
[image:]

Disclaimer

The information in this eBook is not meant to be applied as is in a production environment. By applying it to a production environment, you take full responsibility for your actions.

The author has made every effort to ensure the accuracy of the information within this book was correct at the time of publication. The author does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause.

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic or mechanical, recording or by any information storage and retrieval system, without written permission from the author.

Acknowledgments

Special thanks to Austin Kodra for the edits.

Copyright

Intermediate Tutorials for Machine Learning

© Copyright 2020 Derrick Mwiti. All Rights Reserved.

Other Things to Learn

Learn Python

Learn Data Science

Learn Deep Learning

Intermediate Tutorials for Machine Learning

Top 10 Tricks for TensorFlow and Google Colab Users

Google’s Colab is a truly innovative product for machine learning. It enables machine engineers to run Notebooks and easily share them with colleagues. Another key advantage is access to GPUs and TPUs.

In this piece, we’ll highlight some of the tips and tricks that will help you in getting the best out of Google’s Colab.

10. Specify TensorFlow version

Very soon, the default TF version in Colab will be TF 2. What this means is that if you have Notebooks running in TF 1, they will probably fail. In order to ensure that your code doesn’t break, it’s recommended that you specify the TF version in all your Notebooks. This way, if the default version changes, your Notebooks still work.

[image:]

9. Use TensorBoard

Google Colab provides support for TensorBoard by default. This is a great tool for visualizing the performance of your model. Use it!

[image:]

8. Train TFLite Models on Colab

When building mobile machine learning models, you can take advantage of Colab’s resources to train your models. The alternative to this is training your model using other expensive cloud solutions or on your laptop, which might not have the needed compute power.

7. Use TPUs

Should you need more powerful processing for your model, then change your default runtime to the TPU. However, you should only use TPUs when you really need them, because their availability is on a limited basis, given how resource-intensive they are.

[image:]

6. Use Local Runtimes

In the event that you have your own powerful hardware accelerator, then Colab allows you to connect to it. Just click on the connect drop down and select your preferred runtime.

[image:]

5. Use Colab Scratchpad

Sometimes you might find yourself in a situation where you want to test things out quickly. Instead of creating a new Notebook that you don’t intend to save on your drive, you can use an empty Notebook that doesn’t save to your drive.

4. Copy Data to Colabs VM

In the interest of speeding up the loading of data, it’s recommended that you copy your data files into Colab’s VM instead of loading them from elsewhere.

3. Check Your Ram and Resource Limits

Since Colab’s resources are free, it means that they are not guaranteed. Therefore, keep your eye on the RAM and Disk usage to ensure that you don’t run out of resources.

[image:]

2. Close Tabs when Done

Closing tabs when done ensures that you disconnect from the VM and therefore save resources.

1. Use GPUs only when Needed

Since these resources are subject to restriction, save your GPU usage for when you really need it. However, if you need to work with Colab without the restrictions of the free version, you can check out the pro version.

I hope that you will find these Colab tips and tricks for TensorFlow helpful.

Federated Learning

Advancements in the power of machine learning have brought with them major data privacy concerns. This is especially true when it comes to training machine learning models with data obtained from the interaction of users with devices such as smartphones.

So the big question is, how do we train and improve these on-device machine learning models without sharing personally-identifiable data? That is the question that we’ll seek to answer in this look at a technique known as federated learning.

Centralized Machine Learning

The traditional process for training a machine learning model involves uploading data to a server and using that to train models. This way of training works just fine as long as the privacy of the data is not a concern.

However, when it comes to training machine learning models where personally identifiable data is involved (on-device, or in industries with particularly sensitive data like healthcare), this approach becomes unsuitable.

Training models on a centralized server also means that you need enormous amounts of storage space, as well as world-class security to avoid data breaches. But imagine if you were able to train your models with data that’s locally stored on a user's device.

Machine Learning on Decentralized Data

Enter:
 Federated learning
 .

Federated learning is a model training technique that enables devices to learn collaboratively from a shared model. The shared model is first trained on a server using proxy data. Each device then downloads the model and improves it using data — federated data — from the device.

The device trains the model with the locally available data. The changes made to the model are summarized as an update that is then sent to the cloud. The training data and individual updates remain on the device. In order to ensure faster uploads of theses updates, the model is compressed using random rotations and quantization. When the devices send their specific models to the server, the models are averaged to obtain a single combined model. This is done for several iterations until a high-quality model is obtained.

[image:]

Compared to centralized machine learning, federated learning has a couple of specific advantages:

Ensuring privacy
 , since the data remains on the user’s device.

Lower latency
 , because the updated model can be used to make predictions on the user’s device.

Smarter models
 , given the collaborative training process.

Less power consumption
 , as models are trained on a user’s device.

[image:]

In order to ensure that an application’s user experience is not hampered, the model training happens when the user's device is on free WiFi, is idle, and connected to a power supply.

[image:]

TensorFlow Federated

TensorFlow enables the application of federated learning by leveraging its own framework.

T
 ensorFlow Federated (TFF)
 is an open-source framework for machine learning and other computations on decentralized data.

TFF has two layers: the Federated Learning (FL) API and the Federated Core (FC) API. The Federated Learning (FL) API allows developers to apply federated training and evaluation to existing TensorFlow models.

The Federated Core (FC) API is the core foundation for federated learning. It is a system of low-level interfaces for writing federated algorithms in combination with distributed communication operations in strongly-typed functional programming environments.

An example application of federated learning is in

Google’s Gboard keyboard

 .

In this case, a recurrent neural network language model is trained using decentralized on-device datasets. Its aim is to predict the next word on smartphone keyboards.

[image:]

Training the model on client devices using the federated averaging algorithm is shown to perform better than server-based training using stochastic gradient descent. The algorithm is used on the server to combine updates from the clients and produce a new global model.

In this case, the use of federated learning led to a 24% increase in next-word prediction accuracy. Other improvements to the Gboard experience resulting from this are enhanced emoji and GIF predictions. This means that users are now seeing more relevant emojis and GIFs when using Gboard.

I hope this activates your interest in

federated learning

 and its potential to drive a new wave of on-device training, application personalization and increased data privacy.

Machine Learning in Dask

Processing a couple of gigabytes of data on one's laptop is usually an uphill task, unless the laptop has high RAM and a whole lot of compute power.

That notwithstanding, data scientists still have to look for alternative solutions to deal with this problem. Some of the hacks involve tweaking Pandas to enable it to process huge datasets, buying a GPU machine, or purchasing compute power on the cloud. In this piece, we’ll see how we can use

Dask

 to work with large datasets on our local machines.

Dask and Python

Dask is a flexible library for parallel computing in Python. It’s built to integrate nicely with other open-source projects such as NumPy, Pandas, and scikit-learn. In Dask, Dask arrays are the equivalent of NumPy Arrays, Dask DataFrames the equivalent of Pandas DataFrames, and Dask-ML the equivalent of scikit-learn.

These similarities make it very easy to adopt Dask into your workflow. The advantage of using Dask is that you can scale computations to multiple cores on your computer. This enables you to work on large datasets that don’t fit into memory. It also aids in speeding up computations that would ordinarily take a long time.

