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1. Getting Started with PyTorch
PyTorch¹ is:

An open source machine learning framework that accelerates the path from research
prototyping to production deployment.

In my humble opinion, PyTorch is the sweet² way to solve Machine Learning problems, in the
real world! The vast community allows you to work state-of-the-art models and deploy them to
production in no time (relatively speaking). Let’s get started!

1 In [0]: !pip install -q -U torch watermark

2

3 In [0]: %load_ext watermark

4 %watermark -v -p numpy,torch

5

6 Out[0]: CPython 3.6.9

7 IPython 5.5.0

8

9 numpy 1.17.5

10 torch 1.4.0

PyTorch � NumPy

Do you know NumPy? If you do, learning PyTorch will be a breeze! If you don’t, prepare to learn
the skills that will guide you on your journey Machine Learning Mastery!

Let’s start with something simple:

¹https://pytorch.org/
²https://www.youtube.com/watch?v=-h4spfuMGDI

https://pytorch.org/
https://www.youtube.com/watch?v=-h4spfuMGDI
https://pytorch.org/
https://www.youtube.com/watch?v=-h4spfuMGDI
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1 In [0]: import torch

2 import numpy as np

3

4 In [0]: a = np.array([1, 2])

5 b = np.array([8, 9])

6

7 c = a + b

8 c

9

10 Out[0]: array([ 9, 11])

Adding the same arrays with PyTorch looks like this:

1 In [0]: a = torch.tensor([1, 2])

2 b = torch.tensor([8, 9])

3

4 c = a + b

5 c

6

7 Out[0]: tensor([ 9, 11])

Fortunately, you can go from NumPy to PyTorch:

1 In [0]: a = torch.tensor([1, 2])

2

3 a.numpy()

4

5 Out[0]: array([1, 2])

and vice versa:

1 In [0]: a = np.array([1, 2])

2 torch.from_numpy(a)

3

4 Out[0]: tensor([1, 2])

The good news is that the conversions incur almost no cost on the performance of your app. The
NumPy and PyTorch store data in memory in the same way. That is, PyTorch is reusing the work
done by NumPy.

Smile, you are amazing!
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Tensors

Tensors are just n-dimensional number (including booleans) containers. You can find the complete
list of supported data types at PyTorch’s Tensor Docs³.

So, how can you create a Tensor (try to ignore that I’ve already shown you how to do it)?

1 In [0]: torch.tensor([[1, 2], [2, 1]])

2

3 Out[0]: tensor([[1, 2],

4 [2, 1]])

You can create a tensor from floats:

1 In [0]: torch.FloatTensor([[1, 2], [2, 1]])

2

3 Out[0]: tensor([[1., 2.],

4 [2., 1.]])

Or define the type like so:

1 In [0]: torch.tensor([[1, 2], [2, 1]], dtype=torch.bool)

2

3 Out[0]: tensor([[True, True],

4 [True, True]])

You can use a wide range of factory methods to create Tensors without manually specifying each
number. For example, you can create a matrix with random numbers like this:

1 In [0]: torch.rand(3, 2)

2

3 Out[0]: tensor([[0.6686, 0.7622],

4 [0.0341, 0.5835],

5 [0.2423, 0.0651]])

Or one full of ones:

³https://pytorch.org/docs/stable/tensors.html

Smile, you are amazing!

https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/tensors.html
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1 In [0]: torch.ones(3, 2)

2

3 Out[0]: tensor([[1., 1.],

4 [1., 1.],

5 [1., 1.]])

PyTorch has a variety of useful operations:

1 In [0]: x = torch.tensor([[2, 3], [1, 2]])

2 print(x)

3 print(f'sum: {x.sum()}')

4

5 Out[0]: tensor([[2, 3],

6 [1, 2]])

7 sum: 8

Get the transpose of a 2-D tensor:

1 In [0]: x.t()

2

3 Out[0]: tensor([[2, 1],

4 [3, 2]])

Get the shape of each dimension:

1 In [0]: x.size()

2

3 Out[0]: torch.Size([2, 2])

Generally, performing some operation creates a new Tensor:

1 In [0]: y = torch.tensor([[2, 2], [5, 1]])

2 z = x.add(y)

3 z

4

5 Out[0]: tensor([[4, 5],

6 [6, 3]])

But you can do it in-place:

Smile, you are amazing!
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1 In [0]: x.add_(y)

2 x

3

4 Out[0]: tensor([[4, 5],

5 [6, 3]])

Almost all operations have an in-place version - the name of the operation, followed by an
underscore.

Running on GPU

At this point, you might be like: “Why do I need PyTorch at all? All of this is perfectly doable with
NumPy?”. PyTorch has three major superpowers: - you can run your operations on the GPU(s) (or
something else) - Autograd: automatic differentiation⁴ - A set of tools to build Neural Networks.
Including several additional packages for working with text⁵ or images⁶.

Doing your Deep Learning computations on the GPU speeds up your experiment by a lot! And
PyTorch makes it ridiculously easy to do it. Let’s start by checking if GPU is available:

1 In [0]: device = torch.device("cuda") if torch.cuda.is_available() else torch.device\

2 ("cpu")

3 device

4

5 Out[0]: device(type='cuda')

Good, we have a CUDA⁷-enabled GPU device on our hands. Let’s store a Tensor on it:

1 In [0]: x = torch.tensor([[2, 3], [1, 2]])

2 x.to(device)

3

4 Out[0]: tensor([[2, 3],

5 [1, 2]], device='cuda:0')

Notice that our Tensor is now on device cuda:0. What can we do with it? Pretty much everything
as before:

⁴https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
⁵https://github.com/pytorch/text
⁶https://github.com/pytorch/vision
⁷https://en.wikipedia.org/wiki/CUDA

Smile, you are amazing!

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
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1 In [0]: x = x.to(device)

2

3 y = torch.tensor([[2, 2], [5, 1]])

4 y = y.to(device)

5

6 x.add(y)

7

8 Out[0]: tensor([[4, 5],

9 [6, 3]], device='cuda:0')

Common Issues

I got to be honest with you. You will fuck up, multiple times, before understanding how this whole
thing works out. That’s alright!

However, there are a couple of things you can do that might minimize the frustrations along your
journey:

• Doing operations between GPU and CPU Tensors is not allowed
• Size mismatch between Tensors occurs often and is (almost every time) easy to fix:

In [0]: a = torch.ones(2, 2) b = torch.ones(1, 3) a * b

Out[0]: ————————————————————————— RuntimeError Traceback (most recent
call last) <ipython-input-21-b2a4e8765762> in <module>() 1 a = torch.ones(2, 2) 2 b = torch.ones(1,
3) —-> 3 a * b

1 RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at \

2 non-singleton dimension 1

PyTorch is very descriptive in this case. When doing more complex stuff, you would want to check
the shape of your Tensors obsessively, after every operation. Just print the size!

• Running out of GPU memory: You might be leaking memory or too large of a dataset/model.
Faster/better GPU always helps. But remember, you can solve really large problems with a
single powerful GPU these days. Think carefully if that is not enough for you - why that is?

Conclusion

Welcome to the dark side! You might’ve been working with Keras, TensorFlow, or another Deep
Learning framework, until recently. Almost every framework is great, but PyTorch has really solid
roots. Easy to use and understand, allows for fast experimentation and standard debugging tools
apply! Enjoy!

Smile, you are amazing!
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2. Build Your First Neural Network
with PyTorch

In this tutorial, you’ll build your first Neural Network using PyTorch. You’ll use it to predict whether
or not is going to rain tomorrow using real weather information.

• Run the complete notebook in your browser (Google Colab)¹
• Read the Getting Things Done with Pytorch book²

You’ll learn how to:

• Preprocess CSV files and convert the data to Tensors
• Build your own Neural Network model with PyTorch
• Use a loss function and an optimizer to train your model
• Evaluate your model and learn about the perils of imbalanced classification

1 %reload_ext watermark

2 %watermark -v -p numpy,pandas,torch

1 CPython 3.6.9

2 IPython 5.5.0

3

4 numpy 1.17.5

5 pandas 0.25.3

6 torch 1.4.0

¹https://colab.research.google.com/drive/1lDXVkdt7GC8jK_nGmOMKeDywXse-DY-u
²https://github.com/curiousily/Getting-Things-Done-with-Pytorch

https://colab.research.google.com/drive/1lDXVkdt7GC8jK_nGmOMKeDywXse-DY-u
https://github.com/curiousily/Getting-Things-Done-with-Pytorch
https://colab.research.google.com/drive/1lDXVkdt7GC8jK_nGmOMKeDywXse-DY-u
https://github.com/curiousily/Getting-Things-Done-with-Pytorch
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1 import torch

2

3 import os

4 import numpy as np

5 import pandas as pd

6 from tqdm import tqdm

7 import seaborn as sns

8 from pylab import rcParams

9 import matplotlib.pyplot as plt

10 from matplotlib import rc

11 from sklearn.model_selection import train_test_split

12 from sklearn.metrics import confusion_matrix, classification_report

13

14 from torch import nn, optim

15

16 import torch.nn.functional as F

17

18 %matplotlib inline

19 %config InlineBackend.figure_format='retina'

20

21 sns.set(style='whitegrid', palette='muted', font_scale=1.2)

22

23 HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#93D30C", "#8F0\

24 0FF"]

25

26 sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE))

27

28 rcParams['figure.figsize'] = 12, 8

29

30 RANDOM_SEED = 42

31 np.random.seed(RANDOM_SEED)

32 torch.manual_seed(RANDOM_SEED)

Data

Our dataset contains daily weather information from multiple Australian weather stations. We’re
about to answer a simple question.Will it rain tomorrow?

The data is hosted on Kaggle³ and created by Joe Young⁴. I’ve uploaded the dataset to Google Drive.
Let’s get it:

³https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
⁴https://www.kaggle.com/jsphyg

Smile, you are amazing!
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1 !gdown --id 1Q1wUptbNDYdfizk5abhmoFxIQiX19Tn7

And load it into a data frame:

1 df = pd.read_csv('weatherAUS.csv')

We have a large set of features/columns here. You might also notice some NaN s. Let’s have a look
at the overall dataset size:

1 df.shape

1 (142193, 24)

Looks like we have plenty of data. But we got to do something about those missing values.

Data Preprocessing

We’ll start by simplifying the problem by removing most of the data. We’ll use only 4 columns for
predicting whether or not is going to rain tomorrow:

1 cols = ['Rainfall', 'Humidity3pm', 'Pressure9am', 'RainToday', 'RainTomorrow']

2

3 df = df[cols]

Neural Networks don’t work with much else than numbers. We’ll convert yes and no to 1 and 0,
respectively:

1 df['RainToday'].replace({'No': 0, 'Yes': 1}, inplace = True)

2 df['RainTomorrow'].replace({'No': 0, 'Yes': 1}, inplace = True)

Let’s drop the rows with missing values. There are better ways to do this, but we’ll keep it simple:

1 df = df.dropna(how='any')

Finally, we have a dataset we can work with.

One important question we should answer is - How balanced is our dataset?. Or How many times
did it rain or not rain tomorrow? :

Smile, you are amazing!
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1 sns.countplot(df.RainTomorrow);

png

1 df.RainTomorrow.value_counts() / df.shape[0]

1 0 0.778762

2 1 0.221238

3 Name: RainTomorrow, dtype: float64

Things are not looking good. About 78% of the data points have a non-rainy day for tomorrow. This
means that a model that predicts there will be no rain tomorrow will be correct about 78% of the
time.

You can read and apply the Practical Guide to Handling Imbalanced Datasets⁵ if youwant tomitigate
this issue. Here, we’ll just hope for the best.

The final step is to split the data into train and test sets:

⁵https://www.curiousily.com/posts/practical-guide-to-handling-imbalanced-datasets/

Smile, you are amazing!
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1 X = df[['Rainfall', 'Humidity3pm', 'RainToday', 'Pressure9am']]

2 y = df[['RainTomorrow']]

3

4 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_stat\

5 e=RANDOM_SEED)

And convert all of it to Tensors (so we can use it with PyTorch):

1 X_train = torch.from_numpy(X_train.to_numpy()).float()

2 y_train = torch.squeeze(torch.from_numpy(y_train.to_numpy()).float())

3

4 X_test = torch.from_numpy(X_test.to_numpy()).float()

5 y_test = torch.squeeze(torch.from_numpy(y_test.to_numpy()).float())

6

7 print(X_train.shape, y_train.shape)

8 print(X_test.shape, y_test.shape)

1 torch.Size([99751, 4]) torch.Size([99751])

2 torch.Size([24938, 4]) torch.Size([24938])

Building a Neural Network

We’ll build a simple Neural Network (NN) that tries to predicts will it rain tomorrow.

Our input contains data from the four columns: Rainfall, Humidity3pm, RainToday, Pressure9am.
We’ll create an appropriate input layer for that.

The output will be a number between 0 and 1, representing how likely (our model thinks) it is going
to rain tomorrow. The prediction will be given to us by the final (output) layer of the network.

We’ll two (hidden) layers between the input and output layers. The parameters (neurons) of those
layer will decide the final output. All layers will be fully-connected.

One easy way to build the NN with PyTorch is to create a class that inherits from torch.nn.Module:

Smile, you are amazing!
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1 class Net(nn.Module):

2

3 def __init__(self, n_features):

4 super(Net, self).__init__()

5 self.fc1 = nn.Linear(n_features, 5)

6 self.fc2 = nn.Linear(5, 3)

7 self.fc3 = nn.Linear(3, 1)

8

9 def forward(self, x):

10 x = F.relu(self.fc1(x))

11 x = F.relu(self.fc2(x))

12 return torch.sigmoid(self.fc3(x))

1 net = Net(X_train.shape[1])

2

3 ann_viz(net, view=False)

Smile, you are amazing!
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svg

We start by creating the layers of our model in the constructor. The forward()method is where the
magic happens. It accepts the input x and allows it to flow through each layer.

There is a corresponding backward pass (defined for you by PyTorch) that allows the model to learn
from the errors that is currently making.

Smile, you are amazing!
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Activation Functions

You might notice the calls to F.relu and torch.sigmoid. Why do we need those?

One of the cool features of Neural Networks is that they can approximate non-linear functions. In
fact, it is proven that they can approximate any function⁶.

Good luck approximating non-linear functions by stacking linear layers. Activation functions allow
you to break from the linear world and learn (hopefully) more. You’ll usually find them applied to
an output of some layer.

Those functions must be hard to define, right?

ReLU

Not at all, let start with the ReLU definition (one of the most widely used activation function):

ReLU(x) =max(0, x)

Easy peasy, the result is the maximum value of zero and the input.

1 ax = plt.gca()

2

3 plt.plot(

4 np.linspace(-1, 1, 5),

5 F.relu(torch.linspace(-1, 1, steps=5)).numpy()

6 )

7 ax.set_ylim([-1.5, 1.5]);

⁶https://en.wikipedia.org/wiki/Universal_approximation_theorem

Smile, you are amazing!
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png

Sigmoid

The sigmoid is useful when you need to make a binary decision/classification (answering with a yes
or a no).

It is defined as:

Sigmoid(x) = 1

1 + e−x

The sigmoid squishes the input values between 0 and 1. But in a super kind of way:

1 ax = plt.gca()

2

3 plt.plot(

4 np.linspace(-10, 10, 100),

5 torch.sigmoid(torch.linspace(-10, 10, steps=100)).numpy()

6 )

7 ax.set_ylim([-1.5, 1.5]);

Smile, you are amazing!



Build Your First Neural Network with PyTorch 17

png

Training

With the model in place, we need to find parameters that predict will it rain tomorrow. First, we
need something to tell us how good we’re currently doing:

1 criterion = nn.BCELoss()

The BCELoss⁷ is a loss function that measures the difference between the two binary vectors. In our
case, the predictions of our model and the real values. It expects the values to be outputed by the
sigmoid function. The closer this value gets to 0, the better your model should be.

But how do we find parameters that minimize the loss function?

Optimization

Imagine that each parameter of our NN is a knob. The optimizer’s job is to find the perfect positions
for each knob so that the loss gets close to 0.

⁷https://pytorch.org/docs/stable/nn.html#bceloss

Smile, you are amazing!
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Real-world models can contain millions or even billions of parameters. With so many knobs to turn,
it would be nice to have an efficient optimizer that quickly finds solutions.

Contrary to what you might believe, optimization in Deep Learning is just satisfying. In practice,
you’re content with good enough parameter values.

While there are tons of optimizers you can choose from, Adam⁸ is a safe first choice. PyTorch has a
well-debugged implementation you can use:

1 optimizer = optim.Adam(net.parameters(), lr=0.001)

Naturally, the optimizer requires the parameters. The second argument lr is learning rate. It is a
tradeoff between how good parameters you’re going to find and how fast you’ll get there. Finding
good values for this can be black magic and a lot of brute-force “experimentation”.

Doing it on the GPU

Doing massively parallel computations on GPUs is one of the enablers for modern Deep Learning.
You’ll need nVIDIA GPU for that.

PyTorch makes it really easy to transfer all the computation to your GPU:

1 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

1 X_train = X_train.to(device)

2 y_train = y_train.to(device)

3

4 X_test = X_test.to(device)

5 y_test = y_test.to(device)

1 net = net.to(device)

2

3 criterion = criterion.to(device)

We start by checking whether or not a CUDA device is available. Then, we transfer all training and
test data to that device. Finally, we move our model and loss function.

Finding Good Parameters

Having a loss function is great, but tracking the accuracy of our model is something easier to
understand, for us mere mortals. Here’s the definition for our accuracy:

⁸https://pytorch.org/docs/stable/optim.html#torch.optim.Adam
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1 def calculate_accuracy(y_true, y_pred):

2 predicted = y_pred.ge(.5).view(-1)

3 return (y_true == predicted).sum().float() / len(y_true)

We convert every value below 0.5 to 0. Otherwise, we set it to 1. Finally, we calculate the percentage
of correct values.

With all the pieces of the puzzle in place, we can start training our model:

1 def round_tensor(t, decimal_places=3):

2 return round(t.item(), decimal_places)

3

4 for epoch in range(1000):

5

6 y_pred = net(X_train)

7

8 y_pred = torch.squeeze(y_pred)

9 train_loss = criterion(y_pred, y_train)

10

11 if epoch % 100 == 0:

12 train_acc = calculate_accuracy(y_train, y_pred)

13

14 y_test_pred = net(X_test)

15 y_test_pred = torch.squeeze(y_test_pred)

16

17 test_loss = criterion(y_test_pred, y_test)

18

19 test_acc = calculate_accuracy(y_test, y_test_pred)

20 print(

21 f'''epoch {epoch}

22 Train set - loss: {round_tensor(train_loss)}, accuracy: {round_tensor(train_acc)}

23 Test set - loss: {round_tensor(test_loss)}, accuracy: {round_tensor(test_acc)}

24 ''')

25

26 optimizer.zero_grad()

27

28 train_loss.backward()

29

30 optimizer.step()

Smile, you are amazing!
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1 epoch 0

2 Train set - loss: 2.513, accuracy: 0.779

3 Test set - loss: 2.517, accuracy: 0.778

4

5 epoch 100

6 Train set - loss: 0.457, accuracy: 0.792

7 Test set - loss: 0.458, accuracy: 0.793

8

9 epoch 200

10 Train set - loss: 0.435, accuracy: 0.801

11 Test set - loss: 0.436, accuracy: 0.8

12

13 epoch 300

14 Train set - loss: 0.421, accuracy: 0.814

15 Test set - loss: 0.421, accuracy: 0.815

16

17 epoch 400

18 Train set - loss: 0.412, accuracy: 0.826

19 Test set - loss: 0.413, accuracy: 0.827

20

21 epoch 500

22 Train set - loss: 0.408, accuracy: 0.831

23 Test set - loss: 0.408, accuracy: 0.832

24

25 epoch 600

26 Train set - loss: 0.406, accuracy: 0.833

27 Test set - loss: 0.406, accuracy: 0.835

28

29 epoch 700

30 Train set - loss: 0.405, accuracy: 0.834

31 Test set - loss: 0.405, accuracy: 0.835

32

33 epoch 800

34 Train set - loss: 0.404, accuracy: 0.834

35 Test set - loss: 0.404, accuracy: 0.835

36

37 epoch 900

38 Train set - loss: 0.404, accuracy: 0.834

39 Test set - loss: 0.404, accuracy: 0.836

During the training, we show our model the data for 10,000 times. Each time we measure the loss,
propagate the errors trough our model and asking the optimizer to find better parameters.

The zero_grad() method clears up the accumulated gradients, which the optimizer uses to find

Smile, you are amazing!
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better parameters.

What about that accuracy? 83.6% accuracy on the test set sounds reasonable, right? Well, I am about
to disappoint you. But first, let’s learn how to save and load our trained models.

Saving the model

Training a good model can take a lot of time. And I mean weeks, months or even years. So, let’s
make sure that you know how you can save your precious work. Saving is easy:

1 MODEL_PATH = 'model.pth'

2

3 torch.save(net, MODEL_PATH)

Restoring your model is easy too:

1 net = torch.load(MODEL_PATH)

Evaluation

Wouldn’t it be perfect to know what kinds of errors your model makes? Of course, that’s impossible.
But you can get an estimate.

Using just accuracy wouldn’t be a good way to do it. Recall that our data contains mostly no rain
examples.

One way to delve a bit deeper into your model performance is to assess the precision and recall for
each class. In our case, that will be no rain and rain:

1 classes = ['No rain', 'Raining']

2

3 y_pred = net(X_test)

4

5 y_pred = y_pred.ge(.5).view(-1).cpu()

6 y_test = y_test.cpu()

7

8 print(classification_report(y_test, y_pred, target_names=classes))

Smile, you are amazing!
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1 precision recall f1-score support

2

3 No rain 0.85 0.96 0.90 19413

4 Raining 0.74 0.40 0.52 5525

5

6 accuracy 0.84 24938

7 macro avg 0.80 0.68 0.71 24938

8 weighted avg 0.83 0.84 0.82 24938

A maximum precision of 1 indicates that the model is perfect at identifying only relevant examples.
A maximum recall of 1 indicates that our model can find all relevant examples in the dataset for
this class.

You can see that our model is doing good when it comes to the No rain class. We have so many
examples. Unfortunately, we can’t really trust predictions of the Raining class.

