytwin described above is the lowest-
order domain structure. In spite of the 'tuning' possible by a self-variation
of the domain fraction a, the overall stress caused by the occurrence of the
ferroic phase transition may still be high. The system can lower it further
by forming hierarchical domain structures (2nd order, 3rd order, etc.), with
poly twins of a lower order serving effectively as 'single domains' for the
domain structure of the next higher order. Roytburd (1993, 1994) cites the
presence of disorientations w (Eq. 11.6.31) as one of the causative factors
for the occurrence of higher-order domain structures.

11.6.6 Some Further Aspects of the Effect of Long
Ranged Elastic Interaction on Domain
Structure

The microstructure of ferroelastic crystals is determined by a variety
of interacting factors, and therefore a number of context-dependent ap-
proaches have been adopted for understanding this complex problem. In
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§11.6.5 we gave an outline of Roytburd's approach in terms of hierarchies of
domain structure. Another approach, which has resulted in good progress
and insight, particularly during the last decade and a half, is that based on
treating explicitly the anisotropic and long-ranged strain interaction as the
main causative factor determining the kinetics and other characteristics of
a structural phase transition. In recent years this approach has been spear-
headed by Khachaturyan and coworkers (see Khachaturyan, Semenovskaya
& Long-Qing Chen (1994) for a recent review), and by Salje and coworkers
(see Salje (1995) and Bratkovsky, Heine & Salje (1996) and the references
therein).

The basic idea is as follows: Structural changes occurring in unit-cell
i result in a local stress field, which affects even a distant cell j through
a 'knock-on effect', i.e. a transmission of stress through successive unit
cells. The effective elastic interaction J(r^) over long distances in the
crystal has a strongly anisotropic or angle-dependent part (resulting in a
few soft directions parallel to domain walls), and a so-called Zener-Eshelby
interaction Jz of infinite range (Zener 1948b; Eshelby 1956).

One of the most striking manifestations of the elastic interaction in
some crystals is the observation of (cross-hatched) tweed patterns when
the crystal is quenched through a ferroelastic phase transition. Even for
a discontinuous ferroelastic phase transition a dense mass of embryos of
the ferroelastic phase is present as thermodynamic fluctuations (usually
concentration inhomogeneities), and this happens even at temperatures far
above the transition temperature Tc.

The occurrence of significant precursor effects in the parent phase, even
for discontinuous phase transitions, is peculiar to solid-solid transitions.
Generally the kinetics of the processes is quite slow (although there can
also be a fast component), and precursor tweed patterns have been ob-
served even above Tc in crystals such as Y — Ba — Cu — O (Schmahl et
al. 1989). It has been postulated that the presence of some kind of static
disorder or inhomogeneity (e.g. due to dopants or defects) is a necessary
prerequisite for the existence of tweed embryos in the parent phase. In
fact such systems have several features reminiscent of quadrupolar glasses
(Kartha et al. 1991).

The present understanding is that tweed embryos are present as thermal
fluctuations at temperatures even well above Tc. As Tc is approached from
above, the embryos become more and more prominent, and freeze into
metastable structures on quenching the specimen crystal through Tc. The
metastable tweed pattern then sharpens and coarsens with the passage of
time (Salje 1993b; Khachaturyan et al. 1994).
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The Elastic Interaction and Structural Phase Transitions

The preponderance of the strain coupling over the Coulomb interaction
and the van der Waals interaction in determining most of the important
features of a structural phase transition has been brought out in detail by
Khachaturyan et al. (1994), and by Bratkovsky et al. (1995). We describe
here some key features of their work.

The atomic structure of a crystal is determined by the manner in which
its atoms, or groups of atoms, pack themselves in a lowest-free-energy con-
figuration. Irrespective of whether or not the crystal is also a ferroelectric
and/or a ferromagnetic, when the atomic configuration changes in any unit
cell (as a function of temperature, pressure, etc.), the dimensions of the
unit cell change. That is, a spontaneous shear strain or volume strain de-
velops. This local displacement field is bound to influence the neighbouring
unit cells through a 'push-pull' mechanism. The deformation in these latter
cells, in turn, influences their neighbours, and so on. It follows that there is
an inherent ordering interaction, J(r^), in the crystal, mediated entirely by
strain, irrespective of the presence or absence of other ordering interactions
like the magnetic exchange interaction or the electric dipolar interaction.

Depending on the symmetry of J(rij), this elastic interaction may lead
to either ferroelastic or antiferroelastic ordering. Ferroelastic ordering is
induced by a field which falls off as r~3. And the strain mediating antifer-
roelastic ordering decays with distance as r~5.

At short distances the function J(TIJ) has a very complicated angular
and spatial dependence. At large distances it has the following form for the
ferroelastic case:

Jferro(r) ~ J3 + </*, (11.6.34)

where

Js = El^m^ (U635)

Jz = Z/N (11.6.36)

Jz is the Zener-Eshelby interaction term; it is a constant, N being the
number of unit cells in the specimen crystal. Y/m are spherical harmonics
of order /, the / = 4 term being the most dominant. Ferroelastic ordering
ensues if the local stress field has the symmetry of a macroscopic shear
strain.

For antiferroelastic ordering the following functional dependence ap-
plies:

EiAiYlm(6,<t>)
Jantiferro ~ ^5 (11.6.37)

The Jz term in Eq. 11.6.34, being a constant, has an infinite range.
Each unit cell makes a contribution of the order of l/N to the total ferro-
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elastic shear, so that contributions from all the N cells add up to a constant
value, which determines the temperature Tc of the ferroelastic phase tran-
sition, as well as the enthalpy of the transition.

It is the J3 term in Eq. 11.6.34 which determines the existence of
metastable tweed textures.

Ferroic-Phase Morphology as an Internal Thermodynamic
Parameter

The r-dependence of the strain interaction expressed by Eq. 11.6.35
is similar to dipole-dipole interaction between electric or magnetic finite
elements. The dominant interaction in all these situations is strongly
anisotropic, and decays as 1/r3. This similarity of the main underlying
interaction for all the three types of primary ferroics (ferromagnetics, ferro-
electrics and ferroelastics) is quite deep, and warrants further elaboration:

Following Khachaturyan et al. (1994), we begin by noting that the
total strain energy per unit volume of a ferroelastic crystal is proportional
to Ce^, where C is a typical shear modulus, and es represents the effective
spontaneous strain at the temperature of interest. This energy density has
the dimensionality [energy / I/3]. For estimating the total energy of the
specimen crystal we must multiply it by a characteristic quantity having
a dimensionality [I/3]. Now, a /im£e-ranged interaction is characterized
by a certain length parameter, namely the range of the interaction. By
contrast, an infinite-ranged interaction like the elastic interaction does not
have such a characteristic length. The only parameter available to us,
which has the dimension [L3], is the volume V of the daughter (ferroelastic)
phase. Therefore the total strain energy of the fully or partially transformed
specimen crystal has the form

Estrain = <*Ce*aV, (11.6.38)

where a is a dimensionless proportionality coefficient, the value of which
can be obtained by detailed calculations (Khachaturyan 1967).

The elastic interaction has two main characteristics, namely its infinite
range and its strong anisotropy. These make the volume-dependent part of
the strain energy a nonlinear function of the geometrical configuration of
the phase boundaries and the domain boundaries.

The nonlinear volume dependence of the strain-energy part of the to-
tal Hamiltonian has a serious consequence for the simple Landau-theoretic
treatment of phase transitions given in Chapter 5. The Landau expansion of
the free-energy density (Eq. 5.3.9) is written with the implicit assumption
that the total free energy can be obtained by multiplying the free-energy
density by the volume of the specimen. We now find that the volume de-
pendence of the free energy is not linear.
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Another consequence of the dependence of a in Eq. 11.6.38 on the
volume fraction and the shape of the transformed phase is that it is essen-
tial to include in the Landau expansion terms depending on the gradient
of the order parameter. In other words, we must work with the Landau-
Ginzburg thermodynamic potential (Eq. 5.5.4), rather than the Landau
potential (Eq. 5.3.9), in spite of the fact that critical fluctuations of the or-
der parameter are, as a rule, less important when the dominant interaction
mediating the phase transition is a long-ranged interaction.

As pointed out by Khachaturyan et al. (1994), the 1/r3 dependence
of the elastic interaction expressed by Eq. 11.6.35, and the dependence
of the factor a in Eq. 11.6.38 on the volume fraction and geometrical
configuration of the ferroelastic phase, points to a general similarity between
(proper) ferroelastic and other (proper) primary-ferroic transitions, namely
ferroelectric and ferromagnetic transitions. All three types are influenced by
long-ranged dipole-dipole interactions, and all three result in a ferroic phase
which must split into domains to minimize the overall interaction energy.
In fact, a in Eq. 11.6.38 can be regarded as the mechanical analogue of
the demagnetization factor in ferromagnets and the depolarization factor
in ferroelectrics.

A realistic theory of a primary-ferroic phase transition must recognize
the morphology of the emerging ferroic phase as an internal thermodynamic
parameter (which evolves with time and temperature as the new phase
emerges and grows) to minimize the overall free energy (Khachaturyan
1983; Salje 1993a).

The Four Categories of Strain Coupling

Depending on the symmetry of the local displacement field, and whether or
not strain-compatibility conditions are satisfied at the domain walls, four
types of strain coupling have been identified (Bratkovsky et al. 1995).

If the symmetry of the local displacement field is not that of a macro-
scopic strain, J(r) results in an antiferroelastic ordering. This category of
strain coupling has been therefore called Type AF. There is no macroscopic
deformation of the specimen in this case.

When the symmetry of the local displacement field is that of a macro-
scopic strain, J(r) is ferroelastic. Two possibilities arise. For a particular
domain pair the wall separating them may or may not obey the two Sa-
priel (1975) conditions for strain compatibility (Eqs. 11.6.3 and 11.6.4).
If they do not, the ferroelastic walls between them are said to be of the
Cnon-Sapriel (ns) type', or Type F(nS). In such a case the two domains may
differ in volume strain.

When the Sapriel conditions are fulfilled, the ferroelastic strain tensors
may be either shear strain tensors (Type F(xy)), or they may be of the type
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Figure 11.6.1: Domain wall for Type F(xy) strain (a), and Type F(xx-yy)
strain (b). In (a) there is no additional distortion at the domain wall,
whereas in (b) there is bound to be a distortion of the unit cells in the
vicinity of the wall. [After Bratkovsky et al. 1995]

encountered in, say, a cubic-to-tetragonal transition (Type F(xx-yy)}.
Transitions of the ferroelastic type F(xy) are characterized by an xy-

strain, i.e. exy / 0 for them (Fig. 11.6.l(a)). For their case, creation
of domain walls hardly costs any energy. Therefore arrays of such walls,
with exy changing sign at each successive wall, can form easily to minimize
the overall macroscopic strain. As discussed in connection with the Sapriel
formulation, such permissible walls can occur in mutually perpendicular
pairs. Sets of mutually perpendicular walls of this type have the appearance
of a tweed pattern. The tetragonal-to-orthorhombic phase transition in Co-
doped Y-Ba-Cu-O, brought about by varying the concentration of Co, is
an example of this situation (see Salje 1993a).

The ferroelastic type F(xx — yy) arises when the spontaneous strain
exx is equal to — eyy (Fig. 11.6.1(b)). In this case, although a coherent
domain boundary is possible, the two domains do not match exactly at the
boundary. There is a transition layer spread over a few unit cells around
the boundary to accommodate the lattice mismatch. Naturally, creation of
such walls costs a substantial amount of energy.

Lastly, in the non-Sapriel ferroelastic case F(nS), the Sapriel conditions
for permissible domain walls are not satisfied, and the wall need not be a
coherent, planar, wall. Examples of types of spontaneous strains for which
the Sapriel conditions are not obeyed are (xy+yz + zx) and (2zz — xx — yy).

Conserved and Nonconserved Order Parameters. Kinetics

Structural phase transitions need not always occur under equilibrium con-
ditions. When a nonequilibrium process is involved, a 'kinetic order pa-
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rameter', rjkin, must be introduced for dealing with the question of the rate
of the phase transition. Such a parameter is a measure of the 'kinetic de-
formation pattern', in the same way as the order parameter 77 defined in
§5.3.2 is a measure of the static or equilibrium deviation of the structure in
the ferroic phase from that in the prototypic phase. It is found for several
systems (see Salje 1992) that rjkin and 77 describe the same structural con-
figuration, so that one can often drop the subscript 'kin'. However, this is
not the case in general (Dattagupta et al. 1991b).

A nonequilibrium state tends towards equilibrium with the passage of
time. To describe the time evolution of rj(t), one introduces a heat bath,
to which the state variables are coupled. The heat bath enables thermal
fluctuations to occur, as well as an exchange of energy with the system,
resulting in an evolution towards equilibrium.

For certain situations (see Salje 1993b) a constraint on the kinetic rate
law is demanded by the invariance of the chemical composition. In such a
condition a change (or 'spin flip' in the language of the Ising model) of the
order parameter in some part of the system must be compensated by an
opposite change ('spin flop') nearby. One then speaks of a conserved order
parameter, and Kawasaki dynamics (Kawasaki 1966).

In certain other situations, a spin flip can occur almost independently
of other spin variables, and we then have a nonconserved order parameter,
obeying Glauber dynamics (Glauber 1963).

Within the approximations of the linear response theory (LRT; cf.
§E.3.1), an ordering process associated with a structural phase transition,
and occurring throughout the specimen at the same time, can be described
by the so-called Landau-Khalatnikov equation (Machlup & Onsager 1953a,b;
Landau & Khalatnikov 1954; Tani 1969):

% = -r^ (11.6.39)at or)

Here 77 is the order parameter, g the free-energy density, and F a set of
'kinetic coefficients' which are assumed to be only weakly dependent on
temperature. This equation from irreversible thermodynamics expresses
the fact that the rate at which the order parameter tends to approach the
equilibrium value is large if the thermodynamic force dg/drj is large. It
describes the relaxation of states close to equilibrium into the equilibrium
state.

Ginzburg & Landau (1958) went beyond the simple LRT, and formu-
lated a nonlinear equation for describing the kinetics of systems having
nonconserved order parameters. Similarly, Cahn & Hilliard (1958, 1959)
formulated the corresponding equation for conserved kinetics (see below).
The Ginzburg-Landau equation and the Cahn-Hilliard equation can be ex-
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pressed together as follows (see Patashinskii & Pokrovskii 1979; Landau &
Lifshitz 1980; Dattagupta et al. 1991b; Bratkovsky, Heine & Salje 1996):

| _ _&M, (11.,40)

with
I/ = -!/cV

2 + I/n (11.6.41)

Here z/c and z/n are the kinetic coefficients for the conserved and noncon-
served order parameters respectively.

It has been found that, in general, one can identify the driving force
for the kinetic process with the excess free energy of the phase transition
involved (Malcherek, Salje & Kroll 1997).

A general rate equation, covering a large variety of kinetics of order-
disorder situations, and allowing for both conserved and nonconserved ki-
netics, was put forward by Salje (1988). The Salje equation can be written
as

£ • -?ib" - ( & / e } exp({V/2)l (affjX (IL6-42)

In this equation the order parameter 77 can be inhomogeneous in general,
and 77k denotes its kth Fourier component, r denotes some fundamental
time scale of the rate process, and the free-energy density g is a function of
77 (r) and temperature T. £c reflects the extent of conservation of the order
parameter. The ratio £c/£2 ls a measure of the mixing of the two extreme
situations corresponding to pure Kawasaki dynamics (conserved order pa-
rameter) and pure Glauber dynamics (nonconserved order parameter).

For £c = 0 the Salje equation can be shown to reduce to the Ginzburg-
Landau equation for Glauber dynamics.

Similarly, putting £c/£2 — 1 and making suitable approximations re-
duces the Salje equation to the following:

djh L_ (k*#/2) (d9K(r,,T)\
dt ~ r k B T ( k S m \ dr,(r) )' (1L6'43)

where gK(r],T) is the (kinetic) Gibbs-energy density for Kawasaki dynam-
ics. This is the Cahn-Hilliard equation (mentioned above) for a system
described by a conserved order parameter.

Partially Conserved Order Parameter
A situation wherein 0 < £c/£ < 1 corresponds to a partially conserved order
parameter (Salje 1988, 1992, 1993b; Dattagupta et al. 1991b). Broadly
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speaking, what may happen is that the order parameter is nonconserved in
small 'mesoscopic' parts of the crystal, but is conserved globally through
suitable exchanges among these small regions. The 'nonconserved part' of
the local rate equation may be written as follows (Salje 1992):

[dtKr)] 1 dg(r)
hrL, = -^-5T' (1L6-44)

with g having the Ginzburg-Landau form.
The effect of exchange between two regions with different order param-

eters 77(1*) and rj(rf) is incorporated by assuming that, to lowest order, the
rate of flow of the order parameter from one region to the other is propor-
tional to the difference between the driving forces at r and r' (Marais, Salje
& Heine 1991; Marais & Salje 1991):

[*£>! = ( £iu£££) _ wi (11645)[ at Jr_, \kBTj [ drj dr, \ (LL-^>
Here r^ is a 'flow constant'. An integration over r' provides the total change
of 77 at r.

The final equation for the rate law for the 'mixed' case, derived by
Marais & Salje (1991), is

^--^(.-^-^(^(u**,
Here £ denotes a characteristic length scale of the exchange kinetics.

The r-dependent terms in Eq. 11.6.46 are seen to form an operator
determining the extent of conservation of the order parameter. r2~1/(rfJ +
r2

-1) relates to the ratio £;?/£2 of the length scales in Eq. 11.6.42. Up to sec-
ond order, Eq. 11.6.46 is the same as Eq. 11.6.42. Both are Salje equations,
in that both scale the degree of conservation of the order parameter.

Going back to the simplistic Landau-Khalatnikov equation (Eq. 11.6.39),
it is worthwhile to emphasize that, in the light of the brief description given
above, the kinetic coefficients F are functions of the order parameter in the
case of partial conservation.

New developments continue to occur in this topical area of research, a
flavour of which can be found in Salje (1999).

Pattern Formation

Crystals with partially conserved order parameters often involve local cor-
relations among ordering processes. Salje (1993b) and coworkers have in-
vestigated 'framework structures' like the mineral cordierite in this context,
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and certain general trends have emerged from their work. It is found that
a mixing of nonconserved and conserved kinetics results in bifurcation be-
haviour, uniform states are formed mainly for the nonconserved order pa-
rameter, and periodic patterns (like tweed texture) are formed when there
is a sufficient contribution from the conserved order parameter. As tran-
sient states these patterns may decay on approach to equilibrium. In the
case of conserved order parameters this decay process relates to coarsening
of the texture.

Detailed calculations show that for F(xy) and F(xx-yy) type of ferro-
elastic transitions described earlier in this subsection (which allow the for-
mation of permissible domain walls) the kinetics is such that the fluc-
tuations, which occur even at temperatures far above Tc, freeze into a
metastable tweed structure on quenching to a temperature below Tc, and
this metastable structure coarsens slowly with the passage of time.

The coarsening process often changes the tweed pattern to a needle-
domain pattern or a stripe pattern. The physical origin of the tendency
towards the formation of needle domains is the need for the domains of the
ferroelastic crystal to undergo disorientations (§7.1.4) to achieve registry of
the lattices across a domain wall.

11.6.7 Ferrielastics and Their Domain Structure

The notion of ferrielasticity has been introduced by analogy with ferrimag-
netism. A crystal is said to be in a ferrielastic phase if it satisfies three
conditions (Sawada 1990): (i) It has spontaneous strain; (ii) there are two
or more equivalent orientation states; and (iii) it is possible to identify two
contributions to spontaneous strain which are of opposite signs and different
magnitudes.

A ferrielastic exhibits an anomalous temperature dependence of spon-
taneous strain not found in ordinary ferroelastics (Sawada 1990).

Some members of the family of crystals [A(CH3)4]2XBr4 have been
identified as ferrielastics (Sawada, Matsumoto & Tanaka 1993; Tanaka et
al. 1995; Sawada, Watanabe & Tanaka 1997). Here A stands for N5+ or
P5+, and X for Co2+ or Mn2+.

Crystals of [N(CH3)4]2XBr4, with X = Co2+ or Mn2+, are ferrielastics.
By contrast, [P(CH3)4]2XBr4, with X = Co2+ or Mn2+, are ferroelastics
(rather than ferrielastics) because their two sublattice strains have the same
sign. The ferrielastic members of the family exhibit the so-called square do-
mains. These domains are delimited by walls which show a characteristic
change in brightness while passing through a so-called compensation tem-
perature Tz. At T = Tz the two sublattice strains cancel or compensate
each other completely.
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Like the analogy between ferrielasticity and ferrimagnetism, the con-
cept of antiferroelasticity has also been introduced by analogy with the mag-
netic counterpart (Aizu 1969b). Bratkovsky et al. (1995) have discussed
some structural mechanisms responsible for antiferroelastic ordering.
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11.7 FERROELASTIC DOMAIN
SWITCHING

The switching of one ferroelastic domain to another, under the ac-
tion of an appropriate driving field like uniaxial stress, occurs through the
movement of existing domain walls or by the creation and movement of
new ones. We consider some aspects of the statics and dynamics of such
domain switching in this section.

11.7.1 The Optimum Switching Configuration
Consider a ferroelastic domain pair {Si, £2}. Let us imagine that the entire
specimen is initially in one of the domain states, say Si. The critical stress
for this domain pair can be roughly defined as the minimum uniaxial stress
needed for converting a measurable portion of Si to 82 across a specified
domain wall. Such a definition cannot be very precise because it ignores
the time factor.

It should be remembered that, in general, the critical stress for Si —> 82
may not be the same as that for 82 —> Si (see Wadhawan 1982). Also, as
indicated in the above definition, since more than one types of domain
walls may be possible between Si and 82, the critical stress is not only
domain-pair specific, it is also domain-wall specific.

The relative spontaneous strain for a domain pair may be either a
shear strain or a tensile strain (with respect to a coordinate system chosen
in the prototype in accordance with the usual conventions). For a pure
shear strain the needed optimum geometrical configuration for applying
the critical stress is quite straightforward to determine (see Salje 1993a).
The same is also true for purely tensile strain for a simple system like the
tetragonal phase of BaTiOa (see Wadhawan 1982).

The situation can become somewhat complicated for a tristable ferro-
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elastic like Pbs(PO4)2, for which the relative spontaneous strain for any of
the three ferroelastic domain pairs has both a diagonal (tensile) part and a
nondiagonal (shear) part. For a ferroelastic domain pair in any crystal, and
for any general applied-stress configuration, the free-enthalpy difference is
given by Eq. 6.2.18:

-A0 = AeWij-(7y (11.7.1)

Pb3(PC>4)2 belongs to the Aizu species 3mF2/m, with three orientation
states. Consider two of these states, say Si and $2. What is the optimum
direction for applying compressive stress so that the least amount of stress
can effect ferroelastic switching from Si to S2 ?

Let ( / i , /2 , ^3) be the direction cosines of the direction along which the
stress is applied:

Vij = liljO- (11.7.2)

Then Eq. 11.7.1 takes the following form (Wadhawan 1982):

*l = \a(ll-l\) - VZakh - VScfefe + 3c/3/i, (11.7.3)<j 2

where a and c are values of e(s)22 and e(s)i3 respectively for orientation
state Si. The method of Lagrange multipliers can be used, subject to the
constraint

l\ + l\ + ll = 1, (11.7.4)

for determining the maximum positive value of Ag/cr. The final result is
that the direction requiring the least amount of compression for achieving
ferroelastic switching from Si to S2 is that along (74.13°, 160°, 81.48°) in
the standard Cartesian frame fixed in the trigonal prototypic phase (Wad-
hawan 1982). This calculation has been made under the parent-clamping
approximation; i.e. it ignores disorientations.

11.7.2 Plasticity Related to Ferroelastic Domain
Switching

When stress is applied to a crystal, it deforms. The deformation or
strain may be elastic or plastic. The strain induced by the stress is said to
be elastic if it becomes zero on removal of stress.

Plastic strain, on the other hand, does not become zero when the ap-
plied stress is removed. This happens if the atoms or molecules of the
object are displaced by the applied stress to new surroundings from which
they cannot bounce back to their old places when the external stress is no
longer present. There is usually a change in the coordination numbers of
at least a fraction of the atoms if the material exhibits plastic behaviour.
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Plasticity related to ferroelastic domain switching is also called pseudo-
plasticity (§11.5.2) (Warlimont 1976). To put the subject of pseudoplastic
behaviour in a proper perspective, we first summarize the salient features
of 'true' plastic behaviour.

Consider a crystal that is not in a ferroelastic phase. This can happen
when, for example, the crystal is in a prototypic phase. When the deforming
stress applied to it exceeds the elastic limit, it deforms plastically. The
plastic response depends on factors such as the magnitude and direction
of the applied load, the temperature, and the rate of loading. And at the
atomic-structure level, some of the mechanisms of plastic deformation are:
slip, mechanical twinning, and diffusional creep (Klassen-Neklyudova 1963,
1964).

Now consider a crystal in a ferroelastic phase, on which a deforming
stress is applied. For a ferroelastic domain pair in it, if the applied stress is
higher than the critical stress (defined in §11.7.4 below), plastic deforma-
tion (or rather pseudoplastic deformation) by ferroelastic domain switching
would take place. And the critical stress is generally an order of magni-
tude smaller than the stress required for the creation and movement of
dislocations. Further, the critical stress approaches the value zero as the
temperature rises towards Tc. This is because the contribution to the free
enthalpy (Eq. 11.7.1) by the term involving spontaneous strain drops to
zero at the phase transition to the prototypic phase.

If there is a large symmetry descent in going from the prototypic sym-
metry to the symmetry of the ferroelastic phase in question, a large number
of domain types become available, which further favours pseudoplastic de-
formation over plastic deformation.

Thus, in full ferroelastics, particularly when they are in poly crystalline
(ceramic) form, pseudoplastic deformation may be the only mechanism by
which they get deformed permanently. On the other hand, in a single-
crystal partial ferroelastic, domain pairs are possible for which relative
spontaneous strain is zero, and their deformation at large applied loads
is governed by ordinary plastic processes.

11.7.3 Mobility and Thickness of Domain Boundaries
in Ferroelastics

It is clear from the discussion in this section, and that in §11.6, that the
question of the thickness and the kinetics of motion of domain boundaries
and phase boundaries in the vicinity of a ferroelastic phase transition is
linked intimately with the presence of a highly complex, long-ranged, and
anisotropic elastic interaction. Some of the rate equations used for building
up theories of the kinetics and the microstructure related to the ferroelastic
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phase transition were described in §11.6.6. The free-energy expansion in
such equations includes gradient terms for the order parameter (Gordon
1986, 1991; Salje 1993a; Semenovskaya & Khachaturyan 1991, 1992; Chen,
Wang & Khachaturyan 1992). This is because a moving domain wall implies
a local perturbation of energy: The system relaxes towards equilibrium via
a kinetic pathway determined by the thermodynamic driving force dg / drj.

A central result of these theories is that a suitably defined order pa-
rameter has the following profile across the moving domain wall (Collins et
al. 1979; Salje 1993a):

<p <ufc
ri(r,t) = ryotanh a.1/2 (H-7.5)

u(L -rj

Here 2u is the thickness of the wall when its speed v is zero, and CQ is some
characteristic speed. 770 is the value of the order parameter at the mid-plane
of the wall.

Thus the wall thickness varies with its velocity. Also, it increases very
rapidly when the critical temperature Tc is approached (Salje 1993a).

Tweed structure, i.e. a transient or metastable collection of aligned
microdomains of different orientation states, is expected to be a common
feature of structural phase transitions. Its formation provides a partial re-
duction of the overall strain energy. On further cooling below Tc, the tweed
structure generally evolves (coarsens) into a polytwin structure consisting
of domains of alternating signs of the spontaneous shear strain. However, if
there exists a substantial concentration of impurities or other defects, they
may act as pinning sites, preventing the relaxation of the tweed texture to
a self-accommodating polytwin pattern.

The tweed pattern appears as a precursor even for T > Tc, and its
coarsening with decreasing temperature has many features in common with
spin glasses (Kartha et al. 1991).

The question of the 'real' thickness of domain walls separating ferro-
elastic domain pairs is debatable. Moreover, different techniques tend to
measure different quantities, partly because of the possible presence of dis-
orientations, as well as strain fields. Electron microscopy probes smaller
regions than X-ray diffraction, and indicates smaller wall thicknesses than
X-ray diffraction (Locherer et al. 1996). Typial values reported for ferro-
elastic wall thicknesses at low temperatures are 1-10 nm, and follow a tem-
perature dependence described by the Ginzburg-Landau theory (Locherer
et al. 1996; Salje et al. 1999).
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11.7.4 The Ferroelastic Hysteresis Loop
In the beginning of this chapter, ferroelasticity was defined by us in terms
of a ferroelastic phase transition. This ensures that the crystal can exist
in at least two equivalent orientation states which differ in relative sponta-
neous strain. And since in our scheme of things only nondisruptive phase
transitions (NDPTs) can possibly be ferroelastic, the switchability of one
ferroelastic orientation state to another under the action of a suitable uni-
axial stress can be taken for granted. This is because NDPTs do not involve
serious structural upheavals, and therefore enthalpy barriers between ferro-
elastic domain pairs can be expected to be low. Thus hysteretic behaviour
in the ferroelastic phase is a consequence of the ferroelastic phase transi-
tion.2

Stress-strain hysteresis loops (Fig. 1.2.1) characteristic of ferroelastic
materials are considerably more difficult to record and interpret than their
ferromagnetic and ferroelectric analogues. This is because whereas mag-
netization, magnetic field, polarization, and electric field are all tensors of
rank 1, strain and stress are tensors of rank 2, a fact which increases the
complexity of the problem for the mechanical case. Moreover, mechanical
fields are more difficult to generate, apply, reverse in sign, and measure,
compared to magnetic and electric fields. For such reasons, whereas fer-
romagnetic and ferroelectric loop tracers are commonplace, there has not
been much progress in the development of experiments for generating ferro-
elastic hysteresis loops routinely.

Fig. 11.7.1 shows a ferroelastic hysteresis curve for Pb3(Po.sVo.2O4)2
(Salje & Hoppman 1976; Salje 1993a).

The origin of this plot has been chosen so as to achieve symmetry with
respect to positive and negative applied stresses. The loss of the 3-fold axis
of symmetry in going from the prototype to the ferroelastic phase results in
three possible domain types in the ferroelastic phase. After the transition to
the ferroelastic phase, a virgin sample on which no external stress has been
applied may have all three of the orientation states in equal proportions,
so that the net macroscopic strain is zero. On application of a positive
uniaxial stress, some domains grow at the cost of others, and the specimen

2Earlier authors (e.g. Salje 1993a) have taken stress-strain hysteresis as the defining
feature of a ferroelastic material. For phases resulting from NDPTs, this approach and
our approach are equivalent. However, differences can arise when one is dealing with a
disruptive phase transition. For reasons discussed in §5.1, we do not deal with disruptive
phase transitions in this book. For phase transitions which violate the nondisruption
condition it is meaningless to talk in terms of lost or gained symmetry operators. Con-
sequently the very meaning of orientation states becomes qualitatively different in such
cases. The situation is similar for ferroelectrics. The occurrence of hysteresis is often
taken as a defining feature of a ferroelectric material, although this approach can run
into problems when one is dealing with a relaxor ferroelectric.
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acquires a nonzero positive macroscopic strain (dashed line in Fig. 11.7.1).
On the application of a large enough stress the macroscopic strain reaches
a saturation value, beyond which the increase is of a nonferroelastic nature.

When the stress is gradually reduced, the macroscopic strain also de-
creases, but has a nonzero value at a = 0. This is the spontaneous macro-
scopic strain.

The macroscopic strain can be brought to zero by applying a negative
stress crc, called the coercive stress.

A further increase in the magnitude of the negative stress results in a
negative value of the macroscopic strain, till it reaches a saturation value
with respect to ferroelastic switching.

On reversing the change in the negative stress, the magnitude of the
negative macroscopic strain also decreases, but has a negative nonzero value
(equal in magnitude to the spontaneous macroscopic strain) at a = 0.

Application of too small a positive stress to the specimen does not
produce any pseudoplastic strain, but only a reversible elastic strain. At
a certain critical value of the applied stress, called the critical stress, a
measurable pseudoplastic change in the domain structure occurs.

The whole hysteretic cycle can be retraced repeatedly.

Figure 11.7.1: Ferroelastic hysteresis loop for Pbs^o.gVo^O^. [Adapted
from Salje 1993a.]
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Chapter 12

SECONDARY AND
HIGHER-ORDER
FERROICS

Ferromagnetics, ferroelectrics, and ferroelastics are the three types of pri-
mary ferroics. These were discussed in the previous three chapters. In
this chapter we consider secondary and higher-order ferroics. There are six
types of secondary ferroics: ferrobielectrics, ferrobimagnetics, ferrobielas-
tics, ferroelastoelectrics, ferromagnetoelectrics, and ferromagnetoelastics.
Still higher order ferroics can be defined by referring to Eq. 6.2.18.

12.1 SECONDARY AND HIGHER ORDER
FERROIC PHASE TRANSITIONS

Ferroic phase transitions entail the emergence of at least one macroscopic
tensor property coefficient. If this property is spontaneous polarization,
spontaneous magnetization, or spontaneous strain, at least one domain pair
would differ in any of these, and the ferroic phase is a primary ferroic
phase. In a non-primary ferroic phase, no domain pair differs in any of
these spontaneous quantities, but there is at least one domain pair for which
an appropriate combination of applied fields can induce a difference with
respect to one of these properties. Another applied field can then cause
ferroic domain switching through one of these induced differences.

Nonprimary nonmagnetic ferroic phase transitions have been analyzed
exhaustively, within the framework of the Landau theory, by Toledano &
Toledano (1977). We shall refer to this work in subsequent sections of this

487
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chapter. Some general results and conclusions are mentioned here.
It has been demonstrated by these authors that both proper and im-

proper transitions of this type are possible. For the former, only 2-dimensio-
nal and 3-dimensional order parameters are found, whereas for the latter
the order parameters may be 2-, 3-, 4- or 6-dimensional.

The following interesting observation was also made in this work: Most
of the actual examples of improper nonferroelastic transitions seem to vio-
late the Lifshitz condition (§5.3.9), whereas most of the improper ferroelas-
tic transitions respect this condition.

More recently, Janovec, Richterova & Litvin (1993) have given an anal-
ysis of possible F-operations in nonferroelastic phases. They have shown
that there are 48 such operations in all. They have also expressed these
operations in terms of dichromatic point groups.
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12.2 FERROBIELECTRICS AND
FERROBIMAGNETICS

For a ferrobielectric crystal there exists at least one domain pair such
that, when referred to a common system of coordinate axes, the dielec-
tric permittivity tensor differs in at least component for the individuals
comprising the domain pair (cf. §6.2.2). This tensor is a polar t-tensor
of rank 2. So is the strain tensor. Therefore all ferroelastics are potential



12.2 Ferrobielectrics and Ferrobimagnetics 489

ferrobielectrics.
A ferrobimagnetic crystal is defined similarly in terms of the magnetic

permeability tensor, which is also a polar i-tensor of rank 2. Therefore all
ferroelastics are potential ferrobimagnetics also.

Thus, all ferroelastics are potential ferrobielectrics and ferrobimagne-
tics, and vice versa.

If a ferroelectric state shift is possible for a given domain pair, the
free-energy difference for this domain pair is (cf. §6.2.18) AP^^E1;; i.e. it
depends on the first power of the electric field. The corresponding free-
energy difference for a ferrobielectric domain pair is ^Ae^-BiE^-; i.e. it
depends on the second power of the electric field. Thus, if a state shift
is possible through both these terms, the ferroelectric state shift would
occur for a lower electric field, masking the observation of ferrobielectric
switching. Ferrobielectric state shifts can therefore be observed with less
difficulty for nonferroelectric domain pairs only.

Similar considerations apply to the mutual relationship between ferro-
magnetic and ferrobimagnetic state shifts.

Although ferrobielectric domain pairs do not differ in spontaneous po-
larization, field-induced switching for them can be understood in terms of
an induced difference in polarization as follows:

-As = l&etjEtEj = iAPf ̂ ce<% (12.2.1)

The difference in the permittivity tensors of the two domain states makes
them respond differently to the same applied electric field, thus creating an
induced polarization difference APjnduced. The second component of the
electric field, namely Ej, if large enough, can effect a ferrobielectric state
shift.

Similarly, for a ferrobimagnetic domain pair:

-Ag = ^HijHiHj = iAMf ̂ tf, (12.2.2)

NaNbOa and SrTiOa are likely crystals which may exhibit ferrobimag-
netic domain switching (Newnham & Cross 1974a). SrTiOs is ferroelastic
below 110 K. Its 90° domains have a free-energy difference proportional to
(^33 — eii)E2, offering the possibility of ferrobielectric switching.

NiO exhibits both ferroelastic and ferrobimagnetic domain switching
(Slack 1960; Roth 1960; Newnham & Cross 1974a). It belongs to the ferroic
species m3mF3m. A magnetic field of 5000 Oersteds is sufficient to cause
ferrobimagnetic movement of domain walls in a well-annealed specimen of
this antiferromagnetic crystal.
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12.3 FERROBIELASTICS
In the beginning of Chapter 11 we gave the example of the cubic-to- tetrag-
onal phase transition in BaTiOa to illustrate a ferroelastic phase transition.
We now consider the case of the /? —> a transition in quartz (Salje 1992)
to illustrate a nonferroelastic ferrobielastic transition. A comparison of the
two cases can be quite instructive.

/?-quartz has point-group symmetry 622, whereas a-quartz has 32. The
ratio of the orders of the two point groups is 2, so that a- quartz can exist in
two orientation states (the so-called Dauphine twins). The phase transition
entails change of lattice parameters (Carpenter et al. 1998), so that the
two orientation states have nonzero absolute spontaneous strain. However,
they have zero relative spontaneous strain because the tensor coefficients
describing absolute spontaneous strains of the two states are identical (cf.
Eq. 11.1.21).

By contrast, in the case of BaTiOa the c-axis of the tetragonal phase
can point along any of the three mutually perpendicular directions of the
basis vectors spanning the cubic phase, so that it is possible to identify
three types of domain pairs which differ in relative spontaneous strain.

The orientation states in a ferrobielastic domain pair differ in elas-
tic compliance. Therefore an applied stress can induce a strain difference
between the two orientation states, on which stress can act to cause ferro-
bielastic switching and domain wall motion through the following driving
force (Eq. 6.2.18):

-A0 = ^sijkl<7ij(Tkl = ^^ducedaki (12.3.1)

The elastic compliance tensor is a fourth-rank tensor. So is the pho-
toelastic tensor, although the two do not have the same intrinsic symmetry
(see, for example, Sirotin & Shaskolskaya 1982). If a domain pair is ferrobi-
elastic, but not simultaneously ferroelastic, the optical indicatrices on the
two sides of the domain wall are identical in all respects, and the two do-
main states are not easily distinguishable under the conventional optical
microscope. Application of a uniaxial stress induces a strain difference,
and, through the photoelastic effect, also a difference in the orientations of
the two optical indicatrices, making the two domain states optically distin-
guishable. However, unlike for a ferroelastic domain pair, when the stress
is removed the optical distinction disappears.



12.3 Ferrobielastics 491

If for a domain pair both ferroelastic and ferrobielastic state shifts are
allowed by symmetry, the ferroelastic shift is likely to occur at a consid-
erably lower applied stress, and will therefore mask the occurrence of the
ferrobielastic state shift. A purely ferrobielastic state shift is therefore best
observed for a nonferroelastic domain pair.

There are only five nonferroelastic ferrobielastic species (Newnham &
Cross 1974b; Toledano & Toledano 1977): 4/mmmF4/m; 3mF3; 6/mF3;
G/mmmFSm; and 6/mmmF3.

In addition, there are 10 ferroic species which are simultaneously ferro-
bielastic and ferroelastoelectric: 42mF4; 4mmF4; 4/mmmF4; 3/mF3;
6F3; 6m2F32; 622F32; 6mmF3m; 6mmF3; and 6/mmmF32. The most
important and best-investigated crystal in this category is quartz, which
belongs to the species 622F32.

Although ferrobielastic phase transitions have been predicted for sev-
eral crystals (Newnham & Cross 1974b), only two purely ferrobielastic tra-
nsitions and two ferrobielastic-ferroelastoelectric transitions are actually
known to occur (Toledano & Toledano 1977). The two purely ferrobielas-
tic crystals are NbC>2 and LaCoOa. For the former the symmetry change
is from P42/mnm to /4i/a. It is an improper ferrobielastic transition,
mediated by a 4-dimensional order parameter (Shapiro et al. 1974). How-
ever, a more complex sequence of phase transitions in this crystal has been
considered by Toledano & Toledano (1977).

For LaCoOs the symmetry change is from R3c to R3. The transition
is proper ferrobielastic, involving a 1-dimensional order parameter (Raccah
& Goodenough 1967).

SiC>2 (quartz) and A1PO4 are crystals which have phases which are
simultaneously ferrobielastic. and ferroelastoelectric. The two crystals are
also isomorphous in the prototypic as well as the ferroic phases, undergo-
ing the phase transition P62,422 —* P3i,221 (Bachheimer & Dolino 1975;
Lang, Datars & Calvo 1969) 1. The transition is proper ferrobielastic-
ferroelastoelec-tric, involving a 1-dimensional order parameter.

Domain Walls in Ferrobielastics
Quartz is the main ferrobielastic for which some information regarding do-
main walls is available (Newnham & Cross 1974b; Laughner 1982; Newn-
ham, Trolier-McKinstry & Giniewicz 1993). Whereas for a purely ferro-

1 It may be mentioned here that SiO2 also has a high-temperature phase called cristo-
balite. It is stable between 1743 K and the melting point 2001 K. It has cubic symmetry,
FdSra, and undergoes a (metastable) first-order phase transition at about 493 K to a
tetragonal phase of symmetry P432i2 or P4i2i2 (Hatch & Ghose 1991). Similarly,
A1PO4 has a high-temperature (cristobalite) cubic phase of symmetry F43ra, which un-
dergoes a phase transition to an orthorhomic phase of symmetry C222i (Hatch, Ghose
& Bjorkstam 1994)
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elastic domain pair the orientation of domain walls is determined by the
strain-compatibility condition, with the strain difference coming from the
relative spontaneous strains of the two states, there is no spontaneous-strain
difference present in the case of a purely ferrobielastic domain pair. Only
induced strain differences can occur for the latter case.

For the ferroic species 622F32 to which quartz belongs, there are only
two orientation states or variants, the F-operation relating them being a
180° rotation about the [001] (or #3) trigonal axis. The two variants are
nothing but the Dauphine twins which occur in a-quartz.

Under this F-operation all elements of the elastic-compliance tensor of
a-quartz remain invariant except 51123 (and those related to 51123 through
the symmetry operations of the crystal class 32 to which a-quartz belongs).
Referred to a common Cartesian frame of reference, 51123 has opposite signs
in the two variants of a-quartz.

When the only external field applied is uniaxial stress a, the enthalpy
barrier between the two variants (with contributions from all elastic-compli-
ance coefficients related to 51123 by symmetry) has the following form (In-
denbom 1960a; Anderson, Newnham & Cross 1977):

A# = 2g-lg ~ -45H23 (011023 - 022023 4- 2cri2ai3), (12.3.2)

where lg and 2g are the free-energy densities for Variant 1 and Variant 2
(cf. Eq. 6.2.18).

Thus (cruets — 022023 + 2cri2<Ji3) is the stress-component combination
for achieving ferrobielastic switching in a-quartz. Details of this ferroic swi-
tching have been discussed in several publications (Aizu 1973a; Newnham
& Cross 1974b; Anderson et al. 1977; Bertagnolli, Kitinger & Tichy 1979;
Laughner, Wadhawan & Newnham 1981; Wadhawan 1982; Laughner 1982;
Newnham, Trolier-McKinstry & Giniewicz 1993).

The composition plane separating unstressed Dauphine twins of quartz
is usually of an irregular shape, as there is no strain compatibility condition
to satisfy when there is no strain difference between these N-twins. The
situation, however, is different for the laboratory conditions created for
studying the creation and/or movement of this interface. Application of
stress induces a strain difference in the two domain stats, and this difference
has the following dependence on applied stress (Newnham & Cross 1974b):
Aen = 451123023; -Ae22 = 451123023; Ae33 = 0; Ae23 = 4*1123(011-022)',
Aesi = 85n23<7i2; and Aesi = 851123(731. We notice that Aess = 0. There
is thus a tendency expected for the domain walls to be parallel to the Xs-axis
or the optic axis. This is indeed observed to be the case.

These domain walls, though generally parallel to the optic axis of
quartz, are seldom planar (unlike the situation for permissible domain walls
in ferroelastics).
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The shapes of domains created in a-quartz by stress depend on applied
stress, defects, and sample history. They may be either in the form of thin
stripes or thick wedges running parallel to the optic axis, or large-volume
diffuse twins (Laughner 1982; Newnham, Trolier-McKinstry & Giniewicz
1993). The magnitude of the coercive stress can be brought down by apply-
ing the stress slowly, and also by repeated thermal cycling. This indicates
the thermally activated nature of the process of ferrobielastic switching in
this crystal. A correlation is also observed between the coercive stress and
the shapes of the created domains.
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12.4 FERROELASTOELECTRICS
A ferroic phase of a crystal is said to be ferroelastoelectric if there exists a
domain pair for which the piezoelectric-tensor difference Ad^ is nonzero
in the following equation (cf. Eq. 6.2.18):

-A0 = &dijkEi(Tjk (12.4.1)

If such a domain pair is contiguous, i.e. if we have an orientational
twin (cf. §7.1.6), the possibility exists that we can make one twin grow
at the cost of the other ('ferroelastoelectric switching') by a simultaneous
application of electric and mechanical fields of appropriate directions and
magnitudes.

Piezoelectric and Electrostriction Tensors Revisited
We stated the usual definitions of piezoelectric and electrostriction tensors
in §10.1.4. All the noncentrosymmetric crystal classes except 432 exhibit
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the piezoelectric effect. If we consider a nonferroelastic piezoelectric crystal
under the influence of an electric field alone, Eq. 6.2.12 reduces to

e^ = dkijEk (12.4.2)

This equation embodies the converse piezoelectric effect, the direct piezo-
electric effect being the generation of electric polarization (or electric dis-
placement, as in Eq. 6.2.10) on application of mechanical stress:

A = dijkffjk (12.4.3)

The piezoelectric effect is a linear effect. A quadratic effect, called elec-
trostriction, is present in all crystals, including centrosymmetric crystals.
If we are dealing with a linear dielectric, i.e. if the polarization P (and
thence the electric displacement D) is proportional to the first power of
the electric field E, the electrostriction tensor can be defined through Eq.
10.1.31:

eij = MijklEkEt (12.4.4)

However, ferroelectrics, particularly relaxor ferroelectrics (§10.4.5), are
far from being linear dielectrics, and for them the M-tensor in Eq. 12.4.4
is a constant only for very small values of the applied electric field. For
higher values the P(E) curve (or the D(E) curve) shows a saturation effect,
implying that the coefficients Mijki in Eq. 12.4.4 have field-dependent
values.

It is found experimentally that, even for relaxor ferroelectrics (e.g. for
0.9PMN-0.1PT (Cross et al. 1980; Nomura & Uchino 1985; Newnham
1990)), P2 varies linearly with strain. Therefore the following is considered
a better equation for defining electrostriction (than Eq. 12.4.4):

eij = QijkiDkDl (12.4.5)

If we make a similar change in the definition of the piezoelectric tensor,
and also ignore the formal distinction between direct and converse piezo-
electric effects, we can replace Eq. 12.4.2 by

eij = dijkDk (12.4.6)

Combining Eqs. 12.4.6 and 12.4.5,

eij = dijkDk + (QijuDfiDk = (dijk + QijklDt)Dk (12.4.7)

We can interpret this equation in two ways. We can regard the first
term as coming from the true piezoelectric effect, and the second from the
false or indirect piezoelectric effect. The second term may also be viewed as
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a correction to be applied to the linear piezoelectric term when the electric
field is not vanishingly small (Nye 1957).

