Venelin Valkov

Hacker’s Guide
to
Machine Learning
with Python

CONTENTS

Contents

TensorFlow 2 and Keras - Quick Start Guide 1
Setup . . 1
TeNSOTS . . o o 2
Simple Linear Regression Model 8
Simple Neural Network Model 11
Save/Restore Model 14
Conclusion 15
References 15

Build Your First Neural Network 16
Setup . . 16
Fashiondata 17
Data Preprocessing 20
Create your first Neural Network 21
Train yourmodel L 23
Making predictions 23
Conclusion 26

End to End Machine Learning Project, 28
Define objective/goal 28
Loaddata. 29
Data exploration 30
Preparethedata 36
Buildyourmodel 39
Savethemodel 43
Build REST APT o 44
Deploy to production 45
Conclusion 46
References 47

Fundamental Machine Learning Algorithms 48
What Makes a Learning Algorithm? 48
OurData 49
Linear Regression 51

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

CONTENTS

Logistic Regression 55
k-Nearest Neighbors 57
Naive Bayes 60
Decision Trees. 62
Support Vector Machines (SVM) 64
Conclusion 67
References 67
Data Preprocessing e 68
Feature Scaling 68
Handling Categorical Data 73
Adding New Features 75
Predicting Melbourne Housing Prices 76
Conclusion 82
References 83
Handling Imbalanced Datasets 84
Data e 84
Baseline model 87
Using the correct metrics 92
Weighted model 95
Resampling techniques 97
Conclusion 103
References 103
Fixing Underfitting and Overfitting Models 104
Data e 106
Underfitting 110
Overfitting 118
Conclusion 125
References 126
Hyperparameter Tuning e 127
What is a Hyperparameter? 127
When to do Hyperparameter Tuning? 128
Common strategies 128
Finding Hyperparameters 128
Conclusion 142
References 143
Heart Disease Prediction 144
Patient Data 144
Data Preprocessing 148
The Model 150

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

CONTENTS

Training e 151
Predicting Heart Disease 153
Conclusion e 154
Time Series Forecasting 155
Time Series e 155
Recurrent Neural Networks e 156
Time Series Prediction with LSTMs e 157
Conclusion e 163
References o e 164
Cryptocurrency price prediction using LSTMs 165
Data Overview e 165
Time Series e 167
Modeling 167
Predicting Bitcoin price 172
Conclusion 173
Demand Prediction for Multivariate Time Series with LSTMs 174
Data e 174
Feature Engineering e 175
Exploration 176
Preprocessing 179
Predicting Demand 181
Evaluation e 182
Conclusion 183
References o o i e 184
Time Series Classification for Human Activity Recognition with LSTMs in Keras 185
Human Activity Data 185
Classifying Human Activity 191
Evaluation e 192
Conclusion e 194
References o e 194
Time Series Anomaly Detection with LSTM Autoencoders using Keras in Python 195
Anomaly Detection 195
LSTM Autoencoders vt e 196
S&P500Index Data 196
LSTM Autoencoder in Keras o e 199
Finding Anomalies 200
Conclusion e 203
References o i 203

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

CONTENTS

Object Detection 204
Object Detection 204
RetinaNet e 206
Preparing the Dataset 207
Detecting Vehicle Plates 212
Conclusion 218
References 219

Image Data Augmentation 220
Tools for Image Augmentation L L 220
Augmenting Scanned Documents e 221
Creating Augmented Dataset, 238
Conclusion 239
References 240

Sentiment Analysis 241
Universal Sentence Encoder 241
Hotel Reviews Data 243
Sentiment Analysis. 248
Conclusion 251
References 252

Intent Recognition with BERT 253
Data e 253
BERT . o 255
Intent Recognition with BERT 255
Conclusion 264
References e 264

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

TensorFlow 2 and Keras - Quick Start
Guide

TL;DR Learn how to use Tensors, build a Linear Regression model and a simple Neural
Network

TensorFlow 2.0 (final) was released at the end of September. Oh boy, it looks much cooler than the
1.x series. Why is it so much better for you, the developer?

« One high-level API for building models (that you know and love) - Keras. The good news is that
most of your old Keras code should work automagically after changing a couple of imports.

« Eager execution - all your code looks much more like normal Python programs. Old-timers
might remember the horrible Session experiences. You shouldn’t need any of that, in day-to-
day use.

There are tons of other improvements, but the new developer experience is something that will make
using TensorFlow 2 sweeter. What about PyTorch? PyTorch is still great and easy to use. But it seems
like TensorFlow is catching up, or is it?

You’ll learn:

« How to install TensorFlow 2

« What is a Tensor

+ Doing Tensor math

« Using probability distributions and sampling
« Build a Simple Linear Regression model

+ Build a Simple Neural Network model

« Save/restore a model

Run the complete code in your browser®

Setup

Let’s install the GPU-supported version and set up the environment:

'https://colab.research.google.com/drive/1HkG7HYS1-IFAYbECZ0zleBWA3Xi4DKIm

https://colab.research.google.com/drive/1HkG7HYS1-IFAYbECZ0zleBWA3Xi4DKIm
https://colab.research.google.com/drive/1HkG7HYS1-IFAYbECZ0zleBWA3Xi4DKIm

TensorFlow 2 and Keras - Quick Start Guide 2
Ipip install tensorflow-gpu
Check the installed version:

import tensorflow as tf

tf.__version__

2.0.0
And specify a random seed, so our results are reproducible:

RANDOM_SEED = 42

tf.random.set_seed(RANDOM_SEED)

Tensors

TensorFlow allows you to define and run operations on Tensors. Tensors are data-containers that
can be of arbitrary dimension - scalars, vectors, matrices, etc. You can put numbers (floats and ints)
and strings into Tensors.

Let’s create a simple Tensor:

X = tf.constant(1)
print(x)

tf.Tensor (1, shape=(), dtype=int32)

It seems like our first Tensor contains the number 1, it is of type int32 and is shapeless. To obtain
the value we can do:

x.numpy ()

Let’s create a simple matrix:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Bsw N

TensorFlow 2 and Keras - Quick Start Guide 3

m = tf.constant([[1, 2, 1], [3, 4, 2]])
print(m)

tf.Tensor(
[[1 2 1]
[3 4 2]], shape=(2, 3), dtype=int32)

This shape thingy seems to specify rows x columns. In general, the shape array shows how many
elements are in every dimension of the Tensor.

Helpers

TensorFlow offers a variety of helper functions for creating Tensors. Let’s create a matrix full of
ones:

ones = tf.ones([3, 3])
print(ones)

tf.Tensor(
[[1. 1. 1.]
1. 1. 1.]
[1. 1. 1.]], shape=(3, 3), dtype=float32)

and zeros:

zeros = tf.zeros([2, 3])

print(zeros)

tf.Tensor(
[[0. 0. 0.]
[0. ©. 0.]], shape=(2, 3), dtype=float32)

We have two rows and three columns. What if we want to turn it into three rows and two columns:

tf.reshape(zeros, [3, 2])

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Bw N

Bsw N

Bsw N

TensorFlow 2 and Keras - Quick Start Guide

tf.Tensor(
[[0. 9.]
[0. 0.]
[0. ©.]], shape=(3, 2), dtype=float32)

You can use another helper function to replace rows and columns (transpose):

tf.transpose(zeros)

tf.Tensor(
[[0. 0.]
[0. 0.]
[0. 0.]], shape=(3, 2), dtype=float32)

Tensor Math

Naturally, you would want to do something with your data. Let’s start with adding numbers:

tf.constant(1)
tf.constant(1)

tf.add(a, b).numpy()

42

That seems reasonable :) You can do the same thing using something more human friendly:
(a + b).numpy()

You can multiply Tensors like so:

c=a+b
c * c

And compute dot product of matrices:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Bw N

TensorFlow 2 and Keras - Quick Start Guide 5

d1l
d2

tf.constant([[1, 2], [1, 2]]);
tf.constant([[3, 4], [3, 411);

tf.tensordot(d1, d2, axes=1).numpy()

array([[9, 12],
[9, 12]], dtype=int32)

Sampling

You can also generate random numbers according to some famous probability distributions. Let’s
start with Normal®*:

norm = tf.random.normal(shape=(1000, 1), mean=0., stddev=1.)

0.4

0.3

0.2

0.1

0.0
-4 -2 0 2 4

We can do the same thing from the Uniform®:

*https://en.wikipedia.org/wiki/Normal_distribution
*https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

TensorFlow 2 and Keras - Quick Start Guide 6

1 unif = tf.random.uniform(shape=(1000, 1), minval=0, maxval=100)

0.010

0.008

0.006

0.004

0.002

0.000

-20 0 20 40 60 80 100 120
Let’s have a look at something a tad more exotic - the Poisson distribution*. It is popular for modeling

the number of times an event occurs in some time. It is the first one (in our exploration) that contains
a hyperparameter - λ. It controls the number of expected occurrences.

1 pois = tf.random.poisson(shape=(1000, 1), lam=0.8)

“https://en.wikipedia.org/wiki/Poisson_distribution

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Poisson_distribution

TensorFlow 2 and Keras - Quick Start Guide 7

2.0

1.5

1.0

0.5

0.0

The Gamma distribution® is continuous. It has 2 hyperparameters that control the shape and scale.
It is used to model always positive continuous variables with skewed distributions.

gam = tf.random.gamma(shape=(1000, 1), alpha=0.8)

*https://en.wikipedia.org/wiki/Gamma_distribution

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Gamma_distribution

© 00 N O O & W N =

==Y
W N s,

TensorFlow 2 and Keras - Quick Start Guide

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Simple Linear Regression Model

Let’s build a Simple Linear Regression® model to predict the stopping distance of cars based on their
speed. The data comes from here: https://vincentarelbundock.github.io/Rdatasets/datasets.html’. It

is given by this Tensor:

data = tf.constant(]

[4,

N
-

14

]

4

14 14

]I
o],
]

2

-3
N

:| I’

14

8

[N

[

[

[
[8,16],
[9,10],
[10,18],
[10,26],
[10,34],
[11,17],
[11,28],
[12,14],
[

12,20],

“https://en.wikipedia.org/wiki/Simple_linear_regression
"https://vincentarelbundock.github.io/Rdatasets/datasets.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Simple_linear_regression
https://vincentarelbundock.github.io/Rdatasets/datasets.html
https://en.wikipedia.org/wiki/Simple_linear_regression
https://vincentarelbundock.github.io/Rdatasets/datasets.html

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

TensorFlow 2 and Keras - Quick Start Guide

[12,24],
[12,28],
[13,26],
[13,34],
[13,34],
[13,46],
[14,26],
[14,36],
[14,60],
[14,80],
[15,20],
[15,26],
[15,54],
[16,32],
[16,40],
[17,32],
[17,40],
[17,50],
[18,42],
[18,56],
[18,76],
[18,84],
[19,36],
[19,46],
[19,68],
[20,32],
[20,48],
[20,52],
[20,56],
[20,64],
[22,66],
[23,54],
[24,70],
[24,92],
[24,93],
[24,120],
[25,85]
D

We can extract the two columns using slicing:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

RN
= O

TensorFlow 2 and Keras - Quick Start Guide 10

speed = data[:, 9]
stopping_distance = data[:, 1]

Let’s have a look at the data:

120 .

100

80 .

60 .

40

stopping distance

5 10 15 20 25
speed

It seems like a linear model can do a decent job of predicting the stopping distance. Simple
Linear Regression finds a straight line that predicts the variable of interest based on a single
predictor/feature.

Time to build the model using the Keras API:

lin_reg = keras.Sequential([
layers.Dense(1, activation='linear', input_shape=[1]),

D
optimizer = tf.keras.optimizers.RMSprop(0.001)
lin_reg.compile(

loss="mse"',

optimizer=optimizer,

metrics=["'mse']

We’re using the Sequential API with a single layer - 1 parameter with linear activation. We’ll try to

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

o N O O b W N =

TensorFlow 2 and Keras - Quick Start Guide 11

minimize the Mean squared error® during training.

And for the training itself:

history = lin_reg. fit(
x=speed,
y=stopping_distance,
shuffle=True,
epochs=1000,
validation_split=0.2,
verbose=0

)

We’re breaking any ordering issues by shuffling the data and reserving 20% for validation. Let’s
have a look at the training process:

3000 —— Train Error
Val Error
2500
| .
o
5 2000
g
©
-}
& 1500
o
©
]
= 1000
500
0 200 400 600 800 1000
Epoch

The model is steadily improving during training. That’s a good sign. What can we do with a more
complex model?

Simple Neural Network Model

Keras (and TensorFlow) was designed as a tool to build Neural Networks. Turns out, Neural
Networks are good when a linear model isn’t enough. Let’s create one:

*https://en.wikipedia.org/wiki/Mean_squared_error

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error

© 00 1 O O b W N =

N
[~

TensorFlow 2 and Keras - Quick Start Guide 12

def build_neural_net():
net = keras.Sequential([
layers.Dense(32, activation='relu', input_shape=[1]),
layers.Dense(16, activation='relu'),
layers.Dense(1),

D)

optimizer = tf.keras.optimizers.RMSprop(0.001)

net.compile(loss='mse',
optimizer=optimizer,

metrics=['mse', 'accuracy'])

return net

Things look similar, except for the fact that we stack multiple layers on top of each other. We’re also
using a different activation function - ReLU”.

Training this model looks exactly the same:

net = build_neural_net()

history = net.fit(
x=speed,
y=stopping_distance,
shuffle=True,
epochs=1000,
validation_split=0.2,
verbose=0

*https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

W N

TensorFlow 2 and Keras - Quick Start Guide 13

—— Train Error
5000 Val Error
4000
S
i,
£ 3000
>
(o2
n
S
o 2000
=
1000
0
0 200 400 600 800 1000

Epoch

Seems like we ain’t making much progress after epoch 200 or so. Can we not waste our time waiting
for the whole training to complete?

Early Stopping

Sure, you can stop the training process manually at say epoch 200. But what if you train another
model? What if you obtain more data?

You can use the built-in callback EarlyStopping' to halt the training when some metric (e.g. the
validation loss) stops improving. Let’s see how we can use it:

early_stop = keras.callbacks.EarlyStopping(
monitor='val_loss',

patience=10

We want to monitor the validation loss. We’ll observe for improvement for 10 epochs before stopping.
Let’s see how we can use it:

%https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

TensorFlow 2 and Keras - Quick Start Guide 14

net = build_neural_net()

history = net.fit(
x=speed,
y=stopping_distance,
shuffle=True,
epochs=1000,
validation_split=0.2,
verbose=0,
callbacks=[early_stop]

6000 .
—— Train Error

Val Error
5000

4000

3000

Mean Square Error

2000

1000

0 20 40 60 80 100 120
Epoch

Effectively, we've cut down the number of training epochs to ~120. Is this going to work every time

that well? Not really. Using early stopping introduces yet another hyperparameter that you need to
consider when training your model. Use it cautiously.

Now your model is ready for the real world. How can you store it for later use?

Save/Restore Model

You can save the complete model (including weights) like this:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

TensorFlow 2 and Keras - Quick Start Guide

net.save('simple_net.h5")
And load it like that:

simple_net = keras.models.load_model('simple_net.h5")

You can use this mechanism to deploy your model and use it in production (for example).

Conclusion

You did it! You now know (a tiny bit) TensorFlow 2! Let’s recap what you’ve learned:

« How to install TensorFlow 2

« What is a Tensor

+ Doing Tensor math

« Using probability distributions and sampling
+ Build a Simple Linear Regression model

« Build a Simple Neural Network model

« Save/restore a model

Run the complete code in your browser'*

Stay tuned for more :)

References

« TensorFlow 2.0 released*?
« TensorFlow 2.0 on GitHub*?
« Effective TensorFlow 2.0**

"https://colab.research.google.com/drive/ THkG7HYS1-IFAYbECZ0zleBW A3Xi4DKIm
https://medium.com/tensorflow/tensorflow-2-0-is-now-available-57d706c2a9ab
Phttps://github.com/tensorflow/tensorflow/releases/tag/v2.0.0
"*https://www.tensorflow.org/guide/effective_tf2

15

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1HkG7HYS1-IFAYbECZ0zleBWA3Xi4DKIm
https://medium.com/tensorflow/tensorflow-2-0-is-now-available-57d706c2a9ab
https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0
https://www.tensorflow.org/guide/effective_tf2
https://colab.research.google.com/drive/1HkG7HYS1-IFAYbECZ0zleBWA3Xi4DKIm
https://medium.com/tensorflow/tensorflow-2-0-is-now-available-57d706c2a9ab
https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0
https://www.tensorflow.org/guide/effective_tf2

Build Your First Neural Network

TL;DR Build and train your first Neural Network model using TensorFlow 2. Use the
model to recognize clothing type from images.

Ok, I'll start with a secret—I am THE fashion wizard (as long as we’re talking tracksuits). Fortunately,
there are ways to get help, even for someone like me!

Can you imagine a really helpful browser extension for “fashion accessibility”? Something that tells
you what the type of clothing you’re looking at.

After all, I really need something like this. I found out nothing like this exists, without even searching
for it. Let’s make a Neural Network that predicts clothing type from an image!

Here’s what we are going to do:

. Install TensorFlow 2

. Take a look at some fashion data

. Transform the data, so it is useful for us

. Create your first Neural Network in TensorFlow 2

. Predict what type of clothing is showing on images your Neural Network haven’t seen

(S N O S

Setup

With TensorFlow 2 just around the corner (not sure how far along that corner is thought) making
your first Neural Network has never been easier (as far as TensorFlow goes).

But what is TensorFlow'*? Machine Learning platform (really Google?) created and open sourced
by Google. Note that TensorFlow is not a special purpose library for creating Neural Networks,
although it is primarily used for that purpose.

So, what TensorFlow 2 has in store for us?

TensorFlow 2.0 focuses on simplicity and ease of use, with updates like eager execution,
intuitive higher-level APIs, and flexible model building on any platform

Alright, let’s check those claims and install TensorFlow 2 from your terminal:

Phitps://www.tensorflow.org/overview

https://www.tensorflow.org/overview
https://www.tensorflow.org/overview

Build Your First Neural Network 17

pip install tensorflow-gpu==2.0.0-alpha@

Fashion data

Your Neural Network needs something to learn from. In Machine Learning that something is called
datasets. The dataset for today is called Fashion MNIST™.

Fashion-MNIST is a dataset of Zalando’s article images'” — consisting of a training set
of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale
image, associated with a label from 10 classes.

In other words, we have 70,000 images of 28 pixels width and 28 pixels height in greyscale. Each
image is showing one of 10 possible clothing types. Here is one:

*“https://github.com/zalandoresearch/fashion-mnist
https://jobs.zalando.com/en/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://github.com/zalandoresearch/fashion-mnist
https://jobs.zalando.com/en/
https://github.com/zalandoresearch/fashion-mnist
https://jobs.zalando.com/en/

Build Your First Neural Network

10

20

0

2 10 15 20

Here are some images from the dataset along with the clothing they are showing:

18

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Build Your First Neural Network 19

ST 0

Ankle boot T-shirtftop T-shirtftop Dress T-shirt/top
ﬁ l l —d [

Pullover Sneaker Pullover Sandal Sandal

' ‘ 23 S
T-shirt/top Ankle boot Sandal Sandal Sneaker

'..h.l-
J M
i
Ankle boot Trouser T-shirtftop Shirt Coat

Dress Trouser

Here are all different types of clothing:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

W N

Build Your First Neural Network 20

=
o
o
[¢]
—

Description
T-shirt/top
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag

Ankle boot

O 00 NI O U= O

Now that we got familiar with the data we have let’s make it usable for our Neural Network.

Data Preprocessing

Let’s start with loading our data into memory:

import tensorflow as tf

from tensorflow import keras

(x_train, y_train), (x_val, y_val) = keras.datasets.fashion_mnist.load_data()

Fortunately, TensorFlow has the dataset built-in, so we can easily obtain it.

Loading it gives us 4 things:

x_train — image (pixel) data for 60,000 clothes. Used for training our model.

y_train — classes (clothing type) for the clothing above. Used for training our model.

x_val — image (pixel) data for 10,000 clothes. Used for testing/validating our model.

y_val — classes (clothing type) for the clothing above. Used for testing/validating our model.

Now, your Neural Network can’t really see images as you do. But it can understand numbers. Each
data point of each image in our dataset is pixel data—a number between 0 and 255. We would like
that data to be transformed (Why? While the truth is more nuanced, one can say it helps with
training a better model) in the range 0-1. How can we do it?

We will use the Dataset from TensorFlow to prepare our data:

*https://www.tensorflow.org/api_docs/python/tf/data/Dataset

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset

O© 00 I O O b W N =

S
N =~ O

O O b W N =

Build Your First Neural Network 21

def preprocess(x, y):
tf.cast(x, tf.float32) / 255.0
tf.cast(y, tf.int64)

i
I

<
I

return x, y

def create_dataset(xs, ys, n_classes=10):
ys = tf.one_hot(ys, depth=n_classes)
return tf.data.Dataset.from_tensor_slices((xs, ys)) \
.map(preprocess) \
.shuffle(len(ys)) \
.batch(128)

Let’s unpack what is happening here. What does tf.one_hot do? Let’s say you have the following
vector:

[1/ 2/ 3/ 1]

Here is the one-hot encoded version of it:

)

[N}
S © »~ O
)

()

It puts 1 at the index position of the number and 0 everywhere else.

We create Dataset from the data using from_tensor_slices' and divide each pixel of the images by
255 to scale it in the 0-1 range.

Then we use shuffle* and batch?* to convert the data into chunks.

Why shuffle the data, though? We don’t want our model to make predictions based on the order of
the training data, so we just shuffle it.

I am truly sorry for this bad joke?*

Create your first Neural Network

You’re doing great! It is time for the fun part, use the data to create your first Neural Network.

“https://www.tensorflow.org/api_docs/python/tf/data/Dataset#from_tensor_slices
*https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle
*'https://www.tensorflow.org/api_docs/python/tf/data/Dataset#batch
**https://www.youtube.com/watch?v=KQ6zr6kCPj8

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/data/Dataset#from_tensor_slices
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#batch
https://www.youtube.com/watch?v=KQ6zr6kCPj8
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#from_tensor_slices
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#batch
https://www.youtube.com/watch?v=KQ6zr6kCPj8

© 00 N O O b W N =

N =V =N
N O O b W N =~ O

Build Your First Neural Network 22

train_dataset = create_dataset(x_train, y_train)
val_dataset = create_dataset(x_val, y_val)

Build your Neural Network using Keras layers

They say TensorFlow 2 has an easy High-level API, let’s take it for a spin:

model = keras.Sequential(]
keras.layers.Reshape(
target_shape=(28 * 28,), input_shape=(28, 28)
),
keras. layers.Dense(
units=256, activation='relu'
),
keras. layers.Dense(
units=192, activation='relu'
)
keras. layers.Dense(
units=128, activation='relu'
)
keras. layers.Dense(

units=10, activation='softmax'

D)

Turns out the High-level API is the old Keras® API which is great.

Most Neural Networks are built by “stacking” layers. Think pancakes or lasagna. Your first Neural
Network is really simple. It has 5 layers.

The first (Reshape?®) layer is called an input layer and takes care of converting the input data for
the layers below. Our images are 28+28=784 pixels. We're just converting the 2D 28x28 array to a
1D 784 array.

All other layers are Dense* (interconnected). You might notice the parameter units, it sets the
number of neurons for each layer. The activation parameter specifies a function that decides
whether “the opinion” of a particular neuron, in the layer, should be taken into account and to
what degree. There are a lot of activation functions one can use.

The last (output) layer is a special one. It has 10 neurons because we have 10 different types of
clothing in our data. You get the predictions of the model from this layer.

“https://keras.io/
**https://www.tensorflow.org/api_docs/python/tf/keras/layers/Reshape
*https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Reshape
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Reshape
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense

© 00 N O O b W N =

[==Y
w N =~

g b W N~

Build Your First Neural Network 23

Train your model

Right now your Neural Network is plain dumb. It is like a shell without a soul (good that you get
that). Let’s train it using our data:

model . compile(
optimizer="adam',
loss=tf.losses.CategoricalCrossentropy(from_logits=True),

metrics=['accuracy']

history = model. fit(
train_dataset.repeat(),
epochs=10,
steps_per_epoch=500,
validation_data=val_dataset.repeat(),
validation_steps=2

)

Training a Neural Network consists of deciding on objective measurement of accuracy and an
algorithm that knows how to improve on that.

TensorFlow allows us to specify the optimizer algorithm we’re going to use — Adam*® and the
measurement (loss function) — CategoricalCrossentropy”” (we’re choosing/classifying 10 different
types of clothing). We’re measuring the accuracy of the model during the training, too!

The actual training takes place when the fit method is called. We give our training and validation
data to it and specify how many epochs we’re training for. During one training epoch, all data is
shown to the model.

Here is a sample result of our training:

Epoch 1/10 500/500 [==============================] 9s 18ms/step - loss: 1.7340 - \
accuracy: 0.7303 - val_loss: 1.6871 - val_accuracy: 0.7812
Epoch 2/10 500/500 [==============================] - 6s 12ms/step - loss: 1.6806 - \
accuracy: 0.7807 - val_loss: 1.6795 - val_accuracy: 0.7812

I got ~82% accuracy on the validation set after 10 epochs. Lets profit from our model!
Making predictions

Now that your Neural Network “learned” something lets try it out:

*https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
*"https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalCrossentropy

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalCrossentropy
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalCrossentropy

© 00 N O O & W N =

SN
N =~ O

Build Your First Neural Network

predictions = model.predict(val_dataset)

Here is a sample prediction:

array([

1

W N BN BN O -

—
~

.8154810e-07,
.0657334e-09,
.9998713e-01,
.1928002¢-05,
.9766360e-08,
.0670972e-08,
.5100772e-07,
.5147233e-11,
.0812568e-07,
.5224868e-11

dtype=float32)

24

Recall that we have 10 different clothing types. Our model outputs a probability distribution about
how likely each clothing type is shown on an image. To make a decision, we can get the one with
the highest probability:

np.

2

argmax(predictions[@])

Here is one correct and one wrong prediction from our model:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Build Your First Neural Network

Predicted: Trouser 100% (True: Trouser)

25

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Build Your First Neural Network 26

Predicted: Trouser 100% (True: Ankle boot)

Conclusion

Alright, you got your first Neural Network running and made some predictions! You can take a look
at the Google Colaboratory Notebook (including more charts) here:

Google Colaboratory Notebook?®

*®https://colab.research.google.com/drive/1ctyhVID9Y85K TBma1X9Zf35Q0ha9PCaP

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1ctyhVlD9Y85KTBma1X9Zf35Q0ha9PCaP
https://colab.research.google.com/drive/1ctyhVlD9Y85KTBma1X9Zf35Q0ha9PCaP

Build Your First Neural Network 27

One day you might realize that your relationship with Machine Learning is similar to marriage.
The problems you might encounter are similar, too! What Makes Marriages Work by John Gottman,
Nan Silver® lists 5 problems marriages have: “Money, Kids, Sex, Time, Others”. Here are the Machine
Learning counterparts:

Cost / Billing
Predictions

Performance
Inference Time
Others

Shall we tackle them together?

*https://www.psychologytoday.com/intl/articles/199403/what- makes-marriage-work

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.psychologytoday.com/intl/articles/199403/what-makes-marriage-work
https://www.psychologytoday.com/intl/articles/199403/what-makes-marriage-work
https://www.psychologytoday.com/intl/articles/199403/what-makes-marriage-work

End to End Machine Learning Project

TL;DR Step-by-step guide to build a Deep Neural Network model with Keras to predict
Airbnb prices in NYC and deploy it as REST API using Flask

This guide will let you deploy a Machine Learning model starting from zero. Here are the steps
you're going to cover:

« Define your goal

« Load data

« Data exploration

« Data preparation

+ Build and evalute your model
« Save the model

+ Build REST API

« Deploy to production

There is a lot to cover, but every step of the way will get you closer to deploying your model to the
real-world. Let’s begin!

Run the modeling code in your browser*

The complete project on GitHub’*

Define objective/goal

Obviously, you need to know why you need a Machine Learning (ML) model in the first place.
Knowing the objective gives you insights about:

« Is ML the right approach?

« What data do I need?

« What a “good model” will look like? What metrics can I use?

« How do I solve the problem right now? How accurate is the solution?
« How much is it going to cost to keep this model running?

In our example, we’re trying to predict Airbnb** listing price per night in NYC. Our objective is clear
- given some data, we want our model to predict how much will it cost to rent a certain property
per night.

*°https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
*'https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
**https://www.airbnb.com/

https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://www.airbnb.com/
https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://www.airbnb.com/

© 00 N O O b W N =

[T N T N T S S T~ = Y= G G N ¥
N 0 © © 00 1 O O b W N =~ O

End to End Machine Learning Project

Load data

The data comes from Airbnb Open Data and it is hosted on Kaggle*

Since 2008, guests and hosts have used Airbnb to expand on traveling possibilities and
present more unique, personalized way of experiencing the world. This dataset describes
the listing activity and metrics in NYC, NY for 2019.

Setup

We’ll start with a bunch of imports and setting a random seed for reproducibility:

import numpy as np

import tensorflow as tf

from tensorflow import keras

import pandas as pd

import seaborn as sns

from pylab import rcParams

import matplotlib.pyplot as plt

from matplotlib import rc

from sklearn.model_selection import train_test_split
import joblib

%zmatplotlib inline
%»config InlineBackend. figure_format='retina'

sns.set(style='whitegrid', palette='muted', font_scale=1.5)
rcParams|['figure.figsize'] = 16, 10
RANDOM_SEED = 42

np .random.seed (RANDOM_SEED)
tf.random.set_seed(RANDOM_SEED)

Download the data from Google Drive with gdown:
lgdown --id 1aRXGcJ1IkuC6uj1ilgzioDQQS-3GPwM_ --output airbnb_nyc.csv

And load it into a Pandas DataFrame:

>*https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data

29

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data

1

End to End Machine Learning Project 30
df = pd.read_csv('airbnb_nyc.csv')

How can we understand what our data is all about?

Data exploration

This step is crucial. The goal is to get a better understanding of the data. You might be tempted
to jumpstart the modeling process, but that would be suboptimal. Looking at large amounts of
examples, looking for patterns and visualizing distributions will build your intuition about the data.
That intuition will be helpful when modeling, imputing missing data and looking at outliers.

One easy way to start is to count the number of rows and columns in your dataset:

df.shape

(48895, 16)

We have 48,895 rows and 16 columns. Enough data to do something interesting.

Let’s start with the variable we're trying to predict price. To plot the distribution, we’ll use
distplot():

sns.distplot(df.price)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 31

0.0040

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000 \J
0 2000 4000 6000 8000 10000

price

We have a highly skewed distribution with some values in the 10,000 range (you might want to
explore those). We'll use a trick - log transformation:

1 sns.distplot(np.logip(df.price))

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 32

0.6

0.5

0.4

0.3

0.2

0.1

0.0

price

This looks more like a normal distribution. Turns out this might help your model better learn the
data®*. You’ll have to remember to preprocess the data before training and predicting.

The type of room seems like another interesting point. Let’s have a look:

sns.countplot(x='room_type', data=df)

**https://datascience.stackexchange.com/questions/40089/what-is- the-reason-behind- taking-log- transformation-of-few- continuous-
variables

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables
https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables
https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables
https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables

End to End Machine Learning Project 33

25000

20000

15000

count

10000

5000

Private room Entire home/apt Shared room
room_type

Most listings are offering entire places or private rooms. What about the location? What neighbor-
hood groups are most represented?

1 sns.countplot(x="'neighbourhood_group', data=df)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

1

End to End Machine Learning Project 34

20000

15000

count

10000

5000

Brooklyn Manhattan Queens Staten Island Bronx
neighbourhood_group

As expected, Manhattan leads the way. Obviously, Brooklyn is very well represented, too. You can
thank Mos Def, Nas, Masta Ace, and Fabolous for that.

Another interesting feature is the number of reviews. Let’s have a look at it:

sns.distplot(df.number_of_reviews)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 35

0.05

0.04

0.03

0.02

0.01

0.00 J
0 100 200 300 400 500 600

number_of_reviews

This one seems to follow a Power law?*’ (it has a fat tail). This one seems to follow a Power law>® (it
has a fat tail). There seem to be some outliers (on the right) that might be of interest for investigation.

Finding Correlations

The correlation analysis might give you hints at what features might have predictive power when
training your model.

Remember, Correlation does not imply causation®”
Computing Pearson correlation coefficient®® between a pair of features is easy:
corr_matrix = df.corr()

Let’s look at the correlation of the price with the other attributes:

**https://en.wikipedia.org/wiki/Power_law
*https://en.wikipedia.org/wiki/Power_law
*"https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
**https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

N O O s W N~

1
2

End to End Machine Learning Project 36

price_corr = corr_matrix['price’]

price_corr.iloc[price_corr.abs().argsort()]

latitude ©.033939
minimum_nights 0.042799
number_of_reviews -0.047954
calculated_host_listings_count 0.057472
availability_365 0.081829
longitude -0.150019
price 1.000000

The correlation coefficient is defined in the -1 to 1 range. A value close to 0 means there is no
correlation. Value of 1 suggests a perfect positive correlation (e.g. as the price of Bitcoin increases,
your dreams of owning more are going up, too!). Value of -1 suggests perfect negative correlation
(e.g. high number of bad reviews should correlate with lower prices).

The correlation in our dataset looks really bad. Luckily, categorical features are not included here.
They might have some predictive power too! How can we use them?

Prepare the data

The goal here is to transform the data into a form that is suitable for your model. There are several
things you want to do when handling (think CSV, Database) structured data:

« Handle missing data

« Remove unnecessary columns

« Transform any categorical features to numbers/vectors
+ Scale numerical features

Missing data
Let’s start with a check for missing data:

missing = df.isnull().sum()
missing[missing > 0] .sort_values(ascending=False)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Bw N

W N -

End to End Machine Learning Project 37

reviews_per_month 10052
last_review 10052
host_name 21
name 16

We'll just go ahead and remove those features for this example. In real-world applications, you
should consider other approaches.

df = df.drop([
'id', 'name', 'host_id', 'host_name',
'reviews_per_month', 'last_review', 'neighbourhood'
], axis=1)

We’re also dropping the neighbourhood, host id (too many unique values), and the id of the listing.

Next, we're splitting the data into features we’re going to use for the prediction and a target variable
y (the price):

df .drop('price', axis=1)
y = np.logip(df.price.values)

Note that we're applying the log transformation to the price.

Feature scaling and categorical data

Let’s start with feature scaling®. Specifically, we’ll do min-max normalization and scale the features
in the 0-1 range. Luckily, the MinMaxScaler*’ from scikit-learn does just that.

But why do feature scaling at all? Largely because of the algorithm we’re going to use to train our
model*' will do better with it.

Next, we need to preprocess the categorical data. Why?

Some Machine Learning algorithms can operate on categorical data without any preprocessing (like
Decision trees, Naive Bayes). But most can’t.

Unfortunately, you can’t replace the category names with a number. Converting Brooklyn to 1 and
Manbhattan to 2 suggests that Manhattan is greater (2 times) than Brooklyn. That doesn’t make sense.
How can we solve this?

