

Geocomputation with R

Chapman & Hall/CRC
The R Series

Series Editors
John M. Chambers, Department of Statistics, Stanford University, California, USA
Torsten Hothorn, Division of Biostatistics, University of Zurich, Switzerland
Duncan Temple Lang, Department of Statistics, University of California, Davis, USA
Hadley Wickham, RStudio, Boston, Massachusetts, USA

Recently Published Titles

Spatial Microsimulation with R
Robin Lovelace, Morgane Dumont

Extending R
John M. Chambers

Using the R Commander: A Point-and-Click Interface for R
John Fox

Computational Actuarial Science with R
Arthur Charpentier

bookdown: Authoring Books and Technical Documents with R Markdown,
Yihui Xie

Testing R Code
Richard Cotton

R Primer, Second Edition
Claus Thorn Ekstrøm

Flexible Regression and Smoothing: Using GAMLSS in R
Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Vlasios Voudouris, and
Fernanda De Bastiani

The Essentials of Data Science: Knowledge Discovery Using R
Graham J. Williams

blogdown: Creating Websites with R Markdown
Yihui Xie, Alison Presmanes Hill, Amber Thomas

Handbook of Educational Measurement and Psychometrics Using R
Christopher D. Desjardins, Okan Bulut

Displaying Time Series, Spatial, and Space-Time Data with R, Second Edition
Oscar Perpinan Lamigueiro

Reproducible Finance with R
Jonathan K. Regenstein, Jr

R Markdown
The Definitive Guide
Yihui Xie, J.J. Allaire, Garrett Grolemund

Practical R for Mass Communication and Journalism
Sharon Machlis

Analyzing Baseball Data with R, Second Edition
Max Marchi, Jim Albert, Benjamin S. Baumer

Spatio-Temporal Statistics with R
Christopher K. Wikle, Andrew Zammit-Mangion, and Noel Cressie

Statistical Computing with R, Second Edition
Maria L. Rizzo

Geocomputation with R
Robin Lovelace, Jakub Nowosad, Jannes Muenchow

For more information about this series, please visit: https://www.crcpress.com/go/the-r-series

https://www.crcpress.com

Geocomputation with R

Robin Lovelace
Jakub Nowosad

Jannes Muenchow

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20190220

International Standard Book Number-13: 978-1-138-30451-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization
that provides licenses and registration for a variety of users. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com
http://www.copyright.com

For Katy

Dla Jagody

Für meine Katharina und alle unsere Kinder

http://taylorandfrancis.com

Contents

Foreword xiii

Preface xv

1 Introduction 1
1.1 What is geocomputation? 2
1.2 Why use R for geocomputation? 4
1.3 Software for geocomputation 6
1.4 R’s spatial ecosystem . 8
1.5 The history of R-spatial . 10
1.6 Exercises . 13

I Foundations 15

2 Geographic data in R 17
2.1 Introduction . 18
2.2 Vector data . 19

2.2.1 An introduction to simple features 20
2.2.2 Why simple features? 24
2.2.3 Basic map making 25
2.2.4 Base plot arguments 26
2.2.5 Geometry types . 28
2.2.6 Simple feature geometries (sfg) 29
2.2.7 Simple feature columns (sfc) 32
2.2.8 The sf class . 34

2.3 Raster data . 35
2.3.1 An introduction to raster 36
2.3.2 Basic map making . 37
2.3.3 Raster classes . 38

2.4 Coordinate Reference Systems 40
2.4.1 Geographic coordinate systems 41
2.4.2 Projected coordinate reference systems 41
2.4.3 CRSs in R . 42

2.5 Units . 44
2.6 Exercises . 46

vii

viii Contents

3 Attribute data operations 47
3.1 Introduction . 47
3.2 Vector attribute manipulation 48

3.2.1 Vector attribute subsetting 50
3.2.2 Vector attribute aggregation 54
3.2.3 Vector attribute joining 55
3.2.4 Creating attributes and removing spatial information 59

3.3 Manipulating raster objects 60
3.3.1 Raster subsetting . 62
3.3.2 Summarizing raster objects 64

3.4 Exercises . 65

4 Spatial data operations 67
4.1 Introduction . 67
4.2 Spatial operations on vector data 68

4.2.1 Spatial subsetting . 68
4.2.2 Topological relations 71
4.2.3 Spatial joining . 73
4.2.4 Non-overlapping joins 75
4.2.5 Spatial data aggregation 77
4.2.6 Distance relations . 80

4.3 Spatial operations on raster data 81
4.3.1 Spatial subsetting . 81
4.3.2 Map algebra . 83
4.3.3 Local operations . 84
4.3.4 Focal operations . 85
4.3.5 Zonal operations . 86
4.3.6 Global operations and distances 87
4.3.7 Merging rasters . 88

4.4 Exercises . 88

5 Geometry operations 91
5.1 Introduction . 91
5.2 Geometric operations on vector data 92

5.2.1 Simplification . 92
5.2.2 Centroids . 94
5.2.3 Buffers . 96
5.2.4 Affine transformations 97
5.2.5 Clipping . 99
5.2.6 Geometry unions . 101
5.2.7 Type transformations 102

5.3 Geometric operations on raster data 106
5.3.1 Geometric intersections 107
5.3.2 Extent and origin . 107
5.3.3 Aggregation and disaggregation 109

Contents ix

5.4 Raster-vector interactions . 111
5.4.1 Raster cropping . 112
5.4.2 Raster extraction . 113
5.4.3 Rasterization . 117
5.4.4 Spatial vectorization 120

5.5 Exercises . 123

6 Reprojecting geographic data 127
6.1 Introduction . 127
6.2 When to reproject? . 130
6.3 Which CRS to use? . 131
6.4 Reprojecting vector geometries 134
6.5 Modifying map projections 135
6.6 Reprojecting raster geometries 138
6.7 Exercises . 141

7 Geographic data I/O 143
7.1 Introduction . 143
7.2 Retrieving open data . 144
7.3 Geographic data packages 145
7.4 Geographic web services . 147
7.5 File formats . 149
7.6 Data input (I) . 151

7.6.1 Vector data . 151
7.6.2 Raster data . 154

7.7 Data output (O) . 154
7.7.1 Vector data . 154
7.7.2 Raster data . 156

7.8 Visual outputs . 157
7.9 Exercises . 158

II Extensions 159

8 Making maps with R 161
8.1 Introduction . 161
8.2 Static maps . 162

8.2.1 tmap basics . 163
8.2.2 Map objects . 165
8.2.3 Aesthetics . 167
8.2.4 Color settings . 168
8.2.5 Layouts . 172
8.2.6 Faceted maps . 175
8.2.7 Inset maps . 177

8.3 Animated maps . 179
8.4 Interactive maps . 181
8.5 Mapping applications . 188

x Contents

8.6 Other mapping packages . 192
8.7 Exercises . 197

9 Bridges to GIS software 199
9.1 Introduction . 199
9.2 (R)QGIS . 202
9.3 (R)SAGA . 206
9.4 GRASS through rgrass7 209
9.5 When to use what? . 214
9.6 Other bridges . 215

9.6.1 Bridges to GDAL . 215
9.6.2 Bridges to spatial databases 217

9.7 Exercises . 220

10 Scripts, algorithms and functions 221
10.1 Introduction . 221
10.2 Scripts . 222
10.3 Geometric algorithms . 224
10.4 Functions . 229
10.5 Programming . 232
10.6 Exercises . 233

11 Statistical learning 235
11.1 Introduction . 235
11.2 Case study: Landslide susceptibility 237
11.3 Conventional modeling approach in R 239
11.4 Introduction to (spatial) cross-validation 242
11.5 Spatial CV with mlr . 243

11.5.1 Generalized linear model 244
11.5.2 Spatial tuning of machine-learning hyperparameters . . 247

11.6 Conclusions . 253
11.7 Exercises . 254

III Applications 257

12 Transportation 259
12.1 Introduction . 259
12.2 A case study of Bristol . 261
12.3 Transport zones . 263
12.4 Desire lines . 267
12.5 Routes . 270
12.6 Nodes . 272
12.7 Route networks . 274
12.8 Prioritizing new infrastructure 275
12.9 Future directions of travel . 277
12.10 Exercises . 278

Contents xi

13 Geomarketing 281
13.1 Introduction . 281
13.2 Case study: bike shops in Germany 282
13.3 Tidy the input data . 283
13.4 Create census rasters . 283
13.5 Define metropolitan areas 286
13.6 Points of interest . 289
13.7 Identifying suitable locations 291
13.8 Discussion and next steps 293
13.9 Exercises . 294

14 Ecology 295
14.1 Introduction . 295
14.2 Data and data preparation 297
14.3 Reducing dimensionality . 300
14.4 Modeling the floristic gradient 303

14.4.1 mlr building blocks 305
14.4.2 Predictive mapping . 307

14.5 Conclusions . 309
14.6 Exercises . 310

15 Conclusion 313
15.1 Introduction . 313
15.2 Package choice . 314
15.3 Gaps and overlaps . 316
15.4 Where to go next? . 317
15.5 The open source approach 319

Bibliography 321

Index 331

http://taylorandfrancis.com

Foreword

Doing ‘spatial’ in R has always been about being broad, seeking to provide and
integrate tools from geography, geoinformatics, geocomputation and spatial
statistics for anyone interested in joining in: joining in asking interesting
questions, contributing fruitful research questions, and writing and improving
code. That is, doing ‘spatial’ in R has always included open source code, open
data and reproducibility.
Doing ‘spatial’ in R has also sought to be open to interaction with many
branches of applied spatial data analysis, and also to implement new advances in
data representation and methods of analysis to expose them to cross-disciplinary
scrutiny. As this book demonstrates, there are often alternative workflows
from similar data to similar results, and we may learn from comparisons with
how others create and understand their workflows. This includes learning from
similar communities around Open Source GIS and complementary languages
such as Python, Java and so on.
R’s wide range of spatial capabilities would never have evolved without people
willing to share what they were creating or adapting. This might include
teaching materials, software, research practices (reproducible research, open
data), and combinations of these. R users have also benefitted greatly from
‘upstream’ open source geo libraries such as GDAL, GEOS and PROJ.
This book is a clear example that, if you are curious and willing to join in, you
can find things that need doing and that match your aptitudes. With advances
in data representation and workflow alternatives, and ever increasing numbers
of new users often without applied quantitative command-line exposure, a book
of this kind has really been needed. Despite the effort involved, the authors
have supported each other in pressing forward to publication.
So, this fresh book is ready to go; its authors have tried it out during many
tutorials and workshops, so readers and instructors will be able to benefit from
knowing that the contents have been and continue to be tried out on people
like them. Engage with the authors and the wider R-spatial community, see
value in having more choice in building your workflows and most important,
enjoy applying what you learn here to things you care about.
Roger Bivand
Bergen, September 2018

xiii

http://taylorandfrancis.com

Preface

This book is for people who want to analyze, visualize and model geographic
data with open source software. It is based on R, a statistical programming
language that has powerful data processing, visualization and geospatial ca-
pabilities. The book covers a wide range of topics and will be of interest to a
wide range of people from many different backgrounds, especially:
• People who have learned spatial analysis skills using a desktop Geographic

Information System (GIS) such as QGIS1, ArcMap2, GRASS3 or SAGA4,
who want access to a powerful (geo)statistical and visualization program-
ming language and the benefits of a command-line approach (Sherman,
2008):

With the advent of ‘modern’ GIS software, most people want to
point and click their way through life. That’s good, but there
is a tremendous amount of flexibility and power waiting for you
with the command line.

• Graduate students and researchers from fields specializing in geographic
data including Geography, Remote Sensing, Planning, GIS and Geographic
Data Science

• Academics and post-graduate students working on projects in fields includ-
ing Geology, Regional Science, Biology and Ecology, Agricultural Sciences
(precision farming), Archaeology, Epidemiology, Transport Modeling, and
broadly defined Data Science which require the power and flexibility of R
for their research

• Applied researchers and analysts in public, private or third-sector organiza-
tions who need the reproducibility, speed and flexibility of a command-line
language such as R in applications dealing with spatial data as diverse as

1http://qgis.org/en/site/
2http://desktop.arcgis.com/en/arcmap/
3https://grass.osgeo.org/
4http://www.saga-gis.org/en/index.html

xv

http://www.saga-gis.org
https://grass.osgeo.org
http://desktop.arcgis.com
http://qgis.org

xvi Preface

Urban and Transport Planning, Logistics, Geo-marketing (store location
analysis) and Emergency Planning

The book is designed for intermediate-to-advanced R users interested in geo-
computation and R beginners who have prior experience with geographic data.
If you are new to both R and geographic data, do not be discouraged: we
provide links to further materials and describe the nature of spatial data from
a beginner’s perspective in Chapter 2 and in links provided below.

How to read this book

The book is divided into three parts:

1. Part I: Foundations, aimed at getting you up-to-speed with geo-
graphic data in R.

2. Part II: Extensions, which covers advanced techniques.
3. Part III: Applications, to real-world problems.

The chapters get progressively harder in each so we recommend reading the
book in order. A major barrier to geographical analysis in R is its steep learning
curve. The chapters in Part I aim to address this by providing reproducible
code on simple datasets that should ease the process of getting started.
An important aspect of the book from a teaching/learning perspective is the
exercises at the end of each chapter. Completing these will develop your
skills and equip you with the confidence needed to tackle a range of geospatial
problems. Solutions to the exercises, and a number of extended examples, are
provided on the book’s supporting website, at geocompr.github.io5.
Impatient readers are welcome to dive straight into the practical examples,
starting in Chapter 2. However, we recommend reading about the wider
context of Geocomputation with R in Chapter 1 first. If you are new to R,
we also recommend learning more about the language before attempting to
run the code chunks provided in each chapter (unless you’re reading the book
for an understanding of the concepts). Fortunately for R beginners R has a
supportive community that has developed a wealth of resources that can help.
We particularly recommend three tutorials: R for Data Science6 (Grolemund
and Wickham, 2016) and Efficient R Programming7 (Gillespie and Lovelace,
2016), especially Chapter 28 (on installing and setting-up R/RStudio) and

5https://geocompr.github.io/
6http://r4ds.had.co.nz/
7https://csgillespie.github.io/efficientR/
8https://csgillespie.github.io/efficientR/set-up.html#r-version

https://csgillespie.github.io
https://csgillespie.github.io
http://r4ds.had.co.nz
https://geocompr.github.io

Preface xvii

Chapter 109 (on learning to learn), and An introduction to R10 (Venables
et al., 2017). A good interactive tutorial is DataCamp’s Introduction to R11.

Why R?

Although R has a steep learning curve, the command-line approach advocated
in this book can quickly pay off. As you’ll learn in subsequent chapters, R
is an effective tool for tackling a wide range of geographic data challenges.
We expect that, with practice, R will become the program of choice in your
geospatial toolbox for many applications. Typing and executing commands at
the command-line is, in many cases, faster than pointing-and-clicking around
the graphical user interface (GUI) a desktop GIS. For some applications such
as Spatial Statistics and modeling R may be the only realistic way to get the
work done.
As outlined in Section 1.2, there are many reasons for using R for geocomputa-
tion: R is well-suited to the interactive use required in many geographic data
analysis workflows compared with other languages. R excels in the rapidly
growing fields of Data Science (which includes data carpentry, statistical learn-
ing techniques and data visualization) and Big Data (via efficient interfaces to
databases and distributed computing systems). Furthermore R enables a re-
producible workflow: sharing scripts underlying your analysis will allow others
to build-on your work. To ensure reproducibility in this book we have made its
source code available at github.com/Robinlovelace/geocompr12. There you will
find script files in the code/ folder that generate figures: when code generating
a figure is not provided in the main text of the book, the name of the script
file that generated it is provided in the caption (see for example the caption
for Figure 12.2).
Other languages such as Python, Java and C++ can be used for geocomputation
and there are excellent resources for learning geocomputation without R, as
discussed in Section 1.3. None of these provide the unique combination of
package ecosystem, statistical capabilities, visualization options, powerful IDEs
offered by the R community. Furthermore, by teaching how to use one language
(R) in depth, this book will equip you with the concepts and confidence needed
to do geocomputation in other languages.
Geocomputation with R will equip you with knowledge and skills to tackle a
wide range of issues, including those with scientific, societal and environmental

9https://csgillespie.github.io/efficientR/learning.html
10http://colinfay.me/intro-to-r/
11https://www.datacamp.com/courses/free-introduction-to-r
12https://github.com/Robinlovelace/geocompr#geocomputation-with-r

https://github.com
https://www.datacamp.com
http://colinfay.me
https://csgillespie.github.io
http://www.github.com

xviii Preface

implications, manifested in geographic data. As described in Section 1.1,
geocomputation is not only about using computers to process geographic data:
it is also about real-world impact. If you are interested in the wider context
and motivations behind this book, read on; these are covered in Chapter 1.

Acknowledgements

Many thanks to everyone who contributed directly and indirectly via the code
hosting and collaboration site GitHub, including the following people who
contributed direct via pull requests: katygregg, erstearns, eyesofbambi, tyluRp,
marcosci, mdsumner, rsbivand, pat-s, gisma, ateucher, annakrystalli, gavin-
simpson, Himanshuteli, yutannihilation, katiejolly, layik, mvl22, nickbearman,
ganes1410, richfitz, SymbolixAU, wdearden, yihui, chihinl, gregor-d, p-kono,
pokyah. Special thanks to Marco Sciaini, who not only created the front
cover image, but also published the code that generated it (see frontcover.R in
the book’s GitHub repo). Dozens more people contributed online, by raising
and commenting on issues, and by providing feedback via social media. The
#geocompr hashtag will live on!
We would like to thank John Kimmel from CRC Press, who has worked with
us over two years to take our ideas from an early book plan into production via
four rounds of peer review. The reviewers deserve special mention here: their
detailed feedback and expertise substantially improved the book’s structure
and content.
We thank Patrick Schratz and Alexander Brenning from the University of
Jena for fruitful discussions on and input into Chapters 11 and 14. We thank
Emmanuel Blondel from the Food and Agriculture Organization of the United
Nations for expert input into the section on web services; Michael Sumner for
critical input into many areas of the book, especially the discussion of algorithms
in Chapter 10; Tim Appelhans and David Cooley for key contributions to
the visualization chapter (Chapter 8); and Katy Gregg, who proofread every
chapter and greatly improved the readability of the book.
Countless others could be mentioned who contributed in myriad ways. The
final thank you is for all the software developers who make geocomputation
with R possible. Edzer Pebesma (who created the sf package), Robert Hijmans
(who created raster) and Roger Bivand (who laid the foundations for much
R-spatial software) have made high performance geographic computing possible
in R.

1
Introduction

This book is about using the power of computers to do things with geographic
data. It teaches a range of spatial skills, including: reading, writing and ma-
nipulating geographic data; making static and interactive maps; applying
geocomputation to solve real-world problems; and modeling geographic phe-
nomena. By demonstrating how various geographic operations can be linked,
in reproducible ‘code chunks’ that intersperse the prose, the book also teaches
a transparent and thus scientific workflow. Learning how to use the wealth of
geospatial tools available from the R command line can be exciting, but creat-
ing new ones can be truly liberating. Using the command-line driven approach
taught throughout, and programming techniques covered in Chapter 10, can
help remove constraints on your creativity imposed by software. After reading
the book and completing the exercises, you should therefore feel empowered
with a strong understanding of the possibilities opened up by R’s impressive
geographic capabilities, new skills to solve real-world problems with geographic
data, and the ability to communicate your work with maps and reproducible
code.
Over the last few decades free and open source software for geospatial (FOSS4G)
has progressed at an astonishing rate. Thanks to organizations such as OSGeo,
geographic data analysis is no longer the preserve of those with expensive
hardware and software: anyone can now download and run high-performance
spatial libraries. Open source Geographic Information Systems (GIS) such as
QGIS1 have made geographic analysis accessible worldwide. GIS programs tend
to emphasize graphical user interfaces (GUIs), with the unintended consequence
of discouraging reproducibility (although many can be used from the command
line as we’ll see in Chapter 9). R, by contrast, emphasizes the command line
interface (CLI). A simplistic comparison between the different approaches is
illustrated in Table 1.1.
This book is motivated by the importance of reproducibility for scientific
research (see the note below). It aims to make reproducible geographic data
analysis workflows more accessible, and demonstrate the power of open geospa-
tial software available from the command-line. “Interfaces to other software are
part of R” (Eddelbuettel and Balamuta, 2018). This means that in addition
to outstanding ‘in house’ capabilities, R allows access to many other spatial

1http://qgis.org/en/site/

1

http://qgis.org

2 Introduction

TABLE 1.1: Differences in emphasis between software packages (Graphical
User Interface (GUI) of Geographic Information Systems (GIS) and R).

Attribute Desktop GIS (GUI) R
Home disciplines Geography Computing, Statistics
Software focus Graphical User Interface Command line
Reproducibility Minimal Maximal

software libraries, explained in Section 1.2 and demonstrated in Chapter 9.
Before going into the details of the software, however, it is worth taking a step
back and thinking about what we mean by geocomputation.

Reproducibility is a major advantage of command-line interfaces, but what
does it mean in practice? We define it as follows: “A process in which the
same results can be generated by others using publicly accessible code.”
This may sound simple and easy to achieve (which it is if you carefully
maintain your R code in script files), but has profound implications for
teaching and the scientific process (Pebesma et al., 2012).

1.1 What is geocomputation?

Geocomputation is a young term, dating back to the first conference on the
subject in 1996.2 What distinguished geocomputation from the (at the time)
commonly used term ‘quantitative geography’, its early advocates proposed,
was its emphasis on “creative and experimental” applications (Longley et al.,
1998) and the development of new tools and methods (Openshaw and Abrahart,
2000): “GeoComputation is about using the various different types of geodata
and about developing relevant geo-tools within the overall context of a ‘scientific’
approach.” This book aims to go beyond teaching methods and code; by the end
of it you should be able to use your geocomputational skills, to do “practical
work that is beneficial or useful” (Openshaw and Abrahart, 2000).
Our approach differs from early adopters such as Stan Openshaw, however,
in its emphasis on reproducibility and collaboration. At the turn of the 21st

Century, it was unrealistic to expect readers to be able to reproduce code

2The conference took place at the University of Leeds, where one of the authors (Robin)
is currently based. The 21st GeoComputation conference was also hosted at the University of
Leeds, during which Robin and Jakub presented, led a workshop on ‘tidy’ spatial data analysis
and collaborated on the book (see www.geocomputation.org for more on the conference
series, and papers/presentations spanning two decades).

http://www.geocomputation.org

What is geocomputation? 3

examples, due to barriers preventing access to the necessary hardware, soft-
ware and data. Fast-forward two decades and things have progressed rapidly.
Anyone with access to a laptop with ~4GB RAM can realistically expect to
be able to install and run software for geocomputation on publicly accessible
datasets, which are more widely available than ever before (as we will see in
Chapter 7).3 Unlike early works in the field, all the work presented in this
book is reproducible using code and example data supplied alongside the
book, in R packages such as spData, the installation of which is covered in
Chapter 2.
Geocomputation is closely related to other terms including: Geographic Infor-
mation Science (GIScience); Geomatics; Geoinformatics; Spatial Information
Science; Geoinformation Engineering (Longley, 2015); and Geographic Data
Science (GDS). Each term shares an emphasis on a ‘scientific’ (implying re-
producible and falsifiable) approach influenced by GIS, although their origins
and main fields of application differ. GDS, for example, emphasizes ‘data
science’ skills and large datasets, while Geoinformatics tends to focus on data
structures. But the overlaps between the terms are larger than the differences
between them and we use geocomputation as a rough synonym encapsulating
all of them: they all seek to use geographic data for applied scientific work.
Unlike early users of the term, however, we do not seek to imply that there is
any cohesive academic field called ‘Geocomputation’ (or ‘GeoComputation’ as
Stan Openshaw called it). Instead, we define the term as follows: working with
geographic data in a computational way, focusing on code, reproducibility and
modularity.
Geocomputation is a recent term but is influenced by old ideas. It can be seen
as a part of Geography, which has a 2000+ year history (Talbert, 2014); and
an extension of Geographic Information Systems (GIS) (Neteler and Mitasova,
2008), which emerged in the 1960s (Coppock and Rhind, 1991).
Geography has played an important role in explaining and influencing hu-
manity’s relationship with the natural world long before the invention of the
computer, however. Alexander von Humboldt’s travels to South America in
the early 1800s illustrates this role: not only did the resulting observations lay
the foundations for the traditions of physical and plant geography, they also
paved the way towards policies to protect the natural world (Wulf, 2015). This
book aims to contribute to the ‘Geographic Tradition’ (Livingstone, 1992) by
harnessing the power of modern computers and open source software.
The book’s links to older disciplines were reflected in suggested titles for the
book: Geography with R and R for GIS. Each has advantages. The former

3A laptop with 4GB running a modern operating system such as Ubuntu 16.04 onward
should also be able to reproduce the contents of this book. A laptop with this specification
or above can be acquired second-hand for ~US$100 in many countries nowadays, reducing
the financial/hardware barrier to geocomputation far below the levels in operation in the
early 2000s, when high-performance computers were unaffordable for most people.

4 Introduction

conveys the message that it comprises much more than just spatial data:
non-spatial attribute data are inevitably interwoven with geometry data, and
Geography is about more than where something is on the map. The latter
communicates that this is a book about using R as a GIS, to perform spatial
operations on geographic data (Bivand et al., 2013). However, the term GIS
conveys some connotations (see Table 1.1) which simply fail to communicate one
of R’s greatest strengths: its console-based ability to seamlessly switch between
geographic and non-geographic data processing, modeling and visualization
tasks. By contrast, the term geocomputation implies reproducible and creative
programming. Of course, (geocomputational) algorithms are powerful tools
that can become highly complex. However, all algorithms are composed of
smaller parts. By teaching you its foundations and underlying structure, we
aim to empower you to create your own innovative solutions to geographic
data problems.

1.2 Why use R for geocomputation?

Early geographers used a variety of tools including barometers, compasses and
sextants4 to advance knowledge about the world (Wulf, 2015). It was only
with the invention of the marine chronometer5 in 1761 that it became possible
to calculate longitude at sea, enabling ships to take more direct routes.
Nowadays such lack of geographic data is hard to imagine. Every smartphone
has a global positioning (GPS) receiver and a multitude of sensors on devices
ranging from satellites and semi-autonomous vehicles to citizen scientists
incessantly measure every part of the world. The rate of data produced is
overwhelming. An autonomous vehicle, for example, can generate 100 GB of
data per day (The Economist, 2016). Remote sensing data from satellites has
become too large to analyze the corresponding data with a single computer,
leading to initiatives such as OpenEO6.
This ‘geodata revolution’ drives demand for high performance computer hard-
ware and efficient, scalable software to handle and extract signal from the
noise, to understand and perhaps change the world. Spatial databases enable
storage and generation of manageable subsets from the vast geographic data
stores, making interfaces for gaining knowledge from them vital tools for the
future. R is one such tool, with advanced analysis, modeling and visualization
capabilities. In this context the focus of the book is not on the language
itself (see Wickham, 2014a). Instead we use R as a ‘tool for the trade’ for

4https://en.wikipedia.org/wiki/Sextant
5https://en.wikipedia.org/wiki/Marine_chronometer
6http://r-spatial.org/2016/11/29/openeo.html

http://r-spatial.org
https://en.wikipedia.org
https://en.wikipedia.org

Why use R for geocomputation? 5

understanding the world, similar to Humboldt’s use of tools to gain a deep
understanding of nature in all its complexity and interconnections (see Wulf,
2015). Although programming can seem like a reductionist activity, the aim is
to teach geocomputation with R not only for fun, but for understanding the
world.
R is a multi-platform, open source language and environment for statistical
computing and graphics (r-project.org/7). With a wide range of packages, R
also supports advanced geospatial statistics, modeling and visualization. New
integrated development environments (IDEs) such as RStudio have made R
more user-friendly for many, easing map making with a panel dedicated to
interactive visualization.
At its core, R is an object-oriented, functional programming language8 (Wick-
ham, 2014a), and was specifically designed as an interactive interface to other
software (Chambers, 2016). The latter also includes many ‘bridges’ to a trea-
sure trove of GIS software, ‘geolibraries’ and functions (see Chapter 9). It is
thus ideal for quickly creating ‘geo-tools’, without needing to master lower level
languages (compared to R) such as C, FORTRAN or Java (see Section 1.3).
This can feel like breaking free from the metaphorical ‘glass ceiling’ imposed
by GUI-based or proprietary geographic information systems (see Table 1.1 for
a definition of GUI). Furthermore, R facilitates access to other languages: the
packages Rcpp and reticulate enable access to C++ and Python code, for
example. This means R can be used as a ‘bridge’ to a wide range of geospatial
programs (see Section 1.3).
Another example showing R’s flexibility and evolving geographic capabilities
is interactive map making. As we’ll see in Chapter 8, the statement that R
has “limited interactive [plotting] facilities” (Bivand et al., 2013) is no longer
true. This is demonstrated by the following code chunk, which creates Figure
1.1 (the functions that generate the plot are covered in Section 8.4).

library(leaflet)

popup = c(”Robin”, ”Jakub”, ”Jannes”)

leaflet() %>%

addProviderTiles(”NASAGIBS.ViirsEarthAtNight2012”) %>%

addMarkers(lng = c(-3, 23, 11),

lat = c(52, 53, 49),

popup = popup)

It would have been difficult to produce Figure 1.1 using R a few years ago, let
alone as an interactive map. This illustrates R’s flexibility and how, thanks
to developments such as knitr and leaflet, it can be used as an interface
to other software, a theme that will recur throughout this book. The use of

7https://www.r-project.org/
8http://adv-r.had.co.nz/Functional-programming.html

http://adv-r.had.co.nz
https://www.r-project.org
http://www.r-project.org

6 Introduction

FIGURE 1.1: The blue markers indicate where the authors are from. The
basemap is a tiled image of the Earth at night provided by NASA. Interact
with the online version at geocompr.robinlovelace.net, for example by zooming
in and clicking on the popups.

R code, therefore, enables teaching geocomputation with reference to repro-
ducible examples such as that provided in Figure 1.1 rather than abstract
concepts.

1.3 Software for geocomputation

R is a powerful language for geocomputation but there are many other options
for geographic data analysis providing thousands of geographic functions.
Awareness of other languages for geocomputation will help decide when a
different tool may be more appropriate for a specific task, and place R in
the wider geospatial ecosystem. This section briefly introduces the languages
C++9, Java10 and Python11 for geocomputation, in preparation for Chapter
9.
An important feature of R (and Python) is that it is an interpreted lan-
guage. This is advantageous because it enables interactive programming in a
Read–Eval–Print Loop (REPL): code entered into the console is immediately
executed and the result is printed, rather than waiting for the intermediate

9https://isocpp.org/
10https://www.oracle.com/java/index.html
11https://www.python.org/

https://www.python.org
https://www.oracle.com
https://isocpp.org

Software for geocomputation 7

stage of compilation. On the other hand, compiled languages such as C++
and Java tend to run faster (once they have been compiled).
C++ provides the basis for many GIS packages such as QGIS12, GRASS13

and SAGA14 so it is a sensible starting point. Well-written C++ is very fast,
making it a good choice for performance-critical applications such as processing
large geographic datasets, but is harder to learn than Python or R. C++ has
become more accessible with the Rcpp package, which provides a good ‘way
in’ to C programming for R users. Proficiency with such low-level languages
opens the possibility of creating new, high-performance ‘geoalgorithms’ and a
better understanding of how GIS software works (see Chapter 10).
Java is another important and versatile language for geocomputation. GIS
packages gvSig, OpenJump and uDig are all written in Java. There are many
GIS libraries written in Java, including GeoTools and JTS, the Java Topol-
ogy Suite (GEOS is a C++ port of JTS). Furthermore, many map server
applications use Java including Geoserver/Geonode, deegree and 52°North
WPS.
Java’s object-oriented syntax is similar to that of C++. A major advantage
of Java is that it is platform-independent (which is unusual for a compiled
language) and is highly scalable, making it a suitable language for IDEs such as
RStudio, with which this book was written. Java has fewer tools for statistical
modeling and visualization than Python or R, although it can be used for data
science (Brzustowicz, 2017).
Python is an important language for geocomputation especially because many
Desktop GIS such as GRASS, SAGA and QGIS provide a Python API (see
Chapter 9). Like R, it is a popular15 tool for data science. Both languages are
object-oriented, and have many areas of overlap, leading to initiatives such as
the reticulate package that facilitates access to Python from R and the Ursa
Labs16 initiative to support portable libraries to the benefit of the entire open
source data science ecosystem.
In practice both R and Python have their strengths and to some extent which
you use is less important than the domain of application and communication of
results. Learning either will provide a head-start in learning the other. However,
there are major advantages of R over Python for geocomputation. This includes
its much better support of the geographic data models vector and raster in the
language itself (see Chapter 2) and corresponding visualization possibilities
(see Chapters 2 and 8). Equally important, R has unparalleled support for
statistics, including spatial statistics, with hundreds of packages (unmatched
by Python) supporting thousands of statistical methods.

12www.qgis.org
13https://grass.osgeo.org/
14www.saga-gis.org
15https://stackoverflow.blog/2017/10/10/impressive-growth-r/
16https://ursalabs.org/

https://ursalabs.org
https://stackoverflow.blog
http://www.saga-gis.org
https://grass.osgeo.org
http://www.qgis.org

8 Introduction

The major advantage of Python is that it is a general-purpose programming
language. It is used in many domains, including desktop software, computer
games, websites and data science. Python is often the only shared language
between different (geocomputation) communities and can be seen as the ‘glue’
that holds many GIS programs together. Many geoalgorithms, including those
in QGIS and ArcMap, can be accessed from the Python command line, making
it well-suited as a starter language for command-line GIS.17

For spatial statistics and predictive modeling, however, R is second-to-none.
This does not mean you must choose either R or Python: Python supports most
common statistical techniques (though R tends to support new developments
in spatial statistics earlier) and many concepts learned from Python can
be applied to the R world. Like R, Python also supports geographic data
analysis and manipulation with packages such as osgeo, Shapely, NumPy
and PyGeoProcessing (Garrard, 2016).

1.4 R’s spatial ecosystem

There are many ways to handle geographic data in R, with dozens of packages
in the area.18 In this book we endeavor to teach the state-of-the-art in the
field whilst ensuring that the methods are future-proof. Like many areas of
software development, R’s spatial ecosystem is rapidly evolving (Figure 1.2).
Because R is open source, these developments can easily build on previous
work, by ‘standing on the shoulders of giants’, as Isaac Newton put it in 167519.
This approach is advantageous because it encourages collaboration and avoids
‘reinventing the wheel’. The package sf (covered in Chapter 2), for example,
builds on its predecessor sp.
A surge in development time (and interest) in ‘R-spatial’ has followed the
award of a grant by the R Consortium for the development of support for
Simple Features, an open-source standard and model to store and access
vector geometries. This resulted in the sf package (covered in Section 2.2.1).
Multiple places reflect the immense interest in sf. This is especially true for
the R-sig-Geo Archives20, a long-standing open access email list containing
much R-spatial wisdom accumulated over the years.
It is noteworthy that shifts in the wider R community, as exemplified by the data

17Python modules providing access to geoalgorithms include grass.script for GRASS,
saga-python for SAGA-GIS, processing for QGIS and arcpy for ArcGIS.

18An overview of R’s spatial ecosystem can be found in the CRAN Task View on the
Analysis of Spatial Data (see https://cran.r-project.org/web/views/Spatial.html).

19http://digitallibrary.hsp.org/index.php/Detail/Object/Show/object_id/9285
20https://stat.ethz.ch/pipermail/r-sig-geo/

https://stat.ethz.ch
http://digitallibrary.hsp.org
https://cran.r-project.org

R’s spatial ecosystem 9

FIGURE 1.2: The popularity of spatial packages in R. The y-axis shows
average number of downloads per day, within a 30-day rolling window, of
prominent spatial packages.

processing package dplyr (released in 201421) influenced shifts in R’s spatial
ecosystem. Alongside other packages that have a shared style and emphasis
on ‘tidy data’ (including, e.g., ggplot2), dplyr was placed in the tidyverse
‘metapackage’ in late 201622. The tidyverse approach, with its focus on
long-form data and fast intuitively named functions, has become immensely
popular. This has led to a demand for ‘tidy geographic data’ which has been
partly met by sf and other approaches such as tabularaster. An obvious
feature of the tidyverse is the tendency for packages to work in harmony.
There is no equivalent geoverse, but there are attempts at harmonization
between packages hosted in the r-spatial23 organization and a growing number
of packages use sf (Table 1.2).

21https://cran.r-project.org/src/contrib/Archive/dplyr/
22https://cran.r-project.org/src/contrib/Archive/tidyverse/
23https://github.com/r-spatial/discuss/issues/11

https://github.com
https://cran.r-project.org
https://cran.r-project.org

10 Introduction

TABLE 1.2: The top 5 most downloaded packages that depend on sf, in
terms of average number of downloads per day over the previous month. As of
2019-01-29 there are 117 packages which import sf.

package Downloads
ggplot2 22593
plotly 3628
raster 2433
leaflet 1391
spData 1174

1.5 The history of R-spatial

There are many benefits of using recent spatial packages such as sf, but it also
important to be aware of the history of R’s spatial capabilities: many functions,
use-cases and teaching material are contained in older packages. These can
still be useful today, provided you know where to look.
R’s spatial capabilities originated in early spatial packages in the S language
(Bivand and Gebhardt, 2000). The 1990s saw the development of numerous
S scripts and a handful of packages for spatial statistics. R packages arose
from these and by 2000 there were R packages for various spatial methods
“point pattern analysis, geostatistics, exploratory spatial data analysis and
spatial econometrics”, according to an article24 presented at GeoComputation
2000 (Bivand and Neteler, 2000). Some of these, notably spatial, sgeostat
and splancs are still available on CRAN (Rowlingson and Diggle, 1993, 2017;
Venables and Ripley, 2002; Majure and Gebhardt, 2016).
A subsequent article in R News (the predecessor of The R Journal25) contained
an overview of spatial statistical software in R at the time, much of which was
based on previous code written for S/S-PLUS (Ripley, 2001). This overview
described packages for spatial smoothing and interpolation, including akima
and geoR (Akima and Gebhardt, 2016; Jr and Diggle, 2016), and point pattern
analysis, including splancs (Rowlingson and Diggle, 2017) and spatstat
(Baddeley et al., 2015).
The following R News issue (Volume 1/3) put spatial packages in the spotlight
again, with a more detailed introduction to splancs and a commentary on
future prospects regarding spatial statistics (Bivand, 2001). Additionally, the
issue introduced two packages for testing spatial autocorrelation that eventually
became part of spdep (Bivand, 2017). Notably, the commentary mentions

24http://www.geocomputation.org/2000/GC009/Gc009.htm
25https://journal.r-project.org/

https://journal.r-project.org
http://www.geocomputation.org

The history of R-spatial 11

the need for standardization of spatial interfaces, efficient mechanisms for
exchanging data with GIS, and handling of spatial metadata such as coordinate
reference systems (CRS).
maptools (written by Nicholas Lewin-Koh; Bivand and Lewin-Koh, 2017) is
another important package from this time. Initially maptools just contained
a wrapper around shapelib26 and permitted the reading of ESRI Shapefiles
into geometry nested lists. The corresponding and nowadays obsolete S3 class
called “Map” stored this list alongside an attribute data frame. The work on
the “Map” class representation was nevertheless important since it directly fed
into sp prior to its publication on CRAN.
In 2003 Roger Bivand published an extended review of spatial packages. It
proposed a class system to support the “data objects offered by GDAL”,
including ‘fundamental’ point, line, polygon, and raster types. Furthermore,
it suggested interfaces to external libraries should form the basis of modular
R packages (Bivand, 2003). To a large extent these ideas were realized in the
packages rgdal and sp. These provided a foundation for spatial data analysis
with R, as described in Applied Spatial Data Analysis with R (ASDAR) (Bivand
et al., 2013), first published in 2008. Ten years later, R’s spatial capabilities
have evolved substantially but they still build on ideas set-out by Bivand (2003):
interfaces to GDAL and PROJ, for example, still power R’s high-performance
geographic data I/O and CRS transformation capabilities (see Chapters 6 and
7, respectively).
rgdal, released in 2003, provided GDAL bindings for R which greatly enhanced
its ability to import data from previously unavailable geographic data formats.
The initial release supported only raster drivers but subsequent enhancements
provided support for coordinate reference systems (via the PROJ library),
reprojections and import of vector file formats (see Chapter 7 for more on
file formats). Many of these additional capabilities were developed by Barry
Rowlingson and released in the rgdal codebase in 2006 (see Rowlingson et al.,
2003, and the R-help27 email list for context).
sp, released in 2005, overcame R’s inability to distinguish spatial and non-
spatial objects (Pebesma and Bivand, 2005). sp grew from a workshop28 in
Vienna in 2003 and was hosted at sourceforge before migrating to R-Forge29.
Prior to 2005, geographic coordinates were generally treated like any other
number. sp changed this with its classes and generic methods supporting
points, lines, polygons and grids, and attribute data.
sp stores information such as bounding box, coordinate reference system
and attributes in slots in Spatial objects using the S4 class system, enabling
data operations to work on geographic data (see Section 2.2.2). Further, sp

26http://shapelib.maptools.org/
27https://stat.ethz.ch/pipermail/r-help/2003-January/028413.html
28http://spatial.nhh.no/meetings/vienna/index.html
29https://r-forge.r-project.org

https://r-forge.r-project.org
http://spatial.nhh.no
https://stat.ethz.ch
http://shapelib.maptools.org

12 Introduction

provides generic methods such as summary() and plot() for geographic data. In
the following decade, sp classes rapidly became popular for geographic data in
R and the number of packages that depended on it increased from around 20 in
2008 to over 100 in 2013 (Bivand et al., 2013). As of 2018 almost 500 packages
rely on sp, making it an important part of the R ecosystem. Prominent R
packages using sp include: gstat, for spatial and spatio-temporal geostatistics;
geosphere, for spherical trigonometry; and adehabitat used for the analysis
of habitat selection by animals (Pebesma and Graeler, 2018; Calenge, 2006;
Hijmans, 2016).
While rgdal and sp solved many spatial issues, R still lacked the ability to
do geometric operations (see Chapter 5). Colin Rundel addressed this issue
by developing rgeos, an R interface to the open-source geometry library
(GEOS) during a Google Summer of Code project in 2010 (Bivand and Rundel,
2018). rgeos enabled GEOS to manipulate sp objects, with functions such as
gIntersection().
Another limitation of sp — its limited support for raster data — was overcome
by raster, first released in 2010 (Hijmans, 2017). Its class system and functions
support a range of raster operations as outlined in Section 2.3. A key feature
of raster is its ability to work with datasets that are too large to fit into RAM
(R’s interface to PostGIS supports off-disc operations on vector geographic
data). raster also supports map algebra (see Section 4.3.2).
In parallel with these developments of class systems and methods came the
support for R as an interface to dedicated GIS software. GRASS (Bivand,
2000) and follow-on packages spgrass6 and rgrass7 (for GRASS GIS 6 and
7, respectively) were prominent examples in this direction (Bivand, 2016a,b).
Other examples of bridges between R and GIS include RSAGA (Brenning
et al., 2018, first published in 2008), RPyGeo (Brenning, 2012a, first published
in 2008), and RQGIS (Muenchow et al., 2017, first published in 2016) (see
Chapter 9).
Visualization was not a focus initially, with the bulk of R-spatial development
focused on analysis and geographic operations. sp provided methods for map
making using both the base and lattice plotting system but demand was
growing for advanced map making capabilities, especially after the release of
ggplot2 in 2007. ggmap extended ggplot2’s spatial capabilities (Kahle and
Wickham, 2013), by facilitating access to ‘basemap’ tiles from online services
such as Google Maps. Though ggmap facilitated map-making with ggplot2,
its utility was limited by the need to fortify spatial objects, which means
converting them into long data frames. While this works well for points it
is computationally inefficient for lines and polygons, since each coordinate
(vertex) is converted into a row, leading to huge data frames to represent
complex geometries. Although geographic visualization tended to focus on
vector data, raster visualization is supported in raster and received a boost
with the release of rasterVis, which is described in a book on the subject of

Exercises 13

spatial and temporal data visualization (Lamigueiro, 2018). As of 2018 map
making in R is a hot topic with dedicated packages such as tmap, leaflet and
mapview all supporting the class system provided by sf, the focus of the next
chapter (see Chapter 8 for more on visualization).

1.6 Exercises

1. Think about the terms ‘GIS’, ‘GDS’ and ‘geocomputation’ described
above. Which (if any) best describes the work you would like to do
using geo* methods and software and why?

2. Provide three reasons for using a scriptable language such as R for
geocomputation instead of using an established GIS program such
as QGIS.

3. Name two advantages and two disadvantages of using mature vs
recent packages for geographic data analysis (for example sp vs sf).

http://taylorandfrancis.com

Part I

Foundations

http://taylorandfrancis.com

2
Geographic data in R

Prerequisites

This is the first practical chapter of the book, and therefore it comes with
some software requirements. We assume that you have an up-to-date version of
R installed and that you are comfortable using software with a command-line
interface such as the integrated development environment (IDE) RStudio.
If you are new to R, we recommend reading Chapter 2 of the online book
Efficient R Programming by Gillespie and Lovelace (2016) and learning the
basics of the language with reference to resources such as Grolemund and
Wickham (2016) or DataCamp1 before proceeding. Organize your work (e.g.,
with RStudio projects) and give scripts sensible names such as chapter-02.R to
document the code you write as you learn.
The packages used in this chapter can be installed with the following com-
mands:2

install.packages(”sf”)

install.packages(”raster”)

install.packages(”spData”)

devtools::install_github(”Nowosad/spDataLarge”)

If you’re running Mac or Linux, the previous command to install sf may not
work first time. These operating systems (OSs) have ‘systems requirements’
that are described in the package’s README3. Various OS-specific instruc-
tions can be found online, such as the article Installation of R 3.5 on Ubuntu
18.04 on the blog rtask.thinkr.fr4.

1https://www.datacamp.com/courses/free-introduction-to-r
2spDataLarge is not on CRAN, meaning it must be installed via devtools or with

the following command: install.packages(”spDataLarge”, repos = ”https://nowosad.github.io/drat/”,

type = ”source”).

17

https://nowosad.github.io
https://www.datacamp.com

18 Geographic data in R

All the packages needed to reproduce the contents of the book can be installed
with the following command:
devtools::install_github(”geocompr/geocompkg”). The necessary packages can be
‘loaded’ (technically they are attached) with the library() function as follows:

library(sf) # classes and functions for vector data

library(raster) # classes and functions for raster data

The other packages that were installed contain data that will be used in the
book:

library(spData) # load geographic data

library(spDataLarge) # load larger geographic data

2.1 Introduction

This chapter will provide brief explanations of the fundamental geographic
data models: vector and raster. We will introduce the theory behind each data
model and the disciplines in which they predominate, before demonstrating
their implementation in R.
The vector data model represents the world using points, lines and polygons.
These have discrete, well-defined borders, meaning that vector datasets usually
have a high level of precision (but not necessarily accuracy as we will see in
Section 2.5). The raster data model divides the surface up into cells of constant
size. Raster datasets are the basis of background images used in web-mapping
and have been a vital source of geographic data since the origins of aerial
photography and satellite-based remote sensing devices. Rasters aggregate
spatially specific features to a given resolution, meaning that they are consistent
over space and scalable (many worldwide raster datasets are available).
Which to use? The answer likely depends on your domain of application:
• Vector data tends to dominate the social sciences because human settlements

tend to have discrete borders.
• Raster often dominates in environmental sciences because of the reliance on

remote sensing data.
There is much overlap in some fields and raster and vector datasets can be
used together: ecologists and demographers, for example, commonly use both
vector and raster data. Furthermore, it is possible to convert between the two
forms (see Section 5.4). Whether your work involves more use of vector or
raster datasets, it is worth understanding the underlying data model before

Vector data 19

using them, as discussed in subsequent chapters. This book uses sf and raster
packages to work with vector data and raster datasets, respectively.

2.2 Vector data

Take care when using the word ‘vector’ as it can have two meanings in this
book: geographic vector data and the vector class (note the monospace font) in
R. The former is a data model, the latter is an R class just like data.frame and
matrix. Still, there is a link between the two: the spatial coordinates which
are at the heart of the geographic vector data model can be represented in
R using vector objects.

The geographic vector data model is based on points located within a coordinate
reference system (CRS). Points can represent self-standing features (e.g., the
location of a bus stop) or they can be linked together to form more complex
geometries such as lines and polygons. Most point geometries contain only
two dimensions (3-dimensional CRSs contain an additional 𝑧 value, typically
representing height above sea level).
In this system London, for example, can be represented by the coordinates
c(-0.1, 51.5). This means that its location is -0.1 degrees east and 51.5 degrees
north of the origin. The origin in this case is at 0 degrees longitude (the
Prime Meridian) and 0 degree latitude (the Equator) in a geographic (‘lon/lat’)
CRS (Figure 2.1, left panel). The same point could also be approximated in
a projected CRS with ‘Easting/Northing’ values of c(530000, 180000) in the
British National Grid5, meaning that London is located 530 km East and 180
km North of the 𝑜𝑟𝑖𝑔𝑖𝑛 of the CRS. This can be verified visually: slightly more
than 5 ‘boxes’ — square areas bounded by the gray grid lines 100 km in width
— separate the point representing London from the origin (Figure 2.1, right
panel).
The location of National Grid’s origin, in the sea beyond South West Peninsular,
ensures that most locations in the UK have positive Easting and Northing
values.6 There is more to CRSs, as described in Sections 2.4 and 6 but, for the
purposes of this section, it is sufficient to know that coordinates consist of two
numbers representing distance from an origin, usually in 𝑥 then 𝑦 dimensions.
sf is a package providing a class system for geographic vector data. Not only

5https://en.wikipedia.org/wiki/Ordnance_Survey_National_Grid
6The origin we are referring to, depicted in blue in Figure 2.1, is in fact the ‘false’ origin.

The ‘true’ origin, the location at which distortions are at a minimum, is located at 2° W
and 49° N. This was selected by the Ordnance Survey to be roughly in the center of the
British landmass longitudinally.

https://en.wikipedia.org

20 Geographic data in R

FIGURE 2.1: Illustration of vector (point) data in which location of London
(the red X) is represented with reference to an origin (the blue circle). The left
plot represents a geographic CRS with an origin at 0° longitude and latitude.
The right plot represents a projected CRS with an origin located in the sea
west of the South West Peninsula.

does sf supersede sp, it also provides a consistent command-line interface
to GEOS and GDAL, superseding rgeos and rgdal (described in Section
1.5). This section introduces sf classes in preparation for subsequent chapters
(Chapters 5 and 7 cover the GEOS and GDAL interface, respectively).

2.2.1 An introduction to simple features

Simple features is an open standard7 developed and endorsed by the Open
Geospatial Consortium (OGC), a not-for-profit organization whose activities we
will revisit in a later chapter (in Section 7.5). Simple Features is a hierarchical
data model that represents a wide range of geometry types. Of 17 geometry
types supported by the specification, only 7 are used in the vast majority
of geographic research (see Figure 2.2); these core geometry types are fully
supported by the R package sf (Pebesma, 2018).8

sf can represent all common vector geometry types (raster data classes are not
supported by sf): points, lines, polygons and their respective ‘multi’ versions
(which group together features of the same type into a single feature). sf also
supports geometry collections, which can contain multiple geometry types in

7http://portal.opengeospatial.org/files/?artifact_id=25355
8The full OGC standard includes rather exotic geometry types including ‘surface’ and

‘curve’ geometry types, which currently have limited application in real world applications.
All 17 types can be represented with the sf package, although (as of summer 2018) plotting
only works for the ‘core 7’.

http://portal.opengeospatial.org

Vector data 21

FIGURE 2.2: Simple feature types fully supported by sf.

a single object. sf largely supersedes the sp ecosystem, which comprises sp
(Pebesma and Bivand, 2018), rgdal for data read/write (Bivand et al., 2018)
and rgeos for spatial operations (Bivand and Rundel, 2018). The package is
well documented, as can be seen on its website and in 6 vignettes, which can
be loaded as follows:

vignette(package = ”sf”) # see which vignettes are available

vignette(”sf1”) # an introduction to the package

As the first vignette explains, simple feature objects in R are stored in a data
frame, with geographic data occupying a special column, usually named ‘geom’
or ‘geometry’. We will use the world dataset provided by the spData, loaded
at the beginning of this chapter (see nowosad.github.io/spData9 for a list of
datasets loaded by the package). world is a spatial object containing spatial and
attribute columns, the names of which are returned by the function names()

(the last column contains the geographic information):

names(world)

#> [1] ”iso_a2” ”name_long” ”continent” ”region_un” ”subregion”

#> [6] ”type” ”area_km2” ”pop” ”lifeExp” ”gdpPercap”

#> [11] ”geom”

9https://nowosad.github.io/spData/

https://nowosad.github.io

22 Geographic data in R

FIGURE 2.3: A spatial plot of the world using the sf package, with a facet
for each attribute.

The contents of this geom column give sf objects their spatial powers: world$geom
is a ‘list column10’ that contains all the coordinates of the country polygons.
The sf package provides a plot() method for visualizing geographic data: the
following command creates Figure 2.3.

plot(world)

Note that instead of creating a single map, as most GIS programs would, the
plot() command has created multiple maps, one for each variable in the world

datasets. This behavior can be useful for exploring the spatial distribution of
different variables and is discussed further in Section 2.2.3 below.
Being able to treat spatial objects as regular data frames with spatial powers
has many advantages, especially if you are already used to working with data
frames. The commonly used summary() function, for example, provides a useful
overview of the variables within the world object.

summary(world[”lifeExp”])

#> lifeExp geom

#> Min. :50.6 MULTIPOLYGON :177

#> 1st Qu.:65.0 epsg:4326 : 0

10https://jennybc.github.io/purrr-tutorial/ls13_list-columns.html

https://jennybc.github.io

Vector data 23

#> Median :72.9 +proj=long...: 0

#> Mean :70.9

#> 3rd Qu.:76.8

#> Max. :83.6

#> NA’s :10

Although we have only selected one variable for the summary command, it also
outputs a report on the geometry. This demonstrates the ‘sticky’ behavior of
the geometry columns of sf objects, meaning the geometry is kept unless the
user deliberately removes them, as we’ll see in Section 3.2. The result provides
a quick summary of both the non-spatial and spatial data contained in world:
the mean average life expectancy is 71 years (ranging from less than 51 to
more than 83 years with a median of 73 years) across all countries.

The word MULTIPOLYGON in the summary output above refers to the geometry
type of features (countries) in the world object. This representation is necessary
for countries with islands such as Indonesia and Greece. Other geometry
types are described in Section 2.2.5.

It is worth taking a deeper look at the basic behavior and contents of this
simple feature object, which can usefully be thought of as a ‘spatial data
frame’.
sf objects are easy to subset. The code below shows its first two rows and three
columns. The output shows two major differences compared with a regular
data.frame: the inclusion of additional geographic data (geometry type, dimension,
bbox and CRS information - epsg (SRID), proj4string), and the presence of a
geometry column, here named geom:

world_mini = world[1:2, 1:3]

world_mini

#> Simple feature collection with 2 features and 3 fields

#> geometry type: MULTIPOLYGON

#> dimension: XY

#> bbox: xmin: -180 ymin: -18.3 xmax: 180 ymax: -0.95

#> epsg (SRID): 4326

#> proj4string: +proj=longlat +datum=WGS84 +no_defs

#> iso_a2 name_long continent geom

#> 1 FJ Fiji Oceania MULTIPOLYGON (((180 -16.1, ...

#> 2 TZ Tanzania Africa MULTIPOLYGON (((33.9 -0.95,...

All this may seem rather complex, especially for a class system that is supposed
to be simple. However, there are good reasons for organizing things this way
and using sf.

24 Geographic data in R

Before describing each geometry type that the sf package supports, it is worth
taking a step back to understand the building blocks of sf objects. Section
2.2.8 shows how simple features objects are data frames, with special geometry
columns. These spatial columns are often called geom or geometry: world$geom

refers to the spatial element of the world object described above. These geometry
columns are ‘list columns’ of class sfc (see Section 2.2.7). In turn, sfc objects
are composed of one or more objects of class sfg: simple feature geometries
that we describe in Section 2.2.6.
To understand how the spatial components of simple features work, it is vital to
understand simple feature geometries. For this reason we cover each currently
supported simple features geometry type in Section 2.2.5 before moving on to
describe how these can be represented in R using sfg objects, which form the
basis of sfc and eventually full sf objects.

The preceding code chunk uses = to create a new object called world_mini

in the command world_mini = world[1:2, 1:3]. This is called assignment. An
equivalent command to achieve the same result is world_mini <- world[1:2,

1:3]. Although ‘arrow assigment’ is more commonly used, we use ‘equals
assignment’ because it’s slightly faster to type and easier to teach due to
compatibility with commonly used languages such as Python and JavaScript.
Which to use is largely a matter of preference as long as you’re consistent
(packages such as styler can be used to change style).

2.2.2 Why simple features?

Simple features is a widely supported data model that underlies data structures
in many GIS applications including QGIS and PostGIS. A major advantage of
this is that using the data model ensures your work is cross-transferable to
other set-ups, for example importing from and exporting to spatial databases.
A more specific question from an R perspective is “why use the sf package
when sp is already tried and tested”? There are many reasons (linked to the
advantages of the simple features model) including:
• Fast reading and writing of data.
• Enhanced plotting performance.
• sf objects can be treated as data frames in most operations.
• sf functions can be combined using %>% operator and works well with the

tidyverse11 collection of R packages.
• sf function names are relatively consistent and intuitive (all begin with st_).
Due to such advantages, some spatial packages (including tmap, mapview
and tidycensus) have added support for sf. However, it will take many years

11http://tidyverse.org/

http://tidyverse.org

Vector data 25

FIGURE 2.4: Plotting with sf, with multiple variables (left) and a single
variable (right).

for most packages to transition and some will never switch. Fortunately, these
can still be used in a workflow based on sf objects, by converting them to the
Spatial class used in sp:

library(sp)

world_sp = as(world, Class = ”Spatial”)

sp functions ...

Spatial objects can be converted back to sf in the same way or with st_as_sf():

world_sf = st_as_sf(world_sp, ”sf”)

2.2.3 Basic map making

Basic maps are created in sf with plot(). By default this creates a multi-panel
plot (like sp’s spplot()), one sub-plot for each variable of the object, as illus-
trated in the left-hand panel in Figure 2.4. A legend or ‘key’ with a continuous
color is produced if the object to be plotted has a single variable (see the
right-hand panel). Colors can also be set with col =, although this will not
create a continuous palette or a legend.

plot(world[3:6])

plot(world[”pop”])

Plots are added as layers to existing images by setting add = TRUE.12 To demon-
strate this, and to provide a taster of content covered in Chapters 3 and 4 on

12plot()ing of sf objects uses sf:::plot.sf() behind the scenes. plot() is a generic method
that behaves differently depending on the class of object being plotted.

26 Geographic data in R

attribute and spatial data operations, the subsequent code chunk combines
countries in Asia:

world_asia = world[world$continent == ”Asia”,]

asia = st_union(world_asia)

We can now plot the Asian continent over a map of the world. Note that the
first plot must only have one facet for add = TRUE to work. If the first plot has
a key, reset = FALSE must be used (result not shown):

plot(world[”pop”], reset = FALSE)

plot(asia, add = TRUE, col = ”red”)

Adding layers in this way can be used to verify the geographic correspondence
between layers: the plot() function is fast to execute and requires few lines
of code, but does not create interactive maps with a wide range of options.
For more advanced map making we recommend using dedicated visualization
packages such as tmap (see Chapter 8).

2.2.4 Base plot arguments

There are various ways to modify maps with sf’s plot() method. Because sf
extends base R plotting methods plot()’s arguments such as main = (which
specifies the title of the map) work with sf objects (see ?graphics::plot and
?par).13

Figure 2.5 illustrates this flexibility by overlaying circles, whose diameters (set
with cex =) represent country populations, on a map of the world. A basic
version of the map can be created with the following commands (see exercises
at the end of this chapter and the script 02-contplot.R14 to create Figure 2.5):

plot(world[”continent”], reset = FALSE)

cex = sqrt(world$pop) / 10000

world_cents = st_centroid(world, of_largest = TRUE)

plot(st_geometry(world_cents), add = TRUE, cex = cex)

The code above uses the function st_centroid() to convert one geometry type
(polygons) to another (points) (see Chapter 5), the aesthetics of which are
varied with the cex argument.
sf’s plot method also has arguments specific to geographic data. expandBB, for
example, can be used plot an sf object in context: it takes a numeric vector

13Note: many plot arguments are ignored in facet maps, when more than one sf column is
plotted.

14https://github.com/Robinlovelace/geocompr/blob/master/code/02-contpop.R

https://github.com

Vector data 27

FIGURE 2.5: Country continents (represented by fill color) and 2015 popu-
lations (represented by circles, with area proportional to population).

FIGURE 2.6: India in context, demonstrating the expandBB argument.

of length four that expands the bounding box of the plot relative to zero in
the following order: bottom, left, top, right. This is used to plot India in the
context of its giant Asian neighbors, with an emphasis on China to the east,
in the following code chunk, which generates Figure 2.6 (see exercises below
on adding text to plots):

india = world[world$name_long == ”India”,]

plot(st_geometry(india), expandBB = c(0, 0.2, 0.1, 1), col = ”gray”, lwd = 3)

plot(world_asia[0], add = TRUE)

Note the use of [0] to keep only the geometry column and lwd to emphasize
India. See Section 8.6 for other visualization techniques for representing a
range of geometry types, the subject of the next section.

28 Geographic data in R

2.2.5 Geometry types

Geometries are the basic building blocks of simple features. Simple features
in R can take on one of the 17 geometry types supported by the sf pack-
age. In this chapter we will focus on the seven most commonly used types:
POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON and GEOME-

TRYCOLLECTION. Find the whole list of possible feature types in the PostGIS
manual15.
Generally, well-known binary (WKB) or well-known text (WKT) are the
standard encoding for simple feature geometries. WKB representations are
usually hexadecimal strings easily readable for computers. This is why GIS and
spatial databases use WKB to transfer and store geometry objects. WKT, on
the other hand, is a human-readable text markup description of simple features.
Both formats are exchangeable, and if we present one, we will naturally choose
the WKT representation.
The basis for each geometry type is the point. A point is simply a coordinate
in 2D, 3D or 4D space (see vignette(”sf1”) for more information) such as (see
left panel in Figure 2.7):
• POINT (5 2)

A linestring is a sequence of points with a straight line connecting the points,
for example (see middle panel in Figure 2.7):
• LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2)

A polygon is a sequence of points that form a closed, non-intersecting ring.
Closed means that the first and the last point of a polygon have the same
coordinates (see right panel in Figure 2.7).16

• Polygon without a hole: POLYGON ((1 5, 2 2, 4 1, 4 4, 1 5))

So far we have created geometries with only one geometric entity per feature.
However, sf also allows multiple geometries to exist within a single feature
(hence the term ‘geometry collection’) using “multi” version of each geometry
type:
• Multipoint: MULTIPOINT (5 2, 1 3, 3 4, 3 2)

• Multilinestring: MULTILINESTRING ((1 5, 4 4, 4 1, 2 2, 3 2), (1 2, 2 4))

• Multipolygon: MULTIPOLYGON (((1 5, 2 2, 4 1, 4 4, 1 5), (0 2, 1 2, 1 3, 0 3,

0 2)))

Finally, a geometry collection can contain any combination of geometries
including (multi)points and linestrings (see Figure 2.9):

15http://postgis.net/docs/using_postgis_dbmanagement.html
16By definition, a polygon has one exterior boundary (outer ring) and can have zero or

more interior boundaries (inner rings), also known as holes. A polygon with a hole would be,
for example, POLYGON ((1 5, 2 2, 4 1, 4 4, 1 5), (2 4, 3 4, 3 3, 2 3, 2 4))

http://postgis.net

Vector data 29

FIGURE 2.7: Illustration of point, linestring and polygon geometries.

FIGURE 2.8: Illustration of multi* geometries.

• Geometry collection: GEOMETRYCOLLECTION (MULTIPOINT (5 2, 1 3, 3 4, 3 2),

LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2))

2.2.6 Simple feature geometries (sfg)

The sfg class represents the different simple feature geometry types in R:
point, linestring, polygon (and their ‘multi’ equivalents, such as multipoints)
or geometry collection.
Usually you are spared the tedious task of creating geometries on your own
since you can simply import an already existing spatial file. However, there are
a set of functions to create simple feature geometry objects (sfg) from scratch
if needed. The names of these functions are simple and consistent, as they
all start with the st_ prefix and end with the name of the geometry type in
lowercase letters:
• A point: st_point()
• A linestring: st_linestring()
• A polygon: st_polygon()
• A multipoint: st_multipoint()
• A multilinestring: st_multilinestring()

30 Geographic data in R

FIGURE 2.9: Illustration of a geometry collection.

