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            The author respectfully dedicates this textbook to the memory of his beloved uncle the Late Sourindra Nath Das Gupta. He was a patriot and freedom fighter against the colonial rule in his youth. After India’s independence, he was a fearless journalist. He had always been a connoisseur of music and an avid photographer.
          

Preface

              Finite element methods yield engineering solutions for design analysis. The art of breaking down a formidable boundary value problem into manageable subtasks gave rise to numerical analysis in engineering mechanics. Surprisingly, we have been familiar with such algorithmic constructs, with a variety of notations in different contexts, since our primary school days. We reminisce over our pride of being able to multiply two random digits when we mentally looked up that very useful 9 × 9 table. Through worded problems, we learned that multiplication was a clever way to perform repeated addition of the same number. And then, long multiplications posed an insurmountable challenge. Our previously mastered skill of addition did not go in vain, however. We merely replaced the 9 × 9 addition table. We had already used “+, ” which was now replaced by “×.” These infix notations described binary operations. The technique of carry-over, which is essentially a regrouping concept, was proved by representing a long string of digits as a sum of the list of ones, tens, hundreds, thousands, and so forth. Multiplications did not affect those zeros that were merely place holders. We learned that mathematical proofs were not limited by the number of terms. Then the idea of inverse operations connected addition with subtraction, and multiplication with division via zero and one, which are the respective neutrals. Finally, for binary numbers,
              shift-and-add multiplication
              substituted the multiplication table with processing lists. To my surprise, I got the same answer whether I used Arabic numerals or transcribed the digits in my native Bengali script. The notion of invariance thus flowered. Then, by repeatedly evaluating a very large number of predefined functions, any arbitrary task should yield a unique list of answers. In mathematical logic, I learned that, ca. 1935, the Church-Turing thesis formalized what could or could not be evaluated within “yet-to-be-built” computers. Fortunately, no aspect of finite elements is
              Turing undecidable
              ! Computers have facilitated stitching together (analogous to carry-over) a very large number of similarly idealized local responses on isolated finite elements. The arbitrary tessellation and the preselected order of local solutions determine the extent of approximations.
            

              Engineering calculations of temperature and stress fields primarily propelled the finite element method to its contemporary popularity. Historically the development of early computers can be attributed to building the jumbo aircraft, especially to performing their finite element analyses.
              1
              The method became popular in many disciplines that are based on mathematical physics. The intellectual question, then, is how to optimally incorporate computing within mechanics. Turing
              
                
              
              ’s work, which even today is far from being widely studied, distinguished
              calculating
              from
              computing
              .
              2
              By contrast, we have the pedantic formalism of engineering mechanics. In this context, I have been wondering, for the last 40 plus years or so, on how to coalesce these two dissimilar concepts and furnish the minimum basic material for self-teaching.
            

              During approximate evaluation of the temperature scalar and stress tensor in solids, two questions arise. First, what should be the shapes of those broken pieces (that form the body with complicated boundary geometry)? Secondly, to what degree will we strive to capture reasonable
              frame-invariant
              solutions? Are we satisfied with constant or linear stresses on individual elements, or do we also need quadratic and cubic stress distributions? These specifications dictate the design of an isolated finite element.
            
Analytical solutions of partial differential equations demonstrate behaviors of physical quantities in space and their evolution in time. But, numerical simulations are essential to establish a new formulation. Approximate techniques bridge the gaps between the elementary and intricate problems. Nevertheless, compression of fundamental steps dictates the structure of our computer programs. Numerics, computation, and programming are intertwined in my everyday research and teaching, and this mindset is reflected in this textbook.
In engineering mathematics courses, the boundaries were amenable to familiar Cartesian and polar coordinate systems. Real-world engineering objects demand various shapes conceived by creative designers. The resulting arbitrary boundary geometry is the reason why analytical solutions cannot be directly employed. Approximate solutions, in spatial modeling, become more tractable from the finite element method than finite differencing.

              
                
              
            

              Series expansions progressively capture the finer details. This observation led
              
                
              
              Lord Rayleigh to numerically solve many analytically intractable problems.
              3
              
                
              
              Fourier introduced orthogonality that is indicative of independence of functions; essential characteristics of analytical responses appear in those series terms.
              4
              Their weights, for elliptic boundary value problems, minimize an energy-type integral in the
              
                
              
              Ritz variational formulation. This is the backbone of the finite element method that generates approximate numerical solutions.
            

              In 1978,
              
                
              
              Stephen Wolfram, a teenage PhD student from Caltech, presented a talk to Columbia University’s Physics Department. He demonstrated, to the high energy physics research community, his (personal) homegrown
              
                
              
              C
              language-based environment for symbolic computation. This inspired me to elucidate engineering mechanics numerics beyond
              
                
              
              FORTRAN
               to achieve elegance and clarity via higher-level symbolic constructs. Therein, set theory, matrix algebra, and differential equations can work
              in tandem.
              This contemplation hibernated in my consciousness for some time, while I concentrated on journal publications of related algebraic formulations.
            

              Mesh generation for plane elements
              5
              has been simplified by employing triangulation. Curved-sided elements are used only on the boundary. Many computer algebra programs have built-in functions, e.g., Delaunay triangulations and Voronoi diagrams. The number of element nodes depends on the order of stress profiles.
              6
              For incompressible solids, degrees of freedom include the element pressure. The nodal displacements combine the isochoric modes of zero dilatation point-wise. Modal-to-nodal transformations are rectangular matrices. Moore-Penrose
              7
              results comply with the physics of the problem.
            

              Mathematica
              provides a unified programming paradigm to seamlessly carry out numeric and algebraic computations with graphics capability (the appendix includes a brief introduction). Closed-form integration
              8
              eliminated the stumbling block to formulating elements in the physical (
              x
              , 
              y
              , 
              z
              ) domain. Curved boundaries and concavity do not pose any difficulty. All derivations and
              Mathematica
              codes are included in the appendix. Focus on the physics of the problems
              9
              may permit a temporary postponement of details in the syntax. In fact, for first-time readers, skipping the
              Mathematica
              routines
              10
              will not adversely affect their ability to comprehend physical arguments.
            

              I hope this monograph will not be “yet-another-finite-element-book.” Its distinctive feature is closed-form expressions of vector interpolants that satisfy point-wise equilibrium for all Poisson’s ratio. Here, I have generalized (from scalar to vector) the works of Lord Rayleigh,
              
                
              
              Courant,
              
                
              
              and Clough. Even though all their publications are in English, it is rather astonishing that very few of us are familiar with their original works
              11
              !
            
Within the classical displacement formulation, Clough’s interpretation of nodal forces as virtual work quantities resolves, even for incompressible elements, the nonconforming issues altogether.

              Truss examples, in the appendix, furnished the template for linear analysis. Even for solid elements, the same
              Mathematica
              code can satisfy nodal equilibrium and compatibility and then determine stress and displacement unknowns. This is a benefit from algebraic programming where the problem data can specify lengths of different lists.
            

              To conclude, I would like to return to our primary school experiences with arithmetic. Using ± 1, the four rules of arithmetic are condensed to the operations of addition, multiplication, and exponentiation.
              12
              Symbolic computation generalizes those basic abstractions within “list operations.” They extend the mechanism of addition beyond multiplication and exponentiation for two lists of the same size. Since the functions/operators are symbols themselves, they can be syntactically interchanged, e.g. with differentiation, in deriving the deformation gradient. Also, in conventional inner and outer products, which are contraction and dyadic products for tensors, the multiplication and addition operations can be substituted by any two amenable functions. Table lookup (similar to recalling our memorized addition and multiplication tables up to 9) replaces mathematical handbooks of elementary and transcendental functions of mathematical physics. These basic ingredients transcribe finite element concepts into algebraic functions, where the “rewrite rule” formalism is implemented in the functional programming style. This paradigm furnishes a very powerful engine
              13
              for concept development, which constitutes the computational theme of this textbook. Irrespective of intricacies, in tedious substitutions and constructions of long expressions, digital computers perform exactly what we have asked for, faithfully with complete accuracy.
            

              To assure correctness in lengthy algebraic and numerical expressions of shape function vectors and stiffness matrices in the book, I used LaTeX to import
              Mathematica
              results. Since I typeset the book myself, wrote all the
              Mathematica
              routines, and generated all the figures, I got a thorough training in digital publishing workflow. I became aware of the resemblance between symbolic computation and technical typesetting.
            
I encourage engineering design analysts of the new millennium to publish more analytically oriented research by harnessing computational thinking.

Gautam Dasgupta
August 2016

Introduction

              In 1960, Professor
              
                
              
              Ray William Clough of the University of California at Berkeley coined the term
              finite element method
              .
              14
              Two-dimensional stress analysis problems were formulated to harness the numerical calculating power of digital computers. The physical domain was discretized into triangles.
            

              In 1943,
              
                
              
              Courant
              by hand
              modeled and solved the plain torsion problem for multiply connected domains.
              15
              The unknown scalar potential was Prandtl’s stress function. The cross-section was tessellated into triangles. He assumed linear variation of the unknown potential. The constants for those linear polynomials were calculated from the
              
                
              
              Ritz 1908 variational integral,
              16
              whose extremum yielded linear equations for the “net-point-values” that in finite element terminology are referred to as nodal values. For the entire multiply connected region, Courant demonstrated how polynomial interpolants of increasing degree can monotonically improve the numerical result. He compared his results against the finite difference method.
            

              Quotation I
              On these grounds, the method of finite difference as a general procedure is often preferable to the Rayleigh-Ritz method. The latter might lend itself more readily to the solution of specific problems where suitable analytic expressions are available for coordinate functions. However, in other cases, experience points to the superiority of the method of finite differences. One of the underlying reasons is that finite differences are attached directly to the values of the function itself without an interceding medium such as the more or less arbitrary coordinate functions.
            

              —
              Courant
              : remark on page 15
              
                vide
                 footnote 15
              
            

              Ritz, Courant, and Clough’s seminal publications motivated the author to utilize computer algebra to construct analytical expressions of coordinate functions, in the physical (
              x
              , 
              y
              , 
              z
              ) domain, that in Courant’s notation will be written as
              ϕ
              (
              x
              , 
              y
              , 
              z
              ). For the Ritz variational principle, the test functions, which are known in the finite element method as
              basis functions
              or
              shape functions S
              (
              x
              , 
              y
              , 
              z
              ), are subsequently constructed as the linear combinations of
              ϕ
              (
              x
              , 
              y
              , 
              z
              ) to depict the response profile due to a single unit nodal excitation.
            

              Quotation II
              These results show in themselves and by comparison that the generalized method of triangular nets seems to have advantages. It was applied with similar success to the case of a square with four holes, and it is obviously adaptable to any type of domain, much more so than the Rayleigh-Ritz procedure in which the construction of admissible functions would usually offer decisive obstacles.
            

              —
              Courant
              : remark on page 22
              
                vide
                footnote 15
              
            

              Evaluation of mathematically sound and physics-based “admissible functions” is the kernel to the success of the Rayleigh-Ritz method (Courant elaborates in §II of page-9). However, for the integral evaluation of the total energy-like terms, triangulation provided constant integrands, whereas non-triangular finite elements demanded computer algebra formulation in order to avoid non-rigorous (and subjective) implementation of numerical quadrature. This cannot be overemphasized! Closed form analytical expressions, based on the divergence theorem, can be easily coded in any computer algebra environment and in
              
                
              
              C
              ++
              for productions runs. Moreover, for elasticity problems, polynomial “admissible functions” yield algebraic structures that are invariant for coordinate translation and rotation!!
            

              For plate bending problems, the Courant natural boundary condition (the Neumann-type force boundary condition) can be elegantly derived from the variational principle. For the majority of structural mechanics problems, it can be substituted by the virtual work principle that is covered in undergraduate strength of materials and/or structural analysis courses. Since the natural boundary condition comes from the
              vector field
              , the nodal forces in the finite element method should be derived from the virtual work principle, not by the
              ad hoc
              St. Venant principle like averaging.
            

              
                
              
              Clough, in his 1990 review,
              17
              pinpointed the problems with
              ad-hoc
              averaging related to the calculation of nodal forces that satisfy equilibrium by definition.
            

              Quotation III
              However, during the past several years, I have noticed an even more troublesome tendency among many engineers: to accept as gospel the stress values produced by a finite element computer program—without realizing the limitations of the approximation procedure being applied. Clearly, the assumption of specified strain patterns used in formulating the element stiffness makes it impossible for stress equilibrium to be satisfied locally at arbitrary points within the elements. Equilibrium actually is considered only at the nodal points of the assemblage, and even at those points, it is satisfied only in an integrated virtual work sense. Therefore, the engineers who make use of a finite element analysis must apply good engineering judgment in interpreting the results of the analysis, based on a thorough knowledge of the finite element stiffness formulation.
            

              —
              Clough
              : the last paragraph on page 101
              
                vide
                footnote 17
              
            

              This cautionary comment guided the determination of nodal forces in nonconforming finite elements beyond the Courant triangulation, such as Taig’s quadrilateral finite elements,
              18
              with Wilson et al.
              19
              adding the incompatible feature. For such elements, where the zero nodal displacements do not correspond to zero displacement of the face that connects those two adjacent nodes, virtual work based loads will appear at all nodes even where the physically applied loads are identically zero. Moreover, the selection of Rayleigh modes makes it
              possible
              “for stress equilibrium to be satisfied locally at arbitrary points within the elements.”
            
Programming Style
Symbolic computation makes concept development significantly efficient.

                The powerful production-oriented languages are not the best tools for concept development. In order to furnish new concepts in the background of explaining physical principles and mathematical constructs, the computer algebra system
                Mathematica
                is chosen here. Such environments are also known as
                symbolic computing
                systems.
                Mathematica
                makes all programming styles available to a user. So if the reader is familiar with a certain paradigm, then any other one is easily accessible.
                20
              

                Mathematica
                programs are printed using the LaTeX style-file (ctan.mirrors.hoobly.com/macros/latex/contrib/listing/listing.sty) that cannot correctly display the back-quote and double-quote marks in a context name in a
                BeginPackage
                .
                Mathematica
                names
                \[RawBackquote]
                and
                \[RawDoubleQuote]
                are used to circumvent the shortcoming.
              



Chapter Summaries

              	1.
                      Chapter
                       1: Finite Element Basics
                    
Undergraduate backgrounds in engineering mathematics and mechanics of solids should be adequate. Basic operations with linear algebra and differential equations are reviewed within the context of matrix analysis of structures and linear elasticity.
Fundamentals of finite element methods are introduced using simple and intuitive examples. Deformation analyses of bars, which capture all essential aspects of finite elements, are presented by emphasizing energy formulations. The items described in this chapter provide the stimulus for the contents of successive chapters.
The novelty is to harness the frame invariance concept of mechanics with the “pseudoinverse” of a rectangular matrix that transforms one-dimensional bar stiffness matrices to their two- and three-dimensional counterparts. Examples of the Moore-Penrose analytical and numerical results are included.


 

	2.
                      Chapter
                       2: The Truss Problem
                    

                      The displacement formulation of finite element methods is introduced with the nodal displacements as primary variables. Complete
                      Mathematica
                      programs to solve plane trusses are developed in conjunction with the examples and theory presented in Appendix A (the numerical theory for positive definite matrices is not addressed).
                    


 

	3.
                      Chapter
                       3: Courant’s Solution with Triangulation
                    

                      Richard Courant’s pioneering demonstration of the intimate connection between triangulation and linear interpolants is elaborated. His spatial discretization approximation for torsion in noncircular prismatic bars is explored as the first finite element model (of a
                      scalar potential
                      ). Prandtl’s stress function solution is reviewed within that context.
                    
A typographical error in Courant’s classical paper of 1943 is analyzed.


 

	4.
                      Chapter
                       4: Clough’s Triangular Finite Elements
                    

                      Ray W. Clough’s classical displacement formulation of plane strain triangular elements is introduced. For
                      coupled vector field
                      problems of linear elasticity, the
                      unconditional
                      adherence to point-wise equilibrium, with linear shape functions, is described.
                    

                      Plane stress and plane strain element stiffness matrices, and their assembly, are formulated according to the virtual work principle and coded in
                      Mathematica.
                    


 

	5.
                      Chapter
                       5: Taig’s Quadrilateral Elements
                    

                      Ian Taig’s four-node elements, beyond Clough’s triangles, are elaborated by focusing on linear stress distributions that overcome errors due to the “
                      too-stiff
                      constant stress/strain elements” in beam models.
                    

                      This chapter demonstrates with
                      Mathematica
                      codes that Taig’s parametric interpolants, on general convex quadrilaterals, involve the square root of quadratic expressions in the physical (
                      x
                      , 
                      y
                      ) frame. For trapezoids, Taig’s interpolants become rational polynomials in (
                      x
                      , 
                      y
                      ). 
                    


 

	6.
                      Chapter
                       6: Irons’
                      Patch Tests
                    

                      Bruce Irons’
                      patch test
                      is restated to be the exact reproduction of analytical solutions by a class of elements irrespective of meshing and material properties. The reasons for the success achieved with Taig’s rectangles and the failure with non-rectangular elements are elaborated.
                    

                      For successful
                      patch tests
                      , linear stress Rayleigh modes with exact element level integration are described for Edward L. Wilson’s ‘incompatible elements.’
                    


 

	7.
                      Chapter
                       7: Vector Valued Shape Functions
                    

                      For the first time in a textbook, in four-node convex, convex, and curved-sided elements, a
                      unique
                      set of shape function vectors, which are coupled via the Poisson’s ratio, is developed by satisfying equilibrium.
                      Mathematica
                      programs are presented to successfully carry out Irons’
                      patch tests
                      for bending in two orthogonal directions.
                    


 

	8.
                      Chapter
                       8: Incompressible Elements
                    
The kinematic constraint of incompressibility for shape functions and the constant pressure in an element are developed. The formulation, which demands pseudoinverse of 7 × 8 matrices, appears here for the first time.


 

	9.
                      Chapter
                       9: Conclusions on Rayleigh Modal Formulation
                    

                      A
                      closed-form
                      expression for the number of nodes necessary for
                      invariantly
                      reproducing an arbitrary order of stress field in two and three dimensions debuts here. In order to explore the novelty of this textbook, an expert can start from this chapter.
                    


 




            
Summaries of Appendices

                	10.
                        Appendix
                         A: Introducing
                        Mathematica
                      

                        The textbook does not assume any prior knowledge of
                        Mathematica
                        . Essential features of
                        Mathematica
                        and its important structures and syntaxes are introduced for beginners. The intent is to familiarize the reader with the language so that codes presented in this textbook for two-dimensional continua can be modified for three-dimesional cases.
                      

                        Notations like “
                         @@, /@, /.
                        ” and their (
                        infix
                        ) behavior like “
                         +, * 
                        ” are explained.
                      

                        The
                        pure function
                        construct with
                        #, &
                        and the implicit looping via
                        Map
                        are explained. To accelerate experimentations with algorithms,
                        Nest, NestList, Fold, FoldList, and FixedPoint,
                        to name a few, are introduced. The use of available online help files is emphasized.
                      


 

	11.
                        Appendix
                         B: Detail of Truss Problems
                      

                        The objective is to show how to structure a finite element general purpose program. The computer program fragments and associated graphics are described in detail for first-time
                        Mathematica
                        users.
                      

                        Notes on using
                        Mathematica
                        and LaTeX, in order to generate for publication quality document, are included.
                      


 

	12.
                        Appendix
                         C: Triangulation
                      

                        Basic spatial discretization is described. Important
                        Mathematica
                        routines for triangulation, e.g., 
                        PlanarGraphPlot
                        , are demonstrated.
                      


 

	13.
                        Appendix
                         D: Review of Linear Elasticity
                      

                        Proficiency with continuum mechanics is not a prerequisite for this textbook. Important and frequently used displacement, strain, and stress equations are summarized to assist comprehension of
                        linear
                        continuum boundary value problems.
                      


 

	14.
                        Appendix
                         E: Exact Integration (to Avoid Quadratures)
                      

                        Based on the divergence theorem,
                        Mathematica
                        codes are developed for straight- and curved-sided two-dimensional elements with any number of nodes.
                      


 

	15.
                        Appendix
                         F: Temperature Problems by Triangulation
                      

                        The variational principle is summarized for
                        scalar field
                        problems.
                        Mathematica
                        programs to evaluate finite element system matrices and their assembly procedure are included.
                      


 

	16.
                        Appendix
                         G: Square Root Singularity in a Triangle with a Side Node
                      
Barycentric-like coordinates for elements with a side node are derived.


 




              

Practice Problems

                Closed-form expressions from the accompanying
                Mathematica
                codes provide an excellent opportunity to realize numerical examples as frequently as desired. The reader is encouraged to design personal examples and exercises as need be.
              

Homework, Term Problems and Hints

                All
                Mathematica
                codes, which are used in
                closed-form
                derivations, are presented in this textbook. The reader is encouraged to design personal numerical exercises by inputting suitable data. As a reminder, all
                Mathematica
                codes can be copied from PDF and pasted in
                notebooks
                .
              

                Graphics, furnished in symbolic codes, facilitates concept development. The reader is encouraged to modify the graphics codes to include their own colors in the
                Graphics
                directives. Only the essential homework problems are prescribed. Also, the accompanying hints are provided to accelerate concept development.
              

Some Familiar Abbreviations

                In many places in this textbook, especially in
                Mathematica
                codes some abbreviations have been freely used:
                	1.DOF, degree-of-freedom; DOFS, degrees-of-freedom


 

	2.FE, finite element; elmt, elements


 

	3.w.r.t., with respect to


 




              

A Reminder

                In
                Mathematica
                we prefer descriptive long names; for example:
              

                this is an example
                becomes
                thisIsAnExample
                —a variable. However, in the interest of brevity, obvious abbreviations pose no misunderstanding.
              

                All mathematica objects
                usually
                begin with an uppercase characters. System variables, such as
                 $VersionNumber
                , begin with a
                $
                . There is no restriction for the user to start the name with a lowercase character, but we prefer a lowercase Roman character to start a user-defined name. Unique long names have an advantage because the
                frontend
                prompts with possible options that can be easily resolved by pressing the
                tab
                key.
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Abstract
In this introductory chapter, we emphasize important concepts of the finite element method using simple, intuitive examples. An undergraduate engineering mathematics background should be adequate. However, the basic operations with linear algebra and differential equations are reviewed within the context.
The finite element method, even for unbounded media, projects continuum solutions—governed by (partial) differential equations—into a finite dimensional vector space. Strikingly enough, the merit of the method permits the introduction of all basic (physical and mathematical) ideas with one-dimensional bar examples. The deformation analysis of a system of bars captures all essential aspects of thermo-mechanical behavior. Thus, this chapter provides a foundation for the topics developed in this textbook. In association with characteristic “internal forces,” which guarantee equilibrium to yield quality solutions, there are independent Rayleigh displacement modes. These finite number of basis functions (blending functions or interpolants) are the fundamental objects of the finite element method. The resulting nodal forces and displacements yield symmetric (positive semi-definite) system matrices.
The “energy minimization” concept is introduced using a single spring element (a single degree-of-freedom system). In order to reinforce the idea of degrees-of-freedom and of the energy-like scalars, the physical Rayleigh mode is introduced as the fundamental pattern of deformation.
Generalization, e.g. frame invariance concepts, in two- and three-dimensions, involves “inversion” of rectangular matrices; the associated pseudoinverse concept is introduced within that context. Discrete representation with indicial notation is described in detail, and weak solutions are introduced within a smaller dimensional vector space.
Many details (unfamiliar to advanced undergraduates), which are addressed in the successive chapters, can be skipped during introductory readings.

1.1 The Energy Perspective: With Springs and Bars
The spring, shown in Fig. 1.1, is idealized to carry only an axial force.
[image: A300727_1_En_1_Fig1_HTML.gif]
Fig. 1.1The tensile force F is positive; it stretches the spring by Δ






Either the axial force F or the corresponding axial displacement Δ can be taken to be an independent variable. Solutions Δ(F) and F(Δ) arise respectively from the flexibility and stiffness formulations. The finite element method considers displacements to be the primary variables, and conceives the forces to be the necessary physical quantities to sustain those deformations. Thus, the finite element method is a displacement formulation.

            
              
            
            
              
            
          
A bar or rod, in Fig. 1.2, is the continuum analog of the spring in Fig. 1.1.
[image: A300727_1_En_1_Fig2_HTML.gif]
Fig. 1.2A bar force F is positive in tension







              
             
              
             
              
             For the spring in Fig. 1.1 and the bar in Fig. 1.2, the “spring constant” k is the ratio of the axial force F to the resulting stretch Δ. Thus: 
              
             [image: 
$$\displaystyle\begin{array}{rcl} k = \frac{F} {\varDelta }> 0: \text{a tensile force }always\text{ extends the spring}& &{}\end{array}$$
]

 (1.1)



In general, i.e., in non-linear analyses, the positive constant1 k in Eq. (1.1) will depend on the stretch Δ. However, throughout this textbook, which is limited to linear finite elements, we shall only consider: [image: 
$$\displaystyle\begin{array}{rcl} k(\varDelta ) = k: \mbox{ a constant (a stipulation in all}linear\ analyses)& &{}\end{array}$$
]

 (1.2)



1.1.1 Linear Force-Deformation Relations— F: External Tensile Force, Δ: Stretch and k: Stiffness Constant
We assume the straight line relationship between the tensile force F and the extension Δ, as shown in Fig. 1.3. We start with zero initial deformation when the force is zero and therefore the loading path starts from the origin. This is the usual initial state for all linear analyses.
[image: A300727_1_En_1_Fig3_HTML.gif]
Fig. 1.3Externally applied tensile force F and the resulting “small” extension Δ






In a static analysis, the load is always applied gradually. This means that the force-extension diagram remains linear for (relatively) small deformations. Throughout this textbook we address only linear problems. The “force-deformation” relationship will never depend on the magnitudes of forces nor displacements. Also, all deformations will be considered small.
The following two important definitions2 relate the tension and extension: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ from }\varDelta (F) \Rightarrow \frac{\varDelta } {F}: \mbox{ flexibility;}\mbox{ from }F(\varDelta ) \Rightarrow \frac{F} {\varDelta }: \mbox{ stiffness}& &{}\end{array}$$
]

 (1.3)



The finite element method is a stiffness formulation, where displacements (and kinematic variables) are the independent variables.

Incidentally, a finite element model can be conceived to be a crisscrossing system of bars (including their two- and three-dimensional analogs).

1.1.2 Strain Energy Formulation: Minimization Leading to the Solution
In a displacement formulation Δ is the independent variable. The strain energy [image: 
$$\boldsymbol{\mathfrak{I}}(\varDelta ),$$
] which is supplied by the applied force, is stored internally due to deformation. Then [image: 
$$\boldsymbol{\mathfrak{I}}\Big(\varDelta \Big)$$
], the area of the F −Δ triangle shown in Fig. 1.4, is given by: [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{I}}\Big(\varDelta \Big) = \frac{1} {2}F\ \varDelta = \frac{1} {2}k\ \varDelta ^{2}: \mbox{ internal energy}& &{}\end{array}$$
]

 (1.4)


[image: A300727_1_En_1_Fig4_HTML.gif]
Fig. 1.4Strain energy (due to gradual loading) indicated by the shaded area







              
                
              
            

              
                
              
              
                
              
              
                
              
            
Let us introduce a “work-like” term3: [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{B}\Big(\varDelta \Big)} = F\ \varDelta;\mbox{ we simply call this boundary work}& &{}\end{array}$$
]

 (1.5a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ and define Eulerian: }\boldsymbol{\mathfrak{E}}\Big(\varDelta \Big) = \boldsymbol{\mathfrak{I}}\Big(\varDelta \Big) -\boldsymbol{\mathfrak{B}}\Big(\varDelta \Big) = \frac{1} {2}\ k\ \varDelta ^{2} - F\ \varDelta & &{}\end{array}$$
]

 (1.5b)

 Minimization of the Eulerian [image: 
$$\boldsymbol{\mathfrak{E}}\Big(\varDelta \Big)$$
] with respect to Δ yields: [image: 
$$\displaystyle\begin{array}{rcl} 0 = \frac{d} {d\varDelta }\boldsymbol{\mathfrak{E}}\Big(\varDelta \Big) = k\ \varDelta - F\quad \left (\mbox{ since } \frac{d^{2}} {dx^{2}}\boldsymbol{\mathfrak{E}}\Big(\varDelta \Big) = k> 0\right )& &{}\end{array}$$
]

 (1.6a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ identical with Eq. (1.1): }\varDelta = \frac{F} {k}: \mbox{ is the }unique\ minimum& &{}\end{array}$$
]

 (1.6b)




1.1.3 Euler, Rayleigh, Ritz, Courant and Clough
The finite element method is an energy based formulation. Displacement-like kinematic quantities are the primary variables. Note that the minimization statement in Eq. (1.6b) is identical with the equilibrium statement of Eq. (1.1). This idea is generalized when the assumed displacement fields can yield equivalent equilibrium expressions. We have just demonstrated that by minimizing the Eulerian scalar in Eq. (1.5b) we can evaluate the unknown displacement.
1.1.3.1 Euler
In Eq. (1.5b) the notation [image: 
$$\boldsymbol{\mathfrak{E}}$$
] (in the LaTeX Fraktur font) originates from E for Euler. Many interesting problems in mechanics have been solved using Euler’s energy approach, [7]. The pioneering literature: “L. Euler, Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti,”4 demonstrated the original construction of the variational principle.

In Appendix F, the variational calculus is implemented within the context of scalar potentials. In Sect. F.2 an application to the steady heat flow problem is described. In Sect. F.1.2, as employed in Eq. (1.5b): [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{E}} = \boldsymbol{\mathfrak{I}} -\boldsymbol{\mathfrak{B}};\mbox{ same as Eq. (F.9)}& &{}\end{array}$$
]

 (1.7)



In Sect. 1.1.2 we considered an element with a single degree-of-freedom. However for multi degree-of-freedom systems, Euler’s variational formulation is valid. Therein, [image: 
$$\boldsymbol{\mathfrak{I}},\boldsymbol{\mathfrak{B}},\boldsymbol{\mathfrak{E}}$$
] are all scalars but functions of a column matrix [image: 
$$\left \{r\right \}$$
] as described in Appendix F. Minimization of [image: 
$$\boldsymbol{\mathfrak{E}}$$
] with respect to each entry in [image: 
$$\left \{r\right \}$$
] is equivalent to complying with a number of equilibrium statements that can be a system of ordinary differential equations or partial differential equations. Physical interpretations of [image: 
$$\boldsymbol{\mathfrak{I}},\boldsymbol{\mathfrak{B}},\mbox{ and }\boldsymbol{\mathfrak{E}}$$
] make the variational formulation very attractive.

                
                  
                
                
                  
                
              
In essence, Euler constructed a scalar (functional5) whose stationary value yields a set of corresponding partial differential equations that are known as Euler–Lagrange equations. Hilbert’s nineteenth problem is related to most of our analyses in mathematical physics that are amenable to regular variational problems
6 of elliptic partial differential equations.7


1.1.3.2 Rayleigh
Lord Rayleigh, in 1900 completed his work of optimizing the energy potential, Eq. (1.5b), to estimate system unknowns. Notably, his solutions to the eigenvalue problem to estimate natural frequencies is very popular among engineers. The associated eigenfunctions are known as Rayleigh modes. During his leadership at the Cavendish Laboratory, Cambridge, UK, from 1879 to 1884 followed by his continued experimental work and mathematical approximations until 1905 at Terling, Essex, UK, Lord Rayleigh included his observed response profiles, mainly from optics and vibrating systems, as Rayleigh modes. Due to the physical significance of the Rayleigh modes, we can employ the Rayleigh Principle to approximate static solutions as well.
A set of observed deformation patterns can constitute Rayleigh modes. Obviously, for the continuum mechanics topic of elasticity, which needs a coupled vector field formulation, the Rayleigh modes should be vectors. They are the test functions for weak solutions in the non-classical sense of distributions. For elasticity problems, the test function vectors must be coupled via the Poisson’s ratio.
The key to Lord Rayleigh’s success has been that the weights of those test functions or the modal participation factors for the Rayleigh modes appeared as unknowns in a linear system of algebraic equations. The determinants are always non-zero due to the positive definiteness of the Eulerian scalar [image: 
$$\boldsymbol{\mathfrak{E}}.$$
]

We can use the form in Eq. (1.5b) to solve for Δ
            
                  o
                 caused by a force F
            
                  o
                 in the stretching mode:
                  
                 
                  
                 
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ minimize: }\boldsymbol{\mathfrak{E}}\Big(\varDelta \Big) = \frac{1} {2}\ k\ \varDelta ^{2} - F_{ o}\ \varDelta;\quad \frac{d} {d\varDelta }\boldsymbol{\mathfrak{E}}\Big(\varDelta \Big) = 0 \Rightarrow \varDelta _{o} = \frac{F_{o}} {k} & &{}\end{array}$$
]

 (1.8)




1.1.3.3 Ritz
In 1908, 
                  
                 Walther Ritz deployed Euler’s calculus of variation to generate approximate solutions for elliptic boundary value problems of mathematical physics. He analyzed plate bending problems by approximately solving the partial differential equation with a set of linear algebraic equations.

1.1.3.4 Courant
The Ritz’ formulation was followed up by 
                  
                 Richard Courant. In 1943 he introduced triangulation on the section of a non-circular shaft to approximate its torsional stiffness properties. Both Ritz and Courant carried out all calculations by hand and demonstrated significant accuracy.

1.1.3.5 Clough
In 1960, 
                  
                 Ray W. Clough generalized Courant’s method to solve problems of structural mechanics by substituting the calculus of variation by its physical analog—virtual work principle, which is more intuitive8—and christened the formalism to be the finite element method. This harnesses the ever-growing power of digital computation in every field of engineering mechanics, e.g. vide Fig. 1.5, not just limited to simple bars or plane elements.
[image: A300727_1_En_1_Fig5_HTML.gif]
Fig. 1.5A septagon with a side node for a bio-morphometric application in [9]






1.1.3.6 Summary
Euler minimized an energy-like scalar to yield governing (partial or ordinary) differential equations of equilibrium and to simultaneously generate the appropriate boundary conditions. Lord Rayleigh identified Euler’s scalar using potential and kinetic energy. He calculated approximate natural frequencies associated with assumed mode shapes. To determine plate deflections, Ritz generated a convergent series using polynomials of increasing order as Rayleigh modes. Courant triangulated an arbitrary cross-section, and implemented the Ritz construction on each triangle to estimate scalar dependent variables of torsion. Clough systematized Courant’s triangulation for the coupled vector field problem of elasticity. He identified nodal forces and stiffness matrices to be virtual work quantities to carry out stress analysis by computers.

This is a very short history of FEM’s inception!




1.2 The Bar Element: Spring’s Continuum Analog

            
              
            
            
              
            
          
The force F in Fig. 1.1 elongates the spring by a length Δ. In the bar model of Fig. 1.6, the free end force and displacement are R and r, respectively. In this single degree-of-freedom system, the spring stiffness k
        
              s
             relates R and r: [image: 
$$\displaystyle\begin{array}{rcl} \overbrace{R = k_{s}\ r}^{\mbox{ scalar equation}}\quad \leftrightarrow \quad \overbrace{\left \{R\right \}_{1\times 1} = \left [k\right ]_{1\times 1}\ \left \{r\right \}_{1\times 1}}^{\mbox{ vector equation in matrix form}}& &{}\end{array}$$
]

 (1.9)

 
              
             
              
             
              
            
[image: A300727_1_En_1_Fig6_HTML.gif]
Fig. 1.6The bar element is the segment between the two nodes indicated with black disks. The axial displacement field is u(x); the external force R is positive along x








              
             
              
             In Fig. 1.6, the continuum displacement field u(x) is positive along x. 
The left end of the bar, in Fig. 1.6, is held fixed, then at x = 0, u(0). The right end undergoes a displacement r under the action of the axial force R. Thus, when x = L, u(L) = r. What happens to u(x),  0 ≤ x ≤ L, is of interest in continuum analysis. In this textbook, we assume u(x) to be “small” so that the linearity assumption illustrated in Figs. 1.3 and 1.4 does not incur any appreciable error.9


Smallness is an abstract mathematical concept. For an angle ɛ, given a numerical tolerance [image: 
$$\bar{\delta },$$
] e.g. the error bound, we call ɛ to be small when: [image: 
$$\displaystyle\begin{array}{rcl} \vert \varepsilon -\sin (\varepsilon )\vert <\bar{\delta };\mbox{ then, we can freely use: }\sin (\alpha )\cong \tan (\alpha )\cong \alpha & &{}\end{array}$$
]

 (1.10)

 
              
             
              
             
              
             For example, for calculations to be correct to five decimal places, a shear strain, which is measured by a change in angle (usually denoted by γ), less than 3% should qualify to be small:
since γ − sin(γ) < 0. 44998 10−5, when γ < 0. 03. 
1.2.1 A Clarification of Notations
The spring in Fig. 1.7 is a three-dimensional body.10 We are interested in extension, not bending nor torsion. In the uni-axial model of Fig. 1.3, the externally applied force is shown as F. In the idealized bar problem the internal tensile force is indicated by P. In Fig. 1.7, the externally applied force R and the end displacement r are along the same axis. This notation of r, R will be employed henceforth for nodal variables.
[image: A300727_1_En_1_Fig7_HTML.gif]
Fig. 1.7The spring, a three-dimensional object, is idealized as an axially loaded member; the top and bottom sketches represent the spring in undeformed and deformed states. Force and displacement at DOF (degree-of-freedom) are R, r








                
               The finite element method can systematically model any complicated axial and rotational deformations. Consistent with Sect. 1.2, [image: 
$$\left \{r\right \}$$
] and [image: 
$$\left \{R\right \}$$
] will respectively indicate the collections of the displacement and force quantities. It should be stated that in this chapter we will consider only static deformations.11


1.2.2 The Linear Displacement Field in a Bar
In the continuum bar, shown in Fig. 1.8, the displacement u(x) of an intermediate point at x, shown in Fig. 1.9, is needed to calculate the strain ε(x). 
                
