

Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

How to Write Good Programs

Learning to program isn’t just learning the details of a programming

language: to become a good programmer you have to become expert

at debugging, testing, writing clear code and generally unsticking

yourself when you get stuck, while to do well in a programming course

you have to learn to score highly in coursework and exams.

Featuring tips, stories and explanations of key terms, this book

teaches these skills explicitly. Examples in Python, Java and Haskell

are included, helping you to gain transferable programming skills

whichever language you are learning. Intended for students in Higher

or Further Education studying early programming courses, it will help

you succeed in, and get themost out of, your course and support you in

developing the software engineering habits that lead to good programs.

Perdita Stevens is a professor at the University of Edinburgh and

has taught programming and software engineering in many languages

to students ranging from irst-year undergraduates to established

professional software developers. She previously co-authored Using

UML: Software Engineering with Objects and Components (1998) and

received a 10-year Most Inluential Paper award and a Best Paper

award at the MODELS conference in 2017 for her work on bidirec-

tional transformations.

www.cambridge.org/9781108789875
www.cambridge.org

Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108789875
www.cambridge.org

Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

How to Write Good Programs

A Guide for Students

PERDITA STEVENS

www.cambridge.org/9781108789875
www.cambridge.org

Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,

New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108789875

DOI: 10.1017/9781108804783

© Perdita Stevens 2020

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Stevens, Perdita, author.

Title: How to write good programs : a guide for students / Perdita Stevens.

Description: New York : Cambridge University Press, 2020. |

Includes bibliographical references and index.

Identiiers: LCCN 2020003584 (print) | LCCN 2020003585 (ebook) |

ISBN 9781108804783 (epub) | ISBN 9781108789875 (hardback)

Subjects: LCSH: Computer programming–Textbooks.

Classiication: LCC QA76.73.P98 (ebook) |

LCC QA76.73.P98 S74 2020 (print) | DDC 005.13–dc23

ISBN 978-1-108-78987-5 Paperback

Cambridge University Press has no responsibility for the persistence or

accuracy of URLs for external or third-party internet websites referred to in

this publication and does not guarantee that any content on such

websites is, or will remain, accurate or appropriate.

www.cambridge.org/9781108789875
www.cambridge.org

Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

1 Introduction page 1

1.1 Who Is This Book For? 3

1.2 About the Boxes 4

1.3 Structure of This Book 7

1.4 Acknowledgements 7

2 What Are Good Programs? 9

2.1 Ethics 10

3 How to Get Started 12

3.1 What Is a Program Anyway? 12

3.2 What Do You Need? 13

3.3 Understanding What You Have to Do 18

3.4 Writing Your Program 20

3.5 What to Do If You Get Confused 29

4 How to Understand Your Language 33

4.1 Compilation or Interpretation 34

4.2 Types 37

4.3 Structure 41

4.4 History, Community and Motivation 44

4.5 Paradigms 45

5 How to Use the Best Tools 48

5.1 Using the Most Basic Tools 49

5.2 What Is an IDE? 50

5.3 Looking Forward 53

v

www.cambridge.org/9781108789875
www.cambridge.org

Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

vi Contents

6 How to Make Sure You Don’t Lose Your Program 55

6.1 Immediate Recovery: Undo 55

6.2 Basic Disaster Recovery: Files 56

6.3 Avoiding Disaster: Saving Versions 58

6.4 Automating the Process: Using a Version

Control System 59

6.5 Managing Code that Is Not in Use 61

6.6 Backups and the Cloud 65

7 How to Test Your Program 68

7.1 Manual Testing 69

7.2 Basic Automated Testing 71

7.3 Proper Automated Testing 75

7.4 What Tests Should You Have? 77

7.5 When Should You Write Tests? 78

7.6 Property-Based Testing 79

8 How to Make Your Program Clear 83

8.1 How Will Writing Clear Code Help You? 83

8.2 Comments 85

8.3 Names 89

8.4 Layout and Whitespace 92

8.5 Structure and Idiom 96

9 How to Debug Your Program 101

9.1 When You Can’t Run Your Program Yet 103

9.2 When Your Program Runs but Behaves Wrongly 109

9.3 Cardboard Debugging 120

9.4 If All Else Fails 121

9.5 Removing the Bug 122

9.6 After Removing the Bug 124

10 How to Improve Your Program 134

10.1 Maintainability 134

10.2 Eficiency 145

www.cambridge.org/9781108789875
www.cambridge.org

Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents vii

10.3 Refactoring 149

10.4 Improving Your Skills 153

11 How to Get Help (without Cheating) 156

11.1 Solving a General Problem 157

11.2 Solving a More Speciic Problem 160

11.3 How to Cope When Your Teacher Is

Confusing You 168

12 How to Score Well in Coursework 170

12.1 Seven Golden Rules 170

12.2 Lab Exercises 172

12.3 Individual Projects 173

12.4 Team Working 174

12.5 Demonstrations 175

12.6 Relective Writing 177

13 How to Score Well in a Programming Exam 179

13.1 Preparing for the Exam 179

13.2 In the Exam 182

13.3 Speciic Points for Paper Exams 183

13.4 Speciic Points for Computer-Based Exams 184

13.5 What about Multiple Choice Exams? 185

14 How to Choose a Programming Language 186

14.1 Questions to Consider 186

14.2 A Few Languages You May Encounter 189

14.3 The Changing Landscape of Languages 192

15 How to Go Beyond This Book 194

15.1 Doing More Programming 194

15.2 Speciic Programming Languages 195

15.3 Programming Generally 195

www.cambridge.org/9781108789875
www.cambridge.org

Cambridge University Press
978-1-108-78987-5 — How to Write Good Programs
Perdita Stevens
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Contents

15.4 Software Engineering 196

15.5 Programming Language Theory 198

Bibliography 200

Index 202

www.cambridge.org/9781108789875
www.cambridge.org

1

Introduction

This book assumes that you are committed to learning to program,
and want to do well. Most likely, you are taking a programming
course in college or university. Perhaps you don’t have much expe-
rience programming yet, or perhaps you have programmed a fair
bit, but now you are interested in how to improve the quality of
the programs you write. This book aims to help you learn how
to write good programs, in any language. It’s the book I wish
I’d had available to me, nearly forty years ago when I started
programming; and the book I wish I could have recommended to
my students, especially my first-year undergraduate students, over
many years since.

Let us tackle one thing head on. People sometimes talk as though
students could be divided into programming sheep and non-
programming goats: as though programming ability were innate.
My experience over more than twenty-five years of teaching, and
most current research, suggests that this is simply not true. I have
lost count of the number of times I have seen students really
struggle to begin with, perhaps even failing their first programming
course, but go on to become excellent programmers. It also some-
times happens that people come in feeling very confident, perhaps
having more programming experience than most of those around
them, and later realise that they had hardly begun to tackle the
most interesting challenges in software development.

Some people love programming from the very beginning. These
people may have started coding at a young age, and often choose to
sit up late into the night doing so. That’s great, and if you’re one of
them, I hope you will benefit from this book. But, full disclosure:
I was not one of those people. Indeed, when, as a child, I was first

1

2 1 Introduction

introduced to programming, I didn’t really see the point. I didn’t
start to spend a lot of time on programming until, in my twenties, I
encountered a problem I couldn’t solve without writing a program.
I learned to program because I had a problem I needed to solve,
which I couldn’t solve any other way.

Tip

To write good programs, you don’t have to love programming.
Moreover, even people who love programming do not automat-
ically write good programs: everyone has to learn how.

The great thing is that there’s a virtuous cycle. The better your
programs get, the more fun it is to write them.

write good
programs

enjoy
programming

pride in the work

sense of satisfaction

Perhaps you think it will take longer to write your programs so
that they are good, and wonder whether this is something you want
to invest in. Surprisingly, as you will discover through using this
book, writing good programs saves you time and effort, compared
with writing any old programs. If you like, you can spend that time
and effort on writing more programs. If not, you can spend it on
something else.

1.1 Who Is This Book For? 3

This book will not teach you any particular programming
language – for that you will need a different book, a course, or an
online tutorial, and there are plenty to choose from. This book will
help you in the process of learning any programming language, and
especially, it will help you to learn to write it well, and with deep
understanding that you can also transfer to your next language. It
covers things that programming courses tend to assume students
will pick up by osmosis, but that are often, in practice, stumbling
blocks. Unlike books aimed at professionals, which assume you
can always express what you want to express in the language, this
book will help you develop ways of getting unstuck, unconfused
and debugged.

You’ll learn to write code that you can understand and modify
not only when you are at your cleverest, but also when you’re not.
This will lower your stress levels. It’ll let you be lazy, in the best
possible way.

There’s a certain satisfaction in doing a thing well, though: that’s
how the virtuous circle works.

Robert Martin, in his wonderful book for professional software
developers, Clean Code, talks about programmers needing to have
“code sense”. Code sense is what lets a seasoned professional tell
good code from bad, and, much harder, systematically develop
good code. If you are starting out with programming, this is what
you need to develop. You won’t develop it in a day, a week, or a year,
but, by paying attention in the way this book aims to encourage,
you will gradually increase your code sense.

1.1 Who Is This Book For?

If you are learning to program, this book is for you.
If you are helping other people to learn to program, this book is

for you.
If you are a professional programmer, this book is not intended

for you – but you are welcome to read it anyway. Perhaps you would
like to recommend it to someone. I’d welcome your comments.

4 1 Introduction

1.2 About the Boxes

We use various kinds of boxes. There are tips, like this one:

Tip

A note on spelling. If you spell in British English, you may
expect the spelling “programme” rather than “program”. How-
ever, by long convention, when we write about computer pro-
grams, we use the American spelling. Very, very occasionally
this is useful disambiguation; computer science events may
involve both programs and a programme. Normally, it’s just one
of those things you have to know.

Explanations of terms, like this:

Terminology: Coding, programming, software engineering

Coding, programming and software engineering overlap, and
all involve giving a computer instructions. They are in
increasing order of sophistication. A software engineer can
program, and a programmer can code, but not necessarily
the other way round. A coder might only translate precise
English instructions into a programming language. A pro-
grammer takes responsibility for deciding what to write and
when it is good. A software engineer typically works as part
of a team, and solves real-world problems with high-quality
software.

After absorbing the content of this book, you will be well
equipped to progress to software engineering: more on that in
Chapter 15.

1.2 About the Boxes 5

There are stories, like this:

Story

Some people are hooked by programming from the very first
time they meet the idea. I wasn’t one of those. I thought it
was quite cute that you could do things like writing programs
to output a list of prime numbers, but I was never interested
in writing video games, which, when I was young, looked like
the only other thing you could do with a computer. The first
program I really cared about was one I wrote when I was doing
my PhD in mathematics. I had a conjecture that I thought
was true for all integers n (it was to do with a certain collec-
tion of esoteric mathematical structures, the Weyl modules for
GL(2,Q)). The calculations to check it got too tedious to do
by hand after about n = 5, though. So I wrote a program
to check my conjecture, and was quite easily able to find out
that my conjecture was true, at least, for all n up to 10,000. Of
course that wasn’t a proof, but it gave me confidence to look for
a proof, and eventually, I found one.

And, of course, there are examples of programs. Here’s one exam-
ple in Python:

Python example

print("Hello, World!")

Note that programs are not always complete. For example, Java
code has to be inside a method inside a class, but I usually omit the
lines that show that, writing

6 1 Introduction

Java example

System.out.println("Hello, World!");

rather than something like

Java example

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

Do not worry if any of the program examples do not imme-
diately make sense to you, but do have a look at them. This
book is supposed to support whatever language you are learning –
only occasionally are there points that are really specific to one
language. You will probably find that you can get the gist of
an example in a language you do not know, if you read it in
conjunction with the surrounding text. Learning to think beyond
the confines of whatever language you are studying at present, and
to transfer your skills between languages, is an important part of
becoming a good software developer. If you are at the beginning
of a programming career, the language you will use most may not
even have been invented yet. I have chosen to include examples
in Java, Python and Haskell: these are all common languages for
early programming courses, and they contrast interestingly with
one another, so that between them they allow us to cover a lot
of ground.

In order to guide you to further reading, and to information
that will help you fit what you are learning into the context of the

1.4 Acknowledgements 7

programming language you are learning, there are often sugges-
tions for things to put into your favourite search engine, like this:

some language issue your_language

1.3 Structure of This Book

The nature of learning to program is that you will improve many
skills in parallel; yet the nature of a book is that chapters need
topics. I have tried to include many cross-references between the
chapters, while leaving you plenty of freedom to dip into the book
as and when you wish.

Chapters 1 (you’re reading that now) to 3 get us going. Chapter 4
will help you to place the language you are learning in the landscape
of all programming languages. Chapters 5 to 11 are the heart of
the book; you’re likely to flip between these chapters frequently.
Chapters 12 and 13 are specifically about how to do well in a
programming course; you might skip these entirely if, for example,
you are teaching yourself to program. Chapters 14 and 15 are the
farewell chapters, setting the scene for what I hope will be your
lifetime of writing good programs.

1.4 Acknowledgements

I am very grateful to all of my students, colleagues and friends who
have commented on drafts of this book, including the following:
Alejandra Amaro Patiño; Paul Anderson; Julian Bradfield; Robin
Bradfield; Carina Fiedler; Vashti Galpin; Lilia Georgieva; Jeremy
Gibbons; Kris Hildrum; Lu-Shan Lee; James McKinna; Greg
Michaelson; Hugh Pumphrey; Don Sannella; Jennifer Tenzer;
Tom Ward.

Thanks are also due to all at Cambridge University Press, espe-
cially my editor David Tranah, and to the anonymous readers for
helpful suggestions.

8 1 Introduction

Of course, all remaining errors are mine. Feedback would be
most welcome.

Perdita Stevens
phowto@stevens-bradfield.com

2

What Are Good Programs?

A book that discusses how to write good programs had better say
what good programs are. That depends quite a lot on the context,
and we’ll have more to say about that in Chapter 10: but for now,
let us begin at the beginning with the least controversial criterion.

Criterion 1

Good programs do what they are supposed to do.

That is, they are correct. If your program does the wrong thing,
it isn’t good – yet. This is the main topic of much of this book,
especially Chapters 7 and 9.

Whenever you need to change your program, though – whether
that’s because it doesn’t do what it should do yet, or because what it
should do has changed since you first wrote it – you will care about
some further criteria.

Criterion 2

Good programs are clearly written.

That is, they are as easy to read and understand as they can be.
This is the topic of Chapter 8 – and throughout the book, we will
be discussing how writing your program clearly helps you to make
it correct.

9

10 2 What Are Good Programs?

You will often hear people talk as though they think

Criterion 3

¿Good programs are concise?

This one is sort of true – clearly written programs do tend to be
concise, not least because they tend to avoid code duplication. That
is, they deliver a lot of functionality in a small number of lines of
code. However, this is not a good thing to aim for in its own right –
rather, it should be a consequence of writing clear, correct code.
It often happens that people over-value making their code concise,
and end up making it less clear than it could have been.

If you are in the main target group for this book, and are taking
a programming course, you probably cannot avoid this definition:

Criterion 4

Good programs get high marks.

This is the specific topic of Chapters 12 and 13. Of course, it is to
be hoped that high marks are a side-effect of your programs being
good in other respects . . .

Many other criteria matter sometimes: good programs often
need to be fast, portable, flexible, testable, memory-efficient, par-
allelisable, and so on. We will look at some of these briefly in
Chapter 10, but for the most part, specifically addressing these
criteria is beyond the scope of this book: rather, we will emphasise
that keeping your program correct and clear is the key to achieving
all of them. Our final chapters, Chapters 14 and 15, may help to
lead you into those more advanced areas.

2.1 Ethics

As a counterweight to the “get high marks” criterion let us finish
this chapter on a serious note. Computers are everywhere these

2.1 Ethics 11

days, and this means that qualities of programs influence every-
thing from whether our games are fun, via whether our privacy
is preserved, to whether we live or die. Writing good programs
really matters. Because of this, professional software developers –
and others – are, increasingly, expected to abide by written codes
of practice. These say more than just “write good programs”,
although absorbing the content of this book is a big step in the
right direction. Ethical programming includes being honest about
the extent to which you can be confident that your program is
good, and adhering to quality control processes that ensure that
if a mistake has been made – everybody makes mistakes – it is
found and rectified before it causes harm. It also includes being
a decent human being: for example, the software industry has a
sexism problem, and you should strive to be part of the solution.

For more information, including codes of professional practice,
search

programming ethics

3

How to Get Started

In this chapter we assume you are about to do the first exercise in
a programming course, or, perhaps, are starting to teach yourself
a new language. In any case, you are about to create a program.
You may have been given step-by-step instructions, but read this
chapter all the same: it will set those instructions in context, and
point out things that are easy to miss.

3.1 What Is a Program Anyway?

Terminology: Program

A program is a set of instructions that you would like a com-
puter to follow.

Arguably, it’s better to think of the program as being an instruc-
tion which may have complex structure. We’re definitely not using
the word “set” here in the same way you may have encountered it
in mathematics: rather, we’re using it in an everyday English sense.
Other examples of sets of instructions are cooking recipes, or the
leaflets you get with Lego kits or self-assembly furniture. However,
while those are typically simple lists of instructions, telling you to
do one thing, then another, a program can have more interesting
structure. The way the parts of a program combine to make a whole
is one of the things that varies between languages, and that you
have to learn in the setting of a particular language.

12

3.2 What Do You Need? 13

A computer is a machine: it will follow your instructions blindly,
with total, stupid obedience. Before it can do so, though, your
instructions will be translated (by other programs, including a
compiler or an interpreter), from the form in which you write
them (the program), into a form which is capable of affecting
the computer hardware (ultimately, binary code, zeroes and ones).
That translation process – about which we will have more to say
in Chapter 4 – naturally makes your life much more convenient; it
is much easier to write in a modern programming language than
in binary code. However, the very convenience of it may tempt
you to forget how stupid the computer really is. If one of the
translation steps involves rejecting most of your mistakes, it’s easy
to end up thinking that if the program gets to the point of being
run, that means that the computer “understood” it, will “see what
you mean”, will do something sensible. That’s an illusion – one that
can be helpful, but that you need to see as fiction.

A computer (even with all its software running) is not an intel-
ligence: not a friend, not a foe. It is just a machine. Learning to
program involves understanding how to make that machine do
what you want it to do.

3.2 What Do You Need?

So, a program is a set of instructions, which will eventually be
translated into a form that can be run on computer hardware. You
will need

1. a way to express the instructions;
2. a way to get them run on the computer hardware.

Let’s consider the second point first. Unless this has already
been done for you, or you are using a purely online system, you
will probably need to install some software for your language by
downloading something from the web. Precisely what you have to
do depends on the language you are learning and on the computer
you are using. Searching

14 3 How to Get Started

install your_language

will usually help you find specific instructions. Chapter 4 will
say more about how and why the process of getting to run
your program varies between languages: you may also like to
search

getting started your_language

Tip

Some languages (at the time of writing, Python is a notable
example) have several significantly different versions available.
A program that is correct in one version of the language might
be incorrect in another. Check you are installing the same
version that your course uses.

Next, you need a way to express your instructions. It’s just
possible you’re using a graphical programming language such as
Scratch, in which case you’ll do this by manipulating elements in
an application specific to that language. Usually, though, you will
type your instructions: we’ll say you’re going to write a program.
Where do you type, though? There are three main possibilities:

1. at an interactive prompt;
2. into a file created with a text editor;
3. into a file held in an integrated development environment (IDE).

Terminology: Integrated development environment

An integrated development environment or IDE is an application
that supports the whole process of developing a program.

3.2 What Do You Need? 15

IDEs are covered in Chapter 5: in this chapter we will discuss the
more elementary options.

3.2.1 Using an Interactive Prompt

In some languages – including Python and Haskell, but not
Java – you may start off exploring your language at some kind
of interactive prompt, sometimes called a read-eval-print loop or
REPL. After installing your language, you start its interactive tool,
perhaps by typing a command at an operating system command
line. The result is that you get a language-level interactive prompt.
Do not confuse the two kinds of prompt: they understand dif-
ferent inputs. The operating system command line understands,
for example, the instruction to start an application. The language-
level interactive prompt expects something that makes sense in the
programming language context. Here is an example of interacting
with Python, and with Haskell, at their interactive prompts (“[. . .]”
represents some output that isn’t interesting, and will depend on
your machine):

Python example

Python 3.7.3 [...]

>>> 3+4

7

>>>

Haskell example

GHCi, version 8.4.3: [...]

Prelude> 3+4

7

Prelude>

16 3 How to Get Started

(So far, Python and Haskell agree – good!)
Jupyter notebooks1 give a somewhat similar experience to using

an interactive prompt. A notebook can mix formatted text and
code, which makes it a convenient way for instructors to guide
students through the early stages of programming. It’s also a pop-
ular way to share data and ways of processing it. However, Jupyter
notebooks are not very convenient for serious code development,
and I would not advise adopting them unless you are on a course
which supports it.

3.2.2 Using a Text Editor

An interactive prompt, on its own, is only good enough for very
basic exploration, such as where you want to try out the effect of
just one line of program code. The next step up is to save your
program in a file, and edit it using a text editor. (Later, you may
load your file at the interactive prompt to test and improve your
code.) If you already have a favourite text editor, open it, and skip
on to the next section . . .

. . . but these days, many people who are new to programming
have experience with so-called WYSIWYG word processors such
as Microsoft Word, but not with text editors. The line between
word processors and text editors can get blurred, but fundamen-
tally, a text editor operates on a file as a list of characters. When
you save a file in a text editor, you know exactly what you’re saving,
because it’s the same list of characters you see in the text editor.
A word processor, even operating on a document that is basically
just text, saves a lot more information about how you want the text
to look: what fonts you have chosen, for example. The effect is that
you usually have to open a file that has been written by a word
processor in that same word processor in future. A text editor saves

1 https://jupyter.org/

https://jupyter.org/

3.2 What Do You Need? 17

a plain text file, which can be read and edited by any other text
editor. Programming tools expect plain text files as their program
inputs, although such files are usually given a specific suffix such as
.java, .hs, or .py, instead of .txt, to indicate that what’s in the
file is, in fact, a program in a specific language.

Organising your files

Files are grouped into a hierarchical – tree-shaped – system
of directories or folders (you may meet either or both terms,
depending on your operating system: they mean the same
thing). You will have, at least, a home directory to begin with;
you can create your own subdirectories to organise your files.
For example, if you are doing a course called Programming 1,
you might find it convenient to create a subdirectory of your
home directory called Programming1 and keep all the pro-
grams you write for this course in there. When you start work-
ing on Exercise 3 for the course, you might like to create a
new subdirectory of Programming1, called Exercise3, for
those specific program files. If you run a tool, such as an
editor, by invoking it from a command line, you will need to
make sure that you are in the right current directory for what
you want to do, so that the tool finds the files you want to
work on, without you having to give it complex directions to
them. If this is not already familiar to you, use search terms
such as

command line your_operating_system

change directory your_operating_system

Every modern computer comes with at least one text editor
already available. On Windows, you’ll find Notepad; on a Mac,

18 3 How to Get Started

TextEdit; on Linux, vi or (better, if available2) Emacs. You may as
well start with whatever you have. Later, you can either switch to
any text editor you prefer – besides Emacs, Atom and Sublime are
popular ones available on many platforms, and on Windows many
developers like Notepad++ – or to an integrated development
environment (IDE) (see Chapter 5). You can open and save a file
using menu options, and it will probably be pretty obvious how to
do basic editing. As soon as you have trouble, searching

your_editor_name tutorial

is a good move.

3.3 Understanding What You Have to Do

In an early programming exercise, you may be given a template file
that contains some of the program already. In this case, instead of
having to write the whole program, you simply have to fill in some
missing bits. For example, early in a Haskell course, you might be
given the following file:

Haskell example

say :: Integer -> String

say = undefined

main :: IO()

main = mapM_ putStrLn $ map say [1..100]

and the instruction

2 That’s what passes for a joke among computer scientists. With it I declare my
allegiance in the editor wars – you could do a search for that, or trust me . . .

3.3 Understanding What You Have to Do 19

Fizz Buzz exercise

Your Haskell program should print out the numbers 1 to 100,
each on a new line, except that:

• each number that is divisible by 3 must be replaced by “Fizz”;
• each number that is divisible by 5 must be replaced by “Buzz”;
• each number that is divisible by both 3 and 5 must be replaced

by “FizzBuzz”.

You are given the function main which will apply the function
say to each number in turn, and print the results. Your task is
to write the function say. For example

• say 1 returns “1”
• say 10 returns “Buzz”
• say 30 returns “FizzBuzz”

Template files are used because you can’t teach, or learn, every-
thing at once; in this example, the definition of main involves
things you would not normally learn in the first week of a Haskell
course. Still:

Tip

Whenever you are given code to use, take advantage of the
chance to learn from it. How much can you understand, and
can you identify specific things you don’t understand yet?

If you are not given a template file, your question probably says –
perhaps after some introductory text – something like:

Write a class Name to . . .

Write a function to . . .

Write a program to . . .

20 3 How to Get Started

For example, a different version of the Fizz Buzz exercise might
begin:

Fizz Buzz exercise

Write a Python function called fizz_buzz that takes an inte-
ger n and prints out the numbers from 1 to n, each on a new
line, except that . . . [instructions as before]

Before you put fingers to keyboard, read through any such
instructions carefully, making sure that you understand what is
required. Remember that, because the computer is just a machine,
details such as names can be important. If you are going to write a
function, you may be told what it should return in one case. Check
your understanding by working out what it should return in one or
two other cases. Make a note, electronically or on paper – you can
use these cases as tests later.

3.4 Writing Your Program

Tip

The biggest mistake that beginning programmers make is writ-
ing too much code before checking it works.

In the early days of computing, programmers used to have to
produce punched cards and send them away to be run overnight,
but you are probably more fortunate! If you’re in any doubt about
your ability to write your whole program correctly first time, you
will save time overall if you split the work up into tiny chunks, and
check each chunk is working as you expect, before you go on. Often
a good tip is to work from the outside in, writing a skeleton of your

3.4 Writing Your Program 21

code first, then filling in the details. If you have to write a class, or
a function, what is the syntax for that?

Terminology: Syntax and semantics

Roughly speakinga, the syntax of a programming language tells
you which things are legal to write in that language. Only once a
program is syntactically correct does it make sense to ask what
it does, or means – that is, what its semantics is.

a We are simplifying slightly, e.g. glossing over the issue of “static
semantics”.

Even tiny errors, like putting a bracket in the wrong place or
missing out a semi-colon, can completely invalidate your program:
the computer has no ability to see what you meant, however
obvious that may seem to a human. Instead it will give a syntax
error. The good news is that these are usually easy to fix – provided
you only have one at a time, which is why you should take every
opportunity to check that your code is OK so far.

3.4.1 Setting Up Your Task

Usually the first thing you have to know is what the thing you are
writing will be called. Often you’ll be told what name to use: if so,
use this exactly – for example, use uppercase and lowercase letters
exactly as you’ve been given them. Otherwise, start with a name
that’s as descriptive as you can manage right now (even if that’s
just “Question1” at this stage) and make a mental note to replace
it with a better name later.

Begin by writing just the skeleton of your code, so that you can
check it, even before you code the real behaviour. For example, if
your question was about Java, and began “Write a class MyClass
that . . . ” you type

22 3 How to Get Started

Java example

public class MyClass {

}

In many languages you will now have a legal program, even
if you leave the inside of what you are writing empty, as in that
example. In Haskell, it is useful to know about the special value
undefined, which works as its name suggests, e.g.

Haskell example

myFunction :: String -> String

myFunction = undefined

We already saw undefined used in the Fizz Buzz template
file. Python’s pass, which we’ll see in a moment, serves a similar
purpose.

Check that you have the syntax correct so far, by compiling
the program if you’re working in a compiled language, or else
by running it, following whatever language-specific instructions
you have. This also checks that you know how to compile or
run the program, of course. If there is an error, then the sooner
you find that out, the easier it is to fix. If there are no errors,
well done!

At the very beginning of learning a language, it is common to
encounter a sequence of problems that nobody has warned you
about, because you make mistakes that would simply never occur
to someone with experience in the language. If this happens to you,
don’t be discouraged! Take every opportunity to check your work,
and the basics will soon be second nature to you, too.

3.4 Writing Your Program 23

Story

Leslie is doing a course in Haskell. She reads the question which
says

Write a function max which takes two integers
and returns the larger.

She remembers being told that when you write a function in
Haskell you should first give its type, and then its definition.
She also remembers – because it seemed so surprising – that
the type of a function with two inputs has two arrows in it.a

She types

max :: integer -> integer -> integer

into the environment she’s been told to use, GHCi, and hits
return.
Unfortunately she gets the error message

<interactive>:8:1: error:

No instance for (Ord integer1) arising from a use of ‘max’

Possible fix:

add (Ord integer1) to the context of

an expression type signature:

forall integer1. integer1 -> integer1 -> integer1

In the expression: max :: integer -> integer -> integer

In an equation for ‘it’: it = max :: integer -> integer -> integer

This doesn’t mean much to her, but she doesn’t panic. The first
thing she realises is that she’s typed integer where she should
have typed Integer. Case often matters! Correcting to

max :: Integer -> Integer -> Integer

a This is because strictly speaking any Haskell function has exactly one
input! Providing the “first” input produces a function capable of accept-
ing the “second”. Look up currying if you want to know more about this.

24 3 How to Get Started

…unfortunately just gives her a different error message. Oh
dear. What should she do?

She turns to her Haskell textbook, and finds that it talks
about interacting with GHCi at the command line, but mostly
seems to recommend writing code in a file, and then loading the
file with :load. She tries that.

Prelude> :load "max.hs"

Next she finds

max.hs:1:1: error:
The type signature for ‘max’ lacks an accompanying binding
(The type signature must be given where ‘max’ is declared)

|
1 | max :: Integer -> Integer -> Integer

| ˆˆˆ
[1 of 1] Compiling Main (max.hs, interpreted)
Failed, no modules loaded.

which she takes to mean she must define the function as well as
declare its type. She adds a definition into her file:

max :: Integer -> Integer -> Integer
max x y

| x >= y = x
| otherwise y

(fortunately remembering that she’s been told to use spaces, not
tabs) but gets

Prelude> :reload

max.hs:7:1: error:

parse error (possibly incorrect indentation or mismatched brackets)

[1 of 1] Compiling Main (max.hs, interpreted)

Failed, no modules loaded.

Prelude>

She doesn’t find this very helpful, especially since there are fewer
than 7 lines in her program, so it’s hard to see what the “7:1”

3.4 Writing Your Program 25

means. Still, she doesn’t panic, and eventually she notices that
she has simply missed out an = sign in the last line. She puts it
in, and all is well.

This wasn’t a fun experience for Leslie, but at least, by
checking she was doing OK after typing 4 lines, rather than 40,
she made it easier for herself to sort the problem out.

Some of the named pieces of code you have to write are probably
functions, or methods of a class. A pure function – like max in
the story – is essentially a programmed version of a mathemat-
ical function, which you have probably seen illustrated as a box
with one or more arrows going in, and one going out, as in
Figure 3.1.

Here whatever computation goes on inside the box, to produce
the output from the input, is isolated from the rest of the world:
the function max operates as a black box with impenetrable walls.
Depending on your language, though, your programmed function
or method may be impure: that is, it may access data other than
its inputs, or it may have other effects such as changing what is
displayed on screen. You might think of such impurity as the box
in Figure 3.1 having walls that are not completely solid.

As well as getting the name of your function3 correct, you need
to make sure that your code shows the correct arguments – that is,
inputs – in the right order. If you need to give types, then the types
of the arguments, and of the return value, must be correct. All this
information is probably in the question: get it into your program.
Sometimes this is simple. For the Fizz Buzz Python example, where

3 A method – the term used in object-oriented programming – is a kind of
(impure) function, so we will often say just “function” instead of “function
or method”.