Alternatively, we may invoke the Curie principle and examine the ques-
tion of whether or not the electric field is lowering the net symmetry of
the system. For example, even a centrosymmetric crystal will effectively
behave as a noncentrosymmetric system while under the influence of an
electric field, resulting not only in the modification of those tensor coeffi-
cients which are already nonzero, but also in the emergence of new tensor
coefficients which are zero when there is no anisotropic external influence
present. These new coefficients (e.g. in the second term in Eq. 12.4.7 in
the case of a centrosymmetric crystal) are the result of what is called a
morphic effect (Nye 1957).

The Electromechanical Order of a Ferroic State Shift
Aizu's (1972a) concept of the electromechanical order of a state shift for a
nonmagnetic crystal was described in §6.2.2. Out of a total of 773 possi-
ble ferroic species, 212 are nonmagnetic. Aizu derived and tabulated the
electrical, mechanical, and electromechanical orders of state shifts for each
of the 212 nonmagnetic species. Several theorems were also established in
this context, and some general conclusions were drawn. We mention a few
of them here.

The concept of the order of a ferroic state shift is fairly analogous to
that of the order of a structural phase transition. The higher the order
of a state shift, the more subtle is the nature of the change in the atomic
configuration. Also, since higher-order state shifts can be effected only by
higher powers of the driving field(s), such state shifts are likely to be masked
by the occurrence of lower order state shifts of the same nature.

It follows from Aizu's work that the electromechanical order of a state
shift can never be higher than the electrical order and/or the mechanical
order of the same state shift. When it is lower, it is reasonable to expect
that a suitable combination of electrical and mechanical fields may be more
effective in inducing such a state shift than either field by itself.

Aizu (1972a) also brought out the point that ferroic crystals belonging
to the same species not only have the same number of orientation states,
but also the same orders of state shifts.

Some Ferroelastoelectric Crystals

The number of nonmagnetic ferroelastoelectric species which are neither
ferroelastic, nor ferroelectric, nor ferrobielastic, is 15 (Aizu 1972a; Newn-
ham & Cross 1974b; Toledano & Toledano 1977). We list them here, along
with the number (nos) of orientation states in each, as well as the orders
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of electrical (ne), mechanical (nm), and electromechanical (nem) orders of
state shifts in each.

Species nos ne nm nem

mmmF222 2 3 oo 2

4/mF4 2 3 o o 2
4/rararaF422 2 > 4 oo 2
4/mmmF42m 2 3 o o 2

3mF32 2 3 o o 2

6/mF6
6m2F6
6mmF6
6/mmmF6
6/rararaF6ra2
6/mmmF622

m3F23
432F23
ra3raF43ra
m3mF23

2
2
2
4
2
2

2
2
2
4

3
3
> 4
3
3
> 4

3
3
3
3, >4

oo
> 2
> 2
> 2, oo
00

oo

00

> 2
00

> 2, oo

2
2
2
2
2
2

2
2
2
2, >2

For most of these, inversion is the only F-operation, in which case, if
ferroelastoelectric switching can be effected in a crystal belonging to any
of these species, there would be a concomitant reversal of handedness or
chirality (the 'ferrogyrotropic effect'; cf. §6.3). A state shift with inversion
as an F-operation is electrically odd-order and mechanically ooth order
(Aizu 1972a).

Three confirmed cases of purely ferroelastoelectric phase transitions
have been discussed by Toledano & Toledano (1977). These occur in FeS
(Townsend et al. 1976); CsCuCl3 (Hirotsu 1975); and NH4C1 (Wang &
Wright 1974).

FeS belongs to the Aizu species 6/rararaF622, and the phase transi-
tion is improper ferroelastoelectric. This strongly discontinuous transition
violates the Lifshitz condition (Toledano & Toledano 1977).

NH4C1, belonging to the species ra3raF43m, undergoes a proper ferro-
elastoelectric phase transition involving a 1-dimensional order parameter.
The possibility of ferroelastoelectric poling in this crystal, requiring a com-
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bination of electric and mechanical poling fields, was first discussed by
Newnham (1974) and Newnham & Cross (1974b), and demonstrated by
Mohler & Pitka (1974).

More recently, ^HsNHa^ZnCU has been shown to undergo a purely
ferroelastoelectric phase transition (Tello et al. 1994). The Aizu species
in this case is mmmF222. Since the prototypic and the ferroic phases
belong to the same crystal family (orthorhombic), and there is also a loss
of inversion symmetry in going to the ferroic phase, this is a nonferroelastic
ferrogyrotropic phase transition.

We have discussed in §12.3 the 10 nonmagnetic species which are si-
multaneously ferrobielastic and ferroelastoelectric. Two known examples
of crystals belonging to such species are quartz and A1PO4. They belong
to the same species 622F32. There are only two orientation states, and
the F-operation reverses the sign of the xi-axis. The two orientation states
therefore differ, not only in the sign of $1123, but also of the piezoelectric
coefficient dm. When such a crystal is under the influence of not only uni-
axial stress, but also electric field E, Eq. 12.3.2 gets modified to (Laughner,
Newnham & Cross 1979):

A# = —45ii23(^ll^"23—^22^23 + 2(712^13) — diii(Ei<7n—£'i(722 —2^2(712)

(12.4.8)
Ferroelastoelectric switching in a-quartz was demonstrated by Laugh-

ner et al. (1979) by choosing a — a\\ and E = E\.
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12.5 FERROMAGNETOELASTICS
In §6.2.2 the possible presence of a ferromagnetoelastic state shift for an
orientational twin was defined in terms of the relation

-A(? = &QijkHiajk (12.5.1)
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Such state shifts require the simultaneous presence of a magnetic field and
a uniaxial stress of appropriate directions and magnitudes. The overcoming
of the enthalpy barrier for domain switching in this case can be understood
either in terms of an induced strain difference on which the applied uniaxial
stress acts, or in terms of an induced magnetization difference on which the
applied magnetic field acts. That is, Eq. 12.5.1 can be rewritten either as

-Ap = &e?k
ducedajk, (12.5.2)

or as
-A0 - AMtnducedHi (12.5.3)

The piezomagnetic tensor (Qijk) is a third-rank axial tensor. There
are 66 magnetic point groups for which this tensor is nonzero (Birss 1964).
If in a piezomagnetic phase an orientational twin differs only in the sign
of the magnetic spin, it is reasonable to assume that ferroic switching can
certainly be effected, as the enthalpy barriers for spin flipping are gen-
erally small compared to those for nonmagnetic (i.e. structural) ferroic
switching. Since ferromagnetoelastic domain switching requires the simul-
taneous application of magnetic field and uniaxial stress, the presence of
ferromagnetism and/or ferroelasticity may often mask the observation of
ferromagnetoelastic switching. 31 of the 66 piezomagnetic crystal classes
are pyromagnetic (and therefore potentially ferromagnetic). The remain-
ing 35 are antiferromagnetic. One should look for the ferromagnetoelastic
effect in those piezomagnetic classes out of these 35 which are the result of
(real or hypothetical) nonferroelastic phase transitions. Since ferroelastic
phases cannot have cubic or hexagonal symmetry (because for them a crys-
tallographic prototype cannot be defined), one can look for a more easily
observable ferromagnetoelastic effect in those 35 antiferromagnetic crystal
classes which are cubic or hexagonal. There are 17 of them:

6', 6', 67m7, 622, 6'22', 6mm, 6'mm', 6m2, 6'm'2, 6'm2', 6/mmm,
67m/mm', 23, m3, 4'32, 4'3m;, and m3m'.

Ferromagnetoelastic switching can also be observed in the remaining 18
antiferromagnetic piezomagnetic classes, provided that either the concerned
phase is not simultaneously ferroelastic, or, if it is ferroelastic, it is not a
full ferroelastic (so that one can look for the ferromagnetoelastic effect in
nonferroelastic domain pairs). These 18 classes are:

222, mm2, mmm, 32, 3m, 3m, 4', 4', 47m, 422, 4'22, 4mm, 4mm', 42m,
4'2m', 4'2'm, 4/mmm, and 4!/mmm'.
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CoF2 and MnF2 (belonging to the magnetic crystal class 4//mmm/)
(Borovik-Romanov 1959) and FeCOa (magnetic symmetry 3m) (Borovik-
Romanov 1960; Pickart 1960) are piezomagnetic crystals for which coeffi-
cients of the piezomagnetic tensor were determined experimentally. Ferro-
magnetoelastic switching in FeCOs was indeed effected by Borovik-Roma-
nov et al. (1962) by applying fields HI and 0*23 below the antiferromagnetic
phase transition temperature, i.e. below 30 K (also see Newnham & Cross
1974a).
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12.6 FERROMAGNETOELECTRICS
The magnetoelectric effect is the induction of magnetization by an electric
field. The linear part of the effect is described by (cf. Eq. 6.2.11):

Bi = aijEj (12.6.1)

Alternatively, it can be described as the induction of electric displace-
ment by a magnetic field (cf. Eq. 6.2.10):

Di = otijHj (12.6.2)

Ferromagnetoelectric switching in a ferroic crystal is determined by
the following free-energy density for a relevant orientational twin (cf. Eq.
6.2.18):

-A0 = AaijEiHj, (12.6.3)

or
-A0 = kD™ducedHj, (12.6.4)

or
-A0 = ABlnducedEi (12.6.5)

The choice of crystals in which the magnetoelectric effect may be ob-
served is limited by the following two factors: (a) The magnetoelectric effect
is absent in all crystals the symmetry groups of which include time-inversion
and/or space-inversion operations. In particular, crystals containing anti-
translations in their Shubnikov groups are excluded. These are the so-called
Type II antiferroelectrics (Sirotin & Shaskolskaya 1982; Landau, Lifshitz &
Pitaevskii 1984). (b) The manifestation of the magnetoelectric effect re-
quires the simultaneous application of appropriate magnetic and electric
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fields. Therefore it is more difficult to observe for those domain pairs which
are ferromagnetic and/or ferroelectric.

58 of the 90 magnetic crystallographic point groups permit magne-
toelectricity (Birss 1964). If we exclude from these the 18 pyromagnetic
classes, we are left with 40 magnetoelectric classes in which to look for the
ferromagnetoelectrie switching effect. These have been listed by Newnham
& Cross (1974a). The list can be further shortened by excluding ferroelec-
tric crystals, or rather ferroelectric domain pairs.

Bertaut & Mercier (1971) tabulated magnetoelectric coefficients for
about 20 materials, the most important among these being C^Os. Mag-
netoelectricity in this crystal was predicted by Dzyaloshinskii (1959), and
measurements were first carried out by Astrov (1960).

When a crystal undergoes a ferromagnetoelectrie phase transition, the
various domain states in the ferroic phase can, in principle, occur with
equal probability. If a judicious application of electric and magnetic fields
can achieve preponderance of one domain type over others, it demonstrates
the phenomenon of 'poling' through ferromagnetoelectrie switching. This
was achieved for C^Oa by Shtrikman & Treves (1963) (also see Newnham
& Skinner 1976).
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12.7 TERTIARY FERROICS
Tertiary ferroicity is difficult to demonstrate because of its possible masking
by the presence of corresponding primary and secondary effects.

According to the symmetry analysis carried out by Aizu (1972a) for
nonmagnetic crystals, there are only four ferroic species, out of a total of
212, for which no electrical, mechanical, and electromechanical state shifts
of order less than 3 can occur. The number of orientation states is only 2
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for all of them. For three, namely 6/raramF6/ra, 43raF23, and raSraFraS,
the electrical order of state shifts is 5 or higher, the mechanical order is 3 or
higher, and the electromechanical order is 3 or higher. The fourth ferroic
species, namely m3mF432, also has the same characteristics, except that,
with space inversion as the F-operation, the mechanical order of state shifts
is infinity.

Tertiary or higher-order ferroic behaviour should be looked for in these
four species. No actual tertiary-ferroic switching appears to have been
demonstrated yet because of the high coercive fields involved, and also be-
cause of the low interest in such systems. However, Newnham & Cross
(1974b) and Amin & Newnham (1980) have discussed a number of candi-
date crystals.

It follows from Aizu's (1972a) analysis that ferrotrielectric, and even
ferroquadrielectric, behaviour is not possible in any crystal, ferrotrielas-
tic Ferrotrielastic behaviour is possible for crystals belonging to the three
species 6/mmmF6/m, 43mF23, and m3mFm3.

The mineral elpasolite (K^NaAlFe) belongs to the Aizu species m3mF
ra3. Its two orientation states differ in 2 of the 8 independent third-order
elastic constants. It is a potential ferrotrielastic.

Another such potential ferrotrielastic identified by Amin & Newnham
(1980) is cadmium chlorapatite, Cd5(PO4)a. It belongs to the species
6/mmmF6/m. Its two orientation states differ in the signs of Cmm and
Cil2331'
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Chapter 13

POLYCRYSTAL
FERROICS AND
COMPOSITE FERROICS

A crystal, by definition, is an infinite object; otherwise the points of its
underlying lattice would not be strictly equivalent. Real crystals, however,
are never infinite. We consider size effects in ferroic crystals in this chap-
ter. Also discussed is the ferroic behaviour of polycrystals and composites,
which are characterized, not only by a surface, but also by interfaces which
can be of a more complex nature (e.g. due to the greater likelihood of
aggregation of inclusions and pores in their vicinity) than the homophase
and heterophase interfaces encountered in single-crystal ferroics.

We first consider free particles (crystallites) of ferroic materials, and
then their incorporation in polycrystals (ceramics and polycrystalline al-
loys) and composites.

We do not consider other types of defects in ferroics in this book (except
what was discussed in §5.9, and during the discussion on spin glasses etc.),
and instead refer the reader to a review article by Hilczer (1995).

13.1 SIZE EFFECTS IN FERROIC
MATERIALS

13.1.1 General Considerations
The presence of a surface introduces a surface-energy term in the total free
energy of a ferroic or nonferroic crystal. The relative importance of this
term increases as the size of the crystal is decreased, entailing an increase
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504 13. Poly crystal Ferroics and Composite Ferroics

in the surface-to-volume ratio.
Apart from the dominance of the surface-energy term at small sizes,

new effects can arise due to the truncation of the infinite lattice. For ex-
ample, for predominantly covalent crystals, the lattice parameters increase
with decreasing size in the nanometer regime, thus simulating negative
pressure.

From a practical or experimental point of view, another factor which
assumes greater importance as crystal sizes decrease is the role played by
surface impurities like adsorbed phases or oxide layers, etc.

Several types of size effects must be distinguished. One is the occur-
rence of very small self-limiting regions in large single crystals due to causes
such as charge imbalance (as in PMN crystals), or very dilute levels of impu-
rities or dopants (as in spin glasses, etc.). We have already considered these
in Chapters 9, 10, and 11, and will be mentioned here only for comparison
purposes, or for drawing analogies.

The second type of small-size effects occur when sizes of isolated single
crystals (i.e. crystallites or particles) are made smaller and smaller. These
will be discussed in §13.1.2, 13.1.3 and 13.1.4.

The third type of small-size effects occur in ceramics and alloys with
very small grains. These will be taken up in §13.2.

The fourth class of systems in which characteristic size effects can be
important and interesting are nanocomposites. We discuss these in §13.3.6.
Even thin films can be treated as belonging to this class because they are
normally in contact with a second phase, namely the substrate.

The physics of clusters and nanophase materials is already a vast sub-
ject (Multani & Wadhawan 1990). Here we can devote space only for some
general remarks.

13.1.2 Size Effects in Ferromagnetic Powders
This topic has been reviewed in substantial detail by Multani et al. (1990)
and Haneda & Morrish (1990).

In §9.2.10 we described the occurrence of superparamagnetism, as also
a specific blocking temperature, for small magnetic particles embedded in
rock materials. The basic phenomenon is the same even for free crystallites
or particulate matter.

As the size of ferromagnetic crystals is reduced, the saturation magne-
tization Ms is found to decrease. Coey (1971) investigated 7^6263 par-
ticles in the 6.5 nm size range by Mossbauer spectroscopy, and found the
the presence of a noncollinear spin structure. More extensive studies have
since established the occurrence of similar noncollinear spin arrangements
in small crystals of CrO2, NiFe2C>4, and CoFe2O4 (see Haneda & Morrish
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1990). It has been also established that, at least in the case of CoFe2O4
particles, there is a core with a collinear spin arrangement, coexisting with
outer surface layers in which the spins have a noncollinear (canted) config-
uration. The presence of the latter naturally results in a lower overall value
for Ma.

Such a shell structure for the spins is not observed in fine particles of
Fe, FeNi, and FeCo alloys (Morrish & Pollard 1986), although M8 decreases
for them also with decreasing particle size. For example, Ms = 130 emu/g
for Fe particles in the 6 nm size range (Birringer et al. 1986), whereas this
value is 220 emu/g for bulk a-Fe.

The ferromagnetic or ferrimagnetic transition temperature Tc is also
found to decrease with the size of the crystallite. Tc for Ni falls by about
40 K for 70 nm particles (Valiev et al. 1989).

The lowering of Tc with particle size can be put to practical use. This
is best exemplified by the case of barium ferrite (BaFe^Oig), a hexagonal
hard ferrite. It finds applications not only in permanent magnets, but is
also being developed as a recording medium and a magneto-optic medium
(see Haneda & Morrish 1990 for a review). Among other things, smaller
particle sizes mean greater information-storage densities.

The occurrence of a ferromagnetic phase transition entails the forma-
tion of a magnetic domain structure in the ferromagnetic phase, at least for
a bulk crystal. For sufficiently small particle sizes the formation of domain
walls is not favoured, and the whole particle becomes a single-domain par-
ticle. An example is that of Fe particles suspended in mercury. For them,
the crystallite size below which a single-domain configuration is favoured is
about 23 nm (Kneller & Luborsky 1963). And it is in the region of 28 nm
for particles of Feo.4Coo.6 (Kneller & Luborsky 1963).

Speaking in general terms, as the size of a ferromagnetic crystallite is
reduced, four successive stages of behaviour can be distinguished (Newn-
ham, Trolier-McKinstry & Ikawa 1990):

(1) Poly domain; (2) Single-domain; (3) Superparamagnetic; and (4) Para-
magnetic.

Stage 2 is a consequence of the fact that creation of a domain wall costs
energy, and below a certain volume-to-surface ratio the trade-off between
this cost and the benefit of decreasing the demagnetizing field gets reversed
(Kittel 1946).

Stage 3 was discussed in §9.2.10. A typical dimension below which it
sets in is 20 nm. This transition to the superparamagnetic state or phase
also entails an enhancement of overall symmetry. The basic reason for this,
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as mentioned in §9.2.10, is this: Because of the cooperative nature of ferro-
magnetic ordering, the ordering energies involved scale with volume. With
particle sizes as small as 20 nm or less, the energy barrier for a collective
spin flip (for the entire crystallite) from one easy direction of magnetiza-
tion to another becomes comparable to thermal-fluctuation energies (Bean
& Jacobs 1956). The result is a zero-magnetization, single-domain particle
with an extremely high magnetic permeability.

Stage 4 arises because the number of atoms or molecules involved is so
small that no substantial long-ranged cooperative ordering, characteristic
of a ferromagnetic phase, is possible.

13.1.3 Size Effects in Ferroelectric Powders
The review article by Multani et al. (1990) provides a wealth of information
on this topic.

Like the four successive states of a ferromagnetic crystallite, induced
by a decrease in the particle size (described above in §13.1.2), there are,
in general, four successive size-induced states or phases in a ferroelectric
powder: (1) Polydomain -» (2) Single-domain -» (3) Superparaelectric —>
(4) Paraelectric.

As a rule, electro-elastic coupling effects are stronger than magneto-
elastic coupling effects. Therefore, sample history is more important in
determining small-size effects in powders of ferroelectrics than in powders
of ferromagnetics.

Ishikawa, Yoshikawa & Okada (1988) and Lee, Halliyal & Newnham
(1988) investigated size effects in PbTiOs powders, and found that its
tetragonal form is stable down to 20 nm sizes. The corresponding critical
size for BaTiOs is 1200 A; for sizes smaller than this, its tetragonal phase
at room temperature reverts to the cubic phase (see Newnham & Trolier-
McKinstry 1990). However, the behaviour depends strongly on residual
strains.

Small-size effects in BaTiOs and PbTiOs have been investigated more
recently by Bursill et al. (1997) and Jiang, Peng & Bursill (1998a, b). For
BaTiOs the properties of the ultrafine powder were found to depend on
the method of preparation. The BaTiOs nanoparticles prepared by the sol
gel (SG) method had a critical size (about 130 nm) below which the occur-
rence of the tetragonal-cubic ferroelectric phase transition is suppressed. By
contrast, the nanoparticles prepared by the steric acid gel (SAG) method
remained cubic for all the sizes studied, a behaviour attributed to (non-
surface) 'chemical effects' like intergrowth defects (alternating polytypic
layers of cubic and hexagonal BaTiOs), vacancies, and charged and un-
charged dopants.
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Nanocrystals of PbTiOs prepared by the SG method were found to
remain tetragonal down to 25 nm, although the c/a ratio went on decreas-
ing. As revealed also by the Raman scattering work of Ishikawa (1988), the
soft mode responsible for the ferroelectric phase transition disappears alto-
gether for particle sizes less than 25 nm, thus indicating the disappearance
of the phase transition.

The ferroelectric transition temperature Tc for BaTiOa was found to
decrease with decreasing particle size below 4200 nm, down to 110 nm. The
corresponding sizes for PbTiOs were observed to be 90 nm and 25 nm.

Effect of particle size on the ferroelectric behaviour of PZT powders was
investigated by Mishra & Pandey (1995, 1997). It was concluded that, for
both tetragonal and rhombohedral compositions, the ferroelectric transition
is suppressed below a certain size due to the presence of intense depolariza-
tion fields resulting from the single-domain configuration at small sizes (also
see Arlt & Pertsev (1991)). An earlier study by Srinivasan et al. (1984)
on Pb(Zro.5ioTio.49o)O3 particles, prepared by a sol gel method resulting
in particle sizes of the order of 16 nm, indicated the absence of any broad
(6 atomic percent) morphotropic phase boundary between tetragonal and
rhombohedral phases. The material exhibited features of a near-amorphous
phase.

Effect of particle size on the ferroelectric phase transition in nanocrys-
tals of PbSci/2Tai/2C>3 (PST) has been studied recently by Park, Knowles
& Cho (1998) for particles in the 160-10 nm size range. The tetragonality
ratio c/a decreases monotonically with particle size, becoming unity at 273
K for a mean particle size of 53 nm. For sizes less than 20 nm, and down to
10 nm, the tetragonality of the crystal structure persists, even though there
is no peak in the temperature dependence of either the dielectric function
or the DSC curve.

13.1.4 Size Effects in Ferroelastic Powders
By analogy with ferromagnetic and ferroelectric powders discussed above,
four regimes of the size dependence of the ferroelastic properties crystals
could be envisaged:

(i) In large ferroelastic crystals (typically, larger than 1 micron), the usual
domain structure occurs, as also the characteristic stress-strain hysteretic
behaviour.

(ii) Reduction in size may lead to a single-domain ferroelastic phase (typi-
cally for sizes between 1000 nm and 100 nm). Although the overall process
involves several contributions to the free energy and its minimization, the
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Figure 13.1.1: Competition between the homogeneous elastic-energy term
(which varies as d3) and the domain-wall energy term (which varies as
of2). At d = dcrit the two curves cross, and for particle sizes less than
dcrit spontaneous creation of domain walls is not favoured energetically.
[Adapted from Arlt (1990).]

two main terms are the volume term and the surface term (the latter in-
cluding the domain-wall term also). For a particles size cf, the volume term
scales as d3, and the domain wall term as d2 (Fig. 13.1.1). The size, dcrit,
at which the two terms match (they have opposite signs) is the size below
which a configuration devoid of domain walls is favoured.

(iii) At still smaller sizes a superpamelastic phase may ensue. Such a phase
may exhibit zero macroscopic spontaneous starin, but very large elastic
compliance (Newnham & Trolier-McKinstry 1990).

(iv) For particle sizes approaching molecular dimensions, all vestiges of
cooperative ferroelastic ordering may disappear, and the system may revert
to a higher-symmetry paraelastic phase.

For ferromagnetic crystals the demagnetization field and its mimimiza-
tion plays a major role in determining the domain structure, and for small
enough crystal sizes other forces become dominant and a single-domain
state is favoured. A similar role is played by the depolarization field in the
case of a ferroelectric. There is no analogous mechanical field for a free
ferroelastic particle (Eshelby 1961).
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However, if the same ferroelastic crystallite is in an anisotropic envi-
ronment (e.g. in a ceramic), its spontaneous deformation at a ferroelastic
phase transition would create a strain field in the surrounding material,
and we would have mechanical depolarization (see Arlt 1990).
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13.2 POLYCRYSTAL FERROICS
The use of ferroic and other single crystals in devices is generally limited by
considerations of feasibility, cost, size, and shape. Very often, polycrystals,
particularly ceramics, provide an attractive alternative.

In a ceramic the various crystallites or grains are separated by grain
boundaries, and the intergrain bonding is comparable in strength and na-
ture to intragrain bonding. In the preparation of a ceramic (which is gener-
ally an oxide), one normally starts with a powder which is often a collection
of individual and unbonded crystallites. Their fusion and the resultant for-
mation of grains and grain boundaries results in a material (the poly crystal)
which has properties that are influenced very substantially by the sizes and
shapes of the grains, and by the nature of the grain boundaries; i.e. by the
microstructure and the nanostructure. A grain boundary is a region of the
polycrystal that acts as a transition layer between two grains, and thus has
a structure, composition, and purity level different form that of the grains
separated by it.

In a ferroic polycrystal the domain structure inside the crystallites or
grains is determined by a number of factors, particularly the grain size
and shape. The ferroic domains in a polycrystal can be induced to have a
preferred orientation or texture by the process of poling, i.e. by applying a
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field strong enough to cause domain-wall motion.

13.2.1 Polycrystal Ferromagnetics
Magnetic Ceramics
Magnetic ceramics have been reviewed by Goldman (1988, 1990) and Valen-
zuela (1994). Most of them contain Fe2Oa as the main oxide, although some
contain the oxides of Mn, Cr or Al. The term 'ferrites' applies to most of
the magnetic ceramics, and they are generally ferrimagnetic, rather than
ferromagnetic.

There are three main categories of magnetic ceramics: magnetic spinels,
magnetoplumbites, and magnetic garnets.

Spinel is the name of the nonmagnetic mineral MgO.A^Oa. Magnetic
spinels have the composition MO.Fe2O3, where M = Mn2+, Ni2+, Cu2+,
Co2+, Fe2+, Zn2+, or their combinations; even monovalent ions like Li+
occur in some magnetic spinels. Similarly, the Fe3"1" ion may sometimes
occur in combination with other trivalent ions. Spinels have a pseudocubic
chemical unit cell with 8 formula units in it. The true (magnetic) symmetry
is certainly not cubic; otherwise ferroic properties cannot arise.

Magnetoplumbites have the general formula MO.6Fe2O3, with M = Ba,
Sr or Pb. The Fe ions may sometimes be replaced partially by Al, Ga, Cr
or Mn ions. The crystal structure has pseudohexagonal symmetry.

The best known magnetic garnet is YIG (yttrium iron garnet), having
the formula 3Y2Os .5Fe2Os. The general formula is 3M2Os .5Fe2Os, or
MsFesO^. All the metal ions are trivalent. The crystal structure has a
dodecahedral configuration.

The ferrites allow a very high degree of compositional tunability to suit
specific applications.

Permeability of Magnetic Ceramics

For a metallic or insulator magnetic polycrystal to exhibit high permeabil-
ity, it is necessary that the domain walls in it should move easily under
an applied magnetic field. In the case of ferromagnetic metals, very high
permeability can be achieved because the grain boundaries are relatively
thin and domain walls can generally move right across them from one grain
to another. Pinning centres such as pores are also quite negligible for them.
The situation is different in ferrites. For them the domain walls are thicker,
pinning centres like impurities, pores and inclusions abound, and chemical
inhomogeneity can be high. If the average grain size is small, it further
leads to a lowering of the permeability.
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Resistivity of Magnetic-Ceramics

Ferrites score over metallic magnets in applications where high resistivity
is a necessity. This happens when prevention of eddy-current losses is a
major consideration, as in high-frequency applications.

In ferrites, the resistivity depends on factors such as the iron content,
and the nature and number-density of grain boundaries. Addition of CaO
has been found to increase the resistivity.

Poly crystalline Magnetic Alloys

Properties of practically all the magnetic materials, both alloys and insu-
lators, originate from three elemental constituents, namely Fe, Co, and Ni,
which are ferromagnetic at room temperature. We have already considered
the magnetic insulators, i.e.the ferrites. We now focus on the magnetic
alloys.

Compared to ferrites, magnetic alloys have large values of saturation
magnetization, Ms, as also higher Tc values. This is because in metallic
systems there are no intervening oxygen atoms to 'dilute' the magnetic
moment per unit volume. For the same reason, i.e. because of the closer
distances between the interacting spins, strong direct-exchange ordering
interactions are established, which can withstand the disordering thermal
forces up to higher temperatures compared to the oxides.

The relative permeability of a ferromagnet is high if its MS/K ra-
tio is high, where K denotes the overall anisotropy (magnetocrystalline
anisotropy, shape anisotropy, etc.). For metallic ferromagnets, not only
is Ms high in general, even K can be made small through several tech-
niques (see Valenzuela 1994). Therefore, compared to magnetic ceramics,
extremely high values of permeability (approaching 2 x 106) have been
achieved in magnetic alloys.

As mentioned earlier, an interesting feature of grain boundaries in mag-
netic polycrystals is that the domain walls in the magnetic grains can be
generally made to move past the grain boundaries from one grain to an-
other. This is consistent with the high permeabilities exhibited by such
materials.

The element Fe is the basic component used for making all soft fer-
romagnetic alloys. These alloys can be tailor-made to exhibit a very wide
range of properties, keeping in view the intended applications.

The most widely used soft magnetic alloy is Fe — Si. Some other im-
portant alloys are Fe — Al, Fe — Ni, Fe — Co, and Fe — Pt. For a good review
of their properties the book by Valenzuela (1994) should be consulted.
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13.2.2 Polycrystal Ferroelectrics
Ferroelectricity can occur in only 10 of the 32 crystal classes. These 10 polar
classes (1, 2, 3, 4, 6, m, mm2, 3m, 4mm, 6mm), being noncentrosymmetric,
form a subset of the 21 noncentrosymmetric classes. All these 21 classes,
except one, are piezoelectric, the exception being the class 432. Thus all
ferroelectric classes are piezoelectric as well, although the converse is not
true (cf. Fig. 10.1.1). Piezoelectrics, particularly from the applications
point of view, have a close relationship with ferroelectrics.

Further, since all the ferroelectrics with which we deal here are insula-
tors (we do not discuss semiconductor ferroelectrics due to limitations on
space), the term 'polycrystalline ferroelectrics' becomes synonymous with
'ceramic ferroelectrics'.

Most of the ceramic ferroelectrics are used either as piezoelectrics, or,
if made transparent, as optical electroceramics.

Piezoeeramics
When a ceramic of a piezoelectric crystal is prepared, initially its grains
are oriented randomly, making it an effectively centrosymmetric material.
Therefore, it cannot exhibit the piezoelectric effect unless it is poled. The
process of poling amounts to switching some domains into directions that
are more favourably inclined with respect to the poling field. Naturally,
this switching cannot occur unless the crystalline species has alternate ori-
entation states available to it, to which an unfavourably oriented domain
can switch, i.e. unless the material is a ferroelectric. Thus ceramics of only
those piezoelectrics can be poled which are ferroelectric as well.

Nonferroic piezoelectrics cannot be poled.

If a material is simultaneously ferroelectric and ferroelastic, then even
uniaxial stress can be used for poling its ceramic so that it exhibits the
piezoelectric effect.

The most important piezoceramic is PZT (PbZrxTii_xOs). It has
the same perovskite structure as BaTiOs (Clarke & Glazer 1974; Corker,
Glazer, Whatmore, Stallard & Fauth 1998). In its T — x phase diagram
there occurs a 'morphotropic' (temperature independent) phase boundary
(MPB) near x = 0.53. It is a nearly vertical line parallel to the T-axis,
and extends to a temperature above which the structure acquires the pro-
totypic cubic symmetry. At room temperature, and near the MPB, the
Zr-rich side has tetragonal symmetry. The material displays a very high
dielectric permittivity for compositions near the MPB. Also, the electrome-
chanical coupling coefficient, fc, is very large for compositions near the MPB,
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implying a large conversion of the input electrical (mechanical) energy to
mechanical (electrical) energy in transducer applications of the material
(Mishra, Pandey & Singh 1996; Mishra, Singh & Pandey 1997; Mishra &
Pandey 1997). The large electromechanical response in the MPB region is
attributed to the presence of the tetragonal to rhombohedral phase tran-
sition nearby, and the consequent peak in the dielectric response (Karl &
Hardtl 1971; Wersing 1981; Cross 1993; Mishra & Pandey 1997).

Compared to piezoelectric single crystals, piezoceramics can be pro-
duced more easily, at a much lower cost, and in a variety of shapes and
sizes (see, for example, Pohanka & Smith 1988). PZT has the highest
o?33 coefficient of all the known single-phase materials, a typical value for a
properly fabricated and well-poled specimen being about 400 x 10~12C/N.

Optical Electroceramics

The use of transparent ferroelectric single crystals like KDP, BaTiOs, and
GMO for electro-optical applications is limited by considerations of cost,
size and shape. During the late 1960s, processes were developed for produc-
ing optically transparent electroceramics. In 1971, Haertling & Land re-
ported the fabrication of 100% transparent lanthanum-doped PZT (PLZT)
ceramic (not counting the 18% reflection losses). With the use of broad-
band antireflection coatings, 98% transmission can be obtained these days
(see Haertling (1980) for a review).

In PLZT some of the Pb2"1" sites are occupied by La3"1" ions. It can
be therefore represented by the formula Pb1_3y/2Lay(ZrzTii_z)O3. The
short-hand notation used for specifying this composition is y/z/(l — z),
where z/(l — z) is the Zr/Ti ratio, and y is the atomic percentage of La3"1"
ions.

Depending on the composition, as well as their intended application,
PLZT ceramics have been divided into three main categories in terms of
their relevant electro-optic characteristics: 'memory', 'linear', and 'quadratic'.

The Memory Characteristic. A typical composition of PLZT displaying
memory characteristics is 8/65/35, with an average grain size of 2 microns.
By successively applying electric pulses in two mutually perpendicular di-
rections, two optically distinct states of the ceramic, corresponding to dif-
ferent orientations of the ferroelectric domains, can be established. The
ceramic exhibits memory in the sense that the domain orientations are sta-
ble, i.e. they do not revert back to their original states when there is no
external field present.

The Linear Characteristic. For applications based on the Pockels effect
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a suitable composition of PLZT is 8/60/40. It has tetragonal structure, and
high coercivity. The ceramic shows excellent electro-optical linearity for dc
fields ranging from -1.4 MV/m to 2.0 MV/m, with an effective Pockels
coefficient, rc, of about 100 pm/V. This is 6 times larger than that for
single-crystal LiNbOa. An alternative composition, 8/65/35, has an even
higher value of 520 pm/V, but this is at the expense of linearity. Grain size
has a strong effect on the linearity of the response.

The Quadratic Characteristic. Compositions of PLZT close to the
paraelectric-ferroelectric phase boundary, particularly 8.8/65/35, 9.5/65/35,
and 8/70/30, are popular for Kerr-effect applications. These compositions
fall in the relaxor-ferroelectric regime, and undergo field-induced phase tra-
nsitions. At room temperature the gross point-group symmetry is cubic
(the same as the actual symmetry of the prototypic phase), and only a slim
hysteresis loop is observed (§10.4). Application of electric field induces a
transition to the optically anisotropic rhombohedral or tetragonal 'normal'
ferroelectric phase (with a fat hysteresis loop). The optical anisotropy in-
creases quadratically with electric field.

These compositions are also strongly ferroelastic, and even exhibit the
shape-memory effect (SME). The SME in alloys cannot be manipulated
substantially by electric fields because of the high electrical conductivity.
This limitation is not there for an insulator like PLZT. The effect of electric
field on the SME in 6.5/65/35 PLZT was demonstrated by Wadhawan et al.
(1981). It would be interesting to produce the SME in such a material by
purely electrical means, without any externally applied mechanical stress.

The ferroelastic nature of the quadratic compositions of PLZT enables
their biasing and poling by mechanical means. This fact is exploited in
applications like image storage (Haertling 1980).

The composition 8.2/70/30 is antiferroelectric, but because of its high
degree of 'electric softness' it becomes ferroelectric on application of a field
greater than 1 MV/m. The hysteresis loop is therefore very narrow near
the origin, and wide for large fields. Concomitant to this field-induced
transition to the ferroelectric phase is the development of birefringence of
the order of 0.05, and a marked increase in the scattering of light. This is
particularly pronounced for grain sizes in the 10-15 microns range. This
scattering effect is employed, in the longitudinal mode, in device applica-
tions for reducing the light flux over angles of about 3°.

13.2.3 Polycrystal Ferroelastics
The subject of polycrystalline ferroelastics has developed mostly in the con-
text of the SME exhibited by several alloy systems. Among the insulators
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there are systems which are simultaneously ferroelastic and ferroelectric,
and perhaps the best examples of these are the PLZT compositions with
the quadratic characteristic (§13.2.2).

Among the polycrystalline materials investigated which are purely ferro-
elastic, i.e. which are not simultaneously ferroelectric and/or ferromagnetic,
an interesting case is that of the Y — Ba — Cu — O ceramic. SME in it was
demonstrated by Tiwari & Wadhawan (1991). Among the reasons cited by
these workers for expecting the SME in it was the fact that, at least for
the geometry adopted by them for conducting the experiment, the impor-
tant requirement of crystallographic reversibility (cf. §11.5.3) was indeed
met. Whereas the actual crystalline symmetry of the tetragonal and or-
thorhombic phases of this material is 4/mrara and rarara, the symmetry
of the ceramic is oo/mra in the parent (nominally tetragonal) phase. This
enhanced symmetry of the polycrystal, compared to the single crystal, is
partly instrumental in ensuring crystallographic reversibility of the phase
transition for the geometry of the system investigated.
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13.3 COMPOSITES WITH AT LEAST ONE
FERROIC CONSTITUENT

How much finer things are in composition than alone.

Ralph Waldo Emerson, Journals

A composite is a material made up of two or more submaterials (or con-
stituents, or phases) which are strongly and intimately bonded together.

Prom the applications point of view, composites can be branded as
either structural or nonstructural.

Re-enforced cement concrete (RCC), particle board, and plywood are
examples of structural composites. Compared to nonstructural composites,
the field of structural composites is old and highly developed (for a recent
review, see Hanson (1995)).

In this section we focus, by and large, on nonstructural composites.

13.3.1 General Considerations

Sometimes an application of a material may have conflicting requirements.
For example, we may wish to make a transducer material which has a large
dss or dsi piezoelectric coefficient, low density, and high mechanical flexibil-
ity. Although a poled PZT ceramic is strongly piezoelectric, it is also very
brittle and dense. Compared to it, a polymer like PVF2 (polyvinylidene
difluoride) is flexible and light-weight, but not strongly piezoelectric. If we
combine the two, and make a carefully patterned composite (the pattern
depending on the intended application), the composite material can not
only meet the conflicting requirements, it may even have enhanced proper-
ties. In fact, a composite may sometimes even have new properties, not
present in any of its constituent phases separately.

The freedom provided by the large number of ways in which two or
more constituent materials can be configured together to design a composite
with various connectivities and symmetries offers fascinating possibilities.
And very often the ideas for the design come from how nature does it
in forming the tremendous variety of crystals from the 100-odd elements.
Crystals are nature's own composites, although on the very small atomic
scale (Newnham & Trolier-McKinstry 1990).
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13.3.2 Sum, Combination, and Product Properties of
Composites

Sum Properties

A trivial example of a sum property of a composite is its density, which is
the average (arithmetic mean) of the densities of its constituent materials.

In §3.1.7 we defined a tensor property T as relating a force X to a
response Y through a linear constitutive relation Y = TX. The property
T can be described as an X-Y effect.

Consider a composite which has two constituents, each with its own
X-Y effect. The proportionality tensors T are different for the two con-
stituents. Together the two materials produce a net X-Y property for the
composite (they may produce other properties also, some of them new).
Such a property is a sum property (van Suchtelen 1972). It is obtained as
a weighted sum of the T-tensors for the constituent phases. The weighted
summation is not always an easy task, as the sum property may depend
critically on the mutual geometrical configurations of the constituent ma-
terials (see Hale 1976).

Examples of sum properties include electrical and thermal resistivity,
dielectric permittivity, thermal expansion, and elastic compliance (Hale
1976).

Electrical resistivity is a good example for visualizing how a sum prop-
erty depends on the geometrical arrangement in the composite. One ex-
treme is when the constituent phases are aligned parallel to the probing
field, and the other extreme is when they are perpendicular.

The resistivity p of the composite can be expressed as

pn = VlP^ + Vip% + . - . , (13.3.1)

where Vi, V<z are the volume fractions of the two component phases; pi, p2
are their resistivities; n = I for a series configuration of the resistances; and
n = — 1 for parallel mixing.

In a general situation the two may occur together, and the sum property
lies between the arithmetic mean and the geometric mean, although its
realistic calculation can be a highly nontrivial task, particularly if the two
constituents have widely different properties.

When a sum rule similar to Eq. 13.3.1 is written for capacitances,
or dielectric permittivities, the values of n get interchanged for series and
parallel configurations.
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Combination Properties

Consider a property that is a combination of two properties. For example,
the acoustic speed v of a wave travelling along a long thin rod depends on
Young's modulus E and density p: v = (E/p)1/2. When a composite is
made from two or more materials, the mixing rule for their Young's moduli
may not be the same as the mixing rule for their densities (Newnham
1985, 1986, 1988). The mixing rule for the combination property can then
become a very complicated affair. It can even happen that, unlike for sum
properties, the value of the combination property may lie outside the range
defined by the values of the property for the pure phases.

Newnham (1986) cites experimental evidence for an actual example of
this. For a composite made by embedding oriented steel filaments in an
epoxy matrix, the wave velocity VT for a wave travelling transverse to the
direction of orientation of the steel filaments is measured to be less than
the value of this velocity for both epoxy and steel. This is attributed to
different effects of volume fraction on stiffness and density.

How strongly the mixing rules can depend on direction is well illustrated
by the same example, wherein it is found that, unlike the transverse velocity
VT, the longitudinal velocity VL does behave like a sum property, implying
that for VL the stiffness and density follow the same mixing rule.

Product Properties

Consider a diphasic composite, with an X-Y effect in Phase 1, and a Y-Z
effect in Phase 2. The two phases are so configured that when the response
Y occurs in Phase 1 on application of force X, this response gets transferred
to, i.e. it acts as a force on, Phase 2 (albeit with some dissipation or
damping factor). The X-Y effect and the Y-Z effect are then said to be
coupled, and the composite exhibits an X-Z effect. The last-mentioned
effect is an example of a product property (van Suchtelen 1972).

As an example, suppose Phase 1 is magnetostrictive, and Phase 2 is
piezoelectric. Then X is magnetic field, and Y is the magnetostrictive strain
produced in Phase 1 by the magnetic field. The strain Y can result in a
pressing of Phase 2, leading to the creation of an electric field (Z) through
the inverse piezoelectric effect. The net result is a magnetoelectric effect.
And this can happen even when neither Phase 1 nor Phase 2 are individually
magnetoelectric.

This is the remarkable thing about product properties: They can arise
in a composite even when they cannot occur in the constituent phases for
reasons such as symmetry restrictions.

In the above example the coupling is mechanical. Several examples of
possible electrical, optical, magnetic, thermal and chemical couplings have
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been considered and tabulated by van Suchtelen (1972) and Hale (1976).
The X-Y effect in bulk Phase 1 is described by a tensor T\, and the

Y-Z effect in bulk Phase 2 is described by a tensor T^:

ri = §, (13-3.2)

Ti = ̂  (13.3.3)

Let TS be the tensor describing the product property X-Z. Then

T3 = H = fccfc.TiTa (13.3.4)

Here kc and ks are factors of magnitude less than unity.
kc is a measure of the coupling efficiency between the two phases. If

this coupling is poor, only a small fraction of the effect Y in Phase 1 would
be transmitted to Phase 2.

The factor ks is a structural coupling factor, which depends not only
on the volume fractions of the two phases, but also on their geometrical
layout.

Situations exist wherein these coupling factors are complex, rather than
real. They may even be tensor quantities (van Suchtelen 1972).

It is also possible that the X-Z effect occurs as a net effect from more
than one Y-effects, so that Eq. 13.3.4 has to be generalized to

T3 = H = fcc^fcrfTiiTai (13.3.5)
i

13.3.3 Symmetry of Composites
The directional symmetry of any macroscopic property of a material is influ-
enced by its point-group symmetry. Single crystals can be normally taken as
homogeneous media for describing this macroscopic symmetry. The corre-
sponding proposition for composites has to be examined carefully because
of the various length scales involved. The dimensions of the phases in a
composite may be anywhere between a few nanometers to a few centime-
ters. Therefore, for assigning a point-group symmetry to such a diphasic or
multiphasic object one must choose a length scale which is large enough to
produce a meaningful and realistic average over a sufficiently representative
volume of the composite. When we speak of the point-group symmetry of
a composite we implicitly assume that this aspect has been taken care of.

The phases or materials which constitute a composite have symmetries
of their own. In addition, and equally importantly, they have a specific
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rotational and translational relationship with one another. The individual
symmetries, as well as the mutual disposition, together define the net point-
group symmetry of the composite, in accordance with the Curie-Shubnikov
principle (cf. Appendix C).

Having chosen the submaterials that would constitute a composite, the
designer still has at his disposal the choice of their mutual spatial rela-
tionship. The net point-group symmetry, and thence the symmetry of the
macroscopic properties of the composite, can be altered by altering this spa-
tial relationship. This offers a remarkable degree of flexibility in developing
new materials for specific applications.

The Curie-Shubnikov principle, which determines the symmetry of a
composite, has a dissymmetrization aspect, and sometimes also a sym-
metrization aspect. In other words, the symmetry of a composite may be
either equal to or higher than the common minimum symmetry. And the
common minimum symmetry, defined by the intersection group Gd in Eq.
C.1.3, is never higher than (in fact, it is mostly lower than) the symmetries
of the individual components of the composite (cf. Eq. C.I.4).

It is also a self-evident proposition that if the symmetry decreases,
the number of nonzero independent coefficients of any tensor property in-
creases. And if the symmetry increases, this number goes down. A familiar
example is that of the dielectric permittivity tensor. It has only one inde-
pendent component for crystals belonging to the cubic crystal classes, two
independent components for trigonal, tetragonal and hexagonal classes, and
three components for orthorhombic, monoclinic and triclinic classes (under
appropriate similarity transformations, where needed).

Translated to the field of composites (the design of which can be cho-
sen by human and other living beings, rather than by nature alone), such
considerations lead to two remarkable generalizations:

(a) It is possible, in principle, to generate new property coefficients by so
designing a composite as to decrease its overall symmetry appropriately; i.e.
by effecting dissymmetrization.

(b) It is possible, in principle, to get rid of some undesirable properties
by appropriately increasing the symmetry of a composite; i.e. by effecting
symmetrization.

Considerable help can be obtained in achieving these objectives by
invoking the Hermann theorem of crystal physics (cf. §3.3).

We illustrate these ideas by considering two examples.
The first example illustrates the consequences of dissymmetrization in

a composite, namely creating a magnetoelectric material comprising two
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oo/mm1 oo ooml1 ooooml1 ooml1

N, /

oo/mm' ooml1
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Figure 13.3.1: Group-tree depicting the various dissymmetrization pro-
cesses occurring in a polycrystalline BaTiOs - (Co, Ti)Fe2O4 composite,
poled and magnetized by parallel electric and magnetic fields.

submaterials neither of which can exhibit magnetoelectricity individually.
Such a composite material was developed at the Philips Laboratories by
combining BaTiOs and (Co, Ti)Fe2C>4 (van den Boomgaard et al. 1974,
1978; van Run et al. 1974; also see Bracke & van Vliet 1981, and Hanu-
maiah et al. 1994). The first material is a ferroelectric, and the second a
ferrimagnetic.