              
[image: A300727_1_En_1_Fig8_HTML.gif]
Fig. 1.8The Rayleigh axial extension mode: the internal force P is positive in tension




[image: A300727_1_En_1_Fig9_HTML.gif]
Fig. 1.9Point at x displaces to x + u(x)





For the spring shown in Fig. 1.1, we focused on each end point and assumed the displacement in between to be a straight line. Without any intermediate axial force intensity, as in Fig. 1.8, u(x), in Fig. 1.9, is a linear function in x. 
The axial tensile strain ε(x), by definition,12 is: 
                
               [image: 
$$\displaystyle\begin{array}{rcl} \epsilon (x) = \frac{d} {dx}u(x);\quad \mbox{ without higher order derivatives of }u& &{}\end{array}$$
]

 (1.11a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ and for a linear function }u(x),\epsilon = \frac{\varDelta } {L}: \mbox{ a constant, }vide\ \text{ Fig.1.8}& &{}\end{array}$$
]

 (1.11b)




1.2.3 The Linear Constitutive Property
We start with the concept that as a body is deformed, internal forces of reactions are called into play. This internal force is depicted by P in Fig. 1.8. For bar problems, it suffices to define the stress σ to be the uniform area intensity of the internal force. Thus for a prismatic bar of cross-section [image: 
$$\mathcal{A}:$$
] 
                
               
                
               
                
               
                
               
                
               
                
               [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ the bar stress: }\sigma = \frac{P} {\mathcal{A}}& &{}\end{array}$$
]

 (1.12)



The initial elastic region is shown in Fig. 1.10 with the shaded triangle.
[image: A300727_1_En_1_Fig10_HTML.gif]
Fig. 1.10Uniaxial test on a mild steel specimen





The shaded regions in Figs. 1.4 and 1.10 correspond to the linear elastic domains for the spring and bar, respectively. The 
                
              Hooke’s law states: 
                
              

                
               [image: 
$$\displaystyle\begin{array}{rcl} \frac{\sigma } {\epsilon } = \mathcal{E}\mbox{: a constant, known as the Young's modulus}& &{}\end{array}$$
]

 (1.13)

 Throughout this textbook we will only study linear systems.
Linear analysis in engineering mechanics necessarily requires small strains from Eq. (1.11a), and strain independent Young’s moduli, as in Eq. (1.13) related to the linear loading paths of Figs. 1.3 and 1.4. Now, two important relations, for [image: 
$$\mathcal{E}\mbox{ and }\varDelta$$
] from Eqs. (1.11a) and (1.11b), are: [image: 
$$\displaystyle\begin{array}{rcl} \mathcal{E} = \frac{P/\mathcal{A}} {\varDelta /L} = \frac{P\ L} {\varDelta \ \mathcal{A}} \mbox{ and }\varDelta = \frac{P\ L} {\mathcal{A}\ \mathcal{E}}& &{}\end{array}$$
]

 (1.14)

 We can define the beam stiffness for the stretching mode to be: [image: 
$$\displaystyle\begin{array}{rcl} k_{\phi } = \frac{P} {\varDelta } = \frac{\mathcal{A}\ \mathcal{E}} {L};\ \mbox{ the suffix}\ \phi \ \mbox{ in}\ k_{\phi }\ \mbox{ is for the modal designation}& &{}\end{array}$$
]

 (1.15)




1.2.4 Axial Stiffness of Uniform Bars
Here we assume that in Fig. 1.6 the cross-section area [image: 
$$\mathcal{A}$$
] and the Young’s modulus [image: 
$$\mathcal{E}$$
] do not vary with the axial coordinate x. That is to say, in a uniform bar [image: 
$$\mathcal{A}\mbox{ and }\mathcal{E}$$
] remain constant.
Linear (stress) analyses relate the axial tensile stress σ and the associated small strain ε, as clarified in Eq. (1.11a), by: [image: 
$$\displaystyle\begin{array}{rcl} \sigma = \mathcal{E}\ \epsilon;\quad \mathcal{E}: \mbox{ the Young's modulus is independent of }\epsilon & &{}\end{array}$$
]

 (1.16)

 The total internal force P is indeed the integrated effect of the assumed uniform stress distribution over the cross section [image: 
$$\mathcal{A}$$
], leading to: [image: 
$$\displaystyle\begin{array}{rcl} P =\int _{\mathcal{A}}\sigma \ d\mathcal{A};\mbox{ assuming }\sigma \mbox{ to be constant: }\sigma =\sigma _{o}& &{}\end{array}$$
]

 (1.17a)

 [image: 
$$\displaystyle\begin{array}{rcl} =\sigma \ \mathcal{A} = \mathcal{A}\ \sigma _{o}& &{}\end{array}$$
]

 (1.17b)

 From Eq. (1.11a): [image: 
$$\displaystyle\begin{array}{rcl} u(x) =\int _{ 0}^{x}\epsilon (x)\ dx& &{}\end{array}$$
]

 (1.18)



Noting the end displacements: [image: 
$$\displaystyle\begin{array}{rcl} u(x) = 0\mbox{ and }u(L) =\varDelta & &{}\end{array}$$
]

 (1.19)

 
                
               The resulting elongation Δ is the integral of the strain over the entire bar: [image: 
$$\displaystyle\begin{array}{rcl} \varDelta =\int _{ 0}^{L}\epsilon (x)\ dx = \frac{P\ L} {\mathcal{A}\ \mathcal{E}} \rightarrow \quad \mbox{ stiffness: }k_{\phi } = \frac{P} {\varDelta } = \frac{\mathcal{A}\ \mathcal{E}} {L} & &{}\end{array}$$
]

 (1.20)

 In this uniaxial mode we have emphasized the stiffness with a suffix ϕ. Compare k
          
                ϕ
               of Eq. (1.20) with the spring stiffness k
          
                s
               in Eq. (1.9) that was derived on the basis of the uniaxial load-extension approximation (the actual spring problem in Fig. 1.7 is indeed a three-dimensional object). Observe, those two stiffnesses, k
          
                ϕ
               and k
          
                s
               are identical.
It should be emphasized that for real-world systems: [image: 
$$\displaystyle\begin{array}{rcl} \mathcal{A},\ \mathcal{E}> 0 \rightarrow \mathcal{A}\mathcal{E}> 0& &{}\end{array}$$
]

 (1.21a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ even for nonuniform: }\mathcal{A}(x),\ \mathcal{E}(x) \rightarrow \mathcal{A}(x)\mathcal{E}(x)> 0& &{}\end{array}$$
]

 (1.21b)

 This assures the positivity (or positive definiteness in a generalized sense) of the strain energy stored in a deformed body.

1.2.5 Bars Sustaining Distributed Load Intensities


                
               For distributed loading13 f(x), in Fig. 1.11: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ equilibrium equation:}\frac{dF} {dx} + f(x) = 0;\mbox{ generally for }\mathcal{A}(x)\ \mathcal{E}(x)> 0& &{}\end{array}$$
]

 (1.22a)

 [image: 
$$\displaystyle\begin{array}{rcl} - \frac{d} {dx}\left (\mathcal{A}(x)\ \mathcal{E}(x)\frac{du(x)} {dx} \right ) = f(x)\mbox{: variable axial loading}& &{}\end{array}$$
]

 (1.22b)

 Any non-zero f(x) will render u(x) to be non-linear in x. For a piecewise linear model we connect a number of pieces as shown in Fig. 1.12.
[image: A300727_1_En_1_Fig11_HTML.gif]
Fig. 1.11Tensile forces F
                  1, F
                  2 are positive in tension not along the positive x-direction. Distributed external force f(x) is positive along positive x





[image: A300727_1_En_1_Fig12_HTML.gif]
Fig. 1.12Piece-wise linear approximation and the analytical continuous displacement





In the bar assembly system of Fig. 1.12, serendipitously only between nodes 2 and 3 the linear approximation (thin dashed line) corresponded closely to the analytical result (heavy dashed line).
1.2.5.1 External Axial Forces and Axial Displacement Plotted Normal to the Axis for Clarity
The degrees-of-freedom for the bar are located at the end nodes in Fig. 1.13.
[image: A300727_1_En_1_Fig13_HTML.gif]
Fig. 1.13Degrees-of-freedom are always positive along the positive coordinate direction(s); r
                    1, r
                    2 are shown positive along the positive x-direction





For clarity, the axial force f(x) and the accompanying displacement u(x) will be plotted perpendicular to the bar axis in Figs. 1.14 and 1.15.
[image: A300727_1_En_1_Fig14_HTML.gif]
Fig. 1.14Displacement u(x) is plotted perpendicular to the bar axis; this should not be confused with Fig. 1.13 where r
                    1, r
                    2 are shown with horizonal arrows





[image: A300727_1_En_1_Fig15_HTML.gif]
Fig. 1.15Skin force intensity, f(x), is plotted perpendicular to the bar axis








1.3 Nodal Shape Functions: The Fundamental Objects in Finite Element Approximations
A shape function, ϕ
        
              i
            (x), is unity at the node i and vanishes at all other nodes.14 In Fig. 1.13 the nodes are labeled i = 1, 2. Both x and u(x) are measured along the bar axis. For the uniform bar, the stiffness [image: 
$$\mathcal{A}(x)\ \mathcal{E}(x)$$
] is a constant, [image: 
$$\mathcal{A}\mathcal{E}$$
]. Shape functions are derived from u(x) with f(x) = 0 in Eq. (1.22b). Hence a linear ϕ(x) is the starting point. [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ Let }\phi _{i}(x) = c_{i1}\alpha _{1} + x\ c_{i2}\alpha _{2};\quad \phi _{1}(a) = c_{11}\ \alpha _{1}\ + c_{12}\ \alpha _{2}\ a = 1& &{}\end{array}$$
]

 (1.23a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ in other words:}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \phi _{1}(b) = c_{11}\ \alpha _{1}\ + c_{12}\ \alpha _{2}\ b = 0& &{}\end{array}$$
]

 (1.23b)

 [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \phi _{1}(x) \\ \phi _{2}(x)\end{array} \right \} = \left [\begin{array}{*{10}c} c_{11} & c_{12} \\ c_{12} & c_{22} \end{array} \right ]\ \left \{\begin{array}{*{10}c} \alpha _{1} \\ x\ \alpha _{2}\end{array} \right \}\ \ \phi _{2}(a) = c_{21}\ \alpha _{1}\ + c_{22}\ \alpha _{2}\ a = 0& &{}\end{array}$$
]

 (1.23c)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ lead to equations on the right: }\ \ \phi _{2}(b) = c_{21}\ \alpha _{1}\ + c_{22}\ \alpha _{2}\ b = 1& &{}\end{array}$$
]

 (1.23d)

 
              
             
              
             
              
             The solution of Eqs. (1.23a) through (1.23d) is: [image: 
$$\displaystyle\begin{array}{rcl} \left \{c_{11}\ \alpha _{1},c_{12}\ \alpha _{2},c_{21}\ \alpha _{1},c_{22}\ \alpha _{2}\right \} = \left \{- \frac{b} {a - b}, \frac{1} {a - b}, \frac{a} {a - b},- \frac{1} {a - b}\right \}& &{}\end{array}$$
]

 (1.24a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ leading to: }\{\phi _{1}(x),\phi _{2}(x)\} = \left \{\frac{x - b} {a - b}, \frac{a - x} {a - b}\right \}& &{}\end{array}$$
]

 (1.24b)



In terms of the length of the bar L = b − a, ϕ
        1(x), ϕ
        2(x) are: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ by setting: }a = 0,\ b = L \rightarrow \{\phi _{1}(x),\phi _{2}(x)\} = \left \{\frac{L - x} {L}, \frac{x} {L}\right \}& &{}\end{array}$$
]

 (1.25)

 In Eqs. (1.24b) and (1.25), ϕ
        1(x) + ϕ
        2(x) is independent of x, and is unity (vide Sect. 1.4.3.2). This guarantees the exact interpolation of uniform fields.
1.3.1 Conjugating u(x) with f(x)
The work due to a displacement field acting on a force field15 yields [image: 
$$\boldsymbol{\mathfrak{B}}$$
] as in Eqs. (1.5a) and (1.7). Since it is obtained by integrating u(x) f(x) over the bar length, [image: 
$$\boldsymbol{\mathfrak{B}}$$
] depends on the shape functions, ϕ
          
                i
              . Intuitively, the strain energy [image: 
$$\boldsymbol{\mathfrak{I}}$$
] will invariably depend on u(x), so in turn [image: 
$$\boldsymbol{\mathfrak{E}}$$
] is a functional of ϕ
          
                i
              . The equilibrium statements emerge when [image: 
$$\boldsymbol{\mathfrak{E}}$$
] is optimized with respect to ϕ
          
                i
              . 

1.3.2 Axial Displacement in Terms of the End Nodal Displacements and Shape Functions
For uniform bars, where the constant axial stiffness: [image: 
$$\mathcal{A}(x)\ \mathcal{E}(x) = \mathcal{A}\ \mathcal{E},$$
] the end displacements will be: r
          1, r
          2. This is represented as a column matrix: [image: 
$$\displaystyle\begin{array}{rcl} \left \{r\right \} = \left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \};\ \mbox{ we approximate}\ u(x)\ \mbox{ to be}\ linear,\ \mbox{ also:}& &{}\end{array}$$
]

 (1.26a)

 [image: 
$$\displaystyle\begin{array}{rcl} \because \phi _{1}(x)\mbox{ and }\phi _{1}(x)\mbox{ are linear: }u(x) = r_{1}\ \phi _{1}(x) + r_{2}\ \phi _{2}(x)& &{}\end{array}$$
]

 (1.26b)

 In Eqs. (1.25) and (1.26b), ϕ
          1(x) and ϕ
          2(x) are linear16 in x, so is u(x), vide Fig. 1.14.
The visual implication of linearity in u(x) is a reminder that, in the absence of any precise change of [image: 
$$f(x)\mbox{ or }\mathcal{A}(x)\ \mathcal{E}(x)$$
], a two-node element in Fig. 1.13, cannot pick up any more detail beyond the central displacement (r
          1 + r
          2)∕2 and the relative displacement of the two ends: (r
          2 − r
          1).17

In the subsequent Sect. 1.5, we approximate the nodal forces R
          1, R
          2 due to a distributed loading f(x), the forcing function f(x) in Eq. (1.22b) (the skin force, vide Fig. 1.18)—plotted perpendicular to the x-axis.
1.3.2.1 The Rayleigh Modes for the Bar Element: Their Linear Combinations Yield the Bar Shape Functions
Due to the cardinal importance of the basis or shape functions, in addition to Eqs. (1.24a) and (1.24b), ϕ
            
                  i
                (x) will also be determined from the continuum mechanics approach in Eqs. (1.97) and (1.98). This important derivation is repeated within different contexts, to understand the applicability of the method from various approximating perspectives.
In Eqs. (1.23a) through (1.23d) to obtain the Rayleigh modes, the modal weights α
            1 and α
            2, which capture the rigid body and the extension modes respectively, 
                  
                 can be assigned any non-zero values, however: [image: 
$$\displaystyle\begin{array}{rcl} \alpha _{1} = 1\mbox{ and }\alpha _{2} = 1: \mbox{ are obvious choices}& &{}\end{array}$$
]

 (1.27)

 In the matrix form, Eqs. (1.23a) through (1.23d) are simplified to: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \phi _{1}(x) \\ \phi _{2}(x)\end{array} \right \}& =& \left [G\right ]\left \{\begin{array}{*{10}c} 1\\ x \end{array} \right \};\mbox{ where }\left \{\begin{array}{*{10}c} 1\\ x \end{array} \right \}: \mbox{ the Rayleigh mode}\mbox{ and }\left [G\right ] = \left [\begin{array}{*{10}c} c_{11} & c_{12}\\ c_{12 } & c_{22} \end{array} \right ] \\ & & \qquad \left [G\right ]: \mbox{ modal to nodal transformation matrix} {}\end{array}$$
]

 (1.28)





1.3.3 Verification of the Linear Form
With only boundary forces, the second order ordinary differential equation for the displacement function u(x) is: [image: 
$$\displaystyle\begin{array}{rcl} \frac{d^{2}u} {dx^{2}} = 0\quad \mbox{ i.e., } \frac{d^{2}\phi _{1}} {dx^{2}} = 0\mbox{ and } \frac{d^{2}\phi _{2}} {dx^{2}} = 0& &{}\end{array}$$
]

 (1.29a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ with end conditions: }\phi _{1}(0) = 1,\ \phi _{1}(L) = 0& \rightarrow \phi _{1}(x) = 1 - \frac{x} {L}&{}\end{array}$$
]

 (1.29b)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ similarly: }\phi _{2}(0) = 0,\ \phi _{2}(L) = 1 \rightarrow \phi _{2}(x) = \frac{x} {L}& &{}\end{array}$$
]

 (1.29c)

 These are identical with the results in Eq. (1.25).
Courant [3] termed the prescribed values of the response functions to be the rigid boundary conditions. These specifications are also known as the Dirichlet boundary conditions.

1.3.4 Assumptions in Rayleigh Modes
Lord Rayleigh, in [12], proposed an effective approximation from experimental observations. He observed (in the Cavendish Laboratory, Cambridge University, UK) deformed shapes of various structural elements and made a generalization using the simplest experimental setup. Surprisingly, even for very complex structural systems, his (hand) calculations predicted the elastic behavior quite accurately for engineering use! Within the context of the bar problem, he used the displacement shapes of uniform bars under end loads!!
All finite element models must contain constant and linear shape functions. This is an important observation because the higher dimensional analogs of the bar, triangles and tetrahedron in two- and three-dimensions, have linear shape functions in (x, y) and (x, y, z). Elements that contain only constant and linear shape functions are termed simplex finite elements.
Following Ritz’s insight, a sequence of polynomials can be assumed to constitute a set of Rayleigh modes. But first, those polynomials should possess some quality in terms of the physics of the problem. When each polynomial satisfies the homogeneous field equation then it is possible to sequentially improve the solution by incorporating the next higher order polynomial. In Courant’s terms, admissible functions, for the Ritz formulation [13], can be conceived to be the polynomials that satisfy the equilibrium condition.
It is essential to exactly represent any constant or linear displacement profile u(x) in all finite element systems. Ritz and Courant [3, 13] emphasized this requirement in their variational formulation that provides the foundation for the finite element method, and this textbook.


1.4 Element Stiffness Matrices of Bar Elements
Figure 1.13 shows the two bar degrees-of-freedom where we can assign independent displacements. The ith column of the element stiffness matrix [image: 
$$\left [k\right ]$$
] contains the nodal forces when that ith degree-of-freedom is displaced by unity and all other nodes are held fixed, vide Figs. 1.16a and b. This definition of a stiffness matrix [image: 
$$\left [k\right ]$$
] prevails for all finite element systems.
[image: A300727_1_En_1_Fig16_HTML.gif]
Fig. 1.16Terms of [image: 
$$\left [k\right ]$$
]. (a) The first column of [image: 
$$\left [k\right ]$$
] are the nodal forces when the first degree-of-freedom is displaced by unity and the second degree-of-freedom is locked; R
                
                      i
                     is the ith nodal force. (b) The second column of [image: 
$$\left [k\right ]$$
] is illustrated





1.4.1 Element Stiffness Matrix for a Uniform Bar
Using Eq. (1.20), from Fig. 1.16: [image: 
$$\displaystyle\begin{array}{rcl} R_{1} = k_{\phi }\mbox{ and }R_{2} = -k_{\phi }\longrightarrow k_{11} = k_{\phi }\mbox{ and }k_{21} = -k_{\phi }& &{}\end{array}$$
]

 (1.30)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ and: }R_{2} = k_{\phi }\mbox{ and }R_{1} = -k_{\phi }\longrightarrow k_{12} = -k_{\phi }\mbox{ and }k_{22} = k_{\phi }& &{}\end{array}$$
]

 (1.31)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ leading to: }\left \{\begin{array}{*{10}c} R_{1} \\ R_{2}\end{array} \right \} = k_{\phi }\ \left [\begin{array}{*{10}c} \ \ 1 &\ \ -1\\ -1 & \ \ \ \ 1 \end{array} \right ] = \left (\frac{\mathcal{A}E} {L} \right )\left [\begin{array}{*{10}c} \ \ 1 &\ \ -1\\ -1 & \ \ \ \ 1 \end{array} \right ]& &{}\end{array}$$
]

 (1.32)



In Eq. (1.32), the sum of rows or columns of the element stiffness matrix is zero. This confirms the equilibrium condition of nodal forces.

1.4.2 Stiffness Matrix of a Tapered Bar
Starting from the fact that the sum of rows and columns of the element stiffness matrix must be zero, for a bar with end nodal degrees-of-freedom the form of the element stiffness matrix, for the non-uniform bar shown in Fig. 1.17, must be: [image: 
$$\displaystyle\begin{array}{rcl} \left [k\right ] = k_{v}\left [\begin{array}{*{10}c} \ \ 1 &\ \ -1\\ -1 & \ \ \ \ 1 \end{array} \right ];k_{v}> 0\mbox{ is unknown}& &{}\end{array}$$
]

 (1.33)

 In Eq. (1.33) the subscript v reminds us of the variable stiffness along the bar. Now the question is how to determine k
          
                v
               in Eq. (1.33).
[image: A300727_1_En_1_Fig17_HTML.gif]
Fig. 1.17A bar with variable [image: 
$$\mathcal{A}(x),\mathcal{E}(x)$$
]






From Fig. 1.16b, to satisfy static equilibrium: [image: 
$$\displaystyle\begin{array}{rcl} k_{22} + k_{12} = 0;\mbox{ also, }\sigma (x) = \frac{k_{22}} {\mathcal{A}(x)} \rightarrow \epsilon (x) = \frac{k_{22}} {\mathcal{A}(x)\ \mathcal{E}(x)}& &{}\end{array}$$
]

 (1.34)

 In Fig. 1.16b, let u(x) be the axial stretching function, then u(0) = 0, u(L) = 1, then from the strain ε(x): [image: 
$$\displaystyle\begin{array}{rcl} \int _{0}^{L}\epsilon (x)\ dx = 1 =\int _{ 0}^{L} \frac{k_{22}} {\mathcal{A}(x)\ \mathcal{E}(x)}\ dx = k_{22}\int _{0}^{L} \frac{dx} {\mathcal{A}(x)\ \mathcal{E}(x)}& &{}\end{array}$$
]

 (1.35a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ then, in Eq. (1.33): }k_{v} = k_{22} = \frac{1} {\int _{0}^{L} \frac{dx} {\mathcal{A}(x)\ \mathcal{E}(x)}}& &{}\end{array}$$
]

 (1.35b)

 For a uniform bar: [image: 
$$\mathcal{A}(x)\ \mathcal{E}(x) = \mathcal{A}\mathcal{E}$$
] and then [image: 
$$k_{22} = \frac{\mathcal{A}\mathcal{E}} {L}$$
] as expected.

1.4.3 The General Definition of Element Stiffness Matrix
Throughout any finite element method, we employ the stiffness formulation, i.e., investigate the force and deformation distributions under a prescribed set of basis functions that are characteristic displacements.18 This is in contrast to the flexibility formulation, where the “basis functions” are force distributions. In structural mechanics the former and the latter are termed to be the displacement and force methods, respectively.
From the point of view of mathematical elegance and computational efficiency, the matrix notation is very appealing. We will collect the nodal forces and displacements, R
          
                i
               and r
          
                j
              , respectively in the column matrices [image: 
$$\left \{R\right \}$$
] and [image: 
$$\left \{r\right \}$$
]. They are related via the stiffness matrix [image: 
$$\left [k\right ]$$
]
19: [image: 
$$\displaystyle\begin{array}{rcl} \left \{R\right \} = \left [k\right ]\ \left \{r\right \}& &{}\end{array}$$
]

 (1.36)



A typical element k
          
                ij
               of [image: 
$$\left [k\right ]$$
] is the virtual work done20 by a displacement profile u
          
                i
               against the distributed skin force profile f
          
                j
              , thus: [image: 
$$\displaystyle\begin{array}{rcl} k_{ij} =\int _{ 0}^{L}u_{ i}(x)\ f_{j}(x)\ dx;\quad u_{i},f_{j}\mbox{ are explained below}& &{}\end{array}$$
]

 (1.37)



The displacement profile u
          
                i
              (x) is of unit value at the node i and vanishes at all other node(s). The skin force f
          
                j
              (x) is needed to sustain a displacement pattern u
          
                j
              (x) that is unity at node j and vanishes at all other node(s).
For linear systems, the principle of superposition states that: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ with arbitrary $\left \{r\right \}$: }R_{i} =\sum \limits _{j}k_{ij}\ r_{j} \rightarrow \left \{R\right \} = \left [k\right ]\ \left \{r\right \}& &{}\end{array}$$
]

 (1.38)



Since k
          
                ij
               are to be evaluated as virtual work quantities, to be consistent, all nodal forces, R
          
                i
              , must also be interpreted as virtual work quantities.

In Eq. (1.37), we employ the shape functions to be the u
          
                i
              (x) and u
          
                j
              (x), where the latter is responsible for the distributed force f
          
                j
              (x), then: [image: 
$$\displaystyle\begin{array}{rcl} u_{n}(x) =\phi _{n}(x);\mbox{ here }n: 1,2& &{}\end{array}$$
]

 (1.39)



The principal notion of Sect. 1.3 is further reinforced here in that the shape functions are indeed the fundamental objects to generate physical quantities that include the stiffness matrix.21

1.4.3.1 Exact Axial Displacement in a Nonuniform Bar
Here, beam stiffness parameters, [image: 
$$\mathcal{A}(x)> 0,\mathcal{E}(x)> 0,$$
] vary independently.
Let us concentrate on ϕ
            2(x) of Fig. 1.16b: [image: 
$$\displaystyle\begin{array}{rcl} \phi _{2}(0) = 0,\mbox{ and }\phi _{2}(L) = 1& &{}\end{array}$$
]

 (1.40)



The exact displacement field u(x) from Eqs. (1.34) and (1.35a) is: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ for }r_{1} = o,;\quad \phi _{2}(x) = u(x) =\int _{ 0}^{x}\frac{du(x')} {dx'} \ dx';\mbox{ since }\phi _{2}(0) = 0& &{}\end{array}$$
]

 (1.41a)

 [image: 
$$\displaystyle\begin{array}{rcl} & & \mbox{ but }u(x) =\int _{ 0}^{x}\epsilon (x')\ dx'\mbox{ since }\frac{du} {dx} =\epsilon (x);\mbox{ then from Eq. (1.34)} \\ & & \phi _{2}(x) = u(x) = k_{22}\ \int _{0}^{x} \frac{dx'} {\mathcal{A}(x')\ \mathcal{E}(x')}x,\mbox{ since }k_{22}: \mbox{ constant, then} \\ & & \mbox{ from Eq. (1.40): }\phi _{2}(L) = k_{22}\int _{0}^{L} \frac{dx'} {\mathcal{A}(x')\ \mathcal{E}(x')} = 1,\mbox{ hence: } {}\end{array}$$
]

 (1.41b)

 [image: 
$$\displaystyle\begin{array}{rcl} k_{22} = \frac{1} {\int _{L}^{x} \frac{dx'} {\mathcal{A}(x')\ \mathcal{E}(x')}}& &{}\end{array}$$
]

 (1.41c)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ leading to: }\phi _{2}(x) = \left.\int _{0}^{x} \frac{dx'} {\mathcal{A}(x')\ \mathcal{E}(x')}\right /\int _{0}^{L} \frac{dx'} {\mathcal{A}(x')\ \mathcal{E}(x')}& &{}\end{array}$$
]

 (1.41d)

 [image: 
$$\displaystyle\begin{array}{rcl} & & \mbox{ Following similar steps,}\mbox{ we can show that:} \\ & & \phi _{1}(x) = 1 -\left (\left.\int _{0}^{x} \frac{dx'} {\mathcal{A}(x')\ \mathcal{E}(x')}\right /\int _{0}^{L} \frac{dx'} {\mathcal{A}(x')\ \mathcal{E}(x')}\right );\mbox{ details follow}{}\end{array}$$
]

 (1.41e)



We focus on ϕ
            1(x) in Fig. 1.16a, similar to Eq. (1.40), to obtain: [image: 
$$\displaystyle\begin{array}{rcl} \phi _{1}(0) = 1,\mbox{ and }\phi _{2}(L) = 0;r_{1} = 1,r_{2} = 0,u(x) =\phi _{1}(x)& &{}\end{array}$$
]

 (1.42)

 Observe the equilibrium statement: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ compressive: }k_{11} = -\mathcal{A}(x)\sigma (x) = -\mathcal{A}(x)\mathcal{E}(x)\epsilon (x)& &{}\end{array}$$
]

 (1.43)

 [image: 
$$\displaystyle\begin{array}{rcl} = -\mathcal{A}(x)\mathcal{E}(x)\frac{du(x)} {dx}: \mbox{ a constant}& &{}\end{array}$$
]

 (1.44)



We need to solve this ordinary differential equation with a particular solution that can be represented in the integral form.
This gives us an opportunity to review the basic solution procedure of ordinary differential equations in the quadrature form (i.e., with definite integral terms). By introducing a constant of integration α we can conclude: [image: 
$$\displaystyle\begin{array}{rcl} u(x) =\alpha -\int _{0}^{x} \frac{k_{11}\ dx'} {\mathcal{A}(x')\ \mathcal{E}(x')}\mbox{ since }u(0) = 1,\mbox{ then: }\alpha = 1& &{}\end{array}$$
]

 (1.45a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ but: }u(L) = 0 \rightarrow 1 = k_{11}\ \int _{0}^{x} \frac{\ dx'} {\mathcal{A}(x')\ \mathcal{E}(x')}\mbox{ leading to:}& &{}\end{array}$$
]

 (1.45b)

 [image: 
$$\displaystyle\begin{array}{rcl} u(x) =\phi _{1}(x) = 1 - \frac{\int _{0}^{x} \frac{\ dx'} {\mathcal{A}(x')\ \mathcal{E}(x')}} {\int _{0}^{L} \frac{\ dx'} {\mathcal{A}(x')\ \mathcal{E}(x')}};\mbox{ as in Eq. (1.41e)}& &{}\end{array}$$
]

 (1.45c)




                
                  
                
              

1.4.3.2 The Partition of Unity
The sum of all admissible interpolants must always be unity: [image: 
$$\displaystyle\begin{array}{rcl} \sum _{i\in \mbox{ the }full\ set}\phi _{i}(x) = 1;\mbox{ is known as }partition\ of\ unity& &{}\end{array}$$
]

 (1.46)

 The physical implication is that a constant function sampled at discrete stations should always yield that constant field irrespective of the domain characteristic. This is a necessary condition for a full set of interpolants. We verify Eq. (1.46) from Eqs. (1.41c) and (1.45c). The shape functions, or the bases, are indeed Courant’s admissible functions, [3], and interpolants for the fundamental displacement variable u(x). Their unknown weights are calculated for given loading and nodal displacement constraints.
The approximation entails the details of the displacement profile u(x) in between the nodes. When we solve the problem with the prescribed skin force intensity f(x), as in Eq. (1.22b), under the Rayleigh–Ritz formalism with Courant’s enhancement, we still regard the fluctuation of u(x) to be independent of the applied loading f(x). Assuming certain displacement profiles, we estimate the equivalent effects (in the energy norm) of the distributed loading when the nodal displacements, r
            1, r
            2 are evaluated. This is the reason why the finite element method restricts its vision only on nodes, and any finer details in between nodes are “overlooked.” This is the main approximation invoked throughout all displacement-based finite element methods.
It is extremely important to verify the partition of unity concept so that the virtual work principle could yield the (weak form of) equilibrium equations! This idea is repeatedly established in this textbook.



1.5 Equivalent Nodal Forces R
        1, R
        2 From f(x): As Virtual Work Quantities
A skin force distribution f(x) will introduce a variable stress σ(x). A spatial discretization error will invariably occur when this σ(x) is approximated by an “average” σ
        
              o
            . Observe, for a bar of cross-section [image: 
$$\mathcal{A}$$
]: [image: 
$$\displaystyle\begin{array}{rcl} R_{2} - R_{1} = \mathcal{A}\ \sigma _{o}: \mbox{ to obey static equilibrium}& &{}\end{array}$$
]

 (1.47)



In Fig. 1.18, the nodal forces R
        1, R
        2 are highlighted with elliptic contours to emphasize that there is no unique way to determine those from f(x). [image: A300727_1_En_1_Fig18_HTML.gif]
Fig. 1.18Equivalent nodal forces R
                1, R
                2 are positive along x. Integrated skin force f(x) and R
                1, R
                2 will maintain equilibrium





The equivalence R
        1, R
        2 of f(x) invokes the energy norm. Ritz [13] provided the mathematical rigor by following Rayleigh [12], as elaborated in [6]. Courant, in [3] interpreted R
        
              i
             like quantities from the variational calculus [5, 8] as natural boundary conditions.

Clough employed the principle of virtual work to approximately solve continuum problems by employing finite number of elements of finite size. On the other hand, Ritz constructed an approximation with finite number of test functions that are the elements of the solution space.

Exact differentials link the virtual work and the variational principle. To summarize, let us assume an energy like scalar potential Q(x, y, z) : 
              
             
              
             [image: 
$$\displaystyle\begin{array}{rcl} dQ& =& \left.\left (\frac{\partial Q} {\partial x} \right )\right \vert _{y,z}dx + \left.\left (\frac{\partial Q} {\partial y} \right )\right \vert _{y,z}dy + \left.\left (\frac{\partial Q} {\partial x} \right )\right \vert _{x,y}dz\quad \mbox{ in }\varOmega \\ & =& A(x,y,z)\ dx + B(x,y,z)\ dy + C(x,y,z)\ dz\mbox{: an }exact\text{ differential;}{}\end{array}$$
]

 (1.48a)

 Now, {A, B, C}22 is a conservative vector field, if: ∫dQ is path independent. This stationarity is identical with [image: 
$$\delta \boldsymbol{\mathfrak{I}} =\delta \boldsymbol{ \mathfrak{B}},$$
] when [image: 
$$Q =\boldsymbol{ \mathfrak{E}},$$
] vide Eq. (1.7). Recognize that [image: 
$$\delta \boldsymbol{\mathfrak{B}}$$
] is the external virtual work that makes virtual work and variational principle congruent. This is the reason why in Eq. (1.5a) we termed [image: 
$$\boldsymbol{\mathfrak{B}}$$
] “a work-like quantity,” because it is not a physical work but a virtual work. Clough identified nodal forces and stiffness matrices accordingly.
1.5.1 Virtual Work Principle: On the Basis of the Calculus of Variations
The purpose of this section is to establish the congruence, without raising conflict or confusion whatsoever, as far as the finite elements of this textbook are concerned, between the virtual work principle and variational calculus.

There are two very different ways that an engineer and an applied mathematician perceive the topics of non-classical solutions, related to the distributions theory in partial differential equations, [14]. Conventionally, in both of these viewpoints, the symbol δ precedes a function—like the displacement field u(x)—or a functional (function of functions)—like work or energy term W(u)—and terminologies such as the “virtual” quantity and the “variational” quantity are introduced by engineers and mathematicians, respectively.
A quadratic form 
                
               of an energy-like scalar is crucial in (the first order) calculus of variations. In Eq. (1.4), if we increase Δ by an infinitesimally small amount to Δ + δΔ, then the resulting internal strain energy becomes: [image: 
$$\displaystyle\begin{array}{rcl} \delta \mathfrak{I} = \boldsymbol{\mathfrak{I}}\Big(\varDelta +\delta \varDelta \Big) -\boldsymbol{\mathfrak{I}}\Big(\varDelta \Big) = \frac{1} {2}k\ (\varDelta +\delta \varDelta )^{2} -\frac{1} {2}k\ (\varDelta )^{2}& &{}\end{array}$$
]

 (1.49a)

 [image: A300727_1_En_1_Figa_HTML.gif]

 (1.49b)

 [image: 
$$\displaystyle\begin{array}{rcl} & =& F\ \delta \varDelta: \mbox{ reads as `internal force' times }\delta \varDelta {}\end{array}$$
]

 (1.49c)



1.5.1.1 Renaming the Variational Displacement δΔ as Virtual Displacement δΔ: Retaining the Notation δ

In the spirit of introducing the term virtual displacement δΔ, in Eq. (1.49a) we recognize [image: 
$$\delta \mathfrak{I}$$
] to be the virtual internal (or strain) energy. Then according to the first order calculus of variation, from Eqs. (1.49a) through (1.49c), we can state without any error: [image: 
$$\displaystyle\begin{array}{rcl} virtual\text{ internal work} = real\ \text{internal force } \times \ virtual\text{ displacement}& &{}\end{array}$$
]

 (1.50)

 The factor 1∕2, as in [image: 
$$\mathfrak{I},$$
] is not there, because the small virtual displacement was imposed instantaneously not gradually, when the internal force already existed in full. This is a significant observation so that [image: 
$$\mathfrak{I}\mbox{ and }\mathfrak{B}$$
] are not confused. To reiterate, [image: 
$$\mathfrak{I}$$
] develops infinitesimally, but [image: 
$$\mathfrak{B}$$
] is abrupt and sudden.
Instead of introducing the key concepts of variational calculus23 in the abstract mathematical form, we examine u(x), which pertains to a bar of nonuniform section of stiffness [image: 
$$\mathcal{A}\mathcal{E}(x),$$
] resulting from an external distributed loading f(x). Some important terminologies are elaborated next.


1.5.2 Independent Virtual Displacements at Nodes
To determine the end reaction R
          2 due a distributed f(x), a virtual displacement is applied at the right hand node, marked 2 in Fig. 1.13, while the left hand end is held fixed as shown in Fig. 1.19.[image: A300727_1_En_1_Fig19_HTML.gif]
Fig. 1.19Axial displacement u(x)—shaded gray—and the prescribed axial load intensity f(x)—as arrows—are plotted in the vertical direction. At node 2 of Fig. 1.13, a virtual displacement, δu
                  2 is applied. The virtual displacement distribution δu(x) is shown with the solid line. The integrated virtual work due to f(x) equals R
                  2 δu
                  2






The merit of the shape functions, as derived in Sect. 1.3, is that they translate the discrete end displacements, r
          1, r
          2 to the continuous field u(x). In the case of the end virtual displacement δu
          2 shown in Fig. 1.19, the resulting virtual displacement distribution becomes: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ from Eq. (1.25): }\overbrace{\delta u(x)}^{\mbox{ virtual field}} =\overbrace{\phi _{2}(x)}^{\mbox{ assumed shape function}}\ \overbrace{\delta u_{2}}^{\mbox{ virtual value}}& &{}\end{array}$$
]

 (1.51)



The counterpart of the internal virtual work of Eq. (1.50) is the external virtual work done by the action of f(x): [image: 
$$\displaystyle\begin{array}{rcl} \delta W_{f} =\int _{ 0}^{L}f(x)\ \delta u(x)\ dx =\int _{ 0}^{L}f(x)\ \delta u_{ 2}\ \phi _{2}(x)\ dx& &{}\end{array}$$
]

 (1.52)

 where the W
          
                X
               is the external virtual work done by the generic physical quantity X. In Eq. (1.52), X is f. 
                