26 3 How to Get Started

maxx

y
max(x, y)

Figure 3.1. A mathematical (pure) function.

the function we have to write must take an integer argument, and
does not return anything, we might write:

Python example

def fizz_buzz(n):

pass

The word pass here means “do nothing”, and is only there
because you can’t have a completely empty function body in
Python. If you didn’t happen to know about pass, you might have
chosen to write print(1) or whatever, instead; the point is that
at this stage we are not yet worrying about what the function does,
just writing its casing, and as little else as possible.

If you’re writing a function that has to return a value, your code
will have to return something, probably of the right type, before
you will be able to make it run without getting an error message.
Do that now, before you think about what the function really has
to do. In the Fizz Buzz Haskell example, you might replace the
undefined say function you were given by this one:

Haskell example

say :: Integer -> String

say n = "1" -- TODO

This is, admittedly, only a tiny advance on the version in the tem-
plate, but at least, in choosing “1” as the fixed String value to
return, we have written a function that is correct for input value

3.4 Writing Your Program 27

1! The “-- TODO” is a comment: including it makes no difference
as far as the computer is concerned, but reminds you that you
have not finished yet. We will discuss comments much more in
Chapter 8.

Another example: if you are asked to write a public method
called calculate that takes a double and returns an int, you
could write

Java example

public int calculate(double d) {

return 0; // TODO
}

and again, check that your code compiles without error.
Once you’ve got to this stage, you’ve demonstrated that you

know how a function or method is defined in the language, and
that you have understood the type. That’s something, and if you
are writing for marks, getting this right may already have earned
you a few.

Tip

Unlike humans, who may not even consciously notice typos
in what we read, computers can be completely flummoxed by
the smallest of errors. Get into the habit of checking that you
haven’t mis-spelled something, or put an uppercase letter where
there should be a lowercase one or vice versa.

3.4.2 Making Progress Towards Fully Correct Code

Next, go on to understanding what the actual functionality you
have to implement is. Again, do not feel you have to get it all correct

28 3 How to Get Started

at once. Let’s look at the Fizz Buzz Python example. Suppose you
think you know how to print the numbers from 1 to n: check that,
before you worry about the Fizz and Buzz replacement. You might
improve your function to:

Python example

def fizz_buzz(n):

for i in range(1, n):

print(i)

As it happens, there is already a tiny mistake here. If you
run the code now, before there are more complicated matters to
distract you, you will quickly see it: Python’s range function
iterates from its lower bound to one less than its upper bound, so
fizz_buzz(100) will only print the numbers from 1 to 99. We
need range(1, n+1) instead. This is the kind of thing that is easy
to miss if you only check the behaviour at the end.

Of course it is always up to you how much code you write
before you check again. Inevitably, sometimes your checking will
show that you have made a mistake: my recommendation is to
keep your coding steps small enough that you are unlikely to
have made two mistakes since your last check. It is much easier
to find a single mistake than several that might have interacting
effects. Try completing a version of the Fizz Buzz exercise in your
language now.

Skeletons and specifications

Why does it help to work from the outside in? Because the out-
side is usually crucial to the specification of what you have to do.
For example, when writing a function, the most important thing
to understand is what information goes in – the arguments, and
their types – and what information must come out – the return

3.5 What to Do If You Get Confused 29

value, and its type, plus any other effects your function must
have. Get the relationship between those right, and you’ve done
it. The outside world – the clients of your function – will not
care how you implemented the function, provided that when
they give suitable arguments they get a suitable result. This is
abstraction, and it’s a key part of programming. We’ll return to
this idea in Chapter 10.

As you bring your program closer to completion, save a version
every time you have got another small thing working. Ideally,
do this by checking your code into a version control system (see
Chapter 6), but an alternative is to save copies of your program
file, with informative names to remind you which version is which.
That way you can try things out, secure in the knowledge that if
something goes wrong you haven’t lost much – you can go back to
a recent working state.

3.5 What to Do If You Get Confused

Sometimes you may find you can get the skeleton of your code
written easily enough, but you feel stumped when it comes to
going on from there. Perhaps the instructions are confusing, or
perhaps you understand what they mean but have no idea how to
fulfil them.

One thing I like to do if I am outside my comfort zone is to
make notes on my progress. I often do this by having a file called
notes.txt in the same directory where I am writing the program,
and writing notes to myself in this as I go. What I write depends on
what it is about the task that seems tricky. Faced with a large-scale
problem where I understand what I have to do but am not sure how
best to write a program to do it, I might write design notes, planning
out the structure of the code or an algorithm (computational
recipe) I will use. However, generally – and especially for student
beginners – my experience is that it usually works better to develop

30 3 How to Get Started

the program itself iteratively, testing as you go and improving the
structure of the program as your understanding of the problem and
solution deepens. In notes.txt I more often describe my current
state of understanding. For example, I might write:

Notes

Function fooa is supposed to do something with strings . . .

I don’t understand the explanation in general . . . but at least
if it gets a string with only one letter in, it should return True if
the letter is a vowel and False otherwise.

a Why foo? See the box at the end of this chapter.

Even if I’m wrong about that – I’ve misinterpreted the question –
the fact of typing it prompts me to think about what I do and don’t
understand, and gives me a record of where I got to and what I was
assuming at the time, which may be useful later.

When confusion threatens, it often helps to make your hypothe-
ses explicit and test them. For example, if you have the feeling that
your program works OK on simple inputs but has some problem
that’s affecting more complicated inputs, ask yourself what exactly
you mean by “simple inputs”. Write it down:

Notes

Hypothesis: the program always works correctly on strings with
just one character.

Then test your hypothesis with some specific one-character
strings. Include some you think might be tricky, such as a space
or punctuation character. Either your program does always behave
correctly on one-character strings, in which case you can con-
fidently go on to sorting out the bigger issue, or it doesn’t. If

3.5 What to Do If You Get Confused 31

it doesn’t, you can now work on the problem of making your
program do the right thing on one-character strings, which is easier
to think about than making it do the right thing on all strings.
Either way, you win.

Tip

Always work on the easiest problem first.

Once you’ve solved part of the problem, even a tiny trivial part,
you’re in a position to ask yourself: “is my program perfect yet?”.
If not, how do you know? Specifically? Answering that gives you
the next small problem to work on, and so on.

When you find a case where the program doesn’t work, make
sure you have a note of what the case is, what your program should
do, and what it actually does. Writing automated tests, as discussed
in Chapter 7, is a really good way to keep track of this, but even if
you’re not doing that yet, making notes – both of what works and
of what doesn’t yet – can help. Especially when you’re very tired,
it’s remarkably easy to get yourself into a state where you think a
certain thing used to work, but you’re not sure; or you may slip into
trying to write a program that isn’t the one you want at all.

Ideally, following this process round a few loops gets you uncon-
fused, to the point where you’ve finished your problem. If not, you
can probably at least get yourself into one of two situations:

1. There is something specific that you do not understand about
what the program is supposed to do. Cut it down to the simplest
possible case you’re not sure about. If you can, analyse what
it is you don’t understand. Are you unsure whether a certain
input is allowed at all? Or are there two behaviours that might
be expected under particular circumstances, and you’re not sure
which is right? Or what? Reread the problem statement with that
specific question in mind. If it’s still not clear, it’s probably time
to ask someone else.

32 3 How to Get Started

2. There is some specific problem with your program: it gives you
an error message, or it does not behave the way you expect
on some input. That is, it contains a bug. This is the topic of
Chapter 9.

Either way, analysing your problem is a big step towards solving
it. Try to avoid simply asking to see a solution: instead, asking for
the precise bit of help that will let you complete your own solution
will serve you better in the long run, and be much more satisfying.

Foo, bar, baz, mung, froboz

These are names commonly used to stand in place of the
actual names of functions, variables, etc. in conversation, when
the actual names are not important, or not yet decided. For
example, if you are discussing how function calling works, you
might say, “Suppose a function foo calls a function bar . . . ”:
here what you are about to say applies when any function calls
any other function, but you need some names for them, so that
you can use the names to refer to the functions later. Such
names are sometimes called metasyntactic. By long tradition,
foo and bar are the first two that programmers call upon;
these names are probably a corruption of the military slang
abbreviation FUBAR, standing for F***ed Up Beyond All
Recognition. After that, there are several divergent traditions
about what names to use (and froboz is often spelled frobozz).

Recognising and using the usual metasyntactic variable
names may help you to give the impression of having more
experience than you do! However, using them as actual names
in your program is generally a bad idea – in Chapter 8 we
will discuss why it is important to choose names that are
meaningful.

4

How to Understand Your Language

In Chapter 14 we’ll talk about how to choose an appropriate
programming language for a given task. In this chapter, though,
we’ll start with the assumption that you don’t have a choice –
you have to learn a language chosen by someone else. What do
you nevertheless need to understand about the landscape of all
programming languages, and how your language fits into it?

You may object that that’s not what the title of this chapter is
about: isn’t understanding your language just learning to under-
stand, and write, programs in it? Well: no, not only that. It’s also
useful to understand something about the decisions that were taken
in designing it: how, and why, it differs from other languages. If
someone else chose this language for you to learn, why did they
choose this one? Why will learning this language, in particular, be
valuable to you?

That said, people learn in different ways, and some people may
wish to skip this chapter for now. Feel free – but do come back to
it later.

If you’re still here, questions you might ask (ask your instructor,
ask your favourite search engine) include:

• What kind of task was this language developed for? When, and
by whom?

• Who uses it now, and for what?
• What kind of community is there of people who use this lan-

guage? Where do they hang out online?
• Is your language compiled or interpreted?
• What kind of type discipline does it impose?

33

34 4 How to Understand Your Language

• What high-level structure do programs in your language have?
• What conventions do people obey? You’d be surprised how

important things like how words are capitalised can be, in terms
of helping experts in the language quickly understand your
program, and in terms of making you look like someone who
knows the language! There are also conventions about many
other things, from how long parts of the program tend to get
before an expert would decide to split them up, to which libraries
are used.

Let’s discuss some of these questions. We’ll start from the
more concrete questions, and come to the more sociological
ones later.

4.1 Compilation or Interpretation

A question which can seem silly to people who already know
the answer – and to which, therefore, they may forget to tell you the
answer – is: once I have written my program, how do I get it to run?
There are two main answers:

1. You just run it.
2. You compile it, then run it.

This is a simplification, although it’s a useful one because the
presence or absence of a compilation activity tends to make a big
difference to how it feels to program in a language. Let us give the
simplified explanation first, before addressing the ways in which it’s
an over-simplification.

“You just run it” applies to languages, for example Python,
JavaScript (NB nothing to do with Java, despite the similar name!),
PHP and Perl, which are interpreted. That means that there is some
other program, called an interpreter, which reads your program
and does what it says. If there is a problem somewhere in your pro-
gram which means that part of the program cannot be interpreted,
the interpreter will give some kind of error message, and stop, when

4.1 Compilation or Interpretation 35

it gets to that part. However, by then it may already have run the
earlier parts of the program.

“You compile it, then run it” applies to languages, for example
Java, Haskell and all variants of C (C++, C�, Objective-C, etc.),
which are compiled. That means that there is some other program,
called a compiler, which reads your program and translates it into
a more primitive form. Some kinds of error in your program
can be detected in the process of compilation. If no such errors
are discovered, then you end up with a compiled program, saved
as a separate file, which you can then run, as above. Because
some of the work has been done by the compiler, the compiled
program usually runs faster than an interpreted program with the
same functionality. What is often more important is that, because
the compiler has checked for certain kinds of error, you get a
guarantee: if your program compiles correctly, then you can be sure
that that kind of error is absent. The main kind of error-checking
the compiler does is called type-checking: we will have more to say
about types in Section 4.2.

Story

In 1978, Robin Milner published a theorem about the core of
the programming language he defined, which is called ML; this
language has influenced Haskell and many later programming
languages. The theorem can be summarised as “well-typed
programs cannot ‘go wrong’”. That is, he proved that if the
compiler accepted your program, then your program was def-
initely free of certain kinds of error. When I first worked with
ML, some of my colleagues used to describe it as “the language
of pure thought” and say that if your program compiled, there
was no need to test it: it was certainly correct! Unfortunately
this is an exaggeration: but still, it is remarkably useful to have
a compiler that is good at noticing when you have made a
mistake, even if it can be frustrating to be told so.

36 4 How to Understand Your Language

To find out exactly how you get from having a file containing a
program in your language, to the result of running the program,
you need a basic tutorial in the language. If you don’t already
have one, search for one now, using the searches mentioned in
Chapter 3:

install your_language

getting started your_language

In Python, for example, you can save your program in a file called
myprogram.py, and then run it by typing
python myprogram.py

at a command line. In Java, you define a class called MyProgram

in a file called MyProgram.java, and then compile and run the
program by typing first
javac MyProgram.java

to compile it, and then
java MyProgram

to run it.
Sometimes the lines between interpreted and compiled lan-

guages get blurred: I admitted to an over-simplification. Strictly
speaking, whether a language is compiled or interpreted is a prop-
erty of the implementation of the language, not of the language
itself. Even in languages which are usually interpreted, like Python,
it is often possible to compile a program into a form (a .pyc

file) which can be run faster than the original and which has been
checked for certain kinds of problem. And even languages which
are compiled, like Haskell, can sometimes be used in interactive
situations (e.g. the Haskell REPL) which feel very much like
interpretation. Moreover, in some languages, like C and C++,
another stage, called linking, is made explicit. This connects the

4.2 Types 37

compiled program with any libraries that must be available before
it can be run. All programs have to get connected to the libraries
they depend on at some stage, of course, but this isn’t always
something the programmer has to do deliberately. For example,
in Java, linking is done by the Java Virtual Machine when the
class is loaded: that is, it’s part of what the run command, java
MyProgram, causes to happen.

4.2 Types

If you have ever been reminded to “show the units” in your answer
to a problem in a mathematics or science class, you have met types.
Arguably, if you’ve ever watched a baby using a shape-sorter, you
have, too! The type of a value in a program tells you something
about what you can legitimately do with it. What do you need to
know about a value in order to know that it makes sense to use it
in a particular context?

Terminology: Type-checking

Type-checking is the process of checking that the shapes of the
pieces of a program fit together properly: for example, that a
function that has been designed to accept only integers is never
given strings as its input. If this is done as part of compilation, it
is called static type-checking; if it is done at run-time, it is called
dynamic type-checking. Many languages use a mixture of static
and dynamic type-checking.

Almost every programming language has types of integers and
strings, for example. You’ll be familiar with integers from school
mathematics; “string” is the computer science term for a piece of
text, or sequence of characters. By long tradition, the first string

38 4 How to Understand Your Language

we experiment with is “Hello, World!”. A Hello World program in
a language is a program which prints out “Hello, World!” when you
run it. Our program will do slightly more.

Python example

x = 5

y = 2

z = "Hello, World!"

print(x)

print(y)

print(z)

print(x/y)

print(x/z)

No types are given explicitly in this program, but they are there: if
you try running it, you will get an error at the last line, something
like
TypeError: unsupported operand type(s) for /:

’int’ and ’str’

Once you think about what the program is doing on that line,
this is easy to understand, whether or not you “speak” Python.
Variables x and y hold integers; variable z holds a string. We don’t
have to say that: the language’s type inference works it out. Any of
x, y and z can be printed. It makes sense to divide an integer by an
integer (even though, note, the result is not an integer any longer).
However, it does not make sense to divide an integer by a string.
The interpreter does not even try: instead, it tells you that you have
got something wrong.

Languages differ in how they treat information about the
types of values. If we write the same program in Java, it looks
like this:

4.2 Types 39

Java example

int x = 5;

int y = 2;

String z = "Hello, World!";

System.out.println(x);

System.out.println(y);

System.out.println(z);

System.out.println(x/y);

System.out.println(x/z);

(as usual, we omit the lines that show this code placed inside a
method inside a class). This is very similar to the Python example:
compiling it will give an error at the final line, because you can’t
divide an integer by a string. Whereas in the Python case, the
earlier, unproblematic print statements were carried out before
the interpreter encountered the nonsensical instruction to print
x/z, in the Java case, since compilation does not succeed, none of
the instructions can be carried out until the problem is fixed and
the program is recompiled.

Apart from the System.out.println verbiage, the biggest
difference between this version and the Python one is that here we
have to give the types of the variables x, y, z in the program text.
(There is still some type inference going on, though: for example,
we do not have to say what type the expression x/y has. By the way,
if you’re learning Java: what type does it have? Removing the last
line and wrapping this code in a method in a class, compile and run
it. Did it print what you expected?)

In Haskell, it is rather unidiomatic1 to write anything of the sort,
but we can, if we insist:

1 That is, the code does not abide by the conventions usually followed by
Haskell experts, e.g. including types for top-level functions.

40 4 How to Understand Your Language

Haskell example

f _ =

do print x

print y

print z

print (x/y)

print (x/z)

where x = 5

y = 2

z = "Hello, World!"

As with Java, we won’t be able to compile this – let alone invoke
function f to run the code – until we get rid of the nonsensical line
about x/z. Just as in the Python example, we did not have to write
any types; they are inferred. Here, however, type inference is done
as part of the compilation phase. We cannot execute any of the
program until the types of all of it make sense.

Tip

If you are learning a language other than Python, Java
or Haskell, try writing a version of this program in your
language now.

We cannot really think without types: even programs written
in apparently untyped languages have implicit type information.
Even if, in your language, you are not forced to write down
information about what you expect types to be, it is wise to clarify
your expectations in your own head. Sometimes it is useful to write
them down, even if you don’t have to: it can help you, and other
readers of your program, understand what’s going on. One of the

4.3 Structure 41

ways in which our Haskell example was unusual was that it did not
specify the type of function f.

All the examples above used built-in types for strings and inte-
gers. All major languages have these types built in. To write real
programs you also have to be able to define your own types, and
languages differ in how you do that.

All the examples also demonstrated polymorphism: that is, we
could use the same function to print things of several different
types. Printing is the commonest situation where language design-
ers feel obliged to provide polymorphism. Whether, and how, you
can write your own polymorphic functions – that is, functions that
work on arguments of several different types – is another axis on
which programming languages differ. Indeed, it is a particularly
interesting one, as there are different kinds of polymorphism. Try
searching

polymorphism your_language

if you want to know more about this.

4.3 Structure

In a beginners’ programming course, the way in which large pro-
grams are structured may be invisible to you. You will probably
only write small programs to start with; you may, perhaps, write
only a few lines of code, and be told where to put them.

All serious programs, though, have to have structure. They have
to be split up into parts, so that teams of people can work on
different parts of the program without getting in one another’s
way. The structure of a program is what makes it possible to make
a change to a program, without having to understand everything
about the entire program. This helps with finding and fixing bugs
quickly and confidently, for example.

42 4 How to Understand Your Language

We mentioned functions, as black box machines transforming
input into output, in Chapter 3. When you define a function (or
method, or procedure) in your programming language, you are
structuring the program so that the lines of code that define what
this machine does (the body of the function) are together. While
this section of code may not be completely self-contained – it
may depend on other parts of the program, e.g. by calling other
functions – the aim is that a reader can understand what the
function will do, just by reading its body code. This sounds very
basic, but it could not always be taken for granted – search

goto considered harmful

if you would like to read about the early history of structure in
programs.

An intimately related issue is the scope of names.

Terminology: Scope

Many things in programs – variables, functions and classes, for
example – are given names. The scope of a name for a thing
means where, in the program text, the name can be used to refer
to the thing. If the name can be used anywhere in the program,
it is said to have global scope.

Global scope may sound convenient, but there is an important
disadvantage: if you need to understand the role this named thing
plays – e.g. to work out whether a change you have in mind will
break anything – you have to read the whole program. There-
fore, programming languages allow named things to have smaller
scopes. For example, a variable might be local to a function, so
that it can only be referred to inside that function’s definition. The

4.3 Structure 43

details are subtle and vary between languages: if you want to know
more, try searching

scope your_language

Your language may provide classes, modules, packages, or sev-
eral of these. Very likely these higher-level structures will be used
to provide libraries which make it easier for you to write programs.

Terminology: Library

A software library provides functionality designed to be used in
many other programs. A standard library for a language is one
that is maintained along with the basic software implementing
the language, and distributed with it, so that it is always avail-
able to someone programming in the language.

Standard libraries provide things which are frequently needed,
such as code for finding a pattern in a string, collections that can be
sorted efficiently, user interface components, etc. If your language
has a standard library, becoming familiar with it is an integral part
of learning to program well in the language.

Many libraries, and much of the other software implementing
major programming languages, are open-source.

Terminology: Open-source

Software is open-source when it is made available under licens-
ing conditions that allow anyone to view the source code,
modify it, and redistribute their modified version. Typically,
there are conditions, such as that the modified software must
itself be made available with the same licence.

44 4 How to Understand Your Language

For you as a beginning programmer, the immediate advantages
of using open-source software are that it is usually free,2 and that
you can, if you wish, look at the source code to learn from it.
Later you may wish to contribute to an open-source project: see
Chapter 15.

4.4 History, Community and Motivation

How old is your language? Who designed it? What is it used for? If
you are doing a beginners’ programming course, one question is:
are you using a language that is used mostly for teaching, or one
that is also widely used by professional developers? The languages
we discuss most in this book are used in both settings, but you
may have come across educational languages such as Scratch, or
some language for turtle graphics based on Logo; you may now be
learning Alice. Similar questions apply to the tooling you are using:
for example, you might be using the education-focused IDE BlueJ,
for Java. The lines between categories do get blurred, and successful
languages outgrow their niches: for example BASIC, the name of
a language designed in the early 1960s, stands for Beginner’s All-
purpose Symbolic Instruction Code, but its Visual Basic dialect
went on to be very widely used by experts as well as beginners.

Most likely, your language is used by some professional devel-
opers. To do what? Reading its Wikipedia page, or searching

who uses your_language

will find you some information (and possibly some examples of the
language wars). In the process, you may find out something about
the community surrounding your language. Perhaps your language
is a scripting language, often used for automating sequences of
tasks that would otherwise have to be done manually by humans.

2 In the sense that you do not pay money for it: you might like to look up the
different meanings of “free software”.

4.5 Paradigms 45

These are interpreted languages: Python is usually considered a
scripting language, although these days it is also used for many
other purposes. Or perhaps your language is mostly used for web
services, or in AI, or data science, or embedded programming, or
statistics. Which websites have the most useful bodies of questions
and answers about it? Bookmark them!

4.5 Paradigms

We have left until last something which comparative discussions
of programming languages sometimes take first. Traditionally,
programming languages have been divided into groups according
to the main way in which people writing in those languages tend
to think – that is, according to paradigm. The four main paradigms
usually identified are:

• Imperative. The program orders the computer to do one thing,
then another thing. Data is stored in the form of mutable state,
i.e. variables which have values that can be changed. Example
language: C.

• Object-oriented. The program is organised in terms of objects.
Each object wraps up (encapsulates) some data, and can respond
to certain requests (messages), thereby fulfilling some responsi-
bilities. Example language: Java.

• Functional. The programmer thinks of functions not just as bits
of code, but as concrete things in their own right – as data – which
can be passed around the program. For example, a function
can be passed as an argument to another function, just as an
integer might be. (People sometimes say functions are “first-
class citizens”.) Mutable state is avoided. Example language:
Haskell.

• Logic. Writing a program involves specifying facts, and rules
about how facts follow from other facts, and then asking a
question. Example language: Prolog.

46 4 How to Understand Your Language

However, real life is nothing like as neat as this, and some people
argue that it isn’t useful to think in terms of paradigms. As you
program in more than one language, you naturally import your
favourite ways of thinking – influenced by your past programming
experience – into each language you adopt. Some languages –
Python is an example, in fact – have a mixture of features that
makes them hard to classify. And sometimes a language that begins
neatly in one paradigm may change, over time, to make it easier to
program in a style that began elsewhere. For example, Java version
8 introduced new features that made it more practical to program
in a functional style.

Does this mean you can just pick your favourite way to program
and then program that way in any language? To some extent you
can, but it’s unlikely to be the best approach. For example, you can
write a C program in a functional style, but, because C doesn’t
support functional programming very well, your program is not
likely to be good. It will be all too easy to make mistakes, and
all too hard for any reader (including you, later) to understand
the program. Try to go with the grain of your chosen language
(whether or not it was chosen by you): learn from the way experts
in that language typically write. That is, learn to write idiomatically
in your language. At the same time, be alert to the good features
of different programming styles you come across, and be ready to
make use of them where appropriate.

Tip

To help you get a feel for what is considered good, idiomatic
code in your language, find a fairly large, highly reputable body
of code. Look at it and remember to come back to it at intervals
as you learn the language. Don’t worry if you can’t understand
it in detail at this stage. Consult it if you ever wonder about
such things as “how long should a function be?”, “how should
I capitalise the name of a type?”, etc.

4.5 Paradigms 47

Standard libraries, for example, are written by experts who
expect their code to be inspected by many other experts, so they
tend to be good – though not especially beginner-friendly – code.

• Java: the OpenJDK version of the Java Development Kit has
source code at http://hg.openjdk.java.net/jdk/jdk/. Look for the
“browse” entry in the left-hand menu.

• Haskell: if you use Hoogle (https://hoogle.haskell.org/) to look
up a function, there is a link to its source code to the right of its
name.

• Python: if you use the documentation available from
https://docs.python.org/3/library/ for the standard library, you
will see links to source code near the top of most pages.

Your language-specific book or documentation should provide
plenty of examples of simpler code.

http://hg.openjdk.java.net/jdk/jdk/
https://hoogle.haskell.org/
https://docs.python.org/3/library/

5

How to Use the Best Tools

In the earliest days of computing, programs took the form of
punched cards that had to be fed into a computer, and program-
ming was slow work. Naturally, the programmers, who understood
the power of computers, wanted computers to help make the
work of programming easier, faster and more reliable. These days,
there is a wide – and constantly changing – assortment of tools
to support the software development process. Some tools – e.g.
compilers – perform a clearly delineated task; others, especially
integrated development environments, bring together many capabil-
ities and present a uniform interface to them. Learning to make
good use of tools is an important part of learning to write good
programs.

Programming courses vary a lot in how much instruction they
give on tool use. You may be told precisely what to use and how, or
you may get a suggestion of what tool to use but be left to find out
about its capabilities yourself, or you may be completely on your
own. Naturally, to whatever extent learning to use a particular tool
is part of your course, you need to do that; but it is also useful
to have a broader view of what is available. When you program
outside or beyond your course, you may be able to choose the
tools you prefer. If you plan a career in software development,
you will need to be able to adapt to whatever tool set is in use
in the organisation where you work. Widening your experience is
worthwhile, both to let you make good choices when you can, and
to give you the skills to fit in when you must.

As we shall see in the rest of the book, appropriate tools can help
you throughout the process of developing software: from starting
a new programming project, through editing, compiling, running,

48

5.1 Using the Most Basic Tools 49

testing, debugging and improving your program. In the rest of this
chapter, we will discuss the ways in which tools can support the
basic writing of a program. On the way, we will discuss the factors
that may guide you in choosing a tool.

5.1 Using the Most Basic Tools

Until now, we have assumed you are using a text editor to write
your program, and then compiling and running the program from
the operating system’s command line. This has the advantage that
it makes it easy to understand which tool does what task – by con-
trast, the more sophisticated tools can sometimes be mystifying.
It is a good idea to be able to write, compile, test and run your
program using nothing more complex than a plain text editor –
a dumb editor, one that does not have any special features for
supporting programming – and a command line, even if you don’t
choose to work that way day-to-day.

Powerful, extensible text editors, such as Emacs and Atom, often
have extensions to let them support programming in various lan-
guages. For example, in Emacs you should edit a Python program
using the editor in python mode, and provided that you use the
standard extension.py for your Python files, you will probably find
that the editor enters this mode automatically. The most obvious
thing you will notice is that you get automatic syntax highlighting,
which gives a visual difference between, for example, keywords in
the language, such as if, and variable names that you chose. Note
that, even though the visual effects can look similar to what you
might produce in a word processor, here the editor computes what
effects to use where. No instructions about these visual effects are
stored in the program file, which is still just plain text that you can
open in any text editor.

Editor modes, which can be quite simple or very powerful, are
easier for people to write than specialist development tools, so
they are typically available even for less common programming
languages. Moreover, some people prefer being able to run their
whole lives from one program. I, for example, use Emacs for

50 5 How to Use the Best Tools

managing my mail, writing my papers, organising my files, and
most of my day-to-day programming – though for Java, I find it
worthwhile to switch out of Emacs to a specialist IDE.

5.2 What Is an IDE?

In Chapter 3 we introduced the term integrated development
environment as “an application that supports the whole process of
developing a program”. This is a bit vague, and indeed, IDEs differ
in their capabilities. You may expect an IDE to support at least
writing, compiling (if that’s relevant to your language), running,
testing (Chapter 7), and debugging (Chapter 9) your program.

Typically the IDE presents you with a graphical front-end,
behind which are the same tools you could use from the command
line: for example, the IDE might have a menu item for testing
your program, which, behind the scenes, invokes a testing tool
you could also choose to invoke directly. However, there are a
number of benefits to the integration of many individual tools in
one application.

• They can be presented to you in a consistent, easy-to-use way;
you can invoke them from menus instead of having to remember
individual tool names. Good interface design can also make it
easy for you to discover capabilities by exploring the interface.

• The IDE can keep track of your workflow – for example, if you
try to run a program which you have edited since you last saved
it, the IDE will probably ask you whether you want to save your
work first.

• The IDE can provide you with intelligent links between the
output of one tool and what you are likely to want to do next.
For example, if compiling your program reveals that there is an
error on line 13, clicking on the error message may position the
IDE’s editor at line 13.

• The IDE will have a notion of project: that is, of a collection of
files that go to make up a complete program. To begin with, your
programs may just be single files, and the notion of project will
not seem useful. Later, though, a project might include multiple

5.2 What Is an IDE? 51

files of code, tests, some resources that the program needs at run-
time (such as images for use in the program’s user interface),
a record of what external libraries the program needs, a build
file which specifies dependencies between the files and how they
are combined into running software, etc. The IDE’s ability to
help manage these files and their dependencies can then be very
helpful.

You can simply use an IDE as a text editor, and then compile
and run your program using menu items.

Tip

Make sure you know the keyboard shortcut for saving your
program, so that you don’t have to go to a menu every time.

More generally, think about how to use the tool in a way which
is efficient and comfortable for you. Programming, especially for
many hours a day, can lead to repetitive strain injury (RSI); simple
steps like knowing the keyboard shortcuts, for the things you do
most often, can help a lot.

Here are some of the most useful capabilities that an IDE will
probably offer you, besides basic editing.

Offering Constructive Criticism You may find that the way the IDE
points out mistakes you have made in your program is more helpful
than the way the compiler or interpreter does so: for one thing, it
will at least try to give you a visual indication of where in your
program the error is.

For example, if you edit Java code using Eclipse, and you make
a syntax error, you will see a red cross in the left margin and a red
squiggly line under part of your code. (Eclipse actually compiles
your code incrementally, which is why it can show you errors almost
immediately after you make them.)

I recommend that whenever you see such an error indicator, you
fix the problem immediately. Under no circumstances should you

52 5 How to Use the Best Tools

use the IDE’s settings to turn off the error indicators, as one student
I encountered did: the errors are still there, even if you make the red
marks go away!

The tool may offer quick fixes: that is, if you hover over or click
on an error indicator, there may be a menu of changes that may fix
the error, which the tool can then apply automatically. These are
worth considering, although the tool is not all that intelligent, and
the right thing to do may not be one of the suggestions.

Keeping Your Work Neat A capability the IDE will offer, that
beginners often under-value, is to help lay out your code consis-
tently. You will probably find that you can select a region of code
and choose a menu item called something like Format, to make
lines of code line up where they should, and so on. We will discuss
this, and why it is important, in Chapter 8. The very short version
is that it makes your code easier to read, and makes you more likely
to notice when what you wrote is not what you intended.

Saving You Typing More of a mixed blessing is the IDE’s ability to
save you typing parts of your code, for example by auto-completing
long function names, or by telling you what pieces of syntax make
sense to put next in a given context.