BaTiOa has point-group symmetry 4raml/ in the single-crystal state.
In the composite it occurs as an electrically poled ceramic, the symmetry
of which is the same as that of a cone, namely ooml' (see the right-hand
part of the group tree depicted in Fig. 13.3.1).

The single-crystal symmetry of (Co, Ti)Fe2O4 is 4/mm'm/. In the com-
posite, under the action of an applied magnetic field, it acquires a symmetry
which is described by the magnetic Curie group oo/mm' (cf. the left-hand
part of Fig. 13.3.1) (Newnham, Skinner & Cross 1978; Newnham et al.
1980; Newnham 1985).

In accordance with the Curie principle of superposition of dissymme-
tries, the net symmetry of the composite comprising the two submaterials
is given by the intersection group Gd'

Gd = ooml' H oo/mm' = oom' (13.3.6)

The symmetry group oom1 allows the magnetoelectric effect, whereas the
component groups ooml7 and oo/mm! do not (Newnham 1985).

Physically, the processes involved are as follows. Application of a mag-
netic field does nothing significant to the BaTiOs ceramic, but it causes
a magnetostrictive strain in the magnetically poled ceramic of the spinel
(Co, Ti)Fe2O4. The dimensional changes caused by this strain get transmit-
ted to the poled BaTiOa piezoelectric ceramic, and an electric voltage arises
in it through the piezoelectric effect. Thus an XY property (magnetostric-
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tion) couples with a YZ property (piezoelectricity) to give the product
property XZ, namely magnetoelectricity.

What is equally striking is the magnitude of the magnetoelectric effect
produced. It is a hundred times more than that in C^Os.

We now consider an example of a composite which has been designed
to possess higher macroscopic symmetry than its building blocks, with the
objective of eliminating some undesirable properties through the process of
symmetrization. The example is that of plywood. It is a structural compos-
ite, but similar configurations have also been adopted for making nonstruc-
tural ceramics (e.g. fibre-reinforced polymer-matrix laminated composites
designed for embedded-sensor applications (Hansen 1995)).

Cross-ply plywood is made of an odd number of plies of wood, bonded
together so that the fibre axes of successive plies are at right angles (Stavsky
& Hoff 1969; Countryman, Carney & Welsh 1969; Hansen 1995). The
outermost plies are called faces, and the term centres is used for plies which
have their fibre axes parallel to those in the faces. And the plies with fibre
axes at right angles to these are called cores. Thus cross-ply plywood can
be viewed as made of two interpenetrating objects, one consisting of all the
centres (symmetry GI = rarara), and the other consisting of all the cores
(symmetry G% = rarara).

The remarkable thing about such a design is that, whereas each ply, if
alone, can warp under changes of temperature and humidity, the composite
cross-ply structure does not.

This and some other properties of plywood can be understood in terms
of the Curie-Shubnikov principle and the Hermann theorem of crystal physics
(Wadhawan 1987a).

GI and G2 are the same symmetry group rarara. The intersection
group Gd is also rarara. The symmetry of the overall object is obviously
higher than G^, and we have therefore to identify a suitable symmetrizer
(cf. §C.2) to describe correctly the enhanced or extended symmetry of
cross-ply plywood. The symmetrizer can be readily seen to be #2 = 42, so
that the symmetry of this plywood configuration is (cf. Eq. C.2.2)

Gs = (rarara) U 42 (rarara) = 4/rarara (13.3.7)

With reference to the Hermann theorem, this corresponds to N = 4 (cf.
§3.3). This means that, on a sufficiently macroscopic scale, the system has
an axis of 4-fold rotational symmetry at the point-group level. It follows
that if we consider any tensor property of the material of rank r, then for
r < TV, i.e. for r < 4, the effective value of N is oo for that tensor property.
Thermal expansivity is one such property. For it, r = 2. Since N > 2
for cross-ply plywood, the Hermann theorem predicts that N = oo for the
thermal expansivity of this composite material. That is, we get isotropic
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thermal expansion (or zero warping) in the plane normal to the pseudo-4-
fold axis of cross-ply plywood. This is also known as transverse isotropy:
We say that cross-ply plywood displays transverse isotropy with respect to
thermal expansivity.

Since N = oo so far as thermal expansivity of cross-ply plywood is con-
cerned, the number of independent components of this tensor is the same
for the symmetries oo/rara and 4/rarara; this number is 2, the two inde-
pendent components being an and 0:33 (see, e.g., Sirotin & Shaskolskaya
1982).

By contrast, if we consider a single ply , its point-group symmetry is
rarara, implying that N = 2. Therefore, since r is only equal to AT, and
not less than N, Hermann theorem does not predict transverse isotropy for
thermal expansivity. Thus warping can occur (i.e. it is not forbidden by
symmetry) in a single ply of wood on variation of temperature.

Next we consider a higher-rank property for the same composite, namely
the elastic-stiffness tensor, for which r = 4. Since r = N, the Hermann the-
orem does not predict transverse isotropy of elastic stiffness. This is indeed
verified by detailed calculation. The number of independent elastic con-
stants for a material of point-group symmetry 4/rarara is 6, compared to
the number 5 for the symmetry class oo/rara (Stavsky & Hoff 1969; Sirotin
& Shaskolskaya 1982). Thus isotropy of elastic behaviour is not present for
the basal plane of cross-ply plywood.

What should we do to achieve this transverse isotropy for this laminated
composite ? Thanks to the Hermann theorem, the answer is immediate:
Make N greater than 4 (Wadhawan 1987a).

A convenient choice for N is 6, resulting in the so-called hex-ply struc-
ture. It amounts to stacking and bonding laminae such that the angle
between successive pairs increases in steps of 60°. The basic 'unit cell' of
this angle-ply plywood would thus comprise any three successive laminae
or plies with grains or fibres making angles of 0°, 60° and 120° with some
direction in the basal plane. Such a structure has a gross point-group sym-
metry 622. It follows from the Hermann theorem that, since N = 6, any
tensor property of rank 5 or less (r < 5) would behave as if N = oo for it.
In particular, the elastic stiffness tensor (for which r = 4) would behave as
if the point-symmetry of the composite is oo2. Thus pseudo-isotropy in the
transverse plane (the basal plane perpendicular to the 6-fold axis) would
be achieved.

For the limit group oo2, as well as for the group 622, the number of
independent components of the elastic-stiffness tensor is 5, whereas it is
6 for the symmetry group 4/rarara of cross-ply plywood. Thus symmetry
enhancement (in this case in a specific plane) in going from 4/rarara to
622 not only results in a reduction of the number of independent elastic
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coefficients (from 6 to 5), but also in the elimination of an undesirable
property, namely non-isotropy of elastic behaviour in the principal plane of
plywood.

The photoelastic tensor is also a 4th-rank tensor, although it is not
identical to the elastic-stiffness tensor. Several nanocomposites can be de-
signed for optical applications (see Newnham, Trolier-McKinstry & Ikawa
1990). In a nanocomposite, at least one of the phases has at least one
dimension in the nanometer range (i.e. much below the wavelength of
light). The easily accessible fabrication technology for making flat or lami-
nated nanocomposites (stretching, rolling, or poling of thin layers followed
by bonding) usually results in orthorhombic symmetry (meaning N = 2),
and the consequent optically biaxial behaviour for the individual layers.
Transverse isotropy, which amounts to uniaxial optical behaviour, should
be achievable by adopting a 4/rarara configuration similar to cross-ply ply-
wood. But if it is desired that the laminated nanocomposite should not only
be optically uniaxial, but also possess transverse isotropy of photoelastic
behaviour, then the hexply configuration is necessary (and TV — 8 would
be even better). Such a system will be largely free from vibration-induced
fluctuations of birefringence in the basal plane. Here is a solution looking
for a problem !

13.3.4 Connectivity of Composites
Compared to single-phase materials, the power and promise of composites
lies, not only in the gross symmetry that can be designed for achieving
dissymmetrization or symmetrization as desired, but also in the flexibil-
ity available in choosing the connectivities of the phases or submaterials
present.

Connectivity of a submaterial in a composite has been specified as a
number (Newnham, Skinner & Cross 1978). It is the number of dimensions
in which the submaterial is self-connected.

In the 3-dimensional world there are ten possible connectivities for
a diphasic composite: 0-0, 1-0, 2-0, 3-0, 1-1, 2-1, 3-1, 2-2, 3-2 and 3-3
(however, see below).

Imagine an epoxy matrix in which small particles of another material
are dispersed so that they do not touch one another. This is an example
of 3-0 connectivity, because one of the phases, namely the epoxy, is self-
connected in all the three dimensions, whereas the other phase (comprising
the dispersed particles) is not self-connected in any dimension or direction.

Several other examples have been discussed by Newnham, Skinner
& Cross (1978), Pilgrim, Newnham & Rohling (1987), and Newnham &
Trolier-McKinstry (1990).
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The 10 types of connectivity listed above do not exhaust all possibil-
ities. Consider the case of 3-1 connectivity, exemplified by a composite
in which rods of the poled piezoelectric ceramic PZT are embedded in a
polymer matrix. Contrast this with another composite, made by taking a
rectangular block of poled PZT ceramic, drilling parallel holes in it across
one of the three pairs of parallel faces, and rilling these holes with a poly-
mer (Klicker, Diggers & Newnham 1981; Safari, Newnham, Cross & Schulze
1982). Clearly, the properties of these two composites are markedly differ-
ent. A convention has therefore been introduced by writing the connectivity
of the 'active' phase first (Pilgrim, Newnham & Rohling 1987). Taking PZT
as the active phase, and the polymer as the inert one, the connectivity of
the first composite is 1-3, and that of the second is 3-1.

Such considerations lead to the identification of six additional connec-
tivities in diphasic composites in three dimensions: 0-1, 0-2, 0-3, 1-2, 1-3,
and 2-3, giving a total of 16.

We described sum properties in §13.3.2. The averaging formula to be
used for calculating a sum property of a composite depends in a crucial
manner on the nature of the connectivity pattern, the series and parallel
configurations for resistances and capacitances being familiar examples of
this.

The possible number of distinct connectivity patterns shoots up sharply
(from 16 to 64) in going from diphasic to triphasic composites (Pilgrim et
al. 1987).

The question of connectivity is linked to other aspects such as relative
sizes and orientations of the phases involved, and the characteristic length of
the probing field with respect to the length scales of the phases (Newnham
& Trolier-McKinstry 1990).

A nomenclature scheme for composites, as also a classification for them,
has been attempted by Pilgrim et al. (1987) (also see Newnham & Trolier-
McKinstry 1990). Unfortunately the entire problem is extremely complex,
and one has to resort to notions such as 'precedence rules' based on param-
eters such as: (i) unique desired property; (ii) desired property coefficient in
a shared property; (iii) tensor order of coefficient or property; (iv) volume
fraction; (v) weight fraction; (vi) formula weight or repeat-unit weight.

This part of materials science awaits a qualitative breakthrough. Pre-
sumably, a combination of group theory and graph theory will lead to it.

13.3.5 Transitions in Composites
The fact that composite materials offer a large number of degrees of freedom
for manipulation is reflected in the variety of transitions that are possible
in them (Newnham & Trolier-McKinstry 1990):
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(i) Phase transitions in specific phases of the composite. These are
regular phase transitions involving a change of the thermodynamic state,
and brought about by changes in scalar influences like temperature and
hydrostatic pressure.

(ii) Connectivity transitions. We enumerated 16 connectivity classes in
§13.3.4. Connectivity transitions amount to going from one such class to
another.

(iii) Field-induced transitions. Poling of a ferroic composite is a typical
example of this. After poling the composite often acquires the macro-
scopic symmetry of the poling field. Newnham & Trolier-McKinstry (1990)
call them 'symmetry transitions'. However, since symmetry changes can
also occur due to regular thermodynamic phase transitions, or even due to
connectivity transitions, we prefer to call them transitions in composites
induced by external non-scalar fields.

(iv) Combination transitions. It is conceivable that the above three
types of transitions do not always occur only one at a time, and two or
more of them may occur simultaneously.

For ferroic phase transitions the compact and informative Aizu sym-
bol was described in §6.1.1. Something similar has been attempted for the
above transitions in composites. An important input into the Aizu sym-
bol is the information about the prototype symmetry. One could similarly
define the 'initial connectivity'. Pilgrim et al. (1987) define it as the con-
nectivity at 0 K in the absence of any external tensor fields (at zero or
ambient hydrostatic pressure).

In the Aizu symbol for ferroic transitions, the letter F (for 'ferroic')
separates the symbol for the prototype symmetry on its left and the symbol
for the ferroic symmetry on its right. For the transitions in composites one
can similarly choose a capital letter (T for temperature, P for pressure, E
for electric field, etc.) for the force field responsible for the transition. A
superscript can be attached to it to specify the nature of the transition (p
for a thermodynamic phase transition, c for a connectivity transition, and
/ for a field-induced symmetry change).

A large number of examples for this notation have been described by
Pilgrim et al. (1987) and Newnham & Trolier-McKinstry (1990). We select
a few involving ferroic submaterials.

Consider a composite formed by liquid-phase sintering of PZT parti-
cles. The isolated PZT particles constitute the active phase and the 3-
dimensionally connected phase separating these particles is the passive ph-
ase. The connectivity class is thus 0-3, and the symmetry of the composite
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is oooora. Application of a poling electric field under suitable conditions
forces the ferroelectric PZT particles to have a preferred direction for the
spontaneous polarization, reducing the overall symmetry to oora. The pol-
ing is thus an example of a field-induced symmetry change in the composite.
The symbol for this transition is

oooora 0 - 3 Eff oora 0-3

Similarly, magnetic field can be used for magnetizing a porous film of 7-
Fe2Os. The pores constitute the inert phase. The symbol for this transition
caused in the composite by the magnetic field is

oooora 3 - 0 Hff oo/rara' 3-0

To illustrate a connectivity transition we consider the example of PZT
particles in a polymer matrix. To achieve poling of such a composite, two
additional steps are taken. One is to introduce very fine particles of carbon
(of size much smaller than that of PZT particles) into the polymer matrix,
and the other is to apply hydrostatic pressure to make the PZT particles
touch one another in three dimensions. Let us denote by letters A, B and
C the three phases, namely carbon, PZT and polymer.

Phase A is entirely within Phase C, and the particles of Phase A are
much smaller than those of Phase B. Phases A and C can therefore be
taken as forming a quasi-composite (Pilgrim et al. 1987), with connectivity
(0-3). So far as its relationship with Phase B is concerned, it behaves like a
single-phase material, in which Phase B is embedded with zero connectivity.
The connectivity of the pseudo-diphasic composite is thus 0-3. To indicate
that the second phase in this is not really a single phase, but rather a
quasi-composite, the overall connectivity is written as 0-3(0-3).

For an appropriately chosen volume fraction for Phase B, application
of adequate hydrostatic pressure P can make the PZT particles touch one
another in three dimensions, changing he connectivity of the composite to
3-3(0-3) (Sa-gong et al. 1985, 1986).

Now imagine the following processes: We apply an electric poling field
E and a hydrostatic pressure P, and after the poling has been achieved, E
and P are removed. The following self-explanatory symbol describes the
two transitions effected in the composite:

oooora 0 - 3 (0 - 3) PcEf oora 0 - 3 (3 - 3) Pc oora 0 - 3 (0 - 3)

13.3.6 Ferroic Nanocomposites
Ferromagnetic Nanocomposites
Ferrofluids (ferromagnetic fluids) are a striking example of how nanocrys-
tals of a ferromagnetic material, when dispersed in a fluid, can constitute
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a composite that has a remarkable range of applications. The magnetic
particles used have typically a size of 10 nm. At this small size they exhibit
superparamagnetism, with the attendant phenomenally large permeability
(cf. §13.1.2). This size is also small enough to let Brownian motion prevent
their settling down under gravity, thus ensuring colloidal stability.

For preserving 0-3 connectivity (i.e. for preventing clustering), the ac-
tual composite configuration in a ferrofluid either includes a polymer coat-
ing for the nanoparticles, or has a like charge on the surface of the particles
so that they repel one another. Such measures prevent their agglomeration
over long periods of time (Berkovsky 1978; Bacri et al. 1988).

Ferrofluids find applications as various types of seals in the computer
industry, in gas lasers, motors, blowers, clean-room robotics, etc. (Rosen-
weig 1982).

Another major type of ferromagnetic nanocomposites are those used in
the recording industry (including computer memories). The need for going
to nanosizes comes from the fact that the smaller the size of the particles,
the greater is the density of information storage. Nanoparticles of 7-Fe2Os
are generally used. Their powder is dispersed in a binder and coated on a
tape or a disc (Camras 1988). This is again a 0-3 connectivity configuration.

Some of the more exotic connectivity patterns evolved for improved
performance as magnetic recording media have been reviewed by Newnham,
Trolier-McKinstry & Ikawa (1990).

Ferroelectric Nanocomposites

Electric analogues of ferrofluids, i.e. ferroelectric fluids, have been discussed
by Bachmann & Earner (1988). Milled particles of BaTiOs, having an av-
erage size of 10 nm and dispersed in a mixture of heptane and oleic acid,
exhibit a permanent dipole moment. Another nanocomposite investigated
in this connectivity class (i.e. 0-3) comprises 20 nm PbTiOa particles dis-
persed in a polymer matrix (Lee, Halliyal & Newnham 1988). Poling of the
nanoparticles could be achieved by using strong enough electric fields, and
the composite was demonstrated to exhibit piezoelectricity.

A strong motivation for decreasing (towards the nanometer regime)
the size of the ferroelectric particles used in composites is provided by
their expected nonlinear-optical and electro-optical applications. Use of
small enough particles is anticipated to result in acceptable levels of optical
transparency and homogeneity.

Ferroelastic Nanocomposites

The best investigated example of this class of composites is that of sub-
micron sized particles of zirconia dispersed in a major phase like alumina,
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with the purpose of enhancing the fracture-toughness of the latter. The
basic mechanism of how this toughening occurs will be described in §14.2.4.
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Chapter 14

APPLICATIONS OF
FERROIC MATERIALS

What I am advocating is that we realise how much we owe to
society. It keeps us - and if I look around myself I find that it
keeps us in luxury - for doing what we want to do anyway, for
doing what gives us most pleasure. I believe that we should show
in return, some helpfulness and be less than annoyed if one of
our conclusions or discoveries finds a practical application.

E. P. Wigner (1989)

In this chapter we first recapitulate (in §14.1) the salient features of
ferroic materials. Such a review provides a basis for grouping their appli-
cations into five types (called Types A to E). The applications of ferroic
materials are then described very briefly and selectively in §14.2. Use of
ferroic materials in smart structures is considered separately in §14.3, after
describing the basics of the concept of smart structures and materials.

14.1 SALIENT FEATURES OF FERROIC
MATERIALS

We have defined a ferroic material as one which undergoes, or can be re-
alistically thought of as capable of undergoing, at least one ferroic phase
transition.

We have defined a ferroic phase transition as any nondisruptive phase
transition involving a change of the point-group symmetry of the underlying
crystal structure.

Phase transitions in single crystals or polycrystals have been conven-
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tionally thought of as being either temperature-driven, or pressure-driven,
or composition-driven; i.e. the control parameter has been usually taken as
either T, or p, or x. All three of these are always present: Any material is
at some temperature T, under some hydrostatic pressure p, and has some
composition represented notionally by the symbol x. All these control pa-
rameters are scalars, and have the maximal directional symmetry embodied
in the point group ooooll'. Changes of point-group symmetry at ferroic
phase transitions can be therefore discussed without taking explicit note of
the (high) symmetry of any of these three scalar parameters.

When we consider the situation in a relaxor ferroelectric like PMN,
we find that, if it happens to be a system which has a fully stabilized
cubic phase (cf. §10.3.4 and 10.4.6), there is no temperature-induced ferroic
phase transition at all, in the sense that there is no change of the global
point-group symmetry, and yet PMN is widely perceived as a ferroelectric
material.

We observe next that this situation arises because of the conventional
definition of a phase transition in terms of T, p or x only. The basic reason
for a phase transition to occur in a material is that there is a lowering of
the free energy as a result of it. But the free energy can be a function, not
only of the conventional scalar fields T, p and x, but also of other fields like
electric field, magnetic field, or uniaxial stress. A phase transition driven
by any of these tensor fields is as much a phase transition as that driven
by a scalar field.

One could therefore define a ferroic phase transition as any nondisrup-
tive phase transition brought about by a scalar or tensor control parameter,
and entailing a change of point-group symmetry.

Application (or superposition) of a tensor field on a crystal lowers the
net symmetry of the total system (crystal plus external field) in accor-
dance with the Curie principle. This lowering of symmetry is not at all
problematic in identifying the additional change of symmetry at a tensor-
field-induced phase transition because the lowering of symmetry caused
by the superimposed field before the occurrence of the phase transition is
present as an extra influence for the daughter phase also. For example, it
does not affect (gets cancelled out in) the definition of the relative sponta-
neous polarization or strain of a domain state. What is important for the
definition of, for example, a ferroelectric domain pair is that the members
of the pair differ in spontaneous polarization. The part in which they do
not differ (and this includes the polarization induced by the external field)
has no significant role to play in domain switching, or in the movement of
a phase boundary when the tensor-field-induced phase transition occurs.

Thus, so far as ferroic domain structure and the movement of domain
boundaries and phase boundaries are concerned, field-induced phase tran-
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sitions are hardly any different from phase transitions induced by a scalar
parameter1.

In view of the above, any bulk ferroic crystal (including a relaxor fer-
roic) can be thought of as having three characteristic features:

(A) Existence of ferroic orientation states, resulting from long-ranged or-
dering with respect to at least one macroscopic tensor property.

(B) Existence of domain boundaries and phase boundaries in the ferroic
phase, which disappear in the prototypic phase, and which can be moved
by applying a field, the movement becoming easier in the close vicinity of
the ferroic phase transition.

(C) Enhancement of certain properties in the vicinity of the ferroic phase
transition; some of these properties must be macroscopic tensor properties
because, by definition, there is a change of point-group symmetry at a
ferroic phase transition.

We are particularly interested in the macroscopic tensor properties
which get enhanced near the ferroic phase transition, because these are the
properties which determine the practical applications of ferroic materials
in the laboratory or in the industry.

14.1.1 Existence of the Ferroic Orientation State
The fact that there occurs a ferroic phase transition in a material, lead-
ing to the formation of domains in the ferroic phase, underscores the fact
that there is something about the crystal structure and about the nature
of interactions among atoms constituting the structure, which permits or
promotes long-ranged cooperative ordering.

For this reason, the occurrence of proper ferroelectric phase transitions
in, say, BaTiOs can be interpreted as a proclivity of its crystal structure
to attain states (orientation states) with high polarizabilities (through co-
operative processes).

Several ferroelectrics find applications as converters of laser frequen-
cies because of their large-magnitude nonlinear optical (NLO) properties.
Generally speaking, large NLO polarizabilities can be expected in those

llt is important to realize, however, that whereas the domain-structure statics may
not depend significantly on whether a ferroic phase transition is caused by a scalar field
or a tensor field, the actual 'reaction pathway' and the kinetics for the occurrence of the
transition may become radically different in the presence of an external anisotropic influ-
ence. This is particularly true for spin-glass systems and their electrical and mechanical
counterparts.
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materials which have large linear polarizabilities (Lines & Glass 1977).

14.1.2 Mobility of Domain Boundaries and Phase
Boundaries

Any ferroic phase of a crystal has at least two orientation states because
its point-group symmetry is a proper subgroup of the prototype point group.
Therefore the occurrence, or the possibility of occurrence, of boundaries
which separate such domain states is an essential characteristic of ferroic
phases. And these boundaries can move under the action of appropriate
nonscalar fields.

The magnitude of such a field required for moving a domain bound-
ary decreases, and the mobility of the domain boundary increases, as one
approaches the critical temperature Tc; beyond it the ferroic phase is no
longer the least-free-energy phase. This is because of a lowering of the
enthalpy barrier between contiguous domain pairs as the critical point is
approached.

In addition to the occurrence of domain boundaries at all temperatures
below Tc, phase boundaries can exist in a certain temperature range. The
lower bound of this range is the temperature which is the stability limit of
the prototype, and the upper bound is the temperature which is the stabil-
ity limit of the ferroic phase (§5.3.13). The existence of phase boundaries
is particularly important for ferroics with a diffuse phase transition, or a
field-induced phase transition.

14.1.3 Enhancement of Certain Macroscopic
Properties Near a Ferroic Phase Transition

Not only do new tensor-property coefficients arise in the ferroic phase
because of the reduction of the point-group symmetry of the prototype, cer-
tain macroscopic properties also become large in the vicinity of the ferroic
phase transition.

A tensor property T is defined as relating a force (or control parameter)
X to a response Y through a linear constitutive relation (cf. Eq. 3.1.35):

Y = TX (14.1.1)

In particular, in the context of a ferroic phase transition, X can be any of the
six control parameters: T, p, x, E, H, (7.. Thus a number of macroscopic
tensor properties or response functions (= dY/dX) can be defined by
taking X as any of these six parameters. Which of them becomes large
near the transition depends on the proper or improper nature of the ferroic
transition with respect to a given property; it also depends on the extent of
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coupling (quantified by the faintness index) between the order parameter
and the macroscopic property in question.

Two broad subcategories may be introduced here. The controlling field
may either be a scalar (T, p, or x), or a nonscalar (E, H, <r).

14.1.4 A Comparative Analysis of the Properties of
Ferroic Materials

Ferroic materials have certain similarities and certain differences. The dif-
ferences arise mainly because of the fundamental differences in the nature
of the interactions driving the ferroic transition.

Similarities

Ferroic materials are characterized by the occurrence of long-ranged order-
ing below a critical point; moreover, this (nondisruptive) ordering is nec-
essarily accompanied by a change of the point-group symmetry of the ma-
terial. Often the change of point-group symmetry may tend to be masked,
either because the material is a ceramic, or because it splits into a domain
structure to minimize the overall demagnetization, depolarization, and/or
elastic energy.

The dipole-dipole part of the interaction in all the three primary ferro-
ics, namely ferromagnetics, ferroelectrics, and ferroelastics, is fairly long-
ranged, decaying with distance as 1/r3. Because of this long-ranged nature
of the interaction, a splitting into domains must occur (unless prevented
by size effects), not only because symmetry considerations allow this, but
also because otherwise very high demagnetization, depolarization, or elastic
fields would develop.

The availability of two or more orientation states in a ferroic makes it
possible to pole it, i.e. change its domain structure by a suitable external
field such that either only one domain, or very few domains, are present.

The change of the point-group symmetry, built into the definition of a
ferroic phase transition, ensures that at least one new macroscopic tensor
property coefficient arises in the ferroic phase.

The adopted definition of a ferroic phase transition also ensures that at
least one macroscopic response function is large in the vicinity of the tran-
sition. Even when a ferroic phase transition is improper with respect to
ferromagnetism, ferroelectricity or ferroelasticity, the corresponding mag-
netic, electric or elastic susceptibility generally increases to some extent at
the transition (because there is a coupling of the spontaneous magnetiza-
tion, polarization or strain with the order parameter, and the susceptibility
associated with the order parameter necessarily becomes large in the vicin-
ity of the ferroic transition).
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One of the most important areas of applications of ferroic materials
is in smart structures, some of the commonly used ferroics for this be-
ing PZT/PLZT, TERFENOL - D (Tbi_xDyxFe2), PMN, and NITINOL
(Ni — Ti). Newnham (1997, 1998) has pointed out an important similarity
among these materials: Most of them undergo at least two phase transit-
ions, and, together, the two transitions encompass both atomic ordering and
atomic displacements. PZT has a partially ordered cubic phase, and rhom-
bohedral and tetragonal quasi-ordered phases near the morphotropic phase
boundary. TERFENOL — D undergoes a paramagnetic-ferrimagnetic phase
transition, followed by another transition whereby the magnetic spins re-
orient along different directions. In PMN there is a diffuse transition from
a partially ordered cubic phase to a relaxor phase, followed by a phase
transition to a regular ferroelectric phase. In NITINOL there is a partially
ordered cubic structure, which transforms to an ordered martensitic phase
over an extended temperature range, involving complex structural changes
and coexisting phases.

Differences

There are several differences between ferromagnets and other types of fer-
roic materials. One is that a purely ferromagnetic phase transition is gen-
erally not a structural phase transition, in the sense that there is hardly
any change in the crystal structure when the spins get ordered.

The largely non-structural nature of ferromagnetic transitions means
that they can be expected to be always nondisruptive. By contrast, we
have to make a careful distinction between disruptive and nondisruptive
structural phase transitions, and insist that only the latter can be ferro-
electric, ferroelastic etc. (provided they also entail a change of point-group
symmetry).

The ferromagnetic exchange interaction is of quantum-mechanical ori-
gin, and is short-ranged. Moreover, magnetic monopoles do not exist. The
situation is markedly different for the electric analogue.

Further, magnetostriction is generally a much weaker effect compared
to electrostriction. The former is generally at the ppm level, whereas the
latter can be as large as 1%, or even more.

Because of the exchange interaction, ferromagnetic domain walls are
very thick. By contrast, ferroelectric and ferroelastic domain walls can be
thin or thick, depending on the degree of coherence between the two lattices
meeting at the wall.

Because of the long-ranged nature of electric and elastic interactions,
proper ferroelectric and proper ferroelastic phase transitions are generally
well described by a mean-field theory like the Landau-Ginzburg theory, and
the critical region is very small (Salje 1993a). This is generally not the case
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Figure 14.1.1: Comparison of Curie-Weiss behaviour in a typical ferrimag-
netic ferrite with that in a BaTiOs type ferroelectric. [After Cross (1996).]

for ferromagnetic phase transitions.
Although a Curie-Weiss type dependence on temperature is expected

for the generalized susceptibilities of both proper ferromagnets and proper
ferroelectrics (and also proper ferroelastics), an important difference must
be recognized. Fig. 14.1.1 shows this.

Part (a) of the figure shows the typical relative permeability versus
temperature curve for a ferrimagnetic ferrite, and Part (b) a relative per-
mittivity versus temperature curve for a BaTiOs type ferroelectric.

In the case of the ferroelectric the cooperative long-ranged ordering is
predominantly of the dipole-dipole type, and not very strong. Therefore,
even moderate electric fields can influence the ordering substantially. This
fact is reflected in the large value of the electric Curie constant C in the
Curie-Weiss equation (e = C/(T - Tc)). The consequent large value of the
permittivity at Tc continues to be large for wide temperature intervals on
both sides of Tc.

By contrast, since ferromagnetic or ferrimagnetic ordering is mainly
through the very strong exchange interaction (and not so much through
the much weaker magnetic dipole-dipole interaction), the magnetic Curie
constant is much smaller, resulting in a very small permeability in the
paramagnetic phase.
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An idea of how strong the spontaneous magnetic ordering is can be
had by making a rough estimate of the Weiss molecular field Hm from the
equation ^BHm ~ kBTc. Taking Tc = 1000 K gives Hm ~ 107 gauss. This
corresponds to a molecular field constant 7 = Hm/M ~ 107/103 ~ 104.
This is to be compared to the much smaller value of 4?r/3 for the Lorentz
factor for a simple dipole-dipole interaction in a ferroelectric.
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14.2 APPLICATIONS
Applications of specific categories of ferroic materials have been reviewed
in several books and articles, including the following:

Ferromagnetics: Wohlfarth (1980b); Goldman (1990); Valenzuela (1994).

Ferroelectrics: Lines & Glass (1977); Cross & Hardtl (1980); Herbert
(1982); Jain (1988); Levinson (1988); Moulson & Herbert (1990); Xu (1991);
Swartz & Wood (1992); Cross (1995).

Ferroelastics: Wadhawan (1982).

Secondary Ferroics: Quartz, which is a ferrobielastic, as well as a fer-
roelastoelectric, is the most important secondary ferroic from the point
of view of applications (Momosaki & Kogure 1982; Brice 1985; Besson,
Groslambert & Walls 1985; Ward 1989).

In view of the above-mentioned published material, our discussion of
the applications of ferroic materials is of a highly selective nature. In §14.1
we described some common features of ferroics. These can form a possible
basis for focusing on their applications based on each such main charac-
teristic. Such a grouping of applications is not an easy task, as several
applications are based on more than one ferroic characteristic. Neverthe-
less, such a grouping helps bring out the nature of the main property used
in a particular application, and we adopt it here.

The role of ferroics in smart structures is'discussed separately in §14.3.
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14.2.1 Applications Related to the Existence of the
Ferroic Orientation State

A primary ferroic phase transition is characterized by long-ranged cooper-
ative ordering. Applications of several ferroic materials, particularly ferro-
electrics, are based mainly on this fact. We label such applications as Type
A applications.

A.I. Electrooptic Modulators
Several ferroelectric crystals find applications as electrooptic modulators.
Examples of such crystals exploiting the Pockels effect are: KD2PO4 (DKDP);
LiNbO3; LiTaO3; and Sro.rsBao.ssNbsOe (SEN). And KTN (cf. §10.5.3)
is a well-known ferroelectric used for electrooptic modulation through the
Kerr effect.

These crystals have significantly large nonlinear polarizabilities. How-
ever, there is another factor which contributes to the large electrooptic
effect, and which is the direct offshoot of the existence of ferroelectric ori-
entation states or domains. Rubidium hydrogen selenate (RbHSeCU) pro-
vides a dramatic example of this (Salvestrini et al. 1994). This crystal is
a ferroelectric-ferroelastic (Pietraszko et al. 1979; Suzuki, Osaka & Makita
1979). It exhibits what is called a giant Pockels effect.

To understand what this means, and why it arises, we begin by con-
sidering a widely used NLO crystal like KDP. It is a paraelectric at room
temperature, and becomes a ferroelectric only below a certain low temper-
ature (123 K). Thus its room-temperature applications do not make use
of any ferroic property, and if the applied electric field is not too large,
its dielectric response is linear: Di = tijEj. For large applied fields, as
when a laser beam is incident on the crystal, nonlinear response becomes
significantly large:

Di = eijEj + rijkEjEk + Ri^E^Ei + ... (14.2.1)

The tensor (r^fc) determines the Pockels effect, and (Rijki) the Kerr effect.
No domain effects are involved in this, and the substantial NLO effects

are genuinely because of high electric fields, and because of large nonlinear
polarizabilities.

Now consider a crystal, not necessarily KDP, in a ferroelectric phase,
with the associated domain structure. On the basis of the typical hysteresis
loop drawn in Fig. 10.7.1 we can expect four types of dielectric response,
in increasing order of the applied electric field.

(a) Domain-wall bowing. When the field applied is less than E\, the
dielectric response is linear and reversible. The domain walls tend to be
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pinned at their existing locations by imperfections in the crystal, and un-
der the action of the small applied field only a slight bowing of the walls
occurs. Assuming that several ferroelectric domains, with different allowed
directions for the spontaneous polarization are present, the bowing of the
domain walls amounts to a change in the relative volumes of the domains.
Although the net dielectric response is a complicated function of the actual
domain structure, it is intuitively clear that it is likely to be a considerably
larger effect than the response of a nonferroelectric or single-domain crystal
to a small electric field.

(b) Domain-wall movement. For EI < E < #2, the applied field is
strong enough to make the domain walls move (in a largely irreversible
manner) after releasing them from their pinning sites. The optical indi-
catrix has different orientations in different domains. The movement of
domain walls is such as to make one particular orientation of the indica-
trix preponderate over the others. The overall optical effect of this is a
large effective rotation of the 'average' orientation of the indicatrix, with a
concomitant large Pockels effect.

RbHSeO4 crystals are ferroelectric-ferroelastic at room temperature,
with triclinic pseudo-orthorhombic symmetry. To minimize the overall
strain energy the ferroelastic domain structure is mainly that of slabs hav-
ing alternating signs of spontaneous strain. The 'anomalous' effect of elec-
tric field on light deflected from the domain walls has been investigated by
Tsukamoto & Futama (1993), and attributed to domain-wall motion. The
coercive field (Ec in Fig. 10.7.1) is 75 V/mm. Salvestrini et al. (1994)
measured, as a function of electric field, the total phase shift introduced by
a polydomain crystal of RbHSeO4 for a laser beam. The fields applied were
in the range of Ec. It was observed that the total phase shift varies linearly
with the applied field for E < E2 (cf. Fig. 10.7.1). This linear variation is
presumably caused by domain-wall movement.

(c) Domain rotation . For E = E% practically all the domain walls have
been obliterated, and for larger values of E up to E% the main dielectric
response is by the rotation of the single ferroelectric domain towards the
direction of the applied field. There is a corresponding rotation of the
optical indicatrix, clearly with an abnormally large Pockels effect.

(d) Nonferroelectric nonlinear dielectric response. For E > E$ the
dielectric response is genuinely nonferroic. It is also markedly nonlinear
because of the high value of the field applied and is described by Eq. 14.2.1.

It is clear from the above description that the giant Pockels effect in
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RbHSeO4 crystals, and presumably in other ferroelectric crystals, is a con-
sequence of the existence of ferroelectric orientations states (domains). It
is also influenced by the actual domain structure, and the underlying pro-
cesses are quite complicated, requiring further investigation. What is quite
striking is that the effective Pockels effect observed in this material is about
600 times larger than in KDP (Salvestrini et al. 1994).

A.2. Laser Frequency Converters

It is not an accidental matter that many of the best known crystals used for
laser-frequency conversion are ferroelectrics (e.g. LiNbOs; KDP and ana-
logues; KTiOPO4 (KTP) and analogues). An obvious reason for this is that,
being ferroelectrics, they satisfy the condition of being noncentrosymmetric
crystals. Another reason is that crystals with large linear polarizabilities
are also usually the crystals with large nonlinear polarizabilities (Lines &
Glass 1977).

A.3. Permanent Magnets

The long-range ordering of magnetic moments in a ferromagnet can result in
a large (and spontaneous) magnetic moment per unit volume. For making
permanent magnets an additional requirement is that the net magnetization
should not decrease much with the passage of time. One way of ensuring
this is to have a grain size smaller than about 1 micron, so that no domain
wall movement can occur (because no domain walls are sustained by the
small grains (cf. §13.1.2)).

In order that devices based on permanent magnets be as small and
as efficient as possible, it is necessary that the material used has a large
remanent induction Br, a large coercive field ffc, and a large energy product
(BH)max (§9.4.4).

The coercive field can be increased by creating strong impediments to
the movement of domain walls. This is done by introducing inhomogeneities
into the polycrystal. An early example of this is the introduction of 1 wt.
% of C in Fe. Although grain boundaries also provide some opposition
to domain wall movement, their role can be further enhanced by a finely
dispersed nonmagnetic second phase which tends to dwell in the grain-
boundary regions.

Alloys of Fe, Ni, Co and Al ('Alnico alloys') constitute around 6% of
the total world production of hard magnetic materials (Valenzuela 1994).
They have a high value of Tc (~ 1Q7QK), and therefore are used in high-
temperature applications.

SmCos has exceptionally hard magnetic properties (Strnat 1988). It
has very high magnetocrystalline anisotropy. Another similar material is
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Sni2Coi7 (see Valenzuela 1994). Because of their very high BH-product
they are used in miniaturized motors and actuators etc.

The high cost of Sm and Co has led to the development of a cheaper
magnet material, namely Nd2Fei4B.

Ferrites offer a better alternative to alloy magnets in many applications,
in spite of the fact that the highest relative permeability attained for them
(~ 100,000) is much lower than what has been possible with the metallic
systems. The high resistivity of ferrites is a definite advantage in many
situations. The main applications of ferrites are in loudspeakers, dc motors,
and stepping motors.

A.4. Small-Signal Applications of Ferrites

For small magnetic fields the magnetization curve of a ferromagnet has a
constant slope (Fig. 9.1.1). Conversely, small ac signals are transformed
linearly to a magnetic flux by such materials. Because of their higher re-
sistivities, ferrites are preferred over magnetic alloys for high-frequency ap-
plications based on this linear response function. Ferrite cores are used
extensively in antennas etc.

As the ferromagnetic phase transition is approached, not only does the
permeability become high, it also varies nonlinearly with temperature. This
can be undesirable in certain applications in which the temperature may
vary. Therefore, additives are introduced in systems like Ni — Zn ferrites to
smear out the ferromagnetic phase transition.

A.5. Ferrites in SMPS

Another application of ferrite cores is in switched-mode power supplies
used for computers and peripherals etc. (see Valenzuela 1994). Compact
and efficient power supplies can be made by using ferrite-core transformers
operating at ~ 25 kHz. Mn — Zn ferrites, having several additives which
bring down the coercive field Hc, have been used.

14.2.2 Applications Exploiting the Mobility of Domain
Boundaries and Phase Boundaries

A ferroic phase transition results in transformation twinning or domain
structure in the ferroic phase. The domains can be made to shrink or
expand by a suitably configured driving field. This fact, when exploited for
single-crystal ferroics, can lead to their detwinning. The corresponding term
generally used for ceramic ferroics is poling-, it means achieving a preferred
orientation for the domains in the various grains of the ferroic ceramic.
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It is important to remember that only ferroic ceramics can be poled.
Grains of nonferroic materials do not have available to them the choice of
switching to alternative orientation states, because none exist.

We call applications exploiting the moveability of domain boundaries
and phase boundaries in ferroics as Type B applications.

B.I. Detwinning of Ferroic Crystals

Crystals of the ferroelectric LiNbOa, which find extensive applications in
nonlinear optics, are generally required to be used in a single-domain state.
But when they are grown by the Czochralski technique from the melt,
they undergo a phase transition to the ferroelectric phase on their way to
cooling to room temperature. Therefore, at room temperature they possess
the domain structure expected for the ferroic species 3mF3m. To obtain
single-domain crystals, one cools the crystal from its paraelectric phase
under the action of an electric field so that only one domain direction is
favoured during and after the ferroelectric transition.

Similarly, ferroelastic crystals are detwinned by applying uniaxial stress.
Several examples have been reviewed by Wadhawan (1982). These include
SmAlOa, CsFeF4, LaFeOs, Mg — Cl boracite, and tris-sarcosine calcium
chloride.

Uniaxial stress can be used for detwinning a ferrobielastic crystal, the
best-investigated example being that of a-quartz (see Klassen-Neklyudova
1964).

B.2. Poling of Ferroic Polycrystals, and Periodic Domain
Inversion of Ferroic Crystals

A ferroic ceramic is essentially isotropic to begin with (because of the
random orientations of its grains). Consequently it displays little or no
directional properties like piezoelectricity or pyroelectricity. An electric
field is used for poling ferroelectric ceramics. Poling of electroceramics like
PZT is routinely done for using them, say, as piezoelectric elements in gas
lighters.

Similarly one can pole a ferroelastic ceramic by applying uniaxial stress.
The availability of ferroelasticity as a ferroic property extends considerably
the range of materials which can be poled. This is because, whereas fer-
roelectricity can occur only in polar noncentrosymmetric crystal classes,
ferroelasticity can occur even in centrosymmetric crystal classes.

Similar considerations apply to secondary ferroics also (Newnham &
Skinner 1976). NH4C1 is a ferroelastoelectric. That means that appro-
priate mechanical and electric fields must be applied together for effecting
domain switching, and thence poling, in it. This has been demonstrated
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(see Newnham & Skinner 1976).
We now turn to poling or domain switching of ferroic single crystals.
Periodic domain inversion (PDI) of ferroelectric crystals like lithium

niobate, lithium tantalate, and KTP for achieving 'quasi phase matching'
(QPM) conditions for the frequency doubling of laser radiation offers inter-
esting possibilities. One produces a periodic array of ferroelectric domains,
with successive domains having opposite directions of spontaneous polariza-
tion. This results in a periodic correction for the crystal dispersion, lead-
ing to phase-velocity matching between the fundamental and the second
harmonic (if a right repeat distance is chosen) (Armstrong, Bloembergen,
Ducuing & Pershan 1962; Fejer 1994).

A number of techniques have been used for introducing PDI in ferroe-
lectrics (see Byer (1992) for a review). For bulk crystals, PDI is achieved
during the process of crystal growth itself. This is done, for example, by
'laser-heated pedestal growth', or by off-axis rotation of the seed crystal
in the so-called Czochralski method of crystal growth from the melt. For
wafer crystals, on the other hand, one of the techniques used combines pho-
tolithography with electric poling, using a suitable mask (see Hu, Thomas
& Webjorn 1996). Another technique, used by Lim, Fejer & Byer (1989) for
a lithium niobate wafer, involved photolithographically patterned diffusion
of Ti. Electron beam writing is one more approach, adopted for lithium
niobate and lithium tantalate by Ito, Takyu & Inaba (1991), for obtaining
periodic inversion of ferroelectric domains.

A typical repeat distance for the modulation is 5 microns. By choosing
a suitable repeat distance, QPM can be obtained over a wide range of
wavelengths of the laser radiation. Much of the work so far has been on
KTP (Thomas & Glazer 1991; Hu, Thomas & Webjorn 1995; Hu, Thomas,
Gupta & Risk 1995), and lithium niobate (Kitaoka, Mizuuchi, Yokoyama,
Yamamoto, Narumi & Kato 1999; Fujimura, Suhara & Nishihara 1999).

An important configuration, which is the ferroelastic counterpart of the
ferroelectric poling described above for achieving a periodically reversed do-
main structure, is that of neodymium pentaphosphate (NPP), NdPsO^.
This crystal undergoes periodic ferroelastic switching very readily (Weber,
Tofield & Liao 1975; Huang, Jiang, Hu, Xu, Zeng, Feng & Wang 1995).
Meeks & Auld (1985) used this property for creating regularly spaced do-
main walls in NPP, and the spacing of the walls was tunable from 70 mi-
crons to 0.5 micron. The result was a tunable optical grating. What is
more, since NPP is also a low-threshold laser-host crystal, one can develop
a laser with a built-in, instantly tunable, optical grating (Meeks, Auld &
Newnham 1985).
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B.3. Magnetic Recording

As implied by the existence of the ferromagnetic (or ferrimagnetic) hystere-
sis loop, a ferromagnetic material has at least two stable remanent states,
which can form the basis of information storage schemes employing bi-
nary logic. Ferrite core memories were used extensively in the early 1970s
for this purpose. Although semiconductor memories are currently used in
computers, the ferrite core memories have the advantage that they are non-
volatile; i.e. each remanent state is stable by itself, not requiring the use of
an external field for keeping the system in that state.

Ferrites are used for reading and writing of information on tapes and
discs, the basic processes used being the same for audio, video and computer
recording. Apart from the conventional methods using magnetic fields pro-
duced by currents, magneto-optical recording, as well as optical readout,
are also used. Faraday rotation and Kerr effect are employed. This results
in higher data storage, faster access times, and virtually absent wear and
tear (see Valenzuela 1994).

B.4. Thin-Film Ferroelectric Memories

A very active area of current research is that of thin-film integrated ferroe-
lectrics, particularly with the objective of developing high-density informa-
tion storage systems for use in 'smart cards' (Cross & Trolier-McKinstry
1997; Auciello, Scott & Ramesh 1998; Kingon 1999). The basic job is to
integrate ferroelectric memory elements with silicon-based 1C chips.

Typical ferroelectrics used are PZT and SET (SrBi2Ta2O3). A recent
entrant to the fray is BLT (Bis^sLao.rsTisO^), i.e. La-doped bismuth
titanate (BTO) (Park et al. 1999). The 'up' and 'down' orientation states
of a ferroelectric domain provide the basis for the binary-code memories.
The configuration is intrinsically nonvolatile because all orientation states
are equally stable, and thus do not require the application of an external
biasing field for the domain to remain in that state.

The use of ferroelectrics also offers the possibility of high dielectric
constants, thus reducing the sizes of the capacitor elements made from them
and used in what are commonly known as DRAMs (dynamic random-access
memories).