              

As repeated after Eq. (1.50), the factor [image: 
$$\frac{1} {2}$$
] does not appear in Eq. (1.52). This is an important difference between the real and virtual quantities. The virtual displacement is imposed all of a sudden. The real deformation takes place gradually (this is the reason for [image: 
$$\frac{1} {2},$$
] vide Fig. 1.4). This cautionary comment is repeated several times in this textbook.
Now, the virtual work done by the end force R
          2 (without [image: 
$$\frac{1} {2}$$
]) will be: [image: 
$$\displaystyle\begin{array}{rcl} \delta W_{_{R_{ 2}}} = R_{2}\ \delta u_{2}& &{}\end{array}$$
]

 (1.53)

 The
                
               equilibrium statement, in a weak sense, can be obtained when we equate the virtual work quantities [image: 
$$\delta W_{_{R_{ 2}}}\mbox{ and }\delta W_{f}.$$
] Since the scalar variable, the virtual end displacement, δu
          2, is arbitrary (also small and instantaneous), the balance of virtual work leads to weak equilibrium from [image: 
$$\delta W_{_{R_{ 2}}} =\delta W_{f}$$
]: [image: 
$$\displaystyle\begin{array}{rcl} R_{2} =\int _{ 0}^{L}f(x)\ \phi _{ 2}(x)\ dx;\quad \mbox{ then } \rightarrow R_{1} =\int _{ 0}^{L}f(x)\ \phi _{ 1}(x)\ dx& &{}\end{array}$$
]

 (1.54)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ i.e.,}\ R_{i} =\int _{ 0}^{L}f(x)\ \phi _{ i}(x)\ dx;\quad i = 1,12& &{}\end{array}$$
]

 (1.55)



1.5.2.1 Superposition of Virtual Displacement Fields
We can impose two independent virtual displacements δu
            1and δu
            2 at the two ends, as shown in Fig. 1.20. The resulting virtual displacement field will be: [image: 
$$\displaystyle\begin{array}{rcl} \delta u(x) =\phi _{1}(x)\ \delta u_{1} +\phi _{2}(x)\ \delta u_{2}& &{}\end{array}$$
]

 (1.56)


[image: A300727_1_En_1_Fig20_HTML.gif]
Fig. 1.20Independent virtual displacement fields are in lighter and darker shades






The shape functions, ϕ
            
                  i
                , in Eq. (1.56), are analytical solutions of continuum mechanics problems. For discrete finite element systems, we denote the nodal shape function for the ith degree-of-freedom by [image: 
$$\mathfrak{n}_{i}.$$
] We make a subtle difference between shape functions defined at ends and at degrees-of-freedom—they are identical for the bar problem. For example, for an axial element, we use [image: 
$$\mathfrak{n}(x)$$
], for plane elements [image: 
$$\mathfrak{n}(x,y)$$
] and for three-dimensional ones, [image: 
$$\mathfrak{n}(x,y,z).$$
] 
                  
                 We now generalize Eq. (1.56) to a multi degree-of-freedom system with a total number of degrees-of-freedom j: [image: 
$$\displaystyle\begin{array}{rcl} \delta u(\cdots \,) =\sum _{ i=1}^{j}\mathfrak{n}_{ i}(\cdots \,)\ \delta u_{i}& &{}\end{array}$$
]

 (1.57)

 This property of superposition permits us to exploit the independence of δu
            
                  i
                 to construct the exact number of required equilibrium equations from a single statement of virtual work. This equivalence of the virtual work principle and a set of equilibrium equations is demonstrated next.



1.6 Global Equilibrium From the Virtual Work Principle
In this textbook, Clough’s classical displacement-based finite element formulation is pursued. All force-like variables are constructed as virtual work quantities. Now Quotation III of the Introduction24 can be appreciated more deeply. 
              
             Following this line of argument, since the bar stresses will be derived from the end forces, we can safely call the calculated stresses to be the “virtual work quantities.”
1.6.1 Determining Both R
          1, R
          2 Simultaneously

Arbitrary virtual displacements δu
          1 and δu
          2 indicate that their list: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \} =\delta \left \{\begin{array}{*{10}c} u_{1} \\ u_{2}\end{array} \right \} = \delta \left \{u\right \}\mbox{: a virtual displacement vector}& &{}\end{array}$$
]

 (1.58)

 whose action on the real force intensity f(x), shown in Fig. 1.19, mandates the balance of the virtual work due to f(x) and R
          1, R
          2: [image: 
$$\displaystyle\begin{array}{rcl} R_{1}\ \delta u_{1} + R_{2}\ \delta u_{2} =\int _{ 0}^{L}f(x)\Big(\mathfrak{n}_{ 1}(x)\ \delta u_{1} + \mathfrak{n}_{2}(x)\ \delta u_{2}\Big)\ dx;\ \mbox{ then:}& &{}\end{array}$$
]

 (1.59a)

 [image: A300727_1_En_1_Figb_HTML.gif]

 (1.59b)

 In the first integral of Eq. (1.59b), [image: 
$$\delta \!\left \{u\right \}$$
] is a multiplicative neutral.25 
                
               
                
               
                
              

1.6.1.1 Global Equilibrium and Homogeneous Fields
Partition of unity, vide Sect. 1.4.3.2, states: [image: 
$$\displaystyle\begin{array}{rcl} \mathfrak{n}_{1}(x) + \mathfrak{n}_{2}(x) = 1\mbox{ yields:}& &{}\end{array}$$
]

 (1.60a)

 [image: 
$$\displaystyle\begin{array}{rcl} global\ equilibrium: R_{1} + R_{2}& =\int _{ 0}^{L}f(x)\ dx:\ independent\text{ of }\mathfrak{n}_{i}(x)&{}\end{array}$$
]

 (1.60b)



Observe that the overall equilibrium in Eq. (1.60b) is contingent upon interpolating only a uniform field exactly, as stated in Eq. (1.60a). This is an instance of the duality principle [1] from functional analysis.26

The system equilibrium cannot be compromised in any problem. This is equally true for the exact interpolation of a uniform displacement field to be a necessary condition. This duality from the virtual work principle
27 furnishes the functional analysis-based argument [1] for Clough’s Quotation III of the Introduction. Thus R
            
                  i
                , which is obtained from the second integral of Eq. (1.59b), can be conceived to be a virtual work quantity.28


1.6.1.2 Weak Statement of Equilibrium from Virtual Work
We did not explicitly set the vector sum of forces to zero disregarding the displacement variable.
We use the energy principle to construct a weaker form of the equilibrium condition. A strong condition is depicted by the unique solution to differential equations, such as Eq. (1.22b). Therein on every infinitesimally small neighborhood, i.e., point-wise, all balance principles are guaranteed. On the other hand, the weak solution holds good in some “average” global sense.
The expression for individual R
            1, R
            2, in Eq. (1.59b), depends on the respective shape function [image: 
$$\mathfrak{n}_{1}(x),\mathfrak{n}_{2}(x)$$
]. However, in Eq. (1.60b), point-wise details of [image: 
$$\mathfrak{n}_{1}(x)\mbox{ and }\mathfrak{n}_{2}(x)$$
] are wiped out. This necessarily states that in order to construct the global equilibrium point-wise equilibrium can be violated by the choice of [image: 
$$\mathfrak{n}_{1}(x),$$
] so long as we maintain: [image: 
$$\displaystyle\begin{array}{rcl} \mathfrak{n}_{2}(x) = 1 - \mathfrak{n}_{1}(x),\quad \mbox{ for \textquotedblleft arbitrary\textquotedblright }\mathfrak{n}_{1}(x)& &{}\end{array}$$
]

 (1.61)

 This is the reason why we identify Eq. (1.60b) to be a weak statement of equilibrium.


1.6.2 Rigid Body Motion: Essential Rayleigh Modes for Zero Eigenvalues of [image: 
$$\left [k\right ]$$
]

All element stiffness matrices are symmetric and are positive semi-definite.29 
                
               
                
               The zero eigenvalues correspond to rigid body motion. For bars vide Fig. 1.21, a rigid body axial shift is indicated by Δ. [image: A300727_1_En_1_Fig21_HTML.gif]
Fig. 1.21A Rayleigh mode: rigid body motion in the bar





In Eq. (1.26a), r
          1 = r
          2 = Δ indicates the rigid body motion, [image: 
$$\left \{\begin{array}{*{10}c} \varDelta \\ \varDelta \end{array} \right \}$$
] is the eigenvector that corresponds to a zero eigenvalue, vide Eq. (B.19) Compare this with the rigid body Rayleigh mode in Fig. 1.8.


                
               The notation [image: 
$$\left \{\hat{I}\right \}$$
] indicates a column matrix whose every element is 1; and [image: 
$$\left \{\hat{0}\right \}$$
] has all zero column entries. Then from Eq. (1.36): [image: 
$$\displaystyle\begin{array}{rcl} \left \{R\right \} = \left [k\right ]\left \{r\right \} \rightarrow \left [k\right ]\left \{\hat{I}\right \}\ \varDelta = \left \{\hat{0}\right \}\mbox{ for all }\varDelta & &{}\end{array}$$
]

 (1.62)

 This signifies that the sum of each row in [image: 
$$\left [k\right ]$$
] must be zero, and due to symmetry of [image: 
$$\left [k\right ]$$
] the sum of its columns is zero as well. Thus: [image: 
$$\displaystyle\begin{array}{rcl} \sum \limits _{i}k_{ij} =\sum \limits _{j}k_{ij} = 0\mbox{ for all element stiffness matrices}& &{}\end{array}$$
]

 (1.63)

 which is an excellent statement to be verified when any element stiffness matrix is formulated. Furthermore, the physical meaning of the zero eigenvalue is that we do not need any force, as shown in Eq. (1.62), to impart a rigid body displacement that guarantees no straining. The net displacement is the result of rigid body displacement (with no strain) and the relative displacement of the end nodes caused by straining.


1.7 Stiffness Matrices with Respect to Degrees-of-Freedom in Transformed Coordinates
In general, we employ coordinate transformation, in order to transform p number of degrees-of-freedom to q number of degrees-of-freedom in a new system. An example is shown in Fig. 1.22, where p = 2 and q = 4.
[image: A300727_1_En_1_Fig22_HTML.gif]
Fig. 1.22An inclined truss element; axial DOFS: r, R; and transformed ones: r
                ∗, R
                ∗
              






            
              
            
          
The variables [image: 
$$\left \{R\right \},\left \{r\right \}\mbox{ and }\left [k\right ]$$
] are in the (x, y) system (not shown: x− from node 1 to 2, and y counterclockwise from x). Their counterparts [image: 
$$\left \{R^{{\ast}}\right \},\left \{r^{{\ast}}\right \}\mbox{ and }\left [k^{{\ast}}\right ]$$
] are in the transformed (x
        ∗, y
        ∗) system of Fig. 1.22. (A detailed example is given in Sect. 1.9.) Now: [image: 
$$\displaystyle\begin{array}{rcl} \left \{r^{{\ast}}\right \}_{ q\times 1} = \left [h\right ]_{q\times p}\left \{r\right \}_{p\times 1}\mbox{ when}\left \{R^{{\ast}}\right \}_{ q\times 1} = \left [k^{{\ast}}\right ]_{ q\times q}\left \{r^{{\ast}}\right \}_{ q\times 1}& &{}\end{array}$$
]

 (1.64)

 The transformation rule [image: 
$$\left [h\right ]$$
] allows the new coordinates to be calculated from the old ones; this will be elaborated in Eq. (1.84b).
For the time being, we assume that the original coordinates can also be calculated from the transformed ones in terms of “another matrix” [image: 
$$\left [h\right ]^{+}$$
]: [image: 
$$\displaystyle\begin{array}{rcl} \left \{r\right \}_{p\times 1} = \left [h\right ]_{\ p\times q}^{+}\ \left \{r^{{\ast}}\right \}_{ q\times 1}& &{}\end{array}$$
]

 (1.65)

 Intuitively, [image: 
$$\left [h\right ]^{+}$$
] may be obtained from purely geometrical relations.
Since the strain energy does not change with the coordinates, equating the strain energy between the two systems we get: [image: 
$$\displaystyle\begin{array}{rcl} \overbrace{\frac{1} {2}\left \{R^{{\ast}}\right \}^{T}\ \left \{r^{{\ast}}\right \}}^{\mbox{ in the new frame}} =\overbrace{ \frac{1} {2}\left \{R\right \}^{T}\ \left \{r\right \}}^{\mbox{ in the original frame}}& &{}\end{array}$$
]

 (1.66a)

 [image: 
$$\displaystyle\begin{array}{rcl} & & \mbox{ the strain energy is }invariant \\ \rightarrow \left \{r^{{\ast}}\right \}^{T}\left [k^{{\ast}}\right ]\left \{r^{{\ast}}\right \}& & = \left \{r\right \}^{T}\left [k\right ]\left \{r\right \};\mbox{ also,} {}\end{array}$$
]

 (1.66b)

 [image: 
$$\displaystyle\begin{array}{rcl} = \left \{r\right \}^{T}\ \left (\left [h\right ]^{T}\left [k^{{\ast}}\right ]\ \left [h\right ]\ \right )\left \{r\right \}& &{}\end{array}$$
]

 (1.66c)

 [image: 
$$\displaystyle\begin{array}{rcl} & & \mbox{ from }\mbox{ Eq. (1.64)} \\ \mbox{ hence: }\left [k\right ]& & = \left [h\right ]^{T}\left [k^{{\ast}}\right ]\ \left [h\right ]\mbox{ or}{}\end{array}$$
]

 (1.66d)

 [image: 
$$\displaystyle\begin{array}{rcl} formally:\ \left [k^{{\ast}}\right ] = \left (\left [h\right ]^{T}\right )^{-1}\ \left [k\right ]\ \left [h\right ]^{-1}& &{}\end{array}$$
]

 (1.66e)

 In Eq. (1.66e) the prefix formal is important.
Normally, in the classical sense, by inverse—for example [image: 
$$\left [\zeta \right ]^{-1}$$
], we imply the unique inverse of [image: 
$$\left [\zeta \right ]:$$
] 
              
             [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ classical inverse: }\left [\zeta \right ]\ \left [\zeta \right ]^{-1} = \left [\zeta \right ]^{-1}\ \left [\zeta \right ]\ = \left [I\right ]& &{}\end{array}$$
]

 (1.67)

 However, only one of the following should suffice: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ right inverse: }\left [h\right ]\ \left [h\right ]^{-1} = \left [I\right ]\mbox{ or }& &{}\end{array}$$
]

 (1.68a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ left inverse: }\left [h\right ]^{-1}\ \left [h\right ] = \left [I\right ]& &{}\end{array}$$
]

 (1.68b)

 when we attempt to relate [image: 
$$\left [h\right ]_{\ p\times q}^{+}$$
] of Eq. (1.65) and [image: 
$$\left [h\right ]^{-1}$$
] from Eq. (1.66e).
The concept of pseudoinverse encompasses the right and left inverses of Eqs. (1.68a) and (1.68b).
Some details about [image: 
$$\left [h\right ]^{+}$$
] to be defined from [image: 
$$\left [h\right ]$$
] are presented in the next section. We will formally state the pseudoinverse criteria. For example, from Eqs. (1.68a) and (1.68b): [image: 
$$\displaystyle\begin{array}{rcl} \left [h\right ]\ \left [h\right ]^{-1}\ \left [h\right ] = \left [h\right ]\quad \mbox{ and }\left [h\right ]^{-1}\ \left [h\right ]\ \left [h\right ]^{-1} = \left [h\right ]^{-1}& &{}\end{array}$$
]

 (1.69)

 will be restated in Eq. (1.71).

            
              
            
          

1.8 “Inverting” a Rectangular Matrix
In Eqs. (1.64) and (1.65) we observe that [image: 
$$\left [h\right ]$$
] is in general a rectangular matrix, since p does not necessarily equal q. 
Specifically, when a bar element with two-degrees-of-freedom is required to be transformed for four-degrees-of-freedom, then p = 2 and q = 4. 
Evidently, in Eq. (1.66e), [image: 
$$\left [h\right ]^{-1}$$
] demands the inversion of a rectangular matrix!

            
              
            
            
              
            
          
1.8.1 The Notation [image: 
$$\left [h\right ]^{+}$$
]: Moore–Penrose Weak Inverse
The pseudoinverse of a generic matrix [image: 
$$\left [h\right ]$$
] is written as [image: 
$$\left [h\right ]^{+}$$
]. We have introduced the notation [image: 
$$\left [\ \right ]^{+}$$
] within the context of “coordinate transformation” in Eq. (1.65).
The superscript − 1 as in [image: 
$$\left [h\right ]^{-1}$$
] is reserved when the inverse exists in the classical sense. Trivially, if [image: 
$$\left [h\right ]^{-1}$$
] exists, then [image: 
$$\left [h\right ]^{+}$$
] and [image: 
$$\left [h\right ]^{-1}$$
] are identical.
In the above, Eq. (1.66e), we assumed that [image: 
$$\left (\left [h\right ]^{T}\right )^{-1}$$
] exists. However, in Eq. (1.65), [image: 
$$\left [h\right ]_{p\times q}$$
] is a matrix of p rows and q columns.
In general, as shown in Fig. 1.22, p is two and not equal to q, which is four. Hence, [image: 
$$\left [h\right ]^{-1},\left (\left [h\right ]^{T}\right )^{-1}$$
] in Eq. (1.66e), must be interpreted in the weak or generalized sense, also: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ for }m <n: \left [h\right ]_{m\times n}\ \left [h\right ]_{n\times m}^{+} = \left [I\right ]_{ m\times m};\quad \left [h\right ]_{n\times m}^{+}\ \left [h\right ]_{ m\times n}\neq \left [I\right ]_{n\times n}& &{}\end{array}$$
]

 (1.70)




1.8.2 Moore–Penrose Pseudoinverse


                
               
                
               Pseudoinverse is the generalization of “matrix inversion,” vide [2, 10, 11]. An arbitrary matrix [image: 
$$\left [h\right ]$$
] may be square but singular, or rectangular (not square), even then its pseudoinverse [image: 
$$\left [h\right ]^{+}$$
] is computable.
For example, the Mathematica

built-in function PseudoInverse can generate [image: 
$$\left [h\right ]^{+}$$
] for an arbitrary [image: 
$$\left [h\right ]$$
]. Importantly, [image: 
$$\left [h\right ]\left [h\right ]^{+}\mbox{ or}\left [h\right ]^{+}\left [h\right ]$$
] need not be an identity matrix. But [image: 
$$\left [h\right ]\left [h\right ]^{+}$$
] maps each column of [image: 
$$\left [h\right ]$$
] to itself, hence: [image: 
$$\displaystyle\begin{array}{rcl} \left [h\right ]\ \left [h\right ]^{+}\ \left [h\right ] = \left [h\right ]\quad \mbox{ and }\left [h\right ]^{+}\ \left [h\right ]\ \left [h\right ]^{+} = \left [h\right ]^{+}& &{}\end{array}$$
]

 (1.71)



In particular, when [image: 
$$\left [h\right ]$$
] has linearly independent rows: [image: 
$$\displaystyle\begin{array}{rcl} \left [h\right ]^{+}\mbox{ is a right inverse}: \left [h\right ]\left [h\right ]^{+} = \left [I\right ]& &{}\end{array}$$
]

 (1.72)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ similarly, }\left [h\right ]^{+}\mbox{ is a left inverse, when}: \left [h\right ]^{+}\left [h\right ] = \left [I\right ]& &{}\end{array}$$
]

 (1.73)



1.8.2.1 Uniqueness of the Pseudoinverse
To evaluate [image: 
$$\left [h\right ]^{+}$$
] uniquely, the other useful properties for real [image: 
$$\left [h\right ]$$
] are: [image: 
$$\displaystyle\begin{array}{rcl} \left (\left [h\right ]^{+}\right )^{+} = \left [h\right ];\quad \left [h\right ]^{+}\left [h\right ]\left [h\right ]^{+} = \left [h\right ]^{+}\mbox{ and }\left (\left [h\right ]^{+}\right )^{T} = \left (\left [h\right ]^{T}\right )^{+}& &{}\end{array}$$
]

 (1.74)



From Eq. (1.66e), the following relationships always prevail: [image: 
$$\displaystyle\begin{array}{rcl} \left [k^{{\ast}}\right ] = \left (\left [h\right ]^{T}\right )^{+}\ \left [k\right ]\ \left [h\right ]^{+} =& \left (\left [h\right ]^{+}\right )^{T}\ \left [k\right ]\ \left [h\right ]^{+};\mbox{ now we can write:}&{}\end{array}$$
]

 (1.75a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ for }all\ \text{cases: }\left \{r^{{\ast}}\right \} = \left [h\right ]\left \{r\right \} \leftrightarrow \left \{r\right \} = \left [h\right ]^{+}\left \{r^{{\ast}}\right \}& &{}\end{array}$$
]

 (1.75b)

 The force transformation from the old to the new system (with asterisks) will be: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ as in Eq. (1.64): }\left \{R^{{\ast}}\right \} = \left [H\right ]\left \{R\right \}& &{}\end{array}$$
]

 (1.76)

 Now, by employing the invariance of external work in two different frames: [image: 
$$\displaystyle\begin{array}{rcl} & & \frac{1} {2}\left \{R^{{\ast}}\right \}^{T}\left \{r^{{\ast}}\right \} = \frac{1} {2}\left \{R\right \}^{T}\left \{r\right \} \rightarrow \frac{1} {2}\left \{R\right \}^{T}\left \{r\right \} = \frac{1} {2}\left \{R\right \}^{T}\left (\left [H\right ]^{T}\left [h\right ]\right )\left \{\begin{array}{*{10}c} r \end{array} \right \} \\ & & \mbox{ from Eqs. (1.64) and (1.76)}\ \mbox{ then}\left [H\right ]^{T}\mbox{ can be taken as }\left [h\right ]^{+} \\ & & \mbox{ or}\left [h\right ]\mbox{ can be taken as }\left (\left [H\right ]^{T}\right )^{+} \\ \qquad \qquad \qquad \quad & & \therefore \left (\left [H\right ]^{T}\right )^{+} = \left [h\right ]\mbox{ and }\left [H\right ]^{T} = \left [h\right ]^{+} {}\end{array}$$
]

 (1.77)




1.8.2.2 A Special Cases When [image: 
$$\left [h\right ] = \left [H\right ]$$
] Then [image: 
$$\left [h\right ]^{+} = \left [h\right ]^{T}$$
]

For the truss member problems in two- and three-dimensions, [image: 
$$\left [h\right ]$$
] and [image: 
$$\left [H\right ]$$
] are identical. This is due to the fact that the nodal forces and displacements resolve identically along coordinate axes. Only under this special case: [image: 
$$\displaystyle\begin{array}{rcl} \left [h\right ] = \left [H\right ] \rightarrow \left [h\right ]^{+} = \left [h\right ]^{T}\left [H\right ]^{T} = \left [H\right ]^{+}& &{}\end{array}$$
]

 (1.78)

 For generalized transformations, such as modal to nodal, Eq. (1.78), which is similar to the orthogonality condition, will not be true.


1.8.3 Some Examples of Pseudoinverse
The Mathematica built-in function PseudoInverse can yield both closed-form and numerical values from [image: 
$$\left [h\right ]$$
] to [image: 
$$\left [h\right ]^{+}$$
], even when [image: 
$$\left [h\right ]$$
] is non-singular.
1.8.3.1 A Column [image: 
$$\left [h\right ]$$
]


[image: 
$$\displaystyle\begin{array}{rcl} \mbox{ Let }\left [h\right ] = \left \{\begin{array}{*{10}c} a\\ b \end{array} \right \}: \mbox{ a column matrix}& &{}\end{array}$$
]

 (1.79a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ then the pseudoinverse }\left [h\right ]^{+} = \frac{\left \{\begin{array}{*{10}c} a&b \end{array} \right \}} {a^{2} + b^{2}}: \mbox{ a row matrix; here:}& &{}\end{array}$$
]

 (1.79b)

 [image: 
$$\displaystyle\begin{array}{rcl} \left [h\right ]^{+}\ \left [h\right ] = \left [1\right ]\quad \mbox{ but}\quad \left [h\right ]\ \left [h\right ]^{+}& = \left.\left [\begin{array}{*{10}c} a^{2} & a\ b \\ a\ b&b^{2} \end{array} \right ]\ \right /(a^{2} + b^{2})&{}\end{array}$$
]

 (1.79c)

 so, [image: 
$$\left [h\right ]^{+}$$
] is the left inverse, as stated in Eq. (1.73). Curiously, when [image: 
$$\displaystyle\begin{array}{rcl} a =\cos (\theta );\ b =\sin (\theta )\mbox{ then }\left [h\right ]^{+} = \left [h\right ]^{T}& &{}\end{array}$$
]

 (1.80)

 This result is very useful in deriving structural mechanics stiffness properties when a coordinate rotation is effected.

1.8.3.2 A Numerical Example: [image: 
$$\left [h\right ]$$
] Is 2 by 3

                [image: 
$$\displaystyle\begin{array}{rcl} \left [h\right ] = \left [\begin{array}{ccc} 1&2&3\\ 4 &5 &6\\ \end{array} \right ]\quad \mbox{ then: }\left [h\right ]^{+} = \frac{1} {18}\left [\begin{array}{cc} - 17& 8\\ - 2 & 2 \\ 13 & - 4\\ \end{array} \right ]& &{}\end{array}$$
]

 (1.81)


              
Observe [image: 
$$\left [h\right ]\ \left [h\right ]^{+} = \left [I\right ]$$
] but [image: 
$$\left [h\right ]^{+}\ \left [h\right ]$$
] is [image: 
$$\frac{1} {6}\left [\begin{array}{ccc} 5 &2& - 1\\ 2 &2 & 2 \\ - 1&2& 5\\ \end{array} \right ]$$
]


1.8.3.3 An Example in the Analytical Development
In developing solid elements with [image: 
$$\nu = \frac{1} {2}$$
]—in Chap. 8, for four-node plane elements, the seven Rayleigh displacement modes are transformed via pseudoinverse to eight nodal displacement-based isochoric shape functions.
This is by far the most dramatic role (rôle clé) played by this notion of the weak inverse in the development of the finite element method.



1.9 Stiffness Matrix for a Plane Truss Element
In Eq. (1.32), the forces and displacements are along the axis of the bar.
1.9.1 Derivation for Displacement Degrees-of-Freedom in the Two-Dimensional Configuration
In Fig. 1.22, if we turn the bar30 by an angle θ measured from the x-axis and take a two-dimensional view, the physical values of the axial force and axial deformation remain intact. However, their components along the coordinate axes depend on θ. Figure 1.22 depicts the axial degrees-of-freedom r
          1, r
          2 and their transformed counterparts along the coordinate directions by r
          1
          ∗, r
          2
          ∗ at node-1 and r
          3
          ∗, r
          4
          ∗ at node-2. The nodal force associated with r
          
                i
              
          ∗ is R
          
                i
              
          ∗.
The tensile force in the bar is F and can be evaluated from equilibrium: [image: 
$$\displaystyle\begin{array}{rcl} F = R_{2}\mbox{ or} - R_{1};\quad \mbox{ and }F = R_{3}^{{\ast}}\cos (\theta ) + R_{ 4}^{{\ast}}\sin (\theta )& &{}\end{array}$$
]

 (1.82a)

 [image: 
$$\displaystyle\begin{array}{rcl} -\Big(R_{1}^{{\ast}}\cos (\theta ) + R_{ 2}^{{\ast}}\sin (\theta )\Big)& &{}\end{array}$$
]

 (1.82b)



The geometrical transformation matrix [image: 
$$\left [h\right ]$$
] in Eq. (1.64) indicates: [image: 
$$\displaystyle\begin{array}{rcl} \left \{r^{{\ast}}\right \} = \left [h\right ]\ \left \{r\right \} \rightarrow \left \{r\right \} = \left [h\right ]^{+}\ \left \{r^{{\ast}}\right \}& &{}\end{array}$$
]

 (1.83)



By recognizing r
          
                j
              
          ∗ to be components of r
          
                i
              : [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} r_{1}^{{\ast}} \\ r_{2}^{{\ast}} \\ r_{3}^{{\ast}} \\ r_{4}^{{\ast}}\end{array} \right \} =\overbrace{ \left [\begin{array}{*{10}c} \cos \theta &0\\ \sin \theta &0 \\ 0& \cos \theta \\ 0 &\sin \theta \end{array} \right ]}^{\left [h\right ]}\ \left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \};\quad \begin{array}{*{10}c} \mbox{ We fill the matrix columnwise:} \\ \mbox{ the}\ (i,j)\mathrm{th}\ \mbox{ entry corresponds to} \\ \mbox{ the component of}\ r_{j}\ \mbox{ along}\ r_{i}^{{\ast}}.\\ \end{array} & &{}\end{array}$$
]

 (1.84a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ and }\left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \} =\overbrace{ \left [\begin{array}{*{10}c} \cos \theta & \sin \theta &0&0\\ 0 &0 & \cos \theta & \sin \theta \end{array} \right ]}^{\left [h\right ]^{+} }\ \left \{\begin{array}{*{10}c} r_{1}^{{\ast}} \\ r_{2}^{{\ast}} \\ r_{3}^{{\ast}} \\ r_{4}^{{\ast}} \end{array} \right \};\quad \begin{array}{*{10}c} \mbox{ Here, the}\ (i,j)\mathrm{th} \\ \mbox{ entry is the } \\ \mbox{ component} \\ \mbox{ of }r_{j}^{{\ast}}\ \mbox{ along}\ r_{i}.\\ \end{array} & &{}\end{array}$$
]

 (1.84b)



We can start with [image: 
$$\left [h\right ]$$
] in Eq. (1.84a) and use the Mathematica function PseudoInverse[]
31 to verify the expression [image: 
$$\left [h\right ]^{+}$$
] in Eq. (1.84b).
Now, from Eq. (1.66e): [image: 
$$\displaystyle\begin{array}{rcl} \left [k^{{\ast}}\right ] = \left (\left [h\right ]^{+}\right )^{T}\ \left (\frac{\mathcal{A}E} {L} \right )\left [\begin{array}{*{10}c} 1 &-1\\ -1 & 1 \end{array} \right ]\left [h\right ]^{+}\mbox{ that leads to: }& &{}\end{array}$$
]

 (1.85)

 [image: 
$$\displaystyle\begin{array}{rcl} \left [k^{{\ast}}\right ] = \left (\frac{\mathcal{A}E} {L} \right )\left [\begin{array}{*{10}c} \cos ^{2}\theta & \cos \theta \ \sin \theta & -\cos ^{2}\theta & -\cos \theta \ \sin \theta \\ \cos \theta \ \sin \theta & \sin ^{2}\theta & -\cos \theta \sin \theta &-\sin ^{2}\theta \\ -\cos ^{2}\theta & -\cos \theta \ \sin \theta & \cos ^{2}\theta & \cos \theta \ \sin \theta \\ -\cos \theta \ \sin \theta &-\sin ^{2}\theta & \cos \theta \ \sin \theta & \sin ^{2}\theta \end{array} \right ]& &{}\end{array}$$
]

 (1.86)




1.9.2 Verification of Transformations for Nodal Forces and Element Stiffness Matrix
Observe that in Eq. (1.84b): [image: 
$$\displaystyle\begin{array}{rcl} \left [h\right ]^{T} = \left [h\right ]^{+}& &{}\end{array}$$
]

 (1.87)

 This will not be true in general. Components of an arbitrary force vector and that of an arbitrary displacement vector are obtained by resolving the net force or displacement along the coordinate axis by the same rule using the cosine components. This dictates: [image: 
$$\displaystyle\begin{array}{rcl} \left [h\right ] = \left [H\right ];\mbox{ let us verify this from statics:}& &{}\end{array}$$
]

 (1.88a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ by resolving the forces in $(x,y)$: }\left \{\begin{array}{*{10}c} R_{1}^{{\ast}} \\ R_{2}^{{\ast}} \\ R_{3}^{{\ast}} \\ R_{4}^{{\ast}}\end{array} \right \} = \left [\begin{array}{*{10}c} \cos \theta &0\\ \sin \theta &0 \\ 0& \cos \theta \\ 0 &\sin \theta \end{array} \right ]\left \{\begin{array}{*{10}c} R_{1} \\ R_{2} \end{array} \right \};& &{}\end{array}$$
]

 (1.88b)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ and from Eq. (1.76): }\left [H\right ] = \left [\begin{array}{*{10}c} \cos \theta &0\\ \sin \theta &0 \\ 0& \cos \theta \\ 0 &\sin \theta \end{array} \right ]& &{}\end{array}$$
]

 (1.88c)

 But from Eq. (1.84b): [image: 
$$\displaystyle\begin{array}{rcl} \left [h\right ]^{T} = \left [H\right ]& &{}\end{array}$$
]

 (1.89a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ then: }\left [h\right ]^{+}& =& \left [H\right ] = \left [h\right ]^{T} \\ & & \mbox{:from Eqs. (1.87) and (1.882) }{}\end{array}$$
]

 (1.89b)

 Finally, [image: 
$$\displaystyle\begin{array}{rcl} \left \{R^{{\ast}}\right \} = \left [H\right ]\left \{R\right \}\mbox{ or }\left \{R^{{\ast}}\right \} = \left [h\right ]^{T}\left \{R\right \}\mbox{ and }\left \{R^{{\ast}}\right \} = \left [h\right ]^{+}\left \{R\right \}& &{}\end{array}$$
]

 (1.90)



Physically, the weak inverse [image: 
$$\left [h\right ]^{+}$$
] shows how the “force vectors” are related when the coordinate axes are transformed. This observation (generalizes and) enormously simplifies Eq. (1.75a), because: [image: 
$$\displaystyle\begin{array}{rcl} \left [k^{{\ast}}\right ] = \left (\left [h\right ]^{T}\right )^{+}\ \left [k\right ]\ \left [h\right ]^{+} \rightarrow \left [k^{{\ast}}\right ] = \left [h\right ]\ \left [k\right ]\ \left [h\right ]^{T}& &{}\end{array}$$
]

 (1.91)

 under all physically acceptable transformations for all system matrices irrespective of how [image: 
$$\left [k\right ]$$
] is formulated in a basic form for implementation in a practical frame of reference.

1.9.3 A Closed-Form Example of Pseudoinverse
For a matrix [image: 
$$\left [A\right ]$$
]: [image: 
$$\displaystyle\begin{array}{rcl} \left [A\right ]& =& \left [\begin{array}{ccc} a(1,1)&a(1,2)&a(1,3)\\ a(2, 1) &a(2, 2) &a(2, 3) \\ \end{array} \right ],\quad \left [A\right ]^{+} = \left [\begin{array}{*{10}c} t11&t12\\ t21 &t22 \\ t31& 32 \end{array} \right ]/d;\quad \mbox{ for }d\neq 0 \\ d& =& \left (a(2,2)^{2} + a(2,3)^{2}\right )a(1,1)^{2} - 2a(1,3)a(2,1)a(2,3)a(1,1) \\ & & \quad + a(1,3)^{2}\left (a(2,1)^{2} + a(2,2)^{2}\right ) - 2a(1,2)a(2,2)(a(1,1)a(2,1) \\ & & \quad + a(1,3)a(2,3)) + a(1,2)^{2}\quad \\ t11& =& \left (a(2,1)^{2} + a(2,3)^{2}\right ) - a(1,2)a(2,1)a(2,2) - a(1,3)a(2,1)a(2,3) \\ & & \quad + a(1,1)\left (a(2,2)^{2} + a(2,3)^{2}\right ) \\ t12& =& a(2,1)a(1,2)^{2} - a(1,1)a(2,2)a(1,2) \\ & & \quad + a(1,3)(a(1,3)a(2,1) - a(1,1)a(2,3)) \\ t21& =& a(1,2)\left (a(2,1)^{2} + a(2,3)^{2}\right ) - a(2,2)(a(1,1)a(2,1) + a(1,3)a(2,3)) \\ t22& =& a(2,2)a(1,1)^{2} - a(1,2)a(2,1)a(1,1) + a(1,3)(a(1,3)a(2,2) \\ & & \quad - a(1,2)a(2,3)) \\ t31& =& a(1,3)\left (a(2,1)^{2} + a(2,2)^{2}\right ) \\ & & \quad - (a(1,1)a(2,1) + a(1,2)a(2,2))a(2,3)a(2,3)) \\ t32& =& \left (a(1,1)^{2} + a(1,2)^{2}\right )a(2,3) - a(1,3)(a(1,1)a(2,1) + a(1,2)a(2,2)) {}\end{array}$$
]

 (1.92)

 Since we can directly generate a code in a procedural programming language such as FORTRAN or C
          ++, we can use pseudoinverse with existing finite element computer programs.32


              
                
              
            

1.9.4 Stiffness Matrix for a Space Truss Element in 3-D
We do not address any three-dimensional problem in this textbook to demonstrate the invariance of geometrical concepts we include this derivation.
We modify (x, y) of Sect. 1.9.2 to (x, y, z), then rewrite Eq. (1.88b) with direction cosines d
          
                c
              (x), d
          
                c
              (y), and d
          
                c
              (z): [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} R_{1}^{{\ast}} \\ R_{2}^{{\ast}} \\ R_{3}^{{\ast}} \\ R_{4}^{{\ast}} \\ R_{5}^{{\ast}} \\ R_{6}^{{\ast}}\end{array} \right \}& = \left [\begin{array}{*{10}c} d_{c}(x)& 0 \\ d_{c}(y) & 0 \\ d_{c}(z) & 0 \\ 0 &d_{c}(x) \\ 0 & d_{c}(y) \\ 0 & d_{c}(z) \end{array} \right ]\left \{\begin{array}{*{10}c} R_{1} \\ R_{2} \end{array} \right \};\qquad \begin{array}{*{10}c} \left [k^{{\ast}}\right ] = \left (\frac{\mathcal{A}E} {L} \right )\left [H\right ]\left [\begin{array}{*{10}c} 1 &1\\ -1 &1 \end{array} \right ]\left [H\right ]^{T} \\ \mbox{ direction cosines of the bar} \\ \mbox{ with }x\mbox{ -axis: }d_{c}(x) \\ \mbox{ with }y\mbox{ -axis: }d_{c}(y) \\ \mbox{ with }z\mbox{ -axis: }d_{c}(z) \end{array} &{}\end{array}$$
]

 (1.93)

 The direction cosines in terms of the ith nodal coordinates—(x
          
                i
              , y
          
                i
              , z
          
                i
              ) are: [image: 
$$\displaystyle\begin{array}{rcl} \left \{d_{c}(x),\ d_{c}(y),\ d_{c}(z)\right \} = \frac{\left \{x_{2} - x_{1},\ y_{2} - y_{1},\ z_{2} - z_{1}\right \}} {\sqrt{(x_{2 } - x_{1 } )^{2 } ) + (y_{2 } - y_{1 } )^{2 } ) + (z_{2 } - z_{1 } )^{2 } )}}& &{}\end{array}$$
]

 (1.94)



To simplify the result, we set the origin at node 1, (x, y, z) = (0, 0, 0), then: [image: 
$$\displaystyle\begin{array}{rcl} \left [k^{{\ast}}\right ] = \left (\frac{\mathcal{A}\mathcal{E}} {L^{3}} \right )\left [\begin{array}{cccccc} x_{2}^{2} & x_{2}y_{2} & x_{2}z_{2} & - x_{2}^{2} & - x_{2}y_{2} & - x_{2}z_{2} \\ x_{2}y_{2} & y_{2}^{2} & y_{2}z_{2} & - x_{2}y_{2} & - y_{2}^{2} & - y_{2}z_{2} \\ x_{2}z_{2} & y_{2}z_{2} & z_{2}^{2} & - x_{2}z_{2} & - y_{2}z_{2} & - z_{2}^{2} \\ - x_{2}^{2} & - x_{2}y_{2} & - x_{2}z_{2} & x_{2}^{2} & x_{2}y_{2} & x_{2}z_{2} \\ - x_{2}y_{2} & - y_{2}^{2} & - y_{2}z_{2} & x_{2}y_{2} & y_{2}^{2} & y_{2}z_{2} \\ - x_{2}z_{2} & - y_{2}z_{2} & - z_{2}^{2} & x_{2}z_{2} & y_{2}z_{2} & z_{2}^{2}\\ \end{array} \right ]& &{}\end{array}$$
]

 (1.95)

 The exact eigenvalues from the above closed-form expression of [image: 
$$\left [k^{{\ast}}\right ]$$
]
33 are: [image: 
$$\displaystyle\begin{array}{rcl} 0,0,0,0,0\mbox{ and }2 {\ast}\left (\frac{\mathcal{A}\mathcal{E}} {L^{3}} \right )\mbox{ independent of the end coordinates}& &{}\end{array}$$
]

 (1.96)

 The five zeros correspond to the five rigid body modes corresponding to: three axial rigid body motions along (x, y, z) and two rigid body rotations about two orthogonal directions that are perpendicular to the bar axis. Verify that each row and column sum of [image: 
$$\left [k^{{\ast}}\right ]$$
] is zero.