• A multipolygon: st_multipolygon()
• A geometry collection: st_geometrycollection()
sfg objects can be created from three base R data types:

1. A numeric vector: a single point
2. A matrix: a set of points, where each row represents a point, a

multipoint or linestring
3. A list: a collection of objects such as matrices, multilinestrings or

geometry collections

The function st_point() creates single points from numeric vectors:

st_point(c(5, 2)) # XY point

#> POINT (5 2)

st_point(c(5, 2, 3)) # XYZ point

#> POINT Z (5 2 3)

st_point(c(5, 2, 1), dim = ”XYM”) # XYM point

#> POINT M (5 2 1)

st_point(c(5, 2, 3, 1)) # XYZM point

#> POINT ZM (5 2 3 1)

The results show that XY (2D coordinates), XYZ (3D coordinates) and XYZM
(3D with an additional variable, typically measurement accuracy) point types
are created from vectors of length 2, 3, and 4, respectively. The XYM type
must be specified using the dim argument (which is short for dimension).
By contrast, use matrices in the case of multipoint (st_multipoint()) and
linestring (st_linestring()) objects:

Vector data 31

the rbind function simplifies the creation of matrices

MULTIPOINT

multipoint_matrix = rbind(c(5, 2), c(1, 3), c(3, 4), c(3, 2))

st_multipoint(multipoint_matrix)

#> MULTIPOINT (5 2, 1 3, 3 4, 3 2)

LINESTRING

linestring_matrix = rbind(c(1, 5), c(4, 4), c(4, 1), c(2, 2), c(3, 2))

st_linestring(linestring_matrix)

#> LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2)

Finally, use lists for the creation of multilinestrings, (multi-)polygons and
geometry collections:

POLYGON

polygon_list = list(rbind(c(1, 5), c(2, 2), c(4, 1), c(4, 4), c(1, 5)))

st_polygon(polygon_list)

#> POLYGON ((1 5, 2 2, 4 1, 4 4, 1 5))

POLYGON with a hole

polygon_border = rbind(c(1, 5), c(2, 2), c(4, 1), c(4, 4), c(1, 5))

polygon_hole = rbind(c(2, 4), c(3, 4), c(3, 3), c(2, 3), c(2, 4))

polygon_with_hole_list = list(polygon_border, polygon_hole)

st_polygon(polygon_with_hole_list)

#> POLYGON ((1 5, 2 2, 4 1, 4 4, 1 5), (2 4, 3 4, 3 3, 2 3, 2 4))

MULTILINESTRING

multilinestring_list = list(rbind(c(1, 5), c(4, 4), c(4, 1), c(2, 2), c(3, 2)),

rbind(c(1, 2), c(2, 4)))

st_multilinestring((multilinestring_list))

#> MULTILINESTRING ((1 5, 4 4, 4 1, 2 2, 3 2), (1 2, 2 4))

MULTIPOLYGON

multipolygon_list = list(list(rbind(c(1, 5), c(2, 2), c(4, 1), c(4, 4), c(1, 5))),

list(rbind(c(0, 2), c(1, 2), c(1, 3), c(0, 3), c(0, 2))))

st_multipolygon(multipolygon_list)

#> MULTIPOLYGON (((1 5, 2 2, 4 1, 4 4, 1 5)), ((0 2, 1 2, 1 3, 0 3, 0 2)))

GEOMETRYCOLLECTION

gemetrycollection_list = list(st_multipoint(multipoint_matrix),

st_linestring(linestring_matrix))

32 Geographic data in R

st_geometrycollection(gemetrycollection_list)

#> GEOMETRYCOLLECTION (MULTIPOINT (5 2, 1 3, 3 4, 3 2),

#> LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2))

2.2.7 Simple feature columns (sfc)

One sfg object contains only a single simple feature geometry. A simple feature
geometry column (sfc) is a list of sfg objects, which is additionally able to
contain information about the coordinate reference system in use. For instance,
to combine two simple features into one object with two features, we can
use the st_sfc() function. This is important since sfc represents the geometry
column in sf data frames:

sfc POINT

point1 = st_point(c(5, 2))

point2 = st_point(c(1, 3))

points_sfc = st_sfc(point1, point2)

points_sfc

#> Geometry set for 2 features

#> geometry type: POINT

#> dimension: XY

#> bbox: xmin: 1 ymin: 2 xmax: 5 ymax: 3

#> epsg (SRID): NA

#> proj4string: NA

#> POINT (5 2)

#> POINT (1 3)

In most cases, an sfc object contains objects of the same geometry type.
Therefore, when we convert sfg objects of type polygon into a simple feature
geometry column, we would also end up with an sfc object of type polygon,
which can be verified with st_geometry_type(). Equally, a geometry column of
multilinestrings would result in an sfc object of type multilinestring:

sfc POLYGON

polygon_list1 = list(rbind(c(1, 5), c(2, 2), c(4, 1), c(4, 4), c(1, 5)))

polygon1 = st_polygon(polygon_list1)

polygon_list2 = list(rbind(c(0, 2), c(1, 2), c(1, 3), c(0, 3), c(0, 2)))

polygon2 = st_polygon(polygon_list2)

polygon_sfc = st_sfc(polygon1, polygon2)

st_geometry_type(polygon_sfc)

#> [1] POLYGON POLYGON

#> 18 Levels: GEOMETRY POINT LINESTRING POLYGON ... TRIANGLE

Vector data 33

sfc MULTILINESTRING

multilinestring_list1 = list(rbind(c(1, 5), c(4, 4), c(4, 1), c(2, 2), c(3, 2)),

rbind(c(1, 2), c(2, 4)))

multilinestring1 = st_multilinestring((multilinestring_list1))

multilinestring_list2 = list(rbind(c(2, 9), c(7, 9), c(5, 6), c(4, 7), c(2, 7)),

rbind(c(1, 7), c(3, 8)))

multilinestring2 = st_multilinestring((multilinestring_list2))

multilinestring_sfc = st_sfc(multilinestring1, multilinestring2)

st_geometry_type(multilinestring_sfc)

#> [1] MULTILINESTRING MULTILINESTRING

#> 18 Levels: GEOMETRY POINT LINESTRING POLYGON ... TRIANGLE

It is also possible to create an sfc object from sfg objects with different geometry
types:

sfc GEOMETRY

point_multilinestring_sfc = st_sfc(point1, multilinestring1)

st_geometry_type(point_multilinestring_sfc)

#> [1] POINT MULTILINESTRING

#> 18 Levels: GEOMETRY POINT LINESTRING POLYGON ... TRIANGLE

As mentioned before, sfc objects can additionally store information on the
coordinate reference systems (CRS). To specify a certain CRS, we can use the
epsg (SRID) or proj4string attributes of an sfc object. The default value of epsg
(SRID) and proj4string is NA (Not Available), as can be verified with st_crs():

st_crs(points_sfc)

#> Coordinate Reference System: NA

All geometries in an sfc object must have the same CRS. We can add coordinate
reference system as a crs argument of st_sfc(). This argument accepts an integer
with the epsg code such as 4326, which automatically adds the ‘proj4string’ (see
Section 2.4):

EPSG definition

points_sfc_wgs = st_sfc(point1, point2, crs = 4326)

st_crs(points_sfc_wgs)

#> Coordinate Reference System:

#> EPSG: 4326

#> proj4string: ”+proj=longlat +datum=WGS84 +no_defs”

It also accepts a raw proj4string (result not shown):

34 Geographic data in R

PROJ4STRING definition

st_sfc(point1, point2, crs = ”+proj=longlat +datum=WGS84 +no_defs”)

Sometimes st_crs() will return a proj4string but not an epsg code. This is
because there is no general method to convert from proj4string to epsg (see
Chapter 6).

2.2.8 The sf class

Sections 2.2.5 to 2.2.7 deal with purely geometric objects, ‘sf geometry’ and
‘sf column’ objects, respectively. These are geographic building blocks of geo-
graphic vector data represented as simple features. The final building block
is non-geographic attributes, representing the name of the feature or other
attributes such as measured values, groups, and other things.
To illustrate attributes, we will represent a temperature of 25°C in London
on June 21st, 2017. This example contains a geometry (the coordinates), and
three attributes with three different classes (place name, temperature and
date).17 Objects of class sf represent such data by combining the attributes
(data.frame) with the simple feature geometry column (sfc). They are created
with st_sf() as illustrated below, which creates the London example described
above:

lnd_point = st_point(c(0.1, 51.5)) # sfg object

lnd_geom = st_sfc(lnd_point, crs = 4326) # sfc object

lnd_attrib = data.frame(# data.frame object

name = ”London”,

temperature = 25,

date = as.Date(”2017-06-21”)

)

lnd_sf = st_sf(lnd_attrib, geometry = lnd_geom) # sf object

What just happened? First, the coordinates were used to create the simple
feature geometry (sfg). Second, the geometry was converted into a simple
feature geometry column (sfc), with a CRS. Third, attributes were stored in a
data.frame, which was combined with the sfc object with st_sf(). This results
in an sf object, as demonstrated below (some output is ommited):

17Other attributes might include an urbanity category (city or village), or a remark if the
measurement was made using an automatic station.

Raster data 35

lnd_sf

#> Simple feature collection with 1 features and 3 fields

#> ...

#> name temperature date geometry

#> 1 London 25 2017-06-21 POINT (0.1 51.5)

class(lnd_sf)

#> [1] ”sf” ”data.frame”

The result shows that sf objects actually have two classes, sf and data.frame.
Simple features are simply data frames (square tables), but with spatial
attributes stored in a list column, usually called geometry, as described in
Section 2.2.1. This duality is central to the concept of simple features: most of
the time a sf can be treated as and behaves like a data.frame. Simple features
are, in essence, data frames with a spatial extension.

2.3 Raster data

The geographic raster data model usually consists of a raster header and
a matrix (with rows and columns) representing equally spaced cells (often
also called pixels; Figure 2.10:A).18 The raster header defines the coordinate
reference system, the extent and the origin. The origin (or starting point) is
frequently the coordinate of the lower-left corner of the matrix (the raster
package, however, uses the upper left corner, by default (Figure 2.10:B)). The
header defines the extent via the number of columns, the number of rows and
the cell size resolution. Hence, starting from the origin, we can easily access
and modify each single cell by either using the ID of a cell (Figure 2.10:B)
or by explicitly specifying the rows and columns. This matrix representation
avoids storing explicitly the coordinates for the four corner points (in fact it
only stores one coordinate, namely the origin) of each cell corner as would
be the case for rectangular vector polygons. This and map algebra makes
raster processing much more efficient and faster than vector data processing.
However, in contrast to vector data, the cell of one raster layer can only hold
a single value. The value might be numeric or categorical (Figure 2.10:C).
Raster maps usually represent continuous phenomena such as elevation, tem-
perature, population density or spectral data (Figure 2.11). Of course, we can

18Depending on the file format the header is part of the actual image data file, e.g.,
GeoTIFF, or stored in an extra header or world file, e.g., ASCII grid formats. There is also
the headerless (flat) binary raster format which should facilitate the import into various
software programs.

36 Geographic data in R

FIGURE 2.10: Raster data types: (A) cell IDs, (B) cell values, (C) a colored
raster map.

FIGURE 2.11: Examples of continuous and categorical rasters.

represent discrete features such as soil or land-cover classes also with the help
of a raster data model (Figure 2.11). Consequently, the discrete borders of
these features become blurred, and depending on the spatial task a vector
representation might be more suitable.

2.3.1 An introduction to raster

The raster package supports raster objects in R. It provides an extensive set
of functions to create, read, export, manipulate and process raster datasets.
Aside from general raster data manipulation, raster provides many low-level
functions that can form the basis to develop more advanced raster functionality.

Raster data 37

raster also lets you work on large raster datasets that are too large to fit into
the main memory. In this case, raster provides the possibility to divide the
raster into smaller chunks (rows or blocks), and processes these iteratively
instead of loading the whole raster file into RAM (for more information, please
refer to vignette(”functions”, package = ”raster”).
For the illustration of raster concepts, we will use datasets from the spData-
Large (note these packages were loaded at the beginning of the chapter). It
consists of a few raster objects and one vector object covering an area of the
Zion National Park (Utah, USA). For example, srtm.tif is a digital elevation
model of this area (for more details, see its documentation ?srtm). First, let’s
create a RasterLayer object named new_raster:

raster_filepath = system.file(”raster/srtm.tif”, package = ”spDataLarge”)

new_raster = raster(raster_filepath)

Typing the name of the raster into the console, will print out the raster header
(extent, dimensions, resolution, CRS) and some additional information (class,
data source name, summary of the raster values):

new_raster

#> class : RasterLayer

#> dimensions : 457, 465, 212505 (nrow, ncol, ncell)

#> resolution : 0.000833, 0.000833 (x, y)

#> extent : -113, -113, 37.1, 37.5 (xmin, xmax, ymin, ymax)

#> coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0

#> data source : /home/robin/R/x86_64-pc-linux../3.5/spDataLarge/raster/srtm.tif

#> names : srtm

#> values : 1024, 2892 (min, max)

Dedicated functions report each component: dim(new_raster) returns the number
of rows, columns and layers; the ncell() function the number of cells (pixels);
res() the raster’s spatial resolution; extent() its spatial extent; and crs() its
coordinate reference system (raster reprojection is covered in Section 6.6).
inMemory() reports whether the raster data is stored in memory (the default)
or on disk.
help(”raster-package”) returns a full list of all available raster functions.

2.3.2 Basic map making

Similar to the sf package, raster also provides plot() methods for its own
classes.

38 Geographic data in R

FIGURE 2.12: Basic raster plot.

plot(new_raster)

There are several other approaches for plotting raster data in R that are outside
the scope of this section, including:
• Functions such as spplot() and levelplot() (from the sp and rasterVis

packages, respectively) to create facets, a common technique for visualizing
change over time.

• Packages such as tmap, mapview and leaflet to create interactive maps
of raster and vector objects (see Chapter 8).

2.3.3 Raster classes

The RasterLayer class represents the simplest form of a raster object, and
consists of only one layer. The easiest way to create a raster object in R is to
read-in a raster file from disk or from a server.

raster_filepath = system.file(”raster/srtm.tif”, package = ”spDataLarge”)

new_raster = raster(raster_filepath)

The raster package supports numerous drivers with the help of rgdal. To
find out which drivers are available on your system, run raster::writeFormats()

and rgdal::gdalDrivers().
Rasters can also be created from scratch using the raster() function. This is
illustrated in the subsequent code chunk, which results in a new RasterLayer

object. The resulting raster consists of 36 cells (6 columns and 6 rows specified
by nrows and ncols) centered around the Prime Meridian and the Equator (see
xmn, xmx, ymn and ymx parameters). The CRS is the default of raster objects:
WGS84. This means the unit of the resolution is in degrees which we set to

Raster data 39

0.5 (res). Values (vals) are assigned to each cell: 1 to cell 1, 2 to cell 2, and
so on. Remember: raster() fills cells row-wise (unlike matrix()) starting at the
upper left corner, meaning the top row contains the values 1 to 6, the second
7 to 12, etc.

new_raster2 = raster(nrows = 6, ncols = 6, res = 0.5,

xmn = -1.5, xmx = 1.5, ymn = -1.5, ymx = 1.5,

vals = 1:36)

For other ways of creating raster objects, see ?raster.
Aside from RasterLayer, there are two additional classes: RasterBrick and Raster-

Stack. Both can handle multiple layers, but differ regarding the number of
supported file formats, type of internal representation and processing speed.
A RasterBrick consists of multiple layers, which typically correspond to a single
multispectral satellite file or a single multilayer object in memory. The brick()

function creates a RasterBrick object. Usually, you provide it with a filename
to a multilayer raster file but might also use another raster object and other
spatial objects (see ?brick for all supported formats).

multi_raster_file = system.file(”raster/landsat.tif”, package = ”spDataLarge”)

r_brick = brick(multi_raster_file)

r_brick

#> class : RasterBrick

#> resolution : 30, 30 (x, y)

#> ...

#> names : landsat.1, landsat.2, landsat.3, landsat.4

#> min values : 7550, 6404, 5678, 5252

#> max values : 19071, 22051, 25780, 31961

nlayers() retrieves the number of layers stored in a Raster* object:

nlayers(r_brick)

#> [1] 4

A RasterStack is similar to a RasterBrick in the sense that it consists also of
multiple layers. However, in contrast to RasterBrick, RasterStack allows you to
connect several raster objects stored in different files or multiply objects in
memory. More specifically, a RasterStack is a list of RasterLayer objects with the
same extent and resolution. Hence, one way to create it is with the help of
spatial objects already existing in R’s global environment. And again, one can
simply specify a path to a file stored on disk.

40 Geographic data in R

raster_on_disk = raster(r_brick, layer = 1)

raster_in_memory = raster(xmn = 301905, xmx = 335745,

ymn = 4111245, ymx = 4154085,

res = 30)

values(raster_in_memory) = sample(seq_len(ncell(raster_in_memory)))

crs(raster_in_memory) = crs(raster_on_disk)

r_stack = stack(raster_in_memory, raster_on_disk)

r_stack

#> class : RasterStack

#> dimensions : 1428, 1128, 1610784, 2

#> resolution : 30, 30

#> ...

#> names : layer, landsat.1

#> min values : 1, 7550

#> max values : 1610784, 19071

Another difference is that the processing time for RasterBrick objects is usually
shorter than for RasterStack objects.
Decision on which Raster* class should be used depends mostly on a character
of input data. Processing of a single mulitilayer file or object is the most
effective with RasterBrick, while RasterStack allows calculations based on many
files, many Raster* objects, or both.

Operations on RasterBrick and RasterStack objects will typically return a
RasterBrick.

2.4 Coordinate Reference Systems

Vector and raster spatial data types share concepts intrinsic to spatial data.
Perhaps the most fundamental of these is the Coordinate Reference System
(CRS), which defines how the spatial elements of the data relate to the surface
of the Earth (or other bodies). CRSs are either geographic or projected, as
introduced at the beginning of this chapter (see Figure 2.1). This section will
explain each type, laying the foundations for Section 6 on CRS transformations.

Coordinate Reference Systems 41

2.4.1 Geographic coordinate systems

Geographic coordinate systems identify any location on the Earth’s surface us-
ing two values — longitude and latitude. Longitude is location in the East-West
direction in angular distance from the Prime Meridian plane. Latitude is angu-
lar distance North or South of the equatorial plane. Distances in geographic
CRSs are therefore not measured in meters. This has important consequences,
as demonstrated in Section 6.
The surface of the Earth in geographic coordinate systems is represented by
a spherical or ellipsoidal surface. Spherical models assume that the Earth is
a perfect sphere of a given radius. Spherical models have the advantage of
simplicity but are rarely used because they are inaccurate: the Earth is not a
sphere! Ellipsoidal models are defined by two parameters: the equatorial radius
and the polar radius. These are suitable because the Earth is compressed:
the equatorial radius is around 11.5 km longer than the polar radius (Maling,
1992).19

Ellipsoids are part of a wider component of CRSs: the datum. This contains
information on what ellipsoid to use (with the ellps parameter in the PROJ
CRS library) and the precise relationship between the Cartesian coordinates
and location on the Earth’s surface. These additional details are stored in the
towgs84 argument of proj4string20 notation (see proj4.org/parameters.html21

for details). These allow local variations in Earth’s surface, for example due
to large mountain ranges, to be accounted for in a local CRS. There are two
types of datum — local and geocentric. In a local datum such as NAD83 the
ellipsoidal surface is shifted to align with the surface at a particular location. In
a geocentric datum such as WGS84 the center is the Earth’s center of gravity and
the accuracy of projections is not optimized for a specific location. Available
datum definitions can be seen by executing st_proj_info(type = ”datum”).

2.4.2 Projected coordinate reference systems

Projected CRSs are based on Cartesian coordinates on an implicitly flat surface.
They have an origin, x and y axes, and a linear unit of measurement such as
meters. All projected CRSs are based on a geographic CRS, described in the
previous section, and rely on map projections to convert the three-dimensional
surface of the Earth into Easting and Northing (x and y) values in a projected
CRS.

19The degree of compression is often referred to as flattening, defined in terms of the
equatorial radius (u�) and polar radius (u�) as follows: u� = (u� − u�)/u�. The terms ellipticity
and compression can also be used (Maling, 1992). Because u� is a rather small value, digital
ellipsoid models use the ‘inverse flattening’ (u�u� = 1/u�) to define the Earth’s compression.
Values of u� and u�u� in various ellipsoidal models can be seen by executing st_proj_info(type =

”ellps”).
20https://proj4.org/operations/conversions/latlon.html?highlight=towgs#cmdoption-arg-towgs84
21https://proj4.org/usage/projections.html

https://proj4.org
https://proj4.org
http://www.proj4.org

42 Geographic data in R

This transition cannot be done without adding some distortion. Therefore,
some properties of the Earth’s surface are distorted in this process, such as area,
direction, distance, and shape. A projected coordinate system can preserve
only one or two of those properties. Projections are often named based on a
property they preserve: equal-area preserves area, azimuthal preserve direction,
equidistant preserve distance, and conformal preserve local shape.
There are three main groups of projection types - conic, cylindrical, and planar.
In a conic projection, the Earth’s surface is projected onto a cone along a
single line of tangency or two lines of tangency. Distortions are minimized
along the tangency lines and rise with the distance from those lines in this
projection. Therefore, it is the best suited for maps of mid-latitude areas. A
cylindrical projection maps the surface onto a cylinder. This projection could
also be created by touching the Earth’s surface along a single line of tangency
or two lines of tangency. Cylindrical projections are used most often when
mapping the entire world. A planar projection projects data onto a flat surface
touching the globe at a point or along a line of tangency. It is typically used in
mapping polar regions. st_proj_info(type = ”proj”) gives a list of the available
projections supported by the PROJ library.

2.4.3 CRSs in R

Two main ways to describe CRS in R are an epsg code or a proj4string definition.
Both of these approaches have advantages and disadvantages. An epsg code is
usually shorter, and therefore easier to remember. The code also refers to only
one, well-defined coordinate reference system. On the other hand, a proj4string

definition allows you more flexibility when it comes to specifying different
parameters such as the projection type, the datum and the ellipsoid.22 This
way you can specify many different projections, and modify existing ones. This
also makes the proj4string approach more complicated. epsg points to exactly
one particular CRS.
Spatial R packages support a wide range of CRSs and they use the long-
established PROJ23 library. Other than searching for EPSG codes online, an-
other quick way to find out about available CRSs is via the rgdal::make_EPSG()

function, which outputs a data frame of available projections. Before going into
more detail, it’s worth learning how to view and filter them inside R, as this
could save time trawling the internet. The following code will show available
CRSs interactively, allowing you to filter ones of interest (try filtering for the
OSGB CRSs for example):

22A complete list of the proj4string parameters can be found at https://proj4.org/.
23http://proj4.org/

http://proj4.org
https://proj4.org

Coordinate Reference Systems 43

crs_data = rgdal::make_EPSG()

View(crs_data)

In sf the CRS of an object can be retrieved using st_crs(). For this, we need
to read-in a vector dataset:

vector_filepath = system.file(”vector/zion.gpkg”, package = ”spDataLarge”)

new_vector = st_read(vector_filepath)

Our new object, new_vector, is a polygon representing the borders of Zion
National Park (?zion).

st_crs(new_vector) # get CRS

#> Coordinate Reference System:

#> No EPSG code

#> proj4string: ”+proj=utm +zone=12 +ellps=GRS80 ... +units=m +no_defs”

In cases when a coordinate reference system (CRS) is missing or the wrong
CRS is set, the st_set_crs() function can be used:

new_vector = st_set_crs(new_vector, 4326) # set CRS

#> Warning: st_crs<- : replacing crs does not reproject data; use st_transform

#> for that

The warning message informs us that the st_set_crs() function does not trans-
form data from one CRS to another.
The projection() function can be used to access CRS information from a Raster*

object:

projection(new_raster) # get CRS

#> [1] ”+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0”

The same function, projection(), is used to set a CRS for raster objects. The
main difference, compared to vector data, is that raster objects only accept
proj4 definitions:

projection(new_raster) = ”+proj=utm +zone=12 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0

+units=m +no_defs” # set CRS

We will expand on CRSs and how to project from one CRS to another in much
more detail in Chapter 6.

44 Geographic data in R

FIGURE 2.13: Examples of geographic (WGS 84; left) and projected (NAD83
/ UTM zone 12N; right) coordinate systems for a vector data type.

2.5 Units

An important feature of CRSs is that they contain information about spatial
units. Clearly, it is vital to know whether a house’s measurements are in feet
or meters, and the same applies to maps. It is good cartographic practice to
add a scale bar onto maps to demonstrate the relationship between distances
on the page or screen and distances on the ground. Likewise, it is important to
formally specify the units in which the geometry data or pixels are measured to
provide context, and ensure that subsequent calculations are done in context.
A novel feature of geometry data in sf objects is that they have native support
for units. This means that distance, area and other geometric calculations
in sf return values that come with a units attribute, defined by the units
package (Pebesma et al., 2016). This is advantageous, preventing confusion
caused by different units (most CRSs use meters, some use feet) and providing
information on dimensionality. This is demonstrated in the code chunk below,
which calculates the area of Luxembourg:

luxembourg = world[world$name_long == ”Luxembourg”,]

st_area(luxembourg)

#> 2.42e+09 [m^2]

Units 45

FIGURE 2.14: Examples of geographic (WGS 84; left) and projected (NAD83
/ UTM zone 12N; right) coordinate systems for raster data.

The output is in units of square meters (m2), showing that the result represents
two-dimensional space. This information, stored as an attribute (which inter-
ested readers can discover with attributes(st_area(luxembourg))), can feed into
subsequent calculations that use units, such as population density (which is
measured in people per unit area, typically per km2). Reporting units prevents
confusion. To take the Luxembourg example, if the units remained unspecified,
one could incorrectly assume that the units were in hectares. To translate the
huge number into a more digestible size, it is tempting to divide the results by
a million (the number of square meters in a square kilometer):

st_area(luxembourg) / 1000000

#> 2417 [m^2]

However, the result is incorrectly given again as square meters. The solution is
to set the correct units with the units package:

units::set_units(st_area(luxembourg), km^2)

#> 2417 [km^2]

Units are of equal importance in the case of raster data. However, so far sf is
the only spatial package that supports units, meaning that people working on
raster data should approach changes in the units of analysis (for example, con-
verting pixel widths from imperial to decimal units) with care. The new_raster

object (see above) uses a WGS84 projection with decimal degrees as units.

46 Geographic data in R

Consequently, its resolution is also given in decimal degrees but you have to
know it, since the res() function simply returns a numeric vector.

res(new_raster)

#> [1] 0.000833 0.000833

If we used the UTM projection, the units would change.

repr = projectRaster(new_raster, crs = ”+init=epsg:26912”)

res(repr)

#> [1] 0.000833 0.000833

Again, the res() command gives back a numeric vector without any unit,
forcing us to know that the unit of the UTM projection is meters.

2.6 Exercises

1. Use summary() on the geometry column of the world data object. What
does the output tell us about:

•Its geometry type?
•The number of countries?
•Its coordinate reference system (CRS)?

2. Run the code that ‘generated’ the map of the world in Figure 2.5 at
the end of Section 2.2.4. Find two similarities and two differences
between the image on your computer and that in the book.

•What does the cex argument do (see ?plot)?
•Why was cex set to the sqrt(world$pop) / 10000?
•Bonus: experiment with different ways to visualize the global
population.

3. Use plot() to create maps of Nigeria in context (see Section 2.2.4).
•Adjust the lwd, col and expandBB arguments of plot().
•Challenge: read the documentation of text() and annotate the
map.

4. Create an empty RasterLayer object called my_raster with 10 columns
and 10 rows. Assign random values between 0 and 10 to the new
raster and plot it.

5. Read-in the raster/nlcd2011.tif file from the spDataLarge package.
What kind of information can you get about the properties of this
file?

Reminder: solutions can be found online at https://geocompr.github.io

https://geocompr.github.io

3
Attribute data operations

Prerequisites

• This chapter requires the following packages to be installed and attached:

library(sf)

library(raster)

library(dplyr)

library(stringr) # for working with strings (pattern matching)

• It also relies on spData, which loads datasets used in the code examples of
this chapter:

library(spData)

3.1 Introduction

Attribute data is non-spatial information associated with geographic (geometry)
data. A bus stop provides a simple example: its position would typically be
represented by latitude and longitude coordinates (geometry data), in addition
to its name. The name is an attribute of the feature (to use Simple Features
terminology) that bears no relation to its geometry.
Another example is the elevation value (attribute) for a specific grid cell in
raster data. Unlike the vector data model, the raster data model stores the
coordinate of the grid cell indirectly, meaning the distinction between attribute
and spatial information is less clear. To illustrate the point, think of a pixel
in the 3rd row and the 4th column of a raster matrix. Its spatial location is
defined by its index in the matrix: move from the origin four cells in the x
direction (typically east and right on maps) and three cells in the y direction
(typically south and down). The raster’s resolution defines the distance for each
x- and y-step which is specified in a header. The header is a vital component

47

48 Attribute data operations

of raster datasets which specifies how pixels relate to geographic coordinates
(see also Chapter 4).
The focus of this chapter is manipulating geographic objects based on attributes
such as the name of a bus stop and elevation. For vector data, this means
operations such as subsetting and aggregation (see Sections 3.2.1 and 3.2.2).
These non-spatial operations have spatial equivalents: the [operator in base R,
for example, works equally for subsetting objects based on their attribute and
spatial objects, as we will see in Chapter 4. This is good news: skills developed
here are cross-transferable, meaning that this chapter lays the foundation for
Chapter 4, which extends the methods presented here to the spatial world.
Sections 3.2.3 and 3.2.4 demonstrate how to join data onto simple feature
objects using a shared ID and how to create new variables, respectively.
Raster attribute data operations are covered in Section 3.3, which covers
creating continuous and categorical raster layers and extracting cell values
from one layer and multiple layers (raster subsetting). Section 3.3.2 provides
an overview of ‘global’ raster operations which can be used to characterize
entire raster datasets.

3.2 Vector attribute manipulation

Geographic vector data in R are well supported by sf, a class which extends
the data.frame. Thus sf objects have one column per attribute variable (such
as ‘name’) and one row per observation, or feature (e.g., per bus station). sf
objects also have a special column to contain geometry data, usually named
geometry. The geometry column is special because it is a list column, which can
contain multiple geographic entities (points, lines, polygons) per row. This
was described in Chapter 2, which demonstrated how generic methods such as
plot() and summary() work on sf objects. sf also provides methods that allow sf

objects to behave like regular data frames, as illustrated by other sf-specific
methods that were originally developed for data frames:

methods(class = ”sf”) # methods for sf objects, first 12 shown

#> [1] aggregate cbind coerce

#> [4] initialize merge plot

#> [7] print rbind [

#> [10] [[<- $<- show

Many of these functions, including rbind() (for binding rows of data together)
and $<- (for creating new columns) were developed for data frames. A key

Vector attribute manipulation 49

feature of sf objects is that they store spatial and non-spatial data in the same
way, as columns in a data.frame.

The geometry column of sf objects is typically called geometry but any name
can be used. The following command, for example, creates a geometry column
named g:
st_sf(data.frame(n = world$name_long), g = world$geom)

This enables geometries imported from spatial databases to have a variety of
names such as wkb_geometry and the_geom.

sf objects also support tibble and tbl classes used in the tidyverse, allowing
‘tidy’ data analysis workflows for spatial data. Thus sf enables the full power of
R’s data analysis capabilities to be unleashed on geographic data. Before using
these capabilities it is worth re-capping how to discover the basic properties of
vector data objects. Let’s start by using base R functions to get a measure of
the world dataset:

dim(world) # it is a 2 dimensional object, with rows and columns

#> [1] 177 11

nrow(world) # how many rows?

#> [1] 177

ncol(world) # how many columns?

#> [1] 11

Our dataset contains ten non-geographic columns (and one geometry list
column) with almost 200 rows representing the world’s countries. Extracting
the attribute data of an sf object is the same as removing its geometry:

world_df = st_drop_geometry(world)

class(world_df)

#> [1] ”data.frame”

This can be useful if the geometry column causes problems, e.g., by occupying
large amounts of RAM, or to focus the attention on the attribute data. For
most cases, however, there is no harm in keeping the geometry column because
non-spatial data operations on sf objects only change an object’s geometry
when appropriate (e.g., by dissolving borders between adjacent polygons
following aggregation). This means that proficiency with attribute data in sf

objects equates to proficiency with data frames in R.
For many applications, the tidyverse package dplyr offers the most effective
and intuitive approach for working with data frames. Tidyverse compatibility is
an advantage of sf over its predecessor sp, but there are some pitfalls to avoid

50 Attribute data operations

(see the supplementary tidyverse-pitfalls vignette at geocompr.github.io1 for
details).

3.2.1 Vector attribute subsetting

Base R subsetting functions include [, subset() and $. dplyr subsetting func-
tions include select(), filter(), and pull(). Both sets of functions preserve the
spatial components of attribute data in sf objects.
The [operator can subset both rows and columns. You use indices to specify
the elements you wish to extract from an object, e.g., object[i, j], with i and
j typically being numbers or logical vectors — TRUEs and FALSEs — representing
rows and columns (they can also be character strings, indicating row or column
names). Leaving i or j empty returns all rows or columns, so world[1:5,]

returns the first five rows and all columns. The examples below demonstrate
subsetting with base R. The results are not shown; check the results on your
own computer:

world[1:6,] # subset rows by position

world[, 1:3] # subset columns by position

world[, c(”name_long”, ”lifeExp”)] # subset columns by name

A demonstration of the utility of using logical vectors for subsetting is shown
in the code chunk below. This creates a new object, small_countries, containing
nations whose surface area is smaller than 10,000 km2:

sel_area = world$area_km2 < 10000

summary(sel_area) # a logical vector

#> Mode FALSE TRUE

#> logical 170 7

small_countries = world[sel_area,]

The intermediary sel_area is a logical vector that shows that only seven coun-
tries match the query. A more concise command, which omits the intermediary
object, generates the same result:

small_countries = world[world$area_km2 < 10000,]

The base R function subset() provides yet another way to achieve the same
result:

1https://geocompr.github.io/geocompkg/articles/tidyverse-pitfalls.html

https://geocompr.github.io

Vector attribute manipulation 51

small_countries = subset(world, area_km2 < 10000)

Base R functions are mature and widely used. However, the more recent dplyr
approach has several advantages. It enables intuitive workflows. It is fast, due
to its C++ backend. This is especially useful when working with big data as
well as dplyr’s database integration. The main dplyr subsetting functions are
select(), slice(), filter() and pull().

raster and dplyr packages have a function called select(). When using
both packages, the function in the most recently attached package will be
used, ‘masking’ the incumbent function. This can generate error messages
containing text like: unable to find an inherited method for function ‘select’

for signature ‘”sf”’. To avoid this error message, and prevent ambiguity, we
use the long-form function name, prefixed by the package name and two
colons (usually omitted from R scripts for concise code): dplyr::select().

select() selects columns by name or position. For example, you could select
only two columns, name_long and pop, with the following command (note the
sticky geom column remains):

world1 = dplyr::select(world, name_long, pop)

names(world1)

#> [1] ”name_long” ”pop” ”geom”

select() also allows subsetting of a range of columns with the help of the :

operator:

all columns between name_long and pop (inclusive)

world2 = dplyr::select(world, name_long:pop)

Omit specific columns with the - operator:

all columns except subregion and area_km2 (inclusive)

world3 = dplyr::select(world, -subregion, -area_km2)

Conveniently, select() lets you subset and rename columns at the same time,
for example:

world4 = dplyr::select(world, name_long, population = pop)

names(world4)

#> [1] ”name_long” ”population” ”geom”

52 Attribute data operations

This is more concise than the base R equivalent:

world5 = world[, c(”name_long”, ”pop”)] # subset columns by name

names(world5)[names(world5) == ”pop”] = ”population” # rename column manually

select() also works with ‘helper functions’ for advanced subsetting operations,
including contains(), starts_with() and num_range() (see the help page with
?select for details).
Most dplyr verbs return a data frame. To extract a single vector, one has
to explicitly use the pull() command. The subsetting operator in base R (see
?[), by contrast, tries to return objects in the lowest possible dimension. This
means selecting a single column returns a vector in base R. To turn off this
behavior, set the drop argument to FALSE.

create throw-away data frame

d = data.frame(pop = 1:10, area = 1:10)

return data frame object when selecting a single column

d[, ”pop”, drop = FALSE] # equivalent to d[”pop”]

select(d, pop)

return a vector when selecting a single column

d[, ”pop”]

pull(d, pop)

Due to the sticky geometry column, selecting a single attribute from an sf-object
with the help of [() returns also a data frame. Contrastingly, pull() and $ will
give back a vector.

data frame object

world[, ”pop”]

vector objects

world$pop

pull(world, pop)

slice() is the row-equivalent of select(). The following code chunk, for example,
selects the 3rd to 5th rows:

slice(world, 3:5)

filter() is dplyr’s equivalent of base R’s subset() function. It keeps only rows
matching given criteria, e.g., only countries with a very high average of life
expectancy:

Vector attribute manipulation 53

TABLE 3.1: Comparison operators that return Booleans (TRUE/FALSE).

Symbol Name
‘==‘ Equal to
‘!=‘ Not equal to
‘>‘, ‘<‘ Greater/Less than
‘>=‘, ‘<=‘ Greater/Less than or equal
‘&‘, ‘|‘, ‘!’ Logical operators: And, Or, Not

Countries with a life expectancy longer than 82 years

world6 = filter(world, lifeExp > 82)

The standard set of comparison operators can be used in the filter() function,
as illustrated in Table 3.1:
dplyr works well with the ‘pipe’2 operator %>%, which takes its name from the
Unix pipe | (Grolemund and Wickham, 2016). It enables expressive code: the
output of a previous function becomes the first argument of the next function,
enabling chaining. This is illustrated below, in which only countries from
Asia are filtered from the world dataset, next the object is subset by columns
(name_long and continent) and the first five rows (result not shown).

world7 = world %>%

filter(continent == ”Asia”) %>%

dplyr::select(name_long, continent) %>%

slice(1:5)

The above chunk shows how the pipe operator allows commands to be written
in a clear order: the above run from top to bottom (line-by-line) and left to
right. The alternative to %>% is nested function calls, which is harder to read:

world8 = slice(

dplyr::select(

filter(world, continent == ”Asia”),

name_long, continent),

1:5)

2http://r4ds.had.co.nz/pipes.html

http://r4ds.had.co.nz

54 Attribute data operations

3.2.2 Vector attribute aggregation

Aggregation operations summarize datasets by a ‘grouping variable’, typically
an attribute column (spatial aggregation is covered in the next chapter).
An example of attribute aggregation is calculating the number of people
per continent based on country-level data (one row per country). The world

dataset contains the necessary ingredients: the columns pop and continent, the
population and the grouping variable, respectively. The aim is to find the sum()

of country populations for each continent. This can be done with the base R
function aggregate() as follows:

world_agg1 = aggregate(pop ~ continent, FUN = sum, data = world, na.rm = TRUE)

class(world_agg1)

#> [1] ”data.frame”

The result is a non-spatial data frame with six rows, one per continent, and
two columns reporting the name and population of each continent (see Table
3.2 with results for the top 3 most populous continents).
aggregate() is a generic function which means that it behaves differently de-
pending on its inputs. sf provides a function that can be called directly with
sf:::aggregate() that is activated when a by argument is provided, rather than
using the ~ to refer to the grouping variable:

world_agg2 = aggregate(world[”pop”], by = list(world$continent),

FUN = sum, na.rm = TRUE)

class(world_agg2)

#> [1] ”sf” ”data.frame”

As illustrated above, an object of class sf is returned this time. world_agg2

which is a spatial object containing 6 polygons representing the columns of
the world.
summarize() is the dplyr equivalent of aggregate(). It usually follows group_by(),
which specifies the grouping variable, as illustrated below:

world_agg3 = world %>%

group_by(continent) %>%

summarize(pop = sum(pop, na.rm = TRUE))

This approach is flexible and gives control over the new column names. This is
illustrated below: the command calculates the Earth’s population (~7 billion)
and number of countries (result not shown):

Vector attribute manipulation 55

TABLE 3.2: The top 3 most populous continents, and the number of countries
in each.

continent pop n_countries
Africa 1154946633 51
Asia 4311408059 47
Europe 669036256 39

world %>%

summarize(pop = sum(pop, na.rm = TRUE), n = n())

In the previous code chunk pop and n are column names in the result. sum() and
n() were the aggregating functions. The result is an sf object with a single row
representing the world (this works thanks to the geometric operation ‘union’,
as explained in Section 5.2.6).
Let’s combine what we have learned so far about dplyr by chaining together
functions to find the world’s 3 most populous continents (with dplyr::top_n()

) and the number of countries they contain (the result of this command is
presented in Table 3.2):

world %>%

dplyr::select(pop, continent) %>%

group_by(continent) %>%

summarize(pop = sum(pop, na.rm = TRUE), n_countries = n()) %>%

top_n(n = 3, wt = pop) %>%

st_drop_geometry()

More details are provided in the help pages (which can be accessed via ?sum-

marize and vignette(package = ”dplyr”) and Chapter 5 of R for Data Science3.

3.2.3 Vector attribute joining

Combining data from different sources is a common task in data preparation.
Joins do this by combining tables based on a shared ‘key’ variable. dplyr
has multiple join functions including left_join() and inner_join() — see vi-

gnette(”two-table”) for a full list. These function names follow conventions used
in the database language SQL4 (Grolemund and Wickham, 2016, Chapter 13);
using them to join non-spatial datasets to sf objects is the focus of this section.

4http://r4ds.had.co.nz/relational-data.html

http://r4ds.had.co.nz

56 Attribute data operations

dplyr join functions work the same on data frames and sf objects, the only
important difference being the geometry list column. The result of data joins
can be either an sf or data.frame object. The most common type of attribute
join on spatial data takes an sf object as the first argument and adds columns
to it from a data.frame specified as the second argument.
To demonstrate joins, we will combine data on coffee production with the world

dataset. The coffee data is in a data frame called coffee_data from the spData
package (see ?coffee_data for details). It has 3 columns: name_long names major
coffee-producing nations and coffee_production_2016 and coffee_production_2017

contain estimated values for coffee production in units of 60-kg bags in each year.
A ‘left join’, which preserves the first dataset, merges world with coffee_data:

world_coffee = left_join(world, coffee_data)

#> Joining, by = ”name_long”

class(world_coffee)

#> [1] ”sf” ”data.frame”

Because the input datasets share a ‘key variable’ (name_long) the join worked
without using the by argument (see ?left_join for details). The result is an sf

object identical to the original world object but with two new variables (with
column indices 11 and 12) on coffee production. This can be plotted as a map,
as illustrated in Figure 3.1, generated with the plot() function below:

names(world_coffee)

#> [1] ”iso_a2” ”name_long”

#> [3] ”continent” ”region_un”

#> [5] ”subregion” ”type”

#> [7] ”area_km2” ”pop”

#> [9] ”lifeExp” ”gdpPercap”

#> [11] ”coffee_production_2016” ”coffee_production_2017”

#> [13] ”geom”

plot(world_coffee[”coffee_production_2017”])

For joining to work, a ‘key variable’ must be supplied in both datasets. By
default dplyr uses all variables with matching names. In this case, both
world_coffee and world objects contained a variable called name_long, explaining
the message Joining, by = ”name_long”. In the majority of cases where variable
names are not the same, you have two options:

1. Rename the key variable in one of the objects so they match.
2. Use the by argument to specify the joining variables.

Vector attribute manipulation 57

FIGURE 3.1: World coffee production (thousand 60-kg bags) by country,
2017. Source: International Coffee Organization.

The latter approach is demonstrated below on a renamed version of coffee_data:

coffee_renamed = rename(coffee_data, nm = name_long)

world_coffee2 = left_join(world, coffee_renamed, by = c(name_long = ”nm”))

Note that the name in the original object is kept, meaning that world_coffee

and the new object world_coffee2 are identical. Another feature of the result is
that it has the same number of rows as the original dataset. Although there
are only 47 rows of data in coffee_data, all 177 the country records are kept
intact in world_coffee and world_coffee2: rows in the original dataset with no
match are assigned NA values for the new coffee production variables. What if
we only want to keep countries that have a match in the key variable? In that
case an inner join can be used:

world_coffee_inner = inner_join(world, coffee_data)

#> Joining, by = ”name_long”

nrow(world_coffee_inner)

#> [1] 45

Note that the result of inner_join() has only 45 rows compared with 47 in
coffee_data. What happened to the remaining rows? We can identify the rows
that did not match using the setdiff() function as follows:

58 Attribute data operations

setdiff(coffee_data$name_long, world$name_long)

#> [1] ”Congo, Dem. Rep. of” ”Others”

The result shows that Others accounts for one row not present in the world

dataset and that the name of the Democratic Republic of the Congo accounts for
the other: it has been abbreviated, causing the join to miss it. The following
command uses a string matching (regex) function from the stringr package
to confirm what Congo, Dem. Rep. of should be:

str_subset(world$name_long, ”Dem*.+Congo”)

#> [1] ”Democratic Republic of the Congo”

To fix this issue, we will create a new version of coffee_data and update the
name. inner_join()ing the updated data frame returns a result with all 46
coffee-producing nations:

coffee_data$name_long[grepl(”Congo,”, coffee_data$name_long)] =

str_subset(world$name_long, ”Dem*.+Congo”)

world_coffee_match = inner_join(world, coffee_data)

#> Joining, by = ”name_long”

nrow(world_coffee_match)

#> [1] 46

It is also possible to join in the other direction: starting with a non-spatial
dataset and adding variables from a simple features object. This is demonstrated
below, which starts with the coffee_data object and adds variables from the
original world dataset. In contrast with the previous joins, the result is not
another simple feature object, but a data frame in the form of a tidyverse
tibble: the output of a join tends to match its first argument:

coffee_world = left_join(coffee_data, world)

#> Joining, by = ”name_long”

class(coffee_world)

#> [1] ”tbl_df” ”tbl” ”data.frame”

In most cases, the geometry column is only useful in an sf object. The
geometry column can only be used for creating maps and spatial oper-
ations if R ‘knows’ it is a spatial object, defined by a spatial package
such as sf. Fortunately, non-spatial data frames with a geometry list
column (like coffee_world) can be coerced into an sf object as follows:
st_as_sf(coffee_world).

Vector attribute manipulation 59

This section covers the majority joining use cases. For more information,
we recommend Grolemund and Wickham (2016), the join vignette5 in the
geocompkg package that accompanies this book, and documentation of the
data.table package.6 Another type of join is a spatial join, covered in the
next chapter (Section 4.2.3).

3.2.4 Creating attributes and removing spatial information

Often, we would like to create a new column based on already existing columns.
For example, we want to calculate population density for each country. For
this we need to divide a population column, here pop, by an area column, here
area_km2 with unit area in square kilometers. Using base R, we can type:

world_new = world # do not overwrite our original data

world_new$pop_dens = world_new$pop / world_new$area_km2

Alternatively, we can use one of dplyr functions - mutate() or transmute().
mutate() adds new columns at the penultimate position in the sf object (the
last one is reserved for the geometry):

world %>%

mutate(pop_dens = pop / area_km2)

The difference between mutate() and transmute() is that the latter skips all other
existing columns (except for the sticky geometry column):

world %>%

transmute(pop_dens = pop / area_km2)

unite() pastes together existing columns. For example, we want to combine the
continent and region_un columns into a new column named con_reg. Additionally,
we can define a separator (here: a colon :) which defines how the values of the
input columns should be joined, and if the original columns should be removed
(here: TRUE):

world_unite = world %>%

unite(”con_reg”, continent:region_un, sep = ”:”, remove = TRUE)

The separate() function does the opposite of unite(): it splits one column into
multiple columns using either a regular expression or character positions.

5https://geocompr.github.io/geocompkg/articles/join.html
6data.table is a high-performance data processing package. Its application to geographic

data is covered in a blog post hosted at r-spatial.org/r/2017/11/13/perp-performance.html.

https://geocompr.github.io
http://www.r-spatial.org

60 Attribute data operations

world_separate = world_unite %>%

separate(con_reg, c(”continent”, ”region_un”), sep = ”:”)

The two functions rename() and set_names() are useful for renaming columns.
The first replaces an old name with a new one. The following command, for
example, renames the lengthy name_long column to simply name:

world %>%

rename(name = name_long)

set_names() changes all column names at once, and requires a character vector
with a name matching each column. This is illustrated below, which outputs
the same world object, but with very short names:

new_names = c(”i”, ”n”, ”c”, ”r”, ”s”, ”t”, ”a”, ”p”, ”l”, ”gP”, ”geom”)

world %>%

set_names(new_names)

It is important to note that attribute data operations preserve the geometry
of the simple features. As mentioned at the outset of the chapter, it can be
useful to remove the geometry. To do this, you have to explicitly remove it
because sf explicitly makes the geometry column sticky. This behavior ensures
that data frame operations do not accidentally remove the geometry column.
Hence, an approach such as select(world, -geom) will be unsuccessful and you
should instead use st_drop_geometry().7

world_data = world %>% st_drop_geometry()

class(world_data)

#> [1] ”data.frame”

3.3 Manipulating raster objects

In contrast to the vector data model underlying simple features (which rep-
resents points, lines and polygons as discrete entities in space), raster data
represent continuous surfaces. This section shows how raster objects work by
creating them from scratch, building on Section 2.3.1. Because of their unique
structure, subsetting and other operations on raster datasets work in a different
way, as demonstrated in Section 3.3.1.

7st_geometry(world_st) = NULL also works to remove the geometry from world, but overwrites
the original object.

Manipulating raster objects 61

The following code recreates the raster dataset used in Section 2.3.3, the
result of which is illustrated in Figure 3.2. This demonstrates how the raster()

function works to create an example raster named elev (representing elevations).

elev = raster(nrows = 6, ncols = 6, res = 0.5,

xmn = -1.5, xmx = 1.5, ymn = -1.5, ymx = 1.5,

vals = 1:36)

The result is a raster object with 6 rows and 6 columns (specified by the nrow

and ncol arguments), and a minimum and maximum spatial extent in x and y
direction (xmn, xmx, ymn, ymax). The vals argument sets the values that each cell
contains: numeric data ranging from 1 to 36 in this case. Raster objects can
also contain categorical values of class logical or factor variables in R. The
following code creates a raster representing grain sizes (Figure 3.2):

grain_order = c(”clay”, ”silt”, ”sand”)

grain_char = sample(grain_order, 36, replace = TRUE)

grain_fact = factor(grain_char, levels = grain_order)

grain = raster(nrows = 6, ncols = 6, res = 0.5,

xmn = -1.5, xmx = 1.5, ymn = -1.5, ymx = 1.5,

vals = grain_fact)

raster objects can contain values of class numeric, integer, logical or factor,
but not character. To use character values, they must first be converted into
an appropriate class, for example using the function factor(). The levels

argument was used in the preceding code chunk to create an ordered factor:
clay < silt < sand in terms of grain size. See the Data structures chapter of
Wickham (2014a) for further details on classes.

raster objects represent categorical variables as integers, so grain[1, 1] returns
a number that represents a unique identifier, rather than “clay”, “silt” or
“sand”. The raster object stores the corresponding look-up table or “Raster
Attribute Table” (RAT) as a data frame in a new slot named attributes, which
can be viewed with ratify(grain) (see ?ratify() for more information). Use the
function levels() for retrieving and adding new factor levels to the attribute
table:

levels(grain)[[1]] = cbind(levels(grain)[[1]], wetness = c(”wet”, ”moist”, ”dry”))

levels(grain)

#> [[1]]

#> ID VALUE wetness

#> 1 1 clay wet

62 Attribute data operations

FIGURE 3.2: Raster datasets with numeric (left) and categorical values
(right).

#> 2 2 silt moist

#> 3 3 sand dry

This behavior demonstrates that raster cells can only possess one value, an
identifier which can be used to look up the attributes in the corresponding
attribute table (stored in a slot named attributes). This is illustrated in
command below, which returns the grain size and wetness of cell IDs 1, 11 and
35:

factorValues(grain, grain[c(1, 11, 35)])

#> VALUE wetness

#> 1 sand dry

#> 2 silt moist

#> 3 clay wet

3.3.1 Raster subsetting

Raster subsetting is done with the base R operator [, which accepts a variety
of inputs:
• Row-column indexing
• Cell IDs

Manipulating raster objects 63

• Coordinates
• Another raster object
Here, we only show the first two options since these can be considered non-
spatial operations. If we need a spatial object to subset another or the output
is a spatial object, we refer to this as spatial subsetting. Therefore, the latter
two options will be shown in the next chapter (see Section 4.3.1 in the next
chapter).
The first two subsetting options are demonstrated in the commands below —
both return the value of the top left pixel in the raster object elev (results not
shown):

row 1, column 1

elev[1, 1]

cell ID 1

elev[1]

To extract all values or complete rows, you can use values() and getValues().
For multi-layered raster objects stack or brick, this will return the cell value(s)
for each layer. For example, stack(elev, grain)[1] returns a matrix with one
row and two columns — one for each layer. For multi-layer raster objects
another way to subset is with raster::subset(), which extracts layers from a
raster stack or brick. The [[and $ operators can also be used:

r_stack = stack(elev, grain)

names(r_stack) = c(”elev”, ”grain”)

three ways to extract a layer of a stack

raster::subset(r_stack, ”elev”)

r_stack[[”elev”]]

r_stack$elev

Cell values can be modified by overwriting existing values in conjunction with
a subsetting operation. The following code chunk, for example, sets the upper
left cell of elev to 0:

elev[1, 1] = 0

elev[]

#> [1] 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

#> [24] 24 25 26 27 28 29 30 31 32 33 34 35 36

Leaving the square brackets empty is a shortcut version of values() for retrieving
all values of a raster. Multiple cells can also be modified in this way:

64 Attribute data operations

elev[1, 1:2] = 0

3.3.2 Summarizing raster objects

raster contains functions for extracting descriptive statistics for entire rasters.
Printing a raster object to the console by typing its name returns minimum and
maximum values of a raster. summary() provides common descriptive statistics
(minimum, maximum, interquartile range and number of NAs). Further summary
operations such as the standard deviation (see below) or custom summary
statistics can be calculated with cellStats().

cellStats(elev, sd)

If you provide the summary() and cellStats() functions with a raster stack or
brick object, they will summarize each layer separately, as can be illustrated
by running: summary(brick(elev, grain)).

Raster value statistics can be visualized in a variety of ways. Specific functions
such as boxplot(), density(), hist() and pairs() work also with raster objects, as
demonstrated in the histogram created with the command below (not shown):

hist(elev)

In case a visualization function does not work with raster objects, one can
extract the raster data to be plotted with the help of values() or getValues().
Descriptive raster statistics belong to the so-called global raster operations.
These and other typical raster processing operations are part of the map
algebra scheme, which are covered in the next chapter (Section 4.3.2).

Some function names clash between packages (e.g., select(), as discussed
in a previous note). In addition to not loading packages by referring to
functions verbosely (e.g., dplyr::select()), another way to prevent function
names clashes is by unloading the offending package with detach(). The
following command, for example, unloads the raster package (this can also
be done in the package tab which resides by default in the right-bottom pane
in RStudio): detach(”package:raster”, unload = TRUE, force = TRUE). The force

argument makes sure that the package will be detached even if other packages
depend on it. This, however, may lead to a restricted usability of packages
depending on the detached package, and is therefore not recommended.

Exercises 65

3.4 Exercises

For these exercises we will use the us_states and us_states_df datasets from the
spData package:

library(spData)

data(us_states)

data(us_states_df)

us_states is a spatial object (of class sf), containing geometry and a few
attributes (including name, region, area, and population) of states within
the contiguous United States. us_states_df is a data frame (of class data.frame)
containing the name and additional variables (including median income and
poverty level, for the years 2010 and 2015) of US states, including Alaska,
Hawaii and Puerto Rico. The data comes from the United States Census
Bureau, and is documented in ?us_states and ?us_states_df.

1. Create a new object called us_states_name that contains only the NAME

column from the us_states object. What is the class of the new object
and what makes it geographic?

2. Select columns from the us_states object which contain population
data. Obtain the same result using a different command (bonus:
try to find three ways of obtaining the same result). Hint: try to
use helper functions, such as contains or starts_with from dplyr (see
?contains).

3. Find all states with the following characteristics (bonus find and
plot them):

•Belong to the Midwest region.
•Belong to the West region, have an area below 250,000 km2 and
in 2015 a population greater than 5,000,000 residents (hint: you
may need to use the function units::set_units() or as.numeric()).

•Belong to the South region, had an area larger than 150,000 km2

or a total population in 2015 larger than 7,000,000 residents.
4. What was the total population in 2015 in the us_states dataset?

What was the minimum and maximum total population in 2015?
5. How many states are there in each region?
6. What was the minimum and maximum total population in 2015 in

each region? What was the total population in 2015 in each region?
7. Add variables from us_states_df to us_states, and create a new object

called us_states_stats. What function did you use and why? Which
variable is the key in both datasets? What is the class of the new
object?

66 Attribute data operations

8. us_states_df has two more rows than us_states. How can you find
them? (hint: try to use the dplyr::anti_join() function)

9. What was the population density in 2015 in each state? What was
the population density in 2010 in each state?

10. How much has population density changed between 2010 and 2015
in each state? Calculate the change in percentages and map them.

11. Change the columns’ names in us_states to lowercase. (Hint: helper
functions - tolower() and colnames() may help.)

12. Using us_states and us_states_df create a new object called
us_states_sel. The new object should have only two variables - me-

dian_income_15 and geometry. Change the name of the median_income_15

column to Income.
13. Calculate the change in median income between 2010 and 2015 for

each state. Bonus: What was the minimum, average and maximum
median income in 2015 for each region? What is the region with the
largest increase of the median income?

14. Create a raster from scratch with nine rows and columns and a
resolution of 0.5 decimal degrees (WGS84). Fill it with random
numbers. Extract the values of the four corner cells.

15. What is the most common class of our example raster grain (hint:
modal())?

16. Plot the histogram and the boxplot of the data(dem, package =

”RQGIS”) raster.

4
Spatial data operations

Prerequisites

• This chapter requires the same packages used in Chapter 3:

library(sf)

library(raster)

library(dplyr)

library(spData)

4.1 Introduction

Spatial operations are a vital part of geocomputation. This chapter shows how
spatial objects can be modified in a multitude of ways based on their location
and shape. The content builds on the previous chapter because many spatial
operations have a non-spatial (attribute) equivalent. This is especially true
for vector operations: Section 3.2 on vector attribute manipulation provides
the basis for understanding its spatial counterpart, namely spatial subsetting
(covered in Section 4.2.1). Spatial joining (Section 4.2.3) and aggregation
(Section 4.2.5) also have non-spatial counterparts, covered in the previous
chapter.
Spatial operations differ from non-spatial operations in some ways, however.
To illustrate the point, imagine you are researching road safety. Spatial joins
can be used to find road speed limits related with administrative zones, even
when no zone ID is provided. But this raises the question: should the road
completely fall inside a zone for its values to be joined? Or is simply crossing
or being within a certain distance sufficient? When posing such questions, it
becomes apparent that spatial operations differ substantially from attribute
operations on data frames: the type of spatial relationship between objects
must be considered. These are covered in Section 4.2.2, on topological relations.

67

68 Spatial data operations

Another unique aspect of spatial objects is distance. All spatial objects are
related through space and distance calculations, covered in Section 4.2.6, can
be used to explore the strength of this relationship.
Spatial operations also apply to raster objects. Spatial subsetting of raster
objects is covered in Section 4.3.1; merging several raster ‘tiles’ into a single
object is covered in Section 4.3.7. For many applications, the most important
spatial operation on raster objects is map algebra, as we will see in Sections
4.3.2 to 4.3.6. Map algebra is also the prerequisite for distance calculations on
rasters, a technique which is covered in Section 4.3.6.

It is important to note that spatial operations that use two spatial objects
rely on both objects having the same coordinate reference system, a topic
that was introduced in Section 2.4 and which will be covered in more depth
in Chapter 6.

4.2 Spatial operations on vector data

This section provides an overview of spatial operations on vector geographic
data represented as simple features in the sf package before Section 4.3, which
presents spatial methods using the raster package.

4.2.1 Spatial subsetting

Spatial subsetting is the process of selecting features of a spatial object based
on whether or not they in some way relate in space to another object. It is
analogous to attribute subsetting (covered in Section 3.2.1) and can be done
with the base R square bracket ([) operator or with the filter() function from
the tidyverse.
An example of spatial subsetting is provided by the nz and nz_height datasets in
spData. These contain projected data on the 16 main regions and 101 highest
points in New Zealand, respectively (Figure 4.1). The following code chunk
first creates an object representing Canterbury, then uses spatial subsetting to
return all high points in the region:

canterbury = nz %>% filter(Name == ”Canterbury”)

canterbury_height = nz_height[canterbury,]

Like attribute subsetting x[y,] subsets features of a target x using the contents
of a source object y. Instead of y being of class logical or integer — a vector of

Spatial operations on vector data 69

FIGURE 4.1: Illustration of spatial subsetting with red triangles representing
101 high points in New Zealand, clustered near the central Canterbuy region
(left). The points in Canterbury were created with the ‘[‘ subsetting operator
(highlighted in gray, right).

TRUE and FALSE values or whole numbers — for spatial subsetting it is another
spatial (sf) object.
Various topological relations can be used for spatial subsetting. These determine
the type of spatial relationship that features in the target object must have
with the subsetting object to be selected, including touches, crosses or within
(see Section 4.2.2). Intersects is the default spatial subsetting operator, a
default that returns TRUE for many types of spatial relations, including touches,
crosses and is within. These alternative spatial operators can be specified with
the op = argument, a third argument that can be passed to the [operator for
sf objects. This is demonstrated in the following command which returns the
opposite of st_intersect(), points that do not intersect with Canterbury (see
Section 4.2.2):

nz_height[canterbury, , op = st_disjoint]

Note the empty argument — denoted with , , — in the preceding code chunk
is included to highlight op, the third argument in [for sf objects. One can use
this to change the subsetting operation in many ways. nz_height[canterbury,

70 Spatial data operations

2, op = st_disjoint], for example, returns the same rows but only includes
the second attribute column (see sf:::‘[.sf‘ and the ?sf for details).

For many applications, this is all you’ll need to know about spatial subsetting
for vector data. In this case, you can safely skip to Section 4.2.2.
If you’re interested in the details, including other ways of subsetting, read on.
Another way of doing spatial subsetting uses objects returned by topological
operators. This is demonstrated in the first command below:

sel_sgbp = st_intersects(x = nz_height, y = canterbury)

class(sel_sgbp)

#> [1] ”sgbp”

sel_logical = lengths(sel_sgbp) > 0

canterbury_height2 = nz_height[sel_logical,]

In the above code chunk, an object of class sgbp (a sparse geometry binary
predicate, a list of length x in the spatial operation) is created and then
converted into a logical vector sel_logical (containing only TRUE and FALSE

values). The function lengths() identifies which features in nz_height intersect
with any objects in y. In this case 1 is the greatest possible value but for more
complex operations one could use the method to subset only features that
intersect with, for example, 2 or more features from the source object.

Note: another way to return a logical output is by setting sparse = FALSE

(meaning ‘return a dense matrix not a sparse one’) in operators such as st_in-

tersects(). The command st_intersects(x = nz_height, y = canterbury, sparse

= FALSE)[, 1], for example, would return an output identical sel_logical. Note:
the solution involving sgbp objects is more generalisable though, as it works
for many-to-many operations and has lower memory requirements.

It should be noted that a logical can also be used with filter() as follows
(sparse = FALSE is explained in Section 4.2.2):

canterbury_height3 = nz_height %>%

filter(st_intersects(x = ., y = canterbury, sparse = FALSE))

At this point, there are three versions of canterbury_height, one created with
spatial subsetting directly and the other two via intermediary selection ob-
jects. To explore these objects and spatial subsetting in more detail, see the
supplementary vignettes on subsetting and tidverse-pitfalls1.

1https://geocompr.github.io/geocompkg/articles/

https://geocompr.github.io

Spatial operations on vector data 71

FIGURE 4.2: Points (p 1 to 4), line and polygon objects arranged to illustrate
topological relations.

4.2.2 Topological relations

Topological relations describe the spatial relationships between objects. To
understand them, it helps to have some simple test data to work with. Figure
4.2 contains a polygon (a), a line (l) and some points (p), which are created in
the code below.

create a polygon

a_poly = st_polygon(list(rbind(c(-1, -1), c(1, -1), c(1, 1), c(-1, -1))))

a = st_sfc(a_poly)

create a line

l_line = st_linestring(x = matrix(c(-1, -1, -0.5, 1), ncol = 2))

l = st_sfc(l_line)

create points

p_matrix = matrix(c(0.5, 1, -1, 0, 0, 1, 0.5, 1), ncol = 2)

p_multi = st_multipoint(x = p_matrix)

p = st_cast(st_sfc(p_multi), ”POINT”)

A simple query is: which of the points in p intersect in some way with polygon
a? The question can be answered by inspection (points 1 and 2 are over or
touch the triangle). It can also be answered by using a spatial predicate such
as do the objects intersect? This is implemented in sf as follows:

st_intersects(p, a)

#> Sparse geometry binary ..., where the predicate was ‘intersects’

#> 1: 1

72 Spatial data operations

#> 2: 1

#> 3: (empty)

#> 4: (empty)

The contents of the result should be as you expected: the function returns a
positive (1) result for the first two points, and a negative result (represented by
an empty vector) for the last two. What may be unexpected is that the result
comes in the form of a list of vectors. This sparse matrix output only registers
a relation if one exists, reducing the memory requirements of topological
operations on multi-feature objects. As we saw in the previous section, a dense
matrix consisting of TRUE or FALSE values for each combination of features can
also be returned when sparse = FALSE:

st_intersects(p, a, sparse = FALSE)

#> [,1]

#> [1,] TRUE

#> [2,] TRUE

#> [3,] FALSE

#> [4,] FALSE

The output is a matrix in which each row represents a feature in the target
object and each column represents a feature in the selecting object. In this case,
only the first two features in p intersect with a and there is only one feature in
a so the result has only one column. The result can be used for subsetting as
we saw in Section 4.2.1.
Note that st_intersects() returns TRUE for the second feature in the object p

even though it just touches the polygon a: intersects is a ‘catch-all’ topological
operation which identifies many types of spatial relation.
The opposite of st_intersects() is st_disjoint(), which returns only objects that
do not spatially relate in any way to the selecting object (note [, 1] converts
the result into a vector):

st_disjoint(p, a, sparse = FALSE)[, 1]

#> [1] FALSE FALSE TRUE TRUE

st_within() returns TRUE only for objects that are completely within the selecting
object. This applies only to the first object, which is inside the triangular
polygon, as illustrated below:

st_within(p, a, sparse = FALSE)[, 1]

#> [1] TRUE FALSE FALSE FALSE

Spatial operations on vector data 73

Note that although the first point is within the triangle, it does not touch any
part of its border. For this reason st_touches() only returns TRUE for the second
point:

st_touches(p, a, sparse = FALSE)[, 1]

#> [1] FALSE TRUE FALSE FALSE

What about features that do not touch, but almost touch the selection object?
These can be selected using st_is_within_distance(), which has an additional
dist argument. It can be used to set how close target objects need to be before
they are selected. Note that although point 4 is one unit of distance from the
nearest node of a (at point 2 in Figure 4.2), it is still selected when the distance
is set to 0.9. This is illustrated in the code chunk below, the second line of
which converts the lengthy list output into a logical object:

sel = st_is_within_distance(p, a, dist = 0.9) # can only return a sparse matrix

lengths(sel) > 0

#> [1] TRUE TRUE FALSE TRUE

Functions for calculating topological relations use spatial indices to largely
speed up spatial query performance. They achieve that using the Sort-Tile-
Recursive (STR) algorithm. The st_join function, mentioned in the next
section, also uses the spatial indexing. You can learn more at https://www.r-

spatial.org/r/2017/06/22/spatial-index.html.

4.2.3 Spatial joining

Joining two non-spatial datasets relies on a shared ‘key’ variable, as described
in Section 3.2.3. Spatial data joining applies the same concept, but instead
relies on shared areas of geographic space (it is also know as spatial overlay).
As with attribute data, joining adds a new column to the target object (the
argument x in joining functions), from a source object (y).
The process can be illustrated by an example. Imagine you have ten points
randomly distributed across the Earth’s surface. Of the points that are on land,
which countries are they in? Random points to demonstrate spatial joining
are created as follows:

set.seed(2018) # set seed for reproducibility

(bb_world = st_bbox(world)) # the world’s bounds

#> xmin ymin xmax ymax

#> -180.0 -90.0 180.0 83.6

random_df = tibble(

https://www.r-spatial.org
https://www.r-spatial.org

74 Spatial data operations

x = runif(n = 10, min = bb_world[1], max = bb_world[3]),

y = runif(n = 10, min = bb_world[2], max = bb_world[4])

)

random_points = random_df %>%

st_as_sf(coords = c(”x”, ”y”)) %>% # set coordinates

st_set_crs(4326) # set geographic CRS

FIGURE 4.3: Illustration of a spatial join. A new attribute variable is added
to random points (top left) from source world object (top right) resulting in
the data represented in the final panel.

The scenario is illustrated in Figure 4.3. The random_points object (top left)
has no attribute data, while the world (top right) does. The spatial join
operation is done by st_join(), which adds the name_long variable to the points,
resulting in random_joined which is illustrated in Figure 4.3 (bottom left — see
04-spatial-join.R2). Before creating the joined dataset, we use spatial subsetting
to create world_random, which contains only countries that contain random points,
to verify the number of country names returned in the joined dataset should
be four (see the top right panel of Figure 4.3).

world_random = world[random_points,]

nrow(world_random)

#> [1] 4

random_joined = st_join(random_points, world[”name_long”])

By default, st_join() performs a left join (see Section 3.2.3), but it can also
do inner joins by setting the argument left = FALSE. Like spatial subsetting,

2https://github.com/Robinlovelace/geocompr/blob/master/code/04-spatial-join.R

https://github.com

Spatial operations on vector data 75

FIGURE 4.4: The spatial distribution of cycle hire points in London based
on official data (blue) and OpenStreetMap data (red).

the default topological operator used by st_join() is st_intersects(). This can
be changed with the join argument (see ?st_join for details). In the example
above, we have added features of a polygon layer to a point layer. In other
cases, we might want to join point attributes to a polygon layer. There might
be occasions where more than one point falls inside one polygon. In such a
case st_join() duplicates the polygon feature: it creates a new row for each
match.