One of the best things about binary classification is that you can have a good look at a simple
confusion matrix:

1 cm = confusion_matrix(y_test, y_pred)

2 df_cm = pd.DataFrame(cm, index=classes, columns=classes)

3

4 hmap = sns.heatmap(df_cm, annot=True, fmt="d")

5 hmap.yaxis.set_ticklabels(hmap.yaxis.get_ticklabels(), rotation=0, ha='right')

6 hmap.xaxis.set_ticklabels(hmap.xaxis.get_ticklabels(), rotation=30, ha='right')

7 plt.ylabel('True label')

8 plt.xlabel('Predicted label');

Smile, you are amazing!
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png

You can clearly see that our model shouldn’t be trusted when it says it’s going to rain.

Conclusion

Well done! You now have a Neural Network that can predict the weather. Well, sort of. Building
well-performing models is hard, really hard. But there are tricks you’ll pick up along the way and
(hopefully) get better at your craft!

• Run the complete notebook in your browser (Google Colab)⁹
• Read the Getting Things Done with Pytorch book¹⁰

You learned how to:

• Preprocess CSV files and convert the data to Tensors

⁹https://colab.research.google.com/drive/1lDXVkdt7GC8jK_nGmOMKeDywXse-DY-u
¹⁰https://github.com/curiousily/Getting-Things-Done-with-Pytorch
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• Build your own Neural Network model with PyTorch
• Use a loss function and an optimizer to train your model
• Evaluate your model and learn about the perils of imbalanced classification

References

• Precision and Recall¹¹
• Beyond Accuracy: Precision and Recall¹²

¹¹https://en.wikipedia.org/wiki/Precision_and_recall
¹²https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
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3. Transfer Learning for Image
Classification using Torchvision

TL;DR Learn how to use Transfer Learning to classify traffic sign images. You’ll build a
dataset of images in a format suitable for working with Torchvision. Get predictions on
images from the wild (downloaded from the Internet).

In this tutorial, you’ll learn how to fine-tune a pre-trained model for classifying raw pixels of traffic
signs.

• Read the tutorial¹
• Run the notebook in your browser (Google Colab)²
• Read the Getting Things Done with Pytorch book³

Here’s what we’ll go over:

• Overview of the traffic sign image dataset
• Build a dataset
• Use a pre-trained model from Torchvision
• Add a new unknown class and re-train the model

Will this model be ready for the real world?

1 import torch, torchvision

2

3 from pathlib import Path

4 import numpy as np

5 import cv2

6 import pandas as pd

7 from tqdm import tqdm

8 import PIL.Image as Image

9 import seaborn as sns

10 from pylab import rcParams

11 import matplotlib.pyplot as plt

12 from matplotlib import rc

¹https://www.curiousily.com/posts/transfer-learning-for-image-classification-using-torchvision-pytorch-and-python/
²https://colab.research.google.com/drive/1Lk5R4pECDxDhd1uXcv26YRQ02fb_mrL9?usp=sharing
³https://github.com/curiousily/Getting-Things-Done-with-Pytorch

https://www.curiousily.com/posts/transfer-learning-for-image-classification-using-torchvision-pytorch-and-python/
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https://github.com/curiousily/Getting-Things-Done-with-Pytorch
https://www.curiousily.com/posts/transfer-learning-for-image-classification-using-torchvision-pytorch-and-python/
https://colab.research.google.com/drive/1Lk5R4pECDxDhd1uXcv26YRQ02fb_mrL9?usp=sharing
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13 from matplotlib.ticker import MaxNLocator

14 from torch.optim import lr_scheduler

15 from sklearn.model_selection import train_test_split

16 from sklearn.metrics import confusion_matrix, classification_report

17 from glob import glob

18 import shutil

19 from collections import defaultdict

20

21 from torch import nn, optim

22

23 import torch.nn.functional as F

24 import torchvision.transforms as T

25 from torchvision.datasets import ImageFolder

26 from torch.utils.data import DataLoader

27 from torchvision import models

28

29 %matplotlib inline

30 %config InlineBackend.figure_format='retina'

31

32 sns.set(style='whitegrid', palette='muted', font_scale=1.2)

33

34 HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F0\

35 0FF"]

36

37 sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE))

38

39 rcParams['figure.figsize'] = 12, 8

40

41 RANDOM_SEED = 42

42 np.random.seed(RANDOM_SEED)

43 torch.manual_seed(RANDOM_SEED)

44

45 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Recognizing traffic signs

German Traffic Sign Recognition Benchmark (GTSRB)⁴ contains more than 50,000 annotated images
of 40+ traffic signs. Given an image, you’ll have to recognize the traffic sign on it.

⁴http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
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1 !wget https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/GTSRB_Fin\

2 al_Training_Images.zip

3 !unzip -qq GTSRB_Final_Training_Images.zip

Exploration

Let’s start by getting a feel of the data. The images for each traffic sign are stored in a separate
directory. How many do we have?

1 train_folders = sorted(glob('GTSRB/Final_Training/Images/*'))

2 len(train_folders)

1 43

We’ll create 3 helper functions that use OpenCV and Torchvision to load and show images:

1 def load_image(img_path, resize=True):

2 img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)

3

4 if resize:

5 img = cv2.resize(img, (64, 64), interpolation = cv2.INTER_AREA)

6

7 return img

8

9 def show_image(img_path):

10 img = load_image(img_path)

11 plt.imshow(img)

12 plt.axis('off')

13

14 def show_sign_grid(image_paths):

15 images = [load_image(img) for img in image_paths]

16 images = torch.as_tensor(images)

17 images = images.permute(0, 3, 1, 2)

18 grid_img = torchvision.utils.make_grid(images, nrow=11)

19 plt.figure(figsize=(24, 12))

20 plt.imshow(grid_img.permute(1, 2, 0))

21 plt.axis('off');

Let’s have a look at some examples for each traffic sign:
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1 sample_images = [np.random.choice(glob(f'{tf}/*ppm')) for tf in train_folders]

2 show_sign_grid(sample_images)

png

And here is a single sign:

1 img_path = glob(f'{train_folders[16]}/*ppm')[1]

2

3 show_image(img_path)

Smile, you are amazing!
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png

Building a dataset

To keep things simple, we’ll focus on classifying some of the most used traffic signs:
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1 class_names = ['priority_road', 'give_way', 'stop', 'no_entry']

2

3 class_indices = [12, 13, 14, 17]

We’ll copy the images files to a new directory, so it’s easier to use the Torchvision’s dataset helpers.
Let’s start with the directories for each class:

1 !rm -rf data

2

3 DATA_DIR = Path('data')

4

5 DATASETS = ['train', 'val', 'test']

6

7 for ds in DATASETS:

8 for cls in class_names:

9 (DATA_DIR / ds / cls).mkdir(parents=True, exist_ok=True)

We’ll reserve 80% of the images for training, 10% for validation, and 10% test for each class. We’ll
copy each image to the correct dataset directory:

1 for i, cls_index in enumerate(class_indices):

2 image_paths = np.array(glob(f'{train_folders[cls_index]}/*.ppm'))

3 class_name = class_names[i]

4 print(f'{class_name}: {len(image_paths)}')

5 np.random.shuffle(image_paths)

6

7 ds_split = np.split(

8 image_paths,

9 indices_or_sections=[int(.8*len(image_paths)), int(.9*len(image_paths))]

10 )

11

12 dataset_data = zip(DATASETS, ds_split)

13

14 for ds, images in dataset_data:

15 for img_path in images:

16 shutil.copy(img_path, f'{DATA_DIR}/{ds}/{class_name}/')
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1 priority_road: 2100

2 give_way: 2160

3 stop: 780

4 no_entry: 1110

We have some class imbalance, but it is not that bad. We’ll ignore it.

We’ll apply some image augmentation techniques to artificially increase the size of our training
dataset:

1 mean_nums = [0.485, 0.456, 0.406]

2 std_nums = [0.229, 0.224, 0.225]

3

4 transforms = {'train': T.Compose([

5 T.RandomResizedCrop(size=256),

6 T.RandomRotation(degrees=15),

7 T.RandomHorizontalFlip(),

8 T.ToTensor(),

9 T.Normalize(mean_nums, std_nums)

10 ]), 'val': T.Compose([

11 T.Resize(size=256),

12 T.CenterCrop(size=224),

13 T.ToTensor(),

14 T.Normalize(mean_nums, std_nums)

15 ]), 'test': T.Compose([

16 T.Resize(size=256),

17 T.CenterCrop(size=224),

18 T.ToTensor(),

19 T.Normalize(mean_nums, std_nums)

20 ]),

21 }

We apply some random resizing, rotation, and horizontal flips. Finally, we normalize the tensors
using preset values for each channel. This is a requirement of the pre-trained models⁵ in Torchvision.

We’ll create a PyTorch dataset for each image dataset folder and data loaders for easier training:

⁵https://pytorch.org/docs/stable/torchvision/models.html
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1 image_datasets = {

2 d: ImageFolder(f'{DATA_DIR}/{d}', transforms[d]) for d in DATASETS

3 }

4

5 data_loaders = {

6 d: DataLoader(image_datasets[d], batch_size=4, shuffle=True, num_workers=4)

7 for d in DATASETS

8 }

We’ll also store the number of examples in each dataset and class names for later:

1 dataset_sizes = {d: len(image_datasets[d]) for d in DATASETS}

2 class_names = image_datasets['train'].classes

3

4 dataset_sizes

1 {'test': 615, 'train': 4920, 'val': 615}

Let’s have a look at some example images with applied transformations. We also need to reverse the
normalization and reorder the color channels to get correct image data:

1 def imshow(inp, title=None):

2 inp = inp.numpy().transpose((1, 2, 0))

3 mean = np.array([mean_nums])

4 std = np.array([std_nums])

5 inp = std * inp + mean

6 inp = np.clip(inp, 0, 1)

7 plt.imshow(inp)

8 if title is not None:

9 plt.title(title)

10 plt.axis('off')

11

12 inputs, classes = next(iter(data_loaders['train']))

13 out = torchvision.utils.make_grid(inputs)

14

15 imshow(out, title=[class_names[x] for x in classes])
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png

Using a pre-trained model:

Our model will receive raw image pixels and try to classify them into one of four traffic signs. How
hard can it be? Try to build a model from scratch.

Here, we’ll use Transfer Learning⁶ to copy the architecture of the very popular ResNet⁷ model. On
top of that, we’ll use the learned weights of the model from training on the ImageNet dataset ⁸. All
of this is made easy to use by Torchvision:

1 def create_model(n_classes):

2 model = models.resnet34(pretrained=True)

3

4 n_features = model.fc.in_features

5 model.fc = nn.Linear(n_features, n_classes)

6

7 return model.to(device)

We reuse almost everything except the change of the output layer. This is needed because the number
of classes in our dataset is different than ImageNet.

Let’s create an instance of our model:

1 base_model = create_model(len(class_names))

Training

We’ll write 3 helper functions to encapsulate the training and evaluation logic. Let’s start with
train_epoch:

⁶https://en.wikipedia.org/wiki/Transfer_learning
⁷https://arxiv.org/abs/1512.03385
⁸http://www.image-net.org/
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1 def train_epoch(

2 model,

3 data_loader,

4 loss_fn,

5 optimizer,

6 device,

7 scheduler,

8 n_examples

9 ):

10 model = model.train()

11

12 losses = []

13 correct_predictions = 0

14

15 for inputs, labels in data_loader:

16 inputs = inputs.to(device)

17 labels = labels.to(device)

18

19 outputs = model(inputs)

20

21 _, preds = torch.max(outputs, dim=1)

22 loss = loss_fn(outputs, labels)

23

24 correct_predictions += torch.sum(preds == labels)

25 losses.append(loss.item())

26

27 loss.backward()

28 optimizer.step()

29 optimizer.zero_grad()

30

31 scheduler.step()

32

33 return correct_predictions.double() / n_examples, np.mean(losses)

We start by turning our model into train mode and go over the data. After getting the predictions,
we get the class with maximum probability along with the loss, so we can calculate the epoch loss
and accuracy.

Note that we’re also using a learning rate scheduler (more on that later).
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1 def eval_model(model, data_loader, loss_fn, device, n_examples):

2 model = model.eval()

3

4 losses = []

5 correct_predictions = 0

6

7 with torch.no_grad():

8 for inputs, labels in data_loader:

9 inputs = inputs.to(device)

10 labels = labels.to(device)

11

12 outputs = model(inputs)

13

14 _, preds = torch.max(outputs, dim=1)

15

16 loss = loss_fn(outputs, labels)

17

18 correct_predictions += torch.sum(preds == labels)

19 losses.append(loss.item())

20

21 return correct_predictions.double() / n_examples, np.mean(losses)

The evaluation of the model is pretty similar, except that we don’t do any gradient calculations.

Let’s put everything together:

1 def train_model(model, data_loaders, dataset_sizes, device, n_epochs=3):

2 optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

3 scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

4 loss_fn = nn.CrossEntropyLoss().to(device)

5

6 history = defaultdict(list)

7 best_accuracy = 0

8

9 for epoch in range(n_epochs):

10

11 print(f'Epoch {epoch + 1}/{n_epochs}')

12 print('-' * 10)

13

14 train_acc, train_loss = train_epoch(

15 model,

16 data_loaders['train'],

17 loss_fn,
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18 optimizer,

19 device,

20 scheduler,

21 dataset_sizes['train']

22 )

23

24 print(f'Train loss {train_loss} accuracy {train_acc}')

25

26 val_acc, val_loss = eval_model(

27 model,

28 data_loaders['val'],

29 loss_fn,

30 device,

31 dataset_sizes['val']

32 )

33

34 print(f'Val loss {val_loss} accuracy {val_acc}')

35 print()

36

37 history['train_acc'].append(train_acc)

38 history['train_loss'].append(train_loss)

39 history['val_acc'].append(val_acc)

40 history['val_loss'].append(val_loss)

41

42 if val_acc > best_accuracy:

43 torch.save(model.state_dict(), 'best_model_state.bin')

44 best_accuracy = val_acc

45

46 print(f'Best val accuracy: {best_accuracy}')

47

48 model.load_state_dict(torch.load('best_model_state.bin'))

49

50 return model, history

We do a lot of string formatting and recording of the training history. The hard stuff gets delegated
to the previous helper functions. We also want the best model, so the weights of the most accurate
model(s) get stored during the training.

Let’s train our first model:
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1 %%time

2

3 base_model, history = train_model(base_model, data_loaders, dataset_sizes, device)

1 Epoch 1/3

2 ----------

3 Train loss 0.31827690804876935 accuracy 0.8859756097560976

4 Val loss 0.0012465072916699694 accuracy 1.0

5

6 Epoch 2/3

7 ----------

8 Train loss 0.12230596961529275 accuracy 0.9615853658536585

9 Val loss 0.0007955377752130681 accuracy 1.0

10

11 Epoch 3/3

12 ----------

13 Train loss 0.07771141678094864 accuracy 0.9745934959349594

14 Val loss 0.0025791768387877366 accuracy 0.9983739837398374

15

16 Best val accuracy: 1.0

17 CPU times: user 2min 24s, sys: 48.2 s, total: 3min 12s

18 Wall time: 3min 21s

Here’s a little helper function that visualizes the training history for us:

1 def plot_training_history(history):

2 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 6))

3

4 ax1.plot(history['train_loss'], label='train loss')

5 ax1.plot(history['val_loss'], label='validation loss')

6

7 ax1.xaxis.set_major_locator(MaxNLocator(integer=True))

8 ax1.set_ylim([-0.05, 1.05])

9 ax1.legend()

10 ax1.set_ylabel('Loss')

11 ax1.set_xlabel('Epoch')

12

13 ax2.plot(history['train_acc'], label='train accuracy')

14 ax2.plot(history['val_acc'], label='validation accuracy')

15

16 ax2.xaxis.set_major_locator(MaxNLocator(integer=True))

17 ax2.set_ylim([-0.05, 1.05])
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18 ax2.legend()

19

20 ax2.set_ylabel('Accuracy')

21 ax2.set_xlabel('Epoch')

22

23 fig.suptitle('Training history')

24

25 plot_training_history(history)

png

The pre-trained model is so good that we get very high accuracy and low loss after 3 epochs.
Unfortunately, our validation set is too small to get some meaningful metrics from it.

Evaluation

Let’s see some predictions on traffic signs from the test set:

1 def show_predictions(model, class_names, n_images=6):

2 model = model.eval()

3 images_handeled = 0

4 plt.figure()

5

6 with torch.no_grad():

7 for i, (inputs, labels) in enumerate(data_loaders['test']):

8 inputs = inputs.to(device)

9 labels = labels.to(device)

10

11 outputs = model(inputs)
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12 _, preds = torch.max(outputs, 1)

13

14 for j in range(inputs.shape[0]):

15 images_handeled += 1

16 ax = plt.subplot(2, n_images//2, images_handeled)

17 ax.set_title(f'predicted: {class_names[preds[j]]}')

18 imshow(inputs.cpu().data[j])

19 ax.axis('off')

20

21 if images_handeled == n_images:

22 return

1 show_predictions(base_model, class_names, n_images=8)

png

Very good! Even the almost not visible priority road sign is classified correctly. Let’s dive a bit deeper.

We’ll start by getting the predictions from our model:
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1 def get_predictions(model, data_loader):

2 model = model.eval()

3 predictions = []

4 real_values = []

5 with torch.no_grad():

6 for inputs, labels in data_loader:

7 inputs = inputs.to(device)

8 labels = labels.to(device)

9

10 outputs = model(inputs)

11 _, preds = torch.max(outputs, 1)

12 predictions.extend(preds)

13 real_values.extend(labels)

14 predictions = torch.as_tensor(predictions).cpu()

15 real_values = torch.as_tensor(real_values).cpu()

16 return predictions, real_values

1 y_pred, y_test = get_predictions(base_model, data_loaders['test'])

1 print(classification_report(y_test, y_pred, target_names=class_names))

1 precision recall f1-score support

2

3 give_way 1.00 1.00 1.00 216

4 no_entry 1.00 1.00 1.00 111

5 priority_road 1.00 1.00 1.00 210

6 stop 1.00 1.00 1.00 78

7

8 accuracy 1.00 615

9 macro avg 1.00 1.00 1.00 615

10 weighted avg 1.00 1.00 1.00 615

The classification report shows us that our model is perfect, not something you see every day! Does
this thing make any mistakes?
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1 def show_confusion_matrix(confusion_matrix, class_names):

2

3 cm = confusion_matrix.copy()

4

5 cell_counts = cm.flatten()

6

7 cm_row_norm = cm / cm.sum(axis=1)[:, np.newaxis]

8

9 row_percentages = ["{0:.2f}".format(value) for value in cm_row_norm.flatten()]

10

11 cell_labels = [f"{cnt}\n{per}" for cnt, per in zip(cell_counts, row_percentages)]

12 cell_labels = np.asarray(cell_labels).reshape(cm.shape[0], cm.shape[1])

13

14 df_cm = pd.DataFrame(cm_row_norm, index=class_names, columns=class_names)

15

16 hmap = sns.heatmap(df_cm, annot=cell_labels, fmt="", cmap="Blues")

17 hmap.yaxis.set_ticklabels(hmap.yaxis.get_ticklabels(), rotation=0, ha='right')

18 hmap.xaxis.set_ticklabels(hmap.xaxis.get_ticklabels(), rotation=30, ha='right')

19 plt.ylabel('True Sign')

20 plt.xlabel('Predicted Sign');

1 cm = confusion_matrix(y_test, y_pred)

2 show_confusion_matrix(cm, class_names)
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png

No, no mistakes here!

Classifying unseen images

Ok, but how good our model will be when confronted with a real-world image? Let’s check it out:

1 !gdown --id 19Qz3a61Ou_QSHsLeTznx8LtDBu4tbqHr

1 show_image('stop-sign.jpg')
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png

For this, we’ll have a look at the confidence for each class. Let’s get this from our model:

1 def predict_proba(model, image_path):

2 img = Image.open(image_path)

3 img = img.convert('RGB')

4 img = transforms['test'](img).unsqueeze(0)

5

6 pred = model(img.to(device))

7 pred = F.softmax(pred, dim=1)

8 return pred.detach().cpu().numpy().flatten()

1 pred = predict_proba(base_model, 'stop-sign.jpg')

2 pred
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1 array([1.1296713e-03, 1.9811286e-04, 3.4486805e-04, 9.9832731e-01],

2 dtype=float32)

This is a bit hard to understand. Let’s plot it:

1 def show_prediction_confidence(prediction, class_names):

2 pred_df = pd.DataFrame({

3 'class_names': class_names,

4 'values': prediction

5 })

6 sns.barplot(x='values', y='class_names', data=pred_df, orient='h')

7 plt.xlim([0, 1]);

1 show_prediction_confidence(pred, class_names)

png

Again, our model is performing very well! Really confident in the correct traffic sign!

Classyfing unknown traffic sign

The last challenge for our model is a traffic sign that it hasn’t seen before:
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1 !gdown --id 1F61-iNhlJk-yKZRGcu6S9P29HxDFxF0u

1 show_image('unknown-sign.jpg')

png

Let’s get the predictions:

1 pred = predict_proba(base_model, 'unknown-sign.jpg')

2 pred
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1 array([9.9413127e-01, 1.1861280e-06, 3.9936006e-03, 1.8739274e-03],

2 dtype=float32)

1 show_prediction_confidence(pred, class_names)

png

Our model is very certain (more than 95% confidence) that this is a give way sign. This is obviously
wrong. How can you make your model see this?

Adding class “unknown”

While there are a variety of ways to handle this situation (one described in this paper: A Baseline for
DetectingMisclassified and Out-of-Distribution Examples in Neural Networks⁹), we’ll do something
simpler.