Terminology: Autocompletion

Autocompletion – sometimes called code completion or content
assist – is when the IDE saves you typing. For example, if you
have typed enough of a function name that there is only one
function you could mean, the IDE may be able to insert the rest.
Or, it may pop up a menu for you to choose between possible
functions. Try hitting the TAB key, or Ctrl and the space bar
together, and see if anything useful happens. Searching

autocomplete your_IDE

will give you fuller information about what’s available.

5.3 Looking Forward 53

Autocompletion can be convenient, and it may even encourage
you to write better code: as we shall discuss in Chapter 8, you
should avoid using cryptic abbreviations as names in your pro-
gram, and the temptation to do that is lessened when autocom-
pletion helps you use a better, longer name without incurring more
keystrokes.

The downside is that, if you habitually rely on autocompletion
to insert names from a standard library, or other bits of program
text, you may not internalise them. Then you may find yourself
unexpectedly stuck when, for some reason, you have to program
using a dumb editor. Be aware.

5.3 Looking Forward

To begin with, you may be content to use just the most basic
features of a tool that has been recommended to you. It is common,
however, to find that an IDE you have been using for years has fea-
tures that would have been fantastically useful to you, if only you
had known they existed. For example, IDEs often integrate with
various build systems, with version control systems (Chapter 6),
and with public repositories like GitHub. When you have time, see
if the tool has a tutorial, perhaps accessible via a Help menu, that
may tell you about such things.

Once you’re feeling quite confident with programming, experi-
menting with different IDEs can be worthwhile; you may well find
one you prefer to the one your programming course told you to
use, either because it has extra features that you value, or because
you find it more usable. Try searching

best ide your_language

and browsing reviews, to decide what to try. Some common IDEs
today that are used both in teaching contexts and by profes-
sional developers are Eclipse, IntelliJ IDEA and NetBeans, which

54 5 How to Use the Best Tools

are available on many platforms, and Visual Studio (Microsoft
and Apple operating systems). There are many others, free and
commercial, including some written specifically to help students
(e.g. BlueJ for Java). The choice is also dependent on what pro-
gramming language you’re working in. Java is by far the best
supported by IDEs.

The most popular IDEs, such as Eclipse, also support ecosys-
tems of plug-ins: that is, they have an extension mechanism which
lets people other than the original developers of the IDE extend the
IDE’s capabilities in whatever direction they desire – from impos-
ing custom layout styles to integrating with tools for modelling and
verification. This is usually not a job for a beginning programmer,
but if you ever wish your IDE did something that it does not do,
remember that, in a year or two’s time when you’re looking for an
interesting project . . .

6

How to Make Sure You Don’t Lose
Your Program

Have you ever had the experience of working on something for
a significant length of time, and then losing it entirely when a
program crashed or a connection was lost? Or simply because
you closed a window you shouldn’t have closed? Or because you
thought you didn’t need a certain chunk of it, and deleted it, only to
realise a moment later that you did need it? Whether we’re talking
about an essay, your latest social media post or a program, it’s really
annoying. Fortunately, it’s largely avoidable.

Making sure you don’t lose your program, or valuable sections
of it, is partly a matter of using the right tools, and partly a matter
of developing habits that will save you from your own mistakes.
People often have strong views on the right way to do it, but
in truth, there are many ways that work, each with its own pros
and cons.

The key tool is, of course, the one you’re using to write the
program. Whether that’s an editor or an integrated development
environment (see Chapter 5), make sure you understand what it
can do for you.

6.1 Immediate Recovery: Undo

The most important facility that helps you recover, immediately,
from momentary mistakes, is the undo feature. Most of the tools
you’d consider these days have “infinite” undo – that is, you can
undo not just your last edit, but the one before that and so on,
even back to the state the file was in when you loaded it into the

55

56 6 How to Make Sure You Don’t Lose Your Program

editor. They typically have a corresponding redo feature, for when
you accidentally undo too far. These can be extremely useful, but
they can also be a little confusing, especially when you are feeling
stressed because you’ve realised you messed something up.

Tip

Experiment with the undo and redo features of your editor
before you actually need them.

If it turns out you’re using a tool that has no undo/redo facility,
or only has one level, i.e. you can only undo the last edit . . .

seriously consider switching to another tool, if you can. If you
don’t have a choice, pay even more attention to the rest of this
chapter.

6.2 Basic Disaster Recovery: Files

Computers have primary storage, usually called memory, and sec-
ondary storage, usually disk. When you open a program file in
your editor, relevant data from disk is copied into memory. As
you program, what you see on the screen in front of you is the
state of what’s in memory. It can be different from what’s on disk,
because as you work on the program, you change the state of the
copy that is in memory, but not the state of the copy that is on
disk. When you save the file, the version in memory replaces the
version on disk, so that the two become the same again. Since
you are gradually improving your program, this is generally a
good thing, and I suggested earlier that you train your fingers into
saving often.

However, if you find yourself with a disastrously broken version
of your program in front of you – for example, perhaps you just
accidentally deleted a huge chunk – the very last thing you want to
do is to have this version replace what is on disk, so at this moment,

6.2 Basic Disaster Recovery: Files 57

do not save! Think carefully. Can you use undo to get back to a
good state? If so, do so. Or, did you save recently, so that you are
confident that the version on disk is pretty close to what you want?
In that case, close your file without saving, and reopen it from disk.

If it is a long time since you saved the file to disk, though, using
the version on disk may not help: you may have done a lot of
work that is not recorded in either version. At this point it helps
to know about an often-overlooked but occasionally useful feature
that most tools have: autosaving. That is, every few minutes or
after a certain number of key strokes, they save a version of your
program, not onto the file you got it from (saving to that is under
your explicit control) but somewhere else. In the days when tools
were less reliable than they are now, this feature was introduced to
guard against the editor crashing. These days, it’s more likely to be
useful when you make a mistake. See what your tool does or can
do, either by searching

autosave your_toolname

or by browsing your filespace. You may find that in the same place
where your program file lives, there is another file with a variant of
its name which is the autosaved file, or you may find that your tool
uses a different directory or folder to store its autosaved files in.

If you do something wrong in a file and want to go back to an
earlier version, but for some reason you can’t do so using undo, try
this:

1. Take your hands off the keyboard and mouse. Doing nothing
is not going to make matters worse: anything you do without
thinking it through might. Especially, saving the current, wrong,
version of your file may destroy useful information on disk, so
don’t do that!

2. Think: might the current version on disk be at least a bit useful?
Or, given what you know about your tool, might there be a useful
autosaved version of the file?

58 6 How to Make Sure You Don’t Lose Your Program

3. Use a file browsing application to go and see. If you find a file
you think might be useful, make a copy of it with a new name,
so that your tool will not automatically overwrite it.

4. Once you’re sure you’ve got copies of each version of the file that
might be useful, you can go back to your tool, save whatever
needs saving, look at all the file versions, and merge them
appropriately.

5. You can do the merging by hand, just copying and pasting useful
bits of the file, or you can use a comparison and merge facility
from your tool or elsewhere – I like Emacs’ediff command for
this.

6.3 Avoiding Disaster: Saving Versions

When you are solving a programming problem, you typically do
so in many small stages, solving gradually more of the problem.
Sometimes your attempt at the next stage fails, and you may even
break something that was working before. You can save yourself
the frustration of “going backwards” in this way, by developing a
reliable “ratchet” technique that means you can always return to
the best state you have reached so far.

The most basic way to do this is to save a copy of your program
file each time you reach a new high point. Give your copy a name
that reminds you how far you’ve got, and then go back to editing
the copy of the file with the real name.

Story

Jennifer is doing an exercise in many parts, all of which
involve improving file customer.hs. She edits customer.hs
until she has Part A of the question done to her satisfac-
tion. Before starting Part B, she saves a copy with the new
name customerPartADone.hs. (She makes it a read-only file,
having previously made the mistake of accidentally carrying

6.4 Automating the Process 59

on editing in the file that was supposed to be a safe
copy.) Then she goes back to editing customer.hs to
work on Part B. Once that’s done, she saves the new
version as customerPartsAandBDone.hs, and goes back
to editing customer.hs, and so on. If she got totally
confused while working on Part C, she knows she could
always discard her unsuccessful work on Part C, copy
customerPartsAandBDone.hs to customer.hs, and start
Part C again. As it happens, she never does get so confused
this time, but she feels safer knowing that the saved versions
are there.

The more confidence you can arrange to have in the correctness
of your saved versions, the more useful they will be to you. At
a minimum, you should check that your editor and the compiler
don’t find any errors in them (apart, perhaps, from errors that
simply show you haven’t solved the whole problem yet – though
see Chapter 3 for how to minimise those by getting to compiling
code as soon as possible by writing the outsides first).

It’s also a good idea to test your program before you save each
version – see Chapter 7 for more on this.

6.4 Automating the Process: Using a Version
Control System

Once you get into the habit of saving versions of your file, like this,
you will quickly realise that it would be helpful to have some tool
support for the process. This is the job of a version control system.
Even a simple, single-user version control system will let you:

• check in a new version whenever you wish;
• associate comments with the new version, e.g. to record what this

version achieves;

60 6 How to Make Sure You Don’t Lose Your Program

• retrieve a history of all the versions you’ve checked in, with their
comments (particularly useful if you go back to a program you
were working on a while ago);

• recover any past version you want.

Most of the systems you’ll come across these days have many
more features than these. For example, they keep track of a related
family of files, and let you check them all in together – this becomes
crucial when you work on systems with large numbers of files.
They usually have facilities to let teams of people work together on
large systems, with some hope of not interfering with one another’s
changes. The use of such facilities is beyond the scope of this book,
though. Summarising very briefly, version control systems have
been through three generations:

• First generation: simple single-user systems. The only one you
are likely to come across these days is RCS, which is installed on
most Unix systems. It is so ancient that people may laugh if you
tell them that is what you are using, but it does everything you
need as a beginner!

• Second generation: more complex systems that support multiple
users, all working with the same files that are stored in a single
central repository. SVN, short for Subversion, is the most used
today. It is available on all the operating systems you are likely to
use. You can use it from the command-line, or you might prefer to
interact with it via a client that offers a graphical interface (such
as TortoiseSVN on Windows, or Versions on a Mac). Command-
line use may be a little less intuitive to start with, but may make
it easier to transfer your understanding from one platform to
another.

• Third generation: distributed systems, allowing each user to have
their own repository so that they can continue to work even
when they are not all connected to the internet. Git is the best
known, and is available on all major platforms; again there
is a command-line interface and a choice of graphical clients.
Familiarity with Git will help you if you want to make use of

6.5 Managing Code that Is Not in Use 61

open-source projects stored on GitHub, which is a Git-based
hosting service – you can even store your own code there (more
on this in Section 6.6).

If you are using an IDE (Chapter 5) you are likely to find that
it has version control, based on SVN or Git, integrated in it: using
this is likely to be easier than using a standalone version control
client.

Tip

While you just want a version control system for your course
exercises, simple beats full-featured; on the other hand, life is
a lot easier if someone nearby is familiar with the system you
choose to use, so consider asking around and going with what
other people use.

Whatever you use, go through a tutorial carefully, and try out
the tool with some dummy files, before you trust it with your
important files. Searching for

name_of_version_control_system tutorial

will find you one.

6.5 Managing Code that Is Not in Use

It’ll often happen that you write a section of code, and then dis-
cover you don’t want it in your program, for example because you
think of a better way to solve the problem. Particularly when you’re
a beginner, it can also happen that your code doesn’t do what
you think it should do, and you don’t quite understand why, and
you decide to implement the functionality a different way instead.
What do you do with the code now it’s no longer useful? You could
just delete it, or you could comment it out.

62 6 How to Make Sure You Don’t Lose Your Program

Terminology: Commenting out

To comment out code is to hide it from the compiler
and interpreter, while leaving it in the program for a
human reader.

Languages typically have a character, or character sequence,
which tells the compiler or interpreter “ignore the rest of this line”.
(The main purpose of the syntax is, of course, to allow you to write
natural language comments, which we’ll discuss in Chapter 8.)
In Java, C, and many other languages the character syntax is //;
in Python, Perl, and various others it’s #; in Haskell it’s --; etc.
You can just type the comment characters at the beginning of
each line you want to comment out, but that gets tedious fast if
you want to comment out more than a line or two. There are two
alternatives.

1. In an IDE, you can typically select a block of code, and then
use a menu item or key combination that acts on the selection to
insert the comment character at the beginning of every line in the
block. Selecting a commented block to uncomment by removing
the comment characters works similarly. The IDE will typically
use a different font or colour to display commented-out lines, so
that they are easily distinguished from active lines of code, too.
This method is easy provided your tool offers the facility. It also
has the advantage that there is no confusion about whether a
line of code is commented out or not, and it avoids any difficulty
with nested comments and similar issues.

2. Your language may have a second comment syntax, specifically
for multi-line comments. This means that there is some spe-
cial combination of characters that marks the beginning of a
comment, and a different special combination that marks the
end of a comment. Everything that follows the begin-comment

6.5 Managing Code that Is Not in Use 63

sequence is ignored, until the end-comment sequence is found.
In Java, C, etc., the beginning and end sequences are /* and */;
in Haskell, {- and -}. Python does not have a true multi-line
comment syntax. The advantage of this method is that it gives
an easy way to comment out large blocks of code even in a dumb
editor. However, there can be issues when you comment out a
block of code that itself includes comments, and it may not be
visually obvious which lines are commented out.

My preference is generally for the first of these two ways of
commenting out chunks of code. It is – surprisingly, perhaps –
a topic on which heated arguments between experts can occur,
however. Recall the advice to find a body of reputable code in
your language: you might like to see what is done there, and
follow suit.

Once you know how to comment out code, should you do that,
or should you delete it?

The advantage of commenting code out is that if in a few
minutes you realise you do want it after all, it’s a simple matter
to uncomment it; and if you need something similar, it can be a
good memory jogger.

The advantage of deleting it is that it keeps your code looking
clean and simple: you have a better chance of being able to see all
the important active code at once, which makes it easier to think
straight.

How to decide? I recommend asking yourself how sure you are
that you aren’t going to want this code again. If you are pretty sure
you won’t, go ahead and delete it. If you think you very well may,
comment it out for now, but remember to think about it again a bit
later: don’t let commented-out code sit around, getting in the way
and distracting you, for weeks or longer. This is where a version
control system is reassuring – if you have a version checked in
containing that code (maybe commented out, if the code didn’t
work), you can always get it back if you need it.

64 6 How to Make Sure You Don’t Lose Your Program

One thing you definitely shouldn’t do is leave code looking as
though it is in use, when it is not.

Terminology: Dead or unreachable code

A section of your program code is unreachable if it can never be
executed. For example, if you write a function as part of your
program, but your program never calls it (nor makes it available
for a client program to call) then that function is unreachable.
You may hear dead code used as a synonym for unreachable
code. Some sources use it, instead, to refer to code that is
executed, but does not contribute to the intended behaviour of
the program. For example, if your program calls a function, but
never uses the result of the function call, then the function may
be considered dead, but not unreachable.

Tidy up as you go. For example, if you write a function and
then don’t call it from anywhere, get rid of that code, at least by
commenting it out, unless you know for sure that it will be used
shortly. You might be tempted to think that it’s doing no harm to
leave the code there; after all, if it isn’t called, any bug in it isn’t
exercised, so does it matter? However, unused code gets in your way
and can be confusing. For example, when you search for a bug, you
may waste time looking at that code, even though it can’t possibly
be the cause of the bug. Even if you are using an IDE which makes
clear, e.g. using a colour change, that some code is unreachable,
it still gets in the way by taking up screen space that could be
better used. Get rid of it. As the agile programming people say,
YAGNI.1

1 You Ain’t Gonna Need It.

6.6 Backups and the Cloud 65

Tip

If you find yourself reluctant to delete a chunk of code that is
not useful to you right now because you think you are going
to need it – for example, it solves a problem you expect to
have again, and you had to look up something tricky to get it
right – then by all means do save it. Just don’t save it inside a
program where it is useless. I sometimes make a subfolder called
CuttingRoomFloor for possibly useful snippets.

6.6 Backups and the Cloud

Making copies of your files, or using a version control system, can
be an effective way to guard against losing your program because of
your own accidental deletions. But what if the copies of the files,
or the central repository of your version control system, are all
stored on the same computer that you are working on, and then this
computer dies, or is lost or stolen? In order to recover your work,
you need it to be backed up in some way: that is, there needs to be
a copy of the important files on some other computer, or on some
external medium. If you are using a computer that is provided by
your university or college, it is likely – but not certain! – that your
files are automatically being backed up for you, and that there are
computing support staff who can restore them for you if disaster
strikes. If you are using your own equipment, you need to make
your own arrangements to reduce the risk that you lose important
work. As with version control, there is a range of approaches, from
the fully manual – e.g. you get into the habit of copying your files
onto a USB stick that you keep on a keyring, every time you finish
a work session – to the fully automated. You could search

automatic backup your_operating_system

66 6 How to Make Sure You Don’t Lose Your Program

for options. Today many people rely on storing their files in the
cloud in some way – that is, on someone else’s computer that you
access via the internet. Google, Microsoft, Dropbox and others
offer basic free services: you can keep your programs in a directory
that gets automatically copied to their servers, and then, by logging
into your account with the service, you can access them from
anywhere on the internet. This can be very convenient day to day,
especially if you regularly use several different computers and want
to be able to work on your code on any one of them, as well as
saving you in the case of disaster.

Tip

Backup plans that rely on you remembering to do something,
such as copy your files or run the backup service, are useless
if you do not remember. If you choose a plan that is not fully
automatic, think about how you can turn the necessary actions
into a habit that feels automatic, perhaps by connecting the new
action with something you already do regularly.

A version control system lets you easily get back any earlier
version you checked in; a cloud service lets you easily get back the
current version from any computer. What if you want to combine
these advantages? The obvious idea is to keep your version control
repository in the cloud – but, especially if more than one person
is using the repository, this can be dangerous because the services
are not designed for this use, and corruption of the repository can
result. A better idea is to use GitHub or another dedicated cloud-
based version control system. Their raison d’être is to let teams of
people collaborate from anywhere in the world, but you can use
them for single-person projects such as coursework too.

However, one word of warning: if you decide to use a system,
such as GitHub, that has the potential to make your files available
to other people, you must think carefully about who should have

6.6 Backups and the Cloud 67

access to what. For example, if you are working on an assessed
exercise, you will normally not be allowed to give anyone else
access to your solution – that would facilitate cheating, and is
often penalised just as heavily as using someone else’s solution.
Examiners usually take the view that it is your responsibility to
understand who has access to your files, so make sure you do!

Some people like to build up a publicly accessible repository of
their code, which they can point at in job applications, etc. That’s
an idea, but it can backfire if you end up with old code still around
after you’ve learned to write better – and once you put something
on the internet, you can’t guarantee it ever goes away! Consider
more cautious alternatives, such as sending samples of your code
direct to people you’d like to see them.

Tip

Be cautious about letting people you don’t know see your code.

7

How to Test Your Program

You’ve written enough of your program that it’s possible to run
it; how do you find out whether it’s right, so that you can fix it if
it isn’t? Well, you run it, and see if it does what you expect. For a
really simple program, that may be all there is to say.

Python example

print("Hello, World!")

We run the program, observe that it prints “Hello, World!”, and
conclude that it is correct.

What did we do there, though? We implicitly understood

• that the program did not need to be given any command-line
arguments, or any other specific context, in order to operate;

• that what it was supposed to do was to print “Hello, World!” to
the usual place where we expect to see program output (known
as standard out).

Terminology: Specification

A specification for a program is a description of what it is
supposed to do. It may be very detailed, saying exactly what the
program should do under any circumstances; or it may be loose,
giving only a small part of the information the programmer
will need.

68

7.1 Manual Testing 69

Of course most programs are more complicated than this. They
take input or operate in a context of some kind, and what they do
may depend on that context. It may not be trivial to understand
exactly what the program should do in a particular case. This is
where tests come in. When you write a test down, you create a
record of something you understand about the program’s intended
behaviour. This saves you effort: re-reading the test should be
easier than going through the understanding process again. If
you repeatedly run the same tests on the program as you develop
it, you can satisfy yourself that you are improving the program,
and if you accidentally change it in such a way that it behaves
wrongly in a context where earlier it behaved correctly, you can fix
it immediately. (See Chapter 9 – fixing a bug immediately after you
introduce it is much easier than fixing it later!)

Terminology: Test

A test for a program is a specific context in which to
run the program, including any necessary data, together
with a specification of what the program should do in that
context.

7.1 Manual Testing

Provided you know how to run your program, including how to set
up its context – for example, give it any arguments it needs – and
you know how to observe what your program does, you can do
systematic testing. You do not need any special tools; a text file or
a piece of paper will do. Just write down a list of tests: describe the
context, and the required results. For example, suppose you have
written a program slightly more sophisticated than Hello World,
called greeter, that is supposed to take an argument and print
out “Hello” followed by that argument. You might write:

70 7 How to Test Your Program

List of tests

1. greeter Rahul outputs Hello Rahul

2. greeter sue outputs Hello sue

3. greeter Jane Smith outputs Hello Jane

4. . . .

Now, systematically testing your program consists of going
down the list and running your program once for each test, giving
the appropriate context and checking for correct results.

As you write the tests, you will probably find yourself mentally
formulating a concise description of what the program does. The
third test in the panel shows that our initial description of the
program was not fully detailed: assuming we got that test correct,
when we give the greeter program the argument Jane Smith it
is supposed to print Hello Jane, not Hello Jane Smith. This
is the kind of detail you will need to be very careful about. After
clarifying that, we might have a more precise specification, such
as “the program outputs “Hello” followed by the first word of the
input, exactly as given”. A precise specification may be really useful
if you have to change the program in future. Once you’ve gone to
the trouble of getting it clear in your head, consider putting it into
your program as a comment. In this case, the comment has the
effect of telling anyone reading your code that it is deliberate that
it only prints the first word of the argument.

Tip

Any time you do write down your program’s specification, be
sure to keep it up to date, if the intended behaviour of the
program changes later!

7.2 Basic Automated Testing 71

Even if your program is capable of taking several inputs without
restarting, for example using a loop, do start your program afresh
for each test. Otherwise there may be some state that is set up by
one test and then used in another. If you want to test how your
program behaves when it’s given several inputs in one run, that’s a
separate test.

7.2 Basic Automated Testing

Running your program by hand for each test, and comparing the
results with what you expect by eye each time, gets tedious very
fast. The next step is to get the computer to do some of the
tedious bits.

There are different ways to do this, and you won’t want to go far
along this route before moving to using a proper testing framework
(which we will discuss in Section 7.3 below), otherwise, you’ll find
yourself writing your own testing framework. Still, it can be a good
way to get started.

The first thing you need is an automatic way to run exactly
the code you want to test. That’s easiest if it’s simply a func-
tion. Then what a test has to do is to call your function, with
some arguments if appropriate, compare what the function returns
with what it should return, and complain if the two are dif-
ferent. Here is a classic way to do that in Python. The func-
tion we are testing is called greeter. Its source is not shown
below, but it takes one string argument. Each test is just a func-
tion. test_greeter_one_word invokes the greeter function
with the argument “Jane”, and asserts that the result should be
“Hello Jane”. Many languages have a built-in assert statement
(or function) that works like this: it can be very useful. Python’s
takes an extra argument which is a string to be printed if the
test fails.

72 7 How to Test Your Program

Python example

def test_greeter_one_word():

assert greeter("Jane") == "Hello Jane",\

"Should be Hello Jane"

def test_greeter_two_words():

assert greeter("Jane Smith") == "Hello Jane",\

"Should be Hello Jane"

if __name__ == "__main__":

test_greeter_one_word()

test_greeter_two_words()

print("Tests passed")

Things get only slightly more complicated when you want to test
functions which are methods of a class. Let us look at the use of
a “testing main” in Java. Your first few programs in Java may well
have all their code inside a main method, like this:

Java example

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

If, however, you’ve gone to the next stage and written a class with
some actual behaviour – e.g. some instance methods – you can use

7.2 Basic Automated Testing 73

the main method to create an instance of the class and try out the
methods. For example:

Java example

public class SomeClass {

// constructor and various methods...
public static void main(String[] args) {

SomeClass objectToTest = new SomeClass();

int result1 = objectToTest.firstMethod();

if (result1 != 42) {

// print that something went wrong
}

// and so on
}

}

If you wrote several classes, you can even give each of them its
own testing main.

The testing main was useful for testing methods within your
program, but it did not let you see the behaviour of your program
as a whole – if you’re using the main method for testing, you’re
not using it for its intended purpose of starting the whole program
running. We might say, a testing main is more useful for unit testing
than for system testing.

Terminology: Unit test

A unit test tests some particular unit of a program – e.g. a class –
using a well-defined interface to that unit. It checks that that
unit, considered in isolation from the rest of the program, meets
its specification.

74 7 How to Test Your Program

Terminology: System test

A system test tests a whole system, using the same interface that
the system’s users will eventually use. It checks that the system
as a whole meets its specification.

To do system testing, we need to run the whole program from
the outside – invoke it as a user would, give it input as a user
would, and see whether the outputs and behaviour are what we
expect. For simple programs you can often do that by using another
program to start yours, capturing the output, and comparing the
results. Scripting languages with good string handling facilities, like
Python or Perl, are good language choices for the testing program.
Just for fun, here’s an example of using a small program in Perl to
test a small program that’s written in Python.

Perl example

$argument = 'Jane';

$expected = 'Hello Jane';

chomp ($result = `python greeter.py $argument`);

($result eq $expected)

or die "Got $result, expected $expected";

print "Test passed";

Here the expression in backticks ‘. . .‘ invokes the Python pro-
gram, with the argument we’re testing it on, exactly as we’d do man-
ually on the command line, and the result is saved in the variable
$result. (The chomp just removes the newline that finishes the
program’s output, saving us from having to include that in every
expected.) Then we compare the actual result with the expected
result, and complain if the two are different. We show just one test

7.3 Proper Automated Testing 75

here, but of course, we could use a function to do the same thing
on many different pairs of argument and expected result. We can
use a program like this to test any other program, written in any
language: we just have to invoke it in the test program as we would
on the command line. Perl happens to be a convenient language
to write such a test program in, but my main reason for using Perl
here was to emphasise that the testing program does not have to be
in the same language as the program you are testing. You can do it
in your favourite language as well: have a go.

A word of warning, though: once you start developing your
own code to test your program, it can be easy to let it get over-
complicated. Somehow keeping test code clean and understandable
doesn’t feel as important as keeping the code it’s testing clean
and understandable . . . but really, it should do, because you will
spend at least as much time using and modifying your test code as
any other code. Once you understand what you need, it is worth
investing in learning how to do proper automated testing using a
reliable, reusable testing framework provided by someone else.

7.3 Proper Automated Testing

Once upon a time, in fact until the late 1990s, programmers rou-
tinely used to develop their own code for managing unit tests. In
large organisations like the one I worked for in the early 1990s,
there was often some kind of testing framework – code for manag-
ing and running tests – maintained “in house”, just at and for that
organisation. That meant at least that we didn’t have to develop
the same code to do that stuff again, every time we started a new
project. Perhaps there were other testing frameworks available, but
none of them were famous, and as a young software developer I
didn’t come across them.

Then came JUnit, the first popular unit testing framework. JUnit
supports unit testing for Java; since what it does is really not rocket
science, and it proved useful, there are now versions for many

76 7 How to Test Your Program

popular programming languages (and some unpopular ones). Try
searching

unit testing your_language

and see what comes up; if there’s a thing called somethingUnit
described as being for your language, it’ll probably be similar to
JUnit for Java. (You could also look at the JUnit Wikipedia page.)
JUnit makes it easy to write unit tests for Java programs, and then
provides a framework for running the tests, which is incorporated
into most IDEs. You’ll typically get a simple graphical interface
showing a green bar if all your tests pass, and a red bar if some
don’t, together with a way to get to the test that failed and the
code it failed on. Going into detail here is beyond the scope of
this book, but there are some good JUnit tutorials1 and it’s well
worth learning. Unfortunately, while using JUnit is simple, really
understanding how the JUnit framework itself works requires a
more in-depth knowledge of Java than you’ll get in an introductory
course, so you may have to take some things on trust.

Terminology: Framework

Like a library, a framework provides functionality designed to
be used in many other programs. The difference is that using
a framework exerts more control over the structure of your
program than using a library does. Rather than calling library
functions when you choose, you write functions (e.g. tests, in
the case of JUnit) that the framework code will call. This is the
Hollywood Principle: “don’t call us, we’ll call you”.

1 One I like is www.vogella.com/tutorials/JUnit/article.html, or for a gentler
introduction, you might try www.tutorialspoint.com/junit/.

www.vogella.com/tutorials/JUnit/article.html
www.tutorialspoint.com/junit/

7.4 What Tests Should You Have? 77

7.4 What Tests Should You Have?

• If the task description included some examples to explain what
was wanted, you should definitely include those examples in your
test set.

• Include the simplest possible inputs to your program. If your
program takes an integer, what should it return if you give it
0? 1? −1? If it takes a string, what should it do with the empty
string? With a single-character string?

• Are any values obviously risky, i.e. do they feel like inputs likely
to expose a problem? These are often those that are at or close to
values that are special in the task description, or in your solution.
For example, if your function takes x as input and has an if

statement that is supposed to do something different depending
on whether x is less than 100 or greater, make sure you test with
99, 100 and 101.

• Think about the classes of inputs: are they all represented? For
example, if oddness and evenness matters in your program, do
you have a test of an odd number and an even number?

• Think about the classes of expected behaviour: are they all repre-
sented? For example, if your program should return a boolean,
do you have tests that should return false, as well as tests that
should return true? (This is curiously easy to forget: it’s a kind of
positive bias.)

• Whenever you discover a bug in your program, make sure you
keep a test that would have caught that bug, i.e. that the buggy
program fails but the fixed program passes. This makes sure you
never re-introduce the bug. Running such tests is called regression
testing: a regression is when something goes wrong that used to
work properly.

• Test things that should not happen: for example, does your
program react as well as you want it to, if the user does something
wrong, like giving input of the wrong type?

Paradoxically, a successful test is one that finds a bug – because
any programmer sometimes introduces bugs, and the aim of testing

78 7 How to Test Your Program

is to detect them as soon as possible. When you write tests, you
should be trying to get your program to misbehave. This can be
quite hard – if you wrote the program, it’s natural to want it to
succeed and the subconscious temptation is to give it easy tests!
If you’re doing a course, you might like to imagine your mean
instructor trying to take marks off you. If you find the bugs first,
your instructor will not. Often, even in settings where it would not
be allowed to show your code to another student, it will be allowed
to show your tests to one another. Could you get together with
some friends and pool your tests, making it a friendly competition
to cause each other’s programs to misbehave?

The Lauren bug

Margaret Hamilton, who worked on the Apollo space missions
and led the team developing software for the first moon landing,
has one of the earliest stories about how vital it can be to test
what should not happen. She tells in an interview (Corbyn,
2019) how she once took her small daughter Lauren to work
with her, and Lauren, pressing keys randomly, caused a mission
simulation to crash by invoking a procedure at the wrong point.
Hamilton was concerned that an astronaut might do the same
thing for real, and thought the software should be changed
to prevent it. Senior people at MIT and NASA said that real
astronauts would never make such a mistake – until they did,
at which point the software was changed!

7.5 When Should You Write Tests?

Some expert readers will complain that I should have introduced
testing much earlier. The reason I chose not to is that in order to
write tests you have to be able to program a bit; you have to start
somewhere. Now that you have the skills to write tests, though, you
should seriously consider adopting test-driven development and
using it for the rest of your life.

7.6 Property-Based Testing 79

Terminology: Test-driven development

Test-driven development (TDD) goes like this:

1. Write a test that you would like to pass, but fails.
2. Write just enough code to make all the tests pass.
3. Improve the code if possible, and check that the tests still

pass.

You do this from the very beginning – so the very first code you
write is a test – and repeat until the program is finished, i.e. it
passes every test it should pass and cannot be improved.

By writing the test before you write the code that it is testing,
you check that you understand exactly what the code should do.
By writing just one test at a time, you keep your increments small,
so that if you make a mistake it is easy to understand and fix. By
rerunning all of the tests each time, you ensure that you don’t break
previously working code.