[image:]

Dask DataFrames

When loading in huge data, Dask will usually read in a sample of the data in order to infer the data types. This will mostly lead to issues if a given column has different data types. In order to avoid type errors, it’s usually good practice to declare the data types beforehand. Dask is able to load huge files by cutting it up into chunks, as defined by the blocksize parameter.

data_types ={'column1': str,'column2': float}

df = dd.read_csv(“data,csv”,dtype = data_types,blocksize=64000000)

[image:]

Commands in a Dask DataFrame are mostly similar to the ones in Pandas. For example, getting the head and tail is similar:

df.head()

df.tail()

Functions on the DataFrame are run lazily. This means that they aren’t computed until the compute function is called.

df.isnull().sum().compute()

Since the data is loaded in partitions, some Pandas functions such as sort_values() will fail. The workaround is to use the
 nlargest()
 function.

Dask Clusters

Parallel computation is key in Dask, as it allows one to run computations on multiple cores. Dask provides a machine scheduler that works on a single machine. It does not scale. It also offers a distributed scheduler that can scale to multiple machines.

Using
 dask.distributed
 requires that you set up a
 Client
 . This should be the first thing you do if you intend to use
 dask.distributed
 in your analysis. It offers low latency, data locality, data sharing between the workers, and is easy to set up.

from dask.distributed import Client

client = Client()

[image:]

Using
 dask.distributed
 is advantageous even on a single machine, because it offers some diagnostic features via a dashboard.

Failure to declare a
 Client
 will leave you using the single machine scheduler by default. It provides parallelism on a single computer by using processes or threads.

Dask ML

Dask also enables you to perform machine learning training and prediction in a parallel manner. The goal of
 dask-ml
 is to offer machine learning that’s scalable. When you declare
 n_jobs = -1
 in scikit-learn, you can run your computations in parallel. Dask utilizes this capability in order to enable you to distribute this compute in a cluster. This is done with the help of
 joblib
 , a package that allows for parallelism and pipelining in Python. Using
 Dask ML
 , you can implement scikit-learn models as well as other libraries such as XGboost.

This is what a simple implementation would look like.

First import train_test_split as usual for splitting your data into training and testing sets.

from dask_ml.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Next, import the model you’d like to use and instantiate it.

from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(verbose=1)

You then have to import
 joblib
 to enable parallel computation.

Next, run your training and prediction using the parallel backend.

from sklearn.externals.joblib import parallel_backend

with parallel_backend(‘dask’):

model.fit(X_train,y_train)

predictions = model.predict(X_test)

Limitations and Memory Usage

Individual tasks in Dask can’t run in parallel. The workers are Python processes that inherit all the advantages and disadvantages of Python computations. Care should also be taken when working in a distributed environment to ensure data security and privacy.

Dask has a central scheduler that tracks data on worker nodes and on the cluster. This scheduler also controls the freeing of data from the cluster. Once a task is completed it clears it from the memory in order to free up memory for other tasks. If something is needed by a certain client, or if it’s important for ongoing computations, it’s held in memory.

Another Dask limitation is that it doesn’t implement all functions in Pandas. The Pandas interface is large, so Dask doesn’t implement it in its entirety. This means that trying some of these operations on Dask can be an uphill climb. Also, the operations that are slow on Pandas are also slow on Dask.

When you wouldn’t need a Dask DataFrame

In the following situations, you may not need Dask:

When there are Pandas functions you need that haven’t been implemented in Dask.

When your data fits perfectly into your computer’s memory.

When your data isn’t in tabular form. In this case, try

dask.bag

 or

dask.array

 .

Final Thoughts

In this article, we have seen how we can use Dask to work with a huge dataset on our local machine or in a distributed manner. We’ve seen that we can use Dask because of its familiar syntax and ability to scale. It has the ability to scale to thousands of cores.

We’ve also seen that we can use it in machine learning for training and running predictions. You can learn more by checking out

these presentations

 in the official documentation.

Image Segmentation with Mask R-CNN

The Mask R-CNN model classifies and localizes objects using bounding boxes. It also classifies each pixel into a set of categories.

Therefore, it also produces a segmentation mask for each Region of Interest. In this piece, we’ll work through an implementation of Mask R-CNN in Python for image segmentation.

Image segmentation (also knowns as semantic segmentation) refers to the process of linking each pixel in an image to a class label. These labels could include a person, car, flower, piece of furniture, etc., just to mention a few.

We can think of semantic segmentation as image classification at a pixel level. For example, in an image that has many cars, segmentation will label all the objects as car objects. However, a separate class of models known as instance segmentation is able to label the separate instances where an object appears in an image. This kind of segmentation can be very useful in applications that are used to count the number of objects, such as counting the amount of foot traffic in a mall.

We’ll use an open-source implementation of Mask R-CNN by Matterport. It produces bounding boxes and segmentation masks for the objects detected in an image. It’s based on Feature Pyramid Network (FPN) and a ResNet101 backbone. The project contains pre-trained weights from MS COCO. Therefore, we don’t have to train the model from scratch.

We’ll start with a couple of imports:

os
 to set the path of our root directory

skimage
 for image processing

Matplotlib
 for visualization

We then set the root directory.

import os

import sys

import skimage.io

import matplotlib

import matplotlib.pyplot as plt

ROOT_DIR = os.path.abspath("./")

We can now import Mask R-CNN.

sys.path.append(ROOT_DIR)

from mrcnn import utils

import mrcnn.model as modellib

from mrcnn import visualize

Next, we import the configurations for MS COCO. We then set the path for saving the trained model and the logs.

sys.path.append(os.path.join(ROOT_DIR, "coco/"))

import coco

MODEL_DIR = os.path.join(ROOT_DIR, "logs")

COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")

If the COCO weights aren’t available in our local directory, we download them. After that, we set the path for the images that we’ll use for image segmentation:

if not os.path.exists(COCO_MODEL_PATH):

utils.download_trained_weights(COCO_MODEL_PATH)

IMAGE_DIR = os.path.join(ROOT_DIR, "images")

Let’s use the COCO config to set the batch size. We set the batch size to 1 since we’ll be running predictions on one image. We then display the configurations.

class InferenceConfig(coco.CocoConfig):

GPU_COUNT = 1

IMAGES_PER_GPU = 1

config = InferenceConfig()

config.display()

[image:]

Next, we can create an instance of the model. We set the model to inference because we’re not going to be training it. We then load the COCO weights that we downloaded earlier.

model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)

model.load_weights(COCO_MODEL_PATH, by_name=True)

[image:]

Let’s now process the image that we’re going to use:

	

image
 =
 skimage.io.
 imread
 (os.path.
 join
 (
 IMAGE_DIR
 ,
 'animals.jpg'
))

With that in place, we can now run the prediction:

	

results
 =
 model.
 detect
 ([image], verbose
 =1
)

Visualizing the results is pretty straightforward:

r = results[0]

visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],

class_names, r['scores'])

[image:]

As you can see its pretty simple. However, there are a couple of differences between this implementation and the

official paper:

Resizing of all images to the same size to support the training of multiple images per batch. In the official paper, resizing is done in a manner that the smallest side is 800px and the largest is trimmed at 1000px.

Ignoring of bounding boxes that come with the dataset in order to generate them on the fly.

Use of a learning rate lower than the 0.02 proposed in the paper. Lower learning rates converged faster.

Since I made some slight adjustments from the original code on GitHub, I am

providing the source code used for this article

 .

Conclusion

As you can see, Matterport provides a quick and easy way to implement image segmentation with Mask R-CNN. If you’d like to do your own training on images check this

Notebook

 on their GitHub page. You can also check out my other article on image segmentation.