4.2.4 Non-overlapping joins

Sometimes two geographic datasets do not touch but still have a strong geo-
graphic relationship enabling joins. The datasets cycle_hire and cycle_hire_osm,
already attached in the spData package, provide a good example. Plotting
them shows that they are often closely related but they do not touch, as shown
in Figure 4.4, a base version of which is created with the following code below:

plot(st_geometry(cycle_hire), col = ”blue”)

plot(st_geometry(cycle_hire_osm), add = TRUE, pch = 3, col = ”red”)

We can check if any points are the same st_intersects() as shown below:

any(st_touches(cycle_hire, cycle_hire_osm, sparse = FALSE))

#> [1] FALSE

76 Spatial data operations

Imagine that we need to join the capacity variable in cycle_hire_osm onto the offi-
cial ‘target’ data contained in cycle_hire. This is when a non-overlapping join is
needed. The simplest method is to use the topological operator st_is_within_dis-
tance() shown in Section 4.2.2, using a threshold distance of 20 m. Note that,
before performing the relation, both objects are transformed into a projected
CRS. These projected objects are created below (note the affix _P, short for
projected):

cycle_hire_P = st_transform(cycle_hire, 27700)

cycle_hire_osm_P = st_transform(cycle_hire_osm, 27700)

sel = st_is_within_distance(cycle_hire_P, cycle_hire_osm_P, dist = 20)

summary(lengths(sel) > 0)

#> Mode FALSE TRUE

#> logical 304 438

This shows that there are 438 points in the target object cycle_hire_P within
the threshold distance of cycle_hire_osm_P. How to retrieve the values associated
with the respective cycle_hire_osm_P points? The solution is again with st_join(),
but with an addition dist argument (set to 20 m below):

z = st_join(cycle_hire_P, cycle_hire_osm_P, st_is_within_distance, dist = 20)

nrow(cycle_hire)

#> [1] 742

nrow(z)

#> [1] 762

Note that the number of rows in the joined result is greater than the target.
This is because some cycle hire stations in cycle_hire_P have multiple matches
in cycle_hire_osm_P. To aggregate the values for the overlapping points and
return the mean, we can use the aggregation methods learned in Chapter 3,
resulting in an object with the same number of rows as the target:

z = z %>%

group_by(id) %>%

summarize(capacity = mean(capacity))

nrow(z) == nrow(cycle_hire)

#> [1] TRUE

The capacity of nearby stations can be verified by comparing a plot of the
capacity of the source cycle_hire_osm data with the results in this new object
(plots not shown):

Spatial operations on vector data 77

plot(cycle_hire_osm[”capacity”])

plot(z[”capacity”])

The result of this join has used a spatial operation to change the attribute data
associated with simple features; the geometry associated with each feature has
remained unchanged.

4.2.5 Spatial data aggregation

Like attribute data aggregation, covered in Section 3.2.2, spatial data aggrega-
tion can be a way of condensing data. Aggregated data show some statistics
about a variable (typically average or total) in relation to some kind of grouping
variable. Section 3.2.2 demonstrated how aggregate() and group_by() %>% summa-

rize() condense data based on attribute variables. This section demonstrates
how the same functions work using spatial grouping variables.
Returning to the example of New Zealand, imagine you want to find out the
average height of high points in each region. This is a good example of spatial
aggregation: it is the geometry of the source (y or nz in this case) that defines
how values in the target object (x or nz_height) are grouped. This is illustrated
using the base aggregate() function below:

nz_avheight = aggregate(x = nz_height, by = nz, FUN = mean)

The result of the previous command is an sf object with the same geometry as
the (spatial) aggregating object (nz).3 The result of the previous operation is
illustrated in Figure 4.5. The same result can also be generated using the ‘tidy’
functions group_by() and summarize() (used in combination with st_join()):

nz_avheight2 = nz %>%

st_join(nz_height) %>%

group_by(Name) %>%

summarize(elevation = mean(elevation, na.rm = TRUE))

The resulting nz_avheight objects have the same geometry as the aggregating
object nz but with a new column representing the mean average height of
points within each region of New Zealand (other summary functions such as
median() and sd() can be used in place of mean()). Note that regions containing
no points have an associated elevation value of NA. For aggregating operations
which also create new geometries, see Section 5.2.6.
Spatial congruence is an important concept related to spatial aggregation. An
aggregating object (which we will refer to as y) is congruent with the target

3This can be verified with identical(st_geometry(nz), st_geometry(nz_avheight)).

78 Spatial data operations

FIGURE 4.5: Average height of the top 101 high points across the regions
of New Zealand.

object (x) if the two objects have shared borders. Often this is the case for
administrative boundary data, whereby larger units — such as Middle Layer
Super Output Areas (MSOAs4) in the UK or districts in many other European
countries — are composed of many smaller units.
Incongruent aggregating objects, by contrast, do not share common borders
with the target (Qiu et al., 2012). This is problematic for spatial aggregation
(and other spatial operations) illustrated in Figure 4.6. Areal interpolation
overcomes this issue by transferring values from one set of areal units to another.
Algorithms developed for this task include area weighted and ‘pycnophylactic’
areal interpolation methods (Tobler, 1979).
The spData package contains a dataset named incongruent (colored polygons
with black borders in the right panel of Figure 4.6) and a dataset named
aggregating_zones (the two polygons with the translucent blue border in the
right panel of Figure 4.6). Let us assume that the value column of incongruent
refers to the total regional income in million Euros. How can we transfer
the values of the underlying nine spatial polygons into the two polygons of
aggregating_zones?

4https://www.ons.gov.uk/methodology/geography/ukgeographies/censusgeography

https://www.ons.gov.uk

Spatial operations on vector data 79

FIGURE 4.6: Illustration of congruent (left) and incongruent (right) areal
units with respect to larger aggregating zones (translucent blue borders).

The simplest useful method for this is area weighted spatial interpolation. In this
case values from the incongruent object are allocated to the aggregating_zones in
proportion to area; the larger the spatial intersection between input and output
features, the larger the corresponding value. For instance, if one intersection of
incongruent and aggregating_zones is 1.5 km2 but the whole incongruent polygon
in question has 2 km2 and a total income of 4 million Euros, then the target
aggregating zone will obtain three quarters of the income, in this case 3 million
Euros. This is implemented in st_interpolate_aw(), as demonstrated in the code
chunk below.

agg_aw = st_interpolate_aw(incongruent[, ”value”], aggregating_zones,

extensive = TRUE)

#> Warning in st_interpolate_aw(incongruent[, ”value”], aggregating_zones, :

#> st_interpolate_aw assumes attributes are constant over areas of x

show the aggregated result

agg_aw$value

#> [1] 19.6 25.7

In our case it is meaningful to sum up the values of the intersections falling
into the aggregating zones since total income is a so-called spatially extensive
variable. This would be different for spatially intensive variables, which are
independent of the spatial units used, such as income per head or percentages5.
In this case it is more meaningful to apply an average function when doing
the aggregation instead of a sum function. To do so, one would only have to
set the extensive parameter to FALSE.

5http://ibis.geog.ubc.ca/courses/geob370/notes/intensive_extensive.htm

http://ibis.geog.ubc.ca

80 Spatial data operations

4.2.6 Distance relations

While topological relations are binary — a feature either intersects with another
or does not — distance relations are continuous. The distance between two
objects is calculated with the st_distance() function. This is illustrated in the
code chunk below, which finds the distance between the highest point in New
Zealand and the geographic centroid of the Canterbury region, created in
Section 4.2.1:

nz_heighest = nz_height %>% top_n(n = 1, wt = elevation)

canterbury_centroid = st_centroid(canterbury)

st_distance(nz_heighest, canterbury_centroid)

#> Units: [m]

#> [,1]

#> [1,] 115540

There are two potentially surprising things about the result:
• It has units, telling us the distance is 100,000 meters, not 100,000 inches, or

any other measure of distance.
• It is returned as a matrix, even though the result only contains a single value.
This second feature hints at another useful feature of st_distance(), its ability
to return distance matrices between all combinations of features in objects x

and y. This is illustrated in the command below, which finds the distances
between the first three features in nz_height and the Otago and Canterbury
regions of New Zealand represented by the object co.

co = filter(nz, grepl(”Canter|Otag”, Name))

st_distance(nz_height[1:3,], co)

#> Units: [m]

#> [,1] [,2]

#> [1,] 123537 15498

#> [2,] 94283 0

#> [3,] 93019 0

Note that the distance between the second and third features in nz_height and
the second feature in co is zero. This demonstrates the fact that distances
between points and polygons refer to the distance to any part of the polygon:
The second and third points in nz_height are in Otago, which can be verified
by plotting them (result not shown):

plot(st_geometry(co)[2])

plot(st_geometry(nz_height)[2:3], add = TRUE)

Spatial operations on raster data 81

4.3 Spatial operations on raster data

This section builds on Section 3.3, which highlights various basic methods for
manipulating raster datasets, to demonstrate more advanced and explicitly
spatial raster operations, and uses the objects elev and grain manually created
in Section 3.3. For the reader’s convenience, these datasets can be also found
in the spData package.

4.3.1 Spatial subsetting

The previous chapter (Section 3.3) demonstrated how to retrieve values associ-
ated with specific cell IDs or row and column combinations. Raster objects can
also be extracted by location (coordinates) and other spatial objects. To use
coordinates for subsetting, one can ‘translate’ the coordinates into a cell ID
with the raster function cellFromXY(). An alternative is to use raster::extract()

(be careful, there is also a function called extract() in the tidyverse) to extract
values. Both methods are demonstrated below to find the value of the cell that
covers a point located 0.1 units from the origin.

id = cellFromXY(elev, xy = c(0.1, 0.1))

elev[id]

the same as

raster::extract(elev, data.frame(x = 0.1, y = 0.1))

It is convenient that both functions also accept objects of class Spatial* Objects.
Raster objects can also be subset with another raster object, as illustrated in
Figure 4.7 (left panel) and demonstrated in the code chunk below:

clip = raster(xmn = 0.9, xmx = 1.8, ymn = -0.45, ymx = 0.45,

res = 0.3, vals = rep(1, 9))

elev[clip]

#> [1] 18 24

we can also use extract

extract(elev, extent(clip))

Basically, this amounts to retrieving the values of the first raster (here: elev)
falling within the extent of a second raster (here: clip).
So far, the subsetting returned the values of specific cells, however, when doing
spatial subsetting, one often also expects a spatial object as an output. To do
this, we can use again the [when we additionally set the drop parameter to
FALSE. To illustrate this, we retrieve the first two cells of elev as an individual
raster object. As mentioned in Section 3.3, the [operator accepts various

82 Spatial data operations

FIGURE 4.7: Subsetting raster values with the help of another raster (left).
Raster mask (middle). Output of masking a raster (right).

inputs to subset rasters and returns a raster object when drop = FALSE. The
code chunk below subsets the elev raster by cell ID and row-column index with
identical results: the first two cells on the top row (only the first 2 lines of the
output is shown):

elev[1:2, drop = FALSE] # spatial subsetting with cell IDs

elev[1, 1:2, drop = FALSE] # spatial subsetting by row,column indices

#> class : RasterLayer

#> dimensions : 1, 2, 2 (nrow, ncol, ncell)

#> ...

Another common use case of spatial subsetting is when a raster with logical (or
NA) values is used to mask another raster with the same extent and resolution,
as illustrated in Figure 4.7, middle and right panel. In this case, the [, mask()
and overlay() functions can be used (results not shown):

create raster mask

rmask = elev

values(rmask) = sample(c(NA, TRUE), 36, replace = TRUE)

spatial subsetting

elev[rmask, drop = FALSE] # with [operator

mask(elev, rmask) # with mask()

overlay(elev, rmask, fun = ”max”) # with overlay

In the code chunk above, we have created a mask object called rmask with
values randomly assigned to NA and TRUE. Next, we want to keep those values
of elev which are TRUE in rmask. In other words, we want to mask elev with
rmask. These operations are in fact Boolean local operations since we compare

Spatial operations on raster data 83

cell-wise two rasters. The next subsection explores these and related operations
in more detail.

4.3.2 Map algebra

Map algebra makes raster processing really fast. This is because raster datasets
only implicitly store coordinates. To derive the coordinate of a specific cell,
we have to calculate it using its matrix position and the raster resolution and
origin. For the processing, however, the geographic position of a cell is barely
relevant as long as we make sure that the cell position is still the same after the
processing (one-to-one locational correspondence). Additionally, if two or more
raster datasets share the same extent, projection and resolution, one could
treat them as matrices for the processing. This is exactly what map algebra is
doing in R. First, the raster package checks the headers of the rasters on which
to perform any algebraic operation, and only if they are correspondent to each
other, the processing goes on.6 And secondly, map algebra retains the so-called
one-to-one locational correspondence. This is where it substantially differs
from matrix algebra which changes positions when for example multiplying or
dividing matrices.
Map algebra (or cartographic modeling) divides raster operations into four
subclasses (Tomlin, 1990), with each working on one or several grids simulta-
neously:

1. Local or per-cell operations.
2. Focal or neighborhood operations. Most often the output cell value

is the result of a 3 x 3 input cell block.
3. Zonal operations are similar to focal operations, but the surrounding

pixel grid on which new values are computed can have irregular sizes
and shapes.

4. Global or per-raster operations; that means the output cell derives
its value potentially from one or several entire rasters.

This typology classifies map algebra operations by the number/shape of cells
used for each pixel processing step. For the sake of completeness, we should
mention that raster operations can also be classified by discipline such as
terrain, hydrological analysis or image classification. The following sections
explain how each type of map algebra operations can be used, with reference
to worked examples (also see vignette(”Raster”) for a technical description of
map algebra).

6Map algebra operations are also possible with headerless rasters; in this case the user
has to make sure that in fact there exists a one-to-one locational correspondence. An
example showing how to import a headerless raster into R is provided in a post at https:

//stat.ethz.ch/pipermail/r-sig-geo/2013-May/018278.html.

https://stat.ethz.ch
https://stat.ethz.ch

84 Spatial data operations

4.3.3 Local operations

Local operations comprise all cell-by-cell operations in one or several layers.
A good example is the classification of intervals of numeric values into groups
such as grouping a digital elevation model into low (class 1), middle (class 2)
and high elevations (class 3). Using the reclassify() command, we need first to
construct a reclassification matrix, where the first column corresponds to the
lower and the second column to the upper end of the class. The third column
represents the new value for the specified ranges in column one and two. Here,
we assign the raster values in the ranges 0–12, 12–24 and 24–36 are reclassified
to take values 1, 2 and 3, respectively.

rcl = matrix(c(0, 12, 1, 12, 24, 2, 24, 36, 3), ncol = 3, byrow = TRUE)

recl = reclassify(elev, rcl = rcl)

We will perform several reclassifactions in Chapter 13.
Raster algebra is another classical use case of local operations. This includes
adding, subtracting and squaring two rasters. Raster algebra also allows logical
operations such as finding all raster cells that are greater than a specific value
(5 in our example below). The raster package supports all these operations
and more, as described in vignette(”Raster”) and demonstrated below (results
not show):

elev + elev

elev^2

log(elev)

elev > 5

Instead of arithmetic operators, one can also use the calc() and overlay()

functions. These functions are more efficient, hence, they are preferable in the
presence of large raster datasets. Additionally, they allow you to directly store
an output file.
The calculation of the normalized difference vegetation index (NDVI) is a
well-known local (pixel-by-pixel) raster operation. It returns a raster with values
between -1 and 1; positive values indicate the presence of living plants (mostly
> 0.2). NDVI is calculated from red and near-infrared (NIR) bands of remotely
sensed imagery, typically from satellite systems such as Landsat or Sentinel.
Vegetation absorbs light heavily in the visible light spectrum, and especially
in the red channel, while reflecting NIR light, explaining the NVDI formula:

𝑁𝐷𝑉 𝐼 = NIR − Red
NIR + Red

Predictive mapping is another interesting application of local raster operations.

Spatial operations on raster data 85

The response variable corresponds to measured or observed points in space, for
example, species richness, the presence of landslides, tree disease or crop yield.
Consequently, we can easily retrieve space- or airborne predictor variables from
various rasters (elevation, pH, precipitation, temperature, landcover, soil class,
etc.). Subsequently, we model our response as a function of our predictors
using lm, glm, gam or a machine-learning technique. Spatial predictions on
raster objects can therefore be made by applying estimated coefficients to the
predictor raster vaules, and summing the output raster values (see Chapter
14).

4.3.4 Focal operations

While local functions operate on one cell, though possibly from multiple
layers, focal operations take into account a central cell and its neighbors. The
neighborhood (also named kernel, filter or moving window) under consideration
is typically of size 3-by-3 cells (that is the central cell and its eight surrounding
neighbors), but can take on any other (not necessarily rectangular) shape as
defined by the user. A focal operation applies an aggregation function to all cells
within the specified neighborhood, uses the corresponding output as the new
value for the the central cell, and moves on to the next central cell (Figure 4.8).
Other names for this operation are spatial filtering and convolution (Burrough
et al., 2015).
In R, we can use the focal() function to perform spatial filtering. We define
the shape of the moving window with a matrix whose values correspond to
weights (see w parameter in the code chunk below). Secondly, the fun parameter
lets us specify the function we wish to apply to this neighborhood. Here, we
choose the minimum, but any other summary function, including sum(), mean(),
or var() can be used.

r_focal = focal(elev, w = matrix(1, nrow = 3, ncol = 3), fun = min)

We can quickly check if the output meets our expectations. In our example, the
minimum value has to be always the upper left corner of the moving window
(remember we have created the input raster by row-wise incrementing the cell
values by one starting at the upper left corner). In this example, the weighting
matrix consists only of 1s, meaning each cell has the same weight on the output,
but this can be changed.
Focal functions or filters play a dominant role in image processing. Low-pass
or smoothing filters use the mean function to remove extremes. In the case of
categorical data, we can replace the mean with the mode, which is the most
common value. By contrast, high-pass filters accentuate features. The line
detection Laplace and Sobel filters might serve as an example here. Check
the focal() help page for how to use them in R (this will also be used in the
excercises at the end of this chapter).

86 Spatial data operations

FIGURE 4.8: Input raster (left) and resulting output raster (right) due to a
focal operation - finding the minimum value in 3-by-3 moving windows.

Terrain processing, the calculation of topographic characteristics such as slope,
aspect and flow directions, relies on focal functions. terrain() can be used
to calculate these metrics, although some terrain algorithms, including the
Zevenbergen and Thorne method to compute slope, are not implemented in this
raster function. Many other algorithms — including curvatures, contributing
areas and wetness indices — are implemented in open source desktop geographic
information system (GIS) software. Chapter 9 shows how to access such GIS
functionality from within R.

4.3.5 Zonal operations

Zonal operations are similar to focal operations. The difference is that zonal
filters can take on any shape instead of a predefined rectangular window. Our
grain size raster is a good example (Figure 3.2) because the different grain
sizes are spread in an irregular fashion throughout the raster.
To find the mean elevation for each grain size class, we can use the zonal()

command. This kind of operation is also known as zonal statistics in the GIS
world.

z = zonal(elev, grain, fun = ”mean”) %>%

as.data.frame()

z

#> zone mean

Spatial operations on raster data 87

#> 1 1 17.8

#> 2 2 18.5

#> 3 3 19.2

This returns the statistics for each category, here the mean altitude for each
grain size class, and can be added to the attribute table of the ratified raster
(see previous chapter).

4.3.6 Global operations and distances

Global operations are a special case of zonal operations with the entire raster
dataset representing a single zone. The most common global operations are
descriptive statistics for the entire raster dataset such as the minimum or
maximum (see Section 3.3.2). Aside from that, global operations are also
useful for the computation of distance and weight rasters. In the first case,
one can calculate the distance from each cell to a specific target cell. For
example, one might want to compute the distance to the nearest coast (see also
raster::distance()). We might also want to consider topography, that means,
we are not only interested in the pure distance but would like also to avoid
the crossing of mountain ranges when going to the coast. To do so, we can
weight the distance with elevation so that each additional altitudinal meter
‘prolongs’ the Euclidean distance. Visibility and viewshed computations also
belong to the family of global operations (in the exercises of Chapter 9, you
will compute a viewshed raster).
Many map algebra operations have a counterpart in vector processing (Liu
and Mason, 2009). Computing a distance raster (zonal operation) while only
considering a maximum distance (logical focal operation) is the equivalent to a
vector buffer operation (Section 5.2.5). Reclassifying raster data (either local or
zonal function depending on the input) is equivalent to dissolving vector data
(Section 4.2.3). Overlaying two rasters (local operation), where one contains
NULL or NA values representing a mask, is similar to vector clipping (Section
5.2.5). Quite similar to spatial clipping is intersecting two layers (Section
4.2.1). The difference is that these two layers (vector or raster) simply share
an overlapping area (see Figure 5.8 for an example). However, be careful with
the wording. Sometimes the same words have slightly different meanings for
raster and vector data models. Aggregating in the case of vector data refers
to dissolving polygons, while it means increasing the resolution in the case
of raster data. In fact, one could see dissolving or aggregating polygons as
decreasing the resolution. However, zonal operations might be the better raster
equivalent compared to changing the cell resolution. Zonal operations can
dissolve the cells of one raster in accordance with the zones (categories) of
another raster using an aggregation function (see above).

88 Spatial data operations

4.3.7 Merging rasters

Suppose we would like to compute the NDVI (see Section 4.3.3), and addition-
ally want to compute terrain attributes from elevation data for observations
within a study area. Such computations rely on remotely sensed information.
The corresponding imagery is often divided into scenes covering a specific
spatial extent. Frequently, a study area covers more than one scene. In these
cases we would like to merge the scenes covered by our study area. In the
easiest case, we can just merge these scenes, that is put them side by side. This
is possible with digital elevation data (SRTM, ASTER). In the following code
chunk we first download the SRTM elevation data for Austria and Switzerland
(for the country codes, see the raster function ccodes()). In a second step, we
merge the two rasters into one.

aut = getData(”alt”, country = ”AUT”, mask = TRUE)

ch = getData(”alt”, country = ”CHE”, mask = TRUE)

aut_ch = merge(aut, ch)

Raster’s merge() command combines two images, and in case they overlap,
it uses the value of the first raster. You can do exactly the same with gdalU-

tils::mosaic_rasters() which is faster, and therefore recommended if you have
to merge a multitude of large rasters stored on disk.
The merging approach is of little use when the overlapping values do not
correspond to each other. This is frequently the case when you want to
combine spectral imagery from scenes that were taken on different dates. The
merge() command will still work but you will see a clear border in the resulting
image. The mosaic() command lets you define a function for the overlapping
area. For instance, we could compute the mean value. This might smooth
the clear border in the merged result but it will most likely not make it
disappear. To do so, we need a more advanced approach. Remote sensing
scientists frequently apply histogram matching or use regression techniques
to align the values of the first image with those of the second image. The
packages landsat (histmatch(), relnorm(), PIF()), satellite (calcHistMatch()) and
RStoolbox (histMatch(), pifMatch()) provide the corresponding functions. For
a more detailed introduction on how to use R for remote sensing, we refer the
reader to Wegmann et al. (2016).

4.4 Exercises

1. It was established in Section 4.2 that Canterbury was the region
of New Zealand containing most of the 100 highest points in the

Exercises 89

country. How many of these high points does the Canterbury region
contain?

2. Which region has the second highest number of nz_height points in,
and how many does it have?

3. Generalizing the question to all regions: how many of New Zealand’s
16 regions contain points which belong to the top 100 highest points
in the country? Which regions?

•Bonus: create a table listing these regions in order of the number
of points and their name.

4. Use data(dem, package = ”RQGIS”), and reclassify the elevation in three
classes: low, medium and high. Secondly, attach the NDVI raster
(data(ndvi, package = ”RQGIS”)) and compute the mean NDVI and the
mean elevation for each altitudinal class.

5. Apply a line detection filter to raster(system.file(”external/rl-

ogo.grd”, package = ”raster”)). Plot the result. Hint: Read
?raster::focal().

6. Calculate the NDVI of a Landsat image. Use the
Landsat image provided by the spDataLarge package
(system.file(”raster/landsat.tif”, package=”spDataLarge”)).

7. A StackOverflow post7 shows how to compute distances to the
nearest coastline using raster::distance(). Retrieve a digital elevation
model of Spain, and compute a raster which represents distances
to the coast across the country (hint: use getData()). Second, use
a simple approach to weight the distance raster with elevation
(other weighting approaches are possible, include flow direction and
steepness); every 100 altitudinal meters should increase the distance
to the coast by 10 km. Finally, compute the difference between
the raster using the Euclidean distance and the raster weighted by
elevation. Note: it may be wise to increase the cell size of the input
raster to reduce compute time during this operation.

7https://stackoverflow.com/questions/35555709/global-raster-of-geographic-distances

https://stackoverflow.com

http://taylorandfrancis.com

5
Geometry operations

Prerequisites

• This chapter uses the same packages as Chapter 4 but with the addition of
spDataLarge, which was installed in Chapter 2:

library(sf)

library(raster)

library(dplyr)

library(spData)

library(spDataLarge)

5.1 Introduction

The previous three chapters have demonstrated how geographic datasets are
structured in R (Chapter 2) and how to manipulate them based on their
non-geographic attributes (Chapter 3) and spatial properties (Chapter 4). This
chapter extends these skills. After reading it — and attempting the exercises at
the end — you should understand and have control over the geometry column
in sf objects and the geographic location of pixels represented in rasters.
Section 5.2 covers transforming vector geometries with ‘unary’ and ‘binary’
operations. Unary operations work on a single geometry in isolation. This
includes simplification (of lines and polygons), the creation of buffers and
centroids, and shifting/scaling/rotating single geometries using ‘affine transfor-
mations’ (Sections 5.2.1 to 5.2.4). Binary transformations modify one geometry
based on the shape of another. This includes clipping and geometry unions,
covered in Sections 5.2.5 and 5.2.6, respectively. Type transformations (from a
polygon to a line, for example) are demonstrated in Section 5.2.7.
Section 5.3 covers geometric transformations on raster objects. This involves
changing the size and number of the underlying pixels, and assigning them new

91

92 Geometry operations

values. It teaches how to change the resolution (also called raster aggregation
and disaggregation), the extent and the origin of a raster. These operations
are especially useful if one would like to align raster datasets from diverse
sources. Aligned raster objects share a one-to-one correspondence between
pixels, allowing them to be processed using map algebra operations, described
in Section 4.3.2. The final Section 5.4 connects vector and raster objects. It
shows how raster values can be ‘masked’ and ‘extracted’ by vector geometries.
Importantly it shows how to ‘polygonize’ rasters and ‘rasterize’ vector datasets,
making the two data models more interchangeable.

5.2 Geometric operations on vector data

This section is about operations that in some way change the geometry of vector
(sf) objects. It is more advanced than the spatial data operations presented
in the previous chapter (in Section 4.2), because here we drill down into the
geometry: the functions discussed in this section work on objects of class sfc

in addition to objects of class sf.

5.2.1 Simplification

Simplification is a process for generalization of vector objects (lines and poly-
gons) usually for use in smaller scale maps. Another reason for simplifying
objects is to reduce the amount of memory, disk space and network bandwidth
they consume: it may be wise to simplify complex geometries before publishing
them as interactive maps. The sf package provides st_simplify(), which uses
the GEOS implementation of the Douglas-Peucker algorithm to reduce the
vertex count. st_simplify() uses the dTolerance to control the level of gener-
alization in map units (see Douglas and Peucker, 1973, for details). Figure
5.1 illustrates simplification of a LINESTRING geometry representing the river
Seine and tributaries. The simplified geometry was created by the following
command:

seine_simp = st_simplify(seine, dTolerance = 2000) # 2000 m

The resulting seine_simp object is a copy of the original seine but with fewer
vertices. This is apparent, with the result being visually simpler (Figure 5.1,
right) and consuming less memory than the original object, as verified below:

object.size(seine)

#> 17304 bytes

Geometric operations on vector data 93

FIGURE 5.1: Comparison of the original and simplified geometry of the
seine object.

object.size(seine_simp)

#> 8320 bytes

Simplification is also applicable for polygons. This is illustrated using us_states,
representing the contiguous United States. As we show in Chapter 6, GEOS
assumes that the data is in a projected CRS and this could lead to unexpected
results when using a geographic CRS. Therefore, the first step is to project
the data into some adequate projected CRS, such as US National Atlas Equal
Area (epsg = 2163) (on the left in Figure 5.2):

us_states2163 = st_transform(us_states, 2163)

st_simplify() works equally well with projected polygons:

us_states_simp1 = st_simplify(us_states2163, dTolerance = 100000) # 100 km

A limitation with st_simplify() is that it simplifies objects on a per-geometry
basis. This means the ‘topology’ is lost, resulting in overlapping and ‘holy’ areal
units illustrated in Figure 5.2 (middle panel). ms_simplify() from rmapshaper
provides an alternative that overcomes this issue. By default it uses the Vis-
valingam algorithm, which overcomes some limitations of the Douglas-Peucker
algorithm (Visvalingam and Whyatt, 1993). The following code chunk uses

94 Geometry operations

FIGURE 5.2: Polygon simplification in action, comparing the original geom-
etry of the contiguous United States with simplified versions, generated with
functions from sf (center) and rmapshaper (right) packages.

this function to simplify us_states2163. The result has only 1% of the vertices
of the input (set using the argument keep) but its number of objects remains
intact because we set keep_shapes = TRUE:1

proportion of points to retain (0-1; default 0.05)

us_states2163$AREA = as.numeric(us_states2163$AREA)

us_states_simp2 = rmapshaper::ms_simplify(us_states2163, keep = 0.01,

keep_shapes = TRUE)

Finally, the visual comparison of the original dataset and the two simplified
versions shows differences between the Douglas-Peucker (st_simplify) and
Visvalingam (ms_simplify) algorithm outputs (Figure 5.2):

5.2.2 Centroids

Centroid operations identify the center of geographic objects. Like statistical
measures of central tendency (including mean and median definitions of ‘aver-
age’), there are many ways to define the geographic center of an object. All of
them create single point representations of more complex vector objects.
The most commonly used centroid operation is the geographic centroid. This
type of centroid operation (often referred to as ‘the centroid’) represents the
center of mass in a spatial object (think of balancing a plate on your finger).
Geographic centroids have many uses, for example to create a simple point rep-
resentation of complex geometries, or to estimate distances between polygons.
They can be calculated with the sf function st_centroid() as demonstrated in
the code below, which generates the geographic centroids of regions in New
Zealand and tributaries to the River Seine, illustrated with black points in
Figure 5.3.

1Simplification of multipolygon objects can remove small internal polygons, even if the
keep_shapes argument is set to TRUE. To prevent this, you need to set explode = TRUE. This
option converts all mutlipolygons into separate polygons before its simplification.

Geometric operations on vector data 95

FIGURE 5.3: Centroids (black points) and ‘points on surface’ (red points)
of New Zealand’s regions (left) and the Seine (right) datasets.

nz_centroid = st_centroid(nz)

seine_centroid = st_centroid(seine)

Sometimes the geographic centroid falls outside the boundaries of their parent
objects (think of a doughnut). In such cases point on surface operations can
be used to guarantee the point will be in the parent object (e.g., for labeling
irregular multipolygon objects such as island states), as illustrated by the red
points in Figure 5.3. Notice that these red points always lie on their parent
objects. They were created with st_point_on_surface() as follows:2

nz_pos = st_point_on_surface(nz)

seine_pos = st_point_on_surface(seine)

Other types of centroids exist, including the Chebyshev center and the visual
center. We will not explore these here but it is possible to calculate them using
R, as we’ll see in Chapter 10.

2A description of how st_point_on_surface() works is provided at https://gis.stackexchange.

com/q/76498.

https://gis.stackexchange.com
https://gis.stackexchange.com

96 Geometry operations

FIGURE 5.4: Buffers around the Seine dataset of 5 km (left) and 50 km
(right). Note the colors, which reflect the fact that one buffer is created per
geometry feature.

5.2.3 Buffers

Buffers are polygons representing the area within a given distance of a geometric
feature: regardless of whether the input is a point, line or polygon, the output
is a polygon. Unlike simplification (which is often used for visualization and
reducing file size) buffering tends to be used for geographic data analysis. How
many points are within a given distance of this line? Which demographic
groups are within travel distance of this new shop? These kinds of questions
can be answered and visualized by creating buffers around the geographic
entities of interest.
Figure 5.4 illustrates buffers of different sizes (5 and 50 km) surrounding the
river Seine and tributaries. These buffers were created with commands below,
which show that the command st_buffer() requires at least two arguments: an
input geometry and a distance, provided in the units of the CRS (in this case
meters):

seine_buff_5km = st_buffer(seine, dist = 5000)

seine_buff_50km = st_buffer(seine, dist = 50000)

The third and final argument of st_buffer() is nQuadSegs, which means ‘number
of segments per quadrant’ and is set by default to 30 (meaning circles created
by buffers are composed of 4 × 30 = 120 lines). This argument rarely needs
to be set. Unusual cases where it may be useful include when the memory
consumed by the output of a buffer operation is a major concern (in which

Geometric operations on vector data 97

case it should be reduced) or when very high precision is needed (in which
case it should be increased).

5.2.4 Affine transformations

Affine transformation is any transformation that preserves lines and parallelism.
However, angles or length are not necessarily preserved. Affine transformations
include, among others, shifting (translation), scaling and rotation. Additionally,
it is possible to use any combination of these. Affine transformations are an
essential part of geocomputation. For example, shifting is needed for labels
placement, scaling is used in non-contiguous area cartograms (see Section 8.6),
and many affine transformations are applied when reprojecting or improving
the geometry that was created based on a distorted or wrongly projected map.
The sf package implements affine transformation for objects of classes sfg and
sfc.

nz_sfc = st_geometry(nz)

Shifting moves every point by the same distance in map units. It could be
done by adding a numerical vector to a vector object. For example, the code
below shifts all y-coordinates by 100,000 meters to the north, but leaves the
x-coordinates untouched (left panel of Figure 5.5).

nz_shift = nz_sfc + c(0, 100000)

Scaling enlarges or shrinks objects by a factor. It can be applied either globally
or locally. Global scaling increases or decreases all coordinates values in relation
to the origin coordinates, while keeping all geometries topological relations
intact. It can be done by subtraction or multiplication of asfg or sfc object.
Local scaling treats geometries independently and requires points around which
geometries are going to be scaled, e.g., centroids. In the example below, each
geometry is shrunk by a factor of two around the centroids (middle panel in
Figure 5.5). To achieve that, each object is firstly shifted in a way that its
center has coordinates of 0, 0 ((nz_sfc - nz_centroid_sfc)). Next, the sizes of
the geometries are reduced by half (* 0.5). Finally, each object’s centroid is
moved back to the input data coordinates (+ nz_centroid_sfc).

nz_centroid_sfc = st_centroid(nz_sfc)

nz_scale = (nz_sfc - nz_centroid_sfc) * 0.5 + nz_centroid_sfc

Rotation of two-dimensional coordinates requires a rotation matrix:

98 Geometry operations

FIGURE 5.5: Illustrations of affine transformations: shift, scale and rotate.

𝑅 = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃]

It rotates points in a counterclockwise direction. The rotation matrix can be
implemented in R as:

rotation = function(a){

r = a * pi / 180 #degrees to radians

matrix(c(cos(r), sin(r), -sin(r), cos(r)), nrow = 2, ncol = 2)

}

The rotation function accepts one argument a - a rotation angle in degrees.
Rotation could be done around selected points, such as centroids (right panel
of Figure 5.5). See vignette(”sf3”) for more examples.

nz_rotate = (nz_sfc - nz_centroid_sfc) * rotation(30) + nz_centroid_sfc

Finally, the newly created geometries can replace the old ones with the
st_set_geometry() function:

nz_scale_sf = st_set_geometry(nz, nz_scale)

Geometric operations on vector data 99

FIGURE 5.6: Overlapping circles.

5.2.5 Clipping

Spatial clipping is a form of spatial subsetting that involves changes to the
geometry columns of at least some of the affected features.
Clipping can only apply to features more complex than points: lines, polygons
and their ‘multi’ equivalents. To illustrate the concept we will start with a
simple example: two overlapping circles with a center point one unit away from
each other and a radius of one (Figure 5.6).

b = st_sfc(st_point(c(0, 1)), st_point(c(1, 1))) # create 2 points

b = st_buffer(b, dist = 1) # convert points to circles

plot(b)

text(x = c(-0.5, 1.5), y = 1, labels = c(”x”, ”y”)) # add text

Imagine you want to select not one circle or the other, but the space covered by
both x and y. This can be done using the function st_intersection(), illustrated
using objects named x and y which represent the left- and right-hand circles
(Figure 5.7).

x = b[1]

y = b[2]

x_and_y = st_intersection(x, y)

plot(b)

plot(x_and_y, col = ”lightgrey”, add = TRUE) # color intersecting area

The subsequent code chunk demonstrates how this works for all combinations
of the ‘Venn’ diagram representing x and y, inspired by Figure 5.13 of the book
R for Data Science (Grolemund and Wickham, 2016).
To illustrate the relationship between subsetting and clipping spatial data,

3http://r4ds.had.co.nz/transform.html#logical-operators

http://r4ds.had.co.nz

100 Geometry operations

FIGURE 5.7: Overlapping circles with a gray color indicating intersection
between them.

FIGURE 5.8: Spatial equivalents of logical operators.

we will subset points that cover the bounding box of the circles x and y in
Figure 5.8. Some points will be inside just one circle, some will be inside both
and some will be inside neither. st_sample() is used below to generate a simple
random distribution of points within the extent of circles x and y, resulting in
output illustrated in Figure 5.9.

bb = st_bbox(st_union(x, y))

box = st_as_sfc(bb)

set.seed(2017)

p = st_sample(x = box, size = 10)

Geometric operations on vector data 101

FIGURE 5.9: Randomly distributed points within the bounding box enclosing
circles x and y.

plot(box)

plot(x, add = TRUE)

plot(y, add = TRUE)

plot(p, add = TRUE)

text(x = c(-0.5, 1.5), y = 1, labels = c(”x”, ”y”))

The logical operator way would find the points inside both x and y using
a spatial predicate such as st_intersects(), whereas the intersection method
simply finds the points inside the intersecting region created above as x_and_y.
As demonstrated below the results are identical, but the method that uses the
clipped polygon is more concise:

sel_p_xy = st_intersects(p, x, sparse = FALSE)[, 1] &

st_intersects(p, y, sparse = FALSE)[, 1]

p_xy1 = p[sel_p_xy]

p_xy2 = p[x_and_y]

identical(p_xy1, p_xy2)

#> [1] TRUE

5.2.6 Geometry unions

As we saw in Section 3.2.2, spatial aggregation can silently dissolve the geome-
tries of touching polygons in the same group. This is demonstrated in the code
chunk below in which 49 us_states are aggregated into 4 regions using base
and tidyverse functions (see results in Figure 5.10):

regions = aggregate(x = us_states[, ”total_pop_15”], by = list(us_states$REGION),

FUN = sum, na.rm = TRUE)

102 Geometry operations

FIGURE 5.10: Spatial aggregation on contiguous polygons, illustrated by
aggregating the population of US states into regions, with population repre-
sented by color. Note the operation automatically dissolves boundaries between
states.

regions2 = us_states %>% group_by(REGION) %>%

summarize(pop = sum(total_pop_15, na.rm = TRUE))

What is going on in terms of the geometries? Behind the scenes, both aggregate()

and summarize() combine the geometries and dissolve the boundaries between
them using st_union(). This is demonstrated in the code chunk below which
creates a united western US:

us_west = us_states[us_states$REGION == ”West”,]

us_west_union = st_union(us_west)

The function can take two geometries and unite them, as demonstrated in the
code chunk below which creates a united western block incorporating Texas
(challenge: reproduce and plot the result):

texas = us_states[us_states$NAME == ”Texas”,]

texas_union = st_union(us_west_union, texas)

5.2.7 Type transformations

Geometry casting is a powerful operation that enables transformation of the
geometry type. It is implemented in the st_cast function from the sf package.
Importantly, st_cast behaves differently on single simple feature geometry (sfg)
objects, simple feature geometry column (sfc) and simple features objects.
Let’s create a multipoint to illustrate how geometry casting works on simple
feature geometry (sfg) objects:

Geometric operations on vector data 103

FIGURE 5.11: Examples of linestring and polygon casted from a multipoint
geometry.

multipoint = st_multipoint(matrix(c(1, 3, 5, 1, 3, 1), ncol = 2))

In this case, st_cast can be useful to transform the new object into linestring
or polygon (Figure 5.11):

linestring = st_cast(multipoint, ”LINESTRING”)

polyg = st_cast(multipoint, ”POLYGON”)

Conversion from multipoint to linestring is a common operation that creates
a line object from ordered point observations, such as GPS measurements or
geotagged media. This allows spatial operations such as the length of the path
traveled. Conversion from multipoint or linestring to polygon is often used
to calculate an area, for example from the set of GPS measurements taken
around a lake or from the corners of a building lot.
The transformation process can be also reversed using st_cast:

multipoint_2 = st_cast(linestring, ”MULTIPOINT”)

multipoint_3 = st_cast(polyg, ”MULTIPOINT”)

all.equal(multipoint, multipoint_2, multipoint_3)

#> [1] TRUE

For single simple feature geometries (sfg), st_cast also provides geometry
casting from non-multi-types to multi-types (e.g., POINT to MULTIPOINT) and
from multi-types to non-multi-types. However, only the first element of the
old object would remain in the second group of cases.

Geometry casting of simple features geometry column (sfc) and simple features
objects works the same as for single geometries in most of the cases. One
important difference is the conversion between multi-types to non-multi-types.
As a result of this process, multi-objects are split into many non-multi-objects.

104 Geometry operations

TABLE 5.1: Geometry casting on simple feature geometries (see Section 2.1)
with input type by row and output type by column

POI MPOI LIN MLIN POL MPOL GC
POI(1) 1 1 1 NA NA NA NA
MPOI(1) 4 1 1 1 1 NA NA
LIN(1) 5 1 1 1 1 NA NA
MLIN(1) 7 2 2 1 NA NA NA
POL(1) 5 1 1 1 1 1 NA
MPOL(1) 10 1 NA 1 2 1 1
GC(1) 9 1 NA NA NA NA 1
Note: Values like (1) represent the number of features;
NA means the operation is not possible. Abbreviations:
POI, LIN, POL and GC refer to POINT, LINESTRING, POLYGON
and GEOMETRYCOLLECTION. The MULTI version of these
geometry types is indicated by a preceding M, e.g., MPOI
is the acronym for MULTIPOINT.

Table 5.1 shows possible geometry type transformations on simple feature
objects. Each input simple feature object with only one element (first column)
is transformed directly into another geometry type. Several of the transforma-
tions are not possible, for example, you cannot convert a single point into a
multilinestring or a polygon (so the cells [1, 4:5] in the table are NA). On the
other hand, some of the transformations are splitting the single element input
object into a multi-element object. You can see that, for example, when you
cast a multipoint consisting of five pairs of coordinates into a point.
Let’s try to apply geometry type transformations on a new object, multi-

linestring_sf, as an example (on the left in Figure 5.12):

multilinestring_list = list(matrix(c(1, 4, 5, 3), ncol = 2),

matrix(c(4, 4, 4, 1), ncol = 2),

matrix(c(2, 4, 2, 2), ncol = 2))

multilinestring = st_multilinestring((multilinestring_list))

multilinestring_sf = st_sf(geom = st_sfc(multilinestring))

multilinestring_sf

#> Simple feature collection with 1 feature and 0 fields

#> geometry type: MULTILINESTRING

#> dimension: XY

#> bbox: xmin: 1 ymin: 1 xmax: 4 ymax: 5

#> epsg (SRID): NA

#> proj4string: NA

Geometric operations on vector data 105

FIGURE 5.12: Examples of type casting between MULTILINESTRING
(left) and LINESTRING (right).

#> geom

#> 1 MULTILINESTRING ((1 5, 4 3)...

You can imagine it as a road or river network. The new object has only one
row that defines all the lines. This restricts the number of operations that
can be done, for example it prevents adding names to each line segment or
calculating lengths of single lines. The st_cast function can be used in this
situation, as it separates one mutlilinestring into three linestrings:

linestring_sf2 = st_cast(multilinestring_sf, ”LINESTRING”)

linestring_sf2

#> Simple feature collection with 3 features and 0 fields

#> geometry type: LINESTRING

#> dimension: XY

#> bbox: xmin: 1 ymin: 1 xmax: 4 ymax: 5

#> epsg (SRID): NA

#> proj4string: NA

#> geom

#> 1 LINESTRING (1 5, 4 3)

#> 2 LINESTRING (4 4, 4 1)

#> 3 LINESTRING (2 2, 4 2)

106 Geometry operations

The newly created object allows for attributes creation (see more in Section
3.2.4) and length measurements:

linestring_sf2$name = c(”Riddle Rd”, ”Marshall Ave”, ”Foulke St”)

linestring_sf2$length = st_length(linestring_sf2)

linestring_sf2

#> Simple feature collection with 3 features and 2 fields

#> geometry type: LINESTRING

#> dimension: XY

#> bbox: xmin: 1 ymin: 1 xmax: 4 ymax: 5

#> epsg (SRID): NA

#> proj4string: NA

#> geom name length

#> 1 LINESTRING (1 5, 4 3) Riddle Rd 3.61

#> 2 LINESTRING (4 4, 4 1) Marshall Ave 3.00

#> 3 LINESTRING (2 2, 4 2) Foulke St 2.00

5.3 Geometric operations on raster data

Geometric raster operations include the shift, flipping, mirroring, scaling,
rotation or warping of images. These operations are necessary for a variety
of applications including georeferencing, used to allow images to be overlaid
on an accurate map with a known CRS (Liu and Mason, 2009). A variety of
georeferencing techniques exist, including:
• Georeferencing based on known ground control points4.
• Orthorectification also georeferences an image, but additionally takes into

account local topography.
• Image (co-)registration is the process of aligning one image with another (in

terms of coordinate reference system, origin and resolution). Registration
becomes necessary for images from the same scene but shot from different
sensors or from different angles or at different points in time.

R is unsuitable for the first two points since these often require manual
intervention which is why they are usually done with the help of dedicated
GIS software (see also Chapter 9). On the other hand, aligning several images
is possible in R and this section shows among others how to do so. This often
includes changing the extent, the resolution and the origin of an image. A
matching projection is of course also required but is already covered in Section
6.6. In any case, there are other reasons to perform a geometric operation

4http://www.qgistutorials.com/en/docs/georeferencing_basics.html

http://www.qgistutorials.com

Geometric operations on raster data 107

on a single raster image. For instance, in Chapter 13 we define metropolitan
areas in Germany as 20 km2 pixels with more than 500,000 inhabitants. The
original inhabitant raster, however, has a resolution of 1 km2 which is why we
will decrease (aggregate) the resolution by a factor of 20 (see Section 13.5).
Another reason for aggregating a raster is simply to decrease run-time or save
disk space. Of course, this is only possible if the task at hand allows a coarser
resolution. Sometimes a coarser resolution is sufficient for the task at hand.

5.3.1 Geometric intersections

In Section 4.3.1 we have shown how to extract values from a raster overlaid by
other spatial objects. To retrieve a spatial output, we can use almost the same
subsetting syntax. The only difference is that we have to make clear that we
would like to keep the matrix structure by setting the drop-parameter to FALSE.
This will return a raster object containing the cells whose midpoints overlap
with clip.

data(”elev”, package = ”spData”)

clip = raster(xmn = 0.9, xmx = 1.8, ymn = -0.45, ymx = 0.45,

res = 0.3, vals = rep(1, 9))

elev[clip, drop = FALSE]

#> class : RasterLayer

#> dimensions : 2, 1, 2 (nrow, ncol, ncell)

#> resolution : 0.5, 0.5 (x, y)

#> extent : 1, 1.5, -0.5, 0.5 (xmin, xmax, ymin, ymax)

#> coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

#> data source : in memory

#> names : layer

#> values : 18, 24 (min, max)

For the same operation we can also use the intersect() and crop() command.

5.3.2 Extent and origin

When merging or performing map algebra on rasters, their resolution, projec-
tion, origin and/or extent have to match. Otherwise, how should we add the
values of one raster with a resolution of 0.2 decimal degrees to a second with a
resolution of 1 decimal degree? The same problem arises when we would like
to merge satellite imagery from different sensors with different projections and
resolutions. We can deal with such mismatches by aligning the rasters.
In the simplest case, two images only differ with regard to their extent. Following
code adds one row and two columns to each side of the raster while setting all
new values to an elevation of 1000 meters (Figure 5.13).

108 Geometry operations

FIGURE 5.13: Original raster extended by one row on each side (top, bottom)
and two columns on each side (right, left).

data(elev, package = ”spData”)

elev_2 = extend(elev, c(1, 2), value = 1000)

plot(elev_2)

Performing an algebraic operation on two objects with differing extents in R,
the raster package returns the result for the intersection, and says so in a
warning.

elev_3 = elev + elev_2

#> Warning in elev + elev_2: Raster objects have different extents. Result for

#> their intersection is returned

However, we can also align the extent of two rasters with extend(). Instead
of telling the function how many rows or columns should be added (as done
before), we allow it to figure it out by using another raster object. Here, we
extend the elev object to the extent of elev_2. The newly added rows and
column receive the default value of the value parameter, i.e., NA.

elev_4 = extend(elev, elev_2)

The origin is the point closest to (0, 0) if you moved towards it (starting from
any given cell corner of the raster) in steps of x and y resolution.

origin(elev_4)

#> [1] 0 0

If two rasters have different origins, their cells do not overlap completely which

Geometric operations on raster data 109

FIGURE 5.14: Rasters with identical values but different origins.

would make map algebra impossible. To change the origin , use origin().5
Looking at Figure 5.14 reveals the effect of changing the origin.

change the origin

origin(elev_4) = c(0.25, 0.25)

plot(elev_4)

and add the original raster

plot(elev, add = TRUE)

Note that changing the resolution frequently (next section) also changes the
origin.

5.3.3 Aggregation and disaggregation

Raster datasets can also differ with regard to their resolution. To match
resolutions, one can either decrease (aggregate()) or increase (disaggregate()) the
resolution of one raster.6 As an example, we here change the spatial resolution of
dem (found in the RQGIS package) by a factor of 5 (Figure 5.15). Additionally,
the output cell value should correspond to the mean of the input cells (note
that one could use other functions as well, such as median(), sum(), etc.):

5If the origins of two raster datasets are just marginally apart, it sometimes is sufficient
to simply increase the tolerance argument of raster::rasterOptions().

6Here we refer to spatial resolution. In remote sensing the spectral (spectral bands),
temporal (observations through time of the same area) and radiometric (color depth)
resolution are also important. Check out the stackApply() example in the documentation for
getting an idea on how to do temporal raster aggregation.

110 Geometry operations

FIGURE 5.15: Original raster (left). Aggregated raster (right).

data(”dem”, package = ”RQGIS”)

dem_agg = aggregate(dem, fact = 5, fun = mean)

By contrast, the disaggregate() function increases the resolution. However,
we have to specify a method on how to fill the new cells. The disaggregate()

function provides two methods. The first (nearest neighbor, method = ””) simply
gives all output cells the value of the nearest input cell, and hence duplicates
values which leads to a blocky output image.
The bilinear method, in turn, is an interpolation technique that uses the four
nearest pixel centers of the input image (salmon colored points in Figure 5.16)
to compute an average weighted by distance (arrows in Figure 5.16 as the
value of the output cell - square in the upper left corner in Figure 5.16).

dem_disagg = disaggregate(dem_agg, fact = 5, method = ”bilinear”)

identical(dem, dem_disagg)

#> [1] FALSE

Comparing the values of dem and dem_disagg tells us that they are not identical
(you can also use compareRaster() or all.equal()). However, this was hardly to
be expected, since disaggregating is a simple interpolation technique. It is
important to keep in mind that disaggregating results in a finer resolution; the
corresponding values, however, are only as accurate as their lower resolution
source.

Raster-vector interactions 111

FIGURE 5.16: Bilinear disaggregation in action.

The process of computing values for new pixel locations is also called resampling.
In fact, the raster package provides a resample() function. It lets you align
several raster properties in one go, namely origin, extent and resolution. By
default, it uses the bilinear-interpolation.

add 2 rows and columns, i.e. change the extent

dem_agg = extend(dem_agg, 2)

dem_disagg_2 = resample(dem_agg, dem)

Finally, in order to align many (possibly hundreds or thousands of) images
stored on disk, you could use the gdalUtils::align_rasters() function. However,
you may also use raster with very large datasets. This is because raster:

1. Lets you work with raster datasets that are too large to fit into the
main memory (RAM) by only processing chunks of it.

2. Tries to facilitate parallel processing. For more information, see the
help pages of beginCluster() and clusteR(). Additionally, check out
the Multi-core functions section in vignette(”functions”, package =

”raster”).

5.4 Raster-vector interactions

This section focuses on interactions between raster and vector geographic
data models, introduced in Chapter 2. It includes four main techniques: raster
cropping and masking using vector objects (Section 5.4.1); extracting raster
values using different types of vector data (Section 5.4.2); and raster-vector

112 Geometry operations

conversion (Sections 5.4.3 and 5.4.4). The above concepts are demonstrated
using data used in previous chapters to understand their potential real-world
applications.

5.4.1 Raster cropping

Many geographic data projects involve integrating data from many different
sources, such as remote sensing images (rasters) and administrative boundaries
(vectors). Often the extent of input raster datasets is larger than the area of
interest. In this case raster cropping and masking are useful for unifying the
spatial extent of input data. Both operations reduce object memory use and
associated computational resources for subsequent analysis steps, and may be
a necessary preprocessing step before creating attractive maps involving raster
data.
We will use two objects to illustrate raster cropping:
• A raster object srtm representing elevation (meters above sea level) in south-

western Utah.
• A vector (sf) object zion representing Zion National Park.
Both target and cropping objects must have the same projection. The following
code chunk therefore not only loads the datasets, from the spDataLarge
package installed in Chapter 2, it also reprojects zion (see Section 6 for more
on reprojection):

srtm = raster(system.file(”raster/srtm.tif”, package = ”spDataLarge”))

zion = st_read(system.file(”vector/zion.gpkg”, package = ”spDataLarge”))

zion = st_transform(zion, projection(srtm))

We will use crop() from the raster package to crop the srtm raster. crop()

reduces the rectangular extent of the object passed to its first argument based
on the extent of the object passed to its second argument, as demonstrated
in the command below (which generates Figure 5.17(B) — note the smaller
extent of the raster background):

srtm_cropped = crop(srtm, zion)

Related to crop() is the raster function mask(), which sets values outside of the
bounds of the object passed to its second argument to NA. The following com-
mand therefore masks every cell outside of the Zion National Park boundaries
(Figure 5.17(C)):

srtm_masked = mask(srtm, zion)

Changing the settings of mask() yields different results. Setting maskvalue = 0,

Raster-vector interactions 113

FIGURE 5.17: Illustration of raster cropping and raster masking.

for example, will set all pixels outside the national park to 0. Setting inverse =

TRUE will mask everything inside the bounds of the park (see ?mask for details)
(Figure 5.17(D)).

srtm_inv_masked = mask(srtm, zion, inverse = TRUE)

5.4.2 Raster extraction

Raster extraction is the process of identifying and returning the values associ-
ated with a ‘target’ raster at specific locations, based on a (typically vector)
geographic ‘selector’ object. The results depend on the type of selector used
(points, lines or polygons) and arguments passed to the raster::extract() func-
tion, which we use to demonstrate raster extraction. The reverse of raster
extraction — assigning raster cell values based on vector objects — is rasteri-
zation, described in Section 5.4.3.
The simplest example is extracting the value of a raster cell at specific points.
For this purpose, we will use zion_points, which contain a sample of 30 locations
within the Zion National Park (Figure 5.18). The following command extracts
elevation values from srtm and assigns the resulting vector to a new column
(elevation) in the zion_points dataset:

data(”zion_points”, package = ”spDataLarge”)

zion_points$elevation = raster::extract(srtm, zion_points)

The buffer argument can be used to specify a buffer radius (in meters) around
each point. The result of raster::extract(srtm, zion_points, buffer = 1000), for
example, is a list of vectors, each of which representing the values of cells inside
the buffer associated with each point. In practice, this example is a special
case of extraction with a polygon selector, described below.

114 Geometry operations

FIGURE 5.18: Locations of points used for raster extraction.

Raster extraction also works with line selectors. To demonstrate this, the code
below creates zion_transect, a straight line going from northwest to southeast
of the Zion National Park, illustrated in Figure 5.19(A) (see Section 2.2 for a
recap on the vector data model):

zion_transect = cbind(c(-113.2, -112.9), c(37.45, 37.2)) %>%

st_linestring() %>%

st_sfc(crs = projection(srtm)) %>%

st_sf()

The utility of extracting heights from a linear selector is illustrated by imagining
that you are planning a hike. The method demonstrated below provides an
‘elevation profile’ of the route (the line does not need to be straight), useful for
estimating how long it will take due to long climbs:

transect = raster::extract(srtm, zion_transect,

along = TRUE, cellnumbers = TRUE)

Note the use of along = TRUE and cellnumbers = TRUE arguments to return cell IDs
along the path. The result is a list containing a matrix of cell IDs in the first
column and elevation values in the second. The number of list elements is equal
to the number of lines or polygons from which we are extracting values. The
subsequent code chunk first converts this tricky matrix-in-a-list object into a

Raster-vector interactions 115

FIGURE 5.19: Location of a line used for raster extraction (left) and the
elevation along this line (right).

simple data frame, returns the coordinates associated with each extracted cell,
and finds the associated distances along the transect (see ?geosphere::distGeo()

for details):

transect_df = purrr::map_dfr(transect, as_data_frame, .id = ”ID”)

transect_coords = xyFromCell(srtm, transect_df$cell)

transect_df$dist = c(0, cumsum(geosphere::distGeo(transect_coords)))

The resulting transect_df can be used to create elevation profiles, as illustrated
in Figure 5.19(B).
The final type of geographic vector object for raster extraction is polygons.
Like lines and buffers, polygons tend to return many raster values per polygon.
This is demonstrated in the command below, which results in a data frame
with column names ID (the row number of the polygon) and srtm (associated
elevation values):

zion_srtm_values = raster::extract(x = srtm, y = zion, df = TRUE)

Such results can be used to generate summary statistics for raster values
per polygon, for example to characterize a single region or to compare many
regions. The generation of summary statistics is demonstrated in the code

116 Geometry operations

below, which creates the object zion_srtm_df containing summary statistics for
elevation values in Zion National Park (see Figure 5.20(A)):

group_by(zion_srtm_values, ID) %>%

summarize_at(vars(srtm), list(~min, ~mean, ~max))

#> # A tibble: 1 x 4

#> ID min mean max

#> <dbl> <dbl> <dbl> <dbl>

#> 1 1 1122 1818. 2661

The preceding code chunk used the tidyverse to provide summary statistics
for cell values per polygon ID, as described in Chapter 3. The results provide
useful summaries, for example that the maximum height in the park is around
2,661 meters (other summary statistics, such as standard deviation, can also
be calculated in this way). Because there is only one polygon in the example a
data frame with a single row is returned; however, the method works when
multiple selector polygons are used.
The same approach works for counting occurrences of categorical raster values
within polygons. This is illustrated with a land cover dataset (nlcd) from the
spDataLarge package in Figure 5.20(B), and demonstrated in the code below:

zion_nlcd = raster::extract(nlcd, zion, df = TRUE, factors = TRUE)

dplyr::select(zion_nlcd, ID, levels) %>%

tidyr::gather(key, value, -ID) %>%

group_by(ID, key, value) %>%

tally() %>%

tidyr::spread(value, n, fill = 0)

#> # A tibble: 1 x 9

#> # Groups: ID, key [1]

#> ID key Barren Cultivated Developed Forest Herbaceous Shrubland

#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 1 leve~ 98285 62 4205 298299 235 203701

#> # ... with 1 more variable: Wetlands <dbl>

So far, we have seen how raster::extract() is a flexible way of extracting raster
cell values from a range of input geographic objects. An issue with the function,
however, is that it is relatively slow. If this is a problem, it is useful to know
about alternatives and work-arounds, three of which are presented below.
• Parallelization: this approach works when using many geographic vector

selector objects by splitting them into groups and extracting cell values inde-
pendently for each group (see ?raster::clusterR() for details of this approach).

• Use the velox package (Hunziker, 2017), which provides a fast method for

Raster-vector interactions 117

FIGURE 5.20: Area used for continuous (left) and categorical (right) raster
extraction.

extracting raster data that fits in memory (see the packages extract7 vignette
for details).

• Using R-GIS bridges (see Chapter 9): efficient calculation of
raster statistics from polygons can be found in the SAGA function
saga:gridstatisticsforpolygons, for example, which can be accessed via
RQGIS.

5.4.3 Rasterization

Rasterization is the conversion of vector objects into their representation in
raster objects. Usually, the output raster is used for quantitative analysis
(e.g., analysis of terrain) or modeling. As we saw in Chapter 2 the raster data
model has some characteristics that make it conducive to certain methods.
Furthermore, the process of rasterization can help simplify datasets because
the resulting values all have the same spatial resolution: rasterization can be
seen as a special type of geographic data aggregation.
The raster package contains the function rasterize() for doing this work. Its
first two arguments are, x, vector object to be rasterized and, y, a ‘template
raster’ object defining the extent, resolution and CRS of the output. The
geographic resolution of the input raster has a major impact on the results:
if it is too low (cell size is too large), the result may miss the full geographic

7https://hunzikp.github.io/velox/extract.html

https://hunzikp.github.io

118 Geometry operations

variability of the vector data; if it is too high, computational times may be
excessive. There are no simple rules to follow when deciding an appropriate
geographic resolution, which is heavily dependent on the intended use of the
results. Often the target resolution is imposed on the user, for example when
the output of rasterization needs to be aligned to the existing raster.
To demonstrate rasterization in action, we will use a template raster that has
the same extent and CRS as the input vector data cycle_hire_osm_projected (a
dataset on cycle hire points in London is illustrated in Figure 5.21(A)) and
spatial resolution of 1000 meters:

cycle_hire_osm_projected = st_transform(cycle_hire_osm, 27700)

raster_template = raster(extent(cycle_hire_osm_projected), resolution = 1000,

crs = st_crs(cycle_hire_osm_projected)$proj4string)

Rasterization is a very flexible operation: the results depend not only on the
nature of the template raster, but also on the type of input vector (e.g., points,
polygons) and a variety of arguments taken by the rasterize() function.
To illustrate this flexibility we will try three different approaches to rasterization.
First, we create a raster representing the presence or absence of cycle hire
points (known as presence/absence rasters). In this case rasterize() requires
only one argument in addition to x and y (the aforementioned vector and raster
objects): a value to be transferred to all non-empty cells specified by field

(results illustrated Figure 5.21(B)).

ch_raster1 = rasterize(cycle_hire_osm_projected, raster_template, field = 1)

The fun argument specifies summary statistics used to convert multiple obser-
vations in close proximity into associate cells in the raster object. By default
fun = ”last” is used but other options such as fun = ”count” can be used, in this
case to count the number of cycle hire points in each grid cell (the results of
this operation are illustrated in Figure 5.21(C)).

ch_raster2 = rasterize(cycle_hire_osm_projected, raster_template,

field = 1, fun = ”count”)

The new output, ch_raster2, shows the number of cycle hire points in each grid
cell. The cycle hire locations have different numbers of bicycles described by
the capacity variable, raising the question, what’s the capacity in each grid
cell? To calculate that we must sum the field (”capacity”), resulting in output
illustrated in Figure 5.21(D), calculated with the following command (other
summary functions such as mean could be used):

Raster-vector interactions 119

FIGURE 5.21: Examples of point rasterization.

ch_raster3 = rasterize(cycle_hire_osm_projected, raster_template,

field = ”capacity”, fun = sum)

Another dataset based on California’s polygons and borders (created below)
illustrates rasterization of lines. After casting the polygon objects into a
multilinestring, a template raster is created with a resolution of a 0.5 degree:

california = dplyr::filter(us_states, NAME == ”California”)

california_borders = st_cast(california, ”MULTILINESTRING”)

raster_template2 = raster(extent(california), resolution = 0.5,

crs = st_crs(california)$proj4string)

Line rasterization is demonstrated in the code below. In the resulting raster,
all cells that are touched by a line get a value, as illustrated in Figure 5.22(A).

california_raster1 = rasterize(california_borders, raster_template2)

Polygon rasterization, by contrast, selects only cells whose centroids are inside
the selector polygon, as illustrated in Figure 5.22(B).

california_raster2 = rasterize(california, raster_template2)

As with raster::extract(), raster::rasterize() works well for most cases but

120 Geometry operations

FIGURE 5.22: Examples of line and polygon rasterizations.

is not performance optimized. Fortunately, there are several alternatives,
including the fasterize::fasterize() and gdalUtils::gdal_rasterize(). The former
is much (100 times+) faster than rasterize(), but is currently limited to polygon
rasterization. The latter is part of GDAL and therefore requires a vector file
(instead of an sf object) and rasterization parameters (instead of a Raster*

template object) as inputs.8

5.4.4 Spatial vectorization

Spatial vectorization is the counterpart of rasterization (Section 5.4.3), but in
the opposite direction. It involves converting spatially continuous raster data
into spatially discrete vector data such as points, lines or polygons.

Be careful with the wording! In R, vectorization refers to the possibility of
replacing for-loops and alike by doing things like 1:10 / 2 (see also Wickham
(2014a)).

The simplest form of vectorization is to convert the centroids of raster cells
into points. rasterToPoints() does exactly this for all non-NA raster grid cells
(Figure 5.23). Setting the spatial parameter to TRUE ensures the output is a
spatial object, not a matrix.

8See more at http://gdal.org/gdal_rasterize.html.

http://gdal.org

Raster-vector interactions 121

FIGURE 5.23: Raster and point representation of the elev object.

elev_point = rasterToPoints(elev, spatial = TRUE) %>%

st_as_sf()

Another common type of spatial vectorization is the creation of contour lines
representing lines of continuous height or temperatures (isotherms) for example.
We will use a real-world digital elevation model (DEM) because the artificial
raster elev produces parallel lines (task: verify this and explain why this hap-
pens). Contour lines can be created with the raster function rasterToContour(),
which is itself a wrapper around contourLines(), as demonstrated below (not
shown):

data(dem, package = ”RQGIS”)

cl = rasterToContour(dem)

plot(dem, axes = FALSE)

plot(cl, add = TRUE)

Contours can also be added to existing plots with functions such as contour(),
rasterVis::contourplot() or tmap::tm_iso(). As illustrated in Figure 5.24, isolines
can be labelled.

create hillshade

hs = hillShade(slope = terrain(dem, ”slope”), aspect = terrain(dem, ”aspect”))

plot(hs, col = gray(0:100 / 100), legend = FALSE)

122 Geometry operations

FIGURE 5.24: DEM hillshade of the southern flank of Mt. Mongón overlaid
by contour lines.

overlay with DEM

plot(dem, col = terrain.colors(25), alpha = 0.5, legend = FALSE, add = TRUE)

add contour lines

contour(dem, col = ”white”, add = TRUE)

The final type of vectorization involves conversion of rasters to polygons. This
can be done with raster::rasterToPolygons(), which converts each raster cell
into a polygon consisting of five coordinates, all of which are stored in memory
(explaining why rasters are often fast compared with vectors!).
This is illustrated below by converting the grain object into polygons and
subsequently dissolving borders between polygons with the same attribute
values (also see the dissolve argument in rasterToPolygons()). Attributes in
this case are stored in a column called layer (see Section 5.2.6 and Figure
5.25). (Note: a convenient alternative for converting rasters into polygons is
spex::polygonize() which by default returns an sf object.)

grain_poly = rasterToPolygons(grain) %>%

st_as_sf()

grain_poly2 = grain_poly %>%

Exercises 123

FIGURE 5.25: Illustration of vectorization of raster (left) into polygon
(center) and polygon aggregation (right).

group_by(layer) %>%

summarize()

5.5 Exercises

Some of the exercises use a vector (random_points) and raster dataset (ndvi)
from the RQGIS package. They also use a polygonal ‘convex hull’ derived
from the vector dataset (ch) to represent the area of interest:

library(RQGIS)

data(random_points)

data(ndvi)

ch = st_combine(random_points) %>%

st_convex_hull()

1. Generate and plot simplified versions of the nz dataset. Experi-
ment with different values of keep (ranging from 0.5 to 0.00005) for
ms_simplify() and dTolerance (from 100 to 100,000) st_simplify() .

•At what value does the form of the result start to break down
for each method, making New Zealand unrecognizable?

•Advanced: What is different about the geometry type of the
results from st_simplify() compared with the geometry type
of ms_simplify()? What problems does this create and how can
this be resolved?

124 Geometry operations

2. In the first exercise in Chapter 4 it was established that Canterbury
region had 70 of the 101 highest points in New Zealand. Using
st_buffer(), how many points in nz_height are within 100 km of
Canterbury?

3. Find the geographic centroid of New Zealand. How far is it from the
geographic centroid of Canterbury?

4. Most world maps have a north-up orientation. A world map with
a south-up orientation could be created by a reflection (one of the
affine transformations not mentioned in Section 5.2.4) of the world

object’s geometry. Write code to do so. Hint: you need to use a
two-element vector for this transformation.

•Bonus: create an upside-down map of your country.
5. Subset the point in p that is contained within x and y (see Section

5.2.5 and Figure 5.8).
•Using base subsetting operators.
•Using an intermediary object created with st_intersection().

6. Calculate the length of the boundary lines of US states in meters.
Which state has the longest border and which has the shortest?
Hint: The st_length function computes the length of a LINESTRING or
MULTILINESTRING geometry.