Assuming that the ferroelectric domain walls move at about the speed
of sound, they can move across a film of thickness 1 micron in about 1
nanosecond. Sustained research has, in fact, pushed the switching time
of what are called NVFRAMs (nonvolatile ferroelectric RAMs) into the
picosecond regime. Theoretical considerations show that, in very small ca-
pacitors, the ferroelectric switching time is determined, not by the speed of
movement of the domain wall, but by the time needed for the new ferro-
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electric domain to nucleate. Using experimental data for nucleation rates
for PZT, Scott (1998) calculated the ultimate switching speed for PZT ca-
pacitors to be 600 ± 200 picoseconds. This compares well with the actual
value of about 900 picoseconds.

Low-density NVFRAMs are now being produced commercially, whereas
use of high-density configurations in devices still needs additional research
for achieving short-term and long-term reliability, freedom from excessive
fatigue, lower-temperature deposition, and overcoming of the problems as-
sociated with compatibility between the ferroelectric film and the silicon
substrate.

The presently used DRAMs in computers are based on the silicon tech-
nology, and suffer from the problems of large size, a not-very-large number
of write cycles, and rather long write times. Thin-film ferroelectric memo-
ries can solve these problems, but then some new problems crop up which
need to be attended to. SET requires a rather high processing temperature,
which can degrade the silicon 1C chip with which it has to be integrated.
PZT, when deposited on the commonly used Pt electrodes, suffers from a
decrease of the effective spontaneous polarization when switched (i.e. read
and written) in a DRAM a large number of times. The use of BLT ap-
pears to overcome these problems to a substantial extent. Films of BLT,
deposited on metal electrodes, are reported by Park et al. (1999) to be:
free from polarization fatigue; integrable with the rest of the device at tem-
peratures of the order of 650°C; and having a larger remanent polarization
than SET films.

Kingon (1999) has discussed the prospects of ferroelectric thin-film
memories providing a better alternative to the existing materials and tech-
nologies. Thin films of the relaxor material PMN-PT may offer some attrac-
tive possibilities in this regard (Maria, Hackenberger & Trolier-McKinstry
1998).

The following additional applications, exploiting the switchability of
ferroelastic domains and the consequent mobility of the domain walls, have
been discussed by Wadhawan (1982): micropositioner with a memory; vari-
able acoustic delay line; tailored domain patterns for resonator applications;
focusing acoustic transducers; moving line source of light; optical shutter
and colour modulator; page composer.

14.2.3 Applications Using Enhanced Macroscopic
Properties near the Ferroic Phase Transition

We call them Type C applications.
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For a proper ferroic phase transition, the generalized susceptibility cor-
responding to the order parameter becomes large, this susceptibility being
a macroscopic physical property. Other properties coupled to this suscep-
tibility also become large.

Moreover, if we consider, for example, a proper ferroelectric transition,
since the spontaneous polarization rises rapidly with temperature just below
Tc, the material exhibits a large pyroelectric effect. Similarly for proper
ferroelastic phase transitions.

Even for an improper ferroic transition, since the transition is ferroic
there must be at least one macroscopic tensor property coefficient which
becomes nonzero below Tc. Although the faintness index for the concerned
property is 2 or higher, the coupling of this property with the order param-
eter generally results in an enhancement of some macroscopic properties in
the vicinity of Tc.

C.I. Pyroelectric Detectors

Several ferroelectrics find applications as pyroelectric detectors. This is
because all ferroelectrics are pyroelectrics as well, and also because the
spontaneus polarization of a ferroelectric generally shows a strong temper-
ature sensitivity just below Tc. This subject has been reviewed by Lines &
Glass (1977).

C.2. Applications in Capacitors

BaTiO3 is a well-known example of a ferroelectric which finds applications
in capacitors (Cross & Hardtl 1980).

Relaxor ferroelectrics are another class of ferroics which offer attractive
possibilities for applications in capacitors. They not only have high dielec-
tric constants, but also a diffuse transition. They can thus serve as fairly
temperature-stable, high-volume-efficiency, capacitors.

C.3. Acousto-optic Modulators

An ultrasonic beam can set up a strain modulation, and therefore a refractive-
index modulation, in a crystal. Such a crystal can then serve as an optical
grating. A variety of light modulators can be made from this acousto-optic
set-up, making possible both amplitude modulation and frequency modu-
lation. Crystals of As2Sa are often used for this purpose.

Several figures of merit have been introduced for comparing the modu-
lation efficiency of different crystals, including the following (Dixon 1967):

Mi = ̂  (14.2.2)
pv
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Here n is the average refractive index, p an appropriate elasto-optic co-
efficient, p the density, and v the relevant acoustic velocity. Apart from
the general requirement of large n and small p, ferroelastic crystals present
some interesting possibilities, particularly in the vicinity of the ferroelastic
phase transition. In the vicinity of this transition, even a small stress can
produce a large strain, and therefore a large change of birefringence, imply-
ing a large p in Eq. 14.2.2. The situation becomes particularly favourable
if the transition is a proper or a pseudoproper ferroelastic transition. In
this case, some acoustic velocity necessarily tends to zero as the transition
point is approached. And a vanishingly small v in Eq. 14.2.2 means a very
large increase in MI. BiVC>4, a pseudoproper ferroelastic, is a promising
material in this context.

The phase diagram of Pb3(Pi_xVxO4)2 has a large ferroelastic regime
(Hodenberg & Salje 1977), and its ferroelastic phase transition can be tuned
to the temperature of application by varying x. For example, for x = 0.21
the phase transition occurs at room temperature (Wadhawan & Glazer
1981). The figures of merit, evaluated by Salje (1976), are as large as those
for the widely used As2Ss.

14.2.4 Applications Involving Field-Induced Phase
Transitions

We classify them as Type D applications.

D.I. Transformation Toughening of Materials

A material is said to be tough if it resists fracture by resisting the propaga-
tion of cracks. Zirconia (ZrO2) is the best known example of a material in
which the occurrence of a ferroic phase transition is exploited for increas-
ing the fracture toughness, either of the zirconia ceramic itself, or of the
matrix material to which it is added as a second phase. We focus on this
material here for illustrating the processes involved in the transformation
toughening of materials.

Zirconia is a material of strategic importance, having a very high melt-
ing point, high chemical stability, and very low thermal conductivity. It
undergoes the following sequence of phase transitions (Subbarao, Maity &
Srivastava 1974; Subbarao 1990; Nagarajan & Rao 1993):

,, ,. . 1443K r- . , 2643K ~ , . 2953K ,, ,,Monoclinic —> Tetragonal —> Cubic -» Melt

The monoclinic-tetragonal (or m-t) transition involves a change of crys-
tal family, and is also fairly nondisruptive. It is therefore a ferroelastic phase
transition. So is the tetragonal-cubic (t-c) transition.
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The m-t transition shows considerable thermal hysteresis: tHe m —> t
transition occurs at 1443 K, whereas the t —> m transition occurs at 1123
K. There is thus a large temperature range in which the two phases are
simultaneously stable. The stability limits of the two phases also depend
on grain size.

The strongly first-order t-m transition not only involves a substantial
volume change, the volume increases, rather than decreases, on cooling
across the transition.

The t-c ferroelastic transition is quite mild, with hardly any volume
change.

The phase transitions involved can be suppressed fully or partially,
either by decreasing the grain size, or by putting additives like ¥263, CeO2,
MgO, or CaO.

The cubic and tetragonal phases can be stabilized to room temperature
by decreasing the grain sizes to sub-micron values, or by the addition of
lower-valent oxides.

We consider the t-m transition to explain the basic transformation-
toughening mechanism. If t-Zr(>2 has been made stable at room tempera-
ture, it means that the t-m phase transition has been arrested. The central
idea employed in transformation toughening is that this arrested phase tran-
sition can be made to occur by mechanical stress. The phase transition is
ferroelastic (involving a shear strain of about 8%), as well as strongly first-
order, with an increase of volume on entering the m-phase. When a crack
tends to propagate through such a material, the large stress field at the
tip of the crack induces the occurrence of the t-m transition in the region
around the tip. The resulting 5.6% volume increase leads to the formation
of several small cracks in front of the larger crack. This causes a blunting
of the main crack, and an increased absorption of internal stress per unit
crack propagation. As a supplementary mechanism, ferroelastic switching
(and also slip) in the m-phase absorbs the shear stress at the crack front.
This is a good example of ferroelastic switching as a stress-accommodating
mechanism. The end result is that a seemingly brittle ceramic like zirconia
acquires a fracture toughness comparable to that of a metal.

It also turns out that addition of the metastable t-phase of zirconia to
any ceramic matrix can toughen the latter. Some of the ceramics tough-
ened by this stress-induced transformation mechanism in t-ZrC>2 are A^Os,
cordierite, mullite, and the apatites.

In all, there are three main types of transformation-toughened config-
urations involving zirconia.

(a) Partially stabilized zirconia (PSZ). This consists of fine (< 0.1 mi-
cron) t-zirconia inclusions dispersed in a c-zirconia matrix (Trefilov 1995),
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and possesses high fracture toughness and good resistance to thermal shock.
The partial stabilization of the t-phase is achieved by mixing small amounts
of additives like MgO, CaO, or Y2O3.

(b) Tetragonal zirconia polycrystals (TZP). These consist mostly of
sub-micron-sized particles of t-zirconia.

(c) Zirconia toughened ceramics (ZTC). Zirconia toughened alumina
(ZTA) is a typical example of this. The t-zirconia particles occur both
within the alumina grains, as well as in the inter-grain regions. It is at the
latter sites that the toughening mechanism operates. ZTCs like corderites,
mullite, silica and apatite find several applications, including those as ex-
tremely low-porosity bioceramics.

The high fracture toughness of zirconia, coupled with its very low ther-
mal conductivity, makes it a very important refractory material. Even a
1-mm thick coating of zirconia on a metal results in a 300 K drop in tem-
perature across the coating. Its use in hybrid engines with improved fuel
efficiencies is thus very promising.

D.2. Kerr-Effect Applications of PLZT

The 'quadratic' characteristic of certain relaxor-ferroelectric compositions
of PLZT derives from field-induced phase transitions (cf. §13.2.2). The
following field dependence of the effective electro-optic coefficient (the R-
coefficient) responsible for the Kerr effect has been derived by Haertling &
Land (1971a):

«--n <»•«>
Here An is the birefringence, and n the refractive index. In the absence
of the electric field the macroscopic symmetry is cubic and the material is
non-birefringent. Thus the birefringence is caused entirely by the field. The
R-coefficient is very large because its origin lies in the field-induced phase
transition in the relaxor ferroelectric (Meitzler &; O'Bryan 1973; Carl &
Geisen 1973; Keve & Bye 1975), rather than in the usual modification of
the optical indicatrix by the strong electric field present in a laser beam in
the normal manifestation of the Kerr effect. The R-coefficient for 8.5/65/35
PLZT is 38.60 x W~l6m2/V2, compared to only 0.17 x lQ-l6m2/V2 for
single crystals of KTao.esNbo.ssOa.

The ferroelastic nature of these ceramics can be used to advantage in
certain situations. Application of uniaxial stress can be used for poling the
domains along a direction that would result in maximum possible change
of birefringence with electric field (see Lines & Glass 1977).
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D.3. Shape-Memory-Effect Applications

The shape-memory effect exhibited by several ferroelastic alloys (cf. §11.5.4)
finds a number of applications (cf. Perkins 1975; Schetky 1979; Wayman
1980). One of the most striking of these is as actuators in smart structures,
and we shall discuss this separately in §14.3.

Other applications include a variety of electrical and mechanical con-
nectors, an integrated-circuit package, and a heat engine exploiting the
shape change on thermal cycling (Owen 1975).

14.2.5 Applications Involving Transport Properties
These are Type E applications.

E.I. Photoferroelectric Applications

Ferroelectric crystals like LiNbOa can be doped with ions such as Cr3+
so that they can absorb photons in the wavelength range in which they
are transparent (Glass & Anston 1972). Absorption of photons results
in release of charge carriers to the conduction band, where they wander
along the polar axis (under the action of the internal electric field of the
ferroelectric) till they are localized by trapping centres such as impurities,
defects, etc. The net result is a space-charge field, and thence an additional
dipole moment. There is also a concomitant local change of birefringence
through an internal electro-optic effect. This is known as the photorefractive
effect, and the host crystal is called a photoferroelectric (Fridkin 1979;
Sturman & Fridkin 1992).

Several applications of such materials, including those for holography,
have been discussed by Lines & Glass (1977).

E.2. Photoferroelastics
A phenomenon corresponding to the photorefractive effect, but in a non-
ferroelectric ferroelastic, namely SbsOrl, was reported by Fridkin et al.
(1981). This crystal belongs to the ferroic species 6/mF2/m. Photons of
an appropriate energy induce a change in the birefringence of the crystal
when they are absorbed by it. Such a crystal is called a photoferroelastic.

The explanation of the effect is similar to that in a photoferroelectric,
except that now there is no internal electric field available for transport-
ing the charge carriers freed by the incident photons to trapping centres.
Fridkin et al. (1981) postulated an interaction between the free charge car-
riers and a zone-boundary acoustic mode. There is thus a photodeformation
through the acousto-optic effect.
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E.3. Photostrictors.

In a photoferroelectric, the photovoltaic effect and the resultant photore-
fractive effect, are not the only consequences of release and transportation
of free charge carriers along the polar axis. The space-charge field resulting
from the trapping of these charge carriers also results in a change of di-
mensions via internal piezoelectric and electrostrictive effects (Brody 1983;
Uchino, Miyazawa & Nomura 1983; Uchino, Aizawa & Nomura 1985; Sada,
Inoue & Uchino 1987; Tanimura & Uchino 1988). The term photostric-
tion has been used for this phenomenon in which illumination of a material
induces strain in it.

The photovoltaic part of the photostriction effect is explained by treat-
ing the material as a semiconductor, with a certain band gap. However, this
effect is very different from that in a conventional p-n junction of a solar
cell, in that, because it occurs in a ferroelectric with a very high built-in
biasing field along the polar axis, the voltage generated is much greater
than the band-gap value.

So far, most of the work on the development of photostrictors has been
done by Uchino and coworkers (see Uchino 1996). Much of their work has
been on PLZT ceramic, doped with various materials, notably WOa. The
PLZT composition chosen is close to the morphotropic phase boundary of
PZT, with 0.5/52/48 a typical choice. The band gap is of the order of 3.3
eV. Therefore much of the work has been carried out using the 380 nm line
from a UV lamp, with a typical intensity of 10 mW/cm2.

The photovoltage reaches a value of several kV/cm, and the photocur-
rent under illumination is a few nano-amperes. By adopting a so-called
'bimorph configuration', displacements of the order of 150 microns can be
achieved at the tip of a 20 mm long, 0.35 mm thick, bimorph (Uchino 1996).

Several applications of the photostrictor effect in PLZT have been con-
ceived, and some of them demonstrated. The most attractive thing about
such a system is that it can serve as a remote-control actuator, requiring
neither electric lead wires, nor even an electrical circuit. The absence of
lead wires makes it particularly attractive for applications in micro-robotics.
Other applications are in photo-driven relays and micro-walking devices.

Another area of applications envisaged by Uchino is in optical telecom-
munications as optical telephones or photophones. It is anticipated that
the information technology of the 21st century would have the following
major components: solid-state lasers as light sources, optical fibers as the
media for transferring information, and a photo-acoustic device based on
photostrictors as the optical telephone.

A limitation at present is the slow response times (build-up times and
decay times) of the processes involved. In a photo-driven relay devised by
Uchino (1996), the typical delay time was 1-2 seconds, in spite of the fact
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that a dual-beam method was used for avoiding the time delay that would
normally occur in the 'off' process due to the low dark conductivity of the
material.

The solution to this problem may lie in fabricating a composite, rather
than working with a single-phase ceramic.
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14.3 FERROIC MATERIALS IN SMART
STRUCTURES

. . . it is reasonable to assume that highly integrated smart
structures very similar to the biological model will be technolog-
ically possible in the near future. These smart structures will
need to interface with human beings. Given the level of their
anticipated sophistication and adaptive abilities, they will ap-
pear as living conscious entities to the majority of those people
interacting with them. This will be the case in spite of the fact
that they will not meet the formal requirements of either life or
consciousness.

W. B. Spillman (1992)

This is the last section of the main text of the book, and in it we shall find
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a reference to, and use of, many of the key concepts and results described
in the book.

In prehistoric times materials were used in the form in which they oc-
curred in nature. The next stage was the deliberate design of materials
(e.g. alloys, ceramics, composites) with certain desirable but fixed proper-
ties. Progress in physics, chemistry and materials science has now given
us the capability to design and fabricate materials or structures which can
adapt their properties in a pre-conceived and useful manner to changes
encountered by them in environmental conditions. An additional recent
development has been the evolution of the field of artificial intelligence,
which enables us to introduce a modicum of learning into the design of
adaptive materials or structures, so that they can respond to a situation
in a way similar to that of a moderately smart or intelligent living being.
Some of the basic characteristics of an intelligent living being are: sens-
ing, actuation, control, and learning (Ahmad et al. 1990; Davidson 1992;
Coghlan 1992; Knowles 1992).

Smart materials or structures may be formally defined as materials
or structures with an ability to respond in a pre-designed useful manner to
changing environmental conditions (Thompson, Gandhi & Kasivisvanathan
1992). There are two broad categories of them: passively smart, and ac-
tively smart, materials or structures (Newnham 1991; Newnham & Ruschau
1991a, b; Newnham 1997). Both have a sensing characteristic and a (pre-
designed) response characteristic. The difference lies in the fact that ac-
tively smart materials or structures are connected to an external power
source, field, or feedback system (and a control module) (Fig. 14.3.1),
which is designed to enhance and/or control their response, and usually
results in an enhanced actuator characteristic of the assembly.

14.3.1 Smart Systems, Structures, and Materials
It is necessary to make a distinction between smart systems, smart mate-
rials, and smart structures.

A three-term (PID) temperature controller is an example of a smart
system. It consists of complex circuitry, using a large number of diverse
components, and it becomes nonfunctional if sliced arbitrarily into two or
more parts.

By contrast, a thermistor (a resistor the resistivity of which is a pre-
designed useful function of temperature) is a smart material. If it is cut
into two or more parts, each part is still a thermistor which can act as a
(passively) smart material, adjusting its electrical resistance autonomously,
in a predesigned manner, against variations of temperature.
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Figure 14.3.1: The essential parts of an actively smart structure.

Smart structures can be regarded as intermediate between smart mate-
rials and smart systems. In a smart-structure composite the sensor elements
(e.g. optical fibers) and actuator elements (e.g.thin shape-memory-alloy
wires) are embedded all over the composite at the fabrication stage itself.
With progressive micro-miniaturization of the components of smart com-
posites, the distinction between smart structures and smart materials may
become more and more blurred. In any case, the former is a more general
term than the latter.

In what follows, we shall not be discussing smart systems at all. We
shall use the term 'smart structures' to cover even smart materials, where
applicable.

Biomimetics

In their quest for designing novel smart structures, scientists and engineers
tend to fall back again and again on how Nature has been doing it for
biological systems, which have evolved through natural selection for millions
of years. In biomimetics one aims at mimicking Nature for developing smart
or even intelligent systems, structures, or materials, and it is now a science
in its own right.

Spillman (1992) has put forward the hypothesis that the most efficient
smart structure (biological or not) for a given purpose should have a self-
similar level of functioning at every hierarchical level of its organization; in
other words, it should have a fractal character.

In Fig. 14.3.1 the control module and the power source have been
shown as residing outside the body of the smart structure. As the subject
of smart structures advances further, a stage may come when the control
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module will acquire a distributed character, and will become largely a part
of the smart structure or material (Helferty, Boussalis & Wang 1992).

Depending on their type and level of sophistication, smart structu-
res may possess one or more of the following characteristics (Takagi 1989;
Newnham 1994): sensing; actuation; selectivity; shapeability; self recov-
ery; self repair; stability, including multistability; standby phenomena; and
switchability.

14.3.2 Passively Smart Structures
The smartness of a passively smart structure does not require an external
power source or active feedback mechanism for coming into play. For this
reason, they are, in general, closer to being smart materials, rather than
smart systems. Also, for the same reason, their performance is generally of a
less dramatic nature and, although they find a large number of applications,
we hardly notice them as doing something particularly smart !

The thermistor was mentioned above as an example of a passively smart
material. The ceramic varistor is another example. Its electrical resistivity
decreases rapidly, and highly nonlinearly, on application of high voltages.
A zinc oxide varistor can act as a lightning protector. When struck by
lightning, its resistance falls to a very low value, and the current is bypassed
to the ground. The highly nonlinear I-V characteristic is thus the standby
protection property of this passively smart material. It offers an alternative
to the conventional copper-based lightning protector in that its resistivity
at low voltages is much higher.

Other examples of passively smart materials are optical limiters and
photochromic glasses. A rather elaborately investigated case is that of
the 'novelty filter' PHOTOGREY, an optical glass developed by Corning
Glass Works (cf. Spillman 1992). Its transmissivity varies nonlinearly with
the intensity of the light falling on it. Thus it automatically reduces the
variations of the intensity of light passing through it.

A solution of fullerene in, say, toluene serves a similar purpose. It acts
as a passively smart material because, for high input fluences of optical
radiation, the output fluence saturates to a constant value (Tutt & Kost
1991; Mishra, Rawat & Mehendale 1997).

Many other examples have been described by Newnham (1990).

14.3.3 Actively Smart Structures
Actively smart structures and materials possess both sensor and actuator
functions, and involve external biasing or feedback (Fig. 14.3.1). They
thus have an externally aided, usually nonlinear, self-tunability feature
with respect to one or more of the macroscopic tensor properties of the
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material(s) involved. Ferroic materials, which have several highly nonlin-
ear macroscopic properties in the vicinity of the ferroic phase transition, are
obviously relevant in this context, although they are not the only possible
choice. Electrorheological (ER) fluids are some of the other materials used
in actively smart structures (Gandhi, Thompson & Choi 1989).

Adaptive learning can also be incorporated in the device applications of
actively smart materials by the use of fast, real-time, information processing
arrangements involving neural networks (Grossman et al. 1989).

Among the options for embedded sensors in actively smart structures
are piezoelectric ceramics, resistive strain gauges, and optical fibres (Bow-
den, Fanucci & Nolet 1989).

Optical fibres are particularly popular as embedded sensors because
they can be used in large lengths in extremely small diameters, and they
do not undergo structural degradation during embedding because of their
ability to withstand the high temperatures and pressures necessary for the
fabrication of the smart composite. They also possess very high response
rates and sensitivities. Since they are sensitive along their entire length,
they are very well suited for real-time detection of structural changes at
any or all points in the composite structure.

At present the most popular actuator option is that of shape-memory
alloys, particularly NITINOL2. We shall discuss them in some detail in
§14.3.5.

A large shape-memory effect (SME) can arise if mediated by a marten-
sitic or ferroelastic phase transition. The SME has been observed not only
in metallic systems, but also in PLZT (Wadhawan et al. 1981; Schmidt
1990) and Y - Ba - Cu - O (Tiwari & Wadhawan 1991). GMO and its ter-
bium and dysprosium analogues also probably display the SME (Virkar et
al. 1991). Although the recoverable shape strain of nonmetallic SME mate-
rials is only of the order of 0.5% (or less), their high electrical resistivity can
be an advantage over shape-memory alloys (SMAs). In any case, the figure
0.5% compares favourably with the recommended maximum strain of 1%
for SMAs used for cyclic applications for 100,000 or more cycles (Stoeckel
& Simpson 1992). Apparently, no investigations have yet been carried out
on nonmetallic SME materials for repeated applications involving a large
number of cycles.

Among the other options for actuators in smart structures are piezo-
electric ceramics like PZT, and large-electrostriction relaxor ferroelectrics
like PMN (Varadan et al. 1992). The basic mechanism here is the genera-

2 Mention must be made here of another very promising actuator material for applica-
tions in which the controlling field is a magnetic field, namely the alloy TERFENOL — D
(with a typical composition Tbo.3Dyo.?Fe2) (Chaudhry & Rogers 1995). It has excellent
properties for fast, heavy-load, actuator applications (see du Tremolet de Lacheisserie
1993, page 353, for details).
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tion of strain by the application of voltage. This strain is inherently smaller
than that involved in shape-memory alloys. Thus, piezoelectric and elec-
trostrictive actuators are considered suitable for high-frequency low- and
medium-stroke applications, although the total stroke can be enhanced by
fabricating multilayer actuators (Uchino 1992; Sugawara et al. 1992).

SMAs are ideal for low-frequency high-stroke applications (cf §14.3.5).
The low-frequency restriction is imposed by the slowness with which the
SMA wire embedded in the composite can cool back to the martensitic
phase, after actuator function has been realized through shape recovery by
heating to the austenitic phase. Another problem is the fatigue of SMA
wires, especially in high-strain configurations.

14.3.4 Tuning of Properties of Ferroics by External
Fields

If a material is to respond in a variable manner to suit the changing en-
vironmental conditions, it should be able to tune its relevant property au-
tomatically. The presence of an external biasing field, as in the case of
actively smart materials, often results in a larger range of tunability of
the concerned property than is possible for passively smart materials (for
which no biasing field is applied). A nonlinear dependence of the property
on the biasing field is usually advantageous for achieving self-tunability of
the property.

For a concrete discussion of this question we consider the strain tensor e
and the electric displacement vector D of a crystal placed in a nonmagnetic
environment:

e = sE>Ta + dTE + <*ET (14.3.1)

D = dT<r + e^TE + p'T (14.3.2)

The total strain e has contributions from the stress field & , the electric
field E (through the piezoelectric effect), and thermal expansion (Nye 1957).
Similarly, D has, respectively, piezoelectric, dielectric, and pyroelectric con-
tributions.

Now suppose the crystal chosen is such that it undergoes a proper ferro-
elastic phase transition at a temperature not far from the device-application
temperature. Two aspects of such crystals are very important from the
point of view of their applications in actively smart structures. One is that
some component (or a combination of components) of the elastic compli-
ance tensor (SE'T in Eq. 14.3.1) becomes a highly nonlinear and strong
function of temperature in the vicinity of the transition temperature. This
feature makes it easy to tune the elastic (or rather pseudoplastic) response
of the material by applying an external stress field.
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The other aspect of the ferroelastic transition is that application of a
stress field leads to a shifting of the transition temperature. This has other
concomitant effects like the occurrence of a 'mechanical' shape memory ef-
fect (superelasticity), governed by the formation of stress-induced marten-
site (see, e.g. Guenin 1989; Wayman 1992; Stoeckel & Simpson 1992).

The above remarks about ferroelastic materials also apply, mutatis mu-
tandis, to other primary ferroics. The dielectric response function (denoted
by e in Eq. 14.3.2) of a proper ferroelectric phase of a material becomes
large and highly nonlinear in the vicinity of the transition temperature Tc.
And Tc can be shifted by applying an electric field (Jiang 1992).

Eqs. 14.3.1 and 14.3.2 also have other features relevant to smart-
material applications of ferroics in the vicinity of Tc. For example, al-
though the piezoelectric tensor d is zero for a centrosymmetric crystal, it
can acquire nonzero (even large) field-tunable components in some materi-
als (notably relaxor ferroelectrics) because of its coupling with the primary
instability driving the phase transition. PMN and PLZT are the best-
investigated examples of this. The ferroelectric hysteresis loop for them
does not disappear suddenly at a single temperature, but rather decreases
gradually in area with increasing temperature. What is even more relevant
for the present discussion is the fact that there is no change in the gross
point-group symmetry of the material in the Curie range of temperatures.
For example, for PMN the gross point-group symmetry at room tempera-
ture is m3m, the same as that of the paraelectric high-temperature phase
(Prokhorov & Kuz'minov 1990). Since this is a centrosymmetric point
group, all components of the d tensor must be zero. And yet the material
can exhibit a nonzero and large piezoelectric response when subjected to an
external electric biasing field (e.g. ^33 = 130 pC/N for E% = 3.7 kV/cm).

The mechanical analogues of this in metallic systems are the alloys that
exhibit diffuse martensitic transitions. Their analogous relevant features are
cluster formation and coexisting phases.

In nonmetallic ferroelastics a well-known example of this type is that
of the solid solution (KBr)i_x(KCN)x (Hochli, Knorr & Loidl 1990; Loidl
1991). For x < 0.6 the orientational disorder of the dumbbell-shaped (CN)~
ion (which carries both an elastic dipole and an electric dipole) is frozen-in
and transitions to orientational-glass states occur.

PLZT is another extensively investigated material, which becomes very
compliant in the vicinity of the diffuse ferroic transition (Meitzler & O'Bryan
1973). It also exhibits the shape-memory effect (Wadhawan et al. 1981).
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14.3.5 Applications of Ferroic Materials in Smart
Structures

Ferroic materials find applications as both sensors and actuator in
smart structures.

Piezoelectric Ceramics as Sensors

Although optical fibres are the most popular choice at present as sensors
in smart structures, piezoelectric ceramics are also strong contenders for
this application, especially if they can be developed in the form of thin
fibres for easy and extended embeddability in the composite structure; oth-
erwise their usual brittleness can create problems in certain applications.
The vicinity of a ferroic phase transition at the temperature of application
gives enhanced sensitivity. Their sensor action is through the production
of voltage under deformation. This is largely a reversible process, which
makes their use very attractive.

Tunable Transducer

The concept of developing a fully tunable composite transducer has been
described by Newnham (1991). It can tune its sensor and actuator func-
tions, and thence act as an actively smart structure. The tuning is achieved
by making available external electrical and mechanical biasing fields.

It is constructed from rubber and a relaxor ferroelectric, both capable of
highly nonlinear behaviour even under moderate external fields: rubber has
a highly nonlinear response to mechanical stress, and a relaxor ferroelectric
like PMN has a highly nonlinear electrical and electromechanical response
to electric field. Therefore the biasing enables the composite structure
to tune its property coefficients in response to a changing environment.
The properties which can be tuned include resonant frequency, acoustic
and electrical impedance, damping factors, and electromechanical coupling
coefficients.

An important property of a transducer is its resonant frequency /:

/ = 4 v/^ (14-3-3)

Here t is the relevant thickness, c the stiffness coefficient, and p the density.
Rubber has the special property that its stiffness increases dramatically
under stress. Thus, mechanical biasing stress can be used for tuning the
stiffness, and therefore the resonant frequency /, of a composite in which
rubber is one of the constituents.

In the experiments conducted in the laboratory of Prof. Newnham
(1991), a multilayer laminate comprising alternating steel shims and rub-
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ber layers, each of thickness 0.1 mm, was subjected to various amounts of
compressive stress, and measurements of Young's modulus E were made. It
was found that the stiffness c quadrupled from 600 to 2400 MN/cm2 (core-
sponding to a doubling of the resonant frequency /) for a biasing stress of
200 MN/cm2.

Rubber is not a piezoelectric material. Therefore, to make a transducer,
one has to design a composite using rubber and, say, poled PZT ceramic.
Such a composite was made by Newnham and coworkers. It consisted of
thin rubber layers, PZT, and metallic head and tail masses, this triple
sandwich being held together by a stress bolt. At low stress rubber is very
soft, and effectively isolates the resonating PZT member from the metallic
head and tail masses. At high stress the rubber stiffens, leading to a large
coupling between PZT and the metal pieces. The result is that the radial
resonant frequency doubles (from 19 to 37 kHz) when the bias stress is
changed from 20 to 100 MPa. Moreover, as the rubber stiffens under stress,
the mechanical quality factor Q increases from 11 to 34.

In this arrangement only a mechanical tuning capability is present
(from rubber), and no tunability comes from PZT. The reason is that the
piezoelectric strain produced in PZT is a linear function of the applied elec-
tric field, and the piezoelectric coefficient is a constant, not tunable by an
electric biasing field. To achieve electrical tunability, we must replace PZT
by a relaxor ferroelectric like PMN.

PMN is a strongly electrostrictive material. Not only is the mechanical
response to electric field large, it is also nonlinear (varying as square of the
applied field). Thus it has property coefficients which are tunable by an
external electric field. Compared to PZT, PMN has the following features
to offer: (i) The macroscopic strain produced in PMN by electric fields is
comparable to that in PZT. At zero biasing field (at room temperature)
the material exhibits no piezoelectric effect. Measurements carried out on
Pb(Mg0.3Nbo.6Tio.i)O3 (i.e. on PMN - PT) under a biasing field of 3.7
kV/cm gave a value of 1300 pC/N for ^33. (ii) There is practically no
hysteresis problem to cope with, (iii) Even the dielectric susceptibility of
PMN can be tuned by applying a dc biasing field.

All this implies that the electromechanical coupling coefficient, fc, can
be tuned by the electric field. So also the electrical impedance, because the
field-induced polarization saturates at high field values.

Thus a tunable transducer can be mae out of rubber and PMN, exploit-
ing the elastic nonlinearity and the piezoelectric nonlinearity. By control-
ling the mechanical and electrical biasing fields though a negative feedback
configuration of this actively smart composite, all the main parameters
of the transducer can be tuned, namely resonant freqency /, the acoustic
impedance ZA, the electric impedance ZE, the inverse mechanical damping
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factor Q, and the electromechanical coupling factor k.

Shape-Memory Alloys in Smart Structures
Shape-memory alloys (SMAs) have several attractive features which make
them very suitable in a variety of smart-structure applications (Davidson
1992; Rogers 1992; Stoeckel & Simpson 1992). Much of the work in this area
has been done on NITINOL. Pseudoplastic strains as large as 7 to 8% can
be completely recovered in this material on heating across the martensite-
austenite phase transition. The transition temperature can be tailored
to lie anywhere between 0°C and 100°C. The thermal hysteresis of the
transition during heating and cooling can be made less than 5°C (Grossman
et al. 1989). Wang (1992) has reported a thermal hysteresis as small as
0 to 1°C. This very narrow thermal hysteresis occurs in some binary and
ternary Ni — Ti alloys possessing the premartensitic 'R-phase' (Stoeckel &
Simpson 1992). Whereas the martensitic and the austenitic phases have
yield strengths of 80 and 620 MPa respectively, a rather large stress of 700
MPa is generated if the deformed martensitic phase is physically prevented
from regaining its shape in the high-temperature austenitic phase. Not
only is the stress generated large, and the available stroke length large,
the stress is also constant during the stroke (Wayman 1992). The Young's
modulus of the high-temperature phase is about four times that of the low-
temperature martensitic phase. Thus a spring made of this material can
change its spring constant by a factor of four on being heated to the upper
phase. SMAs like Ni-Ti can thus find the following two types of uses in
smart structures: (i) application of forces and torques; and (ii) variation of
material properties like stiffness.

Correspondingly, there are two broad categories of applications envis-
aged for SMAs (Davidson 1992). Both involve the use of SMA wires of
diameter about 200-500 microns, embedded in a pseudoplastically elon-
gated state in the smart composite, and prevented from recovering their
normal (memorized) length during fabrication. When an electric current
(usually in the form of pulses) is passed to heat such a wire to its high-
temperature phase, two things can happen. If an SMA wire is configured
not to coincide with the neutral axis of the structure, the recovery force
generated by the phase transition leads to a bending of the structure in a
pre-designed way. If, on the other hand, the SMA wire is along the neutral
axis, there is generated a uniformly distributed stress along the length of
the structure. Creation of a state of residual strain leads to a concomitant
tuning of the stiffness, and of the natural frequency of vibration. If the wire
is in the form of a coil, a change of length of the coil also occurs (Furuya
& Shimada 1991).

For many of the applications of SMAs in smart structures the one-
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way SME is not useful, as it is a one-time operation only. For automatic
repeated or cyclic operations the SMAs have to be trained for the two-way
SME (Guenin 1989; Maclean et al. 1992; cf. §11.5.4).

A variety of applications of SMAs in smart-structure and smart-system
configurations have been either investigated or actually demonstrated. We
survey some of them here.

SMAs as sensor elements. The use of SMA wires as sensors in smart
structures has been described by Baz et al. (1992a). These sensors undergo
stretching when the beam they are embedded in is deflected by a load.
They generate a signal proportional to the stretching, the signal being then
used for sending electrical current through another set of SMA wires for
appropriate actuator response.

Robotics. SMAs can convert thermal energy to mechanical energy through
the shape-recovery process on heating. Their use in robotics is therefore
only to be expected. What has been achieved till now is the development of
smart systems, rather than smart structures, employing SMAs as actuators.
Both 'biased' and 'differential' actuators have been developed (Furuya &
Shimada 1991). The heating of the SMA wire or coil is usually of the
resistive type, obtained by passing a train of electrical pulses. The response
speed is limited by the rate at which the system can cool back to the
martensitic phase.

Applications in space technology. SMAs can contribute to a large
number of applications in space technology (Schetky 1991). An example of
an actively smart structure is provided by the folding-box type protective
shroud based on SMAs (Schetky 1991). On being heated by solar energy
in outer space, the SMA actuator converts itself from a stowed to a fully
deployed (unfolded) shape, thus providing protective shielding to the satel-
lite.

In the zero-gravity environment of outer space, there is no damping
possible from gravitational forces. Smart structures offer perhaps the only
way out for the control of vibrations, and for achieving an accurate pointing
of, for example, high-gain antennas. SMAs have been envisaged as actua-
tors in truss members of large, high-precision, space structures (Spillman
1992). In the design of the truss, optical fibres are integrated into it to
act as sensors. Vibration levels sensed by these are analyzed in the con-
trol module of the truss, which then provides electrical power to the SMA
actuators to ensure that the vibrations are reduced to acceptable levels
(Spillman 1992). According to Wada et al. (1990), future NASA mis-
sions will require large space systems (including optical interferometers) to
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be positioned and controlled with sub-micron accuracies. Incorporation of
suitable adaptive structures into a truss is regarded as the main possible
solution to the problem of accurate positioning and orientation.

Active control of buckling of composite beams. Baz et al. (1992b)
have introduced and investigated the idea of impregnating flexible fibreglass
composite beams with NITINOL wires, so that the buckling characteristics
of such beams can be controlled dynamically by exploiting the large recov-
ery force generated in the SMA wires when they are fed thermal energy for
transforming to the austenitic phase. The NITINOL wires are embedded
in vulcanized rubber sleeves situated along the neutral axis of the beam. A
non-contact sensor monitors any buckling of the beam, and activates the
heating of the NITINOL wires, which in turn prevent the buckling from
taking place. In the configuration investigated by Baz et al. (1992b), the
critical buckling load could be increased by a factor of three compared
to the uncontrolled beam. Such an arrangement enables one to achieve a
higher performance-to-weight ratio, without compromising on the stability
of the beam.

Although Baz et al. (1992b) studied the use of only the thermally acti-
vated SME, it would be interesting to examine the use of the mechanically
induced SME for the same purpose. This, if feasible, would have some ad-
ditional advantages: no sensor for buckling would be needed; no heating
arrangement would be required; and since there would be no heating, there
would be no softening of the surrounding matrix.

The smart traversing beam. The design of long-span support bridges
requires traversing beams that are light in weight, have high strength, and
do not deflect excessively under moving loads. Baz et al. (1992a) have
demonstrated the feasibility of fabricating such beams from smart com-
posites, using NITINOL wires for countering autonomously the deflection
produced in the beam by moving loads. The NITINOL wires are embedded
parallel to, but not coinciding with, the neutral axis of the beam. When
a deflection is sensed, the control system sends electrical current through
an appropriate number of NITINOL wires to heat them to the austenitic
phase. The large recovery forces generated by this action counteract the
tendency of the beam to deflect. However, such an arrangement is not very
effective if the deflecting load moves very fast on the bridge.

Compliant wing sections for controlling the flight of aerodynamic
and hydrodynamic vehicles. Biological structures (birds, fish) have
articular bone or flexible cartilage configurations. Movement is achieved by
contraction of muscles. Analogies with these have spurred activity for the
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design of compliant wing sections for the adaptive control of surfaces, with
SMA wires as the actuating elements (Maclean et al. 1992; Beauchamp et
al. 1992). In the studies carried out by Beauchamp et al. (1992), the SMA
actuators were situated outside the wing (or foil, or fin). Two sets of SMA
wires were fixed to the opposite sides of the trailing edge of the foil, the
leading edge being fixed to a post. The two sets of SMA wires provided
actuation towards their respective sides when any one set was heated to
the austenitic phase. Thus this arrangement employed the one-way SME,
the restoration of shape on cooling being provided by the spring metal
backbone of the foil or wing. The dynamically varying wing section was
found to produce a higher lift force, and a lower flow separation, compared
to the rigid wing.

The smart artificial muscle. Modelling studies have been conducted by
Thursby et al. (1989) on an idealized neuro-muscular functional unit, with
fibre-optic sensors, SMA actuators, and an artificial neural network for a
'brain'. The typical muscle can be modelled as a bundle of matter having
a combination of series and parallel connections through individual fibres
(tendons etc.). The interaction with the nervous system is through these fi-
bres, which also act as sensors and actuators. In the artificial smart muscle,
SMA wires correspond to these fibres. In the biological system each muscle
fibre is actuated separately by an alpha motor neuron. A problem presents
itself here, in that it is very difficult to activate each SMA wire separately
by electrical means in the artificial muscle. Moreover, these wires, being
made of metallic alloys, have low resistivity. This makes it very impractical
to achieve I2R heating individually for a complicated and large network
of SMA wires connected in series and parallel configurations. Thursby et
al. (1989) and Grossman et al. (1989) have therefore experimented with
laser-heat activated SMA structures. This provides some other advantages
also (see below). It was demonstrated that artificial neural networks can
be trained to control the functions of such a muscle system.

Laser-heat activated SMA structures. As described by Grossman et
al. (1989), the use of electrical heating of SMA wires in conventional smart
composites produces a nonlinear all-or-none type of response. The nonlin-
earity stems partially from the fact the resistance of the wires is temperature
dependent, and therefore the temperature change produced per unit voltage
is not constant. These authors have explored the possibility of using pulsed
laser heating as an alternative strategy. Optical fibres embedded in the
same composite in which the SMA wires are embedded are used for trans-
porting the laser energy for a very localized heating of the SMA actuators.
The optical fibres also act as sensors. Feasibility studies were carried out
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with high-power CC>2 and frequency-doubled Nd:YAG laser radiation, but
eventually the inherently small-sized diode lasers will be embedded in the
smart composite itself. With the use of appropriate techniques involving
ultra-fast real-time data processing with neural networks, they were able to
achieve a linear control of individual SMA segments, without overburdening
the integrity of the composite.

The parallel-processing architecture of the neural network results in
high speed. The network also 'learns' by example during 'training', and
then attempts to apply the memorized algorithms to unfamiliar inputs.3

This also contributes to high overall speed of response. The output from
the network is fed as control signals for the laser supplying heat power to
the SMA actuators.

Use of laser heating by Grossman et al. (1989) for activating a large
array of SMA wires solves the three main problems encountered when elec-
trical heating is employed:

(i) By using very thin optical fibres (with a diameter of the order of 100 mi-
crons) for carrying laser heat to any specific SMA segment, the degradation
of the strength of the composite is minimized.

(ii) By using separate optical fibres for the activation of each SMA segment,
the problem of crosstalk or any other interference is overcome.

(iii) The amount of optical power required per unit rise of temperature is
constant. This greatly simplifies the control-circuit requirements.

Grossman et al. (1989) have used a three-layer perceptron neural net-

3 A two-minute introduction to neural networks is offered here for the totally uniniti-
ated. Neural networks are a set of interconnected 'neurons' working concurrently (see,
for example, Neelakanta &; de Groff 1994). They can learn system-dynamics without
requiring a priori information regarding the system structure (Thursby, Grossman &:
Yoo 1990; Grossman &; Thursby 1995). They are based on models of the brain and
its behaviour. A neural network develops associations between objects pertaining to a
given problem domain. It consists of three basic elements: processing elements (PEs)
and their connections; a method to train the network to solve certain problems (learn-
ing)', and a method to recall the information from the network. A PE is a building block
of a neural network. A neural network consists of one or more PEs connected together.
Each connection is associated with a numeric value called the connection weight, that
forms a memory unit of the network. PEs are usually divided into disjoint subsets called
layers. Functionally, each PE forms a weighted sum of the inputs impinging on it, using
a sum function. This sum is then transformed by a transfer function to a value that is
fed to an output function to produce the output of that PE. PEs in the same layer have
the same sum, transfer and output functions. 'Learning' is a process of adjusting the
connection weights in order to make the network develop correct associations between
objects concerning some application. The learning is done by a learning rule or function,
there being a single rule for an entire layer.
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work for establishing the proof-of-concept of the laser activated SMA struc-
ture. Data from the optical-fibre sensors are fed to the neural network,
which calculates the strains and the signals to be sent to individual SMA
actuators for corrective action. The training of the neural network is done
off-line for determining the optimum weights.

General conclusions. Although the subject of smart materials and st-
ructures is in its infancy, extensive research going on in a large number of
laboratories all over the world can be expected to result in great break-
throughs and rapid progress. Commercially successful application of SMAs
in smart structures will require further work in certain areas. We list three
of these here.

(a) For the successful application of laser-activated SMA structures, the
transfer functions will have to be determined extensively between the in-
put optical intensity, pulse shape, and pulse width on the one hand, and
mechanical and thermal properties on the other (Grossman et al. 1989).

(b) Friend (1992) has drawn attention to the problem of prediction of strain
trajectories during partial actuation of SMAs in the continuous-mode oper-
ation, and the problem of long-term stability of the actuation strain. The
long-term stability is good if the SMA actuator does not have to work
against any biasing load. But in most real-life applications the SMA is em-
bedded in the smart-structure composite, and has to do work. Therefore
the recovery response of the SMA is not constant, and has to be predicted
by sophisticated modelling calculations. Further, as pointed out by Friend
(1992) again, biased as well as partial-cycle actuation will result in com-
plex trajectories. This would necessitate the development of very complex
control algorithms for modelling the complicated stress-strain behaviour re-
alistically. Work in this direction is already in progress in some laboratories
(Maclean, Patterson & Misra 1990).

(c) For cyclic applications of SMAs, the usable limits on the maximum
recoverable strain and on the maximum generated stress have considerably
lower values than what are available for no-load and noncyclic operations.
For NITINOL the recommended maximum strain drops to 2% from 8%, and
the maximum stress drops to 140 MPa from 650 MPa, when the number of
cycles is around 10,000 (Stoeckel & Simpson 1992). Further research can
hopefully push forward these limits on performance.

What we are going to see in the near future is the coming together of
three mega-technologies, namely advanced materials, information technol-
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ogy, and biotechnology, for the evolution of biomimetic materials, structu-
res, and systems. Ferroic materials in general, and shape-memory alloys in
particular, clearly have a crucial role to play in this scenario.

SUGGESTED READING
I. Ahmad, A. Crowson, C. A. Rogers & M. Aizawa (Eds.) (1990). U.S.-
Japan Workshop on Smart / Intelligent Materials and Systems, March 19-
23, 1990, Honolulu, Hawaii. Technomic Pub. Co., Lancaster.

R. O. Glaus (Ed.) (1991). Proc. Conf. on Optical Fiber Sensor-Based
Smart materials and Structures, April 3-4, 1991, Blacksburg, Virginia.
Technomic Pub. Co., Lancaster.

R. E. Newnham (1991). Tunable transducers: Nonlinear phenomena in
electroceramics. In Chemistry of Electronic Ceramic Materials, Special
Publication 804, National Institute of Standards &; Technology. (Proceed-
ings of the International Conference held in Jackson, WY, August 17-22,
1990. Issued January 1991.)

G. J. Knowles (Ed.) (1992). Active Materials and Adaptive Structures.
IOP Publishing, Bristol.

B. Culshaw, P. T. Gardiner & A. M. Donach (Eds.) (1992). First European
Conference on Smart Structures and Materials. IOP Publishing, Bristol.
(SPIE Vol. 1777.)

E. Udd (Ed.) (1995). Fiber Optic Smart Structures. Wiley, New York.

R. E. Newnham (1997). Molecular mechanisms in smart materials. MRS
Bulletin, May 1997.

R. E. Newnham (1998). Phase transformations in smart materials. Ada
Cry St., A54, 729.



Chapter 15

EPILOGUE

The trouble with facts is that there are so many of them.
Samuel McChord Crothers

I had two objectives to meet in the writing of this text. One was
to attempt a unified and reasonably self-contained account of the physics
and applications of ferroic materials (single crystals, ceramics, composites).
The other was to try to make it easier for the beginner to comprehend the
concepts and jargon used in the research papers on the subject.