People who adopt TDD are often evangelical about it, and
you will even hear it said that it is irresponsible to use any
other approach. Still, many expert and professional developers
do not use it. I think, in reality, that how well it works depends
more on what code you are writing, and in what environment,
than the evangelists sometimes acknowledge. Perhaps, too, part
of the reason it isn’t universal yet is that some people actively
enjoy debugging their code. Using TDD makes you less likely to
introduce challenging bugs into your code that you can then have
the “pleasure” of removing!

7.6 Property-Based Testing

An approach that began in the world of Haskell but has been
spreading, especially to other functional languages, is known as
random testing or property-based testing. The original property-
based testing tool is QuickCheck, for Haskell. The idea is that your
function, or your whole program, is given lots of different random

80 7 How to Test Your Program

inputs, and the outputs are automatically checked using some kind
of specification, which you give as a property that the function’s
input and output should satisfy. If your program has a bug that
means the property can fail on some input, there’s a decent chance
that when the random tester throws, say, 10,000 inputs at your
program, at least one of them will demonstrate the bug. The clever
part comes next: the testing tool then goes through a simplification
process aimed at finding the simplest way to cause that buggy
behaviour, and that’s what it shows you, for you to debug.

The property you test might be very basic (very loose or impover-
ished), e.g. it might just capture that the program should not crash.
Or it might be extremely sophisticated, laying out the relationship
between the input and the output in detail. In practice, it is rare to
test a perfectly detailed property, because the task of writing one
tends to be as hard as, and closely related to, the task of writing
the program. Generally, the property only captures some of the
information about what the program should do, so if the property
is true, it doesn’t guarantee that the program is correct: there might
still be a bug that this property cannot expose, no matter how many
inputs are tested. However, if the property turns out to be false, it
does show that there’s a problem.

Here’s an example. Suppose our function factor is supposed
to take a positive integer and return a list of its prime factors
(with multiplicity, so that, for example, factor 18 might return
[2,3,3]). We could test it like this:

Haskell example

import Test.QuickCheck

-- function factor omitted...
prop_factor :: Int -> Bool

prop_factor i = product (factor i) == i

The function prop_factor takes an integer, and returns true if,
on that integer, the function factor returns a list which satisfies a
basic reasonableness property: multiplying together the supposed

7.6 Property-Based Testing 81

prime factors does produce the original integer. If some test of
this property fails, there is definitely a problem with the factor
function. However,prop_factor does not catch all possible prob-
lems that the factor function could have. For example, it does
not check that the elements of the list that factor returns are
really prime numbers. Indeed, the factor function that simply
returned the one-element list containing just its input would always
pass. Nevertheless, such simple, partial testing properties can be
easy to write and very useful for catching the kind of errors
programmers typically make. Suppose someone misunderstands
the specification, and instead of returning a list of the prime
factors with multiplicity, their factor returns a list of the distinct
prime factors, so that given 18 it returns [2,3]. When I wrote
that buggy factor and used QuickCheck to check the property
prop_factor, I saw:

*Main> quickCheck prop_factor
*** Failed! Falsifiable (after 7 tests):
4
*Main>

That is, QuickCheck had to run a total of seven tests, but it only
showed me one example of an input that makes the test fail: 4,
where the buggy factor will return [2], instead of the correct
answer, [2,2]. Given this really simple failing example, it is easy
to see what went wrong.

Famous quotations about testing

• “A successful test is one that finds a bug.”
Anon.

You need to put yourself into the frame of mind where you
want your program to fail – otherwise, you risk only writing
the tests that your program will pass, which is pointless.

82 7 How to Test Your Program

• “Every bug found in testing is one the customer doesn’t find.”
Anon.

For people who have customers they care about, this idea can
help motivate them to get into the right frame of mind. Of
course, it’s only really true if you go on to fix the bug, and keep
it fixed . . . which is one reason for doing systematic testing.
When you’re a student, you may find it useful to think of the
person who is going to mark your work as the customer.

• “Program testing can be used to show the presence of bugs,
but never to show their absence!”

Edsger Dijkstra (Djikstra, 1970)

The philosophical point here is that if your program has
infinitely many possible inputs, and you only run finitely
many tests, then in principle, it might still fail on some input
you haven’t tested. To be sure that your program works on
every input, you have to study the code of the program and
prove that it is correct. There’s a large field of study of
software testing concerned with how to pick enough of the
right tests to be sure that if certain kinds of bug existed in
the program, we would find them. For a start, you’d like to
have every line of your code, that could ever be run, run in
the process of doing some test – otherwise, a line that was
missed out might contain a bug.

• “Beware of bugs in the above code; I have only proved its
correctness, not tried it.”

Don Knuth (Knuth, 1977)

This tongue-in-cheek antidote to the Dijkstra quotation
above reminds us that proof, like programming, is a human
activity. Unfortunately, there can be bugs in your proof, just
as there can be bugs in your program. Especially, it’s easy to
incorporate the same mistaken assumptions into both!

8

How to Make Your Program Clear

In discussing what a “good program” is (Chapter 2), we claimed it
should be clearly written. It is natural that when you start to learn
to program, you focus on making your program correct. You may
find yourself resenting any suggestion that your correct program
could still be improved: if it does what it is supposed to do, isn’t
that all that matters? In this chapter we explain why it is very much
in your interest to write your code as clearly as possible, and discuss
how to do so.

8.1 How Will Writing Clear Code Help You?

We said that a program is a set of instructions for a computer, and
of course it is that – but even more importantly, the program is
an explanation for a human reader of what the computer is being
instructed to do. That reader might be you, as you initially write the
code; someone trying to mark your code, or give you help with it;
or someone (perhaps you, later) trying to improve it or extend it.
The better your code communicates what the computer will do, the
easier all of these tasks will be.

Tip

Always make your code as easy to read as you can. Even if you
have to spend some time clarifying it, you will save time overall,
as it becomes easier to keep your code correct.

83

84 8 How to Make Your Program Clear

At the beginning of their programming lives, people usually
under-estimate the importance of this topic. There is a tendency
to think that, since you are a beginner and not using advanced
features of the language, any code that you can write will automati-
cally be easy for an expert – or for you, on a later occasion – to read.
However, when you write code, you may be holding in mind a lot
of information, accumulated as you consider the problem and how
to solve it. Someone reading the code later does not start with the
same mental state. Moreover, the feeling that you understand what
you have written can be misleading: striving to write your code as
clearly as possible will minimise the risk that you have overlooked
some mistake.

Consider a simple Java exercise: the setAgeRating method in
a Film class. Any Film has an ageRating which has to be one
of 12, 15 or 18. This setAgeRating method takes an integer
argument. If the argument is one of 12, 15, 18, then this is to be
saved as the new value of the Film’s ageRating. Otherwise, the
method is supposed to do nothing.

Here’s an example1 of how not to write this method:

Java example (don’t do this!)

public void setAgeRating(int l){

if(l==12){

this.ageRating= 12;}

else if(l == 15)

{this.ageRating =15;}

else{this.ageRating = 18;}

}

1 Adapted from real student code by improving it.

8.2 Comments 85

Here’s a better (though arguably still imperfect) version.

Java example

public void setAgeRating(int a) {

if (a == 12 || a == 15 || a == 18) {

this.ageRating = a;

} // otherwise, do nothing at all.
}

Before you read on, compare the two versions. What problems
can you see with the first?

8.2 Comments

We will start with the topic of comments, because it seems to be
what people think of first, when you ask them what they can do to
make their code clearer. In the example above, I chose to include a
comment “otherwise, do nothing at all”. Why? Because I found it
slightly surprising that, if the argument to the function was not one
of 12, 15, or 18, we were supposed to do nothing at all – not even
output an error message. I included the comment to remind myself,
and any future reader, that this surprising behaviour was deliberate,
not a sign that the code was unfinished or wrong. This is an
informal way to handle such a situation; in a professional situation,
you might be writing a full specification of the method, perhaps
even with references out to an agreed requirements document. If
you were using test-driven development, you would, of course, have
a test that gave an argument other than 12, 15 or 18 and checked
that ageRating did not change.

I’m going to give one piece of advice that may feel a bit odd, and
may even seem to contradict things you’ve been told, but which is
born of many years of experience:

86 8 How to Make Your Program Clear

Tip

Don’t write too many comments, especially early on.

The reason is two-fold. The most important is that people often
write comments to explain lines of code that are unclear to them. If
the code is unclear because it isn’t written in the best possible way,
it’s much better to rewrite the code, paying attention to the other
issues discussed in this chapter, rather than adding a comment.
The best way to write code is: so lucidly that it does not need
comments.

A secondary issue is that sometimes people write fully docu-
mented code while their understanding of it is still changing fast.
This is to some extent a matter of personal choice: if you find
this helps you to think straight, go ahead. But if you’re writing
comments that are aimed at someone else (a future maintainer, or
someone marking your code) then it’s often more efficient to write
comments when your code is approaching steady state. Comments
that are out of date can be positively harmful.

Tip

“If the code and the comments disagree, both are probably
wrong.”

Norm Schryer (attributed, Bentley, 1988)
Bear this in mind when you read other people’s code, but
especially when you write your own!

A question which you will encounter early on is: what should you
assume about the readers of your code? Should you assume that
they are experts in the programming language, for example? There’s
no substitute for thinking about who really will be reading the code.

8.2 Comments 87

If you are programming while taking a programming course, you,
yourself, are probably the most important reader.

An implication of this is that it’s OK to write comments that
someone who was much more expert in the language than you are
would not need. People often sneer at comments that explain how
a programming language feature is being used, on the grounds that
you should be able to assume the reader is competent. Indeed it’s
easy to go too far, and end up with code like:

Java example (don’t do this!)

i++; // add 1 to i

That really is excessive. However, I have found that when I learn a
new programming language, it’s often helpful to add a comment the
first time I use a tricky new language feature or library function. If
I avoid doing so, too often I end up forgetting about it and having
to look it up again in order to understand my own code. I tend to
see such comments as temporary, and for my eyes only, and I take
pleasure in deleting such comments later, once I’m confident I have
internalised the point in question.

This brings us to the observation that there are different kinds
of comments which serve different purposes. You may find
it helpful to distinguish them in your mind. We just discussed
comments whose purpose is to support someone new to the
language or software environment. Other kinds of comments
include:

• Documentation of chunks of code. For example, you might
write a comment above a function definition to explain what the
function does, or close to a calculation to explain why this is the
right calculation to do.

88 8 How to Make Your Program Clear

• More specifically, a contract that a chunk of code is guaranteed
to obey.

Terminology: Contract

A contract for a piece of code is a precise expression
of something about how the code is supposed to behave.
A function or method may be given a pre-condition and/or
a post-condition. The pre-condition says what the code is
allowed to assume is true before it is executed; this must,
therefore, be ensured by any caller of the code. The post-
condition says what the code will ensure is true after it has
been executed (provided its pre-condition was satisfied). A
part of the program that contains some data – such as a class,
or a loop – may be given an invariant, which says something
must be true “always” (strictly speaking: at certain important
points, such as the start of the loop, or when a method of an
object of the class is called).

For example, if you are writing a function that takes an integer
argument i, but you have decided (perhaps because it is part of
the specification of an exercise you are doing) that the function
will only handle positive integers, you might write

Precondition: i > 0

as a comment to warn readers about the assumption.
• Design notes. For example, if you tried coding something

the obvious way, found that was too slow, and found a less
obvious way that was better, you might include a comment to
explain that.

• Notes to self. For example, if you have an idea about how you
might want to improve the program in future, but you don’t want
to make the improvement right now, you might write a comment
to remind yourself.

8.3 Names 89

8.3 Names

Tip

Names are absolutely crucial. Good choice of names will help
you, and everyone else, to read the code, and hence reduce the
number of comments that you need to write.

Let us start with the part that is easiest to get right: use the
conventions that are standard in your language, when you decide
how to capitalise your names and how to handle names that consist
of several words joined together. Having a fixed set of conventions
that you always follow makes you – and anyone else who has to
edit your program – much less likely to mistype a name, e.g. writing
do_somethingwhen it should have been doSomething. It makes
it possible to remember a name by how it sounds; you don’t have
to remember how the words are put together, if by convention
that is always done the same way. Therefore, pay attention to what
these conventions are. For example, Java’s conventions include the
following.

• Classes begin with a capital letter, e.g. Customer.
• Attribute names are lower case, e.g. name.
• Method names are in what is called camel case2 e.g.
doSomething.

• Classes and attributes are named with nouns or noun phrases.
Class names are almost3 always singular (Customer, not
Customers): the name describes an object of the class, not the
collection of all objects of the class.

2 Think about the humps! In Python, appropriately, we write method names
in snake case, e.g. do_something, instead.

3 The exception is when a single object is best described by a plural noun.
E.g. a single object of class Preferences might describe all of one user’s
preferences.

90 8 How to Make Your Program Clear

• Methods are named with verbs, or verb phrases, e.g.
doSomething, getName, setName.

Towards the end of this list we are starting to get to less trivial
matters: how do you choose a name so that it conveys information
optimally to the reader? A reasonable question to ask yourself
is: is there a name that would tell the reader more of what they
need to know? Do not duplicate type information: avoid calling
a string variable theString, for example. If you’re working in a
language where types are explicit in the program text, such a name
is entirely redundant; and even if you are not, you can probably
do better. Think about what the thing you are naming is repre-
senting. If you were explaining the code to someone, what would
you say about this thing? Can the words you would say become
its name?

It is better to use a whole word as a name than an abbreviation,
unless you are sure that the abbreviation is so standard that every-
one reading the program will know what it means and expect it
to be used. This is especially important if there are many related
names in your program.

For example, suppose “customer” occurs as part of the name of
many things in your program, and is sometimes, but not always,
abbreviated to cust. Then inevitably, a programmer working
with the code will sometimes guess wrongly whether or not to
abbreviate it this time. It would be even worse if “customer” were
abbreviated to cst in a context where “cost” was also sometimes
involved!

In order to resist the temptation to abbreviate, learn good ways
to avoid typing long names too often. An IDE, or a sophisticated
editor with its autocompletion feature (see Chapter 5), can help
here. For example, in Eclipse, Ctrl-Space will (usually!) attempt to
complete the thing you started typing. In Emacs, Meta-/ will do the
same, rather less intelligently.

At the same time as avoiding confusing abbreviations, you need
to stop your lines of code getting unmanageably long, like this:

8.3 Names 91

Java example (don’t do this!)

verySpecialCustomer.lookupHomeOrHomeBusinessAddress(preferredCustomerId,monthOfTheYear);

How do you reconcile these conflicting forces? You could solve
the physical problem of the line being too long by splitting it: see
the panel at the end of this chapter for more on that. However,
that would not solve the real problem: the reason why this line is
too long is that the names are too complex. The key is to choose
exactly the right names, and to structure your program in such a
way that everything has a name that feels right without being too
long. That thought takes us beyond local considerations towards
overall software design; we will have a little more to say about this
in Chapter 10.

The further away from its definition the name might have to be
interpreted, the more important it is that it be informative. Suppose
you write a function that, because of the rules of the programming
language, can only be called from inside a particular section of
your code. (An example would be a private method in Java, or a
function defined in a where clause in Haskell.) You already know
that someone thinking about calling this function is looking at this
section of your code, so it is fine if the name only makes sense to
someone who is doing that. On the other hand, if your function
can be used from anywhere in the program, it had better have a
generally understandable name.

In particular, it’s OK to use single letters for the names of
variables that are only used within a short section of code. I did
this in the example that opened this chapter, where I chose to use
a as the name of the argument to my setAgeRating method.
I could have used a meaningful name such as newAgeRating,
and some people would consider that better; it’s arguable. One
thing that is not controversial, though, is that the use of letter
l as an argument name in the “bad” example is awful, because

92 8 How to Make Your Program Clear

it is too easily confused with digit 1; similarly, avoid O and o.
Adopt any standard conventions that exist in your language about
which single letters to use in what contexts. Typically, i, j, k, n are
integers, especially loop variables and/or indexes into arrays. s is
often a string. If you are programming with the head and tail of a
list, the name for the tail is often the plural form of the name of
the head, e.g. (x:xs).

Tip

It is normal to realise, part of the way through writing a
program, that there is a better name than the one you first
chose. Welcome this: it’s a sign that you are improving your
understanding of the problem and the program that solves it.

Learn good ways to change the name of a variable, for when you
realise the name isn’t very good. Again, an IDE can make your
life much easier. In Eclipse, the Refactor menu includes a Rename
option that works quite intelligently. In an editor, the find-and-
replace feature is often convenient enough, especially if the name
you’re trying to change isn’t too short.

8.4 Layout and Whitespace

Use a standard, consistent layout for your program. This is one
place where using an IDE (see Chapter 5) really helps. In Eclipse,
use the Format option on the Source menu for this. If you want
or need to, you can change many aspects of how that will fix the
formatting of your code, in the settings.

However, an advantage of having your layout fixed automati-
cally is that it can relieve you of the burden of deciding how much
you care: it can give you layout which is consistent enough to satisfy
the most pedantic of colleagues, even if you yourself are inclined
to be more flexible. Here’s a classic example. In languages that use
curly brackets to surround blocks of code, there is a question about
their placement. Some programmers would write

8.4 Layout and Whitespace 93

Java example

public String getName() {

return name;

}

while others prefer

Java example

public String getName()

{

return name;

}

The computer does not care. Few readers really care. But if a
single program ends up with an inconsistent mixture of these two
styles, it becomes subtly harder to read, and to edit correctly. When
you are a student, the best advice is not to mess with the settings.

Similarly, you will find there are conventions about where to
put spaces within lines of code: compare, among many other
possibilities:

Java example (don’t do this!)

int i = f(7);

int i=f(7);

int i = f(7);

int i=f(7) ;

Again, the point is not that any of these is objectively better than
any other, though you will sometimes find people who will argue it.
The point is that people will find the code more readable if it uses

94 8 How to Make Your Program Clear

one convention, consistently. (The first line in the example above is
normal in Java.)

Here is a version of the opening example in which I have
swapped the terrible name l for a and fixed the layout, but changed
nothing else:

Java example

public void setAgeRating(int a) {

if (a == 12) {

this.ageRating = 12;

} else if (a == 15) {

this.ageRating = 15;

} else {

this.ageRating = 18;

}

}

Have you spotted the correctness problem yet?
Different languages have different conventions, which may be

more or less uniformly followed. Unlike many languages, Python
has a single, widely followed style guide, PEP 8, written by the
developers of the language. Carefully written, with many examples,
it tells you everything you might want to know about how to format
and lay out Python code. If your language has such a style guide,
use it! Otherwise, as we advised in Chapter 4, pick a body of
reputable code in your language to use as a comparator.

Tip

Remember that it’s possible that code written by your
instructors is not setting a good example! If they teach several
languages, with conflicting conventions, their fingers may be
confused.

8.4 Layout and Whitespace 95

Tabs and spaces

A common source of confusion, which can be a root cause
of layout problems, is confusion concerning how and when
to use tab characters and space characters as whitespace in
program text.

Usually, you get a space character when you hit the space
bar on your keyboard, and you get a tab character when you
hit the tab key (which is usually on the far left of the keyboard,
looking something like . If you are not familiar with both,
have a play in a plain text file. You will probably find that the
visual effect of starting a line with a tab character is similar
to that of starting it with some number of space characters,
usually 2 or 4. (A tab character in the middle of a line has more
interesting behaviour.) However, what is placed in the text file
is different. A tab is a single character, which just happens to be
displayed like a number of space characters.

The problems begin when you mix tabs and spaces. Let us
suppose that you are working in an editor with “tab width”
4 – that is, where one tab character at the beginning of a line
is displayed the same way as four space characters. Now, if
you write one line beginning with a tab character, and the next
line beginning with four space characters, they will line up
neatly. If, however, you then open the same file in an editor
with tab width 2, the lines will no longer start in the same
position.

In an attempt to be helpful, IDEs and programming modes
in editors may intercept your keystrokes and do something
different from what you expect. For example, in Python, whites-
pace is significant, and spaces are preferred to tabs (e.g. PEP 8
tells you to use spaces). For this reason, the Python mode in
Emacs will insert four space characters, not one tab character,
when you type the tab key. Similarly, Haskell is sensitive to
how code is indented, and a good rule of thumb is to make
sure that your Haskell files contain space characters, not tab

96 8 How to Make Your Program Clear

characters. By contrast, the meaning of a Java program does
not depend at all on the whitespace in it, and Java programmers
quite commonly use tabs.

If you get strange layout behaviour when you look at the
same file in two different ways, it is worth suspecting that there
may be tab characters in the file which are being rendered as
different numbers of spaces. How you test and fix this depends
on exactly what tools you are using: Atom, for example, has
a Show Invisibles setting which helpfully makes the difference
between tabs and spaces visible.

Amusingly, a 2017 surveya found that “coders who use spaces
for indentation make more money than ones who use tabs, even
if they have the same amount of experience”.

As a general rule, I recommend you use spaces rather than
tabs: given that today’s tools can insert the right number of
spaces automatically, tab characters are more trouble than they
are worth. Before you get into the habit of touching the tab key,
check that what it inserts into the file is space characters. If not,
either change your editor or IDE configuration so that it does
insert spaces, or don’t use it. A search such as

your_editor_or_IDE tabs spaces

will probably lead you to instructions on how to set up your
editor or IDE.

a https://stackoverflow.blog/2017/06/15/developers-use-spaces-make-
money-use-tabs/

8.5 Structure and Idiom

So far we have talked only about small, local aspects of code
clarity: things you improve by changing individual lines or names.
Of course bigger aspects of how you solve problems affect how
easy your code is to read, too. This relates to design and we will
only scratch the surface here.

https://stackoverflow.blog/2017/06/15/developers-use-spaces-make-money-use-tabs/
https://stackoverflow.blog/2017/06/15/developers-use-spaces-make-money-use-tabs/

8.5 Structure and Idiom 97

Programming languages are used by communities of people,
who collectively develop standard ways of doing things. If you do
what the rest of the community does, you will be writing idiomatic
code in your language, which will make your code easier for people
in the community to understand quickly. You will also be taking
advantage of accumulated experience in the language.

Terminology: Idiom

An idiom in a given programming language is a way to solve a
common small problem that is normally used by people in the
language community.

For example, there are many ways to write code that swaps the
values of variables a and b. In Python, the idiomatic way to do
this is:

Python example

a, b = b, a

This short, simple solution takes advantage of the way the
Python language is defined (specifically, its defined order of
evaluation).

Watch out for idioms in your language, by spotting fragments of
code that appear repeatedly in code written by experienced people.
It is a good exercise to identify the problem being solved and think
about how else it could be solved, and about how you would solve
it in any other languages you may know. Can you articulate why
the idiomatic solution has become the preferred way?

What about how you organise the code at larger scales? Early
in a programming course, you are likely to be told how to do that
organisation, in each case. Once you are making decisions about
what modules or classes to write, which pieces of functionality to
place where, and how to manage the flow of control and of data in

98 8 How to Make Your Program Clear

your program, clarity is a major concern. In our opening example,
the “bad” version uses a sequence of if statements that the reader
must follow through, while the “better” version uses just one, with
a more complex condition. It takes advantage of the fact that the
required behaviour, if the argument is one of 12, 15, 18, is the
same in each case: set ageRating to that argument. Even without
the comment, the simpler structure makes the overall behaviour
clearer, and helps avoid bugs.4

Think about what a reader, trying to understand some aspect of
your program, will need to understand, and try to place the relevant
pieces of code close together. Avoid writing spaghetti code.

Terminology: Spaghetti code

Imagine printing out your program and drawing lines on the
printout to represent the flow of control; for example, if one
function calls another, you draw a line from the call to the def-
inition of the function being called. If the resulting collection
of lines is complicated and tangled, you have spaghetti code. It’s
likely to happen if, for example, two modules or classes each
depend on the other in multiple ways.

The origin of the term is unclear. My father, W.G.R. Stevens,
recalls using it when he was a programmer in the 1960s, and
having to explain to a colleaguea that he was not referring to
short lengths of spaghetti tinned in tomato sauce, which were
the commonest form of spaghetti in England at that time, but
rather, to proper long spaghetti that you would get in a packet,
or in an Italian restaurant!

a C.B.B. Grindley, who later wrote about it in a paper I have sadly been
unable to trace

4 If you have not yet spotted the bug in the “bad” version, now is the time to
ask yourself: what happens if we give argument 7 to the method? And what
was supposed to happen?

8.5 Structure and Idiom 99

This advice about high-level structuring may seem unsatisfac-
tory because it is hard to decide which structure is best without
considerable experience; you will inevitably learn partly from your
mistakes. It turns out that a common concrete sign of possible
problems with your current structure is that your lines of code get
too long.

How long should a line of code be?

If you find yourself resizing a window, or scrolling horizontally,
in order to see the whole of a line of your code, it is probably too
long to comprehend efficiently. Even if you succeed in adjusting
your own environment so that you can see the whole line, you
may well be causing difficulty for someone else who has to read
your code in future. Projects, and sometimes whole language
communities, develop conventions about the maximum length
of a line: for example, Python’s PEP 8 prescribes that no line
should be longer than 79 characters.

One way to tackle long lines is to split them. If you do
this, consult your body of reputable code in your language
to see what the conventions are about where a line may be
split. Usually, though, a too-long line of code is a sign of an
underlying problem, and it is better to fix that. Ask yourself:

• Is a name too long? If so, do not just abbreviate it: think about
whether there is a better, shorter name. If not, perhaps the
thing named should be split up?

• Has your logical structure become too deeply nested (e.g. do
you have an if inside an if inside an if) so that the line
starts with a lot of whitespace? If so, do not just reduce your
indentation width: think about how you could improve the
structure. Perhaps there is a chunk of nested code that should
be a separate function?

• Do you have a complex expression involving several opera-
tors, functions or messages? These are often hard to under-
stand however they are laid out; consider constructing your
result in stages, naming the intermediate results carefully.

100 8 How to Make Your Program Clear

We will come back in Chapter 10 to discuss how you can improve
the structure of your program when you need to, and Chapter 15
discusses resources beyond the scope of this book.

Still, much of the advice in this chapter is easy to follow from the
beginning. If you get into the habit of choosing informative names,
laying out your code clearly, and making good use of comments,
you will save yourself time and stress.

9

How to Debug Your Program

So your program has a bug.

Terminology: Bug

A bug in a program is something wrong with it: usually a
small, specific thing which you might whimsically picture as an
insect curled up on a line of your code, even if you don’t yet
know which line or which insect. The term “bug” for a small
error or glitch pre-dates computers, but the computing pioneer
Grace Hopper famously used to tell a story about an actual
moth recovered from an early electromechanical computer (the
Harvard Mark II) where it was interfering with the operation
of a program.

More formally, we sometimes talk about faults, errors and
failures, with each term meaning something subtly different.
You might find it interesting to look that up. “Bugs” will do
for now, however.

First things first: how do you know your program has a bug? It
might be that your compiler, interpreter or IDE is telling you there
is a problem, before you even get to run your program. Or it might
be that when you run the program, it does not behave correctly:
perhaps a test fails, the program crashes, or you do not see what
you expect to see.

Debugging has four steps to go through – and then a bonus fifth
step, which is crucial to turning yourself into a good programmer.

101

102 9 How to Debug Your Program

1. Recognising that there is a bug at all. Congratulations, you’ve
done that one. It may not feel like much of an achievement,
but it is. If you had, for example, not bothered to compile your
program, or not run your program on that input, perhaps you
wouldn’t have achieved it.

2. Localising the bug. That is, working out where in your program
there is a problem.

3. Understanding the bug. That is, working out exactly what the
problem is.

4. Removing the bug. That is, changing the program so that, at least
in this one respect, it is correct (and will stay correct, because you
have a suitable test to prevent regression).

5. The bonus step: as far as possible, ensuring that there are no
other similar bugs in your program, and even better, that you
never introduce a similar bug into any program you work on in
future.

Localising and understanding the bug often go together: you
may start out with a rough idea of where the bug is, but you may
only get to understand precisely where it is once you understand
exactly what’s wrong. We’ll talk about some routine techniques
here: if they aren’t enough and you need help, you may also want to
look at Chapter 11, especially concerning how to build a minimal
non-working example.

Tip

As you try to localise and understand a bug, use all the infor-
mation available. Too often, students observe that something
doesn’t work – there is a compile-time or run-time error, or
a failed test – but they do not pay close attention to the
specific error message, or check which test fails and how. The
information may look intimidating, but don’t be put off. You
will quickly learn to interpret it if you try every time.

9.1 When You Can’t Run Your Program Yet 103

Debugging situations divide into two classes, depending on
whether you can run the program at all, or not.

9.1 When You Can’t Run Your Program Yet

If your compiler, interpreter or IDE is telling you there is a
problem which makes it impossible to run your program, then
almost certainly it will also be making some attempt to help you
to understand where and what the bug is, by giving you some kind
of error message or marker.

Such error messages can (notoriously) be confusing, however.
It is a difficult job to ensure that every error message clearly and
correctly indicates what the problem is. It’s even more difficult to
design error messages that will be helpful even to a programmer
who is only just getting started. So very likely it’s not you – the error
message really is hard to understand – but cut the tool developers
some slack. If you read an error message and have no idea what
it’s trying to tell you, you will probably not be the first person with
that problem. Try a search, copying and pasting the error message
directly from where you see it into your search bar:

your_language the_error_message

for example

python TypeError: unsupported operand type(s)

Here are a few examples coming from a Java compiler.

Examples of Java error messages

error: ’(’ expected
error: reached end of file while parsing
error: cannot find symbol
error: unexpected type

104 9 How to Debug Your Program

Fortunately, the compiler gives, along with the basic error mes-
sage, some further information – usually an indication of where in
the file the error arose, but often other information as well, such as
what symbol it was that the compiler couldn’t find.

Tip

When an error message gives a line number, look at that line
first – but bear in mind that the error may be earlier in your
program, and only have been detected further on, at the given
line number. For example, a missing semi-colon on one line may
cause an error to be reported on the next line.

Terminology: Errors compared with warnings

Sometimes your compiler will give you a message involving the
word “error”, like those given above. Other times you may see
messages involving the word “warning” instead. There is an
important difference. An error is something you must fix before
you go on – typically it has prevented your file from compiling
at all. A warning is an indication that the compiler has detected
something which is probably an indication that you’ve done
something wrong. For example, compilers will often warn if
they discover that your program contains unreachable code.
You can ignore a warning, or even instruct the compiler not to
give warnings – but it’s usually a good idea not to. Some compil-
ers are better than others at giving warnings that genuinely do
indicate problems. If you get a kind of warning you haven’t seen
before, it’s definitely worth spending a few minutes on investi-
gating what’s causing it and whether you can fix it. For example,
in the case of unreachable code, you can delete it (or comment
it out, if you think you might need it again in a moment).

Often there will be an obvious problem – a mistyped word or
a missing bracket, for example – on or around the line number

9.1 When You Can’t Run Your Program Yet 105

given in the error message. Sometimes, however, either the compiler
will give no line number, or it will indicate a line that really looks
perfectly fine to you. Now you benefit if you’ve been compiling as
you go, or having your IDE do it for you. If you have a good idea
of what has been changed or added since the last time there was no
error, look suspiciously at those parts.

If you still don’t see the problem, try commenting out code –
replacing it with simpler code as necessary, e.g. replacing a complex
calculation of an integer with constant 1 – until you do get a clean
compilation, or, failing that, until you get a different error message.

Tip

Save a copy of your code before you do this, or make any other
changes that you aren’t sure will help, so that if an hour later
you find a tiny change that fixes the problem, you don’t have to
do a lot of work undoing all the other changes you tried.

It can help to understand something about the activities that are
undertaken in compiling your program text, starting from the text
file that you typed, and ending up with an executable program.
At this stage, a very rough idea will do. In particular, it is useful
to understand whether an error arose during parsing, or whether
your program parsed correctly but some problem turned up at a
later stage.

Terminology: Parsing

Parsing of a program text is the process of building a structured
representation of the program (an abstract syntax tree). This
involves splitting the text up into chunks such as keywords,
names and operators (lexing), and then checking that these
chunks fit together in the way the language definition requires.