7. Crop the ndvi raster using (1) the random_points dataset and (2) the
ch dataset. Are there any differences in the output maps? Next, mask
ndvi using these two datasets. Can you see any difference now? How
can you explain that?

8. Firstly, extract values from ndvi at the points represented in ran-

dom_points. Next, extract average values of ndvi using a 90 buffer
around each point from random_points and compare these two sets of
values. When would extracting values by buffers be more suitable
than by points alone?

9. Subset points higher than 3100 meters in New Zealand (the nz_height

object) and create a template raster with a resolution of 3 km. Using
these objects:

•Count numbers of the highest points in each grid cell.
•Find the maximum elevation in each grid cell.

10. Aggregate the raster counting high points in New Zealand (created
in the previous exercise), reduce its geographic resolution by half
(so cells are 6 by 6 km) and plot the result.

•Resample the lower resolution raster back to a resolution of 3
km. How have the results changed?

Exercises 125

•Name two advantages and disadvantages of reducing raster
resolution.

11. Polygonize the grain dataset and filter all squares representing clay.
•Name two advantages and disadvantages of vector data over
raster data.

•At which points would it be useful to convert rasters to vectors
in your work?

http://taylorandfrancis.com

6
Reprojecting geographic data

Prerequisites

• This chapter requires the following packages (lwgeom is also used, but does
not need to be attached):

library(sf)

library(raster)

library(dplyr)

library(spData)

library(spDataLarge)

6.1 Introduction

Section 2.4 introduced coordinate reference systems (CRSs) and demonstrated
their importance. This chapter goes further. It highlights issues that can arise
when using inappropriate CRSs and how to transform data from one CRS to
another.
As illustrated in Figure 2.1, there are two types of CRSs: geographic (‘lon/lat’,
with units in degrees longitude and latitude) and projected (typically with units
of meters from a datum). This has consequences. Many geometry operations in
sf, for example, assume their inputs have a projected CRS, because the GEOS
functions they are based on assume projected data. To deal with this issue
sf provides the function st_is_longlat() to check. In some cases the CRS is
unknown, as shown below using the example of London introduced in Section
2.2:

london = data.frame(lon = -0.1, lat = 51.5) %>%

st_as_sf(coords = c(”lon”, ”lat”))

127

128 Reprojecting geographic data

st_is_longlat(london)

#> [1] NA

This shows that unless a CRS is manually specified or is loaded from a source
that has CRS metadata, the CRS is NA. A CRS can be added to sf objects
with st_set_crs() as follows:1

london_geo = st_set_crs(london, 4326)

st_is_longlat(london_geo)

#> [1] TRUE

Datasets without a specified CRS can cause problems. An example is provided
below, which creates a buffer of one unit around london and london_geo objects:

london_buff_no_crs = st_buffer(london, dist = 1)

london_buff = st_buffer(london_geo, dist = 1)

#> Warning in st_buffer.sfc(st_geometry(x), dist, nQuadSegs, endCapStyle =

#> endCapStyle, : st_buffer does not correctly buffer longitude/latitude data

#> dist is assumed to be in decimal degrees (arc_degrees).

Only the second operation generates a warning. The warning message is useful,
telling us that the result may be of limited use because it is in units of latitude
and longitude, rather than meters or some other suitable measure of distance
assumed by st_buffer(). The consequences of a failure to work on projected
data are illustrated in Figure 6.1 (left panel): the buffer is elongated in the
north-south direction because lines of longitude converge towards the Earth’s
poles.

The distance between two lines of longitude, called meridians, is around 111
km at the equator (execute geosphere::distGeo(c(0, 0), c(1, 0)) to find the
precise distance). This shrinks to zero at the poles. At the latitude of London,
for example, meridians are less than 70 km apart (challenge: execute code
that verifies this). Lines of latitude, by contrast, have constant distance from
each other irrespective of latitude: they are always around 111 km apart,
including at the equator and near the poles. This is illustrated in Figures 6.1
and 6.3.

Do not interpret the warning about the geographic (longitude/latitude) CRS as
“the CRS should not be set”: it almost always should be! It is better understood
as a suggestion to reproject the data onto a projected CRS. This suggestion

1The CRS can also be added when creating sf objects with the crs argument (e.g.,
st_sf(geometry = st_sfc(st_point(c(-0.1, 51.5))), crs = 4326)). The same argument can also be
used to set the CRS when creating raster datasets (e.g., raster(crs = ”+proj=longlat”)).

Introduction 129

does not always need to be heeded: performing spatial and geometric operations
makes little or no difference in some cases (e.g., spatial subsetting). But for
operations involving distances such as buffering, the only way to ensure a good
result is to create a projected copy of the data and run the operation on that.
This is done in the code chunk below:

london_proj = data.frame(x = 530000, y = 180000) %>%

st_as_sf(coords = 1:2, crs = 27700)

The result is a new object that is identical to london, but reprojected onto a
suitable CRS (the British National Grid, which has an EPSG code of 27700 in
this case) that has units of meters. We can verify that the CRS has changed
using st_crs() as follows (some of the output has been replaced by ...):

st_crs(london_proj)

#> Coordinate Reference System:

#> EPSG: 27700

#> proj4string: ”+proj=tmerc +lat_0=49 +lon_0=-2 ... +units=m +no_defs”

Notable components of this CRS description include the EPSG code (EPSG:
27700), the projection (transverse Mercator2, +proj=tmerc), the origin (+lat_0=49
+lon_0=-2) and units (+units=m).3 The fact that the units of the CRS are meters
(rather than degrees) tells us that this is a projected CRS: st_is_longlat(lon-
don_proj) now returns FALSE and geometry operations on london_proj will work
without a warning, meaning buffers can be produced from it using proper
units of distance. As pointed out above, moving one degree means moving a
bit more than 111 km at the equator (to be precise: 111,320 meters). This is
used as the new buffer distance:

london_proj_buff = st_buffer(london_proj, 111320)

The result in Figure 6.1 (right panel) shows that buffers based on a projected
CRS are not distorted: every part of the buffer’s border is equidistant to
London.
The importance of CRSs (primarily whether they are projected or geographic)
has been demonstrated using the example of London. The subsequent sections
go into more depth, exploring which CRS to use and the details of reprojecting
vector and raster objects.

2https://en.wikipedia.org/wiki/Transverse_Mercator_projection
3For a short description of the most relevant projection parameters and related concepts,

see the fourth lecture by Jochen Albrecht hosted at http://www.geography.hunter.cuny.edu/~jochen/

GTECH361/lectures/ and information at https://proj4.org/parameters.html. Other great resources
on projections are spatialreference.org and progonos.com/furuti/MapProj.

http://www.geography.hunter.cuny.edu
https://proj4.org
http://www.geography.hunter.cuny.edu
https://en.wikipedia.org
http://www.spatialreference.org
http://www.progonos.com

130 Reprojecting geographic data

FIGURE 6.1: Buffers around London with a geographic (left) and projected
(right) CRS. The gray outline represents the UK coastline.

6.2 When to reproject?

The previous section showed how to set the CRS manually, with st_set_crs(lon-

don, 4326). In real world applications, however, CRSs are usually set automati-
cally when data is read-in. The main task involving CRSs is often to transform
objects, from one CRS into another. But when should data be transformed?
And into which CRS? There are no clear-cut answers to these questions and
CRS selection always involves trade-offs (Maling, 1992). However, there are
some general principles provided in this section that can help you decide.
First it’s worth considering when to transform. In some cases transformation
to a projected CRS is essential, such as when using geometric functions such
as st_buffer(), as Figure 6.1 shows. Conversely, publishing data online with
the leaflet package may require a geographic CRS. Another case is when two
objects with different CRSs must be compared or combined, as shown when
we try to find the distance between two objects with different CRSs:

st_distance(london_geo, london_proj)

> Error: st_crs(x) == st_crs(y) is not TRUE

To make the london and london_proj objects geographically comparable one of
them must be transformed into the CRS of the other. But which CRS to use?
The answer is usually ‘to the projected CRS’, which in this case is the British
National Grid (EPSG:27700):

Which CRS to use? 131

london2 = st_transform(london_geo, 27700)

Now that a transformed version of london has been created, using the sf function
st_transform(), the distance between the two representations of London can be
found. It may come as a surprise that london and london2 are just over 2 km
apart!4

st_distance(london2, london_proj)

#> Units: [m]

#> [,1]

#> [1,] 2018

6.3 Which CRS to use?

The question of which CRS is tricky, and there is rarely a ‘right’ answer:
“There exist no all-purpose projections, all involve distortion when far from the
center of the specified frame” (Bivand et al., 2013). For geographic CRSs, the
answer is often WGS845, not only for web mapping (covered in the previous
paragraph) but also because GPS datasets and thousands of raster and vector
datasets are provided in this CRS by default. WGS84 is the most common
CRS in the world, so it is worth knowing its EPSG code: 4326. This ‘magic
number’ can be used to convert objects with unusual projected CRSs into
something that is widely understood.
What about when a projected CRS is required? In some cases, it is not
something that we are free to decide: “often the choice of projection is made
by a public mapping agency” (Bivand et al., 2013). This means that when
working with local data sources, it is likely preferable to work with the CRS in
which the data was provided, to ensure compatibility, even if the official CRS
is not the most accurate. The example of London was easy to answer because
(a) the British National Grid (with its associated EPSG code 27700) is well
known and (b) the original dataset (london) already had that CRS.
In cases where an appropriate CRS is not immediately clear, the choice of
CRS should depend on the properties that are most important to preserve in

4The difference in location between the two points is not due to imperfections in the
transforming operation (which is in fact very accurate) but the low precision of the manually-
created coordinates that created london and london_proj. Also surprising may be that the
result is provided in a matrix with units of meters. This is because st_distance() can provide
distances between many features and because the CRS has units of meters. Use as.numeric()

to coerce the result into a regular number.
5https://en.wikipedia.org/wiki/World_Geodetic_System#A_new_World_Geodetic_System:_WGS_84

https://en.wikipedia.org

132 Reprojecting geographic data

the subsequent maps and analysis. All CRSs are either equal-area, equidistant,
conformal (with shapes remaining unchanged), or some combination of com-
promises of those. Custom CRSs with local parameters can be created for a
region of interest and multiple CRSs can be used in projects when no single
CRS suits all tasks. ‘Geodesic calculations’ can provide a fall-back if no CRSs
are appropriate (see proj4.org/geodesic.html6). For any projected CRS the
results may not be accurate when used on geometries covering hundreds of
kilometers.
When deciding a custom CRS, we recommend the following:7

• A Lambert azimuthal equal-area (LAEA8) projection for a custom local
projection (set lon_0 and lat_0 to the center of the study area), which is an
equal-area projection at all locations but distorts shapes beyond thousands
of kilometres.

• Azimuthal equidistant (AEQD9) projections for a specifically accurate
straight-line distance between a point and the centre point of the local
projection.

• Lambert conformal conic (LCC10) projections for regions covering thou-
sands of kilometres, with the cone set to keep distance and area properties
reasonable between the secant lines.

• Stereographic (STERE11) projections for polar regions, but taking care not
to rely on area and distance calculations thousands of kilometres from the
center.

A commonly used default is Universal Transverse Mercator (UTM12), a set of
CRSs that divides the Earth into 60 longitudinal wedges and 20 latitudinal
segments. The transverse Mercator projection used by UTM CRSs is conformal
but distorts areas and distances with increasing severity with distance from
the center of the UTM zone. Documentation from the GIS software Manifold
therefore suggests restricting the longitudinal extent of projects using UTM
zones to 6 degrees from the central meridian (source: manifold.net13).
Almost every place on Earth has a UTM code, such as “60H” which refers
to northern New Zealand where R was invented. All UTM projections have
the same datum (WGS84) and their EPSG codes run sequentially from 32601
to 32660 (for northern hemisphere locations) and 32701 to 32760 (southern
hemisphere locations).

6https://proj4.org/geodesic.html
7Many thanks to an anonymous reviewer whose comments formed the basis of this advice.
8https://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection
9https://en.wikipedia.org/wiki/Azimuthal_equidistant_projection

10https://en.wikipedia.org/wiki/Lambert_conformal_conic_projection
11https://en.wikipedia.org/wiki/Stereographic_projection
12https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
13http://www.manifold.net/doc/mfd9/universal_transverse_mercator_projection.htm

http://www.manifold.net
https://en.wikipedia.org
https://en.wikipedia.org
https://en.wikipedia.org
https://en.wikipedia.org
https://en.wikipedia.org
https://proj4.org
http://www.proj4.org

Which CRS to use? 133

To show how the system works, let’s create a function, lonlat2UTM() to calculate
the EPSG code associated with any point on the planet as follows14:

lonlat2UTM = function(lonlat) {

utm = (floor((lonlat[1] + 180) / 6) %% 60) + 1

if(lonlat[2] > 0) {

utm + 32600

} else{

utm + 32700

}

}

The following command uses this function to identify the UTM zone and
associated EPSG code for Auckland and London:

epsg_utm_auk = lonlat2UTM(c(174.7, -36.9))

epsg_utm_lnd = lonlat2UTM(st_coordinates(london))

st_crs(epsg_utm_auk)$proj4string

#> [1] ”+proj=utm +zone=60 +south +datum=WGS84 +units=m +no_defs”

st_crs(epsg_utm_lnd)$proj4string

#> [1] ”+proj=utm +zone=30 +datum=WGS84 +units=m +no_defs”

Maps of UTM zones such as that provided by dmap.co.uk15 confirm that
London is in UTM zone 30U.
Another approach to automatically selecting a projected CRS specific to a
local dataset is to create an azimuthal equidistant (AEQD16) projection for the
center-point of the study area. This involves creating a custom CRS (with no
EPSG code) with units of meters based on the centerpoint of a dataset. This
approach should be used with caution: no other datasets will be compatible
with the custom CRS created and results may not be accurate when used on
extensive datasets covering hundreds of kilometers.
Although we used vector datasets to illustrate the points outlined in this section,
the principles apply equally to raster datasets. The subsequent sections explain
features of CRS transformation that are unique to each geographic data model,
continuing with vector data in the next section (Section 6.4) and moving on
to explain how raster transformation is different, in Section 6.6.

14https://stackoverflow.com/a/9188972/
15http://www.dmap.co.uk/utmworld.htm
16https://en.wikipedia.org/wiki/Azimuthal_equidistant_projection

https://en.wikipedia.org
http://www.dmap.co.uk
https://stackoverflow.com

134 Reprojecting geographic data

6.4 Reprojecting vector geometries

Chapter 2 demonstrated how vector geometries are made-up of points, and
how points form the basis of more complex objects such as lines and polygons.
Reprojecting vectors thus consists of transforming the coordinates of these
points. This is illustrated by cycle_hire_osm, an sf object from spData that
represents cycle hire locations across London. The previous section showed
how the CRS of vector data can be queried with st_crs(). Although the output
of this function is printed as a single entity, the result is in fact a named list
of class crs, with names proj4string (which contains full details of the CRS)
and epsg for its code. This is demonstrated below:

crs_lnd = st_crs(cycle_hire_osm)

class(crs_lnd)

#> [1] ”crs”

crs_lnd$epsg

#> [1] 4326

This duality of CRS objects means that they can be set either using an
EPSG code or a proj4string. This means that st_crs(”+proj=longlat +datum=WGS84

+no_defs”) is equivalent to st_crs(4326), although not all proj4strings have an
associated EPSG code. Both elements of the CRS are changed by transforming
the object to a projected CRS:

cycle_hire_osm_projected = st_transform(cycle_hire_osm, 27700)

The resulting object has a new CRS with an EPSG code 27700. But how to
find out more details about this EPSG code, or any code? One option is to
search for it online. Another option is to use a function from the rgdal package
to find the name of the CRS:

crs_codes = rgdal::make_EPSG()[1:2]

dplyr::filter(crs_codes, code == 27700)

#> code note

#> 1 27700 # OSGB 1936 / British National Grid

The result shows that the EPSG code 27700 represents the British National
Grid, a result that could have been found by searching online for “EPSG
2770017”. But what about the proj4string element? proj4strings are text strings
in a particular format the describe the CRS. They can be seen as formulas for

17https://www.google.com/search?q=CRS+27700

https://www.google.com

Modifying map projections 135

converting a projected point into a point on the surface of the Earth and can
be accessed from crs objects as follows (see proj4.org18 for further details of
what the output means):

st_crs(27700)$proj4string

#> [1] ”+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 ...

Printing a spatial object in the console, automatically returns its coordinate
reference system. To access and modify it explicitly, use the st_crs function,
for example, st_crs(cycle_hire_osm).

6.5 Modifying map projections

Established CRSs captured by EPSG codes are well-suited for many appli-
cations. However in some cases it is desirable to create a new CRS, using a
custom proj4string. This system allows a very wide range of projections to be
created, as we’ll see in some of the custom map projections in this section.
A long and growing list of projections has been developed and many of these
these can be set with the +proj= element of proj4strings.19 When mapping
the world while preserving area relationships, the Mollweide projection is a
good choice (Jenny et al., 2017) (Figure 6.2). To use this projection, we need
to specify it using the proj4string element, ”+proj=moll”, in the st_transform

function:

world_mollweide = st_transform(world, crs = ”+proj=moll”)

On the other hand, when mapping the world, it is often desirable to have as
little distortion as possible for all spatial properties (area, direction, distance).
One of the most popular projections to achieve this is the Winkel tripel
projection (Figure 6.3).20 st_transform_proj() from the lwgeom package which
allows for coordinate transformations to a wide range of CRSs, including the
Winkel tripel projection:

world_wintri = lwgeom::st_transform_proj(world, crs = ”+proj=wintri”)

18http://proj4.org/
19The Wikipedia page ‘List of map projections’ has 70+ projections and illustrations.
20This projection is used, among others, by the National Geographic Society.

http://proj4.org
http://www.proj4.org

136 Reprojecting geographic data

FIGURE 6.2: Mollweide projection of the world.

FIGURE 6.3: Winkel tripel projection of the world.

Modifying map projections 137

FIGURE 6.4: Lambert azimuthal equal-area projection of the world centered
on longitude and latitude of 0.

The three main functions for transformation of simple features coordinates
are sf::st_transform(), sf::sf_project(), and lwgeom::st_transform_proj(). The
st_transform function uses the GDAL interface to PROJ, while sf_project()

(which works with two-column numeric matrices, representing points) and lw-

geom::st_transform_proj() use the PROJ API directly. The first one is appropri-
ate for most situations, and provides a set of the most often used parameters
and well-defined transformations. The next one allows for greater customiza-
tion of a projection, which includes cases when some of the PROJ parameters
(e.g., +over) or projection (+proj=wintri) is not available in st_transform().

Moreover, PROJ parameters can be modified in most CRS definitions. The
below code transforms the coordinates to the Lambert azimuthal equal-area
projection centered on longitude and latitude of 0 (Figure 6.4).

world_laea1 = st_transform(world,

crs = ”+proj=laea +x_0=0 +y_0=0 +lon_0=0 +lat_0=0”)

We can change the PROJ parameters, for example the center of the projection,
using the +lon_0 and +lat_0 parameters. The code below gives the map centered
on New York City (Figure 6.5).

138 Reprojecting geographic data

FIGURE 6.5: Lambert azimuthal equal-area projection of the world centered
on New York City.

world_laea2 = st_transform(world,

crs = ”+proj=laea +x_0=0 +y_0=0 +lon_0=-74 +lat_0=40”)

More information on CRS modifications can be found in the Using PROJ21

documentation.

6.6 Reprojecting raster geometries

The projection concepts described in the previous section apply equally to
rasters. However, there are important differences in reprojection of vectors
and rasters: transforming a vector object involves changing the coordinates of
every vertex but this does not apply to raster data. Rasters are composed of
rectangular cells of the same size (expressed by map units, such as degrees or
meters), so it is impossible to transform coordinates of pixels separately. Raster
reprojection involves creating a new raster object, often with a different number

21http://proj4.org/usage/index.html

http://proj4.org

Reprojecting raster geometries 139

of columns and rows than the original. The attributes must subsequently be
re-estimated, allowing the new pixels to be ‘filled’ with appropriate values.
In other words, raster reprojection can be thought of as two separate spatial
operations: a vector reprojection of cell centroids to another CRS (Section 6.4),
and computation of new pixel values through resampling (Section 5.3.3). Thus
in most cases when both raster and vector data are used, it is better to avoid
reprojecting rasters and reproject vectors instead.
The raster reprojection process is done with projectRaster() from the raster
package. Like the st_transform() function demonstrated in the previous section,
projectRaster() takes a geographic object (a raster dataset in this case) and
a crs argument. However, projectRaster() only accepts the lengthy proj4string

definitions of a CRS rather than concise EPSG codes.

It is possible to use a EPSG code in a proj4string definition with
”+init=epsg:MY_NUMBER”. For example, one can use the ”+init=epsg:4326” defini-
tion to set CRS to WGS84 (EPSG code of 4326). The PROJ library automat-
ically adds the rest of the parameters and converts them into ”+init=epsg:4326

+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0”.

Let’s take a look at two examples of raster transformation: using categorical
and continuous data. Land cover data are usually represented by categorical
maps. The nlcd2011.tif file provides information for a small area in Utah, USA
obtained from National Land Cover Database 201122 in the NAD83 / UTM
zone 12N CRS.

cat_raster = raster(system.file(”raster/nlcd2011.tif”, package = ”spDataLarge”))

crs(cat_raster)

#> CRS arguments:

#> +proj=utm +zone=12 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m

#> +no_defs

In this region, 14 land cover classes were distinguished (a full list of NLCD2011
land cover classes can be found at mrlc.gov23):

unique(cat_raster)

#> [1] 11 21 22 23 31 41 42 43 52 71 81 82 90 95

When reprojecting categorical rasters, the estimated values must be the same
as those of the original. This could be done using the nearest neighbor method
(ngb). This method assigns new cell values to the nearest cell center of the input
raster. An example is reprojecting cat_raster to WGS84, a geographic CRS

22https://www.mrlc.gov/nlcd2011.php
23https://www.mrlc.gov/nlcd11_leg.php

https://www.mrlc.gov
https://www.mrlc.gov

140 Reprojecting geographic data

TABLE 6.1: Key attributes in the original and projected categorical raster
datasets.

CRS nrow ncol ncell resolution unique_categories
NAD83 1359 1073 1458207 31.5275 14
WGS84 1394 1111 1548734 0.0003 15

well suited for web mapping. The first step is to obtain the PROJ definition of
this CRS, which can be done using the http://spatialreference.org24 webpage.
The final step is to reproject the raster with the projectRaster() function which,
in the case of categorical data, uses the nearest neighbor method (ngb):

wgs84 = ”+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs”

cat_raster_wgs84 = projectRaster(cat_raster, crs = wgs84, method = ”ngb”)

Many properties of the new object differ from the previous one, including
the number of columns and rows (and therefore number of cells), resolution
(transformed from meters into degrees), and extent, as illustrated in Table 6.1
(note that the number of categories increases from 14 to 15 because of the
addition of NA values, not because a new category has been created — the land
cover classes are preserved).
Reprojecting numeric rasters (with numeric or in this case integer values) follows
an almost identical procedure. This is demonstrated below with srtm.tif in
spDataLarge from the Shuttle Radar Topography Mission (SRTM)25, which
represents height in meters above sea level (elevation) with the WGS84 CRS:

con_raster = raster(system.file(”raster/srtm.tif”, package = ”spDataLarge”))

crs(con_raster)

#> CRS arguments:

#> +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0

We will reproject this dataset into a projected CRS, but not with the nearest
neighbor method which is appropriate for categorical data. Instead, we will
use the bilinear method which computes the output cell value based on the
four nearest cells in the original raster. The values in the projected dataset are
the distance-weighted average of the values from these four cells: the closer
the input cell is to the center of the output cell, the greater its weight. The
following commands create a text string representing the Oblique Lambert

24http://spatialreference.org/ref/epsg/wgs-84/
25https://www2.jpl.nasa.gov/srtm/

https://www2.jpl.nasa.gov
http://spatialreference.org
http://spatialreference.org

Exercises 141

TABLE 6.2: Key attributes original and projected continuous raster datasets.

CRS nrow ncol ncell resolution mean
WGS84 457 465 212505 31.5275 1843
Equal-area 467 478 223226 0.0003 1842

azimuthal equal-area projection, and reproject the raster into this CRS, using
the bilinear method:

equalarea = ”+proj=laea +lat_0=37.32 +lon_0=-113.04”

con_raster_ea = projectRaster(con_raster, crs = equalarea, method = ”bilinear”)

crs(con_raster_ea)

#> CRS arguments:

#> +proj=laea +lat_0=37.32 +lon_0=-113.04 +ellps=WGS84

Raster reprojection on numeric variables also leads to small changes to values
and spatial properties, such as the number of cells, resolution, and extent.
These changes are demonstrated in Table 6.226:

Of course, the limitations of 2D Earth projections apply as much to vector as
to raster data. At best we can comply with two out of three spatial properties
(distance, area, direction). Therefore, the task at hand determines which
projection to choose. For instance, if we are interested in a density (points per
grid cell or inhabitants per grid cell) we should use an equal-area projection
(see also Chapter 13).

There is more to learn about CRSs. An excellent resource in this area, also
implemented in R, is the website R Spatial. Chapter 6 for this free online book
is recommended reading — see: rspatial.org/spatial/rst/6-crs.html27

6.7 Exercises

1. Create a new object called nz_wgs by transforming nz object into the
WGS84 CRS.

26Another minor change, that is not represented in Table 6.2, is that the class of the values
in the new projected raster dataset is numeric. This is because the bilinear method works
with continuous data and the results are rarely coerced into whole integer values. This can
have implications for file sizes when raster datasets are saved.

27http://rspatial.org/spatial/rst/6-crs.html

http://rspatial.org
http://www.rspatial.org

142 Reprojecting geographic data

•Create an object of class crs for both and use this to query
their CRSs.

•With reference to the bounding box of each object, what units
does each CRS use?

•Remove the CRS from nz_wgs and plot the result: what is wrong
with this map of New Zealand and why?

2. Transform the world dataset to the transverse Mercator projection
(”+proj=tmerc”) and plot the result. What has changed and why? Try
to transform it back into WGS 84 and plot the new object. Why
does the new object differ from the original one?

3. Transform the continuous raster (cat_raster) into WGS 84 using the
nearest neighbor interpolation method. What has changed? How
does it influence the results?

4. Transform the categorical raster (cat_raster) into WGS 84 using
the bilinear interpolation method. What has changed? How does it
influence the results?

5. Create your own proj4string. It should have the Lambert Azimuthal
Equal Area (laea) projection, the WGS84 ellipsoid, the longitude
of projection center of 95 degrees west, the latitude of projection
center of 60 degrees north, and its units should be in meters. Next,
subset Canada from the world object and transform it into the new
projection. Plot and compare a map before and after the transfor-
mation.

7
Geographic data I/O

Prerequisites

This chapter requires the following packages:

library(sf)

library(raster)

library(dplyr)

library(spData)

7.1 Introduction

This chapter is about reading and writing geographic data. Geographic data
import is essential for geocomputation: real-world applications are impossible
without data. For others to benefit from the results of your work, data output
is also vital. Taken together, we refer to these processes as I/O, short for
input/output.
Geographic data I/O is almost always part of a wider process. It depends on
knowing which datasets are available, where they can be found and how to
retrieve them. These topics are covered in Section 7.2, which describes various
geoportals, which collectively contain many terabytes of data, and how to use
them. To further ease data access, a number of packages for downloading
geographic data have been developed. These are described in Section 7.3.
There are many geographic file formats, each of which has pros and cons. These
are described in Section 7.5. The process of actually reading and writing such
file formats efficiently is not covered until Sections 7.6 and 7.7, respectively.
The final Section 7.8 demonstrates methods for saving visual outputs (maps),
in preparation for Chapter 8 on visualization.

143

144 Geographic data I/O

7.2 Retrieving open data

A vast and ever-increasing amount of geographic data is available on the
internet, much of which is free to access and use (with appropriate credit given
to its providers). In some ways there is now too much data, in the sense that
there are often multiple places to access the same dataset. Some datasets are
of poor quality. In this context, it is vital to know where to look, so the first
section covers some of the most important sources. Various ‘geoportals’ (web
services providing geospatial datasets such as Data.gov1) are a good place to
start, providing a wide range of data but often only for specific locations (as
illustrated in the updated Wikipedia page2 on the topic).
Some global geoportals overcome this issue. The GEOSS portal3 and the
Copernicus Open Access Hub4, for example, contain many raster datasets with
global coverage. A wealth of vector datasets can be accessed from the National
Aeronautics and Space Administration agency (NASA), SEDAC5 portal and
the European Union’s INSPIRE geoportal6, with global and regional coverage.
Most geoportals provide a graphical interface allowing datasets to be queried
based on characteristics such spatial and temporal extent, the United States
Geological Services’ EarthExplorer7 being a prime example. Exploring datasets
interactively on a browser is an effective way of understanding available layers.
Downloading data is best done with code, however, from reproducibility and
efficiency perspectives. Downloads can be initiated from the command line
using a variety of techniques, primarily via URLs and APIs (see the Sentinel
API8 for example). Files hosted on static URLs can be downloaded with
download.file(), as illustrated in the code chunk below which accesses US
National Parks data from: catalog.data.gov/dataset/national-parks9:

download.file(url = ”http://nrdata.nps.gov/programs/lands/nps_boundary.zip”,

destfile = ”nps_boundary.zip”)

unzip(zipfile = ”nps_boundary.zip”)

usa_parks = st_read(dsn = ”nps_boundary.shp”)

1https://catalog.data.gov/dataset?metadata_type=geospatial
2https://en.wikipedia.org/wiki/Geoportal
3http://www.geoportal.org/
4https://scihub.copernicus.eu/
5http://sedac.ciesin.columbia.edu/
6http://inspire-geoportal.ec.europa.eu/
7https://earthexplorer.usgs.gov/
8https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/APIHubDescription
9https://catalog.data.gov/dataset/national-parks

https://catalog.data.gov
https://scihub.copernicus.eu
https://earthexplorer.usgs.gov
http://inspire-geoportal.ec.europa.eu
http://sedac.ciesin.columbia.edu
https://scihub.copernicus.eu
http://www.geoportal.org
https://en.wikipedia.org
https://catalog.data.gov
http://nrdata.nps.gov

Geographic data packages 145

TABLE 7.1: Selected R packages for geographic data retrieval.

Package Description
getlandsat Provides access to Landsat 8 data.
osmdata Download and import of OpenStreetMap data.
raster getData() imports administrative, elevation, WorldClim data.
rnaturalearth Access to Natural Earth vector and raster data.
rnoaa Imports National Oceanic and Atmospheric Administration (NOAA) climate data.
rWBclimate Access World Bank climate data.

7.3 Geographic data packages

A multitude of R packages have been developed for accessing geographic data,
some of which are presented in Table 7.1. These provide interfaces to one or
more spatial libraries or geoportals and aim to make data access even quicker
from the command line.
It should be emphasised that Table 7.1 represents only a small number of
available geographic data packages. Other notable packages include GSODR,
which provides Global Summary Daily Weather Data in R (see the package’s
README10 for an overview of weather data sources); tidycensus and tigris,
which provide socio-demographic vector data for the USA; and hddtools,
which provides access to a range of hydrological datasets.
Each data package has its own syntax for accessing data. This diversity is
demonstrated in the subsequent code chunks, which show how to get data using
three packages from Table 7.1. Country borders are often useful and these can
be accessed with the ne_countries() function from the rnaturalearth package
as follows:

library(rnaturalearth)

usa = ne_countries(country = ”United States of America”) # United States borders

class(usa)

#> [1] ”SpatialPolygonsDataFrame”

#> attr(,”package”)

#> [1] ”sp”

alternative way of accessing the data, with raster::getData()

getData(”GADM”, country = ”USA”, level = 0)

By default rnaturalearth returns objects of class Spatial. The result can be
converted into an sf objects with st_as_sf() as follows:

10https://github.com/ropensci/GSODR

https://github.com

146 Geographic data I/O

usa_sf = st_as_sf(usa)

A second example downloads a series of rasters containing global monthly
precipitation sums with spatial resolution of ten minutes. The result is a
multilayer object of class RasterStack.

library(raster)

worldclim_prec = getData(name = ”worldclim”, var = ”prec”, res = 10)

class(worldclim_prec)

#> [1] ”RasterStack”

#> attr(,”package”)

#> [1] ”raster”

A third example uses the osmdata package (Padgham et al., 2018) to find parks
from the OpenStreetMap (OSM) database. As illustrated in the code-chunk
below, queries begin with the function opq() (short for OpenStreetMap query),
the first argument of which is bounding box, or text string representing a
bounding box (the city of Leeds in this case). The result is passed to a
function for selecting which OSM elements we’re interested in (parks in this
case), represented by key-value pairs. Next, they are passed to the function
osmdata_sf() which does the work of downloading the data and converting it
into a list of sf objects (see vignette(’osmdata’) for further details):

library(osmdata)

parks = opq(bbox = ”leeds uk”) %>%

add_osm_feature(key = ”leisure”, value = ”park”) %>%

osmdata_sf()

OpenStreetMap is a vast global database of crowd-sourced data and it is
growing daily. Although the quality is not as spatially consistent as many
official datasets, OSM data have many advantages: they are globally available
free of charge and using crowd-source data can encourage ‘citizen science’ and
contributions back to the digital commons. Further examples of osmdata in
action are provided in Chapters 9, 12 and 13.
Sometimes, packages come with inbuilt datasets. These can be accessed in four
ways: by attaching the package (if the package uses ‘lazy loading’ as spData
does), with data(dataset), by referring to the dataset with pkg::dataset or with
system.file() to access raw data files. The following code chunk illustrates
the latter two options using the world (already loaded by attaching its parent
package with library(spData)):11

11For more information on data import with R packages, see Sections 5.5 and 5.6 of
Gillespie and Lovelace (2016).

Geographic web services 147

world2 = spData::world

world3 = st_read(system.file(”shapes/world.gpkg”, package = ”spData”))

7.4 Geographic web services

In an effort to standardize web APIs for accessing spatial data, the Open
Geospatial Consortium (OGC) has created a number of specifications for web
services (collectively known as OWS, which is short for OGC Web Services).
These specifications include the Web Feature Service (WFS), Web Map Service
(WMS), Web Map Tile Service (WMTS), the Web Coverage Service (WCS)
and even a Wep Processing Service (WPS). Map servers such as PostGIS
have adopted these protocols, leading to standardization of queries: Like other
web APIs, OWS APIs use a ‘base URL’ and a ‘query string’ proceding a ? to
request data.
There are many requests that can be made to a OWS service. One of the
most fundamental is getCapabilities, demonstrated with the httr package to
show how API queries can be constructed and dispatched, in this case to
discover the capabilities of a service providing run by the Food and Agriculture
Organization of the United Nations (FAO):

base_url = ”http://www.fao.org/figis/geoserver/wfs”

q = list(request = ”GetCapabilities”)

res = httr::GET(url = base_url, query = q)

res$url

#> [1] ”http://www.fao.org/figis/geoserver/wfs?request=GetCapabilities”

The above code chunk demonstrates how API requests can be constructed
programmatically with the GET() function, which takes a base URL and a list
of query parameters which can easily be extended. The result of the request
is saved in res, an object of class response defined in the httr package, which
is a list containing information of the request, including the URL. As can be
seen by executing browseURL(res$url), the results can also be read directly in a
browser. One way of extracting the contents of the request is as follows:

txt = httr::content(res, ”text”)

xml = xml2::read_xml(txt)

#> {xml_document} ...

http://www.fao.org
http://www.fao.org

148 Geographic data I/O

#> [1] <ows:ServiceIdentification>\n <ows:Title>GeoServer WFS...

#> [2] <ows:ServiceProvider>\n <ows:ProviderName>Food and Agr...

#> ...

Data can be downloaded from WFS services with the GetFeature request and a
specific typeName (as illustrated in the code chunk below).
Available names differ depending on the accessed web feature service. One can
extract them programmatically using web technologies (Nolan and Lang, 2014)
or scrolling manually through the contents of the GetCapabilities output in a
browser.

qf = list(request = ”GetFeature”, typeName = ”area:FAO_AREAS”)

file = tempfile(fileext = ”.gml”)

httr::GET(url = base_url, query = qf, httr::write_disk(file))

fao_areas = sf::read_sf(file)

Note the use of write_disc() to ensure that the results are written to disk rather
than loaded into memory, allowing them to be imported with sf. This example
shows how to gain low-level access to web services using httr, which can be
useful for understanding how web services work. For many everyday tasks,
however, a higher-level interface may be more appropriate, and a number of R
packages, and tutorials, have been developed precisely for this purpose.
Packages ows4R, rwfs and sos4R have been developed for working with OWS
services in general, WFS and the sensor observation service (SOS) respectively.
As of October 2018, only ows4R is on CRAN. The package’s basic functionality
is demonstrated below, in commands that get all FAO_AREAS as we did in the
previous code chunk:12

library(ows4R)

wfs = WFSClient$new(”http://www.fao.org/figis/geoserver/wfs”,

serviceVersion = ”1.0.0”, logger = ”INFO”)

fao_areas = wfs$getFeatures(”area:FAO_AREAS”)

There is much more to learn about web services and much potential for
development of R-OWS interfaces, an active area of development. For
further information on the topic, we recommend examples from Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) services at

12To filter features on the server before downloading them, the argument cql_filter can
be used. Adding cql_filter = URLencode(”F_CODE= ’27’”) to the command, for example, would
instruct the server to only return the feature with values in the F_CODE column equal to 27.

http://www.fao.org

File formats 149

github.com/OpenDataHack13 and reading-up on OCG Web Services at
opengeospatial.org14.

7.5 File formats

Geographic datasets are usually stored as files or in spatial databases. File
formats can either store vector or raster data, while spatial databases such
as PostGIS15 can store both (see also Section 9.6.2). Today the variety of file
formats may seem bewildering but there has been much consolidation and
standardization since the beginnings of GIS software in the 1960s when the
first widely distributed program (SYMAP16) for spatial analysis was created
at Harvard University (Coppock and Rhind, 1991).
GDAL (which should be pronounced “goo-dal”, with the double “o” making a
reference to object-orientation), the Geospatial Data Abstraction Library, has
resolved many issues associated with incompatibility between geographic file
formats since its release in 2000. GDAL provides a unified and high-performance
interface for reading and writing of many raster and vector data formats. Many
open and proprietary GIS programs, including GRASS, ArcGIS and QGIS,
use GDAL behind their GUIs for doing the legwork of ingesting and spitting
out geographic data in appropriate formats.
GDAL provides access to more than 200 vector and raster data formats. Table
7.2 presents some basic information about selected and often used spatial file
formats.
An important development ensuring the standardization and open-sourcing of
file formats was the founding of the Open Geospatial Consortium (OGC17)
in 1994. Beyond defining the simple features data model (see Section 2.2.1),
the OGC also coordinates the development of open standards, for example as
used in file formats such as KML and GeoPackage. Open file formats of the
kind endorsed by the OGC have several advantages over proprietary formats:
the standards are published, ensure transparency and open up the possibility
for users to further develop and adjust the file formats to their specific needs.
ESRI Shapefile is the most popular vector data exchange format. However, it
is not an open format (though its specification is open). It was developed in
the early 1990s and has a number of limitations. First of all, it is a multi-file
format, which consists of at least three files. It only supports 255 columns,

13https://github.com/OpenDataHack/data_service_catalogue
14http://www.opengeospatial.org/standards
15https://trac.osgeo.org/postgis/wiki/WKTRaster
16https://news.harvard.edu/gazette/story/2011/10/the-invention-of-gis/
17http://www.opengeospatial.org/

http://www.opengeospatial.org
https://news.harvard.edu
https://trac.osgeo.org
http://www.opengeospatial.org
https://github.com
http://www.github.com
http://www.opengeospatial.org

150 Geographic data I/O

TABLE 7.2: Selected spatial file formats.

Name Extension Comments
ESRI Shapefile .shp Popular vector format consisting of at least

three files. No support for: files > 2GB; mixed
types; names > 10 chars; cols > 255.

GeoJSON .geojson Open vector format, extends JSON by
including a subset of the simple feature
representation.

KML .kml XML-based open vector format developed for
use with Google Earth. Zipped KML file
forms the KMZ format.

GPX .gpx Open XML schema created for exchange of
vector GPS data.

GeoTIFF .tiff Popular open raster format similar to ‘.tif‘
format but stores raster header.

Arc ASCII .asc Open raster format where the first six lines
represent the raster header, followed by the
raster cell values arranged in rows and
columns.

R-raster .gri, .grd Open raster format of the R-package raster.
SQLite/SpatiaLite .sqlite Standalone open relational database,

SpatiaLite extends SQLite to support raster
and vector data.

ESRI FileGDB .gdb Proprietary format for raster and vector data.
Allows: multiple feature classes; topology.
Limited support from GDAL.

GeoPackage .gpkg Lightweight open format based on SQLite
allowing an easy and platform-independent
exchange of vector and raster data.

column names are restricted to ten characters and the file size limit is 2 GB.
Furthermore, ESRI Shapefile does not support all possible geometry types, for
example, it is unable to distinguish between a polygon and a multipolygon.18

Despite these limitations, a viable alternative had been missing for a long
time. In the meantime, GeoPackage19 emerged, and seems to be a more than
suitable replacement candidate for ESRI Shapefile. Geopackage is a format for
exchanging geospatial information and an OGC standard. The GeoPackage
standard describes the rules on how to store geospatial information in a
tiny SQLite container. Hence, GeoPackage is a lightweight spatial database
container, which allows the storage of vector and raster data but also of

18To learn more about ESRI Shapefile limitations and possible alternative file formats,
visit http://switchfromshapefile.org/.

19https://www.geopackage.org/

http://www.geopackage.org
http://switchfromshapefile.org

Data input (I) 151

TABLE 7.3: Sample of available drivers for reading/writing vector data (it
could vary between different GDAL versions).

name long_name write is_raster is_vector
ESRI Shapefile ESRI Shapefile TRUE FALSE TRUE
GPX GPX TRUE FALSE TRUE
KML Keyhole

Markup
Language
(KML)

TRUE FALSE TRUE

GeoJSON GeoJSON TRUE FALSE TRUE
GPKG GeoPackage TRUE TRUE TRUE

non-spatial data and extensions. Aside from GeoPackage, there are other
geospatial data exchange formats worth checking out (Table 7.2).

7.6 Data input (I)

Executing commands such as sf::st_read() (the main function we use for loading
vector data) or raster::raster() (the main function used for loading raster data)
silently sets off a chain of events that reads data from files. Moreover, there
are many R packages containing a wide range of geographic data or providing
simple access to different data sources. All of them load the data into R or,
more precisely, assign objects to your workspace, stored in RAM accessible
from the .GlobalEnv20 of the R session.

7.6.1 Vector data

Spatial vector data comes in a wide variety of file formats, most of which can
be read-in via the sf function st_read(). Behind the scenes this calls GDAL.
To find out which data formats sf supports, run st_drivers(). Here, we show
only the first five drivers (see Table 7.3):

sf_drivers = st_drivers()

head(sf_drivers, n = 5)

The first argument of st_read() is dsn, which should be a text string or an
object containing a single text string. The content of a text string could vary

20http://adv-r.had.co.nz/Environments.html

http://adv-r.had.co.nz

152 Geographic data I/O

between different drivers. In most cases, as with the ESRI Shapefile (.shp) or
the GeoPackage format (.gpkg), the dsn would be a file name. st_read() guesses
the driver based on the file extension, as illustrated for a .gpkg file below:

vector_filepath = system.file(”shapes/world.gpkg”, package = ”spData”)

world = st_read(vector_filepath)

#> Reading layer ‘world’ from data source ‘.../world.gpkg’ using driver ‘GPKG’

#> Simple feature collection with 177 features and 10 fields

#> geometry type: MULTIPOLYGON

#> dimension: XY

#> bbox: xmin: -180 ymin: -90 xmax: 180 ymax: 83.64513

#> epsg (SRID): 4326

#> proj4string: +proj=longlat +datum=WGS84 +no_defs

For some drivers, dsn could be provided as a folder name, access credentials
for a database, or a GeoJSON string representation (see the examples of the
st_read() help page for more details).
Some vector driver formats can store multiple data layers. By default, st_read()
automatically reads the first layer of the file specified in dsn; however, using
the layer argument you can specify any other layer.
Naturally, some options are specific to certain drivers.21 For example, think
of coordinates stored in a spreadsheet format (.csv). To read in such files as
spatial objects, we naturally have to specify the names of the columns (X and
Y in our example below) representing the coordinates. We can do this with the
help of the options parameter. To find out about possible options, please refer to
the ‘Open Options’ section of the corresponding GDAL driver description. For
the comma-separated value (csv) format, visit http://www.gdal.org/drv_csv.html.

cycle_hire_txt = system.file(”misc/cycle_hire_xy.csv”, package = ”spData”)

cycle_hire_xy = st_read(cycle_hire_txt, options = c(”X_POSSIBLE_NAMES=X”,

”Y_POSSIBLE_NAMES=Y”))

Instead of columns describing xy-coordinates, a single column can also contain
the geometry information. Well-known text (WKT), well-known binary (WKB),
and the GeoJSON formats are examples of this. For instance, the world_wkt.csv

file has a column named WKT representing polygons of the world’s countries.
We will again use the options parameter to indicate this. Here, we will use
read_sf() which does exactly the same as st_read() except it does not print the
driver name to the console and stores strings as characters instead of factors.

21A list of supported vector formats and options can be found at http://gdal.org/ogr_formats.

html.

http://gdal.org
http://gdal.org
http://www.gdal.org

Data input (I) 153

world_txt = system.file(”misc/world_wkt.csv”, package = ”spData”)

world_wkt = read_sf(world_txt, options = ”GEOM_POSSIBLE_NAMES=WKT”)

the same as

world_wkt = st_read(world_txt, options = ”GEOM_POSSIBLE_NAMES=WKT”,

quiet = TRUE, stringsAsFactors = FALSE)

Not all of the supported vector file formats store information about their
coordinate reference system. In these situations, it is possible to add the
missing information using the st_set_crs() function. Please refer also to
Section 2.4 for more information.

As a final example, we will show how st_read() also reads KML files. A KML
file stores geographic information in XML format - a data format for the
creation of web pages and the transfer of data in an application-independent
way (Nolan and Lang, 2014). Here, we access a KML file from the web. This file
contains more than one layer. st_layers() lists all available layers. We choose
the first layer Placemarks and say so with the help of the layer parameter in
read_sf().

u = ”https://developers.google.com/kml/documentation/KML_Samples.kml”

download.file(u, ”KML_Samples.kml”)

st_layers(”KML_Samples.kml”)

#> Driver: LIBKML

#> Available layers:

#> layer_name geometry_type features fields

#> 1 Placemarks 3 11

#> 2 Styles and Markup 1 11

#> 3 Highlighted Icon 1 11

#> 4 Ground Overlays 1 11

#> 5 Screen Overlays 0 11

#> 6 Paths 6 11

#> 7 Polygons 0 11

#> 8 Google Campus 4 11

#> 9 Extruded Polygon 1 11

#> 10 Absolute and Relative 4 11

kml = read_sf(”KML_Samples.kml”, layer = ”Placemarks”)

All the examples presented in this section so far have used the sf package for
geographic data import. It is fast and flexible but it may be worth looking at
other packages for specific file formats. An example is the geojsonsf package.

https://developers.google.com

154 Geographic data I/O

A benchmark22 suggests it is around 10 times faster than the sf package for
reading .geojson.

7.6.2 Raster data

Similar to vector data, raster data comes in many file formats with some of
them supporting even multilayer files. raster’s raster() command reads in a
single layer.

raster_filepath = system.file(”raster/srtm.tif”, package = ”spDataLarge”)

single_layer = raster(raster_filepath)

In case you want to read in a single band from a multilayer file, use the band

parameter to indicate a specific layer.

multilayer_filepath = system.file(”raster/landsat.tif”, package = ”spDataLarge”)

band3 = raster(multilayer_filepath, band = 3)

If you want to read in all bands, use brick() or stack().

multilayer_brick = brick(multilayer_filepath)

multilayer_stack = stack(multilayer_filepath)

Please refer to Section 2.3.3 for information on the difference between raster
stacks and bricks.

7.7 Data output (O)

Writing geographic data allows you to convert from one format to another
and to save newly created objects. Depending on the data type (vector or
raster), object class (e.g., multipoint or RasterLayer), and type and amount of
stored information (e.g., object size, range of values), it is important to know
how to store spatial files in the most efficient way. The next two sections will
demonstrate how to do this.

7.7.1 Vector data

The counterpart of st_read() is st_write(). It allows you to write sf objects to
a wide range of geographic vector file formats, including the most common

22https://github.com/ATFutures/geobench

https://github.com

Data output (O) 155

such as .geojson, .shp and .gpkg. Based on the file name, st_write() decides
automatically which driver to use. The speed of the writing process depends
also on the driver.

st_write(obj = world, dsn = ”world.gpkg”)

#> Writing layer ‘world’ to data source ‘world.gpkg’ using driver ‘GPKG’

#> features: 177

#> fields: 10

#> geometry type: Multi Polygon

Note: if you try to write to the same data source again, the function will fail:

st_write(obj = world, dsn = ”world.gpkg”)

#> Updating layer ‘world’ to data source ‘world.gpkg’ using driver ‘GPKG’

#> Creating layer world failed.

#> Error in CPL_write_ogr(obj, dsn, layer, driver, ...), :

#> Layer creation failed.

#> In addition: Warning message:

#> In CPL_write_ogr(obj, dsn, layer, driver, ...), :

#> GDAL Error 1: Layer world already exists, CreateLayer failed.

#> Use the layer creation option OVERWRITE=YES to replace it.

The error message provides some information as to why the function failed.
The GDAL Error 1 statement makes clear that the failure occurred at the GDAL
level. Additionally, the suggestion to use OVERWRITE=YES provides a clue about
how to fix the problem. However, this is not a st_write() argument, it is a
GDAL option. Luckily, st_write provides a layer_options argument through
which we can pass driver-dependent options:

st_write(obj = world, dsn = ”world.gpkg”, layer_options = ”OVERWRITE=YES”)

Another solution is to use the st_write() argument delete_layer. Setting it to
TRUE deletes already existing layers in the data source before the function
attempts to write (note there is also a delete_dsn argument):

st_write(obj = world, dsn = ”world.gpkg”, delete_layer = TRUE)

You can achieve the same with write_sf() since it is equivalent to (technically
an alias for) st_write(), except that its defaults for delete_layer and quiet is
TRUE.

write_sf(obj = world, dsn = ”world.gpkg”)

156 Geographic data I/O

The layer_options argument could be also used for many different purposes.
One of them is to write spatial data to a text file. This can be done by
specifying GEOMETRY inside of layer_options. It could be either AS_XY for simple
point datasets (it creates two new columns for coordinates) or AS_WKT for more
complex spatial data (one new column is created which contains the well-known
text representation of spatial objects).

st_write(cycle_hire_xy, ”cycle_hire_xy.csv”, layer_options = ”GEOMETRY=AS_XY”)

st_write(world_wkt, ”world_wkt.csv”, layer_options = ”GEOMETRY=AS_WKT”)

7.7.2 Raster data

The writeRaster() function saves Raster* objects to files on disk. The function
expects input regarding output data type and file format, but also accepts
GDAL options specific to a selected file format (see ?writeRaster for more
details).
The raster package offers nine data types when saving a raster: LOG1S,
INT1S, INT1U, INT2S, INT2U, INT4S, INT4U, FLT4S, and FLT8S.23 The
data type determines the bit representation of the raster object written to
disk (Table 7.4). Which data type to use depends on the range of the values
of your raster object. The more values a data type can represent, the larger
the file will get on disk. Commonly, one would use LOG1S for bitmap (binary)
rasters. Unsigned integers (INT1U, INT2U, INT4U) are suitable for categorical
data, while float numbers (FLT4S and FLT8S) usually represent continuous
data. writeRaster() uses FLT4S as the default. While this works in most cases,
the size of the output file will be unnecessarily large if you save binary or
categorical data. Therefore, we would recommend to use the data type that
needs the least storage space, but is still able to represent all values (check the
range of values with the summary() function).
The file extension determines the output file when saving a Raster* object to
disk. For example, the .tif extension will create a GeoTIFF file:

writeRaster(x = single_layer,

filename = ”my_raster.tif”,

datatype = ”INT2U”)

The raster file format (native to the raster package) is used when a file extension
is invalid or missing. Some raster file formats come with additional options.
You can use them with the options parameter24. GeoTIFF files, for example,
can be compressed using COMPRESS:

23Using INT4U is not recommended as R does not support 32-bit unsigned integers.
24http://www.gdal.org/formats_list.html

http://www.gdal.org

Visual outputs 157

TABLE 7.4: Data types supported by the raster package.

Data type Minimum value Maximum value
LOG1S FALSE (0) TRUE (1)
INT1S -127 127
INT1U 0 255
INT2S -32,767 32,767
INT2U 0 65,534
INT4S -2,147,483,647 2,147,483,647
INT4U 0 4,294,967,296
FLT4S -3.4e+38 3.4e+38
FLT8S -1.7e+308 1.7e+308

writeRaster(x = single_layer,

filename = ”my_raster.tif”,

datatype = ”INT2U”,

options = c(”COMPRESS=DEFLATE”),

overwrite = TRUE)

Note that writeFormats() returns a list with all supported file formats on your
computer.

7.8 Visual outputs

R supports many different static and interactive graphics formats. The most
general method to save a static plot is to open a graphic device, create a plot,
and close it, for example:

png(filename = ”lifeExp.png”, width = 500, height = 350)

plot(world[”lifeExp”])

dev.off()

Other available graphic devices include pdf(), bmp(), jpeg(), png(), and tiff().
You can specify several properties of the output plot, including width, height
and resolution.
Additionally, several graphic packages provide their own functions to save a
graphical output. For example, the tmap package has the tmap_save() function.
You can save a tmap object to different graphic formats by specifying the object
name and a file path to a new graphic file.

158 Geographic data I/O

library(tmap)

tmap_obj = tm_shape(world) +

tm_polygons(col = ”lifeExp”)

tmap_save(tm = tmap_obj, filename = ”lifeExp_tmap.png”)

On the other hand, you can save interactive maps created in the mapview package
as an HTML file or image using the mapshot() function:

library(mapview)

mapview_obj = mapview(world, zcol = ”lifeExp”, legend = TRUE)

mapshot(mapview_obj, file = ”my_interactive_map.html”)

7.9 Exercises

1. List and describe three types of vector, raster, and geodatabase
formats.

2. Name at least two differences between read_sf() and the more well-
known function st_read().

3. Read the cycle_hire_xy.csv file from the spData package as a spatial
object (Hint: it is located in the misc\ folder). What is a geometry
type of the loaded object?

4. Download the borders of Germany using rnaturalearth, and create
a new object called germany_borders. Write this new object to a file
of the GeoPackage format.

5. Download the global monthly minimum temperature with a spatial
resolution of five minutes using the raster package. Extract the
June values, and save them to a file named tmin_june.tif file (hint:
use raster::subset()).

6. Create a static map of Germany’s borders, and save it to a PNG
file.

7. Create an interactive map using data from the cycle_hire_xy.csv file.
Export this map to a file called cycle_hire.html.

Part II

Extensions

http://taylorandfrancis.com

8
Making maps with R

Prerequisites

• This chapter requires the following packages that we have already been using:

library(sf)

library(raster)

library(dplyr)

library(spData)

library(spDataLarge)

• In addition, it uses the following visualization packages:

library(tmap) # for static and interactive maps

library(leaflet) # for interactive maps

library(mapview) # for interactive maps

library(ggplot2) # tidyverse vis package

library(shiny) # for web applications

8.1 Introduction

A satisfying and important aspect of geographic research is communicating
the results. Map making — the art of cartography — is an ancient skill that
involves communication, intuition, and an element of creativity. Static mapping
is straightforward with plot(), as we saw in Section 2.2.3. It is possible to
create advanced maps using base R methods (Murrell, 2016), but this chapter
focuses on dedicated map-making packages. When learning a new skill, it makes
sense to gain depth-of-knowledge in one area branching out. Map making is no
exception, hence this chapter’s coverage of one package (tmap) in depth rather
than many superficially. In addition to being fun and creative, cartography

161

162 Making maps with R

also has important practical applications. A carefully crafted map is vital for
effectively communicating the results of your work (Brewer, 2015):

Amateur-looking maps can undermine your audience’s ability to
understand important information and weaken the presentation
of a professional data investigation.

Maps have been used for several thousand years for a wide variety of purposes.
Historic examples include maps of buildings and land ownership in the Old
Babylonian dynasty more than 3000 years ago and Ptolemy’s world map in
his masterpiece Geography nearly 2000 years ago (Talbert, 2014).
Map making has historically been an activity undertaken only by, or on behalf
of, the elite. This has changed with the emergence of open source mapping
software such as the R package tmap and the ‘print composer’ in QGIS
which enable anyone to make high-quality maps, enabling ‘citizen science’.
Maps are also often the best way to present the findings of geocomputational
research in a way that is accessible. Map making is therefore a critical part of
geocomputation and its emphasis not only on describing, but also changing
the world.
This chapter shows how to make a wide range of maps. The next section
covers a range of static maps, including aesthetic considerations, facets and
inset maps. Sections 8.3 to 8.5 cover animated and interactive maps (including
web maps and mapping applications). Finally, Section 8.6 covers a range of
alternative map-making packages including ggplot2 and cartogram.

8.2 Static maps

Static maps are the most common type of visual output from geocomputation.
Fixed images for printed outputs, common formats for static maps include
.png and .pdf, for raster and vector outputs, respectively (interactive maps
are covered in Section 8.4). Initially static maps were the only type of map
that R could produce. Things have advanced greatly since sp was released
(see Pebesma and Bivand, 2005). Many new techniques for map making have
been developed since then. However, a decade later static plotting was still
the emphasis of geographic data visualisation in R (Cheshire and Lovelace,
2015).

Static maps 163

Despite the innovation of interactive mapping in R, static maps are still the
foundation of mapping in R. The generic plot() function is often the fastest
way to create static maps from vector and raster spatial objects, as shown
in Sections 2.2.3 and 2.3.2. Sometimes simplicity and speed are priorities,
especially during the development phase of a project, and this is where plot()

excels. The base R approach is also extensible, with plot() offering dozens of
arguments. Another low-level approach is the grid package, which provides
functions for low-level control of graphical outputs, — see R Graphics (Murrell,
2016), especially Chapter 141. The focus of this section, however, is making
static maps with tmap.
Why tmap? It is a powerful and flexible map-making package with sensible
defaults. It has a concise syntax that allows for the creation of attractive maps
with minimal code, which will be familiar to ggplot2 users. Furthermore,
tmap has a unique capability to generate static and interactive maps using the
same code via tmap_mode(). It accepts a wider range of spatial classes (including
raster objects) than alternatives such as ggplot2, as documented in vignettes
tmap-getstarted2 and tmap-changes-v23 and an academic paper on the subject
(Tennekes, 2018). This section teaches how to make static maps with tmap,
emphasizing the important aesthetic and layout options.

8.2.1 tmap basics

Like ggplot2, tmap is based on the idea of a ‘grammar of graphics’ (Wilkinson
and Wills, 2005). This involves a separation between the input data and the
aesthetics (how data are visualised): each input dataset can be ‘mapped’ in
a range of different ways including location on the map (defined by data’s
geometry), color, and other visual variables. The basic building block is tm_shape()
(which defines input data, raster and vector objects), followed by one or more
layer elements such as tm_fill() and tm_dots(). This layering is demonstrated
in the chunk below, which generates the maps presented in Figure 8.1:

Add fill layer to nz shape

tm_shape(nz) +

tm_fill()

Add border layer to nz shape

tm_shape(nz) +

tm_borders()

Add fill and border layers to nz shape

tm_shape(nz) +

1https://www.stat.auckland.ac.nz/~paul/RG2e/chapter14.html
2https://cran.r-project.org/web/packages/tmap/vignettes/tmap-getstarted.html
3https://cran.r-project.org/web/packages/tmap/vignettes/tmap-changes-v2.html

https://cran.r-project.org
https://cran.r-project.org
https://www.stat.auckland.ac.nz

164 Making maps with R

FIGURE 8.1: New Zealand’s shape plotted with fill (left), border (middle)
and fill and border (right) layers added using tmap functions.

tm_fill() +

tm_borders()

The object passed to tm_shape() in this case is nz, an sf object represent-
ing the regions of New Zealand (see Section 2.2.1 for more on sf objects).
Layers are added to represent nz visually, with tm_fill() and tm_borders() cre-
ating shaded areas (left panel) and border outlines (middle panel) in Figure
8.1, respectively.
This is an intuitive approach to map making: the common task of adding
new layers is undertaken by the addition operator +, followed by tm_*(). The
asterisk (*) refers to a wide range of layer types which have self-explanatory
names including fill, borders (demonstrated above), bubbles, text and raster

(see help(”tmap-element” for a full list). This layering is illustrated in the right
panel of Figure 8.1, the result of adding a border on top of the fill layer.

qtm() is a handy function for quickly creating tmap maps (hence the snappy
name). It is concise and provides a good default visualization in many cases:
qtm(nz), for example, is equivalent to tm_shape(nz) + tm_fill() + tm_borders().
Further, layers can be added concisely using multiple qtm() calls, such as
qtm(nz) + qtm(nz_height). The disadvantage is that it makes aesthetics of

Static maps 165

individual layers harder to control, explaining why we avoid teaching it in
this chapter.

8.2.2 Map objects

A useful feature of tmap is its ability to store objects representing maps. The
code chunk below demonstrates this by saving the last plot in Figure 8.1 as an
object of class tmap (note the use of tm_polygons() which condenses tm_fill() +

tm_borders() into a single function):

map_nz = tm_shape(nz) + tm_polygons()

class(map_nz)

#> [1] ”tmap”

map_nz can be plotted later, for example by adding additional layers (as shown be-
low) or simply running map_nz in the console, which is equivalent to print(map_nz).
New shapes can be added with + tm_shape(new_obj). In this case new_obj repre-
sents a new spatial object to be plotted on top of preceding layers. When a
new shape is added in this way, all subsequent aesthetic functions refer to it,
until another new shape is added. This syntax allows the creation of maps
with multiple shapes and layers, as illustrated in the next code chunk which
uses the function tm_raster() to plot a raster layer (with alpha set to make the
layer semi-transparent):

map_nz1 = map_nz +

tm_shape(nz_elev) + tm_raster(alpha = 0.7)

Building on the previously created map_nz object, the preceding code creates
a new map object map_nz1 that contains another shape (nz_elev) representing
average elevation across New Zealand (see Figure 8.2, left). More shapes and
layers can be added, as illustrated in the code chunk below which creates
nz_water, representing New Zealand’s territorial waters4, and adds the resulting
lines to an existing map object.

nz_water = st_union(nz) %>% st_buffer(22200) %>%

st_cast(to = ”LINESTRING”)

map_nz2 = map_nz1 +

tm_shape(nz_water) + tm_lines()

4https://en.wikipedia.org/wiki/Territorial_waters

https://en.wikipedia.org

166 Making maps with R

FIGURE 8.2: Maps with additional layers added to the final map of Figure
8.1.

There is no limit to the number of layers or shapes that can be added to
tmap objects. The same shape can even be used multiple times. The final map
illustrated in Figure 8.2 is created by adding a layer representing high points
(stored in the object nz_height) onto the previously created map_nz2 object with
tm_dots() (see ?tm_dots and ?tm_bubbles for details on tmap’s point plotting
functions). The resulting map, which has four layers, is illustrated in the
right-hand panel of Figure 8.2:

map_nz3 = map_nz2 +

tm_shape(nz_height) + tm_dots()

A useful and little known feature of tmap is that multiple map objects can be
arranged in a single ‘metaplot’ with tmap_arrange(). This is demonstrated in
the code chunk below which plots map_nz1 to map_nz3, resulting in Figure 8.2.

tmap_arrange(map_nz1, map_nz2, map_nz3)

More elements can also be added with the + operator. Aesthetic settings,
however, are controlled by arguments to layer functions.

Static maps 167

8.2.3 Aesthetics

The plots in the previous section demonstrate tmap’s default aesthetic settings.
Gray shades are used for tm_fill() and tm_bubbles() layers and a continuous
black line is used to represent lines created with tm_lines(). Of course, these
default values and other aesthetics can be overridden. The purpose of this
section is to show how.
There are two main types of map aesthetics: those that change with the data
and those that are constant. Unlike ggplot2, which uses the helper function
aes() to represent variable aesthetics, tmap accepts aesthetic arguments that
are either variable fields (based on column names) or constant values.5 The
most commonly used aesthetics for fill and border layers include color, trans-
parency, line width and line type, set with col, alpha, lwd, and lty arguments,
respectively. The impact of setting these with fixed values is illustrated in
Figure 8.3.

ma1 = tm_shape(nz) + tm_fill(col = ”red”)

ma2 = tm_shape(nz) + tm_fill(col = ”red”, alpha = 0.3)

ma3 = tm_shape(nz) + tm_borders(col = ”blue”)

ma4 = tm_shape(nz) + tm_borders(lwd = 3)

ma5 = tm_shape(nz) + tm_borders(lty = 2)

ma6 = tm_shape(nz) + tm_fill(col = ”red”, alpha = 0.3) +

tm_borders(col = ”blue”, lwd = 3, lty = 2)

tmap_arrange(ma1, ma2, ma3, ma4, ma5, ma6)

Like base R plots, arguments defining aesthetics can also receive values that
vary. Unlike the base R code below (which generates the left panel in Figure
8.4), tmap aesthetic arguments will not accept a numeric vector:

plot(st_geometry(nz), col = nz$Land_area) # works

tm_shape(nz) + tm_fill(col = nz$Land_area) # fails

#> Error: Fill argument neither colors nor valid variable name(s)

Instead col (and other aesthetics that can vary such as lwd for line layers and
size for point layers) requires a character string naming an attribute associated
with the geometry to be plotted. Thus, one would achieve the desired result as
follows (plotted in the right-hand panel of Figure 8.4):

tm_shape(nz) + tm_fill(col = ”Land_area”)

An important argument in functions defining aesthetic layers such as tm_fill()

5If there is a clash between a fixed value and a column name, the column name takes
precedence. This can be verified by running the next code chunk after running nz$red =

1:nrow(nz).

168 Making maps with R

FIGURE 8.3: The impact of changing commonly used fill and border aes-
thetics to fixed values.

is title, which sets the title of the associated legend. The following code chunk
demonstrates this functionality by providing a more attractive name than
the variable name Land_area (note the use of expression() to create superscript
text):

legend_title = expression(”Area (km”^2*”)”)

map_nza = tm_shape(nz) +

tm_fill(col = ”Land_area”, title = legend_title) + tm_borders()

8.2.4 Color settings

Color settings are an important part of map design. They can have a major
impact on how spatial variability is portrayed as illustrated in Figure 8.5. This
shows four ways of coloring regions in New Zealand depending on median
income, from left to right (and demonstrated in the code chunk below):
• The default setting uses ‘pretty’ breaks, described in the next paragraph.
• breaks allows you to manually set the breaks.
• n sets the number of bins into which numeric variables are categorized.
• palette defines the color scheme, for example BuGn.

Static maps 169

10
00

0
30

00
0

Land_area

Land_area
0 to 10,000
10,000 to 20,000

20,000 to 30,000

30,000 to 40,000

40,000 to 50,000

FIGURE 8.4: Comparison of base (left) and tmap (right) handling of a
numeric color field.

tm_shape(nz) + tm_polygons(col = ”Median_income”)

breaks = c(0, 3, 4, 5) * 10000

tm_shape(nz) + tm_polygons(col = ”Median_income”, breaks = breaks)

tm_shape(nz) + tm_polygons(col = ”Median_income”, n = 10)

tm_shape(nz) + tm_polygons(col = ”Median_income”, palette = ”BuGn”)

Another way to change color settings is by altering color break (or bin) settings.
In addition to manually setting breaks tmap allows users to specify algorithms
to automatically create breaks with the style argument. Six of the most useful
break styles are illustrated in Figure 8.6 and described in the bullet points
below:
• style = pretty, the default setting, rounds breaks into whole numbers where

possible and spaces them evenly.
• style = equal divides input values into bins of equal range, and is appropriate

for variables with a uniform distribution (not recommended for variables
with a skewed distribution as the resulting map may end-up having little
color diversity).

• style = quantile ensures the same number of observations fall into each cate-
gory (with the potential down side that bin ranges can vary widely).

• style = jenks identifies groups of similar values in the data and maximizes
the differences between categories.