1.10 Modal to Nodal Perspectives
Force equilibrium and displacement compatibility conditions are enforced only at nodes. In between nodes, elements are constrained to deform according to the shape function profiles. Rayleigh mode shapes are the best choice since the local equilibrium condition is guaranteed everywhere.
1.10.1 Recalling the Rayleigh Modes for the Bar


                
               
                
               
                
               
                
               A bar has one spatial variable x, The material domain Ω is a < x < b. The forcing functions are along the x-axis. The axial displacement u(x) is the fundamental variable. The two selected Rayleigh modes are:

              	1.Rigid body displacement along x, i.e., a constant displacement along x: [image: 
$$\displaystyle\begin{array}{rcl} \varphi _{1}(x) =\alpha _{1}& & {}\end{array}$$
]

 (1.97)





 

	2.A constant axial strain along x: [image: 
$$\displaystyle\begin{array}{rcl} \epsilon (x) =\alpha _{2};\quad \epsilon (x) = \frac{du} {dx} =\alpha _{2};\rightarrow \varphi _{2}(x) =\alpha _{2}\ x\mbox{ (a particular solution)}& & {}\end{array}$$
]

 (1.98)





 




            

1.10.2 Admissible Trial Solutions
Linear combinations of Rayleigh modes constitute approximate physical solutions. Hence: [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{*{10}c} \mathbf{RayleighModes:}\varphi (x) \\ \varphi _{1}(x) =\alpha _{1} \\ \varphi _{2}(x) =\alpha _{2}\ x \\ \alpha _{1}\mbox{ and }\alpha _{2}\mbox{: constants}\end{array} \begin{array}{*{10}c} \mathbf{AdmissibleFunctions:}\phi (x) \\ \phi _{1}(x) = c_{11}\ \varphi _{1}(x) + c_{12}\ \varphi _{2}(x) \\ \phi _{2}(x) = c_{21}\ \varphi _{1}(x) + c_{22}\ \varphi _{2}(x) \\ c_{11},c_{12},c_{21}\mbox{ and }c_{22}\mbox{: constants}\end{array} & & {}\\ \end{array}$$
]


 Now the shape functions are: [image: 
$$\displaystyle\begin{array}{rcl} \phi _{1}(x) = c_{11}\ \varphi _{1}(x) + c_{12}\ \varphi _{2}(x) = c_{11}\ \alpha _{1}\ + c_{12}\ \alpha _{2}\ x& &{}\end{array}$$
]

 (1.99)

 [image: 
$$\displaystyle\begin{array}{rcl} \phi _{2}(x) = c_{21}\ \varphi _{1}(x) + c_{22}\ \varphi _{2}(x) = c_{21}\ \alpha _{1}\ + c_{22}\ \alpha _{2}\ x& &{}\end{array}$$
]

 (1.100)

 The constants α
          1, α
          2 can be taken to be unity. From the end conditions: ϕ
          1(a) = 1, ϕ
          1(b) = 0; and ϕ
          2(a) = 0, ϕ
          2(b) = 1 c
          
                ij
               are determined.34



1.11 Homework Problems
1.11.1 Derivations and Reviews

              	1.Start with the notion of kinematics and equilibrium, i.e., the continuity of displacements and balance of forces, as independent principles.
	(a)Derive the strain energy, eternal work, and similar physically meaningful energy-like quantities for a single uniform bar.


 

	(b)Extend your derivation for a nonuniform bar.


 







 

	2.Ritz [13] conveniently constructed equilibrium out of kinematics and energy.35
	(a)Verify the assertion for a nonuniform bar.


 

	(b)Review [4] for a comprehensive exposé.


 







 




            

1.11.2 Theoretical Problems

              	1.Show that for a real symmetric matrix [image: 
$$\left [\begin{array}{*{10}c} A\end{array} \right ],$$
] minimization of: [image: 
$$\displaystyle\begin{array}{rcl} U[\left \{x\right \}] = \frac{1} {2}\ \left \{x\right \}^{T}\ \left [A\right ]\ \left \{x\right \} -\left \{x\right \}^{T}\ \left \{b\right \}& & {}\end{array}$$
]

 (1.101)

 is identical to solving: [image: 
$$\displaystyle\begin{array}{rcl} \left [A\right ]\ \left \{x\right \} = \left \{b\right \}& & {}\end{array}$$
]

 (1.102)





 

	2.Enumerate a list of criteria to uniquely characterize the weak inverse of a rectangular matrix [image: 
$$\left [A\right ]_{m\times n}.$$
] Describe when the weak inverse [image: 
$$\left [A\right ]^{+}$$
] will be the left or the right “pseudoinverse”: 
                        
                       [image: 
$$\displaystyle\begin{array}{rcl} \left [A\right ]^{+}\ \left [A\right ] = \left [I\right ]\quad \mbox{ or}\quad \left [A\right ]\ \left [A\right ]^{+} = \left [I\right ]& & {}\end{array}$$
]

 (1.103)





 

	3.For the element stiffness matrix in Eq. (1.86), show that out of the four eigenvalues three are exactly zero.


 

	4.Calculate the end loads due to a distributed triangular load on a bar.
Show that the summation of the end loads is the same as the total distributed one.


 




            

1.11.3 Numerical Computation

              	1.A composite bar was constructed by welding the following two pieces:
	(a)length 6 in., area 1 in.2, and


 

	(b)length 3 in., area 2 in.2
                        


 





Assuming a linear displacement function throughout the 9 in. bar, calculate the stiffness matrix associated with the two end loads.


 

	2.Write a computer program for the above problem. Generalize the program to accommodate n-segments of varying length, cross-section, and Young’s modulus. Numerically verify the results for the two piece bar.

                      
                        
                      
                    


 

	3.Calculate by hand the 
                        
                      Cholesky36 factor [image: 
$$\left [L\right ]$$
]—a lower triangle, for: [image: 
$$\displaystyle\begin{array}{rcl} \left [A\right ] = \left [\begin{array}{*{10}c} 5\ \ \ \ \ \ &12\\ 12\ \ \ \ \ \ &29\end{array} \right ];\quad \mbox{ such that: }\left [A\right ] = \left [L\right ]\ \left [L\right ]^{T}& & {}\end{array}$$
]

 (1.104)

 Also, calculate by hand the eigenvalues of the matrix.


 




            

1.11.4 Algebraic Computation
For a real symmetric matrix: [image: 
$$\displaystyle\begin{array}{rcl} \left [A\right ] = \left [\begin{array}{*{10}c} a\ \ \ &b\\ b\ \ &c \end{array} \right ]& &{}\end{array}$$
]

 (1.105)


	1.Verify that the lower triangle [image: 
$$\left [L\right ]$$
] is: [image: 
$$\displaystyle\begin{array}{rcl} \left [L\right ] = \left [\begin{array}{cc} \sqrt{a}& \\ \frac{b} {\sqrt{a}} &\ \ \ \ \sqrt{c - \frac{b^{2 } } {a}}\\ \end{array} \right ]& & {}\end{array}$$
]

 (1.106)





 

	2.Analyze the conditions such that [image: 
$$\left [L\right ]$$
] is real.


 

	3.Ascertain that [image: 
$$\left [A\right ]$$
] is positive definite: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ if and only if }\left [L\right ]\mbox{ is }real& & {}\end{array}$$
]

 (1.107)
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Footnotes
1This is essential, otherwise the energy stored due to deformation will not be positive.

 

2These concepts have been stated at the very beginning in Sect. 1.1.

 

3This is not the work done by the external force; there is no [image: 
$$\frac{1} {2}$$
] in the expression.

 

4The Method of Finding Plane Curves that Show Some Property of Maximum or Minimum…, Laussanne and Geneva, 1744,” also “L. Euler, Opera Omnia I, Vol. XXIV, 
                      
                     C. Carathéodory, ed. Bern, 1952.

 

5A “function” of functions. Specifically, this is an alternate method of solving partial differential equations whose variables could be vector components.

 

6This establishes the principle of virtual work and variational calculus to be equivalent.

 

7John Forbes Nash extended the formalism to parabolic partial differential equations.

 

8This has been utilized in solving problems of statics since antiquity.


 

9We imply that the force-displacement relation is linear and the strain energy is a quadratic function of displacement.

 

10In Fig. 1.2 the same bar model approximates the spring of Fig. 1.3 that is shown as a two-dimensional graphic of a three-dimensional model with a viewpoint of [image: 
$$\left \{0,-2, 1/2\right \}$$
].

 

11The mass of the system leads to the inertia related parameters; the resulting dynamic responses are outside the scope of this textbook.

 

12The displacement profile u(x), which is a function of the coordinate x, is assumed to be small enough so that the linear theory of kinematics can be adopted.

 

13This is also called the skin force.


 

14The basic approximation is that u(x) is a linear combination of ϕ
            1(x) and ϕ
            2(x). 

 

15We will depict the force intensity with arrows (in Fig. 1.19) to avoid clutter in Fig. 1.15.

 

16Disregarding [image: 
$$f(x)\neq 0\mbox{ or spatial variability in }\mathcal{A}(x)\ \mathcal{E}(x)$$
] in Eq. (1.22b).

 

17This also points out the relation between the order of finite element strain and the number of element nodes. Even then, the finite element approximation with a two-node bar element will be a linear displacement field.

 

18Kinematic quantities, in general.

 

19In finite element methods, stiffness matrices [image: 
$$\left [k\right ]$$
] occupy a very special status.

 

20This will be elaborated in Sect. 1.5 in detail.

 

21It is not obvious that [image: 
$$\left [k\right ]$$
] is symmetric, and does not have any negative eigenvalue. The energy concept encompasses these crucial facts within positive semi-definiteness.


 

22Assuming [image: 
$$\left.\left (\frac{\partial A} {\partial y} \right )\right \vert _{z,x} = \left.\left (\frac{\partial B} {\partial x} \right )\right \vert _{y,z}; \left.\left (\frac{\partial B} {\partial z} \right )\right \vert _{x,y} = \left.\left (\frac{\partial C} {\partial y} \right )\right \vert _{z,x}; \left.\left (\frac{\partial C} {\partial x} \right )\right \vert _{y,z} = \left.\left (\frac{\partial A} {\partial z} \right )\right \vert _{x,y}$$
].

 

23Appendix F describes the variational formulation for the steady temperature problem.

 

24This has been repeated (several times) to anchor the FEM to the energy principle.


 

25A multiplicative neutral does not change any object after being multiplied (in a generalized sense) by it. Hence, we can formally call [image: 
$$\delta \!\left \{u\right \}$$
] a “unit virtual displacement.”

 

26Related to minimization where an inner product, e.g. conjugations of forces and displacements, is crucial.

 

27Exact interpolation of arbitrary uniform displacement fields generates equilibrium for the entre system.

 

28This idea guarantees the correct identification of nodal forces in Chap. 7


 

29For a positive semi-definite matrix, which is real and symmetric, the eigenvalues are either positive or zero. For positive definite matrices, all eigenvalues are positive.

 

30In Fig. 1.22, the axial degrees-of-freedom are along the (x, y) axes.

 

31Conventionally, we include “[]” after a Mathematica function name.

 

32It will be shown in Chap. 8, for incompressible elements, such pseudoinverses are essential.

 

33The stiffness matrix [image: 
$$\left [k^{{\ast}}\right ],$$
] in Eq. (1.95), is a closed-form expression in terms of its local nodal coordinates. We can directly use this equation in 3-D computer programs.

 

34To generalize the bar problem, we observe that all partial differential equations of mathematical physics are of even order. Hence linear interpolants are mandatory.

 

35Plate bending problems are not considered in this textbook.

 

36A Civil Engineer (in today’s definition) furnished the factorization in conjunction with Surveying and Cartography that inevitably used with a lot of polygons and triangulizations.
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Abstract


              
             Linear elastic behavior and small displacements and rotations (Spencer, Continuum mechanics. Longman, London, 1980) are assumed throughout. This model of linear systems allows us to obtain the nodal forces in terms of the bar stiffness matrices and nodal displacements that are the primary variables. The equilibrium equations can then be constructed in terms of displacements at nodes. The given forces and displacements are assumed to be prescribed as nodal quantities. The resulting system equation, which is in the matrix form, can be obtained in terms of nodal displacements and solved by employing the Mathematica function Solve.
A very important area of numerical analysis, i.e., solving positive definite simultaneous equation systems, will not be addressed in this textbook.
This chapter introduces Mathematica codes. To get started, a summary introduction is provided in Appendix A that should be studied before reading the current chapter.
After the first reading, Appendix B should be reviewed for additional examples and theoretical analysis.


          
            
          
        
2.1 Truss Structures
A truss is a pin-connected assembly of bars. As shown in Fig. 2.1, the structure is subjected to axial loading only, without bending [1, 6].


              
             
              
             In a truss structure, vide Fig. 2.1, loads are applied only at joints.

            
              
            
            [image: A300727_1_En_2_Fig1_HTML.gif]
Fig. 2.1Truss: pin-connected bar elements with hinge and roller supports




          
In the finite element literature, a point where many elements meet or where a boundary condition is prescribed is called a node. Rollers and hinges provide the boundary conditions. The objective is to calculate all member forces and joint displacements.
In Fig. 2.1, the roller is at node 3. A roller is always placed on a frictionless platform. Then it can roll freely on the platform and the displacement along that direction is unknown and orthogonal to that the displacement is zero. Consequently, the roller reaction develops only along the latter direction, i.e., perpendicular to the platform.1 Furthermore, we idealize the roller support to act as an anchor that permits the structure to be pulled.
The hinge, at node 1 in Fig. 2.1, does not permit any movement whatsoever. As a result, the hinge reaction can develop in any direction. The direction of the platform, indicated under the hinge, is inconsequential.
The truss in Fig. 2.1 has five nodes. Horizontal and vertical displacements at each node constitute the ten nodal degrees-of-freedom.


              
             From Eq. (1.86), we obtain element stiffness matrices: [image: 
$$\left [k\right ]^{(1)}\ldots \left [k\right ]^{(7)}:$$
]

              
             
              
             [image: 
$$\displaystyle{ \left [k\right ]^{(i)}: \text{stiffness matrix for the }i\mathrm{th}\ \text{element} }$$
]

 (2.1a)

 [image: 
$$\displaystyle\begin{array}{rcl} & & \text{from nodal equilibrium and compatibility} \\ & & \left [k\right ]^{(S)}: \text{system (or global) stiffness matrix} \\ & & \mathit{{ superscript\  encased\  within\  parentheses\ }}{}\end{array}$$
]

 (2.1b)



In Fig. 2.2, bar forces P
        1, P
        2 and nodal displacements r
        1, r
        2
2 are unknown.
[image: A300727_1_En_2_Fig2_HTML.gif]
Fig. 2.2A two bar system and a mechanism with a single load. (a) A stable structure. (b) A mechanism: not a structure. (c) Forces at O. (d) All forces and displacements





Figure 2.2b is unstable, the load can freely move on a circular arc!
We now add one extra member (also called a redundant member since it is not essential for stability) to Fig. 2.2 and generate Fig. 2.3. There are now three unknown bar forces P
        1, P
        2 and P
        3, but two unknown nodal displacements r
        1, r
        2, as before.
[image: A300727_1_En_2_Fig3_HTML.gif]
Fig. 2.3Three bar forces and two displacements are unknown. (a) A redundant system. (b) Nodal displacements are positive along coordinates; in the members tensile forces are positive






            
              
            
            
              
            
            
              
            
          
2.1.1 Equilibrium Is Satisfied Explicitly at Joints
In Figs. 2.2d and 2.3b, as in all truss problems, at each joint, i, equilibrium is satisfied by balancing
3 the externally applied forces and support reactions R
          
                j
               and the member forces P
          (m): [image: 
$$\displaystyle\begin{array}{rcl} & & \sum \mathbf{R}_{j} +\sum \mathbf{P}^{(m)} = 0;\text{ bold }\mathbf{P},\mathbf{R}\text{ represent vectors} \\ & & j: \text{ external forces at node }i;\text{ this index is a subscript} \\ & & m: \text{ members meeting at node }i;\text{ superscript index in parentheses }{}\end{array}$$
]

 (2.2)



In Figs. 2.2 and 2.3 since all forces are acting at a point, Eq. (2.2) denotes equilibrium of the entire plane structures. It then suffices to satisfy equilibrium individually in the x- and y- (or in any two orthogonal) directions. The zero net moment condition is trivially satisfied.

2.1.2 Matrix Notation
In Figs. 2.2 and 2.3 
                
               R is a vector. On the other hand, in Figs. 2.2d and 2.3b, the displacement components, not the displacement vectors, are clearly indicated by r
          1, r
          2. The matrix notation allows component-wise representation of external forces and nodal displacements, at all degrees-of-freedom.

2.1.3 An Argument for the Displacement Method
We can add any number of bars at the joint O of Fig. 2.2 without increasing the number of displacement unknowns. There are only two equilibrium equations for a joint. Then only from equations of statics, even for Fig. 2.3, member forces (and support reactions) cannot be evaluated. The method must involve r
          1 and r
          2 that explicitly satisfy compatibility.
Overwhelmingly, the number of displacement unknowns is (significantly) less than that of the forces. Also, the solution demands less numerical efforts when the displacements are the primary variables,4 as compared to the force counterpart, i.e., the flexibility method. Therefore we select the displacement and the stiffness formulation for all truss problems, and use these in the finite element method.

2.1.4 Notations: Superscripts and Subscripts
In Figs. 2.2 and 2.3, the compatibility requirement dictates that at joint O, the (x, y) displacement components, r
          1 and r
          2 should be the same for all members. Let us consider the equilibrium equation: [image: 
$$\displaystyle{ \left \{\begin{array}{*{10}c} R_{x} \\ R_{y}\end{array} \right \}\qquad +\sum _{i:\text{ members meeting at node }O}\left \{\begin{array}{*{10}c} P_{x}^{(i)} \\ P_{y}^{(i)} \end{array} \right \} = 0 }$$
]

 (2.3)



To avoid cluttering the symbols in the textbook, the element number will be indicated with a superscript. The subscripts are reserved to indicate components that could be the coordinates or the degree-of-freedom number designator. In Figs. 2.2 and 2.3, the member forces P
          (i) will be finally obtained from the element stiffness matrices with (r
          1, r
          2) as the primary unknowns: [image: 
$$\displaystyle{ \left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \} = \left \{r\right \}: \text{displacement vector (a column matrix)} }$$
]

 (2.4)



In displacement-based finite element method, which is the focus of this textbook, nodal displacements will always be treated as the target variables to be calculated. Subsequently, all physical quantities are evaluated in terms of the displacements at the degrees-of-freedom.

2.1.5 Truss System Stiffness Matrix Equation
In Fig. 2.1, there are five nodes. Before the application of the displacement constraints provided by the roller and the hinge, each node can independently freely move in two orthogonal directions. Hence there are ten degrees-of-freedom in the truss system of Fig. 2.1. Then, in the spirit of footnote 4 we can define the 10 × 10 truss stiffness5 or the system stiffness matrix[image: 
$$\left [k\right ]^{(S)}$$
]: 
                
               [image: 
$$\displaystyle{ \left \{R\right \}_{10\times 1}^{(S)} = \left [k\right ]_{ 10\times 10}^{(S)}\ \left \{r\right \}_{ 10\times 1}^{(S)};\text{ superscript }(S)\text{: system} }$$
]

 (2.5)

 The virtual displacement counterpart of Eq. (2.5) will have [image: 
$$\delta \left \{R\right \},\delta \left \{r\right \}:$$
] [image: 
$$\displaystyle{ \delta \left \{R\right \}^{(S)} = \left [k\right ]^{(S)}\ \delta \left \{r\right \}^{(S)} }$$
]

 (2.6)

 The components of [image: 
$$\delta \left \{r\right \}^{(S)}$$
] must be zero at the degrees-of-freedom where the displacement boundary conditions are prescribed. This is formalized next.

2.1.6 Unit Virtual Displacement in a System
A procedure to ‘pull out’ the i, j element k
          
                ij
               of any stiffness matrix (local or global, singular or non-singular) [image: 
$$\left [k\right ]$$
] (a general matrix is encased in [ ]) is: [image: 
$$\displaystyle{ \left [\begin{array}{*{10}c} \cdots & \cdots &\cdots \\ \cdots & \cdots &\cdots \\ \cdots & \vdots &\cdots \\ \cdots &k_{ i,j}&\cdots \\ \cdots & \vdots &\cdots \\ \cdots & \cdots &\cdots \end{array} \right ]\text{ and define }\overbrace{\mathop{\underbrace{\qquad \left \{\delta r^{(j)}\right \}\ =\ \ \left \{\begin{array}{*{10}c} 0\\ 0\\ \vdots \\ 1\\ \vdots\\ 0 \end{array} \right \}\qquad }}\limits }_{\text{1 at row }j,\ \text{other values are zero}}^{\text{the unit virtual displacement}}\quad \text{then:} }$$
]

 (2.7)

 [image: 
$$\displaystyle{ \left \{\delta r^{(i)}\right \}^{T}\ \left [k\right ]\left \{\delta r^{(j)}\right \} = k_{ ij}\text{: clearly a virtual work quantity} }$$
]

 (2.8)

 This idea is generalized in the continuum sense with finite element shape functions that are the analogs of [image: 
$$\left \{\delta r^{(i)}\right \}$$
]—the displacement field due to a unit virtual nodal displacement.6

2.1.6.1 Reduced Stiffness Matrix of a Truss [image: 
$$\left [k\right ]$$
] from the Global Stiffness Matrix [image: 
$$\left [k\right ]^{(S)}$$
]

The global displacements are housed in a row matrix < r >(S) (a row matrix is encased in < > but a column matrix in {}): [image: 
$$\displaystyle{ <r> ^{(S)} = \left <\overbrace{<r>} ^{\text{arbitrary}}\ \ \,\ \ \ \ \overbrace{<r_{ o}>} ^{\text{prescribed}}\ \ \ \ \right>: \text{partitioned} }$$
]

 (2.9)

 [image: 
$$\displaystyle{ \text{then: }\delta <r> ^{(S)} = \left <\overbrace{\delta <r>} ^{\text{to be calculated}}\ \ \,\ \ \ \ \overbrace{\delta <r_{ o}>} ^{\text{zero}}\ \ \ \ \right> }$$
]

 (2.10)

 
                  
                 The prescribed displacement boundary conditions [image: 
$$\left \{r_{o}\right \}$$
] cannot be altered: [image: 
$$\displaystyle{ \text{hence: }\delta <r> ^{(S)} = \left <\delta <r>,<0>\right> }$$
]

 (2.11)

 whose imposition reduces [image: 
$$\left [k\right ]^{(S)}$$
]—the global matrix—to the reduced matrix [image: 
$$\left [k\right ]$$
]. Associated with the three zero eigenvalues of [image: 
$$\left [k\right ]^{(S)}$$
], there must be at least three prescribed nodal displacements to “anchor down”  the truss.

2.1.6.2 Stiffness Elements as Virtual Work Quantities
For a generic stiffness matrix [image: 
$$\left [k\right ]$$
] we shall temporarily state, without resorting to the concept of virtual work or virtual displacement, that:“k
            
                  ij
                 is the force needed at the ith degree-of-freedom, when a unit displacement is gradually applied at the jth degree-of-freedom with all other degrees-of-freedom held (rigid or) locked.”  
From the unit nodal virtual displacement concept, we state:
“k
            
                  ij
                 is the virtual work due to the application of the unit virtual displacement at the the ith degree-of-freedom, when a unit displacement is imposed at the jth degree-of-freedom7 while all other degrees-of-freedom are held locked.”  
As explained in Sect. 2.1.6, we can polish up the definition of k
            
                  ij
                 to:“k
            
                  ij
                 is the virtual work necessary to impose a unit virtual displacement at the ith degree-of-freedom, on the virtual nodal forces introduced by a unit virtual displacement applied at the jth degree-of-freedom.”  
Recall, the unit virtual nodal displacement at the jth degree-of-freedom necessarily implies that all other degrees-of-freedom are held fixed.

2.1.6.3 Equations To Be Solved
The n displacement boundary conditions reduce the global stiffness matrix [image: 
$$\left [k\right ]^{(S)}$$
] to the non-singular8 reduced stiffness matrix [image: 
$$\left [k\right ].$$
] Now, the number of m unknowns in [image: 
$$\left \{r\right \}$$
] gets reduced by n due to the displacement constraints: [image: 
$$\displaystyle{ \text{global: }\left [k\right ]_{m\times m}^{(S)} \rightarrow \left [k\right ]_{ (m-n)\times (m-n)}\text{: reduced } }$$
]

 (2.12)

 For degrees-of-freedom where the displacements are unknown: [image: 
$$\displaystyle{ \left \{R\right \} = \left [k\right ]\ \left \{r\right \};\text{ all displacements in}\left \{r\right \}\text{to be calculated} }$$
]

 (2.13)



In the summation convention we have to solve: [image: 
$$\displaystyle{ R_{j} =\sum _{i}k_{ji}\ r_{i} =\sum _{i}k_{ij}\ r_{i}\quad \text{(due to symmetry of}\ \left [k\right ])}$$
]

 (2.14)

 However, due to the symmetry of stiffness matrices we shall always utilize symmetric equation solvers to drastically reduce computing time and storage.
The bar problems in Figs. 2.2 and 2.3 capture the essence of the finite element method. In fact, Eqs. (2.3) through (2.6) and Eqs. (2.12) and (2.14) encapsulate the formulation in the (x, y) frame.



2.2 Displacement Formulations: Statically Determinate and Indeterminate Trusses

            
              
            
          
Trusses are classified into two groups: statically determinate and indeterminate, [1, 6]. In statically determinate systems, e.g. Fig. 2.2a, equations of statics alone suffice to complete the analysis.
[image: A300727_1_En_2_Fig4_HTML.gif]
Fig. 2.4Truss problems. (a) Statically determinate. (b) Statically indeterminate





2.2.1 Statically Determinate Trusses
In Fig. 2.4a, an important implication is that the member areas and material properties do not enter into the equations. Also, there is no redundancy, i.e.,if any member is knocked-off the entire system will collapse as a mechanism. That is to say there are just enough members laid out in a fashion that geometrical stability is guaranteed.
We consider equilibrium of selected sections and generate enough equations to solve all unknowns. Obviously, the stiffness properties of the elements play no role. Any standard structural analysis book, such as Chap. 2 in [1], addresses this in detail. The material properties need to be considered only when the joint displacements9 are to be determined [1, 3].

2.2.2 Statically Indeterminate Trusses
It is often necessary to strengthen the structure by adding additional members beyond the element arrangement that ensures stability, vide Fig. 2.4b. We must satisfy compatibility at joints. This statement implies that all members meeting at a joint should undergo the same displacement. The displacements depend on member stiffnesses that involve cross-sectional areas and elastic moduli.
In general, the number of displacements at a joint is less than the number of member forces, vide Fig. 2.3. One vertical and one horizontal joint displacement help determine three member forces. Thus, for structural analysis it is more convenient to solve all trusses with the same computer program based on the displacement formulation with matrix notation.

2.2.3 Importance of the Truss Problem

In a plane truss, (at the minimum) the triangular bar structure attributes stability. Thus, statically determinate trusses, with the minimum number of members, can be solved for all its member forces without consideration of any displacement variables. Since the equations of statics suffice, the member properties, such as the Young’s moduli and bar cross-sectional areas, do not enter into the picture of force computations. In statically indeterminate trusses additional members (also called redundancy) secure a higher strength requirement, and need additional equations (beyond static equilibrium) that come from displacement compatibility conditions. For practical structures with a high redundancy number, it is convenient to carry out a displacement formulation where element stiffness matrices are used where equilibrium of forces and displacement compatibility only at joints suffices.

2.2.4 Symbolic Computation for Finite Element Systems
Systems other than the two-dimensional trusses will require different element stiffness matrices than those discussed in this chapter. But the way the nodal displacement unknowns are solved remains practically intact.

Mathematica programming facilitates code development irrespective of spatial dimensionality. If each nodal coordinate List has 1 entry, then the system must be a connected bar system, as in Fig. 1.12 If the Length of each nodal coordinate List is two or three, then the appropriate element stiffness matrices will have two and three degrees-of-freedom per node.
Equilibrium and compatibility is enforced only at the nodal degrees-of-freedom; the equation generator Listing 2.2 does not need any modification.


2.3 A Mathematica Formulation to Evaluate Unknowns: Input: nodes, connections, and Member Properties
In any problem, we first identify the reference coordinates and the associated degrees-of-freedom,10 vide Fig. 2.5 where an isolated member is shown.
[image: A300727_1_En_2_Fig5_HTML.gif]
Fig. 2.5A truss element; nodal forces and displacements with subscript are global





In general, e.g. in Fig. 2.1, the two lists: nodes and connections furnish the geometrical description and they will be used throughout: [image: 
$$\displaystyle{ \mathtt{nodes} =\{\{ x_{1},y_{1}\},\ldots,\{x_{j},y_{j}\},\ldots,\{x_{n\mathrm{Nodes}},y_{n\mathrm{Nodes}}\}\}; }$$
]

 (2.15a)

 [image: 
$$\displaystyle\begin{array}{rcl} & & n\mathrm{Nodes}: \text{total number of nodes, in Fig. 2.1: }n\mathrm{Nodes} = 5 \\ & & \mathtt{connections} =\{\{ i^{(1)},j^{(1)}\},\ldots,\{i^{(n\mathrm{El})},j^{(n\mathrm{El})}\}\} \\ & & n\mathrm{El}: \text{total number of elements, in Fig. 2.1: }n\mathrm{El} = 7{}\end{array}$$
]

 (2.15b)

 Note, all Mathematica lists are encased in curly braces.
In Fig. 2.5, R,r are associated with degrees-of-freedom; they are indicated with subscripts. For the member force and extension, P,Δ the element number, which is within a circle, is encased within parentheses as superscripts. For the ith element, the stiffness matrix [image: 
$$\left [k\right ]^{(i)}$$
] transforms the independent nodal displacements [image: 
$$\left \{r_{_{1}},r_{_{2}},r_{_{3}},r_{_{4}}\right \}$$
] into the nodal forces [image: 
$$\left \{R_{1}^{(i)},R_{ 2}^{(i)},R_{ 3}^{(i)},R_{ 4}^{(i)}\right \}$$
]:

            [image: 
$$\displaystyle{ \left <R_{1}^{(i)},R_{ 2}^{(i)},R_{ 3}^{(i)},R_{ 4}^{(i)}\right> = \left <r_{_{ 1}},r_{_{2}},r_{_{3}},r_{_{4}}\right>\ \left [k\right ]^{(i)}: \text{ by } { balancing} \text{ forces } }$$
]

 (2.16)


          
A displacement, ri, is typeset in LaTeX as:                 {\ensuremath{{r}_{_i}}}


Mathematica modules to generate element stiffness matrices are merely coded equation (1.86) in Listing 2.3. The boundary conditions are expressed as a list of rules in Listing 2.4. This is a better choice than setting up equations with == or the Equal construct of Mathematica. The rollers and hinge boundary conditions are transformed into rules.
In a truss problem, e.g. in Fig. 2.1, resulting member forces P(i) and axial stretches Δ
        (i), as in Fig. 2.5, are needed for design-analysis. All such P(i) and Δ
        (i) are calculated from the nodal quantities, Rj and rj. These are obtained by the stiffness formulation summarized below.
A list11 [image: 
$$\left \{kS\right \}$$
] houses all element stiffness matrices, [image: 
$$\left [k\right ]^{(i)}$$
] of Eq. (2.1a): [image: 
$$\displaystyle{ \left \{kS\right \} = \left \{\left [k\right ]^{(1)},\left [k\right ]^{(2)},\ldots,\left [k\right ]^{((n\mathrm{El}))}\right \};n\mathrm{El}: \text{number of elements} }$$
]

 (2.17)



In Fig. 2.1, nEl equals seven. Then [image: 
$$\left \{kS\right \}$$
] is a list12 consisting of seven 4 × 4 element stiffness matrices. Compare this [image: 
$$\left \{kS\right \}$$
] with the global stiffness matrix [image: 
$$\left [k\right ]^{(S)}$$
] that is 10 × 10 associated with the five nodal displacements.
The global displacements, e.g. [image: 
$$\left \{r_{_{1}},r_{_{2}},r_{_{3}},r_{_{4}}\right \}$$
] in Eq. (2.16), pertaining to the element number iEl can be retrieved from the list connections, via the nodal numbers {i(iEl),j(iEl)}: connections[[iEl]]; the associated four nodal displacements correspond to the degrees-of-freedom numbered: [image: 
$$\displaystyle{ \left (2i^{(i\mathrm{El})} - 1\right ),2i^{(i\mathrm{El})},\left (2j^{(i\mathrm{El})} - 1\right ),2i^{(j\mathrm{El})} }$$
]

 (2.18)



2.3.1 The Balance Principles of Physics
In finite elements, equilibrium of forces prevails only in a global sense.13 The global balance of energy is equivalent to satisfying the global14 equilibrium, vide Sect. 1.5.1. The Eulerian formulation averages out the local errors. Ritz in [4] minimized the Eulerian 
                
               [image: 
$$\boldsymbol{\mathfrak{E}}$$
] of Eq. (1.8), which is the foundation of the finite element method. He devised the best possible adherence to the global (not point-wise) balance principle (derived as an integral) associated with assumed approximate response fields.
Akin to the Ritz variational formulation, the force-displacement relations: [image: 
$$\left [k\right ]^{(i)},\left [k\right ]^{(S)},\text{ and}\ \left \{kS\right \}$$
] are virtual work quantities that originate from the global balance of energy. These two concepts share the same notation, δ, as elaborated in Sect. 1.5.1.1.

2.3.2 Satisfying Equilibrium at Each Joint
The compatibility at each joint has been assured by using global numbering for each member nodal displacements. This is the advantage of the displacement formulation on which the finite element method is anchored.
In Fig. 2.6, the generic joint shows two degrees-of-freedom labeled I and J where several members j applying forces P(j). At the Jth degree-of-freedom, RJ,rJ
15 are the respective force and displacement.
[image: A300727_1_En_2_Fig6_HTML.gif]
Fig. 2.6Equilibrium at degrees-of-freedom





Listing 2.1 Code for P(i)
          

                locationP = {{-1.45, -0.83},{-0.48‘, -1.8}, {0.78‘, -1.64}};
names = {"1", "i", "j"};
iTexts = Table[Text[ StringJoin["( ", ToString[names[[i]]], " )"]], {i,3}]



              

In Sect. B.4.1 proper typesetting in LaTeX figures is described. In particular, the MaTeX package is used in Mathematica.
From the list connections in Eq. (2.15b), the Mathematica built-in function Position yields the element numbers and the order the degree-of-freedom occurs in the member. Suppose for a given degree-of-freedom I an element number p has its qth local degree-of-freedom. Part[kS,p,q] pulls out the stiffness row that contributes the force for the Ith degree-of-freedom.