To achieve the first task, I have taken the help of symmetry consid-
erations. Although symmetry arguments seldom provide numbers for ex-
perimental verification, they have great unifying and systematizing power.
Prototype symmetry, and the spontaneous breaking of the point-group part
of it at a ferroic phase transition, is the central notion in the physics of fer-
roic materials. The definition of prototype symmetry needed to be made
more precise, which I have done in §5.1.3.

The second objective made it necessary for me to opt for greater breadth
than depth in the treatment of the topics discussed. In view of the wide
diversity of the concepts to be covered, I was compelled to be brief. I have
no regrets about this because there is an important pedagogic principle in-
volved in the approach adopted by me: I believe that, often, the best way
to explain a complex or 'advanced' topic to a student is by describing it
briefly. Once the student has understood the basic idea, and also learnt the
jargon used by experts, there should be no difficulty in going deeper into
the topic by consulting the SUGGESTED READING material.

Quite deliberately, I have often discussed topics which fall outside the
purview of ferroic phase transitions and ferroic materials. This has been
done to place the subject of ferroic materials in a proper perspective, and to
induce the reader either to draw analogies, or to appreciate the difference
between ferroic and nonferroic behaviour. The similarity between crystal
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growth and domain-boundary (and phase-boundary) movement is an ex-
ample of the former type. And the distinction between structural extended
defects and compositional extended defects (Chapter 8) is an example of
the latter type.

As is natural when one attempts the first comprehensive and connected
treatment of a subject, gaps in the overall growth of the subject become
visible. The most serious gap I noticed was that regarding the very defi-
nition of a ferroic phase transition (and thence a ferroic material). I have
provided my answer to it (in §5.1) by invoking Guymont's nondisruption
condition.

Another matter of definition, which still needs some detailed analysis,
is that of the choice of a control parameter for defining a phase transition in
a crystalline material, particularly a phase transition involving a change of
symmetry. As discussed in §14.1, there is no strong reason for choosing only
temperature, hydrostatic pressure and/or composition (all scalars) as the
control parameters for defining a symmetry-changing phase transition. For
domain-structure systematics etc., anisotropic influences like electric field,
magnetic field and/or uniaxial stress can be equally valid thermodynamic
control parameters for inducing a symmetry-changing phase transition. In
other words, for several purposes, field-induced phase transitions are no
different from transitions effected by scalar control parameters.

The thermodynamic definition of a phase transition in a crystal runs
into difficulties when the number N of unit cells in it is not infinite (see,
for example, Privman & Fisher 1983). The problem becomes increasingly
serious as we go down to nanometer scales. Under the circumstances, a
symmetry-based definition can become more meaningful. In §5.6.11 quoted
Landau's celebrated statement ('symmetry cannot change continuously'),
which Anderson (1981) has called the First Theorem of condensed matter
physics. One can dwell on this theorem to make the point that even a
crystal that is not infinite can be ascribed a definite symmetry, at least
over a typical length scale. So long as this typical length scale encompasses
a few repeat distances, there is a specific symmetry assignable to that part
of the crystallite. And the symmetry-based definition of a ferroic phase
transition is simply that there should be a change of point-group symmetry
over the specified length scale l (in a nondisruptive manner).

Admittedly, such a definition can run into problems for a system with
nanodomains with, say, thermally induced movement of domain boundaries

lrThe specification of a length scale for defining the symmetry of a crystal is nothing
unusual. Even an infinite crystal has Wyckoff site symmetries not all of which are the
same as the symmetry of the entire crystal. The symmetry of a crystal cannot be defined
for sizes smaller than than that of its Wigner-Seitz cell.
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and phase boundaries. One has to then specify not only a length scale, but
also a time scale, for assigning the point-group symmetry.

Nanocrystals do not have the same crystal structure throughout: As
one approaches the surface, the lattice parameters may tend to change (usu-
ally increase) gradually. But so long as there is a core for which a unit cell
can be identified, and this unit cell repeats itself a few times, there is a ph-
ase with a well-defined symmetry, which can therefore undergo a transition
to another phase of different symmetry, under appropriate conditions.

Application of even a vanishingly small anisotropic field changes the
symmetry of a crystallite; this is not a phase transition, but only a process
of dissymmetrization. As this external field is increased in magnitude, the
net symmetry (of crystal plus field) may suddenly change at some value of
the field. This is a phase transition.

Thus symmetry considerations help reduce the ambiguity present in
the thermodynamic definition of a phase transition in small crystals.

Certainly, important new features can arise sometimes when a phase
transition is induced by a non-scalar field. An example is the effect of the
presence of an external magnetic field on the degree of degeneracy of the
ground state of a frustrated system like a spin glass (cf. §9.2.6).

Although suggestions for further reading have been given at the end of
almost all the sections, I advise the reader to pay particular attention to
the following texts:

An authoritative recent book on the theory of ferromagnetism is that
by Aharony (1996). Also recommended strongly are the books by Jiles
(1991) and Valenzuela (1994) on the subject of magnetic materials.

For ferroelectrics, the book by Lines & Glass (1977) continues to be my
favourite. A useful addition to the basic literature is the book by Xu (1991),
which covers several materials-science aspects of ferroelectrics. Pandey's
(1995) review article on diffuse transitions in mixed ferroelectrics provides
a good starting point for the newcomer to this topical field of research.

Salje's (1993a) book on ferroelastics is a welcome addition to the student-
oriented literature on this topic. Salje has also guest-edited some very useful
special issues of the journal PHASE TRANSITIONS, on this subject (cf.
Salje (1994, 1995, 1999); Kleemann & Salje (1998)).

I have not given space to the experimental techniques used for studying
ferroic materials. The reason is that practically all the usual techniques for
investgating condensed matter are also relevant for ferroic materials. In
this regard there is nothing special about them.

Some pioneering work on nonstructural composites was done by van
Suchtelen (1972, 1976) (also see Hale 1976). As explained in §13.3, there is
tremendous scope for exploiting the flexibility offered by composites for de-
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signing new systems, incorporating ferroics, with specific end-uses in mind.
Applications of ferroic materials in smart structures are examples of this.

Because of the constraints on time and space, some topics had to be left
out. Ferroelectric liquid crystals is one such topic. Another is that of poly-
mer ferroelectrics. Ferroic behaviour of quasicrystals will also be interesting
to explore. For example, if a quasicrystal undergoes a transition to a phase
of ordinary crystallographic symmetry, the noncrystallographic symmetry
operators lost at the phase transition (e.g. 5-fold symmetry rotations) can
be expected to leave behind their signatures as operators which map one
ferroic domain to another (under the parent-clamping approximation). Of
course, this would be in addition to the effect of loss (if any) of the normal
crystallographic symmetry operators.

Yes, there is a Nirvana; it is in leading your sheep to a green
pasture, and in putting your child to sleep, and in writing the
last line of your poem.

Kahlil Gibran



Appendix A

SET THEORY

The first man who noticed the analogy between a group of seven
fishes and a group of seven days made a notable advance in the
history of thought.

A. N. Whitehead

This appendix serves mainly as a prelude to Appendix B on group theory.
We introduce a few concepts, definitions, and notation.

Sets. A set is defined as a unification of well defined objects of thought
into a whole.

If an object x belongs to a set 5, it is called an element of 5, or a
member of 5. This is denoted by x G 5. The contrary statement (x not an
element of S) is abbreviated as x £ S.

If P is the statement which defines the elements of a set, the set is
denoted by {x \ x satisfies P}, where the vertical line is read as "such that".

A set without any elements is called an empty set, or a null set, and is
denoted by 0.

A is called a subset of B (denoted by A C B) if every element of A is
also an element of B. If A C B, then B D A, the latter statement meaning
"B contains A" or "B is a superset of A".

Two sets A and B are said to be equal (A = B) if, for every x, x £ A
and x G B. Otherwise, A ̂  B.

If A C B and A ^ B, A is a proper subset of B. If a subset A of B may
or may not be a proper subset, one writes B C A.

Algebra of Sets. The union (or sum) A U B and the intersection (or
product) A fl B of two sets A and B are defined as follows:

A U B = {x | x e A or x G £}; (A.0.4)
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A n B = {x | x G A and x € B}\ (A.0.5)

If A and B have no common elements, they are called disjoint sets. For
such sets A n B = 0.

Union and intersection obey the following two distribution laws:

A U (B n C) = (A U 5) H (A U C), (A.0.6)

A n (B u C) = (A n B) u (A n c) (A.o.7)
If {Aa} is a nonempty collection of sets, then

UAa = {x | x belongs to at least one A}; (A.0.8)

flAa = {x | x belongs to every A}; (A.0.9)

For two sets A and B, the relative complement of B in A is the set
A — B, defined as

A-B = {x\x € Abutz £ B} (A.0.10)

Some authors use the notation A \ B in place of A — B for the difference
between the sets A and B. Example: {1,2,3} \ {2,3,4} = {!}.

If B C A, then the set Bc ~ A\B is called the complement of B to
A. We note that B U B° = A, and B n Bc = 0.

Often it is useful to define the largest set relevant for a given physical
problem, and then consider its subsets. Such a set, U, is called the universe
or the universal set. An example of U in plane geometry is the set of all
points in the plane.

The complement of A in U is denoted by A'. For two sets A and B the
following results are self-evident:

(A')' = A (A.0.11)

W' = 0, 0' = U (A.0.12)

A n A1 = 0, A U A' = U (A.0.13)

A C B if and only if B' C A' (A.0.14)

(A U B/ = A' n B' (A.0.15)

(A n B}1 = A' U B1 (A.0.16)

Venn-Euler Diagrams. Venn-Euler diagrams are illustrative diagrams
for expressing relationships between sets. One represents a set by a simple
plane area, usually bounded by a circle. Fig. A.O.I shows the Venn-Euler
diagram for sets A = {a, 6, c, d}, B = {c, d, e, /}, and illustrates graphically
the fact that A n B = c, d.
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Figure A.O.I: The Venn-Euler diagram for two sets A and B with a
nonempty intersection set.

Cartesian Product. For two sets A and B, the cartesian-product set
A x B is formed by taking all the ordered pairs (p, q), where p G A and
q £ B. A plane is an example of a cartesian product of two sets of points
on a line.

Point Fields, Functions, Mappings. A point field is a set of elements
called points.

A mapping or a correspondence from a point field A to a point field B
is said to be defined if, for every point p in A a point p' is associated in
B: p' G B\/ p € A (where the symbol V denotes "for every"), p' = f(p)
is called the image of p. Such an assignment or mapping also defines the
function /, and is sometimes written as / : A —+ B.

A is the domain of /, and B is its co- domain.

Operators. Transformations. If the domain and the co-domain of a
function / is one and the same set A, / is said to be an operator or a
transformation on A.

One-to-One Mappings. / is called a one-to-one function or mapping of
a set A to a set B if no two different elements of A are mapped to the same
element of B.

Onto Mappings. If in a mapping by / from set A to set B, every element
of B is the image of at least one element of A, / is an onto mapping or
function. In an onto mapping the image of A is the whole of B (f(A) = B).
A is said to be mapped into B if f ( A ) C B.

Equivalent Sets. Set A is equivalent to B (A ~ B) if a function or
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mapping exists from A to B which is both one-to-one and onto.

Infinite Sets. A set is infinite if it is equivalent to one of its proper subsets.
Otherwise it is a finite set.

Denumerable Sets. Consider the set of natural numbers, N = {1,2,3,...}.
Any set D is a denumerable set if it is equivalent to the set N.

Countable Sets. A set is countable if it is either finite or denumerable.
A set is non-denumerable or non-countable if it is infinite and if it is not
equivalent to the set N of natural numbers.

Permutations. A transformation defined on a finite point field is a per-
mutation.

SUGGESTED READING
S. Lipschutz (1981). Theory and Problems of Set Theory and Related Top-
ics. Schaum's Outline Series, McGraw-Hill, Singapore.



Appendix B

GROUP THEORY

The Book of Nature is written in mathematical characters.

Galileo Galilei, in // Saggiatore

Group theory provides the mathematical language for describing the
symmetries of physical systems. The most important link between symme-
try and physics is through the theory of representations of groups, specially
the Wigner theorem. According to this theorem, the physical parameters
describing the properties of a system are transformed according to the irre-
ducible representations of the symmetry group of the system.

We summarize here the basic concepts and definitions of group theory,
and state (mostly without proof) its important theorems and results rele-
vant for the description of ferroic phase transitions and ferroic materials.
Many of the concepts described here are illustrated during their actual use
in various chapters of the book.

B.I ABSTRACT GROUP THEORY

Sets with Algebraic Structure

If a law of composition (or combination, or multiplication) is defined
for a set so that any two elements of the set can be combined or multi-
plied to give another element of the set, the set is said to have algebraic
structure, as well as the property of closure. An example is the set of all
positive and negative integers (including zero), with subtraction as the law
of composition. We notice that in this example the law of composition is
not associative [e.g. (16 - (-9)) - 12 ̂  16 - (-9 - 12)].
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Groups

A group G(e,a, 6, c,...) is a set of distinct elements with algebraic struc-
ture, the law of composition for which is associative, and which includes an
identity element, as well as the inverse of every element.

The identity element, e, is that which has the property that, for every
element a of the group,

ea = ae = a (B.I.I)

The inverse 6 of any element a has the property that

ab = ba = e (E.I.2)

Naturally, if b is the inverse of a, then a is the inverse of b.
The inverse of an element a is denoted by a"1. Therefore, if a"1 = 6,

then b~l = a.
The number of elements in a group is called its order. A group of finite

order is called a finite group. The order of a group G is conventionally
denoted as either g or \G\.

Some examples of groups follow:

(i) The set of all integers, /(.. — 3, —2, —1,0,1,2,..), with ordinary summa-
tion as the law of composition. The identity element for this group is 0,
and the inverse of any element n is the integer — n.

(ii) The set of all nonsingular square matrices of order n, with ordinary
matrix multiplication as the law of composition.

(iii) The set (0,1,2,3, ..n — 1) of n integers under the law of addition
modulo(n). If, for example, n = 5, then: 3 + 4 = 2, 4 + 4 = 3, 4 + 2 = 1,
etc. This group is referred to as the Zn group (see below).

Abelian Groups

A group is said to be Abelian or commutative if all its elements commute
with one another; i.e. ab = ba for all a and b belonging to the group.

Groups of Transformations

A transformation (such as rotation, reflection, translation, permutation)
which leaves a physical system invariant is called a symmetry transforma-
tion of the system. That the set of all such transformations forms a group
(called the symmetry group of the system) is reasonably straightforward
to visualize. Any two symmetry transformations, performed in succession,
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Figure B.I.I: Symmetry elements of an equilateral triangle in 2-dimensional
space. [After Ludwig & Falter 1988.]

keep the system invariant, thus satisfying the closure requirement. The
identity transformation corresponds to no transformation at all, and is a
member of the set. For every symmetry transformation there obviously
exists the inverse transformation also. Finally, successive transformations
obey the associative law. This will become more clear when we discuss an
example below (that of a triangle).

Symmetry Group of an Equilateral Triangle

Let us consider the symmetry group of an equilateral triangle (Fig. B.I.I).
If the triangle is rotated by an angle 2?r/3 about an axis perpendicular
to its own plane, and passing through its centroid, it is transformed back
into itself. This axis is said to be an axis of 3-fold symmetry (or a triad),
and the symmetry operation just described is denoted by Ca. We follow the
convention of taking counter-clockwise rotations as positive. Two successive
operations of C% (denoted by Cf) also leave the triangle invariant. Three
such successive operations amount to a total rotation of 2?r, bringing the
triangle to its original configuration, and thus amounting to an identity
operation: C| — e.

In addition to these three rotational operations of symmetry, there are
three reflection operations also, crv, cr^, a", in Fig. B.I.I, which bring the
triangle back into coincidence with itself. These mirror planes of symmetry
pass through the 'vertical' axis 63; hence the subscript v in av etc.

The operations of the six symmetry elements of the equilateral triangle
can be shown conveniently in terms of the mappings of the points 1,2,..6
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marked on the triangle in Fig. B.I.I.

e : !->! 2-> 2 3-> 3 4-> 4 5-> 5 6-> 6

C3 : l -»3-»5->l 2 - > 4 - > 6 - » 2
C| : l ->5-*3->! 2 - > 6 - > 4 - > 2

crv : 1 <-> 2 3^6 4 <-> 5
e'v : 1 <-+ 6 2 <-> 5 3 <-> 4
< : l < - > 4 2 ~ 3 5<-»6

This set of mappings also enables us to see easily the effect of successive
operations. For example, C% carries point 1 to 3, and a'v carries 3 to 4.
Thus the combined effect of these two symmetry operations, denoted by
the product C$crr

v, is to take point 1 to point 4. And the operation 1 —» 4
is also achieved by cr". Thus C^a'v = a".

We can satisfy ourselves that every conceivable product of the elements
in the set {e, 63, C\, crv, o'v, a"} is again a member of this set. In fact, this
set constitutes a group, denoted conventionally by the symbol C^v or 3m.
Table B.I.I gives what is called the group multiplication table for the group,
namely the results of successive applications (or products ab) of all possible
pairs of symmetry elements (a, b) of the group.

We notice that the group C$v is not an Abelian group. For example,
C$av = a", whereas crvC$ = cr^, so that the products are not always
commutative. We also notice that each element of the group appears once,
and only once, in each row and column of the group table.

Generators of a Finite Group. Cyclic Groups

One can generate all the elements of a group starting from a certain mini-
mum number of properly chosen elements of the group. The smallest set of
such elements, whose powers and products can generate the entire group,
comprises the generators of the group.

A nontrivial example of a single element generating the entire group
is provided by the case where the element a is such that an = e, where
n is the smallest positive integer satisfying this condition. Since a is an
element of the group, so are a2,a3,., etc.; we must stop at an = e. Any
power of a higher than n does not give another distinct element because
an+fc __ ak FQ^ genera^or a t^^ generates a group {a,a2, a3, ..an~l,e} of
order n. Any group generated by a single element is called a cyclic group.
All cyclic groups are Abelian, but the converse is not necessarily true.
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Table B.I.I: Multiplication table for elements of the group Csv.

Conjugate Elements and Classes

If for two elements b and c of a group, an element a exists such that

a~lba = c, (B.1.3)

the elements b and c are said to be conjugate elements. The above equation
represents the similarity transformation of 6 by a.

From Table B.I.I we can pick up examples of conjugate elements. For
instance, Cf<7v = af

v. Multiplying both sides of this equation by €3 from
the right, and noting that C| = CJ"1, we get C^lavC3 = <C3. Table B.I.I
can be consulted again to see that v'vCz is nothing but cr", so that

C3-VVC3 =: < (B.1.4)

Thus av and cr" are conjugate elements.
It can be shown readily that if an element b is conjugate to c as well as

to d, then c and d are conjugate elements; in fact it means that 6, c and d
are all conjugate to one another. This suggests the possibility of splitting a
group into sets such that all elements of a set are conjugate to one another,
but no two elements belonging to different sets are conjugate to each other.
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Such sets of elements of a group are called conjugacy classes, or simply
classes.

The identity element e of a group always constitutes a class by itself,
because for any element a belonging to the group, a~lea = e.

It is easily verified by consulting Table B.I.I for the group C^v consid-
ered above that it is composed of the classes (e), (Ga, G^1), and (crv, cr^, a").

Subgroups

A subset F of the elements of a group G which satisfies all the criteria for
defining a group, and which has the same law for the products of elements
as the larger group, is called a subgroup of G.

The group C$v considered above has the following nontrivial or proper
subgroups: {e, 63, G^"1}, {e, av}, {e, a'v}, {e, cr"}. The whole group, as well
as the group {e}, are also its subgroups. These are called the improper or
trivial subgroups.

We notice that all the proper subgroups of C$v are cyclic, although the
whole group is not cyclic.

Cosets of a Subgroup

Let G be a group of order g, and H {h\ , /i2, -.ft/i} one of its proper subgroups
of order ft. Since H is a proper subgroup of G, there exists at least one
element a G G which does not belong to H. The set (afti,aft2,...afth) is
called the left coset ofHbya (and is denoted by aH). Similarly, the set
(ftia, ft2a, ...ft^a) is the right coset of H by a.

A coset is not always a group. For example it cannot always have the
identity element; the identity element occurs only in the subgroup H, and
not in other cosets.

In general the left coset aH and the right coset Ha are not identical.
However, they are not disjoint.

The element a is a coset representative. Its choice is not unique; any
member of the coset can be the coset representative.

Two left cosets aH and bH are either identical, or have no element
in common (i.e. are disjoint sets). Otherwise, some hi and hj can be
found such that ahi = 6ftj, in which case a = bhjft^"1, implying that a is a
member of the coset bH, contrary to the definition of a coset. [a, being a
coset representative for aH, cannot also be a member of another coset bH.}
Similarly, two right cosets are either identical, or disjoint.

The number of elements in a coset is equal to the order of the proper
subgroup H.
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Lagrange Theorem for Subgroups

According to this theorem the order of any subgroup H of G is a divisor
of the order g of G. We have seen above that any two distinct cosets of a
group are always disjoint, and that in each coset the number of elements is
equal to the order of the subgroup. It follows that the elements of G can be
split into an integral number, n, of disjoint sets; therefore g = nh, where h
is the order of H. The number n is called the index of H in G.

Normal Subgroups

Consider a subgroup H C G, and some element s G G. If the left and
right cosets of H with respect to all s G G are the same, H is said to be
a normal or invariant subgroup of G. It follows from this definition that
every element of the set sH is equal to some element of Hs, i.e. shi = hjS,
or

hi = s~lhjS (B.1.5)

But this is just the conjugation relation between hi and hj, and implies
that, if an element hi belongs to a normal subgroup H, then all elements
conjugate to hi also belong to H. In other words, a normal subgroup consists
of entire classes of the larger group G.

The converse can also be shown to be true, namely, if a subgroup H
consists of entire classes of G, it must be a normal subgroup of G. For
example, {e^C^^C^1} is a normal subgroup of the group C^v, but {e,crv}
is not.

Conjugate Subgroups

Consider a subgroup H of a group G. Another subgroup H' of G is said to
be conjugate or equivalent to H if there exists an element g G G such that
H' = g~lHg. One can thus divide all subgroups of a group into classes of
conjugate subgroups, or conjugacy classes of subgroups.

Conjugacy classes may contain different numbers of subgroups. The
conjugacy class of a normal subgroup contains only one subgroup.

Product Groups

Consider two groups H (hi = e,h<2, ...hh) and K (ki = e, &2, •••&*:) of orders
h and k respectively, such that they are disjoint except for the identity
element e, and such that every element of H commutes with every element
of K. One can define an outer direct product group, G, of order hk (G = H®
K), with (hi, kj) as a typical element, and with the following multiplication
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law among its elements:

fakA • (hk,ki) = (hthktkjkt) (B.1.6)

The group # is isomorphic to (h^ e), and the group K is isomorphic to
(e, fcj). It follows from this definition that # and K are normal subgroups
of G.

If H = X (= G, say), we get a special product group with its elements
satisfying the relation

(hi,hi)eG®G (B.1.7)

This group is isomorphic to G, and is called the inner direct product group
ofG.

If G is a group with subgroups H and K such that H fl K = {e} and:

kjH = Hkj for all k, G K and all hi € ff, (B.1.8)

and
for all p G G we have p = hikj, (B.1.9)

then G is called the semi-direct product group of # and .ftT:

G = ff®# (B.1.10)

We notice that, in this case, whereas H is an invariant subgroup of G,
K may not be so, in general.

Factor Groups

Let us take the normal subgroup {e, GS, G^"1} of Gav, and form all possible
distinct cosets from it by using the elements of C%v. In fact we can form
only one such distinct coset, namely K<z = (cr^cr^cr"). The use of other
possible elements, namely a'v and cr^, for forming more cosets simply gives
K2 with an altered sequence for its elements. We reserve the symbol K\
for the initial set itself: K\ = (e,C^,C^1). (We ignore the fact that KI is
actually a group, and not just a set.)

It turns out that K\ and K^ can be treated as elements of a group /C
called the factor group of G with respect to the normal subgroup K\. For
this group, the product of two elements (cosets) is obtained by multiplying
each element of the first coset with every element of the other coset, counting
repeated elements only once:

K,K2 = (e,G3,G3-
1)((7t;,(7;,(7;/) (B.l.ll)

= (Vv>Vv,&v,Vv,Vv>>Vv,Vv,Vv>>Vv) (B.I.12)
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-* KXX) = K2 (B.1.13)

In fact, KI plays the role of the identity element for the factor group.
A general definition can be given as follows: If H is a normal subgroup

of G, the set of all the distinct cosets of H in G, together with the coset
multiplication rule given above, is called the factor group or the quotient
group of G with respect to H. It is denoted by 1C = G/H (G over H). The
order k of 1C can be readily shown to be g/h.

Mappings Between Groups. The Kernel
A multiplication table, like Table B.I.I, contains all the information about
the algebraic or analytical structure of a group. Two groups having the
same multiplication table, and therefore the same structure, are said to be
isomorphic to each other. The correspondence between the elements of two
groups can be discussed in a more general manner through the language of
mappings.

Any mapping between sets with an algebraic structure which satisfies
the requirement f(b)f(o) = f(bo) is called a homomorphic mapping or a
homomorphism. Similarly, a mapping from a group GI to a group G% is
a homomorphism if the group structure is preserved in the mapping, that
is, if to each element a in G\ there corresponds a unique element </>(a) in
GZ such that (/>(ba) = 0(6)0(a), and if the mapping is defined for all the
elements of G\.

The set of all elements of GI, which are mapped onto the unit element
of G2, is called the kernel of the mapping.

In a homomorphism it is possible that several elements of GI are
mapped to the same element of G% (e.g. 0(a) = (f>(b) when a ^ 6). When
a mapping between two groups is homomorphic, one-to-one, and onto, it
is an isomorphism. Two isomorphic groups have the same multiplication
table, and are completely equivalent. In fact they comprise one and the
same abstract group.

Intersection Groups
Consider two groups GI and G<I. A group / comprising only of elements
common to both G\ and G<z is called an intersection group. Symbolically,

/ = GI n G2 (B.1.14)

/ is a subgroup of both GI and G<Z.

The Zn Group
The group of integers modulo n, under addition, is called the Zn group.
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The Ising model is an example of Z<i symmetry.
A clock model, with vectors limited to n equally spaced points on a

2-dimensional unit circle, has Zn symmetry.

B.2 LINEAR SPACES AND OPERATORS
The application of abstract group theory to physical problems involves the
use of representations of groups in physical spaces. The most used spaces
are the linear spaces or vector spaces.

Fields

Consider a set of elements F(a, 6, c,...), for which two binary operations are
defined, namely an addition (denoted by +) and a multiplication (denoted
by .). F is a field if: (a) it is an Abelian group under addition, with zero
(0) as the identity element; and (b) all its nonzero elements also form an
Abelian group under multiplication, with unity as the identity element.

Common examples of fields are: the set of all real numbers (7£); and the
set of all complex numbers (C). The elements of a field are called scalars.

Vector Spaces

A set of elements {11, v,w,..} (e.g. vectors, points, matrices, functions) is
called a linear space or vector space C over the field F(a, 6, c,..) of scalars if
the following two conditions are satisfied for all u, v,.. G C and all a, 6, c,.. G
F:
(a) C is an Abelian group (£,+) under addition, with 0 as the identity
element.
(b) An operation called scalar multiplication exists for combining any scalar
of the field F and any element of £ such that, for every u, v e C and a, b G F
we have:

a(u + v) = au + av e £, (B.2.1)

(a + b)u = au + bue £, (B.2.2)

a(bu) = (a&K (B.2.3)

lu = u, (B.2.4)

OTZ = 0 (B.2.5)

It is usually not necessary to distinguish between the scalar zero and the
element 0 of the vector space.

The elements of a vector space are called vectors.
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If the vector space is defined over the field of real numbers, it is called a
real vector space] if defined over a field of complex numbers, it is a complex
vector space.

Inner-Pro duct Space. Norm

If a vector space £ satisfies the following conditions, it is called an inner
product space, or a metric vector space: For every pair of elements u, v £ C
there exists a unique scalar (u, v) in the field F such that

(t*,t;) = (t;,u)*, (B.2.6)

(au.bv) = a*b(u,v), (B.2.7)

(tu, au + bv) =a(w,u) + b(w,v), (B.2.8)

where the * denotes 'complex conjugate'.
Ordinary three-dimensional space, with the familiar rule for the scalar

product of two vectors, is an example of an inner-product space.
Consider a set of n-tuplets of numbers u = (MI, 112 j --Un), v = (i>i, v2,...

vn), .•• over a field to which the scalars Ui belong. If, for example, the field
concerned is the complex field C, this set of n-tuplets constitutes a vector
space over C. This vector space would qualify to be called an inner-product
space if we define the scalar product of any two of the n-tuplets, say u and
v, as a complex number given by

(u, v) = u* Vi (B.2.9)

[Here we follow the convention that a summation from i — 1 to n over the
repeated index i is implied.]

If v = u, we have
(u,u) = \Ui\2 (B.2.10)

The nonnegative square root of this number is called the norm (or length)
of the vector u.

Cauchy Sequence

A sequence is an infinite set of numbers ci, c2, ... cn, ... associated with
each positive integer n according to some specified rule. This sequence is
said to be convergent, with a limit c, if, for every real positive number
€, howsoever small, there exists a positive integer N such that, for every
n > AT, we have \cn — c\ < e.

A sequence is a Cauchy sequence if, for every 6, an AT can be found
such that, for any two integers n > N and m > TV, we have \cn — cm\ < c.
Every convergent sequence is a Cauchy sequence, and vice versa.
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A sequence can be defined, not only in terms of real or complex num-
bers, but also, for example, in terms of vectors in 2, 3, or n-dimensional
space.

Hilbert Space

If every Cauchy sequence of elements belonging to an inner-product space
C has a limit which also belongs to £, we have a complete space.

Any complete inner product space is a Hilbert space.
As a counter example, the space of all rational numbers is not a com-

plete space because one can construct a Cauchy sequence in this space with
an irrational limit.

In quantum mechanics the state of a system is described by a vector in
an appropriate Hilbert space.

Basis Vectors

In ordinary 3-dimensional space (T^s) any vector can be defined in terms
of its three 'components', namely vectors along three non-coplanar (and
pairwise noncollinear) axes. One can similarly define an n-dimensional
vector space Cn such that the whole of this space is spanned by a set of n
similarly chosen basis vectors £i,£2, "Xn.

Any two vectors Xi and Xj of Cn are said to be linearly independent if
it is impossible to find a scalar c such that Xi — cxj — 0.

This equation can be generalized to arrive at the following condition:
A set of ra vectors (xi) of Cn is a linearly independent set if and only if the
equation

OiXi = 0 (B.2.11)

is satisfied only when all the coefficients a^ in the summation are zero.
Any set of n linearly independent vectors (x\,x<2, ..xn) in Cn is called

a complete set. Such a set, the choice of which is not unique, constitutes
the basis vectors of the space. Any vector u in £n can be written as a sum
of component vectors parallel to the complete set of basis vectors:

u =mxi (B.2.12)

It is usually advantageous to choose basis vectors {e^} with unit norm,
rather than choosing basis vectors {xi} with an arbitrary norm. Further,
it is usually very convenient to choose vectors which are orthogonal to one
another. Basis vectors that are orthogonal, as well as of unit magnitude
(orthonormal basis vectors), satisfy the condition

(e^e,-) = Sij, (B.2.13)
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where 6ij is the Kronecker delta function.
Consider two vectors

u = UiCi (B.2.14)

and
v = ViCi (B.2.15)

in Cn. The scalar product of these vectors is given by

(u,v) = (v,u)* = u*Vi (B.2.16)

Linear Operators
Consider two vector spaces C and £' over the same field F. A mapping
T : C —> C' is called a linear transformation or a linear operator if for all
u, v € £ and all c € F, we have

T(u-hv) = Tu + Tv (B.2.17)

and
T(cu) = cTu (B.2.18)

Thus a linear operator A is defined over £ by associating a vector \</> > to
each vector (^ > of £: |0 >= T|^ >. In quantum mechanics the dynamical
variables of a system are described by linear operators in Hilbert space.

Vectors in a vector space can be specified in terms of their components,
with basis vectors serving as the 'coordinate axes'. Eqs. B.2.15 serve as an
example of this. When operators act on a vector space, we have two choices
regarding their action. We may treat the operator as an active operator,
which leaves the basis vectors (and therefore the coordinate axes) fixed, and
maps all other vectors to their new images. Alternatively, we can treat it as
a passive operator, which simply maps the basis vectors to their respective
images, leaving other vectors unchanged; its effect on the other vectors of
£n is then felt through the changes it causes in their components referred
to the transformed basis vectors. In this book, unless stated specifically to
the contrary, we treat the operators as active operators.

Isometric Mappings
Coordinate transformations or mappings which preserve distances are called
isometric mappings, or isoraetries.

Affine Mappings
Mappings which preserve parallelism of lines, but may or may not preserve
distances, are called affine mappings.
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Unitary and Orthogonal Operators, and Their Representations

Let us consider a passive operator T, which transforms the set of basis
vectors (e^) in Cn over the field C to a new set (e^):

e'i = Tei = e j T j i , i = lton (B.2.19)

Here Tji are scalars in C, denoting the components of e^ along BJ. If the
operator T is such that it transforms one set of orthonormal basis vectors
to another, it is called a unitary operator. Such operators keep invariant
the norms and scalar products of the vectors of Cn.

The scalars Tji in Eq. B.2.19 can be determined by forming the scalar
product of e; and e^ :

(e,,e;) = (e^TeO = (e^e/fy) (B.2.20)

Since the (e^) are an orthonormal basis (cf. Eq. B.2.13), we get

(ej.Tei) = T^ (B.2.21)

Tji is referred to as the matrix element of the operator T between ej and
e^. And the square matrix [Tij] of order n gives a representation of the
operator T in the basis (e;) in £n.

We have assumed here that Cn is defined over the field (C) of complex
numbers. If it is defined, instead, over a field K of real numbers, T is an
orthogonal operator, rather than a unitary operator.

Symmetry Transformation Operators, and Their Effect on
Functions

As discussed in Appendix A, a function or a mapping is defined by
associating a point /(r) in a point field B for every point r in a point field
A. A transformation R takes every point r in A to another point in A:

r' = Rr (B.2.22)

Correspondingly, the function /(r) is transformed to, say, R//(r'). The
operators R and R/ act on different spaces; R on coordinate space, and
R/ on function space.

R/ is a symmetry transformation if

R//(r') = /(r) (B.2.23)

Eq. B.2.22 can be rewritten as

r = RrV (B.2.24)
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Substitution of r from Eq. B.2.24 into Eq. B.2.23 gives

R//(rO = /(R-V) (B.2.25)

Since both r and r' are defined in the same point field A, we can drop the
primes in this equation:

R//(r) - /(R-1!-) (B.2.26)

Symmetry transformations in crystals are described by the Seitz oper-
ator {R|t} (Eq. 2.2.11 of Chapter 2), where R is a rotation (or rotation-
inversion) operator and t is a translation operator. Eq. B.2.26 has therefore
to be generalized to

{R/|t}/(r) = /({Rlt}-1!-) (B.2.27)

On using Eq. 2.2.14 this becomes

(R/|t}/(r) = /(R-'r-R-'t) (B.2.28)

B.3 REPRESENTATIONS OF FINITE
GROUPS

Matrix Representations of Groups
We have seen in §B.2 that the square matrix [T^] of order n provides a
representation of the operator T in the basis (e;) in linear vector space
Cn of dimensionality n. We also know that the set of all nonsingular,
square, distinct matrices of any order forms a group, with ordinary matrix
multiplication as the law of composition for the group. The use of matrices
for representations of groups is therefore only natural.

Formally, a representation F(G) of a finite group G = {e, a, 6, c..} of
order g is a homomorphic mapping of the elements of G onto a group of
nonsingular linear operators T that map a linear space Cn onto itself:

F(G) : s € G -+ T(s) (B.3.1)

The space Cn is the space of the representation (rep) of G, and n is
the dimension of the representation. By introducing a basis, the operators
T(s] can be defined by their matrix representation given by Eq. B.2.21.

Consider a set of nonsingular matrices F = {F(e),F(6),..}, all of the
same order, such that, if ab = c is in G, then

F(a)F(6) = F(c) (B.3.2)
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is in the set F. Such a set of matrices forms a representation of G. The
dimension of the representation is equal to the order of the matrices.

A matrix representation is, in general, a homomorphic mapping G —>
F; that is, a many-to-one correspondence of the elements of G onto the
elements of the set of matrices F. If the correspondence is isomorphic (one
to one), the representation is said to be true or faithful. In this case the set
of matrices also constitutes a group F which is isomorphic to the group G.

The Identity Representation

The simplest representation of a group is that homomorphic mapping in
which all elements of the group are mapped to unity (a unit matrix of order
1). This is called the unit representation, or the identity representation.

The basis functions e^, in terms of which the matrices of a representa-
tion are defined (Eq. B.2.21) always include one function which is invariant
under all the operations of the group. This single basis function gives the
identity representation.

The identity representation is a 1-dimensional representation. There-
fore all its characters are equal to unity (cf. Eq. B.3.10 below).

Inequivalent Representations

Consider two matrix representations FI and F2 of a group G:

ri = {ri(e),ri(a),ri(6),..},
F2 = {F2(e),r2(a),r2(6),..}

If a nonsingular matrix S can be found such that

Fi(a) = S-lT2(a)S (B.3.3)

for all a € G, then FI and F2 are called equivalent representations of
G. Two representations that are not equivalent are called inequivalent
representations. Representations with different dimensions are necessarily
inequivalent.

The matrix 5 in Eq. B.3.3 is said to perform an equivalence transfor-
mation, or a similarity transformation.

Unitary Representations

A matrix T is said to be unitary if TTf = TfT = E (a unit matrix).
If all the matrices of a representation are unitary, it is called a unitary

representation.
A representation of a finite group can be always brought into a unitary

form by means of an equivalence transformation.
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Reducible and Irreducible Representations. Invariant Subspaces

Consider two matrix representations FI and F2 of a group G. From these,
one can construct a new representation of a larger dimension:

_ \Tl(Gi) 0 1T(Gi> - [ o r2(Gi) J (B-3>4)

This representation clearly satisfies the condition expressed by Eq. B.3.2.
It is the direct sum of the representations FI and F2:

F = F! 0 F2, (B.3.5)

and its dimension is the sum of the dimensions of FI and F2.
A representation having the block-diagonal structure of Eq. B.3.4, or

which can be cast into such a structure through a similarity transformation,
is called a reducible representation.

If no similarity transformation exists which can cast a representation
into the block-diagonal form, the representation is said to be an irreducible
representation.

A reducible matrix representation can be decomposed or reduced into a
direct sum of irreducible representations. When this is done through a sim-
ilarity transformation like Eq. B.3.3, the underlying basis also undergoes a
linear transformation (cf. Eq. B.2.19). The structure of Eq. B.3.4 implies
that the new basis must divide itself into subsets or subspaces, such that
each of the subspaces possesses the closure property under the operations
of the group G. Thus the basis spanning a reducible matrix representation
can always be split into a direct sum of invariant subspaces.

In contrast to this, the basis spanning an irreducible representation is
already an invariant subspace (of itself), and cannot be decomposed further;
it is an irreducible invariant subspace.

The Great Orthogonality Theorem

Let us consider all the inequivalent irreducible representations (IIRs) of a
group G of order g. Let F^' (s) denote a typical matrix element of the
/xth IIR, with Up as the dimension of this IIR. For a given set of values
for /x, ^, and j, and with s running over all the elements of the group, the
matrix elements can be regarded as the components of a vector in a g-
dimensional space. The orthogonality theorem expresses the orthogonality
relations satisfied by such vectors.

According to this theorem, for any two IIRs F(//) and F(i/) of dimen-
sions rip and n,,, the following relation must hold:

£ r? (*) T(U («) = — s*» «*fc fy (B-3.6)
sec • n"
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The following are three special cases of Eq. B.3.6:

^r%\a)rM(8) = 0 i f / i ^ i / ; (B.3.7)
s

Elt^rjpM = ° ifi^k and/orj^; (B.3.8)
S

£r<y>(-)rj>(a) = f (B.3.9)
s ^

Eq. B.3.7 states that any two vectors in the ^-dimensional space are or-
thogonal to each other if they are taken from matrices of two different
representations.

Eq. B.3.8 states that even when the vectors are from the same repre-
sentation, they are orthogonal to each other if they are taken from different
sets of elements in the matrices of this representation.

Eq. B.3.9 expresses the fact that the length of any such vector is

\7#Av

Characters of a Representation

The matrices of a representation of a group, for a given vector space, are not
unique. They depend on the choice of basis vectors, and even on the order in
which these basis vectors are chosen. However, such representation matrices
are related to one other through similarity transformations, since they are
all defined for the same vector space which has the property of closure.
Since the trace of a matrix is invariant under a similarity transformation, it
follows that the traces of all the matrices of a representation can uniquely
characterize a representation, no matter what set of basis vectors is chosen.

The trace of a matrix r^(s) is called its character, XA*(S) :

*„(«) = Er«}(a) (B-3-10)
1=1

The character of any element of a group is the same in two equivalent
representations. The character is invariant under equivalence.

Since the elements in a class of a group are related by similarity trans-
formations, it follows that the character x^(s) ^s the same for all elements
s in a given class.

The First Orthogonality Relation for Characters

Let Cs denote the class to which the elements s belong, and let gs be the
number of such elements ^s gs = g. Then the following relation can be
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shown to hold:

£ 9sXl(Cs}x»(Cs} = 96^, (B.3.11)
ca=i

where nc is the number of classes the group has.

The Second Orthogonality Relation for Characters

Let nr denote the total number of IIRs of a group G, and Ca and Cb two
such IIRs. Then the following orthogonality relation holds:

Y.x;(Ca)x»(Cb) = ±6ab (B.3.12)
M=l 9a

Relationship between nr and nc

With reference to Eq. B.3.11 we can treat

[V0Tx/z(Ci), ^92x^2) ...^/g^cx»(Cnc)}
as a vector in nc-dimensional vector space. Eq. B.3.11 can be then thought
of as an inner product of such vectors. There is one such vector for each //,
so that there are nr vectors in all. Since an nc-dimensional space cannot
have more than nc mutually orthogonal vectors, we must have

nr < nc (B.3.13)

Similarly, with reference to Eq. B.3.12 we can regard

[Xi(Ci), X2(Ci), ...,X»P(Ci)]

as a vector in nr-dimensional space. The number of such vectors is nc, and
we must have

nc < nr (B.3.14)

Eqs. B.3.13 and B.3.14 lead to the result

nr = nc (B.3.15)

Thus, the number of IIRs a group can have is equal to the number of classes
in it

The Character Table

The character table is an arrangement of n^ (= n2
c) characters xM(Ci) in a

table with nr rows and nc columns. There are as many rows in this table
as there are IIRs, and there are an equal number of columns, one for each
class of the group.
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Relationship between the Dimensions of the IIRs of a Group and
Its Order
Characters of reducible representations are called compound characters, and
those of irreducible representations are called simple or primitive characters.
Characters being a class property, for a given IR the maximum number of
distinct primitive characters is equal to the number of classes of the group,
namely nc. And the number of IIRs is also equal to nc (Eq. B.3.15).
There are thus n*c primitive characters \^(Ci) in all. The character table
is a nc x nc matrix of such primitive characters. If the primitive charac-
ters are weighted by the factors ^fgl/^fg, the matrix with matrix-elements
\/r9i7dXM (Ci) is unitary.

We denote the classes of the group G by 61,62, ...Cnc, and the IIRs
by ri,r2, ...rnc. The symbol C\ is normally reserved for the class of the
identity element g\ or e. And FI is used for denoting the identity or trivial
representation of G. Thus, XM(^I) *s equal to the trace of T^gi). And the
latter is a /x x /x unit matrix. Therefore,

Xn(Ci) = nM (B.3.16)

We write Eq. B.3.12 for the case Ca = Cb = Cii

Ex^Ox^i) = f on = g (B.3.17)
/i=i 9l

Substitution of Eq. B.3.16 into Eq. B.3.17 results in

XX = 9 (B.3.18)
ji=i

Thus, the sum of the squares of the dimensions of all the IIRs of a group
is equal to the order of the group.

Subduced Representations
When a field is applied to a system, its symmetry is, in general, reduced
(in accordance with the Curie principle). Symmetry may also be reduced
through spontaneous symmetry breaking, as, for example, when a crystal
undergoes a phase transition on change of its temperature. The resultant
symmetry group, #, is frequently a subgroup of the initial group G.

Naturally, the representations D(G) of G are also representations of H,
though not, in general, irreducible representations (even when they are irre-
ducible for G). These representations are called subduced representations
of G on H.

On subduction, the representation space L^ of G decomposes into
irreducible subspaces for H.
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Induced Representations

Consider a group G having H as one of its proper subgroups. The subgroup
#, being a group, has its own irreducible representations. Let D^ be one
such irreducible representation, of dimension d, and with basis functions
0i, 02, ...</)d> Then, for any element s G H, we have

**» = £^$(*) (B.3.19)
M

Since J? is a proper subgroup of G, say of index fc, the following coset-
decomposition can be written (§B.l):

G = riH + r2H + ... + rkH (B.3.20)

We can choose one of the coset-representatives, say rj? and define a
new set of basis functions, {0ji/}, as follows:

fa,, = rrf,,, j = l,2,...fc; i /=l ,2, . . .d (B.3.21)

This set can be used as the basis for a new, fcd-dimensional, represen-
tation of G. It is readily verified that for any element p G G, we have

P0J-" = S^MAM,^(P) (B.3.22)
ip

where
AM,JV(P) = ^'(PJ^^rVj), (B.3.23)

%(p) = 1 when pr^- € nff, (B.3.24)

^(p) = 0 when pr^ $nH (B.3.25)

Eqs. B.3.23-25 define what is called the induced representation of D^
onto G.

Symmetric and Antisymmetric Product Representations

Consider two representations F^ and F^ of a group G, of dimensions /x
and v respectively. The basis functions x\, #2, ••, #/z for F^ are transformed
as

Gx^ = Y.XiD^ (B-3-26)
i

Similarly, the basis functions j/i , j /2i ••»!/!/ for tne representation F^^ trans-
form as

Gyi = 'EvkDtf (B.3.27)
i
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Therefore the products Xjyi will be transformed as

G(xjyi) = GxjGyt = ^xtykpl? D%>] (B.3.28)
ik

We can define a new set of 'product' matrices as follows:

[D^W]** = D<$\G)D%\G) (B.3.29)

The rows and columns of these new matrices are described by double in-
dices. It follows from the structure of Eq. B.3.28 that the set of functions
{xjUi} can form a basis for a new representation, called the direct-product
representation] it can be verified that this set of product matrices forms a
group, and that it satisfies all the requirements for a representation also. It
is a /^-dimensional representation. Product representations are, in general,
reducible.

Of special interest to us (in the context of the Landau theory of phase
transitions) is the case when F^ = F^ = r(a) (say). In other words, one
can construct squares (and cubes, etc.) of a given representation. From
Eq. B.3.28 we can obtain the following relation:

G (xjVi + xiyj) = £>;</* + Zfcj/i) £>g° D$ (B.3.30)
ik

This implies that the functions (xjyi +xiyj) possess the property of closure,
and can be used as basis functions for representations of G. The repre-
sentation [r(Q)]2 based on these functions is called the symmetric product
representation.

Similarly, an antisymmetric product representation, {F^Q^}2, can be
defined, with the set (xjyi — xiyj) serving as basis functions.

B.4 SOME CONTINUOUS GROUPS
Discrete and Continuous Groups
If the number of elements of a group is denumerably infinite, it is called
a discrete infinite group. If the number of its elements is nondenumerably
infinite, it is a continuous group.

Consider the set of all real numbers. This set is called a continuous
group of order 1 because only one parameter, say x, is sufficient to specify
any real number in the interval [—00,00].