LightGBM: A Highly-Efficient Gradient Boosting Decision Tree

The power of the LightGBM algorithm cannot be taken lightly (pun intended). LightGBM is a distributed and efficient
 gradient boosting framework
 that uses tree-based learning. It’s

histogram-based

 and places continuous values into discrete bins, which leads to faster training and more efficient memory usage. In this piece, we’ll explore LightGBM in depth.

LightGBM Advantages

According to the official docs, here are the advantages of the LightGBM framework:

Faster training speed and higher efficiency

Lower memory usage

Better accuracy

Support of parallel and GPU learning

Capable of handling large-scale data

Parameter Tuning

The framework uses a leaf-wise tree growth algorithm, which is unlike many other tree-based algorithms that use depth-wise growth. Leaf-wise tree growth algorithms tend to converge faster than depth-wise ones. However, they tend to be more prone to overfitting.

[image:]

[image:]

Here are the parameters we need to tune to get good results on a leaf-wise tree algorithm:

num_leaves
 : Setting the number of leaves to num_leaves = 2^(max_depth) will give you the same number of leaves as a depth-wise tree. However, it isn’t a good practice. Ideally, the number of leaves should be smaller than 2^(max_depth)

min_data_in_leaf
 prevents overfitting. It’s set depending on num_leaves and the number of training samples. For a large dataset, it can be set to hundreds or thousands.

max_depth
 for limiting the depth of the tree.

Faster speeds on the algorithm can be obtained by using:

a small
 max_bin

save_binary
 to speed up data loading in future learning

parallel learning

bagging
 , through setting
 bagging_freq
 and
 bagging_fraction

feature_fraction
 for feature sub-sampling

In order to get better accuracy, one can use a large max_bin, use a small learning rate with large num_iterations, and use more training data. One can also use many num_leaves, but it may lead to overfitting. Speaking of overfitting, you can deal with it by:

Increasing path_smooth

Using a larger training set

Trying
 lambda_l1
 ,
 lambda_l2
 , and
 min_gain_to_split
 for regularization

Avoid growing a very deep tree

Categorical Features

A common way of processing categorical features in machine learning is one-hot encoding. This method is not optimal for tree learners, and especially for high-cardinality categorical features. Trees built on one-hot encoded features are unbalanced and have to grow too deep in order to obtain good accuracy.

Using the
 categorical_feature
 attribute, we can specify categorical features (without one-hot encoding) for their model. Categorical features should be encoded as non-negative integers less than
 Int32.MaxValue
 . They should start from zero.

LightGBM Applications

LightGBM can be best applied to the following problems:

Binary classification using the
 logloss
 objective function

Regression using the
 L2
 loss

Multi-classification

Cross-entropy using the
 logloss
 objective function

LambdaRank using
 lambdarank
 with NDCG as the objective function

Metrics

The metrics supported by LightGBM are:

L1 loss

L2 loss

Log loss

Classification error rate

AUC

NDCG

MAP

Multi-class log loss

Multi-class error rate

Fair

Huber

Poisson

Quantile

MAPE

Kullback-Leibler

Gamma

Tweedie

Handling Missing Values

By default, LightGBM is able to handle missing values. You can disable this by setting
 use_missing=false
 . It uses NA to represent missing values, but to use zero you can set it
 zero_as_missing=true
 .

Core Parameters

Here are some of the core parameters for LightGBM:

task defaults
 to train. Other options are predict, convert_model, and refit. The alias for this parameter is
 task_type
 .
 convert_model
 converts the model into an if-else format.

objective
 defaults to regression. The other options are
 regression_l1
 ,
 huber
 ,
 fair
 ,
 poisson
 ,
 quantile
 ,
 mape
 ,
 gamma
 ,
 tweedie
 ,
 binary
 ,
 multiclass
 ,
 multiclassova
 ,
 cross_entropy
 ,
 cross_entropy_lambda
 ,
 lambdarank
 , and
 rank_xendcg
 . The aliases for this parameter are
 objective_type
 ,
 app
 , and
 application
 .

boosting
 defaults to
 gbdt
 — a traditional Gradient Boosting Decision Tree. Other options are rf, — Random Forest, dart, — Dropouts meet Multiple Additive Regression Trees, goss — Gradient-based One-Side Sampling. This parameter’s aliases are boosting_type and boost.

num_leaves
 : maximum tree leaves for base learners — defaults to 31

max_depth
 : maximum tree depth for base learners

learning_rate
 : the boosting learning rate

n_estimators
 : number of boosted trees to fit — defaults to 200000

importance_type
 : the type of importance to be filled in the
 feature_importances_
 . Using split means that the number of times a feature is used in a model will be contained in the result.

device_type
 : device for the tree learning — CPU Or GPU. Can be used with device as the alias.

Learning Control Parameters

Let’s look at a couple of learning control parameters:

force_col_wise
 : When set to true, it forces col-wise histogram building. It’s recommended to set this to true when the number of columns is large, or the total number of bins is large. You can also set it to true when you want to reduce cost on memory, and when the num_threads is large, e.g greater than 20. This parameter is only used with a CPU.

force_row_wise
 : When set to true, it forces row-wise histogram building. This parameter is only used with a CPU. You can turn this one on when the number of data points is large, the total number of bins is smaller, and when the num_threads is small (e.g. less than or equal to 16). It can also be set to true when you want to use a small bagging_fraction or goss boosting to speed up training.

neg_bagging_fraction
 : Used for imbalanced binary classification problems.

bagging_freq
 : The frequency for bagging. Zero means bagging is disabled.

feature_fraction: Can be used to deal with overfitting. For instance, setting it to 0.5 would mean that LightGBM will select 50% of the features at each tree node.

extra_trees
 : Set to true when you want to use extremely randomized trees.

early_stopping_round: When true, training stops once a certain parameter fails to improve.

max_drop
 : Defaults to 50. Signifies the number of trees to drop on every iteration.

cat_l2
 : L2 regularization in a categorical split

cat_smooth
 : Reduces the effect of noise in categorical features, especially for categories with limited data.

path_smooth
 : Helps prevent overfitting on leaves with few samples.

Objective Parameters

Here are a couple of objective parameters to take note of:

is_unbalance
 : Can be set to true if the training data is unbalanced for classification problems.

num_class
 : Used to indicate the number of classes in a multi-classification problem.

scale_pos_weight
 : Weight of labels with positive class. Cannot be used together with is_unbalance. This parameter increases the overall performance metric of the model but may result in poor estimates of the individual class probabilities.

Practical Implementation

We’ll now look at a quick implementation of the algorithm. We’ll use scikit-lean’s wrapper for the classifier.

As always, we start by importing the model:

from lightgbm import LGBMClassifier

The next step is to create an instance of the model while setting the objective. The options for the objective are regression for
 LGBMRegressor
 ,
 binary
 or
 multi-class
 for
 LGBMClassifier
 , and
 LambdaRank
 for
 LGBMRanker
 .

model = LGBMClassifier(objective=’multiclass’)

When fitting the model, we can set the categorical features:

model.fit(X_train,y_train,categorical_feature=[0,3])

Once you run predictions on the model, you can also obtain the important features:

predictions = model.predict(X_test)

importances = model.feature_importances_

Conclusion

I hope that this has given you enough background into LightGBM to start experimenting on your own. We’ve seen that we can use it for both regression and classification problems. For more information on the framework, you can check out the official

docs

 .