We’ll get the indices of all traffic signs that weren’t included in our original dataset:

⁹https://arxiv.org/pdf/1610.02136.pdf
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1 unknown_indices = [

2 i for i, f in enumerate(train_folders) \

3 if i not in class_indices

4 ]

5

6 len(unknown_indices)

1 39

We’ll create a new folder for the unknown class and copy some of the images there:

1 for ds in DATASETS:

2 (DATA_DIR / ds / 'unknown').mkdir(parents=True, exist_ok=True)

3

4 for ui in unknown_indices:

5 image_paths = np.array(glob(f'{train_folders[ui]}/*.ppm'))

6 image_paths = np.random.choice(image_paths, 50)

7

8 ds_split = np.split(

9 image_paths,

10 indices_or_sections=[int(.8*len(image_paths)), int(.9*len(image_paths))]

11 )

12

13 dataset_data = zip(DATASETS, ds_split)

14

15 for ds, images in dataset_data:

16 for img_path in images:

17 shutil.copy(img_path, f'{DATA_DIR}/{ds}/unknown/')

The next steps are identical to what we’ve already done:

1 image_datasets = {

2 d: ImageFolder(f'{DATA_DIR}/{d}', transforms[d]) for d in DATASETS

3 }

4

5 data_loaders = {

6 d: DataLoader(image_datasets[d], batch_size=4, shuffle=True, num_workers=4)

7 for d in DATASETS

8 }

9

10 dataset_sizes = {d: len(image_datasets[d]) for d in DATASETS}
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11 class_names = image_datasets['train'].classes

12

13 dataset_sizes

1 {'test': 784, 'train': 5704, 'val': 794}

1 %%time

2

3 enchanced_model = create_model(len(class_names))

4 enchanced_model, history = train_model(enchanced_model, data_loaders, dataset_sizes,\

5 device)

1 Epoch 1/3

2 ----------

3 Train loss 0.39523224640235327 accuracy 0.8650070126227208

4 Val loss 0.002290595416447625 accuracy 1.0

5

6 Epoch 2/3

7 ----------

8 Train loss 0.173455789528505 accuracy 0.9446002805049089

9 Val loss 0.030148923471944415 accuracy 0.9886649874055415

10

11 Epoch 3/3

12 ----------

13 Train loss 0.11575758963990512 accuracy 0.9640603085553997

14 Val loss 0.0014996432778823317 accuracy 1.0

15

16 Best val accuracy: 1.0

17 CPU times: user 2min 47s, sys: 56.2 s, total: 3min 44s

18 Wall time: 3min 53s

1 plot_training_history(history)
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png

Again, our model is learning very quickly. Let’s have a look at the sample image again:

1 show_image('unknown-sign.jpg')
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png

1 pred = predict_proba(enchanced_model, 'unknown-sign.jpg')

2 show_prediction_confidence(pred, class_names)
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png

Great, the model doesn’t give much weight to any of the known classes. It doesn’t magically know
that this is a two-way sign, but recognizes is as unknown.

Let’s have a look at some examples of our new dataset:

1 show_predictions(enchanced_model, class_names, n_images=8)
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png

Let’s get an overview of the new model’s performance:

1 y_pred, y_test = get_predictions(enchanced_model, data_loaders['test'])

1 print(classification_report(y_test, y_pred, target_names=class_names))

1 precision recall f1-score support

2

3 give_way 1.00 1.00 1.00 216

4 no_entry 1.00 1.00 1.00 111

5 priority_road 1.00 1.00 1.00 210

6 stop 1.00 1.00 1.00 78

7 unknown 1.00 1.00 1.00 169

8

9 accuracy 1.00 784

10 macro avg 1.00 1.00 1.00 784

11 weighted avg 1.00 1.00 1.00 784
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1 cm = confusion_matrix(y_test, y_pred)

2 show_confusion_matrix(cm, class_names)

png

Our model is still perfect. Go ahead, try it on more images!

Summary

Good job! You trained two different models for classifying traffic signs from raw pixels. You also
built a dataset that is compatible with Torchvision.

• Read the tutorial¹⁰
• Run the notebook in your browser (Google Colab)¹¹
• Read the Getting Things Done with Pytorch book¹²

¹⁰https://www.curiousily.com/posts/transfer-learning-for-image-classification-using-torchvision-pytorch-and-python/
¹¹https://colab.research.google.com/drive/1Lk5R4pECDxDhd1uXcv26YRQ02fb_mrL9?usp=sharing
¹²https://github.com/curiousily/Getting-Things-Done-with-Pytorch
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Here’s what you’ve learned:

• Overview of the traffic sign image dataset
• Build a dataset
• Use a pre-trained model from Torchvision
• Add a new unknown class and re-train the model

Can you use transfer learning for other tasks? How do you do it? Let me know in the comments
below.

References

• ResNet: the intuition behind it¹³
• Understanding ResNet Intuitively¹⁴
• Conv Nets: A Modular Perspective¹⁵
• An intuitive guide to Convolutional Neural Networks¹⁶
• A friendly introduction to Convolutional Neural Networks and Image Recognition¹⁷
• A Baseline for DetectingMisclassified and Out-of-Distribution Examples in Neural Networks¹⁸
• How to Train an Image Classifier in PyTorch and use it to Perform Basic Inference on Single
Images¹⁹

• Transfer Learning with Convolutional Neural Networks in PyTorch²⁰
• Image Classification with Transfer Learning and PyTorch²¹

¹³https://wiseodd.github.io/techblog/2016/10/13/residual-net/
¹⁴https://mc.ai/understanding-resnet-intuitively/
¹⁵https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
¹⁶https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
¹⁷https://youtu.be/2-Ol7ZB0MmU?t=721
¹⁸https://arxiv.org/pdf/1610.02136.pdf
¹⁹https://towardsdatascience.com/how-to-train-an-image-classifier-in-pytorch-and-use-it-to-perform-basic-inference-on-single-

images-99465a1e9bf5
²⁰https://towardsdatascience.com/transfer-learning-with-convolutional-neural-networks-in-pytorch-dd09190245ce
²¹https://stackabuse.com/image-classification-with-transfer-learning-and-pytorch/
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4. Time Series Forecasting with LSTMs
for Daily Coronavirus Cases

This tutorial is NOT trying to build amodel that predicts the Covid-19 outbreak/pandemic
in the best way possible. This is an example of how you can use Recurrent Neural
Networks on some real-world Time Series data with PyTorch. Hopefully, there are much
better models that predict the number of daily confirmed cases.

Time series data captures a series of data points recorded at (usually) regular intervals. Some
common examples include daily weather temperature, stock prices, and the number of sales a
company makes.

Many classical methods (e.g. ARIMA) try to deal with Time Series data with varying success (not
to say they are bad at it). In the last couple of years, Long Short Term Memory Networks (LSTM)¹
models have become a very useful method when dealing with those types of data.

Recurrent Neural Networks (LSTMs are one type of those) are very good at processing sequences of
data. They can “recall” patterns in the data that are very far into the past (or future). In this tutorial,
you’re going to learn how to use LSTMs to predict future Coronavirus cases based on real-world
data.

• Run the complete notebook in your browser (Google Colab)²
• Read the Getting Things Done with Pytorch book³

Novel Coronavirus (COVID-19)

The novel Coronavirus (Covid-19) has spread around the world very rapidly. At the time of this
writing, Worldometers.info⁴ shows that there are more than 95,488 confirmed cases in more than 84
countries.

The top 4 worst-affected (by far) are China (the source of the virus), South Korea, Italy, and Iran.
Unfortunately, many cases are currently not reported due to:

• A person can get infected without even knowing (asymptomatic)
• Incorrect data reporting
• Not enough test kits
• The symptoms look a lot like the common flu
¹https://en.wikipedia.org/wiki/Long_short-term_memory
²https://colab.research.google.com/drive/1nQYJq1f7f4R0yeZOzQ9rBKgk00AfLoS0
³https://github.com/curiousily/Getting-Things-Done-with-Pytorch
⁴https://www.worldometers.info/coronavirus/

https://en.wikipedia.org/wiki/Long_short-term_memory
https://colab.research.google.com/drive/1nQYJq1f7f4R0yeZOzQ9rBKgk00AfLoS0
https://github.com/curiousily/Getting-Things-Done-with-Pytorch
https://www.worldometers.info/coronavirus/
https://en.wikipedia.org/wiki/Long_short-term_memory
https://colab.research.google.com/drive/1nQYJq1f7f4R0yeZOzQ9rBKgk00AfLoS0
https://github.com/curiousily/Getting-Things-Done-with-Pytorch
https://www.worldometers.info/coronavirus/
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How dangerous is this virus?

Except for the common statistics you might see cited on the news, there are some good and some
bad news:

• More than 80% of the confirmed cases recover without any need of medical attention
• 3.4% Mortality Rate estimate by the World Health Organization (WHO) as of March 3⁵
• The reproductive number which represents the average number of people to which a single
infected person will transmit the virus is between 1.4 and 2.5 (WHO’s estimated on Jan. 23)⁶

The last one is really scary. It sounds like we can witness some crazy exponential growth if
appropriate measures are not put in place.

Let’s get started!

1 %reload_ext watermark

2 %watermark -v -p numpy,pandas,torch

1 CPython 3.6.9

2 IPython 5.5.0

3

4 numpy 1.17.5

5 pandas 0.25.3

6 torch 1.4.0

1 import torch

2

3 import os

4 import numpy as np

5 import pandas as pd

6 from tqdm import tqdm

7 import seaborn as sns

8 from pylab import rcParams

9 import matplotlib.pyplot as plt

10 from matplotlib import rc

11 from sklearn.preprocessing import MinMaxScaler

12 from pandas.plotting import register_matplotlib_converters

13 from torch import nn, optim

14

⁵https://www.worldometers.info/coronavirus/coronavirus-death-rate/#who-03-03-20
⁶https://www.worldometers.info/coronavirus/#repro

Smile, you are amazing!
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15 %matplotlib inline

16 %config InlineBackend.figure_format='retina'

17

18 sns.set(style='whitegrid', palette='muted', font_scale=1.2)

19

20 HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#93D30C", "#8F0\

21 0FF"]

22

23 sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE))

24

25 rcParams['figure.figsize'] = 14, 10

26 register_matplotlib_converters()

27

28 RANDOM_SEED = 42

29 np.random.seed(RANDOM_SEED)

30 torch.manual_seed(RANDOM_SEED)

1 <torch._C.Generator at 0x7faeaa744d30>

Daily Cases Dataset

The data is provided by the Johns Hopkins University Center for Systems Science and Engineering
(JHU CSSE) and contains the number of reported daily cases by country. The dataset is available on
GitHub⁷ and is updated regularly.

We’re going to take the Time Series data only for confirmed cases (number of deaths and recovered
cases are also available):

1 # !wget https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_\

2 19_data/csse_covid_19_time_series/time_series_19-covid-Confirmed.csv

Or you can take the same dataset that I’ve used for this tutorial (the data snapshot is from 3 March
2020):

1 !gdown --id 1AsfdLrGESCQnRW5rbMz56A1KBc3Fe5aV

Data exploration

Let’s load the data and have a peek:
⁷https://github.com/CSSEGISandData/COVID-19

Smile, you are amazing!
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1 df = pd.read_csv('time_series_19-covid-Confirmed.csv')

Two things to note here:

• The data contains a province, country, latitude, and longitude. We won’t be needing those.
• The number of cases is cumulative. We’ll undo the accumulation.

Let’s start by getting rid of the first four columns:

1 df = df.iloc[:, 4:]

Let’s check for missing values:

1 df.isnull().sum().sum()

1 0

Everything seems to be in place. Let’s sum all rows, so we get the cumulative daily cases:

1 daily_cases = df.sum(axis=0)

2 daily_cases.index = pd.to_datetime(daily_cases.index)

3 daily_cases.head()

1 2020-01-22 555

2 2020-01-23 653

3 2020-01-24 941

4 2020-01-25 1434

5 2020-01-26 2118

6 dtype: int64

1 plt.plot(daily_cases)

2 plt.title("Cumulative daily cases");

Smile, you are amazing!
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We’ll undo the accumulation by subtracting the current value from the previous. We’ll preserve the
first value of the sequence:

1 daily_cases = daily_cases.diff().fillna(daily_cases[0]).astype(np.int64)

2 daily_cases.head()

1 2020-01-22 555

2 2020-01-23 98

3 2020-01-24 288

4 2020-01-25 493

5 2020-01-26 684

6 dtype: int64

1 plt.plot(daily_cases)

2 plt.title("Daily cases");

Smile, you are amazing!
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The huge spike (in the middle) is mostly due to a change of criteria for testing patients in China.
This will certainly be a challenge for our model.

Let’s check the amount of data we have:

1 daily_cases.shape

1 (41,)

Unfortunately, we have data for only 41 days. Let’s see what we can do with it!

Preprocessing

We’ll reserve the first 27 days for training and use the rest for testing:

Smile, you are amazing!
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1 test_data_size = 14

2

3 train_data = daily_cases[:-test_data_size]

4 test_data = daily_cases[-test_data_size:]

5

6 train_data.shape

1 (27,)

We have to scale the data (values will be between 0 and 1) if we want to increase the training speed
and performance of the model. We’ll use the MinMaxScaler from scikit-learn:

1 scaler = MinMaxScaler()

2

3 scaler = scaler.fit(np.expand_dims(train_data, axis=1))

4

5 train_data = scaler.transform(np.expand_dims(train_data, axis=1))

6

7 test_data = scaler.transform(np.expand_dims(test_data, axis=1))

Currently, we have a big sequence of daily cases. We’ll convert it into smaller ones:

1 def create_sequences(data, seq_length):

2 xs = []

3 ys = []

4

5 for i in range(len(data)-seq_length-1):

6 x = data[i:(i+seq_length)]

7 y = data[i+seq_length]

8 xs.append(x)

9 ys.append(y)

10

11 return np.array(xs), np.array(ys)

Smile, you are amazing!
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1 seq_length = 5

2 X_train, y_train = create_sequences(train_data, seq_length)

3 X_test, y_test = create_sequences(test_data, seq_length)

4

5 X_train = torch.from_numpy(X_train).float()

6 y_train = torch.from_numpy(y_train).float()

7

8 X_test = torch.from_numpy(X_test).float()

9 y_test = torch.from_numpy(y_test).float()

Each training example contains a sequence of 5 data points of history and a label for the real value
that our model needs to predict. Let’s dive in:

1 X_train.shape

1 torch.Size([21, 5, 1])

1 X_train[:2]

1 tensor([[[0.0304],

2 [0.0000],

3 [0.0126],

4 [0.0262],

5 [0.0389]],

6

7 [[0.0000],

8 [0.0126],

9 [0.0262],

10 [0.0389],

11 [0.0472]]])

1 y_train.shape

1 torch.Size([21, 1])

1 y_train[:2]

Smile, you are amazing!
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1 tensor([[0.0472],

2 [0.1696]])

1 train_data[:10]

1 array([[0.03036545],

2 [0. ],

3 [0.01262458],

4 [0.02624585],

5 [0.03893688],

6 [0.04724252],

7 [0.16963455],

8 [0.03255814],

9 [0.13089701],

10 [0.10598007]])

Building a model

We’ll encapsulate the complexity of our model into a class that extends from torch.nn.Module:

1 class CoronaVirusPredictor(nn.Module):

2

3 def __init__(self, n_features, n_hidden, seq_len, n_layers=2):

4 super(CoronaVirusPredictor, self).__init__()

5

6 self.n_hidden = n_hidden

7 self.seq_len = seq_len

8 self.n_layers = n_layers

9

10 self.lstm = nn.LSTM(

11 input_size=n_features,

12 hidden_size=n_hidden,

13 num_layers=n_layers,

14 dropout=0.5

15 )

16

17 self.linear = nn.Linear(in_features=n_hidden, out_features=1)

18

19 def reset_hidden_state(self):

Smile, you are amazing!
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20 self.hidden = (

21 torch.zeros(self.n_layers, self.seq_len, self.n_hidden),

22 torch.zeros(self.n_layers, self.seq_len, self.n_hidden)

23 )

24

25 def forward(self, sequences):

26 lstm_out, self.hidden = self.lstm(

27 sequences.view(len(sequences), self.seq_len, -1),

28 self.hidden

29 )

30 last_time_step = \

31 lstm_out.view(self.seq_len, len(sequences), self.n_hidden)[-1]

32 y_pred = self.linear(last_time_step)

33 return y_pred

Our CoronaVirusPredictor contains 3 methods:

• constructor - initialize all helper data and create the layers
• reset_hidden_state - we’ll use a stateless LSTM, so we need to reset the state after each
example

• forward - get the sequences, pass all of them through the LSTM layer, at once. We take the
output of the last time step and pass it through our linear layer to get the prediction.

Training

Let’s build a helper function for the training of our model (we’ll reuse it later):

1 def train_model(

2 model,

3 train_data,

4 train_labels,

5 test_data=None,

6 test_labels=None

7 ):

8 loss_fn = torch.nn.MSELoss(reduction='sum')

9

10 optimiser = torch.optim.Adam(model.parameters(), lr=1e-3)

11 num_epochs = 60

12

13 train_hist = np.zeros(num_epochs)

14 test_hist = np.zeros(num_epochs)

Smile, you are amazing!
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15

16 for t in range(num_epochs):

17 model.reset_hidden_state()

18

19 y_pred = model(X_train)

20

21 loss = loss_fn(y_pred.float(), y_train)

22

23 if test_data is not None:

24 with torch.no_grad():

25 y_test_pred = model(X_test)

26 test_loss = loss_fn(y_test_pred.float(), y_test)

27 test_hist[t] = test_loss.item()

28

29 if t % 10 == 0:

30 print(f'Epoch {t} train loss: {loss.item()} test loss: {test_loss.item()}')

31 elif t % 10 == 0:

32 print(f'Epoch {t} train loss: {loss.item()}')

33

34 train_hist[t] = loss.item()

35

36 optimiser.zero_grad()

37

38 loss.backward()

39

40 optimiser.step()

41

42 return model.eval(), train_hist, test_hist

Note that the hidden state is reset at the start of each epoch. We don’t use batches of data our model
sees every example at once. We’ll use mean squared error to measure our training and test error.
We’ll record both.

Let’s create an instance of our model and train it:

Smile, you are amazing!
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1 model = CoronaVirusPredictor(

2 n_features=1,

3 n_hidden=512,

4 seq_len=seq_length,

5 n_layers=2

6 )

7 model, train_hist, test_hist = train_model(

8 model,

9 X_train,

10 y_train,

11 X_test,

12 y_test

13 )

1 Epoch 0 train loss: 1.6297188997268677 test loss: 0.041186608374118805

2 Epoch 10 train loss: 0.8466923832893372 test loss: 0.12416432797908783

3 Epoch 20 train loss: 0.8219934105873108 test loss: 0.1438201516866684

4 Epoch 30 train loss: 0.8200693726539612 test loss: 0.2190694659948349

5 Epoch 40 train loss: 0.810839056968689 test loss: 0.1797715127468109

6 Epoch 50 train loss: 0.795730471611023 test loss: 0.19855864346027374

Let’s have a look at the train and test loss:

1 plt.plot(train_hist, label="Training loss")

2 plt.plot(test_hist, label="Test loss")

3 plt.ylim((0, 5))

4 plt.legend();

Smile, you are amazing!
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Our model’s performance doesn’t improve after 15 epochs or so. Recall that we have very little data.
Maybe we shouldn’t trust our model that much?

Predicting daily cases

Our model can (due to the way we’ve trained it) predict only a single day in the future. We’ll employ
a simple strategy to overcome this limitation. Use predicted values as input for predicting the next
days:

Smile, you are amazing!



Time Series Forecasting with LSTMs for Daily Coronavirus Cases 68

1 with torch.no_grad():

2 test_seq = X_test[:1]

3 preds = []

4 for _ in range(len(X_test)):

5 y_test_pred = model(test_seq)

6 pred = torch.flatten(y_test_pred).item()

7 preds.append(pred)

8 new_seq = test_seq.numpy().flatten()

9 new_seq = np.append(new_seq, [pred])

10 new_seq = new_seq[1:]

11 test_seq = torch.as_tensor(new_seq).view(1, seq_length, 1).float()

We have to reverse the scaling of the test data and the model predictions:

1 true_cases = scaler.inverse_transform(

2 np.expand_dims(y_test.flatten().numpy(), axis=0)

3 ).flatten()

4

5 predicted_cases = scaler.inverse_transform(

6 np.expand_dims(preds, axis=0)

7 ).flatten()

Let’s look at the results:

1 plt.plot(

2 daily_cases.index[:len(train_data)],

3 scaler.inverse_transform(train_data).flatten(),

4 label='Historical Daily Cases'

5 )

6

7 plt.plot(

8 daily_cases.index[len(train_data):len(train_data) + len(true_cases)],

9 true_cases,

10 label='Real Daily Cases'

11 )

12

13 plt.plot(

14 daily_cases.index[len(train_data):len(train_data) + len(true_cases)],

15 predicted_cases,

16 label='Predicted Daily Cases'

17 )

18

19 plt.legend();

Smile, you are amazing!
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As expected, our model doesn’t perform very well. That said, the predictions seem to be in the right
ballpark (probably due to using the last data point as a strong predictor for the next).

Use all data for training

Now, we’ll use all available data to train the same model:

1 scaler = MinMaxScaler()

2

3 scaler = scaler.fit(np.expand_dims(daily_cases, axis=1))

4

5 all_data = scaler.transform(np.expand_dims(daily_cases, axis=1))

6

7 all_data.shape

Smile, you are amazing!
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1 (41, 1)

The preprocessing and training steps are the same:

1 X_all, y_all = create_sequences(all_data, seq_length)

2

3 X_all = torch.from_numpy(X_all).float()

4 y_all = torch.from_numpy(y_all).float()

5

6 model = CoronaVirusPredictor(

7 n_features=1,

8 n_hidden=512,

9 seq_len=seq_length,

10 n_layers=2

11 )

12 model, train_hist, _ = train_model(model, X_all, y_all)

1 Epoch 0 train loss: 1.9441421031951904

2 Epoch 10 train loss: 0.8385428786277771

3 Epoch 20 train loss: 0.8256545066833496

4 Epoch 30 train loss: 0.8023681640625

5 Epoch 40 train loss: 0.8125611543655396

6 Epoch 50 train loss: 0.8225002884864807

Predicting future cases

We’ll use our “fully trained” model to predict the confirmed cases for 12 days into the future:

1 DAYS_TO_PREDICT = 12

2

3 with torch.no_grad():

4 test_seq = X_all[:1]

5 preds = []

6 for _ in range(DAYS_TO_PREDICT):

7 y_test_pred = model(test_seq)

8 pred = torch.flatten(y_test_pred).item()

9 preds.append(pred)

10 new_seq = test_seq.numpy().flatten()

11 new_seq = np.append(new_seq, [pred])

12 new_seq = new_seq[1:]

13 test_seq = torch.as_tensor(new_seq).view(1, seq_length, 1).float()

Smile, you are amazing!
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As before, we’ll inverse the scaler transformation:

1 predicted_cases = scaler.inverse_transform(

2 np.expand_dims(preds, axis=0)

3 ).flatten()

To create a cool chart with the historical and predicted cases, we need to extend the date index of
our data frame:

1 daily_cases.index[-1]

1 Timestamp('2020-03-02 00:00:00')

1 predicted_index = pd.date_range(

2 start=daily_cases.index[-1],

3 periods=DAYS_TO_PREDICT + 1,

4 closed='right'

5 )

6

7 predicted_cases = pd.Series(

8 data=predicted_cases,

9 index=predicted_index

10 )

11

12 plt.plot(predicted_cases, label='Predicted Daily Cases')

13 plt.legend();

Smile, you are amazing!
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Now we can use all the data to plot the results:

1 plt.plot(daily_cases, label='Historical Daily Cases')

2 plt.plot(predicted_cases, label='Predicted Daily Cases')

3 plt.legend();

Smile, you are amazing!