2.3.3 Generation of Finite Element System Equations
From Eq. (2.18) we get all the degrees-of-freedom that pertain to the member number p. This facilitates programming, vide Listing 2.2. The equilibrium statement in Eq. (2.14) is coded in Listing 2.2:
Listing 2.2 Code for the system equations

                systemEquations::usage = "systemEquations[{r,R},connections, kS]
                      returns the form: R[i]=a[i,j] r[j]; sum on j
         R[i], r[i]: force and displacement at degree-of-freedom number i
        connections: array containing element node numbers
      kS: houses all element stiffness matrices (same order of connections)"

   systemEquations[{r_, R_}, connections_, kS_] := Module[{elementDofs, nDim},
   nDim = Length[kS[[1]]]/Length[connections[[1]]];
   elementDofs = Flatten[Range[(# - 1)*nDim + 1, #* nDim ]] & /@ connections;

        Table[R[iDofForce] == Plus @@ ((Part[
        kS, #[[1]], #[[2]]].(r[#] & /@ Part[elementDofs, #[[1]]])) & /@
           Position[elementDofs, iDofForce]), {iDofForce, (Length[kS[[1]]]/
                    Length[connections[[1]]])*Max[Flatten
                                      [connections]]}]]



              


2.3.4 An Example from Timoshenko and Young [6]: Fig. 2.7
There are a number of excellent problems in [6]. Listing 2.3 generates element stiffness matrices. The loads and support conditions are input as rules as in Listing 2.4:
Listing 2.3 Code for 2-D truss element stiffness matrices from Eq. (1.86)

                strussElementStiffnessMatrix::usage="strussElementStiffnessMatrix[
      {node1, node2}, ae_] returns the 4 by 4 matrix for an element with nodal coordinates node1 and node2.
         The bar stiffness ae = area * Young’s modulus has a default value 1"

strussElementStiffnessMatrix[{node1_, node2_}, ae_:1] := Module[{c, s, L},
       L = Sqrt[(node2 - node1). (node2 - node1)];{c, s} = (node2 - node1)/L;
 (ae/L)* {{c^2, c s, -c^2, -c s}, {c s, s^2, -c s, -s^2}, {-c^2, -c s, c^2,
               c s}, {-c s, -s^2, c s, s^2}} // N]



              

Prescribed boundary conditions from Eq. (2.20), are organized as Mathematica rules (using the syntax form: a → b):
Listing 2.4 Boundary conditions in Eq. (2.20) as a set of rules


                boundaryCondition = Flatten[{
 {r[1] -> 0, r[2] -> 0, r[4] -> 0 },
  {R[5] -> 2 , R[11] -> -1, R[12] -> 1},
     Thread[{R[3], R[6], R[7], R[8], R[9], R[10]} -> 0]}]



              


              [image: A300727_1_En_2_Fig7_HTML.gif]
Fig. 2.7From Timoshenko and Young [6, p. 84, Fig. 2.43]




            
In Fig. 2.7, from [6], a member number is shown within a circle. The connections are described by: [image: 
$$\displaystyle{ \begin{array}{c|ccccccccc} \text{member number:} &1&2&3&4&5&6&7&8&9\\ \text{first node number: } &1 &2 &3 &4 &5 &6 &1 &2 &3 \\ \text{other node number: }&2&3&1&5&6&4&4&6&5\\ \end{array} }$$
]

 (2.19)



The problem description is: [image: 
$$\displaystyle{ \left (\begin{array}{cc} node& \{x,y\} \\ 1 & \left \{-\sqrt{3},-1\right \} \\ 2 & \left \{\sqrt{3},-1\right \} \\ 3 & \{0,2\} \\ 4 &\left \{-\frac{\sqrt{3}\left (-1+\sqrt{3}\right )} {1+\sqrt{3}}, \frac{-1+\sqrt{3}} {1+\sqrt{3}} \right \} \\ 5 & \left \{\frac{\sqrt{3}\left (-1+\sqrt{3}\right )} {1+\sqrt{3}}, \frac{-1+\sqrt{3}} {1+\sqrt{3}} \right \} \\ 6 & \left \{0,-\frac{2\left (-1+\sqrt{3}\right )} {1+\sqrt{3}} \right \} \\ \end{array} \right )\qquad \begin{array}{*{10}c} \text{Numbering degrees-of-freedom}: \\ \text{at a node }i \\ 2i - 1\text{ along}x \\ 2i\text{ along }y \\ \text{Prescribed quantities}: \\ \text{Loading}: \\ R_{5} = 2;\quad R_{11} = -1;\quad R_{12} = 1 \\ \text{Displacements}: \\ r_{1} = 0;\quad r_{2} = 0;\quad r_{4} = 0 \\ \text{Quantities to be calculated}: \\ R_{1},R_{2},\text{and}R_{4} \\ r_{3},r_{5},r_{6}\ldots r_{12} \end{array} }$$
]

 (2.20)



The geometrical description from Eq. (2.20) and Fig. 2.7 is in nodes and connections in Listing 2.5:
Listing 2.5 Input and output data; result with all [image: 
$$\mathcal{A}E = 1$$
]


                     nodes = {{-10 Sqrt[3], -10}, {10 Sqrt[3], -10}, {0, 20}, {30 - 20 Sqrt[3],-10 (-2 + Sqrt[3])}, {-30 + 20 Sqrt[3], -10 (-2 + Sqrt[3])}, {0, 20 (-2 + Sqrt[3])}};
connections = {{1, 2}, {2, 3}, {3, 1}, {4, 5}, {5, 6}, {6, 4}, {1, 4},
                                             {2, 6}, {3, 5}};
memberForces ={-0.314459, -1.6151, 2.14088, 0.3849, -0.525783, -0.281766,
                                    0.345092, 1.16159, -0.471405}



              

Listing 2.6 Calculating the tensile force in a member from Eq. (1.82b)

                tensileForce[kS_, i_, connections_, r_, allValues_, nodes_] :=
Module[{f1, f2, f3, f4, elementDofs, nDim, c, s, n1, n2, n},
 {n1, n2} = nodes[[#]] & /@ connections[[i]];
 n = n2 - n1; {c, s} = n/Sqrt[n.n];

 nDim = Length[kS[[1]]]/Length[connections[[1]]];
 elementDofs = Flatten[Range[(# - 1)*nDim + 1, #*nDim]] & /@ connections;
     {f1, f2, f3, f4} = kS[[i]]. ((r[#] & /@ elementDofs[[i]]) /. allValues); -(f1 *c + f2 *s)]



              

Listing 2.7 Calculated tensile force in a member from Eq. (1.82b) in memberForces


                memberForces ={-0.314459, -1.6151, 2.14088, 0.3849, -0.525783, -0.281766,
                                    0.345092, 1.16159, -0.471405}



              

In Fig. 2.8, the external forces are indicated in black and the bar tensile forces, obtained from Eq. (1.82b) and Listings 2.6 and 2.7, are in white on black background.
In all cases, we shall indicate the tensile member force with a positive number. The nodal forces and displacements are positive along coordinate axes.
All graphics can be generated from the geometry and boundary data. The lists, nodes and connections, are always included in all function calls that draw on different components.
More elaborate graphics and calculations are presented in Appendix B.
Listing 2.8 evaluates all nodal displacements [image: 
$$\left \{r\right \}$$
] and forces [image: 
$$\left \{R\right \}$$
]:
[image: A300727_1_En_2_Fig8_HTML.gif]
Fig. 2.8Calculated forces—figure and forces displayed algorithmically






Listing 2.8 Solving all nodal displacements and forces

                (* Solve all forces and displacement at all degrees-of-freedom *)

(* generate all element stiffness matrices in kS *)

    kS = Table[strussElementStiffnessMatrix[nodes[[#]] & /@ connections[[iElm]]],
                       {iElm, Length[connections]}];

(* indicate nodal displacements and forces by r and R *)

   eqs = systemEquations[{r, R}, connections, kS];
        nDof = (Length[kS[[1]]]/Length[connections[[1]]])*
                              Max[Flatten[connections]];

   allDOF = Flatten[{Array[r, nDof], Array[R, nDof]}];
        variablesToBeSolved = Complement[allDOF, (First /@ boundaryCondition)]

    sol = Flatten[Solve[eqs /. boundaryCondition, variablesToBeSolved]];

(* values of all nodal displacements and forces *)

     allValues = Union[sol, boundaryCondition]



              


2.3.5 A Note on Numerical Efficiency
A finite element system equation, indicated by eqs in Listing 2.8, is always symmetric, positive definite, and banded. In Listing 2.8, Solve[] does not take advantage of these mathematical properties; hence, it employs a robust but inefficient algorithm to yield the solutions in sol. In concept development and homework problems, Solve[] is adequate. Mathematica has a number of ‘under the hood’ enhancements to speed up calculations.
For production runs C
          ++ libraries can be called from Mathematica; such programming details, e.g. [2], are not within the scope in this textbook.
Finite element system equations are not only symmetric but sparse in general, and mostly banded. These features enhance numerics significantly. Mathematica functions such as:SparseArray\[RawBackquote]KrylovLinearSolvecan be employed in production runs. In this textbook, we shall not go into any such detail.


2.4 Extensions to General Finite Element Systems
For general finite elements we can keep most of the computer codes from truss problems.16 For example, in plane strain analysis, we replace the bar stiffness matrices by the two-dimensional plane strain stiffness matrices. The assembly and solution procedures, hence the Mathematica routines, remain intact.
2.4.1 Spatial Discretization
Finite elements, Ω
          (i) with a boundary Γ
          (i), are non-intersecting geometrical entities whose collection fully covers the body [image: 
$$\boldsymbol{\varOmega }$$
] with a boundary Γ: [image: 
$$\displaystyle{ \cup \ \varOmega ^{(i)} =\boldsymbol{\varOmega };\quad \text{ for },i\neq j,\ \varOmega ^{(i)} \cap \varOmega ^{(j)} =\emptyset: \text{the empty set} }$$
]

 (2.21)

 
                
               Mesh generation, with a predetermined spatial discretization by design, is an active field of research. There are modules (also included in Mathematica) that are widely available for all computer systems.

2.4.2 Triangulation: Simplex Elements
Figure 2.9a furnishes a generic example where truss-like triangles cover an arbitrary domain. In Fig. 2.9b, we have filled in the space between the truss members with thin plane sheets and encountered a plane stress problem. The elements of the figures have the simplest geometrical shapes, and are thus termed simplex (in three-dimensions, a simplex element is a tetrahedron).
[image: A300727_1_En_2_Fig9_HTML.gif]
Fig. 2.9Covering arbitrary 2-D shapes with simplex elements. (a) Covering with truss elements. (b) Covering with triangular elements






2.4.3 The Scope of Truss Problems
It is of the utmost importance to treat distinctly the scalar17 problems from their vector field counterparts, e.g. continuum elasticity.18 The latter is converted into the former by idealizing the axial displacement to be the only independent variable in individual members, in trusses.
[image: A300727_1_En_2_Fig10_HTML.gif]
Fig. 2.102D system with same nodes as in Fig. 2.7






In Fig. 2.10, we have non-simplex tessellation. For elasticity problems in two- and three-dimensions, the shape functions themselves must be vectors coupled via the Poisson’s ratio, even though the triangulation scalar shape functions suffice. These issues are addressed in the following chapters of this textbook.
For two-dimensional plane strain cases, incompressibility, i.e., for the Poisson’s ratio [image: 
$$\nu = \frac{1} {2},$$
] poses additional difficulties. The shape functions are kinematically constrained and a constant element pressure p0 needs to be addressed. The notion of the pseudoinverse, described in Sects. 1.8 and 1.9, provides the computational concept and the tool to resolve the ‘zero dilatation’ situation.


2.5 Comments on Problems
Linear elastic behavior and small displacements and rotations [5] are assumed throughout. Truss analyses, especially those pertaining to statically indeterminate cases, encompass all crucial aspects of linear elastostatic modeling by finite elements. This is the reason why the entire Appendix B is developed to demonstrate a number of truss problems using Mathematica. By following these examples, we can grasp the details of the analytical and computational steps. In all finite element approximations, the shape functions are the basic objects. They are (simply) linear in the axial direction, for truss problems.
In the finite element method, equilibrium and compatibility conditions are enforced only at nodes. The (equivalent) nodal forces are obtained as virtual work quantities by conjugating the distributed forces with assumed shape functions.
The advantage of Mathematica programs is that the reader can design their own examples. This is indeed very strongly suggested. An adequate set of problems, specified by the reader, will provide the skill normally earned through a fixed number of exercises. The graphic codes of Appendix B are indispensable for generating meaningful results. These aspects can be fully comprehended with basic truss examples.
No problems (exercises) are assigned in this chapter. The reader is encouraged to follow Appendix B for self-study. For example, the reader can change all the necessary data to solve truss problems related to Fig. 2.11.
[image: A300727_1_En_2_Fig11_HTML.gif]
Fig. 2.11A modification of Fig. 2.10 in two- and three-dimensions
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Footnotes
1Details are in Sect. B.4, vide Fig. B.10.

 

2The fonts in figures and text do not match. This issue is described in Sect. B.4.1.

 

3‘Equating to zero the sum in the vector sense.’ Components of all forces, which are meeting at a point, in any two orthogonal directions should add up to zero.

 

4The same principle applies to all complicated structures. Once the element stiffness matrices [image: 
$$\left [k\right ]^{(i)}$$
] are obtained then at each node compatibility and equilibrium conditions lead to the system equations, via the system stiffness matrix [image: 
$$\left [k\right ]^{(S)}$$
], relating all unknowns.

 

5Roller and hinge boundary conditions are not considered in the system stiffness matrix [image: 
$$\left [k\right ]^{(S)}.$$
] There are three zero eigenvalues, for two rigid body translations in (x, y), and one rigid body rotation on the truss plane.

 

6
Vide [image: 
$$\mathfrak{n}_{i}(x,y)$$
] of Sect. 3.1 for an illustration with plane problems.

 

7There is a slight anomaly, depending on whether the displacements at ith and jth degree-of-freedom be zero or unity.

 

8Here, a square matrix with non-zero determinant.

 

9From Williot Mohr’s diagrams we can determine the nodal displacements from bar (positive or negative) extensions.

 

10In Fig. 2.5, the MaTeX fonts, vide Sect. B.4.1, match the symbols in the text and figures.

 

11It is very different from the global stiffness matrix [image: 
$$\left [k\right ]^{(S)}$$
] of Eq. (2.1b).

 

12In Mathematica, [image: 
$$\left \{kS\right \}$$
] is kS; [image: 
$$\left [k\right ]^{(i)}$$
] can be extracted as: ki = Part[kS,i] or ki = kS[[i]].

 

13For a given distributed skin force f(x), vide Sect. 1.5, we still approximate the displacement field to be a linear function u(x). By considering a constant bar stress, we do not satisfy equilibrium at individual sections.

 

14Also for members, vide Eq. (2.16).

 

15Fonts of graphics from Listing 2.1 do not match those in the text, e.g. Eq. (2.16).

 

16Except for the incompressible case where the set of degrees-of-freedom contains isochoric shape functions and a constant pressure for each finite element.

 

17For example, temperature distributions and the torsion in non-circular prismatic shafts.

 

18For triangles and tetrahedra the interpolants are identical for scalar and vector problems.
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Abstract
For one-dimensional domain the 
              
             Lagrange interpolation, with the polynomial structure, furnishes an excellent approximation. For two non-zero data points, the Lagrange interpolant 
              
             is a straight line. Piecewise parabolic approximations are also quite popular.
The linear interpolation over a triangulated mesh is the two-dimensional counterpart of the Lagrange interpolation with two data points.
Courant illustrated two-dimensional spatial discretization for the structural mechanics problem of 
              
             torsion pertaining to a non-circular prismatic bar (Courant, Bull Am Math Soc 49(1):1–29, 1943) (In his first sentence of the last paragraph, Courant wrote: “Of course, one must not expect good local results from a method using so few elements.” Obviously, he was talking about a finite number of elements. We can therefore credit Courant to be initiator of finite elements.). He demonstrated the intimate connection between 
              
            triangulation and linear interpolants.
A collection of scholarly papers appears in Michal Křížek and Stenberg (eds) (Finite element methods: fifty years of the Courant element. CRC Press, Boca Raton, 1994 (Marcel Dekker, Jyvaskyla, 1993)). This chapter prepares readers to undertake such in-depth studies.

3.1 Interpolants: “Unit at One Node and Zero at Others”
A generic triangle with the vertices (x
        
              i
            , y
        
              i
            ),  i = 1, 2, 3, is shown in Fig. 3.1. Polygonal vertices are the finite element nodes. For the triangular element, they are not colinear. The objective is to estimate the profile of u(x, y) from the prescribed values u
        
              i
            , which are also called the nodal values, at the vertices.

            
              
            
          
Following the Lagrangian interpolation, we introduce the ith interpolant, [image: 
$$\mathfrak{n}_{i}(x,y)$$
], that is unit at the vertex i and zero at all other vertices.
              
            

              
            
1 Hence: [image: 
$$\displaystyle\begin{array}{rcl} \mathfrak{n}_{1}(x_{1},y_{1}) = 1;\quad \mathfrak{n}_{1}(x_{2},y_{2}) = 0;\quad \mathfrak{n}_{1}(x_{3},y_{3}) = 0& &{}\end{array}$$
]

 (3.1a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{leading to: }u(x,y) =\sum _{i}u_{i}\ \mathfrak{n}_{i}(x,y)& &{}\end{array}$$
]

 (3.1b)


[image: A300727_1_En_3_Fig1_HTML.gif]
Fig. 3.1A generic triangle: conventionally, the vertices are numbered counterclockwise





The definition of the 
              
             Kronecker Delta δ
        
              ij
             generalizes Eq. (3.1a) [image: 
$$\displaystyle\begin{array}{rcl} \delta _{ij} = \left \{\begin{array}{@{}l@{\quad }l@{}} 1,\quad i = j\quad \\ 0, \quad i\neq j\quad \end{array} \right.;\quad \left [\begin{array}{*{10}c} \mathfrak{n}_{i}(x_{j},y_{j}) =&\delta _{ij}\text{--- the Knonecker delta;} \\ \mathfrak{n}_{i}(x_{j},y_{j}) =& 1\quad \text{for }i = j;\text{ and } \\ \mathfrak{n}_{i}(x_{j},y_{j}) =& 0\quad \text{for }i\neq j \end{array} \right ]& &{}\end{array}$$
]

 (3.2)



The three equations can yield a unique polynomial with three coefficients. Hence in the (x, y)-frame that polynomial is none other than a linear function of the coordinates (x, y). The corresponding interpolants, with the Kronecker property equation (3.2), are known as the finite element shape functions. 
              
            

For triangular finite elements the shape functions are unambiguous.

3.2 Shape Functions: Exactly Interpolating Linear Fields
The form for [image: 
$$\mathfrak{n}_{1}(x,y),$$
] in Eqs. (3.1a) through (3.2) with linear terms is: [image: 
$$\displaystyle\begin{array}{rcl} \mathfrak{n}_{1}(x,y) = a_{1}x + b_{1}y + c_{1};\quad (a_{i},b_{i},c_{i}): \text{constants}& &{}\end{array}$$
]

 (3.3)

 Then, from Eq. (3.1a): [image: 
$$\displaystyle\begin{array}{rcl} a_{1}x_{1} + b_{1}y_{1} + c_{1} = 1;\ a_{1}x_{2} + b_{1}y_{2} + c_{1} = 0;\ a_{1}x_{3} + b_{1}y_{3} + c_{1} = 0& &{}\end{array}$$
]

 (3.4a)

 [image: 
$$\displaystyle\begin{array}{rcl} \mathfrak{n}_{1}(x,y)& = \frac{x(y_{2}-y_{3})+x_{2}(y_{3}-y)+x_{3}(y-y_{2})} {x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})}&{}\end{array}$$
]

 (3.4b)

 from Mathematica’s Solve[]. Verify Eqs. (3.1a) through (3.2).
Changing 1,2,3 in the cyclic order, [image: 
$$\mathfrak{n}_{2}(x,y)$$
] and [image: 
$$\mathfrak{n}_{3}(x,y)$$
] can be obtained from Eq. (3.4b), and can be organized in a column matrix:

            
              
            
            [image: 
$$\displaystyle\begin{array}{rcl} \left \{\mathfrak{N}(x,y)\right \} = \left \{\begin{array}{*{10}c} \mathfrak{n}_{1}(x,y) \\ \mathfrak{n}_{2}(x,y) \\ \mathfrak{n}_{3}(x,y) \end{array} \right \}& &{}\end{array}$$
]

 (3.5a)


            [image: 
$$\displaystyle\begin{array}{rcl} = - \frac{1} {2\ \mathfrak{A}}\left \{\begin{array}{*{10}c} x(y_{3} - y_{2}) + x_{2}(y - y_{3}) + x_{3}(y_{2} - y) \\ x(y_{1} - y_{3}) + x_{3}(y - y_{1}) + x_{1}(y_{3} - y) \\ x(y_{2} - y_{1}) + x_{1}(y - y_{2}) + x_{2}(y_{1} - y) \end{array} \right \};& &{}\end{array}$$
]

 (3.5b)


            [image: 
$$\displaystyle\begin{array}{rcl} \mathfrak{A} = \frac{1} {2}\left \vert \begin{array}{*{10}c} 1&x_{1} & y_{1} \\ 1&x_{2} & y_{2} \\ 1&x_{3} & y_{3}\\ \end{array} \right \vert \text{: (signed) element area }& &{}\end{array}$$
]

 (3.5c)


            
              
            
          
The barycentric coordinate functions, introduced in 1827 by 
              
             Möbius, will exactly interpolate any linear function on triangles by utilizing the following general properties of the 
              
             barycentric coordinates
              
            
2: [image: 
$$\displaystyle\begin{array}{rcl} \text{uniformity: }1 = \mathfrak{n}_{1}(x,y) + \mathfrak{n}_{2}(x,y) + \mathfrak{n}_{3}(x,y)& &{}\end{array}$$
]

 (3.6a)

 [image: 
$$\displaystyle\begin{array}{rcl} x = x_{1}\mathfrak{n}_{1}(x,y) + x_{2}\ \mathfrak{n}_{2}(x,y) + x_{3}\ \mathfrak{n}_{3}(x,y)& &{}\end{array}$$
]

 (3.6b)

 [image: 
$$\displaystyle\begin{array}{rcl} y = y_{1}\ \mathfrak{n}_{1}(x,y) + y_{2}\ \mathfrak{n}_{2}(x,y) + y_{3}\ \mathfrak{n}_{3}(x,y)& &{}\end{array}$$
]

 (3.6c)



Since the denominator of Eq. (3.4b) has a cyclic pattern, i.e., by exchanging 1 → 2, 2 → 3, 3 → 1, the value remains the same.3 So it does not matter how we cyclically order (x
        1, x
        2, x
        3). 
3.2.1 Interpolation on Triangles: A Mathematica Function for
Now we develop a Mathematica program to generate closed-form expressions for Eqs. (3.5b) and (3.5c).
Pay attention to the Mathematica code in Listing 3.1:
	1.The coordinate variables x and y are in {x_, y_}; hence,

                      interpolantsOnATriangle[{p,q},{{x1,y1},{x2,y2},{x3,y3}}]
                    
will yield the interpolants in the following form: 
                        
                       
                        
                       [image: 
$$\displaystyle\begin{array}{rcl} \alpha \ p +\beta \ q +\gamma & & {}\end{array}$$
]

 (3.7)





 

	2.Division by a symbolic expression is always dangerous!
We must check that, by mistake, the three vertices are not colinear!!


 





Thus, a better version of Listing 3.1 is:
Listing 3.1 Calculating shape functions for a triangle from Eq. (3.5b)

                interpolantsOnATriangle::usage = "interpolantsOnATriangle[{x,y},{{x1,y1},{x2,y2},{x3,y3}}] generates linear interpolants in (x,y) in a triangle: (x1,y1),(x2,y2) and (x3,y3)."

interpolantsOnATriangle[{x_, y_},{{x1_, y1_}, {x2_, y2_}, {x3_, y3_}}] :=
Simplify[{x3 (-y + y2) + x2 (y - y3) + x (-y2 + y3), x3 (y - y1) + x (y1 - y3) + x1 (-y + y3), x2 (-y + y1) + x1 (y - y2) + x (-y1 + y2)}/
         (x2 y1 - x3 y1 - x1 y2 + x3 y2 + x1 y3 - x2 y3)]



              

Listing 3.2 An improved version of Listing 3.1

                interpolantsOnATriangle::usage = "interpolantsOnATriangle[{x,y},{{x1,y1},{x2,y2},{x3,y3}}] generates linear interpolants in (x,y) in a triangle: (x1,y1),(x2,y2) and (x3,y3)."

interpolantsOnATriangle[{x_,
  y_}, {{x1_, y1_}, {x2_, y2_}, {x3_, y3_}}] :=Module[{deno},

deno = (x2 y1 - x3 y1 - x1 y2 + x3 y2 + x1 y3 - x2 y3);
If[Abs[deno] <
 10^-8, (Print["vertices are colinear; program terminates"];
               Exit[]),
               Simplify[{x3 (-y + y2) + x2 (y - y3) + x (-y2 + y3),
                       x3 (y - y1) + x (y1 - y3) + x1 (-y + y3),
                       x2 (-y + y1) + x1 (y - y2) + x (-y1 + y2)}/deno]]]



              

Observe that Module[] in Listing 3.2 protects the variable deno to remain local and not be accessible outside the function. See [7] for details.

3.2.2 An Example for Shape Functions on a Triangle: Linear Functions Exactly Interpolated

              [image: A300727_1_En_3_Fig2_HTML.gif]
Fig. 3.2A triangular element




            
Listing 3.1 for Figs. 3.2 and 3.3, with nodes: [image: 
$$\left (0, \frac{1} {9}\right ),\left (1,0\right )\text{and}\left (\frac{1} {3}, \frac{2} {5}\right ),$$
] is executed as:

              interpolantsOnATriangle[{x, y},{{0, 1/9}, {1,0}, {1/3, 2/5}}]
              [image: 
$$\displaystyle\begin{array}{rcl} \text{ yielding: }\mathfrak{n}_{1}(x,y)& = -\frac{9} {22}(3x + 5y - 3);\quad \mathfrak{n}_{2}(x,y) = \frac{1} {44}(39x - 45y + 5)& \\ \text{ and }\mathfrak{n}_{3}(x,y)& = \frac{15} {44}(x + 9y - 1) &{}\end{array}$$
]

 (3.8)


              [image: A300727_1_En_3_Fig3_HTML.gif]
Fig. 3.3Shape functions on a triangle are linear function of (x, y); unit value at one node and zero on the two others




            

              
                
              
              
                
              
            

3.2.3 The Rayleigh Modal Approach: The Modal to Nodal Transformation Matrix [image: 
$$\left [G\right ]$$
]

Interpolants on triangles, which are linear combinations of (1, x and y), can be derived from the Rayleigh modes. In fact (1, x and y) are themselves the Rayleigh modes because those are the desirable profiles we physically observe as well as intuitively expect.
We want the interpolants, shape functions, and Rayleigh modes to be smooth. Smoothness is generalized to different degrees of continuity. This notion of having no kinks and bumps is akin to continuous solutions of Laplace’s equations. For a generic function f(x, y): 
                
               
                
               [image: 
$$\displaystyle\begin{array}{rcl} \nabla ^{2}f(x,y) = \frac{\partial ^{2}f} {\partial x^{2}} + \frac{\partial ^{2}f} {\partial y^{2}} = 0& &{}\end{array}$$
]

 (3.9)



By far, the simplest form of a non-trivial solution is the linear form: [image: 
$$\displaystyle\begin{array}{rcl} f(x,y) =\alpha +\beta \ x +\gamma \ y;\quad \alpha,\beta,\gamma: \text{ constant coefficients}& &{}\end{array}$$
]

 (3.10)

 For triangulation, i.e., covering a plane region with triangles, the Rayleigh modes are the simplest physical solution fields. With three basic criteria: [image: 
$$\displaystyle\begin{array}{rcl} (i)\ x: \text{smooth profile along the }x\text{-axis};& &{}\end{array}$$
]

 (3.11a)

 [image: 
$$\displaystyle\begin{array}{rcl} (ii)\ y: \text{smooth profile along the }y\text{-axis};& &{}\end{array}$$
]

 (3.11b)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{ and }& & \\ & & (iii)\ 1: \text{ the ground bias}{}\end{array}$$
]

 (3.11c)

 The modal to nodal transformation matrix [image: 
$$\left [G\right ]$$
] will yield the shape functions organized in a column matrix [image: 
$$\left \{\mathfrak{N}(x,y)\right \}$$
] of Eq. (3.5a) from the Rayleigh modes housed in a column, thus:

[image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \mathfrak{n}_{1}(x,y) \\ \mathfrak{n}_{2}(x,y) \\ \mathfrak{n}_{3}(x,y)\end{array} \right \} = \left [G\right ]\left \{\begin{array}{*{10}c} 1\\ x\\ y \end{array} \right \}& &{}\end{array}$$
]

 (3.12)

 Obviously, [image: 
$$\left [G\right ]$$
] depends on the nodal coordinates (x
          
                i
              , y
          
                i
              ), i = 1, 2, 3. For this consideration, it is desirable to be able to get the Rayleigh modes from the shape functions. Hence invertibility, [image: 
$$\det \left [G\right ]\neq 0,$$
] is desirable.
Next, we explore the meaning of this (Rayleigh) modal to nodal (shape) function transformation matrix.
From Eq. (3.12), when (x, y) is the first node (x
          1, y
          1): [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \mathfrak{n}_{1}(x_{1},y_{1}) \\ \mathfrak{n}_{2}(x_{1},y_{1}) \\ \mathfrak{n}_{3}(x_{1},y_{1})\end{array} \right \}& =& \left [G\right ]\left \{\begin{array}{*{10}c} 1\\ x_{ 1}\\ y_{ 1}\end{array} \right \} = \left \{\begin{array}{*{10}c} 1\\ 0 \\ 0 \end{array} \right \}\quad \text{similarly:}{}\end{array}$$
]

 (3.13a)

 [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \mathfrak{n}_{1}(x_{2},y_{2}) \\ \mathfrak{n}_{2}(x_{2},y_{2}) \\ \mathfrak{n}_{3}(x_{2},y_{2}) \end{array} \right \}& =& \left [G\right ]\left \{\begin{array}{*{10}c} 1\\ x_{ 2}\\ y_{ 2}\end{array} \right \} = \left \{\begin{array}{*{10}c} 0\\ 1 \\ 0 \end{array} \right \}\text{ and }\left [G\right ]\left \{\begin{array}{*{10}c} 1\\ x_{ 3}\\ y_{ 3}\end{array} \right \} = \left \{\begin{array}{*{10}c} 0\\ 0 \\ 1 \end{array} \right \} \\ \text{leading to:}\left [\begin{array}{*{10}c} 1&0&0\\ 0 &1 &0 \\ 0&0&1 \end{array} \right ]& =& \left [G\right ]\ \left [\begin{array}{*{10}c} 1 & 1 & 1\\ x_{ 1} & x_{2} & x_{3}\\ y_{ 1} & y_{2} & y_{3} \end{array} \right ];\quad \text{this shows that: } {}\end{array}$$
]

 (3.13b)

 [image: 
$$\displaystyle\begin{array}{rcl} \left [G\right ]& =& \left [\begin{array}{*{10}c} 1 & 1 & 1\\ x_{ 1} & x_{2} & x_{3}\\ y_{ 1} & y_{2} & y_{3} \end{array} \right ]^{-1};\quad \text{note that:}{}\end{array}$$
]

 (3.13c)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{since the vertices are not colinear:}\quad \det \left [\begin{array}{*{10}c} 1 & 1 & 1\\ x_{ 1} & x_{2} & x_{3}\\ y_{ 1} & y_{2} & y_{3} \end{array} \right ]\neq 0& &{}\end{array}$$
]

 (3.13d)

 This matrix inversion in calculating [image: 
$$\left [G\right ]$$
] relies upon the physical constraints that the three vertices are non-colinear, i.e., they do not for a degenerate triangle.
3.2.3.1 A Numerical Example
The following numerical result from Mathematica is identical with the one in Eq. (3.8):

                Inverse[{{1, 1, 1}, {0, 1, 1/3}, {1/9, 0, 2/5}}]
                ⟶
                [image: 
$$\displaystyle\begin{array}{rcl} & \{ & {}\\ & \{27/22,-(27/22),-(45/22)\},& {}\\ & \{5/44,39/44,-(45/44)\}, & {}\\ \ & \{-(15/44),15/44,135/44\} & {}\\ & \} & {}\\ \end{array}$$
]



              

                
                  
                
                
                  
                
                
                  
                
              



3.3 Courant’s Approximation of a Poisson’s Equation with Linear Interpolants: Torsion of a Non-circular Prismatic Shaft
In the Appendix, page 20, of his classic contribution[1], Courant introduced triangular tessellation4 with linear interpolants. A square shaft with a square cut-out was subjected to torsion. The cross-section is shown in Fig. 3.4.
[image: A300727_1_En_3_Fig4_HTML.gif]
Fig. 3.4Constant values of u on inner and outer boundaries with dimensions 2 and 1.5





Courant numerically solved a potential u(x, y)5 related to torsions, where: 
              
             [image: 
$$\displaystyle\begin{array}{rcl} \nabla ^{2}u = 1;\quad G\ \theta = 1;& &{}\end{array}$$
]

 (3.14a)

 [image: 
$$\displaystyle\begin{array}{rcl} G: \text{shear modulus};\quad \theta: \text{angle of twist per unit length}& &{}\end{array}$$
]

 (3.14b)

 [image: 
$$\displaystyle\begin{array}{rcl} S = -\int \int u\ dx\ dy: \text{torsional stiffness; with:}& &{}\end{array}$$
]

 (3.14c)

 [image: 
$$\displaystyle\begin{array}{rcl} u = 0\text{ on the outer boundary, and}& &{}\end{array}$$
]

 (3.14d)

 [image: 
$$\displaystyle\begin{array}{rcl} u = c\text{: an unknown on the inner boundary}& &{}\end{array}$$
]

 (3.14e)



For the cross-section in Fig. 3.4, Courant hand calculated: S = 0. 339. This is remarkably close to the value obtained with quadratic interpolants.
Linear interpolant also approximated the unknown c on the inner boundary to be − 0. 11. Courant continued approximations with quadratic field to improve S and c to 0. 340 and − 0. 109, respectively, all by hand calculations!
Many scholars, e.g. [4, 6], rightfully credited Courant to be the pioneer of the finite element methodology. His triangulation, i.e., breaking down a domain with triangular mosaics, is described in Fig. 3.1 of [3].
3.3.1 A Typographical Error in Courant’s Paper
The paper:

[image: 
$$\displaystyle\begin{array}{rcl} & \text{\textquotedblleft Variational methods for the solution of problems of}& {}\\ & \text{equilibrium and vibrations\textquotedblright } & {}\\ & \text{by R. Courant} & {}\\ \end{array}$$
]


 (Source: Bull. Amer. Math. Soc. Volume 49, Number 1, (1943), pp. 1–23)
In the opinion of the author of this textbook, is a must reading for any serious finite element enthusiast. Even though in many journals the paper has been reprinted in its entirety, e.g. [2], the readership often had to overexert to realize and then avert a typographical error in one of the equations that is related to the contour integral for a multiply connected domain. The erratum is discussed here,6 and a corrigendum is derived.
The classical solution of a non-circular shaft under torsion is analyzed first. This makes us to appreciate Courant’s mastery in formulating such a difficult problem so elegantly. This “hand calculation” by Courant heralded the finite element formulation that conquered the central stage of engineering design-analysis by storm with the advent of digital computers. The overwhelming power of applied mathematics cannot be underestimated in the backdrop of artifacts introduced in the finite element method.
A theoretical analysis of torsion for the multiply connected domains appeared in pages 6 and 7 [1]. Page 6 contained the following sketch:
3.3.1.1 Formulation for a Scalar Potential: In the Cartesian Coordinates
On page 7, of [1], the field equation was described to be: [image: 
$$\displaystyle\begin{array}{rcl} \varDelta \ u = 1;\quad u(x,y): \text{ the unknown function in the }\text{ Cartesian frame}& &{}\end{array}$$
]

 (3.15)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{ and }\varDelta: \text{the Laplacian operator }\left ( \frac{\partial ^{2}} {\partial x^{2}} + \frac{\partial ^{2}} {\partial y^{2}}\right )& &{}\end{array}$$
]

 (3.16)

 
                  
                 
                  
                

Note that u(x, y) is so scaled as to yield unity on the right-hand side of Eq. (3.15). On page 7, the second equation had a typo, the author of this textbook obtained: [image: 
$$\displaystyle\begin{array}{rcl} \int _{C_{i}}\frac{\partial u} {\partial n}ds - A_{i} = 0;\quad \mathbf{n}:\text{ the outward normal; }s: \text{the path in }C_{i}& &{}\end{array}$$
]

 (3.17)

 
                  
                 
                  
                 
                  
                 as opposed to the following that appeared in the Courant paper: [image: 
$$\displaystyle\begin{array}{rcl} \int _{C_{i}}\frac{\partial u} {\partial n}ds + c_{i}\ A_{i} = 0;\quad c_{i}: \text{the constant value of }u\text{ on }C_{i}& &{}\end{array}$$
]

 (3.18)

 The discrepancy is in the second term, and the constant field value c
            
                  i
                , in the cavity outlined by C
            
                  i
                , did not appear in the author’s derivation.
The components of the outward normal n are (n
            
                  x
                , n
            
                  y
                ). The unit vectors [image: 
$$(\hat{\imath }_{x},\hat{\imath }_{y})$$
] along (x, y) facilitates representing n in terms of its components: [image: 
$$\displaystyle\begin{array}{rcl} \mathbf{n} = \imath _{x}\ n_{x} + \imath _{y}\ n_{y}& &{}\end{array}$$
]

 (3.19)

 The scalar Δ of Eq. (3.16) can be obtained from the vector ∇ of Eq. (3.9) using the dot product ⊙: [image: 
$$\displaystyle\begin{array}{rcl} \nabla = \left (\hat{\imath }_{x}\ \frac{\partial } {\partial x} +\hat{ \imath }_{y} \frac{\partial } {\partial y}\right );\quad \varDelta = \nabla \odot \nabla & &{}\end{array}$$
]

 (3.20)




3.3.1.2 A Change in Notation for Deriving the Suggested Correction
To analyze torsion on the cross-section in Fig. 3.5, for notational conveniences, we change u to ϕ in Eqs. (3.15) through (3.18). Thus: [image: 
$$\displaystyle\begin{array}{rcl} \varDelta \ \phi = 1\text{ and }\int _{C_{i}} \frac{\partial \phi } {\partial n}ds - A_{i} = 0;\quad \phi \Big\vert _{C} = 0& &{}\end{array}$$
]

 (3.21)


[image: A300727_1_En_3_Fig5_HTML.gif]
Fig. 3.5The figure from Courant’s paper [1]; a cavity C
                    
                          i
                         encloses an area A
                    
                          i
                        







                
                  
                
              

3.3.1.3 St. Venant Warping Function ψ(x, y)
The z-displacement profile of the cross-section dictates the St. Venant warping function ψ(x, y). The three-dimensional displacements become: [image: 
$$\displaystyle\begin{array}{rcl} u(x,y,z) = -\theta \ y\ z;\quad v(x,y,z) =\theta \ x\ z\text{ and }w(x,y,z) =\theta \ \psi (x,y)& &{}\end{array}$$
]

 (3.22)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{leading to the stress equilibrium equation: }\varDelta \psi = 0& &{}\end{array}$$
]

 (3.23)




3.3.1.4 Prandtl’s Stress Function φ(x, y)
Prandtl introduced φ(x, y) so that [image: 
$$(\psi +\sqrt{-1}\ \varphi )$$
] could be an analytic function in [image: 
$$x + \sqrt{-1}\ y,$$
] where the Cauchy–Riemann conditions are: [image: 
$$\displaystyle\begin{array}{rcl} \frac{\partial \psi } {\partial x}& = \frac{\partial \varphi } {\partial y};\quad \frac{\partial \psi } {\partial y} = -\frac{\partial \varphi } {\partial x};\quad \text{since }n\text{ to }s\text{ is counterclockwise: }&{}\end{array}$$
]

 (3.24a)

 [image: 
$$\displaystyle\begin{array}{rcl} \frac{\partial \psi } {\partial n}& = \frac{\partial \varphi } {\partial s};\text{ and }\varphi \Big\vert _{(x,y)\in C} -\left (\frac{x^{2}+y^{2}} {2} \right ) = 0;\quad \text{define:}&{}\end{array}$$
]

 (3.24b)

 [image: 
$$\displaystyle\begin{array}{rcl} \phi (x,y) = -\frac{1} {2}\left (\varphi (x,y) -\left (\frac{x^{2} + y^{2}} {2} \right )\right );\quad \phi (x,y)\Big\vert _{C} = 0& &{}\end{array}$$
]

 (3.24c)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{ and scaled to suit Courant's canonical form: }\varDelta \phi = 1& &{}\end{array}$$
]

 (3.24d)

 Incidentally, the shear strain ε
            
                  xy
                 per angle of twist θ: 
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} \frac{\partial \phi } {\partial x} = -\frac{1} {2}\left ( \frac{\partial \varphi } {\partial x} - x\right ) = -\frac{1} {2}\left (- \frac{\partial \psi } {\partial y} - x\right )\text{ from Eq. (3.24a)}& &{}\end{array}$$
]

 (3.25a)

 [image: 
$$\displaystyle\begin{array}{rcl} = \frac{1} {2}\left ( \frac{\partial \psi } {\partial y} + x\right ) = \frac{\gamma _{zy}} {2\theta };\quad \text{ Similarly: }\quad \frac{\partial \phi } {\partial y} = -\frac{\gamma _{zx}} {2\theta } & &{}\end{array}$$
]

 (3.25b)




                
                  
                
              
Cauchy–Riemann Conditions and Analyticity and Continuity


                    
                   
                    
                   
                    
                   
                    
                   An arbitrary function f of complex variables [image: 
$$x \pm \ \sqrt{-1}\ y,$$
] in terms of complex conjugates can be expressed as: 
                    
                   [image: 
$$\displaystyle\begin{array}{rcl} f(x + iy) =\varphi (x + iy)\ +\ i\ \psi (x + iy)& &{}\end{array}$$
]

 (3.26a)

 [image: 
$$\displaystyle\begin{array}{rcl} f(x - iy)& =\varphi (x - iy)\ -\ i\ \psi (x - iy)&{}\end{array}$$
]

 (3.26b)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{where: }i = \sqrt{-1}\text{ and }\psi,\varphi \text{ are }real\text{ functions}& &{}\end{array}$$
]

 (3.26c)

 This powerful characterization is employed next.


3.3.1.5 Continuity as the Basis of Required Relations

                
                  
                
              
Importantly, for a derivative to exist in the complex (x, y)  plane, i.e., in an arbitrary direction, the real and imaginary parts, φ and ψ cannot be independent of each other. They are interrelated through Eq. (3.24a). This makes f infinitely differentiable thus infinitely smooth.
                  