Pruning Machine Learning Models in TensorFlow

Pruning is a model optimization technique that involves eliminating unnecessary values in the weight tensor. This results in smaller models with accuracy very close to the baseline model.

In this article, we’ll work through an example as we apply pruning and view the effect on the final model size and prediction errors.

Import the Usual Suspects

Our first step is to get a couple of imports out of the way:

os
 and Zipfile will help us in assessing the size of the models.

tensorflow_model_optimization
 for model pruning.

load_model
 for loading a saved model.

and of course
 tensorflow
 and
 keras
 .

Finally, we initialize TensorBoard so that we’ll able to visualize the models:

import os

import zipfile

import tensorflow as tf

import tensorflow_model_optimization as tfmot

from tensorflow.keras.models import load_model

from tensorflow import keras

%load_ext tensorboard

Dataset Generation

For this experiment, we’ll generate a regression dataset using scikit-learn. Thereafter, we split the dataset into a training and test set:

from sklearn.datasets import make_friedman1

X, y = make_friedman1(n_samples=10000, n_features=10, random_state=0)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

Model Without Pruning

We’ll create a simple neural network to predict the target variable y. We’ll then check the mean squared error. After this, we’ll compare this with the entire model pruned, and then with just the Dense layer pruned.

def setup_model():

model = keras.Sequential([

keras.layers.Dense(units = 128, activation='relu',input_shape=(X_train.shape[1],)),

keras.layers.Dense(units=1, activation='relu')])

return model

Next, we step up a callback to stop training the model once it stops improving, after 30 epochs.

early_stop = keras.callbacks.EarlyStopping(monitor=’val_loss’, patience=30)

Let’s print a summary of the model so that we can compare it with the summary of the pruned models.

model = setup_model()

model.summary()

[image:]

Let’s compile the model and train it.

model.compile(optimizer=’adam’,

loss=tf.keras.losses.mean_squared_error,

metrics=[‘mae’, ‘mse’])

model.fit(X_train,y_train,epochs=300,validation_split=0.2,callbacks=early_stop,verbose=0)

Since it’s a regression problem, we’re monitoring the mean absolute error and the mean squared error.

Here’s the model plotted to an image. The input is 10 since the dataset we generated has 10 features.

tf.keras.utils.plot_model(

model,

to_file=”model.png”,

show_shapes=True,

show_layer_names=True,

rankdir=”TB”,

expand_nested=True,

dpi=96,

)

[image:]

Let’s now check the mean squared error. We can move on to the next section and see how this error changes when we prune the entire model.

from sklearn.metrics import mean_squared_error

predictions = model.predict(X_test)

print(‘Without Pruning MSE %.4f’ % mean_squared_error(y_test,predictions.reshape(3300,)))

Without Pruning MSE 0.0201

Pruning the Entire Model with a ConstantSparsity Pruning Schedule

Let’s compared the above MSE with the one obtained upon pruning the entire model. The first step is to define the pruning parameters. The weight pruning is magnitude-based. This means that some weights are converted to zeros during the training process. The model becomes sparse, hence making it easier to compress. Sparse models also make inferencing faster since the zeros can be skipped.

The parameters expected are the pruning schedule, the block size, and the block pooling type.

In this case, we’re setting a 50% sparsity, meaning that 50% of the weights will be zeroed.

block_size — The dimensions (height, weight) for the block sparse pattern in matrix weight tensors.

block_pooling_type — The function to use to pool weights in the block. Must be AVG or MAX.

from tensorflow_model_optimization.sparsity.keras import ConstantSparsity

pruning_params = {

'pruning_schedule': ConstantSparsity(0.5, 0),

'block_size': (1, 1),

'block_pooling_type': 'AVG'

}

We can now prune the entire model by applying our pruning parameters.

from tensorflow_model_optimization.sparsity.keras import prune_low_magnitude

model_to_prune = prune_low_magnitude(

keras.Sequential([

tf.keras.layers.Dense(128, activation='relu', input_shape=(X_train.shape[1],)),

tf.keras.layers.Dense(1, activation='relu')

]), **pruning_params)

Let’s check the model summary. Compare this with the summary of the unpruned model. From the image below we can see that the entire model has been pruned—we’ll see the difference shortly with the summary obtained after pruning one dense layer.

model_to_prune.summary()

[image:]

We have to compile the model before we can fit it to the training and testing set.

model_to_prune.compile(optimizer=’adam’,

loss=tf.keras.losses.mean_squared_error,

metrics=[‘mae’, ‘mse’])

Since we’re applying pruning, we have to define a couple of pruning callbacks in addition to the early stopping callback. We define the folder to log the model, then create a list with the callbacks.

tfmot.sparsity.keras.UpdatePruningStep()
 updates pruning wrappers with the optimizer step. Failure to specify it will result in an error.

tfmot.sparsity.keras.PruningSummaries()
 adds pruning summaries to the Tensorboard.

log_dir = ‘.models’

callbacks = [

tfmot.sparsity.keras.UpdatePruningStep(),

Log sparsity and other metrics in Tensorboard.

tfmot.sparsity.keras.PruningSummaries(log_dir=log_dir),

keras.callbacks.EarlyStopping(monitor=’val_loss’, patience=10)

]

With that out of the way, we can now fit the model to the training set.

model_to_prune.fit(X_train,y_train,epochs=100,validation_split=0.2,callbacks=callbacks,verbose=0)

Upon checking the mean squared error for this model, we notice that it’s slightly higher than the one for the unpruned model.

prune_predictions = model_to_prune.predict(X_test)

print(‘Whole Model Pruned MSE %.4f’ % mean_squared_error(y_test,prune_predictions.reshape(3300,)))

Whole Model Pruned MSE 0.1830

Pruning the Dense Layer Only with PolynomialDecay Pruning Schedule

Let’s now implement the same model—but this time, we’ll prune the dense layer only. Notice the use of the

PolynomialDecay

 function in the pruning schedule.

from tensorflow_model_optimization.sparsity.keras import PolynomialDecay

layer_pruning_params = {

'pruning_schedule': PolynomialDecay(initial_sparsity=0.2,

final_sparsity=0.8, begin_step=1000, end_step=2000),

'block_size': (2, 3),

'block_pooling_type': 'MAX'

}

model_layer_prunning = keras.Sequential([

prune_low_magnitude(tf.keras.layers.Dense(128, activation='relu',input_shape=(X_train.shape[1],)),

**layer_pruning_params),

tf.keras.layers.Dense(1, activation='relu')

])

From the summary, we can see that only the first dense layer will be pruned.

model_layer_prunning.summary()

[image:]

We then compile and fit the model.

model_layer_prunning.compile(optimizer=’adam’,

loss=tf.keras.losses.mean_squared_error,

metrics=[‘mae’, ‘mse’])

model_layer_prunning.fit(X_train,y_train,epochs=300,validation_split=0.1,callbacks=callbacks,verbose=0)

Now, let’s check the mean squared error.

layer_prune_predictions = model_layer_prunning.predict(X_test)

print(‘Layer Prunned MSE %.4f’ % mean_squared_error(y_test,layer_prune_predictions.reshape(3300,)))

Layer Prunned MSE 0.1388

We can’t compare the MSE obtained here with the previous one since we’ve used different pruning parameters. If you’d like to compare them, then ensure that the pruning parameters are similar. Upon testing, layer_pruning_params gave a lower error than the pruning_params for this specific case. Comparing the MSE obtained from different pruning parameters is useful so that you can settle for the one that doesn’t make the model’s performance worse.