If you have an error message that tells you there was a problem
parsing your program, you do not need to check more sophisticated

106 9 How to Debug Your Program

issues like whether you are providing functions with arguments of
the right types; your mistake will be something more basic, where
your text somehow failed to match the patterns of the language
definition. (This description is necessarily a bit vague, since we are
not going into what parsing does in detail.)

It is common that several error messages arise from the same
error: don’t assume seven error messages means seven separate
errors! Almost always, the first error message is the most useful one.

Story

Dmitri starts to do a Java exercise. Following the advice in
Chapter 3 he writes only a few lines before he first compiles: just
the outer wrapper of his class and its main function, without
any functionality yet.

Java example (don’t do this!)

public class ExerciseOne {

public static void main {String[] args) {

}

}

He’s surprised to find that when he compiles he already gets
three error messages:

javac ExerciseOne.java

ExerciseOne.java:2: error: ’(’ expected

public static void main {String[] args) {

ˆ

ExerciseOne.java:2: error: ’;’ expected

public static void main {String[] args) {

ˆ

ExerciseOne.java:4: error: reached end of file while parsing

}

ˆ

3 errors

9.1 When You Can’t Run Your Program Yet 107

Fortunately, when he reads just the first error message, he finds
it tells him rather clearly what the problem is: the compiler
expected an opening round bracket, in line 2 of his file, and
there’s even a caret (^) to show exactly where in line 2. He sees
that he had accidentally typed an opening curly bracket instead.
He changes just this one character, saves the file, and tries the
compilation again. All three error messages disappear, so he’s
in a good state to continue.

Type errors are a common kind of compile-time error – and the
more powerful the language’s type system is, i.e. the more problems
it can rule out, the more common they are. If, as in Haskell, the type
system is very sophisticated, the error messages are sometimes hard
to interpret, because they may mention features of the type system
that you have not yet met. We saw an example of this in the story in
Chapter 3. Remember the option of searching for the error message
online, if you get stuck. More often, though, the error message will
tell you what the problem is in terms you can understand. Let us
look at a couple of examples.

Suppose you are writing a Haskell function triangle

which is supposed to take an integer, say n, and return the nth
triangle number, which is the sum of the first n positive integers.
Making use of Haskell’s ability to use [1..] to represent the
unbounded list of natural numbers 1, 2, 3, 4, . . . , you might
first write:

Haskell example (don’t do this!)

triangle :: Integer -> Integer

triangle n = sum (take n [1..])

but you would get a compile-time error

108 9 How to Debug Your Program

take.hs:2:24: error:

- Couldn’t match expected type ‘Int’ with actual type ‘Integer’

- In the first argument of ‘take’, namely ‘n’

In the first argument of ‘sum’, namely ‘(take n [1 ..])’

In the expression: sum (take n [1 ..])

|

2 | triangle n = sum (take n [1..])

| ˆ

This tells you that the function take expects an argument of type
Int, while you are giving it an argument of type Integer. Most
likely, the root cause of the error is that you did not realise Haskell
has two different integer types, one for machine integers and one
for arbitrary precision arithmetic: but this is easy to look up, once
you read the error message.

Another common cause of type errors, in any language, is getting
arguments in the wrong order. Suppose you wrote

Haskell example (don’t do this!)

triangle :: Int -> Int

triangle n = sum (take [1..] n)

through mistakenly thinking take wanted its integer argu-
ment after its list argument, instead of before. You would get
an error “Couldn’t match expected type ‘[Int]’ with

actual type ‘Int’”, followed, as before, by exhaustive infor-
mation about where the problem arose. Once you read that the
take function is being given an integer where it expects a list of
integers (notated [Int] in Haskell), it is the work of a moment to
swap the arguments.

Haskell example

triangle :: Int -> Int

triangle n = sum (take n [1..])

9.2 When Your Program Runs but Behaves Wrongly 109

It may help you in future if you also take a moment to think
about why the arguments are in that order. In this case, it is
syntactically convenient to have the list come last, because this
makes it easier to use take in contexts where a list is repeatedly
processed, in a pipeline, by many functions. Even if you do not
come up with an explanation, having thought about it may help
you to remember the argument order!

Is it the compiler that’s wrong?

No. Well, almost certainly no. After twenty-five years of teach-
ing programming, on and off, I recently had a case where a
first-year undergraduate student had a problem understand-
ing a compiler’s error message and it did turn out to be a
(known) compiler bug. However, I’ve lost track of how many
times new students have suspected a compiler bug that wasn’t
there. Unless you just wrote the compiler – in which case
you’re not what I mean by a “new student” anyway – assume
it is correct.

9.2 When Your Program Runs but Behaves Wrongly

Suppose your code compiles and runs – but it doesn’t do what you
expect. Perhaps it yields a wrong result, causes confusing behaviour
of some interface, or prints something you don’t expect; perhaps it
even crashes or seems to run for ever. What then?

The first thing is to look for the simplest case where the program
doesn’t do the right thing. Preferably, write an automated test that
fails, exercising your program in this simplest case: but if you
are not yet writing automated tests, making a note, and running
the test manually, will do for now. Getting this test to pass is
a concrete goal to aim for. As mentioned in Chapter 7, keeping
it in the set of tests that you run regularly in future will ensure
that you do not re-introduce the same bug, that is, it will prevent
regression.

110 9 How to Debug Your Program

Once you have that simplest case, commit to fixing the bug in
that case before you worry about any other case. You need to
understand what your program does in this case, and how it’s
different from what you want. Perhaps there is a problem with the
flow of control, e.g. because you have got the wrong expression in
an if statement so a section of code gets executed when it should
not, for example; or perhaps your code sets a value that is not
the one you intended. Whatever the issue is, you need to look in
detail at what your program does – concretely, in this simplest
buggy case – to find out precisely where, and how, something
goes wrong.

Inserting Print Statements

This is usually the easiest way to proceed. Probably – at least if
you are using an imperative language – you will have been taught
how to print a string to the console (to “standard out”, abbreviated
“stdout”) early in your course. You can use that to help understand
what’s going on. For example, if you have written some code which
you think should do the right thing, but it doesn’t seem to be
working, is that code section ever run? Or is there some earlier
problem that means the computer doesn’t ever reach that section
of code? You can find out by putting a print statement at the
beginning of the section, e.g.
print("Got here!")

Doing this also helps to detect a surprisingly common problem:
when the version of your program that you are editing is not the
same version that you are running.

If you start to suspect that some value is incorrect, print it out
at key points and see.

This approach is crude, but often effective. Don’t forget to
remove the print statements once you are confident that the aspect
of behaviour they are checking is correct, otherwise your output
becomes cluttered and confusing.

9.2 When Your Program Runs but Behaves Wrongly 111

Logging

A less crude alternative to using print statements is to use a
logging framework, such as Log4j in Java or logger in Python.
Such frameworks have a learning curve, but once learned, they
give you an easy way to turn all your debugging messages on,
or off, together.

Interactive Debugging

Sometimes understanding your bug is easiest if you can interact
with the program from the inside, rather than running it as though
you were a normal user of the program. For example, if there is a
function which, in normal operation, is called by another part of
your program, with a complex argument, you may want to call it
manually with a simple argument, or with a succession of different
arguments, to clarify whether it does what it should. If you have
an interactive prompt, you may be able to load your program at
the prompt, and have considerable freedom to explore. This is the
commonest way to debug Haskell code. It is also possible, although
not quite so convenient, in Python (using the code module).

A more sophisticated approach, requiring a little more invest-
ment up front but with the potential to save you time in the long
run, is to use a debugger.

A debugger is a specific program whose aim is, as the name sug-
gests, to help you get rid of bugs. Most languages have debuggers
available, but they’re often not taught in beginners’ programming
courses, because they can be quite forbidding at first. A debugger
might be a standalone tool, or might be built into your IDE if
you’re using one.

The basic features you need to be able to use are:

• setting a breakpoint – that is, arranging that every time the flow
of control gets to a certain line, the execution will stop, so that
you can try:

112 9 How to Debug Your Program

• single-stepping – that is, letting the program execute one line at
a time, e.g. so that you can check which way it goes at an if

statement; or
• examining the values of variables.

A little exploration of the interface will probably reveal how
to use these. Many debuggers have lots of more sophisticated
features, but you don’t need them for now. When you do feel like
investigating, see if there’s a tutorial for the specific debugger you’re
using.

To get maximum benefit, you need to learn not just the mechan-
ics of using a debugger, but also how to use a debugger effectively.
Forming a hypothesis first, and then testing it, is a useful technique
here. For example, if you are about to step through a line that
calculates a value, first ask yourself what you expect the value to be,
then do the step and check whether it is. If you just wait for some-
thing surprising to happen, it’s remarkably easy not to notice where
the trouble begins. It’s fine, of course, to run the debugger several
times, first to get an overview of what’s happening, and then, more
carefully, to understand important sections of it in detail.

Changing the Program to Understand It

What can you do if you can neither find a usable debugger, nor get
your program to print an informative string when it gets to an infor-
mative place in the computation? You could consider rewriting it
into more inspectable pieces, to understand what’s going on.

We are not talking, here, about the kind of restructuring that
improves your program overall. This is not a good time to under-
take that kind of work: since you are starting with a program whose
behaviour you don’t fully understand, changing it radically may
leave you more confused. It is better to make minimal, careful
changes at this stage, and accept that you may need to undo them
after you have understood the bug. For example, if you have an
encapsulated (hidden) function which you suspect may be the cause
of the problem, make a copy of it that’s out in the open, and try it
out separately.

9.2 When Your Program Runs but Behaves Wrongly 113

Suppose you are trying to debug this function, which, let’s say, is
part of an exercise about decoding a ciphertext.

Haskell example

possibilities :: String -> [(Int, String)]

possibilities str

= [(i, rotate i str) | i <- [0..25], isPossible (rotate i str)]

where isPossible str = str == "AND" && str == "THE"

It calls on another function rotate, which we’ll suppose you’re
not suspicious of. rotate replaces each character in a string by the
character that is a given number of places away in the alphabet, e.g.
rotate 1 "CAT" will return "DBU", because D is 1 place after C
in the alphabet, etc.. The possibilities function is supposed
to test each possible rotation value, from 0 to 25, on a given string,
and keep the rotation value and resulting string only if the decoded
version is “AND”or “THE”. You can probably immediately see the
problem, but suppose, for a moment, that you couldn’t. You look at
the first line of the possibilities definition, and it seems to be
OK …but there’s still a bug; even when you run possibilities

on the plain string “AND”, it returns an empty list of possibilities!
You finally suspect that the problem is the isPossible function,
but it’s late and you stare at it without seeing a problem. If only you
could test isPossible separately . . . but it’s encapsulated inside
the definition of possibilities.

Just fix it so that it isn’t, then:

Haskell example

isPossible str = str == "AND" && str == "THE"

possibilities :: String -> [(Int, String)]

possibilities str

= [(i, rotate i str) | i <- [0..25], isPossible (rotate i str)]

114 9 How to Debug Your Program

Now isPossible is a top-level function, like possibilities
itself, and you can test it as such. You’ll quickly see that
isPossible "AND" returns false, and hopefully from there it’s
a short step to noticing the && that should be ||.

Once you have understood and fixed the problem, return the
function to its proper place! It was encapsulated for good reason:
so that it cannot be called outside the possibilities function,
and hence cannot contribute to any bug outside it.

Another situation in which you may need to change your pro-
gram in order to understand – not fix – the bug is where your
code relies on code you did not write, and you want to understand
whereabouts in the interaction the problem lies. Our next story is
about such a case.

Story

Kasia is working on a Java exercise where she was given some of
the code for an object that moves a sprite on her screen, and has
to write a few more methods for it. The code she’s been given
uses some other code files that she’s also been given, but isn’t
expected to change. She’s done several parts successfully, but in
this one, what she sees on her screen isn’t what she expects. The
new code that she’s just written (inside a loop which we don’t
show) looks like this:

Java example (don’t do this!)

move(4);

if (froboz.getRandomNumber(100) < 10);

{

turn(froboz.getRandomNumber(45) + 20);

}

9.2 When Your Program Runs but Behaves Wrongly 115

and she’s not at all sure what the problem is. Has she misunder-
stood how froboz, which is one of the objects she’s been given,
is supposed to work? Has she got the wrong bound for the
choice of random number? Is she starting at the wrong position
on the screen? Or what?

The first thing she decides to rule in or out is that the random
numbers she’s getting are somehow not what she expects. She
decides to investigate the case where the first random number
turns out to be 5 and the second one to be 30. So she changes
the code to:

Java example (don’t do this!)

move(4);

if (5 < 10);

{

turn(30 + 20);

}

She finds that the behaviour of the sprite doesn’t change much,
so she tries the case where the first random number is large. She
also decides she understands how < and +work so she simplifies
the code further for this case:

Java example (don’t do this!)

move(4);

if (false);

{

turn(50);

}

116 9 How to Debug Your Program

She expects no turning to happen at all this time – after all,
if (false) should never evaluate to true, so the turning
should never happen, she thinks. To her surprise, the behaviour
of her sprite still doesn’t seem to change at all. Next she
tries commenting out each line in turn to see what effect that
has. She can stop the sprite moving or turning by comment-
ing out the relevant line – but commenting out the if line
doesn’t seem to make any difference. Puzzled, she compares
her code with an example in her Java textbook, and notices
(what you may have noticed long ago) that the examples there
don’t have semi-colons after their if (condition) parts like
she does. Hmm, she had thought you always had to have a
semi-colon at the end of a line – and surely, she thinks, if
having a semi-colon were an error, her code wouldn’t have
compiled, so it can’t be that – this must be one of those
cases where you can include a thing or not and it makes
no difference? Just for thoroughness, she tries removing the
semi-colon in her original code anyway, and miraculously,
it works.

She shows her dedication to becoming a good programmer
in what she does next. Instead of just going on with the exercise,
she decides to take a few minutes to understand what was
happening. Why does removing her semi-colon fix her problem?
She decides to investigate semi-colons after ifs in a separate,
free-standing program that isn’t complicated by any of the
sprite stuff. Here it is:

9.2 When Your Program Runs but Behaves Wrongly 117

Java example (don’t do this!)

public class IfFalse {

public static void main(String[] args) {

if (false);

{

System.out.println("yay, got here!");

}

}

}

After playing with this she goes back to her Java textbook and
spends a bit of time on the web reading about blocks and empty
statements, and ends up understanding a lot more about the
role of semi-colons in Java than she did to start with.

Notice that we didn’t say much about exactly how what
Kasia saw differed from what she expected. That’s because in
this fictitious case, she didn’t analyse that much. A different
approach would have been not to alter the code at all, but
instead, to watch very carefully what happened and think about
the relationship with the code. Perhaps by doing that Kasia
could have realised that her turn command was always being
executed, not only on some randomly chosen occasions. How-
ever, depending on how complicated the rest of the behaviour
of the system was, and especially on how much random-
ness there was in it, that might have been harder than what
she did.

118 9 How to Debug Your Program

9.2.1 Special Cases: Non-termination and Crashes

When Your Program Runs for Ever You start your program,
expecting it to run for a moment and give a result, and instead,
it runs but does not terminate. Either nothing visible happens, or
you have an endless stream of output. You will need to stop the
program manually, either by pressing the appropriate button in
your IDE, or by using the operating system directly, e.g. hitting
Control-C in a Linux system, or killing the command window in
which it is running.

Usually this is a sign that your program contains an endless loop
(or an endless stream of recursive calls). Check the loop conditions,
or the logic that leads to recursion, carefully. Ask yourself: why do
I expect this process ever to finish? If you do not immediately see
the problem – especially if there is more than one loop and you are
not sure which one is causing the problem – then either tracing the
program execution in a debugger, or inserting print statements, can
help you see what is going wrong.

It is possible that what you have is not true non-termination,
but a very inefficient program that is doing more work than you
expected – it would finish eventually, but not until the middle
of next week, or worse. Fortunately such problems are rare in
early programming exercise solutions: if you have managed to
create one, you probably have a good idea about how. Trying your
program on the smallest, simplest input data you can is often a
good start.

When Your Program Crashes You start your program, expecting it
to run for a moment and give a result, and instead it stops with
some kind of error message. Depending on your language this
might be an unhandled exception, a segmentation fault, an out of
memory error, a stack overflow, or something else. (We will call
them all “crashes” in what follows.) The effect is the same: no result,
and a possibly cryptic message about what went wrong. You can
follow a similar procedure to the one described for compile-time

9.2 When Your Program Runs but Behaves Wrongly 119

errors, first attempting to get as much information as possible out
of the error message, and, if necessary, modifying the program to
investigate further. However, since your program does run before
it crashes, you also have the option of using a debugger, or print
statements, to track down the problem.

Terminology: Null pointer exception

In Java (and related languages such as C and C++), null pointer
exceptions, abbreviated NPEs, are the commonest cause of
crashes. An NPE arises when your code attempts to dereference
a reference – we may equivalently say, follow a pointer – whose
value is null. What does this mean? A reference (or pointer) is
a name which can be used to refer to a piece of state, e.g. an
object. To dereference (or follow) it is to use the name to access
the state, e.g. send a message to the object. Problems arise
if your code does this when, in fact, the reference does not
currently name any state at all – that is, when the reference is
null. Because nothing sensible can be done – you can’t send
a message to an object that isn’t there – an exception will be
raised, and (unless your code also catches the exception and
does something to recover) your program will crash.

A particularly useful kind of error output that you may see
following a crash – but one that beginners often find intimidating,
and therefore fail to use to full advantage – is a stack trace.

Terminology: Stack trace

A stack trace is an ordered list of all the methods or functions
that the program has entered, but not exited.

The first thing to do is to check that you understand which
order the list is given in. The most recently entered function may

120 9 How to Debug Your Program

be at the top (usual in Java) or the bottom (usual in Python).
This is the one where the crash occurred. At the other end of the
stack trace is whatever function was invoked at the very start of
your program’s run (e.g. main): however, you may not see this,
because the stack trace may be abbreviated, only showing the last
few functions. Suppose the function where the crash occurred was
called findCustomer. This is shown at one end of the stack trace,
and the line number is the one where the crash occurred. The
next line in the list is the function that called findCustomer,
and the line number shows where findCustomer was called, and
so on.

Usually the bug is located in the most recent function
(findCustomer in our example), but not always. Especially, if
you see that the most recent calls are not to code you wrote, but
to standard library or infrastructure functions, don’t be tempted
to suspect them! What it probably means is that your code invoked
a library function incorrectly, e.g. with invalid arguments, which
later caused a problem. Look at the most recent place in the stack
trace that is about your code, and work from there.

9.3 Cardboard Debugging

This useful technique is known by many names, including for
example “rubber duck debugging”; I call it “cardboard debugging”
because that’s the name I first learned for it – and because no
rubber duck manufacturer has made me a tempting sponsorship
offer yet.

The key observation is that when you can’t understand why
your program isn’t working, it often helps to explain, in detail,
to someone else, why it should work. You might, for example,
explain it to a peer or to a tutor on your course. However, the next
important observation is that when you do this, it will usually be
you, not the other person, who suddenly sees what the problem is. It
turns out that it doesn’t matter much whether the other person was

9.4 If All Else Fails 121

following your explanation – or even was capable of following your
explanation. The logical conclusion, which, surprisingly, turns out
to hold, is that it is almost as effective to explain your program
to a cardboard cutout of your tutor – or even to an imaginary
cardboard cutout of your tutor – as to your real-life tutor. You’ll
feel daft, but give it a go.

9.4 If All Else Fails

Sometimes, however, you find the only sensible reaction to your
problem is “don’t start from here”. If trying to localise and under-
stand your bug reveals to you that your program is a horrible mess
that you can’t understand, you could consider:

• starting again from scratch, this time testing as you go (see
Chapter 7) and keeping your program clear (Chapter 8);

• refactoring (more on how to do this in Chapter 10).

Terminology: Refactoring

To refactor a program is to change it without changing its
functionality. You might do this to make the program easier
to understand or easier to change.

This is not the ideal time for refactoring – ideally, you would
start with a program you completely understood, but wanted to
improve, e.g. to make it easier for other people, or yourself at a
later date, to understand – but sometimes it may be the best of a
bad bunch of options. When I have lost a thing, and have failed
to find it in the first few places I look, I often take this as a sign
that I need to calm down and tidy up generally. Almost always,
this is as efficient as any other way of finding the lost item, and
it improves my environment as well. Sometimes the analogous
strategy works in programming.

122 9 How to Debug Your Program

Tip

If what you have is a mess of spaghetti code that doesn’t
work, any way of recovering is going to feel challenging. Don’t
despair, it happens to pretty much every beginning programmer
some time, and motivates the development of good habits to
stop it happening again! Do consider getting a cup of coffee at
this stage, or going for a walk, or even getting some sleep and
coming back to the problem when you’re rested.

9.5 Removing the Bug

Most bugs are blessedly easy to remove, once you fully understand
what and where they are.

Tip

Even if, in the course of localising your bug, you make a change
to the program that seems to make it go away, make sure you
fully understand, before you move on.

One reason for this tip is that the process of understanding a
bug, especially in code you wrote, is usually educational. Does
the existence of the bug point at something you do not quite
understand about the language? Regard your bug as a learning
opportunity, and get all the value you can from it. For example,
in our Haskell example, a poor way to use the bug arising from a
use of Integer where Int was expected would be just to see that the
error message says something about Int and change Integer to Int;
a better way is to look up the difference between Integer and Int
and understand it once and for all. If Kasia in our story earlier had
moved on as soon as she observed that deleting the semi-colon fixed

9.5 Removing the Bug 123

her problem, she might have ended up with a confused feeling that
semi-colons were sometimes problematic. Such lurking confusions
sap your confidence.

Another reason is that the bug is not the same thing as the
indicator that told you there was a bug. If you edit the program
without fully understanding what the problem was, you may make
the indicator go away, without having fixed the real problem.
You may then have a program that still has a bug, but has a
different, less natural one that will be harder to debug when it does
eventually come to light. For example, in Python, suppose you had
written

Python example

def get_data(file_name):

with open(file_name) as file:

data = file.read()

etc: code to work with the data...

and everything was going well, until you accidentally called the
function with a file name that did not exist. At this point, an excep-
tion (a FileNotFoundError) would be raised. You could modify the
code to this:

Python example (don’t do this!)

def get_data(file_name):

try:

with open(file_name) as file:

data = file.read()

etc: code to work with the data...

except:

pass

124 9 How to Debug Your Program

which has the effect of making the function do nothing at all, not
even complain, if the file does not exist. The symptom, namely
the raised exception, goes away. However, this is a REALLY BAD
IDEA. The next time the function is called on a non-existent file
name, you may be much further on with your development, and it
may be less obvious to you what has happened. Perhaps some code
far away in your program will mysteriously fail, and the root cause
may be hard to determine. Instead, handle the error condition in
whatever way is sensible in the context, perhaps by printing or
logging an error message, and stopping the program if it will not
make sense to continue.

Often you will eventually realise that your program was doing
what you intended it to do, but that your intention was wrong –
there was a bug in your understanding of the task. The example
at the start of Chapter 8 was a case in point: probably the student
who wrote the “bad” version had not realised that the code was
supposed to do nothing at all, if given an argument other than 12,
15 or 18.

Sometimes, once you fix your understanding of the problem, you
realise that your program can’t possibly do what it needs to do:
your misunderstanding influenced something basic about how you
wrote the code. In such cases, you may need to do something more
like starting again from scratch. But keep a copy of your buggy
code, in case you can save time by pasting in chunks of it that do
turn out to be part of what you want!

9.6 After Removing the Bug

In order to wring as much value as you can out of your debugging
effort, ask yourself, before you move on:

1. Might there be another similar bug in this program? How can
I check?

9.6 After Removing the Bug 125

2. How did I come to introduce this bug? How can I avoid doing
so in future?

Let’s look at these issues in turn.

9.6.1 Finding Similar Bugs

Some bugs will be really specific to one setting, but many will not
be. For example, here’s a classic:

Java example (don’t do this!)

// boolean found says whether we've found something yet

if (found = false) {

// we haven't found it yet: keep searching...

}

Stop here and see if you can see the problem. (It’s possible that in
your language this code is correct, but the problem exists not only
in Java but also in Python, C and C++, among others, so it’s worth
learning about it anyway.) Got it?

The problem is that in the if statement, the programmer intends
to compare found with false. However, in Java (and many other
languages), the correct syntax for that uses a double equals sign,
==, not the single = we see here.1 The compiler didn’t complain,
because the version with = does make sense – just not the sense the
programmer intended. What it does is to assign false as the new
value of found.

1 But there are languages – notably BASIC and its relatives – that use the same
syntax for comparison and assignment, distinguishing them by context. If
you learned such a language first, you will have to be especially careful when
you learn a language that uses different syntax for the two ideas.

126 9 How to Debug Your Program

Tip

Never, ever compare boolean variables with literal true and
false values. Instead of if (found == true), just write if
(found). It means the same, is shorter and clearer, and doesn’t
run the risk of writing =where you meant ==. Similarly, instead
of if (found == false), write if (!found) (using what-
ever the syntax is, in your language, for the negation of the
boolean variable found).

This tip applies in everya programming language – if it’s valid
to write a boolean expression (such as found == true) in
some context, it will be valid to write a plain boolean (such as
found). Try it!

a I don’t often make claims as bold as that! If you know an exception, let
me know.

We have identified two different problems:

1. Use of = (assignment) when == (comparison for equality) was
intended.

2. Comparison of a boolean variable with true or false.

The first will give you wrong results, while the second is “only”
bad style. Both are easy to eliminate, so if you find you have
one instance of either, do a search and see if there are any more
instances. Similarly, each time you find a bug in your program,
take a moment to think about whether there could be other, similar,
bugs, that you should find and destroy.

9.6.2 Avoiding Ever Introducing That Bug Again

It’s tempting just to decide to “try harder” not to introduce bugs,
but human brains will make mistakes. Make peace with yours, and

9.6 After Removing the Bug 127

instead of expecting perfection from it, try to establish habits that
will support you in writing correct code.

Curiously, simply knowing that you sometimes introduce a
certain kind of bug will help you to avoid doing so. At least
subconsciously, you will have a mental inventory of things to look
out for, when you scan a chunk of code to check it’s what you
intended, or when something isn’t working as you expect. Your
checking may be more reliable if you make this inventory explicit
in the form of a checklist. It might include, for example:

• Are all names that appear in the specification exactly correct?
• Are all loop bounds correct?
• Are array sizes correct?
• Are all array indexes correct?
• Do I check for errors, or handle exceptions, arising from code I

call?
• Do I have any null pointer errors (dereferencing things that might

be null)?
• Do loops and recursions always terminate as they should?
• …

Tip

Consider keeping such a checklist, and each time you remove a
bug, think about whether there is something you should add to
the list.

Sometimes you may be able to adopt a coding habit that will help
you to avoid certain kinds of bugs. Let us consider some common
bugs and how to avoid them, in more detail.

Avoiding Non-termination If your language offers you a choice of
for loops and while loops, you should usually prefer for loops.
This may seem counter-intuitive, as while loops are at least as
powerful: it is always possible to rewrite code that uses a for loop

128 9 How to Debug Your Program

so that it uses a while loop instead.2 However, a common bug is
accidental non-termination: when a loop, that should be executed
only a finite number of times, is repeated for ever. In practice you
are more likely to introduce this bug into a while loop than into
the equivalent for loop. Why is this? It is because the syntax of
the for loop explicitly shows the loop variable, which is changed
each time you go round the loop, and the finite set it runs over. For
example:

Python example

for i in range(0, 5):

do some things...
i is never changed inside the loop

By contrast, in a while loop you have to manage the change
yourself in code that is inside the loop. Here is the while equiva-
lent of the for loop above:

Python example

i = 0

while (i < 5):

do some things...
i += 1

while loops are convenient when, at the time of entering the
loop, it is not possible to know – to write an expression for –
how many times the loop should be iterated. For example, here is
some code that finds the highest power of 2 that divides an integer,
composite:

2 In Java, and many other languages, you can also always rewrite code that
uses a while loop to use a for loop instead, so the two kinds of loop are
formally interchangeable.

9.6 After Removing the Bug 129

Python example

n = composite

power = 0

while (n % 2 == 0):

power += 1

n /= 2

print("2 to the power", power, "divides", composite)

This extra flexibility can be very useful, but if you don’t need it,
then it is just an opportunity to forget to change your loop variable.

Tip

Use for unless there is a good reason why you need the
flexibility of while.

A habit that may prevent you from accidentally writing non-
terminating while loops is to document why the loop should
terminate, in a comment. What you write does not have to be super-
formal to be valuable. In the last example, you might write “n
halves until it is odd”.

Similar considerations apply to recursive code: if you write code
that may call itself, and you expect it to terminate, you must think
about how you know that it will. Here is a Haskell equivalent of
the last example:

Haskell example

powerOf2In :: Integer -> Integer

powerOf2In n | n `mod` 2 > 0 = 0

| otherwise = 1 + (powerOf2In (n `div` 2))

In this recursive code, we explicitly give the base case: that is,
there is a line of code to say what happens when we cannot divide

130 9 How to Debug Your Program

n by 2 any more, because it is odd. This style may help you to think
about termination. It does not guarantee that your base case will
ever be reached, however – you still have to think about that!

Avoiding Null Pointer Exceptions When your code accepts a refer-
ence, there may be no alternative to checking (e.g. using an isNull
function) that it is not null, before you dereference it – that is, use
it to access what it points at. Occasionally, though, you can avoid
the risk of dereferencing it, using a trick such as this one: when you
want to compare a known object, such as a literal string, with an
object that might be null, call the equals method on the known
object:

Java example

// String s might be null

s.equals("foo"); // might give NPE

"foo".equals(s); // may look odd, but cannot give NPE

To help yourself and anyone else who writes code that interacts
with yours, when you write methods that return objects, document
whether they might, or will never, return null. As a matter of style,
prefer to write methods that guarantee not to return null when
you have a choice. You might like to look up how to use annotations
such as @NotNull, which can also help.

Avoiding Off-by-one Errors These can occur in any programming
language.

Terminology: Off-by-One error

An off-by-one error is a bug in the logic of a program, where
some numeric value differs, by one, from a correct value.

9.6 After Removing the Bug 131

A common cause is writing < where you meant ≤ or similar,
which is particularly often a problem in loop bounds. Where you
can, iterate over a collection, rather than using a loop variable that
you do not need. For example, in Java this:

Java example

for (String s : args)

{

// things that use s
}

is safer than this:

Java example

for (int i = 0; i < args.length; i++)

{

String s = args[i];

// things that use s
}

because if there is no integer i in the code you cannot do the wrong
thing with it! As with the discussion of for versus while loops,
the safer version is less flexible; sometimes you will need access to
an explicit loop variable. Make a habit, though, of using the safer
version unless you need the flexibility.

Off-by-one errors can also arise when you index into arrays or
lists. In many languages the first element of an array is at index 0,
not index 1, which can take a while to get used to after a lifetime
of counting from 1!

Avoiding Accidental Assignment Finally let us return to the =/==
problem which we considered earlier. Here’s a trick that some

132 9 How to Debug Your Program

people like. When you want to compare things, it’ll often be the
case that one of them is a thing you can assign to, and one of them
isn’t. For example, in Java you might write
x = 0

but you can’t write
0 = x

because 0 is a constant. You can use this fact to your advantage,
by making a habit of writing constants on the left-hand side of
comparisons. If you miss out one of the equals signs in
x == 0

you will get code that makes sense, but does not do what you
intended. If, on the other hand, you accidentally miss out one of
the equals signs in
0 == x

the compiler will point out your mistake, because 0 = x isn’t valid
code.

9.6.3 Defensive Programming

Suppose you are writing a function which takes an integer argu-
ment, and you believe the caller of your function ought to ensure
that the integer they pass in is positive. Perhaps you believe this
because the expectation has been made explicit in a pre-condition,
as discussed in Chapter 8. If you nevertheless check it as the
first thing your function does, this is an example of defensive
programming: you are defending against the possibility that the
caller makes a mistake.