We can use One-hot encoding*’. To get a feel of what it does, we’ll use OneHotEncoder**> from
scikit-learn:

**https://en.wikipedia.org/wiki/Feature_scaling
“*https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. MinMaxScaler.html
“Thttps://arxiv.org/abs/1502.03167

“*https://en.wikipedia.org/wiki/One-hot
“*https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. OneHotEncoder.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Feature_scaling
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://en.wikipedia.org/wiki/One-hot
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://en.wikipedia.org/wiki/Feature_scaling
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://arxiv.org/abs/1502.03167
https://en.wikipedia.org/wiki/One-hot
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

a b W N -

O© 00 I O O b W N =

SN
N =~ O

End to End Machine Learning Project 38

from sklearn.preprocessing import OneHotEncoder
data = [['Manhattan'], ['Brooklyn']]

OneHotEncoder (sparse=False).fit_transform(data)

array([[0., 1.],
(1., ©.1])

Essentially, you get a vector for each value that contains 1 at the index of the category and 0 for
every other value. This encoding solves the comparison issue. The negative part is that your data
now might take much more memory.

All data preprocessing steps are to be performed on the training data and data we’re going to receive
via the REST API for prediction. We can unite the steps using make_column_transformer () **:

from sklearn.preprocessing import MinMaxScaler, OneHotEncoder

from sklearn.compose import make_column_transformer

transformer = make_column_transformer (
(MinMaxScaler(), |
"latitude', 'longitude', 'minimum_nights',
'number_of_reviews', 'calculated_host_listings_count', 'availability_365'

D,

(OneHotEncoder (handle_unknown="ignore"), |
"'neighbourhood_group', 'room_type'

D)

We enumerate all columns that need feature scaling and one-hot encoding. Those columns will be
replaced with the ones from the preprocessing steps. Next, we’ll learn the ranges and categorical
mapping using our transformer:

transformer. fit(X)
Finally, we’ll transform our data:
transformer.transform(X)

The last thing is to separate the data into training and test sets:

“*https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html

End to End Machine Learning Project 39

X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.2, random_state=RANDOM_SEED)

You're going to use only the training set while developing and evaluating your model. The test set

will be used later.

That’s it! You are now ready to build a model. How can you do that?

Build your model

Finally, it is time to do some modeling. Recall the goal we set for ourselves at the beginning:
We're trying to predict Airbnb*’ listing price per night in NYC

We have a price prediction problem on our hands. More generally, we’re trying to predict a numerical
value defined in a very large range. This fits nicely in the Regression Analysis*® framework.

Training a model boils down to minimizing some predefined error. What error should we measure?

Error measurement

We'll use Mean Squared Error*” which measures the difference between average squared predicted
and true values:

n

_ 1 J— A. 2
MSE = 30 - ¥)

where n is the number of samples, Y is a vector containing the real values and \hat{Y} is a
vector containing the predictions from our model.

Now that you have a measurement of how well your model is performing is time to build the model
itself. How can you build a Deep Neural Network with Keras?

Build a Deep Neural Network with Keras

Keras*® is the official high-level API for TensorFlow*’. In short, it allows you to build complex models
using a sweet interface. Let’s build a model with it:

“*https://www.airbnb.com/
“*https://en.wikipedia.org/wiki/Regression_analysis
“"https://en.wikipedia.org/wiki/Mean_squared_error
“*https://keras.io/

“https://www.tensorflow.org/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.airbnb.com/
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Mean_squared_error
https://keras.io/
https://www.tensorflow.org/
https://www.airbnb.com/
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Mean_squared_error
https://keras.io/
https://www.tensorflow.org/

O© 00 I O O b W N =

NN
= o

Bow N -

© 00 N O O b W N =

End to End Machine Learning Project 40

model = keras.Sequential()
model .add(keras. layers.Dense(
units=64,
activation="relu",
input_shape=[X_train.shape[1]]
))
model .add(keras. layers.Dropout(rate=0.3))
model .add(keras. layers.Dense(units=32, activation="relu"))
model .add(keras. layers.Dropout(rate=0.5))

model .add(keras. layers.Dense(1))

The sequential API allows you to add various layers to your model, easily. Note that we specify
the input_size in the first layer using the training data. We also do regularization using Dropout
layers®.

How can we specify the error metric?

model . compile(
optimizer=keras.optimizers.Adam(0.0001),

loss = 'mae’,

metrics = ['mae'])

The compile()’! method lets you specify the optimizer and the error metric you need to reduce.

Your model is ready for training. Let’s go!

Training

Training a Keras model involves calling a single method - fit()°*

BATCH_SIZE 32

early_stop = keras.callbacks.EarlyStopping(
monitor="'val_mae',
mode="min",

patience=10

history = model. fit(

*°https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
>thttps://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
**https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit

10
11
12
13
14
15
16
17

End to End Machine Learning Project 41

x=X_train,

y=y_train,
shuffle=True,
epochs=100,
validation_split=0.2,
batch_size=BATCH_SIZE,
callbacks=[early_stop]

We feed the training method with the training data and specify the following parameters:

« shuffle - random sort the data

« epochs - number of training cycles

- validation_split - use some percent of the data for measuring the error and not during training

« batch_size - the number of training examples that are fed at a time to our model

« callbacks - we use EarlyStopping™ to prevent our model from overfitting when the training
and validation error start to diverge

After the long training process is complete, you need to answer one question. Can your model make
good predictions?

Evaluation

One simple way to understand the training process is to look at the training and validation loss:

>https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

O O B W N

End to End Machine Learning Project 42

—— Train MSE
Val MSE
8
6
[NN]
0
=
4
2
0
0 20 40 60 80 100

Epoch

We can see a large improvement in the training error, but not much on the validation error. What
else can we use to test our model?

Using the test data

Recall that we have some additional data. Now it is time to use it and test how good our model. Note
that we don’t use that data during the training, only once at the end of the process.

Let’s get the predictions from the model:
y_pred = model.predict(X_test)
And we’ll use a couple of metrics for the evaluation:

from sklearn.metrics import mean_squared_error
from math import sqrt

from sklearn.metrics import r2_score

print(f'MSE {mean_squared_error(y_test, y_pred)}')
print(f'RMSE {np.sgrt(mean_squared_error(y_test, y_pred))}")

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Bsw N

End to End Machine Learning Project 43

MSE ©0.2139184014903989
RMSE ©.4625131365598159

We've already discussed MSE. You can probably guess what Root Mean Squared Error (RMSE)**
means. RMSE allows us to penalize points further from the mean.

Another statistic we can use to measure how well our predictions fit with the real data is the $R"2$
score”. A value close to 1 indicates a perfect fit. Let’s check ours:

print(f'R2 {r2_score(y_test, y_pred)}')

R2 ©0.5478250409482018

There is definitely room for improvement here. You might try to tune the model better and get better
results.

Now you have a model and a rough idea of how well will it do in production. How can you save
your work?

Save the model

Now that you have a trained model, you need to store it and be able to reuse it later. Recall that we
have a data transformer that needs to be stored, too! Let’s save both:

import joblib

joblib.dump(transformer, "data_transformer. joblib")
model .save("price_prediction_model.h5")

The recommended approach of storing scikit-learn models® is to use joblib*’. Saving the model
architecture and weights of a Keras model is done with the save()** method.

You can download the files from the notebook using the following:

**https://en.wikipedia.org/wiki/Root-mean-square_deviation
>https://en.wikipedia.org/wiki/Coefficient_of_determination
*https://scikit-learn.org/stable/modules/model_persistence. html#persistence-example
"https://joblib.readthedocs.io/en/latest/
*®https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#save

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://scikit-learn.org/stable/modules/model_persistence.html#persistence-example
https://joblib.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#save
https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://scikit-learn.org/stable/modules/model_persistence.html#persistence-example
https://joblib.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#save

Bw N

© 00 N O O b W N =

N = =y
© 0O N O O b W N =~ O

End to End Machine Learning Project 44

from google.colab import files

files.download("data_transformer. joblib")
files.download("price_prediction_model.h5")

Build REST API

Building a REST APT** allows you to use your model to make predictions for different clients. Almost
any device can speak REST - Android, iOS, Web browsers, and many others.

Flask®® allows you to build a REST API in just a couple of lines. Of course, we’re talking about a
quick-and-dirty prototype. Let’s have a look at the complete code:

from math import expml

import joblib

import pandas as pd

from flask import Flask, jsonify, request
from tensorflow import keras

app = Flask(__name__)
model = keras.models.load_model("assets/price_prediction_model.h5")

transformer = joblib.load("assets/data_transformer. joblib")

@app.route("/", methods=["POST"])

def index():
data = request. json
df = pd.DataFrame(data, index=[0])
prediction = model.predict(transformer.transform(df))
predicted_price = expmi(prediction.flatten()[Q])
return jsonify({"price": str(predicted_price)})

The complete project (including the data transformer and model) is on GitHub: Deploy Keras Deep
Learning Model with Flask®*

The API has a single route (index) that accepts only POST requests. Note that we pre-load the data
transformer and the model.

**https://en.wikipedia.org/wiki/Representational_state_transfer
*https://www.fullstackpython.com/flask.html
“'https://github.com/curiousily/Deploy-Keras- Deep-Learning-Model-with-Flask

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.fullstackpython.com/flask.html
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.fullstackpython.com/flask.html
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask

Bw N

End to End Machine Learning Project 45

The request handler obtains the JSON data and converts it into a Pandas DataFrame. Next, we use
the transformer to pre-process the data and get a prediction from our model. We invert the log
operation we did in the pre-processing step and return the predicted price as JSON.

Your REST API is ready to go. Run the following command in the project directory:
flask run
Open a new tab to test the APIL:

curl -d '{"neighbourhood_group": "Brooklyn", "latitude": 40.64749, "longitude": -73.\

n

97237, "room_type": "Private room", "minimum_nights": 1, "number_of_reviews": 9, "ca\

lculated_host_listings_count": 6, "availability_365": 365}' -H "Content-Type: applic\
ation/json" -X POST http://localhost:5000

You should see something like the following:
{"price":"72.70381414559431"}

Great. How can you deploy your project and allow others to consume your model predictions?

Deploy to production
We’ll deploy the project to Google App Engine®*:

App Engine enables developers to stay more productive and agile by supporting popular
development languages and a wide range of developer tools.

App Engine allows us to use Python and easily deploy a Flask app.

You need to:

« Register for Google Cloud Engine account®
+ Google Cloud SDK installed®

Here is the complete app.yaml config:

“*https://cloud.google.com/appengine/
*https://cloud.google.com/compute/
“*https://cloud.google.com/sdk/install

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://cloud.google.com/appengine/
https://cloud.google.com/compute/
https://cloud.google.com/sdk/install
https://cloud.google.com/appengine/
https://cloud.google.com/compute/
https://cloud.google.com/sdk/install

O© 00 I O O b W N =

NN
= o

End to End Machine Learning Project

entrypoint: "gunicorn -b :$PORT app:app --timeout 500"
runtime: python
env: flex
service: nyc-price-prediction
runtime_config:
python_version: 3.7
instance_class: B1
manual_scaling:
instances: 1
liveness_check:

path: "/liveness_check"
Execute the following command to deploy the project:

gcloud app deploy

Wait for the process to complete and test the API running on production. You did it!

Conclusion

46

Your model should now be running, making predictions, and accessible to everyone. Of course, you
have a quick-and-dirty prototype. You will need a way to protect and monitor your API. Maybe you

need a better (automated) deployment strategy too!

Still, you have a model deployed in production and did all of the following:

« Define your goal

« Load data

« Data exploration

 Data preparation

« Build and evalute your model
« Save the model

« Build REST API

« Deploy to production

How do you deploy your models? Comment down below :)
Run the modeling code in your browser®’

The complete project on GitHub®*

**https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS

“https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask

End to End Machine Learning Project

References

« Joblib - running Python functions as pipeline jobs®’
« Flask - lightweight web application framework®®
« Building a simple Keras + deep learning REST API®

"https://joblib.readthedocs.io/en/latest/
“*https://palletsprojects.com/p/flask/
*’https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html

47

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://joblib.readthedocs.io/en/latest/
https://palletsprojects.com/p/flask/
https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html
https://joblib.readthedocs.io/en/latest/
https://palletsprojects.com/p/flask/
https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html

Fundamental Machine Learning
Algorithms

TL;DR Overview of fundamental classification and regression learning algorithms. Learn
when should you use each and what data preprocessing is required. Each algorithm is
presented along with an example done in scikit-learn.

This guide explores different supervised learning algorithms’®, sorted by increasing complexity
(measured by the number of model parameters and hyperparameters). I would strongly suggest
you start with the simpler ones when working on a new project/problem.

But why not just use Deep Neural Networks for everything? You can, and maybe you should. But
simplicity can go a long way before the need for ramping up the complexity in your project. It is
also entirely possible to not be able to tune your Neural Net to beat some of the algorithms described
here.

You’re going to learn about:

« Linear Regression

+ Logistic Regression

« k-Nearest Neighbors

+ Naive Bayes

« Decision Trees

« Support Vector Machines

Run the complete notebook in your browser’*

The complete project on GitHub’*

What Makes a Learning Algorithm?

In their essence, supervised Machine Learning algorithms learn a mapping function f that maps the
data features X to labels y. The goal is to make the mapping as accurate as possible. We can define
the problem as:

y=f(X)+e

"°https://en.wikipedia.org/wiki/Supervised_learning
"*https://colab.research.google.com/drive/1-_wQbYW-KqDNMkT9iZ-d2KWVHyR6donn
"*https://github.com/curiousily/Deep- Learning-For-Hackers

https://en.wikipedia.org/wiki/Supervised_learning
https://colab.research.google.com/drive/1-_wQbYW-KqDNMkT9iZ-d2KWVHyR6d0nn
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Supervised_learning
https://colab.research.google.com/drive/1-_wQbYW-KqDNMkT9iZ-d2KWVHyR6d0nn
https://github.com/curiousily/Deep-Learning-For-Hackers

1

1
2

Fundamental Machine Learning Algorithms 49

where e is an irreducible error. That error is independent of the data and can’t be lowered using the
data (hence the name).

The problem of finding the function f is notoriously difficult. In practice, you’ll be content with a
good approximation. There are many ways to get the job done. What do they have in common?

Components of a Learning Algorithm

« Loss functions
« Optimizer that tries to minimize the loss function

The Loss Function™ outputs a numerical value that shows how “bad” your model predictions are.
The closer the value is to 0, the better the predictions.

The optimizer’s job is to find the best possible values for the model parameters that minimize the
loss function. This is done with the help of the training data and an algorithm that searches for the
parameter values.

Gradient Descent’ is the most commonly used algorithm for optimization. It finds a local minimum
of a function by starting at a random point and takes steps in a direction and size given by the
gradient.

Our Data

We'll use the Auto Data Set” to create examples for various classification and regression algorithms.

Gas mileage, horsepower, and other information for 392 vehicles. This dataset was taken
from the StatLib library which is maintained at Carnegie Mellon University. The dataset
was used in the 1983 American Statistical Association Exposition.

Let’s download the data and load it into a Pandas data frame:

lgdown --id 16VDAc-x1fGa2lpsI8xtLHK6z_3m36JBx --output auto.csv

auto_df = pd.read_csv("auto.csv", index_col=0)
auto_df.shape

"https://en.wikipedia.org/wiki/Loss_function
"*https://en.wikipedia.org/wiki/Gradient_descent
"*https://vincentarelbundock.github.io/Rdatasets/doc/ISLR/Auto.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Gradient_descent
https://vincentarelbundock.github.io/Rdatasets/doc/ISLR/Auto.html
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Gradient_descent
https://vincentarelbundock.github.io/Rdatasets/doc/ISLR/Auto.html

Fundamental Machine Learning Algorithms 50
1 (392, 9)
We have 392 vehicles and we’ll use this subset of the features:
« mpg - miles per gallon
« horsepower - Engine horsepower
- weight - Vehicle weight (lbs.)

« acceleration - Time to accelerate from 0 to 60 mph (sec.)
« origin - Origin of car (1. American, 2. European, 3. Japanese)

We have no missing data.

Data Preprocessing

We’re going to define two helper functions that prepare a classification and a regression dataset based
on our data. But first, we're going to add a new feature that specifies whether a car is American made
or not:

1 auto_df['is_american'] = (auto_df.origin == 1).astype(int)

We’re going to use the StandarScaler’® to scale our datasets:

1 from sklearn.preprocessing import StandardScaler

2

3 def create_regression_dataset(

4 df,

5 columns=["'mpg', 'weight', 'horsepower']

6)

7

8 all_columns = columns.copy()

9 all_columns.append('acceleration')

10

11 reg_df = df[all_columns]

12 reg_df = StandardScaler().fit_transform(reg_df[all_columns])
183 reg_df = pd.DataFrame(reg_df, columns=all_columns)
14

15 return reg_df[columns], reg_df.acceleration

16

17 def create_classification_dataset(df):

18 columns = ['mpg', 'weight', 'horsepower"']

"Shttps://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

19
20
21
22
23
24

© 00 N O O b W N =

=Y
N O

Fundamental Machine Learning Algorithms 51

X = df[columns]
X = StandardScaler().fit_transform(X)
X = pd.DataFrame(X, columns=columns)

return X, df.is_american

Evaluation

We’re going to use k-fold cross validation’” to evaluate the performance of our models. Note that this
guide is NOT benchmarking model performance. Here are the definitions of our evaluation functions:

from sklearn.model_selection import KFold, cross_val_score

def eval_model(model, X, y, score):
cv = KFold(n_splits=10, random_state=RANDOM_SEED)
results = cross_val_score(model, X, y, cv=cv, scoring=score)

return np.abs(results.mean())

def eval_classifier(model, X, y):

return eval_model(model, X, y, score="accuracy")

def eval_regressor(model, X, y):
return eval_model(model, X, y, score="neg_mean_squared_error")

We are using accuracy (percent of correctly predicted examples) as a metric for our classification
examples and mean squared error (explained below) for the regression examples.

Linear Regression

Linear Regression’® tries to build a line that can best describe the relationship between two variables
X and Y. That line is called “best-fit” and is closest to the points (z;, ;).

""https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation
"$https://en.wikipedia.org/wiki/Linear_regression

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation
https://en.wikipedia.org/wiki/Linear_regression

Fundamental Machine Learning Algorithms 52

Y is known as the dependent variable and it is continious - e.g. number of sales, price, weight. This
is the variable which values we’re trying to predict. X is known as explanatory (or independent)
variable. We use this variable to predict the value of Y. Note that we’re assuming a linear relationship
between the variables.

Definition
Our dataset consists of m labeled examples (z;,y;), where z; is D-dimensional feature vector, y; € R

and every feature 27 € R,j = 1,...,D. We want to build a model that predicts unknown y for a given
x. Our model is defined as:

fwp(®) =wx+b

where w and b are parameters of our model that we’ll learn from the data. w defines the slope of the
model, while b defines the intercept point with the vertical axis.

Making Predictions

Linear regression that makes the most accurate prediction has optimal values for the parameters w
and b. Let’s denote those as w* and v*. How can we find those values?

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O O b W N~

Fundamental Machine Learning Algorithms 53

We’ll use an objective metric that tells us how good the current values are. Optimal parameter values
will minimize that metric.

The most used metric in such cases is Mean Squared Error(MSE)™. It is defined as:
1 m
— 2()
MSE = L(z) = — E:)?

The MSE measures how much the average model predictions vary from the correct values. The
number is higher when the model is making “bad” predictions. Model that makes perfect predictions
has a MSE of 0.

We've transformed the problem of finding optimal values for our parameters to minimizing MSE.
We can do that using an optimization algorithm known as Stochastic Gradient Descent®’.

Simple Linear Regression

This type of Linear Regression uses a single feature to predict the target variable. Let’s use the
horsepower to predict car acceleration:

from sklearn.linear_model import LinearRegression
X, y = create_regression_dataset(auto_df, columns=['horsepower'])

reg = LinearRegression()
eval_regressor(reg, X, y)

©.5283214994429212

Multiple Linear Regression

Of course, we can use more features to predict the acceleration. This is called Multiple Linear
Regression. The training process looks identical (thanks to the nice interface that scikit-learn®'
provides):

"https://en.wikipedia.org/wiki/Mean_squared_error
#https://en.wikipedia.org/wiki/Stochastic_gradient_descent
thttps://scikit-learn.org/stable/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://scikit-learn.org/stable/
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://scikit-learn.org/stable/

Bw N

=~ O U b W N

Fundamental Machine Learning Algorithms 54

X, y = create_regression_dataset(auto_df)

reg = LinearRegression()
eval_regressor(reg, X, y)

0.4351523357394419

The $R”"2$ score has increased. Can we do better? How?

Ridge Regression

from sklearn.linear_model import Ridge

X, y = create_regression_dataset(auto_df)

reg = Ridge(alpha=0.0005, random_state=RANDOM_SEED)

eval_regressor(reg, X, vy)

0.4351510356810997

When To Use Linear Regression?

Start with this algorithm when starting a regression problem. Useful when your features can be
separated by a straight line.

Pros:

« Fast to train on large datasets
« Fast inference time
« Easy to understand/interpret the results

Cons:

« Need to scale numerical features
« Preprocess categorical data
« Can predict only linear relationships

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Fundamental Machine Learning Algorithms 55

Logistic Regression

Logistic Regression® has a similar formulation to Linear Regression (hence the name) but allows
you to solve classification problems. The most common problem solved in practice is binary
classification, so we’ll discuss this application in particular.

1.0 14 ® ®

0.8

e
o

is_american

©
»~

0.2

50 100 150 200 250 300 350 400 450
horsepower

Making Predictions

We already have a way to make predictions with Linear Regression. The problem is that they are in
(—o0, +00) interval. How can you use that to make true/false predictions?

If we map false to 0 and true to 1, we can use the Sigmoid function®* to bound the domain to (0, 1).
It is defined by:

#https://en.wikipedia.org/wiki/Logistic_regression
®https://en.wikipedia.org/wiki/Sigmoid_function

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Sigmoid_function

Fundamental Machine Learning Algorithms 56

Sigmoid function

1.0

0.8

0.6

0.4

0.2

0.0

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

We can use the Sigmoid function and a predefined threshold (commonly set to 0.5) to map values
larger than the threshold to a positive label; otherwise, it’s negative.

Combining the Linear Regression equation with the Sigmoid function gives us:

_ 1
1 + e—(wz+b)

fw,b(x)

Your next task is to find optimal parameter values for w* and b*. We can use the Log Loss** to measure
how good our classifications are:

m

1

Log Loss = L(z) = — > lyilog fuu(x) + (1 —yi)log (1 — fus(@))]
i=1

Our goal is to minimize the loss value. So, a value close to 0 says that the classifier is very good at

predicting on the dataset.

Logg Loss requires that your classifier outputs probability for each possible class, instead of just the
most likely one. Ideal classifier assigns a probability equal to 1 for the correct class and 0 for all else.

Just as with Linear Regression, we can use Gradient Descent to find the optimal parameters for our
model. How can we do it with scikit-learn?

#http://wiki.fast.ai/index.php/Log_Loss

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

http://wiki.fast.ai/index.php/Log_Loss
http://wiki.fast.ai/index.php/Log_Loss

O O b W N =

Fundamental Machine Learning Algorithms 57

Example

The LogisticRegression®* from scikit-learn allows you to do multiclass classification. It also applies
12 regularization by default. Let’s use it to predict car model origin:

from sklearn.linear_model import LogisticRegression
X, y = create_classification_dataset(auto_df)
clf = LogisticRegression(solver="1bfgs")

eval_classifier(clf, X, vy)

0.787948717948718

We got about ~79% accuracy, which is quite good, considering how simple the model is.

When To Use It?

Logistic Regression should be your first choice when solving a new classification problem.

Pros:

« Easy to understand and interpret
« Easy to configure (small number of hyperparameters)
« Outputs the likelihood for each class

Cons:

« Requires data scaling
+ Assumes linear relationship in the data
« Sensitive to outliers

k-Nearest Neighbors

During training, this algorithm stores the data in some sort of efficient data structure (like k-d tree®°),
so it is available for later. Predictions are made by finding &k (hence the name) similar training
examples and returning the most common label (in case of classification) or avering label values
(in case of regression). How do we measure similarity?

8https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
#https://en.wikipedia.org/wiki/K-d_tree

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://en.wikipedia.org/wiki/K-d_tree
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://en.wikipedia.org/wiki/K-d_tree

Fundamental Machine Learning Algorithms 58

Car Model Origin Classification (3 neighbors)

Weight

Horsepower

Measuring the similarity of two data points is most commonly done by measuring the distance
between them. Some of the most popular distance measures are Euclidean Distance®’:

Eucleadian Distance(a, b) =

measures the straight-line distance between two points in Euclidean space

and Cosine Similarity®®:

> ab;

Cosine Similarity(a,b) = i=1

. 2 . 2
aiy[22 b;
i=1 i=1

which measures how similar the directions of two vectors are.

You might think that normalizing features is really important for this algorithm, and you’ll be right!

#"https://en.wikipedia.org/wiki/Euclidean_distance
®*https://en.wikipedia.org/wiki/Cosine_similarity

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Cosine_similarity

O O b W N

Fundamental Machine Learning Algorithms 59

Example

k-Nearest Neighbors (KNN) can be used for classification and regression tasks. KNeighborsClassi-
tier®” offers a nice set of options for parameters like - number of neighbors and the type of metric to
use. Let’s look at an example:

from sklearn.neighbors import KNeighborsClassifier

X, y = create_classification_dataset(auto_df)

clf = KNeighborsClassifier(n_neighbors=24)
eval_classifier(clf, X, vy)

0.8008333333333335

How can you find good values for k¥ (number of neighbors)? Usually, you just try a lot of different
values.

When To Use It?

This algorithm might have very good performance when compared to Linear Regression. It works
quite well on smallish datasets with not that many features.

Pros:

« Easy to understand and reason about

« Trains instantly (all of the work is done when predicting data)
« Makes no assumption about input data distributions

« Automatically adjusts predictions as new data comes in

Cons:

« Need to scale numerical features (depends on distance measurements)

« Slow inference time (all of the work is done when predicting data)

« Sensitive to imbalanced datasets - values occuring more often will bias the results. You can use
resampling techniques for this issue.

« High dimensional features may produce closeness to many data points. You can apply
dimensionality reduction techniques for this issue.

®https://scikit-learn.org/stable/modules/generated/sklearn.neighbors. KNeighborsClassifier.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Fundamental Machine Learning Algorithms

Naive Bayes

60

Naive Bayes*® algorithms calculate the likelihood of each class is correct. They apply Bayes’ theorem
to classification problems. That is, with a strong (and often unrealistic) assumption of independence

between the features.

Car Model Origin Classification

15.0
@ American
@ Non-American
12.5
10.0
L .0 o
Jip
= /
2 50 i —
2 &
¢ o
2.5 @
0.0
-25
-5.0
-5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
Horsepower
Bayes Theorem
Bayes theorem’* gives the following relationship between the labels and features:
P(X1,-.,Xn | 9)P(y)
P . =
([X5, Xn) P(X1,...,Xn)
Using the independence assumption we get:
Py ITi—, P(xily)
P . = =
1%, Xn) P(X1,...,Xn)
P(X1,...,Xn) is a normalizing term (constant). We can drop it, since we’re interested in the most

probable hypothesis, and use the following classification rule:

*°https://en.wikipedia.org/wiki/Naive_Bayes_classifier
*https://en.wikipedia.org/wiki/Bayes%27_theorem

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Bayes'_theorem
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Bayes'_theorem

O O B W N =

Fundamental Machine Learning Algorithms 61

n

j =argmax P(y) [[P(xi | 9)
=1

Example

Scikit-learn implements multiple Naive Bayes classifiers. We’re going to use GaussianNB’* which
assumes Gaussian distribution of the data:

from sklearn.naive_bayes import GaussianNB
X, y = create_classification_dataset(auto_df)
clf = GaussianNB()

eval_classifier(clf, X, vy)

©.7597435897435898

When To Use It?

Naive Bayes classifiers are a very good choice for building baseline models that have a probabilistic
interpretation of its outputs. Training and prediction speed are very good on large amounts of data.

Pros:

« Fast training and inference performance

« Can be easily interpreted due to probabilistic predictions

« Easy to tune (a few hyperparameters)

« No feature scaling required

« Can handle imbalanced datasets - with Complement Naive Bayes

Cons:

« Naive assumption about independence, which is rarely true (duh)
« Performance suffers when multicollinearity® is present

*?https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
“https://en.wikipedia.org/wiki/Multicollinearity

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
https://en.wikipedia.org/wiki/Multicollinearity
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
https://en.wikipedia.org/wiki/Multicollinearity

O O B~ W N

Fundamental Machine Learning Algorithms 62

Decision Trees

Decision Tree algorithms build (mostly binary) trees using the data to choose split points. At each
node, a specific feature is examined and compared to a threshold. We go to the left if the value is
below the threshold, else we go right. We get an answer (prediction) of the model when a leaf node
is reached.

horsepower <= 95.0
gini = 0.5
samples = 8
value = [4, 4]
class = non-american
~ -

Example

Scikit-learn offers multiple tree-based algorithms for both regression and classification. Let’s look
at an example:

from sklearn.tree import DecisionTreeRegressor
X, y = create_regression_dataset(auto_df)

reg = DecisionTreeRegressor()
eval_regressor(reg, X, vy)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O O b W N =

O O B W N

Fundamental Machine Learning Algorithms 63

0.6529188972733717

Random Forests
The Random Forest algorithm combines multiple decision trees. Each tree is trained on a random

subset of the data and has a low bias (low error on the training data) and high variance (high error
on the test data). Aggregating the trees allows you to build a model with low variance.

from sklearn.ensemble import RandomForestRegressor
X, y = create_regression_dataset(auto_df)

reg = RandomForestRegressor(n_estimators=50)
eval_regressor(reg, X, vy)

©.3976871715935767

Note the error difference between a single Decision Tree and a Random Forest with 50 weak Decision
Trees.

Boosting
This method builds multiple decision trees iteratively. Each new tree tries to fix the errors made by

the previous one. At each step, the error between the predicted and actual data is added to the loss
and then minimized at the next step.

from sklearn.ensemble import GradientBoostingRegressor
X, y = create_regression_dataset(auto_df)

reg = GradientBoostingRegressor(n_estimators=100)
eval_regressor(reg, X, y)

0.37605497373246266

Now go to Kaggle® and check how many competitions are won by using this method.

**https://www.kaggle.com/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.kaggle.com/
https://www.kaggle.com/

Fundamental Machine Learning Algorithms 64

When To Use It?

In practice, you’ll never be using a single Decision Tree. Ensemble methods (multiple decision trees)
are the way to go. Overall, boosting can give you the best possible results (especially when using
libraries like LightGBM®®). But you have a lot of hyperparameters to tune. It might take a lot of time
and experience to develop really good models.

Pros:

« Easy to interpret and visualize (white box models)

« Can handle numerical and categorical data

« No complex data preprocessing - no normalization or missing data imputation is need
« Fast prediction speed - O(log n)

« Can be used in ensembles to prevent overfitting and increase accuracy

« Perform very well on both regression and classification tasks

« Show feature importances

Cons:

« Do not work well with imbalanced datasets - fixed by balancing or providing class weights

« Easy to overfit - you can build very deep trees that memorize every feature value - fixed by
limiting tree depth

« Must be used in ensembles to get good results in practice

« Sensitive to data changes (small variation can build entirely different tree) - fixed using
ensembles

Support Vector Machines (SVM)

SVM models try to build hyperplanes (n-dimensional lines) that best separate the data. Hyperplanes
are created such that there is a maximum distance between the closest example of each class.

**https://github.com/microsoft/Light GBM

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://github.com/microsoft/LightGBM
https://github.com/microsoft/LightGBM

Fundamental Machine Learning Algorithms 65

Car Model Origin Classification (Linear Kernel) Car Model Origin Classification (RBF Kernel)

american
non american

® american

® non american
»

Horsepower Horsepower

Hard-margin

Hard-margin SVMs’® work when the data is linearly separable. We want to minimize the margin
between the support vectors ||w|| (the closest data points to the separating hyperplane). We have:

min - fuw]?
2
satisfying the constraint:

yi(wz; —b)—1>0,i=1,...,n

What about data points that cannot be linearly separated?

Soft-margin

In practice, the expectation that the data is linearly separable is unrealistic. We can cut some slack
to our SVM and introduce a constant C. It determines the tradeoff between increasing the decision
boundary and placing each data point on the correct side of the decision boundary.

We want to minimize the following function:

1 n
Cllw|? + - > " max(0,1 — y;(wz; — b))
=1

*“https://en.wikipedia.org/wiki/Support-vector_machine#Hard-margin

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Support-vector_machine#Hard-margin
https://en.wikipedia.org/wiki/Support-vector_machine#Hard-margin

O O b W N =

Fundamental Machine Learning Algorithms 66

Choosing the correct C is done experimentally. You can look at this parameter as a way to control
the bias-variance tradeoff for your model.

Example

Using SVMs on regression problems can be done using the SVR”” model:

from sklearn.svm import SVR
X, y = create_regression_dataset(auto_df)
reg = SVR(gamma="auto", kernel="rbf", C=4.5)

eval_regressor(reg, X, y)

0.32820308689067834

When To Use It?

Support Vector Machines can give you great performance but need careful tuning. You can solve
non-linearly separable problems with a proper choice of a kernel function.

Pros:

« Can provide very good results used for regression and classification
« Can learn non-linear boundaries (see the kernel trick®)
« Robust to overfitting in higher dimensional space

Cons:

« Large number of hyperparameters

« Data must be scaled

« Data must be balanced

« Sensitive to outliers - can be mitigated by using soft-margin

"https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR html
*®https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick

Fundamental Machine Learning Algorithms 67

Conclusion

You covered some of the most used Machine Learning algorithms. But you’ve just scratched the
surface. Devil is in the details, and those algorithms have a lot of details surrounding them.

You learned about:

« Linear Regression

+ Logistic Regression

« k-Nearest Neighbors
 Naive Bayes

» Decision Trees

« Support Vector Machines

I find it fascinating that there are no clear winners when it comes to having an all-around best
algorithm. Your project/problem will inevitably require some careful experimentation and planning.
Enjoy the process :)

Run the complete notebook in your browser”

The complete project on GitHub'®

References

« Machine Learning Notation'"!
« Making Sense of Logarithmic Loss'®
« In Depth: Naive Bayes Classification*?

**https://colab.research.google.com/drive/1-_wQbYW-KqDNMkT9iZ-d2KWVHyR6d0nn
1%https://github.com/curiousily/Deep- Learning-For-Hackers
19%https://nthu-datalab.github.io/ml/slides/Notation.pdf
19https://datawookie.netlify.com/blog/2015/12/making- sense- of-logarithmic-loss/
19https://jakevdp.github.io/PythonDataScienceHandbook/05.05-naive-bayes.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1-_wQbYW-KqDNMkT9iZ-d2KWVHyR6d0nn
https://github.com/curiousily/Deep-Learning-For-Hackers
https://nthu-datalab.github.io/ml/slides/Notation.pdf
https://datawookie.netlify.com/blog/2015/12/making-sense-of-logarithmic-loss/
https://jakevdp.github.io/PythonDataScienceHandbook/05.05-naive-bayes.html
https://colab.research.google.com/drive/1-_wQbYW-KqDNMkT9iZ-d2KWVHyR6d0nn
https://github.com/curiousily/Deep-Learning-For-Hackers
https://nthu-datalab.github.io/ml/slides/Notation.pdf
https://datawookie.netlify.com/blog/2015/12/making-sense-of-logarithmic-loss/
https://jakevdp.github.io/PythonDataScienceHandbook/05.05-naive-bayes.html

Data Preprocessing

TL;DR Learn how to do feature scaling, handle categorical data and do feature engineering
with Pandas and Scikit-learn in Python. Use your skills to preprocess a housing dataset
and build a model to predict prices.