170 Making maps with R

FIGURE 8.5: Illustration of settings that affect color settings. The results
show (from left to right): default settings, manual breaks, n breaks, and the
impact of changing the palette.

• style = cont (and order) present a large number of colors over continuous
color field, and are particularly suited for continuous rasters (order can help
visualize skewed distributions).

• style = cat was designed to represent categorical values and assures that each
category receives a unique color.

Although style is an argument of tmap functions, in fact it originates as an
argument in classInt::classIntervals() — see the help page of this function
for details.

Palettes define the color ranges associated with the bins and determined
by the breaks, n, and style arguments described above. The default color
palette is specified in tm_layout() (see Section 8.2.5 to learn more); however, it
could be quickly changed using the palette argument. It expects a vector of
colors or a new color palette name, which can be selected interactively with
tmaptools::palette_explorer(). You can add a - as prefix to reverse the palette
order.
There are three main groups of color palettes: categorical, sequential and
diverging (Figure 8.7), and each of them serves a different purpose. Categorical
palettes consist of easily distinguishable colors and are most appropriate for
categorical data without any particular order such as state names or land cover
classes. Colors should be intuitive: rivers should be blue, for example, and

Static maps 171

FIGURE 8.6: Illustration of different binning methods set using the style
argument in tmap.

pastures green. Avoid too many categories: maps with large legends and many
colors can be uninterpretable.6

The second group is sequential palettes. These follow a gradient, for example
from light to dark colors (light colors tend to represent lower values), and
are appropriate for continuous (numeric) variables. Sequential palettes can
be single (Blues go from light to dark blue, for example) or multi-color/hue
(YlOrBr is gradient from light yellow to brown via orange, for example), as
demonstrated in the code chunk below — output not shown, run the code
yourself to see the results!

tm_shape(nz) + tm_polygons(”Population”, palette = ”Blues”)

tm_shape(nz) + tm_polygons(”Population”, palette = ”YlOrBr”)

The last group, diverging palettes, typically range between three distinct colors
(purple-white-green in Figure 8.7) and are usually created by joining two
single-color sequential palettes with the darker colors at each end. Their main
purpose is to visualize the difference from an important reference point, e.g., a
certain temperature, the median household income or the mean probability for
a drought event. The reference point’s value can be adjusted in tmap using
the midpoint argument.

6col = ”MAP_COLORS” can be used in maps with a large number of individual polygons (for
example, a map of individual countries) to create unique colors for adjacent polygons.

172 Making maps with R

FIGURE 8.7: Examples of categorical, sequential and diverging palettes.

There are two important principles for consideration when working with colors:
perceptibility and accessibility. Firstly, colors on maps should match our
perception. This means that certain colors are viewed through our experience
and also cultural lenses. For example, green colors usually represent vegetation
or lowlands and blue is connected with water or cool. Color palettes should
also be easy to understand to effectively convey information. It should be
clear which values are lower and which are higher, and colors should change
gradually. This property is not preserved in the rainbow color palette; therefore,
we suggest avoiding it in geographic data visualization (Borland and Taylor II,
2007). Instead, the viridis color palettes7, also available in tmap, can be used.
Secondly, changes in colors should be accessible to the largest number of
people. Therefore, it is important to use colorblind friendly palettes as often
as possible.8

8.2.5 Layouts

The map layout refers to the combination of all map elements into a cohesive
map. Map elements include among others the objects to be mapped, the title,
the scale bar, margins and aspect ratios, while the color settings covered in
the previous section relate to the palette and break-points used to affect how
the map looks. Both may result in subtle changes that can have an equally
large impact on the impression left by your maps.
Additional elements such as north arrows and scale bars have their own
functions - tm_compass() and tm_scale_bar() (Figure 8.8).

map_nz +

tm_compass(type = ”8star”, position = c(”left”, ”top”)) +

tm_scale_bar(breaks = c(0, 100, 200), size = 1)

tmap also allows a wide variety of layout settings to be changed, some of

7https://cran.r-project.org/web/packages/viridis/
8See the “Color blindness simulator” options in tmaptools::palette_explorer().

https://cran.r-project.org

Static maps 173

FIGURE 8.8: Map with additional elements - a north arrow and scale bar.

which are illustrated in Figure 8.9, produced using the following code (see
args(tm_layout) or ?tm_layout for a full list):

map_nz + tm_layout(title = ”New Zealand”)

map_nz + tm_layout(scale = 5)

map_nz + tm_layout(bg.color = ”lightblue”)

map_nz + tm_layout(frame = FALSE)

The other arguments in tm_layout() provide control over many more aspects of
the map in relation to the canvas on which it is placed. Some useful layout
settings are listed below (see Figure 8.10 for illustrations of a selection of
these):
• Frame width (frame.lwd) and an option to allow double lines

(frame.double.line).
• Margin settings including outer.margin and inner.margin.
• Font settings controlled by fontface and fontfamily.
• Legend settings including binary options such as legend.show (whether or not

to show the legend) legend.only (omit the map) and legend.outside (should
the legend go outside the map?), as well as multiple choice settings such as
legend.position.

174 Making maps with R

FIGURE 8.9: Layout options specified by (from left to right) title, scale,
bg.color and frame arguments.

• Default colors of aesthetic layers (aes.color), map attributes such as the
frame (attr.color).

• Color settings controlling sepia.intensity (how yellowy the map looks) and
saturation (a color-grayscale).

The impact of changing the color settings listed above is illustrated in Figure
8.11 (see ?tm_layout for a full list).
Beyond the low-level control over layouts and colors, tmap also offers high-level
styles, using the tm_style() function (representing the second meaning of ‘style’
in the package). Some styles such as tm_style(”cobalt”) result in stylized maps,
while others such as tm_style(”gray”) make more subtle changes, as illustrated
in Figure 8.12, created using code below (see 08-tmstyles.R):

map_nza + tm_style(”bw”)

map_nza + tm_style(”classic”)

map_nza + tm_style(”cobalt”)

map_nza + tm_style(”col_blind”)

A preview of predefined styles can be generated by executing tmap_style_cata-

logue(). This creates a folder called tmap_style_previews containing nine images.
Each image, from tm_style_albatross.png to tm_style_white.png, shows a faceted
map of the world in the corresponding style. Note: tmap_style_catalogue() takes
some time to run.

Static maps 175

FIGURE 8.10: Illustration of selected layout options.

FIGURE 8.11: Illustration of selected color-related layout options.

8.2.6 Faceted maps

Faceted maps, also referred to as ‘small multiples’, are composed of many
maps arranged side-by-side, and sometimes stacked vertically (Meulemans
et al., 2017). Facets enable the visualization of how spatial relationships change
with respect to another variable, such as time. The changing populations
of settlements, for example, can be represented in a faceted map with each
panel representing the population at a particular moment in time. The time

176 Making maps with R

FIGURE 8.12: Selected tmap styles: bw, classic, cobalt and color blind (from
left to right).

dimension could be represented via another aesthetic such as color. However,
this risks cluttering the map because it will involve multiple overlapping points
(cities do not tend to move over time!).
Typically all individual facets in a faceted map contain the same geometry
data repeated multiple times, once for each column in the attribute data (this
is the default plotting method for sf objects, see Chapter 2). However, facets
can also represent shifting geometries such as the evolution of a point pattern
over time. This use case of faceted plot is illustrated in Figure 8.13.

urb_1970_2030 = urban_agglomerations %>%

filter(year %in% c(1970, 1990, 2010, 2030))

tm_shape(world) + tm_polygons() +

tm_shape(urb_1970_2030) + tm_symbols(col = ”black”, border.col = ”white”,

size = ”population_millions”) +

tm_facets(by = ”year”, nrow = 2, free.coords = FALSE)

The preceding code chunk demonstrates key features of faceted maps created
with tmap:
• Shapes that do not have a facet variable are repeated (the countries in world

in this case).
• The by argument which varies depending on a variable (year in this case).
• nrow/ncol setting specifying the number of rows and columns that facets

should be arranged into.
• The free.coords-parameter specifying if each map has its own bounding box.

Static maps 177

FIGURE 8.13: Faceted map showing the top 30 largest urban agglomerations
from 1970 to 2030 based on population projects by the United Nations.

In addition to their utility for showing changing spatial relationships, faceted
maps are also useful as the foundation for animated maps (see Section 8.3).

8.2.7 Inset maps

An inset map is a smaller map rendered within or next to the main map. It
could serve many different purposes, including providing a context (Figure
8.14) or bringing some non-contiguous regions closer to ease their comparison
(Figure 8.15). They could be also used to focus on a smaller area in more detail
or to cover the same area as the map, but representing a different topic.
In the example below, we create a map of the central part of New Zealand’s
Southern Alps. Our inset map will show where the main map is in relation to
the whole New Zealand. The first step is to define the area of interest, which
can be done by creating a new spatial object, nz_region.

nz_region = st_bbox(c(xmin = 1340000, xmax = 1450000,

ymin = 5130000, ymax = 5210000),

crs = st_crs(nz_height)) %>%

st_as_sfc()

In the second step, we create a base map showing the New Zealand’s Southern
Alps area. This is a place where the most important message is stated.

nz_height_map = tm_shape(nz_elev, bbox = nz_region) +

tm_raster(style = ”cont”, palette = ”YlGn”, legend.show = TRUE) +

tm_shape(nz_height) + tm_symbols(shape = 2, col = ”red”, size = 1) +

tm_scale_bar(position = c(”left”, ”bottom”))

178 Making maps with R

FIGURE 8.14: Inset map providing a context - location of the central part
of the Southern Alps in New Zealand.

The third step consists of the inset map creation. It gives a context and helps
to locate the area of interest. Importantly, this map needs to clearly indicate
the location of the main map, for example by stating its borders.

nz_map = tm_shape(nz) + tm_polygons() +

tm_shape(nz_height) + tm_symbols(shape = 2, col = ”red”, size = 0.1) +

tm_shape(nz_region) + tm_borders(lwd = 3)

Finally, we combine the two maps using the function viewport() from the grid
package, the first arguments of which specify the center location (x and y) and
a size (width and height) of the inset map.

library(grid)

nz_height_map

print(nz_map, vp = viewport(0.8, 0.27, width = 0.5, height = 0.5))

Inset map can be saved to file either by using a graphic device (see Section
7.8) or the tmap_save() function and its arguments - insets_tm and insets_vp.
Inset maps are also used to create one map of non-contiguous areas. Probably,

Animated maps 179

the most often used example is a map of the United States, which consists of
the contiguous United States, Hawaii and Alaska. It is very important to find
the best projection for each individual inset in these types of cases (see Chapter
6 to learn more). We can use US National Atlas Equal Area for the map of the
contiguous United States by putting its EPSG code in the projection argument
of tm_shape().

us_states_map = tm_shape(us_states, projection = 2163) + tm_polygons() +

tm_layout(frame = FALSE)

The rest of our objects, hawaii and alaska, already have proper projections;
therefore, we just need to create two separate maps:

hawaii_map = tm_shape(hawaii) + tm_polygons() +

tm_layout(title = ”Hawaii”, frame = FALSE, bg.color = NA,

title.position = c(”LEFT”, ”BOTTOM”))

alaska_map = tm_shape(alaska) + tm_polygons() +

tm_layout(title = ”Alaska”, frame = FALSE, bg.color = NA)

The final map is created by combining and arranging these three maps:

us_states_map

print(hawaii_map, vp = grid::viewport(0.35, 0.1, width = 0.2, height = 0.1))

print(alaska_map, vp = grid::viewport(0.15, 0.15, width = 0.3, height = 0.3))

The code presented above is compact and can be used as the basis for other
inset maps but the results, in Figure 8.15, provide a poor representation of the
locations of Hawaii and Alaska. For a more in-depth approach, see the us-map9

vignette from the geocompkg.

8.3 Animated maps

Faceted maps, described in Section 8.2.6, can show how spatial distributions of
variables change (e.g., over time), but the approach has disadvantages. Facets
become tiny when there are many of them. Furthermore, the fact that each
facet is physically separated on the screen or page means that subtle differences
between facets can be hard to detect.
Animated maps solve these issues. Although they depend on digital publication,
this is becoming less of an issue as more and more content moves online.

9https://geocompr.github.io/geocompkg/articles/us-map.html

https://geocompr.github.io

180 Making maps with R

FIGURE 8.15: Map of the United States.

Animated maps can still enhance paper reports: you can always link readers to
a web-page containing an animated (or interactive) version of a printed map
to help make it come alive. There are several ways to generate animations in
R, including with animation packages such as gganimate, which builds on
ggplot2 (see Section 8.6). This section focusses on creating animated maps
with tmap because its syntax will be familiar from previous sections and the
flexibility of the approach.
Figure 8.16 is a simple example of an animated map. Unlike the faceted plot,
it does not squeeze multiple maps into a single screen and allows the reader to
see how the spatial distribution of the world’s most populous agglomerations
evolve over time (see the book’s website for the animated version).
The animated map illustrated in Figure 8.16 can be created using the same
tmap techniques that generate faceted maps, demonstrated in Section 8.2.6.
There are two differences, however, related to arguments in tm_facets():
• along = ”year” is used instead of by = ”year”.
• free.coords = FALSE, which maintains the map extent for each map iteration.
These additional arguments are demonstrated in the subsequent code chunk:

urb_anim = tm_shape(world) + tm_polygons() +

tm_shape(urban_agglomerations) + tm_dots(size = ”population_millions”) +

tm_facets(along = ”year”, free.coords = FALSE)

Interactive maps 181

FIGURE 8.16: Animated map showing the top 30 largest urban agglomera-
tions from 1950 to 2030 based on population projects by the United Nations.
Animated version available online at: geocompr.robinlovelace.net.

The resulting urb_anim represents a set of separate maps for each year. The final
stage is to combine them and save the result as a .gif file with tmap_animation().
The following command creates the animation illustrated in Figure 8.16, with
a few elements missing, that we will add in during the exercises:

tmap_animation(urb_anim, filename = ”urb_anim.gif”, delay = 25)

Another illustration of the power of animated maps is provided in Figure 8.17.
This shows the development of states in the United States, which first formed
in the east and then incrementally to the west and finally into the interior.
Code to reproduce this map can be found in the script 08-usboundaries.R.

8.4 Interactive maps

While static and animated maps can enliven geographic datasets, interactive
maps can take them to a new level. Interactivity can take many forms, the
most common and useful of which is the ability to pan around and zoom into
any part of a geographic dataset overlaid on a ‘web map’ to show context.
Less advanced interactivity levels include popups which appear when you
click on different features, a kind of interactive label. More advanced levels of
interactivity include the ability to tilt and rotate maps, as demonstrated in the
mapdeck example below, and the provision of “dynamically linked” sub-plots
which automatically update when the user pans and zooms (Pezanowski et al.,
2018).

182 Making maps with R

FIGURE 8.17: Animated map showing population growth and state forma-
tion and boundary changes in the United States, 1790-2010. Animated version
available online at geocompr.robinlovelace.net.

The most important type of interactivity, however, is the display of geographic
data on interactive or ‘slippy’ web maps. The release of the leaflet package
in 2015 revolutionized interactive web map creation from within R and a
number of packages have built on these foundations adding new features (e.g.,
leaflet.extras) and making the creation of web maps as simple as creating
static maps (e.g., mapview and tmap). This section illustrates each approach
in the opposite order. We will explore how to make slippy maps with tmap
(the syntax of which we have already learned), mapview and finally leaflet
(which provides low-level control over interactive maps).
A unique feature of tmap mentioned in Section 8.2 is its ability to create static
and interactive maps using the same code. Maps can be viewed interactively
at any point by switching to view mode, using the command tmap_mode(”view”).
This is demonstrated in the code below, which creates an interactive map of
New Zealand based on the tmap object map_nz, created in Section 8.2.2, and
illustrated in Figure 8.18:

tmap_mode(”view”)

map_nz

Interactive maps 183

FIGURE 8.18: Interactive map of New Zealand created with tmap in view
mode. Interactive version available online at geocompr.robinlovelace.net.

Now that the interactive mode has been ‘turned on’, all maps produced
with tmap will launch (another way to create interactive maps is with the
tmap_leaflet function). Notable features of this interactive mode include the
ability to specify the basemap with tm_basemap() (or tmap_options()) as demon-
strated below (result not shown):

map_nz + tm_basemap(server = ”OpenTopoMap”)

An impressive and little-known feature of tmap’s view mode is that it also
works with faceted plots. The argument sync in tm_facets() can be used in this
case to produce multiple maps with synchronized zoom and pan settings, as
illustrated in Figure 8.19, which was produced by the following code:

world_coffee = left_join(world, coffee_data, by = ”name_long”)

facets = c(”coffee_production_2016”, ”coffee_production_2017”)

tm_shape(world_coffee) + tm_polygons(facets) +

tm_facets(nrow = 1, sync = TRUE)

Switch tmap back to plotting mode with the same function:

tmap_mode(”plot”)

#> tmap mode set to plotting

If you are not proficient with tmap, the quickest way to create interactive

184 Making maps with R

FIGURE 8.19: Faceted interactive maps of global coffee production in 2016
and 2017 in sync, demonstrating tmap’s view mode in action.

maps may be with mapview. The following ‘one liner’ is a reliable way to
interactively explore a wide range of geographic data formats:

mapview::mapview(nz)

mapview has a concise syntax yet is powerful. By default, it provides some
standard GIS functionality such as mouse position information, attribute
queries (via pop-ups), scale bar, and zoom-to-layer buttons. It offers advanced
controls including the ability to ‘burst’ datasets into multiple layers and
the addition of multiple layers with + followed by the name of a geographic
object. Additionally, it provides automatic coloring of attributes (via argument
zcol). In essence, it can be considered a data-driven leaflet API (see below
for more information about leaflet). Given that mapview always expects
a spatial object (sf, Spatial*, Raster*) as its first argument, it works well at
the end of piped expressions. Consider the following example where sf is
used to intersect lines and polygons and then is visualised with mapview
(Figure 8.20).

trails %>%

st_transform(st_crs(franconia)) %>%

st_intersection(franconia[franconia$district == ”Oberfranken”,]) %>%

st_collection_extract(”LINE”) %>%

mapview(color = ”red”, lwd = 3, layer.name = ”trails”) +

mapview(franconia, zcol = ”district”, burst = TRUE) +

breweries

Interactive maps 185

FIGURE 8.20: Using mapview at the end of a sf based pipe expression.

One important thing to keep in mind is that mapview layers are added via the
+ operator (similar to ggplot2 or tmap). This is a frequent gotcha10 in piped
workflows where the main binding operator is %>%. For further information on
mapview, see the package’s website at: r-spatial.github.io/mapview/11.
There are other ways to create interactive maps with R. The googleway
package, for example, provides an interactive mapping interface that is flexible
and extensible (see the googleway-vignette12 for details). Another approach
by the same author is mapdeck13, which provides access to Uber’s Deck.gl

framework. Its use of WebGL enables it to interactively visualize large datasets
(up to millions of points). The package uses Mapbox access tokens14, which
you must register for before using the package.

Note that the following block assumes the access token is stored in your R en-
vironment as MAPBOX=your_unique_key. This can be added with edit_r_environ()

from the usethis package.

A unique feature of mapdeck is its provision of interactive ‘2.5d’ perspectives,
illustrated in Figure 8.21. This means you can can pan, zoom and rotate
around the maps, and view the data ‘extruded’ from the map. Figure 8.21,

10https://en.wikipedia.org/wiki/Gotcha_(programming)
11https://r-spatial.github.io/mapview/articles/
12https://cran.r-project.org/web/packages/googleway/vignettes/googleway-vignette.html
13https://github.com/SymbolixAU/mapdeck
14https://www.mapbox.com/help/how-access-tokens-work/

https://www.mapbox.com
https://github.com
https://cran.r-project.org
https://r-spatial.github.io
https://en.wikipedia.org

186 Making maps with R

FIGURE 8.21: Map generated by mapdeck, representing road traffic casual-
ties across the UK. Height of 1 km cells represents number of crashes.

generated by the following code chunk, visualizes road traffic crashes in the
UK, with bar height respresenting casualties per area.

library(mapdeck)

set_token(Sys.getenv(”MAPBOX”))

df = read.csv(”https://git.io/geocompr-mapdeck”)

ms = mapdeck_style(”dark”)

mapdeck(style = ms, pitch = 45, location = c(0, 52), zoom = 4) %>%

add_grid(data = df, lat = ”lat”, lon = ”lng”, cell_size = 1000,

elevation_scale = 50, layer_id = ”grid_layer”,

colour_range = viridisLite::plasma(5))

In the browser you can zoom and drag, in addition to rotating and tilting
the map when pressing Cmd/Ctrl. Multiple layers can be added with the %>%

operator, as demonstrated in the mapdeck vignette15.
Mapdeck also supports sf objects, as can be seen by replacing the add_grid()

function call in the preceding code chunk with add_polygon(data = lnd, layer_id

= ”polygon_layer”), to add polygons representing London to an interactive tilted
map.
Last but not least is leaflet which is the most mature and widely used inter-
active mapping package in R. leaflet provides a relatively low-level interface
to the Leaflet JavaScript library and many of its arguments can be under-

15https://cran.r-project.org/web/packages/mapdeck/vignettes/mapdeck.html

https://cran.r-project.org
https://git.io

Interactive maps 187

FIGURE 8.22: The leaflet package in action, showing cycle hire points in
London.

stood by reading the documentation of the original JavaScript library (see
leafletjs.com16).
Leaflet maps are created with leaflet(), the result of which is a leaflet map
object which can be piped to other leaflet functions. This allows multiple map
layers and control settings to be added interactively, as demonstrated in the
code below which generates Figure 8.22 (see rstudio.github.io/leaflet/17 for
details).

pal = colorNumeric(”RdYlBu”, domain = cycle_hire$nbikes)

leaflet(data = cycle_hire) %>%

addProviderTiles(providers$Stamen.TonerLite) %>%

addCircles(col = ~pal(nbikes), opacity = 0.9) %>%

addPolygons(data = lnd, fill = FALSE) %>%

addLegend(pal = pal, values = ~nbikes) %>%

setView(lng = -0.1, 51.5, zoom = 12) %>%

addMiniMap()

16http://leafletjs.com/reference-1.3.0.html
17https://rstudio.github.io/leaflet/

http://leafletjs.com
https://rstudio.github.io
http://www.leafletjs.com

188 Making maps with R

8.5 Mapping applications

The interactive web maps demonstrated in Section 8.4 can go far. Careful
selection of layers to display, base-maps and pop-ups can be used to communi-
cate the main results of many projects involving geocomputation. But the web
mapping approach to interactivity has limitations:
• Although the map is interactive in terms of panning, zooming and clicking,

the code is static, meaning the user interface is fixed.
• All map content is generally static in a web map, meaning that web maps

cannot scale to handle large datasets easily.
• Additional layers of interactivity, such a graphs showing relationships between

variables and ‘dashboards’ are difficult to create using the web-mapping
approach.

Overcoming these limitations involves going beyond static web mapping and
towards geospatial frameworks and map servers. Products in this field include
GeoDjango18 (which extends the Django web framework and is written in
Python19), MapGuide20 (a framework for developing web applications, largely
written in C++21) and GeoServer22 (a mature and powerful map server written
in Java23). Each of these (particularly GeoServer) is scalable, enabling maps
to be served to thousands of people daily — assuming there is sufficient public
interest in your maps! The bad news is that such server-side solutions require
much skilled developer time to set-up and maintain, often involving teams
of people with roles such as a dedicated geospatial database administrator
(DBA24).
The good news is that web mapping applications can now be rapidly created
using shiny, a package for converting R code into interactive web applications.
This is thanks to its support for interactive maps via functions such as render-

Leaflet(), documented on the Shiny integration25 section of RStudio’s leaflet
website. This section gives some context, teaches the basics of shiny from a
web mapping perspective and culminates in a full-screen mapping application
in less than 100 lines of code.
The way shiny works is well documented at shiny.rstudio.com26. The two key
elements of a shiny app reflect the duality common to most web application

18https://docs.djangoproject.com/en/2.0/ref/contrib/gis/
19https://github.com/django/django
20https://www.osgeo.org/projects/mapguide-open-source/
21https://trac.osgeo.org/mapguide/wiki/MapGuideArchitecture
22http://geoserver.org/
23https://github.com/geoserver/geoserver
24http://wiki.gis.com/wiki/index.php/Database_administrator
25https://rstudio.github.io/leaflet/shiny.html
26https://shiny.rstudio.com/

https://shiny.rstudio.com
https://rstudio.github.io
http://wiki.gis.com
https://github.com
http://geoserver.org
https://trac.osgeo.org
https://www.osgeo.org
https://github.com
https://docs.djangoproject.com
http://www.shiny.rstudio.com

Mapping applications 189

development: ‘front end’ (the bit the user sees) and ‘back end’ code. In shiny
apps, these elements are typically created in objects named ui and server within
an R script named app.R, which lives in an ‘app folder’. This allows web mapping
applications to be represented in a single file, such as the coffeeApp/app.R27 file
in the book’s GitHub repo.

In shiny apps these are often split into ui.R (short for user interface) and
server.R files, naming conventions used by shiny-server, a server-side Linux
application for serving shiny apps on public-facing websites. shiny-server also
serves apps defined by a single app.R file in an ‘app folder’. Learn more at:
https://github.com/rstudio/shiny-server.

Before considering large apps, it is worth seeing a minimal example, named
‘lifeApp’, in action.28 The code below defines and launches — with the command
shinyApp() — a lifeApp, which provides an interactive slider allowing users to
make countries appear with progressively lower levels of life expectancy (see
Figure 8.23):

library(shiny) # for shiny apps

library(leaflet) # renderLeaflet function

library(spData) # loads the world dataset

ui = fluidPage(

sliderInput(inputId = ”life”, ”Life expectancy”, 49, 84, value = 80),

leafletOutput(outputId = ”map”)

)

server = function(input, output) {

output$map = renderLeaflet({

leaflet() %>% addProviderTiles(”OpenStreetMap.BlackAndWhite”) %>%

addPolygons(data = world[world$lifeExp < input$life,])})

}

shinyApp(ui, server)

The user interface (ui) of lifeApp is created by fluidPage(). This contains
input and output ‘widgets’ — in this case, a sliderInput() (many other *Input()

functions are available) and a leafletOutput(). These are arranged row-wise by
default, explaining why the slider interface is placed directly above the map in
Figure 8.23 (see ?column for adding content column-wise).
The server side (server) is a function with input and output arguments. output
is a list of objects containing elements generated by render*() function —
renderLeaflet() which in this example generates output$map. Input elements such

27https://github.com/Robinlovelace/geocompr/blob/master/coffeeApp/app.R
28The word ‘app’ in this context refers to ‘web application’ and should not be confused

with smartphone apps, the more common meaning of the word.

https://github.com
https://github.com

190 Making maps with R

FIGURE 8.23: Screenshot showing minimal example of a web mapping
application created with shiny.

as input$life referred to in the server must relate to elements that exist in the
ui — defined by inputId = ”life” in the code above. The function shinyApp()

combines both the ui and server elements and serves the results interactively
via a new R process. When you move the slider in the map shown in Figure
8.23, you are actually causing R code to re-run, although this is hidden from
view in the user interface.
Building on this basic example and knowing where to find help (see ?shiny),
the best way forward now may be to stop reading and start programming! The
recommended next step is to open the previously mentioned coffeeApp/app.R29

script in an IDE of choice, modify it and re-run it repeatedly. The example
contains some of the components of a web mapping application implemented
in shiny and should ‘shine’ a light on how they behave.
The coffeeApp/app.R script contains shiny functions that go beyond those
demonstrated in the simple ‘lifeApp’ example. These include reactive() and
observe() (for creating outputs that respond to the user interface — see ?re-

active) and leafletProxy() (for modifying a leaflet object that has already
been created). Such elements are critical to the creation of web mapping
applications implemented in shiny. A range of ‘events’ can be programmed

29https://github.com/Robinlovelace/geocompr/blob/master/coffeeApp/app.R

https://github.com

Mapping applications 191

including advanced functionality such as drawing new layers or subsetting
data, as described in the shiny section of RStudio’s leaflet website.30

There are a number of ways to run a shiny app. For RStudio users, the
simplest way is probably to click on the ‘Run App’ button located in the
top right of the source pane when an app.R, ui.R or server.R script is open.
shiny apps can also be initiated by using runApp() with the first argument
being the folder containing the app code and data: runApp(”coffeeApp”) in this
case (which assumes a folder named coffeeApp containing the app.R script is
in your working directory). You can also launch apps from a Unix command
line with the command Rscript -e ’shiny::runApp(”coffeeApp”)’.

Experimenting with apps such as coffeeApp will build not only your knowledge
of web mapping applications in R, but also your practical skills. Changing the
contents of setView(), for example, will change the starting bounding box that
the user sees when the app is initiated. Such experimentation should not be
done at random, but with reference to relevant documentation, starting with
?shiny, and motivated by a desire to solve problems such as those posed in the
exercises.
shiny used in this way can make prototyping mapping applications faster and
more accessible than ever before (deploying shiny apps is a separate topic
beyond the scope of this chapter). Even if your applications are eventually
deployed using different technologies, shiny undoubtedly allows web mapping
applications to be developed in relatively few lines of code (60 in the case of
coffeeApp). That does not stop shiny apps getting rather large. The Propensity
to Cycle Tool (PCT) hosted at pct.bike31, for example, is a national mapping
tool funded by the UK’s Department for Transport. The PCT is used by dozens
of people each day and has multiple interactive elements based on more than
1000 lines of code32 (Lovelace et al., 2017).
While such apps undoubtedly take time and effort to develop, shiny provides
a framework for reproducible prototyping that should aid the development
process. One potential problem with the ease of developing prototypes with
shiny is the temptation to start programming too early, before the purpose
of the mapping application has been envisioned in detail. For that reason,
despite advocating shiny, we recommend starting with the longer established
technology of a pen and paper as the first stage for interactive mapping projects.
This way your prototype web applications should be limited not by technical
considerations, but by your motivations and imagination.

30https://rstudio.github.io/leaflet/shiny.html
31http://www.pct.bike/
32https://github.com/npct/pct-shiny/blob/master/regions_www/m/server.R

https://github.com
http://www.pct.bike
https://rstudio.github.io

192 Making maps with R

FIGURE 8.24: Map of New Zealand created with plot(). The legend to the
right refers to elevation (1000 m above sea level).

8.6 Other mapping packages

tmap provides a powerful interface for creating a wide range of static maps
(Section 8.2) and also supports interactive maps (Section 8.4). But there are
many other options for creating maps in R. The aim of this section is to provide
a taster of some of these and pointers for additional resources: map making is
a surprisingly active area of R package development, so there is more to learn
than can be covered here.
The most mature option is to use plot() methods provided by core spatial
packages sf and raster, covered in Sections 2.2.3 and 2.3.2, respectively. What
we have not mentioned in those sections was that plot methods for raster and
vector objects can be combined when the results draw onto the same plot
area (elements such as keys in sf plots and multi-band rasters will interfere
with this). This behavior is illustrated in the subsequent code chunk which
generates Figure 8.24. plot() has many other options which can be explored
by following links in the ?plot help page and the sf vignette sf533.

g = st_graticule(nz, lon = c(170, 175), lat = c(-45, -40, -35))

plot(nz_water, graticule = g, axes = TRUE, col = ”blue”)

raster::plot(nz_elev / 1000, add = TRUE)

plot(st_geometry(nz), add = TRUE)

Since version 2.3.034, the tidyverse plotting package ggplot2 has supported

33https://cran.r-project.org/web/packages/sf/vignettes/sf5.html
34https://www.tidyverse.org/articles/2018/05/ggplot2-2-3-0/

https://www.tidyverse.org
https://cran.r-project.org

Other mapping packages 193

FIGURE 8.25: Map of New Zealand created with ggplot2.

sf objects with geom_sf(). The syntax is similar to that used by tmap: an
initial ggplot() call is followed by one or more layers, that are added with +

geom_*(), where * represents a layer type such as geom_sf() (for sf objects) or
geom_points() (for points).
ggplot2 plots graticules by default. The default settings for the graticules can
be overridden using scale_x_continuous(), scale_y_continuous() or coord_sf(datum

= NA)35. Other notable features include the use of unquoted variable names
encapsulated in aes() to indicate which aesthetics vary and switching data
sources using the data argument, as demonstrated in the code chunk below
which creates Figure 8.25:

library(ggplot2)

g1 = ggplot() + geom_sf(data = nz, aes(fill = Median_income)) +

geom_sf(data = nz_height) +

scale_x_continuous(breaks = c(170, 175))

g1

An advantage of ggplot2 is that it has a strong user-community and many
add-on packages. Good additional resources can be found in the open source
ggplot2 book36 (Wickham, 2016) and in the descriptions of the multitude of
‘ggpackages’ such as ggrepel and tidygraph.
Another benefit of maps based on ggplot2 is that they can easily be given
a level of interactivity when printed using the function ggplotly() from the

35https://github.com/tidyverse/ggplot2/issues/2071
36https://github.com/hadley/ggplot2-book

https://github.com
https://github.com

194 Making maps with R

TABLE 8.1: Selected general-purpose mapping packages.

Package Title
cartography Thematic Cartography
ggplot2 Create Elegant Data Visualisations Using the Grammar of

Graphics
googleway Accesses Google Maps APIs to Retrieve Data and Plot

Maps
ggspatial Spatial Data Framework for ggplot2
leaflet Create Interactive Web Maps with Leaflet
mapview Interactive Viewing of Spatial Data in R
plotly Create Interactive Web Graphics via ‘plotly.js’
rasterVis Visualization Methods for Raster Data
tmap Thematic Maps

plotly package. Try plotly::ggplotly(g1), for example, and compare the result
with other plotly mapping functions described at: blog.cpsievert.me37.
At the same time, ggplot2 has a few drawbacks. The geom_sf() function is not
always able to create a desired legend to use from the spatial data38. Raster
objects are also not natively supported in ggplot2 and need to be converted
into a data frame before plotting.
We have covered mapping with sf, raster and ggplot2 packages first because
these packages are highly flexible, allowing for the creation of a wide range
of static maps. Before we cover mapping packages for plotting a specific type
of map (in the next paragraph), it is worth considering alternatives to the
packages already covered for general-purpose mapping (Table 8.1).
Table 8.1 shows a range of mapping packages are available, and there are many
others not listed in this table. Of note is cartography, which generates a
range of unusual maps including choropleth, ‘proportional symbol’ and ‘flow’
maps, each of which is documented in the vignette cartography39.
Several packages focus on specific map types, as illustrated in Table 8.2. Such
packages create cartograms that distort geographical space, create line maps,
transform polygons into regular or hexagonal grids, and visualize complex data
on grids representing geographic topologies.
All of the aforementioned packages, however, have different approaches for data
preparation and map creation. In the next paragraph, we focus solely on the

37https://blog.cpsievert.me/2018/03/30/visualizing-geo-spatial-data-with-sf-and-plotly/
38https://github.com/tidyverse/ggplot2/issues/2037
39https://cran.r-project.org/web/packages/cartography/vignettes/cartography.html

https://cran.r-project.org
https://github.com
https://blog.cpsievert.me

Other mapping packages 195

TABLE 8.2: Selected specific-purpose mapping packages, with associated
metrics.

Package Title
cartogram Create Cartograms with R
geogrid Turn Geospatial Polygons into Regular or Hexagonal Grids
geofacet ggplot2 Faceting Utilities for Geographical Data
globe Plot 2D and 3D Views of the Earth, Including Major Coastline
linemap Line Maps

cartogram package. Therefore, we suggest to read the linemap40, geogrid41

and geofacet42 documentations to learn more about them.
A cartogram is a map in which the geometry is proportionately distorted to
represent a mapping variable. Creation of this type of map is possible in R with
cartogram, which allows for creating continuous and non-contiguous area
cartograms. It is not a mapping package per se, but it allows for construction
of distorted spatial objects that could be plotted using any generic mapping
package.
The cartogram_cont() function creates continuous area cartograms. It accepts
an sf object and name of the variable (column) as inputs. Additionally, it is
possible to modify the intermax argument - maximum number of iterations for
the cartogram transformation. For example, we could represent median income
in New Zeleand’s regions as a continuous cartogram (the right-hand panel of
Figure 8.26) as follows:

library(cartogram)

nz_carto = cartogram_cont(nz, ”Median_income”, itermax = 5)

tm_shape(nz_carto) + tm_polygons(”Median_income”)

cartogram also offers creation of non-contiguous area cartograms using
cartogram_ncont() and Dorling cartograms using cartogram_dorling(). Non-
contiguous area cartograms are created by scaling down each region based on
the provided weighting variable. Dorling cartograms consist of circles with their
area proportional to the weighting variable. The code chunk below demon-
strates creation of non-contiguous area and Dorling cartograms of US states’
population (Figure 8.27):

40https://github.com/rCarto/linemap
41https://github.com/jbaileyh/geogrid
42https://github.com/hafen/geofacet

https://github.com
https://github.com
https://github.com

196 Making maps with R

FIGURE 8.26: Comparison of standard map (left) and continuous area
cartogram (right).

FIGURE 8.27: Comparison of non-continuous area cartogram (left) and
Dorling cartogram (right).

us_states2163 = st_transform(us_states, 2163)

us_states2163_ncont = cartogram_ncont(us_states2163, ”total_pop_15”)

us_states2163_dorling = cartogram_dorling(us_states2163, ”total_pop_15”)

New mapping packages are emerging all the time. In 2018 alone, a number
of mapping packages have been released on CRAN, including mapdeck,
mapsapi, and rayshader. In terms of interactive mapping, leaflet.extras
contains many functions for extending the functionality of leaflet (see the

Exercises 197

end of the point-pattern43 vignette in the geocompkg website for examples of
heatmaps created by leaflet.extras).

8.7 Exercises

These exercises rely on a new object, africa. Create it using the world and
worldbank_df datasets from the spData package as follows (see Chapter 3):

africa = world %>%

filter(continent == ”Africa”, !is.na(iso_a2)) %>%

left_join(worldbank_df, by = ”iso_a2”) %>%

dplyr::select(name, subregion, gdpPercap, HDI, pop_growth) %>%

st_transform(”+proj=aea +lat_1=20 +lat_2=-23 +lat_0=0 +lon_0=25”)

We will also use zion and nlcd datasets from spDataLarge:

zion = st_read((system.file(”vector/zion.gpkg”, package = ”spDataLarge”)))

data(nlcd, package = ”spDataLarge”)

1. Create a map showing the geographic distribution of the Human
Development Index (HDI) across Africa with base graphics (hint:
use plot()) and tmap packages (hint: use tm_shape(africa) + ...).

•Name two advantages of each based on the experience.
•Name three other mapping packages and an advantage of each.
•Bonus: create three more maps of Africa using these three
packages.

2. Extend the tmap created for the previous exercise so the legend
has three bins: “High” (HDI above 0.7), “Medium” (HDI between 0.55
and 0.7) and “Low” (HDI below 0.55).

•Bonus: improve the map aesthetics, for example by changing
the legend title, class labels and color palette.

3. Represent africa’s subregions on the map. Change the default color
palette and legend title. Next, combine this map and the map created
in the previous exercise into a single plot.

4. Create a land cover map of the Zion National Park.
•Change the default colors to match your perception of the land
cover categories

•Add a scale bar and north arrow and change the position of
both to improve the map’s aesthetic appeal

43https://geocompr.github.io/geocompkg/articles/point-pattern.html

https://geocompr.github.io

198 Making maps with R

•Bonus: Add an inset map of Zion National Park’s location in
the context of the Utah state. (Hint: an object representing
Utah can be subset from the us_states dataset.)

5. Create facet maps of countries in Eastern Africa:
•With one facet showing HDI and the other representing popu-
lation growth (hint: using variables HDI and pop_growth, respec-
tively)

•With a ‘small multiple’ per country
6. Building on the previous facet map examples, create animated maps

of East Africa:
•Showing first the spatial distribution of HDI scores then popu-
lation growth

•Showing each country in order
7. Create an interactive map of Africa:

•With tmap
•With mapview
•With leaflet
•Bonus: For each approach, add a legend (if not automatically
provided) and a scale bar

8. Sketch on paper ideas for a web mapping app that could be used to
make transport or land-use policies more evidence based:

•In the city you live, for a couple of users per day
•In the country you live, for dozens of users per day
•Worldwide for hundreds of users per day and large data serving
requirements

9. Update the code in coffeeApp/app.R so that instead of centering on
Brazil the user can select which country to focus on:

•Using textInput()

•Using selectInput()

10. Reproduce Figure 8.1 and the 1st and 6th panel of Figure 8.6 as
closely as possible using the ggplot2 package.

11. Join us_states and us_states_df together and calculate a poverty rate
for each state using the new dataset. Next, construct a continuous
area cartogram based on total population. Finally, create and com-
pare two maps of the poverty rate: (1) a standard choropleth map
and (2) a map using the created cartogram boundaries. What is the
information provided by the first and the second map? How do they
differ from each other?

12. Visualize population growth in Africa. Next, compare it with the
maps of a hexagonal and regular grid created using the geogrid
package.

9
Bridges to GIS software

Prerequisites

• This chapter requires QGIS, SAGA and GRASS to be installed and the
following packages to be attached:1

library(sf)

library(raster)

library(RQGIS)

library(RSAGA)

library(rgrass7)

9.1 Introduction

A defining feature of R is the way you interact with it: you type commands
and hit Enter (or Ctrl+Enter if writing code in the source editor in RStudio) to
execute them interactively. This way of interacting with the computer is called
a command-line interface (CLI) (see definition in the note below). CLIs are not
unique to R.2 In dedicated GIS packages, by contrast, the emphasis tends to
be on the graphical user interface (GUI). You can interact with GRASS, QGIS,
SAGA and gvSIG from system terminals and embedded CLIs such as the
Python Console in QGIS3, but ‘pointing and clicking’ is the norm. This means

1Packages that have already been used including spData, spDataLarge and dplyr also
need to be installed.

2Other ‘command-lines’ include terminals for interacting with the operating system and
other interpreted languages such as Python. Many GISs originated as a CLI: it was only
after the widespread uptake of computer mice and high-resolution screens in the 1990s that
GUIs became common. GRASS, one of the longest-standing GIS programs, for example,
relied primarily on command-line interaction before it gained a sophisticated GUI (Landa,
2008).

3https://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/intro.html

199

https://docs.qgis.org

200 Bridges to GIS software

many GIS users miss out on the advantages of the command-line according to
Gary Sherman, creator of QGIS (Sherman, 2008):

With the advent of ‘modern’ GIS software, most people want to
point and click their way through life. That’s good, but there
is a tremendous amount of flexibility and power waiting for you
with the command line. Many times you can do something on
the command line in a fraction of the time you can do it with a
GUI.

The ‘CLI vs GUI’ debate can be adversial but it does not have to be; both
options can be used interchangeably, depending on the task at hand and the
user’s skillset.4 The advantages of a good CLI such as that provided by R (and
enhanced by IDEs such as RStudio) are numerous. A good CLI
• Facilitates the automation of repetitive tasks.
• Enables transparency and reproducibility, the backbone of good scientific

practice and data science.
• Encourages software development by providing tools to modify existing

functions and implement new ones.
• Helps develop future-proof programming skills which are in high demand in

many disciplines and industries.
• Is user-friendly and fast, allowing an efficient workflow.
On the other hand, GUI-based GIS systems (particularly QGIS) are also
advantageous. A good GIS GUI
• Has a ‘shallow’ learning curve meaning geographic data can be explored and

visualized without hours of learning a new language.
• Provides excellent support for ‘digitizing’ (creating new vector datasets),

including trace, snap and topological tools.5
• Enables georeferencing (matching raster images to existing maps) with ground

control points and orthorectification.
• Supports stereoscopic mapping (e.g., LiDAR and structure from motion).
• Provides access to geodatabase management systems with object-oriented

relational data models, topology and fast (spatial) querying.
Another advantage of dedicated GISs is that they provide access to hundreds

4GRASS GIS and PostGIS are popular in academia and industry and can be seen as
products which buck this trend as they are built around the command-line.

5The mapedit package allows the quick editing of a few spatial features but not profes-
sional, large-scale cartographic digitizing.

Introduction 201

of ‘geoalgorithms’ (computational recipes to solve geographic problems — see
Chapter 10). Many of these are unavailable from the R command line, except
via ‘GIS bridges’, the topic of (and motivation for) this chapter.6

A command-line interface is a means of interacting with computer programs
in which the user issues commands via successive lines of text (command
lines). bash in Linux and PowerShell in Windows are common examples. CLIs
can be augmented with IDEs such as RStudio for R, which provides code
auto-completion and other features to improve the user experience.

R originated as an interface language. Its predecessor S provided access to
statistical algorithms in other languages (particularly FORTRAN), but from an
intuitive read-evaluate-print loop (REPL) (Chambers, 2016). R continues this
tradition with interfaces to numerous languages, notably C++, as described
in Chapter 1. R was not designed as a GIS. However, its ability to interface
with dedicated GISs gives it astonishing geospatial capabilities. R is well
known as a statistical programming language, but many people are unaware
of its ability to replicate GIS workflows, with the additional benefits of a
(relatively) consistent CLI. Furthermore, R outperforms GISs in some areas
of geocomputation, including interactive/animated map making (see Chapter
8) and spatial statistical modeling (see Chapter 11). This chapter focuses on
‘bridges’ to three mature open source GIS products (see Table 9.1): QGIS
(via the package RQGIS; Section 9.2), SAGA (via RSAGA; Section 9.3)
and GRASS (via rgrass7; Section 9.4). Though not covered here, it is worth
being aware of the interface to ArcGIS, a proprietary and very popular GIS
software, via RPyGeo.ˆ[By the way, it is also possible to use R from within
Desktop GIS software packages. The so-called R-ArcGIS bridge (see https:

//github.com/R-ArcGIS/r-bridge) allows R to be used from within ArcGIS. One
can also use R scripts from within QGIS (see https://docs.qgis.org/2.18/en/

docs/training_manual/processing/r_intro.html). Finally, it is also possible to use
R from the GRASS GIS command line (see https://grasswiki.osgeo.org/wiki/R_

statistics/rgrass7). To complement the R-GIS bridges, the chapter ends with
a very brief introduction to interfaces to spatial libraries (Section 9.6.1) and
spatial databases (Section 9.6.2).

6An early use of the term ‘bridge’ referred to the coupling of R with GRASS (Neteler and
Mitasova, 2008). Roger Bivand elaborated on this in his talk, “Bridges between GIS and R”,
delivered at the 2016 GEOSTAT summer school (see slides at: http://spatial.nhh.no/misc/).

https://github.com
https://docs.qgis.org
https://grasswiki.osgeo.org
http://spatial.nhh.no
https://grasswiki.osgeo.org
https://docs.qgis.org
https://github.com

202 Bridges to GIS software

TABLE 9.1: Comparison between three open-source GIS. Hybrid refers to
the support of vector and raster operations.

GIS First release No. functions Support
GRASS 1984 >500 hybrid
QGIS 2002 >1000 hybrid
SAGA 2004 >600 hybrid

9.2 (R)QGIS

QGIS is one of the most popular open-source GIS (Table 9.1; Graser and
Olaya, 2015). Its main advantage lies in the fact that it provides a unified
interface to several other open-source GIS. This means that you have access to
GDAL, GRASS and SAGA through QGIS (Graser and Olaya, 2015). To run
all these geoalgorithms (frequently more than 1000 depending on your set-up)
outside of the QGIS GUI, QGIS provides a Python API. RQGIS establishes a
tunnel to this Python API through the reticulate package. Basically, functions
set_env() and open_app() are doing this. Note that it is optional to run set_env()

and open_app() since all functions depending on their output will run them
automatically if needed. Before running RQGIS, make sure you have installed
QGIS and all its (third-party) dependencies such as SAGA and GRASS. To
install RQGIS a number of dependencies are required, as described in the
install_guide7 vignette, which covers installation on Windows, Linux and Mac.
At the time of writing (autumn 2018) RQGIS only supports the Long Term
Release8 (2.18), but support for QGIS 3 is in the pipeline (see RQGIS39).

library(RQGIS)

set_env(dev = FALSE)

#> $‘root‘

#> [1] ”C:/OSGeo4W64”

#> ...

Leaving the path-argument of set_env() unspecified will search the computer
for a QGIS installation. Hence, it is faster to specify explicitly the path
to your QGIS installation. Subsequently, open_app() sets all paths necessary
to run QGIS from within R, and finally creates a so-called QGIS custom
application (see http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/

intro.html#using-pyqgis-in-custom-applications).

7https://cran.r-project.org/web/packages/RQGIS/vignettes/install_guide.html
8https://qgis.org/en/site/getinvolved/development/roadmap.html
9https://github.com/jannes-m/RQGIS3

http://docs.qgis.org
https://github.com
https://qgis.org
https://cran.r-project.org
http://docs.qgis.org

(R)QGIS 203

open_app()

We are now ready for some QGIS geoprocessing from within R! The example
below shows how to unite polygons, a process that unfortunately produces
so-called slivers , tiny polygons resulting from overlaps between the inputs
that frequently occur in real-world data. We will see how to remove them.
For the union, we use again the incongruent polygons we have already en-
countered in Section 4.2.5. Both polygon datasets are available in the spData
package, and for both we would like to use a geographic CRS (see also Chapter
6).

data(”incongruent”, ”aggregating_zones”, package = ”spData”)

incongr_wgs = st_transform(incongruent, 4326)

aggzone_wgs = st_transform(aggregating_zones, 4326)

To find an algorithm to do this work, find_algorithms() searches all QGIS
geoalgorithms using regular expressions. Assuming that the short description
of the function contains the word “union”, we can run:

find_algorithms(”union”, name_only = TRUE)

#> [1] ”qgis:union” ”saga:fuzzyunionor” ”saga:union”

Short descriptions for each geoalgorithm can also be provided, by setting
name_only = FALSE. If one has no clue at all what the name of a geoalgorithm
might be, one can leave the search_term-argument empty which will return a
list of all available QGIS geoalgorithms. You can also find the algorithms in
the QGIS online documentation10.
The next step is to find out how qgis:union can be used. open_help() opens the
online help of the geoalgorithm in question. get_usage() returns all function
parameters and default values.

alg = ”qgis:union”

open_help(alg)

get_usage(alg)

#>ALGORITHM: Union

#> INPUT <ParameterVector>

#> INPUT2 <ParameterVector>

#> OUTPUT <OutputVector>

Finally, we can let QGIS do the work. Note that the workhorse function

10https://docs.qgis.org/2.18/en/docs/user_manual/processing_algs/index.html

https://docs.qgis.org

204 Bridges to GIS software

run_qgis() accepts R named arguments, i.e., you can specify the parameter
names as returned by get_usage() in run_qgis() as you would do in any other
regular R function. Note also that run_qgis() accepts spatial objects residing
in R’s global environment as input (here: aggzone_wgs and incongr_wgs). But
of course, you could also specify paths to spatial vector files stored on disk.
Setting the load_output to TRUE automatically loads the QGIS output as an
sf-object into R.

union = run_qgis(alg, INPUT = incongr_wgs, INPUT2 = aggzone_wgs,

OUTPUT = file.path(tempdir(), ”union.shp”),

load_output = TRUE)

#> $‘OUTPUT‘

#> [1] ”C:/Users/geocompr/AppData/Local/Temp/RtmpcJlnUx/union.shp”

Note that the QGIS union operation merges the two input layers into one layer
by using the intersection and the symmetrical difference of the two input layers
(which by the way is also the default when doing a union operation in GRASS
and SAGA). This is not the same as st_union(incongr_wgs, aggzone_wgs) (see
Exercises)! The QGIS output contains empty geometries and multipart poly-
gons. Empty geometries might lead to problems in subsequent geoprocessing
tasks which is why they will be deleted. st_dimension() returns NA if a geometry
is empty, and can therefore be used as a filter.

remove empty geometries

union = union[!is.na(st_dimension(union)),]

Next we convert multipart polygons into single-part polygons (also known
as explode geometries or casting). This is necessary for the deletion of sliver
polygons later on.

multipart polygons to single polygons

single = st_cast(union, ”POLYGON”)

One way to identify slivers is to find polygons with comparatively very small
areas, here, e.g., 25000 m2 (see blue colored polygons in the left panel of Figure
9.1).

find polygons which are smaller than 25000 m^2

x = 25000

units(x) = ”m^2”

single$area = st_area(single)

sub = dplyr::filter(single, area < x)

(R)QGIS 205

The next step is to find a function that makes the slivers disappear. Assuming
the function or its short description contains the word “sliver”, we can run:

find_algorithms(”sliver”, name_only = TRUE)

#> [1] ”qgis:eliminatesliverpolygons”

This returns only one geoalgorithm whose parameters can be accessed with
the help of get_usage() again.

alg = ”qgis:eliminatesliverpolygons”

get_usage(alg)

#>ALGORITHM: Eliminate sliver polygons

#> INPUT <ParameterVector>

#> KEEPSELECTION <ParameterBoolean>

#> ATTRIBUTE <parameters from INPUT>

#> COMPARISON <ParameterSelection>

#> COMPARISONVALUE <ParameterString>

#> MODE <ParameterSelection>

#> OUTPUT <OutputVector>

#> ...

Conveniently, the user does not need to specify each single parameter. In
case a parameter is left unspecified, run_qgis() will automatically use the
corresponding default value as an argument if available. To find out about the
default values, run get_args_man().
To remove the slivers, we specify that all polygons with an area less or equal
to 25,000 m2 should be joined to the neighboring polygon with the largest area
(see right panel of Figure 9.1).

clean = run_qgis(”qgis:eliminatesliverpolygons”,

INPUT = single,

ATTRIBUTE = ”area”,

COMPARISON = ”<=”,

COMPARISONVALUE = 25000,

OUTPUT = file.path(tempdir(), ”clean.shp”),

load_output = TRUE)

#> $‘OUTPUT‘

#> [1] ”C:/Users/geocompr/AppData/Local/Temp/RtmpcJlnUx/clean.shp”

Other notes
• Leaving the output parameter(s) unspecified saves the resulting QGIS output

to a temporary folder created by QGIS. run_qgis() prints these paths to the
console after successfully running the QGIS engine.

206 Bridges to GIS software

FIGURE 9.1: Sliver polygons colored in blue (left panel). Cleaned polygons
(right panel).

• If the output consists of multiple files and you have set load_output to TRUE,
run_qgis() will return a list with each element corresponding to one output
file.

To learn more about RQGIS, please refer to Muenchow et al. (2017).

9.3 (R)SAGA

The System for Automated Geoscientific Analyses (SAGA; Table 9.1) provides
the possibility to execute SAGA modules via the command line interface
(saga_cmd.exe under Windows and just saga_cmd under Linux) (see the SAGA
wiki on modules11). In addition, there is a Python interface (SAGA Python
API). RSAGA uses the former to run SAGA from within R.
Though SAGA is a hybrid GIS, its main focus has been on raster processing, and
here particularly on digital elevation models (soil properties, terrain attributes,
climate parameters). Hence, SAGA is especially good at the fast processing
of large (high-resolution) raster datasets (Conrad et al., 2015). Therefore, we
will introduce RSAGA with a raster use case from Muenchow et al. (2012).
Specifically, we would like to compute the SAGA wetness index from a digital
elevation model. First of all, we need to make sure that RSAGA will find
SAGA on the computer when called. For this, all RSAGA functions using
SAGA in the background make use of rsaga.env(). Usually, rsaga.env() will
detect SAGA automatically by searching several likely directories (see its help
for more information).

11https://sourceforge.net/p/saga-gis/wiki/Executing%20Modules%20with%20SAGA%20CMD/

https://sourceforge.net

(R)SAGA 207

library(RSAGA)

rsaga.env()

However, it is possible to have ‘hidden’ SAGA in a location rsaga.env() does
not search automatically. linkSAGA searches your computer for a valid SAGA
installation. If it finds one, it adds the newest version to the PATH environment
variable thereby making sure that rsaga.env() runs successfully. It is only
necessary to run the next code chunk if rsaga.env() was unsuccessful (see
previous code chunk).

library(link2GI)

saga = linkSAGA()

rsaga.env()

Secondly, we need to write the digital elevation model to a SAGA-format. Note
that calling data(landslides) attaches two objects to the global environment -
dem, a digital elevation model in the form of a list, and landslides, a data.frame

containing observations representing the presence or absence of a landslide:

data(landslides)

write.sgrd(data = dem, file = file.path(tempdir(), ”dem”), header = dem$header)

The organization of SAGA is modular. Libraries contain so-called modules,
i.e., geoalgorithms. To find out which libraries are available, run:

rsaga.get.libraries()

We choose the library ta_hydrology (ta is the abbreviation for terrain analysis).
Subsequently, we can access the available modules of a specific library (here:
ta_hydrology) as follows:

rsaga.get.modules(libs = ”ta_hydrology”)

rsaga.get.usage() prints the function parameters of a specific geoalgorithm, e.g.,
the SAGA Wetness Index, to the console.

rsaga.get.usage(lib = ”ta_hydrology”, module = ”SAGA Wetness Index”)

Finally, you can run SAGA from within R using RSAGA’s geoprocessing
workhorse function rsaga.geoprocessor(). The function expects a parameter-
argument list in which you have specified all necessary parameters.

208 Bridges to GIS software

FIGURE 9.2: SAGA wetness index of Mount Mongón, Peru.

params = list(DEM = file.path(tempdir(), ”dem.sgrd”),

TWI = file.path(tempdir(), ”twi.sdat”))

rsaga.geoprocessor(lib = ”ta_hydrology”, module = ”SAGA Wetness Index”,

param = params)

To facilitate the access to the SAGA interface, RSAGA frequently provides
user-friendly wrapper-functions with meaningful default values (see RSAGA
documentation for examples, e.g., ?rsaga.wetness.index). So the function call
for calculating the ‘SAGA Wetness Index’ becomes as simple as:

rsaga.wetness.index(in.dem = file.path(tempdir(), ”dem”),

out.wetness.index = file.path(tempdir(), ”twi”))

Of course, we would like to inspect our result visually (Figure 9.2). To load
and plot the SAGA output file, we use the raster package.

library(raster)

twi = raster::raster(file.path(tempdir(), ”twi.sdat”))

shown is a version using tmap

plot(twi, col = RColorBrewer::brewer.pal(n = 9, name = ”Blues”))

You can find an extended version of this example in vignette(”RSAGA-landslides”)

which includes the use of statistical geocomputing to derive terrain attributes
as predictors for a non-linear Generalized Additive Model (GAM) to predict
spatially landslide susceptibility (Muenchow et al., 2012). The term statistical

GRASS through rgrass7 209

geocomputation emphasizes the strength of combining R’s data science power
with the geoprocessing power of a GIS which is at the very heart of building a
bridge from R to GIS.

9.4 GRASS through rgrass7

The U.S. Army - Construction Engineering Research Laboratory (USA-CERL)
created the core of the Geographical Resources Analysis Support System
(GRASS) (Table 9.1; Neteler and Mitasova, 2008) from 1982 to 1995. Academia
continued this work since 1997. Similar to SAGA, GRASS focused on raster
processing in the beginning while only later, since GRASS 6.0, adding advanced
vector functionality (Bivand et al., 2013).
We will introduce rgrass7 with one of the most interesting problems in
GIScience - the traveling salesman problem. Suppose a traveling salesman would
like to visit 24 customers. Additionally, he would like to start and finish his
journey at home which makes a total of 25 locations while covering the shortest
distance possible. There is a single best solution to this problem; however, to
find it is even for modern computers (mostly) impossible (Longley, 2015). In
our case, the number of possible solutions correspond to (25 - 1)! / 2, i.e., the
factorial of 24 divided by 2 (since we do not differentiate between forward or
backward direction). Even if one iteration can be done in a nanosecond, this still
corresponds to 9837145 years. Luckily, there are clever, almost optimal solutions
which run in a tiny fraction of this inconceivable amount of time. GRASS GIS
provides one of these solutions (for more details, see v.net.salesman12). In our
use case, we would like to find the shortest path between the first 25 bicycle
stations (instead of customers) on London’s streets (and we simply assume
that the first bike station corresponds to the home of our traveling salesman).

data(”cycle_hire”, package = ”spData”)

points = cycle_hire[1:25,]

Aside from the cycle hire points data, we will need the OpenStreetMap data
of London. We download it with the help of the osmdata package (see
also Section 7.2). We constrain the download of the street network (in OSM
language called “highway”) to the bounding box of the cycle hire data, and
attach the corresponding data as an sf-object. osmdata_sf() returns a list with
several spatial objects (points, lines, polygons, etc.). Here, we will only keep
the line objects. OpenStreetMap objects come with a lot of columns, streets
features almost 500. In fact, we are only interested in the geometry column.

12https://grass.osgeo.org/grass77/manuals/v.net.salesman.html

https://grass.osgeo.org

210 Bridges to GIS software

Nevertheless, we are keeping one attribute column; otherwise, we will run into
trouble when trying to provide writeVECT() only with a geometry object (see
further below and ?writeVECT for more details). Remember that the geometry
column is sticky, hence, even though we are just selecting one attribute, the
geometry column will be also returned (see Section 2.2.1).

library(osmdata)

b_box = st_bbox(points)

london_streets = opq(b_box) %>%

add_osm_feature(key = ”highway”) %>%

osmdata_sf() %>%

‘[[‘(”osm_lines”)

london_streets = dplyr::select(london_streets, osm_id)

As a convenience to the reader, one can attach london_streets to the global
environment using data(”london_streets”, package = ”spDataLarge”).
Now that we have the data, we can go on and initiate a GRASS session, i.e.,
we have to create a GRASS spatial database. The GRASS geodatabase system
is based on SQLite. Consequently, different users can easily work on the same
project, possibly with different read/write permissions. However, one has to
set up this spatial database (also from within R), and users used to a GIS GUI
popping up by one click might find this process a bit intimidating in the begin-
ning. First of all, the GRASS database requires its own directory, and contains
a location (see the GRASS GIS Database13 help pages at grass.osgeo.org14 for
further information). The location in turn simply contains the geodata for one
project. Within one location, several mapsets can exist and typically refer to
different users. PERMANENT is a mandatory mapset and is created automat-
ically. It stores the projection, the spatial extent and the default resolution for
raster data. In order to share geographic data with all users of a project, the
database owner can add spatial data to the PERMANENT mapset. Please
refer to Neteler and Mitasova (2008) and the GRASS GIS quick start15 for
more information on the GRASS spatial database system.
You have to set up a location and a mapset if you want to use GRASS from
within R. First of all, we need to find out if and where GRASS 7 is installed
on the computer.

library(link2GI)

link = findGRASS()

13https://grass.osgeo.org/grass77/manuals/grass_database.html
14https://grass.osgeo.org/grass77/manuals/index.html
15https://grass.osgeo.org/grass77/manuals/helptext.html

https://grass.osgeo.org
https://grass.osgeo.org
https://grass.osgeo.org
http://www.grass.osgeo.org

GRASS through rgrass7 211

link is a data.frame which contains in its rows the GRASS 7 installations on
your computer. Here, we will use a GRASS 7 installation. If you have not
installed GRASS 7 on your computer, we recommend that you do so now.
Assuming that we have found a working installation on your computer, we
use the corresponding path in initGRASS. Additionally, we specify where to
store the spatial database (gisDbase), name the location london, and use the
PERMANENT mapset.

library(rgrass7)

find a GRASS 7 installation, and use the first one

ind = grep(”7”, link$version)[1]

next line of code only necessary if we want to use GRASS as installed by

OSGeo4W. Among others, this adds some paths to PATH, which are also needed

for running GRASS.

link2GI::paramGRASSw(link[ind,])

grass_path =

ifelse(test = !is.null(link$installation_type) &&

link$installation_type[ind] == ”osgeo4W”,

yes = file.path(link$instDir[ind], ”apps/grass”, link$version[ind]),

no = link$instDir)

initGRASS(gisBase = grass_path,

home parameter necessary under UNIX-based systems

home = tempdir(),

gisDbase = tempdir(), location = ”london”,

mapset = ”PERMANENT”, override = TRUE)

Subsequently, we define the projection, the extent and the resolution.

execGRASS(”g.proj”, flags = c(”c”, ”quiet”),

proj4 = st_crs(london_streets)$proj4string)

b_box = st_bbox(london_streets)

execGRASS(”g.region”, flags = c(”quiet”),

n = as.character(b_box[”ymax”]), s = as.character(b_box[”ymin”]),

e = as.character(b_box[”xmax”]), w = as.character(b_box[”xmin”]),

res = ”1”)

Once you are familiar with how to set up the GRASS environment, it becomes
tedious to do so over and over again. Luckily, linkGRASS7() of the link2GI
packages lets you do it with one line of code. The only thing you need to
provide is a spatial object which determines the projection and the extent of
the spatial database.. First, linkGRASS7() finds all GRASS installations on your
computer. Since we have set ver_select to TRUE, we can interactively choose
one of the found GRASS-installations. If there is just one installation, the

212 Bridges to GIS software

linkGRASS7() automatically chooses this one. Second, linkGRASS7() establishes a
connection to GRASS 7.

link2GI::linkGRASS7(london_streets, ver_select = TRUE)

Before we can use GRASS geoalgorithms, we need to add data to GRASS’s
spatial database. Luckily, the convenience function writeVECT() does this for us.
(Use writeRast() in the case of raster data.) In our case we add the street and
cycle hire point data while using only the first attribute column, and name
them also london_streets and points. Note that we are converting the sf-objects
into objects of class Spatial*. In time, rgrass7 will also work with sf-objects.

writeVECT(SDF = as(london_streets, ”Spatial”), vname = ”london_streets”)

writeVECT(SDF = as(points[, 1], ”Spatial”), vname = ”points”)

To perform our network analysis, we need a topological clean street network.
GRASS’s v.clean takes care of the removal of duplicates, small angles and
dangles, among others. Here, we break lines at each intersection to ensure
that the subsequent routing algorithm can actually turn right or left at an
intersection, and save the output in a GRASS object named streets_clean. It
is likely that a few of our cycling station points will not lie exactly on a street
segment. However, to find the shortest route between them, we need to connect
them to the nearest streets segment. v.net’s connect-operator does exactly this.
We save its output in streets_points_con.

clean street network

execGRASS(cmd = ”v.clean”, input = ”london_streets”, output = ”streets_clean”,

tool = ”break”, flags = ”overwrite”)

connect points with street network

execGRASS(cmd = ”v.net”, input = ”streets_clean”, output = ”streets_points_con”,

points = ”points”, operation = ”connect”, threshold = 0.001,

flags = c(”overwrite”, ”c”))

The resulting clean dataset serves as input for the v.net.salesman-algorithm,
which finally finds the shortest route between all cycle hire stations. center_cats
requires a numeric range as input. This range represents the points for which
a shortest route should be calculated. Since we would like to calculate the
route for all cycle stations, we set it to 1-25. To access the GRASS help
page of the traveling salesman algorithm, run execGRASS(”g.manual”, entry =

”v.net.salesman”).

execGRASS(cmd = ”v.net.salesman”, input = ”streets_points_con”,

output = ”shortest_route”, center_cats = paste0(”1-”, nrow(points)),

flags = c(”overwrite”))

GRASS through rgrass7 213

FIGURE 9.3: Shortest route (blue line) between 24 cycle hire stations (blue
dots) on the OSM street network of London.

To visualize our result, we import the output layer into R, convert it into
an sf-object keeping only the geometry, and visualize it with the help of the
mapview package (Figure 9.3 and Section 8.4).

route = readVECT(”shortest_route”) %>%

st_as_sf() %>%

st_geometry()

mapview::mapview(route, map.types = ”OpenStreetMap.BlackAndWhite”, lwd = 7) +

points

Further notes
• Please note that we have used GRASS’s spatial database (based on SQLite)

which allows faster processing. That means we have only exported geographic
data at the beginning. Then we created new objects but only imported the
final result back into R. To find out which datasets are currently available,
run execGRASS(”g.list”, type = ”vector,raster”, flags = ”p”).

• We could have also accessed an already existing GRASS geodatabase from
within R. Prior to importing data into R, you might want to perform some
(spatial) subsetting. Use v.select and v.extract for vector data. db.select lets

214 Bridges to GIS software

you select subsets of the attribute table of a vector layer without returning
the corresponding geometry.

• You can also start R from within a running GRASS session (for more
information please refer to Bivand et al., 2013, and this wiki16).

• Refer to the excellent GRASS online help17 or execGRASS(”g.manual”, flags =

”i”) for more information on each available GRASS geoalgorithm.
• If you would like to use GRASS 6 from within R, use the R package spgrass6.