Time Series Forecasting with LSTMs for Daily Coronavirus Cases 73

png

Our model thinks that things will level off. Note that the more you go into the future, the more you
shouldn’t trust your model predictions.

Conclusion

Well done! You learned how to use PyTorch to create a Recurrent Neural Network that works with
Time Series data. The model performance is not that great, but this is expected, given the small
amounts of data.

• Run the complete notebook in your browser (Google Colab)⁸
• Read the Getting Things Done with Pytorch book⁹

The problem of predicting daily Covid-19 cases is a hard one. We’re amidst an outbreak, and there’s
more to be done. Hopefully, everything will be back to normal after some time.

⁸https://colab.research.google.com/drive/1nQYJq1f7f4R0yeZOzQ9rBKgk00AfLoS0
⁹https://github.com/curiousily/Getting-Things-Done-with-Pytorch
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5. Time Series Anomaly Detection
using LSTM Autoencoders

TL;DR Use real-world Electrocardiogram (ECG) data to detect anomalies in a patient
heartbeat. We’ll build an LSTM Autoencoder, train it on a set of normal heartbeats and
classify unseen examples as normal or anomalies

In this tutorial, you’ll learn how to detect anomalies in Time Series data using an LSTMAutoencoder.
You’re going to use real-world ECG data from a single patient with heart disease to detect abnormal
hearbeats.

• Run the complete notebook in your browser (Google Colab)¹
• Read the Getting Things Done with Pytorch book²

By the end of this tutorial, you’ll learn how to:

• Prepare a dataset for Anomaly Detection from Time Series Data
• Build an LSTM Autoencoder with PyTorch
• Train and evaluate your model
• Choose a threshold for anomaly detection
• Classify unseen examples as normal or anomaly

Data

The dataset³ contains 5,000 Time Series examples (obtained with ECG) with 140 timesteps. Each
sequence corresponds to a single heartbeat from a single patient with congestive heart failure.

An electrocardiogram (ECG or EKG) is a test that checks how your heart is functioning by
measuring the electrical activity of the heart. With each heart beat, an electrical impulse
(or wave) travels through your heart. This wave causes the muscle to squeeze and pump
blood from the heart. Source⁴

We have 5 types of hearbeats (classes):

¹https://colab.research.google.com/drive/1_J2MrBSvsJfOcVmYAN2-WSp36BtsFZCa
²https://github.com/curiousily/Getting-Things-Done-with-Pytorch
³http://timeseriesclassification.com/description.php?Dataset=ECG5000
⁴https://www.heartandstroke.ca/heart/tests/electrocardiogram

https://colab.research.google.com/drive/1_J2MrBSvsJfOcVmYAN2-WSp36BtsFZCa
https://github.com/curiousily/Getting-Things-Done-with-Pytorch
http://timeseriesclassification.com/description.php?Dataset=ECG5000
https://www.heartandstroke.ca/heart/tests/electrocardiogram
https://colab.research.google.com/drive/1_J2MrBSvsJfOcVmYAN2-WSp36BtsFZCa
https://github.com/curiousily/Getting-Things-Done-with-Pytorch
http://timeseriesclassification.com/description.php?Dataset=ECG5000
https://www.heartandstroke.ca/heart/tests/electrocardiogram
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• Normal (N)
• R-on-T Premature Ventricular Contraction (R-on-T PVC)
• Premature Ventricular Contraction (PVC)
• Supra-ventricular Premature or Ectopic Beat (SP or EB)
• Unclassified Beat (UB).

Assuming a healthy heart and a typical rate of 70 to 75 beats per minute, each cardiac
cycle, or heartbeat, takes about 0.8 seconds to complete the cycle. Frequency: 60–100 per
minute (Humans) Duration: 0.6–1 second (Humans) Source⁵

The dataset is available on my Google Drive. Let’s get it:

1 !gdown --id 16MIleqoIr1vYxlGk4GKnGmrsCPuWkkpT

1 !unzip -qq ECG5000.zip

1 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

The data comes in multiple formats. We’ll load the arff files into Pandas data frames:

1 with open('ECG5000_TRAIN.arff') as f:

2 train = a2p.load(f)

3

4 with open('ECG5000_TEST.arff') as f:

5 test = a2p.load(f)

We’ll combine the training and test data into a single data frame. This will give us more data to train
our Autoencoder. We’ll also shuffle it:

1 df = train.append(test)

2 df = df.sample(frac=1.0)

3 df.shape

1 (5000, 141)

We have 5,000 examples. Each row represents a single heartbeat record. Let’s name the possible
classes:

⁵https://en.wikipedia.org/wiki/Cardiac_cycle
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1 CLASS_NORMAL = 1

2

3 class_names = ['Normal','R on T','PVC','SP','UB']

Next, we’ll rename the last column to target, so its easier to reference it:

1 new_columns = list(df.columns)

2 new_columns[-1] = 'target'

3 df.columns = new_columns

Exploratory Data Analysis

Let’s check how many examples for each heartbeat class do we have:

1 df.target.value_counts()

1 1 2919

2 2 1767

3 4 194

4 3 96

5 5 24

6 Name: target, dtype: int64

Let’s plot the results:

Smile, you are amazing!
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png

The normal class, has by far, the most examples. This is great because we’ll use it to train our model.

Let’s have a look at an averaged (smoothed out with one standard deviation on top and bottom of
it) Time Series for each class:

Smile, you are amazing!
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png

It is very good that the normal class has a distinctly different pattern than all other classes. Maybe
our model will be able to detect anomalies?

LSTM Autoencoder

The Autoencoder’s⁶ job is to get some input data, pass it through the model, and obtain a
reconstruction of the input. The reconstruction should match the input as much as possible. The
trick is to use a small number of parameters, so your model learns a compressed representation of
the data.

In a sense, Autoencoders try to learn only the most important features (compressed version) of the
data. Here, we’ll have a look at how to feed Time Series data to an Autoencoder. We’ll use a couple
of LSTM layers (hence the LSTM Autoencoder) to capture the temporal dependencies of the data.

To classify a sequence as normal or an anomaly, we’ll pick a threshold above which a heartbeat is
considered abnormal.

Reconstruction Loss

When training an Autoencoder, the objective is to reconstruct the input as best as possible. This
is done by minimizing a loss function (just like in supervised learning). This function is known as

⁶https://en.wikipedia.org/wiki/Autoencoder

Smile, you are amazing!

https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Autoencoder


Time Series Anomaly Detection using LSTM Autoencoders 80

reconstruction loss. Cross-entropy loss and Mean squared error are common examples.

Anomaly Detection in ECG Data

We’ll use normal heartbeats as training data for our model and record the reconstruction loss. But
first, we need to prepare the data:

Data Preprocessing

Let’s get all normal heartbeats and drop the target (class) column:

1 normal_df = df[df.target == str(CLASS_NORMAL)].drop(labels='target', axis=1)

2 normal_df.shape

1 (2919, 140)

We’ll merge all other classes and mark them as anomalies:

1 anomaly_df = df[df.target != str(CLASS_NORMAL)].drop(labels='target', axis=1)

2 anomaly_df.shape

1 (2081, 140)

We’ll split the normal examples into train, validation and test sets:

1 train_df, val_df = train_test_split(

2 normal_df,

3 test_size=0.15,

4 random_state=RANDOM_SEED

5 )

6

7 val_df, test_df = train_test_split(

8 val_df,

9 test_size=0.33,

10 random_state=RANDOM_SEED

11 )

We need to convert our examples into tensors, so we can use them to train our Autoencoder. Let’s
write a helper function for that:

Smile, you are amazing!
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1 def create_dataset(df):

2

3 sequences = df.astype(np.float32).to_numpy().tolist()

4

5 dataset = [torch.tensor(s).unsqueeze(1).float() for s in sequences]

6

7 n_seq, seq_len, n_features = torch.stack(dataset).shape

8

9 return dataset, seq_len, n_features

Each Time Series will be converted to a 2D Tensor in the shape sequence length x number of features
(140x1 in our case).

Let’s create some datasets:

1 train_dataset, seq_len, n_features = create_dataset(train_df)

2 val_dataset, _, _ = create_dataset(val_df)

3 test_normal_dataset, _, _ = create_dataset(test_df)

4 test_anomaly_dataset, _, _ = create_dataset(anomaly_df)

LSTM Autoencoder

Sample Autoencoder Architecture Image Source⁷

The general Autoencoder architecture consists of two components. An Encoder that compresses the
input and a Decoder that tries to reconstruct it.

⁷https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Smile, you are amazing!

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html


Time Series Anomaly Detection using LSTM Autoencoders 82

We’ll use the LSTM Autoencoder from this GitHub repo⁸ with some small tweaks. Our model’s job
is to reconstruct Time Series data. Let’s start with the Encoder :

1 class Encoder(nn.Module):

2

3 def __init__(self, seq_len, n_features, embedding_dim=64):

4 super(Encoder, self).__init__()

5

6 self.seq_len, self.n_features = seq_len, n_features

7 self.embedding_dim, self.hidden_dim = embedding_dim, 2 * embedding_dim

8

9 self.rnn1 = nn.LSTM(

10 input_size=n_features,

11 hidden_size=self.hidden_dim,

12 num_layers=1,

13 batch_first=True

14 )

15

16 self.rnn2 = nn.LSTM(

17 input_size=self.hidden_dim,

18 hidden_size=embedding_dim,

19 num_layers=1,

20 batch_first=True

21 )

22

23 def forward(self, x):

24 x = x.reshape((1, self.seq_len, self.n_features))

25

26 x, (_, _) = self.rnn1(x)

27 x, (hidden_n, _) = self.rnn2(x)

28

29 return hidden_n.reshape((self.n_features, self.embedding_dim))

The Encoder uses two LSTM layers to compress the Time Series data input.

Next, we’ll decode the compressed representation using a Decoder :

⁸https://github.com/shobrook/sequitur

Smile, you are amazing!

https://github.com/shobrook/sequitur
https://github.com/shobrook/sequitur


Time Series Anomaly Detection using LSTM Autoencoders 83

1 class Decoder(nn.Module):

2

3 def __init__(self, seq_len, input_dim=64, n_features=1):

4 super(Decoder, self).__init__()

5

6 self.seq_len, self.input_dim = seq_len, input_dim

7 self.hidden_dim, self.n_features = 2 * input_dim, n_features

8

9 self.rnn1 = nn.LSTM(

10 input_size=input_dim,

11 hidden_size=input_dim,

12 num_layers=1,

13 batch_first=True

14 )

15

16 self.rnn2 = nn.LSTM(

17 input_size=input_dim,

18 hidden_size=self.hidden_dim,

19 num_layers=1,

20 batch_first=True

21 )

22

23 self.output_layer = nn.Linear(self.hidden_dim, n_features)

24

25 def forward(self, x):

26 x = x.repeat(self.seq_len, self.n_features)

27 x = x.reshape((self.n_features, self.seq_len, self.input_dim))

28

29 x, (hidden_n, cell_n) = self.rnn1(x)

30 x, (hidden_n, cell_n) = self.rnn2(x)

31 x = x.reshape((self.seq_len, self.hidden_dim))

32

33 return self.output_layer(x)

Our Decoder contains two LSTM layers and an output layer that gives the final reconstruction.

Time to wrap everything into an easy to use module:

Smile, you are amazing!
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1 class RecurrentAutoencoder(nn.Module):

2

3 def __init__(self, seq_len, n_features, embedding_dim=64):

4 super(RecurrentAutoencoder, self).__init__()

5

6 self.encoder = Encoder(seq_len, n_features, embedding_dim).to(device)

7 self.decoder = Decoder(seq_len, embedding_dim, n_features).to(device)

8

9 def forward(self, x):

10 x = self.encoder(x)

11 x = self.decoder(x)

12

13 return x

Our Autoencoder passes the input through the Encoder and Decoder. Let’s create an instance of it:

1 model = RecurrentAutoencoder(seq_len, n_features, 128)

2 model = model.to(device)

Training

Let’s write a helper function for our training process:

1 def train_model(model, train_dataset, val_dataset, n_epochs):

2 optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

3 criterion = nn.L1Loss(reduction='sum').to(device)

4 history = dict(train=[], val=[])

5

6 best_model_wts = copy.deepcopy(model.state_dict())

7 best_loss = 10000.0

8

9 for epoch in range(1, n_epochs + 1):

10 model = model.train()

11

12 train_losses = []

13 for seq_true in train_dataset:

14 optimizer.zero_grad()

15

16 seq_true = seq_true.to(device)

17 seq_pred = model(seq_true)

Smile, you are amazing!
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18

19 loss = criterion(seq_pred, seq_true)

20

21 loss.backward()

22 optimizer.step()

23

24 train_losses.append(loss.item())

25

26 val_losses = []

27 model = model.eval()

28 with torch.no_grad():

29 for seq_true in val_dataset:

30

31 seq_true = seq_true.to(device)

32 seq_pred = model(seq_true)

33

34 loss = criterion(seq_pred, seq_true)

35 val_losses.append(loss.item())

36

37 train_loss = np.mean(train_losses)

38 val_loss = np.mean(val_losses)

39

40 history['train'].append(train_loss)

41 history['val'].append(val_loss)

42

43 if val_loss < best_loss:

44 best_loss = val_loss

45 best_model_wts = copy.deepcopy(model.state_dict())

46

47 print(f'Epoch {epoch}: train loss {train_loss} val loss {val_loss}')

48

49 model.load_state_dict(best_model_wts)

50 return model.eval(), history

At each epoch, the training process feeds our model with all training examples and evaluates the
performance on the validation set. Note that we’re using a batch size of 1 (our model sees only 1
sequence at a time). We also record the training and validation set losses during the process.

Note that we’re minimizing the L1Loss⁹, which measures the MAE (mean absolute error). Why? The
reconstructions seem to be better than with MSE (mean squared error).

We’ll get the version of the model with the smallest validation error. Let’s do some training:

⁹https://pytorch.org/docs/stable/nn.html#l1loss

Smile, you are amazing!
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1 model, history = train_model(

2 model,

3 train_dataset,

4 val_dataset,

5 n_epochs=150

6 )

png

Our model converged quite well. Seems like we might’ve needed a larger validation set to smoothen
the results, but that’ll do for now.

Saving the model

Let’s store the model for later use:

Smile, you are amazing!
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1 MODEL_PATH = 'model.pth'

2

3 torch.save(model, MODEL_PATH)

Uncomment the next lines, if you want to download and load the pre-trained model:

1 # !gdown --id 1jEYx5wGsb7Ix8cZAw3l5p5pOwHs3_I9A

2 # model = torch.load('model.pth')

3 # model = model.to(device)

Choosing a threshold

With our model at hand, we can have a look at the reconstruction error on the training set. Let’s
start by writing a helper function to get predictions from our model:

1 def predict(model, dataset):

2 predictions, losses = [], []

3 criterion = nn.L1Loss(reduction='sum').to(device)

4 with torch.no_grad():

5 model = model.eval()

6 for seq_true in dataset:

7 seq_true = seq_true.to(device)

8 seq_pred = model(seq_true)

9

10 loss = criterion(seq_pred, seq_true)

11

12 predictions.append(seq_pred.cpu().numpy().flatten())

13 losses.append(loss.item())

14 return predictions, losses

Our function goes through each example in the dataset and records the predictions and losses. Let’s
get the losses and have a look at them:

1 _, losses = predict(model, train_dataset)

2

3 sns.distplot(losses, bins=50, kde=True);

Smile, you are amazing!
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png

1 THRESHOLD = 26

Evaluation

Using the threshold, we can turn the problem into a simple binary classification task:

• If the reconstruction loss for an example is below the threshold, we’ll classify it as a normal
heartbeat

• Alternatively, if the loss is higher than the threshold, we’ll classify it as an anomaly

Normal hearbeats

Let’s check how well our model does on normal heartbeats. We’ll use the normal heartbeats from
the test set (our model haven’t seen those):

Smile, you are amazing!
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1 predictions, pred_losses = predict(model, test_normal_dataset)

2 sns.distplot(pred_losses, bins=50, kde=True);

png

We’ll count the correct predictions:

1 correct = sum(l <= THRESHOLD for l in pred_losses)

2 print(f'Correct normal predictions: {correct}/{len(test_normal_dataset)}')

1 Correct normal predictions: 142/145

Anomalies

We’ll do the same with the anomaly examples, but their number is much higher. We’ll get a subset
that has the same size as the normal heartbeats:

1 anomaly_dataset = test_anomaly_dataset[:len(test_normal_dataset)]

Now we can take the predictions of our model for the subset of anomalies:

Smile, you are amazing!
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1 predictions, pred_losses = predict(model, anomaly_dataset)

2 sns.distplot(pred_losses, bins=50, kde=True);

png

Finally, we can count the number of examples above the threshold (considered as anomalies):

1 correct = sum(l > THRESHOLD for l in pred_losses)

2 print(f'Correct anomaly predictions: {correct}/{len(anomaly_dataset)}')

1 Correct anomaly predictions: 142/145

We have very good results. In the real world, you can tweak the threshold depending on what kind
of errors you want to tolerate. In this case, you might want to have more false positives (normal
heartbeats considered as anomalies) than false negatives (anomalies considered as normal).

Looking at Examples

We can overlay the real and reconstructed Time Series values to see how close they are. We’ll do it
for some normal and anomaly cases:

Smile, you are amazing!
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Summary

In this tutorial, you learned how to create an LSTM Autoencoder with PyTorch and use it to detect
heartbeat anomalies in ECG data.

• Run the complete notebook in your browser (Google Colab)¹⁰
• Read the Getting Things Done with Pytorch book¹¹

You learned how to:

• Prepare a dataset for Anomaly Detection from Time Series Data
• Build an LSTM Autoencoder with PyTorch
• Train and evaluate your model
• Choose a threshold for anomaly detection
• Classify unseen examples as normal or anomaly

While our Time Series data is univariate (we have only 1 feature), the code should work for
multivariate datasets (multiple features) with little or no modification. Feel free to try it!

References

• Sequitur - Recurrent Autoencoder (RAE)¹²
• Towards Never-Ending Learning from Time Series Streams¹³
• LSTM Autoencoder for Anomaly Detection¹⁴
¹⁰https://colab.research.google.com/drive/1_J2MrBSvsJfOcVmYAN2-WSp36BtsFZCa
¹¹https://github.com/curiousily/Getting-Things-Done-with-Pytorch
¹²https://github.com/shobrook/sequitur
¹³https://www.cs.ucr.edu/~eamonn/neverending.pdf
¹⁴https://towardsdatascience.com/lstm-autoencoder-for-anomaly-detection-e1f4f2ee7ccf

Smile, you are amazing!

https://colab.research.google.com/drive/1_J2MrBSvsJfOcVmYAN2-WSp36BtsFZCa
https://github.com/curiousily/Getting-Things-Done-with-Pytorch
https://github.com/shobrook/sequitur
https://www.cs.ucr.edu/~eamonn/neverending.pdf
https://towardsdatascience.com/lstm-autoencoder-for-anomaly-detection-e1f4f2ee7ccf
https://colab.research.google.com/drive/1_J2MrBSvsJfOcVmYAN2-WSp36BtsFZCa
https://github.com/curiousily/Getting-Things-Done-with-Pytorch
https://github.com/shobrook/sequitur
https://www.cs.ucr.edu/~eamonn/neverending.pdf
https://towardsdatascience.com/lstm-autoencoder-for-anomaly-detection-e1f4f2ee7ccf


6. Face Detection on Custom Dataset
with Detectron2

TL;DR Learn how to prepare a custom Face Detection dataset for Detectron2 and PyTorch.
Fine-tune a pre-trained model to find face boundaries in images.

Face detection is the task of finding (boundaries of) faces in images. This is useful for

• security systems (the first step in recognizing a person)
• autofocus and smile detection for making great photos
• detecting age, race, and emotional state for markering (yep, we already live in that world)

Historically, this was a really tough problem to solve. Tons of manual feature engineering, novel
algorithms and methods were developed to improve the state-of-the-art.

These days, face detectionmodels are included in almost every computer vision package/framework.
Some of the best-performing ones use Deep Learning methods. OpenCV, for example, provides a
variety of tools like the Cascade Classifier¹.

• Run the complete notebook in your browser (Google Colab)²
• Read the Getting Things Done with Pytorch book³

In this guide, you’ll learn how to:

• prepare a custom dataset for face detection with Detectron2
• use (close to) state-of-the-art models for object detection to find faces in images
• You can extend this work for face recognition.

Here’s an example of what you’ll get at the end of this guide:

¹https://docs.opencv.org/4.2.0/db/d28/tutorial_cascade_classifier.html
²https://colab.research.google.com/drive/1Jk4-qX9zdYGsBrTnh2vF52CV9ucuqpjk
³https://github.com/curiousily/Getting-Things-Done-with-Pytorch
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png

Detectron 2

png

Detectron2⁴ is a framework for building state-of-the-art object detection and image segmentation
models. It is developed by the Facebook Research team. Detectron2 is a complete rewrite of the first
version⁵.

Under the hood, Detectron2 uses PyTorch (compatible with the latest version(s)) and allows for
blazing fast training⁶. You can learn more at introductory blog post⁷ by Facebook Research.

The real power of Detectron2 lies in the HUGE amount of pre-trained models available at the Model
Zoo⁸. But what good that would it be if you can’t fine-tune those on your own datasets? Fortunately,

⁴https://github.com/facebookresearch/detectron2
⁵https://github.com/facebookresearch/Detectron
⁶https://detectron2.readthedocs.io/notes/benchmarks.html
⁷https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/
⁸https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md
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that’s super easy! We’ll see how it is done in this guide.

Installing Detectron2

At the time of this writing, Detectron2 is still in an alpha stage. While there is an official release,
we’ll clone and compile from the master branch. This should equal version 0.1.

Let’s start by installing some requirements:

1 !pip install -q cython pyyaml==5.1

2 !pip install -q -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=Pyth\

3 onAPI'

And download, compile, and install the Detectron2 package:

1 !git clone https://github.com/facebookresearch/detectron2 detectron2_repo

2 !pip install -q -e detectron2_repo

At this point, you’ll need to restart the notebook runtime to continue!