I know, data preprocessing might not sound cool. You might just want to train Deep Neural Networks
(or your favorite models). I am here to shatter your dreams, you’ll most likely spend a lot more time
on data preprocessing and exploration'’* than any other step of your Machine Learning workflow.

Since this step is so early in the process, screwing up here will lead to useless models. Garbage
data in, garbage predictions out. A requirement for reaching your model’s full potential is proper
cleaning, wrangling and analysis of the data.

This guide will introduce you to the most common and useful methods to preprocess your data.
We're going to look at three general techniques:

« Feature Scaling
 Handling Categorical Data
« Feature Engineering

Finally, we're going to apply what we’ve learned on a real dataset and try to predict Melbourne
housing prices. We're going to compare the performance of a model with and without data
preprocessing. How improtant data preparation really is?

Run the complete notebook in your browser*’

The complete project on GitHub'*°

Feature Scaling

Feature scaling'®” refers to the process of changing the range (normalization) of numerical features.

There are different methods to do feature scaling. But first, why do you need to do it?

When Machine Learning algorithms measure distances between data points, the results may be
dominated by the magnitude (scale) of the features instead of their values. Scaling the features to a

1%*https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-
says/#305db5686{63

1%https://colab.research.google.com/drive/1c61XEZ7MHKFDcBOX87Wx1SNrtNYAF6Zt

1%https://github.com/curiousily/Deep-Learning-For-Hackers

https://en.wikipedia.org/wiki/Feature_scaling

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#305db5686f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#305db5686f63
https://colab.research.google.com/drive/1c61XEZ7MHKFDcBOX87Wx1SNrtNYAF6Zt
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Feature_scaling
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#305db5686f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#305db5686f63
https://colab.research.google.com/drive/1c61XEZ7MHKFDcBOX87Wx1SNrtNYAF6Zt
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Feature_scaling

g b w N -

1
2
3

Data Preprocessing 69

similar range can fix the problem. Gradient Descent'*® can converge faster'® when feature scaling
is applied.

Use feature scaling when your algorithm calculates distances or is trained with Gradient
Descent

How can we do feature scaling? Scikit-learn''® offers a couple of methods. We’ll use the following
synthetic data to compare them:

data = pd.DataFrame({
"Normal': np.random.normal (100, 50, 1000),
'"Exponential': np.random.exponential (25, 1000),
"Uniform': np.random.uniform(-150, -50, 1000)

)

Min-Max Normalization

One of the simplest and most widely used approaches is to scale each feature in the [0, 1] range. The
scaled value is given by:

, x—min(x)

maz(x) —min(z)

MinMaxScaler''! allows you to select the rescale range with the feature_range parameter:

from sklearn.preprocessing import MinMaxScaler

min_max_scaled = MinMaxScaler(feature_range=(0, 1)).fit_transform(data)

19%https://en.wikipedia.org/wiki/Gradient_descent

1%https://arxiv.org/abs/1502.03167
https://scikit-learn.org/stable/modules/classes.html#module- sklearn.preprocessing
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. MinMaxScaler.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Gradient_descent
https://arxiv.org/abs/1502.03167
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://en.wikipedia.org/wiki/Gradient_descent
https://arxiv.org/abs/1502.03167
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

Data Preprocessing 70

No Scaling Min-Max Scaling
—— Normal —— Normal
Exponential Exponential
0.025 Uniform Uniform
4
0.020
3
0.015
2
0.010
) /
0.005
0.0 — - -
-300 -200 -100 0 100 200 300 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

The scaled distributions do not overlap as much and their shape remains the same (except for the
Normal).

This method preserves the shape of the original distribution and is sensitive to outliers.

Standardization

This method rescales a feature removing the mean and divides by standard deviation. It produces a
distribution centered at 0 with a standard deviation of 1. Some Machine Learning algorithms (SVMs)
assume features are in this range.

It is defined by:

, = —mean(x)
stdev(x)

You can use the StandarScaler**? like this:

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

1
2
3

Data Preprocessing 71

from sklearn.preprocessing import StandardScaler

stand_scaled = StandardScaler().fit_transform(data)

No Scaling Standard Scaling
—— Normal 0.7 —— Normal
Exponential Exponential
Uniform Uniform
0.025 06
0.020 0.5
0.4
0.015
0.3 /
0.010 /
0.2
0.005
0.1 \
] J _;
0.000 — 0.0
-300 -200 -100 0 100 200 300 -6 -4 -2 0 2 4 6

The resulting distributions overlap heavily. Also, their shape is much narrower.

This method “makes” a feature normally distributed. With outliers, your data will be scaled to a small
interval.

Robust Scaling

This method is very similar to the Min-Max approach. Each feature is scaled with:

x — Q1(x)

T eo-aw

113

where @ are quartiles. The Interquartile range'"> makes this method robust to outliers (hence the

name).

Let’s use the RobustScaler'** on our data:

https://en.wikipedia.org/wiki/Interquartile_range
4https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Interquartile_range
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://en.wikipedia.org/wiki/Interquartile_range
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html

1
2
3

Data Preprocessing 72

from sklearn.preprocessing import RobustScaler

robust_scaled = RobustScaler().fit_transform(data)

No Scaling Robust Scaling
0.025 —— Normal 0.7 —— Normal
’ Exponential Exponential
Uniform Uniform

0.6

0.020
0.5 i\

0.015 0.4
0.3

0.010
0.2

0.005 / o
/ \

0.000 — — 0.0
-300 -200 -100 O 100 200 300 -6 -4 =2 0 2 4 6

All distributions have most of their densities around 0 and a shape that is more or less the same.

Use this method when you have outliers and want to minimize their influence.

Scaling Methods Overview

Here’s an overview of the scaled distributions compared to the non-scaled version:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Data Preprocessing 73

No Scaling Min-Max Scaling
0.025 —— Normal —— Normal
Exponential 4 Exponential
0.020 Uniform Uniform
0.015 3
0.010 2
0.005 / 1 J \
0.000 — 0 - -
-300 -200 -100 0 100 200 300 -15 -1.0 -05 0.0 0.5 1.0 1.5
Standard Scaling Robust Scaling
0.6 —— Normal —— Normal
Exponential 0.6 Exponential
0.5 Uniform A Uniform
0.4 04 /

0.3 //\ /
0.2 \ 0.2 ‘
0.1 N &
I/ N 0.0
-6 -4 -2 0 2 4 6 -6 -4 =2 0 2 4 6

0.0

Handling Categorical Data

Categorical variables (also known as nominal'*’) are a set of enumerable values. They cannot be
numerically organized or ranked. How can we use them in our Machine Learning algorithms?

Some algorithms, like decision trees, will work fine without any categorical data preprocessing.
Unfortunatelly, that is the exception rather than the rule.

How can we encode the following property types?

property_type =\
np.array(['House', 'Unit', 'Townhouse', 'House', 'Unit'])
.reshape(-1, 1)

Integer Encoding

Most Machine Learning algorithms require numeric-only data. One simple way to achieve that is to
assing an unique value to each category.

We can use the OrdinalEncoder**¢ for that:

https://en.wikipedia.org/wiki/Nominal_category
%https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Nominal_category
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://en.wikipedia.org/wiki/Nominal_category
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html

a b W N -

g b W N -

g b W N =

Data Preprocessing 74

from sklearn.preprocessing import OrdinalEncoder
enc = OrdinalEncoder().fit(property_type)

labels = enc.transform(property_type)
labels. flatten()

array([0., 2., 1., 0., 2.])
You can obtain the string representation of the categories like so:

enc.inverse_transform(one_hots). flatten()

array(['House', 'Unit', 'Townhouse', 'House', 'Unit'], dtype='<U9')

One-Hot Encoding

Unfortunatelly, the simple integer encoding makes the assumption that the categories can be ordered
(ranked).

Sometimes, that assumption might be correct. When it is not, you can use one-hot encoding''”:

from sklearn.preprocessing import OneHotEncoder

enc = OneHotEncoder (sparse=False).fit(property_type)
one_hots = enc.transform(property_type)

one_hots

array([[1., 0., 0.7,
[0., 0., 1.],
0., 1., 0.7,
1., 0., 0.],
[0., 0., 1.]1])

Basically, one-hot encoding creates a vector of zeros for each row in our data with a one at the index
(place) of the category.

This solves the ordering/ranking issue but introduces another one. Each categorical feature creates
k (number of unique categories) new columns in our dataset, which are mostly zeros.

"https://en.wikipedia.org/wiki/One-hot

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/One-hot
https://en.wikipedia.org/wiki/One-hot

Data Preprocessing 75

How Many Categories are Too Many for One-Hot Encoding?
With a vast amounts (number of rows) of data you might be able to get away with encoding lots of
categorical features with a lot of categories.

Here are some ways to tackle the problem, when that is not possible:

« Drop insignificant features before encoding

« Drop columns with mostly zeros after encoding

« Create aggregate (larger) categories and one-hot encode them
« Encode them as integers and test your model performance

Adding New Features

Feature engineering refers to the process of augmenting your data (usually by adding features) using
your (human) knowledge. This often improves the performance of Machine Learning algorithms.

Deep Learning'*® has changed the feature engineering game when it comes to text and image data.
Those algorithms learn intermediate representations of the data. In a way, they do automatic feature
engineering.

When it comes to structured data (think data you get with SQL queries from your database), feature
engineering might give you a lot of performance improvement.

How can we improve our datasets?

Turn Numbers into Categories

You already know how to convert categorical data to numbers. You can also turn ranges (bins) of
numbers into categories. Let’s see an example:

n_rooms = np.array([1, 2, 1, 4, 6, 7, 12, 20])
We'll turn the number of rooms into three categories - small, medium and large:

pd.cut(n_rooms, bins=[0, 3, 8, 100], labels=["small", "medium", "large"])

[small, small, small, medium, medium, medium, large, large]
Categories (3, object): [small < medium < large]

The cut ()" function from Pandas gives you a way to turn numbers into categories by specifying
ranges and labels. Of course, you can use one-hot encoding on the new categories.

"8https://en.wikipedia.org/wiki/Deep_learning
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Deep_learning
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html
https://en.wikipedia.org/wiki/Deep_learning
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html

W N

Data Preprocessing 76

Extract Features from Dates

Dates in computers are represented as milliseconds since the Unix epoch'*® - 00:00:00 UTC on 1
January 1970. You can use the raw numbers or extract some information from the dates. How can
we do this with Pandas?

dates = pd.Series(["1/04/2017", "2/04/2017", "3/04/2017"])

You can convert the string formatted dates into date objects with to_datetime()'*'. This function
works really well on a variety of formats. Let’s convert our dates:

pd_dates = pd.to_datetime(dates)
One important feature we can get from the date values is the day of the week:

pd_dates.dt.dayofweek

Q 2
1 5
2 5

dtype: int64

There you go, even more categorical data :)

Predicting Melbourne Housing Prices

Let’s use our new skills to do some data preprocessing on a real-world data. We’ll use the Melbourne
122

Housing Market dataset available on Kaggle'**.

The Data

Here’s the description of the data:

This data was scraped from publicly available results posted every week from Do-
main.com.au, I've cleaned it as best I can, now it’s up to you to make data analysis magic.
The dataset includes Address, Type of Real estate, Suburb, Method of Selling, Rooms,
Price, Real Estate Agent, Date of Sale and distance from C.B.D.

Our task is to predict the sale price of the property based on a set of features. Let’s get the data using
gdown:

2%https://en.wikipedia.org/wiki/Unix_time
?'https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html
*?https://www.kaggle.com/anthonypino/melbourne-housing- market

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Unix_time
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html
https://www.kaggle.com/anthonypino/melbourne-housing-market
https://en.wikipedia.org/wiki/Unix_time
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html
https://www.kaggle.com/anthonypino/melbourne-housing-market

Data Preprocessing 77

Igdown --id 1bIaTHOtpakl1Qzn6pmKCMAZrWjMO8mfI --output melbourne_housing.csv
And load it into a Pandas dataframe:

df = pd.read_csv('melbourne_housing.csv')

df.shape

(34857, 21)
We have almost 35k rows and 21 columns. Here are the features:

« Suburb

o Address

« Rooms

« Type - br - bedroom(s); h - house,cottage,villa, semi,terrace; u - unit, duplex; t - townhouse;
dev site - development site; o res - other residential.

« Price - price in Australian dollars

« Method - S - property sold; SP - property sold prior; PI - property passed in; PN - sold prior
not disclosed; SN - sold not disclosed; NB - no bid; VB - vendor bid; W - withdrawn prior
to auction; SA - sold after auction; SS - sold after auction price not disclosed. N/A - price or
highest bid not available.

o SellerG

« Date - date sold

» Distance

« Postcode

« Bedroom2

« Bathroom

« Car - number of carspots

« Landsize - land size in meters

« BuildingArea - building size in meters

¢ YearBuilt

« CouncilArea

o Lattitude

« Longtitude

« Regionname

« Propertycount - number of properties in the suburb

Let’s check for missing values:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

T =
g b 0w N =~ O

o N O O b W N =

Data Preprocessing 78

missing = df.isnull().sum()
missing[missing > 0] .sort_values(ascending=False)

BuildingArea 21115
YearBuilt 19306
Landsize 11810
Car 8728
Bathroom 8226
Bedroom?2 8217
Longtitude 7976
Lattitude 7976
Price 7610
Propertycount 3
Regionname 3
CouncilArea 3
Postcode 1
Distance 1

dtype: int64

We have a lot of those. For the purpose of this guide, we’re just going to drop all rows that contain
missing values:

df = df.dropna()

Predicting without Preprocessing

Let’s use the “raw” features to train a model and evaluate its performance. First, let’s split the data
into training and test sets:

X = df[[
'Rooms', 'Distance', 'Propertycount',
'Postcode’', 'Lattitude', 'Longtitude'

1]
y = np.loglp(df.Price.values)

X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.2, random_state=RANDOM_SEED)

We'll use the GradientBoostingRegressor'?* and train it on our data:

*https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

=~ O O b W N =

Data Preprocessing 79

from sklearn.ensemble import GradientBoostingRegressor

forest = GradientBoostingRegressor(
learning_rate=0.3, n_estimators=150, random_state=RANDOM_SEED
). fit(X_train, y_train)

forest.score(X_test, y_test)

©.7668970798114849
Good, now you have a baseline R? score on the raw data.

Preprocessing

Let’s start with something simple - extract the sale day of the week. We’ll add that to our dataset.
You already know how to do this:

df['Date'] = pd.to_datetime(df.Date)
df['SaleDayOfWeek'] = df.Date.dt.dayofweek

5000

4000

3000

count

2000

1000

0 1 2 3 4

SaleDayOfWeek

6

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

a s W N

Data Preprocessing 80

Saturday looks like a really important day for selling properties. Let’s have a look at the number of
rooms:
4000

3500

3000

1000

500

. Il

1

4 5 6
Rooms
We can use the binning technique to create categories from the rooms:
df['Size'] = pd.cut(
df.Rooms,
bins=[0, 2, 4, 100],
labels=["Small", "Medium", "Large"]
Next, let’s drop some of the columns we’re not going to use:

df = df.drop(['Address', 'Date'], axis=1)

Let’s create the training and test datasets:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

a b W N -

© 00 N O O b W N =

N = =y
© 00 N O O & W N =~ O

oW N -

Data Preprocessing 81

df.drop('Price', axis=1)

np.loglp(df.Price.values)

X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.2, random_state=RANDOM_SEED)

The make_column_transformer ()'** allows you to build an uber transformer™ composed of multiple

transformers. Let’s use it on our data:

from sklearn.compose import make_column_transformer

transformer = make_column_transformer (
(RobustScaler(),
[
'Distance', 'Propertycount', 'Postcode',
'Lattitude’', 'Longtitude', 'Rooms'
D,
(OneHotEncoder (handle_unknown="ignore"),
['Size', 'SaleDayOfWeek', 'Type', 'Method', 'Regionname']),
(OrdinalEncoder (
categories=|
X.CouncilArea.unique(),
X.SellerG.unique(),
X.Suburb.unique()],
dtype=np.int32
), ['CouncilArea', 'SellerG', 'Suburb']
),

We'll let the transformer learn only from the training data. That is vital since we don’t want our
RobustScaler to leak information from the test set via the rescaled mean and variance.

Always: split the data into training and test set, then apply preprocessing

transformer. fit(X_train)

X_train = transformer.transform(X_train)
X_test = transformer.transform(X_test)

Will your model perform better with the preprocessed data?

?*https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html

O O W N

Data Preprocessing 82

Predicting with Preprocessing

We'll reuse the same model and train it on the preprocessed dataset:

forest = GradientBoostingRegressor(
learning_rate=0.3,
n_estimators=150,
random_state=RANDOM_SEED

). fit(X_train, y_train)

forest.score(X_test, y_test)

0.8393772235062138

Considering that our baseline model was doing pretty well, you might be surprised by the
improvement. It is definitely something.

Here’s a comparison of the predictions:

6000000 No Preprocessing 6000000 With Preprocessing
5000000 5000000
4000000 - 4000000

3000000 ° A oot 3000000
2000000

2000000

1000000 1000000

0 0
0 1000000 2000000 3000000 4000000 5000000 6000000 0 1000000 2000000 3000000 4000000 5000000 6000000

You can see that the predictions are looking much better (better predictions lie on the diagonal). Can
you come up with more features/preprocessing to improve the R? score?

Conclusion

You've learned about some of the useful data preprocessing techniques. You’ve also applied what
you’ve learned to a real-world dataset for predicting Melbourne Housing prices. Here’s an overview
of the methods used:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Data Preprocessing

« Feature Scaling
« Handling Categorical Data
« Feature Engineering

Do you use any other techniques to prepare your data?
Run the complete notebook in your browser'*

The complete project on GitHub'**

References

« Gradient descent in practice I: Feature Scaling'?’

« Compare the effect of different scalers on data with outliers'**
« Feature Scaling'®
+ Melbourne Housing Market**

https://colab.research.google.com/drive/1c61XEZ7MHKFDcBOX87Wx1SNrtNYAF6Zt

12https://github.com/curiousily/Deep- Learning-For-Hackers

?"https://www.youtube.com/watch?v=e1nTgoDI_m8

*®https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-
scaling-py

**https://jovianlin.io/feature-scaling/

https://www.kaggle.com/anthonypino/melbourne-housing-market

83

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1c61XEZ7MHKFDcBOX87Wx1SNrtNYAF6Zt
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.youtube.com/watch?v=e1nTgoDI_m8
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py
https://jovianlin.io/feature-scaling/
https://www.kaggle.com/anthonypino/melbourne-housing-market
https://colab.research.google.com/drive/1c61XEZ7MHKFDcBOX87Wx1SNrtNYAF6Zt
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.youtube.com/watch?v=e1nTgoDI_m8
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py
https://jovianlin.io/feature-scaling/
https://www.kaggle.com/anthonypino/melbourne-housing-market

Handling Imbalanced Datasets

TL;DR Learn how to handle imbalanced data using TensorFlow 2, Keras and scikit-learn

Datasets in the wild will throw a variety of problems towards you. What are the most common
ones?

The data might have too few examples, too large to fit into the RAM, multiple missing values, do
not contain enough predictive power to make correct predictions, and it can imbalanced.

In this guide, we’ll try out different approaches to solving the imbalance issue for classification tasks.
That isn’t the only issue on our hands. Our dataset is real, and we’ll have to deal with multiple
problems - imputing missing data and handling categorical features.

Before getting any deeper, you might want to consider far simpler solutions to the imbalanced dataset
problem:

« Collect more data - This might seem like a no brainer, but it is often overlooked. Can you
write some more queries and extract data from your database? Do you need a few more hours
for more customer data? More data can balance your dataset or might make it even more
imbalanced. Either way, you want a more complete picture of the data.

« Use Tree based models - Tree-based models tend to perform better on imbalanced datasets.
Essentially, they build hierarchies based on split/decision points, which might better separate
the classes.

Here’s what you’ll learn:

« Impute missing data

« Handle categorical features

« Use the right metrics for classification tasks

« Set per class weights in Keras when training a model
« Use resampling techniques to balance the dataset

Run the complete code in your browser***

Data

Naturally, our data should be imbalanced. Kaggle has the perfect one for us - Porto Seguro’s Safe
Driver Prediction'*”. The object is to predict whether a driver will file an insurance claim. How many
drivers do that?

*Ihttps://colab.research.google.com/drive/11ZvXQxaO4mOT3-zImEkboboDctjuocLw
*?https://www.kaggle.com/c/porto-seguro-safe-driver-prediction

https://colab.research.google.com/drive/1lZvXQxaO4mOT3-zImEkb0boDctju0cLw
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction
https://colab.research.google.com/drive/1lZvXQxaO4mOT3-zImEkb0boDctju0cLw
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction

O© 00 1 O O b wWw N =

Handling Imbalanced Datasets 85
Setup
Let’s start with installing TensorFlow and setting up the environment:

Ipip install tensorflow-gpu
Ipip install gdown

import numpy as np
import tensorflow as tf
from tensorflow import keras

import pandas as pd
RANDOM_SEED = 42

np .random.seed (RANDOM_SEED)
tf.random.set_seed(RANDOM_SEED)

We'll use gdown'*® to get the data from Google Drive:

lgdown --id 18gwvNkMs6t@jLOAP19iWPrhr5GVgo82S --output insurance_claim_prediction.csv

Exploration

Let’s load the data in Pandas*** and have a look:

df = pd.read_csv('insurance_claim_prediction.csv')
print(df.shape)j

(595212, 59)
Loads of data. What features does it have?

print(df.columns)

**https://pypi.org/project/gdown/
*https://pandas.pydata.org/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://pypi.org/project/gdown/
https://pandas.pydata.org/
https://pypi.org/project/gdown/
https://pandas.pydata.org/

Bw N

Handling Imbalanced Datasets 86

Index(['id', 'target', 'ps_ind_01', 'ps_ind_02_cat', 'ps_ind_03',
'ps_ind_©4_cat', 'ps_ind_05_cat', 'ps_ind_©6_bin', 'ps_ind_07_bin',
'ps_ind_@8_bin', 'ps_ind_09_bin', 'ps_ind_10_bin', 'ps_ind_11_bin"',
'ps_ind_12_bin', 'ps_ind_13_bin', 'ps_ind_14', 'ps_ind_15",
'ps_ind_16_bin', 'ps_ind_17_bin', 'ps_ind_18_bin', 'ps_reg_01',

'ps_reg_02', 'ps_reg 03', 'ps_car_01_cat', 'ps_car_02_cat',

'ps_car_0O3_cat', 'ps_car_04_cat', 'ps_car_05_cat', 'ps_car_06_cat',
'ps_car_O7_cat', 'ps_car_08_cat', 'ps_car_©9_cat', 'ps_car_10_cat',
'ps_car_11_cat', 'ps_car_11', 'ps_car_12', 'ps_car_13', 'ps_car_14"',

'ps_car_15"', 'ps_calc_@1', 'ps_calc_02', 'ps_calc_03', 'ps_calc_04',
'ps_calc_05', 'ps_calc_06', 'ps_calc_OT7', 'ps_calc_08', 'ps_calc_09',
'ps_calc_10', 'ps_calc_11', 'ps_calc_12', 'ps_calc_13', 'ps_calc_14',
'ps_calc_15_bin', 'ps_calc_16_bin', 'ps_calc_17_bin', 'ps_calc_18_bin',
'ps_calc_19_bin', 'ps_calc_20_bin'],

dtype='object")
Those seem somewhat cryptic, here is the data description:

features that belong to similar groupings are tagged as such in the feature names (e.g.,
ind, reg, car, calc). In addition, feature names include the postfix bin to indicate binary
features and cat to indicate categorical features. Features without these designations are
either continuous or ordinal. Values of -1 indicate that the feature was missing from the
observation. The target columns signifies whether or not a claim was filed for that policy

holder.
What is the proportion of each target class?

no_claim, claim = df.target.value_counts()

print(f'No claim {no_claim}")

print(f'Claim {claim}"')

print(f'Claim proportion {round(percentage(claim, claim + no_claim), 2)}%")

No claim 573518
Claim 21694
Claim proportion 3.64%

Good, we have an imbalanced dataset on our hands. Let’s look at a graphical representation of the
imbalance:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

=~ O O b W N =

Handling Imbalanced Datasets

600000

500000

400000

300000

200000

100000

You got the visual proof right there. But how good of a model can you build using this dataset?

No claim vs Claim

Baseline model

87

You might’ve noticed something in the data description. Missing data points have a value of -1.
What should we do before training our model?

Data preprocessing

Let’s check how many rows/columns contain missing data:

row_count = df.shape[Q]

for ¢ in df.columns:
m_count = df[df[c] == -1][c].count()
if m_count > @:

print(f'{c} - {m_count} ({round(percentage(m_count, row_count), 3)}%) rows missi\

ng')

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O© 00 I O O b W N =

[=N
w N =~ O

g b W N -

© 00 N O O b W N =

=N
N O

Handling Imbalanced Datasets

ps_ind_02_cat
ps_ind_04_cat
ps_ind_05_cat

- 216 (0.036%) rows missing
- 83 (0.014%) rows missing
- 5809 (0.976%) rows missing

ps_reg_03 - 107772 (18.106%) rows missing

ps_car_01_cat
ps_car_02_cat
ps_car_03_cat
ps_car_05_cat
ps_car_Q07_cat
ps_car_0Q9_cat
ps_car_11 - 5
ps_car_12 - 1

- 107 (0.018%) rows missing

- 5 (0.001%) rows missing

- 411231 (69.09%) rows missing
- 266551 (44.783%) rows missing
- 11489 (1.93%) rows missing

- 569 (0.096%) rows missing
(0.001%) rows missing

(0.0%) rows missing

ps_car_14 - 42620 (7.16%) rows missing

Missing data imputation

88

ps_car_03_cat, ps_car_05_cat and ps_reg_03 have too many missing rows for our own comfort.

We'll get rid of them. Note that this is not the best strategy but will do in our case.

df.drop(

["ps_car_03_cat", "ps_car_05_cat", "ps_reg_03"],

inplace=True,

axis=1

What about the other features? We’ll use the SimpleImputer from scikit-learn'** to replace the

missing values:

from sklearn.impute import Simplelmputer

cat_columns =

[

'ps_ind_@2_cat', 'ps_ind_04_cat', 'ps_ind_0©5_cat',

'ps_car_@1_cat', 'ps_car_02_cat', 'ps_car_07_cat',

'ps_car_09_cat'

]

num_columns =

mean_imp = SimplelImputer(missing_values=-1, strategy='mean')
cat_imp = SimplelImputer(missing_values=-1, strategy='most_frequent')

['ps_car_11', 'ps_car_12', 'ps_car_14"']

*3https://scikit-learn.org/stable/modules/generated/sklearn.impute.Simplelmputer.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html

13
14
15
16
17

© 00 N O O b W N =

Handling Imbalanced Datasets 89

for ¢ in cat_columns:
df[c] = cat_imp.fit_transform(df[[c]]).ravel()

for ¢ in num_columns:

df[c] = mean_imp.fit_transform(df[[c]]).ravel()

We use the most frequent value for categorical features. Numerical features are replaced with the
mean number of the column.

Categorical features

Pandas get_dummies()'*® uses one-hot encoding to represent categorical features. Perfect! Let’s use
it:

df = pd.get_dummies(df, columns=cat_columns)

Now that we don’t have more missing values (you can double-check that) and categorical features
are encoded, we can try to predict insurance claims. What accuracy can we get?

Building the model
We’ll start by splitting the data into train and test datasets:

from sklearn.model_selection import train_test_split

labels = df.columns[2:]

df[labels]
df['target']

X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.05, random_state=RANDOM_SEED)

Our binary classification model is a Neural Network with batch normalization and dropout layers:

*%https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html

© 00 N O O b W N =

N
N O

Handling Imbalanced Datasets 90

def build_model(train_data, metrics=["accuracy"]):
model = keras.Sequential(]
keras. layers.Dense(
units=36,
activation='relu',
input_shape=(train_data.shape[-1],)
)
keras.layers.BatchNormalization(),
keras.layers.Dropout(0.25),
keras.layers.Dense(units=1, activation='sigmoid'),

D

model . compile(
optimizer=keras.optimizers.Adam(1lr=0.001),
loss=keras.losses.BinaryCrossentropy(),
metrics=metrics

return model
You should be familiar with the training procedure:

BATCH_SIZE = 2048

model = build_model (X_train)
history = model. fit(
X_train,
y_train,
batch_size=BATCH_SIZE,
epochs=20,
validation_split=0.05,
shuffle=True,
verbose=0

In general, you should strive for a small batch size (e.g. 32). Our case is a bit specific - we have
highly imbalanced data, so we’ll give a fair chance to each batch to contain some insurance claim
data points.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

W N

Handling Imbalanced Datasets 91

1.0

0.8
. 0.6
(@]
o
S
[
(@]
<04

0.2

—— Train Accuracy
Val Accuracy
0.0
0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5
Epoch

The validation accuracy seems quite good. Let’s evaluate the performance of our model:

model .evaluate(X_test, y_test, batch_size=BATCH_SIZE)

119043/119043 - loss: 0.1575 - accuracy: 0.9632
That’s pretty good. It seems like our model is pretty awesome. Or is it?

def awesome_model_predict(features):
return np.full((features.shape[0],), 9)

y_pred = awesome_model_predict(X_test)

This amazing model predicts that there will be no claim, no matter the features. What accuracy
does it get?

from sklearn.metries import accuracy_score

accuracy_score(y_pred, y_test)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Handling Imbalanced Datasets 92

©.9632

Sweet! Wait. What? This is as good as our complex model. Is there something wrong with our
approach?

Evaluating the model

Not really. We’'re just using the wrong metric to evaluate our model. This is a well-known problem.
The Accuracy paradox™’ suggests accuracy might not be the correct metric when the dataset is
imbalanced. What can you do?

Using the correct metrics

One way to understand the performance of our model is to use a confusion matrix**®. It shows us
how well our model predicts for each class:

-50000
57303

-40000

-30000

-20000

-10000

-0

No claim Claim
Predicted

No claim

Actual

Claim

When the model is predicting everything perfectly, all values are on the main diagonal. That’s not
the case. So sad! Our complex model seems as dumb as dumb as our awesome model.

Good, now we know that our model is very bad at predicting insurance claims. Can we somehow
tune it to do better?

*"https://en.wikipedia.org/wiki/Accuracy_paradox
**https://en.wikipedia.org/wiki/Confusion_matrix

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Accuracy_paradox
https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Accuracy_paradox
https://en.wikipedia.org/wiki/Confusion_matrix

Handling Imbalanced Datasets 93

Useful metrics

We can use a wide range of other metrics to measure our peformance better:

« Precision - predicted positives divided by all positive predictions

true positives
true positives + false positives

Low precision indicates a high number of false positives.

« Recall - percentage of actual positives that were correctly classified

true positives
true positives + false negatives

Low recall indicates a high number of false negatives.

« F1 score - combines precision and recall in one metric:

2 x precision x recall
precision + recall

« ROC curve - A curve of True Positive Rate vs. False Positive Rate at different classification
thresholds. It starts at (0,0) and ends at (1,1). A good model produces a curve that goes quickly
from 0 to 1.

« AUC (Area under the ROC curve) - Summarizes the ROC curve with a single number. The
best value is 1.0, while 0.5 is the worst.

Different combinations of precision and recall give you a better understanding of how well your
model is performing for a given class:

« high precision + high recall : your model can be trusted when predicting this class

« high precision + low recall : you can trust the predictions for this class, but your model is not
good at detecting it

« low precision + high recall: your model can detect the class but messes it up with other classes

« low precision + low recall : you can’t trust the predictions for this class

Measuring your model

Luckily, Keras can calculate most of those metrics for you:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O© 00 1 O O b W N =

N
[~

Handling Imbalanced Datasets

METRICS = [
keras.
keras.
keras.
keras.
keras.
keras.
keras.
keras.

And here are

loss : 0©.15
tp 1 0.0
fp : 1.0
tn : 57302.
fn : 2219.0
accuracy :
precision
recall : 0.
auc : 0.620
f1 score: 0.

metrics.TruePositives(name="tp'),
metrics.FalsePositives(name="'fp'),
metrics.TrueNegatives(name='tn'),
metrics.FalseNegatives(name="'fn"),
metrics.BinaryAccuracy(name="'accuracy'),
metrics.Precision(name='precision'),
metrics.Recall(name="'recall'),
metrics.AUC(name="auc'),

the results:

57253243213323

Q

0.9627029
0.0

Q

21655

Q

Here is the ROC:

94

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Handling Imbalanced Datasets 95

1.0

0.8

0.6

0.4

True Positive Rate

0.2

—— ROC
0.0 - Chance

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Our model is complete garbage. And we can measure how much garbage it is. Can we do better?

Weighted model

We have many more examples of no insurance claims compared to those claimed. Let’s force our
model to pay attention to the underrepresented class. We can do that by passing weights for each
class. First we need to calcualte those:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

=~ O O b W N =

© 00 N O O b W N =

_oR R
N O

Handling Imbalanced Datasets

no_claim_count, claim_count = np.bincount(df.target)
total_count = len(df.target)

weight_no_claim = (1 / no_claim_count) * (total_count) / 2.0
weight_claim = (1 / claim_count) * (total_count) / 2.0

class_weights = {0: weight_no_claim, 1: weight_claim}
Now, let’s use the weights when training our model:

model = build_model(X_train, metrics=METRICS)

history = model. fit(
X_train,
y_train,
batch_size=BATCH_SIZE,
epochs=20,
validation_split=0.05,
shuffle=True,
verbose=0,

class_weight=class_weights

Evaluation

Let’s begin with the confusion matrix:

96

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

N
[\

Handling Imbalanced Datasets 97

-15000
£
©
o 12000
o
=
T
= 9000
(@]
<T
6000
=
E
© 3000

No claim Claim
Predicted

Things are a lot different now. We have a lot of correctly predicted insurance claims. The bad news
is that we have a lot of predicted claims that were no claims. What can our metrics tell us?

loss : 0.6694403463347913

tp : 642.0

fp : 11170.0

tn @ 17470.0

fn : 479.0

accuracy : 0.6085817
precision : 0.05435151
recall : 0.57270294

auc : 0.63104653

f1 score: 0.09928090930178612

The recall has jumped significantly while the precision bumped up only slightly. The F1-score is
pretty low too! Overall, our model has improved somewhat. Especially, considering the minimal
effort on our part. How can we do better?

Resampling techniques

These methods try to “correct” the balance in your data. They act as follows:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Bw N -

O U kW N

Handling Imbalanced Datasets 98

« oversampling - replicate examples from the under-represented class (claims)

« undersampling - sample from the most represented class (no claims) to keep only a few
examples

« generate synthetic data - create new synthetic examples from the under-represented class

Naturally, a classifier trained on the “rebalanced” data will not know the original proportions. It is
expected to have (much) lower accuracy since true proportions play a role in making a prediction.

You must think long and hard (that’s what she said) before using resampling methods. It can be a
perfectly good approach or complete nonsense.

Let’s start by separating the classes:

X = pd.concat([X_train, y_train], axis=1)

no_claim = X[X.target == 0]
claim = X[X.target == 1]

Oversample minority class

We'll start by adding more copies from the “insurance claim” class. This can be a good option when
the data is limited. Either way, you might want to evaluate all approaches using your metrics.