The Euclidean Group E(3)

The set of all distance-preserving geometrical operations (translations, ro-
tations, inversions) in three-dimensional space constitutes a group called
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the Euclidean group E(3).

The Translation Group T(3)

The set of all translational operations in three-dimensional space constitutes
a group called the translation group T(3).

Consider two successive translations defined by the vectors ai and a2,
with tai and t&2 as the corresponding transformation operators. The com-
position law in T(3) is

taita2 = tai+a2 (B.4.1)

Thus T(3) is a commutative group.

The Three-Dimensional Rotation-Inversion Group O(3)
The group of all 3 x 3 orthogonal matrices is a continuous group called
the orthogonal group 0(3). Such matrices represent orthogonal (length-
preserving) transformations in three-dimensional, real, vector space. There-
fore the group of such transformations (also denoted by 0(3)) is isomorphic
to the group of the orthogonal matrices. These transformations involve
rotations, space-inversions, or their combinations. O(3) is therefore the
rotation-inversion group in three dimensions.

The Three-Dimensional Rotation Group SO (3)

Any orthogonal matrix R has the property that

RRT = RT R = E, (B.4.2)

where RT is the transpose of matrix R, and E is the unit matrix. The
matrices R and RT have the same determinant, (det R), and therefore the
above equation yields (det R)2 = 1, or

det R = ±1 (B.4.3)

The matrices of the group 0(3) therefore divide themselves into two sets:
those with det R = +1, which correspond to proper rotations, and those
with det R = — 1, corresponding to improper rotations. The first set con-
stitutes a group, SO(3), the special orthogonal group, in three dimensions.

The improper rotations can be viewed as products of proper rotations
with the space-inversion operation, and the matrix for the space-inversion
operation is J = — E. The space-inversion matrix J and the identity matrix
E comprise a group with two elements. The space-inversion operation
commutes with all the rotation operations, and therefore one can split O(3)
into a direct product:

0(3) = SO(3) «(E,J) (B.4.4)
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The Space-Time Rotation-Inversion Group O'(3)

In general, the three-dimensional space under consideration may not be
invariant to the time-inversion operation e1'. There can then be three types
of inversion operations: the space inversion operation i\ the time inversion
operation e'; and the total inversion operation i1. The group

Eo = {e,i,e',i'} (B.4.5)

is called the full inversion group. It has the following proper subgroups:
the space inversion group J, the time inversion group E', and the total
inversion group J':

J = d = 1 = {e,i} (B.4.6)

E' = C( = 1' = {e,e'} (B.4.7)

J' = Cj(Ci) = I' = {e,t'} (B.4.8)

If we make a further separation into proper and improper rotations, we
obtain the following relations, the validity of which is self-evident:

SO'(3) = 50(3) ® E', (B.4.9)

56(3) = 5O(3) ® J' (B.4.10)

0'(3) = 50(3) ® Bb = O(3) ® ff (B.4.11)

The group O'(3) is the general space-time rotation-inversion group.
Any magnetic point group is a subgroup of this group (Opechowski 1974;
Ascher 1966).

The On Group

The symmetry group of unit vectors on the surface of a sphere in n-
dimensional space is called the On group.

The XY-model is an example of 0% symmetry, and the Heisenberg
model is an example of Os symmetry.
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Appendix C

THE CURIE
SHUBNIKOV
PRINCIPLE

. . we must admit that without the help of symmetry and in-
variance principles we would not have been able to obtain even
the probably approximate laws of nature which we now use and
which had such a large effect on our ways of life.

E. P. Wigner (1984)

Symmetry considerations have played, and continue to play, a vital role
in our quest for discovering and understanding the laws of nature. There is
a hierarchical progression in our knowledge of the universe: from events to
laws of nature, and from laws of nature to symmetry or invariance principles
(Wigner 1967).

When two or more systems or fields are superimposed, the net symme-
try of the composite system is, more often than not, lower than that of any
of the superimposed components. This lowering of symmetry is referred to
as the process of dissymmetrization, the net symmetry being the highest
symmetry common to all the components, taking due account of the mutual
orientation and placement of the components.

The opposite process, that is, the process by which the net symmetry
is higher than the highest common symmetry, is called symmetrization
(Shubnikov & Koptsik 1974).

In modern science, Pierre Curie is believed to be amongst the earliest
of physicists to have seriously considered the causes of symmetry in na-
ture. His principle of superposition of dissymmetries, to be discussed here,
was enunciated in a lecture "Sur la Symetrie" given in Paris at the French

603
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Mineralogical Society meeting on 13th of November 1884 (Curie 1884). His
ideas were consolidated further in a paper published ten years later (Curie
1894). Amongst the contemporaries of Curie was Neumann, who proposed
in 1885 the first symmetry prescription for finding the number of indepen-
dent elastic constants of crystals. Neumann's student Voigt introduced into
physics the concept of tensors.

Another pioneer in this field was Minnigerode, who stated the following
principle (Minnigerode 1884): "The group of the structure of a crystal
is contained in the group of each of its physical properties" (quoted by
Brandmuller (1986)).

Nearer to our times, Shubnikov (1951) systematized the application
of symmetry considerations to crystal physics and physical crystallography,
and made a number of original contributions (for reviews, see Koptsik (1968,
1983), and Shubnikov & Koptsik (1974)). The generalized form of the Curie
principle, which we propose to call the Curie-Shubnikov principle, owes its
present statement to Shubnikov.

C.I THE CURIE PRINCIPLE.
DISSYMMETRIZATION

The effect truly exists beforehand in its cause.

The ancient Sankhya system

of Hindu philosophy.

Following Shubnikov & Koptsik (1974), we state the Curie principle of
superposition of dissymmetries as follows:

When several phenomena of different origin are superimposed
in one and the same system, their dissymmetries are summed.
There only remain the symmetry elements common to each phe-
nomenon taken separately.

The term dissymmetry may be simply interpreted as "the absence of
symmetry". But it has a more precise meaning, which we now explain.

The notion of a universal set was stated in Appendix A. The extension
of this notion to symmetry groups is obvious. Let us use the symbol G
for the universal group (also called the embracing group or the fundamen-
tal group). It is the highest-symmetry group relevant for a given problem.
The introduction of this group is necessary for defining precisely the dis-
symmetry of an object or phenomenon. If one is dealing with, for example,
the classical tensor properties of nonmagnetic perfect crystals, one can take
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Figure C.I.I: Venn-Euler diagrams illustrating the Curie principle of addi-
tion of dissymmetries.

the universal group G as 0(3), the orthogonal group for all rotations and
inversions in three-dimensional space (§B.4).

If an object or phenomenon or field has a symmetry group G, its dis-
symmetry D is simply the complement of G in G (cf. Appendix A):

D = G\G (C.I.I)

The summing of dissymmetries, referred to in the above statement of the
Curie principle, for objects or phenomena having symmetry groups GI, G2,
..., can thus be expressed as the following union of sets:

Dl U D2 U ... = G\Gi U G\G 2 U ... (C.1.2)

Fig. C.I.I shows the Venn-Euler diagrams for this equation for a case
involving only two groups GI and G<Z.

The shaded areas in the first two diagrams define DI and D<2, and when
the two shaded areas are added up, as in the third diagram, what is left
unshaded is the symmetry group, say G^, which describes the symmetry
of the composite system obtained by superimposing the systems of symme-
tries GI and G<2. G^, called the intersection group, is the largest common
subgroup of GI and 62, taking due account of the mutual disposition of
the symmetry elements of GI and G2- The result can be generalized to any
number of superimposed symmetries:

Gd = GI n G2 n ... = r\iGi (C.i.3)

Naturally, the intersection group Gd cannot be of a higher order than
that of any of the component groups GI, G2, .. :

Gd C d (C.1.4)

This relation embodies the statement of the Neumann theorem of crystal
physics (Nye 1957):
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The symmetry d possessed by any macroscopic physical prop-
erty of a crystal cannot be lower than the point-group symmetry
of the crystal.

The point group (Gd) of the crystal is simply that resulting from the
intersection of the symmetry groups of all the macroscopic physical proper-
ties possessed by the crystal.

We see that although Neumann's work was independent of that of Cu-
rie, the Curie principle happens to be more general, and implicitly includes
the Neumann theorem.

Shubnikov fe Koptsik (1974) also state what they call the Neumann-
Minnigerode-Curie (or NMC) principle as follows:

Gobject ^ G'property (C.I.5)

If an object is to possess a certain physical property (that is, if this property
is not to be prohibited by the symmetry of the object), it is necessary that
the symmetry group of the object be at least a subgroup of the group of
symmetry operations of the physical property.

Recently, Rosen (1995) has given "derivations" of a number of symme-
try principles, the main one being what he calls the symmetry principle:

The symmetry group of the cause is a subgroup of the symmetry
group of the effect

That is:
Gcause ?i Geffect (C.I.6)

A somewhat less precise, but more handy, version of this principle is
as follows (Rosen 1995):

The effect is at least as symmetric as the cause.

Clearly, Eq. C.I.5 represents only a special case of Eq. C.I.6.
Since the effect cannot be less symmetric than the cause, the symmetry

principle can be used for defining a lower bound on the symmetry of the
effect. Rosen (1995) refers to this as the minimalistic use of the symmetry
principle.

Again, since the cause cannot have a higher symmetry than the effect,
the symmetry principle provides an upper bound on the symmetry of the
cause. This is the maximalistic use of the symmetry principle.

The statement of the Curie principle expressed by Eq. C.I.3 is based on
certain implicit assumptions. The relaxation of these assumptions leads to
successive generalizations and modifications of the statement of the princi-
ple (Koptsik 1983; Brandmuller 1986). We discuss one such generalization
in §0.2.
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We conclude this section by presenting a variation on "the way the Curie
principle is stated sometimes. Imagine a situation in which all the G;s in
Eq. C.I.3 are either absent, or isomorphic to the universal group G, except
one, say G\. In that case, Eq. C.I.3 reduces to Gd = GI. This would
seem to suggest that the effect (represented by the group Gd) has the same
symmetry as the cause (represented by GI), a statement that should not
be taken too literally. The actual statement attributed to Curie is the
following (Curie 1894b; Ascher 1977): 'The characteristic symmetry of a
phenomenon is the maximal symmetry compatible with the phenomenon.
A phenomenon can exist in a medium which has its symmetry or that of
one of the subgroups of the characteristic symmetry'.

Many authors take this as the main statement of the Curie principle
(Boccara 1981; Sirotin & Shaskolskaya 1982; Senechal 1990), and state the
principle as follows:

When certain causes produce certain effects, the elements of
symmetry in the causes ought to reappear in the effects produced.
When certain effects reveal a certain assymetry, this asymmetry
must be found in the causes which gave birth to them.

Naturally, when several causes are present simultaneously, only those
elements of symmetry can "reappear" which are common to all the causes.
But in every case, "the effect truly exists beforehand in its cause".

C.2 THE CURIE SHUBNIKOV
PRINCIPLE. SYMMETRIZATION

One type of situation in which Eq. C.I.3 may not be valid is when the
groups GI, 62, ... are equivalent subgroups of G. This is easier to com-
prehend when the superposition is of tangible geometrical objects, rather
than fields or phenomena. To be specific, if we superimpose geometrical
objects that are equal, it is possible to construct composite systems that
have higher symmetries than the symmetry Gd predicted by Eq. C.I.3.
Fig. C.2.1 illustrates this for the case of two equal isosceles triangles.

Consider an isosceles triangle, as shown in Fig. C.2.1(a). The origin
of the coordinate axes, as well as their orientation with respect to the
geometrical figures shown in parts a, 6, and c of Fig. C.2.1, is fixed, and is
as shown. Fig. C.2.1(b) shows another isosceles triangle, of the same size
as in Fig. C.2.1 (a), but with orientation as shown. Let GI and G% denote
the symmetry groups for the two triangles.

The group GI has only two elements, an identity element and a mirror
plane of symmetry normal to the y-axis [Gi = (1, my)}. In the International
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Figure C.2.1: An illustration of symmetrization.

crystallographic notation, this group is denoted by the symbol my, so that
GI = my. G2 also has the same two symmetry elements: G<i = (l,my), so
that G2 = my.

We now create a composite figure from these two identical (equal) tri-
angles by joining them so that they are coplanar and share an arm as shown
in Fig. C.2.1(c). The resulting figure is a rhombus. The rhombus has an
extra mirror plane of symmetry (mx) normal to the z-axis, which its two
component triangles do not have. This violates Eq. C.I.3, because this
equation predicts

Gd = my fl my = ray, (C.2.1)

whereas the actual symmetry group, say Gs, of the composite figure (the
rhombus) is (l,my,mx,i), where i denotes the inversion operation (the
rhombus is a centrosymmetric figure).

Thus when two equal isosceles triangles are combined in the manner
shown in Fig. C.2.1, the resultant figure has a higher symmetry than that
given by the intersection group G<j. This is an example of symmetrization
(Ga D Gd).

The reason for the occurrence of symmetrization lies in the fact that
the net symmetry of a composite object consisting of equal parts includes
even those symmetry operations which map one part to another, whereas
for a composite object made up from unequal parts, only those symmetry
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operations comprise the net symmetry group Gd which simultaneously map
each part onto itself. Symmetrization occurs in the example of Fig. C.2.1
because the mirror operation mx can map Triangle 1 onto Triangle 2, and
Triangle 2 onto Triangle 1, as a consequence of the fact that the triangles are
equal in size (apart from having a specifically chosen relative disposition).
By contrast, operations of the intersection group Gd can only map Triangle
1 into itself, and, simultaneously, Triangle 2 into itself.

Shubnikov has generalized the group-theoretical formulation of the Cu-
rie principle to include the possibility of symmetrization also, so that the
generalized principle is seldom violated (at least for systems which do not
interact so strongly as to alter their individual symmetries). According to
the generalized principle (which we call the "Curie-Shubnikov principle"):

The symmetry group Gs of a composite object, or phenomenon, or field,
is given by the union of Gd (defined by the original statement of the Curie
principle) with a set of symmetrizers M (Shubnikov & Koptsik 1974):

Gs = Gd U M = n* d U M (C.2.2)

Thus Gs is an extended group.
In Gd, the subscript d denotes dissymmetrization, and in Gs, s denotes

symmetrization.
To illustrate the meaning of M, we go back to the example of Fig.

C.2.1. To obtain Gs correctly from Gd, we choose M as

M = (mx,*) (C.2.3)

Since mymx = i (that is, a reflection operation mx, followed by a reflection
operation m^, is equal to an inversion operation through the origin), we
can rewrite Eq. C.2.3 as

M = (l,my}mx = Gdmx (C.2.4)

The resultant symmetry Gs, according to Eq. C.2.2 is

Gs = Gd U Gdmx = (l,ray) U (mx,i) = mm (C.2.5)

The extended group Gs thus describes correctly the symmetry of the rhom-
bus.

The general expression given by Shubnikov & Koptsik (1974) for the
symmetrizer M is

M = Gdg2 U Gd93 U ...Gd9j, (C.2.6)

where {92,93, -"9j} are the representative elements of an appropriate system
of cosets. For more details the book by Shubnikov & Koptsik (1974) should
be consulted, as also a paper by Vlachavas (1986).
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Further generalizations and modifications of the Curie principle have
been made by a number of workers. One such modification attempts to
remove the restriction that the superimposed phenomena or fields are of
the non-interacting type (in the sense that formation of the composite sys-
tem does not alter the inherent symmetries of the individual components)
(Shubnikov & Koptsik 1974; Koptsik 1983).

Another generalization extends the domain of validity of the principle
even to dynamical effects like infrared absorption and the Raman effect
(Brandmuller 1986).

An extension to magnetic groups, as well as to the Curie limiting gro-
ups, is also discussed by Brandmuller (1986).

Rosen (1995) discusses the following: the equivalence principle; the
symmetry principle; the equivalence principle for processes; the symmetry
principle for processes; the general symmetry evolution principle; and the
special symmetry evolution principle.

C.3 LATENT SYMMETRY
The universe is full of magical things patiently waiting for our
wits to grow sharper.

Eden Phillpotts

In Fig. C.2.1(a), for any value of 9 between 0 and TT (0 < 0 < TT),
the symmetry group of the isosceles triangle is my. This is true even when
6 = 7T/2. However, for 6 = ?r/2 the composite figure obtained by combining
two such triangles is not a rhombus, but a square. The symmetry group
(Gs) of a square is 4mm, a group of order 8, and not 4 (as for the group
mm for the rhombus). Thus, when 9 = Tr/2, it is not sufficient to choose
the symmetrizer defined by Eq. C.2.3. Two additional symmetrizers must
be chosen to construct the group 4mm from the intersection group Gd
(Wadhawan 1987a).

Fig. C.3.1 shows a plot of the order n of the group Gs as a function of
9. We see singular behaviour at 9 = ?r/2. This happens in spite of the fact
that the point-group symmetry of the triangle is the same (G\ = my) for all
values of 9 between 0 and TT. It is as if the isosceles triangle with 9 = Tr/2
has, in addition to its explicit symmetry my, a certain latent symmetry
which manifests itself only when two such triangles are brought together to
form a composite figure, namely the square. Conventional group theory is
not adequate for taking account of this.1

1The act of choosing two additional symmetrizers for obtaining the symmetry group
4mm as an extended group from my is an act of hindsight. We already know the
final answer, and therefore go looking for a rationalization of the additional symmetry
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Figure C.3.1: Variation of the order of the extended group Gs with the
angle 6 of the isosceles triangle drawn in Fig. C.2.1(a).

It is conceivable that latent symmetry, which we have illustrated here
with only a geometrical example, may also be important when certain fields
are superimposed in the physical world.
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enhancement occurring for a specific value of 0, namely ?r/2. The isosceles triangle has
only the symmetry my even when 6 = Tr/2. It is when we divide it into two parts (by the
mirror line my) that we find that each part now has a symmetry mxy (but each part now
does not have the original symmetry my of the entire triangle !). The operator m2y, of
course, is one of the many symmetrizers one can choose for explaining the symmetry of
the square. Group theory does not forewarn us about the latent symmetry which comes
out into the open only for the composite object.
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Appendix D

THE FOURIER
TRANSFORM

Two functions F(r) and F(k) are said to be Fourier transforms of each
other if

F(r) = f F(k)exp(zr.k)dk, (D.O.I)
J-oo

and

*W = T^W r FW ^p(-ir.k)dr (D.0.2)
V^TT; 7-oo

If r denotes vectors in real space, then k corresponds to vectors in
reciprocal space.

Of special interest is the situation where F(k) = 1 in Eq. D.O.I. For
simplicity, we consider the problem in one dimension by replacing r by x
and k by k:

/

oo
exp(ikx) dk (D.0.3)

-oo

This is a divergent integral. We therefore evaluate it first over a finite
interval (—g, g), and then take the limit q —* oo:

F(x) = lim Fq(x), (D.0.4)
q—KX>

where

^ / N fq / , x „ exv(iqx) — exp(—iqx) siuqx ,_ ^ ^ NFq(x) = I exp(ikx)dk = ^ * ' .—HV ^ ' = 2—— (D.0.5)
J-q ™ X

We define at this stage the Dirac delta function, 6(x), as follows: If we
have any continuous, differentiate, function f ( x ) , the Dirac delta function

613
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is that for which

/ f(x')8(x')dx' = /(O) (D.0.6)
«/—00

Let us now consider the integral

/ = lim f /Or) ̂ ^ dx, (D.0.7)
<?-»oo 7_e X

where (—e,e) is a vanishingly small interval around the origin. Over this
small interval, /(#) can be replaced by the constant value /(O).

We introduce a change of variable, qx = y, so that x = y/q and dx/x =
dy/y. Then

/ = /(O) lim r *^-dy = -2/(0) [°° ̂  dy (D.0.8)
Q-^ooJ_eq y Jo y

By contour integration, the integral on the right-hand side can be evaluated
as 7T/2, so that

/ = 7r/(0) (D.0.9)

Thus, up to the constant TT, the function (sin qx/x) in Eq. D.0.7 satisfies
the definition of the Dirac delta function (Eq. D.0.6). Therefore, Eqs.
D.0.3-5 can be combined to yield the following result:

-!- / exp(ifcx)dfc = 6(x) (D.0.10)
27r J-oo

Thus the Fourier transform of a constant is a delta function. Conversely,
the Fourier transform of a delta function is a constant.

Next we consider the Fourier transform of the exponential function
e~cx, where c is a positive constant.

We begin by noting that the Fourier transform of this function cannot
be defined because e~cx = oo for x = —oo (cf. Eq. D.0.2). But we can
define the Fourier transform of e~c'x':

1 r°°
F(k) = — / e~c^+ikxdx (D.0.11)

27r /-oo

Since |x| = x for x > 0, and |x| = — x for x < 0, we can write

2TtF(k) = I e~cx+ikxdx + f ecx+ikx dx (D.0.12)
JO 7-00

We introduce a change of variable, x = —y, for the second integral:

27rF(fc) = / e~cx+ikxdx + f e~cy~iky dy (D.0.13)
Jo Jo
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On carrying out these integrations we get

p-cx+ikx °° p-cy-iky °°

27rF(A:) = - — (D.0.14)v ' -c + ik 0 c-f ik 0
 v '

Since eTcx+lkx = e~cx(coskx + ismfcr), and a sine or cosine function
cannot have a magnitude exceeding unity, the total term is equal to zero
for x = oo. Therefore,

27rF(A:) = —!— + —l— = -y^-j, (D.0.15)c — ik c + ik c2 + k2

or
F^ = ̂ P) (D-°-16)

Such a function is called a Lorentzian. Thus the Fourier transform of
the function e~c'x' is a Lorentzian.

The Fourier transform of the function e~cr/r is of interest in statistical
mechanics:

-I /»00 /»7T /»27T -cr

f(k) = —— \ \ \ -—ei^rr2drsmeded(f) (D.0.17)
(27r)3 Jr=0 Je=0 J^Q r

We can choose the polar axis of coordinates along k. Then

OTT r°° \_~ikrcosOYm = to* / e~crrdr Hfo— ' (D-°-i8)
(Z7T) JQ I IKT J Q

which simplifies to

/(*) = '(^kj^dr\e~r{C~ik} ~ e-ir(c+ik\ (D.0.19)

or

^ = ^TP) (D.O-20)

We redefine the constant c as follows:

^ = 1/c = Vci/c2 (D.0.21)

[In §5.5.2, ^ is identified with the order parameter correlation length.] Then

-cr p-r/t
-— = , (D.0.22)r r

and its Fourier transform is

^ = 27r2(c;;cifc2) (D-°-23)
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The Convolution Theorem

If we have two functions B(r) and L(r) in real space, their convolution C(r)
is defined as

C(r) = B(T) * L(r) = L(r) * B(r) = t B(r - r')£(r')dr' (D.0.24)

Let us compute the Fourier transform of the convolution function C(r):

f00 C(r)e~ir-kdr = f°° f°° B(r - r') L(r')e-ir* dr'dr
J — oo «/ — oo «/ — oo

= f°° dr'L(r')e-ir'-k f°° B(r - r') c-<<r-*'>.k dr = L(k)B(k)
«/ — 00 J— 00

(D.0.25)
where L(k) is the Fourier transform of L(r), and B(k) is the Fourier trans-
form of B(r).

Similarly, if we compute the Fourier transform of the product B(r)L(r),
we get

/

oo /»oo

B(r)L(r)e-ir-kdr = / B(r')L(r')e-iT'-k dr'
-00 J —00

= /" B(r') / L(k')eir'-k'dk'e-ir'kdr'
J—oo J — oo

= r L(k') r £(r')eir'-(k'-k)dr'<flc'
J—oo J — oo

= f°° L(k')B(k - k') dk' = B(k) * L(k) (D.0.26)
«/—oo

Eqs. D.0.25 and D.0.26 represent a general result known as the convo-
lution theorem:

If two functions are convoluted in one space, the result in the other
space is the product of their respective Fourier transforms.

The convolution of a function B(r) with a delta function <5(r — TO) is

B(r) * 6(r - r0) = / B(r')8(r - r' - r0)dr' = B(r - r0) (D.0.27)
J — 00

The result is thus the same function, but with the origin shifted to FQ.
Convolution can thus be used as a mathematical device for reproducing a
function at one or more positions. A diffraction grating provides a simple
example of this. It can be regarded as the convolution of one of its elements
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(corresponding to B(r) in Eq. D.0.24) with a function repeating the ideal
point grating (a set of equally spaced points). The convolution function
C(r) in Eq. D.0.24 corresponds to repeating the grating element at each
of the equally spaced points of the function I/(r). The result is a set of
equally spaced elements. Similarly, the diffraction pattern of the grating
can be regarded as the product of two functions, namely the diffraction
pattern of a single element and the diffraction pattern of the set of equally
spaced ideal points.
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Appendix E

THERMODYNAMICS
AND STATISTICAL
MECHANICS

In this Appendix we summarize some relevant concepts, definitions, and
results of thermodynamics and statistical mechanics.

E.I THERMODYNAMICS
The Moving Finger writes; and, having writ,
Moves on: nor all thy Piety nor Wit
Shall lure it back to cancel half a line,
Nor all thy Tears Wash out a Word of it.

Omar Khayyam

(Translated by Edward Fitzgerald)

Thermodynamics aims at describing the bulk behaviour of macroscopic
systems in terms of only a few measurable thermodynamic parameters. In
the case of a gas or a liquid, for example, such parameters are pressure p,
volume V, and temperature T.

If these parameters are independent of time, the system is said to be
in a steady state.

If, in addition, there is no macroscopic flow of heat or particles through
the system, it is said to be in equilibrium.

A state function is any property which, in equilibrium, depends only on
the thermodynamic parameters, rather than on the history of the system.

619
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State parameters may be either extensive or intensive. The former (like
internal energy or entropy) are proportional to the size of the system, and
the latter (like pressure and temperature) are independent of the size of the
system.

The state functions of a system are not entirely independent of one
another. They are connected by equations of state. The Boyle's law for
an ideal gas is an example of an equation of state connecting p, V and
T. Similarly the Curie law is an equation of state for a paramagnetic
crystal connecting magnetic field H, magnetization M per unit volume,
and temperature:

C1 J-f
M-^jr = 0, (E.1.1)

where C is the Curie constant.
The first law of thermodynamics expresses the conservation of energy,

and also takes note of two types of energy, namely heat energy E and work
energy W:

dU = dQ - dW (E.I.2)

Here dQ is the amount of heat energy added to the system, and dW the
amount of work done by the system. The law states that their difference
must appear completely as the change of the internal energy of the system.

A change in the state functions of a system comprises a thermodynamic
process.

Such a process is a quasistatic process if it occurs infinitely slowly, and
is thus close to equilibrium at all times.

It is a reversible process if it is quasistatic and its path in thermody-
namic space can be reversed exactly. Otherwise it is an irreversible process.

If no heat is exchanged with the surroundings, i.e. if dQ = 0, the
process is said to be an adiabatic process.

Entropy S is introduced as an extensive state parameter through the
second law of thermodynamics. The law states that if heat dQ is added to
a system at temperature T, then

dQ < TdS, (E.I.3)

where the equality sign can apply only for a reversible process.
Real-life processes are irreversible.

E.1.1 Thermodynamic Potentials
A variety of thermodynamic potentials can be defined. The term 'potential'
is used by analogy with potential energy in mechanics, which is a measure
of the work obtainable from a system. For example, for an adiabatic process
(dQ = 0), internal energy [7(5, V) plays the role of a potential: the decrease
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of internal energy is equal to the maximum amount of work obtainable
through an adiabatic process, the maximum corresponding to reversible
processes. This can be shown as follows.

We first write Eq. E.I.2 for a reversible process:

At/ = (AQ)reu - (&W)rev (E.1.4)

If the process is adiabatic (AQ — 0) but not reversible, we have (since
AC/ is a perfect differential)

AC/ - - (AW)irrcv (E.1.5)

Eliminating AC/ from Eqs. E.1.4 and E.1.5, and using Eq. E.I.3, we
get

(MV)rev - (&W}irrev = JTdS > 0 (E.1.6)

Thus the decrease in internal energy corresponds to the maximum value
of &W obtainable through an adiabatic process; this maximum occurs when
the process is reversible. In this sense U (per unit volume) plays the role
of a 'potential'.

Other thermodynamic potentials are defined for other modes of ex-
tracting work from a system. Before describing these, we first generalize
our description to include the possibility of a change in the number of par-
ticles of the system.

For a reversible process Eqs. E.I.3 and E.I.2 yield

dU = TdS - pdV (E.1.7)

Each of the terms in this equation has dimensions of energy or work, and
the last term corresponds to mechanical work, namely the work that the
system does on expansion at constant pressure. If electric field, magnetic
field, and/or uniaxial stress are also present, additional work terms must
be included. Thus, in general:

dU = TdS + Xidxi, (E.1.8)

where X is a generalized force, and x the generalized displacement conjugate
to it.

Similarly, if the system has Nj molecules of type j, and this number
can vary,

dU(S, { x j } , {Nj}) = TdS + XidXi + ftdNj (E.1.9)

Here ft is the chemical potential, defined by

Hi = dU/dNj (E.1.10)
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An often-used thermodynamic potential is the Helmholtz potential (or
the Helmholtz free energy per unit volume), A. It is defined as

A = U - TS (E.I.11)

It is a state function, and dA is a perfect differential:

dA = dU - TdS - SdT, (E.1.12)

which, on using Eq. E.I.9, becomes

dA = -SdT + XidXi + /xj dNj (E.I.13)

We have seen above that U plays the role of a potential for extracting
work out of the system by an adiabatic process. Similarly A plays the role
of a potential for extracting work through an isothermal (dT = 0) process.
This can be proved as follows:

Substituting Eq. E.1.2 in E.1.12,

dA = dQ - dW - TdS - SdT (E.I.14)

If the process is reversible (dQ — TdS) and isothermal (dT = 0), this
becomes

-dA = (dW)rev (E.1.15)

If the process is irreversible (and isothermal), the second law of thermody-
namics tells us that dQ — TdS < 0, and therefore

-dA > (dW)irrev (E.1.16)

In either case — dA is the maximum amount of work that can be extracted
from the system at constant temperature.

Gibbs potential (or Gibbs free-energy density), G, is another important
thermodynamic potential. When the only 'force' present is hydrostatic
pressure, it is defined as

G = U - TS + pV = A + pV (E.1.17)

It is a state function, and in differential form

dG = dU - TdS - SdT + pdV + Vdp (E.1.18)

On using the first and the second law,

dG = (dQ-TdS) - (dW -pdV} + Vdp - SdT (E.1.19)
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If the process is reversible (dQ = Tc?5), isobaric (dp = 0), and isother-
mal (dT = 0),

-dG = dW - pdV (E.1.20)

Thus — dG is a measure of the maximum work that can be extracted
from the system at constant pressure and temperature.

A spontaneous process is one that occurs by itself, without any change
in the external fields applied on the system. We note from Eq. E.I. 19 that if
for such a process pressure and temperature are constant and dW — pdV =
0, and dQ — TdS<Q, then G can only decrease. The system tends towards
a configuration whereby G is minimized.

In the context of ferroic materials it is relevant to define a generalized
Gibbs potential, for which the pV term is often omitted, and terms corre-
sponding to electric, magnetic, and non-hydrostatic stress contributions are
included (cf. Eq. 6.2.1):

G = U - TS - EiDi - HiBi - a^e^ (E.1.21)

E.I.2 Homogeneous Functions
A function f ( x ) is a homogeneous function of degree k if, for an arbitrary
scale factor b

f(bx) = l/fr) (E.1.22)

Consider one of the thermodynamic potentials, e.g. internal energy U.
It is a function of extensive parameters £, V, and N. Let the functional
relationship be of the form

U = /(S,V,AT) (E.1.23)

Suppose the size of the system increases by a factor 6. Then

bU = f(bS, 6V, bN) (E.1.24)

Thus, although the internal energy increases by a factor 6, the functional
relationship, /, is not affected, and U is a homogeneous function of 5, V,
and N of degree -1.

Eq. E.1.24 is true for any value of 6, and therefore also for b = V~l.
Therefore

U = Vf(S/V,N/V) (E.1.25)

It can be shown similarly that other thermodynamic potentials also have
a trivial dependence on one of the extensive parameters. This leads to the
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introduction of thermodynamic-potentid densities; e.g.

« = S (E.1.26)
9V S,N

Other examples are discussed by Chaikin & Lubensky (1995).

E.2 EQUILIBRIUM STATISTICAL
MECHANICS

There is something fascinating about science. One gets such
wholesale returns of conjecture out of such a trifling investment
of fact.

Mark Twain

Critical phenomena (cf. §5.5) occurring in the vicinity of ferroic and
other phase transitions involve interaction among a large number of parti-
cles, and therefore statistical mechanics is the appropriate theoretical ap-
paratus for dealing with them. Concepts from statistical mechanics are
also invoked when one deals with response functions and susceptibilities of
materials.

E.2.1 Microcanonical Ensemble
An adequate description of the motion of particles of a system with, say,
N particles and 5 degrees of freedom is provided by Hamilton's equations
of motion in terms of generalized coordinates ^i,^2)--9s and the conju-
gate generalized momenta Pi,p2, --Ps- Together these 2s parameters define
a phase space, such that any specific microscopic state of the assembly
of particles is represented by a phase point or representative point in this
space. As the system evolves with time, this point traces a phase line or
phase trajectory. In accordance with the requirements of causality, each
representative phase point develops out of the phase point preceding it in
time.

Because of the large number of particles involved, it is neither practical
nor particularly useful to solve the large number of equations of motion. It
would be much better to relate the microscopic parameters to a few macro-
scopic or average parameters which can be determined experimentally. This
was achieved by Gibbs by introducing the notion of the ensemble.

Gibbs replaced the time-dependent phase line by a fictitious and com-
plete phase line existing at one particular time. Each point on the latter
corresponds to a separate system with the same macroscopic parameters
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like energy E, volume V, and number of particles AT, but different possible
microscopic states. And all such points are accorded equal weight, implying
that all microscopic states with the same macroscopic parameters (E, V, N)
are equally probable. This imagined collection of similar, noninteracting,
systems, all existing at the same time, is referred to as the Gibbs ensemble.
Members of the ensemble, all of which correspond to the same TV, V and
E, are called elements of the ensemble.

In the Gibbs formalism, calculation of macroscopic properties is carried
out under the assumption that the time average of a property at equilibrium
is the same as the ensemble average, which is the instantaneous average over
the entire statistical ensemble. This assumption is known as the ergodicity
hypothesis. In other words, we assume that all microscopic states of the
system (for a constant energy) are equally probable and accessible.

Since all accessible microscopic states are included, the number of el-
ements in phase space is extremely large, and therefore can be taken as
changing continuously from one region of phase space to a neighbouring
region. An ensemble can therefore be characterized by a distribution func-
tion, D, which defines the number density with which the phase points are
distributed in phase space.

The ensemble average of a quantity R(q, p) is defined as

R = ±j jR(q,p)D(q,p,t)d£, (E.2.1)

where M is the total (and very large) number of phase points:

M = f DdT (E.2.2)

One can define a (normalized) density function or probability density,
P, as

p = D/M, (E.2.3)

in terms of which the ensemble average of R is

R = f RpdT (E.2 A)

For a conservative system the energy E is a constant of motion:

E(qi,Q2,-qN,Pi,P2,-PN) = constant (E.2.5)

Therefore in the 2JV-dimensional phase space it defines a (2N— l)-dimensional
hyperspace called the energy surface or the ergodic surface.
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Consider an ensemble described by the ergodic surface defined by Eq.
E.2.5. Such an ensemble satisfies the following condition for statistical
equilibrium for any density function which is a function of E alone:

(tl - » ^
The simplest possible choice is:

p(E) = constant x 6(E - EQ) (E.2.7)

The ensemble described by such a density function is called the microcanon-
ical ensemble.

There is always an uncertainty A£" in the specification of the energy.
Therefore, rather than an ergodic surface, there is really an ergodic shell
bounded by surfaces corresponding to energies E and E + &E. The density
function is constant inside the ergodic shell, and zero outside it, and the
distribution of phase points in the shell is uniform.

The connection between the microscopic ensemble and thermodynam-
ics is provided by entropy. Let the volume occupied by the microscopic
ensemble in phase space be denoted by T(E):

T(£) = / p(q,p)dqsdps, (E.2.8)
JE<n(q,p)<E+A

where p = 1 inside the ergodic shell, and zero outside it.
If we denote the volume occupied by the ergodic surface of energy E

by Sl(E), then

T(E) = Q(£ + A) - Sl(E) = #(£)A, (E.2.9)

where the density of states, g(E)^ is defined by

g(E) = dSl(E)/8E (E.2.10)

The statistical-mechanical entropy is defined as

S(E,V) = A;Blnr(E) (E.2.11)

It can be demonstrated that this entropy is the same as thermodynamic
entropy, and fc# can be identified with the Boltzmann constant.

The fact that the thermodynamic entropy is related to F(£?), and thence
to the number of microscopic states accessible to the system in equilibrium,
is known as the Boltzmann principle.

A changeover from classical considerations to quantum statistical me-
chanics amounts to taking note of the fact that the product AgAp cannot
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be less than a value of the order of the Planck's constant h. The phase
space is then imagined as divided into elementary cells of volume hN.

The assertion that each accessible microscopic state is equally prob-
able ("principle of equal probability") enables us to deal with composite
systems. Consider two systems (Ni,Vi,Ei) and (A^, V^E^). When they
are isolated from each other and from other systems, the volumes occupied
by their microscopic ensembles in their respective phase spaces are TI(EI)
and T<z(E<2). Now suppose they are brought in thermal contact to consti-
tute a single, isolated, composite system in equilibrium. The total energy is
consequently Ei+E<2. For this composite system the microscopic ensemble
is described by the density function

pi2(£) = constant for EI + E2 < E < EI + E2 + 2A;

= 0 otherwise (E.2.12)

The phase space volume occupied by the composite system is the prod-
uct

ri2(£i,£2) = Tl(El)r2(E2) (E.2.13)

E.2.2 Canonical Ensemble
The microcanonical ensemble provides a suitable description for an isolated
system, which does not exchange energy or number of particles with the
surroundings. In the context of phase transitions it is more appropriate to
use the canonical ensemble, wherein the system can vary its temperature
by exchange of energy with a (much larger) heat bath, or heat reservoir.

The system of interest and the reservoir with which it is in thermal
equilibrium can be together viewed as an isolated, constant-energy, system
describable as a microcanonical ensemble.

Let Nr and Nt be the number of particles in the reservoir and the
system of interest respectively; Nr » Nt. The total energy (E = Er + Et)
is assumed to lie within a shell defined by the ergodic surfaces corresponding
to energies E and E + 2A.

Let Tr(Er) be the volume occupied by the reservoir in its own phase
space. The probability of finding the system of interest in a state within
dptdqt of the point (pt,qt) in phase space, irrespective of the state the
reservoir is in, is proportional to dptdqtTr(Er). Since Er = E — Et, the
density function in the F space for the system of interest is

p(pt,qt) oc Tr(E-Et) (E.2.14)

We now make use of Eq. E.2.11 for the present problem to obtain

kB \nTr(E-Et) = Sr(E-Et) (E.2.15)
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If the fluctuations in energy are not too strong, one can write

Sr(E-Et) = Sr(E) - Et ^JLi + ... ~ Sr(E) - §, (E.2.16)
Ohr Er=E 1

where T can be identified with the temperature of the reservoir. Eq. E.2.15
can thus be written as

Tr(E-Et) = es^E-E*VkB = eSr(E}/kB e-Et/(kBT) (E.2.17)

The first factor on the right-hand side can be treated as constant because
the heat reservoir is much larger than the system of interest.

Substituting Eq. E.2.17 in E.2.14,

p(pt,qt) = Ce-E*/k°T, (E.2.18)

where C is a constant to be determined through normalization.
The energy of the system can be expressed in terms of the Hamiltonian

Ht(pt,qt)- We can also drop the subscript T to obtain, finally,

p(p,q) = Ce-H^tk*T = Ce-Wto*), (E.2.19)

where /? = l/(kBT).
The factor e~~^n is called the Boltzmann factor.
In the above definition of the density function of a system in equilibrium

with a large heat reservoir, the presence of the latter is felt only through
the temperature T. The ensemble defined by the density function given by
Eq. E.2.19 is called the canonical ensemble.

E.2.3 Partition Function
The volume occupied by an ensemble in phase space is called the partition
function of the ensemble, and is usually denoted by Z(N, V, T):

Z(N,V,T) = j^ fe-PH^dspdsq (E.2.20)

The factor hs is introduced to make the partition function a dimensionless
quantity. And the factor N\ is necessary for "correct Boltzman counting"
(see, e.g., Plischke & Bergersen (1994), p. 33, for a discussion of these two
factors).

Since the constant C in Eq. E.2.19 is determined by equating the
integral of the density function to unity, the density function can be written
finally as

p(N,V,T) = e-W&ti/zWMT) (E.2.21)
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All thermodynamics functions of the system can be determined once
the following equation is established:

Z(N,V,T) = e-A(v>T\ (E.2.22)

where A = U — TS is the Helmholtz free energy.
The ensemble average of a macroscopic quantity B (having a discrete

set of states labelled by 5) in the canonical ensemble is thus given by

Y Bp Y Be-PH

<B> = ̂ i = re-*" (E'2'23)
L^is " JLis c

E.2.4 Quantum Statistical Mechanics
In quantum mechanics observables are associated with Hermitian operators
operating on a suitable Hilbert space (cf. §B.2), and a state of a system is a
vector |-0 > in the same space. The wave function can be written as a linear
superposition of a complete set of orthonormal stationary wave functions
fan}:

^ = ]>>„<£„, (E.2.24)
n

with < 4>j\(/>k >= 8jk- Here n stands collectively for a set of quantum
numbers, and |an|

2 is the probability that the system exists in a state with
quantum numbers n.

The average of a large number of measurements of a macroscopic ob-
servable .R is given by

^ P ^ ^'^) SmEn(an,am)(0n,fl0m) ,p o o,x<R>= = , (b.2.25)
W>»^) En( f ln»an)

where (an,am) is the time average of the scalar product (an,am).
We consider a system which, although not completely isolated, inter-

acts with the surroundings so weakly that its energy is nearly constant.
We can choose the set {0n} such that its members are eigenstates of the
Hamiltonian H of the system:

H(t>n = En<l>n (E.2.26)

In quantum statistical mechanics we make the "equal probability" pos-
tulate stated above and the "random phase" postulate, as a result of which
we have (an, am) = 6nrn for E < En < E 4- A, and zero for energy values
outside this interval. The total wavefunction (Eq. E.2.24) can therefore be
written as

V> = £M"' (E.2.27)
n
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where |6n|
2 = 1 for E < En < E + A, and |6n|

2 = 0 for energy outside this
interval.

The result of measuring /? is therefore expected to be

. p , £JM2(<ftn,fl<ftn) ,p 9 9RN<H>= (b.2.28)
2^n l°nl

We next consider the question of the representation of an operator R.
This is done by defining its matrix elements with respect to a complete set
of eigenstates. For this, one introduces the so-called density matrix, which
is defined keeping in mind the fact that only the square-moduli |frn|2 appear
in the definition of < R > in Eq. E.2.28:

Pmn = (4>n,P0m) = «mn|6n|2 (E.2.29)

The density operator p operates on state vectors in Hilbert space, and can
be represented as

p = £l0n> N2 <^l (E-2-3°)
n

Eq. E.2.8 can be rewritten in terms of the density matrix as follows:

^ p , Sn(0n,J*P0n) Tr(R p)< H> = ^ , ——-T- = —— (b.2.61)
isn(<Pn,P<l>n) Trp

Here Tr stands for "trace". Since the trace of a matrix is not altered by a
similarity transformation, the merit of Eq. E.2.31 is that it is independent
of the choice of representation for the operator R.

For the microscopic ensemble the density matrix is

Pmn = 8mn\bn\2, (E.2.32)

where the |6n|
2 have constant nonzero values if the energy eigenvalues lie

between E and E + A; and zero otherwise.
For the canonical ensemble the density matrix is

Pmn = Smne-*13*, (E.2.33)

and the density operator is

p = Y,\^>e~0B" <*»\ = e-^^ltnXtnl = e-W, (E.2.34)
n n

where we have made use of the completeness property of eigenstates.
The partition function (cf. Eq. E.2.20) is given by

Z(N,V,T) = Trp = JV^*, (E.2.35)
n
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where we have replaced the phase-space integration in Eq. E.2.20 by a
summation over the states of the system:

^ I'dpdq -»£ (E.2.36)

We can finally write the ensemble average of R in the canonical ensemble
as

<R>= W^ (E.2.37)
£

E.2.5 Fluctuations
The properties of a system fluctuate about their mean values. The same is
therefore true about the elements of an ensemble.

Let Pi be the probability or density function of finding a system in the
state i, and Mi the value of some property of interest when the system is
in that state. Obviously, ^-P* = 1- The mean value of the property is
defined as

M = ^PiMi (E.2.38)
i

A measure of the fluctuations is provided by the mean-square deviation:

(6M)2 = (M - M)2 = ^Pi(Mi-M)2

i

= ^PiM? -2M]TPiMi + M2 = M^-M2 (E.2.39)

The square root of this is the standard deviation, AM.
In statistical mechanics the averages M2 and M2 in Eq. E.2.39 are

obtained as ensemble averages. We illustrate this for the case of energy
fluctuations in the canonical ensemble, for which the probability P is given
by the density function defined by Eq. E.2.21, and the partition function
can be written as

Z = XX^ (E.2.40)
i

The mean energy is

<E>=EPlEl = ̂ f^,.^m (E.2.41)
i

Similarly,

< E2 > = ^PiEf = d*ZIW* (E.2.42)
i
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From Eq. E.2.41,

9<E> _ ±&Z _ J_ (dZ\*
a/3 ~ zdp z* \dp) ' ( '

which on using Eqs. E.2.41, 42 and 39 becomes

-a<
af

 > =<E2>-<E>2 = < (6E)2 > (E.2.44)
op

The left-hand side of this equation is related to specific heat at constant
volume:

_ (d<E>\ fd<E>\ 0/3 (d<E>\ 2Cv - \-^f-)v = (—di3-)v&f = (-dir-)v
(-kBP]

= kBf < (6E)* > = < V£g > (E.2.45)

Energy fluctuations can be defined as AE/ < E >:

A£ _ (<(6E)*>)^ (fcaT2^)1/2

^~B^ = T^ ~ ^E^ (K2'4bj

This relation connects Cv, a response function (cf. Eq. E.3.39 below),
with the mean-square fluctuation of the energy function, and is an example
of a general theorem called the fluctuation dissipation theorem (cf. §E.3).

Both Cv and < E >, being extensive parameters, scale as N. Therefore
the energy fluctuations scale as (I/AT)1/2. If N is of the order of the Avo-
gadro number, the fluctuations in the energy, occurring because the system
described by the canonical ensemble is in contact with a heat reservoir, are
normally very small, and then there is hardly any difference between the
canonical and the microcanonical ensembles.

E.2.6 Correlation Functions
Intrinsic or spontaneous fluctuations exist even when a system is at equi-
librium. Because of these fluctuations one employs statistical or ensemble
averages for defining any correlation between the value of a property at
a point r at time t and the value of the same or a different property at
another point rx at a later time t'. A variety of correlation functions can
be defined.