9.5 When to use what?

To recommend a single R-GIS interface is hard since the usage depends on
personal preferences, the tasks at hand and your familiarity with different
GIS software packages which in turn probably depends on your field of study.
As mentioned previously, SAGA is especially good at the fast processing of
large (high-resolution) raster datasets, and frequently used by hydrologists,
climatologists and soil scientists (Conrad et al., 2015). GRASS GIS, on the other
hand, is the only GIS presented here supporting a topologically based spatial
database which is especially useful for network analyses but also simulation
studies (see below). QGIS is much more user-friendly compared to GRASS-
and SAGA-GIS, especially for first-time GIS users, and probably the most
popular open-source GIS. Therefore, RQGIS is an appropriate choice for most
use cases. Its main advantages are
• A unified access to several GIS, and therefore the provision of >1000 geoal-

gorithms (Table 9.1). This includes duplicated functionality, e.g., you can
perform overlay-operations using QGIS-, SAGA- or GRASS-geoalgorithms.

• The automatic data format conversions. For instance, SAGA uses .sdat grid
files and GRASS uses its own database format but QGIS will handle the
corresponding conversions for you on the fly.

• RQGIS can also handle spatial objects residing in R as input for geoalgo-
rithms, and loads QGIS output automatically back into R if desired.

• Its convenience functions to support the access of the online help, R named
arguments and automatic default value retrieval. Please note that rgrass7
inspired the latter two features.

By all means, there are use cases when you certainly should use one of the
other R-GIS bridges. Though QGIS is the only GIS providing a unified in-
terface to several GIS software packages, it only provides access to a subset
of the corresponding third-party geoalgorithms (for more information please
refer to Muenchow et al. (2017)). Therefore, to use the complete set of SAGA

16https://grasswiki.osgeo.org/wiki/R_statistics/rgrass7
17https://grass.osgeo.org/grass77/manuals/

https://grass.osgeo.org
https://grasswiki.osgeo.org

Other bridges 215

and GRASS functions, stick with RSAGA and rgrass7. When doing so,
take advantage of RSAGA’s numerous user-friendly functions. Note also,
that RSAGA offers native R functions for geocomputation such as multi.lo-

cal.function(), pick.from.points() and many more. RSAGA supports much
more SAGA versions than (R)QGIS. Finally, if you need topological correct
data and/or spatial database management functionality such as multi-user
access, we recommend the usage of GRASS. In addition, if you would like
to run simulations with the help of a geodatabase (Krug et al., 2010), use
rgrass7 directly since RQGIS always starts a new GRASS session for each
call.
Please note that there are a number of further GIS software packages that
have a scripting interface but for which there is no dedicated R package that
accesses these: gvSig, OpenJump, Orfeo Toolbox and TauDEM.

9.6 Other bridges

The focus of this chapter is on R interfaces to Desktop GIS software. We
emphasize these bridges because dedicated GIS software is well-known and a
common ‘way in’ to understanding geographic data. They also provide access
to many geoalgorithms.
Other ‘bridges’ include interfaces to spatial libraries (Section 9.6.1 shows how
to access the GDAL CLI from R), spatial databases (see Section 9.6.2) and
web mapping services (see Chapter 8). This section provides only a snippet
of what is possible. Thanks to R’s flexibility, with its ability to call other
programs from the system and integration with other languages (notably via
Rcpp and reticulate), many other bridges are possible. The aim is not to be
comprehensive, but to demonstrate other ways of accessing the ‘flexibility and
power’ in the quote by Sherman (2008) at the beginning of the chapter.

9.6.1 Bridges to GDAL

As discussed in Chapter 7, GDAL is a low-level library that supports many
geographic data formats. GDAL is so effective that most GIS programs use
GDAL in the background for importing and exporting geographic data, rather
than re-inventing the wheel and using bespoke read-write code. But GDAL
offers more than data I/O. It has geoprocessing tools18 for vector and raster
data, functionality to create tiles19 for serving raster data online, and rapid

18http://www.gdal.org/pages.html
19https://www.gdal.org/gdal2tiles.html

https://www.gdal.org
http://www.gdal.org

216 Bridges to GIS software

rasterization20 of vector data, all of which can be accessed via the system of R
command line.
The code chunk below demonstrates this functionality: linkGDAL() searches
the computer for a working GDAL installation and adds the location of the
executable files to the PATH variable, allowing GDAL to be called. In the
example below ogrinfo provides metadata on a vector dataset:

link2GI::linkGDAL()

cmd = paste(”ogrinfo -ro -so -al”, system.file(”shape/nc.shp”, package = ”sf”))

system(cmd)

#> INFO: Open of ‘C:/Users/geocompr/Documents/R/win-library/3.5/sf/shape/nc.shp’

#> using driver ‘ESRI Shapefile’ successful.

#>

#> Layer name: nc

#> Metadata:

#> DBF_DATE_LAST_UPDATE=2016-10-26

#> Geometry: Polygon

#> Feature Count: 100

#> Extent: (-84.323853, 33.881992) - (-75.456978, 36.589649)

#> Layer SRS WKT:

#> ...

This example — which returns the same result as rgdal::ogrInfo() — may
be simple, but it shows how to use GDAL via the system command-line,
independently of other packages. The ‘link’ to GDAL provided by link2gi
could be used as a foundation for doing more advanced GDAL work from the
R or system CLI.21 TauDEM (http://hydrology.usu.edu/taudem/taudem5/index.
html) and the Orfeo Toolbox (https://www.orfeo-toolbox.org/) are other spatial
data processing libraries/programs offering a command line interface. At
the time of writing, it appears that there is only a developer version of an
R/TauDEM interface on R-Forge (https://r-forge.r-project.org/R/?group_id=
956). In any case, the above example shows how to access these libraries from
the system command line via R. This in turn could be the starting point for
creating a proper interface to these libraries in the form of new R packages.
Before diving into a project to create a new bridge, however, it is important
to be aware of the power of existing R packages and that system() calls may
not be platform-independent (they may fail on some computers). Furthermore,
sf brings most of the power provided by GDAL, GEOS and PROJ to R via
the R/C++ interface provided by Rcpp, which avoids system() calls.

20https://www.gdal.org/gdal_rasterize.html
21Note also that the RSAGA package uses the command line interface to use SAGA

geoalgorithms from within R (see Section 9.3).

https://www.gdal.org
https://r-forge.r-project.org
https://r-forge.r-project.org
https://www.orfeo-toolbox.org
http://hydrology.usu.edu
http://hydrology.usu.edu

Other bridges 217

9.6.2 Bridges to spatial databases

Spatial database management systems (spatial DBMS) store spatial and non-
spatial data in a structured way. They can organize large collections of data into
related tables (entities) via unique identifiers (primary and foreign keys) and
implicitly via space (think for instance of a spatial join). This is useful because
geographic datasets tend to become big and messy quite quickly. Databases
enable storing and querying large datasets efficiently based on spatial and
non-spatial fields, and provide multi-user access and topology support.
The most important open source spatial database is PostGIS (Obe and Hsu,
2015).22 R bridges to spatial DBMSs such as PostGIS are important, allowing
access to huge data stores without loading several gigabytes of geographic data
into RAM, and likely crashing the R session. The remainder of this section
shows how PostGIS can be called from R, based on “Hello real word” from
PostGIS in Action, Second Edition (Obe and Hsu, 2015).23

The subsequent code requires a working internet connection, since we are
accessing a PostgreSQL/PostGIS database which is living in the QGIS Cloud
(https://qgiscloud.com/).24

library(RPostgreSQL)

conn = dbConnect(drv = PostgreSQL(), dbname = ”rtafdf_zljbqm”,

host = ”db.qgiscloud.com”,

port = ”5432”, user = ”rtafdf_zljbqm”,

password = ”d3290ead”)

Often the first question is, ‘which tables can be found in the database?’. This
can be asked as follows (the answer is 5 tables):

dbListTables(conn)

#> [1] ”spatial_ref_sys” ”topology” ”layer” ”restaurants”

#> [5] ”highways”

We are only interested in the restaurants and the highways tables. The former
represents the locations of fast-food restaurants in the US, and the latter are
principal US highways. To find out about attributes available in a table, we
can run:

22SQLite/SpatiaLite are certainly also important but implicitly we have already introduced
this approach since GRASS is using SQLite in the background (see Section 9.4).

23Thanks to Manning Publications, Regina Obe and Leo Hsu for permission to use this
example.

24QGIS Cloud lets you store geographic data and maps in the cloud. In the background,
it uses QGIS Server and PostgreSQL/PostGIS. This way, the reader can follow the PostGIS
example without the need to have PostgreSQL/PostGIS installed on a local machine. Thanks
to the QGIS Cloud team for hosting this example.

https://qgiscloud.com
https://www.db.qgiscloud.com

218 Bridges to GIS software

dbListFields(conn, ”highways”)

#> [1] ”qc_id” ”wkb_geometry” ”gid” ”feature”

#> [5] ”name” ”state”

The first query will select US Route 1 in Maryland (MD). Note that st_read()

allows us to read geographic data from a database if it is provided with an
open connection to a database and a query. Additionally, st_read() needs to
know which column represents the geometry (here: wkb_geometry).

query = paste(

”SELECT *”,

”FROM highways”,

”WHERE name = ’US Route 1’ AND state = ’MD’;”)

us_route = st_read(conn, query = query, geom = ”wkb_geometry”)

This results in an sf-object named us_route of type sfc_MULTILINESTRING. The
next step is to add a 20-mile buffer (corresponds to 1609 meters times 20)
around the selected highway (Figure 9.4).

query = paste(

”SELECT ST_Union(ST_Buffer(wkb_geometry, 1609 * 20))::geometry”,

”FROM highways”,

”WHERE name = ’US Route 1’ AND state = ’MD’;”)

buf = st_read(conn, query = query)

Note that this was a spatial query using functions (ST_Union(), ST_Buffer()) you
should be already familiar with since you find them also in the sf-package,
though here they are written in lowercase characters (st_union(), st_buffer()).
In fact, function names of the sf package largely follow the PostGIS naming
conventions.25 The last query will find all Hardee restaurants (HDE) within the
buffer zone (Figure 9.4).

query = paste(

”SELECT r.wkb_geometry”,

”FROM restaurants r”,

”WHERE EXISTS (”,

”SELECT gid”,

”FROM highways”,

”WHERE”,

”ST_DWithin(r.wkb_geometry, wkb_geometry, 1609 * 20) AND”,

”name = ’US Route 1’ AND”,

25The prefix st stands for space/time.

Other bridges 219

FIGURE 9.4: Visualization of the output of previous PostGIS commands
showing the highway (black line), a buffer (light yellow) and three restaurants
(light blue points) within the buffer.

”state = ’MD’ AND”,

”r.franchise = ’HDE’);”

)

hardees = st_read(conn, query = query)

Please refer to Obe and Hsu (2015) for a detailed explanation of the spatial
SQL query. Finally, it is good practice to close the database connection as
follows:26

RPostgreSQL::postgresqlCloseConnection(conn)

Unlike PostGIS, sf only supports spatial vector data. To query and manipulate
raster data stored in a PostGIS database, use the rpostgis package (Bucklin
and Basille, 2018) and/or use command-line tools such as rastertopgsql which
comes as part of the PostGIS installation.
This subsection is only a brief introduction to PostgreSQL/PostGIS. Never-
theless, we would like to encourage the practice of storing geographic and
non-geographic data in a spatial DBMS while only attaching those subsets to
R’s global environment which are needed for further (geo-)statistical analysis.
Please refer to Obe and Hsu (2015) for a more detailed description of the SQL
queries presented and a more comprehensive introduction to PostgreSQL/Post-
GIS in general. PostgreSQL/PostGIS is a formidable choice as an open-source
spatial database. But the same is true for the lightweight SQLite/SpatiaLite
database engine and GRASS which uses SQLite in the background (see Section
9.4).

26It is important to close the connection here because QGIS Cloud (free version) allows
only ten concurrent connections.

220 Bridges to GIS software

As a final note, if your data is getting too big for PostgreSQL/PostGIS and you
require massive spatial data management and query performance, then the next
logical step is to use large-scale geographic querying on distributed computing
systems, as for example, provided by GeoMesa (http://www.geomesa.org/) or
GeoSpark (http://geospark.datasyslab.org/; Huang et al., 2017).

9.7 Exercises

1. Create two overlapping polygons (poly_1 and poly_2) with the help
of the sf-package (see Chapter 2).

2. Union poly_1 and poly_2 using st_union() and qgis:union. What is the
difference between the two union operations? How can we use the sf
package to obtain the same result as QGIS?

3. Calculate the intersection of poly_1 and poly_2 using:
•RQGIS, RSAGA and rgrass7
•sf

4. Attach data(dem, package = ”RQGIS”) and data(random_points, package =

”RQGIS”). Select randomly a point from random_points and find all dem
pixels that can be seen from this point (hint: viewshed). Visualize
your result. For example, plot a hillshade, and on top of it the digital
elevation model, your viewshed output and the point. Additionally,
give mapview a try.

5. Compute catchment area and catchment slope of data(”dem”, package

= ”RQGIS”) using RSAGA (see Section 9.3).
6. Use gdalinfo via a system call for a raster file stored on disk of your

choice (see Section 9.6.1).
7. Query all Californian highways from the PostgreSQL/PostGIS

database living in the QGIS Cloud introduced in this chapter (see
Section 9.6.2).

http://geospark.datasyslab.org
http://www.geomesa.org

10
Scripts, algorithms and functions

Prerequisites

This chapter primarily uses base R; the sf package is used to check the result
of an algorithm we will develop. It assumes you have an understanding of
the geographic classes introduced in Chapter 2 and how they can be used to
represent a wide range of input file formats (see Chapter 7).

10.1 Introduction

Chapter 1 established that geocomputation is not only about using existing
tools, but developing new ones, “in the form of shareable R scripts and
functions”. This chapter teaches these building blocks of reproducible code. It
also introduces low-level geometric algorithms, of the type used in Chapter 9.
Reading it should help you to understand how such algorithms work and to
write code that can be used many times, by many people, on multiple datasets.
The chapter cannot, by itself, make you a skilled programmer. Programming
is hard and requires plenty of practice (Abelson et al., 1996):

To appreciate programming as an intellectual activity in its own
right you must turn to computer programming; you must read
and write computer programs — many of them.

There are strong reasons for moving in that direction, however.1 The advantages
of reproducibility go beyond allowing others to replicate your work: reproducible

1This chapter does not teach programming itself. For more on programming, we recom-
mend Wickham (2014a), Gillespie and Lovelace (2016), and Xiao (2016).

221

222 Scripts, algorithms and functions

code is often better in every way than code written to be run only once,
including in terms of computational efficiency, scalability and ease of adapting
and maintaining it.
Scripts are the basis of reproducible R code, a topic covered in Section 10.2.
Algorithms are recipes for modifying inputs using a series of steps, resulting in
an output, as described in Section 10.3. To ease sharing and reproducibility,
algorithms can be placed into functions. That is the topic of Section 10.4. The
example of finding the centroid of a polygon will be used to tie these concepts
together. Chapter 5 already introduced a centroid function st_centroid(), but
this example highlights how seemingly simple operations are the result of
comparatively complex code, affirming the following observation (Wise, 2001):

One of the most intriguing things about spatial data problems is
that things which appear to be trivially easy to a human being
can be surprisingly difficult on a computer.

The example also reflects a secondary aim of the chapter which, following Xiao
(2016), is “not to duplicate what is available out there, but to show how things
out there work”.

10.2 Scripts

If functions distributed in packages are the building blocks of R code, scripts
are the glue that holds them together, in a logical order, to create reproducible
workflows. To programming novices scripts may sound intimidating but they
are simply plain text files, typically saved with an extension representing the
language they contain. R scripts are generally saved with a .R extension and
named to reflect what they do. An example is 10-hello.R, a script file stored in
the code folder of the book’s repository, which contains the following two lines
of code:

Aim: provide a minimal R script

print(”Hello geocompr”)

The lines of code may not be particularly exciting but they demonstrate the
point: scripts do not need to be complicated. Saved scripts can be called and

Scripts 223

executed in their entirety with source(), as demonstrated below which shows
how the comment is ignored but the instruction is executed:

source(”code/10-hello.R”)

#> [1] ”Hello geocompr”

There are no strict rules on what can and cannot go into script files and
nothing to prevent you from saving broken, non-reproducible code.2 There are,
however, some conventions worth following:
• Write the script in order: just like the script of a film, scripts should have

a clear order such as ‘setup’, ‘data processing’ and ‘save results’ (roughly
equivalent to ‘beginning’, ‘middle’ and ‘end’ in a film).

• Add comments to the script so other people (and your future self) can
understand it. At a minimum, a comment should state the purpose of the
script (see Figure 10.1) and (for long scripts) divide it into sections. This
can be done in RStudio, for example, with the shortcut Ctrl+Shift+R, which
creates ‘foldable’ code section headings.

• Above all, scripts should be reproducible: self-contained scripts that will
work on any computer are more useful than scripts that only run on your
computer, on a good day. This involves attaching required packages at the
beginning, reading-in data from persistent sources (such as a reliable website)
and ensuring that previous steps have been taken.3

It is hard to enforce reproducibility in R scripts, but there are tools that can
help. By default, RStudio ‘code-checks’ R scripts and underlines faulty code
with a red wavy line, as illustrated below:

A useful tool for reproducibility is the reprex package. Its main function
reprex() tests lines of R code to check if they are reproducible, and provides
markdown output to facilitate communication on sites such as GitHub. See
the web page reprex.tidyverse.org for details.

The contents of this section apply to any type of R script. A particular
consideration with scripts for geocomputation is that they tend to have external
dependencies, such as the QGIS dependency to run code in Chapter 9, and
require input data in a specific format. Such dependencies should be mentioned
as comments in the script or elsewhere in the project of which it is a part,
as illustrated in the script 10-centroid-alg.R4. The work undertaken by this
script is demonstrated in the reproducible example below, which works on a

2Lines of code that do not contain valid R should be commented out, by adding a # to
the start of the line, to prevent errors. See line 1 of the 10-hello.R script.

3Prior steps can be referred to with a comment or with an if statement such as if(!ex-

ists(”x”)) source(”x.R”) (which would run the script file x.R if the object x is missing).
4https://github.com/Robinlovelace/geocompr/blob/master/code/10-centroid-alg.R

https://github.com
http://www.reprex.tidyverse.org

224 Scripts, algorithms and functions

FIGURE 10.1: Code checking in RStudio. This example, from the script
10-centroid-alg.R, highlights an unclosed curly bracket on line 19.

pre-requisite object named poly_mat, a square with sides 9 units in length (the
meaning of this will become apparent in the next section):5

poly_mat = cbind(

x = c(0, 0, 9, 9, 0),

y = c(0, 9, 9, 0, 0)

)

source(”https://git.io/10-centroid-alg.R”) # short url

#> [1] ”The area is: 81”

#> [1] ”The coordinates of the centroid are: 4.5, 4.5”

10.3 Geometric algorithms

Algorithms can be understood as the computing equivalent of a cooking recipe.
They are a complete set of instructions which, when undertaken on the input
(ingredients), result in useful (tasty) outputs. Before diving into a concrete
case study, a brief history will show how algorithms relate to scripts (covered

5This example shows that source() works with URLs (a shortened version is used here),
assuming you have an internet connection. If you do not, the same script can be called with
source(”code/10-centroid-alg.R”), assuming you are running R from the root directory of the
geocompr folder, which can be downloaded from https://github.com/Robinlovelace/geocompr.

https://github.com
https://git.io

Geometric algorithms 225

in Section 10.2) and functions (which can be used to generalize algorithms, as
we’ll see in Section 10.4).
The word “algorithm” originated in 9th century Baghdad with the publication of
Hisab al-jabr w’al-muqabala, an early math textbook. The book was translated
into Latin and became so popular that the author’s last name, al-Khwārizmī6,
“was immortalized as a scientific term: Al-Khwarizmi became Alchoarismi,
Algorismi and, eventually, algorithm” (Bellos, 2011). In the computing age,
algorithm refers to a series of steps that solves a problem, resulting in a
pre-defined output. Inputs must be formally defined in a suitable data structure
(Wise, 2001). Algorithms often start as flow charts or pseudocode showing
the aim of the process before being implemented in code. To ease usability,
common algorithms are often packaged inside functions, which may hide some
or all of the steps taken (unless you look at the function’s source code, see
Section 10.4).
Geoalgorithms, such as those we encountered in Chapter 9, are algorithms that
take geographic data in and, generally, return geographic results (alternative
terms for the same thing include GIS algorithms and geometric algorithms).
That may sound simple but it is a deep subject with an entire academic field,
Computational Geometry, dedicated to their study (de Berg et al., 2008) and
numerous books on the subject. O’Rourke (1998), for example, introduces
the subject with a range of progressively harder geometric algorithms using
reproducible and freely available C code.
An example of a geometric algorithm is one that finds the centroid of a polygon.
There are many approaches to centroid calculation, some of which work only
on specific types of spatial data7. For the purposes of this section, we choose
an approach that is easy to visualize: breaking the polygon into many triangles
and finding the centroid of each of these, an approach discussed by Kaiser and
Morin (1993) alongside other centroid algorithms (and mentioned briefly in
O’Rourke, 1998). It helps to further break down this approach into discrete
tasks before writing any code (subsequently referred to as step 1 to step 4,
these could also be presented as a schematic diagram or pseudocode):

1. Divide the polygon into contiguous triangles.
2. Find the centroid of each triangle.
3. Find the area of each triangle.
4. Find the area-weighted mean of triangle centroids.

These steps may sound straightforward, but converting words into working
code requires some work and plenty of trial-and-error, even when the inputs are
constrained: The algorithm will only work for convex polygons, which contain
no internal angles greater than 180°, no star shapes allowed (packages decido

6https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
7https://en.wikipedia.org/wiki/Centroid

https://en.wikipedia.org
https://en.wikipedia.org

226 Scripts, algorithms and functions

and sfdct can triangulate non-convex polygons using external libraries, as
shown in the algorithm8 vignette at geocompr.github.io).
The simplest data structure of a polygon is a matrix of x and y coordinates
in which each row represents a vertex tracing the polygon’s border in order
where the first and last rows are identical (Wise, 2001). In this case, we’ll
create a polygon with five vertices in base R, building on an example from
GIS Algorithms (Xiao, 2016, see github.com/gisalgs9 for Python code), as
illustrated in Figure 10.2:

generate a simple matrix representation of a polygon:

x_coords = c(10, 0, 0, 12, 20, 10)

y_coords = c(0, 0, 10, 20, 15, 0)

poly_mat = cbind(x_coords, y_coords)

Now that we have an example dataset, we are ready to undertake step 1
outlined above. The code below shows how this can be done by creating a
single triangle (T1), that demonstrates the method; it also demonstrates step 2
by calculating its centroid based on the formula10 1/3(𝑎 + 𝑏 + 𝑐) where 𝑎 to 𝑐
are coordinates representing the triangle’s vertices:

create a point representing the origin:

Origin = poly_mat[1,]

create ’triangle matrix’:

T1 = rbind(Origin, poly_mat[2:3,], Origin)

find centroid (drop = FALSE preserves classes, resulting in a matrix):

C1 = (T1[1, , drop = FALSE] + T1[2, , drop = FALSE] + T1[3, , drop = FALSE]) / 3

Step 3 is to find the area of each triangle, so a weighted mean accounting for
the disproportionate impact of large triangles is accounted for. The formula to
calculate the area of a triangle is as follows (Kaiser and Morin, 1993):

𝐴𝑥(𝐵𝑦 − 𝐶𝑦) + 𝐵𝑥(𝐶𝑦 − 𝐴𝑦) + 𝐶𝑥(𝐴𝑦 − 𝐵𝑦)
2

Where 𝐴 to 𝐶 are the triangle’s three points and 𝑥 and 𝑦 refer to the x and
y dimensions. A translation of this formula into R code that works with the
data in the matrix representation of a triangle T1 is as follows (the function
abs() ensures a positive result):

8https://geocompr.github.io/geocompkg/articles/algorithm.html
9https://github.com/gisalgs/geom

10https://math.stackexchange.com/q/1702595/

https://math.stackexchange.com
https://github.com
https://geocompr.github.io
http://www.github.com

Geometric algorithms 227

FIGURE 10.2: Illustration of polygon centroid calculation problem.

calculate the area of the triangle represented by matrix T1:

abs(T1[1, 1] * (T1[2, 2] - T1[3, 2]) +

T1[2, 1] * (T1[3, 2] - T1[1, 2]) +

T1[3, 1] * (T1[1, 2] - T1[2, 2])) / 2

#> [1] 50

This code chunk outputs the correct result.11 The problem is that code is
clunky and must by re-typed if we want to run it on another triangle matrix.
To make the code more generalizable, we will see how it can be converted into
a function in Section 10.4.
Step 4 requires steps 2 and 3 to be undertaken not just on one triangle (as
demonstrated above) but on all triangles. This requires iteration to create
all triangles representing the polygon, illustrated in Figure 10.3. lapply() and
vapply() are used to iterate over each triangle here because they provide a
concise solution in base R:12

i = 2:(nrow(poly_mat) - 2)

T_all = lapply(i, function(x) {

rbind(Origin, poly_mat[x:(x + 1),], Origin)

})

11The result can be verified with the following formula (which assumes a horizontal base):
area is half of the base width times height, u� = u� ∗ u�/2. In this case 10 ∗ 10/2 = 50.

12See ?lapply for documentation and Chapter 13 for more on iteration.

228 Scripts, algorithms and functions

FIGURE 10.3: Illustration of iterative centroid algorithm with triangles.
The X represents the area-weighted centroid in iterations 2 and 3.

C_list = lapply(T_all, function(x) (x[1,] + x[2,] + x[3,]) / 3)

C = do.call(rbind, C_list)

A = vapply(T_all, function(x) {

abs(x[1, 1] * (x[2, 2] - x[3, 2]) +

x[2, 1] * (x[3, 2] - x[1, 2]) +

x[3, 1] * (x[1, 2] - x[2, 2])) / 2

}, FUN.VALUE = double(1))

We are now in a position to complete step 4 to calculate the total area with
sum(A) and the centroid coordinates of the polygon with weighted.mean(C[, 1], A)

and weighted.mean(C[, 2], A) (exercise for alert readers: verify these commands
work). To demonstrate the link between algorithms and scripts, the contents of
this section have been condensed into 10-centroid-alg.R. We saw at the end of
Section 10.2 how this script can calculate the centroid of a square. The great
thing about scripting the algorithm is that it works on the new poly_mat object
(see exercises below to verify these results with reference to st_centroid()):

source(”code/10-centroid-alg.R”)

#> [1] ”The area is: 245”

#> [1] ”The coordinates of the centroid are: 8.83, 9.22”

The example above shows that low-level geographic operations can be developed
from first principles with base R. It also shows that if a tried-and-tested solution
already exists, it may not be worth re-inventing the wheel: if we aimed only to
find the centroid of a polygon, it would have been quicker to represent poly_mat

as an sf object and use the pre-existing sf::st_centroid() function instead.
However, the great benefit of writing algorithms from 1st principles is that you
will understand every step of the process, something that cannot be guaranteed
when using other peoples’ code. A further consideration is performance: R is
slow compared with low-level languages such as C++ for number crunching

Functions 229

(see Section 1.3) and optimization is difficult. If the aim is to develop new
methods, computational efficiency should not be prioritized. This is captured
in the saying “premature optimization is the root of all evil (or at least most
of it) in programming” (Knuth, 1974).
Algorithm development is hard. This should be apparent from the amount
of work that has gone into developing a centroid algorithm in base R that is
just one, rather inefficient, approach to the problem with limited real-world
applications (convex polygons are uncommon in practice). The experience
should lead to an appreciation of low-level geographic libraries such as GEOS
(which underlies sf::st_centroid()) and CGAL (the Computational Geometry
Algorithms Library) which not only run fast but work on a wide range of input
geometry types. A great advantage of the open source nature of such libraries
is that their source code is readily available for study, comprehension and (for
those with the skills and confidence) modification.13

10.4 Functions

Like algorithms, functions take an input and return an output. Functions,
however, refer to the implementation in a particular programming language,
rather than the ‘recipe’ itself. In R, functions are objects in their own right,
that can be created and joined together in a modular fashion. We can, for
example, create a function that undertakes step 2 of our centroid generation
algorithm as follows:

t_centroid = function(x) {

(x[1,] + x[2,] + x[3,]) / 3

}

The above example demonstrates two key components of functions14: 1) the
function body, the code inside the curly brackets that define what the function
does with the inputs; and 2) the formals, the list of arguments the function
works with — x in this case (the third key component, the environment,
is beyond the scope of this section). By default, functions return the last

13The CGAL function CGAL::centroid() is in fact composed of 7 sub-functions as described
at https://doc.cgal.org/latest/Kernel_23/group__centroid__grp.html allowing it to work on a wide
range of input data types, whereas the solution we created works only on a very specific
input data type. The source code underlying GEOS function Centroid::getCentroid() can be
found at https://github.com/libgeos/geos/search?q=getCentroid.

14http://adv-r.had.co.nz/Functions.html

http://adv-r.had.co.nz
https://github.com
https://doc.cgal.org

230 Scripts, algorithms and functions

object that has been calculated (the coordinates of the centroid in the case of
t_centroid()).15

The function now works on any inputs you pass it, as illustrated in the below
command which calculates the area of the 1st triangle from the example polygon
in the previous section (see Figure 10.3):

t_centroid(T1)

#> x_coords y_coords

#> 3.33 3.33

We can also create a function to calculate a triangle’s area, which we will name
t_area():

t_area = function(x) {

abs(

x[1, 1] * (x[2, 2] - x[3, 2]) +

x[2, 1] * (x[3, 2] - x[1, 2]) +

x[3, 1] * (x[1, 2] - x[2, 2])

) / 2

}

Note that after the function’s creation, a triangle’s area can be calculated in
a single line of code, avoiding duplication of verbose code: functions are a
mechanism for generalizing code. The newly created function t_area() takes
any object x, assumed to have the same dimensions as the ‘triangle matrix’
data structure we’ve been using, and returns its area, as illustrated on T1 as
follows:

t_area(T1)

#> [1] 50

We can test the generalizability of the function by using it to find the area of
a new triangle matrix, which has a height of 1 and a base of 3:

t_new = cbind(x = c(0, 3, 3, 0),

y = c(0, 0, 1, 0))

t_area(t_new)

#> x

#> 1.5

A useful feature of functions is that they are modular. Provided that you

15You can also explicitly set the output of a function by adding return(output) into the
body of the function, where output is the result to be returned.

Functions 231

know what the output will be, one function can be used as the building block
of another. Thus, the functions t_centroid() and t_area() can be used as sub-
components of a larger function to do the work of the script 10-centroid-alg.R:
calculate the area of any convex polygon. The code chunk below creates the
function poly_centroid() to mimic the behavior of sf::st_centroid() for convex
polygons:16

poly_centroid = function(x) {

i = 2:(nrow(x) - 2)

T_all = lapply(i, function(x) {

rbind(Origin, poly_mat[x:(x + 1),], Origin)

})

C_list = lapply(T_all, t_centroid)

C = do.call(rbind, C_list)

A = vapply(T_all, t_area, FUN.VALUE = double(1))

c(weighted.mean(C[, 1], A), weighted.mean(C[, 2], A))

}

poly_centroid(poly_mat)

#> [1] 8.83 9.22

Functions such as poly_centroid() can further be extended to provide different
types of output. To return the result as an object of class sfg, for example, a
‘wrapper’ function can be used to modify the output of poly_centroid() before
returning the result:

poly_centroid_sfg = function(x) {

centroid_coords = poly_centroid(x)

sf::st_point(centroid_coords)

}

We can verify that the output is the same as the output from sf::st_centroid()

as follows:

poly_sfc = sf::st_polygon(list(poly_mat))

identical(poly_centroid_sfg(poly_mat), sf::st_centroid(poly_sfc))

#> [1] TRUE

16Note that the functions we created are called iteratively in lapply() and vapply() function
calls.

232 Scripts, algorithms and functions

10.5 Programming

In this chapter we have moved quickly, from scripts to functions via the tricky
topic of algorithms. Not only have we discussed them in the abstract, but we
have also created working examples of each to solve a specific problem:
• The script 10-centroid-alg.R was introduced and demonstrated on a ‘polygon

matrix’.
• The individual steps that allowed this script to work were described as an

algorithm, a computational recipe.
• To generalize the algorithm we converted it into modular functions which were

eventually combined to create the function poly_centroid() in the previous
section.

Taken on its own, each of these steps is straightforward. But the skill of
programming is combining scripts, algorithms and functions in a way that
produces performant, robust and user-friendly tools that other people can use.
If you are new to programming, as we expect most people reading this book
will be, being able to follow and reproduce the results in the preceding sections
should be seen as a major achievement. Programming takes many hours of
dedicated study and practice before you become proficient.
The challenge facing developers aiming to implement new algorithms in an
efficient way is put in perspective by considering that we have only created
a toy function. In its current state, poly_centroid() fails on most (non-convex)
polygons! A question arising from this is: how would one generalize the function?
Two options are (1) to find ways to triangulate non-convex polygons (a topic
covered in the online algorithm17 article that supports this chapter) and (2)
to explore other centroid algorithms that do not rely on triangular meshes.
A wider question is: is it worth programming a solution at all when high
performance algorithms have already been implemented and packaged in
functions such as st_centroid()? The reductionist answer in this specific case is
‘no’. In the wider context, and considering the benefits of learning to program,
the answer is ‘it depends’. With programming, it’s easy to waste hours trying
to implement a method, only to find that someone has already done the hard
work. So instead of seeing this chapter as your first stepping stone towards
geometric algorithm programming wizardry, it may be more productive to use
it as a lesson in when to try to program a generalized solution, and when to
use existing higher-level solutions. There will surely be occasions when writing
new functions is the best way forward, but there will also be times when using
functions that already exist is the best way forward.

17https://geocompr.github.io/geocompkg/articles/algorithm.html

https://geocompr.github.io

Exercises 233

We cannot guarantee that, having read this chapter, you will be able to
rapidly create new functions for your work. But we are confident that its
contents will help you decide when is an appropriate time to try (when no
other existing functions solve the problem, when the programming task is
within your capabilities and when the benefits of the solution are likely to
outweigh the time costs of developing it). First steps towards programming can
be slow (the exercises below should not be rushed) but the long-term rewards
can be large.

10.6 Exercises

1. Read the script 10-centroid-alg.R in the code folder of the book’s
GitHub repo.

•Which of the best practices covered in Section 10.2 does it
follow?

•Create a version of the script on your computer in an IDE
such as RStudio (preferably by typing-out the script line-by-
line, in your own coding style and with your own comments,
rather than copy-pasting — this will help you learn how to
type scripts). Using the example of a square polygon (e.g.,
created with poly_mat = cbind(x = c(0, 0, 9, 9, 0), y = c(0, 9,

9, 0, 0))) execute the script line-by-line.
•What changes could be made to the script to make it more
reproducible?

•How could the documentation be improved?
2. In Section 10.3 we calculated that the area and geographic centroid of

the polygon represented by poly_mat was 245 and 8.8, 9.2, respectively.
•Reproduce the results on your own computer with reference to
the script 10-centroid-alg.R, an implementation of this algorithm
(bonus: type out the commands - try to avoid copy-pasting).

•Are the results correct? Verify them by converting poly_mat

into an sfc object (named poly_sfc) with st_polygon() (hint: this
function takes objects of class list()) and then using st_area()

and st_centroid().
3. It was stated that the algorithm we created only works for convex

hulls. Define convex hulls (see Chapter 5) and test the algorithm on
a polygon that is not a convex hull.

•Bonus 1: Think about why the method only works for convex
hulls and note changes that would need to be made to the
algorithm to make it work for other types of polygon.

•Bonus 2: Building on the contents of 10-centroid-alg.R, write an

234 Scripts, algorithms and functions

algorithm only using base R functions that can find the total
length of linestrings represented in matrix form.

4. In Section 10.4 we created different versions of the poly_centroid()

function that generated outputs of class sfg (poly_centroid_sfg()) and
type-stable matrix outputs (poly_centroid_type_stable()). Further ex-
tend the function by creating a version (e.g., called poly_centroid_sf())
that is type stable (only accepts inputs of class sf) and returns sf

objects (hint: you may need to convert the object x into a matrix
with the command sf::st_coordinates(x)).

•Verify it works by running poly_centroid_sf(sf::st_sf(sf::st_sfc

(poly_sfc)))

•What error message do you get when you try to run
poly_centroid_sf(poly_mat)?

11
Statistical learning

Prerequisites

This chapter assumes proficiency with geographic data analysis, for example
gained by studying the contents and working-through the exercises in Chapters
2 to 6. A familiarity with generalized linear models (GLM) and machine
learning is highly recommended (for example from Zuur et al., 2009; James
et al., 2013).
The chapter uses the following packages:1

library(sf)

library(raster)

library(mlr)

library(dplyr)

library(parallelMap)

Required data will be attached in due course.

11.1 Introduction

Statistical learning is concerned with the use of statistical and computational
models for identifying patterns in data and predicting from these patterns. Due
to its origins, statistical learning is one of R’s great strengths (see Section 1.3).2
Statistical learning combines methods from statistics and machine learning and
its methods can be categorized into supervised and unsupervised techniques.

1Package kernlab, pROC, RSAGA and spDataLarge must also be installed although
these do not need to be attached.

2Applying statistical techniques to geographic data has been an active topic of research
for many decades in the fields of Geostatistics, Spatial Statistics and point pattern analysis
(Diggle and Ribeiro, 2007; Gelfand et al., 2010; Baddeley et al., 2015).

235

236 Statistical learning

Both are increasingly used in disciplines ranging from physics, biology and
ecology to geography and economics (James et al., 2013).
This chapter focuses on supervised techniques in which there is a training
dataset, as opposed to unsupervised techniques such as clustering. Response
variables can be binary (such as landslide occurrence), categorical (land use),
integer (species richness count) or numeric (soil acidity measured in pH).
Supervised techniques model the relationship between such responses — which
are known for a sample of observations — and one or more predictors.
The primary aim of much machine learning research is to make good predictions,
as opposed to statistical/Bayesian inference, which is good at helping to
understand underlying mechanisms and uncertainties in the data (see Krainski
et al., 2018). Machine learning thrives in the age of ‘big data’ because its
methods make few assumptions about input variables and can handle huge
datasets. Machine learning is conducive to tasks such as the prediction of
future customer behavior, recommendation services (music, movies, what
to buy next), face recognition, autonomous driving, text classification and
predictive maintenance (infrastructure, industry).
This chapter is based on a case study: the (spatial) prediction of landslides. This
application links to the applied nature of geocomputation, defined in Chapter 1,
and illustrates how machine learning borrows from the field of statistics when
the sole aim is prediction. Therefore, this chapter first introduces modeling
and cross-validation concepts with the help of a GLM (Zuur et al., 2009).
Building on this, the chapter implements a more typical machine learning
algorithm, namely a Support Vector Machine (SVM). The models’ predictive
performance will be assessed using spatial cross-validation (CV), which
accounts for the fact that geographic data is special.
CV determines a model’s ability to generalize to new data, by splitting a
dataset (repeatedly) into training and test sets. It uses the training data to fit
the model, and checks its performance when predicting against the test data.
CV helps to detect overfitting since models that predict the training data too
closely (noise) will tend to perform poorly on the test data.
Randomly splitting spatial data can lead to training points that are neighbors
in space with test points. Due to spatial autocorrelation, test and training
datasets would not be independent in this scenario, with the consequence that
CV fails to detect a possible overfitting. Spatial CV alleviates this problem
and is the central theme in this chapter.

Case study: Landslide susceptibility 237

11.2 Case study: Landslide susceptibility

This case study is based on a dataset of landslide locations in Southern Ecuador,
illustrated in Figure 11.1 and described in detail in Muenchow et al. (2012). A
subset of the dataset used in that paper is provided in the RSAGA package,
which can be loaded as follows:

data(”landslides”, package = ”RSAGA”)

This should load three objects: a data.frame named landslides, a list named
dem, and an sf object named study_area. landslides contains a factor column
lslpts where TRUE corresponds to an observed landslide ‘initiation point’, with
the coordinates stored in columns x and y.3

There are 175 landslide points and 1360 non-landslide, as shown by
summary(landslides). The 1360 non-landslide points were sampled randomly
from the study area, with the restriction that they must fall outside a small
buffer around the landslide polygons.
To make the number of landslide and non-landslide points balanced, let us
sample 175 from the 1360 non-landslide points.4

select non-landslide points

non_pts = filter(landslides, lslpts == FALSE)

select landslide points

lsl_pts = filter(landslides, lslpts == TRUE)

randomly select 175 non-landslide points

set.seed(11042018)

non_pts_sub = sample_n(non_pts, size = nrow(lsl_pts))

create smaller landslide dataset (lsl)

lsl = bind_rows(non_pts_sub, lsl_pts)

dem is a digital elevation model consisting of two elements: dem$header, a list

which represents a raster ‘header’ (see Section 2.3), and dem$data, a matrix with
the altitude of each pixel. dem can be converted into a raster object with:

3The landslide initiation point is located in the scarp of a landslide polygon. See Muenchow
et al. (2012) for further details.

4The landslides dataset has been used in classes and summer schools. To show how
predictive performance of different algorithms changes with an unbalanced and highly
spatially autocorrelated response variable, 1360 non-landslide points were randomly selected,
i.e., many more absences than presences. However, especially a logistic regression with a
log-link, as used in this chapter, expects roughly the same number of presences and absences
in the response.

238 Statistical learning

FIGURE 11.1: Landslide initiation points (red) and points unaffected by
landsliding (blue) in Southern Ecuador.

dem = raster(

dem$data,

crs = dem$header$proj4string,

xmn = dem$header$xllcorner,

xmx = dem$header$xllcorner + dem$header$ncols * dem$header$cellsize,

ymn = dem$header$yllcorner,

ymx = dem$header$yllcorner + dem$header$nrows * dem$header$cellsize

)

To model landslide susceptibility, we need some predictors. Terrain attributes
are frequently associated with landsliding (Muenchow et al., 2012), and these
can be computed from the digital elevation model (dem) using R-GIS bridges
(see Chapter 9). We leave it as an exercise to the reader to compute the
following terrain attribute rasters and extract the corresponding values to our
landslide/non-landslide data frame (see exercises; we also provide the resulting
data frame via the spDataLarge package, see further below):
• slope: slope angle (°).
• cplan: plan curvature (rad m−1) expressing the convergence or divergence of

a slope and thus water flow.
• cprof: profile curvature (rad m-1) as a measure of flow acceleration, also

known as downslope change in slope angle.

Conventional modeling approach in R 239

TABLE 11.1: Structure of the lsl dataset.

x y lslpts slope cplan cprof elev log10_carea
715078 9558647 FALSE 37 0.021 0.009 2500 2.6
713748 9558047 FALSE 42 -0.024 0.007 2500 3.1
712508 9558887 FALSE 20 0.039 0.015 2100 2.3

• elev: elevation (m a.s.l.) as the representation of different altitudinal zones
of vegetation and precipitation in the study area.

• log10_carea: the decadic logarithm of the catchment area (log10 m2) repre-
senting the amount of water flowing towards a location.

Data containing the landslide points, with the corresponding terrain attributes,
is provided in the spDataLarge package, along with the terrain attribute
raster stack from which the values were extracted. Hence, if you have not
computed the predictors yourself, attach the corresponding data before running
the code of the remaining chapter:

attach landslide points with terrain attributes

data(”lsl”, package = ”spDataLarge”)

attach terrain attribute raster stack

data(”ta”, package = ”spDataLarge”)

The first three rows of lsl, rounded to two significant digits, can be found in
Table 11.1.

11.3 Conventional modeling approach in R

Before introducing the mlr package, an umbrella-package providing a unified
interface to dozens of learning algorithms (Section 11.5), it is worth taking
a look at the conventional modeling interface in R. This introduction to
supervised statistical learning provides the basis for doing spatial CV, and
contributes to a better grasp on the mlr approach presented subsequently.
Supervised learning involves predicting a response variable as a function of
predictors (Section 11.4). In R, modeling functions are usually specified using
formulas (see ?formula and the detailed Formulas in R Tutorial5 for details of
R formulas). The following command specifies and runs a generalized linear
model:

5https://www.datacamp.com/community/tutorials/r-formula-tutorial

https://www.datacamp.com

240 Statistical learning

fit = glm(lslpts ~ slope + cplan + cprof + elev + log10_carea,

family = binomial(),

data = lsl)

It is worth understanding each of the three input arguments:
• A formula, which specifies landslide occurrence (lslpts) as a function of the

predictors.
• A family, which specifies the type of model, in this case binomial because the

response is binary (see ?family).
• The data frame which contains the response and the predictors.
The results of this model can be printed as follows (summary(fit) provides a
more detailed account of the results):

class(fit)

#> [1] ”glm” ”lm”

fit

#>

#> Call: glm(formula = lslpts ~ slope + cplan + cprof + elev + log10_carea,

#> family = binomial(), data = lsl)

#>

#> Coefficients:

#> (Intercept) slope cplan cprof elev

#> 1.97e+00 9.30e-02 -2.57e+01 -1.43e+01 2.41e-05

#> log10_carea

#> -2.12e+00

#>

#> Degrees of Freedom: 349 Total (i.e. Null); 344 Residual

#> Null Deviance: 485

#> Residual Deviance: 361 AIC: 373

The model object fit, of class glm, contains the coefficients defining the fitted
relationship between response and predictors. It can also be used for prediction.
This is done with the generic predict() method, which in this case calls the
function predict.glm(). Setting type to response returns the predicted probabili-
ties (of landslide occurrence) for each observation in lsl, as illustrated below
(see ?predict.glm):

pred_glm = predict(object = fit, type = ”response”)

head(pred_glm)

#> 1 2 3 4 5 6

#> 0.3327 0.4755 0.0995 0.1480 0.3486 0.6766

Spatial predictions can be made by applying the coefficients to the predictor

Conventional modeling approach in R 241

FIGURE 11.2: Spatial prediction of landslide susceptibility using a GLM.

rasters. This can be done manually or with raster::predict(). In addition to a
model object (fit), this function also expects a raster stack with the predictors
named as in the model’s input data frame (Figure 11.2).

making the prediction

pred = raster::predict(ta, model = fit, type = ”response”)

Here, when making predictions we neglect spatial autocorrelation since we
assume that on average the predictive accuracy remains the same with or
without spatial autocorrelation structures. However, it is possible to include
spatial autocorrelation structures into models (Zuur et al., 2009; Blangiardo
and Cameletti, 2015; Zuur et al., 2017) as well as into predictions (kriging
approaches, see, e.g., Goovaerts, 1997; Hengl, 2007; Bivand et al., 2013). This
is, however, beyond the scope of this book.
Spatial prediction maps are one very important outcome of a model. Even
more important is how good the underlying model is at making them since a
prediction map is useless if the model’s predictive performance is bad. The
most popular measure to assess the predictive performance of a binomial model
is the Area Under the Receiver Operator Characteristic Curve (AUROC). This
is a value between 0.5 and 1.0, with 0.5 indicating a model that is no better
than random and 1.0 indicating perfect prediction of the two classes. Thus,
the higher the AUROC, the better the model’s predictive power. The following
code chunk computes the AUROC value of the model with roc(), which takes

242 Statistical learning

the response and the predicted values as inputs. auc() returns the area under
the curve.

pROC::auc(pROC::roc(lsl$lslpts, fitted(fit)))

#> Area under the curve: 0.826

An AUROC value of 0.83 represents a good fit. However, this is an overop-
timistic estimation since we have computed it on the complete dataset. To
derive a biased-reduced assessment, we have to use cross-validation and in the
case of spatial data should make use of spatial CV.

11.4 Introduction to (spatial) cross-validation

Cross-validation belongs to the family of resampling methods (James et al.,
2013). The basic idea is to split (repeatedly) a dataset into training and test
sets whereby the training data is used to fit a model which then is applied
to the test set. Comparing the predicted values with the known response
values from the test set (using a performance measure such as the AUROC in
the binomial case) gives a bias-reduced assessment of the model’s capability
to generalize the learned relationship to independent data. For example, a
100-repeated 5-fold cross-validation means to randomly split the data into five
partitions (folds) with each fold being used once as a test set (see upper row of
Figure 11.3). This guarantees that each observation is used once in one of the
test sets, and requires the fitting of five models. Subsequently, this procedure
is repeated 100 times. Of course, the data splitting will differ in each repetition.
Overall, this sums up to 500 models, whereas the mean performance measure
(AUROC) of all models is the model’s overall predictive power.
However, geographic data is special. As we will see in Chapter 12, the ‘first
law’ of geography states that points close to each other are, generally, more
similar than points further away (Miller, 2004). This means these points are
not statistically independent because training and test points in conventional
CV are often too close to each other (see first row of Figure 11.3). ‘Training’
observations near the ‘test’ observations can provide a kind of ‘sneak preview’:
information that should be unavailable to the training dataset. To alleviate this
problem ‘spatial partitioning’ is used to split the observations into spatially
disjointed subsets (using the observations’ coordinates in a k-means clustering;
Brenning (2012b); second row of Figure 11.3). This partitioning strategy is
the only difference between spatial and conventional CV. As a result, spatial
CV leads to a bias-reduced assessment of a model’s predictive performance,
and hence helps to avoid overfitting.

Spatial CV with mlr 243

FIGURE 11.3: Spatial visualization of selected test and training observa-
tions for cross-validation of one repetition. Random (upper row) and spatial
partitioning (lower row).

11.5 Spatial CV with mlr

There are dozens of packages for statistical learning, as described for example in
the CRAN machine learning task view6. Getting acquainted with each of these
packages, including how to undertake cross-validation and hyperparameter
tuning, can be a time-consuming process. Comparing model results from
different packages can be even more laborious. The mlr package was developed
to address these issues. It acts as a ‘meta-package’, providing a unified interface
to popular supervised and unsupervised statistical learning techniques including
classification, regression, survival analysis and clustering (Bischl et al., 2016).
The standardized mlr interface is based on eight ‘building blocks’. As illustrated
in Figure 11.4, these have a clear order.
The mlr modeling process consists of three main stages. First, a task specifies
the data (including response and predictor variables) and the model type (such
as regression or classification). Second, a learner defines the specific learning
algorithm that is applied to the created task. Third, the resampling approach
assesses the predictive performance of the model, i.e., its ability to generalize
to new data (see also Section 11.4).

6https://CRAN.R-project.org/view=MachineLearning

https://CRAN.R-project.org

244 Statistical learning

FIGURE 11.4: Basic building blocks of the mlr package. Source:
http://bit.ly/2tcb2b7. (Permission to reuse this figure was kindly granted.)

11.5.1 Generalized linear model

To implement a GLM in mlr, we must create a task containing the landslide
data. Since the response is binary (two-category variable), we create a clas-
sification task with makeClassifTask() (for regression tasks, use makeRegrTask(),
see ?makeRegrTask for other task types). The first essential argument of these
make*() functions is data. The target argument expects the name of a response
variable and positive determines which of the two factor levels of the response
variable indicate the landslide initiation point (in our case this is TRUE). All
other variables of the lsl dataset will serve as predictors except for the coordi-
nates (see the result of getTaskFormula(task) for the model formula). For spatial
CV, the coordinates parameter is used (see Section 11.4 and Figure 11.3) which
expects the coordinates as a xy data frame.

library(mlr)

coordinates needed for the spatial partitioning

coords = lsl[, c(”x”, ”y”)]

select response and predictors to use in the modeling

data = dplyr::select(lsl, -x, -y)

create task

task = makeClassifTask(data = data, target = ”lslpts”,

positive = ”TRUE”, coordinates = coords)

http://bit.ly

Spatial CV with mlr 245

TABLE 11.2: Sample of available learners for binomial tasks in the mlr
package.

Class Name Short name Package
classif.binomial Binomial Regression binomial stats
classif.featureless Featureless classifier featureless mlr
classif.fnn Fast k-Nearest Neighbour fnn FNN
classif.gausspr Gaussian Processes gausspr kernlab
classif.knn k-Nearest Neighbor knn class
classif.ksvm Support Vector Machines ksvm kernlab

makeLearner() determines the statistical learning method to use. All classifica-
tion learners start with classif. and all regression learners with regr. (see
?makeLearners for details). listLearners() helps to find out about all available
learners and from which package mlr imports them (Table 11.2). For a specific
task, we can run:

listLearners(task, warn.missing.packages = FALSE) %>%

dplyr::select(class, name, short.name, package) %>%

head

This yields all learners able to model two-class problems (landslide yes or
no). We opt for the binomial classification method used in Section 11.3 and
implemented as classif.binomial in mlr. Additionally, we must specify the
link-function, logit in this case, which is also the default of the binomial()

function. predict.type determines the type of the prediction with prob resulting
in the predicted probability for landslide occurrence between 0 and 1 (this
corresponds to type = response in predict.glm).

lrn = makeLearner(cl = ”classif.binomial”,

link = ”logit”,

predict.type = ”prob”,

fix.factors.prediction = TRUE)

To find out from which package the specified learner is taken and how to access
the corresponding help pages, we can run:

getLearnerPackages(lrn)

helpLearner(lrn)

The set-up steps for modeling with mlr may seem tedious. But remember, this
single interface provides access to the 150+ learners shown by listLearners();

246 Statistical learning

it would be far more tedious to learn the interface for each learner! Fur-
ther advantages are simple parallelization of resampling techniques and the
ability to tune machine learning hyperparameters (see Section 11.5.2). Most
importantly, (spatial) resampling in mlr is straightforward, requiring only
two more steps: specifying a resampling method and running it. We will use
a 100-repeated 5-fold spatial CV: five partitions will be chosen based on the
provided coordinates in our task and the partitioning will be repeated 100
times:7

perf_level = makeResampleDesc(method = ”SpRepCV”, folds = 5, reps = 100)

To execute the spatial resampling, we run resample() using the specified learner,
task, resampling strategy and of course the performance measure, here the
AUROC. This takes some time (around 10 seconds on a modern laptop)
because it computes the AUROC for 500 models. Setting a seed ensures
the reproducibility of the obtained result and will ensure the same spatial
partitioning when re-running the code.

set.seed(012348)

sp_cv = mlr::resample(learner = lrn, task = task,

resampling = perf_level,

measures = mlr::auc)

The output of the preceding code chunk is a bias-reduced assessment of the
model’s predictive performance, as illustrated in the following code chunk
(required input data is saved in the file spatialcv.Rdata in the book’s GitHub
repo):

summary statistics of the 500 models

summary(sp_cv$measures.test$auc)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 0.686 0.757 0.789 0.780 0.795 0.861

mean AUROC of the 500 models

mean(sp_cv$measures.test$auc)

#> [1] 0.78

To put these results in perspective, let us compare them with AUROC values
from a 100-repeated 5-fold non-spatial cross-validation (Figure 11.5; the code
for the non-spatial cross-validation is not shown here but will be explored in

7Note that package sperrorest initially implemented spatial cross-validation in R (Bren-
ning, 2012b). In the meantime, its functionality was integrated into the mlr package which
is the reason why we are using mlr (Schratz et al., 2018).The caret package is another
umbrella-package (Kuhn and Johnson, 2013) for streamlined modeling in R; however, so far
it does not provide spatial CV which is why we refrain from using it for spatial data.

Spatial CV with mlr 247

FIGURE 11.5: Boxplot showing the difference in AUROC values between
spatial and conventional 100-repeated 5-fold cross-validation.

the exercise section). As expected, the spatially cross-validated result yields
lower AUROC values on average than the conventional cross-validation ap-
proach, underlining the over-optimistic predictive performance due to spatial
autocorrelation of the latter.

11.5.2 Spatial tuning of machine-learning hyperparameters

Section 11.4 introduced machine learning as part of statistical learning. To
recap, we adhere to the following definition of machine learning by Jason
Brownlee8:

Machine learning, more specifically the field of predictive model-
ing, is primarily concerned with minimizing the error of a model
or making the most accurate predictions possible, at the expense
of explainability. In applied machine learning we will borrow,
reuse and steal algorithms from many different fields, including
statistics and use them towards these ends.

In Section 11.5.1 a GLM was used to predict landslide susceptibility. This
section introduces support vector machines (SVM) for the same purpose.
Random forest models might be more popular than SVMs; however, the
positive effect of tuning hyperparameters on model performance is much

8https://machinelearningmastery.com/linear-regression-for-machine-learning/

https://machinelearningmastery.com

248 Statistical learning

more pronounced in the case of SVMs (Probst et al., 2018). Since (spatial)
hyperparameter tuning is the major aim of this section, we will use an SVM.
For those wishing to apply a random forest model, we recommend to read this
chapter, and then proceed to Chapter 14 in which we will apply the currently
covered concepts and techniques to make spatial predictions based on a random
forest model.
SVMs search for the best possible ‘hyperplanes’ to separate classes (in a
classification case) and estimate ‘kernels’ with specific hyperparameters to allow
for non-linear boundaries between classes (James et al., 2013). Hyperparameters
should not be confused with coefficients of parametric models, which are
sometimes also referred to as parameters.9 Coefficients can be estimated from
the data, while hyperparameters are set before the learning begins. Optimal
hyperparameters are usually determined within a defined range with the help
of cross-validation methods. This is called hyperparameter tuning.
Some SVM implementations such as that provided by kernlab allow hyperpa-
rameters to be tuned automatically, usually based on random sampling (see
upper row of Figure 11.3). This works for non-spatial data but is of less use
for spatial data where ‘spatial tuning’ should be undertaken.
Before defining spatial tuning, we will set up the mlr building blocks, intro-
duced in Section 11.5.1, for the SVM. The classification task remains the same,
hence we can simply reuse the task object created in Section 11.5.1. Learners
implementing SVM can be found using listLearners() as follows:

lrns = listLearners(task, warn.missing.packages = FALSE)

filter(lrns, grepl(”svm”, class)) %>%

dplyr::select(class, name, short.name, package)

#> class name short.name package

#> 6 classif.ksvm Support Vector Machines ksvm kernlab

#> 9 classif.lssvm Least Squares Support Vector Machine lssvm kernlab

#> 17 classif.svm Support Vector Machines (libsvm) svm e1071

Of the options illustrated above, we will use ksvm() from the kernlab package
(Karatzoglou et al., 2004). To allow for non-linear relationships, we use the
popular radial basis function (or Gaussian) kernel which is also the default of
ksvm().

lrn_ksvm = makeLearner(”classif.ksvm”,

predict.type = ”prob”,

kernel = ”rbfdot”)

9For a detailed description of the difference between coefficients and hyperparameters,
see the ‘machine mastery’ blog post on the subject.

Spatial CV with mlr 249

FIGURE 11.6: Schematic of hyperparameter tuning and performance esti-
mation levels in CV. (Figure was taken from Schratz et al. (2018). Permission
to reuse it was kindly granted.)

The next stage is to specify a resampling strategy. Again we will use a
100-repeated 5-fold spatial CV.

performance estimation level

perf_level = makeResampleDesc(method = ”SpRepCV”, folds = 5, reps = 100)

Note that this is the exact same code as used for the GLM in Section 11.5.1;
we have simply repeated it here as a reminder.
So far, the process has been identical to that described in Section 11.5.1.
The next step is new, however: to tune the hyperparameters. Using the same
data for the performance assessment and the tuning would potentially lead to
overoptimistic results (Cawley and Talbot, 2010). This can be avoided using
nested spatial CV.
This means that we split each fold again into five spatially disjoint subfolds
which are used to determine the optimal hyperparameters (tune_level object in
the code chunk below; see Figure 11.6 for a visual representation). To find the
optimal hyperparameter combination, we fit 50 models (ctrl object in the code
chunk below) in each of these subfolds with randomly selected values for the
hyperparameters C and Sigma. The random selection of values C and Sigma
is additionally restricted to a predefined tuning space (ps object). The range
of the tuning space was chosen with values recommended in the literature
(Schratz et al., 2018).

250 Statistical learning

five spatially disjoint partitions

tune_level = makeResampleDesc(”SpCV”, iters = 5)

use 50 randomly selected hyperparameters

ctrl = makeTuneControlRandom(maxit = 50)

define the outer limits of the randomly selected hyperparameters

ps = makeParamSet(

makeNumericParam(”C”, lower = -12, upper = 15, trafo = function(x) 2^x),

makeNumericParam(”sigma”, lower = -15, upper = 6, trafo = function(x) 2^x)

)

The next stage is to modify the learner lrn_ksvm in accordance with all the
characteristics defining the hyperparameter tuning with makeTuneWrapper().

wrapped_lrn_ksvm = makeTuneWrapper(learner = lrn_ksvm,

resampling = tune_level,

par.set = ps,

control = ctrl,

show.info = TRUE,

measures = mlr::auc)

The mlr is now set-up to fit 250 models to determine optimal hyperparameters
for one fold. Repeating this for each fold, we end up with 1250 (250 * 5)
models for each repetition. Repeated 100 times means fitting a total of 125,000
models to identify optimal hyperparameters (Figure 11.3). These are used in
the performance estimation, which requires the fitting of another 500 models (5
folds * 100 repetitions; see Figure 11.3). To make the performance estimation
processing chain even clearer, let us write down the commands we have given
to the computer:

1. Performance level (upper left part of Figure 11.6): split the dataset
into five spatially disjoint (outer) subfolds.

2. Tuning level (lower left part of Figure 11.6): use the first fold of
the performance level and split it again spatially into five (inner)
subfolds for the hyperparameter tuning. Use the 50 randomly selected
hyperparameters in each of these inner subfolds, i.e., fit 250 models.

3. Performance estimation: Use the best hyperparameter combination
from the previous step (tuning level) and apply it to the first outer
fold in the performance level to estimate the performance (AUROC).

4. Repeat steps 2 and 3 for the remaining four outer folds.
5. Repeat steps 2 to 4, 100 times.

The process of hyperparameter tuning and performance estimation is compu-
tationally intensive. Model runtime can be reduced with parallelization, which
can be done in a number of ways, depending on the operating system.

Spatial CV with mlr 251

Before starting the parallelization, we ensure that the processing continues
even if one of the models throws an error by setting on.learner.error to warn.
This avoids the process stopping just because of one failed model, which is
desirable on large model runs. To inspect the failed models once the processing
is completed, we dump them:

configureMlr(on.learner.error = ”warn”, on.error.dump = TRUE)

To start the parallelization, we set the mode to multicore which will use mclapply()

in the background on a single machine in the case of a Unix-based operat-
ing system.10 Equivalenty, parallelStartSocket() enables parallelization un-
der Windows. level defines the level at which to enable parallelization, with
mlr.tuneParams determining that the hyperparameter tuning level should be
parallelized (see lower left part of Figure 11.6, ?parallelGetRegisteredLevels,
and the mlr parallelization tutorial11 for details). We will use half of the
available cores (set with the cpus parameter), a setting that allows possible
other users to work on the same high performance computing cluster in case
one is used (which was the case when we ran the code). Setting mc.set.seed to
TRUE ensures that the randomly chosen hyperparameters during the tuning can
be reproduced when running the code again. Unfortunately, mc.set.seed is only
available under Unix-based systems.

library(parallelMap)

if (Sys.info()[”sysname”] %in% c(”Linux”, ”Darwin”)) {

parallelStart(mode = ”multicore”,

parallelize the hyperparameter tuning level

level = ”mlr.tuneParams”,

just use half of the available cores

cpus = round(parallel::detectCores() / 2),

mc.set.seed = TRUE)

}

if (Sys.info()[”sysname”] == ”Windows”) {

parallelStartSocket(level = ”mlr.tuneParams”,

cpus = round(parallel::detectCores() / 2))

}

Now we are set up for computing the nested spatial CV. Using a seed allows
us to recreate the exact same spatial partitions when re-running the code.
Specifying the resample() parameters follows the exact same procedure as

10See ?parallelStart for further modes and github.com/berndbischl/parallelMap for more
on the unified interface to popular parallelization back-ends.

11https://mlr-org.github.io/mlr-tutorial/release/html/parallelization/index.html#parallelization-
levels

https://mlr-org.github.io
https://mlr-org.github.io
https://www.github.com

252 Statistical learning

presented when using a GLM, the only difference being the extract argument.
This allows the extraction of the hyperparameter tuning results which is
important if we plan follow-up analyses on the tuning. After the processing,
it is good practice to explicitly stop the parallelization with parallelStop().
Finally, we save the output object (result) to disk in case we would like to use
it another R session. Before running the subsequent code, be aware that it is
time-consuming: the 125,500 models took ~1/2hr on a server using 24 cores
(see below).

set.seed(12345)

result = mlr::resample(learner = wrapped_lrn_ksvm,

task = task,

resampling = perf_level,

extract = getTuneResult,

measures = mlr::auc)

stop parallelization

parallelStop()

save your result, e.g.:

saveRDS(result, ”svm_sp_sp_rbf_50it.rds”)

In case you do not want to run the code locally, we have saved a subset of the
results12 in the book’s GitHub repo. They can be loaded as follows:

result = readRDS(”extdata/spatial_cv_result.rds”)

Note that runtime depends on many aspects: CPU speed, the selected algorithm,
the selected number of cores and the dataset.

Exploring the results

runtime in minutes

round(result$runtime / 60, 2)

#> [1] 37.4

Even more important than the runtime is the final aggregated AUROC: the
model’s ability to discriminate the two classes.

final aggregated AUROC

result$aggr

#> auc.test.mean

#> 0.758

same as

12https://github.com/Robinlovelace/geocompr/blob/master/extdata/spatial_cv_result.rds

https://github.com

Conclusions 253

mean(result$measures.test$auc)

#> [1] 0.758

It appears that the GLM (aggregated AUROC was 0.78) is slightly better than
the SVM in this specific case. However, using more than 50 iterations in the
random search would probably yield hyperparameters that result in models
with a better AUROC (Schratz et al., 2018). On the other hand, increasing
the number of random search iterations would also increase the total number
of models and thus runtime.
The estimated optimal hyperparameters for each fold at the performance
estimation level can also be viewed. The following command shows the best
hyperparameter combination of the first fold of the first iteration (recall this
results from the first 5 * 50 model runs):

winning hyperparameters of tuning step,

i.e. the best combination out of 50 * 5 models

result$extract[[1]]$x

#> $C

#> [1] 0.458

#>

#> $sigma

#> [1] 0.023

The estimated hyperparameters have been used for the first fold in the first
iteration of the performance estimation level which resulted in the following
AUROC value:

result$measures.test[1,]

#> iter auc

#> 1 1 0.799

So far spatial CV has been used to assess the ability of learning algorithms
to generalize to unseen data. For spatial predictions, one would tune the
hyperparameters on the complete dataset. This will be covered in Chapter 14.

11.6 Conclusions

Resampling methods are an important part of a data scientist’s toolbox
(James et al., 2013). This chapter used cross-validation to assess predictive
performance of various models. As described in Section 11.4, observations

254 Statistical learning

with spatial coordinates may not be statistically independent due to spatial
autocorrelation, violating a fundamental assumption of cross-validation. Spatial
CV addresses this issue by reducing bias introduced by spatial autocorrelation.
The mlr package facilitates (spatial) resampling techniques in combination
with the most popular statistical learning techniques including linear regres-
sion, semi-parametric models such as generalized additive models and machine
learning techniques such as random forests, SVMs, and boosted regression
trees (Bischl et al., 2016; Schratz et al., 2018). Machine learning algorithms
often require hyperparameter inputs, the optimal ‘tuning’ of which can re-
quire thousands of model runs which require large computational resources,
consuming much time, RAM and/or cores. mlr tackles this issue by enabling
parallelization.
Machine learning overall, and its use to understand spatial data, is a large
field and this chapter has provided the basics, but there is more to learn. We
recommend the following resources in this direction:
• The mlr tutorials on Machine Learning in R13 and Handling of spatial

Data14.
• An academic paper on hyperparameter tuning (Schratz et al., 2018).
• In case of spatio-temporal data, one should account for spatial and temporal

autocorrelation when doing CV (Meyer et al., 2018).

11.7 Exercises

1. Compute the following terrain attributes from the dem datasets
loaded with data(”landslides”, package = ”RSAGA”) with the help of
R-GIS bridges (see Chapter 9):

•Slope
•Plan curvature
•Profile curvature
•Catchment area

2. Extract the values from the corresponding output rasters to the
landslides data frame (data(landslides, package = ”RSAGA”) by adding
new variables called slope, cplan, cprof, elev and log_carea. Keep all
landslide initiation points and 175 randomly selected non-landslide
points (see Section 11.2 for details).