)139

We’ll use the resample ()™’ utility from scikit-learn:

from sklearn.utils import resample

claim_upsampled = resample(claim,
replace=True,
n_samples=len(no_claim),
random_state=RANDOM_SEED)

Here is the new distribution of no claim vs claim:

**https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html

Handling Imbalanced Datasets 99

500000

400000

300000

200000

100000

No claim vs Claim

Our new model performs like this:

No claim

Actual

Claim

-16000

12000

8000

4000

No claim Claim
Predicted

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 =N O O & W N =~

-~
()

W N

Handling Imbalanced Datasets

loss : 0.6123614118771424

tp : 530.0
fp : 8754.0
tnh : 19886.0
fn : 591.0

accuracy : 0.68599844
precision : 0.057087462
recall : 0.47279215

auc : 0.6274258

f1 score: ©0.10187409899086977

100

The performance of our model is similar to the weighted one. Can undersampling do better?

Undersample majority class

We’ll remove samples from the no claim class and balance the data this way. This can be a good
option when your dataset is large. Removing data can lead to underfitting on the test set.

no_claim_downsampled = resample(no_claim,

20000

17500

15000

12500

10000

7500

5000

2500

replace = False,
n_samples = len(claim),
random_state = RANDOM_SEED)

No claim vs Claim

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 1 O O b W N =

N
)

Handling Imbalanced Datasets

No claim

Actual

Claim

loss :

tp :
fp :
tn :
fn :

No claim

0.6377013992475753
544.0
8969.0
19671.0
577.0

accuracy : 0.67924464
precision : 0.057184905

recall
auc :
f1 score: ©0.1023133345871732

0.485281
0.6206339

101

-16000

-12000

-8000

-4000

Claim
Predicted

Again, we don’t have such impressive results but doing better than the baseline model.

Generating synthetic samples

Let’s try to simulate the data generation process by creating synthetic samples. We’ll use the

imbalanced-learn'*° library to do that.

One over-sampling method to generate synthetic data is the Synthetic Minority Oversampling
Technique (SMOTE)***. It uses KNN algorithm to generate new data samples.

http://imbalanced-learn.org
“Ihttps://arxiv.org/pdf/1106.1813.pdf

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

http://imbalanced-learn.org/
https://arxiv.org/pdf/1106.1813.pdf
https://arxiv.org/pdf/1106.1813.pdf
http://imbalanced-learn.org/
https://arxiv.org/pdf/1106.1813.pdf

Bw N

© 00 N O O b W N =

N
()

Handling Imbalanced Datasets

from imblearn.over_sampling import SMOTE

sm = SMOTE(random_state=RANDOM_SEED, ratio=1.0)
X_train, y_train = sm.fit_sample(X_train, y_train)

No claim

Actual

Claim

loss
tp :
fp :
tn :
fn :

No claim Claim
Predicted

0.2604000141'7683606
84.0
1028.0
27612.0
1037.0

accuracy : 0.9306139
precision : 0.0Q7553957

recall

auc

0.0749331
0.5611229

f1 score: 0.07523510971786834

102

-25000

-20000

-15000

-10000

-5000

We have high accuracy but very low precision and recall. Not a useful approach for our dataset.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Handling Imbalanced Datasets 103

Conclusion

There are a lot of ways to handle imbalanced datasets. You should always start with something
simple (like collecting more data or using a Tree-based model) and evaluate your model with the
appropriate metrics. If all else fails, come back to this guide and try the more advanced approaches.

You learned how to:

« Impute missing data

« Handle categorical features

« Use the right metrics for classification tasks

« Set per class weights in Keras when training a model
« Use resampling techniques to balance the dataset

Run the complete code in your browser'*?

Remember that the best approach is almost always specific to the problem at hand (context is king).
And sometimes, you can restate the problem as outlier/anomaly detection ;)

References

« Classification on imbalanced data“*

« Dealing with Imbalanced Data'**
« Resampling strategies for imbalanced datasets
« imbalanced-learn - Tackle the Curse of Imbalanced Datasets in Machine Learning

145

146

“?https://colab.research.google.com/drive/11ZvXQxaO4mOT3-zImEkboboDctjuocLw
“3https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
“https://towardsdatascience.com/methods-for-dealing- with-imbalanced-data-5b761be45a18
“https://www.kaggle.com/rafjaa/resampling- strategies-for-imbalanced- datasets
Shttp://imbalanced-learn.org/en/stable/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1lZvXQxaO4mOT3-zImEkb0boDctju0cLw
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
https://towardsdatascience.com/methods-for-dealing-with-imbalanced-data-5b761be45a18
https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets
http://imbalanced-learn.org/en/stable/
https://colab.research.google.com/drive/1lZvXQxaO4mOT3-zImEkb0boDctju0cLw
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
https://towardsdatascience.com/methods-for-dealing-with-imbalanced-data-5b761be45a18
https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets
http://imbalanced-learn.org/en/stable/

Fixing Underfitting and Overfitting
Models

TL;DR Learn how to handle underfitting and overfitting models using TensorFlow 2,
Keras and scikit-learn. Understand how you can use the bias-variance tradeoff to make
better predictions.

The problem of the goodness of fit can be illustrated using the following diagrams:

Underfit Good Fit Overfit
High bias Low bias, low variance High variance
—— prediction (degree 1) -) —— prediction (degree 2) 5 , prediction (degree 15)

training examples c - training examples I - training examples

Types of Model Fit

One way to describe the problem of underfitting is by using the concept of bias:

« a model has a high bias if it makes a lot of mistakes on the training data. We also say that the
model underfits.
« a model has a low bias if predicts well on the training data

Naturally, we can use another concept to describe the problem of overfitting - variance:

« a model has a high variance if it predicts very well on the training data but performs poorly
on the test data. Basically, overfitting means that the model has memorized the training data
and can’t generalize to things it hasn’t seen.

« A model has a low variance if it generalizes well on the test data

Getting your model to low bias and low variance can be pretty elusive K. Nonetheless, we’ll try to
solve some of the common practical problems using a realistic dataset.

Fixing Underfitting and Overfitting Models 105

Here’s another way to look at the bias-variance tradeoff (heavily inspired by the original diagram

of Andrew Ng):

Low Variance High Variance

Bias-Variance Tradeoff

Low Bias

High Bias

You’ll learn how to diagnose and fix problems when:

Your data has no predictive power
Your model is too simple to make good predictions
Your data brings the Curse of dimensionality

+ Your model is too complex

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

W N

Fixing Underfitting and Overfitting Models 106

Run the complete code in your browser'*’

Data

We'll use the Heart Disease dataset provided by UCI'** and hosted on Kaggle'*’. Here is the
description of the data:

This database contains 76 attributes, but all published experiments refer to using a subset
of 14 of them. In particular, the Cleveland database is the only one that has been used by
ML researchers to this date. The “goal” field refers to the presence of heart disease in the
patient. It is integer valued from 0 (no presence) to 4.

We have 13 features and 303 rows of data. We’re using those to predict whether or not a patient has
heart disease.

Let’s start with downloading and loading the data into a Pandas dataframe:

Ipip install tensorflow-gpu
'pip install gdown

Igdown --id 1rsxu@CKF fI-xR1pH-5JQHcfZ7MIa08Q6 --output heart.csv

df = pd.read_csv('heart.csv')

Exploration

We'll have a look at how well balanced the patients with and without heart disease are:

“"https://colab.research.google.com/drive/19wKH_-4srUuJDRiZIqpEO06tfXF3MLp0i
“®https://archive.ics.uci.edu/ml/datasets/Heart+Disease
“https://www.kaggle.com/ronitf/heart- disease-uci

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/19wKH_-4srUuJDRiZIqpE06tfXF3MLp0i
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://www.kaggle.com/ronitf/heart-disease-uci
https://colab.research.google.com/drive/19wKH_-4srUuJDRiZIqpE06tfXF3MLp0i
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://www.kaggle.com/ronitf/heart-disease-uci

Fixing Underfitting and Overfitting Models 107

160

140

120

100

count

80

60

40

20

target

That looks pretty good. Almost no dataset will be perfectly balanced anyways. Do we have missing
data?

df.isnull().values.any()

false

Nope. Let’s have a look at the correlations between the features:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Fixing Underfitting and Overfitting Models 108

age -0.12
J -0.9
B S e
By cr-c.co il 005 006 005 004 03
SR . IR 131 o
chol [0
- O
0.3
restecg
thalach
exan
g 0.0
oldpeak
slope
Ca -0.3
thal

(]
()]
©

trestbps

Features like cp (chest pain type), exang (exercise induced angina), and oldpeak (ST depression
induced by exercise relative to rest) seem to have a decent correlation with our target variable.

Let’s have a look at the distributions of our features, starting with the most correlated to the target
variable:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Fixing Underfitting and Overfitting Models

thalach

oldpeak
o Ul

N
o
o

'_I
o
o

.

e
s
H
H
P
s 3
H
i3
$ e
HE
s s
HE
s 3
-« *
H
DE—

.
. e e
. e e
. + o e
. + e e
. P
. — e e
. e e
. v oo
. ¢ e e
. e e
. e e
o e
. I
. v e o

exang cp

oenee oo

o 40 eioen

.

0 1 00 25

@@ ©nen

onuewmenee o

owece oo
esencerere
ovtene

@renernee oo

o meee w e
oenewwe
enumene o

@ e@@ees o

orerase oo
osue@r@ene

sewe sceieree oo

@ie@raeew oo
sueesuswe
cwesene o

smnescercs o

onueier@eee oo

0 5
oldpeak

e
. I
o 40 suwwos o o o . . .
o oeanesere e o o e
o eawsmenies s o o o o . . .
o orocercerier L —
. . .
. . .
.
H .
H .
. H
. H s
H
H § § .
s H H
s : H
D . H .
. 0 $
N .
] o e H
] s v 2 H
H H s H 3
A H H
P ; i
H H H
H : H H
: $
ull - ® M
. e . .
oreresee o . . .
o ewenes . . .
consmune o . . .
R— Ia | | |
o ouercenoneies e .
o orosesmencoss o o o o o .
Pyee— oo —ole]
sclowssmmenie o o o oo . . .
o swcsmsseres o o o e . . .
o oscssmie o o o oo . . .
o« o . . .
dotestoniennos o o oo

o @ esssmmnees o

100 200 0.0 2.5 0 2 0.0
thalach ca slope

.

ey

o osouee o

.

H
H
H
:

.o

.

2.5

thal

0
target

109

1

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Fixing Underfitting and Overfitting Models 110

sex

75 ' . oot
|l

25 S : '
5200 : : i : foop
+ H : 3 | :
£100 : : : P

2. " oo . ooe o ol ® . . .

restecg
o
I

DR R se@e@e0ee oo @00 @

500 i i I
: : :
< i I B H
H s K) s H H
[@) 2 0 = 1 H H H H
s ¢ H i H 4 H :
H 2 H ™ H . s H
1 - . @woweaor e 3 o . o woron o . .
—
+0- . ecoronsiene o e @uenrcioiene oo . . . elcoremon o . .

0 1 255075 100 200 O 2 250500 O 1 0 1
sex age trestbps restecg chol fbs target

Seems like only oldpeak is a non-categorical feature. It appears that the data contains several features
with outliers. You might want to explore those on your own, if interested :)

Underfitting

We’ll start by building a couple of models that underfit and proceed by fixing the issue in some way.

Recall that your model underfits when it makes mistakes on the training data. Here are the most
common reasons for that:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

=~ O U s W N

© 00 N O O & W N =

O = = =Y
0 N O O b W N -~ O

Fixing Underfitting and Overfitting Models 111

« The data features are not informative
« Your model is too simple to predict the data (e.g. linear model predicts non-linear data)

Data with no predictive power

We’ll build a model with the trestbps (resting blood pressure) feature. Its correlation with the target
variable is low: -0.14. Let’s prepare the data:

from sklearn.model_selection import train_test_split

df[['trestbps']]
df.target

X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.2, random_state=RANDOM_SEED)

We’ll build a binary classifier with 2 hidden layers:

def build_classifier(train_data):
model = keras.Sequential([

keras. layers.Dense(
units=32,
activation='relu',
input_shape=[train_data.shape[1]]

)

keras.layers.Dense(units=16, activation='relu'),

keras.layers.Dense(units=1),

D
model . compile(
loss="binary_crossentropy",

optimizer="adam",

metrics=["'accuracy']

return model

And train it for 100 epochs:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O© 00 I O O b W N =

[=N
w N =~ O

Fixing Underfitting and Overfitting Models 112

BATCH_SIZE = 32
clf = build_classifier(X_train)

clf_history = clf.fit(
x=X_train,
y=y_train,
shuffle=True,
epochs=100,
validation_split=0.2,
batch_size=BATCH_SIZE,
verbose=0

Here’s how the train and validation accuracy changes during training:

1.0
—— Train Accuracy
Val Accuracy
0.8
0.6
>
(9}
o
=]
O
Q
<
0.4
0.2
0.0
0 20 40 60 80 100
Epoch

Our model is flatlining. This is expected, the feature we’re using has no predictive power.

The fix

Knowing that we’re using an uninformative feature makes it easy to fix the issue. We can use other
feature(s):

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Fixing Underfitting and Overfitting Models 113

pd.get_dummies(df[['oldpeak', 'cp']], columns=["cp"])
df.target

X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.2, random_state=RANDOM_SEED)

And here are the results (using the same model, created from scratch):

1.0
—— Train Accuracy
Val Accuracy
0.8 —T""1\
g VAR S U
N\
0.6
o
8 /]
=]
S J
<
0.4
0.2
0.0
0 20 40 60 80 100

Epoch

Underpowered model

In this case, we’re going to build a regressive model and try to predict the patient maximum heart
rate (thalach) from its age.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 0O =N O O & W N =

Fixing Underfitting and Overfitting Models 114

Age vs Maximum Heart Rate

. ° ¢
.
.
.
. . ° .
. ° o . .
o o
180 o, % 3 * ° . ° .
° o .
e e) o ® . . e 4 @ L . ° .
. ® 5 e ° n . . ® s . .
° H .’ S e °
. ° . .
® o 3 L] a ° P . .))
160 ° o S R e S o
° Y e o M o o . M
° c PO H e o ¢
. . .
. ° o ° . o ¢ Ao
. . . . o . ° $
S . . ° . ‘,‘ PP ° .
_S o ® o 4 : . ::‘3; ° o .. .
. . ° o .
S 140 e : :
— . . .
_g . . . :' 3 . o § . . .
=} I .
.
. L Y ° S e . . L)
120 LI . g ®
.
.
. .
. . .
. ° o
.
. . ® . *
5 . *
° . e .
100 : .
.
.
. . .
.
.
.
age

Before starting our analysis, we’ll use MinMaxScaler'* from scikit-learn to scale the feature values
in the 0-1 range:

from sklearn.preprocessing import MinMaxScaler

0
I

MinMaxScaler ()

X = s.fit_transform(df[['age']])
y = s.fit_transform(df[['thalach']])

X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.2, random_state=RANDOM_SEED)

Our model is a simple linear regression:

1%https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. MinMaxScaler.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

O© 00 9 O U b W N =~

[=N
W N =~ O

Fixing Underfitting and Overfitting Models

lin_reg = keras.Sequential([

keras. layers.Dense(

units=1,

activation='linear"',

),
1)

lin_reg.compile(

loss="mse"

optimizer="adam",

metrics=["'mse']

Here’s the train/validation loss:

0.5

0.4

Loss

0.2

0.1

0.0

115
input_shape=[X_train.shape[1]]
—— Train Loss
Val Loss
100 200 300 400 500
Epoch

Here are the predictions from our model:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

T S =Y
O O b W N =~ O

Fixing Underfitting and Overfitting Models

1.0 L4
° .
.
. b o
. e o .
o o4 o °® ° ° .
0.8 H
: D) oo . .
) . e o s
. . .
b s * ® $. o
. ° s o .
o '.. :.‘.‘ . ®e
. . L)
s . ’o" .o'o‘o .
[° oo ®e°® o e o °38
d . .
. - ° e ©® eo e
. e v Py . o8 °
0.6 . ° o 5 48
. o o s e
e o e g0 0 L)
o s ° 3 8, . d
. P oo %o .
. ° .
. .
. ° ®e of o
. . L o *
.
0.4) b] b ® D) ()
. . 8 e . Py
. R .
.
. . ° . hd
o o . °
8 . d
o o o
.
.
0.2 . . v
.
.
0.0 0.2 0.4 0.6 0.8 1.0

You can kinda see that a linear model might not be the perfect fit here.

The fix

We'll use the same training process, except that our model is going to be a lot more complex:

lin_reg = keras.Sequential([
keras. layers.Dense(
units=64,
activation='relu',
input_shape=[X_train.shape[1]]
),
keras. layers.Dropout(rate=0.2),
keras.layers.Dense(units=32, activation='relu'),
keras. layers.Dropout(rate=0.2),
keras.layers.Dense(units=16, activation='relu'),
keras.layers.Dense(units=1, activation='linear'),

D)

lin_reg.compile(
loss="mse",

optimizer="adam",

116

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Fixing Underfitting and Overfitting Models 117

17 metrics=["'mse']
18)

Here’s the training/validation loss:

—— Train Loss

0.35 —— Val Loss

0.30

0.25

Loss

0.15

0.10

0.05

0 25 50 75 100 125 150 175 200
Epoch

Our validation loss is similar. What about the predictions:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Fixing Underfitting and Overfitting Models 118

1.0 .
. °
°
. b o
. e o d .
e o ° . .
0.8 D) . ‘e * ‘o .
. °°, .« ° ° s . .
X b ° s ° o 8 o °. e o
XX X . i e g .
Xes S8 [® 8%, L, ° ® [}
X% . °3 e e %o .
° b Xy e o ®e°® o e o °38
. 'xXX e ® %, o ° e
b . b XX XX o o 08,3
0.6 . >0<X>O<XXXXXX;(X e
e o, s o Seeg XXXX%()(XXX %
. e Cece®e . XX
. . .
. R .
. . H s ° [| o. .
.
0.4 : b] b :. . D) () g
. R .
e * ° . hd
e o . .
8 . d
e o °
.
0.2 ° e ° o
.
.
0.0 0.2 0.4 0.6 0.8 1.0

Interesting, right? Our model broke from the linear-only predictions. Note that this fix included
adding more parameters and increasing the regularization (using Dropout).

Overfitting

A model overfits when predicts training data well but performs poor on the validation set. Here are
some of the reasons for that:

« Your data has many features but a small number of examples (curse of dimensionality)
« Your model is too complex for the data (Early stopping)

Curse of dimensionality

The Curse of dimensionality'** refers to the problem of having too many features (dimensions),
compared to the data points (examples). The most common way to solve this problem is to add

more information.

We’ll use a couple of features to create our dataset:

P1https://en.wikipedia.org/wiki/Curse_of _dimensionality

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality

O O B W N

© 00 N O O & W N =

= = =
0 N O O b W N =~ O

© 00 N O O b W N =

RN
= O

Fixing Underfitting and Overfitting Models 119

df[['oldpeak', 'age', 'exang', 'ca', 'thalach']]
ca', 'thalach'])

<o
1

1

pd.get_dummies(X, columns=['exang',
df.target

X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.2, random_state=RANDOM_SEED)

Our model contains one hidden layer:

def build_classifier():

model = keras.Sequential([
keras.layers.Dense(
units=16,
activation="relu',
input_shape=[X_train.shape[1]]
).
keras.layers.Dense(units=1, activation='sigmoid'),

D)

model . compile(
loss="binary_crossentropy",
optimizer="adam",
metrics=['accuracy']

return model
Here’s the interesting part. We're using just a tiny bit of the data for training:

clf = build_classifier()

clf_history = clf.fit(
x=X_train,
y=y_train,
shuffle=True,
epochs=500,
validation_split=0.95,
batch_size=BATCH_SIZE,
verbose=0

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O© 00 1 O O b W N =

NN
= O

Fixing Underfitting and Overfitting Models 120

Here’s the result of the training:

1.0
—— Train Accuracy
Val Accuracy

0.8

0.6

Accuracy

0.4

0.2

0.0
0 100 200 300 400 500

Epoch

The fix

Our solution will be pretty simple - add more data. However, you can provide additional information
via other methods (i.e. Bayesian prior) or reduce the number of features via feature selection.

Let’s try the simple approach:
clf = build_classifier()

clf_history = clf.fit(
x=X_train,
y=y_train,
shuffle=True,
epochs=500,
validation_split=0.2,
batch_size=BATCH_SIZE,
verbose=0

The training/validation loss looks like this:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O & W N =

T =V U =N
W N s,

Fixing Underfitting and Overfitting Models 121

1.0
—— Train Accuracy

Val Accuracy

0.8

Accuracy
o
[e)]

©
»~

0.2

0.0
0 100 200 300 400 500

Epoch

While this is an improvement, you can see that the validation loss starts to decrease after some time.
How can you fix this?

Too complex model

We’ll reuse the dataset but build a new model:

def build_classifier():
model = keras.Sequential([
keras. layers.Dense(
units=128,
activation='relu',
input_shape=[X_train.shape[1]]
)
keras.layers.Dense(units=64, activation='relu'),
keras.layers.Dense(units=32, activation='relu'),
keras.layers.Dense(units=16, activation='relu'),
keras.layers.Dense(units=8, activation='relu'),

keras.layers.Dense(units=1, activation='sigmoid'),

D

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

15
16
17
18
19
20
21

Fixing Underfitting and Overfitting Models 122

model . compile(
loss="binary_crossentropy",
optimizer="adam",

metrics=["'accuracy']

return model

Here is the result:

1.0
—— Train Accuracy
—— Val Accuracy
0.8
I
| W
>
9 ‘
S i |
(9}
O
<
0.4
0.2
0.0
0 25 50 75 100 125 150 175 200
Epoch

You can see that the validation accuracy starts to decrease after epoch 25 or so.

The Fix #1

One way to fix this would be to simplify the model. But what if you spent so much time fine-tuning
it? You can see that your model is performing better at a previous stage of the training.

You can use the EarlyStopping'*? callback to stop the training at some point:

?https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

O© 00 I O O b W N =

N N = = =N
N O O b= W N =~ O

Fixing Underfitting and Overfitting Models 123

clf = build_classifier()

early_stop = keras.callbacks.EarlyStopping(
monitor="'val_accuracy',
patience=25

clf_history = clf.fit(

x=X_train,

y=y_train,
shuffle=True,
epochs=200,
validation_split=0.2,
batch_size=BATCH_SIZE,
verbose=0,
callbacks=[early_stop]

Here’s the new training/validation loss:

1.0
—— Train Accuracy

Val Accuracy

/vam /ﬁJv

0.6
> /
© / ¢
>
(0]
(@]
<

0.4

0.2

0.0

0 10 20 30 40 50 60
Epoch

Alright, looks like the training stopped much earlier than epoch 200. Faster training and a more
accurate model. Nice!

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Fixing Underfitting and Overfitting Models 124

The Fix #2

Another approach to fixing this problem is by using Regularization'>’. Regularization is a set of

methods that forces the building of a less complex model. Usually, you get higher bias (less correct
predictions on the training data) but reduced variance (higher accuracy on the validation dataset).

One of the most common ways to Regularize Neural Networks is by using Dropout***.

Dropout is a regularization technique for reducing overfitting in neural networks by pre-
venting complex co-adaptations on training data. It is a very efficient way of performing
model averaging with neural networks. The term “dropout” refers to dropping out units
(both hidden and visible) in a neural network.

Using Dropout in Keras™” is really easy:

model = keras.Sequential([
keras. layers.Dense(
units=128,
activation='relu',
input_shape=[X_train.shape[1]]
).
keras.layers.Dropout(rate=0.2),
keras.layers.Dense(units=64, activation='relu'),
keras.layers.Dropout(rate=0.2),
keras.layers.Dense(units=32, activation='relu'),
keras.layers.Dropout(rate=0.2),
keras.layers.Dense(units=16, activation='relu'),
keras.layers.Dropout(rate=0.2),
keras.layers.Dense(units=8, activation='relu'),
keras.layers.Dense(units=1, activation='sigmoid'),

D

model . compile(
loss="binary_crossentropy",
optimizer="adam",

metrics=["'accuracy']

Here’s how the training process has changed:

https://en.wikipedia.org/wiki/Regularization_(mathematics)
**https://en.wikipedia.org/wiki/Dropout_(neural_networks)
1 https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Dropout_(neural_networks)
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Dropout_(neural_networks)
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout

Fixing Underfitting and Overfitting Models 125

1.0
—— Train Accuracy

Val Accuracy

08 | N\MVM

=T
—
—
=
<3
_s
—=
3
=
=
—=
=

Accuracy

©
»~

0.2

0.0
0 25 50 75 100 125 150 175 200

Epoch

The validation accuracy seems very good. Note that the training accuracy is down (we have a higher
bias). There you have it, two ways to solve one issue!

Conclusion

Well done! You now have the toolset for dealing with the most common problems related to high
bias or high variance. Here’s a summary:

« Your data has no predictive power - use different data

« Your model is too simple to make good predictions - use model with more parameters

« Your data brings the Curse of dimensionality - use more data, reduce the number of features
or use Bayesian Prior to provide more information

« Your model is too complex - use Early Stopping or Regularization to force creating a simpler
model

Run the complete code in your browser**®

*%https://colab.research.google.com/drive/19wKH_-4stUuJDRiZIgpE06tfXF3MLpOi

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/19wKH_-4srUuJDRiZIqpE06tfXF3MLp0i
https://colab.research.google.com/drive/19wKH_-4srUuJDRiZIqpE06tfXF3MLp0i

Fixing Underfitting and Overfitting Models 126

References

« Bias-Variance Tradeoff in Machine Learning'*’

« Bias—variance tradeoff**®
« Diagnosing Bias vs. Variance'”’

« What is the curse of dimensionality?**

7https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/
8https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
*https://www.coursera.org/lecture/machine-learning/diagnosing-bias-vs-variance-yCAup
%https://deepai.org/machine-learning-glossary-and- terms/curse- of-dimensionality

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://www.coursera.org/lecture/machine-learning/diagnosing-bias-vs-variance-yCAup
https://deepai.org/machine-learning-glossary-and-terms/curse-of-dimensionality
https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://www.coursera.org/lecture/machine-learning/diagnosing-bias-vs-variance-yCAup
https://deepai.org/machine-learning-glossary-and-terms/curse-of-dimensionality

Hyperparameter Tuning

TL;DR Learn how to search for good Hyperparameter values using Keras Tuner in your
Keras and scikit-learn models

Hyperparameter tuning refers to the process of searching for the best subset of hyperparameter
values in some predefined space. For us mere mortals, that means - should I use a learning rate of
0.001 or 0.0001?

In particular, tuning Deep Neural Networks is notoriously hard (that’s what she said?). Choosing
the number of layers, neurons, type of activation function(s), optimizer, and learning rate are just
some of the options. Unfortunately, you don’t really know which choices are the ones that matter,
in advance.

On top of that, those models can be slow to train. Running many experiments in parallel might be
a good option. Still, you need a lot of computational resources to do that on practical datasets.

Here are some of the ways that Hyperparameter tuning can help you:

« Better accuracy on the test set
« Reduced number of parameters
« Reduced number of layers

« Faster inference speed

None of these benefits are guaranteed, but in practice, some combination often is true.

Run the complete code in your browser*

What is a Hyperparameter?

Hyperparameters are never learned, but set by you (or your algorithm) and govern the whole
training process. You can think of Hyperparameters as configuration variables you set when running
some software. Common examples of Hyperparameters are learning rate, optimizer type, activation
function, dropout rate.

Adjusting/finding good values is really slow. You have to wait for the whole training process to
complete, evaluate the results and adjust the value(s). Unfortunately, you might have to complete
the whole search process when your data or model changes.

Don’t be a hero! Use Hyperparameters from papers or other peers when your datasets and models
are similar. At least, you can use those as a starting point.

Thttps://colab.research.google.com/drive/INnUdPs| ZubFyjek1dbzplzi54jvoCwo0x

https://colab.research.google.com/drive/1NnUdPslZubFyjek1dbzpIzi54jv0Cw0x
https://colab.research.google.com/drive/1NnUdPslZubFyjek1dbzpIzi54jv0Cw0x

Hyperparameter Tuning 128

When to do Hyperparameter Tuning?

Changing anything inside your model or data affects the results from previous Hyperparameter
searches. So, you want to defer the search as much as possible.

Three things need to be in place, before starting the search:

« You have intimate knowledge of your data
« You have an end-to-end framework/skeleton for running experiments
« You have a systematic way to record and check the results of the searches (coming up next)

Hyperparameter tuning can give you another 5-15% accuracy on the test data. Well worth it, if you
have the computational resources to find a good set of parameters.

Common strategies

There are two common ways to search for hyperparameters:

Improving one model

This option suggest that you use a single model and try to improve it over time (days, weeks or
even months). Each time you try to fiddle with the parameters so you get an improvement on your
validation set.

This option is used when your dataset is very large and you lack computational resources to use the
next one. (Grad student optimization also falls within this category)

Training many models

You train many models in parallel using different settings for the hyperparameters. This option is
computationally demanding and can make your code messy.

Luckily, we’ll use the Keras Tuner'** to make the process more managable.

Finding Hyperparameters

We’re searching for multiple parameters. It might sound tempting to try out every possible
combination. Grid search is a good option for that.

%https://github.com/keras-team/keras-tuner

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

Hyperparameter Tuning 129

However, you might not want to do that. Random search is a better alternative'**. It’s just that Neural
Networks seem much more sensitive to changes in one parameter than another.

Another approach is to use Bayesian Optimization'**. This method builds a function that estimates

how good your model is going to be with a certain choice of hyperparameters.

Both approaches are implemented in Keras Tuner. How can we use them?

Remember to occasionaly re-evaluate your hyperparameters. Over time, you might’'ve
improved your algorithm, your dataset might have changed or the hardware/software
has changed. Because of those changes the best settings for the hyperparameters can get
stale and need to be re-evaluated.

Data

We’ll use the Titanic survivor data from Kaggle'®:

The competition is simple: use machine learning to create a model that predicts which
passengers survived the Titanic shipwreck.

Let’s load and take a look at the training data:

'gdown --id 1uWHjZ3y9XZKpcJ4fkSwjQJ-VDbZS-7xi --output titanic.csv

df = pd.read_csv('titanic.csv')

Exploration

Let’s take a quick look at the data and try to understand what it contains:

df.shape

(891, 12)

We have 12 columns with 891 rows. Let’s see what the columns are:

1*http://jmlr.csail. mit.edu/papers/volume13/bergstral2a/bergstral2a.pdf
1$*https://arxiv.org/abs/1406.3896
%https://www.kaggle.com/c/titanic/data

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
https://arxiv.org/abs/1406.3896
https://www.kaggle.com/c/titanic/data
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
https://arxiv.org/abs/1406.3896
https://www.kaggle.com/c/titanic/data

Hyperparameter Tuning

130
1 df.columns

1 Index(['PassengerId', 'Survived',
'"Ticket',
dtype='object")

'Pclass’,

'"Parch’', 'Fare', 'Cabin',

"Name', 'Sex',

'Age', 'SibSp',
"Embarked'],

All of our models are going to predict the value of the Survived column. Let’s have a look its
distribution:

500

400

count

200

100

Survived

While the classes are not well balanced, we’ll use the dataset as-is. Read the Practical Guide to
Handling Imbalanced Datasets'* to learn about some ways to solve this issue.

Another one that might interest you is the Fare (the price of the ticket):

1$%https://www.curiousily.com/posts/practical- guide- to- handling-imbalanced- datasets/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.curiousily.com/posts/practical-guide-to-handling-imbalanced-datasets/
https://www.curiousily.com/posts/practical-guide-to-handling-imbalanced-datasets/
https://www.curiousily.com/posts/practical-guide-to-handling-imbalanced-datasets/

Hyperparameter Tuning 131

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000
0 100 200 300 400 500

Fare

About 80% of the tickets are priced below 30 USD. Do we have missing data?

Preprocessing

missing = df.isnull().sum()
missing[missing > 0] .sort_values(ascending=False)

Cabin 687
Age 177
Embarked 2

Yes, we have a lot of cabin data missing. Luckily, we won’t need that feature for our model. Let’s
drop it along with other columns:

df = df.drop(['Cabin', 'Name', 'Ticket', 'PassengerlId'], axis=1)

We're left with 8 columns (including Survived). We still have to do something with the missing Age
and Embarked columns. Let’s handle those:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Hyperparameter Tuning 132

df['Age'] = df['Age'].fillna(df['Age'] .mean())
df['Embarked'] = df['Embarked'].fillna(df['Embarked'] .mode()[@])

The missing Age values are replaced with the mean value. Missing Embarked values are replaced with
the most common one.

Now that our dataset has no missing values, we need preprocess the categorical features:
df = pd.get_dummies(df, columns=['Sex', 'Embarked', 'Pclass'])

We can start with building and optimizing our models. What do we need?
Keras Tuner

Keras Tuner'® is a new library (still in beta) that promises:
Hyperparameter tuning for humans

Sounds cool. Let’s have a closer look.
There are two main requirements for searching Hyperparameters with Keras Tuner:

« Create a model building function that specifies possible Hyperparameter values
« Create and configure a Tuner to use for the search process

The version of Keras Tuner we’re using in this writing is 7f6b00f45c6e0b0debaf183fa5f9dcef824tb02f**.
Yes, we're using the code from the master branch.
There are four different tuners available:

« RandomSearch'®®

« Hyperband'°

+ BayesianOptimization'”
« Sklearn'”

The scikit-learn Tuner is a bit special. It doesn’t implement any algorithm for searching Hyperpa-
rameters. It rather relies on existing strategies to tune scikit-learn models.

How can we use Keras Tuner to find good parameters?
Random Search

Let’s start with a complete example of how we can tune a model using Random Search:

**"https://github.com/keras-team/keras-tuner
8https://github.com/keras-team/keras-tuner/commit/7f6b00f45c6e0bodebaf183fa5fodcefs24fbo2f
*https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/randomsearch.py
7%https://github.com/keras-team/keras- tuner/blob/master/kerastuner/tuners/hyperband.py
"*https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/bayesian.py
"?https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/sklearn.py

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner/commit/7f6b00f45c6e0b0debaf183fa5f9dcef824fb02f
https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/randomsearch.py
https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/hyperband.py
https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/bayesian.py
https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/sklearn.py
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner/commit/7f6b00f45c6e0b0debaf183fa5f9dcef824fb02f
https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/randomsearch.py
https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/hyperband.py
https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/bayesian.py
https://github.com/keras-team/keras-tuner/blob/master/kerastuner/tuners/sklearn.py

© 00 N O O b W N =

N
N O

Hyperparameter Tuning

def tune_optimizer_model(hp):
model = keras.Sequential()
model .add(keras. layers.Dense(
units=18,
activation="relu",
input_shape=[X_train.shape[1]]
))

model .add(keras. layers.Dense(1, activation='sigmoid'))

optimizer = hp.Choice('optimizer', ['adam', 'sgd', 'rmsprop'])

model . compile(
optimizer=optimizer,
loss = 'binary_crossentropy',
metrics = ['accuracy'])
return model

133

Everything here should look familiar except for the way we’re choosing an Optimizer. We register
a Hyperparameter with the name of optimizer and the available options. The next step is to create

a Tuner:

MAX_TRIALS = 20
EXECUTIONS_PER_TRIAL = 5

tuner = RandomSearch(
tune_optimizer_model,
objective='val_accuracy',
max_trials=MAX_TRIALS,
executions_per_trial=EXECUTIONS_PER_TRIAL,
directory="'test_dir"',
project_name="'tune_optimizer',
seed=RANDOM_SEED

The Tuner needs a pointer to the model building function, what objective should optimize for
(validation accuracy), and how many model configurations to test at most. The other config settings

are rather self-explanatory:.