1 !pip install -q -U watermark

1 %reload_ext watermark

2 %watermark -v -p numpy,pandas,pycocotools,torch,torchvision,detectron2

1 CPython 3.6.9

2 IPython 5.5.0

3

4 numpy 1.17.5

5 pandas 0.25.3

6 pycocotools 2.0

7 torch 1.4.0

8 torchvision 0.5.0

9 detectron2 0.1

Smile, you are amazing!
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1 import torch, torchvision

2 import detectron2

3 from detectron2.utils.logger import setup_logger

4 setup_logger()

5

6 import glob

7

8 import os

9 import ntpath

10 import numpy as np

11 import cv2

12 import random

13 import itertools

14 import pandas as pd

15 from tqdm import tqdm

16 import urllib

17 import json

18 import PIL.Image as Image

19

20 from detectron2 import model_zoo

21 from detectron2.engine import DefaultPredictor, DefaultTrainer

22 from detectron2.config import get_cfg

23 from detectron2.utils.visualizer import Visualizer, ColorMode

24 from detectron2.data import DatasetCatalog, MetadataCatalog, build_detection_test_lo\

25 ader

26 from detectron2.evaluation import COCOEvaluator, inference_on_dataset

27 from detectron2.structures import BoxMode

28

29 import seaborn as sns

30 from pylab import rcParams

31 import matplotlib.pyplot as plt

32 from matplotlib import rc

33

34 %matplotlib inline

35 %config InlineBackend.figure_format='retina'

36

37 sns.set(style='whitegrid', palette='muted', font_scale=1.2)

38

39 HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F0\

40 0FF"]

41

42 sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE))

43
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44 rcParams['figure.figsize'] = 12, 8

45

46 RANDOM_SEED = 42

47 np.random.seed(RANDOM_SEED)

48 torch.manual_seed(RANDOM_SEED)

Face Detection Data

Our dataset is provided by Dataturks⁹, and it is hosted on Kaggle¹⁰. Here’s an excerpt from the
description:

Faces in images marked with bounding boxes. Have around 500 images with around 1100
faces manually tagged via bounding box.

I’ve downloaded the JSON file containing the annotations and uploaded it to Google Drive. Let’s
get it:

1 !gdown --id 1K79wJgmPTWamqb04Op2GxW0SW9oxw8KS

Let’s load the file into a Pandas dataframe:

1 faces_df = pd.read_json('face_detection.json', lines=True)

Each line contains a single face annotation. Note that multiple lines might point to a single image
(e.g. multiple faces per image).

Data Preprocessing

The dataset contains only image URLs and annotations. We’ll have to download the images. We’ll
also normalize the annotations, so it’s easier to use them with Detectron2 later on:

⁹https://dataturks.com/
¹⁰https://www.kaggle.com/dataturks/face-detection-in-images
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1 os.makedirs("faces", exist_ok=True)

2

3 dataset = []

4

5 for index, row in tqdm(faces_df.iterrows(), total=faces_df.shape[0]):

6 img = urllib.request.urlopen(row["content"])

7 img = Image.open(img)

8 img = img.convert('RGB')

9

10 image_name = f'face_{index}.jpeg'

11

12 img.save(f'faces/{image_name}', "JPEG")

13

14 annotations = row['annotation']

15 for an in annotations:

16

17 data = {}

18

19 width = an['imageWidth']

20 height = an['imageHeight']

21 points = an['points']

22

23 data['file_name'] = image_name

24 data['width'] = width

25 data['height'] = height

26

27 data["x_min"] = int(round(points[0]["x"] * width))

28 data["y_min"] = int(round(points[0]["y"] * height))

29 data["x_max"] = int(round(points[1]["x"] * width))

30 data["y_max"] = int(round(points[1]["y"] * height))

31

32 data['class_name'] = 'face'

33

34 dataset.append(data)

Let’s put the data into a dataframe so we can have a better look:

1 df = pd.DataFrame(dataset)

1 print(df.file_name.unique().shape[0], df.shape[0])
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1 409 1132

We have a total of 409 images (a lot less than the promised 500) and 1132 annotations. Let’s save
them to the disk (so you might reuse them):

1 df.to_csv('annotations.csv', header=True, index=None)

Data Exploration

Let’s see some sample annotated data. We’ll use OpenCV to load an image, add the bounding boxes,
and resize it. We’ll define a helper function to do it all:

1 def annotate_image(annotations, resize=True):

2 file_name = annotations.file_name.to_numpy()[0]

3 img = cv2.cvtColor(cv2.imread(f'faces/{file_name}'), cv2.COLOR_BGR2RGB)

4

5 for i, a in annotations.iterrows():

6 cv2.rectangle(img, (a.x_min, a.y_min), (a.x_max, a.y_max), (0, 255, 0), 2)

7

8 if not resize:

9 return img

10

11 return cv2.resize(img, (384, 384), interpolation = cv2.INTER_AREA)

Let’s start by showing some annotated images:

1 img_df = df[df.file_name == df.file_name.unique()[0]]

2 img = annotate_image(img_df, resize=False)

3

4 plt.imshow(img)

5 plt.axis('off');
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png

1 img_df = df[df.file_name == df.file_name.unique()[1]]

2 img = annotate_image(img_df, resize=False)

3

4 plt.imshow(img)

5 plt.axis('off');
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png

Those are good ones, the annotations are clearly visible. We can use torchvision to create a grid of
images. Note that the images are in various sizes, so we’ll resize them:

1 sample_images = [annotate_image(df[df.file_name == f]) for f in df.file_name.unique(\

2 )[:10]]

3 sample_images = torch.as_tensor(sample_images)

1 sample_images.shape

1 torch.Size([10, 384, 384, 3])

1 sample_images = sample_images.permute(0, 3, 1, 2)

1 sample_images.shape

1 torch.Size([10, 3, 384, 384])
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1 plt.figure(figsize=(24, 12))

2 grid_img = torchvision.utils.make_grid(sample_images, nrow=5)

3

4 plt.imshow(grid_img.permute(1, 2, 0))

5 plt.axis('off');

png

You can clearly see that some annotations are missing (column 4). That’s real life data for you,
sometimes you have to deal with it in some way.

Face Detection with Detectron 2

It is time to go through the steps of fine-tuning a model using a custom dataset. But first, let’s save
5% of the data for testing:

1 df = pd.read_csv('annotations.csv')

2

3 IMAGES_PATH = f'faces'

4

5 unique_files = df.file_name.unique()

6

7 train_files = set(np.random.choice(unique_files, int(len(unique_files) * 0.95), repl\

8 ace=False))

9 train_df = df[df.file_name.isin(train_files)]

10 test_df = df[~df.file_name.isin(train_files)]

The classical train_test_split won’t work here, cause we want a split amongst the file names.
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The next parts are written in a bit more generic way. Obviously, we have a single class - face. But
adding more should be as simple as adding more annotations to the dataframe:

1 classes = df.class_name.unique().tolist()

Next, we’ll write a function that converts our dataset into a format that is used by Detectron2:

1 def create_dataset_dicts(df, classes):

2 dataset_dicts = []

3 for image_id, img_name in enumerate(df.file_name.unique()):

4

5 record = {}

6

7 image_df = df[df.file_name == img_name]

8

9 file_path = f'{IMAGES_PATH}/{img_name}'

10 record["file_name"] = file_path

11 record["image_id"] = image_id

12 record["height"] = int(image_df.iloc[0].height)

13 record["width"] = int(image_df.iloc[0].width)

14

15 objs = []

16 for _, row in image_df.iterrows():

17

18 xmin = int(row.x_min)

19 ymin = int(row.y_min)

20 xmax = int(row.x_max)

21 ymax = int(row.y_max)

22

23 poly = [

24 (xmin, ymin), (xmax, ymin),

25 (xmax, ymax), (xmin, ymax)

26 ]

27 poly = list(itertools.chain.from_iterable(poly))

28

29 obj = {

30 "bbox": [xmin, ymin, xmax, ymax],

31 "bbox_mode": BoxMode.XYXY_ABS,

32 "segmentation": [poly],

33 "category_id": classes.index(row.class_name),

34 "iscrowd": 0

35 }

36 objs.append(obj)
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37

38 record["annotations"] = objs

39 dataset_dicts.append(record)

40 return dataset_dicts

We convert every annotation row to a single record with a list of annotations. You might also notice
that we’re building a polygon that is of the exact same shape as the bounding box. This is required
for the image segmentation models in Detectron2.

You’ll have to register your dataset into the dataset and metadata catalogues:

1 for d in ["train", "val"]:

2 DatasetCatalog.register("faces_" + d, lambda d=d: create_dataset_dicts(train_df if\

3 d == "train" else test_df, classes))

4 MetadataCatalog.get("faces_" + d).set(thing_classes=classes)

5

6 statement_metadata = MetadataCatalog.get("faces_train")

Unfortunately, evaluator for the test set is not included by default. We can easily fix that by writing
our own trainer:

1 class CocoTrainer(DefaultTrainer):

2

3 @classmethod

4 def build_evaluator(cls, cfg, dataset_name, output_folder=None):

5

6 if output_folder is None:

7 os.makedirs("coco_eval", exist_ok=True)

8 output_folder = "coco_eval"

9

10 return COCOEvaluator(dataset_name, cfg, False, output_folder)

The evaluation results will be stored in the coco_eval folder if no folder is provided.

Fine-tuning a Detectron2 model is nothing like writing PyTorch code. We’ll load a configuration file,
change a few values, and start the training process. But hey, it really helps if you know what you’re
doing �

For this tutorial, we’ll use theMask R-CNNX101-FPNmodel. It is pre-trained on the COCO dataset¹¹
and achieves very good performance. The downside is that it is slow to train.

Let’s load the config file and the pre-trained model weights:

¹¹http://cocodataset.org/#home
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1 cfg = get_cfg()

2

3 cfg.merge_from_file(

4 model_zoo.get_config_file(

5 "COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml"

6 )

7 )

8

9 cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(

10 "COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml"

11 )

Specify the datasets (we registered those) we’ll use for training and evaluation:

1 cfg.DATASETS.TRAIN = ("faces_train",)

2 cfg.DATASETS.TEST = ("faces_val",)

3 cfg.DATALOADER.NUM_WORKERS = 4

And for the optimizer, we’ll do a bit of magic to converge to something nice:

1 cfg.SOLVER.IMS_PER_BATCH = 4

2 cfg.SOLVER.BASE_LR = 0.001

3 cfg.SOLVER.WARMUP_ITERS = 1000

4 cfg.SOLVER.MAX_ITER = 1500

5 cfg.SOLVER.STEPS = (1000, 1500)

6 cfg.SOLVER.GAMMA = 0.05

Except for the standard stuff (batch size, max number of iterations, and learning rate) we have a
couple of interesting params:

• WARMUP_ITERS - the learning rate starts from 0 and goes to the preset one for this number of
iterations

• STEPS - the checkpoints (number of iterations) at which the learning rate will be reduced by
GAMMA

Finally, we’ll specify the number of classes and the period at which we’ll evaluate on the test set:
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1 cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 64

2 cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(classes)

3

4 cfg.TEST.EVAL_PERIOD = 500

Time to train, using our custom trainer:

1 os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)

2

3 trainer = CocoTrainer(cfg)

4 trainer.resume_or_load(resume=False)

5 trainer.train()

Evaluating Object Detection Models

Evaluating object detection models is a bit different when compared to evaluating standard
classification or regression models.

The main metric you need to know about is IoU (intersection over union). It measures the overlap
between two boundaries - the predicted and ground truth one. It can get values between 0 and 1.

IoU =
area of overlap
area of union

Using IoU, one can define a threshold (e.g. >0.5) to classify whether a prediction is a true positive
(TP) or a false positive (FP).

Now you can calculate average precision (AP) by taking the area under the precision-recall curve.

Now AP@X (e.g. AP50) is just AP at some IoU threshold. This should give you a working
understanding of how object detection models are evaluated.

I suggest you read the mAP (mean Average Precision) for Object Detection¹² tutorial by Jonathan
Hui if you want to learn more on the topic.

I’ve prepared a pre-trained model for you, so you don’t have to wait for the training to complete.
Let’s download it:

1 !gdown --id 18Ev2bpdKsBaDufhVKf0cT6RmM3FjW3nL

2 !mv face_detector.pth output/model_final.pth

We can start making predictions by loading the model and setting a minimum threshold of 85%
certainty at which we’ll consider the predictions as correct:

¹²https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
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1 cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")

2 cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.85

3 predictor = DefaultPredictor(cfg)

Let’s run the evaluator with the trained model:

1 evaluator = COCOEvaluator("faces_val", cfg, False, output_dir="./output/")

2 val_loader = build_detection_test_loader(cfg, "faces_val")

3 inference_on_dataset(trainer.model, val_loader, evaluator)

Finding Faces in Images

Next, let’s create a folder and save all images with predicted annotations in the test set:

1 os.makedirs("annotated_results", exist_ok=True)

2

3 test_image_paths = test_df.file_name.unique()

1 for clothing_image in test_image_paths:

2 file_path = f'{IMAGES_PATH}/{clothing_image}'

3 im = cv2.imread(file_path)

4 outputs = predictor(im)

5 v = Visualizer(

6 im[:, :, ::-1],

7 metadata=statement_metadata,

8 scale=1.,

9 instance_mode=ColorMode.IMAGE

10 )

11 instances = outputs["instances"].to("cpu")

12 instances.remove('pred_masks')

13 v = v.draw_instance_predictions(instances)

14 result = v.get_image()[:, :, ::-1]

15 file_name = ntpath.basename(clothing_image)

16 write_res = cv2.imwrite(f'annotated_results/{file_name}', result)

Let’s have a look:

1 annotated_images = [f'annotated_results/{f}' for f in test_df.file_name.unique()]
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1 img = cv2.cvtColor(cv2.imread(annotated_images[0]), cv2.COLOR_BGR2RGB)

2

3 plt.imshow(img)

4 plt.axis('off');

png

1 img = cv2.cvtColor(cv2.imread(annotated_images[1]), cv2.COLOR_BGR2RGB)

2

3 plt.imshow(img)

4 plt.axis('off');

Smile, you are amazing!



Face Detection on Custom Dataset with Detectron2 108

png

1 img = cv2.cvtColor(cv2.imread(annotated_images[3]), cv2.COLOR_BGR2RGB)

2

3 plt.imshow(img)

4 plt.axis('off');
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png

1 img = cv2.cvtColor(cv2.imread(annotated_images[4]), cv2.COLOR_BGR2RGB)

2

3 plt.imshow(img)

4 plt.axis('off');
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png

Not bad. Not bad at all. I suggest you explore more images on your own, too!

Note that some faces have multiple bounding boxes (on the second image) with different degrees of
certainty. Maybe training the model longer will help? How about adding more or augmenting the
existing data?

Conclusion

Congratulations! You now know the basics of Detectron2 for object detection! Youmight be surprised
by the results, given the small dataset we have. That’s the power of large pre-trained models for you
�

• Run the complete notebook in your browser (Google Colab)¹³
• Read the Getting Things Done with Pytorch book¹⁴

You learned how to:

• prepare a custom dataset for face detection with Detectron2
• use (close to) state-of-the-art models for object detection to find faces in images
• You can extend this work for face recognition.
¹³https://colab.research.google.com/drive/1Jk4-qX9zdYGsBrTnh2vF52CV9ucuqpjk
¹⁴https://github.com/curiousily/Getting-Things-Done-with-Pytorch
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7. Create Dataset for Sentiment
Analysis by Scraping Google Play

App Reviews
TL;DR In this tutorial, you’ll learn how to create a dataset for Sentiment Analysis by
scraping user reviews for Android apps. You’ll convert the app and review information
into Data Frames and save that to CSV files.

• Run the notebook in your browser (Google Colab)¹
• Read the Getting Things Done with Pytorch book²

You’ll learn how to:

• Set a goal and inclusion criteria for your dataset
• Get real-world user reviews by scraping Google Play
• Use Pandas to convert and save the dataset into CSV files

Setup

Let’s install the required packages and setup the imports:

1 %watermark -v -p pandas,matplotlib,seaborn,google_play_scraper

1 CPython 3.6.9

2 IPython 5.5.0

3

4 pandas 1.0.3

5 matplotlib 3.2.1

6 seaborn 0.10.0

7 google_play_scraper 0.0.2.3

¹https://colab.research.google.com/drive/1GDJIpz7BXw55jl9wTOMQDool9m8DIOyp
²https://github.com/curiousily/Getting-Things-Done-with-Pytorch
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1 import json

2 import pandas as pd

3 from tqdm import tqdm

4

5 import seaborn as sns

6 import matplotlib.pyplot as plt

7

8 from pygments import highlight

9 from pygments.lexers import JsonLexer

10 from pygments.formatters import TerminalFormatter

11

12 from google_play_scraper import Sort, reviews, app

13

14 %matplotlib inline

15 %config InlineBackend.figure_format='retina'

16

17 sns.set(style='whitegrid', palette='muted', font_scale=1.2)

The Goal of the Dataset

You want to get feedback for your app. Both negative and positive are good. But the negative one
can reveal critical features that are missing or downtime of your service (when it is much more
frequent).

Lucky for us, Google Play has plenty of apps, reviews, and scores. We can scrape app info and
reviews using the google-play-scraper³ package.

You can choose plenty of apps to analyze. But different app categories contain different audiences,
domain-specific quirks, and more. We’ll start simple.

We want apps that have been around some time, so opinion is collected organically. We want to
mitigate advertising strategies as much as possible. Apps are constantly being updated, so the time
of the review is an important factor.

Ideally, you would want to collect every possible review and work with that. However, in the real
world data is often limited (too large, inaccessible, etc). So, we’ll do the best we can.

Let’s choose some apps that fit the criteria from the Productivity category. We’ll use AppAnnie⁴ to
select some of the top US apps:

³https://github.com/JoMingyu/google-play-scraper
⁴https://www.appannie.com/apps/google-play/top-chart/?country=US&category=29&device=&date=2020-04-05&feed=All&rank_

sorting_type=rank&page_number=1&page_size=100&table_selections=
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1 app_packages = [

2 'com.anydo',

3 'com.todoist',

4 'com.ticktick.task',

5 'com.habitrpg.android.habitica',

6 'cc.forestapp',

7 'com.oristats.habitbull',

8 'com.levor.liferpgtasks',

9 'com.habitnow',

10 'com.microsoft.todos',

11 'prox.lab.calclock',

12 'com.gmail.jmartindev.timetune',

13 'com.artfulagenda.app',

14 'com.tasks.android',

15 'com.appgenix.bizcal',

16 'com.appxy.planner'

17 ]

Scraping App Information

Let’s scrape the info for each app:

1 app_infos = []

2

3 for ap in tqdm(app_packages):

4 info = app(ap, lang='en', country='us')

5 del info['comments']

6 app_infos.append(info)

1 100%|����������| 15/15 [00:02<00:00, 6.34it/s]

We got the info for all 15 apps. Let’s write a helper function that prints JSON objects a bit better:
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1 def print_json(json_object):

2 json_str = json.dumps(

3 json_object,

4 indent=2,

5 sort_keys=True,

6 default=str

7 )

8 print(highlight(json_str, JsonLexer(), TerminalFormatter()))

Here is a sample app information from the list:

1 print_json(app_infos[0])

1 {

2 "adSupported": null,

3 "androidVersion": "Varies",

4 "androidVersionText": "Varies with device",

5 "appId": "com.anydo",

6 "containsAds": null,

7 "contentRating": "Everyone",

8 "contentRatingDescription": null,

9 "currency": "USD",

10 "description": "<b>\ud83c\udfc6 Editor's Choice by Google</b>\r\n\r\nAny.do is a T\

11 o Do List, Calendar, Planner...",

12 "descriptionHTML": "<b>\ud83c\udfc6 Editor&#39;s Choice by Google</b><br><br>Any.d\

13 o is a To Do List, Calendar, Planner...",

14 "developer": "Any.do Calendar & To-Do List",

15 "developerAddress": "Any.do Inc.\n\n6 Agripas Street, Tel Aviv\n6249106 ISRAEL",

16 "developerEmail": "feedback+androidtodo@any.do",

17 "developerId": "5304780265295461149",

18 "developerInternalID": "5304780265295461149",

19 "developerWebsite": "https://www.any.do",

20 "free": true,

21 "genre": "Productivity",

22 "genreId": "PRODUCTIVITY",

23 "headerImage": "https://lh3.googleusercontent.com/dZknnlk1LM8fYS3wjOvVHOmWKOGH1HAe\

24 691Yuh7LAeBj6a730A1CQqZnXxjNahAYUFFw",

25 "histogram": [27291, 9246, 13735, 29904, 262997],

26 "icon": "https://lh3.googleusercontent.com/zgOLUXCHkF91H8xuMTMLT17smwgLPwSBjUlKVWF\

27 -cZRFjlv-Uvtman7DiHEii54fbEE",

28 "installs": "10,000,000+",

29 "minInstalls": 10000000,
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30 "offersIAP": true,

31 "price": 0,

32 "privacyPolicy": "https://www.any.do/privacy",

33 "ratings": 343174,

34 "recentChanges": "Faster and smoother for better user experience!",

35 "recentChangesHTML": "Faster and smoother for better user experience!",

36 "released": "Nov 10, 2011",

37 "reviews": 122170,

38 "score": 4.43388,

39 "screenshots": [

40 "https://lh3.googleusercontent.com/C-L3_FPMlKVrZItAORaszhnQzlzMyXcqF_-oGaabHm_On\

41 wUW1jz02BXBVSKi0HRUtQ",

42 "https://lh3.googleusercontent.com/uAP6G5ANQcgVs4Uj6yrcsAo4OUhejTJRVCXOxnAVA5Efi\

43 t_OtAnrOYyL1SUHj1rv",

44 "https://lh3.googleusercontent.com/AI5mLFu0Atsl0km2FO9_IwJXNy_1q1_X6Ua3EVMZNedp0\

45 dsDToDRaWQ1UDvI6mb1-I0",

46 "https://lh3.googleusercontent.com/bYCAn3mjgB4ugSY0PL-PCcMBfbvXCSFkzL-pLSIIbZ8sQ\

47 ByQPerHboPQ2fA126K4LDtU",

48 "https://lh3.googleusercontent.com/u-dX4lpTepsvXs33ds4xxYpApuGS4JBAEb0UsvY_fPbpt\

49 xnF0QxaKNW0-tJVXaP8a1E",

50 "https://lh3.googleusercontent.com/qvUz_9IXHQd6FSLUALZo8NKLx-s4uDGyElPOGRsU28TCE\

51 ficQc0BoNRloRRLqUkH2A",

52 "https://lh3.googleusercontent.com/tEyGs6MGlY97ccLc4c_HxV9xNOpsvwQyHz6uGAezkVtxm\

53 1ydAaTj5EZSUgqlg69qrrk",

54 "https://lh3.googleusercontent.com/StN0i2BskOs6HCfaPO0DMBOCQMCag3okWVI_SlFJtMytw\

55 bgNMBnD5i9hbSqdNlGxffmn",

56 "https://lh3.googleusercontent.com/GRKqWfo-PLzCKwpgZ8fej4PGsUp1q9eM5a3LQeiYCOW-K\

57 UpCOIHXOp3mteZWbJ-pz4My",

58 "https://lh3.googleusercontent.com/pFQQ_qi8u92duWCNXpEcNKpH2lVpD_hFd5f-UlTP_f6wf\

59 t3YyYLMzwLitxt-UI6G8vs",

60 "https://lh3.googleusercontent.com/AoeCU6bT1x0eHRvJwvQyOSKJ31oSayox959qMNVaSzz3u\

61 N9bvk1cGek5zyRDe1BdtA",

62 "https://lh3.googleusercontent.com/vICme1f4J9vFt8wY3xBY-LshGgYyvSbsa4TLJyEtNsy0a\

63 lUI0i9oMQVq8oJ4l_yR1Aw",

64 "https://lh3.googleusercontent.com/7sn9m__iVM-peiG6_jkKBuE-QVH_xDaycF_oR1XJlwcAC\

65 45ybNZ_Exor09ENOJ41Q2U",

66 "https://lh3.googleusercontent.com/9I_m2ZXgPtiU4Po4cw_cyIaEpZxynxQ1n3YkhFgakATfb\

67 u63a8_f8vGQDxKOHYITzew"

68 ],

69 "size": "Varies with device",

70 "summary": "Task Manager \u2705 Organizer \ud83d\udcc5 Agenda \ud83d\udcdd Daily R\

71 eminders \ud83d\udd14 All-in-One Simple App.",

72 "summaryHTML": "Task Manager \u2705 Organizer \ud83d\udcc5 Agenda \ud83d\udcdd Dai\
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73 ly Reminders \ud83d\udd14 All-in-One Simple App.",

74 "title": "Any.do: To do list, Calendar, Planner & Reminders",

75 "updated": 1586258773,

76 "url": "https://play.google.com/store/apps/details?id=com.anydo&hl=en&gl=us",

77 "version": "Varies with device",

78 "video": "https://www.youtube.com/embed/2nkllLD0x6o?ps=play&vq=large&rel=0&autohid\

79 e=1&showinfo=0",

80 "videoImage": "https://i.ytimg.com/vi/2nkllLD0x6o/hqdefault.jpg"

81 }

This contains lots of information including the number of ratings, number of reviews and number
of ratings for each score (1 to 5). Let’s ignore all of that and have a look at their beautiful icons:

1 def format_title(title):

2 sep_index = title.find(':') if title.find(':') != -1 else title.find('-')

3 if sep_index != -1:

4 title = title[:sep_index]

5 return title[:10]

6

7 fig, axs = plt.subplots(2, len(app_infos) // 2, figsize=(14, 5))

8

9 for i, ax in enumerate(axs.flat):

10 ai = app_infos[i]

11 img = plt.imread(ai['icon'])

12 ax.imshow(img)

13 ax.set_title(format_title(ai['title']))

14 ax.axis('off')

png

We’ll store the app information for later by converting the JSON objects into a Pandas dataframe
and saving the result into a CSV file:
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1 app_infos_df = pd.DataFrame(app_infos)

2 app_infos_df.to_csv('apps.csv', index=None, header=True)

Scraping App Reviews

In an ideal world, we would get all the reviews. But there are lots of them and we’re scraping the
data. That wouldn’t be very polite. What should we do?