Terminology: Defensive programming

Defensive programming is a general term for any programming
technique that minimises the harm done by a bug, or any other
unforeseen circumstance.

9.6 After Removing the Bug 133

By programming defensively, you ensure that you cannot be
blamed for a problem that is not your fault. If you check a pre-
condition and complain immediately if your code is being called
with arguments it should not have to handle, you avoid the risk
that your code malfunctions on the argument it was not designed
to handle and somebody later blames you for this. Of course, often
you will be the author of both caller and callee, in which case the
benefit to you is that defensive programming makes it easier to
identify where a problem begins.

More generally, what you need to defend against, and how,
depends on the circumstances. Sometimes – for example, in many
safety-critical situations – it is important to enable the program to
keep running, even if something unexpected happens; you might
supply sensible default values for missing data, for example, in
order to defend against the program crashing or showing unpre-
dictable behaviour. At other times, it is better to stop the program
immediately a problem occurs, emitting a useful diagnostic mes-
sage; this defends against hard-to-track-down misbehaviour that
the problem might cause later.

Students often worry that by inserting checks that shouldn’t
really be necessary because they should always succeed (if every-
thing else in the program is correct), they are bloating their pro-
grams and making them inefficient. Don’t worry about this. Most
such checks are very quick, and modern compilers are pretty good
at optimising out checks that are truly unnecessary. Human brain
power is a much more limited resource, and that’s what you should
be trying to save.

That said, if you, and every other reader of the code, can easily
and confidently see that a check is not required, then there is no
virtue in including it. This is a kind of code sense.

10

How to Improve Your Program

We have talked about how to debug your program (Chapter 9)
and about the basics of making your program clear and read-
able (Chapter 8). What else could we mean by “improving” your
program?

We’re touching here on design. In software engineering, design is
about building software that not only meets the requirements, but
does so in the best possible way. There are many ways we can judge
how good a design is. Two of them are:

• how maintainable your program is;
• how efficient your program is.

Let’s discuss these aspects in turn, and then we’ll discuss how you
can get to there from here. That is, if your program works, but you
decide it could, and should, be more maintainable or more efficient,
how can you safely improve it, without breaking it in the process?
To do that you use the technique (briefly mentioned in Chapter 9)
called refactoring.

10.1 Maintainability

A very reasonable first reaction to coming across the idea of a
program being maintainable is confusion. Lines of code don’t wear
out and need retyping – semi-colons don’t drop off the ends from
time to time – so what are we talking about? The term maintenance
has stuck since the early days of programming, and probably
came in by analogy with manufacturing physical goods. The thing

134

10.1 Maintainability 135

being maintained is not really the program, but the relationship
between the program and its environment, which includes the
people, processes, software and hardware that the program must
interact with. Whenever something in the environment changes, the
program may need to change, in order to maintain the relationship.
For example, it’s normal to have to change a program from time to
time to keep track of new versions of the programming language.
It’s even more common for the needs of the users to change over
time. Stretching the definition, even fixing bugs can be seen as
a kind of maintenance. The easier it is to effect any necessary
changes, the more maintainable we say your program is.

When you’re new to programming, especially in the artificial
setting of a beginners’ programming course, you are relatively
isolated from these concerns. Most likely, you’ll be given a clearly
described problem to solve, and nothing about it will change while
you do it. Even so, thinking about maintainability is a good habit
to get into, because the same properties that make code easy to
maintain also help to get it correct.

The first stage of ensuring maintainability is following the guide-
lines we discussed in Chapter 8 for making your program clear.
That’s because any kind of maintenance to a program involves
someone being able to understand how it works now, so that
they can confidently change it. If your program is difficult to
understand, they may find themselves guessing about what the
program currently does, or about what it is supposed to do, which
makes the process of changing it less reliable.

Tip

Even if you are confident you are the only person who will ever
need to change your program, it still pays to work on its clarity.
You might be surprised by how fast you forget what was in your
head when you wrote it!

136 10 How to Improve Your Program

The next stage of ensuring maintainability is to think about what
changes are most likely to be required in future, and structure the
program so as to make those changes as easy as possible. This may
sound as though it requires a crystal ball, and indeed it is not always
easy. You may guess that if your program talks about three kinds
of widget, then it is quite likely that a fourth kind of widget might
be required in future. Whether that is really true, though, is not
something you can work out just by looking at your program: it
depends on the real world.

10.1.1 Eliminating Duplication

The “Write Once!” rule

The idea is that each thing – let’s say, each independent
decision – ought to be incorporated just once into the program.
That way, if this decision needs to be changed later, there is
only one place in the program that needs to be changed. This
is easier than changing several places, and avoids the risk that
you accidentally miss out one of the places that should be
changed.

This is not precise – it is only a rule of thumb – because it
is not always obvious what constitutes a “thing” that should be
recorded just once. Some cases are very clear. Suppose a large
chunk of code is repeated, exactly, three times in your program,
and under all circumstances that you can imagine, any change that
had to be made to one of the copies would have to be made to
all three. Then the decisions incorporated in that code are written
three times, for no good reason. You should definitely look for a
way to remove the duplication, perhaps by making the chunk of
code into the body of a function that can be called three times.

10.1 Maintainability 137

However, with smaller chunks of code it becomes important to ask
yourself whether they will really always be the same – they record
the same decision – or whether they just happen to be the same at
the moment.

Here’s a simple example.

Java example (before refactoring)

if (noItems > 10) {

basketKind = "big";

sorted = 1;

} else if (noItems > 5) {

basketKind = "medium";

sorted = 1;

} else {

basketKind = "small";

sorted = 1;

}

There are quite a few things wrong with this! Rather than fix
them all at once, though, we pick one aspect to improve first. Here
we see that one line,
sorted = 1;

occurs three times. Suppose that, in context, we understand that
this genuinely is duplication of a decision: if one of these lines
changed (say, we changed sorted to decided, or we changed its
type to boolean so that it would have to be set to true instead of
to 1), all three would have to change. We can change the code to
have that line only once, without changing anything about how it
behaves. This is an example of a refactoring. Here’s the code after
that one change.

138 10 How to Improve Your Program

Java example (after one refactoring step)

if (noItems > 10) {

basketKind = "big";

} else if (noItems > 5) {

basketKind = "medium";

} else {

basketKind = "small";

}

sorted = 1;

The second version looks neater and is shorter – but that isn’t
really the point. The point is that it no longer contains the same
line of code several times. Now if we decide to change the name
or type of the variable sorted, we only have to change it in one
place, not several. That’s quicker and easier, and, even more impor-
tantly, we’re more likely to get it right. Bugs that are introduced
by changing one copy of some duplicated code but not another
copy are a real pain, and we can avoid them by avoiding duplicating
code.

Tip

A word of warning: while eliminating duplicate code is often
useful, you should be cautious if you find yourself getting too
proud of how short your program is. In many cases, a shorter
program can be less maintainable than a longer one, because
it can be harder to understand, and dependencies between its
parts may be more intricate.

Consider the following example of a solution to the Fizz Buzz
problem, in Haskell. It is the shortest we have seen yet – but you

10.1 Maintainability 139

will have to be quite a Haskell wizard to understand how it works,
and even so, how long does it take you?

Haskell example

main :: IO ()

main = h (zipWith3 g (f 3 "Fizz") (f 5 "Buzz") [1..100])

where

f n s = cycle (replicate (n-1) "" ++ [s])

g s t n = head (filter (not . null) [s ++ t, show n])

h = putStr . unlines

Now, how about this, only slightly longer, version?

Haskell example

say :: Integer -> String

say i | (i `mod` 3 == 0) && (i `mod` 5 == 0) = "FizzBuzz"

| i `mod` 3 == 0 = "Fizz"

| i `mod` 5 == 0 = "Buzz"

| otherwise = show i

main :: IO()

main = putStr $ unlines $ map say [1..100]

Even if you are not learning Haskell, you can see how the struc-
ture of the second version matches the structure of the problem.
The function say computes the string that should result from a
single integer; then these results are put together in main.

Magic constants

A magic constant is a literal value that occurs in your program.
Examples include 3, 5, “Fizz” and “Buzz” in our Fizz Buzz

140 10 How to Improve Your Program

programs, and the special threshold values 5 and 10 for
noItems in the Java example we just saw.

It is often – but not always! – better to replace these literal
values by named constants, which are assigned values elsewhere
in the program. Our Java example might become

Java example (after two refactoring steps)

if (noItems > LARGE_NUMBER_OF_ITEMS) {

basketKind = "big";

} else if (noItems > MEDIUM_NUMBER_OF_ITEMS) {

basketKind = "medium";

} else {

basketKind = "small";

}

sorted = 1;

This is arguably clearer, but it is less self-contained: to under-
stand it fully, you have to look up the values of those constants.
Here are some factors to bear in mind as you think about
the costs and benefits of replacing a literal value by a named
constant.

• How often is the literal value used (for exactly the same
purpose, so that changing one instance of it would defi-
nitely require changing all of them) in the program? The
more often it is used – especially if the uses are widely
spread in the program – the more you will gain from using
a named constant instead; you will be reducing the risk
that someone accidentally changes some but not all of the
instances.

• How likely is it that the literal value will have to be changed?
The more likely it is, the more you might gain by using a

10.1 Maintainability 141

named constant, whose value could be changed just once,
where it is defined. On the other extreme, most programs will
use the literal value 0 in roles where it will definitely never
change; there is nothing to be gained from replacing these
uses by a named constant.

• Can you give the constant a name which will explain
why this literal value is used? If so, using a named con-
stant may make the code easier to understand. For example,
DAYS_IN_WEEK might sometimes give more readable code
than 7.

• Can you give the constant a name which will minimise
copying errors? For example, rather than repeatedly using
3.1415926535, using the named constant PI saves program-
mers from typos and from using inconsistent precision.

Do not mechanically use a named constant to replace every
literal value in your program: do so only when the benefit is
worth the cost.

10.1.2 Choice of Abstraction

Software design is largely about choosing a good structure for your
program. For example, you might introduce a subroutine, which
you call multiple times, to avoid duplicating code.

Abstraction is more than this, though. Choosing a set of abstrac-
tions is about providing a conceptual way in to your program: you
identify certain things that the reader should focus on, and you
choose those things carefully to be the things they need to know
about, and need to use, in order to understand the program and
make foreseeable changes to it. The collection of names in your
program should constitute a usable vocabulary for talking about
what the program does in the world.

For example, it can be useful to separate some lines of code off
into a new function. This can be worthwhile even if that function

142 10 How to Improve Your Program

will be called only once, if you can give the function a good name
that explains what it does. The reason is that if you, or someone
else, come along later looking for a bug in the code, you may be
able to avoid looking at those lines of code, if you’re confident that
the problem is nothing to do with that aspect of what the program
does. You’re saying something like: the reader needs to know that
there is a function called this, but they probably don’t need to look
at the details of what it does: they can simply assume that the name
is a reasonable description.

Suppose at some early stage of doing an exercise, you have this
code:

Python example (before refactoring)

def total(basket, country):

total = 0

for item in basket:

total += price(item)

if total > 10: #free shipping offer
return total

if country == "UK" and weight(basket) <= 1:

total += STANDARD_UK_SHIPPING

else:

raise NotImplementedError

return total

The program isn’t finished, as we see from the
NotImplementedError: it raises an exception when circum-
stances arise that it cannot yet deal with. However, it is already
getting to be a bit of a mess. Perhaps before you go on to handle
the other cases, you might refactor the program into:

10.1 Maintainability 143

Python example (after refactoring)

def total(basket, country):

total = basket_total(basket)

if total > 10: #free shipping offer

shipping = 0

else:

shipping = shipping_cost(basket, country)

return total + shipping

def basket_total(basket):

return sum (price(item) for item in basket)

def shipping_cost(basket, country):

if country == "UK" and weight(basket) <= 1:

return STANDARD_UK_SHIPPING

else:

raise NotImplementedError

The functionality is the same, but in the second case, we have
split independent chunks of what the function needs to do into
separate, named functions. If there is a problem with, or a change
required to, how a shipping cost is calculated, you expect to look
at the shipping_cost function and ignore the basket_total
function. Even though the code isn’t finished, it is worth doing
such rewriting as we go. For example, focusing on the code that
computes the total of the item prices (basket_total) prompted
us into writing that in a more Pythonic way.

A rule of thumb is to try to maximise the probability that the
things that have to change will be close together in the program. An
important reason for the success of object-oriented programming is

144 10 How to Improve Your Program

that the structural chunks of the program often correspond to real-
world objects. These are not necessarily physically real things, but
they are domain concepts: things that have meaning to the customer,
so that they are referred to by nouns, such as Account, Customer,
Transaction. A set of changes in the real world, which causes
changes in the program, is likely to centre around one domain
concept. Because the code that corresponds to this concept is all
in one chunk of the program, the chances are good that we only
have to modify that one chunk. By contrast, if we structure the
program according to the steps of what it has to do, it’s more likely
that several steps, each using that same domain concept, all have
to change.

Tip

Choosing good names for chunks of your program can drive
the process of improving its structure. For example, if you
find it difficult to name a function because it does two
unrelated things, split the function into two, each with a
good name.

When you look at a program and see that all its names are
perfectly apt, and yet quite short, it is tempting to think that the
programmer was lucky. Fancy finding that the domain concepts
were so easy to describe clearly and concisely, you may think! In
fact, it may be that what you are seeing is the end point of a pro-
cess of improvement. Perhaps the programmer chose maximally
descriptive names, even if they were long, and then looked at the
over-long names as a sign that the structure of the program was
not yet ideal. Refactoring – e.g. splitting non-cohesive units, or
pulling out common superclasses or repeated subroutines – then
enabled the improvement of the names. For a fuller discussion on
using good naming to drive the process of design improvement, see
J. B. Rainsberger’s blog (Rainsberger, 2013).

10.2 Efficiency 145

10.2 Efficiency

A large and challenging part of computer science relates to min-
imising the computational resources required to carry out some
calculation.

Terminology: Moore’s Law

Moore’s Law is the empirical observation, first made by
Gordon Moore in 1965, that the number of transistors on a
chip seemed to double every year.

Moore’s Law has had many variants: the details do not matter
so much as the essence, which is exponential growth in computing
power (since, roughly, the number of transistors controls how much
computation the chip can do in a given time). Although stories
about the end of Moore’s Law are becoming increasingly common,
the landscape of software engineering, so far, has been shaped
by this reality: that computers get better much faster than our
ability to program them does. One effect is that computer scientists
think in terms of “big O”.1 It is usually not worth a programmer
spending a lot of effort working out how to make a program run
twice as fast, or in half as much memory: if that is all that is needed,
buying a better computer is cheaper than paying the programmer.

Story

Early in my time as a professional software developer, I had to
learn Perl, and I did so with the help of the “pink camel book”,
which was the first edition of Programming Perl. (It was so

1 If you don’t yet know what that means, it doesn’t matter: the next sentence
gives the rough idea. If you are doing a computer science degree, you
probably soon will know.

146 10 How to Improve Your Program

called because it was pink, and had a camel on the front; sadly,
the camel itself was not pink.) In the back of this book was
a section about how to write efficient programs in Perl, which
made a deep impression on me because it helped me make sense
of some arguments between more experienced colleagues.

Its point was that there are many different kinds of efficiency
we might aim for. The two that people usually think about are
time efficiency, which is about making your program run as fast
as possible, and space efficiency, which is about how to make it
run using as small an amount of memory as possible. However,
in practice, the things you do to increase those two kinds of
efficiency can be in conflict: for example, you might make your
program faster by caching some intermediate results, which
makes it use more memory. So far so pedestrian. The mind-
blowing part was that it also identified – as the best kind of
joke, the kind with a serious point – several other kinds of
efficiency, such as “programmer efficiency”, which is about not
wasting your time and effort, and “user efficiency”, which is
about not wasting the time and effort of the people who will use
your program. It pointed out that the phenomenon of reducing
one kind of efficiency as you strive for another exists there,
too. For example, if you care most about making life easy for
users of your program, you may provide a carefully thought-out
interface to it, whereas if you care most about making your own
life easy, you may just do whatever is quickest for you. Neither
of these is always right: it depends on the circumstances.

What the section did not discuss, but perhaps should have
done, was Pareto efficiency. If you have a choice of two
approaches in mind, and one of the approaches is more efficient
in one of the ways you care about without being less efficient in
any of them, it’s a no-brainer to pick that approach.

The special thing about maintainer efficiency is that it is a
prerequisite to improving your program in any other way.

10.2 Efficiency 147

Tip

As a beginning programmer you will seldom have to worry
about the time and space efficiency of code you write. It’s
almost always better to focus on giving your program clear,
readable structure.

If you are writing code that will operate on a lot of data, or
execute a large number of times, then you may need to worry
about your choice of algorithm. However, programmers worrying
too much about efficiency is a more common problem than pro-
grammers worrying too little about it. In everyday cases, standard
libraries, optimising compilers and intelligent run-time infrastruc-
ture will usually do a better job than you will of optimising your
program for speed or space use. The difference between a million
executions of a five-line loop and a thousand executions of it is
usually not important.

So, get your program correct and clear first. Only worry about
efficiency when you know you have a problem with it – your code
does not run fast enough, or it uses too much space.

Then ask yourself:

• Are you using the most appropriate components from a standard
library?

• Is your program doing unnecessary work?
• (For time efficiency) Is it repeating work whose results it should

save the first time, and look up later?
• (For space efficiency) Is it saving work to look up later, when it

would be better just to redo the work if it’s needed again?

There may be particular things that, even as a beginner, you
need to be aware of in your programming language: for example,
if you are programming in Haskell, you will need to pay attention
to whether you use foldl or foldr, and in Java, you may soon
learn to build large strings using StringBuilder instead of just

148 10 How to Improve Your Program

String. Such things are part of learning to write idiomatic code
in your language.

To go further you need some understanding of computational
complexity. That’s beyond the scope of this book. Here let us just
say: some tasks, like sorting collections, have been the subject of
exhaustive study and it is very well known how to write code to
do them efficiently. Rather than writing your own code to carry
out such a task, you should use code from an appropriate library,
which is likely to be much more efficient than what you will write
yourself (and will already be correct, as well). Unless you are doing
an exercise where the point is to implement a sorting algorithm,
don’t implement your own sorting algorithm. Similarly, if your
code uses data structures like dictionaries or hash tables, don’t write
your own, unless that’s the focus of what you’re doing. It’s well
worth spending some time becoming familiar with what is in the
standard libraries available to you, so that you understand which
components to use when.

Coding interviews

Curiously, a tradition has emerged that major tech companies’
recruitment procedures involve asking candidates to solve small
computer programming problems in highly constrained situa-
tions, such as writing the code on a white board. The problems
have to be able to be stated and solved succinctly, without a lot
of explanation of customer requirements, so they tend to focus
on data structures and algorithms. What distinguishes a good
solution from a mediocre one tends to be the time and space
needed. Thus, even though, if you get the job, it may turn out
to be rare for you to have to worry about such things, they may
be important for getting the job. Pay close attention when you
take an algorithms class, and if you are preparing for such an
interview, consider a specialist book such as Gayle McDowell’s
Cracking the Coding Interview. Always write clear code, so that
you can maximise the impact of your efficient code.

10.3 Refactoring 149

See this as the game that it is. You are being asked to behave
like a peacock showing off its tail: the tail is not, in itself, all
that important, but the mate has to choose somehow, and the
tail is the chosen criterion.

10.3 Refactoring

Suppose you’ve realised that your program, although correct,
could use some improvement. Maybe you need to remove some
duplicated code, or maybe you have to replace the use of a dictio-
nary you implemented yourself by the use of a more efficient one
from a library. What do you do?

Sounds like a trick question, doesn’t it? Why wouldn’t you just
start editing your program, and stop when you’ve changed it?

The reason to be careful is that you have already debugged
your program, and you don’t want to have to do so again. To
keep your stress levels low, you want to go from a working pro-
gram to a better-designed working program, without spending too
much time with a non-working program in between. Refactoring –
“improving the design of existing code” (Fowler, 1999) – helps you
do this.

To begin with, you need a method for establishing confi-
dence that the program is correct, which you can carry out now,
and repeat on future versions of the program, as needed. That
is, you need to be able to test your program, as discussed in
Chapter 7.

Tip

Even if you are impatient to go on and improve your program,
it really is worthwhile to take the time to make sure you have a
good set of tests.

Next, your aim is to change your program in steps that are as
small as you can manage, testing after each step. It’s a bit like the

150 10 How to Improve Your Program

START

all tests pass?

enough tests?

program good
enough?

STOP

fix bug

add tests

improve
program

no

no

no

yes

yes

yes

Figure 10.1. The refactoring process.

game you may have played as a child where you have to change one
word into another word by changing one letter at a time, making a
real word after every change. Figure 10.1 illustrates the process.

This way of working is great for keeping your stress levels low:
you can arrange that you always know what you’re doing and never
make a change that breaks your program. It’s especially useful if
you are not sure how much time you will be able to spend working
on the program, because every few minutes, your program returns
to a fully working state, so you can stop whenever you need to.

How large your improvement steps should be is something you
will learn through experience. You should usually find that all

10.3 Refactoring 151

your tests pass first time, after each improvement step. If you slip
into expecting that some test will fail, perhaps you might find it
more efficient overall to take smaller steps. Considering our Python
shopping example, some people would go all the way between our
initial two versions in one go. Others might include an intermediate
step, perhaps something like this:

Python example (mid refactoring)

def total(basket, country):

total = 0

for item in basket:

total += price(item)

if total > 10: #free shipping offer
return total

else:

total += shipping_cost(basket, country)

return total

def shipping_cost(basket, country):

if country == "UK" and weight(basket) <= 1:

return STANDARD_UK_SHIPPING

else:

raise NotImplementedError

Notice that we not only run the existing set of tests after each
improvement, but also ask ourselves whether there are enough
tests, each time. You might decide to add specific tests for the
new shipping_cost function, for example – although, if you
are following a test-driven development approach (as discussed in
Chapter 7), you will already have written them, before you wrote
the function itself, as part of the “improve program” step.

Ideally, each refactoring step makes the program better, so that
whenever you stop, the program is the best that it has been so far.

152 10 How to Improve Your Program

This is not always possible, however. Sometimes you find that your
program needs to be restructured, and that doing the restructuring
in small, refactoring steps will take you through states where the
program is less clear than it is now. It is then tempting to abandon
the refactoring discipline and make all your changes at once, as
fast as possible. But even here, refactoring will help you to avoid
getting into a buggy mess. What you should do is to make sure
you understand where you are going before you start, and avoid
starting until you have a suitable chunk of time available to you,
so that you can take the program all the way through to its better
structure without having to leave it in a working, but unsatisfactory,
state. You may like to write yourself design notes or draw a picture
to explain the final state you are heading for, to minimise the risk
of losing your way once you start editing the code.2

When is the program good enough?

It really depends on the context. It is very satisfying to take a
piece of code all the way to your idea of perfection, and the
more often you mindfully do that, the better you will get at
writing code which is good the first time. However, you will
not have time to take every piece of code you ever write to
perfection. More interestingly, what “perfect” is depends on
what you need to do with the code: however you structure your
code, some changes to the functionality will be easier to make
than others. The perfect structuring is the one that best supports
the change that actually turns out to be required – which, in real
life, you can’t predict with certainty! As a matter of pride, try
to leave your code clean, readable, and in a state to support
changes you can reasonably foresee: but don’t agonise over it.

2 If you are fluent in Java, you might like to read Chapter 14 of Clean Code,
which goes through an example of such a refactoring. The chapter is more
than 50 pages long, though, which is why there is no such example here!

10.4 Improving Your Skills 153

10.4 Improving Your Skills

Stretching the title of this chapter a little, what – beyond “absorb
everything this book says”! – can you do to improve your skills,
and hence improve all your programs? Let us look at one specific
habit that you might find worth adopting. It is the use of katas.

Terminology: Kata

A kata is an exercise, performed repeatedly in order to improve
one’s skills.

The term originates in martial arts; Dave Thomas first intro-
duced the idea of katas as programming exercises in The Pragmatic
Programmer, and the idea has been taken up by others since.
Other martial arts terms have also been imported into the world
of programming: if you find there is a coding dojo near you, you
might like to go there to do your katas.

If you are on a programming course, you may feel you have
enough exercises to be going on with: why would you want more?
The key is the word repeatedly. Instead of just doing a succession of
different exercises, you adopt one and do it frequently. Fizz Buzz,
which we considered in Chapter 3 and earlier in this chapter, is
suitable. As you repeat an exercise you have done before, you focus
on writing the program perfectly, thinking about each small choice
you make along the way. You eliminate the stressful feeling that you
need to get to the end in any way possible. Just as the movements
of your body become second nature if you do the same physical
exercise repeatedly, the elements of programming your kata should
soon feel very familiar. Even though you know how to solve the
problem, you don’t take shortcuts: for example, you should still
write tests for the program and use them as you work. Indeed, the
use of katas goes well with test-driven development, and one of the
things you might like to explore is how some ways of solving your
problem are easier to test as you go along than others.

154 10 How to Improve Your Program

Tip

Even if doing daily katas doesn’t sound like your kind of
thing, you might want to redo an old exercise occasionally.
Consider:

• getting out a solution you wrote before, and improving it in
some way; or

• redoing the exercise without looking at your old solution, and
then comparing your new solution with the old one. Did you
find the exercise easier this time, or solve it better in some way?
Or, perhaps, is there something you need to remind yourself
of, from earlier in the course?

You can also use your katas as a basis for variation, modifying
the exercise or the rules you set yourself about how to solve it. If
you usually use a loop in your kata, can you write a version with
recursion? Suppose you needed to add some flexibility, e.g. to vary
the rules for when to print Fizz and when Buzz? If you start to use a
new tool such as an IDE, programming your kata in it will help you
to get used to the tool. When you start to learn a new programming
language, programming your existing katas in the new language
will be a useful next step after writing a Hello World program,
supporting your developing understanding of the similarities and
differences between the languages.

Laziness, impatience and hubris?

Another of the jokes with a serious point behind them that
Larry Wall, the designer of Perl, is known for is this: he wanted
to encourage programmers to develop the three most important
qualities of a great programmer, viz. laziness, impatience and
hubris. How could these possibly be good things to aim for, as
you improve your program?

10.4 Improving Your Skills 155

Laziness I once had a mathematics teacher who used to say
“Mathematics is the art of being lazy”, because so much
of mathematics is about finding easy ways to do things
that would be hard if you did them the obvious way.
It’s a similar idea: a great programmer thinks about how
they can spare themselves work in future, and so writes
the program in a way which will be as easy to change as
possible. Even better, the great programmer makes full
use of high-quality libraries: if someone else has already
written the code you would have to write, you may save
the effort of writing the program at all.

Impatience is the necessary counterweight to laziness. It is the
quality that drives you to improve the efficiency of your
program, for any kind of efficiency that’s relevant to you
at present. It is, for example, the quality that forces you
to investigate when your program runs for longer than
it reasonably should take (time efficiency). It is also the
quality that tells you it is intolerable to have to change
your code in five places for what is really only one
reason, so that you had better improve its design so that
you never have to do that again (maintainer efficiency).

Hubris means excessive pride. This is the quality that makes
you want to write programs so good that everyone will
admire them, and gives you confidence that you can.

At the time of writing, there is a video on YouTube entitled
“Hobbits Would Make Great Programmers” in which Larry
Wall explains that programmers should have the characteristics
he attributes to hobbits:

• lazy in a very industrious way;
• impatient in a very patient way;
• proud in a very humble way.

11

How to Get Help (without Cheating)

What do you do when you’re totally confused or stuck? Your
program doesn’t work, and you don’t understand why, or you don’t
understand even how to start your next exercise. What now?

The first rule is

Don’t Panic!

I apologise if that, or anything else in this chapter, seems patro-
nising; but the fact is, many students in this situation do panic.
They may give up, failing to submit coursework or going into
exams knowing that they will fail, or dropping out of their courses.
Some may cheat: they may copy someone else’s answers, or even get
someone else to do the work for them.

Here’s what to do instead. First, identify what kind of problem
you have.

1. Have you been struggling for weeks, maybe getting by with a lot
of help from friends, or by looking at model answers, but have
you now hit a wall?

2. Or are you generally doing fine, but feeling confused at the
moment?

For example, are you confident that you completely understand
the last program you wrote, and that you could write it again from
scratch without help? If yes, you are likely to be in the second
situation; if no, you may be in the first.

156

11.1 Solving a General Problem 157

Tip

The learning skills you will practise as you sort yourself out
are very important ones. They are more important than any
individual programming skill, and will help you learn the next
programming skill more easily and with less stress. So don’t see
the time you spend on sorting yourself out as wasted – it may
be the best time you spend.

Let’s discuss how to tackle the more serious situation first.

11.1 Solving a General Problem

If you are out of your depth and it’s not just the current program-
ming exercise you can’t do, but the previous one and maybe the one
before that, you need to take radical action. Look back through
the exercises you’ve been set, or the exercises in your textbook,
going backwards in time towards when you began learning the
language. Stop when you find a collection of exercises that you’re
sure you’re completely confident about, or at the beginning if that
never happens (in that case, take the very first set of exercises in
what follows). If in doubt, start at the easier set.

Programming exercises

You need a graded sequence of programming exercises, because
you cannot learn to program without programming. You are
probably given one as part of your course, but if not, find a
textbook or an online course for your language that includes
exercises.

(“But I don’t have time for this! My coursework is due in
[time]!” Yes, you do. This process will get you unstuck. If you’re
in a significant mess, you can’t submit your coursework honestly

158 11 How to Get Help (without Cheating)

without doing something like this, and submitting it dishonestly
will land you in worse trouble. Bear with me.)

Now, without looking at any previous answer you or anyone else
created, do an exercise from this set. Next you need to check your
answer. If you have tests available, or an automatic marker, run
them, and be satisfied only if they show no problems. Otherwise,
look at a model answer if you have one: but first, search your
innermost being for the answer to this question:

Do you completely understand every line you wrote?
and proceed only after you’ve answered that question with “yes”.
The reasoning is that if you honestly answer “yes”, then you should
be in good shape to understand any respect in which the model
answer differs from your answer, and see whether yours is equally
correct or not.

If – which is quite likely – you find that you have some uncer-
tainty even at this level where you thought you were completely
confident, congratulate yourself on having discovered that. Make a
mental note that sometimes your brain fools you into thinking you
thoroughly understand something, when you don’t (this is normal).
Go back as far as you need to.

Right, now you’re either right back at the start, or you’re at a
point where you know you can do the work up to the point where
you are. Now you go forwards, but you need to try not to skip over
things you don’t understand, or you’ll be no better off. The level of
risk you undertake may depend on your circumstances, though.

Catching up properly If you can possibly find the time, go for-
ward from here with the mindset that, this time, you’re going to
understand everything fully. Take the next chunk of your course,
after the bit you definitely get. Maybe that’s the next week, or the
next chapter. Reread your notes, watch any relevant videos, read
relevant sections of the textbook. As you do this, make a list of
points you don’t yet fully understand. Follow them up, if necessary
using the techniques in Section 11.2 below. Once you feel confident,
tackle one or two problems from the next set of exercises. You do

11.1 Solving a General Problem 159

not necessarily need to redo every exercise from every set, but you
do need to get to the point where you feel confident that you could.
Perhaps you might choose which exercises to tackle randomly, in
order to avoid subconsciously avoiding the hard ones. Keep going
forward on a solid base. This is a great thing to do with a peer: you
might try pair programming your way through some past exercises,
taking it in turns to be the one at the keyboard.

Terminology: Pair programming

Pair programming is when two people program together at one
computer. One of them is in charge of the actual typing, while
the other acts as lookout: is the program going in the right
direction, and are there any rocks ahead? That is, is the person
typing following a strategy that will lead to a good program,
and are there any problems or bugs?

Pair programming is a practice which is sometimes used by pro-
fessional programmers (especially in agile development), because,
even though it takes more time, it can lead to higher-quality
programs. As a student, you may find it a good way to learn.