We can get a summary of the different parameter values from our Tuner:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O O B W N

O O W N

© 00 N O O & W N =

Hyperparameter Tuning 134

tuner .search_space_summary()

Search space summary

| -Default search space size: 1
optimizer (Choice)

| -default: adam

| -ordered: False

|-values: ['adam', 'sgd', 'rmsprop']
Finally, we can start the search:

TRAIN_EPOCHS = 20

tuner.search(x=X_train,
y=y_train,
epochs=TRAIN_EPOCHS,
validation_data=(X_test, y_test))

The search process saves the trials for later analysis/reuse. Keras Tunes makes it easy to obtain
previous results and load the best model found so far.

You can get a summary of the results:

tuner .results_summary()

Results summary

| -Results in test_dir/tune_optimizer

| -Showing 10 best trials

[-Objective: Objective(name='val_accuracy', direction='max') Score: 0.75195533037185\
67

| -Objective: Objective(name='val_accuracy', direction='max') Score: 0.74301671981811\
52

| -Objective: Objective(name='val_accuracy', direction='max') Score: 0.72737431526184\
08

That’s not helpful since we can’t get the actual values of the Hyperparameters. Follow this issue'”?
for resolution of this.

Luckily, we can obtain the Hyperparameter values like so:

3https://github.com/keras-team/keras-tuner/issues/121

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://github.com/keras-team/keras-tuner/issues/121
https://github.com/keras-team/keras-tuner/issues/121

© 00 N O O b W N =

N T S =Y
0 N O O b W N =~ O

Hyperparameter Tuning 135

tuner .oracle.get_best_trials(num_trials=1)[0].hyperparameters.values

{"optimizer': 'adam'}
Even better, we can get the best performing model:
best_model = tuner.get_best_models()[0]

Ok, choosing an Optimizer looks easy enough. What else can we tune?

Learning rate and Momentum

The following examples use the same RandomSearch settings. We’ll change the model building
function.

174

Two of the most important parameters for your Optimizer are the Learning rate’’* and Momen-

tum'”®. Let’s try to find good values for those:

def tune_rl_momentum_model(hp):
model = keras.Sequential()
model .add(keras. layers.Dense(
units=18,
activation="relu",
input_shape=[X_train.shape[1]]
))

model .add(keras. layers.Dense(1, activation='sigmoid'))

lr = hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])
momentum = hp.Choice('momentum', [0.0, 0.2, 0.4, 0.6, 0.8, 0.9])

model . compile(
optimizer=keras.optimizers.SGD(1lr, momentum=momentum),
loss = 'binary_crossentropy',
metrics = ['accuracy'])

return model

The procedure is pretty identical to the one we’ve used before. Here are the results:

"*https://en.wikipedia.org/wiki/Learning_rate
">https://en.wikipedia.org/wiki/Stochastic_gradient_descent*Momentum

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Learning_rate
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum
https://en.wikipedia.org/wiki/Learning_rate
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum

© 00 1 O O b W N =

T S =Y
O O B W N~

Hyperparameter Tuning 136

{"learning_rate': ©.01, 'momentum': 0.4}

Number of parameters

We can also try to find better value for the number of units in our hidden layer:

def tune_neurons_model(hp):
model = keras.Sequential()
model .add(keras. layers.Dense(units=hp.Int('units"',
min_value=8,
max_value=128,
step=16),
activation="relu",

input_shape=[X_train.shape[1]]))
model .add(keras. layers.Dense(1, activation='sigmoid'))

model .compile(
optimizer="adam",
loss = 'binary_crossentropy',
metrics = ['accuracy'])
return model

We’re using a range of values for the number of parameters. The range is defined by a minimum,
maximum and step value. The best number of units is:

{"units': 72}

Number of hidden layers

We can use Hyperparameter tuning for finding a better architecture for our model. Keras Tuner
allows us to use regular Python for loops to do that:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O© 00 I O O b W N =

T N S N S o S = S N N S
0 O 00 N O O b W N =~ O

N O O b W N =~

Hyperparameter Tuning 137

def tune_layers_model (hp):
model = keras.Sequential()

model .add(keras. layers.Dense(units=128,
activation="relu",

input_shape=[X_train.shape[1]]))

for i in range(hp.Int('num_layers', 1, 6)):
model .add(keras. layers.Dense(units=hp.Int('units_' + str(i),
min_value=8,
max_value=64,
step=8),

activation='relu'))
model .add(keras. layers.Dense(1, activation='sigmoid'))

model .compile(
optimizer="adam",
loss = 'binary_crossentropy',
metrics = ['accuracy'])
return model

Note that we still test a different number of units for each layer. There is a requirement that each
Hyperparameter name should be unique. We get:

{"num_layers': 2,

'units_0': 32,
'units_1': 24,
'units_2': 64,
'units_3': 8,

'units_4': 48,
'units_5': 64}

Not that informative. Well, you can still get the best model and run with it.

Activation function

You can try out different activation functions like so:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Hyperparameter Tuning

def tune_act_model(hp):
model = keras.Sequential()

activation = hp.Choice('activation',
[

'softmax’,
'softplus’,
'softsign’,
'relu',
"tanh',
'sigmoid"',
"hard_sigmoid',
'"linear'

D

model .add(keras. layers.Dense(units=32,
activation=activation,
input_shape=[X_train.shape[1]]))

model .add(keras. layers.Dense(1, activation='sigmoid'))
model .compile(

optimizer="adam",

loss = 'binary_crossentropy',

metrics = ['accuracy'])
return model

Surprisingly we obtain the following result:

{'activation': 'linear'}

Dropout rate

Dropout'’® is a frequently used Regularization technique. Let’s try different rates:

7%http://jmlr.org/papers/v15/srivastaval4a.html

138

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

Hyperparameter Tuning 139

def tune_dropout_model(hp):
model = keras.Sequential()

drop_rate = hp.Choice('drop_rate',

[

~ ~ ~ ~

~

~ ~

~

O © O 0 © OO0 O & O
O 0 N O O b W N =~ O

D

model .add(keras. layers.Dense(units=32,
activation="relu",
input_shape=[X_train.shape[1]]))
model .add(keras. layers.Dropout(rate=drop_rate))

model .add(keras. layers.Dense(1, activation='sigmoid'))
model . compile(

optimizer="adam",

loss = 'binary_crossentropy',

metrics = ['accuracy'])

return model
Unsurprisingly, our model is relatively small and don’t benefit from regularization:

{"drop_rate': 0.0}

Complete example

We’ve dabbled with the Keras Tuner API for a bit. Let’s have a look at a somewhat more realistic
example:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O© 00 I O O b W N =

NN NN NN NN NN RS R R Rl s
© 0 9 O O & W N = 0 © 0 9 O U & W~ O

Hyperparameter Tuning 140

def tune_nn_model(hp):
model = keras.Sequential()

model .add(keras. layers.Dense(units=128,
activation="relu",

input_shape=[X_train.shape[1]]))

for i in range(hp.Int('num_layers', 1, 6)):
units = hp.Int(
'units_' + str(i),
min_value=8,
max_value=64,
step=8
)
model .add(keras. layers.Dense(units=units, activation='relu'))
drop_rate = hp.Choice('drop_rate_' + str(i),
[
0.0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9
)

model .add(keras. layers.Dropout(rate=drop_rate))
model .add(keras. layers.Dense(1, activation='sigmoid'))

model . compile(
optimizer="adam",
loss = 'binary_crossentropy',
metrics = ['accuracy'])

return model

Yes, tuning parameters can complicate your code. One thing that might be helpful is to try and
separate the possible Hyperparameter values from the code building code.

Bayesian Optimization

The Bayesian Tuner provides the same API as Random Search. In practice, this method should be
as good (if not better) as the Grad student hyperparameter tuning method. Let’s have a look:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 0O N O O & W N =

s R
N O

Hyperparameter Tuning 141

b_tuner = BayesianOptimization(
tune_nn_model,
objective='val_accuracy',
max_trials=MAX_TRIALS,
executions_per_trial=EXECUTIONS_PER_TRIAL,
directory="test_dir',
project_name='b_tune_nn',
seed=RANDOM_SEED

This method might try out significantly fewer parameters than Random Search, but this is highly
problem dependent. I would recommend using this Tuner for most practical problems.

scikit-learn model tuning

Despite its name, Keras Tuner allows you to tune scikit-learn models too! Let’s try it out on a
RandomForestClassifier'’”:

import kerastuner as kt

from sklearn import ensemble

from sklearn import metrics

from sklearn import datasets

from sklearn import model_selection

def build_tree_model(hp):
return ensemble.RandomForestClassifier(
n_estimators=hp.Int('n_estimators', 10, 80, step=5),
max_depth=hp.Int('max_depth', 3, 10, step=1),
max_features=hp.Choice('max_features', ['auto', 'sqgrt', 'log2'])

We’ll tune the number of trees in the forest (n_estimators), the maximum depth of the trees (max_-
depth), and the number of features to consider when choosing the best split (max_features).

The Tuner expects an optimization strategy (Oracle). We’ll use Baysian Optimization:

""https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. RandomForestClassifier.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

O© 00 I O O b W N =

10
11
12

Hyperparameter Tuning 142

sk_tuner = kt.tuners.Sklearn(
oracle=kt.oracles.BayesianOptimization(
objective=kt.Objective('score', 'max'),
max_trials=MAX_TRIALS,
seed=RANDOM_SEED

)I

hypermodel=build_tree_model,
scoring=metrics.make_scorer(metrics.accuracy_score),
cv=model_selection.StratifiedkKFold(5),
directory="'test_dir"',

project_name="'tune_rf'

The rest of the API is identical:
sk_tuner.search(X_train.values, y_train.values)
The best parameter values are:

sk_tuner.oracle.get_best_trials(num_trials=1)[Q].hyperparameters.values

{"'max_depth': 4, 'max_features': 'sqrt', 'n_estimators': 60}

Conclusion

There you have it. You now know how to search for good Hyperparameters for Keras and scikit-learn
models.

Remember the three requirements that need to be in place before starting the search:

« You have intimate knowledge of your data
« You have an end-to-end framework/skeleton for running experiments
« You have a systematic way to record and check the results of the searches

Keras Tuner can help you with the last step.

Run the complete code in your browser'”®

"#https://colab.research.google.com/drive/INnUdPs| ZubFyjek1dbzplzi54jvoCwo0x

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1NnUdPslZubFyjek1dbzpIzi54jv0Cw0x
https://colab.research.google.com/drive/1NnUdPslZubFyjek1dbzpIzi54jv0Cw0x

Hyperparameter Tuning 143

References

« Keras Tuner'”

« Random Search for Hyper-Parameter Optimization'®

« Bayesian optimization'®!

« Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization'®
« Overview of hyperparameter tuning*’

"https://github.com/keras-team/keras-tuner

#http://jmlr.csail. mit.edu/papers/volume13/bergstral2a/bergstral2a.pdf
®1https://krasserm.github.io/2018/03/21/bayesian-optimization/
82https://arxiv.org/abs/1603.06560
**https://cloud.google.com/ml-engine/docs/hyperparameter-tuning-overview

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://github.com/keras-team/keras-tuner
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
https://krasserm.github.io/2018/03/21/bayesian-optimization/
https://arxiv.org/abs/1603.06560
https://cloud.google.com/ml-engine/docs/hyperparameter-tuning-overview
https://github.com/keras-team/keras-tuner
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
https://krasserm.github.io/2018/03/21/bayesian-optimization/
https://arxiv.org/abs/1603.06560
https://cloud.google.com/ml-engine/docs/hyperparameter-tuning-overview

Heart Disease Prediction

TL;DR Build and train a Deep Neural Network for binary classification in TensorFlow 2.
Use the model to predict the presence of heart disease from patient data.

Machine Learning is used to solve real-world problems in many areas, already. Medicine is no
exception. While controversial, multiple models have been proposed and used with some success.
Some notable projects by Google and others:

« Diagnosing Diabetic Eye Disease'®*
« Assisting Pathologists in Detecting Cancer®’

Today, we're going to take a look at one specific area - heart disease prediction.

About 610,000 people die of heart disease in the United States every year — that’s 1 in
every 4 deaths. Heart disease is the leading cause of death for both men and women.
More than half of the deaths due to heart disease in 2009 were in men. - Heart Disease
Facts & Statistics | cdc.gov'®

Please note, the model presented here is very limited and in no way applicable for real-world
situations. Our dataset is extremely small, conclusions made here are in no way generalizable. Heart
disease prediction is a vastly more complex problem than depicted in this writing.

Complete source code in Google Colaboratory Notebook'®’

Here is the plan:

. Explore patient data

. Data preprocessing

. Create your Neural Network in TensorFlow 2
. Train the model

. Predict heart disease from patient data

[I O R R

Patient Data

Our data comes from this dataset'®. It contains 303 patient records. Each record contains 14
attributes:

'#https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html
#https://ai.googleblog.com/2017/03/assisting- pathologists-in-detecting.html
%https://www.cdc.gov/heartdisease/facts.htm
®7https://colab.research.google.com/drive/13EThg YKSRWGB]Jn_8iAvg-QWUW]CufB1
*3https://www.kaggle.com/ronitf/heart- disease-uci

https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html
https://ai.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
https://www.cdc.gov/heartdisease/facts.htm
https://www.cdc.gov/heartdisease/facts.htm
https://colab.research.google.com/drive/13EThgYKSRwGBJJn_8iAvg-QWUWjCufB1
https://www.kaggle.com/ronitf/heart-disease-uci
https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html
https://ai.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
https://www.cdc.gov/heartdisease/facts.htm
https://colab.research.google.com/drive/13EThgYKSRwGBJJn_8iAvg-QWUWjCufB1
https://www.kaggle.com/ronitf/heart-disease-uci

Heart Disease Prediction

Label Description

age age in years

sex (1 = male; 0 = female)

cp (1 = typical angina; 2 = atypical angina; 3 = non-anginal pain; 4 =
asymptomatic)

trestbps resting blood pressure (in mm Hg on admission to the hospital)

chol serum cholestoral in mg/dl

fbs (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)

restecg resting electrocardiographic results

thalach maximum heart rate achieved

exang exercise induced angina (1 = yes; 0 = no)

oldpeak ST depression induced by exercise relative to rest

slope the slope of the peak exercise ST segment

ca number of major vessels (0-3) colored by flourosopy

thal (3 = normal; 6 = fixed defect; 7 = reversable defect)

target (0 = no heart disease; 1 = heart disease presence)

How many of the patient records indicate heart disease?

160

140

120

100

count

That looks like a pretty well-distributed dataset, considering the number of rows.

Heart disease presence distribution

Mo Heart disease Heart Disease

Let’s have a look at how heart disease affects different genders:

145

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Heart Disease Prediction 146

Heart disease presence by gender

N Female
s Male

100

count
]

Mo Heart disease Heart Disease

Here is a Pearson correlation heatmap between the features:

age 43.10 0.07 0.28 0.21 0.12 4}.12- 0.10 0.21 -0.17 0.28 0.07 -0.23
sex -0.10 8] -0.05 -0.06 -0.20 0.05 -0.06 -0.04 0.14 0.10 -0.03 0.12 0.21 -0.28 0.8
op 0.07 43.05 0.05 -0.08 0.09 0.04 0.30 -0.15 0.12 0.18 {I.lﬁ-
restbps 0.28 -0.06 0.05] 0.12 0.18 -0.11 -0.05 0.07 0.19 -0.12 0.10 0.06 -0.14
chol 0.21 -0.20 -0.08 0.12 K 0.01 -0.15 -0.01 0.07 0.05 -0.00 0.07 0.10 -0.09 04
s 0.12 0.05 0.09 0.18 0.01 ¥ -0.08 -0.01 0.03 0.01 -0.06 0.14 -0.03 -0.03
restecg -0.12 -0.06 0.04 -0.11 -0.15 -0.08 j¥&}] 0.04 -0.07 -0.06 0.09 -0.07 -0.01 0.14

thalach -4104 0.30 -0.05 -0.01 -0.01 0.04 - 40.34-4121 43.10- 00
exang 0.10 0.14 - 0.07 0.07 0.03 -0.07 - 0.29 -0.26 0.12 0.21 -

oldpeak 0.21 0.10 -0.15 0.19 0.05 0.01 -0.06 -0.34 0.29 0.22 0.21 0.43
siope 0.17-0.03 0.12 -0.12 -0.00 -0.06 0.09 [0.39 -0.26 UL fM§] -0.08 -0.10 [0.35
ca 028 0.12 -0.18 0.10 0.07 0.14 0.07-0.21 0.12 0.22 -0.08 [k 0.15 0.39

thal 0.07 0.21 -0.16 0.06 0.10 -0.03-0.01 -0.10 0.21 0.21 -0.10 0.15 K] -0.34 08

target -0.23 -0.28 043 -0.14 -0.09 -0.03 0.14 [0.42 -0.44 0.43 0.35 -0.39 -0.34 [}

& & ¢ ef}QQ% 65} o eﬁ}tpg @‘?}&\ é‘é& eﬁfﬁ&- ‘3‘&& o @é\
& i\

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Heart Disease Prediction 147

How disease presence is affected by thalach (“Maximum Heart Rate”) vs age:

200 L] ® Disease
. o e No Disease
. R o .
180 L 0223 o ¢ . ®e)
e%e . * . . b
e . e0 2 e . -;t .t| 0. ¢ e o
:.3 'g ¢ .Q:: . * .
[]
2 160 . . e ::': T 'i': e ¢
@ ¢ ° ::o-. . ®e :" ':':Q.nt
= o L I e e
S 140 . ALY B *ssdfgoce, oo’
I ® . . ' ® L
= ® L] = g2® ¢ ° Y] LI
E H ..‘ ¢ 'a' ¢ c. N oo
'glzo - L °2® o
= ? ele o, e S
L g o e o]
L
100 n
™ L] L
® L]
80
L]
30 40 a0 60 70

Age

Looks like maximum heart rate can be very predictive for the presence of a disease, regardless of
age.

How different types of chest pain affect the presence of heart disease:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

148

Heart Disease Prediction

Disease presence hy chest pain type
N nNo Disease

100 I Disease
80
@
s
'—
g @
%
(a1
w
a
=
O 40
20
, J J

Typical Angina Atypical Angina Non-anginal Pain Asymptomatic

Having chest pain might not be indicative of heart disease.

Data Preprocessing

Our data contains a mixture of categorical and numerical data. Let’s use TensorFlow's Feature

Columns™®’.
Features
(ef input_fn(): / \ / tf.feature_column \ / tf.estimator.nmclassifier\
retu;n feature_columns = classifier = DNNClassifier(
"SepalLength": [... 1, numeric_column(“SepallLength"), /'l feature_columns=feature_columns,
"SepalWidth": [...], numeric_column("SepalWidth"), A hidden_units=[10, 16],
"PetalLength”: [...], » numeric_column("PetalLength"), n_classes=3,
;PetalWidth" N | numeric_column("PetalWidth") model_dir=PATH)
s A
| [) O " 4
»
= \
. How to bridge Match feat
batch_size Labels input to model fr: r: i :;Ufr: names
(feature column) -

*https://www.tensorflow.org/guide/feature_columns

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/guide/feature_columns
https://www.tensorflow.org/guide/feature_columns
https://www.tensorflow.org/guide/feature_columns

© 00 N O O b W N =

W W W W W W W N DD DN DD DN DNDDNDNDNDNDND-A A~ 2 22 2 s s
O O B O N~ 0 O 0N 0 O Bk WOwN 20 © 0N O 0 bk W NdN -~ 0o

Heart Disease Prediction 149

Feature columns allow you to bridge/process the raw data in your dataset to fit your model
input data requirements. Furthermore, you can separate the model building process from the data
preprocessing. Let’s have a look:

feature_columns = []

numeric cols

for header in ['age', 'trestbps', 'chol', 'thalach', 'oldpeak',6 'ca'l]:

feature_columns.append(tf. feature_column.numeric_column(header))

pbucketized cols

age = tf.feature_column.numeric_column("age")

age_buckets = tf.feature_column.bucketized_column(age, boundaries=[18, 25, 30, 35, 4\
@, 45, 50, 55, 60, 65])

feature_columns.append(age_buckets)

indicator cols

data["thal"] = data["thal"].apply(str)

thal = tf.feature_column.categorical_column_with_vocabulary_list(
'thal', ['3', '6', '7'])

thal_one_hot = tf.feature_column.indicator_column(thal)

feature_columns.append(thal_one_hot)

data["sex"] = data["sex"].apply(str)

sex = tf.feature_column.categorical_column_with_vocabulary_list(
'sex', ['@', '1'])

sex_one_hot = tf.feature_column.indicator_column(sex)

feature_columns.append(sex_one_hot)

data["cp"] = data["cp"].apply(str)

cp = tf.feature_column.categorical_column_with_vocabulary_list(
‘cp', ['@', 1", '2', '3'])

cp_one_hot = tf.feature_column.indicator_column(cp)

feature_columns.append(cp_one_hot)

data["slope"] = data["slope"].apply(str)

slope = tf.feature_column.categorical_column_with_vocabulary_list(
'slope', ['@', '1', '2'])

slope_one_hot = tf.feature_column.indicator_column(slope)

feature_columns.append(slope_one_hot)

Apart from the numerical features, we're putting patient age into discrete ranges (buckets).
Furthermore, thal, sex, cp, and slope are categorical and we map them to such.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O U kW N

o N O O b W N =

=~ O U b W N

Heart Disease Prediction 150

Next up, lets turn the pandas DataFrame into a TensorFlow Dataset:

def create_dataset(dataframe, batch_size=32):
dataframe = dataframe.copy()
labels = dataframe.pop('target')
return tf.data.Dataset. from_tensor_slices((dict(dataframe), labels)) \
.shuffle(buffer_size=len(dataframe)) \
.batch(batch_size)

And split the data into training and testing:

train, test = train_test_split(
data,
test_size=0.2,
random_state=RANDOM_SEED

train_ds = create_dataset(train)
test_ds = create_dataset(test)

The Model

Let’s build a binary classifier using Deep Neural Network in TensorFlow:

model = tf.keras.models.Sequential([
tf.keras.layers.DenseFeatures(feature_columns=feature_columns),
tf.keras.layers.Dense(units=128, activation='relu'),
tf.keras. layers.Dropout(rate=0.2),
tf.keras.layers.Dense(units=128, activation='relu'),
tf.keras.layers.Dense(units=2, activation='sigmoid")

D)

Our model uses the feature columns we’ve created in the preprocessing step. Note that, we’re no
longer required to specify the input layer size.

We also use the Dropout'’ layer between 2 dense layers. Our output layer contains 2 neurons, since
we are building a binary classifier.

%https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/Dropout

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/Dropout

Heart Disease Prediction 151
Training
Our loss function is binary cross-entropy defined by:

—(ylog(p) + (1 —y) log(1 —p))

where y is binary indicator if the predicted class is correct for the current observation and p is
the predicted probability.

model . compile(
optimizer="adam',
loss='binary_crossentropy',

metrics=['accuracy']

history = model. fit(

© 00 N O O b W N =

=Y
N O

© 00 N O O b W N =

O = = =S
W N O O b W N =~ O

train_ds,

validation_data=test_ds,

epochs=100,

use_multiprocessing=True

Here is a sample of the training process:

Epoch 95/100
Os 42ms/step
8689
Epoch 96/100
Os 42ms/step
8689
Epoch 97/100
Os 42ms/step
8689
Epoch 98/100
Os 42ms/step
8770
Epoch 99/100
Os 43ms/step
8607
Epoch 100/100
0Os 43ms/step
8852

loss:

loss:

loss:

loss:

loss:

loss:

.3018

.2882

.2889

.2964

. 3062

.2685

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

.8430

. 8547

.8732

.8386

.8282

.8821

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

.4012

.3436

.3368

. 3537

.4110

. 3669

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Heart Disease Prediction 152

Accuracy on the test set:

model .evaluate(test_ds)

Os 24ms/step - loss: 0.3669 - accuracy: 0.8852
[0.3669000566005707, ©.8852459]

So, we have ~88% accuracy on the test set.

10 model accuracy

0.8

=
(a0

accuracy

=l
.

0.2

0.0
0 20 40 60 80 100

epoch

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Heart Disease Prediction 153

model loss
1.4 —‘(— framn

test

12

10

loss

0.6

0.4
T N A,

o] e \—"-’\\/—__/\

0 20 40 60 80 100
epoch

Predicting Heart Disease

Now that we have a model with some good accuracy on the test set, let’s try to predict heart disease
based on the features in our dataset.

1 predictions = tf.round(model.predict(test_ds)).numpy().flatten()

Since we’re interested in making binary decisions, we’re taking the maximum probability of the
output layer.

1 print(classification_report(y_test.values, predictions))

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Heart Disease Prediction 154

precision recall f1-score support

0 0.59 0.66 0.62 29

1 0.66 0.59 0.62 32

micro avg 0.62 0.62 0.62 61
macro avg 0.62 0.62 0.62 61
weighted avg 0.63 0.62 0.62 61

Regardless of the accuracy, you can see that the precision, recall and f1-score of our model are not
that high. Let’s take a look at the confusion matrix:

Predicted label

Actual label

Our model looks a bit confused. Can you improve on it?

Conclusion

Complete source code in Google Colaboratory Notebook'**

You did it! You made a binary classifier using Deep Neural Network with TensorFlow and used it to
predict heart disease from patient data.

Next, we’ll have a look at what TensorFlow 2 has in store for us, when applied to computer vision.

*Thttps://colab.research.google.com/drive/13EThg YKSRwWGB]Jn_8iAvg-QWUW;jCufB1

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/13EThgYKSRwGBJJn_8iAvg-QWUWjCufB1
https://colab.research.google.com/drive/13EThgYKSRwGBJJn_8iAvg-QWUWjCufB1

Time Series Forecasting

TL;DR Learn about Time Series and making predictions using Recurrent Neural Net-
works. Prepare sequence data and use LSTMs to make simple predictions.

Often you might have to deal with data that does have a time component. No matter how much you
squint your eyes, it will be difficult to make your favorite data independence assumption. It seems
like newer values in your data might depend on the historical values. How can you use that kind of
data to build models?

This guide will help you better understand Time Series data and how to build models using Deep
Learning (Recurrent Neural Networks). You’ll learn how to preprocess Time Series, build a simple
LSTM model, train it, and use it to make predictions. Here are the steps:

« Time Series
« Recurrent Neural Networks
« Time Series Prediction with LSTMs

Run the complete notebook in your browser**?

The complete project on GitHub'”*

Time Series

Time Series™* is a collection of data points indexed based on the time they were collected. Most
often, the data is recorded at regular time intervals. What makes Time Series data special?

Forecasting future Time Series values is a quite common problem in practice. Predicting the weather
for the next week, the price of Bitcoins tomorrow, the number of your sales during Chrismas and
future heart failure are common examples.

Time Series data introduces a “hard dependency” on previous time steps, so the assumption that
independence of observations doesn’t hold. What are some of the properties that a Time Series can
have?

Stationarity, seasonality, and autocorrelation are some of the properties of the Time Series you
might be interested in.

?https://colab.research.google.com/drive/ 11UwtvOInzoaNC5eBMIjRMVk1K9zcKD-b
*https://github.com/curiousily/Deep-Learning-For-Hackers
*https://en.wikipedia.org/wiki/Time_series

https://colab.research.google.com/drive/1lUwtvOInzoaNC5eBMljRMVk1K9zcKD-b
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Time_series
https://colab.research.google.com/drive/1lUwtvOInzoaNC5eBMljRMVk1K9zcKD-b
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Time_series

Time Series Forecasting 156

A Times Series is said to be stationary when the mean and variance remain constant over time. A
Time Series has a trend if the mean is varying over time. Often you can eliminate it and make the
series stationary by applying log transformation(s).

Seasonality refers to the phenomenon of variations at specific time-frames. eg people buying more
Christmas trees during Christmas (who would’ve thought). A common approach to eliminating
seasonality is to use differencing'®’.

Autocorrelation* refers to the correlation between the current value with a copy from a previous
time (lag).

Why we would want to seasonality, trend and have a stationary Time Series? This is required data
preprocessing step for Time Series forecasting with classical methods like ARIMA models*””. Luckily,
we’ll do our modeling using Recurrent Neural Networks.

Recurrent Neural Networks

Recurrent neural networks (RNNs) can predict the next value(s) in a sequence or classify it. A
sequence is stored as a matrix, where each row is a feature vector that describes it. Naturally, the
order of the rows in the matrix is important.

RNNs are a really good fit for solving Natural Language Processing (NLP) tasks where the words in a
text form sequences and their position matters. That said, cutting edge NLP uses the Transformer**®
for most (if not all) tasks.

As you might’ve already guessed, Time Series is just one type of a sequence. We'll have to cut the
Time Series into smaller sequences, so our RNN models can use them for training. But how do we
train RNNs?

First, let’s develop an intuitive understanding of what recurrent means. RNNs contain loops. Each
unit has a state and receives two inputs - states from the previous layer and the stats from this layer
from the previous time step.

The Backpropagation algorithm'” breaks down when applied to RNNs because of the recurrent
connections. Unrolling the network, where copies of the neurons that have recurrent connections
are created, can solve this problem. This converts the RNN into a regular Feedforward Neural Net,
and classic Backpropagation can be applied. The modification is known as Backpropagation through
time?®.

https://www.quora.com/What-is-the-purpose-of-differencing-in-time- series-models
Shttps://en.wikipedia.org/wiki/Autocorrelation
"https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
*®https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
°https://en.wikipedia.org/wiki/Backpropagation
*%https://en.wikipedia.org/wiki/Backpropagation_through_time

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.quora.com/What-is-the-purpose-of-differencing-in-time-series-models
https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation_through_time
https://en.wikipedia.org/wiki/Backpropagation_through_time
https://www.quora.com/What-is-the-purpose-of-differencing-in-time-series-models
https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation_through_time

© 00 N O O & W N =

= U= U
W N s,

Time Series Forecasting 157

Problems with Classical RNNs

Unrolled Neural Networks can get very deep (that’s what he said), which creates problems for the
gradient calculations. The weights can become very small (Vanishing gradient problem®") or very
large (Exploding gradient problem?’?).

Classic RNNs also have a problem with their memory (long-term dependencies), too. The begging
of the sequences we use for training tends to be “forgotten” because of the overwhelming effect of
more recent states.

In practice, those problems are solved by using gated RNNs. They can store information for later
use, much like having a memory. Reading, writing, and deleting from the memory are learned from
the data. The two most commonly used gated RNNs are Long Short-Term Memory Networks**® and
Gated Recurrent Unit Neural Networks®*“.

Time Series Prediction with LSTMs

We'll start with a simple example of forecasting the values of the Sine function®* using a simple
LSTM network.

Setup

Let’s start with the library imports and setting seeds:

import numpy as np

import tensorflow as tf

from tensorflow import keras
import pandas as pd

import seaborn as sns

from pylab import rcParams
import matplotlib.pyplot as plt
from matplotlib import rc

%zmatplotlib inline

%»config InlineBackend. figure_format='retina'

sns.set(style='whitegrid', palette='muted', font_scale=1.5)

*"Thttps://en.wikipedia.org/wiki/Vanishing_gradient_problem
?%2(https://en.wikipedia.org/wiki/Vanishing_gradient_problem)
*%https://en.wikipedia.org/wiki/Long_short-term_memory
%*https://en.wikipedia.org/wiki/Gated_recurrent_unit
*%https://en.wikipedia.org/wiki/Sine

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Vanishing_gradient_problem
(https://en.wikipedia.org/wiki/Vanishing_gradient_problem)
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Sine
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
(https://en.wikipedia.org/wiki/Vanishing_gradient_problem)
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Sine

Time Series Forecasting 158

15 rcParams['figure.figsize'] = 16, 10
16

17 RANDOM_SEED = 42

18

19 np.random.seed(RANDOM_SEED)

20 tf.random.set_seed(RANDOM_SEED)

Data

We’ll generate 1,000 values from the sine function and use that as training data. But, we’ll add a
little bit of zing to it:

1 time = np.arange(0, 100, ©.1)
2 sin = np.sin(time) + np.random.normal(scale=0.5, size=len(time))

—— sine (with noise)

o

20 40 60 80 100

A random value, drawn from a normal distribution, is added to each data point. That’ll make the
job of our model a bit harder.

Data Preprocessing

We need to “chop the data” into smaller sequences for our model. But first, we’ll split it into training
and test data:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O O B W N

=~ O O b W N =

o N O O b W N =

Time Series Forecasting 159

df = pd.DataFrame(dict(sine=sin), index=time, columns=['sine'])

train_size = int(len(df) * 0.8)

test_size = len(df) - train_size

train, test = df.iloc[0:train_size], df.iloc[train_size:len(df)]
print(len(train), len(test))

800 200

Preparing the data for Time Series forecasting (LSTMs in particular) can be tricky. Intuitively, we
need to predict the value at the current time step by using the history (n time steps from it). Here’s
a generic function that does the job:

def create_dataset(X, y, time_steps=1):

Xs, ys = [1, []
for i in range(len(X) - time_steps):
v = X.iloc[i:(i + time_steps)].values
Xs.append(v)
ys.append(y.iloc[i + time_steps])
return np.array(Xs), np.array(ys)

The beauty of this function is that it works with univariate (single feature) and multivariate (multiple
features) Time Series data. Let’s use a history of 10 time steps to make our sequences:

time_steps = 10
reshape to [samples, time_steps, n_rfeatures]

X_train, y_train = create_dataset(train, train.sine, time_steps)
X_test, y_test = create_dataset(test, test.sine, time_steps)

print(X_train.shape, y_train.shape)

(79, 10, 1) (790,)

We have our sequences in the shape (samples, time_steps, features). How can we use them to
make predictions?

Modeling

Training an LSTM model in Keras is easy. We'll use the LSTM layer®*® in a sequential model to make
our predictions:

*https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

O© 00 I O O b W N =

N
[~

o N O O b W N =

Time Series Forecasting 160

model = keras.Sequential()
model .add(keras. layers.LSTM(

units=128,

input_shape=(X_train.shape[1], X_train.shape[2])
)
model .add(keras. layers.Dense(units=1))
model . compile(

loss="mean_squared_error',

optimizer=keras.optimizers.Adam(0.001)

The LSTM layer expects the number of time steps and the number of features to work properly. The
rest of the model looks like a regular regression model. How do we train a LSTM model?

Training

The most important thing to remember when training Time Series models is to not shuffle the data
(the order of the data matters). The rest is pretty standard:

history = model. fit(
X_train, y_train,
epochs=30,
batch_size=16,
validation_split=0.1,
verbose=1,
shuffle=False

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Time Series Forecasting 161

0.44 —— train
test

0.42

0.40

0.38

0.36

0.34

0.32 \

0.30

0 5 10 15 20 25 30

Our dataset is pretty simple and contains the randomness from our sampling. After about 15 epochs,
the model is pretty much-done learning.

Evaluation

Let’s take some predictions from our model:
y_pred = model.predict(X_test)

We can plot the predictions over the true values from the Time Series:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

162

Time Series Forecasting

3
—— history
—— true
—— prediction
2
|
‘ I
1 \' \ i‘
| [r " ‘
9] i .
= I
2 |
0 A I
! [| I"]
[
i |
J ‘.':\ ‘ |
-1 I ! I W
Il
-2
0 200 400 600 800 1000
Time Step

Our predictions look really good on this scale. Let’s zoom in:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Time Series Forecasting 163

—— true
15 —— prediction

1.0

0.5 d
0.0 W

-0.5

Value

-1.0

-15

-2.0

0 25 50 75 100 125 150 175
Time Step

The model seems to be doing a great job of capturing the general pattern of the data. It fails to
capture random fluctuations, which is a good thing (it generalizes well).