We want:

• Balanced dataset - roughly the same number of reviews for each score (1-5)
• A representative sample of the reviews for each app

We can satisfy the first requirement by using the scraping package option to filter the review score.
For the second, we’ll sort the reviews by their helpfulness, which are the reviews that Google Play
thinks are most important. Just in case, we’ll get a subset from the newest, too:

1 app_reviews = []

2

3 for ap in tqdm(app_packages):

4 for score in list(range(1, 6)):

5 for sort_order in [Sort.MOST_RELEVANT, Sort.NEWEST]:

6 rvs, _ = reviews(

7 ap,

8 lang='en',

9 country='us',

10 sort=sort_order,

11 count= 200 if score == 3 else 100,

12 filter_score_with=score

13 )

14 for r in rvs:

15 r['sortOrder'] = 'most_relevant' if sort_order == Sort.MOST_RELEVANT else 'n\

16 ewest'

17 r['appId'] = ap

18 app_reviews.extend(rvs)

1 100%|����������| 15/15 [00:45<00:00, 3.01s/it]

Note that we’re adding the app id and sort order to each review. Here’s an example for one:
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1 print_json(app_reviews[0])

1 {

2 "appId": "com.anydo",

3 "at": "2020-04-05 22:25:57",

4 "content": "Update: After getting a response from the developer I would change my \

5 rating to 0 stars if possible. These guys hide behind confusing and opaque terms and\

6 refuse to budge at all. I'm so annoyed that my money has been lost to them! Really \

7 terrible customer experience. Original: Be very careful when signing up for a free t\

8 rial of this app. If you happen to go over they automatically charge you for a full \

9 years subscription and refuse to refund. Terrible customer experience and the app is\

10 just OK.",

11 "repliedAt": "2020-04-07 14:09:03",

12 "replyContent": "Our policy and TOS are completely transparent and can be found in\

13 the Help Center and our main page. In addition, a payment can only be made upon the\

14 user's authorization via the app and Google Play. We provide users with a full 7 da\

15 ys trial to test the app with an additional 48 hours for a refund, along with priori\

16 ty support for all issues.",

17 "reviewCreatedVersion": "4.17.0.3",

18 "score": 1,

19 "sortOrder": "most_relevant",

20 "thumbsUpCount": 37,

21 "userImage": "https://lh3.googleusercontent.com/a-/AOh14GiHdfNEu1DwwcJ6yNyju8Yvn4J\

22 wjpzuXvD74aVmDA",

23 "userName": "Andrew Thomas"

24 }

repliedAt and replyContent contain the developer response to the review. Of course, they can be
missing.

How many app reviews did we get?

1 len(app_reviews)

1 15750

Let’s save the reviews to a CSV file:

1 app_reviews_df = pd.DataFrame(app_reviews)

2 app_reviews_df.to_csv('reviews.csv', index=None, header=True)
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Summary

Well done! You now have a dataset with more than 15k user reviews from 15 productivity apps. Of
course, you can go crazy and get much much more.

• Run the notebook in your browser (Google Colab)⁵
• Read the Getting Things Done with Pytorch book⁶

You learned how to:

• Set goals and expectations for your dataset
• Scrape Google Play app information
• Scrape user reviews for Google Play apps
• Save the dataset to CSV files

Next, we’re going to use the reviews for sentiment analysis with BERT. But first, we’ll have to do
some text preprocessing!

References

• Google Play Scraper for Python⁷

⁵https://colab.research.google.com/drive/1GDJIpz7BXw55jl9wTOMQDool9m8DIOyp
⁶https://github.com/curiousily/Getting-Things-Done-with-Pytorch
⁷https://github.com/JoMingyu/google-play-scraper
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8. Sentiment Analysis with BERT and
Transformers by Hugging Face

TL;DR In this tutorial, you’ll learn how to fine-tune BERT for sentiment analysis. You’ll
do the required text preprocessing (special tokens, padding, and attention masks) and
build a Sentiment Classifier using the amazing Transformers library by Hugging Face!

• Run the notebook in your browser (Google Colab)¹
• Read the Getting Things Done with Pytorch book²

You’ll learn how to:

• Intuitively understand what BERT is
• Preprocess text data for BERT and build PyTorch Dataset (tokenization, attention masks, and
padding)

• Use Transfer Learning to build Sentiment Classifier using the Transformers library by Hugging
Face

• Evaluate the model on test data
• Predict sentiment on raw text

Let’s get started!

What is BERT?

BERT (introduced in this paper³) stands for Bidirectional Encoder Representations from Transform-
ers. If you don’t know what most of that means - you’ve come to the right place! Let’s unpack the
main ideas:

• Bidirectional - to understand the text you’re looking you’ll have to look back (at the previous
words) and forward (at the next words)

• Transformers - The Attention Is All You Need⁴ paper presented the Transformer model. The
Transformer reads entire sequences of tokens at once. In a sense, the model is non-directional,
while LSTMs read sequentially (left-to-right or right-to-left). The attention mechanism allows
for learning contextual relations between words (e.g. his in a sentence refers to Jim).

¹https://colab.research.google.com/drive/1PHv-IRLPCtv7oTcIGbsgZHqrB5LPvB7S
²https://github.com/curiousily/Getting-Things-Done-with-Pytorch
³https://arxiv.org/abs/1810.04805
⁴https://arxiv.org/abs/1706.03762
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• (Pre-trained) contextualized word embeddings - The ELMO paper⁵ introduced a way to encode
words based on their meaning/context. Nails has multiple meanings - fingernails and metal
nails.

BERT was trained by masking 15% of the tokens with the goal to guess them. An additional objective
was to predict the next sentence. Let’s look at examples of these tasks:

Masked Language Modeling (Masked LM)

The objective of this task is to guess the masked tokens. Let’s look at an example, and try to not
make it harder than it has to be:

That’s [mask] she [mask] -> That’s what she said

Next Sentence Prediction (NSP)

Given a pair of two sentences, the task is to say whether or not the second follows the first (binary
classification). Let’s continue with the example:

Input = [CLS] That’s [mask] she [mask]. [SEP] Hahaha, nice! [SEP]

Label = IsNext

Input = [CLS] That’s [mask] she [mask]. [SEP] Dwight, you ignorant [mask]! [SEP]

Label = NotNext

The training corpus was comprised of two entries: Toronto Book Corpus⁶ (800M words) and English
Wikipedia (2,500M words). While the original Transformer has an encoder (for reading the input)
and a decoder (that makes the prediction), BERT uses only the decoder.

BERT is simply a pre-trained stack of Transformer Encoders. How many Encoders? We have two
versions - with 12 (BERT base) and 24 (BERT Large).

Is This Thing Useful in Practice?

The BERT paper was released along with the source code⁷ and pre-trained models.

The best part is that you can do Transfer Learning (thanks to the ideas from OpenAI Transformer)
with BERT for many NLP tasks - Classification, Question Answering, Entity Recognition, etc. You
can train with small amounts of data and achieve great performance!

⁵https://arxiv.org/abs/1802.05365v2
⁶https://arxiv.org/abs/1506.06724
⁷https://github.com/google-research/bert
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Setup

We’ll need the Transformers library⁸ by Hugging Face:

1 !pip install -qq transformers

1 %reload_ext watermark

2 %watermark -v -p numpy,pandas,torch,transformers

1 CPython 3.6.9

2 IPython 5.5.0

3

4 numpy 1.18.2

5 pandas 1.0.3

6 torch 1.4.0

7 transformers 2.8.0

1 import transformers

2 from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_w\

3 armup

4 import torch

5

6 import numpy as np

7 import pandas as pd

8 import seaborn as sns

9 from pylab import rcParams

10 import matplotlib.pyplot as plt

11 from matplotlib import rc

12 from sklearn.model_selection import train_test_split

13 from sklearn.metrics import confusion_matrix, classification_report

14 from collections import defaultdict

15 from textwrap import wrap

16

17 from torch import nn, optim

18 from torch.utils.data import Dataset, DataLoader

19

20 %matplotlib inline

21 %config InlineBackend.figure_format='retina'

⁸https://huggingface.co/transformers/
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22

23 sns.set(style='whitegrid', palette='muted', font_scale=1.2)

24

25 HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F0\

26 0FF"]

27

28 sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE))

29

30 rcParams['figure.figsize'] = 12, 8

31

32 RANDOM_SEED = 42

33 np.random.seed(RANDOM_SEED)

34 torch.manual_seed(RANDOM_SEED)

35 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Data Exploration

We’ll load the Google Play app reviews dataset, that we’ve put together in the previous part:

1 !gdown --id 1S6qMioqPJjyBLpLVz4gmRTnJHnjitnuV

2 !gdown --id 1zdmewp7ayS4js4VtrJEHzAheSW-5NBZv

1 df = pd.read_csv("reviews.csv")

2 df.shape

1 (15746, 11)

We have about 16k examples. Let’s check for missing values:

1 df.info()
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1 <class 'pandas.core.frame.DataFrame'>

2 RangeIndex: 15746 entries, 0 to 15745

3 Data columns (total 11 columns):

4 # Column Non-Null Count Dtype

5 --- ------ -------------- -----

6 0 userName 15746 non-null object

7 1 userImage 15746 non-null object

8 2 content 15746 non-null object

9 3 score 15746 non-null int64

10 4 thumbsUpCount 15746 non-null int64

11 5 reviewCreatedVersion 13533 non-null object

12 6 at 15746 non-null object

13 7 replyContent 7367 non-null object

14 8 repliedAt 7367 non-null object

15 9 sortOrder 15746 non-null object

16 10 appId 15746 non-null object

17 dtypes: int64(2), object(9)

18 memory usage: 1.3+ MB

Great, no missing values in the score and review texts! Do we have class imbalance?

1 sns.countplot(df.score)

2 plt.xlabel('review score');
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png

That’s hugely imbalanced, but it’s okay. We’re going to convert the dataset into negative, neutral
and positive sentiment:

1 def to_sentiment(rating):

2 rating = int(rating)

3 if rating <= 2:

4 return 0

5 elif rating == 3:

6 return 1

7 else:

8 return 2

9

10 df['sentiment'] = df.score.apply(to_sentiment)

1 class_names = ['negative', 'neutral', 'positive']
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1 ax = sns.countplot(df.sentiment)

2 plt.xlabel('review sentiment')

3 ax.set_xticklabels(class_names);

png

The balance was (mostly) restored.

Data Preprocessing

You might already know that Machine Learning models don’t work with raw text. You need to
convert text to numbers (of some sort). BERT requires even more attention (good one, right?). Here
are the requirements:

• Add special tokens to separate sentences and do classification
• Pass sequences of constant length (introduce padding)
• Create array of 0s (pad token) and 1s (real token) called attention mask

The Transformers library provides (you’ve guessed it) a wide variety of Transformer models
(including BERT). It works with TensorFlow and PyTorch! It also includes prebuild tokenizers that
do the heavy lifting for us!
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1 PRE_TRAINED_MODEL_NAME = 'bert-base-cased'

You can use a cased and uncased version of BERT and tokenizer. I’ve experimented with
both. The cased version works better. Intuitively, that makes sense, since “BAD” might
convey more sentiment than “bad”.

Let’s load a pre-trained BertTokenizer⁹:

1 tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)

We’ll use this text to understand the tokenization process:

1 sample_txt = 'When was I last outside? I am stuck at home for 2 weeks.'

Some basic operations can convert the text to tokens and tokens to unique integers (ids):

1 tokens = tokenizer.tokenize(sample_txt)

2 token_ids = tokenizer.convert_tokens_to_ids(tokens)

3

4 print(f' Sentence: {sample_txt}')

5 print(f' Tokens: {tokens}')

6 print(f'Token IDs: {token_ids}')

1 Sentence: When was I last outside? I am stuck at home for 2 weeks.

2 Tokens: ['When', 'was', 'I', 'last', 'outside', '?', 'I', 'am', 'stuck', 'at', 'h\

3 ome', 'for', '2', 'weeks', '.']

4 Token IDs: [1332, 1108, 146, 1314, 1796, 136, 146, 1821, 5342, 1120, 1313, 1111, 123\

5 , 2277, 119]

Special Tokens

[SEP] - marker for ending of a sentence

1 tokenizer.sep_token, tokenizer.sep_token_id

⁹https://huggingface.co/transformers/model_doc/bert.html#berttokenizer
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1 ('[SEP]', 102)

[CLS] - we must add this token to the start of each sentence, so BERT knows we’re doing
classification

1 tokenizer.cls_token, tokenizer.cls_token_id

1 ('[CLS]', 101)

There is also a special token for padding:

1 tokenizer.pad_token, tokenizer.pad_token_id

1 ('[PAD]', 0)

BERT understands tokens that were in the training set. Everything else can be encoded using the
[UNK] (unknown) token:

1 tokenizer.unk_token, tokenizer.unk_token_id

1 ('[UNK]', 100)

All of that work can be done using the encode_plus()¹⁰ method:

1 encoding = tokenizer.encode_plus(

2 sample_txt,

3 max_length=32,

4 add_special_tokens=True, # Add '[CLS]' and '[SEP]'

5 return_token_type_ids=False,

6 pad_to_max_length=True,

7 return_attention_mask=True,

8 return_tensors='pt', # Return PyTorch tensors

9 )

10

11 encoding.keys()

¹⁰https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.PreTrainedTokenizer.encode_plus
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1 dict_keys(['input_ids', 'attention_mask'])

The token ids are now stored in a Tensor and padded to a length of 32:

1 print(len(encoding['input_ids'][0]))

2 encoding['input_ids'][0]

1 32

2 tensor([ 101, 1332, 1108, 146, 1314, 1796, 136, 146, 1821, 5342, 1120, 1313,

3 1111, 123, 2277, 119, 102, 0, 0, 0, 0, 0, 0, 0,

4 0, 0, 0, 0, 0, 0, 0, 0])

The attention mask has the same length:

1 print(len(encoding['attention_mask'][0]))

2 encoding['attention_mask']

1 32

2 tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,

3 0, 0, 0, 0, 0, 0, 0, 0]])

We can inverse the tokenization to have a look at the special tokens:

1 tokenizer.convert_ids_to_tokens(encoding['input_ids'][0])

1 ['[CLS]',

2 'When',

3 'was',

4 'I',

5 'last',

6 'outside',

7 '?',

8 'I',

9 'am',

10 'stuck',

11 'at',

12 'home',

13 'for',

14 '2',

15 'weeks',
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16 '.',

17 '[SEP]',

18 '[PAD]',

19 '[PAD]',

20 '[PAD]',

21 '[PAD]',

22 '[PAD]',

23 '[PAD]',

24 '[PAD]',

25 '[PAD]',

26 '[PAD]',

27 '[PAD]',

28 '[PAD]',

29 '[PAD]',

30 '[PAD]',

31 '[PAD]',

32 '[PAD]']

Choosing Sequence Length

BERTworks with fixed-length sequences. We’ll use a simple strategy to choose the max length. Let’s
store the token length of each review:

1 token_lens = []

2

3 for txt in df.content:

4 tokens = tokenizer.encode(txt, max_length=512)

5 token_lens.append(len(tokens))

and plot the distribution:

1 sns.distplot(token_lens)

2 plt.xlim([0, 256]);

3 plt.xlabel('Token count');
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png

Most of the reviews seem to contain less than 128 tokens, but we’ll be on the safe side and choose a
maximum length of 160.

1 MAX_LEN = 160

We have all building blocks required to create a PyTorch dataset. Let’s do it:

1 class GPReviewDataset(Dataset):

2

3 def __init__(self, reviews, targets, tokenizer, max_len):

4 self.reviews = reviews

5 self.targets = targets

6 self.tokenizer = tokenizer

7 self.max_len = max_len

8

9 def __len__(self):

10 return len(self.reviews)

11

12 def __getitem__(self, item):
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13 review = str(self.reviews[item])

14 target = self.targets[item]

15

16 encoding = self.tokenizer.encode_plus(

17 review,

18 add_special_tokens=True,

19 max_length=self.max_len,

20 return_token_type_ids=False,

21 pad_to_max_length=True,

22 return_attention_mask=True,

23 return_tensors='pt',

24 )

25

26 return {

27 'review_text': review,

28 'input_ids': encoding['input_ids'].flatten(),

29 'attention_mask': encoding['attention_mask'].flatten(),

30 'targets': torch.tensor(target, dtype=torch.long)

31 }

The tokenizer is doing most of the heavy lifting for us. We also return the review texts, so it’ll be
easier to evaluate the predictions from our model. Let’s split the data:

1 df_train, df_test = train_test_split(

2 df,

3 test_size=0.1,

4 random_state=RANDOM_SEED

5 )

6 df_val, df_test = train_test_split(

7 df_test,

8 test_size=0.5,

9 random_state=RANDOM_SEED

10 )

1 df_train.shape, df_val.shape, df_test.shape

1 ((14171, 12), (787, 12), (788, 12))

We also need to create a couple of data loaders. Here’s a helper function to do it:
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1 def create_data_loader(df, tokenizer, max_len, batch_size):

2 ds = GPReviewDataset(

3 reviews=df.content.to_numpy(),

4 targets=df.sentiment.to_numpy(),

5 tokenizer=tokenizer,

6 max_len=max_len

7 )

8

9 return DataLoader(

10 ds,

11 batch_size=batch_size,

12 num_workers=4

13 )

1 BATCH_SIZE = 16

2

3 train_data_loader = create_data_loader(df_train, tokenizer, MAX_LEN, BATCH_SIZE)

4 val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE)

5 test_data_loader = create_data_loader(df_test, tokenizer, MAX_LEN, BATCH_SIZE)

Let’s have a look at an example batch from our training data loader:

1 data = next(iter(train_data_loader))

2 data.keys()

1 dict_keys(['review_text', 'input_ids', 'attention_mask', 'targets'])

1 print(data['input_ids'].shape)

2 print(data['attention_mask'].shape)

3 print(data['targets'].shape)

1 torch.Size([16, 160])

2 torch.Size([16, 160])

3 torch.Size([16])
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Sentiment Classification with BERT and Hugging Face

There are a lot of helpers that make using BERT easy with the Transformers library. Depending on
the task you might want to use BertForSequenceClassification¹¹, BertForQuestionAnswering¹² or
something else.

But who cares, right? We’re hardcore! We’ll use the basic BertModel¹³ and build our sentiment
classifier on top of it. Let’s load the model:

1 bert_model = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME)

And try to use it on the encoding of our sample text:

1 last_hidden_state, pooled_output = bert_model(

2 input_ids=encoding['input_ids'],

3 attention_mask=encoding['attention_mask']

4 )

The last_hidden_state is a sequence of hidden states of the last layer of the model. Obtaining the
pooled_output is done by applying the BertPooler¹⁴ on last_hidden_state:

1 last_hidden_state.shape

1 torch.Size([1, 32, 768])

We have the hidden state for each of our 32 tokens (the length of our example sequence). But why
768? This is the number of hidden units in the feedforward-networks.We can verify that by checking
the config:

1 bert_model.config.hidden_size

1 768

You can think of the pooled_output as a summary of the content, according to BERT. Albeit, you
might try and do better. Let’s look at the shape of the output:

¹¹https://huggingface.co/transformers/model_doc/bert.html#bertforsequenceclassification
¹²https://huggingface.co/transformers/model_doc/bert.html#bertforquestionanswering
¹³https://huggingface.co/transformers/model_doc/bert.html#bertmodel
¹⁴https://github.com/huggingface/transformers/blob/edf0582c0be87b60f94f41c659ea779876efc7be/src/transformers/modeling_bert.py#

L426
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1 pooled_output.shape

1 torch.Size([1, 768])

We can use all of this knowledge to create a classifier that uses the BERT model:

1 class SentimentClassifier(nn.Module):

2

3 def __init__(self, n_classes):

4 super(SentimentClassifier, self).__init__()

5 self.bert = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME)

6 self.drop = nn.Dropout(p=0.3)

7 self.out = nn.Linear(self.bert.config.hidden_size, n_classes)

8

9 def forward(self, input_ids, attention_mask):

10 _, pooled_output = self.bert(

11 input_ids=input_ids,

12 attention_mask=attention_mask

13 )

14 output = self.drop(pooled_output)

15 return self.out(output

Our classifier delegates most of the heavy lifting to the BertModel. We use a dropout layer for some
regularization and a fully-connected layer for our output. Note that we’re returning the raw output
of the last layer since that is required for the cross-entropy loss function in PyTorch to work.