                

                  
                

                  
                

                  
                

                  
                 The advantage of this infinitely smoothness is explored next within the context of continuity.
The condition on C
            
                  i
                 is obtained from the physics of the problem that the displacement along z: must be continuous on C
            
                  i
                 where θ is a constant: 
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} \int _{C_{i}}d\ w(x,y) = 0 \rightarrow \int _{C_{i}}d\ \Big(\theta \ \psi (x,y)\Big) = 0& &{}\end{array}$$
]

 (3.27a)

 [image: 
$$\displaystyle\begin{array}{rcl} \rightarrow \int _{C_{i}}\frac{\partial \psi (x,y)} {\partial x} \ dx + \frac{\partial \psi (x,y)} {\partial y} \ dy& = 0&{}\end{array}$$
]

 (3.27b)



Therefore: [image: 
$$\displaystyle\begin{array}{rcl} \int _{C_{i}}\left (-n_{y}\frac{\partial \varphi (x,y)} {\partial y} \ - n_{x}\ \frac{\partial \varphi (x,y)} {\partial x} \ \right )ds = 0& &{}\end{array}$$
]

 (3.28a)

 [image: 
$$\displaystyle\begin{array}{rcl} \left (n_{y}\frac{\partial \varphi (x,y)} {\partial y} \ + n_{x}\ \frac{\partial \varphi (x,y)} {\partial x} \ \right )ds = 0& &{}\end{array}$$
]

 (3.28b)

 [image: 
$$\displaystyle\begin{array}{rcl} 2\int _{C_{i}}\left (-n_{y} \frac{\partial \phi } {\partial y}\ - n_{x}\ \frac{\partial \phi } {\partial x}\ \right )ds\ +\int _{C_{i}}\left (n_{y}\ y\ + n_{x}\ x\ \right )ds = 0& &{}\end{array}$$
]

 (3.28c)



Finally, [image: 
$$\displaystyle\begin{array}{rcl} \int _{C_{i}}\left (n_{y} \frac{\partial \phi } {\partial y}\ + n_{x}\ \frac{\partial \phi } {\partial x}\ \right )ds =\int _{C_{i}} \frac{\partial \phi } {\partial n}\ ds& &{}\end{array}$$
]

 (3.29a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{and }\int _{C_{i}}\left (n_{y}\ y\ + n_{x}\ x\ \right )ds =\int _{A_{i}}\left ( \frac{\partial } {\partial y}\ y\ + \frac{\partial } {\partial x}\ x\ \right )dA = 2A_{i}& &{}\end{array}$$
]

 (3.29b)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{leading to:}\int _{C_{i}} \frac{\partial \phi } {\partial n}\ ds =\ A_{i}\text{ or }\int _{C_{i}} \frac{\partial \phi } {\partial n}\ ds -\ A_{i} = 0& &{}\end{array}$$
]

 (3.29c)




3.3.1.6 A Shorter Derivation Using the Gradient Operator ∇
Let us restate the problem for clarity. In the original paper [1] Eq. (3.29c) appeared, due to possible typographical error, as: [image: 
$$\displaystyle\begin{array}{rcl} \int _{C_{i}} \frac{\partial \phi } {\partial n}\ ds + c_{i}\ \ A_{i} = 0& &{}\end{array}$$
]

 (3.30)

 The typo is that for a negative sign c
            
                  i
                 appeared as the coefficient of A
            
                  i
                . 
A concise proof for the formula in Eq. (3.29c) is presented here. Using the dyadic notation, a more concise derivation follows.7

The St. Venant warping function ψ is the axial displacement profile for unit twist per axial length. Around a cavity, ψ should be continuous, so also Prandtl φ, recall [image: 
$$\psi +\sqrt{-1}\varphi$$
] is analytic in A, and φ on C is proportional to [image: 
$$\frac{1} {2}(x^{2} + y^{2}).$$
] Now, using a scaling factor λ, define Courant’s u as: [image: 
$$\displaystyle\begin{array}{rcl} u = \frac{(x^{2} + y^{2})} {4} +\lambda \ \varphi;\ \qquad \text{ so that }u\Big\vert _{C} = 0;& &{}\end{array}$$
]

 (3.31a)

 [image: 
$$\displaystyle\begin{array}{rcl} \varDelta \psi =\varDelta \varphi = 0 \rightarrow \varDelta u = 1;& &{}\end{array}$$
]

 (3.31b)

 [image: 
$$\displaystyle\begin{array}{rcl} \frac{\partial \psi } {\partial s}& =& - \frac{\partial \varphi } {\partial n};\quad \text{ then:}\int _{C_{i}}\frac{\partial u} {\partial n}ds =\lambda \int _{C_{i}} \frac{\partial \varphi } {\partial n}ds +\int _{C_{i}} \frac{\partial } {\partial n}\left (\frac{x^{2} + y^{2}} {4} \right )\ ds \\ & =& \int _{C_{i}}\mathbf{n} \cdot \nabla \left (\frac{x^{2} + y^{2}} {4} \right )\ ds -\lambda \int _{C_{i}} \frac{\partial \psi } {\partial s}ds {}\end{array}$$
]

 (3.31c)

 [image: 
$$\displaystyle\begin{array}{rcl} =\int _{A_{i}}\nabla \cdot \nabla \left (\frac{x^{2} + y^{2}} {4} \right )\ dA + 0& &{}\end{array}$$
]

 (3.31d)

 Since w and ψ are continuous on C
            
                  i
                 [image: 
$$\displaystyle\begin{array}{rcl} \int _{C_{i}}\frac{\partial u} {\partial n}ds =\int _{A_{i}}\varDelta \left (\frac{x^{2} + y^{2}} {4} \right )\ dA& &{}\end{array}$$
]

 (3.32a)

 [image: 
$$\displaystyle\begin{array}{rcl} =\int _{A_{i}}dA = A_{i};& &{}\end{array}$$
]

 (3.32b)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{finally: }\int _{C_{i}}\frac{\partial u} {\partial n}ds = A_{i}\text{ or }\int _{C_{i}}\frac{\partial u} {\partial n}ds - A_{i} = 0\quad \blacksquare & &{}\end{array}$$
]

 (3.32c)






3.4 Homework Problems
3.4.1 Reviewing Courant’s Paper


                
               Courant [1] presented the triangulation approximation for: [image: 
$$\displaystyle\begin{array}{rcl} \text{a biharmonic equation:}\quad \nabla ^{2}\Big(s(x,y)\nabla ^{2}\phi \Big) = f(x,y)& &{}\end{array}$$
]

 (3.33)

 Courant’s notations, designating the independent variable to be u, is modified to ϕ in Eq. (3.33). The inhomogeneity variable is s(x, y). 

              	1.Rewrite Courants equations, presented in: “§1. Quadratic functionals.”—(3) through (9), when: [image: 
$$\displaystyle\begin{array}{rcl} \nabla \Big(s(x,y)\nabla \phi \Big) = f(x,y);\quad s(x,y)> 0& & {}\end{array}$$
]

 (3.34)





 

	2.Rewrite “§2. Rigid and natural boundary conditions” for the torsion problem.


 

	3.Review “§II. RAYLEIGH–RITZ METHOD” and obtain the functional I(ϕ) to be minimized.
Explain the significance of the factor k, in [image: 
$$\displaystyle\begin{array}{rcl} I(\phi ) =\int _{\varOmega }\Big((\phi _{,}x)^{2} + (\phi _{,}y)^{2} +\phi \ f + k(\nabla ^{2}\phi - f)^{2}\Big)\ d\varOmega & & {}\end{array}$$
]

 (3.35)





 




            

3.4.2 Analytical Computation

              	1.Obtain the closed-form solution of a uniform prismatic shaft of elliptic cross-section.


 

	2.For a uniform thin ring of shear modulus μ, with radius and thickness, r, t, show that the torsional stiffness is 2πμ t r
                  3. Explain the calculated unit to be:

[image: 
$$\dfrac{\mathrm{force} \times \mathrm{ length}} {\mathrm{radians}\text{ per }\mathrm{length}}$$
] i.e., force × length2
                


 

	3.Obtain a series solution when the elliptic shaft has a central circular hole.


 




            

3.4.3 Numerical Exercise
Validate your result of Sect. 3.4.2 with numerical values using triangulations.


3.5 Term Project

            	1.For an elliptic shaft: [image: 
$$\displaystyle\begin{array}{rcl} \left (\frac{x} {a}\right )^{2} + \left (\frac{y} {b}\right )^{2} = 1& & {}\end{array}$$
]

 (3.36)

 with a central circular hole: [image: 
$$\displaystyle\begin{array}{rcl} x^{2} + y^{2} = c^{2}\quad (c <a,b)& & {}\end{array}$$
]

 (3.37)


[image: A300727_1_En_3_Fig6_HTML.gif]
Fig. 3.6Triangulation with curved side





Follow Courants “triangulation” with curved sides, shown in Fig. 3.6.
The domain integration involved therein can be carried out exactly, using the divergence theorem and the computer code from Appendix E.


 

	2.Develop a computer program to arbitrarily triangulate the above “multiply connected region.”


 

	3.Compare your numerical results with a series approximation.


 

	4.Use the same computer program to calculate the torsional stiffness of a thin section in Fig. 3.7. Refine the spatial discretization and compare your results with the analytical solution.
[image: A300727_1_En_3_Fig7_HTML.gif]
Fig. 3.7Triangulation of a thin section







 




          

3.6 Hints

            	1.For elasticity problems [5] provides an excellent treatment.


 

	2.An in-depth analysis of finite element models for the harmonic and biharmonic equations can be found in [3].
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Footnotes
1This corresponds to the unit virtual displacement [image: 
$$\left \{\delta r^{(i)}\right \}$$
] of Sect. 2.1.6.

 

2
[image: 
$$\left \{1,x,y\right \}$$
], the independent polynomial terms, are the Rayleigh modes, since they satisfy equilibrium, for generating nodal shape functions [image: 
$$\mathfrak{n}_{i}(x,y).$$
] This is elaborated in Sect. 3.2.3.

 

3We can utilize the List structure of Mathematica to evaluate the denominator only once for all three shape functions.

 

4The word is derived from Latin tessella that is a small piece to make mosaics.

 

5Change of u to ϕ in Sect. 3.3.1.2 avoids conflicts with displacements u
            
                  i
                (x, y, z).

 

6This is a chance for us to review the method of potentials to solve the classical torsion problem of linear elasticity [5]; this “typo” in [1] did not affect any numerical result in the Appendix, page 20, of Courant’s pioneering work [1].

 

7This gives us an opportunity to familiarize ourselves with the divergence theorem.
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Abstract


              
             Clough (Proceedings, 2nd conference on electronic computation, A.S.C.E. structural division, Pittsburgh, PA, pp 345–378, 1960) introduced the term finite element with his classical displacement formulation of plane strain triangles. These are plane elements with constant stress distributions. Analogous plane stress triangular elements can be similarly formulated. The corresponding (The triangle is the simplest polygon in [image: 
$$\mathfrak{R}^{2}$$
] and the tetrahedron is its three-dimensional counterpart.) three-dimensional cases of tetrahedral elements do not pose any conceptual difficulty. To emphasize this natural extension, we first review the three-dimensional field equations of continuum mechanics, and then formulate the element stiffness matrix for triangular domains.
An important feature of triangular elements is that their shape functions are linear polynomials in the physical (x, y) coordinate variables. This renders the stress and strain fields to be constant within an element. Hence, the point-wise equilibrium is always satisfied unconditionally. Thus, it does not matter even if the linear elasticity formulations are coupled vector field problems, the shape function vectors with one zero component still qualify to be admissible functions. (Courant (Bull Am Math Soc 49(1):1–29, 1943) emphasized this concept starting from his Sect. II as he focused on the Rayleigh–Ritz Method, just above his equation number (12).) Hence the “uncoupling (This is elaborated for four-node elements in Sect. 5.4.)” of the shape function vectors, à la Courant scalar field problems (Courant, Bull Am Math Soc 49(1):1–29, 1943), still persists even for coupled vector field problems of elasticity (It will be stated in Eqs. (5.7) and (5.8) that the independence of displacement vectors under a single nodal displacement is standard even for four-node elements that violate point-wise equilibrium.) when spatial discretization with triangles is invoked. (Similar conclusions can be drawn when trapezoidal elements are used for three-dimensional linear elasticity problems.) Assuming the other parts of a finite element computer program to be without any flaw, any linear stress field on arbitrary domains will be exactly reproduced irrespective of meshing details. (In Chap. 6 we analyze this concept (the patch test) in depth.) From the theoretical standpoints, this observation raises a valid question as to whether other elements with more nodes will have such a property that brings the finite element method close to very reliable approximation of problems with boundaries of arbitrary shapes.
Clough employed the physical concepts of virtual work to identify the entries of stiffness matrices and nodal forces to be virtual work quantities. The variational principle (though mathematically elegant) was not essential because, unlike Courant, Clough was not addressing the abstract class of elliptic boundary value problems for which the “rigid” and “natural” boundary conditions always emerge from the associated variational principle. It is important to state that for physical problems, where there is a notion of energy, (due to the self-adjointness property of the partial differential equations of mathematical physics) the principle of virtual work is congruent with the variational formulation of Ritz (vide Ritz, J Reine Angew Math 135:1–61, 1908; Gaul, In: GAMM: Proceedings in applied mathematics and mechanics. Springer, Rotterdam, 2011).

4.1 Stiffness Matrix from the Energy Balance Principle


              
             
              
            The element strain energy, which is a scalar, is the integral, on the element domain, of the strain energy density function. This scalar is constructed from the stress and strain tensors. However, as will be introduced in Eqs. (4.2) and (4.3), it is convenient to formulate a scalar product when the stress and strain tensors are written as column matrices.1

4.1.1 Strains and Linear Elastic Stresses in Terms of Strain-Displacement Transformation Matrix [image: 
$$\left [b\right ]$$
]


              
                
              
              
                
              
              
                
              
              
                
              
              
                
              
            
In terms of the independent nodal displacement values, [image: 
$$\left \{r\right \}$$
], the assumed displacement field [image: 
$$\boldsymbol{u}$$
] can be expressed using the shape functions [image: 
$$\mathfrak{n}_{i}$$
]: [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{u}(x,y,z) = \mathfrak{n}_{i}(x,y,z)\ r_{i};\quad r_{i}\text{: nodal displacements}& &{}\end{array}$$
]

 (4.1)



The strain field is indicated as column matrices, for two- and three-dimensional cases with three and six components, respectively, in the forms: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\epsilon \right \} = \left \{\begin{array}{*{10}c} \epsilon _{xx}\\ \epsilon _{yy } \\ \gamma _{xy}\end{array} \right \};\quad \left \{\epsilon \right \} = \left \{\begin{array}{*{10}c} \epsilon _{xx}\\ \epsilon _{yy } \\ \epsilon _{zz}\\ \gamma _{xy} \\ \gamma _{yz}\\ \gamma _{ zx}\end{array} \right \};\quad \begin{array}{*{10}c} \left \{\epsilon \right \} = \left [b\right ]\ \left \{r\right \}; \\ \left [b\right ]\text{: strain-displacement matrix} \\ \left [b\right ]\text{has 3 or 6 rows for 2- or 3-D, number of } \\ \text{ columns equals element degrees-of-freedom } \end{array} & &{}\end{array}$$
]

 (4.2)



The strain-displacement matrix [image: 
$$\left [b\right ]$$
] is further elaborated2 in Sect. 4.1.3. The associated stresses are organized as columns: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\sigma \right \} = \left \{\begin{array}{*{10}c} \sigma _{xx}\\ \sigma _{yy } \\ \tau _{xy}\end{array} \right \};\quad \left \{\sigma \right \} = \left \{\begin{array}{*{10}c} \sigma _{xx}\\ \sigma _{yy } \\ \sigma _{zz}\\ \tau _{xy} \\ \tau _{yz}\\ \tau _{ zx}\end{array} \right \};\quad \begin{array}{*{10}c} \left \{\sigma \right \} = \left [d\right ]\ \left [b\right ]\ \left \{r\right \}\; \\ \left [d\right ]\text{: constitutive matrix (Hooke's law)} \\ \left [d\right ]: 3 \times 3\text{ or }6 \times 6 \\ \text{ symmetric and}\ \mathit{ positive\ definite} \ \text{matrix } \end{array} & &{}\end{array}$$
]

 (4.3)

 
                
              

From Eq. (4.3): [image: 
$$\displaystyle\begin{array}{rcl} \left \{\sigma \right \} = \left [d\right ]\left \{\epsilon \right \} = \left [d\right ]\ \left [b\right ]\ \left \{r\right \}& &{}\end{array}$$
]

 (4.4)



4.1.1.1 The Strain Energy [image: 
$$\mathfrak{I}$$
] in the Element
The strain energy density is: [image: 
$$\displaystyle\begin{array}{rcl} \frac{1} {2}\left \{\epsilon \right \}^{T}\left \{\sigma \right \}& =& \frac{1} {2}\Big(\left [b\right ]\left \{r\right \}\Big)^{T}\ \left [d\right ]\ \Big(\left [b\right ]\left \{r\right \}\Big){}\end{array}$$
]

 (4.5a)

 [image: 
$$\displaystyle\begin{array}{rcl} & =& \frac{1} {2}\left \{r\right \}^{T}\ \left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]\ \left \{r\right \}{}\end{array}$$
]

 (4.5b)

 The total strain energy, within the element domain Ω, is: [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{I}}\Big(\left \{r\right \}\Big) =\int _{\varOmega }\frac{1} {2}\left \{\epsilon \right \}^{T}\left \{\sigma \right \}\ d\varOmega = \frac{1} {2}\left \{r\right \}^{T}\left (\int _{\varOmega }\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]\ d\varOmega \right )\left \{r\right \}& &{}\end{array}$$
]

 (4.6)




                
                  
                
                
                  
                
              

4.1.1.2 External Work [image: 
$$\mathfrak{W}$$
] Done by the Nodal Forces [image: 
$$\left \{R\right \}$$
]

The nodal loads of [image: 
$$\left \{R\right \}$$
] are gradually applied to cause [image: 
$$\left \{r\right \}$$
], then: [image: 
$$\displaystyle\begin{array}{rcl} \left \{R\right \} = \left [k\right ]\ \left \{r\right \};\quad \left [k\right ]: \text{element stiffness matrix }& &{}\end{array}$$
]

 (4.7a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{ leads to: }\boldsymbol{\mathfrak{W}}\Big(\left \{r\right \}\Big) = \frac{1} {2}\left \{R\right \}^{T}\ \left \{r\right \} = \frac{1} {2}\left \{r\right \}^{T}\ \left [k\right ]\ \left \{r\right \}& &{}\end{array}$$
]

 (4.7b)




4.1.1.3 Balance of Energy [image: 
$$\mathfrak{I} = \mathfrak{W}:$$
] The Expended External Work is Stored as the Strain Energy
Since Eqs. (4.6) and (4.7b) are true for arbitrary [image: 
$$\left \{r\right \}$$
], we get: [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{I}}\Big(\left \{r\right \}\Big) =\boldsymbol{ \mathfrak{W}}\Big(\left \{r\right \}\Big) \Rightarrow \left [k\right ] =\int _{\varOmega }\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]\ d\varOmega & &{}\end{array}$$
]

 (4.8)

 Recall that at any degree-of-freedom an arbitrary displacement can be imposed, without any restriction whatsoever. However within the confines of linear elastic analysis, we shall limit ourselves to small displacements.
The expression of [image: 
$$\left [k\right ]$$
] in Eq. (4.8) is not restricted to triangular elements. For any element, for which [image: 
$$\left [b\right ]$$
] and [image: 
$$\left [d\right ]$$
] are at hand, element domain integration3 of [image: 
$$\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]$$
] will yield the element stiffness matrix [image: 
$$\left [k\right ]$$
].


4.1.2 Constitutive Matrices [image: 
$$\left [d\right ]$$
] for Plane Stress and Plane Strain Cases
Consider the triangular element of Fig. 3.2 with [image: 
$$E = 1\text{ and }\nu = \frac{1} {3}$$
] [image: 
$$\displaystyle\begin{array}{rcl} \text{for plane stress: }\ \ \frac{E} {1 -\nu ^{2}}\left [\begin{array}{ccc} \ \ \ \ \ 1\ \ \ \ \ \ & \ \ \ \ \nu \ \ \ \ \ \ & \ \ \ \ \ \ 0\ \ \ \ \ \ \\ \nu &1 & \ 0 \\ 0&0&\ \frac{1-\nu } {2}\\ \end{array} \right ]& &{}\end{array}$$
]

 (4.9a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{ or }\ \ \frac{2\mu } {1-\nu }\left [\begin{array}{ccc} \ \ \ \ \ 1\ \ \ \ \ \ & \ \ \ \ \nu \ \ \ \ \ \ & \ \ \ \ \ \ 0\ \ \ \ \ \ \\ \nu &1 & \ 0 \\ 0&0&\ \frac{1-\nu } {2}\\ \end{array} \right ]& &{}\end{array}$$
]

 (4.9b)

 [image: 
$$\displaystyle\begin{array}{rcl} & & \text{for plane strain: }\ \ \ \frac{2\mu } {1 - 2\nu }\left [\begin{array}{ccc} \ \ \ 1-\nu \ \ \ \ & \ \ \ \nu & \ \ \ \ \ \ \ 0\ \ \ \\ \nu &\ \ \ 1-\nu & \ \ \ \ \ \ 0 \\ 0 & 0 &\ \ \ \ \ \ \ \frac{1-\nu } {2}\\ \end{array} \right ] \\ & & \text{then: }\overbrace{\left [\begin{array}{ccc} \frac{3} {2} & \frac{3} {4} & 0 \\ \frac{3} {4} & \frac{3} {2} & 0 \\ 0 & 0 &\frac{3} {8}\\ \end{array} \right ]}^{\left [d\right ]:\text{plane strain}}\qquad \overbrace{\left [\begin{array}{ccc} \frac{9} {8} & \frac{3} {8} & 0 \\ \frac{3} {8} & \frac{9} {8} & 0 \\ 0 & 0 &\frac{3} {8}\\ \end{array} \right ]}^{\left [d\right ]:\text{plane stress}}{}\end{array}$$
]

 (4.9c)



4.1.2.1 The Incompressibility Issue
We would like to focus on incompressible solids. In many geotechnical applications, as in plasticity, incompressibility cases,4 when ν = 1∕2, pose special difficulties. We cannot use Eqs. (4.9b) through (4.9c).


                  
                 The nodal displacements do not constitute degrees-of-freedom since arbitrary nodal displacement can introduce (an arbitrary) volume change. The constitutive matrix [image: 
$$\left [d\right ]$$
] for Poisson’s ratio ν is traditionally calculated from the modulus of elasticity E, as in Listing 4.1.
Listing 4.1 Plane stress and plane strain d


                  BeginPackage[
\[RawDoubleQuote]ConstitutiveMatrices2D\[RawBackquote]
\[RawDoubleQuote],
\[RawDoubleQuote]Global\[RawBackquote]\[RawDoubleQuote]]

ConstitutiveMatrices2D::usage = "ConstitutiveMatrices for 2-D problems."

PlaneStressConstitutiveMatrix::usage ="PlaneStressConstitutiveMatrix[nu, e]
  yields stress-strain relation for plane stress, with Poisson’s ratio nu and
  modulus of elasticity e (defaulted to 1)."

PlaneStrainConstitutiveMatrix::usage =
"PlaneStressConstitutiveMatrix[nu, e]
yields stress-strain relation for plane strain, with Poisson’s ratio nu and
  modulus of elasticity e (defaulted to 1)."

Begin[\[RawDoubleQuote]\[RawBackquote]Private\[RawBackquote]
    \[RawDoubleQuote]]

PlaneStressConstitutiveMatrix[nu_, e_: 1] := (e/(1 - nu^2)) {{1, nu, 0},
        {nu, 1, 0}, {0, 0,(1 - nu)/2}}

PlaneStrainConstitutiveMatrix[nu_, e_: 1] := (e (1 - nu)/
      ((1 + nu) (1 - 2 nu))) {{1, nu/(1 - nu), 0},{nu/(1 - nu), 1, 0},
               {0, 0, (1 - 2 nu)/(2 (1 - nu)) }}

End[]
EndPackage[]



                

When pasted on a Mathematica notebook, Listing 4.1 will properly display \[RawBackquote]  and  \[RawDoubleQuote]  to be ` and " respectively.

4.1.2.2 Positive Definiteness of [image: 
$$\left [d\right ]$$
]

Since the strain energy density is always positive, then for any arbitrary [image: 
$$\left \{\epsilon \right \}$$
]: [image: 
$$\displaystyle\begin{array}{rcl} \text{strain energy density: }\left \{\epsilon \right \}^{T}\ \left \{\sigma \right \} = \left \{\epsilon \right \}^{T}\ \left [d\right ]\ \left \{\epsilon \right \}> 0& &{}\end{array}$$
]

 (4.10)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{irrespective of }\left \{\epsilon \right \},\text{ hence,}\ \left [d\right ]\ \text{is}\ \mathit{ positive\  definite}& &{}\end{array}$$
]

 (4.11)



Eigenvalues of [image: 
$$\left [d\right ]$$
], for plane stress and plane strain cases are, respectively: [image: 
$$\displaystyle\begin{array}{rcl} \left \{ \frac{1} {2(\nu +1)}, \frac{1} {\nu +1}, \frac{1} {1-\nu }\right \}\text{ and }\left \{ \frac{1} {(1+\nu )(1 - 2\nu )}, \frac{1} {2(\nu +1)}, \frac{1} {\nu +1}\right \}& &{}\end{array}$$
]

 (4.12)



Note, all eigenvalues are positive because [image: 
$$-1 <\nu <\frac{1} {2}.$$
]



4.1.3 Strain-Displacement Transformation Matrix: [image: 
$$\left [b\right ]$$
]

For triangular elements, the constant [image: 
$$\left [b\right ]$$
] is coded in Listing 4.2.
Listing 4.2 Calculating b: the “b-matrix”   for a triangle from Eq. (4.2)

                bMatrixTriangularElement::usage = "bMatrixTriangularElement[nodes] yields the
(constant) strain-displacement transformation matrix for a triangular element
defined by nodes."

  bMatrixTriangularElement[nodes_] :=
     Module[{x, y, shapeFunctions, r1, r3, r5, r2, r4, r6, ru, rv, rS, u, v},
            shapeFunctions = interpolantsOnATriangle[{x, y}, nodes];
            ru = {r1, r3, r5};rv = {r2, r4, r6};rS = Join[ru, rv] // Sort;
              {u, v} = (shapeFunctions . #) & /@ {ru, rv};
 Simplify[Coefficient[#, rS] & /@ {D[u, x], D[v, y], D[u, y] + D[v, x]}]]



              

The strains are calculated from the spatial derivatives of displacement fields. The number of shape functions tells us the number of element degrees-of-freedom. The number of spatial coordinates tells us the dimensionality of the problem, for example {x,y} is a 2-D or {x,y,z} is a 3-D continuum. For all two-dimensional elements Listing 4.3 yields the “b-matrix.”  
Listing 4.3 Calculating the “b-matrix”   for any two-dimensional element

                BeginPackage[\[RawDoubleQuote]BMatrix\[RawBackquote]
\[RawDoubleQuote], \[RawDoubleQuote]\[RawBackquote]Global\[RawBackquote]
\[RawDoubleQuote]]
   BMatrix::usage="BMatrix[shapeFunctions, {x,y}] yields the strain-displacement matrix for shapeFunctions in {x,y} coordinates."
Begin[\[RawDoubleQuote]\[RawBackquote]Private\[RawBackquote]
\[RawDoubleQuote]]

(* Employ differential operation with matrix multiplication *)

MyD/: MyD[x_] y_ := D[y,x]

ShapeFunctionMatrix2D[shapeFunctions_]:=
Module[{a},
a=Flatten[Thread[
{shapeFunctions,Table[0,{Length[shapeFunctions]}]}]];
{a,RotateRight[a]}]

BMatrix[shapeFunctions_, {x_,y_}]:=Module[{shapeFunctionMatrix, MyB},
shapeFunctionMatrix=ShapeFunctionMatrix2D[
    shapeFunctions];
MyB={{MyD[x],0},{0,MyD[y]},{MyD[y],MyD[x]}};
MyB . shapeFunctionMatrix]

End[]
EndPackage[]



              

The element of Fig. 3.2 with nodal coordinates from Listing 4.2 yields: [image: 
$$\displaystyle\begin{array}{rcl} \left [b\right ] = \left [\begin{array}{cccccc} -\frac{27} {22} & \ \ \ \ \ \ \ \ \ \ 0 & \ \ \ \ \ \ \ \ \ \frac{39} {44} & \ \ \ \ \ \ \ \ \ \ \ 0 & \ \ \ \ \ \ \ \ \ \ \frac{15} {44} & \ \ \ \ \ \ \ \ \ \ 0 \\ 0 &\ \ \ \ \ \ -\frac{45} {22} & \ \ \ \ \ \ \ 0 &\ \ \ \ \ \ \ -\frac{45} {44} & \ \ \ \ \ \ \ \ \ \ \ 0 &\ \ \ \ \ \ \frac{135} {44} \\ -\frac{45} {22} & \ \ \ \ \ -\frac{27} {22} & \ \ \ \ \ -\frac{45} {44} & \ \ \ \ \ \ \ \ \ \frac{39} {44} & \ \ \ \ \ \ \ \ \frac{135} {44} & \ \ \ \ \ \ \ \frac{15} {44} \end{array} \right ]\qquad & &{}\end{array}$$
]

 (4.13)




4.1.4 The Incompressibility Issue
For Listing 4.3, in a plane strain n-node element, the number of shape functions will be 2n − 1. Listing 4.3 does not explicitly count the number of functions in the list shapeFunctions but derives the three strain components for each. This object-oriented programing paradigm can be effortlessly implemented in Mathematica. From the mechanics viewpoint, plane strain isochoric (same amount of space—same area for here) demand that ε
          
                xx
               + ε
          
                yy
               = 0 cannot be entertained while evaluating [image: 
$$\left [b\right ]$$
].
For the Poisson’s ratio [image: 
$$\nu = \frac{1} {2},$$
] the [image: 
$$\left [d\right ]$$
] matrix of Eq. (4.3) becomes undefined, therein, all components of the strain tensor are deemed independent. The incompressibility demands the constraint that the dilatation Θ in Eq. (D.7b) must be zero, and from Eq. (D.7d), λ becomes indefinite. In three-dimensional cases: ε
          
                xx
               + ε
          
                yy
               + ε
          
                zz
               become zero and in two-dimensions under the plane strain condition ε
          
                zz
               = 0, the sum of the other two strains must be set to zero, ε
          
                xx
               + ε
          
                yy
               = 0. The pressure ℘(x, y) in Eq. (D.7d) cannot be accommodated in [image: 
$$\left [d\right ]$$
].
The stiffness matrix formula in Eq. (4.8) is valid only when all the nodal responses in [image: 
$$\left \{r\right \}$$
] are independent variables. In order to preserve the “volume” (in three-dimensional problems and “area” in plane strain cases) all three nodal displacements cannot be allowed to take arbitrary values, which will change the “volume.” Thus [image: 
$$\left \{r\right \}$$
] does not represent the degrees-of-freedom. Hence, the failure in the nodal-based formulation.
Physically, incompressibility is a modal, not nodal, phenomenon. It should be viewed in the light of Rayleigh modes. Triangular incompressible elements do not have an adequate number of displacement degree-of-freedoms. We shall investigate the incompressible modes within the context of quadrilateral elements in Chap. 8 The weak inverse [7] plays a crucial role in formulating incompressible finite elements where the convergence is non-uniform because of the Poisson’s ratio [image: 
$$\nu \uparrow \frac{1} {2},$$
] i.e., approaches the limit from below or only from the left (as the one-sided limit).

4.1.5 Plane Strain/Stress Element Stiffness Matrices: Clough’s Triangular Elements


                
                
               For the triangular element shown in Fig. 3.2, with the same specified nodal coordinates, the stiffness matrices are: [image: 
$$\displaystyle\begin{array}{rcl} & & \overbrace{\left [\begin{array}{cccccc} \frac{549} {880} & \frac{81} {176} & - \frac{243} {1760} & \frac{15} {352} & -\frac{171} {352} & -\frac{177} {352} \\ \frac{81} {176} & \frac{981} {880} & - \frac{51} {352} & \frac{783} {1760} & -\frac{111} {352} & -\frac{549} {352} \\ - \frac{243} {1760} & - \frac{51} {352} & \frac{901} {3520} & -\frac{117} {704} & - \frac{83} {704} & \frac{219} {704} \\ \frac{15} {352} & \frac{783} {1760} & -\frac{117} {704} & \frac{1069} {3520} & \frac{87} {704} & -\frac{527} {704} \\ -\frac{171} {352} & -\frac{111} {352} & - \frac{83} {704} & \frac{87} {704} & \frac{425} {704} & \frac{135} {704} \\ -\frac{177} {352} & -\frac{549} {352} & \frac{219} {704} & -\frac{527} {704} & \frac{135} {704} & \frac{1625} {704}\\ \end{array} \right ]}^{\left [k\right ]:\ \text{plane strain};\ E=1,\ \nu =1/3}\text{ and } \\ & & \overbrace{\left [\begin{array}{cccccc} \frac{117} {220} & \frac{27} {88} & - \frac{63} {880} & - \frac{3} {88} & - \frac{81} {176} & - \frac{3} {11} \\ \frac{27} {88} & \frac{189} {220} & - \frac{3} {88} & \frac{279} {880} & - \frac{3} {11} & -\frac{207} {176} \\ - \frac{63} {880} & - \frac{3} {88} & \frac{183} {880} & - \frac{39} {352} & - \frac{3} {22} & \frac{51} {352} \\ - \frac{3} {88} & \frac{279} {880} & - \frac{39} {352} & \frac{211} {880} & \frac{51} {352} & -\frac{49} {88} \\ - \frac{81} {176} & - \frac{3} {11} & - \frac{3} {22} & \frac{51} {352} & \frac{105} {176} & \frac{45} {352} \\ - \frac{3} {11} & -\frac{207} {176} & \frac{51} {352} & -\frac{49} {88} & \frac{45} {352} & \frac{305} {176}\\ \end{array} \right ]}^{\left [k\right ]:\ \text{plane stress};\ E=1,\ \nu =1/3} {}\end{array}$$
]

 (4.14)



For triangular elements [image: 
$$\left [b\right ]$$
] and [image: 
$$\left [d\right ]$$
] are constants. Hence the element level integration of the strain energy density function, vide Eq. (4.8), involves only multiplication with the element area, [image: 
$$\vert \mathfrak{A}\vert,$$
] of Eq. (3.5c).

4.1.6 Eigenvalues of an Element Stiffness Matrix
For any stiffness formulation, the eigenvalues of the stiffness matrix should always be computed to verify that the matrix is positive semi-definite with the appropriate number of zero-eigenvalues that are associated with rigid body modes. For plane strain and plane stress stiffness matrices, the eigenvalues are, respectively: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \dfrac{48545} {12647}, \dfrac{917} {880}, \dfrac{700} {2123},0,0,0\end{array} \right \}\text{ and }& &{}\end{array}$$
]

 (4.15a)

 [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \dfrac{3464} {1225}, \dfrac{917} {880}, \dfrac{387} {1297},0,0,0\end{array} \right \}& &{}\end{array}$$
]

 (4.15b)



The three zeros correspond to the rigid body motion in the x and y directions and the rigid body rotation in the (x, y) plane.
We can verify that a plane strain element stiffness matrix with μ, ν is the same as the plane stress element stiffness matrix with [image: 
$$\mu,\ \frac{\nu } {1-\nu }$$
]. However, the three eigenvalues will stay positive and the remaining three will be zero. Symbolic computation with Mathematica is mostly devoid of numerical errors as the rigid body modes depict zero exactly (without a decimal or fraction).
Due to the displacement constraint for the plane strain cases, the eigenvalues of element stiffness matrices for the plane strain cases are (generally) higher than those of the corresponding plane stress counterparts. (Curiously, the second eigenvalues are identical in both cases.)

4.1.7 A Note on Mathematica Numerical Evaluation
In addition to Eigensystem[], we use Chop[], Rationalize[] …to circumvent round-off errors, as used in Eqs. (4.15a) and (4.15b).
To control the numerical accuracy during Mathematica evaluations, there are options whose names end as Goal, e.g. AccuracyGoal, PrecisionGoal are very common. Within the context of triangular elements, and triangulation, the option named MesgQualityGoal is of interest. Specifically, in Sect. 4.2, we shall examine tessellation of domains into triangles. How many triangles for the spatial discretization, and their connectivity (as will be treated with Figs. 4.1 and 4.2) raise issues with eigenfunction approximations where the least constrained model, which is also least stiffened due to less artificial displacement distribution functions, can be diagnosed from the set of eigenvalues pertaining to the system stiffness matrix.

PerformanceGoal specifies the overall quality and speed of obtaining results. However, the Mathematica default values are suitable for concept development and adequate for generic examples.