Skimming If you’re really, really pushed for time, you can try
taking a shortcut like this, but be aware that it has risks and may
backfire. Go forward identifying the key points of the material, and
checking that you understand them, but being prepared to skip
over things that don’t seem relevant to the exercise you’re stuck on.
For example, if you find a section of your notes that’s about how to
read from standard input, and your exercise doesn’t require doing
that, you could skip that section for now. Do, however, make a note
to remind yourself to go back to it later.

Compared with catching up properly, skimming can save you
time, but the risk is that you may not be reliable at identifying what’s
relevant – later material tends to depend on earlier material in ways
that aren’t always completely obvious.

160 11 How to Get Help (without Cheating)

11.2 Solving a More Specific Problem

If you have been doing fine, but are feeling confused right now, then
handling the situation well is the key to ensuring that you do not
end up with a more general problem in future.

The first step is to analyse what it is that’s confusing. If your
problem is a compile-time or run-time error, or a particular case
where your program gives surprising results, the techniques dis-
cussed in Chapter 9 are probably what you want. If you have
a program that works properly sometimes, but not always, then
systematically testing it, as described in Chapter 7, is the next step.

11.2.1 Getting Help from and with Error Messages

What if your problem is that you keep getting a particular kind
of error message, suggesting that there’s something about the
language that you systematically don’t understand? In Chapter 9
we briefly mentioned that one of the most useful things you can
do with an error message you don’t understand is, surprisingly
perhaps, paste it into your favourite search engine. This works
better the more popular your language is, but if you’re lucky, it will
take you straight to one or more pages where some helpful people
explain exactly what it means and how to fix the problems that give
rise to it. However, there are some reasons to be wary.

• Don’t go too far down a rabbit hole. Some error messages arise in
a wide variety of circumstances, and it’s easy to get sucked into
trying to understand a discussion about why someone else gets a
certain error message, while you get it for a different reason.

• Be careful with solutions you do not fully understand. If you
paste someone else’s code into your program, you can make
matters worse. It can be useful to see whether or not a possible
solution works in your context or not, but always delimit code
you got from elsewhere clearly in your program with comments.
If you are submitting code for assessment, this may well be
required anyway.

11.2 Solving a More Specific Problem 161

• If you will be being assessed in a situation where you won’t have
access to the internet, beware of getting too dependent on this,
or any other search-based, technique.

The other thing you can do is try to analyse why you don’t
understand the message. One of the reasons why error messages
are so often hard to understand is that they are written tersely,
using terminology that experts in the language understand but
that beginners do not. If you can identify a piece of terminology
you’re not understanding, then looking it up (in the language
documentation, or in your favourite search engine again) may
well help.

For example, here’s an error message of a kind that C compilers
sometimes produce:

foo.c:8: error: lvalue required as left operand of assignment

It makes perfect sense and is likely to be very helpful – provided
that you know what the terms “lvalue”, “operand” and “assign-
ment” mean in C.

11.2.2 Finding Explanations and Helpful Code

Sometimes as you struggle with a problem it may occur to you that
you cannot possibly be the first person to encounter it. A search
may be fruitful, but the caveats mentioned when we discussed
searching for error messages apply here too. The more generic the
thing you want to do, and the more widely used your language, the
more likely it is that searching will help. For example, searching

java read from file

yields good explanations of something that is notorious for trip-
ping up newcomers to Java.

162 11 How to Get Help (without Cheating)

When you do such a search, you may well come across a piece
of code that appears, from the context – perhaps a tutorial or an
answer to a question on a forum – to be likely to be useful to you.
Copy-pasting such code is usually unwise even if it is permitted.
It is better to read it carefully to enhance your own understanding,
then put it aside and use your new understanding to write your own
code. This reduces the risk that you copy-paste code that you do not
really understand, and hence end up with a program that you do
not understand: this is a liability. If you do copy-paste, or if you
are in any doubt about whether you have completely understood
what you found, always add comments to indicate where you found
the suggestion you are following, and what code you got from
where; you might want to go back and read some accompanying
explanation again in future.

Tip

Look out for dates on material you find online and be alert
to the possibility that it is written for an old version of your
language.

Using standard libraries is the safest way to make use of code
you did not write. If the functionality you want is in such a library,
you should always avoid writing your own version of it (unless
that is the specific point of an exercise you are doing). Spend
some time browsing the documentation of the standard library, if
your language has one: good use of it can save you vast amounts
of effort.

Using a non-standard library – that is, a library of code that
you can import into your program and make use of, but that is
not automatically available to anyone using your language – is an
interesting intermediate case, especially when you find you have a
choice of either doing that or writing (or copying) your own code
to do what the library could do for you. The advantage of using the

11.2 Solving a More Specific Problem 163

library is separation of concerns: your code can stay focused on its
main task, while the library provides functionality you simply use.
The disadvantage is that your code now has a new dependency on
the library. Someone who does not have access to the library will
not be able to use your code, and if the library disappears or breaks
in future, you will have a problem.

11.2.3 Getting Help with a Complex Program

Suppose you have got to a stage where your program is too complex
to expect anyone else to read, but you are totally stuck: there is
something about its behaviour that you do not understand, and
your attempts at debugging have failed so badly that you have no
real idea what you ought to be improving about the program. In
an ideal world, this is a “don’t start from here” situation: you aim
to keep your program clear, well-structured and completely under-
stood, at all times. However, back in the real world, it sometimes
happens – indeed, even if you yourself have impeccable habits,
sometimes you may run into such a problem when you have to work
with code you did not write.

Do not dismiss the possibility of starting again. If you have a
few hundred lines of code, or less, and you realise that it is a nasty
mess of spaghetti code, it may be quickest to start with a blank
file, this time keeping the code clear, ensuring that you understand
every line of it, and carefully testing as you go.

Starting again is not always the right answer, however; some-
times it is impractical, and sometimes it simply seems unnecessary:
perhaps your code seems fairly clear, except that something is not
working as you expect and you cannot sort out why clearly enough
to get rid of the problem. Well: if you can’t get rid of the problem
directly, you need to get rid of the complexity, leaving the problem
in place, to enable someone to help you.

Making a minimal non-working example It might seem odd to
deliberately construct a new program that doesn’t work. But having

164 11 How to Get Help (without Cheating)

a small, simple program that doesn’t work in the same way as a
program you care about turns out to be useful.

Terminology: Minimal non-working example

A minimal non-working example (MNWE) – for a particular
problem – is the smallest, simplest program you can construct
that still has the problem.

A small, simple program is easier for you to understand, so
there’s a good chance that once you look carefully at it, you’ll be
able to work out what’s wrong. Having a MNWE is even more
important if you ask someone else for help – the less they have to
read that’s not relevant to the problem, the more quickly and easily
they can understand what’s going on and help you, and the more
likely it is that they will be willing to do so.

To build it, take a copy of your program that contains a problem,
and start cutting and commenting parts out. Each time you make
a change, do whatever you need to do – e.g. recompile, rerun – to
check that the problem is still there. Concretely, I suggest starting
with the part of the program that you are most confident is not
relevant to the problem. Comment it out, replacing it with a
dummy if necessary. For example, if you are commenting out
the body of a piece of code that should return an integer, and
you believe it doesn’t matter (for your problem) what integer it
returns, you might comment out the actual calculation and put in
a statement returning 0 instead. Reprocess the program and check
that, as expected, the problem still occurs. Having checked that,
delete the commented out code. This helps to make the code you’re
looking at get visually simpler, which in turn makes it more likely
that you’ll understand what’s going on.

It may happen that at some point, you remove some code
you expected to be irrelevant, and to your surprise, the problem
vanishes or changes. Such a surprise may well help you progress

11.2 Solving a More Specific Problem 165

towards understanding – but this is why you should check fre-
quently that you have not inadvertently made the problem go away.

What usually happens is that somewhere in the process of
making your MNWE, you come to understand what’s going on.
Sometimes this understanding arrives like a thunderbolt. Other
times, it’s more that once your example gets really simple, you can
see that the problem must lie with some particular language or
library feature. Then you read the documentation of that feature
carefully, and learn how to fix your own problem.

If that doesn’t happen, though, and you keep on simplifying
the program until any further simplification makes the problem
disappear, you are still a lot further on than you were, because now
you have a small program whose behaviour you don’t understand
in quite a simple way, and you can take it to someone who might
be able to help. As it’s now a long way away from an actual answer
to a coursework question, you’ll probably feel comfortable sharing
it with a fellow student who might understand it better than you
do (check local policies, though!). Alternatively, if you take it to an
instructor, they are likely to be able to give you help quickly and
easily, because your example is no longer cluttered with things that
are irrelevant to your problem.

11.2.4 Asking for Help

More generally, when should you ask for help, and from whom?
If you’re stuck on a specific exercise that will be assessed, you may
first need to check what kind of help or discussion with others is
permitted. Most likely, if the exercise is formative (usually: not for
credit) some level of discussion with your peers will be allowed,
but if it is summative (for credit) you’ll usually be expected to do it
entirely alone.

If you are allowed to discuss it with peers, this can be very
constructive. However, it can also lead you to think you understand
more than you do, so be careful. There’s a big gap, in practice,
between being able to understand when someone else tells you how

166 11 How to Get Help (without Cheating)

to solve a problem, and being able to come up with the solution for
yourself. So don’t get too dependent on help from others, and look
for opportunities to give help as well as take it.

Many courses offer some kind of course forum, where students
are encouraged to ask for help. This has advantages and disad-
vantages compared with talking directly to another human being.
On the plus side, your question is likely to reach more people,
more quickly, than you can talk to face to face – so the chance
is higher that one of them will be able and willing to help. Less
obviously, the process of turning your problem into a clear, succinct
textual question often helps you clarify your thinking. It’s not at
all uncommon to find that, in the process of working out how to
ask your question, you answer it for yourself. (This is a similar
phenomenon to the cardboard debugging process that we discussed
in Chapter 9.) On the minus side, you have to take the time to do
the writing – which will be harder, the more confused you are – and
you may have to wait for a response.

Tip

Even when you are writing only for people on the same course
as you, write carefully, and give relevant detail. For example,
don’t just say “it doesn’t work” or “it gives an error” – say
exactly how it doesn’t work, or exactly what error you see.

Should you turn to the wider internet? There are sites like
StackOverflow1 that are set up for programmers to ask questions
about programming. I’d urge you to be cautious about this, as
an early-stage student. It’s likely that your question can be sorted
out by reading standard documentation, or has been asked before,
and the denizens of StackOverflow can be impatient with such
questions.

1 https://stackoverflow.com

https://stackoverflow.com

11.2 Solving a More Specific Problem 167

However, “be cautious” doesn’t mean never do it: it just means
take care to be asking a question which is as clear and precise
as possible. Don’t ask “why doesn’t this work?”, for example;
say “I expect this code to return 4 on input 1, but instead it
returns 3 – why?” Say what standard resources you have consulted
and why closely related questions don’t answer yours. Do include
an example of the code feature you’re talking about – perhaps an
example of code whose behaviour you don’t fully understand, or an
example of code you think should work but doesn’t – but make sure
this piece of code is a true MNWE (see above), so that experts can
understand as quickly as possible what the essential point you’re
stuck on is.

For a lot more discussion of what constitutes a well-asked
question, I recommend you read the most famous Smart Questions
guide, “How to ask questions the smart way” (Raymond, 2014).

Finally, a trivial point that seems to get overlooked:

Tip

Any time you send someone your code, post it on a forum,
etc., copy in your actual program text, rather than including
an image of it! Most people, in helping you, will want to try
out your code, or their modified version of it, in their own tool:
you need to allow them to copy and paste, not retype.

11.2.5 Help to Get Started

What if it’s not that you have a problem with a program you have
written, but rather that you have no idea how to even get started,
so that when you think about asking someone else, you can’t really
even work out what question to ask? This tends to be a problem
that afflicts beginners, which experienced programmers often have
trouble helping with, because they have long forgotten ever feeling

168 11 How to Get Help (without Cheating)

that way. The positive way to think about this is that, one day, this
feeling will be a distant memory for you too.

In the meantime, what can you do? Perhaps you’d like to reread
Chapter 3, especially Section 3.5. But maybe you feel as though
you were fine with small problems, but now you’re facing a more
challenging task and you don’t know how to get started with that?

One thing is to polish off any easy bits: reduce the part you can’t
do to something as small as possible.

Tip

“When faced with a problem you do not understand, do any
part of it you do understand, then look at it again.”

Robert A. Heinlein (Heinlein, 1966)

A related technique is to see if you can invent a simpler, easier
version of the problem and solve that to begin with, as a way in.

11.3 How to Cope When Your Teacher Is Confusing You

Finally, a word about how to deal with a situation where you are
confused even without a programming problem in front of you.
What should you do when you come out of a lecture, say, feeling
you understand less than you did when you went in?

As always, the first instruction is not to panic. It is not a sign that
you can’t do programming and should give up now. People who
teach programming are attempting to help you – but sometimes
we don’t succeed. However, it is a sign that you should take some
kind of action. Here, as in other cases, the right action will depend
on how general your confusion is.

The commonest explanation is that there is something the
teacher was assuming that you already understood, which in fact
you have not absorbed. Can you tell what that is likely to be?
It may be obvious: for example, perhaps you missed last week’s

11.3 How to Cope When Your Teacher Is Confusing You 169

sessions through illness, and need to make a plan to catch up.
Similarly, if you are behind with doing some exercises, that may
be the explanation: to learn programming, you must program, so
you can’t leave the exercises until later.

Perhaps, though, the teacher is accidentally assuming everyone
knows something that has not been taught. The first thing to do
is to ask around: are other people confused about the same thing?
Either way you win: if you find someone who is not confused, they
can probably help you; if you find someone who is confused, you
are no longer alone.

Tip

Do not suffer in silence. If, after trying the obvious things, you
are still confused, ask your teacher!

People differ in how they learn, so it is worth spending some time
gathering resources that suit you. Perhaps there is a recommended
text you should get; or you might find it useful to go to a library
or bookshop and browse until you find something that appeals
to you. Or try searching online for tutorial material. YouTube is
a great source of explanatory snippets, too. For example, if you
were confused by a lecture on Haskell’s list comprehension, you
can search for that and find many videos attempting to explain it.
You might try a few – if one doesn’t seem clear, just try the next.
Once you find a good video, it’s worth seeing if it comes from a
channel you might want to subscribe to.

Usually, it’s a good idea to use these other resources in addition
to continuing to follow your course as you’re expected to. For
example, go to all the lectures even if you don’t always understand
them (and even if they are recorded). At the very least, this will
help you to stay in touch with roughly what is being covered – and
you may find you get better at following them with practice.

12

How to Score Well in Coursework

This chapter focuses on what we might call the mark-mercenary
aspects of being a student. Its principal aim is not to make you a
better programmer, as such. It’s to help you maximise the number
of marks you get on a coursework assignment, wherever your
programming skills are at the time. However, there is one way in
which it may help you grow as a programmer. If you make sure that
you get as many marks as your current programming skills will let
you get, any places where you do lose marks should correspond to
things that you genuinely don’t fully understand yet. That means
that the feedback you get should be well targeted: you won’t just
read it and think “oh yes, I know that”, but instead, you will be
able to learn from it. Moreover, I notice that, as an educator, I have
been unable to prevent some of this chapter slipping into “how to
learn as much as possible from coursework”.

12.1 Seven Golden Rules

1. Start early. Most things take longer than you think, and there
may well be “waiting” time involved, e.g. where you discover
one evening that you need to talk to an instructor who won’t
be available until the following afternoon.

Students often wonder whether they can start their assign-
ment early – “do we have all the material yet?” The simplest
way to deal with that is to ask. Keeping well up with the course
material will also help, as it will help you to be sure that,
when you encounter something that doesn’t look familiar, you
definitely haven’t met it yet.

170

12.1 Seven Golden Rules 171

Remember that you can be proactive and look things up even
if they haven’t come up in class yet, and that’s often a useful
thing to do.

“Pulling an all-nighter” near the deadline has its attractions,
especially if you can do so in a lab full of other people doing
the same; it can lead to a feeling of camaraderie and even of
euphoria once you finally complete the exercise. But it really,
truly isn’t a good way to optimise either your mark or your
learning. When you are very tired, you make mistakes, and you
also fail to store things you learn in long-term memory.

2. Read the question. I know, I know, you’ve been told this before.
In programming assignments, it has several aspects. There are
book-keeping things like ensuring that you know whether, when
and how you must hand the work in, and whether there are rules
about things like what your files must be called. Those things
apply to any kind of coursework, not only programming assign-
ments. On the other hand, in a programming assignment, the
details, of what your program must do, assume huge importance.
You can’t just read the description the way you’re reading this
book: you will need to look at it word by word, and make sure
you follow the instructions precisely.

3. Follow all the advice in Chapter 7, to test your work and make
sure you’ve done it right.

4. If you encounter something you don’t understand, in the sense
that you think the question you are being asked is ambiguous
or vague, make the issue concrete by programming it in two
ways. Sometimes, as you try to do this, you will find that in
reality only one of the two ways makes sense. If that happens,
you have solved your own problem. If you do end up with
two interpretations that seem equally plausible, you can ask
your instructor which way is what they want. For an instructor,
a question of the form “do you want X, or Y?” is easier to
understand and answer clearly than a question like “what does
this mean?”

172 12 How to Score Well in Coursework

5. Follow all the advice in Chapter 8, so that you get any part marks
that may be going. This applies especially if a large part of your
mark will come not from automated tests, but from a human
reading your code. Any human doing that is likely to be busy
and tired, and anything you can do to make it easier for them to
see what’s right about your answer is likely to help you maximise
your mark.

6. Don’t cheat! Even if you get away with it this time – and you
may not – you’ll harm your learning and put yourself in a worse
position going forward.

7. Do hand the work in on time.

12.2 Lab Exercises

What I mean by “lab exercises” here is: relatively small, straightfor-
ward programming exercises intended to help an individual learn
a programming language. Typically a lab exercise does not invite
much creativity: what you have to do is tightly specified, and is
straightforward once you are familiar with the language. A first
programming course often includes a sequence of such exercises,
covering whatever features of the language are included in the
course. They may be marked for credit or not, and model solutions
may or may not be available.

We start with these because of their special character: they are so
valuable to your learning that doing them will help maximise your
marks on whatever other assessment there is, even if they don’t
attract credit in themselves.

Tip

If you don’t have a sequence of exercises like this that you must
do, find one. For example, choose a textbook for your language
which includes many small exercises, and do them.

The reason is simple: you cannot learn to program by reading
about it, watching someone else do it, or any means at all other

12.3 Individual Projects 173

than actually doing it. That’s not to say that other modalities aren’t
important, of course, but they are additional to programming, not
alternatives.

Beyond following the Seven Golden Rules, how can you max-
imise your marks on such exercises, if there are marks, while at the
same time maximising the benefit you get from them?

The main thing I advise is to think of your progress with each
exercise in levels, as follows:

1. I’ve read the question and started to think about the exercise.
2. I’ve written some code.
3. It does the right thing in some cases.
4. It does the right thing in all cases, as far as I can tell.
5. I thoroughly understand every line of my code.
6. As far as I can tell, my code is perfect.

You don’t have to reach level 6 for every exercise, but the further
up you get, the more you will learn. Keep a record, for each exercise,
of which level you have reached.

Level 5 needs a word of explanation. It’s normal that as you
learn the language, there are features you don’t fully understand, so
that you try things out, which sometimes work as you expect, and
sometimes don’t. When something works, it’s natural to breathe a
sigh of relief and go on to the next issue. Even better, though, is
to be sure you know why it works, and what the effect would be of
changing each small part, so that you could confidently explain it
to someone else. To get to that level, you’ll probably need to use a
combination of reading reference material for your language and
experimentation.

12.3 Individual Projects

An individual project is a piece of coursework that affords you
more opportunity for creativity: you have considerable choice
about what your software does and how.

To maximise your marks, first find out everything you can about
how marks will be allocated and what the criteria are. For example,

174 12 How to Score Well in Coursework

do you have to write a report, do a demonstration, submit the code?
Are you allowed or encouraged to find and build on other software,
or not? Are you supposed to be demonstrating particular skills or
kinds of learning?

Once you have whatever information is available, you may well
find yourself disappointed that there isn’t much. The more flexibil-
ity there is in the task, the more difficulty instructors will have in
giving marks objectively. Paradoxically, in that case you will usually
maximise your mark – and certainly get the most benefit – if you
worry about marks as little as you can. Approach the project in a
way that interests you, and try to get engrossed in it. I recommend
estimating how much time you should spend, and then tracking the
time you do spend, explicitly. This is because open-ended, long-
term tasks can be hard to balance against smaller exercises with
tight deadlines. It is common for students – and others! – to find
that, somehow, the task without a looming deadline never gets a
look-in. Finally, avoid spending a lot of time on things that are
not really programming – designing graphic art for an app, for
example – unless you enjoy it enough to be able to count that time
as recreation, or have personal reasons for wanting to learn skills
outside those that are being examined.

12.4 Team Working

Working in teams is a common part of programming coursework,
and it comes in many flavours. You may be assigned to a team, or
allowed to group yourselves into teams; you may self-organise or
be managed by someone else; you may or may not have to reflect
on the experience.

My main advice here is to take the whole exercise with a large
grain of salt: working in a group with other students is almost
nothing like working with a team of colleagues in a real software
development situation. In particular, you may hate the former
and nevertheless love the latter, so don’t worry if you hate the
coursework team experience!

12.5 Demonstrations 175

The key to maximising your marks is to understand how marks
will be allocated. Does everyone’s mark depend only on the quality
of the jointly developed software, or is there some mechanism
intended to enforce that every team member contributes? Some-
times you may be asked to estimate how much effort each team
member has put in, and the estimates may affect the distribution
of marks, for example.

Student teams often find themselves with one or two members
who are so much stronger (either in skills or in dedication) than
the rest that the way to maximise the quality of the software
that gets written is to allow them to carry the rest of the team,
writing or rewriting all or most of the software. This situation is
difficult for everyone to handle. If you are one of the strong team
members, you will need to decide how far you are willing to do
more than your “fair share”. If you can truthfully say that it won’t
help your teammates’ scores for you to do the work for them, so
much the better. If you are one of the weaker team members in
this situation, it is important to remember the long view: you don’t
only want a good mark for this exercise, you also want to improve
your own skills. So make sure you get to do a decent amount of
the programming, even if you have a team member who could do
it faster.

For everyone’s benefit, the team should try to ensure that mem-
bers teach one another how to solve problems, rather than just
solving them. This helps the members being taught at any moment,
but it may help the team members doing the teaching even more.
The saying “the best way to learn something is to teach it” is a
cliché for a reason: it’s absolutely true. More generally, friendly and
cooperative interactions within the team help you to improve your
interpersonal skills, which will be part of the point of the exercise.

12.5 Demonstrations

You may be expected to demonstrate your code working, and
discuss it with someone, as part of the process. This can be fun,

176 12 How to Score Well in Coursework

especially if you made some decisions that you are proud of: you’ll
get a chance to draw attention to things that, otherwise, a marker
might simply overlook. It may also give you a good opportunity to
mention anything you want specific feedback on.

It can be difficult to convince yourself that it’s necessary to spend
time preparing for a demonstration, if there isn’t a piece of written
work to produce. For a smooth experience, do check the following:

1. When and where is your demonstration?
2. Who needs to be there? E.g. in the case of a team project,

everyone on the team, or just one person to demonstrate?
3. What have you been told about the timing and format? E.g. if

you have to pre-plan a demonstration, how long must it be and
what must it cover?

4. Will you use a computer and software environment identical to
what you’ve been used to? If there are any differences at all, do
practise beforehand on the demonstration environment, if you
possibly can – it’s easy to be tripped up by details, such as not
having your usual IDE available.

5. If you will have to connect a laptop to a data projector, do you
know how to do this successfully – for example, if you need a
special adapter, do you have one?

6. Is the demonstration itself (as opposed to the program you are
demonstrating) assessed, and if so, what do you know about the
criteria?

Be aware that part of the reason for asking a student to demon-
strate their code working is to gain confidence that the student
genuinely wrote the code: the underlying assumption is that some-
one will be able to explain how the code works if (and only if)
they wrote it. This is debatable – but in any case, being sure you
understand how your code works is a good thing!

Practising the demonstration beforehand to someone else, such
as a fellow student, is a very good idea; many people find it quite
nerve-racking to demonstrate, and practice is the best way to calm
nerves. As you practise you are likely to find small things you

12.6 Reflective Writing 177

want to improve; for example, if you try explaining your code to
someone else, you may well notice ways in which it is not as clearly
written as it could be.

Tip

Never assume that some last-minute change you made
“couldn’t possibly make any difference”. If you change any-
thing about your program, run through the demonstration
again to check that everything still works as you expect.

12.6 Reflective Writing

You may be surprised if you are asked to write about your experi-
ence doing a programming exercise, but this happens quite often.
As for demonstrations, one reason for it is that the people running
the course are worried about whether you really wrote the code
you submitted. They think that by getting you to write about the
experience, they reduce the risk that you just copied the code, or
bought it. Less cynically, such writing exercises also aim to help
you consolidate what you have learned from the programming, by
reflecting on it and making any lessons explicit.

Of course you have to follow any instructions you’re given about
what to include. Typically, though, a marker will be looking for at
least these three things.

• Some content that is sufficiently specific that it goes with your
code and not with someone else’s. So, mention your code’s
structural elements by name, and explain why you structured
your code that way.

• Some evidence that you learned something, and that you know
what that is. So, say what you learned! For example, describe
a problem you had, how you solved it, and what you now
understand that would help you not to have the same problem
again.

178 12 How to Score Well in Coursework

• Clear writing – not only because clear writing is easier for the
marker to read, but also because the ability to write clearly is
a key “transferable skill” that the course as a whole is probably
trying to give you. You don’t need to produce a literary master-
piece, but do read your work aloud, preferably to someone else,
before you submit it, to check that it makes sense and you haven’t
missed out words (which is surprisingly easy to do). Run a spell-
checker, too.

People differ in how they experience reflective writing. If you
find that it genuinely helps you to fix what you have learned in your
head, remember that. In that case, perhaps you would like to do a
little reflective writing regularly, even when it isn’t required? Some
people like to keep a Learning Diary for such things. Others would
rather go paddling in ice-cold treacle than do such a thing. Only
you know how you feel about it!

13

How to Score Well in a Programming Exam

Like the chapter on scoring well in an assignment, this one focuses
on how you can maximise your marks, given your current state of
competence. It’s a good chapter to reread a day or two before the
exam.

A “programming exam” could mean a traditional pencil and
paper exam where you have to write code on paper, or it could mean
an exam where you will write a program, on a computer, under
exam conditions. Personally I really dislike the former, because
it feels so unnatural; but computerised programming exams are
quite hard to organise, so you may still encounter paper-based
programming exams. Stretching a point, it could even mean a
multiple-choice exam that tests your knowledge of programming.

While the basic task of learning to program is the same regard-
less of how it will be examined, knowing what kind of assessment
to expect can help you to organise your knowledge in an accessible
way, to maximise your performance. Much of the preparation you
will need to do is the same, regardless of the exam type, but this
chapter will also have some specific pointers for each kind of exam.

13.1 Preparing for the Exam

There are two main things you need to do well in advance of the
exam: find out all about what to expect, and practise. Past papers,
for similar assessments at your institution, are an important tool
for both. If there is a plentiful supply of past papers, use one recent
paper for understanding what to expect, reserving a different one
for practising.

179

180 13 How to Score Well in a Programming Exam

13.1.1 Finding Out What to Expect

First – as early as you like – look at a past paper, without reading it
in detail. How long is it? What kind of questions are being asked?
What is the rubric (i.e. what choice of questions, if any, do you
have)? What is the pass mark? Is there a mark, short of 100%, that
you personally would be comfortable with? How much of the paper
would you have to do perfectly in order to score that mark?

Next, look in more detail at the style of question being asked.
Are there many short questions, or just one or two long ones? Do
you have to write whole programs, or program snippets? Are there
questions that ask you to use a specific programming language
feature, such as recursion? Make sure, in that case, that you haven’t
got into the habit of “programming around” something you don’t
understand. In real life it’s often possible to be a (fairly) productive
programmer in a language while avoiding some feature you don’t
like, but here you’re trying to maximise your mark.

What, if anything, are you allowed to take in with you? Exams
vary from completely “closed book”, where you can take in noth-
ing, through intermediate situations where you might be allowed
only a clean copy of a course book, to completely “open book”
exams where you can take in anything you like on paper, and
(for computer-based exams) perhaps even a USB stick. If you are
allowed to take things in, think about what will be useful.

What are the rules concerning asking questions in the exam?
Is there a mechanism for asking for clarification if you think a
question is unclear? (Where I work, it is possible to ask the invig-
ilator to contact the person who set the exam with a clarification
question, but I advise students against doing this unless they really
cannot proceed without more input. Especially, if other people in
the room appear unconcerned, you can probably save yourself time
and stress by reading the paper again with minute attention, and
answering your own question!)

Finally, a meta-level question: how closely will the real paper
resemble the past papers? In your institution, does the exam setter

13.1 Preparing for the Exam 181

have a great deal of freedom to decide to set a different style of
paper this time, or is it safe to assume that the paper you will sit
will be very similar in style to the ones you have seen?

13.1.2 Practising a Past Paper

When you have, in principle, learned (almost) all of the material
that will be examined, it’s good to do a past paper. You probably
don’t have many representative papers to use (courses, and indeed
programming languages, tend to change over the years) so it’s
important to make the best use of them. It’s a waste, for example,
to read all the available papers before you attempt to do one under
exam conditions, because then you rob yourself of the chance to
practise reading an unfamiliar paper under time pressure.

Tip

Even though it’s scary and you may feel you know you won’t
do well, do a past paper under the same conditions you’ll
encounter in the real thing.

If you find the paper quite doable, great. If you find the paper
very difficult when you do it in this way, that’s great too – it gives
you lots of useful information. Did you run out of time, or run
out of questions you could attempt? Which parts, if any, could
you do? Where did you get stuck? If you think carefully about
these questions, you are well-placed to target your remaining work.
In rather concrete subjects, like programming, it’s common to get
stuck on small points in exams, so a practice in which you identify
and remove such small sticking-points can be really worthwhile.

There may or may not be model solutions and/or examiner’s
notes available for a past paper. These can be useful, but on no
account look at them until you have tried the paper yourself. It is
easy to fool yourself into mistaking “I can read the model solution”

182 13 How to Score Well in a Programming Exam

for “I could have written the model solution.” You need to be able
to write good code, not just read it!

Tip

“The first principle is that you must not fool yourself – and you
are the easiest person to fool.”

Richard Feynman (Feynman, 1974)

13.1.3 Planning for the Exam

If the exam is open book: plan what to take with you. (Maybe this
book!) Make sure you know your way around whatever you take –
this is not a good time to try using something you’re not familiar
with. Don’t take too much; when you’re nervous, you don’t want
to be faffing with too much paper.

Ask yourself: What will you have trouble remembering? Make a
list of reminders and take it in with you, if that’s allowed, or else
memorise it.

Bearing in mind the information you gathered about the exam,
develop a strategy about whether you should work as fast as
possible to at least attempt everything on the paper, or whether it’s
better to work meticulously to do part of the paper perfectly, even
at the expense of not finishing. Usually, the latter will be a better
strategy, but not always.

13.2 In the Exam

When you first open the paper, read through it quickly to verify
that nothing is dramatically different from what you expect. (If
something is, and it is not because you are in the wrong room,
remind yourself that everyone else is probably just as surprised as

13.3 Specific Points for Paper Exams 183

you are. There is no reason why you should not cope, given that
you have become pretty skilled at writing good programs.)

As discussed in Chapter 12, it’s essential to read the questions
carefully. It may be more difficult in an exam, because you’re likely
to be feeling stressed, and because you probably won’t have the
opportunity to ask informally for clarification.

Both for paper exams and for computer exams, it will be impor-
tant to write clear code – although the reasons are different in each
case, and we will give them in the separate sections that follow.

13.3 Specific Points for Paper Exams

If you will be doing a programming exam on paper, make sure (ask,
well in advance, if necessary) that you understand the expectations.
Do you have to get the syntax perfectly correct, for example, or do
you only have to write something close enough that the examiner
believes you have the right idea?