This should work like any other PyTorch model. Let’s create an instance and move it to the GPU

1 model = SentimentClassifier(len(class_names))

2 model = model.to(device)

We’ll move the example batch of our training data to the GPU:

1 input_ids = data['input_ids'].to(device)

2 attention_mask = data['attention_mask'].to(device)

3

4 print(input_ids.shape) # batch size x seq length

5 print(attention_mask.shape) # batch size x seq length
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1 torch.Size([16, 160])

2 torch.Size([16, 160])

To get the predicted probabilities from our trained model, we’ll apply the softmax function to the
outputs:

1 F.softmax(model(input_ids, attention_mask), dim=1)

1 tensor([[0.5879, 0.0842, 0.3279],

2 [0.4308, 0.1888, 0.3804],

3 [0.4871, 0.1766, 0.3363],

4 [0.3364, 0.0778, 0.5858],

5 [0.4025, 0.1040, 0.4935],

6 [0.3599, 0.1026, 0.5374],

7 [0.5054, 0.1552, 0.3394],

8 [0.5962, 0.1464, 0.2574],

9 [0.3274, 0.1967, 0.4759],

10 [0.3026, 0.1118, 0.5856],

11 [0.4103, 0.1571, 0.4326],

12 [0.4879, 0.2121, 0.3000],

13 [0.3811, 0.1477, 0.4712],

14 [0.3354, 0.1354, 0.5292],

15 [0.3999, 0.2822, 0.3179],

16 [0.5075, 0.1684, 0.3242]], device='cuda:0', grad_fn=<SoftmaxBackward>)

Training

To reproduce the training procedure from the BERT paper, we’ll use the AdamW¹⁵ optimizer
provided by Hugging Face. It corrects weight decay, so it’s similar to the original paper. We’ll also
use a linear scheduler with no warmup steps:

¹⁵https://huggingface.co/transformers/main_classes/optimizer_schedules.html#adamw
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1 EPOCHS = 10

2

3 optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False)

4 total_steps = len(train_data_loader) * EPOCHS

5

6 scheduler = get_linear_schedule_with_warmup(

7 optimizer,

8 num_warmup_steps=0,

9 num_training_steps=total_steps

10 )

11

12 loss_fn = nn.CrossEntropyLoss().to(device)

How do we come up with all hyperparameters? The BERT authors have some recommendations for
fine-tuning:

• Batch size: 16, 32
• Learning rate (Adam): 5e-5, 3e-5, 2e-5
• Number of epochs: 2, 3, 4

We’re going to ignore the number of epochs recommendation but stick with the rest. Note that
increasing the batch size reduces the training time significantly, but gives you lower accuracy.

Let’s continue with writing a helper function for training our model for one epoch:

1 def train_epoch(

2 model,

3 data_loader,

4 loss_fn,

5 optimizer,

6 device,

7 scheduler,

8 n_examples

9 ):

10 model = model.train()

11

12 losses = []

13 correct_predictions = 0

14

15 for d in data_loader:

16 input_ids = d["input_ids"].to(device)

17 attention_mask = d["attention_mask"].to(device)

18 targets = d["targets"].to(device)

Smile, you are amazing!



Sentiment Analysis with BERT and Transformers by Hugging Face 139

19

20 outputs = model(

21 input_ids=input_ids,

22 attention_mask=attention_mask

23 )

24

25 _, preds = torch.max(outputs, dim=1)

26 loss = loss_fn(outputs, targets)

27

28 correct_predictions += torch.sum(preds == targets)

29 losses.append(loss.item())

30

31 loss.backward()

32 nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

33 optimizer.step()

34 scheduler.step()

35 optimizer.zero_grad()

36

37 return correct_predictions.double() / n_examples, np.mean(losses)

Training the model should look familiar, except for two things. The scheduler gets called every time
a batch is fed to the model. We’re avoiding exploding gradients by clipping the gradients of the
model using clipgrad_norm¹⁶.

Let’s write another one that helps us evaluate the model on a given data loader:

1 def eval_model(model, data_loader, loss_fn, device, n_examples):

2 model = model.eval()

3

4 losses = []

5 correct_predictions = 0

6

7 with torch.no_grad():

8 for d in data_loader:

9 input_ids = d["input_ids"].to(device)

10 attention_mask = d["attention_mask"].to(device)

11 targets = d["targets"].to(device)

12

13 outputs = model(

14 input_ids=input_ids,

15 attention_mask=attention_mask

16 )

¹⁶https://pytorch.org/docs/stable/nn.html#clip-grad-norm
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17 _, preds = torch.max(outputs, dim=1)

18

19 loss = loss_fn(outputs, targets)

20

21 correct_predictions += torch.sum(preds == targets)

22 losses.append(loss.item())

23

24 return correct_predictions.double() / n_examples, np.mean(losses)

Using those two, we can write our training loop. We’ll also store the training history:

1 %%time

2

3 history = defaultdict(list)

4 best_accuracy = 0

5

6 for epoch in range(EPOCHS):

7

8 print(f'Epoch {epoch + 1}/{EPOCHS}')

9 print('-' * 10)

10

11 train_acc, train_loss = train_epoch(

12 model,

13 train_data_loader,

14 loss_fn,

15 optimizer,

16 device,

17 scheduler,

18 len(df_train)

19 )

20

21 print(f'Train loss {train_loss} accuracy {train_acc}')

22

23 val_acc, val_loss = eval_model(

24 model,

25 val_data_loader,

26 loss_fn,

27 device,

28 len(df_val)

29 )

30

31 print(f'Val loss {val_loss} accuracy {val_acc}')

32 print()

Smile, you are amazing!



Sentiment Analysis with BERT and Transformers by Hugging Face 141

33

34 history['train_acc'].append(train_acc)

35 history['train_loss'].append(train_loss)

36 history['val_acc'].append(val_acc)

37 history['val_loss'].append(val_loss)

38

39 if val_acc > best_accuracy:

40 torch.save(model.state_dict(), 'best_model_state.bin')

41 best_accuracy = val_acc

1 Epoch 1/10

2 ----------

3 Train loss 0.7330631300571541 accuracy 0.6653729447463129

4 Val loss 0.5767546480894089 accuracy 0.7776365946632783

5

6 Epoch 2/10

7 ----------

8 Train loss 0.4158683338330777 accuracy 0.8420012701997036

9 Val loss 0.5365073362737894 accuracy 0.832274459974587

10

11 Epoch 3/10

12 ----------

13 Train loss 0.24015077009679367 accuracy 0.922023851527768

14 Val loss 0.5074492372572422 accuracy 0.8716645489199493

15

16 Epoch 4/10

17 ----------

18 Train loss 0.16012676668187295 accuracy 0.9546962105708843

19 Val loss 0.6009970247745514 accuracy 0.8703939008894537

20

21 Epoch 5/10

22 ----------

23 Train loss 0.11209654617575301 accuracy 0.9675393409074872

24 Val loss 0.7367783848941326 accuracy 0.8742058449809403

25

26 Epoch 6/10

27 ----------

28 Train loss 0.08572274737026433 accuracy 0.9764307388328276

29 Val loss 0.7251267762482166 accuracy 0.8843710292249047

30

31 Epoch 7/10

32 ----------
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33 Train loss 0.06132202987342602 accuracy 0.9833462705525369

34 Val loss 0.7083295831084251 accuracy 0.889453621346887

35

36 Epoch 8/10

37 ----------

38 Train loss 0.050604159273123096 accuracy 0.9849693035071626

39 Val loss 0.753860274553299 accuracy 0.8907242693773825

40

41 Epoch 9/10

42 ----------

43 Train loss 0.04373276197092931 accuracy 0.9862395032107826

44 Val loss 0.7506809896230697 accuracy 0.8919949174078781

45

46 Epoch 10/10

47 ----------

48 Train loss 0.03768671146314381 accuracy 0.9880036694658105

49 Val loss 0.7431786182522774 accuracy 0.8932655654383737

50

51 CPU times: user 29min 54s, sys: 13min 28s, total: 43min 23s

52 Wall time: 43min 43s

Note that we’re storing the state of the best model, indicated by the highest validation accuracy.

Whoo, this took some time! We can look at the training vs validation accuracy:

1 plt.plot(history['train_acc'], label='train accuracy')

2 plt.plot(history['val_acc'], label='validation accuracy')

3

4 plt.title('Training history')

5 plt.ylabel('Accuracy')

6 plt.xlabel('Epoch')

7 plt.legend()

8 plt.ylim([0, 1]);
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png

The training accuracy starts to approach 100% after 10 epochs or so. You might try to fine-tune the
parameters a bit more, but this will be good enough for us.

Don’t want to wait? Uncomment the next cell to download my pre-trained model:

1 # !gdown --id 1V8itWtowCYnb2Bc9KlK9SxGff9WwmogA

2

3 # model = SentimentClassifier(len(class_names))

4 # model.load_state_dict(torch.load('best_model_state.bin'))

5 # model = model.to(device)

Evaluation

So how good is our model on predicting sentiment? Let’s start by calculating the accuracy on the
test data:
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1 test_acc, _ = eval_model(

2 model,

3 test_data_loader,

4 loss_fn,

5 device,

6 len(df_test)

7 )

8

9 test_acc.item()

1 0.883248730964467

The accuracy is about 1% lower on the test set. Our model seems to generalize well.

We’ll define a helper function to get the predictions from our model:

1 def get_predictions(model, data_loader):

2 model = model.eval()

3

4 review_texts = []

5 predictions = []

6 prediction_probs = []

7 real_values = []

8

9 with torch.no_grad():

10 for d in data_loader:

11

12 texts = d["review_text"]

13 input_ids = d["input_ids"].to(device)

14 attention_mask = d["attention_mask"].to(device)

15 targets = d["targets"].to(device)

16

17 outputs = model(

18 input_ids=input_ids,

19 attention_mask=attention_mask

20 )

21 _, preds = torch.max(outputs, dim=1)

22

23 review_texts.extend(texts)

24 predictions.extend(preds)

25 prediction_probs.extend(outputs)

26 real_values.extend(targets)
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27

28 predictions = torch.stack(predictions).cpu()

29 prediction_probs = torch.stack(prediction_probs).cpu()

30 real_values = torch.stack(real_values).cpu()

31 return review_texts, predictions, prediction_probs, real_values

This is similar to the evaluation function, except that we’re storing the text of the reviews and the
predicted probabilities:

1 y_review_texts, y_pred, y_pred_probs, y_test = get_predictions(

2 model,

3 test_data_loader

4 )

Let’s have a look at the classification report

1 print(classification_report(y_test, y_pred, target_names=class_names))

1 precision recall f1-score support

2

3 negative 0.89 0.87 0.88 245

4 neutral 0.83 0.85 0.84 254

5 positive 0.92 0.93 0.92 289

6

7 accuracy 0.88 788

8 macro avg 0.88 0.88 0.88 788

9 weighted avg 0.88 0.88 0.88 788

Looks like it is really hard to classify neutral (3 stars) reviews. And I can tell you from experience,
looking at many reviews, those are hard to classify.

We’ll continue with the confusion matrix:
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1 def show_confusion_matrix(confusion_matrix):

2 hmap = sns.heatmap(confusion_matrix, annot=True, fmt="d", cmap="Blues")

3 hmap.yaxis.set_ticklabels(hmap.yaxis.get_ticklabels(), rotation=0, ha='right')

4 hmap.xaxis.set_ticklabels(hmap.xaxis.get_ticklabels(), rotation=30, ha='right')

5 plt.ylabel('True sentiment')

6 plt.xlabel('Predicted sentiment');

7

8 cm = confusion_matrix(y_test, y_pred)

9 df_cm = pd.DataFrame(cm, index=class_names, columns=class_names)

10 show_confusion_matrix(df_cm)

png

This confirms that our model is having difficulty classifying neutral reviews. It mistakes those for
negative and positive at a roughly equal frequency.

That’s a good overview of the performance of our model. But let’s have a look at an example from
our test data:
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1 idx = 2

2

3 review_text = y_review_texts[idx]

4 true_sentiment = y_test[idx]

5 pred_df = pd.DataFrame({

6 'class_names': class_names,

7 'values': y_pred_probs[idx]

8 })

1 print("\n".join(wrap(review_text)))

2 print()

3 print(f'True sentiment: {class_names[true_sentiment]}')

1 I used to use Habitica, and I must say this is a great step up. I'd

2 like to see more social features, such as sharing tasks - only one

3 person has to perform said task for it to be checked off, but only

4 giving that person the experience and gold. Otherwise, the price for

5 subscription is too steep, thus resulting in a sub-perfect score. I

6 could easily justify $0.99/month or eternal subscription for $15. If

7 that price could be met, as well as fine tuning, this would be easily

8 worth 5 stars.

9

10 True sentiment: neutral

Now we can look at the confidence of each sentiment of our model:

1 sns.barplot(x='values', y='class_names', data=pred_df, orient='h')

2 plt.ylabel('sentiment')

3 plt.xlabel('probability')

4 plt.xlim([0, 1]);
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png

Predicting on Raw Text

Let’s use our model to predict the sentiment of some raw text:

1 review_text = "I love completing my todos! Best app ever!!!"

We have to use the tokenizer to encode the text:

1 encoded_review = tokenizer.encode_plus(

2 review_text,

3 max_length=MAX_LEN,

4 add_special_tokens=True,

5 return_token_type_ids=False,

6 pad_to_max_length=True,

7 return_attention_mask=True,

8 return_tensors='pt',

9 )

Let’s get the predictions from our model:
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1 input_ids = encoded_review['input_ids'].to(device)

2 attention_mask = encoded_review['attention_mask'].to(device)

3

4 output = model(input_ids, attention_mask)

5 _, prediction = torch.max(output, dim=1)

6

7 print(f'Review text: {review_text}')

8 print(f'Sentiment : {class_names[prediction]}')

1 Review text: I love completing my todos! Best app ever!!!

2 Sentiment : positive

Summary

Nice job! You learned how to use BERT for sentiment analysis. You built a custom classifier using
the Hugging Face library and trained it on our app reviews dataset!

• Run the notebook in your browser (Google Colab)¹⁷
• Read the Getting Things Done with Pytorch book¹⁸

You learned how to:

• Intuitively understand what BERT is
• Preprocess text data for BERT and build PyTorch Dataset (tokenization, attention masks, and
padding)

• Use Transfer Learning to build Sentiment Classifier using the Transformers library by Hugging
Face

• Evaluate the model on test data
• Predict sentiment on raw text

Next, we’ll learn how to deploy our trained model behind a REST API and build a simple web app
to access it.

¹⁷https://colab.research.google.com/drive/1PHv-IRLPCtv7oTcIGbsgZHqrB5LPvB7S
¹⁸https://github.com/curiousily/Getting-Things-Done-with-Pytorch
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9. Deploy BERT for Sentiment Analysis
as REST API using FastAPI

TL;DR Learn how to create a REST API for Sentiment Analysis using a pre-trained BERT
model

• Project on GitHub¹
• Run the notebook in your browser (Google Colab)²
• Getting Things Done with Pytorch on GitHub³

In this tutorial, you’ll learn how to deploy a pre-trained BERT model as a REST API using FastAPI.
Here are the steps:

• Initialize a project using Pipenv
• Create a project skeleton
• Add the pre-trained model and create an interface to abstract the inference logic
• Update the request handler function to return predictions using the model
• Start the server and send a test request

Project setup

We’ll manage our dependencies using Pipenv⁴. Here’s the complete Pipfile:

1 [[source]]

2 name = "pypi"

3 url = "https://pypi.org/simple"

4 verify_ssl = true

5

6 [dev-packages]

7 black = "==19.10b0"

8 isort = "*"

9 flake8 = "*"

10 gdown = "*"

¹https://github.com/curiousily/Deploy-BERT-for-Sentiment-Analysis-with-FastAPI
²https://colab.research.google.com/drive/154jf65arX4cHGaGXl2_kJ1DT8FmF4Lhf
³https://github.com/curiousily/Getting-Things-Done-with-Pytorch
⁴https://pipenv.pypa.io/en/latest/
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11

12 [packages]

13 fastapi = "*"

14 uvicorn = "*"

15 pydantic = "*"

16 torch = "*"

17 transformers = "*"

18

19 [requires]

20 python_version = "3.8"

21

22 [pipenv]

23 allow_prereleases = true

The backbone of our REST API will be:

• FastAPI⁵ - lets you easily set up a REST API (some say it might be fast, too)
• Uvicorn⁶ - server that lets you do async programming with Python (pretty cool)
• Pydantic⁷ - data validation by introducing types for our request and response data.

Some tools will help us write some better code (thanks to Momchil Hardalov⁸ for the configs):

• Black⁹ - code formatting
• isort¹⁰ - imports sorting
• flake8¹¹ - check for code style (PEP 8) compliance

Building a skeleton REST API

Let’s start by creating a skeleton structure for our project. Your directory should look like this:

⁵https://fastapi.tiangolo.com/
⁶https://www.uvicorn.org/
⁷https://pydantic-docs.helpmanual.io/
⁸https://github.com/mhardalov
⁹https://black.readthedocs.io/en/stable/
¹⁰https://timothycrosley.github.io/isort/
¹¹https://flake8.pycqa.org/en/latest/
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1 .

2 ├── Pipfile

3 ├── Pipfile.lock

4 └── sentiment_analyzer

5 ├── api.py

We’ll start by creating a dummy/stubbed response to test that everything is working end-to-end.
Here are the contents of api.py:

1 from typing import Dict

2

3 from fastapi import Depends, FastAPI

4 from pydantic import BaseModel

5

6 app = FastAPI()

7

8

9 class SentimentRequest(BaseModel):

10 text: str

11

12

13 class SentimentResponse(BaseModel):

14

15 probabilities: Dict[str, float]

16 sentiment: str

17 confidence: float

18

19

20 @app.post("/predict", response_model=SentimentResponse)

21 def predict(request: SentimentRequest):

22 return SentimentResponse(

23 sentiment="positive",

24 confidence=0.98,

25 probabilities=dict(negative=0.005, neutral=0.015, positive=0.98)

26 )

Our API expects a text - the review for sentiment analysis. The response contains the sentiment,
confidence (softmax output for the sentiment) and all probabilities for each sentiment.

Adding our model

Here’s the file structure of the complete project:
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1 .

2 ├── assets

3 │ └── model_state_dict.bin

4 ├── bin

5 │ └── download_model

6 ├── config.json

7 ├── Pipfile

8 ├── Pipfile.lock

9 └── sentiment_analyzer

10 ├── api.py

11 ├── classifier

12 │ ├── model.py

13 │ └── sentiment_classifier.py

We’ll need the pre-trained model. We’ll write the download_model script for that:

1 #!/usr/bin/env python

2 import gdown

3

4 gdown.download(

5 "https://drive.google.com/uc?id=1V8itWtowCYnb2Bc9KlK9SxGff9WwmogA",

6 "assets/model_state_dict.bin",

7 )

The model can be downloaded from my Google Drive. Let’s get it:

1 python bin/download_model

Our pre-trained model is stored as a PyTorch state dict. We need to load it and use it to predict the
text sentiment.

Let’s start with the config file config.json:

1 {

2 "BERT_MODEL": "bert-base-cased",

3 "PRE_TRAINED_MODEL": "assets/model_state_dict.bin",

4 "CLASS_NAMES": [

5 "negative",

6 "neutral",

7 "positive"

8 ],

9 "MAX_SEQUENCE_LEN": 160

10 }

Next, we’ll define the sentiment_classifier.py:
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1 import json

2

3 from torch import nn

4 from transformers import BertModel

5

6 with open("config.json") as json_file:

7 config = json.load(json_file)

8

9

10 class SentimentClassifier(nn.Module):

11 def __init__(self, n_classes):

12 super(SentimentClassifier, self).__init__()

13 self.bert = BertModel.from_pretrained(config["BERT_MODEL"])

14 self.drop = nn.Dropout(p=0.3)

15 self.out = nn.Linear(self.bert.config.hidden_size, n_classes)

16

17 def forward(self, input_ids, attention_mask):

18 _, pooled_output = self.bert(input_ids=input_ids, attention_mask=attention_m\

19 ask)

20 output = self.drop(pooled_output)

21 return self.out(output)

This is the same model we’ve used for training. It just uses the config file.

Recall that BERT requires some special text preprocessing. We need a place to use the tokenizer from
Hugging Face. We also need to do some massaging of the model outputs to convert them to our API
response format.

The Model provides a nice abstraction (a Facade) to our classifier. It exposes a single predict()

method and should be pretty generalizable if youwant to use the same project structure as a template
for your next deployment. The model.py file:

1 import json

2

3 import torch

4 import torch.nn.functional as F

5 from transformers import BertTokenizer

6

7 from .sentiment_classifier import SentimentClassifier

8

9 with open("config.json") as json_file:

10 config = json.load(json_file)

11

12
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13 class Model:

14 def __init__(self):

15

16 self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

17

18 self.tokenizer = BertTokenizer.from_pretrained(config["BERT_MODEL"])

19

20 classifier = SentimentClassifier(len(config["CLASS_NAMES"]))

21 classifier.load_state_dict(

22 torch.load(config["PRE_TRAINED_MODEL"], map_location=self.device)

23 )

24 classifier = classifier.eval()

25 self.classifier = classifier.to(self.device)

26

27 def predict(self, text):

28 encoded_text = self.tokenizer.encode_plus(

29 text,

30 max_length=config["MAX_SEQUENCE_LEN"],

31 add_special_tokens=True,

32 return_token_type_ids=False,

33 pad_to_max_length=True,

34 return_attention_mask=True,

35 return_tensors="pt",

36 )

37 input_ids = encoded_text["input_ids"].to(self.device)

38 attention_mask = encoded_text["attention_mask"].to(self.device)

39

40 with torch.no_grad():

41 probabilities = F.softmax(self.classifier(input_ids, attention_mask), di\

42 m=1)

43 confidence, predicted_class = torch.max(probabilities, dim=1)

44 predicted_class = predicted_class.cpu().item()

45 probabilities = probabilities.flatten().cpu().numpy().tolist()

46 return (

47 config["CLASS_NAMES"][predicted_class],

48 confidence,

49 dict(zip(config["CLASS_NAMES"], probabilities)),

50 )

51

52

53 model = Model()

54

55
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56 def get_model():

57 return model

We’ll do the inference on the GPU, if one is available. We return the name of the predicted sentiment,
the confidence, and the probabilities for each sentiment.