3. Use the derived terrain attribute rasters in combination with a GLM
to make a spatial prediction map similar to that shown in Figure

13https://mlr-org.github.io/mlr-tutorial/release/html/
14https://mlr-org.github.io/mlr-tutorial/release/html/handling_of_spatial_data/index.html

https://mlr-org.github.io
https://mlr-org.github.io

Exercises 255

11.2. Running data(”study_mask”, package = ”spDataLarge”) attaches a
mask of the study area.

4. Compute a 100-repeated 5-fold non-spatial cross-validation and
spatial CV based on the GLM learner and compare the AUROC
values from both resampling strategies with the help of boxplots
(see Figure 11.5). Hint: You need to specify a non-spatial task and a
non-spatial resampling strategy.

5. Model landslide susceptibility using a quadratic discriminant anal-
ysis (QDA, James et al., 2013). Assess the predictive performance
(AUROC) of the QDA. What is the difference between the spatially
cross-validated mean AUROC value of the QDA and the GLM?
Hint: Before running the spatial cross-validation for both learners,
set a seed to make sure that both use the same spatial partitions
which in turn guarantees comparability.

6. Run the SVM without tuning the hyperparameters. Use the rbfdot

kernel with 𝜎 = 1 and C = 1. Leaving the hyperparameters unspec-
ified in kernlab’s ksvm() would otherwise initialize an automatic
non-spatial hyperparameter tuning. For a discussion on the need
for (spatial) tuning of hyperparameters, please refer to Schratz et al.
(2018).

http://taylorandfrancis.com

Part III

Applications

http://taylorandfrancis.com

12
Transportation

Prerequisites

• This chapter uses the following packages:1

library(sf)

library(dplyr)

library(spDataLarge)

library(stplanr) # geographic transport data package

library(tmap) # visualization package (see Chapter 8)

12.1 Introduction

In few other sectors is geographic space more tangible than transport. The
effort of moving (overcoming distance) is central to the ‘first law’ of geography,
defined by Waldo Tobler in 1970 as follows (Miller, 2004):

Everything is related to everything else, but near things are more
related than distant things.

This ‘law’ is the basis for spatial autocorrelation and other key geographic
concepts. It applies to phenomena as diverse as friendship networks and
ecological diversity and can be explained by the costs of transport — in terms
of time, energy and money — which constitute the ‘friction of distance’. From

1osmdata and nabor must also be installed, although these packages do not need to be
attached.

259

260 Transportation

this perspective, transport technologies are disruptive, changing geographic
relationships between geographic entities including mobile humans and goods:
“the purpose of transportation is to overcome space” (Rodrigue et al., 2013).
Transport is an inherently geospatial activity. It involves traversing continuous
geographic space between A and B, and infinite localities in between. It is
therefore unsurprising that transport researchers have long turned to geo-
computational methods to understand movement patterns and that transport
problems are a motivator of geocomputational methods.
This chapter introduces the geographic analysis of transport systems at different
geographic levels, including:
• Areal units: transport patterns can be understood with reference to zonal

aggregates such as the main mode of travel (by car, bike or foot, for example)
and average distance of trips made by people living in a particular zone,
covered in Section 12.3.

• Desire lines: straight lines that represent ‘origin-destination’ data that
records how many people travel (or could travel) between places (points or
zones) in geographic space, the topic of Section 12.4.

• Routes: these are lines representing a path along the route network along
the desire lines defined in the previous bullet point. We will see how to create
them in Section 12.5.

• Nodes: these are points in the transport system that can represent common
origins and destinations and public transport stations such as bus stops and
rail stations, the topic of Section 12.6.

• Route networks: these represent the system of roads, paths and other linear
features in an area and are covered in Section 12.7. They can be represented
as geographic features (representing route segments) or structured as an
interconnected graph, with the level of traffic on different segments referred
to as ‘flow’ by transport modelers (Hollander, 2016).

Another key level is agents, mobile entities like you and me. These can be
represented computationally thanks to software such as MATSim2, which
captures the dynamics of transport systems using an agent-based modeling
(ABM) approach at high spatial and temporal resolution (Horni et al., 2016).
ABM is a powerful approach to transport research with great potential for
integration with R’s spatial classes (Thiele, 2014; Lovelace and Dumont, 2016),
but is outside the scope of this chapter. Beyond geographic levels and agents,
the basic unit of analysis in most transport models is the trip, a single purpose
journey from an origin ‘A’ to a destination ‘B’ (Hollander, 2016). Trips join-up
the different levels of transport systems: they are usually represented as desire
lines connecting zone centroids (nodes), they can be allocated onto the route
network as routes, and are made by people who can be represented as agents.

2http://www.matsim.org/

http://www.matsim.org

A case study of Bristol 261

Transport systems are dynamic systems adding additional complexity. The
purpose of geographic transport modeling can be interpreted as simplifying
this complexity in a way that captures the essence of transport problems.
Selecting an appropriate level of geographic analysis can help simplify this
complexity, to capture the essence of a transport system without losing its
most important features and variables (Hollander, 2016).
Typically, models are designed to solve a particular problem. For this rea-
son, this chapter is based around a policy scenario, introduced in the next
section, that asks: how to increase cycling in the city of Bristol? Chapter 13
demonstrates another application of geocomputation: prioritising the location
of new bike shops. There is a link between the chapters because bike shops may
benefit from new cycling infrastructure, demonstrating an important feature
of transport systems: they are closely linked to broader social, economic and
land-use patterns.

12.2 A case study of Bristol

The case study used for this chapter is located in Bristol, a city in the west of
England, around 30 km east of the Welsh capital Cardiff. An overview of the
region’s transport network is illustrated in Figure 12.1, which shows a diversity
of transport infrastructure, for cycling, public transport, and private motor
vehicles.
Bristol is the 10th largest city council in England, with a population of half a
million people, although its travel catchment area is larger (see Section 12.3).
It has a vibrant economy with aerospace, media, financial service and tourism
companies, alongside two major universities. Bristol shows a high average
income per capita but also contains areas of severe deprivation (Bristol City
Council, 2015).
In terms of transport, Bristol is well served by rail and road links, and has a
relatively high level of active travel. 19% of its citizens cycle and 88% walk
at least once per month according to the Active People Survey3 (the national
average is 15% and 81%, respectively). 8% of the population said they cycled
work in the 2011 census, compared with only 3% nationwide.
Despite impressive walking and cycling statistics, the city has a major conges-
tion problem. Part of the solution is to continue to increase the proportion
of trips made by cycling. Cycling has a greater potential to replace car trips
than walking because of the speed of this mode, around 3-4 times faster than

3https://www.gov.uk/government/statistical-data-sets/how-often-and-time-spent-walking-and-
cycling-at-local-authority-level-cw010#table-cw0103

https://www.gov.uk
https://www.gov.uk

262 Transportation

FIGURE 12.1: Bristol’s transport network represented by colored lines for
active (green), public (railways, black) and private motor (red) modes of travel.
Blue border lines represent the inner city boundary and the larger Travel To
Work Area (TTWA).

walking (with typical speeds4 of 15-20 km/h vs 4-6 km/h for walking). There
is an ambitious plan5 to double the share of cycling by 2020.
In this policy context, the aim of this chapter, beyond demonstrating how
geocomputation with R can be used to support sustainable transport planning,
is to provide evidence for decision-makers in Bristol to decide how best to
increase the share of walking and cycling in particular in the city. This high-level
aim will be met via the following objectives:

4https://en.wikipedia.org/wiki/Bicycle_performance
5http://www.cyclingweekly.com/news/interview-bristols-mayor-george-ferguson-24114

http://www.cyclingweekly.com
https://en.wikipedia.org

Transport zones 263

• Describe the geographical pattern of transport behavior in the city.
• Identify key public transport nodes and routes along which cycling to rail

stations could be encouraged, as the first stage in multi-model trips.
• Analyze travel ‘desire lines’, to find where many people drive short distances.
• Identify cycle route locations that will encourage less car driving and more

cycling.
To get the wheels rolling on the practical aspects of this chapter, we begin
by loading zonal data on travel patterns. These zone-level data are small but
often vital for gaining a basic understanding of a settlement’s overall transport
system.

12.3 Transport zones

Although transport systems are primarily based on linear features and nodes
— including pathways and stations — it often makes sense to start with areal
data, to break continuous space into tangible units (Hollander, 2016). In
addition to the boundary defining the study area (Bristol in this case), two
zone types are of particular interest to transport researchers: and origin and
destination zones. Often, the same geographic units are used for origins and
destinations. However, different zoning systems, such as ‘Workplace Zones6’,
may be appropriate to represent the increased density of trip destinations in
areas with many ‘trip attractors’ such as schools and shops (Office for National
Statistics, 2014).
The simplest way to define a study area is often the first matching bound-
ary returned by OpenStreetMap, which can be obtained using osmdata
with a command such as bristol_region = osmdata::getbb(”Bristol”, format_out

= ”sf_polygon”). This results in an sf object representing the bounds of the
largest matching city region, either a rectangular polygon of the bounding
box or a detailed polygonal boundary.7 For Bristol, UK, a detailed polygon
is returned, representing the official boundary of Bristol (see the inner blue
boundary in Figure 12.1) but there are a couple of issues with this approach:
• The first OSM boundary returned by OSM may not be the official boundary

used by local authorities.
• Even if OSM returns the official boundary, this may be inappropriate for

transport research because they bear little relation to where people travel.
Travel to Work Areas (TTWAs) address these issues by creating a zoning
system analogous to hydrological watersheds. TTWAs were first defined as

6https://data.gov.uk/dataset/workplace-zones-a-new-geography-for-workplace-statistics3
7In cases where the first match does not provide the right name, the country or region

should be specified, for example Bristol Tennessee for a Bristol located in America.

https://data.gov.uk

264 Transportation

contiguous zones within which 75% of the population travels to work (Coombes
et al., 1986), and this is the definition used in this chapter. Because Bristol
is a major employer attracting travel from surrounding towns, its TTWA is
substantially larger than the city bounds (see Figure 12.1). The polygon repre-
senting this transport-orientated boundary is stored in the object bristol_ttwa,
provided by the spDataLarge package loaded at the beginning of this
chapter.
The origin and destination zones used in this chapter are the same: officially
defined zones of intermediate geographic resolution (their official8 name is
Middle layer Super Output Areas or MSOAs). Each houses around 8,000 people.
Such administrative zones can provide vital context to transport analysis, such
as the type of people who might benefit most from particular interventions
(e.g., Moreno-Monroy et al., 2017).
The geographic resolution of these zones is important: small zones with high
geographic resolution are usually preferable but their high number in large
regions can have consequences for processing (especially for origin-destination
analysis in which the number of possibilities increases as a non-linear function
of the number of zones) (Hollander, 2016).

Another issue with small zones is related to anonymity rules. To make
it impossible to infer the identity of individuals in zones, detailed socio-
demographic variables are often only available at low geographic resolution.
Breakdowns of travel mode by age and sex, for example, are available at the
Local Authority level in the UK, but not at the much higher Output Area
level, each of which contains around 100 households. For further details, see
www.ons.gov.uk/methodology/geography.

The 102 zones used in this chapter are stored in bristol_zones, as illustrated
in Figure 12.2. Note the zones get smaller in densely populated areas: each
houses a similar number of people. bristol_zones contains no attribute data on
transport, however, only the name and code of each zone:

names(bristol_zones)

#> [1] ”geo_code” ”name” ”geometry”

To add travel data, we will undertake an attribute join, a common task
described in Section 3.2.3. We will use travel data from the UK’s 2011 census
question on travel to work, data stored in bristol_od, which was provided by
the ons.gov.uk9 data portal. bristol_od is an origin-destination (OD) dataset
on travel to work between zones from the UK’s 2011 Census (see Section 12.4).

8https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/
bulletins/annualsmallareapopulationestimates/2014-10-23

9https://www.ons.gov.uk/help/localstatistics

https://www.ons.gov.uk
https://www.ons.gov.uk
https://www.ons.gov.uk
http://www.ons.gov.uk

Transport zones 265

The first column is the ID of the zone of origin and the second column is the
zone of destination. bristol_od has more rows than bristol_zones, representing
travel between zones rather than the zones themselves:

nrow(bristol_od)

#> [1] 2910

nrow(bristol_zones)

#> [1] 102

The results of the previous code chunk shows that there are more than 10
OD pairs for every zone, meaning we will need to aggregate the origin-
destination data before it is joined with bristol_zones, as illustrated below
(origin-destination data is described in Section 12.4):

zones_attr = bristol_od %>%

group_by(o) %>%

summarize_if(is.numeric, sum) %>%

dplyr::rename(geo_code = o)

The preceding chunk performed three main steps:
• Grouped the data by zone of origin (contained in the column o).
• Aggregated the variables in the bristol_od dataset if they were numeric, to

find the total number of people living in each zone by mode of transport.10

• Renamed the grouping variable o so it matches the ID column geo_code in
the bristol_zones object.

The resulting object zones_attr is a data frame with rows representing zones
and an ID variable. We can verify that the IDs match those in the zones dataset
using %in% operator as follows:

summary(zones_attr$geo_code %in% bristol_zones$geo_code)

#> Mode TRUE

#> logical 102

The results show that all 102 zones are present in the new object and that
zone_attr is in a form that can be joined onto the zones.11 This is done using
the joining function left_join() (note that inner_join() would produce here the
same result):

10the _if affix requires a TRUE/FALSE question to be asked of the variables, in this case ‘is it
numeric?’ and only variables returning true are summarized.

11It would also be important to check that IDs match in the opposite direction on
real data. This could be done by reversing the order of the ID’s in the commend —
summary(bristol_zones$geo_code %in% zones_attr$geo_code) — or by using setdiff() as follows: setd-

iff(bristol_zones$geo_code, zones_attr$geo_code).

266 Transportation

zones_joined = left_join(bristol_zones, zones_attr, by = ”geo_code”)

sum(zones_joined$all)

#> [1] 238805

names(zones_joined)

#> [1] ”geo_code” ”name” ”all” ”bicycle” ”foot”

#> [6] ”car_driver” ”train” ”geometry”

The result is zones_joined, which contains new columns representing the total
number of trips originating in each zone in the study area (almost 1/4 of
a million) and their mode of travel (by bicycle, foot, car and train). The
geographic distribution of trip origins is illustrated in the left-hand map in
Figure 12.2. This shows that most zones have between 0 and 4,000 trips
originating from them in the study area. More trips are made by people living
near the center of Bristol and fewer on the outskirts. Why is this? Remember
that we are only dealing with trips within the study region: low trip numbers
in the outskirts of the region can be explained by the fact that many people in
these peripheral zones will travel to other regions outside of the study area.
Trips outside the study region can be included in regional model by a special
destination ID covering any trips that go to a zone not represented in the
model (Hollander, 2016). The data in bristol_od, however, simply ignores such
trips: it is an ‘intra-zonal’ model.
In the same way that OD datasets can be aggregated to the zone of origin,
they can also be aggregated to provide information about destination zones.
People tend to gravitate towards central places. This explains why the spatial
distribution represented in the right panel in Figure 12.2 is relatively uneven,
with the most common destination zones concentrated in Bristol city center.
The result is zones_od, which contains a new column reporting the number of
trip destinations by any mode, is created as follows:

zones_od = bristol_od %>%

group_by(d) %>%

summarize_if(is.numeric, sum) %>%

dplyr::select(geo_code = d, all_dest = all) %>%

inner_join(zones_joined, ., by = ”geo_code”)

A simplified version of Figure 12.2 is created with the code below (see 12-zones.R

in the code12 folder of the book’s GitHub repo to reproduce the figure and
Section 8.2.6 for details on faceted maps with tmap):

qtm(zones_od, c(”all”, ”all_dest”)) +

tm_layout(panel.labels = c(”Origin”, ”Destination”))

12https://github.com/Robinlovelace/geocompr/tree/master/code

https://github.com

Desire lines 267

FIGURE 12.2: Number of trips (commuters) living and working in the region.
The left map shows zone of origin of commute trips; the right map shows zone
of destination (generated by the script 12-zones.R).

12.4 Desire lines

Unlike zones, which represent trip origins and destinations, desire lines connect
the centroid of the origin and the destination zone, and thereby represent
where people desire to go between zones. They represent the quickest ‘bee line’
or ‘crow flies’ route between A and B that would be taken, if it were not for
obstacles such as buildings and windy roads getting in the way (we will see
how to convert desire lines into routes in the next section).
We have already loaded data representing desire lines in the dataset bristol_od.
This origin-destination (OD) data frame object represents the number of people
traveling between the zone represented in o and d, as illustrated in Table 12.1.
To arrange the OD data by all trips and then filter-out only the top 5, type
(please refer to Chapter 3 for a detailed description of non-spatial attribute
operations):

od_top5 = bristol_od %>%

arrange(desc(all)) %>%

top_n(5, wt = all)

The resulting table provides a snapshot of Bristolian travel patterns in terms of
commuting (travel to work). It demonstrates that walking is the most popular
mode of transport among the top 5 origin-destination pairs, that zone E02003043

268 Transportation

TABLE 12.1: Sample of the origin-destination data stored in the object
bristol od.

o d all bicycle foot car_driver train
E02003043 E02003043 1493 66 1296 64 8
E02003047 E02003043 1300 287 751 148 8
E02003031 E02003043 1221 305 600 176 7
E02003037 E02003043 1186 88 908 110 3
E02003034 E02003043 1177 281 711 100 7

is a popular destination (Bristol city center, the destination of all the top 5
OD pairs), and that the intrazonal trips, from one part of zone E02003043 to
another (first row of Table 12.1), constitute the most traveled OD pair in the
dataset. But from a policy perspective, the raw data presented in Table 12.1
is of limited use: aside from the fact that it contains only a tiny portion of
the 2,910 OD pairs, it tells us little about where policy measures are needed,
or what proportion of trips are made by walking and cycling. The following
command calculates the percentage of each desire line that is made by these
active modes:

bristol_od$Active = (bristol_od$bicycle + bristol_od$foot) /

bristol_od$all * 100

There are two main types of OD pair: interzonal and intrazonal. Interzonal
OD pairs represent travel between zones in which the destination is different
from the origin. Intrazonal OD pairs represent travel within the same zone
(see the top row of Table 12.1). The following code chunk splits od_bristol into
these two types:

od_intra = filter(bristol_od, o == d)

od_inter = filter(bristol_od, o != d)

The next step is to convert the interzonal OD pairs into an sf object repre-
senting desire lines that can be plotted on a map with the stplanr function
od2line().13

13od2line() works by matching the IDs in the first two columns of the bristol_od object to the
zone_code ID column in the geographic zones_od object. Note that the operation emits a warning
because od2line() works by allocating the start and end points of each origin-destination
pair to the centroid of its zone of origin and destination. For real-world use one would
use centroid values generated from projected data or, preferably, use population-weighted
centroids (Lovelace et al., 2017).

Desire lines 269

FIGURE 12.3: Desire lines representing trip patterns in Bristol, with width
representing number of trips and color representing the percentage of trips
made by active modes (walking and cycling). The four black lines represent
the interzonal OD pairs in Table 7.1.

desire_lines = od2line(od_inter, zones_od)

An illustration of the results is presented in Figure 12.3, a simplified version of
which is created with the following command (see the code in 12-desire.R to
reproduce the figure exactly and Chapter 8 for details on visualization with
tmap):

qtm(desire_lines, lines.lwd = ”all”)

The map shows that the city center dominates transport patterns in the region,
suggesting policies should be prioritized there, although a number of peripheral
sub-centers can also be seen. Next it would be interesting to have a look at
the distribution of interzonal modes, e.g. between which zones is cycling the
least or the most common means of transport.

270 Transportation

12.5 Routes

From a geographer’s perspective, routes are desire lines that are no longer
straight: the origin and destination points are the same, but the pathway to
get from A to B is more complex. Desire lines contain only two vertices (their
beginning and end points) but routes can contain hundreds of vertices if they
cover a large distance or represent travel patterns on an intricate road network
(routes on simple grid-based road networks require relatively few vertices).
Routes are generated from desire lines — or more commonly origin-destination
pairs — using routing services which either run locally or remotely.
Local routing can be advantageous in terms of speed of execution and con-
trol over the weighting profile for different modes of transport. Disadvantages
include the difficulty of representing complex networks locally; temporal dy-
namics (primarily due to traffic); and the need for specialized software such as
‘pgRouting’, an issue that developers of packages stplanr and dodgr seek to
address.
Remote routing services, by contrast, use a web API to send queries about
origins and destinations and return results generated on a powerful server run-
ning specialised software. This gives remote routing services various advantages,
including that they usually:
• Update regularly.
• Have global coverage.
• Run on specialist hardware and software set-up for the job.
Disadvantages of remote routing services include speed (they rely on data
transfer over the internet) and price (the Google routing API, for example,
limits the number of free queries). The googleway package provides an
interface to Google’s routing API. Free (but rate limited) routing service
include OSRM14 and openrouteservice.org15.
Instead of routing all desire lines generated in the previous section, which
would be time and memory-consuming, we will focus on the desire lines of
policy interest. The benefits of cycling trips are greatest when they replace
car trips. Clearly, not all car trips can realistically be replaced by cycling.
However, 5 km Euclidean distance (or around 6-8 km of route distance) can
realistically be cycled by many people, especially if they are riding an electric
bicycle (‘ebike’). We will therefore only route desire lines along which a high
(300+) number of car trips take place that are up to 5 km in distance. This
routing is done by the stplanr function line2route() which takes straight lines

14http://project-osrm.org/
15https://openrouteservice.org/

https://openrouteservice.org
http://project-osrm.org
http://www.openrouteservice.org

Routes 271

in Spatial or sf objects, and returns ‘bendy’ lines representing routes on the
transport network in the same class as the input.

desire_lines$distance = as.numeric(st_length(desire_lines))

desire_carshort = dplyr::filter(desire_lines, car_driver > 300 & distance < 5000)

route_carshort = line2route(desire_carshort, route_fun = route_osrm)

st_length() determines the length of a linestring, and falls into the distance
relations category (see also Section 4.2.6). Subsequently, we apply a simple
attribute filter operation (see Section 3.2.1) before letting the OSRM service
do the routing on a remote server. Note that the routing only works with a
working internet connection.
We could keep the new route_carshort object separate from the straight line
representation of the same trip in desire_carshort but, from a data management
perspective, it makes more sense to combine them: they represent the same
trip. The new route dataset contains distance (referring to route distance this
time) and duration fields (in seconds) which could be useful. However, for the
purposes of this chapter, we are only interested in the geometry, from which
route distance can be calculated. The following command makes use of the
ability of simple features objects to contain multiple geographic columns:

desire_carshort$geom_car = st_geometry(route_carshort)

This allows plotting the desire lines along which many short car journeys take
place alongside likely routes traveled by cars by referring to each geometry
column separately (desire_carshort$geometry and desire_carshort$geom_car in this
case). Making the width of the routes proportional to the number of car journeys
that could potentially be replaced provides an effective way to prioritize
interventions on the road network (Lovelace et al., 2017).
Plotting the results on an interactive map, with
mapview::mapview(desire_carshort$geom_car) for example, shows that many
short car trips take place in and around Bradley Stoke. It is easy to find
explanations for the area’s high level of car dependency: according to
Wikipedia16, Bradley Stoke is “Europe’s largest new town built with private
investment”, suggesting limited public transport provision. Furthermore, the
town is surrounded by large (cycling unfriendly) road structures, “such as
junctions on both the M4 and M5 motorways” (Tallon, 2007).
There are many benefits of converting travel desire lines into likely routes of
travel from a policy perspective, primary among them the ability to understand
what it is about the surrounding environment that makes people travel by

16https://en.wikipedia.org/wiki/Bradley_Stoke

https://en.wikipedia.org

272 Transportation

a particular mode. We discuss future directions of research building on the
routes in Section 12.9. For the purposes of this case study, suffice to say that
the roads along which these short car journeys travel should be prioritized
for investigation to understand how they can be made more conducive to
sustainable transport modes. One option would be to add new public transport
nodes to the network. Such nodes are described in the next section.

12.6 Nodes

Nodes in geographic transport data are zero-dimensional features (points)
among the predominantly one-dimensional features (lines) that comprise the
network. There are two types of transport nodes:

1. Nodes not directly on the network such as zone centroids — covered
in the next section — or individual origins and destinations such as
houses and workplaces.

2. Nodes that are a part of transport networks, representing individual
pathways, intersections between pathways (junctions) and points for
entering or exiting a transport network such as bus stops and train
stations.

Transport networks can be represented as graphs, in which each segment
is connected (via edges representing geographic lines) to one or more other
edges in the network. Nodes outside the network can be added with “centroid
connectors”, new route segments to nearby nodes on the network (Hollander,
2016).17 Every node in the network is then connected by one or more ‘edges’
that represent individual segments on the network. We will see how transport
networks can be represented as graphs in Section 12.7.
Public transport stops are particularly important nodes that can be represented
as either type of node: a bus stop that is part of a road, or a large rail station
that is represented by its pedestrian entry point hundreds of meters from
railway tracks. We will use railway stations to illustrate public transport nodes,
in relation to the research question of increasing cycling in Bristol. These
stations are provided by spDataLarge in bristol_stations.
A common barrier preventing people from switching away from cars for com-
muting to work is that the distance from home to work is too far to walk or
cycle. Public transport can reduce this barrier by providing a fast and high-
volume option for common routes into cities. From an active travel perspective,
public transport ‘legs’ of longer journeys divide trips into three:

17The location of these connectors should be chosen carefully because they can lead to
over-estimates of traffic volumes in their immediate surroundings (Jafari et al., 2015).

Nodes 273

• The origin leg, typically from residential areas to public transport stations.
• The public transport leg, which typically goes from the station nearest a

trip’s origin to the station nearest its destination.
• The destination leg, from the station of alighting to the destination.
Building on the analysis conducted in Section 12.4, public transport nodes can
be used to construct three-part desire lines for trips that can be taken by bus
and (the mode used in this example) rail. The first stage is to identify the desire
lines with most public transport travel, which in our case is easy because our
previously created dataset desire_lines already contains a variable describing
the number of trips by train (the public transport potential could also be
estimated using public transport routing services such as OpenTripPlanner18).
To make the approach easier to follow, we will select only the top three desire
lines in terms of rails use:

desire_rail = top_n(desire_lines, n = 3, wt = train)

The challenge now is to ‘break-up’ each of these lines into three pieces, repre-
senting travel via public transport nodes. This can be done by converting a
desire line into a multiline object consisting of three line geometries represent-
ing origin, public transport and destination legs of the trip. This operation can
be divided into three stages: matrix creation (of origins, destinations and the
‘via’ points representing rail stations), identification of nearest neighbors and
conversion to multilines. These are undertaken by line_via(). This stplanr
function takes input lines and points and returns a copy of the desire lines —
see the Desire Lines Extended19 vignette on the geocompr.github.io website
and ?line_via for details on how this works. The output is the same as the
input line, except it has new geometry columns representing the journey via
public transport nodes, as demonstrated below:

ncol(desire_rail)

#> [1] 10

desire_rail = line_via(desire_rail, bristol_stations)

ncol(desire_rail)

#> [1] 13

As illustrated in Figure 12.4, the initial desire_rail lines now have three
additional geometry list columns representing travel from home to the origin
station, from there to the destination, and finally from the destination station
to the destination. In this case, the destination leg is very short (walking
distance) but the origin legs may be sufficiently far to justify investment in
cycling infrastructure to encourage people to cycle to the stations on the

18http://www.opentripplanner.org/
19https://geocompr.github.io/geocompkg/articles/linevia.html

https://geocompr.github.io
http://www.opentripplanner.org

274 Transportation

FIGURE 12.4: Station nodes (red dots) used as intermediary points that
convert straight desire lines with high rail usage (black) into three legs: to the
origin station (red) via public transport (gray) and to the destination (a very
short blue line).

outward leg of peoples’ journey to work in the residential areas surrounding
the three origin stations in Figure 12.4.

12.7 Route networks

The data used in this section was downloaded using osmdata. To avoid having
to request the data from OSM repeatedly, we will use the bristol_ways object,
which contains point and line data for the case study area (see ?bristol_ways):

summary(bristol_ways)

#> highway maxspeed ref geometry

#> cycleway:1317 30 mph : 925 A38 : 214 LINESTRING :4915

#> rail : 832 20 mph : 556 A432 : 146 epsg:4326 : 0

#> road :2766 40 mph : 397 M5 : 144 +proj=long...: 0

#> 70 mph : 328 A4018 : 124

#> 50 mph : 158 A420 : 115

#> (Other): 490 (Other):1877

#> NA’s :2061 NA’s :2295

The above code chunk loaded a simple feature object representing around 3,000
segments on the transport network. This an easily manageable dataset size
(transport datasets can be large, but it’s best to start small).
As mentioned, route networks can usefully be represented as mathematical
graphs, with nodes on the network connected by edges. A number of R packages
have been developed for dealing with such graphs, notably igraph. One can

Prioritizing new infrastructure 275

manually convert a route network into an igraph object, but the geographic
attributes will be lost. To overcome this issue SpatialLinesNetwork() was devel-
oped in the stplanr package to represent route networks simultaneously as
graphs and a set of geographic lines. This function is demonstrated below
using a subset of the bristol_ways object used in previous sections.

ways_freeway = bristol_ways %>% filter(maxspeed == ”70 mph”)

ways_sln = SpatialLinesNetwork(ways_freeway)

slotNames(ways_sln)

#> [1] ”sl” ”g” ”nb” ”weightfield”

weightfield(ways_sln)

#> [1] ”length”

class(ways_sln@g)

#> [1] ”igraph”

The output of the previous code chunk shows that ways_sln is a composite
object with various ‘slots’. These include: the spatial component of the network
(named sl), the graph component (g) and the ‘weightfield’, the edge variable
used for shortest path calculation (by default segment distance). ways_sln

is of class sfNetwork, defined by the S4 class system. This means that each
component can be accessed using the @ operator, which is used below to
extract its graph component and process it using the igraph package, before
plotting the results in geographic space. In the example below, the ‘edge
betweenness’, meaning the number of shortest paths passing through each
edge, is calculated (see ?igraph::betweenness for further details and Figure
12.5). The results demonstrate that each graph edge represents a segment: the
segments near the center of the road network have the greatest betweenness
scores.

g = ways_sln@g

e = igraph::edge_betweenness(ways_sln@g)

plot(ways_sln@sl$geometry, lwd = e / 500)

One can also find the shortest route between origins and destinations using this
graph representation of the route network. This can be done with functions
such as sum_network_routes() from stplanr, which undertakes ‘local routing’
(see Section 12.5).

12.8 Prioritizing new infrastructure

This chapter’s final practical section demonstrates the policy-relevance of
geocomputation for transport applications by identifying locations where new

276 Transportation

FIGURE 12.5: Illustration of a small route network, with segment thick-
ness proportional to its betweenless, generated using the igraph package and
described in the text.

transport infrastructure may be needed. Clearly, the types of analysis presented
here would need to be extended and complemented by other methods to be
used in real-world applications, as discussed in Section 12.9. However, each
stage could be useful on its own, and feed into wider analyses. To summarize,
these were: identifying short but car-dependent commuting routes (generated
from desire lines) in Section 12.5; creating desire lines representing trips to
rail stations in Section 12.6; and analysis of transport systems at the route
network using graph theory in Section 12.7.
The final code chunk of this chapter combines these strands of analysis. It
adds the car-dependent routes in route_carshort with a newly created object,
route_rail and creates a new column representing the amount of travel along
the centroid-to-centroid desire lines they represent:

route_rail = desire_rail %>%

st_set_geometry(”leg_orig”) %>%

line2route(route_fun = route_osrm) %>%

st_set_crs(4326)

route_cycleway = rbind(route_rail, route_carshort)

route_cycleway$all = c(desire_rail$all, desire_carshort$all)

The results of the preceding code are visualized in Figure 12.6, which shows
routes with high levels of car dependency and highlights opportunities for
cycling rail stations (the subsequent code chunk creates a simple version of the

Future directions of travel 277

FIGURE 12.6: Potential routes along which to prioritise cycle infrastructure
in Bristol, based on access key rail stations (red dots) and routes with many
short car journeys (north of Bristol surrounding Stoke Bradley). Line thickness
is proportional to number of trips.

figure — see code/12-cycleways.R to reproduce the figure exactly). The method
has some limitations: in reality, people do not travel to zone centroids or
always use the shortest route algorithm for a particular mode. However, the
results demonstrate routes along which cycle paths could be prioritized from
car dependency and public transport perspectives.

qtm(route_cycleway, lines.lwd = ”all”)

The results may look more attractive in an interactive map, but what do they
mean? The routes highlighted in Figure 12.6 suggest that transport systems
are intimately linked to the wider economic and social context. The example of
Stoke Bradley is a case in point: its location, lack of public transport services
and active travel infrastructure help explain why it is so highly car-dependent.
The wider point is that car dependency has a spatial distribution which has
implications for sustainable transport policies (Hickman et al., 2011).

12.9 Future directions of travel

This chapter provides a taste of the possibilities of using geocomputation for
transport research. It has explored some key geographic elements that make-up

278 Transportation

a city’s transport system using open data and reproducible code. The results
could help plan where investment is needed.
Transport systems operate at multiple interacting levels, meaning that geo-
computational methods have great potential to generate insights into how they
work. There is much more that could be done in this area: it would be possi-
ble to build on the foundations presented in this chapter in many directions.
Transport is the fastest growing source of greenhouse gas emissions in many
countries, and is set to become “the largest GHG emitting sector, especially in
developed countries” (see EURACTIV.com20). Because of the highly unequal
distribution of transport-related emissions across society, and the fact that
transport (unlike food and heating) is not essential for well-being, there is
great potential for the sector to rapidly decarbonize through demand reduction,
electrification of the vehicle fleet and the uptake of active travel modes such
as walking and cycling. Further exploration of such ‘transport futures’ at
the local level represents promising direction of travel for transport-related
geocomputational research.
Methodologically, the foundations presented in this chapter could be extended
by including more variables in the analysis. Characteristics of the route such
as speed limits, busyness and the provision of protected cycling and walking
paths could be linked to ‘mode-split’ (the proportion of trips made by different
modes of transport). By aggregating OpenStreetMap data using buffers and
geographic data methods presented in Chapters 3 and 4, for example, it would
be possible to detect the presence of green space in close proximity to transport
routes. Using R’s statistical modeling capabilities, this could then be used to
predict current and future levels of cycling, for example.
This type of analysis underlies the Propensity to Cycle Tool (PCT), a publicly
accessible (see www.pct.bike21) mapping tool developed in R that is being
used to prioritize investment in cycling across England (Lovelace et al., 2017).
Similar tools could be used to encourage evidence-based transport policies
related to other topics such as air pollution and public transport access around
the world.

12.10 Exercises

1. What is the total distance of cycleways that would be constructed
if all the routes presented in Figure 12.6 were to be constructed?

•Bonus: find two ways of arriving at the same answer.

20https://www.euractiv.com/section/agriculture-food/opinion/transport-needs-to-do-a-lot-more-to-
fight-climate-change/

21http://www.pct.bike/

http://www.pct.bike
https://www.euractiv.com
https://www.euractiv.com
http://www.pct.bike
http://www.EURACTIV.com

Exercises 279

2. What proportion of trips represented in the desire_lines are ac-
counted for in the route_cycleway object?

•Bonus: what proportion of trips cross the proposed routes?
•Advanced: write code that would increase this proportion.

3. The analysis presented in this chapter is designed for teaching how
geocomputation methods can be applied to transport research. If
you were to do this ‘for real’ for local government or a transport
consultancy, what top 3 things would you do differently?

4. Clearly, the routes identified in Figure 12.6 only provide part of the
picture. How would you extend the analysis to incorporate more
trips that could potentially be cycled?

5. Imagine that you want to extend the scenario by creating key areas
(not routes) for investment in place-based cycling policies such as
car-free zones, cycle parking points and reduced car parking strategy.
How could raster data assist with this work?

•Bonus: develop a raster layer that divides the Bristol region into
100 cells (10 by 10) and provide a metric related to transport
policy, such as number of people trips that pass through each
cell by walking or the average speed limit of roads, from the
bristol_ways dataset (the approach taken in Chapter 13).

http://taylorandfrancis.com

13
Geomarketing

Prerequisites

• This chapter requires the following packages (revgeo must also be installed):

library(sf)

library(dplyr)

library(purrr)

library(raster)

library(osmdata)

library(spDataLarge)

• Required data will be downloaded in due course. As a convenience to the
reader and to ensure easy reproducibility, we have made available the down-
loaded data in the spDataLarge package.

13.1 Introduction

This chapter demonstrates how the skills learned in Parts I and II can be
applied to a particular domain: geomarketing (sometimes also referred to as
location analysis or location intelligence). This is a broad field of research
and commercial application. A typical example is where to locate a new shop.
The aim here is to attract most visitors and, ultimately, make the most profit.
There are also many non-commercial applications that can use the technique
for public benefit, for example where to locate new health services (Tomintz
et al., 2008).
People are fundamental to location analysis, in particular where they are likely
to spend their time and other resources. Interestingly, ecological concepts and
models are quite similar to those used for store location analysis. Animals
and plants can best meet their needs in certain ‘optimal’ locations, based on
variables that change over space [Muenchow et al. (2018); see also chapter 14].

281

282 Geomarketing

This is one of the great strengths of geocomputation and GIScience in general.
Concepts and methods are transferable to other fields. Polar bears, for example,
prefer northern latitudes where temperatures are lower and food (seals and
sea lions) is plentiful. Similarly, humans tend to congregate in certain places,
creating economic niches (and high land prices) analogous to the ecological
niche of the Arctic. The main task of location analysis is to find out where such
‘optimal locations’ are for specific services, based on available data. Typical
research questions include:
• Where do target groups live and which areas do they frequent?
• Where are competing stores or services located?
• How many people can easily reach specific stores?
• Do existing services over- or under-exploit the market potential?
• What is the market share of a company in a specific area?
This chapter demonstrates how geocomputation can answer such questions
based on a hypothetical case study based on real data.

13.2 Case study: bike shops in Germany

Imagine you are starting a chain of bike shops in Germany. The stores should
be placed in urban areas with as many potential customers as possible. Addi-
tionally, a hypothetical survey (invented for this chapter, not for commercial
use!) suggests that single young males (aged 20 to 40) are most likely to buy
your products: this is the target audience. You are in the lucky position to
have sufficient capital to open a number of shops. But where should they
be placed? Consulting companies (employing geomarketing analysts) would
happily charge high rates to answer such questions. Luckily, we can do so
ourselves with the help of open data and open source software. The following
sections will demonstrate how the techniques learned during the first chapters
of the book can be applied to undertake the following steps:
• Tidy the input data from the German census (Section 13.3).
• Convert the tabulated census data into raster objects (Section 13.4).
• Identify metropolitan areas with high population densities (Section 13.5).
• Download detailed geographic data (from OpenStreetMap, with osmdata)

for these areas (Section 13.6).
• Create rasters for scoring the relative desirability of different locations using

map algebra (Section 13.7).
Although we have applied these steps to a specific case study, they could be
generalized to many scenarios of store location or public service provision.

Tidy the input data 283

13.3 Tidy the input data

The German government provides gridded census data at either 1 km or 100
m resolution. The following code chunk downloads, unzips and reads in the 1
km data.

download.file(”https://tinyurl.com/ybtpkwxz”,

destfile = ”census.zip”, mode = ”wb”)

unzip(”census.zip”) # unzip the files

census_de = readr::read_csv2(list.files(pattern = ”Gitter.csv”))

As a convenience to the reader, the corresponding data has been put into
spDataLarge and can be accessed as follows

data(”census_de”, package = ”spDataLarge”)

The census_de object is a data frame containing 13 variables for more than
300,000 grid cells across Germany. For our work, we only need a subset of these:
Easting (x) and Northing (y), number of inhabitants (population; pop), mean
average age (mean_age), proportion of women (women) and average household size
(hh_size). These variables are selected and renamed from German into English
in the code chunk below and summarized in Table 13.1. Further, mutate_all()
is used to convert values -1 and -9 (meaning unknown) to NA.

pop = population, hh_size = household size

input = dplyr::select(census_de, x = x_mp_1km, y = y_mp_1km, pop = Einwohner,

women = Frauen_A, mean_age = Alter_D,

hh_size = HHGroesse_D)

set -1 and -9 to NA

input_tidy = mutate_all(input, list(~ifelse(. %in% c(-1, -9), NA, .)))

13.4 Create census rasters

After the preprocessing, the data can be converted into a raster stack or
brick (see Sections 2.3.3 and 3.3.1). rasterFromXYZ() makes this really easy. It
requires an input data frame where the first two columns represent coordi-
nates on a regular grid. All the remaining columns (here: pop, women, mean_age,
hh_size) will serve as input for the raster brick layers (Figure 13.1; see also
code/13-location-jm.R in our github repository).

https://tinyurl.com

284 Geomarketing

TABLE 13.1: Categories for each variable in census data from Daten-
satzbeschreibung...xlsx located in the downloaded file census.zip (see Figure
13.1 for their spatial distribution).

class Population % female Mean age Household size
1 3-250 0-40 0-40 1-2
2 250-500 40-47 40-42 2-2.5
3 500-2000 47-53 42-44 2.5-3
4 2000-4000 53-60 44-47 3-3.5
5 4000-8000 >60 >47 >3.5
6 >8000

input_ras = rasterFromXYZ(input_tidy, crs = st_crs(3035)$proj4string)

input_ras

#> class : RasterBrick

#> dimensions : 868, 642, 557256, 4 (nrow, ncol, ncell, nlayers)

#> resolution : 1000, 1000 (x, y)

#> extent : 4031000, 4673000, 2684000, 3552000 (xmin, xmax, ymin, ymax)

#> coord. ref. : +proj=laea +lat_0=52 +lon_0=10

#> names : pop, women, mean_age, hh_size

#> min values : 1, 1, 1, 1

#> max values : 6, 5, 5, 5

Note that we are using an equal-area projection (EPSG:3035; Lambert Equal
Area Europe), i.e., a projected CRS where each grid cell has the same area,
here 1000 x 1000 square meters. Since we are using mainly densities such
as the number of inhabitants or the portion of women per grid cell, it is
of utmost importance that the area of each grid cell is the same to avoid
‘comparing apples and oranges’. Be careful with geographic CRS where grid
cell areas constantly decrease in poleward directions (see also Section 2.4
and Chapter 6).

The next stage is to reclassify the values of the rasters stored in input_ras

in accordance with the survey mentioned in Section 13.2, using the raster
function reclassify(), which was introduced in Section 4.3.3. In the case of the
population data, we convert the classes into a numeric data type using class
means. Raster cells are assumed to have a population of 127 if they have a
value of 1 (cells in ‘class 1’ contain between 3 and 250 inhabitants) and 375 if
they have a value of 2 (containing 250 to 500 inhabitants), and so on (see Table

Create census rasters 285

FIGURE 13.1: Gridded German census data of 2011 (see Table 13.1 for a
description of the classes).

13.1). A cell value of 8000 inhabitants was chosen for ‘class 6’ because these
cells contain more than 8000 people. Of course, these are approximations of the
true population, not precise values.1 However, the level of detail is sufficient
to delineate metropolitan areas (see next section).
In contrast to the pop variable, representing absolute estimates of the total
population, the remaining variables were re-classified as weights corresponding
with weights used in the survey. Class 1 in the variable women, for instance,
represents areas in which 0 to 40% of the population is female; these are reclas-
sified with a comparatively high weight of 3 because the target demographic is
predominantly male. Similarly, the classes containing the youngest people and
highest proportion of single households are reclassified to have high weights.

rcl_pop = matrix(c(1, 1, 127, 2, 2, 375, 3, 3, 1250,

4, 4, 3000, 5, 5, 6000, 6, 6, 8000),

ncol = 3, byrow = TRUE)

rcl_women = matrix(c(1, 1, 3, 2, 2, 2, 3, 3, 1, 4, 5, 0),

ncol = 3, byrow = TRUE)

rcl_age = matrix(c(1, 1, 3, 2, 2, 0, 3, 5, 0),

ncol = 3, byrow = TRUE)

1The potential error introduced during this reclassification stage will be explored in the
exercises.

286 Geomarketing

rcl_hh = rcl_women

rcl = list(rcl_pop, rcl_women, rcl_age, rcl_hh)

Note that we have made sure that the order of the reclassification matrices
in the list is the same as for the elements of input_ras. For instance, the first
element corresponds in both cases to the population. Subsequently, the for-loop
applies the reclassification matrix to the corresponding raster layer. Finally,
the code chunk below ensures the reclass layers have the same name as the
layers of input_ras.

reclass = input_ras

for (i in seq_len(nlayers(reclass))) {

reclass[[i]] = reclassify(x = reclass[[i]], rcl = rcl[[i]], right = NA)

}

names(reclass) = names(input_ras)

reclass

#> ... (full output not shown)

#> names : pop, women, mean_age, hh_size

#> min values : 127, 0, 0, 0

#> max values : 8000, 3, 3, 3

13.5 Define metropolitan areas

We define metropolitan areas as pixels of 20 km2 inhabited by more than
500,000 people. Pixels at this coarse resolution can rapidly be created using
aggregate(), as introduced in Section 5.3.3. The command below uses the
argument fact = 20 to reduce the resolution of the result twenty-fold (recall
the original raster resolution was 1 km2):

pop_agg = aggregate(reclass$pop, fact = 20, fun = sum)

The next stage is to keep only cells with more than half a million people.

pop_agg = pop_agg[pop_agg > 500000, drop = FALSE]

Plotting this reveals eight metropolitan regions (Figure 13.2). Each region
consists of one or more raster cells. It would be nice if we could join all
cells belonging to one region. raster’s clump() command does exactly that.

Define metropolitan areas 287

Subsequently, rasterToPolygons() converts the raster object into spatial polygons,
and st_as_sf() converts it into an sf-object.

polys = pop_agg %>%

clump() %>%

rasterToPolygons() %>%

st_as_sf()

polys now features a column named clumps which indicates to which metropoli-
tan region each polygon belongs and which we will use to dissolve the polygons
into coherent single regions (see also Section 5.2.6):

metros = polys %>%

group_by(clumps) %>%

summarize()

Given no other column as input, summarize() only dissolves the geometry.
The resulting eight metropolitan areas suitable for bike shops (Figure 13.2;
see also code/13-location-jm.R for creating the figure) are still missing a name.
A reverse geocoding approach can settle this problem. Given a coordinate,
reverse geocoding finds the corresponding address. Consequently, extracting
the centroid coordinate of each metropolitan area can serve as an input for
a reverse A API. The revgeo package provides access to the open source
Photon geocoder for OpenStreetMap, Google Maps and Bing. By default, it
uses the Photon API. revgeo::revgeo() only accepts geographical coordinates
(latitude/longitude); therefore, the first requirement is to bring the metropolitan
polygons into an appropriate coordinate reference system (Chapter 6).

metros_wgs = st_transform(metros, 4326)

coords = st_centroid(metros_wgs) %>%

st_coordinates() %>%

round(4)

Choosing frame as revgeocode()’s output option will give back a data.frame with
several columns referring to the location including the street name, house
number and city.

library(revgeo)

metro_names = revgeo(longitude = coords[, 1], latitude = coords[, 2],

output = ”frame”)

To make sure that the reader uses the exact same results, we have put them
into spDataLarge:

288 Geomarketing

FIGURE 13.2: The aggregated population raster (resolution: 20 km) with
the identified metropolitan areas (golden polygons) and the corresponding
names.

attach metro_names from spDataLarge

data(”metro_names”, package = ”spDataLarge”)

Overall, we are satisfied with the city column serving as metropolitan names
(Table 13.2) apart from one exception, namely Wülfrath which belongs to
the greater region of Düsseldorf. Hence, we replace Wülfrath with Düsseldorf
(Figure 13.2). Umlauts like ü might lead to trouble further on, for example
when determining the bounding box of a metropolitan area with opq() (see
further below), which is why we avoid them.

metro_names = dplyr::pull(metro_names, city) %>%

as.character() %>%

ifelse(. == ”Wülfrath”, ”Duesseldorf”, .)

Points of interest 289

TABLE 13.2: Result of the reverse geocoding.

city state
Hamburg Hamburg
Berlin Berlin
Wülfrath North Rhine-Westphalia
Leipzig Saxony
Frankfurt am Main Hesse
Nuremberg Bavaria
Stuttgart Baden-Württemberg
Munich Bavaria

13.6 Points of interest

The osmdata package provides easy-to-use access to OSM data (see also
Section 7.2). Instead of downloading shops for the whole of Germany, we
restrict the query to the defined metropolitan areas, reducing computational
load and providing shop locations only in areas of interest. The subsequent
code chunk does this using a number of functions including:
• map() (the tidyverse equivalent of lapply()), which iterates through all eight

metropolitan names which subsequently define the bounding box in the OSM
query function opq() (see Section 7.2).

• add_osm_feature() to specify OSM elements with a key value of shop (see
wiki.openstreetmap.org2 for a list of common key:value pairs).

• osmdata_sf(), which converts the OSM data into spatial objects (of class sf).
• while(), which tries repeatedly (three times in this case) to download the

data if it fails the first time.3 Before running this code: please consider it will
download almost 2GB of data. To save time and resources, we have output
into spDataLarge and should already be available in your environment as
an object called shops.

shops = map(metro_names, function(x) {

message(”Downloading shops of: ”, x, ”\n”)

give the server a bit time

Sys.sleep(sample(seq(5, 10, 0.1), 1))

query = opq(x) %>%

add_osm_feature(key = ”shop”)

2http://wiki.openstreetmap.org/wiki/Map_Features
3The OSM-download will sometimes fail at the first attempt.

http://wiki.openstreetmap.org
http://www.wiki.openstreetmap.org

290 Geomarketing

points = osmdata_sf(query)

request the same data again if nothing has been downloaded

iter = 2

while (nrow(points$osm_points) == 0 & iter > 0) {

points = osmdata_sf(query)

iter = iter - 1

}

points = st_set_crs(points$osm_points, 4326)

})

It is highly unlikely that there are no shops in any of our defined metropolitan
areas. The following if condition simply checks if there is at least one shop for
each region. If not, we would try to download the shops again for this/these
specific region/s.

checking if we have downloaded shops for each metropolitan area

ind = map(shops, nrow) == 0

if (any(ind)) {

message(”There are/is still (a) metropolitan area/s without any features:\n”,

paste(metro_names[ind], collapse = ”, ”), ”\nPlease fix it!”)

}

To make sure that each list element (an sf data frame) comes with the same
columns, we only keep the osm_id and the shop columns with the help of another
map loop. This is not a given since OSM contributors are not equally meticulous
when collecting data. Finally, we rbind all shops into one large sf object.

select only specific columns

shops = map(shops, dplyr::select, osm_id, shop)

putting all list elements into a single data frame

shops = do.call(rbind, shops)

It would have been easier to simply use map_dfr(). Unfortunately, so far it does
not work in harmony with sf objects. Please note that the shops object is also
available in the spDataLarge package:

data(”shops”, package = ”spDataLarge”)

The only thing left to do is to convert the spatial point object into a raster (see
Section 5.4.3). The sf object, shops, is converted into a raster having the same
parameters (dimensions, resolution, CRS) as the reclass object. Importantly,
the count() function is used here to calculate the number of shops in each cell.

Identifying suitable locations 291

If the shop column were used instead of the osm_id column, we would have
retrieved fewer shops per grid cell. This is because the shop column contains
NA values, which the count() function omits when rasterizing vector objects.

The result of the subsequent code chunk is therefore an estimate of shop density
(shops/km2). st_transform() is used before rasterize() to ensure the CRS of
both inputs match.

shops = st_transform(shops, proj4string(reclass))

create poi raster

poi = rasterize(x = shops, y = reclass, field = ”osm_id”, fun = ”count”)

As with the other raster layers (population, women, mean age, household size)
the poi raster is reclassified into four classes (see Section 13.4). Defining class
intervals is an arbitrary undertaking to a certain degree. One can use equal
breaks, quantile breaks, fixed values or others. Here, we choose the Fisher-Jenks
natural breaks approach which minimizes within-class variance, the result of
which provides an input for the reclassification matrix.

construct reclassification matrix

int = classInt::classIntervals(values(poi), n = 4, style = ”fisher”)

int = round(int$brks)

rcl_poi = matrix(c(int[1], rep(int[-c(1, length(int))], each = 2),

int[length(int)] + 1), ncol = 2, byrow = TRUE)

rcl_poi = cbind(rcl_poi, 0:3)

reclassify

poi = reclassify(poi, rcl = rcl_poi, right = NA)

names(poi) = ”poi”

13.7 Identifying suitable locations

The only steps that remain before combining all the layers are to add POI
and delete the population from poi to the reclass raster stack and remove the
population layer from it.. The reasoning for the latter is twofold. First of all, we
have already delineated metropolitan areas, that is areas where the population
density is above average compared to the rest of Germany. Second, though it
is advantageous to have many potential customers within a specific catchment
area, the sheer number alone might not actually represent the desired target
group. For instance, residential tower blocks are areas with a high population
density but not necessarily with a high purchasing power for expensive cycle

292 Geomarketing

FIGURE 13.3: Suitable areas (i.e., raster cells with a score > 9) in accordance
with our hypothetical survey for bike stores in Berlin.

components. This is achieved with the complementary functions addLayer() and
dropLayer():

add poi raster

reclass = addLayer(reclass, poi)

delete population raster

reclass = dropLayer(reclass, ”pop”)

In common with other data science projects, data retrieval and ‘tidying’ have
consumed much of the overall workload so far. With clean data, the final step
— calculating a final score by summing all raster layers — can be accomplished
in a single line of code.

calculate the total score

result = sum(reclass)

For instance, a score greater than 9 might be a suitable threshold indicat-
ing raster cells where a bike shop could be placed (Figure 13.3; see also
code/13-location-jm.R).

Discussion and next steps 293

13.8 Discussion and next steps

The presented approach is a typical example of the normative usage of a
GIS (Longley, 2015). We combined survey data with expert-based knowledge
and assumptions (definition of metropolitan areas, defining class intervals,
definition of a final score threshold). It should be clear that this approach is
not suitable for scientific knowledge advancement but is a very applied way of
information extraction. This is to say, we can only suspect based on common
sense that we have identified areas suitable for bike shops. However, we have
no proof that this is in fact the case.
A few other things remained unconsidered but might improve the analysis:
• We used equal weights when calculating the final scores. But is, for example,

the household size as important as the portion of women or the mean age?
• We used all points of interest. Maybe it would be wiser to use only those

which might be interesting for bike shops such as do-it-yourself, hardware,
bicycle, fishing, hunting, motorcycles, outdoor and sports shops (see the
range of shop values available on the OSM Wiki4).

• Data at a better resolution may change and improve the output. For example,
there is also population data at a finer resolution (100 m; see exercises).

• We have used only a limited set of variables. For example, the INSPIRE
geoportal5 might contain much more data of possible interest to our analysis
(see also Section 7.2). The bike paths density might be another interesting
variable as well as the purchasing power or even better the retail purchasing
power for bikes.

• Interactions remained unconsidered, such as a possible interaction between
the portion of men and single households. However, to find out about such
an interaction we would need customer data.

In short, the presented analysis is far from perfect. Nevertheless, it should
have given you a first impression and understanding of how to obtain and deal
with spatial data in R within a geomarketing context.
Finally, we have to point out that the presented analysis would be merely the
first step of finding suitable locations. So far we have identified areas, 1 by 1
km in size, potentially suitable for a bike shop in accordance with our survey.
We could continue the analysis as follows:
• Find an optimal location based on number of inhabitants within a specific

catchment area. For example, the shop should be reachable for as many
people as possible within 15 minutes of traveling bike distance (catchment
area routing). Thereby, we should account for the fact that the further away

4http://wiki.openstreetmap.org/wiki/Map_Features#Shop
5http://inspire-geoportal.ec.europa.eu/discovery/

http://inspire-geoportal.ec.europa.eu
http://wiki.openstreetmap.org

294 Geomarketing

the people are from the shop, the more unlikely it becomes that they actually
visit it (distance decay function).

• Also it would be a good idea to take into account competitors. That is, if
there already is a bike shop in the vicinity of the chosen location, one has to
distribute possible customers (or sales potential) between the competitors
(Huff, 1963; Wieland, 2017).

• We need to find suitable and affordable real estate, e.g., in terms of accessi-
bility, availability of parking spots, desired frequency of passers-by, having
big windows, etc.

13.9 Exercises

1. We have used raster::rasterFromXYZ() to convert a input_tidy into a
raster brick. Try to achieve the same with the help of the sp::gridded()

function.
2. Download the csv file containing inhabitant information for a

100-m cell resolution (https://www.zensus2011.de/SharedDocs/Downloads/
DE/Pressemitteilung/DemografischeGrunddaten/csv_Bevoelkerung_100m_

Gitter.zip?__blob=publicationFile&v=3). Please note that the un-
zipped file has a size of 1.23 GB. To read it into R, you can use
readr::read_csv. This takes 30 seconds on my machine (16 GB RAM)
data.table::fread() might be even faster, and returns an object of
class data.table(). Use as.tibble() to convert it into a tibble. Build
an inhabitant raster, aggregate it to a cell resolution of 1 km, and
compare the difference with the inhabitant raster (inh) we have
created using class mean values.

3. Suppose our bike shop predominantly sold electric bikes to older
people. Change the age raster accordingly, repeat the remaining
analyses and compare the changes with our original result.

https://www.zensus2011.de
https://www.zensus2011.de
https://www.zensus2011.de

14
Ecology

Prerequisites

This chapter assumes you have a strong grasp of geographic data analysis
and processing, covered in Chapters 2 to 5. In it you will also make use of
R’s interfaces to dedicated GIS software, and spatial cross-validation, topics
covered in Chapters 9 and 11, respectively.
The chapter uses the following packages:

library(sf)

library(raster)

library(RQGIS)

library(mlr)

library(dplyr)

library(vegan)

14.1 Introduction

In this chapter we will model the floristic gradient of fog oases to reveal
distinctive vegetation belts that are clearly controlled by water availability. To
do so, we will bring together concepts presented in previous chapters and even
extend them (Chapters 2 to 5 and Chapters 9 and 11).
Fog oases are one of the most fascinating vegetation formations we have ever
encountered. These formations, locally termed lomas, develop on mountains
along the coastal deserts of Peru and Chile.1 The deserts’ extreme conditions
and remoteness provide the habitat for a unique ecosystem, including species
endemic to the fog oases. Despite the arid conditions and low levels of pre-
cipitation of around 30-50 mm per year on average, fog deposition increases

1Similar vegetation formations develop also in other parts of the world, e.g., in Namibia
and along the coasts of Yemen and Oman (Galletti et al., 2016).

295

296 Ecology

FIGURE 14.1: The Mt. Mongón study area, from Muenchow, Schratz, and
Brenning (2017).

the amount of water available to plants during austal winter. This results in
green southern-facing mountain slopes along the coastal strip of Peru (Figure
14.1). This fog, which develops below the temperature inversion caused by the
cold Humboldt current in austral winter, provides the name for this habitat.
Every few years, the El Niño phenomenon brings torrential rainfall to this
sun-baked environment (Dillon et al., 2003). This causes the desert to bloom,
and provides tree seedlings a chance to develop roots long enough to survive
the following arid conditions.
Unfortunately, fog oases are heavily endangered. This is mostly due to hu-
man activity (agriculture and climate change). To effectively protect the last
remnants of this unique vegetation ecosystem, evidence is needed on the com-
position and spatial distribution of the native flora (Muenchow et al., 2013a,b).
Lomas mountains also have economic value as a tourist destination, and can
contribute to the well-being of local people via recreation. For example, most
Peruvians live in the coastal desert, and lomas mountains are frequently the
closest “green” destination.
In this chapter we will demonstrate ecological applications of some of the
techniques learned in the previous chapters. This case study will involve
analyzing the composition and the spatial distribution of the vascular plants
on the southern slope of Mt. Mongón, a lomas mountain near Casma on the
central northern coast of Peru (Figure 14.1).

Data and data preparation 297

During a field study to Mt. Mongón, we recorded all vascular plants living in
100 randomly sampled 4x4 m2 plots in the austral winter of 2011 (Muenchow
et al., 2013a). The sampling coincided with a strong La Niña event that year
(see ENSO monitoring of the NOASS Climate Prediction Center2). This led
to even higher levels of aridity than usual in the coastal desert. On the other
hand, it also increased fog activity on the southern slopes of Peruvian lomas
mountains.
Ordinations are dimension-reducing techniques which allow the extraction of
the main gradients from a (noisy) dataset, in our case the floristic gradient
developing along the southern mountain slope (see next section). In this
chapter we will model the first ordination axis, i.e., the floristic gradient, as a
function of environmental predictors such as altitude, slope, catchment area
and NDVI. For this, we will make use of a random forest model - a very popular
machine learning algorithm (Breiman, 2001). The model will allow us to make
spatial predictions of the floristic composition anywhere in the study area.
To guarantee an optimal prediction, it is advisable to tune beforehand the
hyperparameters with the help of spatial cross-validation (see Section 11.5.2).

14.2 Data and data preparation

All the data needed for the subsequent analyses is available via the RQGIS
package.

data(”study_area”, ”random_points”, ”comm”, ”dem”, ”ndvi”, package = ”RQGIS”)

study_area is an sf polygon representing the outlines of the study area.
random_points is an sf object, and contains the 100 randomly chosen sites.
comm is a community matrix of the wide data format (Wickham, 2014b) where
the rows represent the visited sites in the field and the columns the observed
species.3

sites 35 to 40 and corresponding occurrences of the first five species in the

community matrix

comm[35:40, 1:5]

#> Alon_meri Alst_line Alte_hali Alte_porr Anth_eccr

#> 35 0 0 0 0.0 1.000

#> 36 0 0 1 0.0 0.500

#> 37 0 0 0 0.0 0.125

2http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
3In statistics, this is also called a contingency table or cross-table.

http://origin.cpc.ncep.noaa.gov
http://www.sites.com
http://www.sites.com

298 Ecology

#> 38 0 0 0 0.0 3.000

#> 39 0 0 0 0.0 2.000

#> 40 0 0 0 0.2 0.125

The values represent species cover per site, and were recorded as the area
covered by a species in proportion to the site area in percentage points (%;
please note that one site can have >100% due to overlapping cover between
individual plants). The rownames of comm correspond to the id column of
random_points. dem is the digital elevation model (DEM) for the study area, and
ndvi is the Normalized Difference Vegetation Index (NDVI) computed from the
red and near-infrared channels of a Landsat scene (see Section 4.3.3 and ?ndvi).
Visualizing the data helps to get more familiar with it, as shown in Figure
14.2 where the dem is overplotted by the random_points and the study_area.
The next step is to compute variables which we will not only need for the
modeling and predictive mapping (see Section 14.4.2) but also for aligning the
Non-metric multidimensional scaling (NMDS) axes with the main gradient in
the study area, altitude and humidity, respectively (see Section 14.3).
Specifically, we will compute catchment slope and catchment area from a
digital elevation model using R-GIS bridges (see Chapter 9). Curvatures might
also represent valuable predictors, in the Exercise section you can find out how
they would change the modeling result.

FIGURE 14.2: Study mask (polygon), location of the sampling sites (black
points) and DEM in the background.

Data and data preparation 299

To compute catchment area and catchment slope, we will make use of the
saga:sagawetnessindex function.4 get_usage() returns all function parameters and
default values of a specific geoalgorithm. Here, we present only a selection of
the complete output.

get_usage(”saga:sagawetnessindex”)

#>ALGORITHM: Saga wetness index

#> DEM <ParameterRaster>

#> ...

#> SLOPE_TYPE <ParameterSelection>

#> ...

#> AREA <OutputRaster>

#> SLOPE <OutputRaster>

#> AREA_MOD <OutputRaster>

#> TWI <OutputRaster>

#> ...

#>SLOPE_TYPE(Type of Slope)

#> 0 - [0] local slope

#> 1 - [1] catchment slope

#> ...

Subsequently, we can specify the needed parameters using R named arguments
(see Section 9.2). Remember that we can use a RasterLayer living in R’s global
environment to specify the input raster DEM (see Section 9.2). Specifying 1 as
the SLOPE_TYPE makes sure that the algorithm will return the catchment slope.
The resulting output rasters should be saved to temporary files with an .sdat

extension which is a SAGA raster format. Setting load_output to TRUE ensures
that the resulting rasters will be imported into R.

environmental predictors: catchment slope and catchment area

ep = run_qgis(alg = ”saga:sagawetnessindex”,

DEM = dem,

SLOPE_TYPE = 1,

SLOPE = tempfile(fileext = ”.sdat”),

AREA = tempfile(fileext = ”.sdat”),

load_output = TRUE,

show_output_paths = FALSE)

This returns a list named ep consisting of two elements: AREA and SLOPE. Let us
add two more raster objects to the list, namely dem and ndvi, and convert it
into a raster stack (see Section 2.3.3).

4Admittedly, it is a bit unsatisfying that the only way of knowing that sagawetnessindex

computes the desired terrain attributes is to be familiar with SAGA.

300 Ecology

ep = stack(c(dem, ndvi, ep))

names(ep) = c(”dem”, ”ndvi”, ”carea”, ”cslope”)

Additionally, the catchment area values are highly skewed to the right
(hist(ep$carea)). A log10-transformation makes the distribution more normal.

ep$carea = log10(ep$carea)

As a convenience to the reader, we have added ep to spDataLarge:

data(”ep”, package = ”spDataLarge”)

Finally, we can extract the terrain attributes to our field observations (see also
Section 5.4.2).

random_points[, names(ep)] = raster::extract(ep, random_points)

14.3 Reducing dimensionality

Ordinations are a popular tool in vegetation science to extract the main infor-
mation, frequently corresponding to ecological gradients, from large species-plot
matrices mostly filled with 0s. However, they are also used in remote sensing,
the soil sciences, geomarketing and many other fields. If you are unfamiliar
with ordination techniques or in need of a refresher, have a look at Michael W.
Palmer’s web page5 for a short introduction to popular ordination techniques
in ecology and at Borcard et al. (2011) for a deeper look on how to apply
these techniques in R. vegan’s package documentation is also a very helpful
resource (vignette(package = ”vegan”)).
Principal component analysis (PCA) is probably the most famous ordination
technique. It is a great tool to reduce dimensionality if one can expect linear
relationships between variables, and if the joint absence of a variable (for
example calcium) in two plots (observations) can be considered a similarity.
This is barely the case with vegetation data.
For one, relationships are usually non-linear along environmental gradients.
That means the presence of a plant usually follows a unimodal relationship
along a gradient (e.g., humidity, temperature or salinity) with a peak at

5http://ordination.okstate.edu/overview.htm

http://ordination.okstate.edu

Reducing dimensionality 301

the most favorable conditions and declining ends towards the unfavorable
conditions.
Secondly, the joint absence of a species in two plots is hardly an indication for
similarity. Suppose a plant species is absent from the driest (e.g., an extreme
desert) and the most moistest locations (e.g., a tree savanna) of our sampling.
Then we really should refrain from counting this as a similarity because it is
very likely that the only thing these two completely different environmental
settings have in common in terms of floristic composition is the shared absence
of species (except for rare ubiquitous species).
Non-metric multidimensional scaling (NMDS) is one popular dimension-
reducing technique in ecology (von Wehrden et al., 2009). NMDS reduces
the rank-based differences between the distances between objects in the orig-
inal matrix and distances between the ordinated objects. The difference is
expressed as stress. The lower the stress value, the better the ordination, i.e.,
the low-dimensional representation of the original matrix. Stress values lower
than 10 represent an excellent fit, stress values of around 15 are still good,
and values greater than 20 represent a poor fit (McCune et al., 2002). In R,
metaMDS() of the vegan package can execute a NMDS. As input, it expects
a community matrix with the sites as rows and the species as columns. Of-
ten ordinations using presence-absence data yield better results (in terms of
explained variance) though the prize is, of course, a less informative input
matrix (see also Exercises). decostand() converts numerical observations into
presences and absences with 1 indicating the occurrence of a species and 0 the
absence of a species. Ordination techniques such as NMDS require at least one
observation per site. Hence, we need to dismiss all sites in which no species
were found.

presence-absence matrix

pa = decostand(comm, ”pa”) # 100 rows (sites), 69 columns (species)

keep only sites in which at least one species was found

pa = pa[rowSums(pa) != 0,] # 84 rows, 69 columns

The resulting output matrix serves as input for the NMDS. k specifies the
number of output axes, here, set to 4.6 NMDS is an iterative procedure trying
to make the ordinated space more similar to the input matrix in each step. To
make sure that the algorithm converges, we set the number of steps to 500
(try parameter).

set.seed(25072018)

nmds = metaMDS(comm = pa, k = 4, try = 500)

nmds$stress

6One way of choosing k is to try k values between 1 and 6 and then using the result which
yields the best stress value (McCune et al., 2002).