In the context of phase transitions in ferroic materials we are interested
in the correlation functions connected with the order parameter. Let m(r)
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denote its density. The macroscopic order parameter associated with a
ferroic phase transition is then the ensemble average M:

M = / fm(r)df\ (E.2.47)

A measure of the correlation between ra(r) and ra(0) is provided by
the spatial order parameter-order parameter correlation function F(r):

T(r) = < m(r)m(0) > - < m(r) > < m(0) > (E.2.48)

If the system is homogeneous (i.e. invariant under translation), we have
< ra(r) >=< m(0) >, and Eq. E.2.47 becomes

T(r) = < ra(r)m(0) > - < m(0) >2 (E.2.49)

We denote the Fourier transform of ra(r) by m(k), and of F(r) by
F(k). As shown in Appendix D, the Fourier transform of a constant is a
delta function. Therefore, taking the Fourier transform of both sides in Eq.
E.2.49,

F(k) = < m(k)m(0) > - < m(0) >2 (27r)3<5(k) (E.2.50)

By definition, the order parameter is zero for temperatures above the
critical temperature:

< m(0) > = 0, T > Tc (E.2.51)

We also have, by definition,

m(r) = (2^)3 / ™(k) **" *, (E.2.52)

so that

m(0) = JL|m(k)dk (E.2.53)

We note further that for two wavevectors k and k',

< m(k)m(k') > = (27r)3 <5(k + k') |m(k)|2 (E.2.54)

Substituting Eqs. E.2.51, 53 and 54 into E.2.50 we obtain

T(k) = < |m(k)|2 > (E.2.55)
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E.3 NONEQUILIBRIUM STATISTICAL
MECHANICS

E.3.1 Linear Response Theory
We now consider time-dependent phenomena in systems that are not at
equilibrium, but close to equilibrium. For such systems linear response
theory (LRT) is applicable.

For probing a system with a typical spectroscopic technique, we may
either subject it to some force, and study its response, or we may keep the
force 'on' for a long time and then remove it to study its relaxation to a
state of equilibrium. In the LRT we assume that the disturbance caused
to the system by the probing force is negligibly small, so that first-order
perturbation theory is applicable for interpreting the spectroscopic data.

LRT provides the necessary link between experiment and correlation
functions. This link can be worked out by applying the techniques of sta-
tistical mechanics to nonequilibrium systems. Of special importance in this
connection is the fluctuation dissipation theorem (see below).

E.3.2 Time Correlation Functions
The discussion here, and in the following sections, follows the work of Kubo
et al. (1985).

A time correlation function between dynamical variables A (£0) and
B(to +1) is defined as the ensemble average

CAB(t) = < Afa) B(t0 + t)> (E.3.1)

It is independent of to for stationary processes. (A stationary process is
one which occurs under stationary conditions like constant temperature,
pressure, electric field, etc.)

A special case of the above function is the following autocorrelation
function:

CAA = < A(t0) A(tQ + t)> (E.3.2)

This function is a measure of the time (the correlation time) over which the
variable A retains its own memory till it is wiped out by fluctuations.

To gain a somewhat deeper understanding of time correlation functions,
we begin with the equation of motion of a particle, as specified by Newton's
second law:

ra^ = F (E.3.3)
OJL

Here F stands for the total force experienced by the particle.
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A common example of the motion of a particle manifesting fluctua-
tions is that of Brownian motion. For this case the force has two types of
contributions:

F = -771711 + R(t) (E.3.4)

The first term, proportional to the velocity u of the particle, represents
the fnotional force, with 7717 as the frictional coefficient. The second term
stands for the random force, arising because of the random collisions of the
molecules of the liquid with the particle under observation. Therefore the
equation of motion is

m -^ = -77*711 + R(£) (E.3.5)
QJL

An equation of motion like this, with a random-force component, is referred
to as a Langevin equation (Coffey, Kalmykov &; Waldron 1996).

For dealing with real-life situations it is necessary to generalize this
equation in at least two ways. One is the introduction of a possible external
force X(t). The other is to abandon the assumption that the friction is
determined only by the instantaneous velocity of the Brownian particle,
and to recognize its dependence on velocities at all times previous to t.
The generalized Lagevin equation then reads

M> = -/' 1((-<>«')<«'+ 5«+^ (E.3.6)
at 7-oo m m

The external force can be an arbitrary function of time, as well as a
combination of various forces. The essence of the LRT is the assumption
that the external force disturbs the equilibrium of the system only slightly.
This assumption has two consequences: The effect is linearly related to the
cause, and the various causes (as also the corresponding effects) can be
summed by linear superposition.

In particular, X(£) can be expressed as a Fourier series, and the ef-
fects of the various harmonics can be summed by linear superposition. It
is therefore sufficient to consider the effect of any one of the Fourier com-
ponents, in particular the fundamental component, and assume that X(£)
has the form

X(t) = X0 cos a;* = SR{X0e
ia;t} (E.3.7)

The average velocity produced by this force is

< u(*) > = »{/*M X0 e™*} (E.3.8)

Here //(u;) is the complex mobility, related to the frictional coefficient through

M(w) = — l—-, (E.3.9)PV ' m iu + 7(0;) v '
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where

7(u,) = f ^(t)e~iutdt (E.3.10)
Jo

Since analysis in terms of harmonic components is very common in
LRT, it is instructive to state a theorem in this context.

Let a stationary process z(t) be sampled over a time interval 0 < t < T.
We can write

00

z(t) = £ one*1*"*, (E.3.11)
n=—oo

where the frequencies of the harmonics are given by

vn = 27rn/T, n = 0,±l,±2,... (E.3.12)

The average strength of the amplitudes of the harmonics is defined in
terms of the mean-square averages of their real and imaginary parts:

< M2 > = < K|2 > + < |<|2 > (E.3.13)

The average intensity I(uj) observable for a frequency window Au; is

/(w)Aa; = 51 < M 2 > (E.3.14)
cJnEAu;

The interval between neighbouring frequencies is 2?r/T, so that there
are Au;/(27T/T) of them in the band Au;. Therefore the intensity spectrum
at any frequency w is given by

I(u) = lim £- < |am|2 > (E.3.15)
T—>-oo ZTT

This spectrum can be obtained in terms of the time correlation function
(/>(t) for the process z(t) by using the Wiener-Khintchine theorem (Wiener
1930; Khintchine 1934). The correlation function is

(j)(t) = < z(to) zfo + t)> (E.3.16)

And the theorem states that

JM = ±- I" 4(t)e-**dt (E.3.17)
*>K J-oo

E.3.3 Fluctuation Dissipation Theorem
Going back to the generalized Lagevin equation, Eq. E.3.5, we note that it
is a linear equation and thus can be subjected to harmonic analysis. One
of the results of such an analysis is the following (Kubo et al. 1985):

1 1 1 f°°
^) = m^T^)=^ryo <^oX*o + *)>e— dt (E.3.18)



E.3 Nonequilibrium Statistical Mechanics 637

It gives a general expression for the complex mobility in terms of the
Fourier-Laplace transform of the correlation function of velocity. It is an
instance of the fluctuation dissipation theorem of the first kind (cf. Kubo
et al. 1985). It states that the response function of a system to an external
influence is dictated by correlations between thermal fluctuations occurring
at different times in the system in the absence of the external influence. In
other words, the progress towards equilibrium of a macroscopic nonequilib-
rium system is decided by the same laws which determine the regression of
spontaneous microscopic fluctuations in an equilibrium state of the system.

The theorem relates equilibrium fluctuations to dissipation in the linear
regime. Several other examples or variations of this theorem are encoun-
tered in this book.

E.3.4 Response Function
Application of an electric or magnetic field to a material induces a response
in the form of induced electric or magnetic polarization. Similarly applica-
tion of mechanical stress induces a strain, and application of a temperature
gradient or a concentration gradient induces a flow of heat or mass. If the
fields applied are sufficiently small, the response is linearly related to the
field. If not, one must admit dependence on higher powers of the forces.

The term generalized force is appropriate when we do not wish to spec-
ify the nature of the force field.

Similarly the term generalized displacements can be applied to describe
the changes in the atomic positions, magnetic dipoles, or charge clouds that
occur on the application of a generalized force.

Generalized currents are the electric, thermal or other currents caused
by the generalized forces, and reflect the tendency of the system to change
from the initial equilibrium state to a new equilibrium state.

Let us denote by Xv(t) the generalized forces, and by B^(t] the gener-
alized displacements or currents. Then, within the domain of the LRT, the
following linear relations exist by a superposition of the various effects:

Br(t) - B? = J^L^-Mt) (E.3.19)
V

Here B^q = 5^(0), and L^ are the so-called kinetic coefficients.
This equation can be generalized or improved by recognizing that an

effect at any time t may be the result of all the relevant causes at all times
t1 < t. This is especially important for forces (causes) that vary so rapidly
that the displacements or currents (effects) lag behind them. Therefore we
must integrate over all the time-variations of the forces for times prior to
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the instant of observation of the effect:

Bp(t) - By = £>~-M*) + / dt' ̂ ^(t-O-MO (E-3.20)
i/ -7-00 v

Here the first term on the right-hand side denotes effects the delay in the
appearance of which can be neglected, so that they are practically "instan-
taneous" .

As a concrete example, let us consider a situation in which a pulsed
force of type a is applied at time t = t\ to a system which was in equilibrium
before the application of the force:

-MO = SvaS(t-ti) (E.3.21)

Substituting this in Eq. E.3.19 yields

J5M(t) - By = *~ S(t - ti) + *Ma(t - *i) 0(t - *i), (E.3.22)

where 0 is the Heavyside unit step function:

/

oo
dxf 8(x') = 1 for x > 0,

-CXD

= 0 for x < 0 (E.3.23)

The force pulse is centered around t = t\. The first term in Eq. E.3.22
corresponds to the 'instantaneous' (pulsed) response at t — t\. It is zero
for t > ti. Therefore

Bp(t)-By = *Ma(t-*i) for t>ti (E.3.24)

This equation provides a physical interpretation for the function 4>.
For t ^> ti the system will return once again to equilibrium. 3> is therefore
called the aftereffect function, or the response function (Kubo et al. 1985).

E.3.5 Relaxation
Let us consider a system which is under the action of an external force Xa
for such a long time that an equilibrium situation prevails. At time ti we
remove the force suddenly. That is,

Xv(t) = 6va for t<ti,

= 0 for t > ti (E.3.25)

To determine the effect of this action, we substitute Eq. E.3.25 into
E.3.20. We get

B^t) = B^ + x™a + Wia(O) for t<tlj (E.3.26)
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B^t) = B? + il>p*(t-ti) for t>ti, (E.3.27)

where

V>/*a(0 = / dt'$>^(t'} (E.3.28)
Jt

The last equation defines what is called the relaxation function: As
£ —> oo, Vv*W "* 0> and from Eq. E.3.27, SM(t) relaxes to the equilibrium
value B^q.

Eq. E.3.28 also defines the relationship between the relaxation function
and the response function, which can be re-expressed as

*„„(*) = -d^L (E.3.29)

E.3.6 Generalized Susceptibility
We consider next the response of the system to a force that is neither a
delta-function of time nor a 'down-step' function defined by Eq. E.3.25,
but a general function of time. Such a function can be written as a Fourier
integral:

Xv(t) = ^- r° Xv „*-***&*) (E.3.30)
^ J-oo

We assume that the LRT is applicable, so that the effects of the var-
ious harmonics can be combined by linear superposition. Therefore it is
sufficient to work with only a single harmonically varying force.

Eq. E.3.30 can be Fourier-inverted to yield

Xw = I X^t] eiu}t dt (E.3.31)
J — 00

Equations similar to E.3.30 and E.3.31 can also be written for the
generalized displacements or currents:

B» -By = ±- I" B^e-^<L>, (E.3.32)
•^7r ./-oo

BMiW = f [Bp(t)-By]<r*dt (E.3.33)
J — oo

In addition we rewrite Eq. D.0.10 of Appendix D in terms of the
changed notation:

6(x) = ^- t eiujxduj (E.3.34)
27T J

If we now substitute Eq. E.3.20 into E.3.33, and use E.3.30, we get the
Fourier transform of E.3.20:

BW = ^x^MX^, (E.3.35)
V
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where we have introduced the following complex function:

XM«>M = X%v + r^vWe^dt (E.3.36)
Jo

The linear relation expressed by Eq. E.3.35 makes us identify XA«/(<*>)
as the (complex) generalized susceptibility.

It is related to the response function $ through Eq. E.3.36.
And its relationship to the relaxation function ^ can be established by

substituting Eq. E.3.29 into E.3.36, integrating by parts, and using the fact
that VV"(* —> oo) = 0:

X^ = X£ + «*> r^(t)e^dt (E.3.37)
Jo

As a special case, it follows from this equation that

X^(0) = X£ + <MO) (E.3.38)

The static generalized susceptibility is thus a real function.
We also note from Eq. E.3.35 that in the zero-frequency limit,

,̂o = 5^ XM^ (0)^,o (E.3.39)
V

When only one type of generalized force, say //, is present (or domi-
nant), then, in the static limit, we can define the differential susceptibility:

op*• - ̂  (R3-4o)

We recall some familiar examples of generalized susceptibility:

Specific heat at constant volume:

*-(3)v"-(SX
Specific heat at constant pressure:

c - (d<2\ T(9S} fF^c ' - ( f f T ) p - T ( a f ) p
 (E'3'42)

Isothermal compressibility:

KT - 4 (f )T P"̂
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Adiabatic compressibility:

'. - 4 (f x
Finally, we indicate the important relationship between the static gen-

eralized susceptibility % and the order parameter autocorrelation function
r(r) (cf. Eq. E.2.49).

The canonical-ensemble average of a quantity B is given by Eq. E.2.23.
In the presence of a generalized force J£, with the corresponding generalized
displacement x, the Hamiltonian changes appropriately and the ensemble
average is given by

V* Be-Ku-Xx)
<B>= ̂  ,-/»(*-*.) (E-3-45)

L^is

We differentiate this equation with respect to X to obtain the general-
ized differential susceptibility:

* = d<xv > = P[<Bx>-<B><x>] (E.3.46)oX

To extract a familiar example from this we identify X with magnetic
field ft, and both B and x with magnetic moment M. Then x is magnetic
susceptibility, and we have shown here that

X = ~ = 13 (< M2 > - < M >2] (E.3.47)

This can be expressed in terms of the magnetic-moment density m(r) (cf.
Eq. E.2.47) as

x = j3V j dr (< m(r)m(0) > - < m(0) >2], (E.3.48)

which, on using the definition of the spatial autocorrelation function F(r)
(Eq. E.2.49) becomes

x = (3V (drT(r) (E.3.49)

This equation is one more example of the fluctuation dissipation the-
orem. It describes the response x °f the system to a perturbing field ft in
terms of the correlations among the spontaneous fluctuations of the system
existing when there is no perturbation present.
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NiFe2O4, 504
NiO, 489
NiTi, 457
ON Models, 166
PLZT8/65/35, 401
PLZT, viii, 389, 393, 455, 513-

515, 536, 550, 552, 557,
559

PMN, viii, 11, 389, 393, 396, 397,
399, 401, 407, 504, 532,
536, 557, 559, 561

PMN - PT, 561
PST, 389, 390, 398, 507
PSZ, 549
PVF2, 516
PZT, 142, 385, 507, 512, 513, 516,

525-527, 536, 543, 545,
552, 557

Pb(Zr0.5ioTi0.49o)O3, 507
Pb(Zn_xTix)03, 385
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PbHfO3, 465
PbNb2O6, 370
PbSc1/2Tai/2O3, 507
PbTiO3, 22, 406, 506, 528
PbZrxTi!_xO3, 512
Pb3(PO4)2, 261, 434, 462, 469,

481
Pb3(Po.8V0.204)2, 484, 485
Pb3(Pi-xVx04)2, 548
Pb3(V04)2, 469
Pb5Ge3On, 207, 215, 263
Pb8X2013, 435
Pb0.5Ca0.5TiO3, 400
Pbo.7oBa0.30ZrO3, 400
Pbi_3y/2Lay(ZrzTii_z)O3, 513
Pd, 316
Pd-(0.1at%Fe), 316
PtGeSe, 433
RADP, 387
RDP, 387
RbAlF4, 440
RbBeF3, 208
RbCaF3, 440
RbHSeO4, 539-541
Rb2ZnCl4, 370
Rb3H(Se04)2, 440
ReO3, 280, 281, 440
Re3B, 286
SEN, 539
SET, 545
SCT, 405-408
SbSI, 263, 370, 405, 427
SbS3, 370
Sb5O7I, 433, 434, 551
Si, 258
SiC, 286
SiO2, 491
SmAlO3, 543
SmCo5, 541
Sm2Coi7, 542
Sn2P2S6, 370
SrBi2Ta2O3, 545

SrTe2O5, 434
SrTiO3, 403, 406, 414, 428, 489
Sro.75Bao.25Nb2O6, 539
Sri_xCaxTiO3, 405, 406
TERFENOL - D, viii, 344, 536,

557
TGS, 207, 263, 358, 368, 418, 426-

428
TZP, 550
TbVO4, 439
Tbo.3Dyo.7Fe2, 344, 557
Tb!_xDyxFe2, 536
TeO2, 208, 215, 437
TiBe2, 313
TiO2, 285
Tin02n_i,286
T1A1F4, 440
TmVO4, 439
WO3, 285
WO2.90, 285
Y - Ba - Cu - O, 25, 269, 270,

291, 430, 453, 455, 459,
470, 515, 557

YBa2Cu3O7-x, 25
YCO2, 313
YIG, 17, 510
Y3Fe5Oi2, 17
ZTA, 550
ZTC, 550
Z2 symmetry, 165
ZN models, 165
ZnCr2Se4, 337
ZnGeF6.6H20, 433
ZnS, 286
ZnZrF6, 440
ZrOS, 208, 215
ZrO2, 548
[A(CH3)4]2XBr4, 478
[Fein(C5Me5)2]

+[TCNE]-,312
[N(CH3)4]2XBr4, 478
[P(CH3)4]2XBr4, 478
a-Fe2O3, 314
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/3-Gd2MoO4, 241
(3 - MnS, 314
ortho-H2, 442
n-heptyl- and n-octyl-ammonium

dihydrogen phosphate, 291
(r,R) system of points, 41
random bond problem, 324
random site problem, 324
0.9PMN-0.1PT, 494
1-dimensional system, 155
2,2,6,6-tetramethyl piperidino oxy(ta

437
2-4 potential, 142
2-6 potential, 142
2-dimensional system, 155
3-dimensional system, 159
9-hydroxy-l-phenalenone, 434

Space-time rotation-inversion group
O'(3), 600

Abelian Group, 578
absolute spontaneous strain, 426,

490
acoustic axis, 211, 214
acoustic emission, 305
acoustical activity, 27, 211
acoustical ferrogyrotropic state shift,

215
acoustical ferrogyrotropy, 13, 27,

213, 216
acoustical gyration tensor, 211, 265
acoustical rotatory power, 213
acousto-optic effect, 551
Acousto-optic Modulators, 547
acoustogyrotropy, 211
activation free energy, 31
Active control of buckling of com-

posite beams, 564
active IR, 134-136, 138, 146
actively smart material, 554, 558
actively smart structure, 558, 560

actuators in smart structures, 551,
557

Adaptive learning, 557
adaptive structures, 564
Adiabatic compressibility, 641
adiabatic process, 620
affine distortion, 124
Affine Mappings, 127, 589
aftereffect function, 638
Aizu species, 189

ine)Vizu Symbol for Ferroic Species,
190

Aizu twins, 256, 257, 260
Algebra of Sets, 573
alkali trihydro-selenites, 434
alnico, 18, 541
alumina, 528
ammonium fluoberyllate, 294, 368
ammonium sulphate, 368
Anelasticity, 430
anisotropy energy, 306
antiequality, 58, 59
antiferrodistortive ferroelastic tra-

nsitions, 440
antiferrodistortive phase transition,

145, 376
antiferroelastic ordering, 473
antiferroelasticity, 25, 479
antiferromagnetic crystal classes,

498
antiferromagnetic piezomagnetic classes,

498
antiferromagnetism, 311
antioperation, 58
antiphase domain boundaries, 241
antiphase domain wall, 295
antiphase domains, 230, 241, 243,

426
antirotation, 59
antisymmetry operator, 58
apatites, 549
APR, 280
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Applications in Capacitors, 547
Applications in space technology,

563
aragonite, 238
aragonite twins, 259
aristotype, 280, 283
Aristotype and Hettotype Struc-

tures, 280
Arrhenius equation, 335, 391
artificial intelligence, 554
artificial neural network, 565
asymmetric unit, 41, 69
asymmorphic space group, 57
AT instability line, 327
athermal transition, 401
atom-displacement polarization, 359
atomic displacement vector, 288,

433
attempt frequency, 391
attributes of the four basic types

of twinning, 261
austenite, 445
austenite-finish temperature, 446
austenite-start temperature, 446
autocorrelation function, 160,162,

634
axial tensor, 76
axis-angle notation, 249
axis-angle pair, 260

B-H curve, 302, 305, 330
B-twins, 256, 261, 263, 264, 466
bands, 252
bare soft mode, 151
barium ferrite, 505, 509
Barkhausen effect, 305
Basis Vectors, 588
BCF theory, 35
Betaine borate, 439
Betaine fumarate, 439
Bethe notation, 96
Biaxial Stress, 425

bicrystal, 233, 239, 240, 243
bicrystal group, 248, 251
bicrystal space group, 252
Bicrystallographic Variants, 252
bicrystallography, 243, 244
bifurcation behaviour, 478
biomimetic materials, structures,

and systems, 568
Biomimetics, 555
birefringence, 91
Birman-Worlock statement, 146
bismuth titanate, 545
Bloch function, 115
Bloch theorem, 115
Bloch wall, 346, 414, 418
block Hamiltonians, 168
blocking temperature, 331, 504
Bollmann twins, 256, 260
Boltzmann factor, 321, 628
Boltzmann principle, 626
Boltzmann relation, 30
boracite, 370
bowing of the domain walls, 305,

348
Bragg condition, 107
Bragg law, 106, 107
Bravais group, 47, 54, 56
Bravais lattices, 46
Bravais unit cell, 48
Brazil twins, 232, 235, 256, 263,

265
breakdown of ergodicity, 393
Breaking of Replica Permutation

Symmetry, 326
Brillouin zone, 111, 114, 116, 120
Broken Ergodicity, 321
Brownian motion, 528, 635

C-phase, 294
c-tensors, 83
cadmium chlorapatite, 501
Cadmium niobate, 369
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Cahn-Hilliard equation, 475, 476
calcite, 426
calomel family, 435
canonical ensemble, 158, 627, 630
canonical glass, 394
canted ferromagnetism, 313
Cartesian Product, 575
Cauchy Sequence, 587
CED, 280, 283, 285, 286
ceramic ferroelectrics, 512
chain-subduction criterion, 135
Change of Polarization, 359
Character Table, 595
Characters of a Representation, 594
chemical clustering, 329
chemical potential, 32, 621
Chemical twins, 286
chirality, 496
Chromium dioxide, vii
circular birefringence, 202, 211
class constants, 95
classification schemes for twinning,

255
Clausius-Clapeyron equation, 152
Clausius-Mosotti Equation, 361
clock models, 165
closure, 577
closure domains, 345
cluster glass, 329, 331
cluster-to-crystal transition, 258,

259
clusters of spins, 317
coarse-graining, 169
Cobalt, 340
coelastic phase transition, 411
coelectric phase transition, 411
coercive field, 347, 419, 541
coercive stress, 485
coherent boundary, 413
coherent phase boundaries, 467
coincidence lattice, 238, 240, 250,

260

colour group, 66
colour load, 67
colour modulator, 546
colour symmetry, 66
Colour Symmetry and the Lan-

dau Potential, 341
colour-reversal operation, 246, 276
Combination Properties, 518
Combination transitions, 526
compensation temperature, 478
competing interactions, 186, 317,

323, 342, 444
competing transition parameters,

183
complete set, 588
complete set of pseudosymmetry

relations, 292
complex cyanides, 434
complex mobility, 635, 637
complex order parameter, 296
Complex Variants, 253
complex vector space, 587
compliant wing sections, 565
composite, 516
composite ferroics, 13
composition plane, 492
compositional extended defect, 13,

280
compound twin, 237
computer code ISOTROPY, 134,

138, 197, 232, 378
condition of lattice continuity, 466
conjugacy class, 582
Conjugate Elements and Classes,

581
conjugate subgroups, 42, 583
Connectivity of a submaterial in

a composite, 524
Connectivity transitions, 526
conserved order parameter, 475
constancy of orientational relation-

ship, 233
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constitutive relation, 82, 517
continuous broken symmetries, 173
continuous distortion, 124
continuous group, 598
continuous phase transition, 133,

140
continuous set of order parame-

ters, 183
conventional definition of crystal-

lographic space group, 128
conventional or canonical glass, 318
conventional unit cell, 48
converse magnetoelectric tensor,

194
converse piezoelectric effect, 494
converse piezoelectric-effect tensor,

194
convolution, 112
Convolution Theorem, 616
cooperative Jahn-Teller effect, 439
cordierite, 477, 549
Correlation Function, 632
correlation hole, 308
correlation length, 158-160, 163,

167, 168, 383
correlation time, 634
coset decomposition, 191, 201, 264,

277
coset representative, 582
Cosets of a Subgroup, 582
Countable Set, 576
Coupling Between Magnetic Mo-

ments, 308
Cr-Cl boracite, 370
creep, 430
cristobalite, 491
critical dimension, 155
critical exponent, 141, 158, 160
critical field, 305
critical fluctuations, 23, 447
critical freezing, 382
critical opalescence, 19

critical phenomena, 155
critical point, 18
critical size, 34
critical slowing down, 23,148, 382
critical stress, 480, 482, 485
critical temperature, 9
cross-ply plywood, 522
crossover, 383
crystal classes, 48
crystal families, 46
crystal system, 40, 43, 46
crystallographic orbit, 58
crystallographic reversibility, 456,

515
Crystallographic Reversibility of

a Phase Transition, 449
Crystallographic Shear Planes, 283
crystallographic slip plane, 284
crystallographic space group, 4, 53
crystallographic unit cell, 48
crystallophysical system of coor-

dinates, 87
CSP, 284, 285
Curie group, 62
Curie law, 302, 310, 620
Curie limiting groups, 610
Curie point, 133
Curie principle, 5, 22, 24, 38, 80,

84, 101, 132, 181, 222-
224, 245, 268, 278, 495,
521, 532, 596, 604-607,
609, 610

Curie-Shubnikov principle, viii, 5,
70, 99, 245, 520, 522, 604,
609

Curie-Weiss law, 140, 147, 302,
303, 310, 311

CvS relaxation, 333
CvS-like response, 335, 399
cyclic applications of SMAs, 567
cyclic coordinates, 89
cyclic group, 45, 113, 580
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Dauphine twins, 232, 256, 263, 265,
490, 492

DCC, 247, 248, 251, 254
DCDs, 334, 335
DCP, 247, 249-251, 260
Debye equations, 366
Debye frequency, 391
Debye medium, 392
Debye model, 148, 391, 392
Debye relaxation, 360
Debye relaxation time, 148
Debye-Langevin equation, 360
decamethylferrocenium tetracyanoethe-

nide, 312
defect-independent ferroelastic re-

sponse, 430
defining a symmetry-changing ph-

ase transition, 570
definition of a ferroic phase tran-

sition, 570
definition of twinning, 233
definitions of glass, 318
degeneracy of the ground state of

a frustrated system, 571
degree of crystallographic reversibil-

ity, 453
demagnetization factor, 473
demagnetization field, 508
Demagnetization-Field Energy, 344
density function, 625, 626
density matrix, 630
density operator, 630
Denumerable Set, 576
Dependence of Ionic Magnetic Mo-

ment on Environment, 308
depolarization factor, 473
depolarization temperature, 393
Depolarizing Field, 354
Derivation of Space Groups, 56
derivative structures, 220, 280
design of adaptive materials, 554
Detwinning of Ferroic Crystals, 543

diagonal rosette, 254
Diamagnetism, 310
diamond, 238, 280
dicalcium strontium propionate, 207,

263, 369
dichromatic complex, 220, 244, 247,

251
dichromatic pattern, 244, 247, 249,

260
dichromatic point group, 488
Dielectric Losses, 364
Dielectric Permittivity, 353
dielectric permittivity tensor, 193,

520
Dielectric Relaxation, 365
dielectric response, 75
dielectric response function, 559
dielectric susceptibility, 9
dielectric susceptibility tensor, 354
differential susceptibility, 640
diffuse transition, 406
diffusional relaxation, 431
dimensionality of the order param-

eter of an improper ferro-
electric transition, 379

diperiodic space group, 66
diperiodic systems, 66
dipolar glass, 387
dipolar polarization, 360
dipolar relaxation, 391
dipole moment, 351
Dirac delta function, 613
direct piezoelectric effect, 494
Direct-exchange coupling, 309
discommensuration texture, 294
discommensurations, 184, 294, 296
discontinuous phase transition, 178
Discrete Broken Symmetries, 176
discrete infinite group, 598
discrete space, 42
disjoint sets, 574
disordered phase, 139
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disorientation, 221, 230, 261, 263,
269, 293, 459, 463, 469,
478, 481, 483

disorientation state, 270
displacement vector, 422
Disruptive Discontinuous Transi-

tions, 180
disruptive phase transition, 128,

129, 180, 264
dissymmetrization, 70, 181, 245,

520, 571, 603
dissymmetry, 604, 605
distribution function, 625
ditellurites, 434
divertible ferroelectric, 373
dodecahedral facetting, 254
domain pair, 220, 244
domain rotation, 420, 540
domain state, 219, 220
domain structure, 219, 234
domain structure of a ferromag-

netic crystal, 342
domain structure of nonstoichio-

metric ferroics, 286
domain texture, 296
domain texture of the I-phase, 294
domain type, 223
domain wall, 8, 65, 66, 231
Domain Walls in Ferrobielastics,

491
domain walls in ferroics, 273
domain-type, 292
Domain-wall bowing, 539
domain-wall dynamics, 348
Domain-wall movement, 540
Domains in Ferroelastic Crystals,

458
Double Ferroelasticity, 459
double tartrates of Li and Tl, 369
double trigonal molybdates and

tungstates, 434
DPT, 180, 181

DRAM, 545
dynamical heterogeneity, 333
dynamical polar domains, 398
dynamically correlated domains,

334
Dzyaloshinsky-Moriya (DM) inter-

action, 313

Easy Directions of Magnetization,
306

Edwards-Anderson (EA) model, 323
effective permeability, 304
efficient shape recovery, 455
Einstein temperature, 152
Elastic after-effect, 430
elastic dipole, 25, 431
elastic domain, 466, 467, 469
Elastic Ferroelectric, 375
elastic interaction, 258
Elastic Interaction and Structural

Phase Transitions, 471
elastic limit, 482
elastic stiffness tensor, 425
elastic-compliance tensor, 193, 425
elastoactive atomic groupings, 433
elastooptical effect, 100
electric Curie constant, 537
electric displacement, 193
Electrical Conduction, 362
electrical heating of SMA wires,

565
electro-elastic coupling effects, 506
electromechanical coupling coeffi-

cient, 512
Electromechanical Order of a Fer-

roic State Shift, 495
electromechanical order of a state

shift, 198, 495
electromechnically second order state

shift, 198
electronic-displacement polarization,

359
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Electrooptic effects, 99
electrooptic modulators, 539
electrostriction, 357, 494, 536
electrostriction strains, 414
elpasolite, 501
Elpasolites, 435
embedded sensors, 557
embedded-sensor applications, 522
embracing group, 604
enantiomorphous group, 64
energy fluctuations in the canon-

ical ensemble, 631
energy surface, 625
ensemble average, 155, 625
enthalpy, 30
entropy, 626
Enumeration of Single-Domain States,

226
equal placement of equal parts, 69
equation of state, 620
equilibrium, 619
equivalence principle, 610
equivalence principle for processes,

610
equivalence transformation, 592
equivalent DCCs, 251
equivalent points, 40, 45
equivalent representations, 592
Equivalent Sets, 575
equivalent subgroups, 607
ergodic shell, 626
ergodic surface, 625
ergodic system, 335
ergodicity hypothesis, 321, 625
essential space-group operations,

55
essential translations, 54
Euclidean Group E(3), 598
Euler formula, 50
Eulerian form of strain, 422
eutectic solidification, 278
exceptionally hard magnetic pro-

perties, 541
exchange holes, 308
exchange interaction, 20
exchange-enhanced metal, 313
Existence of the Ferroic Orienta-

tion State, 533
exponential relaxation, 333
extended defect, 244
extended group, 245, 247, 609
extrinsic symmetry, 425
extrinsic symmetry of tensors, 78

F-face, 38
F-operation, 8, 126
facetting, 278
factor group, 95
Factor Groups, 584
faint ferroelectric, 24
faint ferroics, 381
faint variable, 344, 377, 381, 441
faintness index, 377-381, 438, 440,

441, 535, 547
Falk's Universal Model for Shape-

Memory Alloys, 456
false or indirect piezoelectric ef-

fect, 494
fat hysteresis loop, 455, 514
FDT, 382, 391
Fedorov group, 61, 62
fergusonites, 434
Fermi holes, 308
ferrielastic, 478
ferrielectric, 234
ferrimagnetic, 510
ferrimagnetic ordering, 312
ferrimagnetism, 17
ferrite, 16, 510, 542
Ferrite core memories, 545
ferrite cores, 17
Ferrites in SMPS, 542
ferroacoustogyrotropy, 27, 213
ferrobielastic domain pair, 490
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ferrobielastic phase transition, 491
ferrobielastic state shift, 491
ferrobielastic switching, 490, 492,

493
ferrobielastic-ferroelastoelectric tra-

nsitions, 491
ferrobielastic-ferroelastoelectric twins,

263
ferrobielasticity, 12
Ferrobielastics, 196
ferrobielectric crystal, 488
ferrobielectric state shift, 489
ferrobielectric switching, 489
Ferrobielectrics, 196
ferrobimagnetic, 196, 489
ferrobimagnetic domain switching,

489
ferrobimagnetic state shift, 196,

489
ferrodistortive phase transition, 145
ferroelastic domain pair, 221, 258,

293
ferroelastic domain wall, 289
ferroelastic hysteresis, 430
Ferroelastic Hysteresis Loop, 484
Ferroelastic Nanocomposites, 528
ferroelastic phase transition, 421,

445, 557
ferroelastic response, 434
ferroelastic state shift, 196, 209,

427
ferroelastic superconductor, 269
ferroelastic switching, 448
Ferroelastic Switching and Acous-

tic Emission, 293
ferroelastic switching as a stress-

accommodating mechanism,
549

Ferroelastic transition, 128
Ferroelastic transitions of the op-

tical type, 438
ferroelastic twins, 257

ferroelasticity, 24, 197
ferroelastoelectric, 197, 208, 493
Ferroelastoelectric Crystals, 495
ferroelastoelectric poling, 496
ferroelastoelectric switching, 493,

496
ferroelastoelectricity, 12
ferroelectric, 21, 22, 512
ferroelectric ceramic, 63
ferroelectric fluids, 528
Ferroelectric Nanocomposites, 528
ferroelectric phase, 353
ferroelectric phase transition, vii,

9, 22, 23
ferroelectric S-twins, 261
ferroelectric state shift, 489
ferroelectric-ferrobielastic twins, 263
ferroelectric-ferromagnetic S-twins,

261
Ferroelectrics Having Ordered Rad-

icals, 369
Ferroelectrics with Linear Order-

ing of Protons, 368
Ferroelectrics with Oxygen Octa-

hedra, 369
Ferroelectrics without Oxygen Oc-

tahedra, 370
ferroenantiomorphism, 26
Ferrofluids, 527
ferrogyrotropic, 201
ferrogyrotropic effect, 496
ferrogyrotropic orientation state,

209
ferrogyrotropic phase of a crystal,

210
ferrogyrotropic S-twins, 263
ferrogyrotropic state shift, 27, 206-

209
ferrogyrotropy, 13, 27
ferroic behaviour of poly crystals,

503
ferroic mapping operation, 265



Subject Index 723

ferroic material, 6, 11, 123
ferroic phase transition, vii, viii,

6, 8-10, 130, 241, 337,
531-533, 535

ferroic polycrystal, 509
ferroic species, 189, 338, 495
ferroic state shift, 197, 206
ferroic switching, 26
ferroic twins, 257
ferromagnetic Curie temperature,

302
Ferromagnetic Hysteresis Loop, 346
ferromagnetic materials, 15
Ferromagnetic Nanocomposites, 527
ferromagnetic ordering, 330
ferromagnetic phases, 337
ferromagnetic resonance, 349
ferromagnetic S-twins, 261
Ferromagnetic Species of Crystals,

338
ferromagnetic transition, 167
ferromagnetic-ferroelectric phase,

197
Ferromagnetism, 310
ferromagnetoelastic, 197
ferromagnetoelastic domain swit-

ching, 498
ferromagnetoelastic effect, 498
ferromagnetoelastic state shift, 497
ferromagnetoelastic twins, 263
ferromagnetoelectric, 196
ferromagnetoelectric phase tran-

sition, 500
ferromagnetoelectric switching, 500
ferromagnetoelectric twins, 263
ferroplasticity, 450
ferroquadrielectric, 501
ferrotrielastic, 197, 501
ferrotrielectric, 501
field tensor, 76, 424
Field-cooling of a cluster glass, 331
field-induced phase transition, vii,

11,12, 313, 514, 532, 550,
570

Fields, 586
finite group, 578
finite Lagrangian, 422
first law of thermodynamics, 620
First Orthogonality Relation for

Characters, 594
first orthogonality theorem for char-

acters, 94
First Theorem of condensed mat-

ter physics, 174, 570
first-order spatial dispersion, 206
first-order state shift, 197
Fixed Points, 171
fixed-point Hamiltonian, 171
fluctuation dissipation theorem, 158,

632, 634, 637, 641
Fluctuations, 631
fluorite, 238
focusing acoustic transducer, 546
Four Categories of Strain Coupling,

473
Fourier space, 107
Fourier transform, 104, 613
fracture toughness, 548
frequency-dependent susceptibility,

363
fresnoites, 434
frictional force, 635
Friedel's Four Twin Types, 237
frozen disorder, 318
frozen polar domains, 398
frustrated plaquette, 323
frustration, 315, 318, 321, 388, 444
Full and Partial Primary Ferroics,

195
full ferroelastic, 195, 197
full ferroelectric, 374
full inversion group, 600
full orthogonal group, 78
fully stabilized cubic phase, 532
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fully stabilized paraelectric, 401
fully tunable composite transducer,

560
Fumi's method of direct inspec-

tion, 87, 200
function, 575
fundamental group, 604

gadolinium molybdate, 24, 376
galena, 238
Garnets, 17
gelation in a polymer, 323
general crystallographic orbit, 58
general simple form, 52
general symmetry evolution prin-

ciple, 610
General Twin Walls, 282
Generalized current, 637
generalized differential susceptibil-

ity, 641
generalized displacement, 621, 637
generalized force, 621, 637
generalized Gibbs free-energy den-

sity, 192
generalized Gibbs potential, 623
generalized Lagevin equation, 635,

636
generalized susceptibility, 139,158,

640
Generators of a Finite Group, 580
germanium, 238
giant Pockels effect, 539, 540
giant superparamagnetic moment,

330
Giant-Moment Ferromagnetism, 316
Gibbs ensemble, 625
Gibbs free energy, 30
Gibbs potential, 622
Gibbs work of nucleation, 32
Gibbs-Curie-Wulff theorem, 274
Ginzburg criterion, 163
Ginzburg-Landau equation, 475,

476

glass transition, 318
glass-transition temperature, 318,

329
Glauber dynamics, 475, 476
Golden mean, 239
Goldstone mode, 173, 174
Goldstone's theorem, 174
Gorsky effect, 431
gradient invariant, 184
Grain Boundaries, 283
Great Orthogonality Theorem, 593
grey group, 60
group, 578
group 5k of the wavevector k, 118
group of isoprobability of nucle-

ation, 268
group of rotations, 64
group of the Wulff plot, 274-277
group tree, 270, 521
Group-Theoretical Determination

of Atomic Displacement
Vectors, 292

group-tree formalism, 268, 450
Groups of Transformations, 578
growth morphology, 274
growth twins, 232, 235, 256, 258,

259
growth-sector boundaries, 243
gyrotropic phase transitions, 202

habit plane, 235, 445
hard magnetic materials, 541
HAUP, ix, 202
heat bath, 627
Heavyside unit step function, 638
Heisenberg Hamiltonian, 330
Heisenberg model, 166, 600
Heissenberg ferromagnet, 174
helical configuration of spin ori-

entations, 337
helical magnetic structure, 66
helicoidal magnetic structure, 342
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Helimagnetism, 313
Helmholtz potential, 622
Hemihedral simple form, 53
hemisymmorphic space group, 57
Hermann theorem, 27, 89, 205,

213, 520, 522
Hermann's Space-Group Decom-

position Theorem, 241
heterophase interface, 243
hettotype, 280
hex-ply structure, 523
hierarchical domain structures, 469
High Accuracy Universal Polarime-

ter, 202
high-frequency applications, 542
high-frequency low- and medium-

stroke applications, 558
higher-order domain structures, 469
higher-order ferroics, 12, 13
Hilbert Space, 588
holohedral space group, 246
holohedries, 53
holosymmetric group, 247
holosymmetric symmorphic group,

251
homogeneous function, 168, 623
homogeneous subspaces, 42
homologous series of structures,

285
homomorphic mapping, 585
homomorphism, 585
homophase interface, 243, 247, 273,

276, 277
hopping transition, 360
Hypertwins, 239
hysteresis, v, 14
hysteretic behaviour, 21

I-phase, 294
i-tensors, 83
icosahedral symmetry, 258
identity element, 578

identity representation, 133, 592
image, 575
impermissible wall, 462
implicit form of ferroicity, 206
improper ferrobielastic transition,

491
improper ferroelastic transition, 439,

441, 488
improper ferroelastics, 440
improper ferroelectric, 24
improper ferroelectric transition,

183
improper ferroelectrics, 24
improper ferroics, 381
improper nonferroelastic transit-

ions, 488
improper or faint ferroelastic tran-

sition, 375
incipient ferroelectric, 405, 406
incipient ferromagnet, 312
incoherent boundary, 413
incommensurate magnetic transi-

tion, 341
incommensurate phase, 37, 66,182
mcommensurately modulated crys-

tal, 112
indirect-exchange coupling, 309
induced magnetostriction, 344
induced polarization, 359
induced representation, 94, 597
inequivalent representations, 592
Infinite Set, 576
infinitely adaptive structure, 285
initial connectivity, 526
initial permeability, 305
initial permittivity, 420
initial phase, 127
inner product space, 587
inorganic nonferroelectric ferroe-

lastics, 433
interfaces between non-identical st-

ructures, 273
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interfaces in nonferroic materials,
273

intermediate space group, 243
internal electro-optic effect, 551
internal energy, 620
Internal Field, 355
internal mean magnetic field, 19
interphase boundary, 243, 253
intersection group, 223, 229, 245-

247, 268, 274, 459, 520,
605

intersection-group approach, 264
intersection-group symmetry, 273
intrinsic symmetry, 425
intrinsic symmetry of tensors, 77
introduction to neural networks,

566
invariant direction, 236
invariant plane, 236, 467
invariant subspaces, 593
invariant-plane strain, 445, 467,

468
inverse of an element, 578
inversion symmetry, 9
inversion twins, 263
ion-displacement polarization, 359
ionic conduction, 360
Iron-Silicon Alloys, 16
irrational (or noncrystallographic)

shear planes, 285
irrational direction, 239
irreducible property tensors, 190
irreducible representation, 94,103,

593
irreversible domain-wall movement,

420
Ising Hamiltonian, 165
Ising model, 20, 165, 167
isometric mapping, 41, 589
isometries, 41, 589
isomorphic, 55
isomorphism, 585

isomorphous phase transition, 6
isostructural transition, 130
Isothermal compressibility, 640
isotropy group, 42, 134
isotropy subgroup, 133, 135-137,

144
itinerant electrons, 313, 316
itinerant-electron ferromagnetic crys-

tals, 311
itinerant-electron magnetism, 307

Jahn symbol, 77, 205
Joule magnetostriction, 344

K-face, 38
Kadanoff construction, 21, 168
Kadanoff transformation, 169
Kawasaki dynamics, 475, 476
Kernel, 585
kernel-core criterion, 341
Kerr effect, 99, 100, 539
Kerr-Effect Applications of PLZT,

550
kinetic coefficients, 475, 476, 637
kinetic deformation pattern, 475
kinetic order parameter, 474
kinetics of motion of domain boun-

daries, 482
knock-on effect, 470
Kondo effect, 307
Kramers-Kronig relations, 382, 390
KWW relaxation, 333
KWW-like response, 335, 399

L-invariant, 184
L-system, 168
Lagrange Theorem for Subgroups,

583
Lagrangian form of strain, 422
laminated composite, 523
Landau condition, 140, 146
Landau expansion, 132, 138, 141
Landau Stability Condition, 136
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Landau theory, 5, 20, 22, 125, 129,
131, 132, 138, 163

Landau's celebrated statement, 570
Landau-Ginzburg expansion, 183,

184
Landau-Ginzburg potential, 184
Landau-Ginzburg theory, 155
Landau-Ginzburg-Wilson (LGW)

Hamiltonian, 171
Landau-Khalatnikov equation, 475
langbeinites, 434
Langevin equation, 635
Langevin function, 360
lanthanum-doped PZT, 513
large permeability, 528
large pyroelectric effect, 547
Laser Frequency Converters, 541
laser-heat activated SMA struc-

tures, 565
latent symmetry, 611
lattice, 40, 45, 46
lattice complex, 58, 247
lattice gas, 432
lattice of coincidence sites, 238
Laue Classes, 51
Laue equations, 106-108
law of composition, 577
layer group, 65, 66, 231, 250
layers, 252
Lb-system, 168
lead lanthanum zirconate titanate,

viii
lead magnesium niobate, viii
left coset, 582
lenticular domains, 463
Lifshitz condition, 136, 182, 183,

488, 496
Lifshitz invariant, 184
Lifshitz point, 112, 116, 134
Lifshitz star, 116
Lifshitz-type invariants, 184
limiting hysteresis loop, 347, 420

linear birefringence, 202, 211
linear dielectric, 371, 494
linear Lagrangian strain tensor, 422
linear magnetoelectric effect, 202
linear magnetoelectric susceptibil-

ity, 202
Linear Operators, 589
linear piezomagnetic effect, 343
linear response theory, 157, 362,

364, 475, 634
linear space, 586
lithium ammonium tartrate mono-

hydrate, 437
Lithium hydrogen selenate, 368
lithium niobate, vii, 544
little group, 42, 115, 116, 119, 278
local easy direction of magnetiza-

tion, 306
localized spin fluctuations, 313
lock-in phase, 182
long-range ordering, 11
long-term stability of the actua-

tion strain, 567
Lorentz cavity, 355
Lorentz field, 356
Lorentzian, 615
loss factor, 365
low-frequency high-stroke applica-

tions, 558
low-porosity bioceramics, 550
LRT, 362, 475, 634-637, 639
LST relation, 145, 147, 148
LT-invariants, 184

MS type transition, 446
M-H curve, 317
Magnetic Ceramics, 510
magnetic Curie constant, 537
Magnetic Curie Groups, 64
magnetic electrons, 302
magnetic garnet, 510
magnetic induction, 193
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Magnetic Ions in Solids, 307
magnetic oxide, 16
magnetic permeability, 193, 200
magnetic permeability tensor, 83,

85
magnetic point group, 18
Magnetic Point Groups of the 1st

Kind, 59
Magnetic Point Groups of the 2nd

Kind, 60
Magnetic Recording, 545
magnetic spinel, 510
magnetic-bubble devices, 17
magnetite, 312
Magnetization of a Virgin Ferro-

magnetic Specimen, 303
magneto-elastic coupling effects,

506
magneto-optic medium, 505
magneto-optical recording, 545
magnetocrystalline anisotropy, 344
magnetoelectric coefficients, 500
magnetoelectric effect, 499, 518
magnetoelectric material, 520
magnetoelectric tensor, 83, 193,

194
magnetoelectricity, 522
magnetoplumbites, 510
magnetostriction, 343, 536
magnetostriction strains, 414
magnetostrictive strain anisotropy,

330
magnitude of relative spontaneous

strain, 429
Manifestation of Twin Type in the

Diffraction Pattern, 239
mapping, 575
Mappings Between Groups, 585
marginal dimension, 155
martensite, 445
martensite morphologies, 278
martensite-fmish temperature, 446

martensite-start temperature, 446
martensitic phase transition, 124,

131, 178, 269, 396, 401,
445, 446, 451

Matrix Representations of Groups,
591

matter tensor, 76, 83, 85, 424
maximal polar subgroup, 224
maximalistic use of the symmetry

principle, 606
maximality conjecture, 137, 223,

224
maximum permeability, 305
maximum permittivity, 420
maximum symmetry group, 246,