But why don’t we define all that logic in our request handler function? For this tutorial, this is an
example of overengeneering. But in the real world, when you start testing your implementation, this
will be such a nice bonus.

You see, mixing everything in the request handler logic will result in countless sleepless nights.
When shit hits the fan (and it will) you’ll wonder if your REST or model code is wrong. This way
allows you to test them, separately.

The get_model() function ensures that we have a single instance of our Model (Singleton). We’ll
use it in our API handler.

Putting everything together

Our request handler needs access to the model to return a prediction. We’ll use the Dependency
Injection framework¹² provided by FastAPI to inject our model. Here’s the new predict function:

1 @app.post("/predict", response_model=SentimentResponse)

2 def predict(request: SentimentRequest, model: Model = Depends(get_model)):

3 sentiment, confidence, probabilities = model.predict(request.text)

4 return SentimentResponse(

5 sentiment=sentiment, confidence=confidence, probabilities=probabilities

6 )

The model gets injected by Depends and our Singleton function get_model. You can really appreciate
the power of abstraction by looking at this!

But does it work?

Testing the API

Let’s fire up the server:

1 uvicorn sentiment_analyzer.api:app

This should take a couple of seconds to load everything and start the HTTP server.

¹²https://fastapi.tiangolo.com/tutorial/dependencies/

Smile, you are amazing!

https://fastapi.tiangolo.com/tutorial/dependencies/
https://fastapi.tiangolo.com/tutorial/dependencies/
https://fastapi.tiangolo.com/tutorial/dependencies/


Deploy BERT for Sentiment Analysis as REST API using FastAPI 158

1 http POST http://localhost:8000/predict text="This app is a total waste of time!"

Here’s the response:

1 {

2 "confidence": 0.999885082244873,

3 "probabilities": {

4 "negative": 0.999885082244873,

5 "neutral": 8.876612992025912e-05,

6 "positive": 2.614063305372838e-05

7 },

8 "sentiment": "negative"

9 }

Let’s try with a positive one:

1 http POST http://localhost:8000/predict text="OMG. I love how easy it is to stick to\

2 my schedule. Would recommend to everyone!"

1 {

2 "confidence": 0.999932050704956,

3 "probabilities": {

4 "negative": 1.834999602579046e-05,

5 "neutral": 4.956663542543538e-05,

6 "positive": 0.999932050704956

7 },

8 "sentiment": "positive"

9 }

Both results are on point. Feel free to tryout with some real reviews from the Play Store.

Summary

You should now be a proud owner of ready to deploy (kind of) Sentiment Analysis REST API using
BERT. Of course, you’re missing lots of stuff to be production-ready - logging, monitoring, alerting,
containerization, and much more. But hey, you did good!

• Project on GitHub¹³

¹³https://github.com/curiousily/Deploy-BERT-for-Sentiment-Analysis-with-FastAPI

Smile, you are amazing!

https://github.com/curiousily/Deploy-BERT-for-Sentiment-Analysis-with-FastAPI
https://github.com/curiousily/Deploy-BERT-for-Sentiment-Analysis-with-FastAPI


Deploy BERT for Sentiment Analysis as REST API using FastAPI 159

• Run the notebook in your browser (Google Colab)¹⁴
• Getting Things Done with Pytorch on GitHub¹⁵

You learned how to:

• Initialize a project using Pipenv
• Create a project skeleton
• Add the pre-trained model and create an interface to abstract the inference logic
• Update the request handler function to return predictions using the model
• Start the server and send a test request

Go on then, deploy and make your users happy!

References

• FastAPI Homepage¹⁶
• fastAPI ML quickstart¹⁷

¹⁴https://colab.research.google.com/drive/154jf65arX4cHGaGXl2_kJ1DT8FmF4Lhf
¹⁵https://github.com/curiousily/Getting-Things-Done-with-Pytorch
¹⁶https://fastapi.tiangolo.com/
¹⁷https://github.com/cosmic-cortex/fastAPI-ML-quickstart
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10. Object Detection on Custom
Dataset with YOLO (v5)

TL;DR Learn how to build a custom dataset for YOLO v5 (darknet compatible) and use it
to fine-tune a large object detection model. The model will be ready for real-time object
detection on mobile devices.

In this tutorial, you’ll learn how to fine-tune a pre-trained YOLO v5 model for detecting and
classifying clothing items from images.

• Run the notebook in your browser (Google Colab)¹
• Read the Getting Things Done with Pytorch book²

Here’s what we’ll go over:

• Install required libraries
• Build a custom dataset in YOLO/darknet format
• Learn about YOLO model family history
• Fine-tune the largest YOLO v5 model
• Evaluate the model
• Look at some predictions

How good our final model is going to be?

Prerequisites

Let’s start by installing some required libraries by the YOLOv5 project:

1 !pip install torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f https://download.pytorch\

2 .org/whl/torch_stable.html

3 !pip install numpy==1.17

4 !pip install PyYAML==5.3.1

5 !pip install git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI

We’ll also install Apex by NVIDIA³ to speed up the training of our model (this step is optional):

¹https://colab.research.google.com/drive/1e4zvS6LyhOAayEDh3bz8MXFTJcVFSvZX?usp=sharing
²https://github.com/curiousily/Getting-Things-Done-with-Pytorch
³https://nvidia.github.io/apex/
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1 !git clone https://github.com/NVIDIA/apex && cd apex && pip install -v --no-cache-di\

2 r --global-option="--cpp_ext" --global-option="--cuda_ext" . --user && cd .. && rm -\

3 rf apex

Build a dataset

<YouTube youTubeId=”NsxDrEJTgRw” />

The dataset contains annotations for clothing items - bounding boxes around shirts, tops, jackets,
sunglasses. The dataset is from DataTurks⁴ and is on Kaggle⁵.

1 !gdown --id 1uWdQ2kn25RSQITtBHa9_zayplm27IXNC

The dataset contains a single JSON file with URLs to all images and bounding box data.

Let’s import all required libraries:

1 from pathlib import Path

2 from tqdm import tqdm

3 import numpy as np

4 import json

5 import urllib

6 import PIL.Image as Image

7 import cv2

8 import torch

9 import torchvision

10 from IPython.display import display

11 from sklearn.model_selection import train_test_split

12

13 import seaborn as sns

14 from pylab import rcParams

15 import matplotlib.pyplot as plt

16 from matplotlib import rc

17

18 %matplotlib inline

19 %config InlineBackend.figure_format='retina'

20 sns.set(style='whitegrid', palette='muted', font_scale=1.2)

21 rcParams['figure.figsize'] = 16, 10

22

23 np.random.seed(42)

⁴https://dataturks.com/
⁵https://www.kaggle.com/dataturks/clothing-item-detection-for-ecommerce
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Each line in the dataset file contains a JSON object. Let’s create a list of all annotations:

1 clothing = []

2 with open("clothing.json") as f:

3 for line in f:

4 clothing.append(json.loads(line))

Here’s an example annotation:

1 clothing[0]

1 {'annotation': [{'imageHeight': 312,

2 'imageWidth': 147,

3 'label': ['Tops'],

4 'notes': '',

5 'points': [{'x': 0.02040816326530612, 'y': 0.2532051282051282},

6 {'x': 0.9931972789115646, 'y': 0.8108974358974359}]}],

7 'content': 'http://com.dataturks.a96-i23.open.s3.amazonaws.com/2c9fafb063ad2b650163\

8 b00a1ead0017/4bb8fd9d-8d52-46c7-aa2a-9c18af10aed6___Data_xxl-top-4437-jolliy-origina\

9 l-imaekasxahykhd3t.jpeg',

10 'extras': None}

We have the labels, image dimensions, bounding box points (normalized in 0-1 range), and an URL
to the image file.

Do we have images with multiple annotations?

1 for c in clothing:

2 if len(c['annotation']) > 1:

3 display(c)

1 {'annotation': [{'imageHeight': 312,

2 'imageWidth': 265,

3 'label': ['Jackets'],

4 'notes': '',

5 'points': [{'x': 0, 'y': 0.6185897435897436},

6 {'x': 0.026415094339622643, 'y': 0.6185897435897436}]},

7 {'imageHeight': 312,

8 'imageWidth': 265,

9 'label': ['Skirts'],

10 'notes': '',
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11 'points': [{'x': 0.01509433962264151, 'y': 0.03205128205128205},

12 {'x': 1, 'y': 0.9839743589743589}]}],

13 'content': 'http://com.dataturks.a96-i23.open.s3.amazonaws.com/2c9fafb063ad2b650163\

14 b00a1ead0017/b3be330c-c211-45bb-b244-11aef08021c8___Data_free-sk-5108-mudrika-origin\

15 al-imaf4fz626pegq9f.jpeg',

16 'extras': None}

Just a single example. We’ll need to handle it, though.

Let’s get all unique categories:

1 categories = []

2 for c in clothing:

3 for a in c['annotation']:

4 categories.extend(a['label'])

5 categories = list(set(categories))

6 categories.sort()

7 categories

1 ['Jackets',

2 'Jeans',

3 'Shirts',

4 'Shoes',

5 'Skirts',

6 'Tops',

7 'Trousers',

8 'Tshirts',

9 'sunglasses']

We have 9 different categories. Let’s split the data into a training and validation set:

1 train_clothing, val_clothing = train_test_split(clothing, test_size=0.1)

2 len(train_clothing), len(val_clothing)

1 (453, 51)

Sample image and annotation

Let’s have a look at an image from the dataset. We’ll start by downloading it:
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1 row = train_clothing[10]

2

3 img = urllib.request.urlopen(row["content"])

4 img = Image.open(img)

5 img = img.convert('RGB')

6

7 img.save("demo_image.jpeg", "JPEG")

Here’s how our sample annotation looks like:

1 row

1 {'annotation': [{'imageHeight': 312,

2 'imageWidth': 145,

3 'label': ['Tops'],

4 'notes': '',

5 'points': [{'x': 0.013793103448275862, 'y': 0.22756410256410256},

6 {'x': 1, 'y': 0.7948717948717948}]}],

7 'content': 'http://com.dataturks.a96-i23.open.s3.amazonaws.com/2c9fafb063ad2b650163\

8 b00a1ead0017/ec339ad6-6b73-406a-8971-f7ea35d47577___Data_s-top-203-red-srw-original-\

9 imaf2nfrxdzvhh3k.jpeg',

10 'extras': None}

We can use OpenCV to read the image:

1 img = cv2.cvtColor(cv2.imread(f'demo_image.jpeg'), cv2.COLOR_BGR2RGB)

2 img.shape

1 (312, 145, 3)

Let’s add the bounding box on top of the image along with the label:

Smile, you are amazing!



Object Detection on Custom Dataset with YOLO (v5) 165

1 for a in row['annotation']:

2 for label in a['label']:

3

4 w = a['imageWidth']

5 h = a['imageHeight']

6

7 points = a['points']

8 p1, p2 = points

9

10 x1, y1 = p1['x'] * w, p1['y'] * h

11 x2, y2 = p2['x'] * w, p2['y'] * h

12

13 cv2.rectangle(

14 img,

15 (int(x1), int(y1)),

16 (int(x2), int(y2)),

17 color=(0, 255, 0),

18 thickness=2

19 )

20

21 ((label_width, label_height), _) = cv2.getTextSize(

22 label,

23 fontFace=cv2.FONT_HERSHEY_PLAIN,

24 fontScale=1.75,

25 thickness=2

26 )

27

28 cv2.rectangle(

29 img,

30 (int(x1), int(y1)),

31 (int(x1 + label_width + label_width * 0.05), int(y1 + label_height + label_hei\

32 ght * 0.25)),

33 color=(0, 255, 0),

34 thickness=cv2.FILLED

35 )

36

37 cv2.putText(

38 img,

39 label,

40 org=(int(x1), int(y1 + label_height + label_height * 0.25)), # bottom left

41 fontFace=cv2.FONT_HERSHEY_PLAIN,

42 fontScale=1.75,

43 color=(255, 255, 255),
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44 thickness=2

45 )

The point coordinates are converted back to pixels and used to draw rectangles over the image.
Here’s the result:

1 plt.imshow(img)

2 plt.axis('off');
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png
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Convert to YOLO format

YOLO v5 requires the dataset to be in the darknet format. Here’s an outline of what it looks like:

• One txt with labels file per image
• One row per object
• Each row contains: class_index bbox_x_center bbox_y_center bbox_width bbox_height

• Box coordinates must be normalized between 0 and 1

Let’s create a helper function that builds a dataset in the correct format for us:

1 def create_dataset(clothing, categories, dataset_type):

2

3 images_path = Path(f"clothing/images/{dataset_type}")

4 images_path.mkdir(parents=True, exist_ok=True)

5

6 labels_path = Path(f"clothing/labels/{dataset_type}")

7 labels_path.mkdir(parents=True, exist_ok=True)

8

9 for img_id, row in enumerate(tqdm(clothing)):

10

11 image_name = f"{img_id}.jpeg"

12

13 img = urllib.request.urlopen(row["content"])

14 img = Image.open(img)

15 img = img.convert("RGB")

16

17 img.save(str(images_path / image_name), "JPEG")

18

19 label_name = f"{img_id}.txt"

20

21 with (labels_path / label_name).open(mode="w") as label_file:

22

23 for a in row['annotation']:

24

25 for label in a['label']:

26

27 category_idx = categories.index(label)

28

29 points = a['points']

30 p1, p2 = points

31
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32 x1, y1 = p1['x'], p1['y']

33 x2, y2 = p2['x'], p2['y']

34

35 bbox_width = x2 - x1

36 bbox_height = y2 - y1

37

38 label_file.write(

39 f"{category_idx} {x1 + bbox_width / 2} {y1 + bbox_height / 2} {bbox_widt\

40 h} {bbox_height}\n"

41 )

We’ll use it to create the train and validation datasets:

1 create_dataset(train_clothing, categories, 'train')

2 create_dataset(val_clothing, categories, 'val')

Let’s have a look at the file structure:

1 !tree clothing -L 2

1 clothing

2 ├── images

3 │ ├── train

4 │ └── val

5 └── labels

6 ├── train

7 └── val

8

9 6 directories, 0 files

And a single annotation example:

1 !cat clothing/labels/train/0.txt

1 4 0.525462962962963 0.5432692307692308 0.9027777777777778 0.9006410256410257
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Fine-tuning YOLO v5

<YouTube youTubeId=”XNRzZkZ-Byg” />

The YOLO abbreviation stands for YouOnly LookOnce. YOLOmodels are one stage object detectors.

One-stage vs two-stage object detectors. Image from the YOLO v4 paper

YOLO models are very light and fast. They are not the most accurate object detections around⁶,
though. Ultimately, those models are the choice of many (if not all) practitioners interested in real-
time object detection (FPS >30)⁷.

Contreversy

Joseph Redmon introduced YOLO v1 in the 2016 paper You Only Look Once: Unified, Real-Time
Object Detection⁸. The implementation uses the Darknet Neural Networks library⁹.

He also co-authored the YOLO v2 paper in 2017 YOLO9000: Better, Faster, Stronger¹⁰. A significant
improvement over the first iteration with much better localization of objects.

The final iteration, from the original author, was published in the 2018 paper YOLOv3: An
Incremental Improvement¹¹.

Then things got a bit wacky. Alexey Bochkovskiy published YOLOv4: Optimal Speed and Accuracy
of Object Detection¹² on April 23, 2020. The project has an open-source repository on GitHub¹³.

YOLO v5 got open-sourced on May 30, 2020¹⁴ by Glenn Jocher¹⁵ from ultralytics. There is no
published paper, but the complete project is on GitHub¹⁶.

⁶https://paperswithcode.com/sota/object-detection-on-coco
⁷https://paperswithcode.com/sota/real-time-object-detection-on-coco
⁸https://arxiv.org/pdf/1506.02640.pdf
⁹https://pjreddie.com/darknet/
¹⁰https://arxiv.org/pdf/1612.08242.pdf
¹¹https://arxiv.org/pdf/1804.02767.pdf
¹²https://arxiv.org/abs/2004.10934
¹³https://github.com/AlexeyAB/darknet
¹⁴https://github.com/ultralytics/yolov5/commit/1e84a23f38fad9e52b59101e9f1246d93066ed1e
¹⁵https://github.com/glenn-jocher
¹⁶https://github.com/ultralytics/yolov5
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The community at Hacker News got into a heated debate about the project naming¹⁷. Even the guys
at Roboflow wrote Responding to the Controversy about YOLOv5¹⁸ article about it. They also did a
great comparison between YOLO v4 and v5.

My opinion? As long as you put out your work for the whole world to use/see - I don’t give a flying
fuck. I am not going to comment on points/arguments that are obvious.

YOLO v5 project setup

YOLO v5 uses PyTorch, but everything is abstracted away. You need the project itself (along with
the required dependencies).

Let’s start by cloning the GitHub repo and checking out a specific commit (to ensure reproducibility):

1 !git clone https://github.com/ultralytics/yolov5

2 %cd yolov5

3 !git checkout ec72eea62bf5bb86b0272f2e65e413957533507f

We need two configuration files. One for the dataset and one for the model we’re going to use. Let’s
download them:

1 !gdown --id 1ZycPS5Ft_0vlfgHnLsfvZPhcH6qOAqBO -O data/clothing.yaml

2 !gdown --id 1czESPsKbOWZF7_PkCcvRfTiUUJfpx12i -O models/yolov5x.yaml

The model config changes the number of classes to 9 (equal to the ones in our dataset). The dataset
config clothing.yaml is a bit more complex:

1 train: ../clothing/images/train/

2 val: ../clothing/images/val/

3

4 nc: 9

5

6 names:

7 [

8 "Jackets",

9 "Jeans",

10 "Shirts",

11 "Shoes",

12 "Skirts",

13 "Tops",

14 "Trousers",

¹⁷https://news.ycombinator.com/item?id=23478151
¹⁸https://blog.roboflow.ai/yolov4-versus-yolov5/
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15 "Tshirts",

16 "sunglasses",

17 ]

This file specifies the paths to the training and validation sets. It also gives the number of classes
and their names (you should order those correctly).

Training

Fine-tuning an existing model is very easy. We’ll use the largest model YOLOv5x (89M parameters),
which is also the most accurate.

In our case, we don’t really care about speed. We just want the best accuracy you can get. The
checkpoint you’re going to use for a different problem(s) is contextually specific. Take a look at the
overview of the pre-trained checkpoints¹⁹.

To train amodel on a custom dataset, we’ll call the train.py script.We’ll pass a couple of parameters:

• img 640 - resize the images to 640x640 pixels
• batch 4 - 4 images per batch
• epochs 30 - train for 30 epochs
• data ./data/clothing.yaml - path to dataset config
• cfg ./models/yolov5x.yaml - model config
• weights yolov5x.pt - use pre-trained weights from the YOLOv5x model
• name yolov5x_clothing - name of our model
• cache - cache dataset images for faster training

1 !python train.py --img 640 --batch 4 --epochs 30 \

2 --data ./data/clothing.yaml --cfg ./models/yolov5x.yaml --weights yolov5x.pt \

3 --name yolov5x_clothing --cache

The training took around 30 minutes on Tesla P100. The best model checkpoint is saved to
weights/best_yolov5x_clothing.pt.

Evaluation

The project includes a great utility function plot_results() that allows you to evaluate your model
performance on the last training run:

¹⁹https://github.com/ultralytics/yolov5/blob/f9ae460eeccd30bdc43a89a37f74b9cc7b93d52f/README.md#pretrained-checkpoints
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1 from utils.utils import plot_results

2

3 plot_results();

png

Looks like the mean average precision (mAP) is getting better throughout the training. The model
might benefit from more training, but it is good enough.

Making predictions

Let’s pick 50 images from the validation set and move them to inference/images to see how our
model does on those:

1 !find ../clothing/images/val/ -maxdepth 1 -type f | head -50 | xargs cp -t "./infere\

2 nce/images/"

We’ll use the detect.py script to run our model on the images. Here are the parameters we’re using:

• weights weights/best_yolov5x_clothing.pt - checkpoint of the model
• img 640 - resize the images to 640x640 px
• conf 0.4 - take into account predictions with confidence of 0.4 or higher
• source ./inference/images/ - path to the images
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1 !python detect.py --weights weights/best_yolov5x_clothing.pt \

2 --img 640 --conf 0.4 --source ./inference/images/

We’ll write a helper function to show the results:

1 def load_image(img_path: Path, resize=True):

2 img = cv2.cvtColor(cv2.imread(str(img_path)), cv2.COLOR_BGR2RGB)

3 img = cv2.resize(img, (128, 256), interpolation = cv2.INTER_AREA)

4 return img

5

6 def show_grid(image_paths):

7 images = [load_image(img) for img in image_paths]

8 images = torch.as_tensor(images)

9 images = images.permute(0, 3, 1, 2)

10 grid_img = torchvision.utils.make_grid(images, nrow=11)

11 plt.figure(figsize=(24, 12))

12 plt.imshow(grid_img.permute(1, 2, 0))

13 plt.axis('off');

Here are some of the images along with the detected clothing:

1 img_paths = list(Path("inference/output").glob("*.jpeg"))[:22]

2 show_grid(img_paths)

png

To be honest with you. I am really blown away with the results!

Smile, you are amazing!



Object Detection on Custom Dataset with YOLO (v5) 175

Summary

You now know how to create a custom dataset and fine-tune one of the YOLO v5 models on your
own. Nice!

• Run the notebook in your browser (Google Colab)²⁰
• Read the Getting Things Done with Pytorch book²¹

Here’s what you’ve learned:

• Install required libraries
• Build a custom dataset in YOLO/darknet format
• Learn about YOLO model family history
• Fine-tune the largest YOLO v5 model
• Evaluate the model
• Look at some predictions

How well does your model do on your dataset? Let me know in the comments below.

In the next part, you’ll learn how to deploy your model a mobile device.
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