302 Ecology

#> ...

#> Run 498 stress 0.08834745

#> ... Procrustes: rmse 0.004100446 max resid 0.03041186

#> Run 499 stress 0.08874805

#> ... Procrustes: rmse 0.01822361 max resid 0.08054538

#> Run 500 stress 0.08863627

#> ... Procrustes: rmse 0.01421176 max resid 0.04985418

#> *** Solution reached

#> 0.08831395

A stress value of 9 represents a very good result, which means that the reduced
ordination space represents the large majority of the variance of the input
matrix. Overall, NMDS puts objects that are more similar (in terms of species
composition) closer together in ordination space. However, as opposed to most
other ordination techniques, the axes are arbitrary and not necessarily ordered
by importance (Borcard et al., 2011). However, we already know that humidity
represents the main gradient in the study area (Muenchow et al., 2013a, 2017).
Since humidity is highly correlated with elevation, we rotate the NMDS axes
in accordance with elevation (see also ?MDSrotate for more details on rotating
NMDS axes). Plotting the result reveals that the first axis is, as intended,
clearly associated with altitude (Figure 14.3).

elev = dplyr::filter(random_points, id %in% rownames(pa)) %>%

dplyr::pull(dem)

rotating NMDS in accordance with altitude (proxy for humidity)

rotnmds = MDSrotate(nmds, elev)

extracting the first two axes

sc = scores(rotnmds, choices = 1:2)

plotting the first axis against altitude

plot(y = sc[, 1], x = elev, xlab = ”elevation in m”,

ylab = ”First NMDS axis”, cex.lab = 0.8, cex.axis = 0.8)

The scores of the first NMDS axis represent the different vegetation formations,
i.e., the floristic gradient, appearing along the slope of Mt. Mongón. To spatially
visualize them, we can model the NMDS scores with the previously created
predictors (Section 14.2), and use the resulting model for predictive mapping
(see next section).

Modeling the floristic gradient 303

FIGURE 14.3: Plotting the first NMDS axis against altitude.

14.4 Modeling the floristic gradient

To predict the floristic gradient spatially, we will make use of a random forest
model (Hengl et al., 2018). Random forest models are frequently used in
environmental and ecological modeling, and often provide the best results
in terms of predictive performance (Schratz et al., 2018). Here, we shortly
introduce decision trees and bagging, since they form the basis of random
forests. We refer the reader to James et al. (2013) for a more detailed description
of random forests and related techniques.
To introduce decision trees by example, we first construct a response-
predictor matrix by joining the rotated NMDS scores to the field observations
(random_points). We will also use the resulting data frame for the mlr modeling
later on.

construct response-predictor matrix

id- and response variable

rp = data.frame(id = as.numeric(rownames(sc)), sc = sc[, 1])

join the predictors (dem, ndvi and terrain attributes)

rp = inner_join(random_points, rp, by = ”id”)

Decision trees split the predictor space into a number of regions. To illustrate
this, we apply a decision tree to our data using the scores of the first NMDS
axis as the response (sc) and altitude (dem) as the only predictor.

304 Ecology

FIGURE 14.4: Simple example of a decision tree with three internal nodes
and four terminal nodes.

library(”tree”)

tree_mo = tree(sc ~ dem, data = rp)

plot(tree_mo)

text(tree_mo, pretty = 0)

The resulting tree consists of three internal nodes and four terminal nodes
(Figure 14.4). The first internal node at the top of the tree assigns all obser-
vations which are below 328.5 m to the left and all other observations to the
right branch. The observations falling into the left branch have a mean NMDS
score of -1.198. Overall, we can interpret the tree as follows: the higher the
elevation, the higher the NMDS score becomes. Decision trees have a tendency
to overfit, that is they mirror too closely the input data including its noise
which in turn leads to bad predictive performances (Section 11.4; James et al.,
2013). Bootstrap aggregation (bagging) is an ensemble technique and helps to
overcome this problem. Ensemble techniques simply combine the predictions
of multiple models. Thus, bagging takes repeated samples from the same input
data and averages the predictions. This reduces the variance and overfitting
with the result of a much better predictive accuracy compared to decision trees.
Finally, random forests extend and improve bagging by decorrelating trees
which is desirable since averaging the predictions of highly correlated trees
shows a higher variance and thus lower reliability than averaging predictions
of decorrelated trees (James et al., 2013). To achieve this, random forests use
bagging, but in contrast to the traditional bagging where each tree is allowed
to use all available predictors, random forests only use a random sample of all
available predictors.

Modeling the floristic gradient 305

14.4.1 mlr building blocks

The code in this section largely follows the steps we have introduced in Section
11.5.2. The only differences are the following:

1. The response variable is numeric, hence a regression task will replace
the classification task of Section 11.5.2.

2. Instead of the AUROC which can only be used for categorical
response variables, we will use the root mean squared error (RMSE)
as performance measure.

3. We use a random forest model instead of a support vector machine
which naturally goes along with different hyperparameters.

4. We are leaving the assessment of a bias-reduced performance measure
as an exercise to the reader (see Exercises). Instead we show how to
tune hyperparameters for (spatial) predictions.

Remember that 125,500 models were necessary to retrieve bias-reduced perfor-
mance estimates when using 100-repeated 5-fold spatial cross-validation and
a random search of 50 iterations (see Section 11.5.2). In the hyperparameter
tuning level, we found the best hyperparameter combination which in turn was
used in the outer performance level for predicting the test data of a specific
spatial partition (see also Figure 11.6). This was done for five spatial parti-
tions, and repeated a 100 times yielding in total 500 optimal hyperparameter
combinations. Which one should we use for making spatial predictions? The
answer is simple, none at all. Remember, the tuning was done to retrieve a
bias-reduced performance estimate, not to do the best possible spatial predic-
tion. For the latter, one estimates the best hyperparameter combination from
the complete dataset. This means, the inner hyperparameter tuning level is
no longer needed which makes perfect sense since we are applying our model
to new data (unvisited field observations) for which the true outcomes are
unavailable, hence testing is impossible in any case. Therefore, we tune the
hyperparameters for a good spatial prediction on the complete dataset via a
5-fold spatial CV with one repetition.
The preparation for the modeling using the mlr package includes the construc-
tion of a response-predictor matrix containing only variables which should be
used in the modeling and the construction of a separate coordinate data frame.

extract the coordinates into a separate data frame

coords = sf::st_coordinates(rp) %>%

as.data.frame() %>%

rename(x = X, y = Y)

only keep response and predictors which should be used for the modeling

rp = dplyr::select(rp, -id, -spri) %>%

st_drop_geometry()

306 Ecology

Having constructed the input variables, we are all set for specifying the mlr
building blocks (task, learner, and resampling). We will use a regression task
since the response variable is numeric. The learner is a random forest model
implementation from the ranger package.

create task

task = makeRegrTask(data = rp, target = ”sc”, coordinates = coords)

learner

lrn_rf = makeLearner(cl = ”regr.ranger”, predict.type = ”response”)

As opposed to for example support vector machines (see Section 11.5.2),
random forests often already show good performances when used with the
default values of their hyperparameters (which may be one reason for their
popularity). Still, tuning often moderately improves model results, and thus is
worth the effort (Probst et al., 2018). Since we deal with geographic data, we
will again make use of spatial cross-validation to tune the hyperparameters (see
Sections 11.4 and 11.5). Specifically, we will use a five-fold spatial partitioning
with only one repetition (makeResampleDesc()). In each of these spatial partitions,
we run 50 models (makeTuneControlRandom()) to find the optimal hyperparameter
combination.

spatial partitioning

perf_level = makeResampleDesc(”SpCV”, iters = 5)

specifying random search

ctrl = makeTuneControlRandom(maxit = 50L)

In random forests, the hyperparameters mtry, min.node.size and sample.fraction

determine the degree of randomness, and should be tuned (Probst et al.,
2018). mtry indicates how many predictor variables should be used in each
tree. If all predictors are used, then this corresponds in fact to bagging (see
beginning of Section 14.4). The sample.fraction parameter specifies the fraction
of observations to be used in each tree. Smaller fractions lead to greater
diversity, and thus less correlated trees which often is desirable (see above).
The min.node.size parameter indicates the number of observations a terminal
node should at least have (see also Figure 14.4). Naturally, as trees and
computing time become larger, the lower the min.node.size.
Hyperparameter combinations will be selected randomly but should fall inside
specific tuning limits (makeParamSet()). mtry should range between 1 and the
number of predictors (4), sample.fraction should range between 0.2 and 0.9 and
min.node.size should range between 1 and 10.

specifying the search space

ps = makeParamSet(

Modeling the floristic gradient 307

makeIntegerParam(”mtry”, lower = 1, upper = ncol(rp) - 1),

makeNumericParam(”sample.fraction”, lower = 0.2, upper = 0.9),

makeIntegerParam(”min.node.size”, lower = 1, upper = 10)

)

Finally, tuneParams() runs the hyperparameter tuning, and will find the optimal
hyperparameter combination for the specified parameters. The performance
measure is the root mean squared error (RMSE).

hyperparamter tuning

set.seed(02082018)

tune = tuneParams(learner = lrn_rf,

task = task,

resampling = perf_level,

par.set = ps,

control = ctrl,

measures = mlr::rmse)

#>...

#> [Tune-x] 49: mtry=3; sample.fraction=0.533; min.node.size=5

#> [Tune-y] 49: rmse.test.rmse=0.5636692; time: 0.0 min

#> [Tune-x] 50: mtry=1; sample.fraction=0.68; min.node.size=5

#> [Tune-y] 50: rmse.test.rmse=0.6314249; time: 0.0 min

#> [Tune] Result: mtry=4; sample.fraction=0.887; min.node.size=10 :

#> rmse.test.rmse=0.5104918

An mtry of 4, a sample.fraction of 0.887, and a min.node.size of 10 represent the
best hyperparameter combination. A RMSE of 0.51 is relatively good when
considering the range of the response variable which is 3.04 (diff(range(rp$sc))).

14.4.2 Predictive mapping

The tuned hyperparameters can now be used for the prediction. We simply
have to modify our learner using the result of the hyperparameter tuning, and
run the corresponding model.

learning using the best hyperparameter combination

lrn_rf = makeLearner(cl = ”regr.ranger”,

predict.type = ”response”,

mtry = tunexmtry,

sample.fraction = tunexsample.fraction,

min.node.size = tunexmin.node.size)

doing the same more elegantly using setHyperPars()

lrn_rf = setHyperPars(makeLearner(”regr.ranger”, predict.type = ”response”),

308 Ecology

par.vals = tune$x)

train model

model_rf = train(lrn_rf, task)

to retrieve the ranger output, run:

mlr::getLearnerModel(model_rf)

which corresponds to:

ranger(sc ~ ., data = rp,

mtry = tunexmtry,

sample.fraction = tunexsample.fraction,

min.node.sie = tunexmin.node.size)

The last step is to apply the model to the spatially available predictors, i.e.,
to the raster stack. So far, raster::predict() does not support the output of
ranger models, hence, we will have to program the prediction ourselves. First,
we convert ep into a prediction data frame which secondly serves as input for
the predict.ranger() function. Thirdly, we put the predicted values back into a
RasterLayer (see Section 3.3.1 and Figure 14.5).

convert raster stack into a data frame

new_data = as.data.frame(as.matrix(ep))

apply the model to the data frame

pred_rf = predict(model_rf, newdata = new_data)

put the predicted values into a raster

pred = dem

replace altitudinal values by rf-prediction values

pred[] = pred_rf$data$response

The predictive mapping clearly reveals distinct vegetation belts (Figure 14.5).
Please refer to Muenchow et al. (2013b) for a detailed description of vegeta-
tion belts on lomas mountains. The blue color tones represent the so-called
Tillandsia-belt. Tillandsia is a highly adapted genus especially found in high
quantities at the sandy and quite desertic foot of lomas mountains. The yellow
color tones refer to a herbaceous vegetation belt with a much higher plant cover
compared to the Tillandsia-belt. The orange colors represent the bromeliad
belt, which features the highest species richness and plant cover. It can be
found directly beneath the temperature inversion (ca. 750-850 m asl) where
humidity due to fog is highest. Water availability naturally decreases above
the temperature inversion, and the landscape becomes desertic again with only
a few succulent species (succulent belt; red colors). Interestingly, the spatial
prediction clearly reveals that the bromeliad belt is interrupted which is a
very interesting finding we would have not detected without the predictive
mapping.

Conclusions 309

FIGURE 14.5: Predictive mapping of the floristic gradient clearly revealing
distinct vegetation belts.

14.5 Conclusions

In this chapter we have ordinated the community matrix of the lomas Mt.
Mongón with the help of a NMDS (Section 14.3). The first axis, representing
the main floristic gradient in the study area, was modeled as a function of
environmental predictors which partly were derived through R-GIS bridges
(Section 14.2). The mlr package provided the building blocks to spatially tune
the hyperparameters mtry, sample.fraction and min.node.size (Section 14.4.1).
The tuned hyperparameters served as input for the final model which in turn
was applied to the environmental predictors for a spatial representation of
the floristic gradient (Section 14.4.2). The result demonstrates spatially the
astounding biodiversity in the middle of the desert. Since lomas mountains are
heavily endangered, the prediction map can serve as basis for informed decision-
making on delineating protection zones, and making the local population aware
of the uniqueness found in their immediate neighborhood.
In terms of methodology, a few additional points could be addressed:
• It would be interesting to also model the second ordination axis, and to

subsequently find an innovative way of visualizing jointly the modeled scores
of the two axes in one prediction map.

• If we were interested in interpreting the model in an ecologically meaningful

310 Ecology

way, we should probably use (semi-)parametric models (Muenchow et al.,
2013a; Zuur et al., 2009, 2017). However, there are at least approaches that
help to interpret machine learning models such as random forests (see, e.g.,
https://mlr-org.github.io/interpretable-machine-learning-iml-and-mlr/).

• A sequential model-based optimization (SMBO) might be preferable to the
random search for hyperparameter optimization used in this chapter (Probst
et al., 2018).

Finally, please note that random forest and other machine learning models
are frequently used in a setting with lots of observations and many predictors,
much more than used in this chapter, and where it is unclear which variables
and variable interactions contribute to explaining the response. Additionally,
the relationships might be highly non-linear. In our use case, the relationship
between response and predictors are pretty clear, there is only a slight amount
of non-linearity and the number of observations and predictors is low. Hence, it
might be worth trying a linear model. A linear model is much easier to explain
and understand than a random forest model, and therefore to be preferred
(law of parsimony), additionally it is computationally less demanding (see
Exercises). If the linear model cannot cope with the degree of non-linearity
present in the data, one could also try a generalized additive model (GAM).
The point here is that the toolbox of a data scientist consists of more than
one tool, and it is your responsibility to select the tool best suited for the task
or purpose at hand. Here, we wanted to introduce the reader to random forest
modeling and how to use the corresponding results for spatial predictions. For
this purpose, a well-studied dataset with known relationships between response
and predictors, is appropriate. However, this does not imply that the random
forest model has returned the best result in terms of predictive performance
(see Exercises).

14.6 Exercises

1. Run a NMDS using the percentage data of the community matrix.
Report the stress value and compare it to the stress value as retrieved
from the NMDS using presence-absence data. What might explain
the observed difference?

2. Compute all the predictor rasters we have used in the chapter
(catchment slope, catchment area), and put them into a raster stack.
Add dem and ndvi to the raster stack. Next, compute profile and
tangential curvature as additional predictor rasters and add them
to the raster stack (hint: grass7:r.slope.aspect). Finally, construct
a response-predictor matrix. The scores of the first NMDS axis
(which were the result when using the presence-absence community

https://mlr-org.github.io

Exercises 311

matrix) rotated in accordance with elevation represent the response
variable, and should be joined to random_points (use an inner join).
To complete the response-predictor matrix, extract the values of the
environmental predictor raster stack to random_points.

3. Use the response-predictor matrix of the previous exercise to fit a
random forest model. Find the optimal hyperparameters and use
them for making a prediction map.

4. Retrieve the bias-reduced RMSE of a random forest model using
spatial cross-validation including the estimation of optimal hyper-
parameter combinations (random search with 50 iterations) in an
inner tuning loop (see Section 11.5.2). Parallelize the tuning level
(see Section 11.5.2). Report the mean RMSE and use a boxplot to
visualize all retrieved RMSEs.

5. Retrieve the bias-reduced RMSE of a simple linear model using
spatial cross-validation. Compare the result to the result of the
random forest model by making RMSE boxplots for each modeling
approach.

http://taylorandfrancis.com

15
Conclusion

Prerequisites

Like the introduction, this concluding chapter contains few code chunks. But
its prerequisites are demanding. It assumes that you have:
• Read through and attempted the exercises in all the chapters of Part I

(Foundations).
• Grasped the diversity of methods that build on these foundations, by following

the code and prose in Part II (Extensions).
• Considered how you can use geocomputation to solve real-world problems,

at work and beyond, after engaging with Part III (Applications).

15.1 Introduction

The aim of this chapter is to synthesize the contents, with reference to re-
curring themes/concepts, and to inspire future directions of application and
development. Section 15.2 discusses the wide range of options for handling
geographic data in R. Choice is a key feature of open source software; the
section provides guidance on choosing between the various options. Section 15.3
describes gaps in the book’s contents and explains why some areas of research
were deliberately omitted, while others were emphasized. This discussion leads
to the question (which is answered in Section 15.4): having read this book,
where to go next? Section 15.5 returns to the wider issues raised in Chapter 1.
In it we consider geocomputation as part of a wider ‘open source approach’
that ensures methods are publicly accessible, reproducible and supported by
collaborative communities. This final section of the book also provides some
pointers on how to get involved.

313

314 Conclusion

15.2 Package choice

A characteristic of R is that there are often multiple ways to achieve the same
result. The code chunk below illustrates this by using three functions, covered
in Chapters 3 and 5, to combine the 16 regions of New Zealand into a single
geometry:

library(spData)

nz_u1 = sf::st_union(nz)

nz_u2 = aggregate(nz[”Population”], list(rep(1, nrow(nz))), sum)

nz_u3 = dplyr::summarise(nz, t = sum(Population))

identical(nz_u1, nz_u2$geometry)

#> [1] TRUE

identical(nz_u1, nz_u3$geom)

#> [1] TRUE

Although the classes, attributes and column names of the resulting objects nz_u1
to nz_u3 differ, their geometries are identical. This is verified using the base R
function identical().1 Which to use? It depends: the former only processes the
geometry data contained in nz so is faster, while the other options performed
attribute operations, which may be useful for subsequent steps.
The wider point is that there are often multiple options to choose from when
working with geographic data in R, even within a single package. The range of
options grows further when more R packages are considered: you could achieve
the same result using the older sp package, for example. We recommend using
sf and the other packages showcased in this book, for reasons outlined in
Chapter 2, but it’s worth being aware of alternatives and being able to justify
your choice of software.
A common (and sometimes controversial) choice is between tidyverse and
base R approaches. We cover both and encourage you to try both before
deciding which is more appropriate for different tasks. The following code
chunk, described in Chapter 3, shows how attribute data subsetting works in
each approach, using the base R operator [and the select() function from the
tidyverse package dplyr. The syntax differs but the results are (in essence)
the same:

1The first operation, undertaken by the function st_union(), creates an object of class sfc

(a simple feature column). The latter two operations create sf objects, each of which contains
a simple feature column. Therefore, it is the geometries contained in simple feature columns,
not the objects themselves, that are identical.

Package choice 315

library(dplyr) # attach tidyverse package

nz_name1 = nz[”Name”] # base R approach

nz_name2 = nz %>% select(Name) # tidyverse approach

identical(nz_name1$Name, nz_name2$Name) # check results

#> [1] TRUE

Again the question arises: which to use? Again the answer is: it depends. Each
approach has advantages: the pipe syntax is popular and appealing to some,
while base R is more stable, and is well known to others. Choosing between
them is therefore largely a matter of preference. However, if you do choose to
use tidyverse functions to handle geographic data, beware of a number of
pitfalls (see the supplementary article tidyverse-pitfalls2 on the website that
supports this book).
While commonly needed operators/functions were covered in depth — such as
the base R [subsetting operator and the dplyr function filter() — there are
many other functions for working with geographic data, from other packages,
that have not been mentioned. Chapter 1 mentions 20+ influential packages for
working with geographic data, and only a handful of these are demonstrated
in subsequent chapters. There are hundreds more. As of early 2019, there are
nearly 200 packages mentioned in the Spatial Task View3; more packages and
countless functions for geographic data are developed each year, making it
impractical to cover them all in a single book.
The rate of evolution in R’s spatial ecosystem may seem overwhelming, but
there are strategies to deal with the wide range of options. Our advice is to
start by learning one approach in depth but to have a general understand of the
breadth of options available. This advice applies equally to solving geographic
problems in R (Section 15.4 covers developments in other languages) as it does
to other fields of knowledge and application.
Of course, some packages perform much better than others, making package
selection an important decision. From this diversity, we have focused on
packages that are future-proof (they will work long into the future), high
performance (relative to other R packages) and complementary. But there is
still overlap in the packages we have used, as illustrated by the diversity of
packages for making maps, for example (see Chapter 8).
Package overlap is not necessarily a bad thing. It can increase resilience, per-
formance (partly driven by friendly competition and mutual learning between
developers) and choice, a key feature of open source software. In this context
the decision to use a particular approach, such as the sf/tidyverse/raster
ecosystem advocated in this book should be made with knowledge of alter-
natives. The sp/rgdal/rgeos ecosystem that sf is designed to supersede, for

2https://geocompr.github.io/geocompkg/articles/tidyverse-pitfalls.html
3https://cran.r-project.org/web/views/

https://geocompr.github.io
https://cran.r-project.org

316 Conclusion

example, can do many of the things covered in this book and, due to its
age, is built on by many other packages.4 Although best known for point
pattern analysis, the spatstat package also supports raster and other vector
geometries (Baddeley and Turner, 2005). At the time of writing (October 2018)
69 packages depend on it, making it more than a package: spatstat is an
alternative R-spatial ecosystem.
It is also being aware of promising alternatives that are under development.
The package stars, for example, provides a new class system for working with
spatiotemporal data. If you are interested in this topic, you can check for
updates on the package’s source code5 and the broader SpatioTemporal Task
View6. The same principle applies to other domains: it is important to justify
software choices and review software decisions based on up-to-date information.

15.3 Gaps and overlaps

There are a number of gaps in, and some overlaps between, the topics covered
in this book. We have been selective, emphasizing some topics while omitting
others. We have tried to emphasize topics that are most commonly needed in
real-world applications such as geographic data operations, projections, data
read/write and visualization. These topics appear repeatedly in the chapters,
a substantial area of overlap designed to consolidate these essential skills for
geocomputation.
On the other hand, we have omitted topics that are less commonly used,
or which are covered in-depth elsewhere. Statistical topics including point
pattern analysis, spatial interpolation (kriging) and spatial epidemiology, for
example, are only mentioned with reference to other topics such as the machine
learning techniques covered in Chapter 11 (if at all). There is already excellent
material on these methods, including statistically orientated chapters in Bivand
et al. (2013) and a book on point pattern analysis by Baddeley et al. (2015).
Other topics which received limited attention were remote sensing and using R
alongside (rather than as a bridge to) dedicated GIS software. There are many
resources on these topics, including Wegmann et al. (2016) and the GIS-related
teaching materials available from Marburg University7.
Instead of covering spatial statistical modeling and inference techniques, we
focussed on machine learning (see Chapters 11 and 14). Again, the reason

4At the time of writing 452 package Depend or Import sp, showing that its data structures
are widely used and have been extended in many directions. The equivalent number for sf
was 69 in October 2018; with the growing popularity of sf, this is set to grow.

5https://github.com/r-spatial/stars
6https://cran.r-project.org/web/views/SpatioTemporal.html
7https://moc.online.uni-marburg.de/doku.php

https://moc.online.uni-marburg.de
https://cran.r-project.org
https://github.com

Where to go next? 317

was that there are already excellent resources on these topics, especially with
ecological use cases, including Zuur et al. (2009), Zuur et al. (2017) and freely
available teaching material and code on Geostatistics & Open-source Statistical
Computing by David Rossiter, hosted at css.cornell.edu/faculty/dgr28. There
are also excellent resources on spatial statistics using Bayesian modeling, a
powerful framework for modeling and uncertainty estimation (Blangiardo and
Cameletti, 2015; Krainski et al., 2018).
Finally, we have largely omitted big data analytics. This might seem surprising
since especially geographic data can become big really fast. But the prerequisite
for doing big data analytics is to know how to solve a problem on a small
dataset. Once you have learned that, you can apply the exact same techniques
on big data questions, though of course you need to expand your toolbox. The
first thing to learn is to handle geographic data queries. This is because big data
analytics often boil down to extracting a small amount of data from a database
for a specific statistical analysis. For this, we have provided an introduction to
spatial databases and how to use a GIS from within R in Chapter 9. If you
really have to do the analysis on a big or even the complete dataset, hopefully,
the problem you are trying to solve is embarrassingly parallel. For this, you
need to learn a system that is able to do this parallelization efficiently such as
Hadoop, GeoMesa (http://www.geomesa.org/) or GeoSpark (Huang et al., 2017).
But still, you are applying the same techniques and concepts you have used on
small datasets to answer a big data question, the only difference is that you
then do it in a big data setting.

15.4 Where to go next?

As indicated in the previous sections, the book has covered only a fraction of
the R’s geographic ecosystem, and there is much more to discover. We have
progressed quickly, from geographic data models in Chapter 2, to advanced
applications in Chapter 14. Consolidation of skills learned, discovery of new
packages and approaches for handling geographic data, and application of
the methods to new datasets and domains are suggested future directions.
This section expands on this general advice by suggesting specific ‘next steps’,
highlighted in bold below.
In addition to learning about further geographic methods and applications
with R, for example with reference to the work cited in the previous section,
deepening your understanding of R itself is a logical next step. R’s fundamental
classes such as data.frame and matrix are the foundation of sf and raster classes,
so studying them will improve your understanding of geographic data. This

8http://www.css.cornell.edu/faculty/dgr2/teach/degeostats.html

http://www.css.cornell.edu
http://www.geomesa.org

318 Conclusion

can be done with reference to documents that are part of R, and which can be
found with the command help.start() and additional resources on the subject
such as those by Wickham (2014a) and Chambers (2016).
Another software-related direction for future learning is discovering geo-
computation with other languages. There are good reasons for learning
R as a language for geocomputation, as described in Chapter 1, but it is
not the only option.9 It would be possible to study Geocomputation with:
Python, C++, JavaScript, Scala or Rust in equal depth. Each has evolving
geospatial capabilities. rasterio10, for example, is a Python package that
could supplement/replace the raster package used in this book — see Garrard
(2016) and online tutorials such as automating-gis-processes11 for more on the
Python ecosystem. Dozens of geospatial libraries have been developed in C++,
including well known libraries such as GDAL and GEOS, and less well known
libraries such as the Orfeo Toolbox12 for processing remote sensing (raster)
data. Turf.js13 is an example of the potential for doing geocomputation with
JavaScript. GeoTrellis14 provides functions for working with raster and vector
data in the Java-based language Scala. And WhiteBoxTools15 provides an
example of a rapidly evolving command-line GIS implemented in Rust. Each
of these packages/libraries/languages has advantages for geocomputation and
there are many more to discover, as documented in the curated list of open
source geospatial resources Awesome-Geospatial16.
There is more to geocomputation than software, however. We can recommend
exploring and learning new research topics and methods from aca-
demic and theoretical perspectives. Many methods that have been written
about have yet to be implemented. Learning about geographic methods and
potential applications can therefore be rewarding, before writing any code. An
example of geographic methods that are increasingly implemented in R is sam-
pling strategies for scientific applications. A next step in this case is to read-up
on relevant articles in the area such as Brus (2018), which is accompanied by
reproducible code and tutorial content hosted at github.com/DickBrus/Tutori-
alSampling4DSM17.

9R’s strengths relevant to our definition of geocomputation include its emphasis on
scientific reproducibility, widespread use in academic research and unparalleled support for
statistical modeling of geographic data. Furthermore, we advocate learning one language (R)
for geocomputation in depth before delving into other languages/frameworks because of the
costs associated with context switching. It is preferable to have expertise in one language
than basic knowledge of many.

10https://github.com/mapbox/rasterio
11https://automating-gis-processes.github.io/CSC18
12https://github.com/orfeotoolbox/OTB
13https://github.com/Turfjs/turf
14https://geotrellis.io/
15https://github.com/jblindsay/whitebox-tools
16https://github.com/sacridini/Awesome-Geospatial
17https://github.com/DickBrus/TutorialSampling4DSM

https://github.com
https://github.com
https://github.com
https://geotrellis.io
https://github.com
https://github.com
https://automating-gis-processes.github.io
https://github.com
http://www.github.com
http://www.github.com

The open source approach 319

15.5 The open source approach

This is a technical book so it makes sense for the next steps, outlined in
the previous section, to also be technical. However, there are wider issues
worth considering in this final section, which returns to our definition of
geocomputation. One of the elements of the term introduced in Chapter 1 was
that geographic methods should have a positive impact. Of course, how to
define and measure ‘positive’ is a subjective, philosophical question, beyond the
scope of this book. Regardless of your worldview, consideration of the impacts
of geocomputational work is a useful exercise: the potential for positive impacts
can provide a powerful motivation for future learning and, conversely, new
methods can open-up many possible fields of application. These considerations
lead to the conclusion that geocomputation is part of a wider ‘open source
approach’.
Section 1.1 presented other terms that mean roughly the same thing as geo-
computation, including geographic data science (GDS) and ‘GIScience’. Both
capture the essence of working with geographic data, but geocomputation has
advantages: it concisely captures the ‘computational’ way of working with
geographic data advocated in this book — implemented in code and therefore
encouraging reproducibility — and builds on desirable ingredients of its early
definition (Openshaw and Abrahart, 2000):
• The creative use of geographic data.
• Application to real-world problems.
• Building ‘scientific’ tools.
• Reproducibility.
We added the final ingredient: reproducibility was barely mentioned in early
work on geocomputation, yet a strong case can be made for it being a vital
component of the first two ingredients. Reproducibility:
• Encourages creativity by encouraging the focus to shift away from the basics

(which are readily available through shared code) and towards applications.
• Discourages people from ‘reinventing the wheel’: there is no need to re-do

what others have done if their methods can be used by others.
• Makes academic research more conducive to real world applications, by

methods developed for one purpose (perhaps purely academic) can be used
for practical applications.

If reproducibility is the defining feature of geocomputation (or command-line
GIS, code-driven geographic data analysis, or any other synonym for the same
thing) it is worth considering what makes it reproducible. This brings us to
the ‘open source approach’, which has three main components:

320 Conclusion

• A command-line interface (CLI), encouraging scripts recording geographic
work to be shared and reproduced.

• Open source software, which can be inspected and potentially improved by
anyone in the world.

• An active developer community, which collaborates and self-organizes to
build complementary and modular tools.

Like the term geocomputation, the open source approach is more than a
technical entity. It is a community composed of people interacting daily with
shared aims: to produce high performance tools, free from commercial or legal
restrictions, that are accessible for anyone to use. The open source approach to
working with geographic data has advantages that transcend the technicalities
of how the software works, encouraging learning, collaboration and an efficient
division of labor.
There are many ways to engage in this community, especially with the emer-
gence of code hosting sites, such as GitHub, which encourage communication
and collaboration. A good place to start is simply browsing through some of
the source code, ‘issues’ and ‘commits’ in a geographic package of interest.
A quick glance at the r-spatial/sf GitHub repository, which hosts the code
underlying the sf package, shows that 40+ people have contributed to the
codebase and documentation. Dozens more people have contributed by asking
question and by contributing to ‘upstream’ packages that sf uses. More than
600 issues have been closed on its issue tracker18, representing a huge amount
of work to make sf faster, more stable and user-friendly. This example, from
just one package out of dozens, shows the scale of the intellectual operation
underway to make R a highly effective and continuously evolving language for
geocomputation.
It is instructive to watch the incessant development activity happen in public
fora such as GitHub, but it is even more rewarding to become an active
participant. This is one of the greatest features of the open source approach: it
encourages people to get involved. This book itself is a result of the open source
approach: it was motivated by the amazing developments in R’s geographic
capabilities over the last two decades, but made practically possible by dialogue
and code sharing on platforms for collaboration. We hope that in addition
to disseminating useful methods for working with geographic data, this book
inspires you to take a more open source approach. Whether it’s raising a
constructive issue alerting developers to problems in their package; making the
work done by you and the organizations you work for open; or simply helping
other people by passing on the knowledge you’ve learned, getting involved can
be a rewarding experience.

18https://github.com/r-spatial/sf/issues

https://github.com

Bibliography

Abelson, H., Sussman, G. J., and Sussman, J. (1996). Structure and Interpreta-
tion of Computer Programs. The MIT Electrical Engineering and Computer
Science Series. MIT Press, Cambridge, Massachusetts, second edition.

Akima, H. and Gebhardt, A. (2016). Akima: Interpolation of Irregularly and
Regularly Spaced Data.

Baddeley, A., Rubak, E., and Turner, R. (2015). Spatial Point Patterns:
Methodology and Applications with R. CRC Press.

Baddeley, A. and Turner, R. (2005). Spatstat: An R package for analyzing
spatial point patterns. Journal of statistical software, 12(6):1–42.

Bellos, A. (2011). Alex’s Adventures in Numberland. Bloomsbury Paperbacks,
London.

Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E.,
Casalicchio, G., and Jones, Z. M. (2016). Mlr: Machine Learning in R.
Journal of Machine Learning Research, 17(170):1–5.

Bivand, R. (2001). More on Spatial Data Analysis. R News, 1(3):13–17.
Bivand, R. (2003). Approaches to Classes for Spatial Data in R. In Hornik,
K., Leisch, F., and Zeileis, A., editors, Proceedings of DSC.

Bivand, R. (2016a). Rgrass7: Interface Between GRASS 7 Geographical Infor-
mation System and R.

Bivand, R. (2016b). Spgrass6: Interface between GRASS 6 and R.
Bivand, R. (2017). Spdep: Spatial Dependence: Weighting Schemes, Statistics

and Models.
Bivand, R. and Gebhardt, A. (2000). Implementing functions for spatial
statistical analysis using the language. Journal of Geographical Systems,
2(3):307–317.

Bivand, R., Keitt, T., and Rowlingson, B. (2018). rgdal: Bindings for the
‘Geospatial’ Data Abstraction Library. R package version 1.3-3.

Bivand, R. and Lewin-Koh, N. (2017). Maptools: Tools for Reading and
Handling Spatial Objects.

Bivand, R. and Neteler, M. (2000). Open source geocomputation: Using the R

321

322 Bibliography

data analysis language integrated with GRASS GIS and PostgreSQL data
base systems. In Neteler, M. and Bivand, R. S., editors, Proceedings of the
5th International Conference on GeoComputation.

Bivand, R., Pebesma, E. J., and Gómez-Rubio, V. (2013). Applied Spatial
Data Analysis with R, volume 747248717. Springer.

Bivand, R. and Rundel, C. (2018). rgeos: Interface to Geometry Engine - Open
Source (’GEOS’). R package version 0.3-28.

Bivand, R. S. (2000). Using the R statistical data analysis language on GRASS
5.0 GIS database files. Computers & Geosciences, 26(9):1043–1052.

Blangiardo, M. and Cameletti, M. (2015). Spatial and Spatio-Temporal Bayesian
Models with R-INLA. John Wiley & Sons, Ltd, Chichester, UK.

Borcard, D., Gillet, F., and Legendre, P. (2011). Numerical Ecology with R.
Use R! Springer, New York. OCLC: ocn690089213.

Borland, D. and Taylor II, R. M. (2007). Rainbow color map (still) considered
harmful. IEEE computer graphics and applications, 27(2).

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.
Brenning, A. (2012a). ArcGIS Geoprocessing in R via Python.
Brenning, A. (2012b). Spatial cross-validation and bootstrap for the assessment
of prediction rules in remote sensing: The R package sperrorest. pages
5372–5375. IEEE.

Brenning, A., Bangs, D., and Becker, M. (2018). RSAGA: SAGA Geoprocessing
and Terrain Analysis. R package version 1.1.0.

Brewer, C. A. (2015). Designing Better Maps: A Guide for GIS Users. Esri
Press, Redlands, California, second edition.

Bristol City Council (2015). Deprivation in Bristol 2015. Technical report,
Bristol City Council.

Brus, D. J. (2018). Sampling for digital soil mapping: A tutorial supported by
R scripts. Geoderma.

Brzustowicz, M. R. (2017). Data Science with Java: [Practical Methods for
Scientists and Engineers]. O´Reilly, Beijing Boston Farnham, first edition.
OCLC: 993428657.

Bucklin, D. and Basille, M. (2018). Rpostgis: Linking R with a PostGIS Spatial
Database. The R Journal.

Burrough, P. A., McDonnell, R., and Lloyd, C. D. (2015). Principles of
Geographical Information Systems. Oxford University Press, Oxford, New
York, third edition. OCLC: ocn915100245.

Calenge, C. (2006). The package adehabitat for the R software: Tool for the
analysis of space and habitat use by animals. Ecological Modelling, 197:1035.

Bibliography 323

Cawley, G. C. and Talbot, N. L. (2010). On over-fitting in model selection and
subsequent selection bias in performance evaluation. Journal of Machine
Learning Research, 11(Jul):2079–2107.

Chambers, J. M. (2016). Extending R. CRC Press.
Cheshire, J. and Lovelace, R. (2015). Spatial data visualisation with R. In

Brunsdon, C. and Singleton, A., editors, Geocomputation, pages 1–14. SAGE
Publications.

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L.,
Wehberg, J., Wichmann, V., and Böhner, J. (2015). System for Automated
Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev., 8(7):1991–2007.

Coombes, M. G., Green, A. E., and Openshaw, S. (1986). An Efficient Algo-
rithm to Generate Official Statistical Reporting Areas: The Case of the 1984
Travel-to-Work Areas Revision in Britain. The Journal of the Operational
Research Society, 37(10):943.

Coppock, J. T. and Rhind, D. W. (1991). The history of GIS. Geographical
Information Systems: Principles and Applications, vol. 1., 1(1):21–43.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Computa-
tional Geometry: Algorithms and Applications. Springer Science & Business
Media.

Diggle, P. and Ribeiro, P. J. (2007). Model-Based Geostatistics. Springer.
Dillon, M. O., Nakazawa, M., and Leiva, S. G. (2003). The Lomas formations
of coastal Peru: Composition and biogeographic history. In Haas, J. and
Dillon, M. O., editors, El Niño in Peru: Biology and Culture over 10,000
Years, pages 1–9. Field Museum of Natural History, Chicago.

Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction of
the number of points required to represent a digitized line or its caricature.
Cartographica: The International Journal for Geographic Information and
Geovisualization, 10(2):112–122.

Eddelbuettel, D. and Balamuta, J. J. (2018). Extending R with C++: A Brief
Introduction to Rcpp. The American Statistician, 72(1):28–36.

Galletti, C. S., Turner, B. L., and Myint, S. W. (2016). Land changes and
their drivers in the cloud forest and coastal zone of Dhofar, Oman, between
1988 and 2013. Regional Environmental Change, 16(7):2141–2153.

Garrard, C. (2016). Geoprocessing with Python. Manning Publications, Shelter
Island, NY. OCLC: ocn915498655.

Gelfand, A. E., Diggle, P., Guttorp, P., and Fuentes, M. (2010). Handbook of
Spatial Statistics. CRC press.

Gillespie, C. and Lovelace, R. (2016). Efficient R Programming: A Practical
Guide to Smarter Programming. O’Reilly Media.

324 Bibliography

Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Applied
Geostatistics Series. Oxford University Press, New York.

Graser, A. and Olaya, V. (2015). Processing: A Python Framework for the
Seamless Integration of Geoprocessing Tools in QGIS.

Grolemund, G. and Wickham, H. (2016). R for Data Science. O’Reilly Media.
Hengl, T. (2007). A Practical Guide to Geostatistical Mapping of Environmental

Variables. Publications Office, Luxembourg. OCLC: 758643236.
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., and Gräler, B.
(2018). Random forest as a generic framework for predictive modeling of
spatial and spatio-temporal variables. PeerJ, 6:e5518.

Hickman, R., Ashiru, O., and Banister, D. (2011). Transitions to low carbon
transport futures: Strategic conversations from London and Delhi. Journal
of Transport Geography, 19(6):1553–1562.

Hijmans, R. J. (2016). Geosphere: Spherical Trigonometry.
Hijmans, R. J. (2017). raster: Geographic Data Analysis and Modeling. R
package version 2.6-7.

Hollander, Y. (2016). Transport Modelling for a Complete Beginner. CTthink!
Horni, A., Nagel, K., and Axhausen, K. W. (2016). The Multi-Agent Transport

Simulation MATSim. Ubiquity Press.
Huang, Z., Chen, Y., Wan, L., and Peng, X. (2017). GeoSpark SQL: An Effective

Framework Enabling Spatial Queries on Spark. ISPRS International Journal
of Geo-Information, 6(9):285.

Huff, D. L. (1963). A Probabilistic Analysis of Shopping Center Trade Areas.
Land Economics, 39(1):81–90.

Hunziker, P. (2017). Velox: Fast Raster Manipulation and Extraction.
Jafari, E., Gemar, M. D., Juri, N. R., and Duthie, J. (2015). Investigation

of Centroid Connector Placement for Advanced Traffic Assignment Models
with Added Network Detail. Transportation Research Record: Journal of
the Transportation Research Board, 2498:19–26.

James, G., Witten, D., Hastie, T., and Tibshirani, R., editors (2013). An
Introduction to Statistical Learning: With Applications in R. Number 103 in
Springer Texts in Statistics. Springer, New York. OCLC: ocn828488009.

Jenny, B., Šavrič, B., Arnold, N. D., Marston, B. E., and Preppernau, C. A.
(2017). A guide to selecting map projections for world and hemisphere maps.
In Lapaine, M. and Usery, L., editors, Choosing a Map Projection, pages
213–228. Springer.

Jr, P. J. R. and Diggle, P. J. (2016). geoR: Analysis of Geostatistical Data.

Bibliography 325

Kahle, D. and Wickham, H. (2013). Ggmap: Spatial Visualization with ggplot2.
The R Journal, 5:144–161.

Kaiser, M. and Morin, T. (1993). Algorithms for computing centroids. Com-
puters & Operations Research, 20(2):151–165.

Karatzoglou, A., Smola, A., Hornik, K., and Zeileis, A. (2004). Kernlab - An
S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9).

Knuth, D. E. (1974). Computer Programming As an Art. Commun. ACM,
17(12):667–673.

Krainski, E., Gómez Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D.,
Simpson, D., Lindgren, F., and Rue, H. (2018). Advanced Spatial Modeling
with Stochastic Partial Differential Equations Using R and INLA.

Krug, R. M., Roura-Pascual, N., and Richardson, D. M. (2010). Clearing of
invasive alien plants under different budget scenarios: Using a simulation
model to test efficiency. Biological invasions, 12(12):4099–4112.

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Springer, New
York. OCLC: ocn827083441.

Lamigueiro, O. P. (2018). Displaying Time Series, Spatial, and Space-Time
Data with R. Chapman and Hall/CRC, Boca Raton, second edition.

Landa, M. (2008). New GUI for GRASS GIS based on wxPython. Departament
of Geodesy and Cartography, pages 1–17.

Liu, J.-G. and Mason, P. J. (2009). Essential Image Processing and GIS for
Remote Sensing. Wiley-Blackwell, Chichester, West Sussex, UK, Hoboken,
NJ.

Livingstone, D. N. (1992). The Geographical Tradition: Episodes in the History
of a Contested Enterprise. John Wiley & Sons Ltd, Oxford, UK ; Cambridge,
USA.

Longley, P. (2015). Geographic Information Science & Systems. Wiley, Hoboken,
NJ, fourth edition.

Longley, P. A., Brooks, S. M., McDonnell, R., and MacMillan, B., editors
(1998). Geocomputation: A Primer. Wiley, Chichester, Eng. ; New York.

Lovelace, R. and Dumont, M. (2016). Spatial Microsimulation with R. CRC
Press.

Lovelace, R., Goodman, A., Aldred, R., Berkoff, N., Abbas, A., and Woodcock,
J. (2017). The Propensity to Cycle Tool: An open source online system for
sustainable transport planning. Journal of Transport and Land Use, 10(1).

Majure, J. J. and Gebhardt, A. (2016). Sgeostat: An Object-Oriented Framework
for Geostatistical Modeling in S+.

326 Bibliography

Maling, D. H. (1992). Coordinate Systems and Map Projections. Pergamon
Press, Oxford ; New York, second edition.

McCune, B., Grace, J. B., and Urban, D. L. (2002). Analysis of Ecological
Communities. MjM Software Design, Gleneden Beach, OR, second edition.
OCLC: 846056595.

Meulemans, W., Dykes, J., Slingsby, A., Turkay, C., and Wood, J. (2017). Small
Multiples with Gaps. IEEE Transactions on Visualization and Computer
Graphics, 23(1):381–390.

Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., and Nauss, T. (2018).
Improving performance of spatio-temporal machine learning models using
forward feature selection and target-oriented validation. Environmental
Modelling & Software, 101:1–9.

Miller, H. J. (2004). Tobler’s first law and spatial analysis. Annals of the
Association of American Geographers, 94(2).

Moreno-Monroy, A. I., Lovelace, R., and Ramos, F. R. (2017). Public transport
and school location impacts on educational inequalities: Insights from São
Paulo. Journal of Transport Geography.

Muenchow, J., Bräuning, A., Rodríguez, E. F., and von Wehrden, H. (2013a).
Predictive mapping of species richness and plant species’ distributions of a
Peruvian fog oasis along an altitudinal gradient. Biotropica, 45(5):557–566.

Muenchow, J., Brenning, A., and Richter, M. (2012). Geomorphic process rates
of landslides along a humidity gradient in the tropical Andes. Geomorphology,
139-140:271–284.

Muenchow, J., Dieker, P., Kluge, J., Kessler, M., and von Wehrden, H. (2018). A
review of ecological gradient research in the Tropics: Identifying research gaps,
future directions, and conservation priorities. Biodiversity and Conservation,
27(2):273–285.

Muenchow, J., Hauenstein, S., Bräuning, A., Bäumler, R., Rodríguez, E. F.,
and von Wehrden, H. (2013b). Soil texture and altitude, respectively, largely
determine the floristic gradient of the most diverse fog oasis in the Peruvian
desert. Journal of Tropical Ecology, 29(05):427–438.

Muenchow, J., Schratz, P., and Brenning, A. (2017). RQGIS: Integrating R
with QGIS for statistical geocomputing. The R Journal, 9(2):409–428.

Murrell, P. (2016). R Graphics. CRC Press, second edition.
Neteler, M. and Mitasova, H. (2008). Open Source GIS: A GRASS GIS

Approach. Springer, New York, NY, third edition. OCLC: 255568974.
Nolan, D. and Lang, D. T. (2014). XML and Web Technologies for Data

Sciences with R. Use R! Springer, New York, NY. OCLC: 841520665.

Bibliography 327

Obe, R. O. and Hsu, L. S. (2015). PostGIS in Action. Manning, Shelter Island,
NY, second edition. OCLC: ocn872985108.

Office for National Statistics (2014). Workplace Zones: A new geography
for workplace statistics - Datasets. https://data.gov.uk/dataset/workplace-
zones-a-new-geography-for-workplace-statistics3.

Openshaw, S. and Abrahart, R. J., editors (2000). Geocomputation. CRC
Press, London ; New York.

O’Rourke, J. (1998). Computational Geometry in C. Cambridge University
Press, Cambridge, UK, ; New York, NY, USA, second edition.

Padgham, M., Rudis, B., Lovelace, R., and Salmon, M. (2018). osmdata: Import
‘OpenStreetMap’ Data as Simple Features or Spatial Objects. R package
version 0.0.7.

Pebesma, E. (2018). Simple features for R: Standardized support for spatial
vector data. The R Journal.

Pebesma, E. and Bivand, R. (2018). sp: Classes and Methods for Spatial Data.
R package version 1.3-1.

Pebesma, E. and Graeler, B. (2018). gstat: Spatial and Spatio-Temporal
Geostatistical Modelling, Prediction and Simulation. R package version 1.1-6.

Pebesma, E., Mailund, T., and Hiebert, J. (2016). Measurement Units in R.
The R Journal, 8(2):486–494.

Pebesma, E., Nüst, D., and Bivand, R. (2012). The R software environment in
reproducible geoscientific research. Eos, Transactions American Geophysical
Union, 93(16):163–163.

Pebesma, E. J. and Bivand, R. S. (2005). Classes and methods for spatial data
in R. R news, 5(2):9–13.

Pezanowski, S., MacEachren, A. M., Savelyev, A., and Robinson, A. C. (2018).
SensePlace3: A geovisual framework to analyze place–time–attribute infor-
mation in social media. Cartography and Geographic Information Science,
45(5):420–437.

Probst, P., Wright, M., and Boulesteix, A.-L. (2018). Hyperparameters and
Tuning Strategies for Random Forest. arXiv:1804.03515 [cs, stat].

Qiu, F., Zhang, C., and Zhou, Y. (2012). The Development of an Areal
Interpolation ArcGIS Extension and a Comparative Study. GIScience &
Remote Sensing, 49(5):644–663.

Ripley, B. D. (2001). Spatial Statistics in R. R News, 1(2):14–15.
Rodrigue, J.-P., Comtois, C., and Slack, B. (2013). The Geography of Transport

Systems. Routledge, London, New York, third edition.
Rowlingson, B., Baddeley, A., Turner, R., and Diggle, P. (2003). Rasp: A

https://data.gov.uk
https://data.gov.uk

328 Bibliography

Package for Spatial Statistics. In Hornik, K., editor, Proceedings of the 3rd
International Workshop on Distributed Statistical Computing.

Rowlingson, B. and Diggle, P. (2017). Splancs: Spatial and Space-Time Point
Pattern Analysis.

Rowlingson, B. S. and Diggle, P. J. (1993). Splancs: Spatial point pattern
analysis code in S-plus. Computers & Geosciences, 19(5):627–655.

Schratz, P., Muenchow, J., Iturritxa, E., Richter, J., and Brenning, A.
(2018). Performance evaluation and hyperparameter tuning of statistical
and machine-learning models using spatial data. arXiv:1803.11266 [cs, stat].

Sherman, G. (2008). Desktop GIS: Mapping the Planet with Open Source Tools.
Pragmatic Bookshelf.

Talbert, R. J. A. (2014). Ancient Perspectives: Maps and Their Place in
Mesopotamia, Egypt, Greece, and Rome. University of Chicago Press.

Tallon, A. R. (2007). Bristol. Cities, 24(1):74–88.
Tennekes, M. (2018). Tmap: Thematic Maps in R. Journal of Statistical

Software, Articles, 84(6):1–39.
The Economist (2016). The autonomous car’s reality check. The Economist.
Thiele, J. (2014). R Marries NetLogo: Introduction to the RNetLogo Package.

Journal of Statistical Software, 58(2):1–41.
Tobler, W. R. (1979). Smooth Pycnophylactic Interpolation for Geographical
Regions. Journal of the American Statistical Association, 74(367):519–530.

Tomintz, M. N. M., Clarke, G. P., and Rigby, J. E. J. (2008). The geography of
smoking in Leeds: Estimating individual smoking rates and the implications
for the location of stop smoking services. Area, 40(3):341–353.

Tomlin, C. D. (1990). Geographic Information Systems and Cartographic
Modeling. Prentice Hall, Englewood Cliffs, N.J.

Venables, W., Smith, D., and Team, R. C. (2017). An Introduction to R. Notes
on R: A Programming Environment for Data Analysis and Graphics.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S.
Springer, New York, fourth edition.

Visvalingam, M. and Whyatt, J. D. (1993). Line generalisation by repeated
elimination of points. The Cartographic Journal, 30(1):46–51.

von Wehrden, H., Hanspach, J., Bruelheide, H., and Wesche, K. (2009). Plural-
ism and diversity: Trends in the use and application of ordination methods
1990-2007. Journal of Vegetation Science, 20(4):695–705.

Wegmann, M., Leutner, B., and Dech, S., editors (2016). Remote Sensing and
GIS for Ecologists: Using Open Source Software. Data in the Wild. Pelagic
Publishing, Exeter. OCLC: 945979372.

Bibliography 329

Wickham, H. (2014a). Advanced R. CRC Press.
Wickham, H. (2014b). Tidy Data. Journal of Statistical Software, 59(10).
Wickham, H. (2016). Ggplot2: Elegant Graphics for Data Analysis. Springer,

New York, NY, second edition.
Wieland, T. (2017). Market Area Analysis for Retail and Service Locations
with MCI. The R Journal, 9(1):298–323.

Wilkinson, L. and Wills, G. (2005). The Grammar of Graphics. Springer
Science+ Business Media.

Wise, S. (2001). GIS Basics. CRC Press.
Wulf, A. (2015). The Invention of Nature: Alexander von Humboldt’s New

World. Alfred A. Knopf, New York.
Xiao, N. (2016). GIS Algorithms: Theory and Applications for Geographic

Information Science & Technology. London.
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M. (2009).

Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology
and Health. Springer-Verlag, New York.

Zuur, A. F., Ieno, E. N., Saveliev, A. A., and Zuur, A. F. (2017). Beginner’s
Guide to Spatial, Temporal and Spatial-Temporal Ecological Data Analysis
with R-INLA, volume 1. Highland Statistics Ltd, Newburgh, United Kingdom.
OCLC: 993615802.

http://taylorandfrancis.com

Index

agent-based modeling, 260
aggregation, 54, 286

spatial, 77, 101, 294
algorithm, 1, 4, 203, 212, 224, 225,

228, 229, 232–234, 236
API, 7, 144, 147, 184, 202, 206, 270,

287
ArcGIS, 8, 149, 201
attribute, 47

aggregation, 54
join, 56, 264
subsetting, 50

AUROC, 241, 242, 246, 250, 252, 253,
305

autocorrelation
spatial, 236, 241, 247, 254, 259
temporal, 254

base plot, see map making
big data, 236, 317
binary predicate, see also topological

relations
bounding box, 11, 26, 209, 289

C, 5
language, 7

C++, 5–7, 51, 188, 201, 216, 228, 318
cartogram (package), 195
cartography (package), 194
catchment area, 220, 261, 291, 293,

297–300
centroid, 222, 225, 226, 228–230, 233,

260, 267, 268, 272, 276, 287
CGAL, 229
classification, 243–245, 248, 305
clustering, 236, 243

kmeans, 242

command-line interface, 1, 199, 200,
206, 215, 216, 320

convex hull, 233
coordinate reference system, see CRS
CRAN, 8, 10, 11, 17, 196
cross-validation, 236, 242, 246, 253,

254
spatial CV, 236, 239, 242, 246,

249, 253, 254, 295, 297, 305,
311

CRS, 11, 19, 287, 290, 291
EPSG, 42
geographic, 41, 127, 203, 284
introduction, 40
proj4string, 42, 135
projected, 41, 127, 284
reprojection, 130, 131, 134

data models, 18
data packages, 145
data science, 8, 209, 319
desire lines, 260, 263, 267, 270, 271,

273, 276
digital elevation model, 206, 207, 220,

237, 298
dissolve, 287

edge, 272, 274, 275

file formats, 149
FORTRAN, 5, 201
FOSS4G, 1
function, 6, 229–233, 299

GDAL, 11, 20, 120, 149, 151, 152,
155, 202, 215, 216, 318

generalized additive model, 208, 254,
310

331

332 Index

geoalgorithm, 8, 203, 205, 207, 212,
214, 215, 225, 299

geocoding, 287
geocomputation, 1–5, 7, 67, 143, 162,

201, 313, 316, 318–320
definition, 2

GeoDjango, 188
geofacet (package), 195
geographic data analysis, 1, 13, 235,

295
Geographic Data Science, 3
geographic web services, 147

WCS, 147
WFS, 147
WMS, 147
WMTS, 147
WPS, 147

Geography, 3, 4
geogrid (package), 195
geomarketing, 281, 282, 293, 300
GeoPackage, 149, 150, 152
geoportals, 144
GEOS, 7, 12, 20, 216, 229, 318
ggplot2 (package), 193
GIS, 1, 3–5, 7, 8, 11, 13, 86, 199, 200,

209, 214, 215, 293, 295, 309,
316, 317

connotations, 4
definition, 3

GLM, 235, 236, 239, 244, 249, 252,
253

googleway (package), 185
GPS, 4
graph, 272, 274–276
graphical user interface, 1, 5, 149,

199, 200, 210
GRASS, 7, 8, 12, 199, 201, 202, 204,

209–211, 214, 217, 219

hillshade, 122, 220, 238, 298
hyperparameter, 243, 246–254, 297,

305–307, 309–311

IDE, 5, 7, 200, 233
igraph (package), 274, 275

Java, 5–7, 188
JavaScript, 318
join, 56

inner, 265
left, 265
non-overlapping, 75
spatial, 73

KML, 149

leaflet (package), 182, 186
linemap (package), 195
list column, 22, 273
location analysis, 281
loop

for, 286
lapply, 227, 231, 289
map, 289
map_dfr, 290
vapply, 227, 231
while, 289

machine learning, 235, 236, 247, 254,
297, 310, 316

map algebra, 83, 282
focal operations, 85
local operations, 84, 284
zonal operations, 86

map making
animated maps, 179
base plotting, 26
basic, 25
basic raster, 37
color palettes, 170
faceted maps, 175
inset maps, 177
interactive, 5
interactive maps, 181
mapping applications, 188
outputs, 157
static maps, 162

mapdeck (package), 185
MapGuide, 188
mapview (package), 182, 184
mlr (package), 239, 243–245, 248, 254,

303, 305, 306, 309

Index 333

multiline, 273

National Grid, 19
NDVI, 297
nearest neighbor, 273
network, 212, 260, 271, 272, 274–276
NMDS, 298, 301–304, 309, 310
node, 260, 263, 272–274

open data, 144, 282
open source software, 282
OpenStreetMap, 146, 209, 263, 274,

278, 282, 287, 289
ordination, 297, 300–302, 309
osmdata (package), 209, 274, 282, 289
overfitting, 236, 242, 304

parallelization, 251, 252, 254, 311
PCA, 300
plotly (package), 194
point of interest, 289, 293
PostGIS, 12, 24, 217–220
PROJ, 11, 216
projection

Azimuthal equidistant, 132
Lambert azimuthal equal-area,

132
Lambert conformal conic, 132
Stereographic, 132
Universal Transverse Mercator,

132
World Geodetic System, 131

pseudocode, 225
Python, 5–8, 188, 199, 318

QGIS, 1, 7, 8, 13, 24, 149, 162,
199–205, 214, 217, 220, 223

R, 1, 3–5, 7, 8, 209, 215, 229, 235, 239,
278, 293–295, 299, 314, 317

base, 315
history, 10
installation, 17
language, 5
pre-requisites, 17

R-spatial, 8

history, 10
random forest, 247, 254, 297, 303–306,

310, 311
raster, 12, 35, 206, 208, 214, 220, 279,

282, 286, 290, 292, 294, 299,
308, 310, 316

aggregation, 109
brick, 283, 294
class, 38
data input, 154
data output, 156
data types, 156
disaggregation, 109
header, 35, 237
intersection, 107, 108
manipulation, 60, 106
merge, 88
merging, 107
rasterize, 291
reprojection, 138
resampling, 109
stack, 283, 291, 299, 308, 310
subsetting, 62, 81
summarizing, 64
values, 64

raster (package), see raster
raster data model, 35
raster-vector

interactions, 111
raster cropping, 112
raster extraction, 113
raster masking, 112
rasterization, 117
spatial vectorization, 120

regression, 243–245, 305, 306
linear, 254, 310, 311
logistic, 237

remote sensing, 4, 300
REPL, 6
reproducibility, 1–3, 221, 223, 246,

313, 318, 319
resampling, 242, 254, 255
reticulate (package), 202, 215
rgrass7 (package), 201, 209, 212, 214
RMSE, 305, 307, 311

334 Index

routing, 270, 271, 273, 275, 293
RQGIS (package), 12, 201, 202, 206,

214, 297
RSAGA (package), 12, 201, 206, 215,

235, 237
RStudio, 5, 7, 199, 200, 223, 233
Rust, 318

S, 10
S3 class, 11
S4 class, 11, 275
SAGA, 7, 8, 199, 201, 202, 204, 206,

208, 209, 214, 299
Scala, 318
sf, 8, 9, 13, 20, 204, 209, 212, 218,

220, 221, 271, 274, 290, 297,
315, 320

class, 34
distance relations, 80
geometry collection, 28
geometry types, 28
hole, 28
linestring, 28
multi features, 28
point, 28
sfc, 24
simple feature columns (sfc), 32
st_transform, 291
units, 44
why simple features, 24

sf (package), see sf
Shapefile, 11, 149, 150, 152
shiny (package), 188
shortest route, 209, 212, 275, 277
simple features , see sf
sliver polygons, 203–205
source code, 229
spatial

join, 73
statistics, 7, 8, 12, 317
subsetting, 68, 81, 99

spatial congruence, 77
spatial database, 4, 201, 210–213, 215,

217, 219, 317
spatial operations, 67

statistical learning, 235, 239, 243, 245,
247, 254

statistics, 5, 7, 10, 64, 77, 86, 87, 235,
236, 261

stplanr (package), 268, 270, 273, 275
SVM, 236, 247, 248, 253, 254, 305,

306

tibble, 49, 294
tidyverse, 24
tidyverse (package), 9, 49, 68, 81, 101,

116, 192, 314, 315
tmap (package), 163, 266, 269

aesthetics, 167
animated maps, 179
basics, 163
break styles, 169
color breaks, 168
faceted maps, 175
inset maps, 177
interactive maps, 181
layouts, 172
north arrows, 172
scale bars, 172
styles, 174

topological relations, 71, 217
traveling salesman, 209, 212

union, 203
units, 44

vector
affine transformation, 97
buffers, 96, 218
centroids, 94
clipping, 99
data input, 151
data output, 154
geometry casting, 102
intersection, 99, 101, 124, 204,

220
reprojection, 134
simplification, 92
subsetting, 68, 213
union, 91, 101, 204, 218, 220, 314

vector data model, 19

Index 335

vegan (package), 300, 301
viewshed, 220
von Humboldt, 3, 5

well-known binary, 28, 152
well-known text, 28, 152
wetness index, 207, 208
WhiteboxTools, 318
WKT, see well-known text

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Foreword
	Preface
	1: Introduction
	1.1 What is geocomputation?
	1.2 Why use R for geocomputation?
	1.3 Software for geocomputation
	1.4 R’s spatial ecosystem
	1.5 The history of R-spatial
	1.6 Exercises

	I: Foundations
	2: Geographic data in R
	2.1 Introduction
	2.2 Vector data
	2.2.1 An introduction to simple features
	2.2.2 Why simple features?
	2.2.3 Basic map making
	2.2.4 Base plot arguments
	2.2.5 Geometry types
	2.2.6 Simple feature geometries (sfg)
	2.2.7 Simple feature columns (sfc)
	2.2.8 The sf class

	2.3 Raster data
	2.3.1 An introduction to raster
	2.3.2 Basic map making
	2.3.3 Raster classes

	2.4 Coordinate Reference Systems
	2.4.1 Geographic coordinate systems
	2.4.2 Projected coordinate reference systems
	2.4.3 CRSs in R

	2.5 Units
	2.6 Exercises

	3: Attribute data operations
	3.1 Introduction
	3.2 Vector attribute manipulation
	3.2.1 Vector attribute subsetting
	3.2.2 Vector attribute aggregation
	3.2.3 Vector attribute joining
	3.2.4 Creating attributes and removing spatial information

	3.3 Manipulating raster objects
	3.3.1 Raster subsetting
	3.3.2 Summarizing raster objects

	3.4 Exercises

	4: Spatial data operations
	4.1 Introduction
	4.2 Spatial operations on vector data
	4.2.1 Spatial subsetting
	4.2.2 Topological relations
	4.2.3 Spatial joining
	4.2.4 Non-overlapping joins
	4.2.5 Spatial data aggregation
	4.2.6 Distance relations

	4.3 Spatial operations on raster data
	4.3.1 Spatial subsetting
	4.3.2 Map algebra
	4.3.3 Local operations
	4.3.4 Focal operations
	4.3.5 Zonal operations
	4.3.6 Global operations and distances
	4.3.7 Merging rasters

	4.4 Exercises

	5: Geometry operations
	5.1 Introduction
	5.2 Geometric operations on vector data
	5.2.1 Simplification
	5.2.2 Centroids
	5.2.3 Buffers
	5.2.4 Affine transformations
	5.2.5 Clipping
	5.2.6 Geometry unions
	5.2.7 Type transformations

	5.3 Geometric operations on raster data
	5.3.1 Geometric intersections
	5.3.2 Extent and origin
	5.3.3 Aggregation and disaggregation

	5.4 Raster-vector interactions
	5.4.1 Raster cropping
	5.4.2 Raster extraction
	5.4.3 Rasterization
	5.4.4 Spatial vectorization

	5.5 Exercises

	6: Reprojecting geographic data
	6.1 Introduction
	6.2 When to reproject?
	6.3 Which CRS to use?
	6.4 Reprojecting vector geometries
	6.5 Modifying map projections
	6.6 Reprojecting raster geometries
	6.7 Exercises

	7: Geographic data I/O
	7.1 Introduction
	7.2 Retrieving open data
	7.3 Geographic data packages
	7.4 Geographic web services
	7.5 File formats
	7.6 Data input (I)
	7.6.1 Vector data
	7.6.2 Raster data

	7.7 Data output (O)
	7.7.1 Vector data
	7.7.2 Raster data

	7.8 Visual outputs
	7.9 Exercises

	II: Extensions
	8: Making maps with R
	8.1 Introduction
	8.2 Static maps
	8.2.1 tmap basics
	8.2.2 Map objects
	8.2.3 Aesthetics
	8.2.4 Color settings
	8.2.5 Layouts
	8.2.6 Faceted maps
	8.2.7 Inset maps

	8.3 Animated maps
	8.4 Interactive maps
	8.5 Mapping applications
	8.6 Other mapping packages
	8.7 Exercises

	9: Bridges to GIS software
	9.1 Introduction
	9.2 (R)QGIS
	9.3 (R)SAGA
	9.4 GRASS through rgrass7
	9.5 When to use what?
	9.6 Other bridges
	9.6.1 Bridges to GDAL
	9.6.2 Bridges to spatial databases

	9.7 Exercises

	10: Scripts, algorithms and functions
	10.1 Introduction
	10.2 Scripts
	10.3 Geometric algorithms
	10.4 Functions
	10.5 Programming
	10.6 Exercises

	11: Statistical learning
	11.1 Introduction
	11.2 Case study: Landslide susceptibility
	11.3 Conventional modeling approach in R
	11.4 Introduction to (spatial) cross-validation
	11.5 Spatial CV with mlr
	11.5.1 Generalized linear model
	11.5.2 Spatial tuning of machine-learning hyperparameters

	11.6 Conclusions
	11.7 Exercises

	III: Applications
	12: Transportation
	12.1 Introduction
	12.2 A case study of Bristol
	12.3 Transport zones
	12.4 Desire lines
	12.5 Routes
	12.6 Nodes
	12.7 Route networks
	12.8 Prioritizing new infrastructure
	12.9 Future directions of travel
	12.10 Exercises

	13: Geomarketing
	13.1 Introduction
	13.2 Case study: bike shops in Germany
	13.3 Tidy the input data
	13.4 Create census rasters
	13.5 Define metropolitan areas
	13.6 Points of interest
	13.7 Identifying suitable locations
	13.8 Discussion and next steps
	13.9 Exercises

	14: Ecology
	14.1 Introduction
	14.2 Data and data preparation
	14.3 Reducing dimensionality
	14.4 Modeling the floristic gradient
	14.4.1 mlr building blocks
	14.4.2 Predictive mapping

	14.5 Conclusions
	14.6 Exercises

	15: Conclusion
	15.1 Introduction
	15.2 Package choice
	15.3 Gaps and overlaps
	15.4 Where to go next?
	15.5 The open source approach

	Bibliography
	Index