4.2 Assembling Elements with More than One Degree-of-Freedom Per Node
The two-element system of Fig. 4.1 is modeled with [image: 
$$E = 1\text{ and }\nu = \frac{1} {3}.$$
] The degrees-of-freedom are shown with arrows in Fig. 4.1; the element number is circled; arrows show the degrees-of-freedom with number; nodal coordinates are: {{0, 1/5}, {1, 0}, {−1/2, 1}, {3/2, 3/5}} shown in Listing 4.4.
[image: A300727_1_En_4_Fig1_HTML.gif]
Fig. 4.1Assembly of two triangles





For a node i, the degrees-of-freedom along the x- and y-axes are numbered 2i − 1 and 2i, respectively. The geometrical description data for the problem in Fig. 4.1 is given in Listing 4.4.
Listing 4.4 Data for Fig. 4.1; element nodal coordinates are generated

              (* ex-1:2 triangle tessellation *)

In[1]:= connections = {{1, 2, 3}, {3, 2, 4}};
nodes = nodes = {{0, 0}, {1, 0}, {-1/2, 1}, {3/2, 4/5}};
elementNodes = nodes[[#]] & /@ connections

Out[3]= {{{0, 0}, {1, 0}, {-(1/2), 1}}, {{-(1/2), 1}, {1, 0}, {3/2, 4/5}}}



            

The remarkable advantage of symbolic computation here is that the Length function of Mathematica will tell us that there are four nodes and two elements that can be easily determined from the connections, nodes lists of Listing 4.4. Moreover, the Length of a single node tells us whether the domain Ω in question is [image: 
$$\mathfrak{R},\mathfrak{R}^{2}\text{ or }\mathfrak{R}^{3}.$$
]

4.2.1 Assembling Lower Triangles of Element Stiffness Matrix
The remarkable advantage of symbolic computation here is that the Length function of Mathematica will tell us that there are four nodes and two elements that can be easily determined from the connections, nodes lists of Listing 4.4. Moreover, the Length of a single node tells us whether the domain Ω in question is [image: 
$$\mathfrak{R},\mathfrak{R}^{2}\text{ or }\mathfrak{R}^{3}.$$
]

The assembly procedure, in fact, is a statement of equilibrium. At common degrees-of-freedom, the local stiffness values are added.
To calculate the system stiffness matrix [image: 
$$\left [k\right ]^{S},$$
] which was introduced in Eq. (2.1b), we focus on its ijth element k
          
                ij
              
          
                S
              : [image: 
$$\displaystyle\begin{array}{rcl} \left [k\right ]^{S} = \left [k_{ ij}^{S}\right ]& &{}\end{array}$$
]

 (4.16)



Let us once again recall that k
          
                ij
              
          
                S
               is the force needed at the jth degree-of-freedom of the system when a unit displacement is applied at the ith degree-of-freedom with all other degrees-of-freedom are held fixed or locked. This necessarily implies that a unit displacement exists only at the corresponding degree-of-freedom for all elements connected to that with global degree-of-freedom (with all other degrees-of-freedom locked). Thus the total nodal force at the system level is the sum of those from individual elements. This is indeed a statement of balance of forces or equilibrium.
4.2.1.1 Example-1: Fig. 4.1
The two element assembly of element stiffness matrices for Fig. 4.1 is illustrated in Table 4.1. Each entry in Table 4.1 reflects the summation of forces from individual elements. The numerical calculation can be verified by executing Listing 4.5 that also works when there is one degree-of-freedom per node, as in Appendix F, Fig. F.4. Let us turn to Listing 4.6. The intent of symbolic computation (e.g., using Mathematica) is to use (almost) the same computer program5 for problems in [image: 
$$\mathfrak{R},\mathfrak{R}^{2}\text{ or }\mathfrak{R}^{3}.$$
]

This example allows us to develop the notion of assembly in steps through a number of Mathematica program fragments.
In developing computer codes, we must always verify the positive semi-definiteness of global stiffness matrices. So we will need to calculate eigenvalues. When only the lower triangle of a symmetric matrix is stored, we need additional utilities to generate the full matrix out of the lower or the upper triangle. This example provides an opportunity to go over all these crucial steps.
Table 4.1Symbolic assembly into lower triangle for Fig. 4.1



	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 1, 1\end{array} \right \}$$
]
                          
	 	 	 	 	 	 	 
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 2, 1\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 2, 2\end{array} \right \}$$
]
                          
	 	 	 	 	 	 
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 3, 1\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 3, 2\end{array} \right \}$$
]
                          
	
[image: 
$$\left \{\begin{array}{*{10}c} 1\\ 3, 3\end{array} \right \}$$
]+[image: 
$$\left \{\begin{array}{*{10}c} 2\\ 3, 3\end{array} \right \}$$
]

	 	 	 	 	 
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 4, 1\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 4, 2\end{array} \right \}$$
]
                          
	
[image: 
$$\left \{\begin{array}{*{10}c} 1\\ 4, 3\end{array} \right \}$$
]+[image: 
$$\left \{\begin{array}{*{10}c} 2\\ 4, 3\end{array} \right \}$$
]

	
[image: 
$$\left \{\begin{array}{*{10}c} 1\\ 4, 4\end{array} \right \}$$
]+[image: 
$$\left \{\begin{array}{*{10}c} 2\\ 4, 4\end{array} \right \}$$
]

	 	 	 	 
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 5, 1\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 5, 2\end{array} \right \}$$
]
                          
	
[image: 
$$\left \{\begin{array}{*{10}c} 1\\ 5, 3\end{array} \right \}$$
]+[image: 
$$\left \{\begin{array}{*{10}c} 2\\ 3, 1\end{array} \right \}$$
]

	
[image: 
$$\left \{\begin{array}{*{10}c} 1\\ 5, 4\end{array} \right \}$$
]+[image: 
$$\left \{\begin{array}{*{10}c} 2\\ 4, 1\end{array} \right \}$$
]

	
[image: 
$$\left \{\begin{array}{*{10}c} 1\\ 5, 5\end{array} \right \}$$
]+[image: 
$$\left \{\begin{array}{*{10}c} 2\\ 1, 1\end{array} \right \}$$
]

	 	 	 
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 6, 1\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 1\\ 6, 2\end{array} \right \}$$
]
                          
	
[image: 
$$\left \{\begin{array}{*{10}c} 1\\ 6, 3\end{array} \right \}$$
]+[image: 
$$\left \{\begin{array}{*{10}c} 2\\ 3, 2\end{array} \right \}$$
]

	
[image: 
$$\left \{\begin{array}{*{10}c} 1\\ 6, 4\end{array} \right \}$$
]+[image: 
$$\left \{\begin{array}{*{10}c} 2\\ 4, 2\end{array} \right \}$$
]

	
[image: 
$$\left \{\begin{array}{*{10}c} 1\\ 6, 5\end{array} \right \}$$
]+[image: 
$$\left \{\begin{array}{*{10}c} 2\\ 2, 1\end{array} \right \}$$
]

	
[image: 
$$\left \{\begin{array}{*{10}c} 1\\ 6, 6\end{array} \right \}$$
]+[image: 
$$\left \{\begin{array}{*{10}c} 2\\ 2, 2\end{array} \right \}$$
]
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	0
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 5, 3\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 5, 4\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 5, 1\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 5, 2\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 5, 5\end{array} \right \}$$
]
                          
	 
	0
	0
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 6, 3\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 6, 4\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 6, 1\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 6, 2\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 6, 5\end{array} \right \}$$
]
                          
	
                            [image: 
$$\left \{\begin{array}{*{10}c} 2\\ 6, 6\end{array} \right \}$$
]
                          





Here [image: 
$$\left \{\begin{array}{*{10}c} e\\ i&j \end{array} \right \}$$
] stands for the [image: 
$$\left \{i,j\right \}$$
] th entry of the stiffness matrix of element number e. 
Note that the nodal coordinates and element material properties are not needed to generate the symbolic assembly of Table 4.1. Only the nodal-element connection, i.e., the topological information of the mesh, suffices.
Using Listing 4.5 the numerical results are shown in Table 4.1.
Listing 4.5 Assemble lower triangles of element stiffness matrices into the lower triangle of the global stiffness matrix

                  Clear[AssembleLowerTriangularStiffnessMatrices];
           AssembleLowerTriangularStiffnessMatrices::usage =
"AssembleLowerTriangularStiffnessMatrices[kElements,elementDOFS]
  yields the lower triangle of the global stiffness matrix named
      KGlobal;

kElements: list of lower triangles of local stiffness matrices

elementDOFS: list of numbers of the corresponding element
          degrees-of-freedom"

AssembleLowerTriangularStiffnessMatrices[kElements_, elementDOFS_] :=
Module[{},
  Table[assemble[
   elementDOFS, elementNumber, kElements[[elementNumber]], i, j],
   {elementNumber, Length[elementDOFS]},
   {i, Length[kElements[[elementNumber]]]}, {j, i}];
        KGlobal] /; Length[kElements] == Length[elementDOFS]

(* get the number of the global DOF corresponding to an element DOF *)

localToGlobalDOF[elementDOFS_, elementNumber_, i_] :=
elementDOFS[[elementNumber, i]]

(* Main function to add element stiffnesses *)

(* Here the Mathematica AddTo function is invoked with the in-fix notation += *)

(* All call by reference functions in Mathematica ends with To*)

assemble[elementDOFS_, elementNumber_, kLocal_, i_, j_] :=
  Module[{iGlobal = localToGlobalDOF[elementDOFS, elementNumber, i],
  jGlobal = localToGlobalDOF[elementDOFS, elementNumber, j]},
       If[iGlobal < jGlobal,

         (* add individual stiffness terms from the element matrices to the
            global stiffness matrix *)

       KGlobal[[ jGlobal, iGlobal]] += kLocal[[i, j]] ,
       KGlobal[[ iGlobal, jGlobal]] += kLocal[[i, j]] ]; ]

(* The final output is suppressed by the above ‘;’ *)

(* kGlobal is a variable in the Global context which gets updated via +=*)



                

Listing 4.6 Example for one degree-of-freedom per node: Assemble into the lower triangle of the global matrix

                  (* Do not copy/paste the In[] and Out[] prompts *)

(* input data: prob-1: One degree-of-freedom per node *)

In[6]:= k1 = {{k111},
          {k121, k122},
          {k131, k132, k133}}

Out[6]= {{k111},
      {k121, k122},
      {k131, k132, k133}}

In[7]:= k2 = {{k211},
          {k221, k222},
          {k231, k232, k233}}

Out[7]= {{k211},
      {k221, k222},
      {k231, k232, k233}}

In[8]:= kElements = {k1, k2}

Out[8]= {{{k111}, {k121, k122}, {k131, k132, k133}},
      {{k211}, {k221, k222}, {k231, k232, k233}}}

In[9]:= elementDOFS = {{1, 2, 3}, {3, 2, 4}}

Out[9]= {{1, 2, 3}, {3, 2, 4}}

(* kGlobal is a variable in the Global context which gets updated via +=*)

In[10]:= Global\[RawBackquote]KGlobal;

(* note that \[RawBackquote] is used to avoid any possible error *)

lowerZeroTriangle[n_Integer?Positive] := Map[Table[0, {#}] &, Range[n]];
    KGlobal = lowerZeroTriangle[ Max[elementDOFS] ]; AssembleLowerTriangularStiffnessMatrices[kElements, elementDOFS]

(* output result *)

Out[12]= {{k111},
       {k121, k122 + k222},
       {k131, k132 + k221, k133 + k211},
       {0, k232, k231, k233}}



                

In Listing 4.6, elements with a single degree-of-freedom depict the assembly process more clearly.
A function f will properly assign the degrees-of-freedom:

f[i_Integer]:= {2 i - 1, 2 i} in [image: 
$$\mathfrak{R}^{2}$$
] and similarly:

f[i_Integer]:= {3 i - 2, 3 i - 1, 3 i} for [image: 
$$\mathfrak{R}^{3}$$
].
The assembly code for two degrees-of-freedom per node is presented in Listing 4.7.
Listing 4.7 Form the lower triangle of global stiffness matrix, when there are two degrees-of-freedom per node

                  connection = {{1, 2, 3}, {3, 2, 4}};

SetAttributes[f, Listable];
f[i_Integer] := {2 i - 1, 2 i};

elementDOFS = Flatten /@ (f /@ connection);

Clear[k, k1, k2, kk];
kk[e_] := Table[k[e][i, j], {i, 6}, {j, i}];

k1 = kk[1]; k2 = kk[2];
Global‘KGlobal;
lowerZeroTriangle[n_Integer?Positive] := Map[Table[0, {#}] &, Range[n]];
 KGlobal = lowerZeroTriangle[ Max[elementDOFS] ]; AssembleLowerTriangularStiffnessMatrices[{k1, k2}, elementDOFS]

(* save KGlobal as VGlobal to print another form *)
Clear[v]; vGlobal = KGlobal /. k -> v;

(* additional code-1: to print with k *)

k[i_][m_, n_] := Subscript[Superscript[k, StringJoin["(", ToString[i], ")"]],
                       ToString /@ {m, n}]

(* output in the table form *)
TableForm[KGlobal]



                

It is somewhat challenging to develop a Mathematica program to generate Table 4.1. Before writing their own, it is suggested that readers follow Listing 4.5 and then make their own modifications.

4.2.1.2 A Note for Mathematica Programming
The Mathematica statement:

                KGlobal[[ jGlobal, iGlobal]] += kLocal[[i, j]]
              
in Listing 4.5 utilizes the operator += that is read as AddTo[]. This is a mechanism to implement call by reference when the input value is changed. This is common in many procedural computer languages, such as Fortran. Mathematica, in general, does not allow modifying the input, within its rewrite-rule structure; only call by value constructs are permitted.

4.2.1.3 
Mathematica Programming of Table 4.1: Not Essential During Initial Readings
Instead of the rather verbose output from Listing 4.7, the symbolic representation in Table 4.1 is desirable. However, to obtain the form of Table 4.1 the additional code with Subscript, Superscript is added in Listing 4.7. On the top of it, Mathematica and LaTeX programming becomes essential. In fact these programming exercises can be safely avoided.
After getting the indices: e, i, j the form: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} e\\ i, j\end{array} \right \}& &{}\end{array}$$
]

 (4.17)



was generated using the LaTeX command:

$∖left{∖begin{matrix}e∖∖i, j∖end{matrix}∖right}$

The Mathematica variable v[e][i,j] was rewritten as a string for LaTeX using
Listing 4.8 Generate ∖val{e}{i}{j} for LaTeX

                  v[e_][i_, j_] :=
StringJoin[ "\[Backslash]", "val", "{", ToString[e], "}", "{",
 ToString[i], "}", "{", ToString[j], "}"]



                

Listing 4.9 LaTeX macro to generate the form of Eq. (4.17)

                  \newcommand{\val}[3]{
\left\{\begin{matrix} #1 \\ #2,#3 \end{matrix} \right\}
}



                


4.2.1.4 Default Printout from Mathematica

It is worthwhile repeating that to avoid error in the publications the Mathematica function TeXForm should be used, and retyping in LaTeX document should be avoided whenever possible. Copy/paste without any programming, such that the syntaxes as in Sect. 4.2.1.3, can be utilized directly from the Mathematica output from:

TeXForm[TableForm[N[Round[KGlobal, 10−3 ]]]]

yielding Eq. (4.18) (vertical spacing can be easily adjusted with the standard end of line command, say with ∖∖[.2in]). Instead of TableForm the Mathematica function Grid can also be employed. This command has more options than TableForm.

The Mathematica code in Listing 4.5 should be verified to work for numerics.
Table 4.2Lower triangle of the global stiffness matrix of Fig. 4.1
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The symbolic form of the global stiffness matrix, as shown in Table 4.1, is indeed useful in debugging during the stage of concept development but numerical spotcheck, as in Table 4.2, is indispensable. In order to avoid lengthy digits in decimal representation, the Mathematica function Rationalize[] could be helpful. As usual, ?Rationalize in a Mathematica notebook will lead to usage, examples, etc. A statement:

                Rationalize[x, 10-̂3]
              
usually suffices.
Results of Table 4.2, correct to three decimal places, appear below: [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{cccccccc} 1.674 & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{}\\ 1.205&2.679&\text{}&\text{}&\text{}&\text{}&\text{}&\text{} \\ - 1.058& - 0.777& 1.374 & \text{} & \text{} & \text{} & \text{} & \text{}\\ - 0.589&- 1.018&0.643&2.604&\text{}&\text{}&\text{}&\text{} \\ - 0.616& - 0.429& 0.3 & 0.562 & 0.537 & \text{} & \text{} & \text{}\\ - 0.616&- 1.661&0.562&0.075&0.04&1.264&\text{}&\text{} \\ 0. & 0. & - 0.616& - 0.616& - 0.221&0.013&0.837& \text{}\\ 0.&0.&- 0.429&- 1.661&- 0.174&0.321&0.603&1.339 \\ \end{array} & &{}\end{array}$$
]

 (4.18)



The eigenvalues of the system matrix (or the global stiffness matrix) for the tessellation of Fig. 4.1 are: [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{5.85977,3.5491,1.49768,0.989268,0.41222,0,0,0}& &{}\end{array}$$
]

 (4.19)




4.2.1.5 Energy Notion in Equilibrium and Compatibility
The energy invariance concept makes the variational calculus and virtual work formulation synonymous. The former is the mathematical abstraction of the more physical and engineering formalism of the latter. These two concepts are employed in all sections interchangeably.
In the assembly constructs, described in Sect. 4.2.1, the nodal compatibility is satisfied ab initio. If we utilize the definition of an entry k
            
                  ij
                 based on virtual displacements, as in Eq. (2.1.6.2), the global assembly by itself evidences the notion of equilibrium in that the externally applied force is fully distributed into the connected elements.
A significant outcome of the Ritz formulation [8] is that the discretized version of a variational formulation will satisfy continuity of lower order derivatives of a self-adjoint partial differential equation.

4.2.1.6 Lower Triangular Matrix Manipulation Mathematica Codes
In codes, which are presented in this textbook, standard Mathematica operations, without taking advantage of symmetry in the parent matrices, will be executed, in the interest of simplicity.
To carry out calculations with lower triangular parts of symmetric matrices, such as local and global stiffness matrices, a number of Mathematica functions are available in the public domain. There is a considerable volume of literature such as O(n2) algorithms for the symmetric tridiagonal eigenproblems. The internet should be explored to search classical [5, 6] as well as recent publications, for efficient numerics.

4.2.1.7 Example-2 with Fig. 4.2: Does the Pattern of Triangulation Matter?

                [image: A300727_1_En_4_Fig2_HTML.gif]
Fig. 4.2Another triangulation for the system in Fig. 4.1





              
To three decimal places, the system stiffness matrix is computed from Listing 4.5 using the tessellation of Fig. 4.2. The numerical result is: [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{cccccccc} 1.074 & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{}\\ 0.08&2.529&\text{}&\text{}&\text{}&\text{}&\text{}&\text{} \\ - 0.458& 0.348 & 0.774 & \text{} & \text{} & \text{} & \text{} & \text{}\\ 0.536&- 0.868&- 0.482&2.454&\text{}&\text{}&\text{}&\text{} \\ - 0.316& 0.134 & 0. & 0. & 0.387 & \text{} & \text{} & \text{}\\ - 0.054&- 1.586&0.&0.&- 0.241&1.227&\text{}&\text{} \\ - 0.3 & - 0.562& - 0.316& - 0.054& - 0.071&0.295&0.687& \text{}\\ - 0.562&- 0.075&0.134&- 1.586&0.107&0.359&0.321&1.302 \\ \end{array} & &{}\end{array}$$
]

 (4.20)

 The eigenvalues are calculated as shown in Listing 4.10:
Listing 4.10 Evaluating eigenvalues of a lower triangular matrix

                  In[430]:= Clear[LowerTriangleToFull];
      LowerTriangleToFull[l_] := Module[{j = Length[l], pad},
         pad = Map[(Join[#, Table[0, {j - Length[#]}]]) &, l];
         pad + Transpose[pad] - (Transpose[pad, {1, 1}] // DiagonalMatrix)]

In[432]:= Chop[Eigenvalues[LowerTriangleToFull[KGlobal]]]
Out[432]= {4.32986, 3.57994, 1.169, 0.947391, 0.406851, 0, 0, 0}



                



4.2.2 Comments on Different Tessellations
For the displacement formulation, for which the finite element method is perhaps the best candidate, the exact analytical solution will lead to the most flexible (least stiff) system. Physically, the numerical experimentation with triangulation in Figs. 4.1 and 4.2 shows that the latter system is less contrained6 since it has four lower eigenvalues out of five.
The comparison of tessellations with Figs. 4.1 and 4.2, rightfully, opens up a wider discussion by raising the following issues:
	1.Why is there a difference in accuracy with different tessellations?
— Observe that for triangular elements, the displacement continuity is enforced exactly across interelement boundaries. The stresses from the two sides of a common boundary, in general, are different.


 

	2.Can we enforce a higher order interelement displacement continuity with four-node elements?
— This has prompted a thorough analysis of the finite element method (to be elaborated later in Chaps. 5 through 9).


 

	3.The most revealing part is to recognize the difference between Rayleigh–Ritz–Courant approximation of vector field problems; the vast majority of the current finite element formulations are devoid of such critical probing.


 

	4.Since the finite element system considers the physical quantities at nodes, how does it handle distributed loading?
— The nodal forces are calculated and interpreted as virtual work quantities. In the vector field these are the integrals Courant mentioned as H, K, R in equations (5), (6), and (7) in [3]. Clough clarifies the computational meaning in page-101 of [2].


 





4.2.2.1 Error Estimation
There is a considerable volume of scholarly literature on error estimation in a finite element calculation. The theoretical analyses shed light on tessellation, selection of nodes in the domain and also their connectivity.
Functional analysis of coupled partial differential equations7 is outside our scope. We shall not discuss such details, e.g., Hilbert space constructs. 
                  
                 
                  
                 
                  
                 From error bound estimates, conservative selections of characteristic mesh sizes (for the h-convergence criteria) could be too inefficient numerically. Let us rely upon the judgement of engineering specialists, and let them choose the degree of the spatial stress distributions and the mesh layout for designs.



4.3 Problems
The reader should select appropriate data to generate and execute the examples of this chapter.
Whenever possible hand calculations should be undertaken to verify computer results.
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Footnotes
1Row and column matrices are also called vectors—in the parlons of linear algebra; not to get confused with the tensor notion of vectors, the Mathematica term List best describes the row or column matrices.

 

2The expressions for the elements of [image: 
$$\left [b\right ]$$
] can be obtained from Eq. (4.1) and Eqs. (D.3a) through (D.3d).

 

3In this monograph we prefer exact (analytical) integration as in Appendix E.

 

4We shall use the constitutive relations in Eq. (8.20) that has a pressure term p(x, y).

 

5In this textbook, we do not address any three-dimensional problem. Nevertheless, the foundation for such analyses is provided here.

 

6In different meshing, the lower set of eigenvalues points to a better approximation. For Figs. 4.1 and 4.2 the eigenvalues are, respectively: {5.85977, 3.5491, 1.49768, 0.989268, 0.41222, 0, 0, 0} and {4.32986, 3.57994, 1.169, 0.947391, 0.406851, 0, 0, 0}; thus, Fig. 4.1 is preferable.

 

7This was an active area of research pioneered in the Courant Institute, NYU, NY. Paul Garabedian, Peter Lax, Fritz John to name a few, were Richard Courant’s colleagues.
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Abstract


              
             A Clarification Taig did not use
              
             the term isoparametric,in his 1962 report (Taig, Structural analysis by the matrix displacement method. Tech.rep., British Aircraft Corporation, Warton Aerodrome: English Electric Aviation Limited, Report Number SO 17 based on work performed ca. 1957, 1962). This seminal publication introduced his quadrilateral elements. In 1968,Ergatoudis, Irons, and Zienkiewicz coined (To the best of the author’s knowledge, the use of the term isoparametric thus ensued.):“…for lack of a better name,as the isoparametric quadrilateral.”  (Ergatoudis et al., Int J Solids Struct 4(1):31–42, 1968).In 1974, 
              
             Ian C. Taig and 
              
             Bruce Irons were awarded the Von Karman prize, for the introduction of isoparametric element concepts. From §3.3, page 167 of Strang and Fix (An analysis of the finite element method. Prentice-Hall, Inc., Englewood Cliffs, 1973) (Strang and Fix do not credit Taig in their monograph.):“isoparametric means that the same polynomial elements are chosen for coordinate changes for the trial functions themselves;…”

Computation vis-à-vis Calculation To distinguish calculation from computation, we observe that Taig’s interpolants along with numerical quadratures, Li et al. provide a calculation method whereas a general implementation on all quadrilaterals, including convex ones with curved boundary establishes a computational procedure (Li et al., Comput Methods Appl Mech Eng 197(51):4531–4548, 2008).

Triangular to Quadrilateral Finite Elements Ian Taig, in his 1962 report, introduced four-node elements capturing stress/strain profiles beyond Clough’s triangles that are restricted to constant stress/strain distributions. Taig’s intent was to capture bending stresses (spatially linear axial stresses/strains) in beam elements that Taig termed panels. He guaranteed linear displacement on straight boundary edges. This ensured perfect inter-element compatibility. Wilson interpreted Taig’s interpolants as the elements’ natural coordinates (Wilson, Static and dynamic analysis of structures. Computers and Structures, Inc., Berkeley, 2003). Subsequently, researchers analyzed bending in plates and shells, e.g. Zhu et al. (Int J Mod Phys B 19(01n03):687–690, 2005), by overcoming thetoo-stiffconstant stress/strain elements.

Taig’s Interpolations in the Physical (x, y)-FrameAll textbooks and industrial manuals extensively cover the plane quadrilateral elements that Taig introduced.Research and teaching materials, which can be easily accessed on the internet, need no repetition. This chapter analyzes Taig’s formulation in algebraic terms in the interest of brevity and clarity.We can derive that, in general, Taig’s parametric interpolants involve the square root of quadratic expressions in the physical (x, y) frame.For trapezoids Taig’s interpolants become rational polynomials—a quadratic in (x, y) divided by a linear expression in (x, y).Wachspress addressed this issue completely (Wachspress, A rational finite element basis. Academic, New York, 1975; Rational bases and generalized barycentrics: applications to finite elements and graphics. Springer, New York, 2015). Convex, concave, and elements with curved boundaries are treated using projective geometry concepts.

Symbolic Closed-Form ExpressionsTaig in §2.3 of his 1962 report formulated closed-form expressions of element stiffness matrices for a rectangular element that he termed “Rectangular Sheet panel.” He revisited “Triangular Sheet panel”  in §2.4 of his 1962 report and furnished closed-formexpressions for the stiffness matrix. This encouraged the author to analyze all quadrilateral elements using symbolic computational tools.

Taig’s Analysis of Trapezoidal and General Quadrilateral ElementsTaig clearly pointed out the difficulties in determining the element stiffness matrix for non-rectangular elements.He presented stiffness matrices for trapezoidal elements in closed-form (vide pages 59 and 60 of Taig (1962)—“MATRIX IV”). General convex or concave quadrilateral elements were not included in the Report.

Numerical EvaluationTaig, in §6 of his 1962 report,extensively described the steps employed in “Formulation for automatic Computation.” Programs for DEUCE computers (of 1959) were elaborated.

Impact of Taig’s WorkFollowing the spirit of the aforementioned pioneering work of Ian C. Taig, complete Mathematica codes are furnished in this textbook for scalar field problems.However,generalization to deal with elastic elements, where the displacement vector components are coupled through Poisson’s ratio, demanded looking back to Lord Rayleigh’s formulations.

5.1 A Historical Note


              
             Peter Dukes writes1:

            “Ian Taig probably did some of the first structural optimization FE analysis (Lightning Fin) by computer in the world,2 and that was on the DEUCE.”  This photo of the DEUCE installation in Oslo is from the book “Norsk Regnesentral”  (NR) 1952–2002 ISBN 82-539-0493-2. The caption reads “The electronic computer DEUCE. The machine, which was delivered the 8th May 1959, continued to be the most important one amongst the machines NR used until the autumn 1963.”  Thanks to Thin Nenseth for this item3 and the translation from Norwegian.


          

5.2 Taig’s Interpolants [image: 
$$\mathcal{N}_{i}(\xi,\eta ):$$
] On Computational Squares

            
              
            
          
Taig’s interpolants on the computational unit square, vide Fig. 5.2, in the (ξ, η) domain are 
              
             bilinear—not 
              
             
              
             full4

              
             
              
             quadratic polynomials. Therein, the ξ
        2 and η
        2 terms are absent. Attempts to rectify this deficiency generated a huge volume of research material.[image: A300727_1_En_5_Fig2_HTML.gif]
Fig. 5.2The isoparametric computational domain: unit square in (ξ, η)





For elasticity problems, those missing ξ
        2 and η
        2 terms were brought into the picture via incompatible modes [5, 15], pioneered by Wilson and Taylor [12, 16, 17] and their research teams.

            
              
              
            
          


              
             The bilinear (not full quadratic) interpolants5 [image: 
$$\mathcal{N}_{i}(\xi,\eta ),$$
] 0 < ξ, η < 1 are: [image: 
$$\displaystyle\begin{array}{rcl} \left [\begin{array}{*{10}c} \mathcal{N}_{1}(\xi,\eta ) = (1-\xi )(1-\eta );& &\mathcal{N}_{2}(\xi,\eta ) =\xi (1-\eta ); \\ \mathcal{N}_{3}(\xi,\eta ) =\xi \ \eta; &\ \ \ \ \ \ \ \ \ \ &\mathcal{N}_{4}(\xi,\eta ) = (1-\xi )\ \eta; \end{array} \right ]& &{}\end{array}$$
]

 (5.1)




            
              
            
          
Then, for a generic quadrilateral element as shown in Fig. 5.3 with: [image: 
$$\displaystyle\begin{array}{rcl} \text{node-i: }x_{i},y_{i};\quad \text{Taig proposed:}& &{}\end{array}$$
]

 (5.2a)

 [image: 
$$\displaystyle\begin{array}{rcl} x(\xi,\eta ) =\sum _{ i}^{4}x_{ i}\ \mathcal{N}(\xi,\eta )_{i}\text{ and }\quad y(\xi,\eta ) =\sum _{ i}^{4}y_{ i}\ \mathcal{N}(\xi,\eta )_{i}& &{}\end{array}$$
]

 (5.2b)


[image: A300727_1_En_5_Fig3_HTML.gif]
Fig. 5.3An arbitrary convex quadrilateral element






            
              
            
          
These parametric representations of the physical (x, y) coordinates, in Eq. (5.2b), are exact for all rectangles.
Remarkably, Taig proposed, in [11] in his equation number (33), that for any arbitrary quadrilateral, the displacement field is approximated as: [image: 
$$\displaystyle\begin{array}{rcl} u(\xi,\eta ) =\sum _{ i}^{4}u_{ i}\ \mathcal{N}_{i}(\xi,\eta )\text{ and }v(\xi,\eta ) =\sum _{ i}^{4}v_{ i}\ \mathcal{N}_{i}(\xi,\eta )& &{}\end{array}$$
]

 (5.3a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{when}(u_{i},v_{i})\text{ is the nodal displacement at the }i\mathrm{th}\text{ node}& &{}\end{array}$$
]

 (5.3b)

 Convexity is not a restriction!.6 An important feature of the parametric interpolants [image: 
$$\mathcal{N}_{i},$$
] in Eq. (5.1), is that all straight boundary edges are mapped as straight lines7!
              
            

Except for a rectangular element, the bilinear interpolants [image: 
$$\mathcal{N}_{i}(\xi,\eta )$$
] in Eq. (5.1), in the physical (x, y) frame, contain square root and the rational polynomial expressions.8 
              
             Thus, difficulties in integrating [image: 
$$\Big(\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]\Big)$$
] numerically can be readily apprehended.9

5.2.1 Element Drawing Program
In this section, various convex quadrilateral finite elements are drawn using Mathematica graphics. But the fonts with LaTeX are matched using MaTex.

5.2.1.1 Some Housekeeping to Yield Cleaner Outputs
In the physical x, y frame, the Taig shape functions have square root expressions. The following Mathematica code displays a clearer presentation.
Listing 5.1 Some house keeping to produce cleaner outputs

                  Unprotect[Power, Times, Plus]; -1. x_ := -x; 1. x_ := x ; 0. x_ := 0;
Protect[Power, Times, Plus]; $Post = Rationalize;



                


5.2.1.2 Drawing Convex Quadrilateral Elements
The Mathematica usage message specifies how the user will prepare the input data and what to expect. Listing 5.2 draws the parent unit square of Fig. 5.2.
Listing 5.2 Element drawing code

                  showElmt::usage = "showElmt[{x,y}, nodes] draws the quadrilateral element
in the physical x-y frame when the nodal coordinates are supplied in nodes."

showElmt[{a_, b_}, xy_] := Graphics[{GrayLevel[.8], Polygon[xy]},
 Axes -> True, AspectRatio -> Automatic, AxesLabel -> {a, b},
 BaseStyle -> {FontSize -> 24}, AxesOrigin -> {0, 0}]



                

Figure 5.4 is from: showElmt[{"s","t"},  {{0,0}, {1,0}, {1,1},] showElmt[{0,1}}]
[image: A300727_1_En_5_Fig4_HTML.gif]
Fig. 5.4Unit square in (s, t); Greek symbols as in Fig. 5.2 from MaTeX are not used








5.3 Taig’s Interpolants [image: 
$$\mathcal{M}_{j}$$
] in the Physical (x, y) Frame


              
              
              
             Here [image: 
$$\mathcal{M}_{j}(x,y)$$
] are obtained from [image: 
$$\mathcal{N}_{i}(\xi,\eta )$$
] of Eq. (5.1). Obviously x(ξ, η), y(ξ, η) can be inverted, use Listing 5.3, leading to: [image: 
$$\displaystyle\begin{array}{rcl} \xi = \xi (x,y)\text{ and }t = t(x,y) \rightarrow \mathcal{M}_{i}(x,y) = \mathcal{N}_{i}\big(\xi (x,y),t(x,y)\big)& &{}\end{array}$$
]

 (5.4)

 Then, using Eq. (5.1), we obtain the shape functions in the x − y frame: [image: 
$$\displaystyle\begin{array}{rcl} & & \mathcal{M}_{1}(x,y) =\big (1 -\xi (x,y)\big)\big(1 -\eta (x,y)\big);\quad \mathcal{M}_{2}(x,y) = \xi (x,y)\big(1 -\eta (x,y)\big); \\ & & \mathcal{M}_{3}(x,y) = \xi (x,y)\ \eta (x,y);\quad \mathcal{M}_{4}(x,y) =\big (1 -\xi (x,y)\big)\ \eta (x,y); {}\end{array}$$
]

 (5.5)

 Expressions for [image: 
$$\mathcal{M}_{i}$$
] will be lengthy, vide Eqs. (5.13a) and (5.13b).
Listing 5.3 Solve (isoparametric) s and t in terms of x and y physical coordinates

              In[8]:=
isoParametricShapes[{a_, b_}, xy_] :=
Module[{s, t, tSolution, sSolution , eqns, isoShapes, f, p, q},

    isoShapes = {(.5 - s) (.5 - t), (.5 + s) (.5 - t),
         (.5 + s) (.5 + t), (.5 - s) (.5 + t)};
 eqns = Thread[Equal[{a, b}, Expand[ (#.isoShapes) & /@ Transpose[xy]]]];
 tSolution =
  N[(t /. Solve[Eliminate [eqns, s], t])[[1]] // Expand ];
 sSolution = N[(s /. Solve[Eliminate [eqns, t], s])[[1]] // Expand ];

 Together[Table[ (f[a, b] =
     isoShapes[[i]] /. Thread[Rule[{s, t}, {sSolution, tSolution}]];
      Clear[q]; Factor[Expand[Expand[Map[Expand,f[a, b] /. TagBox[
      StyleBox[RowBox[{"Power", "[", RowBox[{"p_", ",",
RowBox[{"Rational", "[", RowBox[{"1", ",", "2"}], "]"}]}], "]"}],
ShowSpecialCharacters->False, ShowStringCharacters->True], FullForm] -> q[p],
         Infinity ]] /. q -> Sqrt]]), {i, Length[isoShapes]}] // Expand]]



            

Listing 5.4 Taig’s shape functions in the physical x − y frame

              In[10]:=shapes[{a_, b_}, xy_, draw_: True] := Module[{m, n},
    If[draw, showElmt[{a, b}, xy]];
  s1 = isoParametricShapes[{a, b}, xy] // Together;
 Clear[g]; s2 = Chop[s1 /. Sqrt[x_] -> g[x]];
 Clear[h]; g[x_] := Module[{c},
                  c = Coefficient[Coefficient[x, a, 0], b, 0];
                    N[ Sqrt[c] h[Expand[x/c]]  ] // Chop];
 s3 = Chop[Evaluate[s2] /. (m_ h[x_] + n_ h[x_] -> Expand[m + n] h[x])];
               Together[Expand[s3 /. h -> Sqrt] // Chop]     ]



            


A Reminder Do not copy-paste “In[1]:=” and “Out[2]” — In[]:= and Out[]= etc., are the Mathematica prompts, they are not the user input lines.
The square root function appears in s, t. It is important to identify the correct branch.The Mathematica programming details of Listing 5.3 can be avoided by first time readers. Specifically, starting from the line:

            TagBox[StyleBox[RowBox[{"Power", "[",
          
the code facilitates printing10 such as: [image: 
$$\displaystyle\begin{array}{rcl} \frac{1} {f^{\alpha }}\quad \text{instead of }f^{-\alpha }& &{}\end{array}$$
]

 (5.6)



By inserting Print[] , expressions for s,t can be obtained to examine their structures in terms of the physical (x, y) Cartesian coordinates.
5.3.1 A Straight Boundary Edge Remains Straight
Since the linear orthogonal functions x and y are interpolated exactly, shown in Eq. (5.2b), the straight boundary will always remain straight irrespective of the nodal coordinates x
          
                i
               and y
          
                i
              . Hence Eq. (5.1) could handle all quadrilaterals, both convex and concave, by Taig’s transformation.11

The author’s interpretation is: the same (iso) interpolations (parameterization) are used for the physical coordinates as well as the displacement fields. This is indeed counterintuitive from the functional analysis standpoints. However, since its inception, the use of identical canonical interpolants for all basic variables has propelled the finite element technology to tremendous success, inclusive of advanced arenas of plates and shells.

5.3.2 
[image: 
$$\mathcal{M}_{j}(x,y)$$
] Interpolates All Linear FieldsExactly

A necessary requirement for a set of interpolants is that a uniform field is exactly reproduced. In the x − y frame, Taig exactly interpolated an arbitrary linear function: αx + βy + γ, α, β, γ : constants. From Listing 5.4, after calculating sfs=shapes[{x, y}, xy], we can execute Listing 5.5 to check linearity.
Listing 5.5 Verify linearity: obtain 1, x, y, respectively

                {Simplify[Plus @@ sfs], Simplify[(#[[2]] & /@ xy) . sfs],
                    Simplify[(#[[1]] & /@ xy) . sfs}



              



5.4 Taig’s Interpolants [image: 
$$\mathcal{M}_{i}$$
] to Displacement Field u, v:Decoupling the Vector Field Problem of Elasticity
In the computational domain (ξ, η), Taig assumed, vide [11] in his page-15 equation (33), the continuum displacement field u(ξ, η), v(ξ, η), in the following uncoupled form in terms of the nodal displacements [image: 
$$\left \{r\right \}$$
]: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} u(\xi,\eta )\\ v(\xi,\eta ) \end{array} \right \}& = \left [\begin{array}{*{10}c} \mathcal{N}_{1} & 0 &\mathcal{N}_{2} & 0 &\mathcal{N}_{3} & 0 &\mathcal{N}_{4} & 0 \\ 0 &\mathcal{N}_{1} & 0 &\mathcal{N}_{2} & 0 &\mathcal{N}_{3} & 0 &\mathcal{N}_{4} & \end{array} \right ]\ \left \{r\right \}^{T};\text{ then}&{}\end{array}$$
]

 (5.7)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{in }(x,y): \left \{\begin{array}{*{10}c} u(x,y)\\ v(x, y) \end{array} \right \}& = \left [\begin{array}{*{10}c} \mathcal{M}_{1} & 0 &\mathcal{M}_{2} & 0 &\mathcal{M}_{3} & 0 &\mathcal{M}_{4} & 0 \\ 0 &\mathcal{M}_{1} & 0 &\mathcal{M}_{2} & 0 &\mathcal{M}_{3} & 0 &\mathcal{M}_{4} & \end{array} \right ]\ \left \{r\right \}^{T}&{}\end{array}$$
]

 (5.8)



Due to the Poisson effect, we will get u and v both to be non-zero even when only one degree-of-freedom is excited! This necessarily means that no term in Eqs. (5.7) and (5.8) should be non-zero!! This is an unprecedented gross violation12 of fundamental kinematics of continuum mechanics!!!
5.4.1 Taig’s Uncoupled Displacement Fields Will Always Violate Point-Wise Equilibrium
In elasticity, the coupled displacement vector [image: 
$$\boldsymbol{u}$$
] can only be decoupled in terms of the dilatation scalar Θ and the rotation vector [image: 
$$\boldsymbol{H}$$
]. Note: 
                
               [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{u} =\boldsymbol{ \nabla }\varTheta \ +\boldsymbol{ \nabla }\times \boldsymbol{ H},\quad \boldsymbol{\nabla }\odot \boldsymbol{ H} = 0\text{: Helmholtz:decomposition}& &{}\end{array}$$
]

 (5.9)

 
                
               This cannot be achieved by the uncoupled Eqs. (5.7) and (5.8). 
                