254
mean value, 631
mean-field theories, 154
mean-field theory of spin glasses,

325
mean-square deviation, 631
mechanical depolarization, 509
mechanical first order state shifts,

197
mechanical hysteresis, 430
mechanical state shift, 197
mechanical twinning, 263
mechanical twins, 258
mechanically induced SME, 564
merohedral twinning, 239
merohedries, 53
metamagnet, 312, 314
methyl-ammonium alum, 368
metric vector space, 587
Mg-Cl boracite, 370
micro-robotics, 552
micro-walking devices, 552
Microcanonical Ensemble, 624
microcrystal, 33, 34, 258
micropositioner with a memory,

546
microscopic ensemble, 630
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microtwins, 259
mictoelectric, 398
mictomagnet, 329
Miller indices, 107
minimalistic use of the symmetry

principle, 606
minor loop, 346
mirror twins, 237
mixed crystal, 333, 384
mixed-crystal ferroelectric, 389
Molecular Ferromagnets, 312
molecular field, 302, 303
monoaxial point group, 50
morphic effect, 495
Morphological Variants, 253
Morphology of Crystals Grown from

Crystalline Matrices, 273
morphology of the ferroic phase,

243
morphotropic, 512
morphotropic phase boundary, 552
moving line source of light, 546
MPB, 385, 512, 513
Mulliken notation, 96
mullite, 549
multiaxial ferroelectric, 410
multidomain approximation, 296
multiple twinning, 34, 258

N-twins, 257, 258, 263, 492
Neel temperature, 312
nanocomposite, 524
Nanocrystals, 571
nanodomain, 570
natural optical activity, 205, 213
NDPT, 124, 128, 130, 178, 484
needle-domain pattern, 478
negative entropy catastrophe, 326
negative-entropy problem, 329
Neumann theorem, 8, 73, 86, 92,

273, 275, 425, 605, 606
Neumann-Minnigerode-Curie (or

NMC) principle, 606

neural network, 315, 557
Ni-Cl boracite, 370
Noether's theorem, 4
nomenclature scheme for compos-

ites, 525
nonconserved order parameter, 475
nondisruption condition, 25, 123,

124, 127, 129, 130, 178,
228, 256, 264, 337, 459,
484

Nondisruptive Discontinuous Tra-
nsitions, 178

nondisruptive modification, 6
nondisruptive phase transition, 124,

128, 256, 258, 288, 421,
460, 484

nonergodicity, 324
nonexponential relaxation, 333
nonferroelastic domain pair, 221
nonferroelastic ferrobielastic species,

491
nonferroelastic ferrobielastic tran-

sition, 490
nonferroelastic ferrogyrotropic ph-

ase transition, 497
nonferroelastic improper ferroelec-

tric transition, 377
nonferroelastic mechanical twins,

222
nonferroelastic phase transition, 426,

498
nonferroelastic phases, 488
nonferroelastic piezoelectric crys-

tal, 494
nonferroelastic-ferroic transition,

128, 258
nonferroelastic-ferroic twins, 257
nonferroelectric ferroelastic, 551
Nonferroelectric nonlinear dielec-

tric response, 540
nonferroelectric pyroelectric, 366
Nonferroic NDPT, 130
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nonferroic phase transition, 241,
265, 426

nonisomorphous phase transition,
6

nonlinear (transcendental) "order
parameter", 181

Nonmagnetic Curie Groups, 62
nonmagnetic ferroelastoelectric species,

495
nonordering field, 143
nonpolar plane, 66
Nonprimary nonmagnetic ferroic

phase transitions, 487
nonprimitive unit cell, 46
nonstoichiometric ferroelastic, 25,

292
nonstructural composites, 516
nonsymmorphic bicrystal, 251
nonsymmorphic lattice complex,

251
nonsymmorphic space group, 56,

57, 119
norm, 587
normal subgroup, 56, 60-62, 95,

292, 583
novelty filter' PHOTOGREY, 556
nucleation, 30, 235
number of arms or prongs of {k},

116
NVFRAM, 545

off-stoichiometric configurations, 285
ogdohedry, 53
one-dimensional soft sectors, 437
one-to-one function or mapping,

575
One-Way Shape-Memory Effect,

451
one-way SME, 451, 452, 455, 562
onto mapping or function, 575
operator, 575
optical activity, 201, 202, 205, 207,

211

Optical Electroceramics, 513
optical ferrogyrotropy, 13, 27, 202,

203, 213
Optical fibres, 557
optical gyration, 203, 206
optical gyration surface, 208
optical gyration tensor, 26, 201,

202, 205, 206, 208, 210,
212

optical indicatrix, 100
optical limiters, 556
optical rotatory power, 207
optical shutter, 546
optical telephones, 552
optimum domain fraction, 469
Optimum Switching Configuration,

480
order of a ferroic state shift, 197,

495
order parameter, 5, 9-11, 19, 20,

22, 23, 132-134, 138, 140,
141, 144, 145, 158, 173,
174

order parameter autocorrelation func-
tion, 641

order parameter correlation length,
615

order-parameter correlations, 159
ordered CSPs, 285
ordered phase, 139, 144
ordering field, 143
Orientation of Walls Between Ferro-

elastic Domain Pairs, 461
orientation state, 7, 8, 26, 230,

426
orientational glass, 323, 386, 442,

444
orientational polarization, 359
orient ational relationship, 445
orientational relaxation, 431
orientational twin, 222, 295, 493
Orientational Variants, 253
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Orientations of Walls between Fe-
rromagnetic Domain Pairs,
345

oriented structural defects, 456
Ornstein-Zernike form, 159
orthodiagonal rosette system, 254
orthogonal group, 64, 599, 605
orthonormal basis vectors, 588
out-of-phase domains, 221
Overdamped and Underdamped Soft

Modes, 151

P-phase, 294
page composer, 546
Palladium, 313
palmierites, 434
paramagnetic crystal, 311
paramagnetic Curie temperature,

302
paramagnons, 313
paraphase, 127
paratellurite, 437
parent phase, 127, 132, 144
parent-clamping approximation, 124,

198, 227, 228, 230, 257,
459, 481

partial ferroelastic, 195, 197
partial ferroelastic species which

are also ferromagnetic, 338
Partial Ferrogyrotropics, 210
partial ferromagnetic species, 338
partial primary ferroic, 198
partial sublattice, 261
Partially Conserved Order Param-

eter, 476
Partially stabilized zirconia, 549
particle accelerators, 17
partition function, 628, 630
passively smart structure, 556
Pattern Formation, 477
patterned composite, 516
PBC, 37

PCA, 124,198, 221-223, 228, 230,
233, 289, 292, 459, 463

Peierls distortion, 71
pentaphosphates, 434
percolation, 316, 335, 399
percolation limit, 332
Percolation-Related Magnetic Or-

der, 332
periodic bond chain, 37
Periodic Domain Inversion of Fer-

roic Crystals, 543
permanent magnet, 18, 347, 505,

541
Permeability of Magnetic Ceram-

ics, 510
permissible wall, 411
Permutation, 576
permutation symmetry, 203
Perovskite group, 369
perovskite-family ferroelastics, 435
phase boundaries, 464, 466
phase line, 624
phase point, 624
phase separation, 329, 432
phase space, 624
phase trajectory, 624
photo-driven relays, 552
photochromic glasses, 556
photodeformation, 551
photoelastic effect, 490
photoelastic tensor, 524
Photoferroelastics, 551
Photoferroelectric Applications, 551
photophones, 552
photorefractive effect, 551
Photostrictors, 552
physical origin of a proper ferro-

elastic transition, 441
physically irreducible representa-

tion, 134
Piezoceramics, 512
Piezoelectric and Electrostriction
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Tensors Revisited, 493
Piezoelectric Ceramics as Sensors,

560
piezoelectric class, 357
piezoelectric tensor, 193, 357, 494,

559
piezoelectricity, v, 21
piezoelectrics, 512
piezomagnetic coefficient, 193
piezomagnetic crystal classes, 498
piezomagnetic phase, 498
piezomagnetic tensor, 85,194, 498
pinning sites, 296, 483
planar interface, 445
plane group, 66
plaquette, 322
plastic deformation, 452
Plastic strain, 481
plasticity related to domain-wall

movement, 450
Plasticity Related to Ferroelastic

Domain Switching, 481
plateau effect, 153, 186
platinum, 313
plywood, 522
Pockels effect, 99-101, 539
point field, 575
point group underlying the space

group, 56, 73
point of symmetry, 112
polar axis, 369
polar class, 351, 512
polar cluster, 382, 383
polar direction, 51
polar group, 51, 86
polar molecule, 352
polar or "weak" optical activity,

205
polar second-rank tensor, 196
polar tensor, 76
polarizabilities of molecules, 359
polarizability tensor, 352

polarization, 352
poling, 63, 500, 509, 512, 542
Poling of Ferroic Polycrystals, 543
polyaxial point group, 50
poly crystal, 509
Polycrystal Ferroelectrics, 512
polycrystalline ferroelastics, 514
Poly crystalline Magnetic Alloys,

511
poly domain phases, 466
polydomain structure related to

martensitic phase tran-
sitions, 466

polysynthetic twin, 466
polytwin, 466, 483
potential ferrotrielastic, 501
Potts Model, 165
precipitate morphology, 278
premartensitic 'R-phase', 562
primary ferroic, 12, 196, 487
primitive characters, 596
primitive lattice, 46
primitive translation vector, 40
principle of equal probability, 627
probability density, 625
Product Groups, 583
Product Properties, 518
Prominent Orientation of a Wall,

231
proper ferroelastic phase transi-

tion, 435-437, 453
proper ferroelastoelectric phase tran-

sition, 496
proper ferroelectric improper (or

faint) ferroelastic transi-
tion, 375

proper ferroic phase transition, 547
proper ferromagnetic phase tran-

sition, 344
proper subgroup, 582
proper subset, 573
protein folding, 315
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prototype, 8
prototype space-group symmetry,

241
prototype structure, 25
prototype symmetry, 8, 25, 26,124-

127, 129, 132, 181, 220,
234, 243, 256, 337, 338,
427, 569

prototypic phase, 125, 126
proustite, 370
pseudo-diphasic composite, 527
pseudoelasticity by reorient at ion,

448, 449, 451
pseudoelasticity by transformation,

448, 452
Pseudoilmenite group, 370
pseudoplastic deformation, 452, 482
pseudoplastic strain, 485, 562
pseudoplasticity by reorientation,

449, 450
pseudoplasticity by transformation,

449, 452
pseudoproper ferroelastic transi-

tion, 436
pseudosymmetry, vi
pseudosymmetry relation, 288
pseudotensor, 76
pure acoustical activity, 214
pure ferroacoustogyrotropic state

shift, 214
pure ferroacoustogyrotropy, 213,

214
pure gyrotropic phase transitions,

208
pure mode axes, 213
purely ferrobielastic domain pair,

492
purely ferrobielastic transitions, 491
purely ferroelastic S-twins, 261
purely ferroelastic transition, 440
purely ferroelastoelectric phase tran-

sition, 496, 497

pyrargyrite, 370
pyrite, 238, 261
Pyrochlore group, 369
pyroelectric, 200, 201
pyroelectric but nonferroelectric species,

339
Pyroelectric Detectors, 547
pyroelectric effect, 74, 353
pyroelectric response, 9
pyroelectric tensor, 86
Pyroelectricity, 21
pyromagnetic, 498

QPM, 544
quadrupolar glass, 442, 470
quality of a permanent magnet,

348
Quantum ferroelectrics, 403
quantum limit, 404, 405, 408
quantum saturation, 151, 152
quantum statistical mechanics, 629
quartz, 12, 23, 26, 37, 154, 215,

216, 232, 235, 238, 241,
256, 259, 263, 265, 280,
405, 490-493, 497, 543

quasi phase matching, 544
quasi-composite, 527
quasistatic process, 620
quench-hardening of steels, 445
quenched disorder, 317, 321, 399

R-wall, 412
random electric field, 399, 406, 408
random exchange interaction, 326
random field, 186
random force, 635
random Heisenberg Hamiltonian,

324
random-field domain state, 406
Ranganathan equation, 260
rare-earth pentaphosphates, 438
rare-earth vanadates, 439
rational direction, 236
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re-entrant spin glass, 332
reading and writing of informa-

tion on tapes and discs,
545

real vector space, 587
reciprocal lattice, 108
reciprocal space, 107
reconstructive phase transition, 178,

256
recording medium, 505
recoverable shape strain, 557
reduced magnetization, 311
reduced temperature, 160
reducible representation, 593
reference phase, 126
regular (r, jR) system of points, 41
relative dielectric impermeability

tensor, 100
relative permeability of a ferro-

magnet, 511
relative spontaneous strain, 421,

427
relative spontaneous strain tensor,

428
relaxation, 634, 638
relaxation function, 639, 640
relaxation time, 366, 391
relaxational freezing, 386
Relaxational Variants, 253
Relaxed Bicrystal, 252
relaxor ferroelectric, 455, 494, 532,

550, 557, 559
remanent induction, 347, 541
remanent magnetization, 347
remanent polarization, 419
remote-control actuator, 552
renormalization-group (RG) the-

ory, 21
renormalization-group (RG) trans-

formation, 170
Renormalization-Group Theory, 170
reorientable ferroelectric, 372, 410

replica method, 325, 326
replica symmetry, 327
replica-replica correlation, 327
representation of an operator, 630
representation quadric, 79
Representations of crystallographic

point groups, 94
representations of space groups,

119
representative point, 624
representative set of F-operations,

191
residual entropy, 318
Resistivity of Magnetic Ceramics,

511
response, 634
response function, 10, 12, 13, 534,

632, 638, 640
reversible domain-wall bowing, 420
reversible ferroelectric, 373
reversible process, 620
RG theory, 341
right coset, 582
rigid motion, 41
RKKY interaction, 309
robotics, 563
Rochelle salt, 21, 22, 369
rod group, 65, 66, 250
Rosettes, 252
rotation of the indicatrix, 203
rotational domains, 222, 241, 243
rotational symmetry, 4, 44
rotational twins, 237, 256
Roughening Transition, 36
rubidium ammonium dihydrogen

phosphate, 387
Rubidium hydrogen selenate, 539
rugged energy landscape, 329

S-face, 38
S-twins, 257, 261, 264, 466
S-wall, 412, 462
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Salje equation, 476, 477
Sankhya system, 604
satellite diffraction peaks, 112
saturation magnetization, 305
saturation temperature, 152, 403,

405, 407, 408
scalars, 586
scaling, 20
scaling hypothesis, 167, 340
scaling relations, 167
scattering factor, 104
scattering vector, 104
second law of thermodynamics, 620
Second Orthogonality Relation for

Characters, 595
second orthogonality theorem for

characters, 95
second-rank polar tensor proper-

ties, 261
secondary ferroic, 12, 196
secondary order parameter, 377
SED, 280
Seitz operator, 53, 591
self-induced deformation twinning,

467
self-induced ferroelastic switching,

466
semicoherent boundary, 413
semigroup, 170
Sets with Algebraic Structure, 577
shape anisotropy, 330, 345
shape-memory alloy, 557
Shape-Memory Alloys in Smart St-

ructures, 562
shape-memory cycle, 453
shape-memory effect, vii, 450, 451,

467, 514, 557
Shape-Memory-Effect Applications,

551
shear direction, 235, 236
shear plane, 236
Sherrington-Kirkpatrick-Parisi for-

malism, 444
Shubnikov group, 18, 61, 246, 251,

276, 337
silicon, 238
similarity of the main underlying

interaction for all the three
types of primary ferro-
ics, 472

similarity transformation, 581, 592,
630

simple form, 52, 274, 276
simple shear, 235
simultaneously ferrobielastic and

ferroelastoelectric, 491
single IR criterion, 134
single-domain state, 221
single-particle potential, 149
singular line, 66
singular plane, 66
singular point, 40, 66
site Hamiltonian, 166
site symmetry, 69
site-symmetry group, 42, 57, 58
six bicrystal systems, 252
Size Effects in Ferroelastic Pow-

ders, 507
Size Effects in Ferroelectric Pow-

ders, 506
size effects in ferroic crystals, 503
Size Effects in Ferromagnetic Pow-

ders, 504
size-induced phase transition, 33
SK model, 325
slim ferroelectric hysteresis loop,

455
slim hysteresis loop, 391, 514
slip plane, 281
SMA, 557, 558, 562, 563
small magnetic particles embed-

ded in rock materials, 504
small representation, 118, 147
small self-limiting regions in large
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single crystals, 504
Small-Signal Applications of Fer-

rites, 542
smart artificial muscle, 565
smart cards, 545
smart composite, 557
smart material, viii, 13, 554
smart structure, 11, 536, 554
smart system, 554
smart traversing beam, 564
smart-structure applications, 467
SMAs as sensor elements, 563
SMAs in smart structures, 567
SME, 451, 453, 455, 457, 514, 515,

557
SME cycle, 451
SME in ferroelectric insulators, 455
SNBT classification, 258, 261
Snoek effect, 431
Snoek relaxation, 25, 292, 431
sodium selenate, 369
Soft and Hard Ferromagnetic Ma-

terials, 347
soft ferromagnetic alloys, 511
soft mode, 23, 145
solicitation, 268, 270, 454, 456
solicitation symmetry, 450
solid-on-solid (SOS) model, 36
soliton approach, 296
space inversion group, 600
space-group symmetry of the in-

terface, 244
Space-Group Types, 54
spatial autocorrelation function, 641
spatial dispersion, 27
spatial dispersion of the dielectric

permittivity tensor, 203
spatial inversion symmetry, 78
spatial modulation of the order

parameter, 183
spatial order parameter-order pa-

rameter correlation func-

tion, 633
special crystallographic orbit, 58
Special Magnetic Properties, 83
special point, 278
Special simple forms, 52
special symmetry evolution prin-

ciple, 610
Specific heat at constant pressure,

640
Specific heat at constant volume,

640
sperimagnet, 333
speromagnet, 333
spin glass, 315, 319, 483
spin-glass transition, 328
spin-glass transition temperature,

316
Spinel, 510
spinel law of twinning, 259
spontaneous breaking of symme-

try, 132
spontaneous deformation, 221
spontaneous macroscopic strain, 485
spontaneous magnetization, 86
spontaneous polarization, 9, 10,

86, 353, 419
spontaneous process, 623
spontaneous strain, 24, 221
spontaneous strain tensor, 196, 209
square domains, 478
stability condition, 138, 139
stability limit of the disordered ph-

ase, 140
stability limit of the ferroic phase,

534
stability limit of the ordered ph-

ase, 140
stability limit of the prototype,

534
stabilizer, 227
stabilizer of an orbit, 42
stabilizer subgroup, 41
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stacking faults, 280
star of the wavevector, 116
state function, 619, 620
static generalized susceptibility, 640
static susceptibility, 349
stationary process, 359, 634
statistical-mechanical entropy, 626
steady state, 619
strain tensor, 422, 423
strain-free heterophase interface,

464
strain-tensor coefficients, 423
stress quadric, 424
stress tensor, 424
stress-induced martensite, 559
stress-induced martensitic transi-

tion, 448, 456
stress-induced ordering, 431
stress-induced transformation, 549
stress-strain hysteresis, 25
stretched exponential, 334
stripe pattern, 478
structural classification of ferro-

elastic crystals, 433
structural composites, 516
structural coupling factor, 519
structural extended defect, 279
structural families of ferroelastics,

433
structural family, 280
structural phase transition, 145,

148
structural transition within a 180°

wall, 416
Structures with chains of ions, 368
Structures with octahedral units,

368
Structures with pyramidal units,

368
Structures with tetrahedral units,

368
subduced representation, 94, 596

subduction criterion, 135, 146
subduction frequency, 135
subgroup, 582
subgroup criterion, 133, 137
subgroup formation, 181
suborientation state, 270, 459
subspaces, 593
Suga-Seki definition of glass, 318
sum property of a composite, 517
superelasticity, 448, 559
superexchange, 309, 310
supergroup formation, 181
superparaelastic, 508
superparaelectric-behaviour model,

397
superparamagnet, 330
superparamagnetic state, 505
superparamagnet ism, 397, 504, 528
superstructure, 72
Symbol for Twinning, 265
Symmetric and Antisymmetric Prod-

uct Representations, 597
symmetrically prominent orienta-

tion, 231
symmetrization, 70, 181, 245, 520,

522, 603, 608, 609
symmetrized triple Kronecker prod-

uct, 136
symmetrizer, 246, 522, 609
symmetrizing factor, 249
symmetry analysis of domain struc-

ture, 220, 228
Symmetry Descent, 247
symmetry group, 578
symmetry group of an equilateral

triangle, 579
symmetry group of the crystal, 39
symmetry of a uniform magnetic

field, 65
Symmetry of Composites, 519
symmetry of the optical gyration

tensor, 203
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Symmetry of the Reciprocal Lat-
tice, 110

symmetry operations, 41
symmetry point, 112
symmetry principle, 93, 172, 606
symmetry principle for processes,

610
symmetry transformation, 578, 590
Symmetry Transformation Oper-

ators, 590
symmetry-based definition of a fer-

roic phase transition, 570
symmetry-dictated extrema, 278
Symmetry-Labeling of Domain States

and Domain Walls, 230
symmetry-restoring mode, 175
Symmorphic and Nonsymmorphic

Space Groups, 55
symmorphic space group, 119
symmorphic structure, 244

T-twins, 221, 230, 256, 264, 265,
280

tailored domain patterns, 546
TAP theory, 329
teilorites, 434
temperature dependence of relax-

ation time, 318
temperature independence of re-

sponse function, 404
ten possible connectivities for a

diphasic composite, 524
tensor classification of ferroic ma-

terials, 194, 219
tensor distinction of domains, 256,

266
Tensor Field Criterion, 137
terrace-ledge-kink (TLK) model,

34
Tertiary Ferroics, 197
tertiary-ferroic switching, 501
Tetartohedry, 53

tetra-methyl-ammonium bromo- or
chloro mercurate, 369

Tetragonal zirconia poly crystals,
550

theoretical growth morphologies of
crystals, 38

theory of a ferroelastic phase tran-
sition, 467

theory of colour symmetry, 67
theory of ferroic phase transitions,

466
Thermal expansivity, 522
thermal hysteresis, 294, 430
thermistor, 554, 556
thermodynamic parameter, 619
thermodynamic potentials, 620
thermodynamic process, 620
thermody namic-potent ial densities,

624
Thickness of Walls Separating Fe-

rromagnetic Domain Pairs,
346

thin-film integrated ferroelectrics,
545

third law of thermodynamics, 151,
152, 283

third-rank electric permittivity ten-
sor, 195

Thouless-Anderson-Palmer Theory,
328

Three-Dimensional Rotation Group
SO(3), 599

Three-Dimensional Rotation-Inversion
Group O(3), 599

time conjugate domain pair, 338
time correlation function, 634
time inversion group, 600
time-conjugate orientation states,

339
Time-Dependent Processes, 362
time-inversion operator, 60
time-reversal symmetry, 82, 203



Subject Index 739

time-symmetric point group, 190
TLQS, 239
TLS, 239
total inversion group, 600
total sublattice, 261
trace of a matrix, 630
transducer applications, 513
transformation, 575
Transformation Toughening of Ma-

terials, 548
transformation twinning, 222, 232,

234
transformation twins, 256
transformations of the first kind,

56
transition layer, 468
translation group, 54
Translation Group T(3), 599
translation twins, 221, 256
translational domains, 241
translational symmetry, 3
transposable or ambivalent domain

pair, 221
transverse isotropy, 91, 523
triaxial stress, 424
tricritical point, 143
tricrystal, 248
triphasic composites, 525
tris-sarcosine calcium chloride, 543
true piezoelectric effect, 494
true twins, 233
True-Proper Ferroelastic Transit-

ions and Critical Fluctu-
ations, 436

Tungsten-bronze group, 370
Tuning of Properties of Ferroics

by External Fields, 558
tweed pattern, 470, 474, 483
tweed structure, 263, 478, 483
tweed texture, 472, 478
twin index, 237, 239
twin obliquity, 237

twin plane, 235
twin wall, 280
Twinning by merohedry, 238
Twinning by pseudomerohedry, 238
Twinning by reticular merohedry,

238
Twinning by reticular pseudomero-

hedry, 238
twinning by TLS, 256
twinning by twin-lattice quasi sym-

metry, 239
twinning by twin-lattice symme-

try, 239
twinning operator, 237
twins in III-V compound semicon-

ductors, 260
two stable remanent states, 545
two-dimensional soft sectors, 437
Two-Level Model for Tunneling or

Thermal Hopping in Gla-
sses, 319

two-sided band, 251
two-sided layer group, 251
two-sided rosette symmetry, 251
two-strain theory, 447
two-way shape-memory cycle, 456
two-way SME, 452, 456, 563
Type MI transitions, 131, 446
Type 1 mechanical twins, 236
Type 2 mechanical twins, 236
Type A applications, 539
Type B applications, 543
Type C applications, 546
Type D applications, 548
Type E applications, 551
Type II antiferroelectrics, 499

ultrametric tree, 327
unfrustrated plaquette, 323
uniaxial (n = 1) ferroelectric, 406
uniaxial ferroelectric, 408, 410
uniaxial stress, 197, 424



740 Wadhawan: Introduction to Ferroic Materials

unit representation, 592
unit-cell Hamiltonian, 166
unit-cell transform, 105
unitary operator, 590
unitary representation, 592
universal group, 247, 604, 607
universal set, 574, 604
universality, 20, 404
universality class, 167, 340
unordered set, 220
Unrelaxed or Ideal Bicrystal, 251
Upper and Lower Marginal Dimen-

sionality, 163
upper critical dimensionality, 160
upper marginal dimensionality, 408,

437
Urea inclusion compounds, 291

Vacancy ordering, 283
variable acoustic delay line, 546
Variants, 220
varistor, 556
Vector Space, 586
vectors, 586
Vegard's law, 186
Venn-Euler diagram, 131, 445, 574
vibration-induced fluctuations of

birefringence, 524
virgin hysteresis curve, 347
virtual phase, 467
Vogel-Fulcher equation, 318, 392
volume dependence of the free en-

ergy, 472

W'-wall, 462
Woo-wall, 462
W/-wall, 462
W-wall, 412, 462
Wall Charge, 412
wavevector, 104
wavevector of an acoustic soft mode,

437
wavevector space, 107

Weak ferromagnetism, 313
Weiss constant, 302
well-defined twin law, 233
width of moving domain walls, 416
Wiener-Khintchine theorem, 636
Wigner theorem, 577
Wigner-Seitz cell, 111
Wilson fixed point, 404
Wulff construction, 275
Wulff theorem, 274
wurtzite, 280
WyckofT point of general position,

58
Wyckoff point of special position,

58
Wyckoff position, 57, 129, 261

XY Model, 166
XY-ferroelectric, 406

yield strength, 453

Zener-Eshelby interaction, 470, 471
zigzag displacement vectors, 293
zinc blende, 280
zinc oxide varistor, 556
zirconia, 528, 548
Zirconia toughened ceramics, 550


	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Part A: GENERAL CONSIDERATIONS
	1 INTRODUCTION
	1.1 OVERVIEW
	1.2 HISTORICAL
	1.2.1 Ferromagnetic Materials
	1.2.2 Critical-Point Phenomena
	1.2.3 Ferroelectric Materials
	1.2.4 Ferroelastic Materials
	1.2.5 Secondary and Higher-Order Ferroics
	1.2.6 Ferrogyrotropic Materials


	2 CRYSTALLOGRAPHY
	2.1 GROWTH OF A CRYSTAL
	2.1.1 Nucleation
	2.1.2 The Cluster-to-Crystal Transition
	2.1.3 Growth Mechanisms
	2.1.4 Crystal Morphology

	2.2 SYMMETRY OF A CRYSTAL
	2.2.1 The Symmetry Group of a Crystal
	2.2.2 Translational and Rotational Symmetry
	2.2.3 Crystal Structure
	2.2.4 Point Space
	2.2.5 Symmetry Elements in a Crystal
	2.2.6 Orbits; Stabilizers
	2.2.7 Attributes of Space
	2.2.8 Rational and Irrational Directions
	2.2.9 The Crystallographic Restriction on Axes of Symmetry
	2.2.10 Crystal Systems and Crystal Families
	2.2.11 Primitive and Nonprimitive Bravais Lattices
	2.2.12 Screw Axes and Glide Planes
	2.2.13 Wigner-Seitz Cell
	2.2.14 The Various Types of Unit Cells
	2.2.15 Crystallographic Point Groups
	2.2.16 Simple Forms
	2.2.17 Crystallographic Space Groups
	2.2.18 Magnetic Symmetry of Crystals
	2.2.19 Limit Groups
	2.2.20 Layer Groups and Rod Groups
	2.2.21 Colour Symmetry

	2.3 CRYSTAL SYMMETRY AND THE CURIE SHUBNIKOV PRINCIPLE
	2.3.1 The Asymmetric Unit
	2.3.2 Interplay between Dissymmetrization and Symmetrization

	2.4 INCOMMENSURATELY MODULATED CRYSTALS

	3 CRYSTAL PHYSICS
	3.1 TENSOR PROPERTIES
	3.1.1 Symmetrized and Alternated Tensors
	3.1.2 Polar Tensors and Axial Tensors
	3.1.3 Matter Tensors and Field tensors
	3.1.4 Intrinsic Symmetry of Tensors; the Jahn Symbol
	3.1.5 Extrinsic Symmetry of Tensors
	3.1.6 Tensor Invariants
	3.1.7 Equilibrium Properties and Transport Properties
	3.1.8 i-Tensors and c-Tensors
	3.1.9 Special Magnetic Properties

	3.2 RESTRICTIONS IMPOSED BY CRYSTAL SYMMETRY ON TENSOR PROPERTIES
	3.2.1 Neumann Theorem
	3.2.2 Crystallographic System of Coordinates
	3.2.3 Some Consequences of the Neumann Theorem

	3.3 THE HERMANN THEOREM OF CRYSTAL PHYSICS
	3.3.1 Cyclic Coordinates
	3.3.2 Proof of the Hermann Theorem
	3.3.3 Importance of the Hermann Theorem

	3.4 REPRESENTATIONS OF CRYSTALLOGRAPHIC POINT GROUPS
	3.5 EFFECT OF FIELDS ON TENSOR PROPERTIES

	4 CRYSTALS AND THE WAVEVECTOR SPACE
	4.1 DIFFRACTION BY A CRYSTAL. THE RECIPROCAL LATTICE
	4.1.1 Diffraction by a General Distribution of Scatterers
	4.1.2 Diffraction by a Crystal
	4.1.3 The Reciprocal Lattice
	4.1.4 The Brillouin Zone
	4.1.5 Diffraction by an Incommensurately Modulated Crystal

	4.2 REPRESENTATIONS OF CRYSTALLOGRAPHIC TRANSLATION GROUPS
	4.3 THE GROUP OF THE WAVEVECTOR, AND ITS REPRESENTATIONS
	4.4 REPRESENTATIONS OF SPACE GROUPS

	5 PHASE TRANSITIONS IN CRYSTALS
	5.1 PROTOTYPE SYMMETRY
	5.1.1 Guymont's Nondisruption Condition
	5.1.2 Parent-Clamping Approximation
	5.1.3 Definition of Prototype Symmetry

	5.2 A CRYSTALLOGRAPHIC CLASSIFICATION OF PHASE TRANSITIONS
	5.2.1 Disruptive Phase Transitions
	5.2.2 Nondisruptive Phase Transitions

	5.3 EXTENDED LANDAU THEORY OF CONTINUOUS PHASE TRANSITIONS
	5.3.1 Subgroup Criterion
	5.3.2 Order Parameter
	5.3.3 Isotropy Subgroups
	5.3.4 Physically Irreducible Representations
	5.3.5 Single-IR Criterion; Active IR
	5.3.6 Subduction Criterion; Subduction Frequency
	5.3.7 Chain Subduction Criterion
	5.3.8 Landau Stability Condition
	5.3.9 Lifshitz Homogeneity Condition
	5.3.10 Maximality Conjecture
	5.3.11 Tensor Field Criterion
	5.3.12 The Landau Expansion
	5.3.13 Stability Limit of a Phase
	5.3.14 Tricritical Points

	5.4 LATTICE DYNAMICS, SOFT MODES
	5.4.1 Ferrodistortive Transitions
	5.4.2 Antiferrodistortive Transitions
	5.4.3 Displacive vs. Order-Disorder Type Phase Transitions
	5.4.4 Overdamped and Under damped Soft Modes
	5.4.5 Hard Modes and Saturation Temperature for the Order Parameter

	5.5 CRITICAL-POINT PHENOMENA
	5.5.1 Critical Fluctuations
	5.5.2 Landau-Ginzburg Theory
	5.5.3 Ginzburg Criterion
	5.5.4 Critical Exponents
	5.5.5 Upper and Lower Marginal Dimensionality
	5.5.6 Models of Phase Transitions
	5.5.7 Universality Classes and Scaling
	5.5.8 Kadanoff Construction
	5.5.9 Renormalization-Group Theory

	5.6 SPONTANEOUS BREAKING OF SYMMETRY
	5.6.1 Continuous Broken Symmetries; Goldstone Modes
	5.6.2 Discrete Broken Symmetries

	5.7 DISCONTINUOUS PHASE TRANSITIONS
	5.7.1 Nondisruptive Discontinuous Transitions
	5.7.2 Disruptive Discontinuous Transitions

	5.8 TRANSITIONS TO AN INCOMMENSURATE PHASE
	5.9 INFLUENCE OF IMPURITIES ON STRUCTURAL PHASE TRANSITIONS

	6 CLASSIFICATION OF FERROIC MATERIALS. FERROGYROTROPY
	6.1 FERROIC SPECIES
	6.1.1 Aizu Symbol for Ferroic Species
	6.1.2 Orientation States
	6.1.3 F-Operations

	6.2 MACROSCOPIC CLASSIFICATION OF FERROIC MATERIALS
	6.2.1 Thermodynamic Considerations
	6.2.2 Tensor Classification of Ferroics

	6.3 FERROGYROTROPY
	6.3.1 The Optical Gyration Tensor
	6.3.2 The Hermann Theorem and Optical Gyration
	6.3.3 Optical Ferrogyrotropy as an Implicit Form of Ferroicity
	6.3.4 Optical Ferrogyrotropy vs. Ferroelasticity
	6.3.5 Partial Ferrogyrotropics
	6.3.6 The Acoustical Gyration Tensor
	6.3.7 Ferroacoustogyrotropy
	6.3.8 Acoustical Ferrogyrotropy as an Implicit Form of Ferroicity


	7 DOMAINS
	7.1 SOME SYMMETRY ASPECTS OF DOMAIN STRUCTURE
	7.1.1 Derivative Structures and Domain States
	7.1.2 Domain Pairs
	7.1.3 Single-Domain States
	7.1.4 Disorientations
	7.1.5 Antiphase Domains
	7.1.6 Orientational Twins
	7.1.7 Rotational Domains
	7.1.8 Domain Structure and the Curie Principle
	7.1.9 Symmetry of Single-Domain States
	7.1.10 Enumeration of Single-Domain States
	7.1.11 Symmetry-Labeling of Domain States and Domain Walls

	7.2 TWINNING
	7.2.1 Definition of Twinning
	7.2.2 Transformation Twins
	7.2.3 Growth Twins
	7.2.4 Mechanical Twins
	7.2.5 Friedel's Four Twin Types
	7.2.6 Manifestation of Twin Type in the Diffraction Pattern
	7.2.7 Hypertwins
	7.2.8 Hermann's Space-Group Decomposition Theorem

	7.3 BICRYSTALLOGRAPHY
	7.3.1 General Methodology
	7.3.2 Dichromatic Pattern
	7.3.3 Coincidence Lattice
	7.3.4 Dichromatic Complex
	7.3.5 Unrelaxed or Ideal Bicrystal
	7.3.6 Relaxed Bicrystal
	7.3.7 The Six Bicrystal Systems
	7.3.8 Bicrystallographic Variants

	7.4 A TENSOR CLASSIFICATION OF TWINNING
	7.4.1 S-TWINS
	7.4.2 N-Twins
	7.4.3 B-Twins
	7.4.4 T-Twins
	7.4.5 A Symbol for Twinning

	7.5 THE GROUP-TREE FORMALISM

	8 DOMAIN WALLS
	8.1 ORIENTATIONAL DEPENDENCE OF PROPERTIES OF INTERFACES
	8.1.1 Morphology of Crystals Grown from Crystalline Matrices
	8.1.2 Homophase Interfaces
	8.1.3 Symmetry-Dictated Extrema

	8.2 STRUCTURAL EXTENDED DEFECTS
	8.2.1 Aristotype and Hettotype Structures
	8.2.2 Antiphase Boundaries
	8.2.3 Stacking Faults
	8.2.4 General Twin Walls
	8.2.5 Grain Boundaries

	8.3 COMPOSITIONAL EXTENDED DEFECTS
	8.3.1 Crystallographic Shear Planes
	8.3.2 Irrational Shear Planes
	8.3.3 Chemical Twin Planes

	8.4 ATOMIC DISPLACEMENTS UNDERLYING THE MOVEMENT OF DOMAIN WALLS
	8.5 DOMAIN STRUCTURE OF INCOMMENSURATE PHASES


	Part B: CLASSES OF FERROICS, MICROSTRUCTURE, NANOSTRUCTURE, APPLICATIONS
	9 FERROMAGNETIC CRYSTALS
	9.1 SOME MAGNETIC PROPERTIES OF ORDERED CRYSTALS
	9.1.1 Magnetic Moment and Exchange Interaction
	9.1.2 Magnetic Ions in Solids
	9.1.3 Coupling Between Magnetic Moments
	9.1.4 Diamagnetism and Paramagnetism
	9.1.5 Ferromagnetism, Antiferromagnetism, and Ferrimagnetism
	9.1.6 Molecular Ferromagnets
	9.1.7 Metamagnetism and Incipient Ferromagnetism
	9.1.8 Helimagnetism

	9.2 SPIN GLASSES AND CLUSTER GLASSES
	9.2.1 Giant-Moment Ferromagnetism
	9.2.2 Characteristics of Spin Glasses
	9.2.3 The Glassy Phase and the Glass Transition
	9.2.4 Two-Level Model for Tunneling or Thermal Hopping in Glasses
	9.2.5 Broken Ergodicity
	9.2.6 Frustration
	9.2.7 Edwards Anderson Model and Sherrington Kirkpatrick Model
	9.2.8 Breaking of Replica Permutation Symmetry
	9.2.9 Thouless-Anderson-Palmer Theory
	9.2.10 Cluster Glasses, Mictomagnets, Superparamagnets
	9.2.11 Percolation-Related Magnetic Order
	9.2.12 Speromagnets and Sperimagnets
	9.2.13 Nonexponential Relaxation in Materials

	9.3 FERROMAGNETIC PHASE TRANSITIONS
	9.3.1 Prototype Symmetry for a Ferromagnetic Transition
	9.3.2 Ferromagnetic Species of Crystals
	9.3.3 Proper Ferromagnetic Transitions and Critical Phenomena
	9.3.4 Colour Symmetry and the Landau Potential
	9.3.5 Incommensurate Ferromagnetic Transitions

	9.4 DOMAIN STRUCTURE OF FERROMAGNETIC CRYSTALS
	9.4.1 The Various Contributions to the Internal Energy
	9.4.2 Orientations of Walls between Ferromagnetic Domain Pairs
	9.4.3 Thickness of Walls Separating Ferromagnetic Domain Pairs
	9.4.4 The Ferromagnetic Hysteresis Loop

	9.5 DYNAMICS OF FERROMAGNETIC BEHAVIOUR

	10 FERROELECTRIC CRYSTALS
	10.1 SOME DIELECTRIC PROPERTIES OF ORDERED CRYSTALS
	10.1.1 Polarization
	10.1.2 Pyroelectric Effect
	10.1.3 Effect of Static Electric Field
	10.1.4 Thermodynamics and Symmetry of Dielectric Properties
	10.1.5 A Crystallophysical Perspective for Ferroelectrics
	10.1.6 Dielectric Response and Relaxation
	10.1.7 Absolute and Relative Spontaneous Polarization

	10.2 STRUCTURAL CLASSIFICATION OF FERROELECTRICS
	10.2.1 Hydrogen-Bonded Ferroelectrics
	10.2.2 Non-Hydrogen-Bonded Ferroelectrics

	10.3 FERROELECTRIC PHASE TRANSITIONS
	10.3.1 Proper Ferroelectric Phase Transitions
	10.3.2 Improper or Faint Ferroelectric Phase Transitions
	10.3.3 Pseudoproper Ferroelectric Phase Transitions
	10.3.4 Ferroelectric Diffuse Transitions

	10.4 DIPOLAR GLASSES. RELAXOR FERROELECTRICS
	10.4.1 Classes of Glassy, Compositionally Modified, Ferroelectrics with Perovskite Type Structure
	10.4.2 Salient Features of Ferroelectric Crystals with a Dipolar-Glass Transition
	10.4.3 Spin Glasses vs. Dipolar Glasses
	10.4.4 Dipolar-Glass Transitions vs. Ferroelectric Phase Transitions
	10.4.5 Relaxor Ferroelectrics
	10.4.6 Field-Induced Phase Transitions in Relaxor Ferroelectrics

	10.5 QUANTUM FERROELECTRICS
	10.5.1 Displacive Limit of a Structural Phase Transition
	10.5.2 Modern Approach to Quantum Ferroelectrics
	10.5.3 Strontium Calcium Titanate
	10.5.4 Potassium Tantalate Niobate
	10.5.5 Potassium Dihydrogen Phosphate

	10.6 DOMAIN STRUCTURE OF FERROELECTRIC CRYSTALS
	10.6.1 Domains in a Ferroelectric Crystal
	10.6.2 Orientation of Walls Between Ferroelectric Domain Pairs
	10.6.3 Thickness of Walls Between Ferroelectric Domain Pairs

	10.7 FERROELECTRIC DOMAIN SWITCHING
	10.7.1 Kinetics of Domain Switching in Ferroelectrics
	10.7.2 The Ferroelectric Hysteresis Loop


	11 FERROELASTIC CRYSTALS
	11.1 SOME ELASTIC PROPERTIES OF ORDERED CRYSTALS
	11.1.1 Strain, Stress, Compliance
	11.1.2 Absolute Spontaneous Strain
	11.1.3 Relative Spontaneous Strain
	11.1.4 Anelasticity

	11.2 STRUCTURAL CLASSIFICATION OF FERROELASTICS
	11.3 FERROELASTIC PHASE TRANSITIONS
	11.3.1 True-Proper and Pseudoproper Ferroelastic Phase Transitions
	11.3.2 Improper Ferroelastic Phase Transitions

	11.4 QUADRUPOLAR GLASSES
	11.5 MARTENSITIC PHASE TRANSITIONS
	11.5.1 General Features
	11.5.2 Pseudoelasticity and Pseudoplasticity
	11.5.3 Crystallographic Reversibility of a Phase Transition
	11.5.4 Shape-Memory Effect
	11.5.5 Falk's Universal Model for Shape-Memory Alloys

	11.6 DOMAIN STRUCTURE OF FERROELASTIC CRYSTALS
	11.6.1 Domains in Ferroelastic Crystals
	11.6.2 Suborientation States
	11.6.3 Double Ferroelasticity
	11.6.4 Orientation of Walls Between Ferroelastic Domain Pairs
	11.6.5 Phase Boundaries and Poly domain Phases in Ferroelastics
	11.6.6 Some Further Aspects of the Effect of Long Ranged Elastic Interaction on Domain Structure
	11.6.7 Ferrielastics and Their Domain Structure

	11.7 FERROELASTIC DOMAIN SWITCHING
	11.7.1 The Optimum Switching Configuration
	11.7.2 Plasticity Related to Ferroelastic Domain Switching
	11.7.3 Mobility and Thickness of Domain Boundaries in Ferroelastics
	11.7.4 The Ferroelastic Hysteresis Loop


	12 SECONDARY AND HIGHER-ORDER FERROICS
	12.1 SECONDARY AND HIGHER ORDER FERROIC PHASE TRANSITIONS
	12.2 FERROBIELECTRICS AND FERROBIMAGNETICS
	12.3 FERROBIELASTICS
	12.4 FERROELASTOELECTRICS
	12.5 FERROMAGNETOELASTICS
	12.6 FERROMAGNETOELECTRICS
	12.7 TERTIARY FERROICS

	13 POLYCRYSTAL FERROICS AND COMPOSITE FERROICS
	13.1 SIZE EFFECTS IN FERROIC MATERIALS
	13.1.1 General Considerations
	13.1.2 Size Effects in Ferromagnetic Powders
	13.1.3 Size Effects in Ferroelectric Powders
	13.1.4 Size Effects in Ferroelastic Powders

	13.2 POLYCRYSTAL FERROICS
	13.2.1 Polycrystal Ferromagnetics
	13.2.2 Polycrystal Ferroelectrics
	13.2.3 Polycrystal Ferroelastics

	13.3 COMPOSITES WITH AT LEAST ONE FERROIC CONSTITUENT
	13.3.1 General Considerations
	13.3.2 Sum, Combination, and Product Properties of Composites
	13.3.3 Symmetry of Composites
	13.3.4 Connectivity of Composites
	13.3.5 Transitions in Composites
	13.3.6 Ferroic Nanocomposites


	14 APPLICATIONS OF FERROIC MATERIALS
	14.1 SALIENT FEATURES OF FERROIC MATERIALS
	14.1.1 Existence of the Ferroic Orientation State
	14.1.2 Mobility of Domain Boundaries and Phase Boundaries
	14.1.3 Enhancement of Certain Macroscopic Properties Near a Ferroic Phase Transition
	14.1.4 A Comparative Analysis of the Properties of Ferroic Materials

	14.2 APPLICATIONS
	14.2.1 Applications Related to the Existence of the Ferroic Orientation State
	14.2.2 Applications Exploiting the Mobility of Domain Boundaries and Phase Boundaries
	14.2.3 Applications Using Enhanced Macroscopic Properties near the Ferroic Phase Transition
	14.2.4 Applications Involving Field-Induced Phase Transitions
	14.2.5 Applications Involving Transport Properties

	14.3 FERROIC MATERIALS IN SMART STRUCTURES
	14.3.1 Smart Systems, Structures, and Materials
	14.3.2 Passively Smart Structures
	14.3.3 Actively Smart Structures
	14.3.4 Tuning of Properties of Ferroics by External Fields
	14.3.5 Applications of Ferroic Materials in Smart Structures


	15 EPILOGUE

	APPENDICES
	APPENDIX A: SET THEORY
	APPENDIX B: GROUP THEORY
	B.1 ABSTRACT GROUP THEORY
	B.2 LINEAR SPACES AND OPERATORS
	B.3 REPRESENTATIONS OF FINITE GROUPS
	B.4 SOME CONTINUOUS GROUPS

	APPENDIX C: THE CURIE SHUBNIKOV PRINCIPLE
	C.1 THE CURIE PRINCIPLE. DISSYMMETRIZATION
	C.2 THE CURIE SHUBNIKOV PRINCIPLE. SYMMETRIZATION
	C.3 LATENT SYMMETRY

	APPENDIX D: THE FOURIER TRANSFORM
	APPENDIX E: THERMODYNAMICS AND STATISTICAL MECHANICS
	E.1 THERMODYNAMICS
	E.1.1 Thermodynamic Potentials
	E.1.2 Homogeneous Functions

	E.2 EQUILIBRIUM STATISTICAL MECHANICS
	E.2.1 Microcanonical Ensemble
	E.2.2 Canonical Ensemble
	E.2.3 Partition Function
	E.2.4 Quantum Statistical Mechanics
	E.2.5 Fluctuations
	E.2.6 Correlation Functions

	E.3 NONEQUILIBRIUM STATISTICAL MECHANICS
	E.3.1 Linear Response Theory
	E.3.2 Time Correlation Functions
	E.3.3 Fluctuation Dissipation Theorem
	E.3.4 Response Function
	E.3.5 Relaxation
	E.3.6 Generalized Susceptibility



	References Cited
	Author Index
	Subject Index