Comparing Model Sizes

Let’s now compare the sizes of the models with and without pruning. We start by training and saving the model weights for later use.

def train_save_weights():

model = setup_model()

model.compile(optimizer='adam',

loss=tf.keras.losses.mean_squared_error,

metrics=['mae', 'mse'])

model.fit(X_train,y_train,epochs=300,validation_split=0.2,callbacks=callbacks,verbose=0)

model.save_weights('.models/friedman_model_weights.h5')

train_save_weights()

We’ll set up our base model and load the saved weights. We then prune the entire model. We compile, fit the model, and visualize the results on Tensorboard.

base_model = setup_model()

base_model.load_weights('.models/friedman_model_weights.h5') # optional but recommended for model accuracy

model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

model_for_pruning.compile(

loss=tf.keras.losses.mean_squared_error,

optimizer='adam',

metrics=['mae', 'mse']

)

model_for_pruning.fit(

X_train,

y_train,

callbacks=callbacks,

epochs=300,

validation_split = 0.2,

verbose=0

)

%tensorboard --logdir={log_dir}

Here’s a single snapshot of the pruning summaries from TensorBoard.

[image:]

The other pruning summaries can also be viewed on Tensorboard.

[image:]

Let’s now define a function to compute the sizes of the models.

def get_gzipped_model_size(model,mode_name,zip_name):

Returns size of gzipped model, in bytes.

model.save(mode_name, include_optimizer=False)

with zipfile.ZipFile(zip_name, 'w', compression=zipfile.ZIP_DEFLATED) as f:

f.write(mode_name)

return os.path.getsize(zip_name)

And now we define the model for export and then compute the sizes.

For a pruned model,
 tfmot.sparsity.keras.strip_pruning()
 is used to restore the original model with the sparse weights. Notice the difference in size for the stripped and unstripped models.

model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)

print("Size of gzipped pruned model without stripping: %.2f bytes" % (get_gzipped_model_size(model_for_pruning,'.models/model_for_pruning.h5','.models/model_for_pruning.zip')))

print("Size of gzipped pruned model with stripping: %.2f bytes" % (get_gzipped_model_size(model_for_export,'.models/model_for_export.h5','.models/model_for_export.zip')))

Size of gzipped pruned model without stripping: 6101.00 bytes

Size of gzipped pruned model with stripping: 5140.00 bytes

Running predictions on both models, we see that they have the same mean squared error.

model_for_prunning_predictions = model_for_pruning.predict(X_test)

print('Model for Prunning Error %.4f' % mean_squared_error(y_test,model_for_prunning_predictions.reshape(3300,)))

model_for_export_predictions = model_for_export.predict(X_test)

print('Model for Export Error %.4f' % mean_squared_error(y_test,model_for_export_predictions.reshape(3300,)))

Model for Prunning Error 0.0264

Model for Export Error 0.0264

Final Thoughts

You can go ahead and test how different pruning schedules affect the size of the model. Obviously, the observations made here are not universal. You’ll have to try different pruning parameters and learn how they affect your model size, prediction error, and/or accuracy depending on your problem.

To optimize the model even more,
 you could quantize it
 . If you’d like to explore that and more, check the

repo

 and the

resources

 .

Feature Ranking with Recursive Feature Elimination in Scikit-Learn

Feature selection is an important task for any machine learning application. This is especially crucial when the data in question has many features. The optimal number of features also leads to improved model accuracy. Obtaining the most important features and the number of optimal features can be obtained via feature importance or feature ranking. In this piece, we’ll explore feature ranking.

Recursive Feature Elimination

The first item needed for recursive feature elimination is an estimator; for example, a linear model or a decision tree model.

These models have coefficients for linear models and feature importances in decision tree models. In selecting the optimal number of features, the estimator is trained and the features are selected via the coefficients, or via the feature importances. The least important features are removed. This process is repeated recursively until the optimal number of features is obtained.

Application in Sklearn

Scikit-learn makes it possible to implement recursive feature elimination via the
 sklearn.feature_selection.RFE
 class. The class takes the following parameters:

estimator
 — a machine learning estimator that can provide features importances via the coef_ or feature_importances_ attributes.

n_features_to_select
 — the number of features to select. Selects half if it's not specified.

step
 — an integer that indicates the number of features to be removed at each iteration, or a number between 0 and 1 to indicate the percentage of features to remove at each iteration.

Once fitted, the following attributes can be obtained:

ranking_
 — the ranking of the features.

n_features_
 — the number of features that have been selected.

support_
 — an array that indicates whether or not a feature was selected.

Application

As noted earlier, we’ll need to work with an estimator that offers a
 feature_importance_s
 attribute or a
 coeff_
 attribute. Let’s work through a quick example. The dataset has 13 features—we’ll work on getting the optimal number of features.

import pandas as pd

df = pd.read_csv(‘heart.csv’)

df.head()

[image:]

Let’s obtain the X and y features.

X = df.drop([‘target’],axis=1)

y = df[‘target’]

We’ll split it into a testing and training set to prepare for modeling:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,random_state=0)

Let’s get a couple of imports out of the way:

pipeline
 — since we’ll perform some cross-validation. It’s best practice in order to avoid data leakage.

RepeatedStratifiedKFold
 — for repeated stratified cross-validation.

cross_val_score
 — for evaluating the score on cross-validation.

GradientBoostingClassifier
 — the estimator we’ll use.

numpy
 — so that we can compute the mean of the scores.

from sklearn.pipeline import Pipeline

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.model_selection import cross_val_score

from sklearn.feature_selection import RFE

import numpy as np

from sklearn.ensemble import GradientBoostingClassifier

The first step is to create an instance of the RFE class while specifying the estimator and the number of features you’d like to select. In this case, we’re selecting 6:

rfe = RFE(estimator=GradientBoostingClassifier(), n_features_to_select=6)

Next, we create an instance of the model we’d like to use:

model = GradientBoostingClassifier()

We’ll use a Pipeline to transform the data. In the Pipeline we specify rfe for the feature selection step and the model that’ll be used in the next step.

We then specify a
 RepeatedStratifiedKFold
 with 10 splits and 5 repeats. The stratified K fold ensures that the number of samples from each class is well balanced in each fold.
 RepeatedStratifiedKFold
 repeats the stratified K fold the specified number of times, with a different randomization in each repetition.

pipe = Pipeline([(‘Feature Selection’, rfe), (‘Model’, model)])

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=5, random_state=36851234)

n_scores = cross_val_score(pipe, X_train, y_train, scoring=’accuracy’, cv=cv, n_jobs=-1)

np.mean(n_scores)

The next step is to fit this pipeline to the dataset.

pipe.fit(X_train, y_train)

With that in place, we can check the support and the ranking. The support indicates whether or not a feature was chosen.

rfe.support_

array([True, False, True, False, True, False, False, True, False,True, False, True, True])

We can put that into a dataframe and check the result.

pd.DataFrame(rfe.support_,index=X.columns,columns=[‘Rank’])

[image:]

We can also check the relative rankings.

rf_df = pd.DataFrame(rfe.ranking_,index=X.columns,columns=[‘Rank’]).sort_values(by=’Rank’,ascending=True)

rf_df.head()

[image:]

Automatic Feature Selection

Instead of manually configuring the number of features, it would be very nice if we could automatically select them. This can be achieved via recursive feature elimination and cross-validation. This is done via the
 sklearn.feature_selection.RFECV
 class. The class takes the following parameters:

estimator
 — similar to the RFE class.

min_features_to_select
 — the minimum number of features to be selected.

cv—
 the cross-validation splitting strategy.