Conclusion

Congratulations! You made your first Recurrent Neural Network model! You also learned how to
preprocess Time Series data, something that trips a lot of people.

« Time Series
« Recurrent Neural Networks
« Time Series Prediction with LSTMs

We’ve just scratched the surface of Time Series data and how to use Recurrent Neural Networks.
Some interesting applications are Time Series forecasting, (sequence) classification and anomaly
detection. The fun part is just getting started!

Run the complete notebook in your browser?”’

The complete project on GitHub*®

**Thttps://colab.research.google.com/drive/11UwtvOInzoaNC5eBMIjRMVk1K9zcKD-b
*%%https://github.com/curiousily/Deep- Learning-For-Hackers

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1lUwtvOInzoaNC5eBMljRMVk1K9zcKD-b
https://github.com/curiousily/Deep-Learning-For-Hackers
https://colab.research.google.com/drive/1lUwtvOInzoaNC5eBMljRMVk1K9zcKD-b
https://github.com/curiousily/Deep-Learning-For-Hackers

Time Series Forecasting 164

References

+ TensorFlow - Time series forecasting”’

« Understanding LSTM Networks®*

*%https://www.tensorflow.org/tutorials/structured_data/time_series
*1https://colah.github.io/posts/2015-08-Understanding-LSTMs/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/tutorials/structured_data/time_series
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.tensorflow.org/tutorials/structured_data/time_series
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cryptocurrency price prediction using
LSTMs

TL;DR Build and train an Bidirectional LSTM Deep Neural Network for Time Series
prediction in TensorFlow 2. Use the model to predict the future Bitcoin price.

Complete source code in Google Colaboratory Notebook*'!

This time you’ll build a basic Deep Neural Network model to predict Bitcoin price based on historical
data. You can use the model however you want, but you carry the risk for your actions.

You might be asking yourself something along the lines:
Can I still get rich with cryptocurrency?

Of course, the answer is fairly nuanced. Here, we’ll have a look at how you might build a model to
help you along the crazy journey.

Or you might be having money problems? Here is one possible solution®'*:

Here is the plan:

. Cryptocurrency data overview

. Time Series

. Data preprocessing

. Build and train LSTM model in TensorFlow 2
. Use the model to predict future Bitcoin price

Gl W N

Data Overview

Our dataset comes from Yahoo! Finance?'* and covers all available (at the time of this writing) data
on Bitcoin-USD price. Let’s load it into a Pandas dataframe:

*!https://colab.research.google.com/drive/ 1w WvtA5RC6-is6J8W86wzK52Knr3N1Xbm

#https://www.youtube.com/watch?v=C-m3RtoguAQ

*Phttps://finance.yahoo.com/quote/BTC-USD/history?period 1=1279314000&period2=1556053200&interval=1d&filter=history&frequency=
1d

https://colab.research.google.com/drive/1wWvtA5RC6-is6J8W86wzK52Knr3N1Xbm
https://www.youtube.com/watch?v=C-m3RtoguAQ
https://finance.yahoo.com/quote/BTC-USD/history?period1=1279314000&period2=1556053200&interval=1d&filter=history&frequency=1d
https://colab.research.google.com/drive/1wWvtA5RC6-is6J8W86wzK52Knr3N1Xbm
https://www.youtube.com/watch?v=C-m3RtoguAQ
https://finance.yahoo.com/quote/BTC-USD/history?period1=1279314000&period2=1556053200&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/BTC-USD/history?period1=1279314000&period2=1556053200&interval=1d&filter=history&frequency=1d

Bw N

Cryptocurrency price prediction using LSTMs 166

csv_path = "https://raw.githubusercontent.com/curiousily/Deep-Learning-For-Hackers/m\
aster/data/3.stock-prediction/BTC-USD.csv"

df = pd.read_csv(csv_path, parse_dates=['Date'])

df = df.sort_values('Date")

Note that we sort the data by Date just in case. Here is a sample of the data we’re interested in:

Date Close

2010-07-16 0.04951
2010-07-17 0.08584
2010-07-18 0.08080
2010-07-19 0.07474
2010-07-20 0.07921

We have a total of 3201 data points representing Bitcoin-USD price for 3201 days (~9 years). We're
interested in predicting the closing price for future dates.

20000
—— Close
17500
15000

12500

10000

7500

Close Price (USD)

5000

2500

> Y 2B S\ B P 3 P 2%

Of course, Bitcoin made some people really rich?** and for some went really poor. The question
remains though, will it happen again? Let’s have a look at what one possible model thinks about
that. Shall we?

*https://www.reddit.com/r/Bitcoin/comments/7j653t/what_does_it_feel_to_be_rich_beacuse_of_bitcoin/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.reddit.com/r/Bitcoin/comments/7j653t/what_does_it_feel_to_be_rich_beacuse_of_bitcoin/
https://www.reddit.com/r/Bitcoin/comments/7j653t/what_does_it_feel_to_be_rich_beacuse_of_bitcoin/

Cryptocurrency price prediction using LSTMs 167

Time Series

Our dataset is somewhat different from our previous examples. The data is sorted by time and
recorded at equal intervals (1 day). Such a sequence of data is called Time Series*.

Temporal datasets are quite common in practice. Your energy consumption and expenditure
(calories in, calories out), weather changes, stock market, analytics gathered from the users for your
product/app and even your (possibly in love) heart produce Time Series.

You might be interested in a plethora of properties regarding your Time Series - stationarity,
seasonality and autocorrelation are some of the most well known.

Autocorrelation is the correlation of data points separated by some interval (known as lag).

Seasonality refers to the presence of some cyclical pattern at some interval (no, it doesn’t have to
be every spring).
A time series is said to be stationarity if it has constant mean and variance. Also, the covariance is

independent of the time.

One obvious question you might ask yourself while watching at Time Series data is: “Does the value
of the current time step affects the next one?” a.k.a. Time Series forecasting.

There are many approaches that you can use for this purpose. But we’ll build a Deep Neural Network
that does some forecasting for us and use it to predict future Bitcoin price.

Modeling

All models we’ve built so far do not allow for operating on sequence data. Fortunately, we can use
a special class of Neural Network models known as Recurrent Neural Networks (RNNs)** just for
this purpose. RNNs allow using the output from the model as a new input for the same model. The
process can be repeated indefinitely.

One serious limitation of RNN is the inability of capturing long-term dependencies®” in a sequence
(e.g. Is there a dependency between today‘s price and that 2 weeks ago?). One way to handle the
situation is by using an Long short-term memory (LSTM) variant of RNN.

The default LSTM?*® behavior is remembering information for prolonged periods of time. Let’s see
how you can use LSTM in Keras.

Data preprocessing

First, we're going to squish our price data in the range [0, 1]. Recall that this will help our
optimization algorithm converge faster:

*Phttps://en.wikipedia.org/wiki/Time_series
*1Shttps://en.wikipedia.org/wiki/Recurrent_neural_network
*'https://colah.github.io/posts/2015-08-Understanding-LSTMs/
*18https://en.wikipedia.org/wiki/Long_short-term_memory

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://en.wikipedia.org/wiki/Long_short-term_memory

g b W N =

Cryptocurrency price prediction using LSTMs 168

source: Andrew Ng**’

We’re going to use the MinMaxScaler?”® from scikit learn®*:

scaler = MinMaxScaler()
close_price = df.Close.values.reshape(-1, 1)

scaled_close = scaler.fit_transform(close_price)

The scaler expects the data to be shaped as (x, y), so we add a dummy dimension using reshape®*?
before applying it.

Let’s also remove NaNs since our model won’t be able to handle them well:

scaled_close = scaled_close[~np.isnan(scaled_close)]

scaled_close = scaled_close.reshape(-1, 1)

We use isnan®** as a mask to filter out NaN values. Again we reshape the data after removing the
NaNs.

Making sequences

LSTMs expect the data to be in 3 dimensions. We need to split the data into sequences of some preset
length. The shape we want to obtain is:

*Yhttps://www.andrewng.org/
*%https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. MinMaxScaler.html
*2thttps://scikit-learn.org/stable/index.html
**?https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
*#https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.andrewng.org/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/index.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html
https://www.andrewng.org/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/index.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html

© 00 N O O & W N =

NN NN NN NN S R R R s s
< 0 O B N SO0 O 0 N0 0 W,

1

1

Cryptocurrency price prediction using LSTMs 169

[batch_size, sequence_length, n_features]
We also want to save some data for testing. Let’s build some sequences:

SEQ_LEN = 100

def to_sequences(data, seq_len):
d =[]

for index in range(len(data) - seqg_len):
d.append(data[index: index + seq_len])

return np.array(d)
def preprocess(data_raw, seq_len, train_split):
data = to_sequences(data_raw, seq_len)

num_train = int(train_split * data.shape[Q])

X_train = data[:num_train, :-1, :]

y_train = data[:num_train, -1, :]

X_test = data[num_train:, :-1, :]

y_test = data[num_train:, -1, :]

return X_train, y_train, X_test, y_test

X_train, y_train, X_test, y_test =\
preprocess(scaled_close, SEQ_LEN, train_split = 0.95)

The process of building sequences works by creating a sequence of a specified length at position 0.
Then we shift one position to the right (e.g. 1) and create another sequence. The process is repeated
until all possible positions are used.

We save 5% of the data for testing. The datasets look like this:

X_train.shape

(2945, 99, 1)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

NN N N S R N N by s
W N PO O 0 N0 O WwN s,

Cryptocurrency price prediction using LSTMs

X_test.shape

(156, 99, 1)

Our model will use 2945 sequences representing 99 days of Bitcoin price changes each for training.
We’re going to predict the price for 156 days in the future (from our model POV).

Building LSTM model

We're creating a 3 layer LSTM?*** Recurrent Neural Network. We use Dropout?® with a rate of 20%

to combat overfitting during training:

DROPOUT = 0.2
WINDOW_SIZE = SEQ_LEN - 1

model = keras.Sequential()

model .add(Bidirectional(
CuDNNLSTM(WINDOW_SIZE, return_sequences=True),
input_shape=(WINDOW_SIZE, X_train.shape[-1])

))
model . add(Dropout (rate=DROPOUT))

model .add(Bidirectional(
CuDNNLSTM((WINDOW_SIZE * 2), return_sequences=True)

))
model . add(Dropout (rate=DROPOUT))

model .add(Bidirectional(
CuDNNLSTM(WINDOW_SIZE, return_sequences=False)

))
model .add(Dense(units=1))

model .add(Activation('linear'))

You might be wondering about what the deal with Bidirectional*** and CuDNNLSTM is?

Bidirectional RNNs**” allows you to train on the sequence data in forward and backward (reversed)
direction. In practice, this approach works well with LSTMs.

***https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/LSTM
*®https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/Dropout
*2https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/Bidirectional
**"https://maxwell.ict.griffith.edu.au/spl/publications/papers/ieeesp97_schuster.pdf

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/Bidirectional
https://maxwell.ict.griffith.edu.au/spl/publications/papers/ieeesp97_schuster.pdf
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/Bidirectional
https://maxwell.ict.griffith.edu.au/spl/publications/papers/ieeesp97_schuster.pdf

© 00 N O O & W N =

=
g b 0 N =~ O

Cryptocurrency price prediction using LSTMs 171

CuDNNLSTM?*® is a “Fast LSTM implementation backed by cuDNN”. Personally, I think it is a good
example of leaky abstraction, but it is crazy fast!

Our output layer has a single neuron (predicted Bitcoin price). We use Linear activation function*”’
which activation is proportional to the input.

Training
We’ll use Mean Squared Error®*® as a loss function and Adam®** optimizer.

BATCH_SIZE = 64

model . compile(
loss="mean_squared_error',

optimizer="adam'

)

history = model. fit(
X_train,
y_train,
epochs=50,

batch_size=BATCH_SIZE,
shuffle=False,
validation_split=0.1

Note that we do not want to shuffle the training data since we’re using Time Series.

After a lightning-fast training (thanks Google for the free T4 GPUs), we have the following training
loss:

**%https://www.tensorflow.org/api_docs/python/tf/keras/layers/ CuDNNLSTM
**’https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html#linear
#%https://en.wikipedia.org/wiki/Mean_squared_error
#https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/optimizers/Adam

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/CuDNNLSTM
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html#linear
https://en.wikipedia.org/wiki/Mean_squared_error
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/optimizers/Adam
https://www.tensorflow.org/api_docs/python/tf/keras/layers/CuDNNLSTM
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html#linear
https://en.wikipedia.org/wiki/Mean_squared_error
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/optimizers/Adam

Cryptocurrency price prediction using LSTMs 172

model loss
train
0.08 test
0.06
[74]
7]
2 0.04
0.02 /
//\/\,/\/
e SR .
0.00 - -
0 10 20 30 40 50
epoch

Predicting Bitcoin price
Let’s make our model predict Bitcoin prices!

1 y_hat = model.predict(X_test)

We can use our scaler to invert the transformation we did so the prices are no longer scaled in the
[0, 1] range.

1 y_test_inverse = scaler.inverse_transform(y_test)
2 y_hat_inverse = scaler.inverse_transform(y_hat)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Cryptocurrency price prediction using LSTMs 173

Bitcoin price prediction

—— Actual Price
—— Predicted Price

6000

5000

Price

4000

3000

0 20 40 60 80 100 120 140 160
Time [days]

Our rather succinct model seems to do well on the test data. Care to try it on other currencies?

Conclusion

Congratulations, you just built a Bidirectional LSTM Recurrent Neural Network in TensorFlow 2.
Our model (and preprocessing “pipeline”) is pretty generic and can be used for other datasets.

Complete source code in Google Colaboratory Notebook**?

One interesting direction of future investigation might be analyzing the correlation between
different cryptocurrencies and how would that affect the performance of our model.

**?https://colab.research.google.com/drive/ TwWvtA5RC6-is6]8W86wzK52Knr3N1Xbm

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1wWvtA5RC6-is6J8W86wzK52Knr3N1Xbm
https://colab.research.google.com/drive/1wWvtA5RC6-is6J8W86wzK52Knr3N1Xbm

Demand Prediction for Multivariate
Time Series with LSTMs

TL;DR Learn how to predict demand using Multivariate Time Series Data. Build a
Bidirectional LSTM Neural Network in Keras and TensorFlow 2 and use it to make
predictions.

One of the most common applications of Time Series models is to predict future values. How the
stock market is going to change? How much will 1 Bitcoin cost tomorrow? How much coffee are
you going to sell next month?

This guide will show you how to use Multivariate (many features) Time Series data to predict future
demand. You’ll learn how to preprocess and scale the data. And you’re going to build a Bidirectional
LSTM Neural Network to make the predictions.

Here are the steps you’ll take:

« Data

+ Feature Engineering
« Exploration

« Preprocessing

« Predicting Demand
« Evaluation

Run the complete notebook in your browser?*?

The complete project on GitHub***

Data

Our data London bike sharing dataset®*® is hosted on Kaggle. It is provided by Hristo Mavrodiev?*°.
Thanks!

A bicycle-sharing system, public bicycle scheme, or public bike share (PBS) scheme, is a
service in which bicycles are made available for shared use to individuals on a short term
basis for a price or free. - Wikipedia®’

**3https://colab.research.google.com/drive/1k3PLdczAJOlrlprfhjZ-IRXzNhF]_OTN
***https://github.com/curiousily/Deep- Learning-For-Hackers
***https://www.kaggle.com/hmavrodiev/london-bike- sharing-dataset
#%https://www.kaggle.com/hmavrodiev
*"https://en.wikipedia.org/wiki/Bicycle-sharing_system

https://colab.research.google.com/drive/1k3PLdczAJOIrIprfhjZ-IRXzNhFJ_OTN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.kaggle.com/hmavrodiev/london-bike-sharing-dataset
https://www.kaggle.com/hmavrodiev
https://en.wikipedia.org/wiki/Bicycle-sharing_system
https://colab.research.google.com/drive/1k3PLdczAJOIrIprfhjZ-IRXzNhFJ_OTN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.kaggle.com/hmavrodiev/london-bike-sharing-dataset
https://www.kaggle.com/hmavrodiev
https://en.wikipedia.org/wiki/Bicycle-sharing_system

g b W N =

Demand Prediction for Multivariate Time Series with LSTMs 175

Our goal is to predict the number of future bike shares given the historical data of London bike
shares. Let’s download the data:

Igdown --id 1nPw@71R3tZi4zqVcmXA6kXVTe43Ex6K3 --output london_bike_sharing.csv
and load it into a Pandas data frame:

df = pd.read_csv(
"london_bike_sharing.csv",
parse_dates=['timestamp'],
index_col="timestamp"

Pandas is smart enough to parse the timestamp strings as DateTime objects. What do we have? We
have 2 years of bike-sharing data, recorded at regular intervals (1 hour). And in terms of the number
of rows:

df .shape

(17414, 9)
That might do. What features do we have?

« timestamp - timestamp field for grouping the data

« cnt - the count of a new bike shares

« t1 - real temperature in C

« t2 - temperature in C “feels like”

« hum - humidity in percentage

+ wind_speed - wind speed in km/h

« weather_code - category of the weather

« is_holiday - boolean field - 1 holiday / 0 non holiday

« is_weekend - boolean field - 1 if the day is weekend

« season - category field meteorological seasons: 0-spring ; 1-summer; 2-fall; 3-winter.

How well can we predict future demand based on the data?

Feature Engineering

We'll do a little bit of engineering:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Bw N

Demand Prediction for Multivariate Time Series with LSTMs 176

hour'] = df.index.hour

day_of_week'] = df.index.dayofweek

af[
df['day_of_month'] = df.index.day
df[
df['month'] = df.index.month

All new features are based on the timestamp. Let’s dive deeper into the data.

Exploration

Let’s start simple. Let’s have a look at the bike shares over time:
8000
7000
6000

5000

‘€ 4000
[}
3000
2000

1000

2015-01 2015-04 2015-07 2015-10 2016-01 2016-04 2016-07 2016-10 2017-01
timestamp

That’s a bit too crowded. Let’s have a look at the same data on a monthly basis:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Demand Prediction for Multivariate Time Series with LSTMs 177
1200000
1000000
800000
£ 600000
400000
200000

0

2015-01 2015-04 2015-07 2015-10 2016-01 2016-04 2016-07 2016-10 2017-01
timestamp

Our data seems to have a strong seasonality component. Summer months are good for business.

How about the bike shares by the hour:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Demand Prediction for Multivariate Time Series with LSTMs 178

3000
2500
2000

I

S 1500
1000

500

10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

o
=
N
w
IS
s,
o
~
[e)
O

3000 is_holiday
e 0.0

e 10

2500

2000

I=
5 1500
1000

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

4000

is_weekend

3500 e 00
e 1.0

3000
2500
€ 2000
9
1500
1000
500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

4000

season
e 0.0
e 10
e 20
e 30

3500
3000
2500

22000

9
1500
1000

500 4

some! Find me at https://www.curiousily.com/ if you have questions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

Demand Prediction for Multivariate Time Series with LSTMs 179

The hours with most bike shares differ significantly based on a weekend or not days. Workdays
contain two large spikes during the morning and late afternoon hours (people pretend to work in
between). On weekends early to late afternoon hours seem to be the busiest.

1300
1250
1200
1150
=
L 1100
1050
1000

950

0 1 2 3 4 5 6
day_of week

season
1600 e 00
1.0

1400 2.0
e 3.0

1200
o

|
;7

1000 1 1 ~——

800

600

0 1 2 3 4 5 6
day_of week

Looking at the data by day of the week shows a much higher count on the number of bike shares.

Our little feature engineering efforts seem to be paying off. The new features separate the data very
well.

Preprocessing

We'll use the last 10% of the data for testing:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Bw N

© 00 N O O & W N =

RN
= O

<~ O U s W N

Demand Prediction for Multivariate Time Series with LSTMs

train_size = int(len(df) * 0.9)

test_size = len(df) - train_size

train, test = df.iloc[0:train_size], df.iloc[train_size:len(df)]
print(len(train), len(test))

15672 1742
We'll scale some of the features we're using for our modeling:

f_columns = ['t1', 't2', 'hum', 'wind_speed']

f_transformer = RobustScaler()

f_transformer = f_transformer.fit(train[f_columns].to_numpy())
train.loc[:, f_columns] = f_transformer.transform(

train[f_columns].to_numpy()

test.loc[:, f_columns] = f_transformer.transform(
test[f_columns] .to_numpy()

We’ll also scale the number of bike shares too:

cnt_transformer = RobustScaler()

cnt_transformer = cnt_transformer. fit(train[['cnt']])

train['cnt'] = cnt_transformer.transform(train[['cnt']])

test['cnt'] = cnt_transformer.transform(test[['cnt']])

To prepare the sequences, we're going to reuse the same create_dataset() function:

180

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

o N O O b W N =

© 00 N O O & W N =

SN
N O

Demand Prediction for Multivariate Time Series with LSTMs 181

def create_dataset(X, y, time_steps=1):

Xs, ys = [I, []

for i in range(len(X) - time_steps):
v = X.iloc[i:(i + time_steps)].values
Xs.append(v)
ys.append(y.iloc[i + time_steps])

return np.array(Xs), np.array(ys)
Each sequence is going to contain 10 data points from the history:

time_steps = 10
reshape to [samples, time_steps, n_features]

X_train, y_train = create_dataset(train, train.cnt, time_steps)
X_test, y_test = create_dataset(test, test.cnt, time_steps)

print(X_train.shape, y_train.shape)

(15662, 10, 13) (15662,)

Our data is not in the correct format for training an LSTM model. How well can we predict the
number of bike shares?

Predicting Demand

Let’s start with a simple model and see how it goes. One layer of Bidirectional®** LSTM with a
Dropout layer®*:

model = keras.Sequential()
model . add(
keras.layers.Bidirectional(
keras. layers.LSTM(
units=128,
input_shape=(X_train.shape[1], X_train.shape[2])

)
model .add(keras. layers.Dropout(rate=0.2))

model .add(keras. layers.Dense(units=1))

model .compile(loss='mean_squared_error', optimizer='adam')

**%https://www.tensorflow.org/api_docs/python/tf/keras/layers/Bidirectional
**https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Bidirectional
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Bidirectional
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout

=~ O U s W N

Demand Prediction for Multivariate Time Series with LSTMs 182

Remember to NOT shuffle the data when training:

history = model.fit(
X_train, y_train,
epochs=30,
batch_size=32,
validation_split=0.1,
shuffle=False

Evaluation

Here’s what we have after training our model for 30 epochs:

— train
0.30 test

0.25
0.20
0.15

0.10

You can see that the model learns pretty quickly. At about epoch 5, it is already starting to overfit
a bit. You can play around - regularize it, change the number of units, etc. But how well can we
predict demand with it?

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Demand Prediction for Multivariate Time Series with LSTMs 183

8000 —— history

—— true
7000 —— prediction

6000

5000

Bike Count
N
o
o
o

3000

2000

1000

0 2500 5000 7500 10000 12500 15000 17500
Time Step

That might be too much for your eyes. Let’s zoom in on the predictions:

5000 —— true

—— prediction

4000

3000

Bike Count

N
o
o
o

L

Note that our model is predicting only one point in the future. That being said, it is doing very
well. Although our model can’t really capture the extreme values it does a good job of predicting
(understanding) the general pattern.

o

250 500 750 1000 1250 1500 1750
Time Step

Conclusion

You just took a real dataset, preprocessed it, and used it to predict bike-sharing demand. You’ve used
a Bidirectional LSTM model to train it on subsequences from the original dataset. You even got some
very good results.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Demand Prediction for Multivariate Time Series with LSTMs 184

Here are the steps you took:

+ Data

+ Feature Engineering
« Exploration

« Preprocessing

« Predicting Demand
« Evaluation

Run the complete notebook in your browser**°

The complete project on GitHub**'
Are there other applications of LSTMs for Time Series data?

References

« TensorFlow - Time series forecasting**

« Understanding LSTM Networks®**
« London bike sharing dataset***

**%https://colab.research.google.com/drive/1k3PLdczAJOIrlprfhjZ-IRXzNhF]_OTN
**Thttps://github.com/curiousily/Deep- Learning-For-Hackers
***https://www.tensorflow.org/tutorials/structured_data/time_series
***https://colah.github.io/posts/2015-08-Understanding-LSTMs/
***https://www.kaggle.com/hmavrodiev/london-bike-sharing-dataset

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1k3PLdczAJOIrIprfhjZ-IRXzNhFJ_OTN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.tensorflow.org/tutorials/structured_data/time_series
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.kaggle.com/hmavrodiev/london-bike-sharing-dataset
https://colab.research.google.com/drive/1k3PLdczAJOIrIprfhjZ-IRXzNhFJ_OTN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.tensorflow.org/tutorials/structured_data/time_series
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.kaggle.com/hmavrodiev/london-bike-sharing-dataset

Time Series Classification for Human
Activity Recognition with LSTMs in
Keras

TL;DR Learn how to classify Time Series data from accelerometer sensors using LSTMs
in Keras

Can you use Time Series data to recognize user activity from accelerometer data? Your phone/wrist-
band/watch is already doing it. How well can you do it?

We’ll use accelerometer data, collected from multiple users, to build a Bidirectional LSTM model
and try to classify the user activity. You can deploy/reuse the trained model on any device that has
an accelerometer (which is pretty much every smart device).

This is the plan:

» Load Human Activity Recognition Data
« Build LSTM Model for Classification
« Evaluate the Model

Run the complete notebook in your browser**’

The complete project on GitHub**¢

Human Activity Data

Our data is collected through controlled laboratory conditions. It is provided by the WISDM:
Wlreless Sensor Data Mining**’ lab.

The data is used in the paper: Activity Recognition using Cell Phone Accelerometers®*®. Take a look
at the paper to get a feel of how well some baseline models are performing.

Loading the Data

Let’s download the data:

**>https://colab.research.google.com/drive/ 1hxq4- A4SZYfKqmqfwP5Y0c01uElmnpq6
**Shttps://github.com/curiousily/Deep-Learning-For-Hackers
**"http://www.cis.fordham.edu/wisdm/dataset.php
***http://www.cis.fordham.edu/wisdm/includes/files/sensorKDD-2010.pdf

https://colab.research.google.com/drive/1hxq4-A4SZYfKqmqfwP5Y0c01uElmnpq6
https://github.com/curiousily/Deep-Learning-For-Hackers
http://www.cis.fordham.edu/wisdm/dataset.php
http://www.cis.fordham.edu/wisdm/dataset.php
http://www.cis.fordham.edu/wisdm/includes/files/sensorKDD-2010.pdf
https://colab.research.google.com/drive/1hxq4-A4SZYfKqmqfwP5Y0c01uElmnpq6
https://github.com/curiousily/Deep-Learning-For-Hackers
http://www.cis.fordham.edu/wisdm/dataset.php
http://www.cis.fordham.edu/wisdm/includes/files/sensorKDD-2010.pdf

© 00 N O O b W N =

= ==Y
© 00 N O O b W N =~ O

Time Series Classification for Human Activity Recognition with LSTMs in Keras

186

Igdown --id 152sWECuk jvLerrVG2NUO8gtMFg83RKCF --output WISDM_ar_latest.tar.gz

ltar -xvf WISDM_ar_latest.tar.gz

< 9

The raw file is missing column names. Also, one of the columns is having an extra
value. Let’s fix that:

column_names = |
'user_id’,
'activity',
'timestamp’,
'x_axis',
'y_axis',

'z_axis'

df = pd.read_csv(
'"WISDM_ar_v1.1/WISDM_ar_vi1.1_raw.txt',
header=None,

names=column_names

df.z_axis.replace(regex=True, inplace=True, to_replace=r';', value=r'")
df['z_axis'] = df.z_axis.astype(np.float64)

df.dropna(axis=0, how='any', inplace=True)

df .shape

(1098203, 6)
The data has the following features:

« user_id - unique identifier of the user doing the activity
« activity - the category of the current activity

e timestamp

e x_axis, y_axis, z_axis - accelerometer data for each axis

What can we learn from the data?

Exploration

We have six different categories. Let’s look at their distribution:

> after each

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Time Series Classification for Human Activity Recognition with LSTMs in Keras 187

Walking Jogging Upstairs Downstairs Sitting Standing
activity

400000

350000

300000

250000

count

200000

150000

100000

50000

Walking and jogging are severely overrepresented. You might apply some techniques to balance the
dataset.

We have multiple users. How much data do we have per user?

Records per user

50000
40000
I
> 30000
o
o
20000
N IIII
0
20 19 31 8 29 14 13 34 32 21 3 27 10 18 12 26 36 11 7 6 33 5 15 24 23 30 2 35 22 17 28 16 25 9 4

user_|d

Most users (except the last 3) have a decent amount of records.

How do different types of activities look like? Let’s take the first 200 records and have a look:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Time Series Classification for Human Activity Recognition with LSTMs in Keras 188

Sitting

3.5
3.0 —— X_axis
2.5

2.0

10.0
95 —— y_axis

9.0

2.0

15 —— z_axis

1.0

0.5

%1%

60
i >

'ﬂ\’b‘@ ﬁxﬂ% 11\’0‘60 ﬂ@ﬂs 1’9600

Sitting is well, pretty relaxed. How about jogging?

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Time Series Classification for Human Activity Recognition with LSTMs in Keras 189

Jogging

5 —— X_axis

10 —— y_axis

10
—— Z_axis

-10

Q 02l N 1% ,\QQ ,\"f) ,\()Q ,\’\‘)

This looks much bouncier. Good, the type of activities can be separated/classified by observing the
data (at least for that sample of those 2 activities).

We need to figure out a way to turn the data into sequences along with the category for each one.

Preprocessing

The first thing we need to do is to split the data into training and test datasets. We’ll use the data
from users with id below or equal to 30. The rest will be for training:

df_train = df[df['user_id'] <= 30]
df_test = df[df['user_id'] > 30]

Next, we’ll scale the accelerometer data values:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O© 00 I O O b W N =

[=N
w N =~ O

o N O O b W N =

© 00 1 O O b W N =

NN
= O

Time Series Classification for Human Activity Recognition with LSTMs in Keras

scale_columns = ['x_axis', 'y_axis', 'z_axis']

scaler = RobustScaler()

scaler = scaler.fit(df_train[scale_columns])
df_train.loc[:, scale_columns] = scaler.transform(

df_train[scale_columns] .to_numpy()

df_test.loc[:, scale_columns] = scaler.transform(

df_test[scale_columns].to_numpy()

190

Note that we fit the scaler only on the training data. How can we create the sequences? We’ll just

modify the create_dataset function a bit:

def create_dataset(X, y, time_steps=1, step=1):

Xs, ys =[], []

for i in range(9, len(X) - time_steps, step):
v = X.iloc[i:(i + time_steps)].values
labels = y.iloc[i: i + time_steps]
Xs.append(v)
ys.append(stats.mode(labels)[0] [0])

return np.array(Xs), np.array(ys).reshape(-1, 1)

249

We choose the label (category) by using the mode

Here’s how to create the sequences:

TIME_STEPS = 200
STEP = 40

X_train, y_train = create_dataset(
df_train[['x_axis', 'y_axis', 'z_axis']],
df_train.activity,

TIME_STEPS,
STEP

X_test, y_test = create_dataset(

***https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html

of all categories in the sequence. That is, given
a sequence of length time_steps, we're are classifying it as the category that occurs most often.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html

12
13
14
15
16

O O b W N

O© 00 1 O O b W N =

N
)

Time Series Classification for Human Activity Recognition with LSTMs in Keras 191

df_test[['x_axis', 'y_axis', 'z_axis']],
df_test.activity,

TIME_STEPS,

STEP

Let’s have a look at the shape of the new sequences:

print(X_train.shape, y_train.shape)

(22454, 200, 3) (22454, 1)

We have significantly reduced the amount of training and test data. Let’s hope that our model will
still learn something useful.

The last preprocessing step is the encoding of the categories:

enc = OneHotEncoder (handle_unknown="ignore', sparse=False)
enc = enc.fit(y_train)

y_train = enc.transform(y_train)
y_test = enc.transform(y_test)

Done with the preprocessing! How good our model is going to be at recognizing user activities?

Classifying Human Activity

We'll start with a simple Bidirectional LSTM model. You can try and increase the complexity. Note
that the model is relatively slow to train:

model = keras.Sequential()
model . add(
keras.layers.Bidirectional(
keras. layers.LSTM(
units=128,
input_shape=[X_train.shape[1], X_train.shape[2]]

)
model .add(keras. layers.Dropout(rate=0.5))

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

11
12
13
14
15
16
17
18

=~ O O b W N =

Time Series Classification for Human Activity Recognition with LSTMs in Keras 192

model .add(keras. layers.Dense(units=128, activation='relu'))

model .add(keras. layers.Dense(y_train.shape[1], activation='softmax'))

model . compile(

loss="'categorical _crossentropy',

optimizer="adam',

metrics=["'acc']

The actual training progress is straightforward (remember to not shuffle):

history = model. fit(

X_train, y_train,
epochs=20,
batch_size=32,
validation_split=0.1,
shuffle=False

How good is our model?

Evaluation

Here’s how the training process went:

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Yo

—— train
test

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5

u can surely come up with a better model/hyperparameters and improve it. How well can it predict

the test data?

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Time Series Classification for Human Activity Recognition with LSTMs in Keras 193

model .evaluate(X_test, y_test)

[0.3619675412960649, ©.8790064]

~88% accuracy. Not bad for a quick and dirty model. Let’s have a look at the confusion matrix:

y_pred = model.predict(X_test)

2
©
% 1500
c
E
o
a
()]
c
D
g -1200
()]
£
k=]
e -900
2
[}
<
(o)
£
e
S
-600
2
5
%)
o
> 300
()]
c
£
©
=
0
Downstairs Jogging Sitting Standing Upstairs Walking
Predicted

Our model is confusing the Upstairs and Downstairs activities. That’s somewhat expected. Addi-
tionally, when developing a real-world application, you might merge those two and consider them
a single class/category. Recall that there is a significant imbalance in our dataset, too.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Time Series Classification for Human Activity Recognition with LSTMs in Keras 194

Conclusion

You did it! You’ve build a model that recognizes activity from 200 records of accelerometer data.
Your model achieves ~88% accuracy on the test data. Here are the steps you took:

+ Load Human Activity Recognition Data
« Build LSTM Model for Classification
« Evaluate the Model

You learned how to build a Bidirectional LSTM model and classify Time Series data. There is even
more fun with LSTMs and Time Series coming next :)

Run the complete notebook in your browser**°

The complete project on GitHub***

References

« TensorFlow - Time series forecasting?*?

« Understanding LSTM Networks®>
« WISDM: Wlreless Sensor Data Mining?**

°https://colab.research.google.com/drive/1hxq4- A4SZYfKqmqfwP5Y0c01uElmnpq6
**Thttps://github.com/curiousily/Deep- Learning-For-Hackers
*5?https://www.tensorflow.org/tutorials/structured_data/time_series
*>https://colah.github.io/posts/2015-08-Understanding-LSTMs/
***http://www.cis.fordham.edu/wisdm/dataset.php

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1hxq4-A4SZYfKqmqfwP5Y0c01uElmnpq6
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.tensorflow.org/tutorials/structured_data/time_series
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.cis.fordham.edu/wisdm/dataset.php
https://colab.research.google.com/drive/1hxq4-A4SZYfKqmqfwP5Y0c01uElmnpq6
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.tensorflow.org/tutorials/structured_data/time_series
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.cis.fordham.edu/wisdm/dataset.php

Time Series Anomaly Detection with
LSTM Autoencoders using Keras in
Python

TL;DR Detect anomalies in S&P 500 daily closing price. Build LSTM Autoencoder Neural
Net for anomaly detection using Keras and TensorFlow 2.