See it from the examiner’s, and marker’s, point of view. Marking
code that is written on paper is quite painful. They will be looking
for something in your code that’s quick to recognise – nobody
wants to sit with a large pile of scripts simulating a complex
program in their head! How can you make it easier for them to
see quickly that your code is correct?

Hoare’s two ways to construct a software design

Tony Hoare famously wrote in his paper “The Emperor’s Old
Clothes” that “there are two ways of constructing a software
design: One way is to make it so simple that there are obviously
no deficiencies and the other way is to make it so complicated
that there are no obvious deficiencies.” Always, but especially in
a paper-based programming exam, you should use the former –
more difficult – approach.

184 13 How to Score Well in a Programming Exam

13.4 Specific Points for Computer-Based Exams

Writing code on a computer is more natural than writing it on
paper, but programming exams on a computer may still have
artificial constraints unlike anything you’ve encountered before.

Such programming exams often differ from coursework assign-
ments in that they have to be marked very fast, and very reliably, in
large numbers. They are highly likely to be marked, at least in part,
by automated tests. Things you need to check include:

• What computing environment will you be in? Will you be
expected to do the exam on a laptop of your own, maybe with
some special software that you’ll have to install? Or will you have
to work on a lab machine? What tools will be available to you?
How will you submit your work?

• You will probably not be allowed access to the internet: but will
you be provided with any libraries or documentation?

• What are the basic marking guidelines? For example, if you
submitted code that didn’t compile correctly, would it get an
automatic zero (because it wouldn’t be possible to run the auto-
mated tests on it) or would a human marker look at it and maybe
give it some marks?

In the exam, keep your code clear. You are under stress and more
likely than usual to make mistakes. Don’t invite those mistakes by
poor indentation or badly chosen variable names. Even if your
work will be marked purely by a computer, ensuring your code
stays readable will help you to read it as you check it, debug it and
try to improve it. You have time for this: provided you’ve practised
the techniques beforehand, they won’t slow you down.

Even if non-compiling code can get some marks, do make sure
your code compiles without error! If you work in an IDE, make use
of any information it gives you about problems in your code, too.

Test your work. If you are given tests, use those first. Use any
examples in the question paper. Then, create extra examples of
your own, following the hints in Chapter 7 to pick the inputs

13.5 What about Multiple Choice Exams? 185

that are most likely to expose any problems. Depending on your
language, the environment and your own expertise, you might write
automated tests, or you might just run your program manually on
the examples.

13.5 What about Multiple Choice Exams?

Since programming exams where you actually write programs are
quite tricky to mark, you may find you’re being examined by a
multiple choice exam instead. The questions may be straightfor-
ward, examining the same kind of skills you’d use in another kind
of exam. Or, they may be chosen to examine your knowledge
of dark corners of the language. Don’t assume that because it’s
multiple choice it’ll be easy: it’s possible to set arbitrarily difficult
multiple choice exams! If you have past papers available, try one
out. Find out what the exam’s policy is on wrong answers – are
they penalised, in which case you shouldn’t guess, or not, in which
case you might as well?

Tip

Try setting your own questions. Even better, do this with a
group of friends, swap questions, and discuss the answers. You
will gain insight both into what questions can be asked, and
into what you do and don’t understand.

14

How to Choose a Programming Language

If you’re a student – or, indeed, a teacher! – you will often have no
choice about what programming language to use in a course you
are committed to. By now, I hope you have some techniques for
getting to grips with the prescribed language, whatever it is.

What if you do have a choice of what language to use for a
project, though, or a choice of what programming language to
learn next? Many factors may influence your decision, from the
nature of a program you want to write, to your own state of mind.

14.1 Questions to Consider

Are You Choosing Just for Yourself? Or are you writing a program
with someone else, or that someone else will have to maintain in
future? You may have to take other people’s needs and preferences
into account.

What Is the Task? Each language is better for some tasks than
others. Actually, though, this isn’t as big a factor as you might
think. All the languages you are likely to consider are Turing
complete, so you can, in principle, program anything you like in
them. However, depending on the tools and libraries available,
some may be more practical than others. If you can describe the
general area of a relevant task (say “data analysis” or “VR game”)
in a few words, you might like to search

programming language your_task

to get some ideas of languages to consider.

186

14.1 Questions to Consider 187

Terminology: Turing machine

In 1936, Alan Turing described a simple mathematical model
of a computer, which we now call, in his honour, the Turing
machine. The Turing-computable functions are the mathematical
functions (the mappings from input to output) that can be
expressed using such a machine. You might expect that your
choice of programming language would have an important
effect on which functions you could express. Remarkably, this
turns out not to be so. Although programming languages differ
in what can be conveniently expressed, modern programming
languages do not have, in principle, any more expressive power
than very old ones, or even than Turing machines. We call any
language in which you can program all the Turing-computable
functions Turing complete.

Which Language(s) Do You Know Already? This factor can operate
either way. You may prefer to use a language you’re already familiar
with, even if it isn’t ideal for the task, so that you can focus on
things other than the nitty gritty of how you make the machine do
what you want. However, it can be more fun to use a language that’s
new to you, and – especially early in your programming life – it may
be positively sensible to take the opportunity to widen your range.
Writing a program you want written is the best way to develop
fluency in a language. It’ll take a bit longer than if you do it in
a language you already know, of course, but you may learn more
in the process.

How Long Will the Program Need to Last? If it must last for
many years, you may prefer to use a long-established language with
a reputation for maintaining backwards compatibility, like Java,
rather than a fast-moving language in which old programs often
have to be changed if they are to work with the latest version of

188 14 How to Choose a Programming Language

the language, like Haskell.1 Note, though, that you don’t always
know how long your program will last. If it turns out to be useful,
it may last much longer than you expect!

Story

I once wrote a program that was intended to be used only
for a few months. This was in the early 1990s, and, alongside
colleagues at the company where I was working at the time, I
had just been trained on what we needed to do to make sure
that our code still worked after the year 2000 – that is, how to
make it “Y2K compliant”. Just for fun, I made sure my code
was Y2K compliant and added a comment that said so, even
though there was no expectation it would still be in use in the
year 2000. Many years later, after I had left the company, I met
someone who worked there, having arrived after I left. She knew
my name because she had seen it in a program. You’ve guessed
it – it was that program, which was still in use many years after
I would have expected it to be retired.

Do You Plan to Distribute It? If you want other people to be able
to compile and/or run your program, you need to pay attention
to how easy it will be for them. What will they need in the way
of compiler, run-time software, libraries, etc., and how likely are
they to have the necessary things installed already? Will you need to
provide instructions? Are there other dependencies or constraints?
For example, what are you assuming about what operating system
these people will be using?

What Kind of Libraries or Components Will You Need? E.g. does
your program need a graphical user interface (GUI), or to use a

1 Strictly speaking, Haskell – the official language – has been very stable; what
changes often is the commonly used Glasgow Haskell Compiler.

14.2 A Few Languages You May Encounter 189

database? Check that good, suitable software that interacts well
with your language exists. For example, if you want your program
to have a GUI, search

gui your_language

Be quite cautious: sometimes you may find that there is a library,
but that it is out of date, poorly documented, or hard to use. Unless
you are really looking for a challenge, you should look for evidence
that plenty of other people currently use the software you are
considering.

What Kind of Mistakes Are Most Important to Guard Against?
This question, and its implications, are harder to get a handle
on than some of the others, but are worth thinking about. For
example, if your program will manipulate complex data structures,
you may find the security of static type-checking important. On
the other hand, if your program will involve a frequently changing
interaction at the command line and lots of file handling, it might
be more important to you that your language has convenient
operating system interaction and string manipulation features.

14.2 A Few Languages You May Encounter

Here is a list of just a few languages, focusing on the ones you are
most likely to need to learn for university study. Perhaps you might
challenge yourself to learn a little of each?

Any such list is bound to be incomplete and controversial,
however. If you come across a language that interests you, do not
be put off learning it by the fact that it is not included here!

C C is a low-level language, in the sense that it is “close to the
machine”: every computer has a C compiler. It may be a good
choice if you want to understand how your program really works;
for example, by learning about pointer arithmetic, you can improve

190 14 How to Choose a Programming Language

your intuition for how data is stored in the computer’s memory. It is
still a popular language for embedded systems. If you are interested
in hardware, you are very likely to need to learn it.

C++ layers object-oriented features on top of C. It is harder to
write in than Java, but even today it is more efficient. If C++ is the
right language for you, you probably don’t need me to explain why
that is.

Fortran dates back to the 1950s and is now thought of as an old-
fashioned language. However, it is still widely used in scientific
computing.

Haskell Haskell is one of the best established functional lan-
guages. It has a powerful static type system which can help you
to avoid many kinds of bug. It is the language of choice for
many experts in programming language theory. This has pluses and
minuses: a plus is that learning Haskell will make many advanced
features and a body of research available to you, while a minus
is that it can be hard to get simple answers to simple questions,
and that the compilers and libraries tend to change fast and
unpredictably.

Java Java is a very widely used, robust language, well-supported
by tools, books, tutorials, etc. It is especially popular for enterprise
systems, that is, for systems that support the business process of
complex organisations. It can be verbose.

JavaScript is a natural choice for web applications. There is a huge
range of frameworks and libraries, so that the process of learning
JavaScript is arguably more about learning some of its frameworks.
JavaScript is dynamically typed, but if that is a problem for you you
might want to consider TypeScript, which is essentially a statically
typed variant of JavaScript, which compiles down to JavaScript.
Be aware that the “Java” in “JavaScript” is there essentially for his-
torical marketing reasons: when JavaScript came out, in 1995, Java
was new and fashionable. The two languages are very different.

14.2 A Few Languages You May Encounter 191

MATLAB is a language for numerical computing, widely used by
scientists and engineers. Unlike most of the languages in this list,
it has no open-source implementation.

Perl Perl stands for practical extraction and report language, or
for pathologically eclectic rubbish lister. A Perl motto is “There’s
more than one way to do it.” Once you know the language well, it is
extremely convenient for many tasks, especially those that involve
interacting with the operating system and manipulating strings.
But it can be difficult to track down bugs in your Perl programs.
I love Perl (which is really why it’s in this list: it’s not commonly
taught as a first programming language, though you may come
across it in passing, almost anywhere) but I find it hard to argue for
you learning it now, unless you have existing Perl code to maintain.
Do at least consider using Python instead.

PHP is a scripting language, widely used for web development
(especially server-side scripting). It is easy to get started with, and
is popular in web applications courses that have to cover a lot of
ground. It has a reputation as a language which tends to encourage
the writing of unmaintainable, insecure code – but this may be
somewhat unfair, especially as recent versions of the language have
improved.

Prolog is an old language which is having a resurgence with the
AI boom. It has similar pattern-matching to functional languages
like Haskell, but otherwise feels quite different from any of the
other languages in this list: it’s described as a logic programming
language, and the fundamental idea is that you encode some facts
and then ask questions about them.

Python By some measures Python is the most popular first pro-
gramming language. I still rather resent Python for stealing the
place in the language ecosystem that used to be occupied by Perl,
one of my all-time favourite languages. There’s no denying, though,
that Python has many advantages over Perl. Perhaps the easiest

192 14 How to Choose a Programming Language

way to summarise the difference is to point out that one of the
principles included in the Zen of Python2 is “There should be one –
and preferably only one – obvious way to do it.”3

Python is very easy to get started with, very popular, and a
good all-purpose language. It’s not statically typed, which means
you may regret it if your program gets big and complicated. It’s a
popular language for data science and for machine learning, and
has good facilities for manipulating strings. Its popularity means
that there are libraries and frameworks for everything. There are
significant differences between Python versions 2 and 3, so be sure
you know which you are to use.

R is a language for doing statistics with data. It provides conve-
nient facilities for graphing and analysis. Unlike MATLAB, which
is sometimes used for the same tasks, it is an open-source language.

Racket/Scheme Widely used as a teaching language, but not so
popular commercially, Scheme is a functional language from the
Lisp family. Racket, originally a renaming of a version of Scheme,
is now more popular. It has a minimalist language design philos-
ophy, and is a good language to learn if you’re interested in how
programming languages work.

Since all of these languages are widely used, and most of them
often act as first programming languages, there is good teaching
material in all of them. Experiment!

14.3 The Changing Landscape of Languages

All of the languages in the previous section date back to the last
century. But new programming languages are being invented all the

2 www.python.org/dev/peps/pep-0020/
3 Although that way may not be obvious at first unless you’re Dutch.

www.python.org/dev/peps/pep-0020/

14.3 The Changing Landscape of Languages 193

time, and there are many other old ones I could have mentioned,
too. You might like to search

programming languages this_year

as well as, of course, watching out for information on which
languages are used by people and organisations whose work you
find interesting. The TIOBE index4 attempts a regularly updated
summary of the popularity of programming languages – but,
unsurprisingly, its methodology is contested.

Above all, be aware that if you plan to have a career that involves
programming, the language you learn first is unlikely to be the one
you use most in your life. It is important to learn to write good
programs in your first language, but it is equally important to set
yourself on the path towards writing good programs in languages
that have not yet been invented. To do this, make a habit of
thinking about the why, as well as the what, of your programming
decisions.

4 www.tiobe.com/tiobe-index/

www.tiobe.com/tiobe-index/

15

How to Go Beyond This Book

This book has been aimed at students and their teachers engaged
in early programming courses, and I hope you have found it useful.
Once you’ve thoroughly absorbed its content, what next?

15.1 Doing More Programming

You can, of course, simply go ahead and write a program you find
interesting. If you want a bit more structure to your practice, you
might consider

• online coding challenges and contests, such as those found at
HackerRank1 – these are available in multiple languages, and you
can do them competitively or just for fun;

• getting involved in outreach activities, e.g. helping with a coding
club for school children: having to explain things is excellent for
your own understanding;

• attending hackathons – intense, group programming events often
organised by large employers or university societies – talks, etc.,
if you are lucky enough to be somewhere where these happen;

• contributing to an open-source project: projects that welcome
newcomers often have a forum or a Get Involved page or similar
to help you get started, and the website UpForGrabs2 collates
links to such projects.

The rest of this chapter is about books. If you have access to a
university library, you are likely to find most of them there.

1 www.hackerrank.com
2 https://up-for-grabs.net/

194

www.hackerrank.com
https://up-for-grabs.net/

15.3 Programming Generally 195

15.2 Specific Programming Languages

You have probably been using an introductory book on your
chosen programming language alongside this one. Most books
treat their chosen language starting at the very basics, and include
some material on how to write good programs in that specific
language. There are so many of these books for each popular
language that I’m not going to attempt to recommend specific
ones. Indeed, because there are so many, you will usually find that
you can indulge your own preferences for book style. Some people
like short, terse books that explain each thing once. Others prefer
discursive books that return to important topics and include lots
of exercises. Browse, read reviews, ask for recommendations, and
pick your favourite.

There are fewer books that focus on how to become an excellent
programmer in some language. One such is Joshua Bloch’s Effective
Java. Once you have understood the basics of Java, this will be very
useful.

15.3 Programming Generally

There’s a plethora of books aimed at professional programmers,
which may now be useful to you. Here are a few of my favourites.

Clean Code: A Handbook of Agile Software Craftsmanship by
Robert C. Martin, known as “Uncle Bob”. Active as a consultant,
he also has a lot of material online; have a search.

Andrew Hunt and David Thomas’s book The Pragmatic Pro-
grammer also includes lots of good stuff. Its subtitle “from jour-
neyman to master” is a good indication of its target audience –
you should already be a somewhat competent programmer to get
much out of it – though it should be noted that it’s not only men
who can master programming! I believe it was the first edition of
this book that introduced the term “kata”, mentioned in Chapter
10, to programming.

Another popular book aimed at experienced programmers is
Steve McConnell’s Code Complete.

196 15 How to Go Beyond This Book

Rather different is the collection of chapters edited by Andy
Oram and Greg Wilson, Beautiful Code: Leading Programmers
Explain How They Think. The chapters take a variety of different
approaches to the brief: you’ll certainly find some of them thought-
provoking.

Somewhat more algorithm-focused, though now dated, are
Jon Bentley’s classic Programming Pearls and More Programming
Pearls. You might enjoy Gayle McDowell’s Cracking the Coding
Interview for its challenging small programming problems, even if
you are not preparing for an interview.

15.4 Software Engineering

“Software engineering” is the term we use for all the processes and
skills that contribute to ensuring that we have software available
that meets our needs. The term seems probably to have been coined
by Margaret Hamilton, who led a team developing software for
the Apollo 11 space mission, in the early 1960s. It was popularised
by its use in the titles of the NATO Conferences on Software
Engineering in 1968 and 1969. The intention was to conjure up an
idea of software being built in a systematic, reliable way, based on
mathematics. The people building the software would be engineers,
with the connotation that they would have undergone a certain
kind of rigorous education, probably leading to a professional
certificate. This was always more aspiration than reality – the
very softness of software has always meant that people have built
software without such an education. Nevertheless, we undoubtedly
want well-engineered software, and an important step towards that
is to understand how to write good programs, as discussed in this
book and in those mentioned in the previous section.

Going beyond programming, software engineering also involves
many other activities. There are whole fields that study how you
manage the requirements of a system, including reconciling the
conflicts between what different people want; how you can be
sure you have done enough testing to be confident that your

15.4 Software Engineering 197

system is correct; and especially, how you can design the system
so that it will be possible to maintain its usefulness while the world
around it changes. Change is the root of the difficulty of software
engineering. We mentioned in Chapter 10 that you should try to
place things that will change at the same time close together in your
program. This idea has been raised to an art form in the field of
design patterns; the classic book is the so-called Gang of Four book
(Gamma et al., 1994).

In order to think clearly about design, we need a way to represent
the information that we need to focus on, while leaving out all
the other information about the system which is irrelevant right
now. For example, while thinking about the design structure of
an object-oriented system, we might use a diagram that shows
the classes in a system and the relationships between them, but
leaves out all the detail of what the methods in the classes do.
The same applies to many of the other important aspects of
software development: in order to think about one aspect, we need
a representation that shows the information we need, while leaving
out what we do not need. Such a representation is called a model.

Terminology: Model

A model is an abstract, usually graphical, representation of
some aspect of the system.

The use of models has been gradually increasing, and I think
will become even more important in decades to come. My first
book, Using UML, was about the Unified Modeling Language,
which is now ubiquitous as a diagrammatic way to describe the
design of systems. However, that language is complicated and can
be frustrating. The future of modelling seems likely to involve using
more, simpler modelling languages, which may be diagrammatic
or textual, together with tools that process them automatically,
rather as compilers do for programs. A plethora of books about

198 15 How to Go Beyond This Book

this model-driven engineering have been appearing in the last few
years. One of my favourites is Model-Driven Software Engineering
in Practice by Marco Brambilla et al.

In a programming course, you are usually presented with clearly
described requirements that won’t change as you develop the pro-
gram; if you work in a team with others at all, it will probably
be a small team over a small length of time. In real-life software
development, it is difficult to determine the requirements and they
change over time. Large software systems often require very large
teams of people with different skills. Managing all that is the
subject of many books about software process. Two classics that
it makes sense to read at a relatively early stage are Fred Brooks’s
The Mythical Man-Month – which made famous the observation
that adding people to a software project that is late will often make
it later – and Tom DeMarco and Timothy Lister’s Peopleware,
which, in a highly readable way, discusses the importance of the
human characteristics of people involved in software development.
Finally, you might also enjoy the book that started the agile rev-
olution, Kent Beck’s Extreme Programming Explained: Embrace
Change.

15.5 Programming Language Theory

What none of the kinds of books we’ve discussed so far do
much of, is comparing languages, and discussing their design and
their properties. This is a fascinating topic, and understanding
something about it can help you become a better programmer.
Moreover, you may find yourself designing a language some
day – domain-specific languages are becoming more common,
so more programmers will find themselves involved in language
design, at least of simple languages, than hitherto.

A great place to start is Shriram Krishnamurthi’s book Pro-
gramming Languages: Application and Interpretation. By carefully
guiding you through writing an interpreter for a language, it helps
you understand many of the choice points in language design.

15.5 Programming Language Theory 199

As you learn more, advanced programming language theory
books begin to become accessible to you. One of the best known
is Benjamin Pierce’s book Types and Programming Languages;
if you’re mathematically inclined, and want to know about type
systems, this is well worth a read. Another of my favourites is
Glynn Winskel’s Formal Semantics of Programming Languages.
Books in this category can be seriously challenging, though, so do
browse in a library or bookshop to ensure you know what you are
getting into, before you buy.

Bibliography

Brambilla, Marco, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice. Morgan and Claypool, 2017.
Beck, Kent. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.
Bentley, Jon. More Programming Pearls , Facsimile edition. Addison-
Wesley Professional, 1988.
Bentley, Jon. Programming Pearls, 2nd edn. Dorling Kindersley, 2006.
Bloch, Joshua. Effective Java. Addison-Wesley Professional, 2017.
Brooks, Frederick P. Jr. The Mythical Man-Month: Essays on
Software Engineering, Anniversary edition. Addison Wesley, 1995.
Christiansen, Tom, Brian D. Foy, Larry Wall, and Jon Orwant.
Programming Perl, 4th edn. O’Reilly Media, 2012.
Corbyn, Zoë. Interview: Margaret Hamilton: “They worried that the
men might rebel. They didn’t”. The Guardian, July 2019.
www.theguardian.com/technology/2019/jul/13/margaret-hamilton-
computer-scientist-interview-software-apollo-missions-1969-moon-
landing-nasa-women.
Dijkstra, Edsger W. Notes on Structured Programming, Technical
report 70-WSK-03, 2nd edn, April 1970.
www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF.
DeMarco, Tom and Timothy Lister. Peopleware: Productive Projects
and Teams. Addison-Wesley, 2016.
Feynman, Richard P. Cargo cult science. Engineering and Science,
37(7), June 1974.
http://calteches.library.caltech.edu/51/2/CargoCult.htm. Caltech’s
1974 commencement address.
Fowler, Martin. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

200

www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://calteches.library.caltech.edu/51/2/CargoCult.htm

Bibliography 201

Heinlein, Robert A. The Moon Is a Harsh Mistress. G. P. Putnam’s
Sons, 1966.
Hoare, Tony. The emperor’s old clothes. Communications of the
ACM, 24(2):75–83, February 1981.
Hunt, Andrew and David Thomas. The Pragmatic Programmer.
Addison-Wesley, 1999.
Knuth, Don. Notes on the van Emde Boas construction of priority
deques: An instructive use of recursion, March 1977. Available via
https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf.
Krishnamurthi, Shriram. Programming Languages: Application and
Interpretation, 2nd edn.
http://cs.brown.edu/courses/cs173/2012/book/, 2017.
Martin, Robert C. Clean Code: A Handbook of Agile Software
Craftsmanship. Prentice Hall, 2008.
McConnell, Steve. Code Complete. Microsoft Press, 2004.
McDowell, Gayle Laakmann. Cracking the Coding Interview.
CareerCup, 2015.
Oram, Andy and Greg Wilson, editors. Beautiful Code: Leading
Programmers Explain How They Think. O’Reilly Media, 2007.
Pierce, Benjamin C. Types and Programming Languages. MIT Press,
2002.
Rainsberger, J. B. Putting an age-old battle to rest, December 2013.
https://blog.thecodewhisperer.com/permalink/putting-an-age-old-
battle-to-rest.
Raymond, Eric S. How to ask questions the smart way, 2014.
www.catb.org/esr/faqs/smart-questions.html.
Stevens, Perdita and Rob Pooley. Using UML: Software Engineering
with Objects and Components. Addison-Wesley, 2005.
van Rossum, Guido, Barry Warsaw, and Nick Coghlan. PEP 8 – style
guide forPython code,July2001.www.python.org/dev/peps/pep-0008/.
Winskel, Glynn. Formal Semantics of Programming Languages. MIT
Press, 1993.

https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf
http://cs.brown.edu/courses/cs173/2012/book/
https://blog.thecodewhisperer.com/permalink/putting-an-age-old-battle-to-rest
www.catb.org/esr/faqs/smart-questions.html
www.python.org/dev/peps/pep-0008/

Index

A bold page number indicates where a term is defined.

abstract syntax tree, 105
abstraction, 29, 141

see also model
agile, 64, 159, 198
algorithm, 29, 147, 148, 196
Alice, 44
arguments, 25, 28

functions as, 45
order of, 108
type of, 41, 108

assert, 71
assignment, 131

vs. comparison, 126
Atom, 18
autocompletion, 52, 90
autosave, 57

backups, 65
bar, see metasyntactic variable
BASIC, 44, 125
baz, see metasyntactic variable
BlueJ, 44, 54
breakpoint, 111
bug, 32, 101, 190, 191

after removing, 124
avoiding, 138
avoiding recurrence of, 77
in compiler, 109
removing, 122
the Lauren bug, 78
see also debugging

build, 51, 53

C, 35, 45, 189
C�, 35
C++, 35, 190
camel case, 89
change, 141, 144, 197
checklist, 127
cloud, 66
code

commented-out, 62
completion, 52, 90
dead, 64
line length, 99
reputable body of, 46, 63, 94, 99
spaghetti, 98, 122
unreachable, 64

code sense, 3, 133
coding, 4
coding dojo, 153
coding interview, 148
command line, 15, 49
comment, 27, 70, 85–88
commenting-out, 62
comparison

of booleans, 126
of objects, 130
vs. assignment, 126

compiler, 13, 35
bug, 109
incremental, 51

computational complexity, 148
content assist, 52, 90
contract, 88

202

Index 203

crash, 118
currying, 23

data science, 192
database, 189
debugger, 111
debugging, 101–133

by rewriting, 112
cardboard, 120
crash, 118
interactive, 111
non-termination, 118
rubber duck, 120
using print statements, 110

defensive programming, 132
demonstration, 175
dependency, 37, 42, 51, 138, 163, 188
design, 134, 141, 144, 183, 197

notes, 29, 88, 152
design pattern, 197
development

iterative, 30
test-driven, 79, 151

Dijkstra, Edsger, 82
directory, 17
disk, 56
domain concept, 144
domain-specific language, 198
duplication

eliminating, 136

Eclipse, 51, 53, 54, 90, 92
editor, 16, 49, 55, 90

dumb, 49, 53
mode, 49, 95
vs. word processor, 16

effect, 25
efficiency, 134, 145

maintainer, 146
Pareto, 146
programmer, 146
space, 146

time, 146
user, 146

Emacs, 18, 49, 58, 90, 95
embedded systems, 190
encapsulation, 45, 114
enterprise systems, 190
error, 104

compared with warning, 104
compile-time, 103
non-termination, 118
null pointer exception, 119, 130
off-by-one, 130
run-time, 118
type, 107
see also bug

error indicator, 51
error message, 103

recurrent, 160
ethics, 10
exam, 179
exception, 118
exercises, 157

failure, see bug
fault, see bug
Fizz Buzz, 19, 20, 25, 28, 138, 153
folder, 17
foo, 32
for loops, 127
Fortran, 190
framework, 76, 190, 192

logging, 111
testing, 75

froboz, 32
function, 42

pure, 25

Git, 60
GitHub, 53, 61, 66
graphical user interface, 188

204 Index

habit, 55, 65, 66, 122, 127, 129, 131,
132, 153

hackathon, 194
Hamilton, Margaret, 78, 196
Haskell, 45, 190
Haskell example, 15, 18, 22, 26, 40,

80, 107, 108, 113, 129, 139
Hello World, 38
Hoare, Tony, 183
hobbits, 155
Hollywood Principle, 76
Hopper, Grace, 101
hubris, 155

IDE, see integrated development
environment

idiom, 39, 46, 97, 148
impatience, 155
integrated development environment,

14, 18, 50–55, 90, 95
IntelliJ IDEA, 53
interactive prompt, 15, 111
interpreter, 13, 34
invariant, 88

Java, 45, 190
Java annotations, 130
Java example, 6, 22, 27, 39, 72, 73,

84, 85, 87, 91, 93, 94, 106,
114, 115, 117, 125, 130, 131,
137, 138, 140

JavaScript, 34, 190
JUnit, 75
Jupyter notebook, 16

kata, 153
keyboard shortcut, 51
Knuth, Don, 82

layout, 52, 92
laziness, 155
lexing, 105

library, 43, 51, 162, 190, 192
standard, 43, 47, 162

linking, 36
Lisp, 192
logging, 111
Logo, 44

machine learning, 192
magic constant, 139
maintainability, 134
maintenance, 134
MATLAB, 191
memory, 56
metasyntactic variable, 32
method, 25, 42, 72

main, 72
Milner, Robin, 35
minimal non-working example, 164
ML, 35
MNWE, 164
model, 197
model-driven engineering, 198
Moore’s Law, 145
Moore, Gordon, 145
multiple choice, 185
mung, 32
mutable state, 45

name, 89–92, 142, 144
for constant, 140

NetBeans, 53
non-termination, 118, 128
Notepad, 17
Notepad++, 18
NPE, 119, 130
null pointer exception, 119, 130

Objective-C, 35
off-by-one error, 130
open-source, 43, 61, 191, 192, 194
operating system, 15, 49

Index 205

pair programming, 159
paradigms, 45
parsing, 105
Perl, 34, 74, 191
PHP, 34, 191
pointer, 189
polymorphism, 41
positive bias, 77
post-condition, 88
pre-condition, 88
print statements, 110
program, 12

good enough, 152
Hello World, 38

programming, 4
defensive, 132
extreme, 198
functional, 45
imperative, 45
logic, 45
object-oriented, 45, 143
pair, 159

programming language theory, 198
project, 50, 173
Prolog, 45, 191
Python, 191
Python example, 5, 15, 26, 28, 38,

68, 72, 97, 123, 128, 129, 142,
143, 151

quick fixes, 52

R, 192
Racket, 192
ratchet technique, 58
RCS, 60
recursion, 129
refactoring, 92, 121, 134–152
reflective writing, 177
regression, 77

see also testing
repetitive strain injury, 51

REPL, 15
requirements, 196

Scheme, 192
scope, 42
Scratch, 14, 44
scripting language, 44, 74, 191
segmentation fault, 118
semantics, 21, 199
sexism, 11
skeleton, 28
snake case, 89
software engineering, 4, 134, 196
software process, 198
space character, 95
spaghetti code, 122, 163
specification, 28, 68, 69, 80
stack overflow, 118
stack trace, 119
standard out, 68, 110
static type-checking, 189
stdout, 68, 110
structure, 41, 99, 139, 141, 144, 152
Sublime, 18
Subversion, 60
SVN, 60
syntax, 21
syntax error, 21
syntax highlighting, 49

tab character, 95
TDD, 79, 85, 151
team working, 174, 198
template file, 18
test, 69

system, 74
unit, 73

test-driven development, 79, 85, 151
testing, 68–82, 196

property-based, 79
quotations about, 81

206 Index

regression, 77, 102, 109
testing main, 72
TextEdit, 18
Turing complete, 186, 187
Turing machine, 187
Turing, Alan, 187
Turing-computable functions, 187
type-checking, 37

static, 189
types, 37–41, 199
TypeScript, 190

UML, 197
undo, 55

version control, 53, 59–61, 66
vi, 18
Visual Basic, 44
Visual Studio, 54

Wall, Larry, 154
warning, 104
web applications, 190
while loops, 127
whitespace, 92, 95
workflow, 50

Y2K, 188

	Cover

	Front Matter

	How to Write Good Programs:
A Guide for Students
	Copyright

	Contents
	1 Introduction
	2 What Are Good Programs?
	3 How to Get Started
	4 How to Understand Your Language
	5 How to Use the Best Tools
	6 How to Make Sure You Don’t Lose
Your Program
	7 How to Test Your Program
	8 How to Make Your Program Clear
	9 How to Debug Your Program
	10 How to Improve Your Program
	11 How to Get Help (without Cheating)
	12 How to Get Help (without Cheating)
	13 How to Score Well in a Programming Exam
	14 How to Choose a Programming Language
	15 How to Go Beyond This Book
	Bibliography

	Index