The attributes returned are:

n_features_
 — the optimal number of features selected via cross-validation.

support_
 — the array containing information on the selection of a feature.

ranking_
 — the ranking of the features.

grid_scores_
 — the scores obtained from cross-validation.

The first step is to import the class and create its instance.

from sklearn.feature_selection import RFECV

rfecv = RFECV(estimator=GradientBoostingClassifier())

The next step is to specify the pipeline and the cv. In this
 pipeline
 we use the just created
 rfecv
 .

pipeline = Pipeline([(‘Feature Selection’, rfecv), (‘Model’, model)])

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=5, random_state=36851234)

n_scores = cross_val_score(pipeline, X_train, y_train, scoring=’accuracy’, cv=cv, n_jobs=-1)

np.mean(n_scores)

Let’s fit the pipeline and then obtain the optimal number of features.

pipeline.fit(X_train,y_train)

The optimal number of features can be obtained via the n_features_ attribute.

print(“Optimal number of features : %d” % rfecv.n_features_)

Optimal number of features : 7

The rankings and support can be obtained just like last time.

rfecv.support_

rfecv_df = pd.DataFrame(rfecv.ranking_,index=X.columns,columns=[‘Rank’]).sort_values(by=’Rank’,ascending=True)

rfecv_df.head()

With the grid_scores_ we can plot a graph showing the cross-validated scores.

import matplotlib.pyplot as plt

plt.figure(figsize=(12,6))

plt.xlabel(“Number of features selected”)

plt.ylabel(“Cross validation score (nb of correct classifications)”)

plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)

plt.show()

[image:]

Final Thoughts

The process for applying this in a regression problem is the same. Just ensure to use regression metrics instead of accuracy. I hope this piece has given you some insight on selecting the optimal number of features for your machine learning problems.

Dealing with Imbalanced Data in Machine Learning

As an ML engineer or data scientist, sometimes you inevitably find yourself in a situation where you have hundreds of records for one class label and thousands of records for another class label.

Upon training your model you obtain an accuracy above 90%. You then realize that the model is predicting everything as if it’s in the class with the majority of records. Excellent examples of this are fraud detection problems and churn prediction problems, where the majority of the records are in the negative class. What do you do in such a scenario? That will be the focus of this post.

Collect More Data

The most straightforward and obvious thing to do is to collect more data, especially data points on the minority class. This will obviously improve the performance of the model. However, this is not always possible. Apart from the cost one would have to incur, sometimes it's not feasible to collect more data. For example, in the case of churn prediction and fraud detection, you can’t just wait for more incidences to occur so that you can collect more data.

Consider Metrics Other than Accuracy

Accuracy is not a good way to measure the performance of a model where the class labels are imbalanced. In this case, it's prudent to consider other metrics such as precision, recall, Area Under the Curve (AUC) — just to mention a few.

Precision
 measures the ratio of the true positives among all the samples that were predicted as true positives and false positives. For example, out of the number of people our model predicted would churn, how many actually churned?

[image:]

Recall
 measures the ratio of the true positives from the sum of the true positives and the false negatives. For example, the percentage of people who churned that our model predicted would churn.

[image:]

The AUC is obtained from the Receiver Operating Characteristics (ROC) curve. The curve is obtained by plotting the true positive rate against the false positive rate. The false positive rate is obtained by dividing the false positives by the sum of the false positives and the true negatives.

AUC closer to one is better, since it indicates that the model is able to find the true positives.

Emphasize the Minority Class

Another way to deal with imbalanced data is to have your model focus on the minority class. This can be done by computing the class weights. The model will focus on the class with a higher weight. Eventually, the model will be able to learn equally from both classes. The weights can be computed with the help of scikit-learn.

from sklearn.utils.class_weight import compute_class_weight

weights = compute_class_weight(‘balanced’, y.unique(), y)

array([0.51722354, 15.01501502])

You can then pass these weights when training the model. For example, in the case of logistic regression:

class_weights = {

0:0.51722354,

1:15.01501502

}

lr = LogisticRegression(C=3.0, fit_intercept=True, warm_start = True, class_weight=class_weights)

Alternatively, you can pass the class weights as balanced and the weights will be automatically adjusted.

lr = LogisticRegression(C=3.0, fit_intercept=True, warm_start = True, class_weight=’balanced’)

Here’s the ROC curve before the weights are adjusted.

import matplotlib.pyplot as plt

from sklearn.metrics import roc_curve, roc_auc_score

predictions = lr.predict(X_test)

fpr, tpr, thresholds = roc_curve(y_test, predictions, pos_label=1)

auc = roc_auc_score(y_test, predictions)

plt.figure(figsize=(12,6))

plt.plot(fpr, tpr,label='AUC')

plt.plot([0, 1], [0, 1], color='red', linestyle='--', label='Random')

plt.title('AUC:{}'.format(auc))

plt.xlabel('False positive rate')

plt.ylabel('True positive rate')

plt.legend()

[image:]

And here’s the ROC curve after the weights have been adjusted. Note the AUC moved from 0.69 to 0.87.

[image:]

Try Different Algorithms

As you focus on the right metrics for imbalanced data, you can also try out different algorithms. Generally, tree-based algorithms perform better on imbalanced data. Furthermore, some algorithms such as LightGBM have hyperparameters that can be tuned to indicate that the data is not balanced.

Generate Synthetic Data

You can also generate synthetic data to increase the number of records in the minority class — usually known as oversampling. This is usually done on the training set after doing the train test split. In Python, this can be done using the

Imblearn

 package. One of the strategies that can be implemented from the package is known as the

Synthetic Minority Over-sampling Technique (SMOTE)

 . The technique is based on k-nearest neighbors.

When using

SMOTE

 :

The first parameter is a float that indicates the ratio of the number of samples in the minority class to the number of samples in the majority class, once resampling has been done.

The number of neighbors to be used to generate the synthetic samples can be specified via the
 k_neighbors
 parameter.

from imblearn.over_sampling import SMOTE

smote = SMOTE(0.8)

X_resampled,y_resampled = smote.fit_resample(X.values,y.values)

pd.Series(y_resampled).value_counts()

0 9667

1 7733

dtype: int64

You can then fit your resampled data to your model.

model = LogisticRegression()

model.fit(X_resampled,y_resampled)

predictions = model.predict(X_test)

Undersample the Majority Class

You can also experiment on reducing the number of samples in the majority class. One such strategy that can be implemented is the
 NearMiss
 method. You can also specify the ratio just like in
 SMOTE
 , as well as the number of neighbors via
 n_neighbors
 .

from imblearn.under_sampling import NearMiss

underSample = NearMiss(0.3,random_state=1545)

pd.Series(y_resampled).value_counts()

0 1110

1 333

dtype: int64

Final Thoughts

Other techniques that can be used include using building an ensemble of weak learners to create a strong classifier. Metrics such as precision-recall curve and area under curve (PR, AUC) are also worth trying when the positive class is the most important.