This guide will show you how to build an Anomaly Detection model for Time Series data. You’ll
learn how to use LSTMs and Autoencoders in Keras and TensorFlow 2. We’ll use the model to find
anomalies in S&P 500 daily closing prices.

This is the plan:

« Anomaly Detection

o LSTM Autoencoders

o S&P 500 Index Data

« LSTM Autoencoder in Keras
« Finding Anomalies

Run the complete notebook in your browser?>’

The complete project on GitHub*°

Anomaly Detection

Anomaly detection®” refers to the task of finding/identifying rare events/data points. Some appli-
cations include - bank fraud detection, tumor detection in medical imaging, and errors in written
text.

A lot of supervised and unsupervised approaches to anomaly detection has been proposed. Some
of the approaches include - One-class SVMs, Bayesian Networks, Cluster analysis, and (of course)
Neural Networks.

We will use an LSTM Autoencoder Neural Network to detect/predict anomalies (sudden price
changes) in the S&P 500 index.

*3https://colab.research.google.com/drive/1IMrBsc03YLYN81qAhFGToIFRMDoh3MAoM
*https://github.com/curiousily/Deep-Learning-For-Hackers
*"https://en.wikipedia.org/wiki/Anomaly_detection

https://colab.research.google.com/drive/1MrBsc03YLYN81qAhFGToIFRMDoh3MAoM
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Anomaly_detection
https://colab.research.google.com/drive/1MrBsc03YLYN81qAhFGToIFRMDoh3MAoM
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Anomaly_detection

1

Time Series Anomaly Detection with LSTM Autoencoders using Keras in Python 196

LSTM Autoencoders

Autoencoders Neural Networks®*® try to learn data representation of its input. So the input of the
Autoencoder is the same as the output? Not quite. Usually, we want to learn an efficient encoding
that uses fewer parameters/memory.

The encoding should allow for output similar to the original input. In a sense, we’re forcing the
model to learn the most important features of the data using as few parameters as possible.

Anomaly Detection with Autoencoders

Here are the basic steps to Anomaly Detection using an Autoencoder:

1. Train an Autoencoder on normal data (no anomalies)

2. Take a new data point and try to reconstruct it using the Autoencoder

3. If the error (reconstruction error) for the new data point is above some threshold, we label the
example as an anomaly

Good, but is this useful for Time Series Data? Yes, we need to take into account the temporal
properties of the data. Luckily, LSTMs can help us with that.

S&P 500 Index Data

Our data is the daily closing prices for the S&P 500 index from 1986 to 2018.

The S&P 500, or just the S&P, is a stock market index that measures the stock performance
of 500 large companies listed on stock exchanges in the United States. It is one of the
most commonly followed equity indices, and many consider it to be one of the best
representations of the U.S. stock market. -Wikipedia**’

It is provided by Patrick David®*® and hosted on Kaggle***. The data contains only two columns/fea-

tures - the date and the closing price. Let’s download and load into a Data Frame:

Igdown --id 10vdMg_RazolatwrTT7azKFX4P020ebU76 --output spx.csv

***https://en.wikipedia.org/wiki/Autoencoder
*>*https://en.wikipedia.org/wiki/S%26P_500_Index
?https://twitter.com/pdquant
**Thttps://www.kaggle.com/pdquant/sp500-daily- 19862018

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/S&P_500_Index
https://twitter.com/pdquant
https://www.kaggle.com/pdquant/sp500-daily-19862018
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/S&P_500_Index
https://twitter.com/pdquant
https://www.kaggle.com/pdquant/sp500-daily-19862018

1

Bsw N

Time Series Anomaly Detection with LSTM Autoencoders using Keras in Python 197

df = pd.read_csv('spx.csv', parse_dates=['date'], index_col='date')

Let’s have a look at the daily close price:

3000
—— close price

2500
2000
1500

1000

500

1988 1992 1996 2000 2004 2008 2012 2016 2020

That trend (last 8 or so years) looks really juicy. You might want to board the train. When should
you buy or sell? How early can you “catch” sudden changes/anomalies?

Preprocessing

We’ll use 95% of the data and train our model on it:

train_size = int(len(df) * 0.95)

test_size = len(df) - train_size

train, test = df.iloc[0:train_size], df.iloc[train_size:len(df)]
print(train.shape, test.shape)

(7782, 1) (410, 1)

Next, we’ll rescale the data using the training data and apply the same transformation to the test
data:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

=N O O B~ W N =~ O O b W N =

© 00 N O O b W N =

N =N
N O O b 0N~

Time Series Anomaly Detection with LSTM Autoencoders using Keras in Python

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler = scaler.fit(train[['close']])

train['close'] = scaler.transform(train[['close']])

test['close'] = scaler.transform(test[['close']])
Finally, we’ll split the data into subsequences. Here’s the little helper function for that:

def create_dataset(X, y, time_steps=1):
Xs, ys =[], []
for i in range(len(X) - time_steps):
v = X.iloc[i:(i + time_steps)].values
Xs.append(v)
ys.append(y.iloc[i + time_steps])
return np.array(Xs), np.array(ys)

We'll create sequences with 30 days worth of historical data:
TIME_STEPS = 30
reshape to [samples, time_steps, n_rfeatures]
X_train, y_train = create_dataset(

train[['close']],

train.close,
TIME_STEPS

X_test, y_test = create_dataset(
test[['close']],
test.close,
TIME_STEPS

print(X_train.shape)

(7752, 30, 1)

The shape of the data looks correct. How can we make LSTM Autoencoder in Keras?

198

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

T S =
O O B W N =~ O

~ O O b W N =

Time Series Anomaly Detection with LSTM Autoencoders using Keras in Python 199

LSTM Autoencoder in Keras

Our Autoencoder should take a sequence as input and outputs a sequence of the same shape. Here’s
how to build such a simple model in Keras:

model = keras.Sequential()
model .add(keras. layers.LSTM(
units=64,
input_shape=(X_train.shape[1], X_train.shape[2])
))
model .add(keras. layers.Dropout(rate=0.2))
model .add(keras. layers.RepeatVector (n=X_train.shape[1]))
model .add(keras. layers.LSTM(units=64, return_sequences=True))
model .add(keras. layers.Dropout(rate=0.2))
model . add(
keras.layers.TimeDistributed(
keras.layers.Dense(units=X_train.shape[2])

model .compile(loss='mae', optimizer='adam')

There are a couple of things that might be new to you in this model. The RepeatVector** layer
simply repeats the input n times. Adding return_sequences=True in LSTM layer makes it return the
sequence.

Finally, the TimeDistributed**® layer creates a vector with a length of the number of outputs from
the previous layer. Your first LSTM Autoencoder is ready for training.

Training the model is no different from a regular LSTM model:

history = model. fit(
X_train, y_train,
epochs=10,
batch_size=32,
validation_split=0.1,
shuffle=False

**https://www.tensorflow.org/api_docs/python/tf/keras/layers/RepeatVector
*$>https://www.tensorflow.org/api_docs/python/tf/keras/layers/TimeDistributed

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/RepeatVector
https://www.tensorflow.org/api_docs/python/tf/keras/layers/TimeDistributed
https://www.tensorflow.org/api_docs/python/tf/keras/layers/RepeatVector
https://www.tensorflow.org/api_docs/python/tf/keras/layers/TimeDistributed

Time Series Anomaly Detection with LSTM Autoencoders using Keras in Python 200

Evaluation

We’ve trained our model for 10 epochs with less than 8k examples. Here are the results:

0.24]
—— train
test

0.20

0.18

0.14
0.12
0.10

0.08

Finding Anomalies

Still, we need to detect anomalies. Let’s start with calculating the Mean Absolute Error (MAE) on
the training data:

X_train_pred = model .predict(X_train)

train_mae_loss = np.mean(np.abs(X_train_pred - X_train), axis=1)

Let’s have a look at the error:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

a b w N

Time Series Anomaly Detection with LSTM Autoencoders using Keras in Python 201

0.0 0.2 0.4 0.6 0.8

We’ll pick a threshold of 0.65, as not much of the loss is larger than that. When the error is larger
than that, we’ll declare that example an anomaly:

THRESHOLD = ©0.65

Let’s calculate the MAE on the test data:

X_test_pred = model.predict(X_test)

test_mae_loss = np.mean(np.abs(X_test_pred - X_test), axis=1)

We’ll build a DataFrame containing the loss and the anomalies (values above the threshold):

test_score_df = pd.DataFrame(index=test[TIME_STEPS:].index)
test_score_df['loss'] = test_mae_loss

test_score_df['threshold'] = THRESHOLD

test_score_df['anomaly'] = test_score_df.loss > test_score_df.threshold
test_score_df['close'] = test[TIME_STEPS:].close

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Time Series Anomaly Detection with LSTM Autoencoders using Keras in Python 202

— loss
—— threshold

N r\\/m [

0.5

0.8

0.4
0.3

0.2

o>

o o3 o0 ol E\S) A o | Q0 ol
oM oM oM 2% 2% 2% 2° 20® 0% 202

Looks like we’re thresholding extreme values quite well. Let’s create a DataFrame using only those:
1 anomalies = test_score_df[test_score_df.anomaly == True]

Finally, let’s look at the anomalies found in the testing data:

2900
—— close price

« anomaly

2800
2700
2600
2500
2400

2300

N > ¥ 1 *] N N > ¥ y1
10\:‘ Q ’)53\’1 0 10\:‘) 7,0\3 Q 10\’1 9 10{\ ¥ 10@,0 10@,0 10\’%,0 10\,%,9
date

You should have a thorough look at the chart. The red dots (anomalies) are covering most of the
points with abrupt changes to the closing price. You can play around with the threshold and try to
get even better results.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Time Series Anomaly Detection with LSTM Autoencoders using Keras in Python 203

Conclusion

You just combined two powerful concepts in Deep Learning - LSTMs and Autoencoders. The result
is a model that can find anomalies in S&P 500 closing price data. You can try to tune the model
and/or the threshold to get even better results.

Here’s a recap of what you did:

+ Anomaly Detection

o LSTM Autoencoders

o S&P 500 Index Data

o LSTM Autoencoder in Keras
« Finding Anomalies

Run the complete notebook in your browser®*
The complete project on GitHub?*
Can you apply the model to your dataset? What results did you get?

References

« TensorFlow - Time series forecasting?*®

« Understanding LSTM Networks?**’
« Step-by-step understanding LSTM Autoencoder layers**®
« S&P500 Daily Prices 1986 - 2018%¢°

?**https://colab.research.google.com/drive/1IMrBsc03YLYN81qAhFGToIFRMDoh3MAoM

% https://github.com/curiousily/Deep- Learning-For-Hackers
*$Shttps://www.tensorflow.org/tutorials/structured_data/time_series
**"https://colah.github.io/posts/2015-08-Understanding-LSTMs/
*%*https://towardsdatascience.com/step-by- step-understanding-1stm-autoencoder-layers- ffab055b6352
*https://www.kaggle.com/pdquant/sp500-daily-19862018

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1MrBsc03YLYN81qAhFGToIFRMDoh3MAoM
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.tensorflow.org/tutorials/structured_data/time_series
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/step-by-step-understanding-lstm-autoencoder-layers-ffab055b6352
https://www.kaggle.com/pdquant/sp500-daily-19862018
https://colab.research.google.com/drive/1MrBsc03YLYN81qAhFGToIFRMDoh3MAoM
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.tensorflow.org/tutorials/structured_data/time_series
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/step-by-step-understanding-lstm-autoencoder-layers-ffab055b6352
https://www.kaggle.com/pdquant/sp500-daily-19862018

Object Detection

TL;DR Learn how to prepare a custom dataset for object detection and detect vehicle
plates. Use transfer learning to finetune the model and make predictions on test images.

Detecting objects in images and video is a hot research topic and really useful in practice. The
advancement in Computer Vision (CV) and Deep Learning (DL) made training and running object
detectors possible for practitioners of all scale. Modern object detectors are both fast and much more
accurate (actually, usefully accurate).

This guide shows you how to fine-tune a pre-trained Neural Network on a large Object Detection
dataset. We'll learn how to detect vehicle plates from raw pixels. Spoiler alert, the results are not
bad at all!

You’ll learn how to prepare a custom dataset and use a library for object detection based on
TensorFlow and Keras. Along the way, we’ll have a deeper look at what Object Detection is and
what models are used for it.

Here’s what will do:

« Understand Object Detection

+ RetinaNet

« Prepare the Dataset

« Train a Model to Detect Vehicle Plates

Run the complete notebook in your browser®”

The complete project on GitHub?"*

Object Detection

Object detection®”* methods try to find the best bounding boxes around objects in images and videos.
It has a wide array of practical applications - face recognition, surveillance, tracking objects, and
more.

*"%https://colab.research.google.com/drive/1ldnii3sGJaUHPV6 TWImykbeE_O-8VIIN
*"Thttps://github.com/curiousily/Deep- Learning-For-Hackers
*"*https://en.wikipedia.org/wiki/Object_detection

https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Object_detection
https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Object_detection

Object Detection 205

A lot of classical approaches have tried to find fast and accurate solutions to the problem. Sliding
windows for object localization and image pyramids for detection at different scales are one of the
most used ones. Those methods were slow, error-prone, and not able to handle object scales very
well.

Deep Learning changed the field so much that it is now relatively easy for the practitioner to train
models on small-ish datasets and achieve high accuracy and speed.

Usually, the result of object detection contains three elements:

« list of bounding boxes with coordinates
« the category/label for each bounding box
« the confidence score (0 to 1) for each bounding box and label

How can you evaluate the performance of object detection models?
Evaluating Object Detection

The most common measurement you’ll come around when looking at object detection performance
is Intersection over Union (IoU). This metric can be evaluated independently of the algorithm/model

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 206

used.

The IoU is a ratio given by the following equation:

Area of Overlap

loU = Area of Union

IoU allows you to evaluate how well two bounding boxes overlap. In practice, you would use the
annotated (true) bounding box, and the detected/predicted one. A value close to 1 indicates a very
good overlap while getting closer to 0 gives you almost no overlap.

Getting IoU of 1 is very unlikely in practice, so don’t be too harsh on your model.

Mean Average Precision (mAP)

Reading papers and leaderboards on Object Detection will inevitably lead you to an mAP value
report. Typically, you’ll see something like mAP@0.5 indicating that object detection is considered
correct only when this value is greater than 0.5.

The value is derived by averaging the precision of each class in the dataset. We can get the average
precision for a single class by computing the IoU for every example in the class and divide by the
number of class examples. Finally, we can get mAP by dividing by the number of classes.

RetinaNet

RetinaNet, presented by Facebook Al Research in Focal Loss for Dense Object Detection (2017)*",
is an object detector architecture that became very popular and widely used in practice. Why is
RetinaNet so special?

RetinaNet is a one-stage detector. The most successful object detectors up to this point were operating
on two stages (R-CNNs). The first stage involves selecting a set of regions (candidates) that might
contain objects of interest. The second stage applies a classifier to the proposals.

One stage detectors (like RetinaNet) skip the region selection steps and runs detection over a lot of
possible locations. This is faster and simpler but might reduce the overall prediction performance of
the model.

RetinaNet is built on top of two crucial concepts - Focal Loss and Featurized Image Pyramid:

« Focal Loss is designed to mitigate the issue of extreme imbalance between background
and foreground with objects of interest. It assigns more weight on hard, easily misclassified
examples and small weight to easier ones.

+ The Featurized Image Pyramid is the vision component of RetinaNet. It allows for object
detection at different scales by stacking multiple convolutional layers.

*https://arxiv.org/pdf/1708.02002v2.pdf

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://arxiv.org/pdf/1708.02002v2.pdf
https://arxiv.org/pdf/1708.02002v2.pdf

© 00 N O O & W N =

NN N N K R R N N L s s s
W N O O 0N 0O O b wWw N =

Object Detection 207

Keras Implementation

Let’s get real. RetinaNet is not a SOTA model for object detection. Not by a long shot*’*. However,
well maintained, bug-free, and easy to use implementation of a good-enough model can give you
a good estimate of how well you can solve your problem. In practice, you want a good-enough
solution to your problem, and you (or your manager) wants it yesterday.

Keras RetinaNet®”” is a well maintained and documented implementation of RetinaNet. Go and have
a look at the Readme to get a feel of what is capable of. It comes with a lot of pre-trained models
and an easy way to train on custom datasets.

Preparing the Dataset

The task we're going to work on is vehicle number plate detection from raw images. Our data
is hosted on Kaggle””® and contains an annotation file with links to the images. Here’s a sample
annotation:

"content": "http://com.dataturks.a96-1i23.open.s3.amazonaws.com/2c9fafb@646e9c o016\
473f1a561002a/77d1£f81a-bee6-48T7c-aff2-0efa31a9925¢c__ bd7£7862-d727-11eT7-ad30-e18a56\
154311. jpg",

"annotation": [

{
"label": [
"number_plate"
1,
"notes": null,
"points": [
{
"x": 0.7220843672456576,
"y": 0.5879828326180258

b
{
"x": 0.8684863523573201,
"y": ©.6888412017167382
}

1,

"imageWidth": 806,

"imageHeight": 466
}

*"*https://paperswithcode.com/sota/object-detection-on-coco
*>https://github.com/fizyr/keras-retinanet
*"Shttps://www.kaggle.com/dataturks/vehicle-number-plate-detection

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://paperswithcode.com/sota/object-detection-on-coco
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection
https://paperswithcode.com/sota/object-detection-on-coco
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection

24
25
26

© 00 N O O b W N =

O = = =S
W N O O b W N =~ O

Object Detection 208

] 7

"extras": null

This will require some processing to turn those xs and ys into proper image positions. Let’s start
with downloading the JSON file:

Ilgdown --id 1mTtB8GTWsT74Yeqm@KMExGJZh1eDbzUIT --output indian_number_plates. json
We can use Pandas to read the JSON into a DataFrame:
plates_df = pd.read_json('indian_number_plates.json', lines=True)

Next, we’ll download the images in a directory and create an annotation file for our training data
in the format (expected by Keras RetinaNet):

path/to/image. jpg,x1,yl,x2,y2,class_name

Let’s start by creating the directory:

os.makedirs("number_plates", exist_ok=True)

We can unify the download and the creation of annotation file like so:

dataset = dict()
dataset["image_name"] = list()

dataset["top_x"] = list()
dataset["top_y"] = list()
dataset["bottom_x"] = list()
dataset["bottom_y"] = list()

dataset["class_name"] = list()

counter = 0
for index, row in plates_df.iterrows():

img = urllib.request.urlopen(row["content"])

img = Image.open(img)
img = img.convert('RGB"')

img.save(f'number_plates/licensed_car_{counter}. jpeg', "JPEG")

dataset["image_name"] .append(
f'number_plates/licensed_car_{counter}. jpeg'

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Object Detection

data = row["annotation"]

width = data[@]["imageWidth"]
height = data[0@]["imageHeight"]

dataset["top_x"] .append(
int(round(data[@] ["points"][0@] ["x"

*

width))
)
dataset["top_y"].append(
int(round(data[@] ["points"][@]["y"] * height))
)
dataset["bottom_x"] .append(
int(round(data[@] ["points"][1]["x"]

*

width))

)
dataset["bottom_y"] .append(

int(round(data[@] ["points"][1]["y"]

*

height))
)

dataset["class_name"] .append("license_plate")

counter += 1
print("Downloaded {} car images.".format(counter))

We can use the dict to create a Pandas DataFrame:
df = pd.DataFrame(dataset)

Let’s get a look at some images of vehicle plates:

209

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 210

;f" h
OER .

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 211

Preprocessing

We’ve already done a fair bit of preprocessing. A bit more is needed to convert the data into the
format that Keras Retina understands:

1 path/to/image. jpg,x1,y1,x2,y2,class_name

First, let’s split the data into training and test datasets:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

a b W N -

a ok w N

Object Detection 212

train_df, test_df = train_test_split(
df,
test_size=0.2,
random_state=RANDOM_SEED

We need to write/create two CSV files for the annotations and classes:

ANNOTATIONS_FILE = 'annotations.csv'
CLASSES_FILE = 'classes.csv'

We’ll use Pandas to write the annotations file, excluding the index and header:
train_df.to_csv(ANNOTATIONS_FILE, index=False, header=None)
We'll use regular old file writer for the classes:

classes = set(['license_plate'])

with open(CLASSES_FILE, 'w') as f:
for i, line in enumerate(sorted(classes)):
f.write('{},{}\n'.format(line,i))

Detecting Vehicle Plates

You're ready to finetune the model on the dataset. Let’s create a folder where we’re going to store
the model checkpoints:

os.makedirs("snapshots", exist_ok=True)
You have two options at this point. Download the pre-trained model:
Igdown --id 1wPgOBoSks6bTIs9RzNvZf6HWROkciS8R --output snapshots/resnet50_csv_10.h5

Or train the model on your own:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

=~ O O b W N =

o N O O b W N =

=~ O U s W N

Object Detection 213

PRETRAINED_MODEL = './snapshots/_pretrained_model .h5'

URL_MODEL = 'https://github.com/fizyr/keras-retinanet/releases/download/@.5.1/resnet\
50_coco_best_v2.1.0.h5"
urllib.request.urlretrieve(URL_MODEL, PRETRAINED_MODEL)

print('Downloaded pretrained model to ' + PRETRAINED_MODEL)

Here, we save the weights of the pre-trained model on the Coco”” dataset.

The training script requires paths to the annotation, classes files, and the downloaded weights (along
with other options):

lkeras_retinanet/bin/train.py \
- -freeze-backbone \
--random-transform \

--weights {PRETRAINED_MODEL} \
--batch-size 8 \

--steps 500 \

--epochs 10 \

csv annotations.csv classes.csv

Make sure to choose an appropriate batch size, depending on your GPU. Also, the training might
take a lot of time. Go get a hot cup of rakia, while waiting.

Loading the model

You should have a directory with some snapshots at this point. Let’s take the most recent one and
convert it into a format that Keras RetinaNet understands:

model_path = os.path. join(
'snapshots’,
sorted(os.listdir('snapshots'), reverse=True)|[0]

model = models.load_model(model_path, backbone_name='resnet50")

model = models.convert_model (model)

Your object detector is almost ready. The final step is to convert the classes into a format that will
be useful later:

*""http://cocodataset.org/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

http://cocodataset.org/
http://cocodataset.org/

Bw N

© 00 N O O & W N =

(RN
= O

© 0O N O O & W N =

I =V
W N s,

Object Detection 214

labels_to_names = pd.read_csv(
CLASSES_FILE,
header=None

).T.loc[@] .to_dict()

Detecting objects

How good is your trained model? Let’s find out by drawing some detected boxes along with the
true/annotated ones. The first step is to get predictions from our model:

def predict(image):
image = preprocess_image(image.copy())
image, scale = resize_image(image)

boxes, scores, labels = model.predict_on_batch(
np.expand_dims(image, axis=0)
boxes /= scale

return boxes, scores, labels

We're resizing and preprocessing the image using the tools provided by the library. Next, we need to
add an additional dimension to the image tensor, since the model works on multiple/batch of images.
We rescale the detected boxes based on the resized image scale. The function returns all predictions.

The next helper function will draw the detected boxes on top of the vehicle image:

THRES_SCORE = 0.6

def draw_detections(image, boxes, scores, labels):
for box, score, label in zip(boxes[Q], scores[Q], labels[Q]):
if score < THRES_SCORE:
break

color = label_color(label)

b = box.astype(int)

draw_box(image, b, color=color)

caption = "{} {:.3f}".format(labels_to_names|[label], score)
draw_caption(image, b, caption)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

[T T = S G T N S U Y
S © 00 N O O b W N =~ O

Object Detection

215

We’ll draw detections with a confidence score above 0.6. Note that the scores are sorted high to low,
so breaking from the loop is fine.

Let’s put everything together:

def show_detected_objects(image_row):

img_path = image_row.image_name

image = read_image_bgr(img_path)

boxes, scores, labels = predict(image)

draw

draw

image.copy()
cv2.cvtColor(draw, cv2.COLOR_BGR2RGB)

true_box = [

image_row.x_min, image_row.y_min, image_row.x_max, image_row.y_max

]

draw_box(draw, true_box, color=(255, 255, 0))

draw_detections(draw, boxes, scores, labels)

plt.axis('off")
plt.imshow(draw)
plt.show()

Here are the results of calling this function on two examples from the test set:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 216

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 217

Things look pretty good. Our detected boxes are colored in blue, while the annotations are in yellow.
Before jumping to conclusions, let’s have a look at another example:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 218

\ ..-:ﬂ " £
CarsAccessories.in

Our model didn’t detect the plate on this vehicle. Maybe it wasn’t confident enough? You can try to
run the detection with a lower threshold.

Conclusion

Well done! You've built an Object Detector that can (somewhat) find vehicle number plates in
images. You used a pre-trained model and fine tuned it on a small dataset to adapt it to the task
at hand.

Here’s what you did:

« Understand Object Detection

» RetinaNet

« Prepare the Dataset

« Train a Model to Detect Vehicle Plates

Can you use the concepts you learned here and apply it to a problem/dataset you have?

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 219

Run the complete notebook in your browser?’®

The complete project on GitHub*”®

References

« Keras RetinaNet?®°

« Vehicle Number Plate Detection®*'
« Object detection: speed and accuracy comparison®*?
« Focal Loss for Dense Object Detection®®
« Plate Detection —> Preparing the data**
+ Object Detection in Colab with Fizyr Retinane

t285

*"#https://colab.research.google.com/drive/11dnii3sGJaUHPV6 TWImykbeE_O-8VIIN

*"https://github.com/curiousily/Deep- Learning-For-Hackers

*%%https://github.com/fizyr/keras-retinanet

*1https://www.kaggle.com/dataturks/vehicle-number-plate-detection
**?https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo- 5425656ae359
*83https://arxiv.org/abs/1708.02002

***https://www.kaggle.com/dsousa/plate-detection-preparing- the-data

*$Shttps://www.freecodecamp.org/news/object- detection-in- colab-with-fizyr-retinanet-efed36ac4af3/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://arxiv.org/abs/1708.02002
https://www.kaggle.com/dsousa/plate-detection-preparing-the-data
https://www.freecodecamp.org/news/object-detection-in-colab-with-fizyr-retinanet-efed36ac4af3/
https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://arxiv.org/abs/1708.02002
https://www.kaggle.com/dsousa/plate-detection-preparing-the-data
https://www.freecodecamp.org/news/object-detection-in-colab-with-fizyr-retinanet-efed36ac4af3/

Image Data Augmentation

TL;DR Learn how to create new examples for your dataset using image augmentation
techniques. Load a scanned document image and apply various augmentations. Create
an augmented dataset for Object Detection.

Your Deep Learning models are dumb. Detecting objects in a slightly different image, compared to
the training examples, can produce hugely incorrect predictions. How can you fix that?

Ideally, you would go and get more training data, and then some more. The more diverse the
examples, the better. Except, getting new data can be hard, expensive, or just impossible. What
can you do?

You can use your own “creativity” and create new images from the existing ones. The goal is to
create transformations that resemble real examples not found in the data.

We're going to have a look at “basic” image augmentation techniques. Advanced methods like Neural
Style Transfer and GAN data augmentation may provide even more performance improvements, but
are not covered here.

You’ll learn how to:

« Load images using OpenCV

Apply various image augmentations

« Compose complex augmentations to simulate real-world data
« Create augmented dataset ready to use for Object Detection

Run the complete notebook in your browser®*

The complete project on GitHub?*’

Tools for Image Augmentation

Image augmentation is widely used in practice. Your favorite Deep Learning library probably offers
some tools for it.

TensorFlow 2 (Keras) gives the ImageDataGenerator®*®. PyTorch offers a much better interface via
Torchvision Transforms?**’. Yet, image augmentation is a preprocessing step (you are preparing your

*https://colab.research.google.com/drive/12r6e0grdtssEjx YAMSAnw]j3y7fVin-V
**"https://github.com/curiousily/Deep-Learning-For-Hackers
***https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator?version=stable
**https://pytorch.org/docs/stable/torchvision/transforms.html

https://colab.research.google.com/drive/12r6e0grdtssEjxYAMSAnwJj3y7fVfn-V
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator?version=stable
https://pytorch.org/docs/stable/torchvision/transforms.html
https://colab.research.google.com/drive/12r6e0grdtssEjxYAMSAnwJj3y7fVfn-V
https://github.com/curiousily/Deep-Learning-For-Hackers
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator?version=stable
https://pytorch.org/docs/stable/torchvision/transforms.html

Image Data Augmentation 221

dataset for training). Experimenting with different models and frameworks means that you’ll have
to switch a lot of code around.

Luckily, Albumentations®*® offers a clean and easy to use APL It is independent of other Deep

Learning libraries and quite fast. Also, it gives you a large number of useful transforms.

How can we use it to transform some images?

Augmenting Scanned Documents

Here is the sample scanned document, that we’ll transform using Albumentations:

**%https://github.com/albumentations-team/albumentations

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://github.com/albumentations-team/albumentations
https://github.com/albumentations-team/albumentations

222

Image Data Augmentation

N = S

University of Higher Learning

Student Name Change Form

Student ID # 90210

Name as it appears on University records:

First Patti Middle Y Last Penne

Enter your new name as you would like it to appear on University records:

First Patti Middle P Last Prosciutto

Signature

For Official Use Only - Barcodes are tab-delimitad

Field Value
nm t_SID 90210
| t_FirstName Patti
| | t_MiddleName Y
| | " t_LastMName Penne
I‘ t_nFirstName Patti
| I : ' t_nMiddleName P
* | II i I| t_nLastMame Prosciutto
M

Tab-Dlimited ¥alues Shown on Right

| I
1 I
t_FormType |ChangeNarne |
f | | t FormVersion |2006] 128 |
1 1

Tab-Delimited Yalwes Shown on Right

Any reference to company names, company logos, identifiers, and persons in the sample forms included in this software
is for demonstration purposes only and is not intended to refer to any actual organization or individual.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Image Data Augmentation 223

Let’s say that you were tasked with the extraction of the Student Id from scanned documents. One
way to approach the problem is to first detect the region that contains the student id and then use
OCR to extract the value.

Here is the training example for our Object Detection algorithm:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Image Data Augmentation 224

University of Higher Learning

Student Name Change Form

Student ID # 20210

MName as it appears on University records:

First Patti Middle Y Last Penne

Enter your new name as you would like it to appear on University records:

First Patti Middle P Last Prasciutto

Signature

For Official Use Only - Barcodes are tab-delimited

Field Value
! £ SID 90210
t_FirstName Patti
t_MiddleName Y
' | t_LastName Penne
l‘ t_nFirsthame Patti
l t_nMiddleName P
* ! t_nLastMame Prosciutto
Taer:Iml ed Vil uees S hawen om Right
t_FormType |ChangeName |
t_FormVersion |200E-I 128 |

Tab-DtIm\ ped Val ues :Iwn on Right

Any reference to company names, company logos, identifiers, and persons in the sample forms included in this software
is for demonstration purposes only and is not intended to refer to any actual organization or individual.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

N
()

© 00 N O O b W N =

SN
N O

13

Image Data Augmentation 225

Let’s start with some basic transforms. But first, let’s create some helper functions that show the
augmented results:

def show_augmented(augmentation, image, bbox):
augmented = augmentation(image=image, bboxes=[bbox], field_id=['1"])
show_image(augmented['image'], augmented|'bboxes'][0])

show_augmented() applies the augmentation on the image and show the result along with the
modified bounding box (courtesy of Albumentations). Here is the definition of show_image():

def show_image(image, bbox):

image = visualize_bbox(image.copy(), bbox)

f = plt.figure(figsize=(18, 12))

plt.imshow(
cv2.cvtColor(image, cv2.COLOR_BGR2RGB),
interpolation='nearest'

)

plt.axis('off")

f.tight_layout()

plt.show()

We start by drawing the bounding box on top of the image and showing the result. Note that
OpenCV2 uses a different channel ordering than the standard RGB. We take care of that, too.

Finally, the definition of visualize_bbox():
BOX_COLOR = (255, 0, 0)

def visualize_bbox(img, bbox, color=BOX_COLOR, thickness=2):

X_min, y_min, x_max, y_max = map(lambda v: int(v), bbox)

cv2.rectangle(
img,
(x_min, y_min),
(x_max, y_max),
color=color,
thickness=thickness

)

return img

Bounding boxes are just rectangles drawn on top of the image. We use OpenCV’s rectangle()
function and specify the top-left and bottom-right points.

Augmenting bounding boxes requires a specification of the coordinates format:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

o N O O b W N =

1
2
3

Image Data Augmentation 226

[x min, y_min, x_max, y_max], e.g. [97, 12, 247, 212].

bbox_params = A.BboxParams(
format="pascal_voc',
min_area=1,
min_visibility=0.5,
label_fields=['field_id"]

Let’s do some image augmentation!

Applying Transforms

Ever worked with scanned documents? If you did, you’ll know that two of the most common
scanning mistakes that users make are flipping and rotation of the documents.