As always, you should experiment with different techniques and settle on the ones that give you the best results for your specific problems. Hopefully, this piece has given some insights on how to get started.

Repository

Convolutional Neural Networks (CNNs): Core Concepts Applied

In this tutorial, we’ll work through the core concepts of convolutional neural networks (CNNs). To do this, we’ll use a common dataset — the MNIST dataset—and a standard deep learning task—image classification

The goal here is to walk through an example that will illustrate the processes involved in building a convolutional neural network. The skills you will learn here can easily be transferred to a separate dataset.

So let’s go deeper…pun intended.

Setup

In this step, we need to import Keras and other packages that we’re going to use in building our CNN. Import the following packages:

Sequential
 is used to initialize the neural network.

Conv2D
 is used to make the convolutional network work with images.

MaxPooling2D
 is used to add the pooling layers.

Flatten
 is the function that converts the pooled feature map to a single column, which is then passed to the fully connected layer.

Dense
 adds the fully connected layer to the neural network.

Reshape
 is used to change the shape of the input array

import tensorflow as tf

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense,Conv2D,MaxPooling2D,Flatten,Reshape

Import the Dataset

Next, we’ll import the
 mnist
 dataset from Keras. We load in the training set and the testing set. We have to scale our data so that it will be compatible with our network. In this case, we scale the images by dividing them by 255. This will ensure that the array values are numbers between 0 and 1.

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

validation_data = x_test, y_test

Visualize a digit

We can visualize a single digit using Matplotlib. This is important so that we can see a sample of what the digits in the dataset look like.

import matplotlib.pyplot as plt

image = x_train[2]

fig = plt.figure

plt.imshow(image, cmap=’gray’)

plt.show()

[image:]

Building the Network

Before we start building the network, let’s confirm the shape of the training data. This is important because the shape will be needed by the convolution layer. We’ll use this shape later to reshape the size of the input data.

x_train.shape

(60000, 28, 28)

We kick off by initializing the sequential model. Then we pass in our layers as a list. The first layer is the reshape layer for changing the shape of the input data. We already know that each image has a size of 28 by 28. We also pass 1 to the reshape layer to ensure that the input data has a single color channel.

Next, we create the convolution layer. This layer takes in a couple of parameters:

filters
 — the number of output filters in the convolution, i.e the number of feature detectors. 32 is a common number of feature detectors used.

kernel_size
 — the dimensions of the feature detector matrix. This is the width and height of the convolution window.

input_shape
 — the shape of the input data. Since we included a reshape layer, we don’t need to pass this.

activation
 — the activation function to be used. The ReLu activation function is a common choice.

The next item on the list is to add the
 pooling layer
 . In this step, the size of the feature map is reduced by taking the maximum value during the pooling process. 2 by 2 is a commonly-used pool size. This will reduce the size of the f
 eature map
 while maintaining the most important features needed to identify the digits.

After that, we
 flatten
 the
 feature maps.
 This will convert the feature maps into a single column.

The results obtained above are then passed to the
 dense
 layer. The parameters passed to this layer are the number of neurons and the
 activation function
 . In this case, those are 128 and ReLu, respectively.

Finally, we created our
 output
 layer. 10 is used here, because our dataset has 10 classes. We’ll use the
 softmax activation
 function because classes are mutually exclusive—an image can’t be, for example, classified as numbers 0 and 1 at the same time. If the case was otherwise, we’d use the sigmoid activation function.

model = Sequential([

Reshape((28, 28, 1)),

Conv2D(filters=64,kernel_size=(3,3),activation=’relu’),

MaxPooling2D(pool_size=(2,2)),

Flatten(),

Dense(128, activation=’relu’),

Dense(10, activation=’softmax’)

])

Compiling the Network

We now need to apply gradient descent to the number. This is done at the compile stage. We pass the following parameters:

optimizer
 — the type of gradient descent to use; in this case, we’ll use stochastic gradient descent

loss
 — the cost function to use. We use sparse_categorical_crossentropy because the classes are integer-encoded. Had we performed one-hot encoding, we’d have to use the categorical cross-entropy loss function.

metrics
 — the evaluation metrics to monitor; in this case, accuracy

model.compile(optimizer=’sgd’,

loss=’sparse_categorical_crossentropy’,

metrics=[‘accuracy’,])

Fitting the CNN

Next, we fit the training set to the network. epochs is the number of rounds the data will pass through the network. validation_data is the test dataset that will be used to evalutate the performance of the model during training.

model.fit(x=x_train,y=y_train,epochs=5,validation_data=validation_data)

Evaluating the Network

We can now check the performance of the network. We do so using the evaluate function, passing in the test set. The first item in the result produced is the loss, and the second is the accuracy.

model.evaluate(x_test,y_test)

313/313 [==============================] - 2s 8ms/step - loss: 0.1116 - accuracy: 0.9668

[0.1115519180893898, 0.9667999744415283]

Checking the Predictions

Let’s now see if our network is able to correctly identify a digit. We kick off by making predictions:

predictions = model.predict(x_test)

For example, let’s check the digit at index 2 in the test set.

image = x_test[2]

fig = plt.figure

plt.imshow(image, cmap=’gray’)

plt.show()

[image:]

This is clearly the digit one. Let’s compare that with the prediction made for digit 1.

import numpy as np

np.set_printoptions(suppress=True)

predictions[2]*100

array([0.00077352, 99.63969 , 0.07214971, 0.03056707, 0.00606834,

0.00301009, 0.02507676, 0.11558129, 0.10332227, 0.00378496],

dtype=float32)

From the predictions below, we can see that the digit 1 — at index 1 in the prediction array— has the highest prediction.

0.00077352 — digit 0 prediction

99.63969 — digit 1 prediction

0.07214971 — digit 2 prediction

0.03056707 — digit 3 prediction

0.00606834 — digit 4 prediction

0.00301009 — digit 5 prediction

0.02507676 — digit 6 prediction

0.11558129 — digit 7 prediction

0.10332227 — digit 8 prediction

0.00378496 — digit 9 prediction

We can check another prediction by plotting the digit at index 0 in the testing set. Let’s try number 7.

image = x_test[0]

fig = plt.figure

plt.imshow(image, cmap=’gray’)

plt.show()

[image:]

Next, we’ll look at the prediction at index 0 to see if it’s also number 7. Clearly, 7 has the highest prediction.

import numpy as np

np.set_printoptions(suppress=True)

predictions[0]*100

array([0.00032742, 0.00000064, 0.00919174, 0.09352361, 0.00000077, 0.00045173, 0.00000015,
 99.88985
 , 0.00224745, 0.00440894], dtype=float32)

Conclusion

Well done for making it this far! In this article, we’ve used CNN core concepts to develop a working convolutional neural network. We have seen the steps you’ll need to take, and we’ve evaluated our trained model. Now you can try this out with a different dataset to see if you can reproduce the network we built here.

Serving TensorFlow Models

Once you've trained a TensorFlow model and it's ready to be deployed, you'd probably like to move it to a production environment. Luckily, TensorFlow provides a way to do this with minimal effort. In this article, we'll use a pre-trained model, save it, and serve it using TensorFlow Serving. Let's get moving!