Applying an augmentation multiple times will result in a different result (depending on
the augmentation and parameters)

Let’s start with a flip augmentation:

aug = A.Compose([
A.Flip(always_apply=True)
], bbox_params=bbox_params)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Image Data Augmentation 227

B 0 U o bm o ok T 52 U USROS 0 L, 00 Sk S| L ORUIETICIoN O (L AT
WUA LGS EUCE fo cowbaud Ui cowbaud jeBost ppeun e sug beisous i (pe 2wl [OUUE IEpNGEa W BN 20gLeLE

FRoWASuO (50001 158]

[e e |.:muﬂmmm |

UG AL LD
U R s b
I s B
o nwE (Rt
L A
A bR
I AD 510
15 AR

EOL CHLICIS] (125 QU - FIRCOGE? 916 [D-qBjLILeg

e
[IET A] AR b ML S
EUABA. 0L MGAN LSS 32 RO SO s I 00 DEETL o [uas Ak e ougE
B BNE PHER A [t bl

P 53 o abbemLr ou FUPARLHA LECOLgE

LR ID | 3D |

2INgeUf |A9We CPIUds LoLW

S NUIAGL2IEA o) Hidpel regiuiud

. B e e —

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Image Data Augmentation 228

and rotate:

aug = A.Compose([
A.Rotate(1imit=80, always_apply=True)
], bbox_params=bbox_params)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Image Data Augmentation 229

i1

©
2

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Image Data Augmentation 230

Another common difference between scanners can be simulated by changing the gamma of the
images:

1 aug = A.Compose([
2 A.RandomGamma(gamma_limit=(400, 500), always_apply=True)
3], bbox_params=bbox_params)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Image Data Augmentation 231

University of Higher Learning

Student Name Change Form

of Official Usa Only - Badocdes ane ta-delimimesd
L)

Ficld Valua
| [pLEFY
i i Fa
t_Naddielame | Y
_LastMame | P el
[nFirsthiame | Patti
. t_niMiddieName | p
t_nlastHame Frosciune
I_FoamTyge C b e ams |
1 m g]

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Image Data Augmentation 232

or adjusting the brightness and contrast:

aug = A.Compose([
A.RandomBrightnessContrast(always_apply=True),
], bbox_params=bbox_params)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

233

Image Data Augmentation

—— s — S e

University of Higher Learning

Student Name Change Form

Stuchent I & | 0210 I

M 35 0 apPaars on Universiny reoonds:
First Patti Middle ¥ Last Perne

Entar ywour neny namas a8 you woulkd Bloe it ba appoear on University neconds

First Patri Midde P Last Prosciutto

Hgnaturs

Far Official Use Only - Barcodes ane tab-delirmited

Fiigdd Valusz
LD 20
t_Firsthaemse Pati
i_MiddieMame ¥
1_LastMame Purines
1_nFirsthame Patn
t_nMiddieNarme P
T_niastHame Frosciutte

LFomiType [ChangeMame]

t Formversion (70061128]

Any reference to company names. company logos, identifiers. and persons in the sample forms included in this softwane
ki for damonstration purposes only and b not intended o refer to any actual organization of Individual

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

o N O O b W N =

Image Data Augmentation

Incorrect color profiles can also be simulated with RGBShi ft:

aug = A.Compose([

A .RGBShift(
always_apply=True,
r_shift_1imit=100,
g_shift_limit=100,
b_shift_limit=100

)

], bbox_params=bbox_params)

234

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Image Data Augmentation

— - & — TS e s ——

University of Higher Learning

LS 3LEwy L

Student Name Change Form

Stuchent I & | 0210 I

harnae 35 W APPSO Lniversiny econds:
First Paitni Middle ¥ Last Penne

Entar ywour ey namae a8 you woulkd Bloe it ba appear on University neconds

First Paari Midde P Latt Prasciutta

Slgnature

Far Official Usa Only - Barcodes ane tab-delirmited

Ficld Valus
{3 [6) D020
t_Firsthaemse Fatti
I_Middlelame ¥
_LastMama P
1_nFirsthamse Pasn
t_nhiddieName p
T_nlastHamne Froscutte
I_FoamType kl‘l.lll-giﬂlll'ﬁ I

t Foamersicn lzaom 128 |

¥ e b 2] W) e e e g o

Any reference to company names. company logos. identifiens. and persons in the sample forms included in this softwane
ki oo demonstration purposes only and b not infended 1o refer to any actual organization o Indivichual

235

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

=~ O U s W N

Image Data Augmentation 236

You can simulate hard to read documents by applying some noise:

aug = A.Compose([

A .GaussNoise(
always_apply=True,
var_limit=(100, 300),
mean=150

)

], bbox_params=bbox_params)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Image Data Augmentation 237

Umvermty of ngher Learnlng

‘muip it Name Change Furm

l? J'J Y 1."| F'!

ih'l't

e ﬁ,l‘
| M?M -

\

:.- '-'H:.'_'__"'“'_"

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

O© 00 I O O b W N =~

10
11
12
13

Image Data Augmentation 238

Creating Augmented Dataset

You've probably guessed that you can compose multiple augmentations. You can also choose how
likely is to apply the specific transformation like so:

doc_aug = A.Compose([

A.Flip(p=0.25),
.RandomGamma(gamma_limit=(20, 300), p=0.5),
.RandomBrightnessContrast(p=0.85),
.Rotate(1imit=35, p=0.9),
.RandomRotated0(p=0.25),

_RGBShi ft(p=0.75),

A .GaussNoise(p=0.25)

], bbox_params=bbox_params)

> > > > >

You might want to quit with your image augmentation attempts right here. How can you correctly
choose so many parameters? Furthermore, the parameters and augmentations might be highly
domain-specific.

Luckily, the Albumentations Exploration Tool** might help you explore different parameter config-
urations visually. You might even try to “learn” good augmentations. Learning Data Augmentation
Strategies for Object Detection®”* might be a first good read on the topic (source code included).

Object detection tasks have somewhat standard annotation format:
path/to/image. jpg, x1, y1, x2, y2, class_name

Let’s create 100 augmented images and save an annotation file for those:

DATASET_PATH = 'data/augmented'
IMAGES_PATH = f'{DATASET_PATH}/images'

os.makedirs(DATASET_PATH, exist_ok=True)
os.makedirs(IMAGES_PATH, exist_ok=True)

rows = []
for i in tgdm(range(100)):
augmented = doc_aug(
image=form,
bboxes=[STUDENT_ID_BBOX],
field_id=['1"]
)

**'https://albumentations-demo.herokuapp.com/
#?https://arxiv.org/pdf/1906.11172v1.pdf

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://albumentations-demo.herokuapp.com/
https://arxiv.org/pdf/1906.11172v1.pdf
https://arxiv.org/pdf/1906.11172v1.pdf
https://albumentations-demo.herokuapp.com/
https://arxiv.org/pdf/1906.11172v1.pdf

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Image Data Augmentation 239

file_name = f'form_aug_{i}.jpg’
for bbox in augmented['bboxes']:
x_min, y_min, x_max, y_max = map(lambda v: int(v), bbox)
rows . append({
"file_name': f'images/{file_name}',
'x_min': x_min,
'y_min': y_min,
'x_max': x_max,
'y_max': y_max,
'class': 'student_id'

b
cv2.imwrite(f' {IMAGES_PATH}/{file_name}', augmented['image'])

pd.DataFrame(rows) .to_csv(
f' {DATASET_PATH}/annotations.csv',
header=True,

index=None

Note that the code is somewhat generic and can handle multiple bounding boxes per image. You
should easily be able to expand this code to handle multiple images from your dataset.

Conclusion

Great job! You can now add more training data for your models by augmenting images. We just
scratched the surface of the Albumentation library. Feel free to explore and build even more powerful
image augmentation pipelines!

You now know how to:

« Load images using OpenCV

« Apply various image augmentations

« Compose complex augmentations to simulate real-world data
« Create augmented dataset ready to use for Object Detection

Run the complete notebook in your browser?*?

The complete project on GitHub***

*>*https://colab.research.google.com/drive/12r6e0grdtssEjxYAMSAnw]j3y7fVfn-V
***https://github.com/curiousily/Deep- Learning-For-Hackers

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/12r6e0grdtssEjxYAMSAnwJj3y7fVfn-V
https://github.com/curiousily/Deep-Learning-For-Hackers
https://colab.research.google.com/drive/12r6e0grdtssEjxYAMSAnwJj3y7fVfn-V
https://github.com/curiousily/Deep-Learning-For-Hackers

Image Data Augmentation 240

References

« Albumentations*”®

« A survey on Image Data Augmentation for Deep Learning
« A Survey on Face Data Augmentation®”’

« Learning Data Augmentation Strategies for Object Detection*”®
« Albumentations Exploration Tool*”

296

**>https://github.com/albumentations-team/albumentations
#*Shttps://link.springer.com/article/10.1186/s40537-019-0197-0
*"hitps://arxiv.org/pdf/1904.11685.pdf
**$https://arxiv.org/pdf/1906.11172v1.pdf
**’https://albumentations-demo.herokuapp.com/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://github.com/albumentations-team/albumentations
https://link.springer.com/article/10.1186/s40537-019-0197-0
https://arxiv.org/pdf/1904.11685.pdf
https://arxiv.org/pdf/1906.11172v1.pdf
https://albumentations-demo.herokuapp.com/
https://github.com/albumentations-team/albumentations
https://link.springer.com/article/10.1186/s40537-019-0197-0
https://arxiv.org/pdf/1904.11685.pdf
https://arxiv.org/pdf/1906.11172v1.pdf
https://albumentations-demo.herokuapp.com/

Sentiment Analysis

TL;DR Learn how to preprocess text data using the Universal Sentence Encoder model.
Build a model for sentiment analysis of hotel reviews.

This tutorial will show you how to develop a Deep Neural Network for text classification (sentiment
analysis). We'll skip most of the preprocessing using a pre-trained model that converts text into
numeric vectors.

You’'ll learn how to:

« Convert text to embedding vectors using the Universal Sentence Encoder model
« Build a hotel review Sentiment Analysis model
« Use the model to predict sentiment on unseen data

Run the complete notebook in your browser**

The complete project on GitHub>”

Universal Sentence Encoder

Unfortunately, Neural Networks don’t understand text data. To deal with the issue, you must figure
out a way to convert text into numbers. There are a variety of ways to solve the problem, but most
well-performing models use Embeddings®®.

In the past, you had to do a lot of preprocessing - tokenization, stemming, remove punctuation,
remove stop words, and more. Nowadays, pre-trained models offer built-in preprocessing. You might
still go the manual route, but you can get a quick and dirty prototype with high accuracy by using
libraries.

The Universal Sentence Encoder (USE)**® encodes sentences into embedding vectors. The model is
freely available at TF Hub***. It has great accuracy and supports multiple languages. Let’s have a
look at how we can load the model:

*%https://colab.research.google.com/drive/1vFocnjzESxe7Mpx6NC65028mkuuxx Y14
**Thttps://github.com/curiousily/Deep- Learning-For-Hackers
*%?https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
*%https://arxiv.org/abs/1803.11175

*%*https://tthub.dev/google/universal- sentence-encoder-multilingual-large/3

https://colab.research.google.com/drive/1vFocnjzESxe7Mpx6NC65O28mkuuxxYI4
https://github.com/curiousily/Deep-Learning-For-Hackers
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://arxiv.org/abs/1803.11175
https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
https://colab.research.google.com/drive/1vFocnjzESxe7Mpx6NC65O28mkuuxxYI4
https://github.com/curiousily/Deep-Learning-For-Hackers
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://arxiv.org/abs/1803.11175
https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3

Bw N

Sentiment Analysis 242

import tensorflow_hub as hub

use = hub.load("https://tfhub.dev/google/universal -sentence-encoder-multilingual-lar\
ge/3")

Next, let’s define two sentences that have a similar meaning:

sent_1 = ["the location is great"]

sent_2 = ["amazing location"]
Using the model is really simple:

emb_1 = use(sent_1)
emb_2

use(sent_2)
What is the result?

print(emb_1.shape)

TensorShape([1, 512])

Each sentence you pass to the model is encoded as a vector with 512 elements. You can think of
USE as a tool to compress any textual data into a vector of fixed size while preserving the similarity
between sentences.

How can we calculate the similarity between two embeddings? We can use the inner product (the
values are normalized):

print(np.inner(emb_1, emb_2).flatten()[0])

0.79254687

Values closer to 1 indicate more similarity. So, those two are quite similar, indeed!

We'll use the model for the pre-processing step. Note that you can use it for almost every NLP task
out there, as long as the language you’re using is supported.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

O U W N

Sentiment Analysis 243

Hotel Reviews Data

305

The dataset is hosted on Kaggle**” and is provided by Jiashen Liu**®. It contains European hotel
reviews that were scraped from Booking.com®”’.

This dataset contains 515,000 customer reviews and scoring of 1493 luxury hotels across
Europe. Meanwhile, the geographical location of hotels are also provided for further
analysis.

Let’s load the data:
df = pd.read_csv("Hotel_Reviews.csv", parse_dates=['Review_Date'])
While the dataset is quite rich, we're interested in the review text and review score. Let’s get those:

df["review"] = df["Negative_Review"] + df["Positive_Review"]
df["review_type"] = df["Reviewer_Score"].apply(
lambda x: "bad" if x < 7 else "good"

df = df[["review", "review_type"]]
Any review with a score of 6 or below is marked as “bad”.

Exploration

How many of each review type we have?

*%https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe
*%https://www.linkedin.com/in/jiashen-liu/
*7https://www.booking.com/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe
https://www.linkedin.com/in/jiashen-liu/
https://www.booking.com/
https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe
https://www.linkedin.com/in/jiashen-liu/
https://www.booking.com/

Sentiment Analysis 244

Review type

400000

300000

count

200000

100000

good bad
type

We have a severe imbalance in favor of good reviews. We’ll have to do something about that.
However, let’s have a look at the most common words contained within the positive reviews:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Sentiment Analysis 245

Good reviews common words

Negative staff. hel rwwblrea §ataff value money

2 «_-Vu!.&l t ‘
s EXCEll 115 }1(?(;15‘111;10!'1 staff Negsat1§:0

i amm ocatlon;
e "’Or.“m Sma L
fr ; g} P ok
. NE
staf hel good 0 at10n°°_§
.H..i ion good location gatLVE' =
a ol ey ¥ ra"m cleun i ;’, 9.'.6,’
taf! :f

'Z’ .._..‘ . - Pl .,h,_, : E
{riendlyin
y ve Location good breakfast . comfortable bed

“Location, location, location” - pretty common saying in the tourism business. Staff friendliness
seems like the second most common quality that is important for positive reviewers.

How about the bad reviews?

Bad reviews common words

Gstaff helpful 5 . | Pt - . L hotel room
— bad-- asked g - l —
ROt [
e = [T O0M
) i g m‘a“‘ ‘ia 4 LTy ant 'l
uh‘-’.‘a'...vv : 8 - i p l acemiw
ramptann s
l".la‘;l g' it]‘H
S ~ 1thoug snbreakfast ‘U

pobey

“oom manl

.Location-good noth 2 “’"""“L’El’,‘%

- by check s tlme
left “"pecple Positive room " "-

e

Much more diverse set of phrases. Note that “good location” is still present. Room qualities are
important, too!

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

W N

Sentiment Analysis 246

Preprocessing

We'll deal with the review type imbalance by equating the number of good ones to that of the bad
ones:

good_df = good_reviews.sample(n=len(bad_reviews), random_state=RANDOM_SEED)
bad_df = bad_reviews

review_df = good_df.append(bad_df).reset_index(drop=True)
print(review_df.shape)

(173702, 2)

Let’s have a look at the new review type distribution:

Review type (resampled)

80000

60000

count

40000

20000

bad good
type

We have over 80k examples for each type. Next, let’s one-hot encode the review types:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

=N O O b W N <~ O O b W N~ a b W N -

<~ O O b W N =

Sentiment Analysis 247

from sklearn.preprocessing import OneHotEncoder

type_one_hot = OneHotEncoder(sparse=False).fit_transform(
review_df .review_type.to_numpy().reshape(-1, 1)

We'll split the data for training and test datasets:

train_reviews, test_reviews, y_train, y_test =\
train_test_split(
review_df.review,
type_one_hot,
test_size=.1,
random_state=RANDOM_SEED

Finally, we can convert the reviews to embedding vectors:

X_train = []

for r in tgdm(train_reviews):
emb = use(r)
review_emb = tf.reshape(emb, [-1]).numpy()
X_train.append(review_emb)

X_train = np.array(X_train)

X_test = []

for r in tgdm(test_reviews):
emb = use(r)
review_emb = tf.reshape(emb, [-1]).numpy()
X_test.append(review_emb)

X_test = np.array(X_test)

print(X_train.shape, y_train.shape)

(156331, 512) (156331, 2)

We have ~ 156k training examples and somewhat equal distribution of review types. How good can
we predict review sentiment with that data?

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

NN N NN NN NN R R R R 1 s
© 0O 9 O O & W N~ OO © W 31 O U b Ww N =~ &

Sentiment Analysis

Sentiment Analysis

Sentiment Analysis is a binary classification problem. Let’s use Keras to build a model:

model = keras.Sequential()

model . add(
keras. layers.Dense(
units=256,
input_shape=(X_train.shape(1],),

activation='relu'

)
)
model . add(
keras. layers.Dropout(rate=0.5)
)
model .add(
keras. layers.Dense(
units=128,
activation='relu'
)
)
model . add(
keras. layers.Dropout(rate=0.5)
)

model .add(keras.layers.Dense(2, activation='softmax'))
model . compile(
loss="categorical_crossentropy',
optimizer=keras.optimizers.Adam(©.001),
metrics=["'accuracy']

The model is composed of 2 fully-connected hidden layers. Dropout is used for regularization.

We’ll train for 10 epochs and use 10% of the data for validation:

248

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Sentiment Analysis 249

history = model.fit(
X_train, y_train,
epochs=10,
batch_size=16,
validation_split=0.1,
verbose=1,
shuffle=True

—— train loss
0.43 val loss

0.42

Cross-entropy loss
o o
. o~
o =

I
w
©o

0.38

0.37

epoch

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Sentiment Analysis 250

—— train accuracy
0.835 val accuracy

0.830
0.825
0.820

0.815

accuracy

0.810
0.805

0.800

0 2 4 6 8
epoch

Our model is starting to overfit at about epoch 8, so we’ll not train for much longer. We got about
82% accuracy on the validation set. Let’s evaluate on the test set:

model .evaluate(X_test, y_test)

[0.39665538506298975, 0.82044786]
82% accuracy on the test set, too!
Predicting Sentiment
Let’s make some predictions:

print(test_reviews.iloc[@])
print("Bad" if y_test[0][0@] == 1 else "Good")

Asked for late checkout and didnt get an answer then got a yes but had to pay 25 euros
by noon they called to say sorry you have to leave in 1h knowing that i had a sick dog
and an appointment next to the hotel Location staff

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Sentiment Analysis

Bad
The prediction:

y_pred = model .predict(X_test[:1])
print(y_pred)
"Bad" if np.argmax(y_pred) == 0 else "Good"

[[0.9274073 0.07259267]]
'Bad"

This one is correct, let’s have a look at another one:

print(test_reviews.iloc[1])
print("Bad" if y_test[1][0Q]

== 1 else "Good")

Don t really like modern hotels Had no character Bed was too hard Good location rooftop

pool new hotel nice balcony nice breakfast

Good
y_pred = model .predict(X_test[1:2])
print(y_pred)

"Bad" if np.argmax(y_pred) == 0 else "Good"

[[©.39992586 0.6000741]
'Good'

Conclusion

251

Well done! You can now build a Sentiment Analysis model with Keras. You can reuse the model and

do any text classification task, too!

You learned how to:

« Convert text to embedding vectors using the Universal Sentence Encoder model

« Build a hotel review Sentiment Analysis model

« Use the model to predict sentiment on unseen data

Run the complete notebook in your browser>*®

The complete project on GitHub>*’

Can you use the Universal Sentence Encoder model for other tasks? Comment down below.

*®https://colab.research.google.com/drive/1vFocnjzESxe7Mpx6NC65028mkuuxx Y14

*%https://github.com/curiousily/Deep- Learning-For-Hackers

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1vFocnjzESxe7Mpx6NC65O28mkuuxxYI4
https://github.com/curiousily/Deep-Learning-For-Hackers
https://colab.research.google.com/drive/1vFocnjzESxe7Mpx6NC65O28mkuuxxYI4
https://github.com/curiousily/Deep-Learning-For-Hackers

Sentiment Analysis 252

References

« Universal Sentence Encoder?*°
« Word embeddings®!*
« 515k hotel reviews on Kaggle

312

*1%https://arxiv.org/abs/1803.11175
*"https://www.tensorflow.org/tutorials/text/word_embeddings
*Phttps://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://arxiv.org/abs/1803.11175
https://www.tensorflow.org/tutorials/text/word_embeddings
https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe
https://arxiv.org/abs/1803.11175
https://www.tensorflow.org/tutorials/text/word_embeddings
https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe

Intent Recognition with BERT

TL;DR Learn how to fine-tune the BERT model for text classification. Train and evaluate
it on a small dataset for detecting seven intents. The results might surprise you!

Recognizing intent (IR) from text is very useful these days. Usually, you get a short text (sentence
or two) and have to classify it into one (or multiple) categories.

Multiple product support systems (help centers) use IR to reduce the need for a large number of
employees that copy-and-paste boring responses to frequently asked questions. Chatbots, automated
email responders, answer recommenders (from a knowledge base with questions and answers) strive
to not let you take the time of a real person.

This guide will show you how to use a pre-trained NLP model that might solve the (technical)
support problem that many business owners have. I mean, BERT is freaky good! It is really easy to
use, too!

Run the complete notebook in your browser**?

The complete project on GitHub***

Data

The data contains various user queries categorized into seven intents. It is hosted on GitHub*'* and

is first presented in this paper>*°.

Here are the intents:

« SearchCreativeWork (e.g. Find me the I, Robot television show)

« GetWeather (e.g. Is it windy in Boston, MA right now?)

« BookRestaurant (e.g. I want to book a highly rated restaurant for me and my boyfriend
tomorrow night)

« PlayMusic (e.g. Play the last track from Beyoncé off Spotify)

« AddToPlaylist (e.g. Add Diamonds to my roadtrip playlist)

RateBook (e.g. Give 6 stars to Of Mice and Men)

« SearchScreeningEvent (e.g. Check the showtimes for Wonder Woman in Paris)

I've done a bit of preprocessing and converted the JSON files into easy to use/load CSVs. Let’s
download them:

*Bhttps://colab.research.google.com/drive/IWQY_XxdiCVFzjMXnDdNfUjDFi0CN5hkT
*Yhttps://github.com/curiousily/Deep-Learning-For-Hackers
*https://github.com/snipsco/nlu-benchmark/tree/master/2017-06- custom- intent-engines
*1https://arxiv.org/abs/1805.10190

https://colab.research.google.com/drive/1WQY_XxdiCVFzjMXnDdNfUjDFi0CN5hkT
https://github.com/curiousily/Deep-Learning-For-Hackers
https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines
https://arxiv.org/abs/1805.10190
https://colab.research.google.com/drive/1WQY_XxdiCVFzjMXnDdNfUjDFi0CN5hkT
https://github.com/curiousily/Deep-Learning-For-Hackers
https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines
https://arxiv.org/abs/1805.10190

a s W N

Intent Recognition with BERT 254

Igdown --id 101cvGWReJMuyYQuOZm149vHWwWPt1boR6 --output train.csv
Igdown --id 10i5cR1TybulF2F15Bfsr-KkgrXrdt77w --output valid.csv
lgdown --id 1ep9H6-HvhB4utJRLVcLzieWNUSG3P_uF --output test.csv

We'll load the data into data frames and expand the training data by merging the training and
validation intents:

train = pd.read_csv("train.csv")
valid = pd.read_csv("valid.csv")

test = pd.read_csv("test.csv")

train = train.append(valid).reset_index(drop=True)

We have 13,784 training examples and two columns - text and intent. Let’s have a look at the
number of texts per intent:

Number of texts per intent

Q\a‘* 640?\3 @‘&

2000

1750

1500

1250

count

1000

75

o

50

o

25

o

o

intent

The amount of texts per intent is quite balanced, so we’ll not be needing any imbalanced modeling
techniques.

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Intent Recognition with BERT 255

BERT

The BERT (Bidirectional Encoder Representations from Transformers) model, introduced in the
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding®"’” paper, made
possible achieving State-of-the-art results in a variety of NLP tasks, for the regular ML practitioner.
And you can do it without having a large dataset! But how is this possible?

BERT is a pre-trained Transformer Encoder stack. It is trained on Wikipedia and the Book Corpus**®
dataset. It has two versions - Base (12 encoders) and Large (24 encoders).

319

BERT is built on top of multiple clever ideas by the NLP community. Some examples are ELMo®*,
The Transformer®”°, and the OpenAl Transformer**".

ELMo introduced contextual word embeddings (one word can have a different meaning based on the
words around it). The Transformer uses attention mechanisms to understand the context in which
the word is being used. That context is then encoded into a vector representation. In practice, it does
a better job with long-term dependencies.

BERT is a bidirectional model (looks both forward and backward). And the best of all, BERT can
be easily used as a feature extractor or fine-tuned with small amounts of data. How good is it at
recognizing intent from text?

Intent Recognition with BERT

Luckily, the authors of the BERT paper open-sourced their work®*” along with multiple pre-
trained models. The original implementation is in TensorFlow, but there are very good PyTorch
implementations®** too!

Let’s start by downloading one of the simpler pre-trained models and unzip it:

lwget https://storage.googleapis.com/bert_models/2018_10_18/uncased_L -12_H-T68_A-12.\
zip
lunzip uncased_L -12_H-T7T68_A-12.zip

This will unzip a checkpoint, config, and vocabulary, along with other files.

Unfortunately, the original implementation is not compatible with TensorFlow 2. The bert-for-tf2°*

package solves this issue.

*1https://arxiv.org/abs/1810.04805

*1®https://arxiv.org/pdf/1506.06724.pdf

*https://arxiv.org/abs/1802.05365

*2%https://arxiv.org/abs/1706.03762
*2Thttps://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
*#https://github.com/google-research/bert

*Zhttps://github.com/huggingface/transformers

***https://github.com/kpe/bert-for-tf2

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://arxiv.org/abs/1810.04805
https://arxiv.org/pdf/1506.06724.pdf
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1706.03762
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://github.com/google-research/bert
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/kpe/bert-for-tf2
https://arxiv.org/abs/1810.04805
https://arxiv.org/pdf/1506.06724.pdf
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1706.03762
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://github.com/google-research/bert
https://github.com/huggingface/transformers
https://github.com/kpe/bert-for-tf2

Intent Recognition with BERT 256

Preprocessing

We need to convert the raw texts into vectors that we can feed into our model. We’ll go through 3
steps:

« Tokenize the text
« Convert the sequence of tokens into numbers
« Pad the sequences so each one has the same length

Let’s start by creating the BERT tokenizer:

tokenizer = FullTokenizer (
vocab_file=os.path. join(bert_ckpt_dir, "vocab.txt")

Let’s take it for a spin:

tokenizer.tokenize("I can't wait to visit Bulgaria again!")

1 nmrn

["i', 'can', , 't', 'wait', 'to', 'visit', 'bulgaria', 'again', '!'"]

The tokens are in lowercase and the punctuation is available. Next, we’ll convert the tokens to
numbers. The tokenizer can do this too:

tokens = tokenizer.tokenize("I can't wait to visit Bulgaria again!")
tokenizer.convert_tokens_to_ids(tokens)

[1045, 2064, 1005, 1056, 3524, 2000, 3942, 8063, 2153, 999]

We’ll do the padding part ourselves. You can also use the Keras padding utils for that part.

We’ll package the preprocessing into a class that is heavily based on the one from this notebook**:

*#https://github.com/kpe/bert-for-tf2/blob/master/examples/gpu_movie_reviews.ipynb

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://github.com/kpe/bert-for-tf2/blob/master/examples/gpu_movie_reviews.ipynb
https://github.com/kpe/bert-for-tf2/blob/master/examples/gpu_movie_reviews.ipynb

Intent Recognition with BERT

class IntentDetectionData:
DATA_COLUMN = "text"
LABEL_COLUMN = "intent"

def __init__(
self,
train,
test,
tokenizer: FullTokenizer,
classes,
max_seq_len=192

self.tokenizer = tokenizer
self.max_seq_len = 0
self.classes = classes

train, test = map(lambda df:
df .reindex(

df [IntentDetectionData.DATA_COLUMN] .str.len().sort_values().index

),

[train, test]

((self.train_x, self.train_y), (self.test_x, self.test_y)) =\
map(self._prepare, [train, test])

print("max seqg_len", self.max_seq_len)
self.max_seq_len = min(self.max_seq_len, max_seqg_len)

self.train_x, self.test_x = map(

self. _pad,
[self.train_x, self.test_x]
)
def _prepare(self, df):
x, y = 1[I, []
for _, row in tqdm(df.iterrows()):

text, label =\

row[IntentDetectionData.DATA_COLUMN], \
row[IntentDetectionData. LABEL_COLUMN]

tokens = self.tokenizer.tokenize(text)

tokens = ["[CLS]"] + tokens + ["[SEP]"]

token_ids = self.tokenizer.convert_tokens_to_ids(tokens)

257

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

44
45
46
47
48
49
50
51
52
53
54
55
56

© 00 N O O & W N =

N = =y
© 00 N O O & W N =~ O

Intent Recognition with BERT 258

self.max_seq_len = max(self.max_seq_len, len(token_ids))
x.append(token_ids)
y.append(self.classes.index(label))

return np.array(x), np.array(y)

def _pad(self, ids):
x = []
for input_ids in ids:
input_ids = input_ids[:min(len(input_ids), self.max_seq_len - 2)]
input_ids = input_ids + [0] * (self.max_seqg_len - len(input_ids))
x.append(np.array(input_ids))

return np.array(x)

We figure out the padding length by taking the minimum between the longest text and the max
sequence length parameter. We also surround the tokens for each text with two special tokens: start
with [CLS] and end with [SEP].

Fine-tuning

Let’s make BERT usable for text classification! We’'ll load the model and attach a couple of layers on
it:

def create_model(max_seq_len, bert_ckpt_file):

with tf.io.gfile.GFile(bert_config_file, "r") as reader:
bc = StockBertConfig. from_json_string(reader.read())
bert_params = map_stock_config_to_params(bc)
bert_params.adapter_size = None
bert = BertModellLayer . from_params(bert_params, name="bert")

input_ids = keras.layers.Input(
shape=(max_seq_len,),
dtype="'int32",
name="input_ids"

)
bert_output = bert(input_ids)

print("bert shape", bert_output.shape)

cls_out = keras.layers.lLambda(lambda seq: seq[:, 9, :])(bert_output)

cls_out = keras.layers.Dropout(0.5)(cls_out)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

20
21
22
23
24
25
26
27
28
29
30
31
32

O© 00 1 O O b W N =

Intent Recognition with BERT

logits = keras.layers.Dense(units=768, activation="tanh")(cls_out)

logits = keras.layers.Dropout(0.5)(logits)
logits = keras.layers.Dense(

units=len(classes),

activation="softmax"
)(logits)

model = keras.Model(inputs=input_ids, outputs=logits)
model .build(input_shape=(None, max_seq_len))

load_stock_weights(bert, bert_ckpt_file)

return model

259

We’re fine-tuning the pre-trained BERT model using our inputs (text and intent). We also flatten the
output and add Dropout with two Fully-Connected layers. The last layer has a softmax activation

function. The number of outputs is equal to the number of intents we have - seven.

You can now use BERT to recognize intents!
Training
It is time to put everything together. We’ll start by creating the data object:

classes = train.intent.unique().tolist()

data = IntentDetectionData(
train,
test,
tokenizer,
classes,

max_seq_len=128

We can now create the model using the maximum sequence length:
model = create_model(data.max_seq_len, bert_ckpt_file)
Looking at the model summary:

model . summar ()

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

g b W N~

© 00 N O O b W N =

[==Y
w N =~

Intent Recognition with BERT 260

You’ll notice that even this “slim” BERT has almost 110 million parameters. Indeed, your model is
HUGE (that’s what she said).

Fine-tuning models like BERT is both art and doing tons of failed experiments. Fortunately, the
authors made some recommendations:

« Batch size: 16, 32
« Learning rate (Adam): 5e-5, 3e-5, 2e-5
« Number of epochs: 2, 3, 4

model . compile(
optimizer=keras.optimizers.Adam(1e-5),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")]

We'll use Adam with a slightly different learning rate (cause we're badasses) and use sparse
categorical crossentropy, so we don’t have to one-hot encode our labels.

Let’s fit the model:

log_dir = "log/intent_detection/" +\
datetime.datetime.now().strftime("%Y%m%d-%H%M%Zs")
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=log_dir)

model . fit(
x=data.train_x,
y=data.train_y,
validation_split=0.1,
batch_size=16,
shuffle=True,
epochs=5,
callbacks=[tensorboard_callback]

We store the training logs, so you can explore the training process in Tensorboard***. Let’s have a
look:

32%https://www.tensorflow.org/tensorboard

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard

Intent Recognition with BERT 261

Loss over training epochs

—— train

1.30 test

1.28

1.26

1.24

Loss

122

1.20

1.18

Epoch

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

g b W N =

Intent Recognition with BERT 262

Accuracy over training epochs
1.00

0.98

0.96

0.94

Accuracy

0.92

0.90

—— train
test

0.88

Epoch

Evaluation

I got to be honest with you. I was impressed with the results. Training using only 12.5k samples we
got:

_, train_acc = model.evaluate(data.train_x, data.train_y)
_, test_acc = model.evaluate(data.test_x, data.test_y)

print("train acc", train_acc)
print("test acc", test_acc)

train acc ©.9915119
test acc ©.9771429

Impressive, right? Let’s have a look at the confusion matrix:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

N =

w

© 00 N O O

10
11
12
13
14
15
16
17
18

Intent Recognition with BERT

PlayMusic

AddToPlaylist

RateBook

SearchScreeningEvent

True label

BookRestaurant

GetWeather

SearchCreativeWork

\C ot o% o~ o el N\
02 \’c)'*\\ 20 (/}16 0(0 a'(,‘(\ . \SO
N N4 NG e X2 e 4e
Q\B <0 W aS > X x\

66 ee(\ \AQ‘ 66 (ea

P (j(ﬂ %00 & C
ea‘(“(\ e
)

Predicted label

Finally, let’s use the model to detect intent from some custom sentences:

sentences = |
"Play our song now",
"Rate this book as awful"

pred_tokens = map(tokenizer.tokenize, sentences)
pred_tokens = map(lambda tok: ["[CLS]"] + tok + ["[SEP]"], pred_tokens)
pred_token_ids = list(map(tokenizer.convert_tokens_to_ids, pred_tokens))

pred_token_ids = map(
lambda tids: tids +[0]*(data.max_seq_len-len(tids)),
pred_token_ids

)
pred_token_ids = np.array(list(pred_token_ids))

predictions = model.predict(pred_token_ids).argmax(axis=-1)

for text, label in zip(sentences, predictions):

263

- 100

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

19
20

g b w N

Intent Recognition with BERT 264

print("text:", text, "\nintent:", classes[label])
print()

text: Play our song now
intent: PlayMusic

text: Rate this book as awful
intent: RateBook

Man, that’s (clearly) gangsta! Ok, the examples might not be as diverse as real queries might be. But
hey, go ahead and try it on your own!

Conclusion

You now know how to fine-tune a BERT model for text classification. You probably already know
that you can use it for a variety of other tasks, too! You just have to fiddle with the layers. EASY!

Run the complete notebook in your browser®*’
The complete project on GitHub’**

Doing AI/ML feels a lot like having superpowers, right? Thanks to the wonderful NLP community,
you can have superpowers, too! What will you use them for?

References

« BERT Fine-Tuning Tutorial with PyTorch®**

« SNIPS dataset®*

« The Ilustrated BERT, ELMo, and co. ***

« BERT for dummies — Step by Step Tutorial**

« Multi-label Text Classification using BERT — The Mighty Transformer®**

**"https://colab.research.google.com/drive/TWQY_XxdiCVFzjMXnDdNfUjDFi0CN5hkT
*#*https://github.com/curiousily/Deep-Learning-For-Hackers

**https://mccormickml.com/2019/07/22/BERT-fine- tuning/
**%https://github.com/snipsco/nlu-benchmark/tree/master/2017-06- custom- intent-engines
**Thttps://jalammar.github.io/illustrated-bert/

**?https://towardsdatascience.com/bert-for-dummies- step-by-step- tutorial-fb90890ffe03
*>*https://medium.com/huggingface/multi-label- text- classification-using-bert- the- mighty- transformer- 69714fa3fb3d

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1WQY_XxdiCVFzjMXnDdNfUjDFi0CN5hkT
https://github.com/curiousily/Deep-Learning-For-Hackers
https://mccormickml.com/2019/07/22/BERT-fine-tuning/
https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines
https://jalammar.github.io/illustrated-bert/
https://towardsdatascience.com/bert-for-dummies-step-by-step-tutorial-fb90890ffe03
https://medium.com/huggingface/multi-label-text-classification-using-bert-the-mighty-transformer-69714fa3fb3d
https://colab.research.google.com/drive/1WQY_XxdiCVFzjMXnDdNfUjDFi0CN5hkT
https://github.com/curiousily/Deep-Learning-For-Hackers
https://mccormickml.com/2019/07/22/BERT-fine-tuning/
https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines
https://jalammar.github.io/illustrated-bert/
https://towardsdatascience.com/bert-for-dummies-step-by-step-tutorial-fb90890ffe03
https://medium.com/huggingface/multi-label-text-classification-using-bert-the-mighty-transformer-69714fa3fb3d