TensorFlow ModelServer

TensorFlow Serving

 is a system built with the sole purpose of bringing machine learning models to production. TensorFlow's ModelServer provides support for RESTful APIs. However, we'll need to install it before we can use it. First, let's add it as a package source.

echo "deb [arch=amd64]

http://storage.googleapis.com/tensorflow-serving-apt

 stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && curl

https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg

 | sudo apt-key add -

Installing TensorFlow ModelServer can now be done by updating the system and using apt-get to install it.

$ sudo apt-get update

$ sudo apt-get install tensorflow-model-server

Developing the Model

Next, let's use a pre-trained model to create the model we'd like to serve. In this case, we'll use a version of VGG16 with weights pre-trained on ImageNet. To make it work, we have to get a couple of imports out of the way:

VGG16
 the architecture

image
 for working with image files

preprocess_input
 for pre-processing image inputs

decode_predictions
 for showing us the probability and class names

from tensorflow.keras.applications.vgg16 import VGG16

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions

import numpy as np

Next, we define the model with the ImageNet weights.

model = VGG16(weights='imagenet')

With the model in place, we can try out a sample prediction. We start by defining the path to an image file (a lion) and using image to load it.

img_path = 'lion.jpg'

img = image.load_img(img_path, target_size=(224, 224))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

After pre-processing it, we can make predictions using it. We can see that it was able to predict that the image is a lion with 99% accuracy.

preds = model.predict(x)

decode the results into a list of tuples (class, description, probability)

(one such list for each sample in the batch)

print('Predicted:', decode_predictions(preds, top=3)[0])

Predicted: [('n02129165', 'lion', 0.9999999), ('n02130308',

'cheetah', 7.703386e-08), ('n02128385', 'leopard', 6.330456e-09)]

Now that we have our model, we can save it to prepare it for serving with TensorFlow.

Saving the Model

Let's now save that model. Notice that we're saving it to a /1 folder to indicate the model version. This is critical, especially when you want to serve new model versions automatically. More on that in a few.

model.save('vgg16/1')

Running the Server with TensorFlow ModelServer

Let's start by defining the configuration we'll use for serving:

name
 is the name of our model-in this case, we'll call it vgg16.

base_path
 is the absolute path to the location of our saved model. Be sure to change this to your own path.

The
 model_platform
 is obviously TensorFlow.

model_version_policy
 enables us to specify model versioning information.

[image:]

Now we can run the command that will serve the model from the command line:

rest_api_port=8000
 means that our REST API will be served at port 8000.

model_config_file
 defines the config file that we'd defined above.

model_config_file_poll_wait_seconds
 indicates how long to wait before checking for changes in the config file. For example, changing the version to 2 in the config file would lead to version 2 of the model being served automatically. This is because changes in the config file are being checked every 300 seconds, in this case.

tensorflow_model_server - rest_api_port=8000 - model_config_file=models.config - model_config_file_poll_wait_seconds=300

Making Predictions using the REST API

At this point, the REST API for our model can be found here: http://localhost:8000/v1/models/vgg16/versions/1:predict .

We can use this endpoint to make predictions. In order to do that, we'll need to pass JSON-formatted data to the endpoint. To that end - no pun intended - we'll use the
 json
 module in Python. In order to make requests to the endpoint, we'll use the
 requests
 Python package.

Let's start by importing those two.

import json

import requests

Remember that the x variable contained the pre-processed image. We'll create JSON data containing that. Like any other RESTFUL request, we set the content type to
 application/json
 . Afterward, we make a request to our endpoint as we pass in the headers and the data. After getting the predictions, we decode them just like we did at the beginning of this article.

[image:]

[image:]

Serving with Docker

There is an even quicker and shorter way for you to serve TensorFlow models-using

Docker

 . This is actually the recommended way, but knowing the previous method is important, just in case you need it for a specific use case. Serving your model with Docker is as easy as pulling the

TensorFlow Serving image

 and mounting your model.

With

 Docker installed

 , run this code to pull the TensorFlow Serving image.

docker pull tensorflow/serving

Let's now use that image to serve the model. This is done using docker run and passing a couple of arguments:

-p 8501:8501
 means that the container's port 8501 will be accessible on our localhost at port 8501.

- name
 for naming our container-choose the name your prefer.I've chosen
 tf_vgg_server
 in this case.

- mount
 type=bind,source=/media/derrick/5EAD61BA2C09C31B/Notebooks/Python/serving/saved_tf_model,target=/models/vgg16 means that the model will be mounted to /models/vgg16 on the Docker container.

-
 e MODEL_NAME=vgg16
 indicates that TensorFlow serving should load the model called vgg16.

-t tensorflow/serving
 indicates that we're using the tensorflow/serving image that we pulled earlier.

&
 running the command in the background.

Run the code below on your terminal.

docker run -p 8501:8501 --name tf_vgg_server --mount type=bind,source=/media/derrick/5EAD61BA2C09C31B/Notebooks/Python/serving/saved_tf_model,target=/models/vgg16 -e MODEL_NAME=vgg16 -t tensorflow/serving &

Now we can use the REST API endpoint to make predictions, just like we did previously.

[image:]

[image:]

Clearly, we obtained the same results. With that, we've seen how we can serve a TensorFlow model with and without Docker.

Final Thoughts

This

article

 from TensorFlow will give you more information on the TensorFlow Serving architecture. If you'd like to dive deeper into this, this

resource

 will get you there.

You can al

https://www.tensorflow.org/tfx/serving/serving_advanced

 so explore alternative ways of building using the standard TensorFlow ModelServer. In this article, we focused on serving using a CPU, but you can explore how to

serve on GPUs,

 as well .

This

repo

 contains links to more tutorials on TensorFlow Serving. Hopefully, this piece was of service to you!

The code for this article is available at this

repo

 .

OEBPS/rsrc157.jpg

OEBPS/rsrc158.jpg

OEBPS/rsrc155.jpg

OEBPS/rsrc156.jpg

OEBPS/rsrc153.jpg

OEBPS/rsrc15T.jpg

OEBPS/rsrc154.jpg

OEBPS/rsrc15R.jpg

OEBPS/rsrc15S.jpg

OEBPS/rsrc15B.jpg

OEBPS/rsrc15C.jpg

OEBPS/rsrc159.jpg

OEBPS/rsrc15A.jpg

OEBPS/rsrc14M.jpg

OEBPS/rsrc14K.jpg

OEBPS/rsrc14P.jpg

OEBPS/rsrc14N.jpg

OEBPS/rsrc14S.jpg

OEBPS/rsrc14R.jpg

OEBPS/rsrc14W.jpg

OEBPS/rsrc15J.jpg

OEBPS/rsrc14X.jpg

OEBPS/rsrc15K.jpg

OEBPS/rsrc14U.jpg

OEBPS/rsrc15G.jpg

OEBPS/rsrc14J.jpg

OEBPS/rsrc14V.jpg

OEBPS/rsrc15H.jpg

OEBPS/rsrc15E.jpg

OEBPS/rsrc14T.jpg

OEBPS/rsrc15F.jpg

OEBPS/rsrc15D.jpg

OEBPS/rsrc152.jpg

OEBPS/rsrc150.jpg

OEBPS/rsrc15P.jpg

OEBPS/rsrc151.jpg

OEBPS/rsrc14Y.jpg

OEBPS/rsrc15M.jpg

OEBPS/rsrc14Z.jpg

OEBPS/rsrc15N.jpg