               
                
              


5.4.2 Only One Interpolant [image: 
$$\mathcal{M}_{o}(x,y)$$
] Is Independent
Only one shape function is needed to generate the remaining three. This reflects the coupling stated in Eq. (5.9). To generate [image: 
$$\mathcal{M}_{i},i = 2,3,4$$
], we can execute Listing 5.6, when [image: 
$$\mathcal{M}_{1}(x,y)$$
] is given.
Listing 5.6 Solve for the remaining isoparametric shape functions in terms of ℳ
            1


                Solve[{M1 + M2 + M3 + M4 ==1, x1 M1 + x2 M2 + x3 M3 + x4 M4 ==x,
     y1 M1 + y2 M2 + y3 M3 + y4 M4 ==y},{M2, M3, M4}];



              



5.5 Derivation of Field Variables from Interpolants
In his 1962 pioneering13 work,14 Taig used (η, ξ) parameters, not (s, t).15


            
              
            
          
5.5.1 Parametric Representation of Coordinates
In [11], Taig’s equation (32) of §2.5 [image: 
$$Quadrilateral\ Sheet,$$
] 
                
               furnishes16: [image: 
$$\displaystyle\begin{array}{rcl} x& =& (1-\eta )\ (1-\xi )\ x_{1} + (1-\xi )\ \eta \ x_{2} +\xi \ \eta \ x_{3} +\xi \ (1-\eta )\ x_{4} \\ y& =& (1-\eta )\ (1-\xi )\ y_{1} + (1-\xi )\ \eta \ y_{2} +\xi \ \eta \ y_{3} +\xi \ (1-\eta )\ y_{4}{}\end{array}$$
]

 (5.10)




5.5.2 Parametric Representation of Field Variables
Taig wrote in page-15 of [11], to cite his equation (33)17:

              Let us now assume that the displacements u and v (referred to Cartesian axes) at any point in the panel
                    
                   linearly related to the corner displacements by means of the coordinate system (ξ,  η)


            

              
                
              
              [image: 
$$\displaystyle\begin{array}{rcl} u = (1-\eta )\ (1-\xi )\ u_{1} + (1-\xi )\ \eta \ u_{2} +\xi \ \eta \ u_{3} +\xi \ (1-\eta )\ u_{4}& & {}\end{array}$$
]

 (5.11a)


              [image: 
$$\displaystyle\begin{array}{rcl} v = (1-\eta )\ (1-\xi )\ v_{1} + (1-\xi )\ \eta \ v_{2} +\xi \ \eta \ v_{3} +\xi \ (1-\eta )\ v_{4}& & {}\end{array}$$
]

 (5.11b)


            
5.5.2.1 Strains and Stresses in the Physical (x, y) Frame
The physical strains ε
            
                  xx
                (x, y), ε
            
                  yy
                (x, y), γ
            
                  xy
                (x, y) in Sect. D.1.2 are derived using: [image: 
$$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial x} = \frac{\partial \eta } {\partial x}\ \frac{\partial } {\partial \eta } + \frac{\partial \xi } {\partial x}\ \frac{\partial } {\partial \xi }\text{ and  } \frac{\partial } {\partial y} = \frac{\partial \eta } {\partial y}\ \frac{\partial } {\partial \eta } + \frac{\partial \xi } {\partial y}\ \frac{\partial } {\partial \xi };\text{ note:}& &{}\end{array}$$
]

 (5.12a)

 [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \dfrac{\partial } {\partial \eta } \\ \dfrac{\partial } {\partial \xi }\\ \end{array} \right \} = \left [\begin{array}{*{10}c} \dfrac{\partial x} {\partial \eta } & \dfrac{\partial y} {\partial \eta } \\ \dfrac{\partial x} {\partial \xi } & \dfrac{\partial y} {\partial \xi } \end{array} \right ]\left \{\begin{array}{*{10}c} \dfrac{\partial } {\partial x} \\ \dfrac{\partial } {\partial y}\\ \end{array} \right \} \rightarrow \left \{\begin{array}{*{10}c} \dfrac{\partial } {\partial x} \\ \dfrac{\partial } {\partial y}\\ \end{array} \right \} = \left [\begin{array}{*{10}c} \dfrac{\partial x} {\partial \eta } & \dfrac{\partial y} {\partial \eta } \\ \dfrac{\partial x} {\partial \xi } & \dfrac{\partial y} {\partial \xi } \end{array} \right ]^{-1}\left \{\begin{array}{*{10}c} \dfrac{\partial } {\partial \eta } \\ \dfrac{\partial } {\partial \xi }\\ \end{array} \right \}& &{}\end{array}$$
]

 (5.12b)

 
                  
                 Using [image: 
$$\left [d\right ]$$
], σ
            
                  xx
                (x, y), σ
            
                  yy
                (x, y), τ
            
                  xy
                (x, y) are obtained from ε
            
                  xx
                , ε
            
                  yy
                 and γ
            
                  xy
                .

5.5.2.2 Example: Element-1: No Two Sides Are Parallel, Fig. 5.5

                [image: A300727_1_En_5_Fig5_HTML.gif]
Fig. 5.5A generic four-node element




              
Listing 5.7 Example-1

                  In[30]:=xy = {{-1., 0.}, {1., 0.}, {1., .5}, {0., 1.}};
              sfs = shapes[{x, y}, xy] // Rationalize

Out[30]={-(3/4) (-(5/3) + x + (2 y)/3 + Sqrt[
   1 - (2 x)/3 + x^2/9 - (4 y)/9 - (4 x y)/9 + (4 y^2)/9]),
9/4 (-(7/9) + (5 x)/9 - (2 y)/9 + Sqrt[
   1 - (2 x)/3 + x^2/9 - (4 y)/9 - (4 x y)/9 + (4 y^2)/9]), -3 (-1 +
   x/3 + Sqrt[
   1 - (2 x)/3 + x^2/9 - (4 y)/9 - (4 x y)/9 + (4 y^2)/9]),
3/2 (-1 + x/3 + (2 y)/3 + Sqrt[
   1 - (2 x)/3 + x^2/9 - (4 y)/9 - (4 x y)/9 + (4 y^2)/9])}



                

The analytical solution is detailed in [1]. The numerics in examples is presented in the rational number format.18


                
                  
                
              

5.5.2.3 Square Root Terms in [image: 
$$\mathcal{M}_{i}(x,y)$$
] for Fig. 5.5 When No Two Sides Are Parallel
Using Listing 5.3 the isoparametric variables s, t are: [image: 
$$\displaystyle\begin{array}{rcl} \xi (x,y) = -\frac{3} {4}\left (\sqrt{\frac{x^{2 } } {9} -\frac{4xy} {9} -\frac{2x} {3} + \frac{4y^{2}} {9} -\frac{4y} {9} + 1} -\frac{x} {3} + \frac{2y} {3} - 1\right )& &{}\end{array}$$
]

 (5.13a)

 [image: 
$$\displaystyle\begin{array}{rcl} \eta (x,y) = -\frac{3} {2}\left (\sqrt{\frac{x^{2 } } {9} -\frac{4xy} {9} -\frac{2x} {3} + \frac{4y^{2}} {9} -\frac{4y} {9} + 1} + \frac{x} {3} -\frac{2y} {3} -\frac{2} {3}\right )& &{}\end{array}$$
]

 (5.13b)

 Using Listing 5.3, the shape functions are: [image: 
$$\displaystyle{ \mathcal{M}_{1}(x,y) = -\frac{3} {4}\left (\sqrt{\frac{x^{2 } } {9} -\frac{4xy} {9} -\frac{2x} {3} + \frac{4y^{2}} {9} -\frac{4y} {9} + 1} + x + \frac{2y} {3} -\frac{5} {3}\right ) }$$
]

 (5.14a)

 [image: 
$$\displaystyle{ M_{2}(x,y) =\ \ \ \ \frac{9} {4}\left (\sqrt{\frac{x^{2 } } {9} -\frac{4xy} {9} -\frac{2x} {3} + \frac{4y^{2}} {9} -\frac{4y} {9} + 1} + \frac{5x} {9} -\frac{2y} {9} -\frac{7} {9}\right ) }$$
]

 (5.14b)

 [image: 
$$\displaystyle{ M_{3}(x,y) = -3\left (\sqrt{\frac{x^{2 } } {9} -\frac{4xy} {9} -\frac{2x} {3} + \frac{4y^{2}} {9} -\frac{4y} {9} + 1} + \frac{x} {3} - 1\right ) }$$
]

 (5.14c)

 [image: 
$$\displaystyle{ M_{4}(x,y) =\ \ \ \frac{3} {2}\left (\sqrt{\frac{x^{2 } } {9} -\frac{4xy} {9} -\frac{2x} {3} + \frac{4y^{2}} {9} -\frac{4y} {9} + 1} + \frac{x} {3} + \frac{2y} {3} - 1\right ) }$$
]

 (5.14d)




                Spot Check
              
It is instructive to verify: (1) Kronecker property and (2) Linearity
Listing 5.8 Verifying uniformity, linearity, and the Kronecker property

                  In[31]:=FullSimplify[Plus @@ sfs]
Out[31]=1.

In[32]:=FullSimplify[sfs .( xy // Transpose // First)]
Out[32]=1. x
In[33]:=FullSimplify[sfs .( xy // Transpose // Last)]
Out[33]=1. y

In[34]:=((sfs /. Thread[{x, y} -> #] & ) /@ xy) == IdentityMatrix[4]
Out[33]=True



                


5.5.2.4 Example: Element-2: Two Sides Are Parallel, Fig. 5.6
On the other hand, for a trapezoid:
[image: A300727_1_En_5_Fig6_HTML.gif]
Fig. 5.6A trapezoidal element






                
                  
                
              
Listing 5.9 A Parallelogram: Shape functions identical to the Wachspress Coordinates

                  In[32]:= xy = {{-1.‘, 0.‘}, {1.‘, 0.‘}, {1.‘, 1.‘}, {0.‘, 1.‘}};
      sfs = shapes[{x, y}, xy]

Out[33]={(-1 + x (1 - y) + y)/(-2 + y), (-(1 - y)^2 + x (-1 + y))/(-2 + y),
                     (y (-1 - x + y))/(-2 + y), ((-1 + x) y)/(-2 + y)}



                

The square root function does not appear and the results are in the Padé (rational polynomial) form, the Wachspress coordinates of 
                  
                 
                  
                 [14]: [image: 
$$\displaystyle\begin{array}{rcl} \left \{s,t\right \} = \left \{\frac{\frac{y} {2} - x} {y - 2},y -\frac{1} {2}\right \};\text{ and the shape functions are:}& &{}\end{array}$$
]

 (5.15a)

 [image: 
$$\displaystyle\begin{array}{rcl} & & \left \{\begin{array}{*{10}c} \mathcal{M}_{1} = \dfrac{-xy + x + y - 1} {y - 2} &\ \ \ \ \ \mathcal{M}_{3} = \dfrac{-xy + y^{2} - y} {y - 2} \\ \mathcal{M}_{2} = \dfrac{xy - x - y^{2} + 2y - 1} {y - 2} & \mathcal{M}_{4} = \dfrac{xy - y} {y - 2} \end{array} \right \}{}\end{array}$$
]

 (5.15b)



Uniformity, linearity, and the Kronecker property can be verified (almost by inspection) by executing commands (similar to) Listing 5.8.



5.6 
Exact Integration Avoids Numerical Contamination


              
             
              
             
              
              
             The energy density function in the square computational domain of Fig. 5.2 involves the 
              
             following Jacobian J: 
              
             [image: 
$$\displaystyle\begin{array}{rcl} J =\det \left [\begin{array}{*{10}c} \dfrac{\partial x} {\partial \xi } & \dfrac{\partial y} {\partial \xi } \\ \dfrac{\partial x} {\partial \eta } & \dfrac{\partial y} {\partial \eta } \end{array} \right ];\ \ dx\ dy = J\ d\xi \ d\eta;\text{ or } \begin{array}{*{10}c} (x,y) \rightarrow (x_{1},x_{2}); \\ (\xi,\eta ) \rightarrow (\xi _{1},\xi _{2}); \\ \prod _{i}dx_{i} = \left \vert \dfrac{\partial x} {\partial \xi } \right \vert \prod _{j}d\xi _{j} \end{array} & &{}\end{array}$$
]

 (5.16)



The stiffness matrix [image: 
$$\left [k\right ]$$
] of Eq. (4.8) needs the integral of [image: 
$$\big(\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]\big)$$
] on quadrilaterals. The closed-form analytical results are in [2]. In Eqs. (5.13a) and (5.13b), due to the presence of square root expressions, the integration on the computational square does not conform to a “manageable” order, like linear, quadratic, cubic, etc. Hence, a reliable algorithmic Gaussian quadrature, with a preassigned error, is not possible.
The literature is conspicuously silent regarding Taig’s interpolations applied to concave elements. Therein J, in Eq. (5.16), changes the sign. Hence a stereotypical implementation of Gaussian quadrature is fruitless.
Elegant analytical integrations in Appendix E and [2], in the physical (x, y) domain, including square root terms for concave elements, [3],
do not incur any numerical error to integrate [image: 
$$\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]$$
], in Eq. (4.8).
5.6.1 Exact and Numerical Integrations in One Variable
For all functions f(x, y), which appear in solving elliptic partial differential equations of mathematical physics, we can obtain the closed-form indefinite integral g(y), when the analytical integration is carried out in one spatial variable x. Thus: [image: 
$$\displaystyle\begin{array}{rcl} \int f(x,y)\ dx = g(y);\text{ can be extended to }\int h(x,y,z)\ dx = f(x,y)& &{}\end{array}$$
]

 (5.17)

 Finally, we have to obtain a definite integral of the resulting function in one variable, where the limits a, b are numerical quantities. Almost all the time an analytical expression can be found. However, for a preassigned error ɛ
19: [image: 
$$\displaystyle\begin{array}{rcl} \int _{a}^{b}g(y)\ dy: \text{can always be numerically evaluated}& &{}\end{array}$$
]

 (5.18)




5.6.2 Why Calculation Is Different from Computation: Arithmetical and Algebraic Structures Are Markedly Different
The closed-form development of stiffness matrices for isoparametric elements [1, 2] does not need any special treatment of the square root terms as in Eqs. (5.13a) through (5.14d), when symbolic computation is invoked. The same exercise, through the blinkered view of calculation, is almost impossible.
Strang and Fix in [10], §3.3, page 157, wrote: “Solving …for ξ and η in terms of x and y will introduce complicated square roots and [image: 
$$lead\ nowhere''$$
].20

Also, the authors of [10] never stated within that context that rational polynomials, not square root functions emerge for trapezoids, as shown in Eqs. (5.15a) and (5.15b).
Furthermore, the notion of calculation distinguishes between convex and concave elements, whereas computation treats all quadrilaterals on the same footing. Barycentric Coordinates generalize the isoparametric transformation and address concavity [3, 8].
The third item of Fig. 3.6, page 157 of [10] shows a concave quadrilateral. On the following page 158, of [10], Strang and Fix write: “In this case coordinate change is illegal.” It will be “illegal” because the brute force calculation fails. A symbolic computation counterpart will handle such cases without any special intervention by the user.
5.6.2.1 Change from Square Root Expressions to Rational Polynomial Shape Functions: For Isoparametric Transformations in Eqs. (5.13a) Through (5.15b)
The concept of homogeneous coordinates, [9] in Projective Geometry explains why the Barycentric coordinates assume different forms for general quadrilaterals and trapezoids.
The same Listing 5.3, which executes algebraic steps, generated square root terms in Eq. (5.13a) and rational polynomials in Eq. (5.15b).

                
                  
                
                
                  
                
              
Taylor et al. [12] demonstrated special numerical techniques to obtain better results for trapezoidal elements. Those were ineffective for other quadrilaterals.21



                  
                 By executing a variety of numerical examples, Taylor arrived at that conclusion. This is a calculation-based paradigm to infer geometrical features.



5.7 Practice Problems
Numerical examples to clarify the theoretical treatment provided here can be constructed by the reader using nodal values for: (1) a square element, (2) a rectangular element, (3) a trapezoidal element. Then try any concave quadrilateral. Observe that the isoparametric formulation meets with conceptual huddle; explain why! 
              
            

5.7.1 Hints for Problems
In Appendix G the difficulties posed by square root singularity are described.
For concave four-node elements, Dasgupta and Wachspress [3] describe the shape function constructions.
A concave plane region can be conceived to be a projection of a convex three-dimensional object. The square root singularity thus appears.


5.8 Term Problems
5.8.1 Square Root Singularity
In the physical (x, y) frame the square root singularity in the isoparametric shape functions is situated outside the convex domain.

5.8.2 Comparison with Wachspress Coordinates

              	1.Show that using the rational polynomial interpolants, [14]: [image: 
$$\displaystyle\begin{array}{rcl} \mathrm{from\ Eq.\,(5.15b):}\quad \phi (x,y) = \mathcal{M}_{i}(x,y);\quad i = 1\ldots 4& & {}\end{array}$$
]

 (5.19)



the point-wise equilibrium is violated even for the harmonic field problem: [image: 
$$\displaystyle\begin{array}{rcl} \nabla ^{2}\ \phi (x,y) = f(x,y)& & {}\end{array}$$
]

 (5.20)

 for arbitrary f(x, y). 


                        
                       Start with [image: 
$$\displaystyle\begin{array}{rcl} \nabla ^{2}\ \phi (x,y) = 0& & {}\end{array}$$
]

 (5.21)





 

	2.Plot the fields for [image: 
$$\mathcal{M}_{i}(x,y).$$
]
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Footnotes
1
http://www.fcet.staffs.ac.uk/jdw1/sucfm/eedeuce/people.html#160 in the section: BRITISH AIRCRAFT CORPORATION—WARTON—LANCASHIRE.

 

2The most popular bi-linear interpolants originally appeared in the (unpublished) report of PRESTON DIVISION, Warton Aerodrome, Lancashire, UK, vide Fig. 5.1a.[image: A300727_1_En_5_Fig1_HTML.gif]
Fig. 5.1Facsimiles of covers of two historical documents related to finite elements beyond constant stress/strain triangular elements. (a) Cover: Taig’s report SO17. (b) Cover: DEUCE handbook






 

3
Vide Fig. 5.1b.

 

4A full polynomial of degree n in (x, y) has a constant, linear, quadratic …terms in (x, y) of the form x
            
              n−i
             y
            
                  i
                , i = 0…n. From the functional analysis point of view, polynomials are not complete, because limits of polynomials are not polynomials—hence we avoid the term “complete polynomial.”

 

5Taig did not use the notation [image: 
$$\mathcal{N}(\xi,\eta ),$$
] the author introduced it for convenience.

 

6Available literature seldom takes advantage of this versatile feature, because conventional numerical quadrature for the strain energy density cannot be carried out. There is no such restriction when the exact integration is implemented, vide  Appendix E.

 

7However, unlike perspective geometry, an interior straight line curves (or distorts).

 

8This will be shown in Sect. 5.5.2.3.

 

9For rectangles, [image: 
$$\mathcal{N}_{i}(\xi,\eta )$$
] are quadratic in (x,y) and are exact without any error. The numerical quadrature for [image: 
$$\big(\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]\big)$$
] is also exact. This will be shown in Sect. 6.1.1.

 

10This form of neater printing is needed for square root expressions as shown in Eqs. (5.13a) through (5.14d).

 

11The three-dimensional extensions, e.g. [6], also, follow quite naturally.

 

12
Point-wise equilibrium is not guaranteed; in general, the analytical solution would not be reproduced by this displacement approximation, as focused in Sect. 6.

 

13The isoparametric finite element is the most published item in the finite element literature. The author encourages the readers to study Taig’s original masterpiece.

 

14The author learned from private communications that the work was done ca. 1957.

 

15Parameters (s, t) keep the Mathematica coding simple, without Greek characters.

 

16There is a typographical error in the first equation; here, x is corrected by x
              1. 

 

17Equations (5.2b) and (5.3a) furnish the same interpolations for (x, y) and (u, v).

 

18Just a reminder, the Mathematica input/ouput indicators;
e.g. “In[30]:=” or “Out[30]=” should not be typed in.

 

19The Mathematica function NIntegrate has adaptive built-in methods.

 

20The author of this textbook underlined the last two words.

 

21Wilson in [15, §6.1], remarked: “However, the results produced by the non-rectangular isoparametric element were not impressive.”
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Abstract
To judge the quality of any element formulation, starting from resolving controversies that surrounded Taig’s four-node element, the patch test (The author failed to locate the first publication where Irons introduced this revolutionary concept of the patch test. In internal documents of Rolls-Royce, Derby, UK, most likely in the early sixties, definitely after the groundwork of Taig (Structural analysis by the matrix displacement method. Tech. rep., British Aircraft Corporation, Warton Aerodrome: English Electric Aviation Limited, Report Number SO 17 based on work performed ca. 1957, 1962), Irons presented the concept. In 1965 (Irons et al., Triangular elements in plate bending–conforming and nonconforming solutions. In: Proceedings of the conference of matrix methods. Wright-Patterson Air Force Base, Ohio, 1965), Irons first authored a paper on plate bending where the issue beyond constant stress elements was unavoidable.) furnished a guideline. 
              
             Irons thus made the most fundamental contribution in the science of finite elements. Irons’ (co-authored) books, e.g. Irons and Razzaque (Experience with the patch test for convergence of finite elements method. In: Aziz A (ed) Mathematical foundations of the finite element method with application to partial differential equations. Academic, New York, pp 557–587, 1972), Irons and Ahmad (Techniques of finite elements. Ellis Horwood, Chichester, 1980), Irons and Shrive (Finite element primer. Wiley, New York, 1983), bear testament to his tremendous insight in analyzing spatially discretized field problems of mathematical physics. This innovative notion has inspired researchers, for example Anufariev et al. (Exactly equilibrated fields, can they be efficiently used in a posteriory error estimation? In: Physics and mathematics. Scientists notes of the Kazan University, vol 148. Kazan University, Kazan, pp 94–143, 2006), Stewart and Hughes (Comput Methods Appl Mech Eng 158(1):1–22, 1998), over the last 50 years or so (Professor
              
             Robert L. Taylor in: http://www.ce.berkeley.edu/projects/feap/example.pdf furnishes explanations with numerical examples.) and no doubt many more interesting papers will appear on this subject.

This textbook develops methods to compute the element stiffness matrices and evaluates the nodal forces due to a prescribed boundary traction distribution to target successful patch tests. The signature figure of the textbook shows a rectangular region for which an analytical solution is available when the entire domain is idealized to be a “thin” beam so that the “assumption” of a linear strain along the transverse direction prevails (Commonly called the 
            
           Euler–Bernoulli beam theory, also known as engineer’s beam theory or the classical beam theory. However, The Codex Madrid, discovered in 1967 and housed in the National Library of Spain (Biblioteca Nacional de España, Madrid), provides evidence that 
            
           Leonardo da Vinci, ca. 1493, published the linear strain distribution across a section in bending.).
Based on analytical tensorial reasoning, the patch test is not limited to two principal directions of a rectangular beam.
6.1 
Patch Tests for Four-Node Plane Elements
For Taig’s plane four-node elements,1 a pertinent question is:

Can a patch of quadrilateral elements exactly reproduce analytical results? We now examine whether eight nodal degrees-of-freedom can accommodate the following eight independent deformation modes.
A successful patch test is expected to reproduce exactly: 
              
             
              
            
	1.Rigid body modes—zero strains
	(a)all points only shifted equally along x-direction


 

	(b)all points only shifted equally along y-direction


 

	(c)all points only rotated equally about a fixed point on the x-y plane


 







 

	2.Constant strain modes
	(a)an axial strain ε
                        
                              xx
                             is exactly reproduced


 

	(b)a constant axial strain ε
                        
                              yy
                             is exactly reproduced


 

	(c)a constant shear strain ε
                        
                              xy
                             or γ
                        
                              xy
                             is exactly reproduced


 






                    
                      
                    
                  


 

	3.Pure bending strains—for a bending moment, without any shear force:
	(a)neural axis in the x-direction, the strain ε
                        
                              xx
                             will vary linearly in y



 

	(b)neural axis in the y-direction, the strain ε
                        
                              yy
                             will vary linearly in x



 







 





6.1.1 Rectangular Elements Pass Patch Tests


              [image: A300727_1_En_6_Fig1_HTML.gif]
Fig. 6.1Transverse sides remain normal to the neutral axis




            

Small deformation ruled out discrepancies between the arcs and straight sides in Fig. 6.1.

              
                
              
            


6.2 What Is Locking


Locking is a generic term to depict failure in any of the patch tests [11]. In addition to extensive treatment in [10], a concise description can be found in [2] with details using Taig’s interpolants.2 Inherent defects in Taig’s formulation are thoroughly analyzed in [10].3

In Fig. 6.2, an edge, which is not normal to the neutral axis, is prevented from curving—as if the flexible edge fiber is bolted or locked in on a rigid straight edge. Consequently, point-wise equilibrium was compromised.
[image: A300727_1_En_6_Fig2_HTML.gif]
Fig. 6.2Curving of an inclined fiber in pure bending; arrows: exact displacement vectors





6.2.1 Taig’s Rectangular Elements: Devoid of Locking
Subjected to end moments, vide Fig. 6.1, Taig’s rectangular elements in a patch reproduced constant axial stresses in fibers parallel to the neutral axis, without any shear stress in the principal directions of the element. Moreover, since between two nodes of the quadrilateral element, the flexural displacement distribution remained linear4 the interface was unique whether recognized from either side of the adjacent elements.
Equilibrium and compatibility requirements were fully complied with when rectangular elements, vide Fig. 6.1, were chosen. All continuum mechanics requirements being met, the analytical solution was reproduced; consequently, no shear stress appeared in pure bending.
Inaccuracies with Taig Elements
The most striking observation was the appearance of shear stresses5 in the constituent non-rectangular elements when a rectangular patch was subjected to pure moment.
In addition to the kinematic considerations,6 Poisson locking, vide [10], originates from the fact that in the elasticity problem of a coupled vector field, the most important non-dimensional coupling factor—the Poisson’s ratio ν—is absent in interpolants.
Finally, incompressibility due to the Poisson’s ratio ν being exactly 1∕2 makes the constitutive matrix [image: 
$$\left [d\right ]$$
] of Eq. (4.9c) ineffective (due to the denominator 1 − 2ν). This shortcoming is not anything special to Taig’s formulation; the isochoric constraint cannot be imposed via [image: 
$$\left [d\right ]$$
] of Eq. (4.9c). The entire Chap. 8 is dedicated to addressing incompressibility.
Almost everywhere, without any apparent computational reason, element stiffness matrices are calculated by implementing quadrature on [image: 
$$\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]$$
]. Due to the presence of square root terms within [image: 
$$\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]$$
] in the physical domain (x, y) or in the Jacobian J, Eq. (5.16), in the computational unit square, numerical contamination becomes unavoidable, vide Sect. 5.6.

                
                  
                
              

                
                  
                
              


6.2.2 Incompatible Modes
Incompatible modes7 permit the curving of a straight boundary segment of an element. A plane section not normal to the neutral axis should curve.8 Wilson furnished, in his text book [15] (also see the elaboration in [16, 17] with Taylor, Doherty and Ghaboussi), a mechanism9 whereby the generic non-normal (to the neutral axis) sides curve under pure bending.

              
                
              
            
Wilson coined the term “incompatible modes,” vide [15].


6.3 Modal Interpretation of the Patch Test

For quadrilateral elements (and triangular ones), which are derived from the Rayleigh modes, all single element tests have been successfully conducted.10

6.3.1 Nodal Forces Must Be “Virtual Work” Quantities: An Essential Requirement to Pass “Patch Tests”

              
                
              
            
After an in-depth analysis of the unavoidable failure of isoparametric elements in the patch test, MacNeal published his profound conclusions in [9].
Clough’s guidelines [3] for constructing nodal forces on any mesh from virtual work principle (as dual to nodal displacements of incompatible elements) play a crucial role.
The 
                
               St. Venant’s principle is inapplicable for beam bending cases. Many researchers incorrectly replaced the linear traction along the beam depth by a moment from two opposing forces. Their patch test results are questionable!
Additional (compared to Taig’s) patch forces (virtual work quantities), the last item in Fig. 6.3, appear due to non-zero displacement on a face.11 In Fig. 6.3 we present the counterintuitive result. It is crucial to pay attention to Quotation III of the Introduction to account for (additional to the Taig’s patch forces) virtual work quantities due to displacement on a face on whose nodes the element shape function does vanish. This is the result of side curving for incompatible or non-conforming elements in order to pass the patch test.
[image: A300727_1_En_6_Fig3_HTML.gif]
Fig. 6.3
Outlined arrows: additional nodal forces on the patch under axial stress





For the element shown in Fig. 7.1, it is quite possible to undertake a “pencil on paper” calculation using the Mathematica notebook front end, to determine the nodal forces on the incompatible element.
The controversial characterization 
                
               Variational crime, first appeared in [13], will not be elaborated here.12 It suffices to use the virtual work principle in designing displacement-based elements that will meet the requirements of piece-wise application of the Ritz variational formulation.
In the web, there is a significant number of publications on the patch tests, here is a summary13 related to finite element formulations based on assumed displacement fields—aka:
	1.Does the assumed shape functions or interpolants comply with the assumptions for “analytical solutions” fully?


 

	2.In order to reproduce the analytical solutions, which invariably satisfy local equilibrium, do the stresses, which are derived from the assumed displacement test functions, are in equilibrium?


 

	3.Has the energy density function been integrated without any error?



 

	4.These items are related to the correctness in coding:
	(a)Has the element stiffness matrix been correctly coded?


 

	(b)Has the assembly of elements been correctly performed?


 

	(c)Have the displacement unknowns been correctly solved?


 

	(d)Have the strains and stresses been correctly recovered?


 







 






              
                
              
            
6.3.1.1 Designing a Defect-Free Displacement-Based Finite Element
Now, the questions are:
	1.In what way does the Rayleigh modal formalism, in this textbook, differ from the Taig’s element (in addition to the exact integration on elements)


 

	2.Coupled equilibrated test functions: Poisson’s ratio dependence


 








6.4 Limitation of Conventional “Compatible” Formulations
Taig’s quadrilateral finite elements enhance triangular elements of Courant and Clough and capture spatial gradients of the fundamental field variable. For example, beyond uniform stresses, in beam bending cases we need spatial derivatives of axial strains to calculate curvatures.
Iron’s patch test compares approximate formulations with available analytical solutions to reveal inaccuracies of element behavior in an assembly. Without restriction, we attempt to covering a rectangular region with all possible quadrilaterals14 as shown in Fig. 6.4.15
[image: A300727_1_En_6_Fig4_HTML.gif]
Fig. 6.4A patch of quadrilaterals





Let us start with a rectangular element, tagged with a number 1, in Fig. 6.4. Due to the importance of this geometry, when the physical and computational domains are identical, we have successfully conducted the patch test with Fig. 6.1. We indeed verified that coordinate scaling was not a hindrance when rectangles (generalization of squares) were the covering elements. In the finite element modeling, the basic premise of transverse edges remaining straight after pure bending was exactly met. Hence, compatible elements were adequate. Also, the Gaussian quadrature of strain energy densities, for spatially quadratic polynomials, yields the exact numerical results for element stiffness matrices.
Next we examined, in Fig. 6.3, trapezoidal elements where the Cartesian product (of edges yielding the domain) does not hold. Taig’s compatible element does not satisfy point-wise equilibrium, hence failed the patch test. Incompatible modes, outlined in Sect. 6.2.2, was necessary.
Poisson’s ratio-dependent incompatible “shape function vectors”  become unavoidable16 to guarantee point-wise equilibrium.

6.5 Reading Assignment
The nature of this section is more like an analytical discourse.
There is an overwhelming number of excellent papers available on the internet with the deficiency of the (classical) isoparametric element with numerical quadrature. Select a few and write your own critique.
Examine all those failures through the lens of
	1.Numerical quadrature:
Not properly constructed when the Jacobean involves square root functions—originating from: Eqs. (5.13a) and (5.13b).


 

	2.Euler–Bernoulli beam theory:
Under pure bending, when a section non-normal to the neutral axis is constrained (rather: locked) to remain straight, the patch test demand of no shear cannot be met.


 






6.6 Computer Programming Assignment
Write your own computer code (in your favorite language) to verify the results of [4]. Reproduce the results of Eqs. (45), (46), (48) through (50).
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Footnotes
1Eight nodal degrees-of-freedom can accommodate eight (independent) Rayleigh modes.

 

2A tutorial style lecture note can be found at: http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch15.d/AFEM.Ch15.pdf.

 

3Incompatible modes, reduced integration, hybrid elements, incompatible mode elements, volumetric locking, near-incompressible materials are some of the important concepts that will not be addressed here.

 

4After the deformation, overlapping and/or gap can develop due to inter-element incompatibility in displacements.

 

5Recall that pure bending is without shear force.

 

6Where locking originates from “parasitic” displacements in the finite element interpolants.

 

7Does not run afoul of the Ritz variational theorem on a piecewise tessellated domain.

 

8The absence of the η
              2 and ξ
              2 imposed constraints that contaminated finite element solutions relative to their analytical counterparts.

 

9No additional incompatible mode functions need to be introduced on an ad-hoc basis. Rayleigh modes, which comply with point-wise equilibrium, will automatically encompass all polynomial terms without resorting to additional remedies.

 

10Figure 6.3 shows the nodal forces derived as virtual work quantities. Numerical details of nodal forces as virtual work quantities are given in [4]. Both constant and flexure stresses are addressed there.

 

11We examine, in [4] the case of pure bending when non-rectangular elements are patched together.

 

12A wide range of internet documents can be studied according to the taste and background of the reader.

 

13Needless to state that the author is expressing his personal views.

 

14This patch is repeatedly cited because all five possible forms of four-node elements are encompassed here. We follow the element numbering to respectively identify: rectangular, trapezoidal, irregular convex, degenerated triangle, and concave elements.

 

15Note that element types [image: A300727_1_En_6_Figa_HTML.gif] and [image: A300727_1_En_6_Figb_HTML.gif] pose formidable challenge to numerically evaluate the [image: 
$$\Big(\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]\Big)$$
] integral when the Taig transformation (ξ, η) of Eq. (5.10) is invoked.

 

16This is elaborated in Sect. 7.2.1.2. Clough commented: nodal forces should be virtual work quantities. Consequently, incompatible Rayleigh mode vectors should introduce vertical nodal forces, which are essential for patch tests, even for horizontal boundary tractions.
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Abstract
We can exactly reproduce linear axial stresses without shear (To satisfy equilibrium point-wise, the (u, v) components of a typical displacement vector must be coupled through the Poisson’s ratio ν. ), in four-node (plane) elements. Neither their geometrical shapes—including concavity—nor the Poisson’s ratio ν pose any impediment. This locking-free condition can only be achieved when the neutral axis, under pure bending, is aligned along one of the two pre-selected directions.
Here, an element shape function, which consists of two quadratic polynomials in (x, y), is a linear combination of Rayleigh mode vectors that satisfy point-wise equilibrium. The unique coefficients for each shape function involve the element nodal coordinates and the Poisson’s ratio.
Following Clough’s guidelines, (Clough, Comput Struct 12:361–370, 1980) especially the Quotation III of the Introduction, the entries in the element stiffness matrix and the (equivalent) nodal forces (to substitute for a given spatial profile of the boundary traction) are determined as virtual work quantities (Note that for structural mechanics problems, the virtual work principle is absolutely equivalent to the Ritz variational formulation (Ritz, J Reine Angew Math 135:1–61, 1908; Wendroff, Math Comput 19(90):218–224, 1965), making the notion of variational crimes (Strang, Variational crimes in the finite element method. In: Aziz AK (ed) Mathematical foundations of the finite element method with application to partial differential equations. Proceedings Symposium, University of Maryland, Baltimore. Academic, New York, pp 689–710, 1972; Gander and Wanner, SIAM Rev 54(4), 2012) completely irrelevant here.) (by exact integration).
This Rayleigh modal approach models:
	(1)compressible media (The conventional finite element method with nodal degrees-of-freedom prevails.), with the Poisson’s ratio in the range − 1 < ν < 1∕2


 

	(2)and in Chap. 8, incompressible media (Where the eight nodal displacements cannot be arbitrarily prescribed.), with ν = 1∕2


 





In pure bending, which is associated with an arbitrarily oriented neutral axis, let us reiterate that quadrilateral plane elements, with eight degrees-of-freedom, will invariably yield non-zero shear stresses. There is not an adequate number of degrees-of-freedom to guarantee point-wise equilibrium with shear-free linear stresses. In that sense, the element cannot be entirely defect-free (MacNeal, Finite Elem Anal Des 5(1):31–37, 1989). This problem is elaborated in Chap. 9


7.1 The Modal Formulation at the Element Level
The (coupled) displacement field, [image: 
$$\left \{u(x,y),v(x,y)\right \}$$
], in the physical (x, y) coordinates, constitutes the fundamental response. All field variables can be determined uniquely from this pair.
7.1.1 Modal-Nodal Transformations of Basic Variables
The finite element nodal degrees-of-freedom are housed in the column matrix [image: 
$$\left \{r\right \}$$
]: [image: 
$$\displaystyle{ \left \{r\right \}: \mbox{ nodal displacements of an element} }$$
]

 (7.1)

 The corresponding modal participation factors are [image: 
$$\left \{\phi \right \}$$
]: [image: 
$$\displaystyle{ \left \{\phi \right \}: \mbox{ modal participation factor at the element} }$$
]

 (7.2)

 Let us introduce a matrix [image: 
$$\left [G\right ]$$
] to connect the variables [image: 
$$\left \{r\right \}$$
] and [image: 
$$\left \{\phi \right \}$$
]: [image: 
$$\displaystyle{ \left \{r\right \} = \left [G\right ]\left \{\phi \right \} }$$
]

 (7.3)

 The numerical value of [image: 
$$\left [G\right ]$$
] depends on the element nodal coordinates. In any four-node element, the number (eight) of independent displacement modes (admissible general coordinates) equals that of the (eight) nodal degrees-of-freedom, thus: [image: 
$$\displaystyle{ \begin{array}{llll} \det \left [G\right ]&\neq 0\longrightarrow \quad \left \{\phi \right \}& = \left [G\right ]^{-1}\ \left \{r\right \}\end{array} }$$
]

 (7.4a)




7.1.2 Transforming Modal to Nodal Stiffness Matrices
Let us recall, modal participation factor ϕ and the associated force to be Φ: [image: 
$$\displaystyle{ \mbox{ for}\ \left [k_{\phi \phi }\right ]: \mbox{ modal stiffness matrix} }$$
]

 (7.5a)

 [image: 
$$\displaystyle{ \left [k_{rr}\right ]: \mbox{ nodal stiffness matrix} }$$
]

 (7.5b)

 [image: 
$$\displaystyle{ \left \{\varPhi \right \} = \left [k_{\phi \phi }\right ]\ \left \{\phi \right \}\mbox{ and }\left \{R\right \} = \left [k_{rr}\right ]\ \left \{r\right \} }$$
]

 (7.5c)

 for an arbitrary non-zero [image: 
$$\left \{\phi \right \}$$
], then from Eqs. (7.4a) and (7.9c): [image: 
$$\displaystyle{ \left [k_{\phi \phi }\right ] = \left [G^{T}\right ]^{-1}\ \left [k_{\phi \phi }\right ]\ \left [G\right ]^{-1} }$$
]

 (7.6)




7.1.3 Relations Between the Shape Functions and Modal Participation Factors
Using the ith conventional shape functions [image: 
$$\boldsymbol{S}_{r}^{(i)}$$
] and the jth modal displacement profiles [image: 
$$\boldsymbol{S}_{\phi }^{(j)}$$
]: [image: 
$$\displaystyle{ \left \{\begin{array}{*{10}c} u(x,y)\\ v(x, y) \end{array} \right \} =\sum _{i}\boldsymbol{S}_{r}^{(i)}\ \left \{r\right \}_{ i} =\sum _{j}\boldsymbol{S}_{\phi }^{(j)}\ \left \{\phi \right \}_{ j};\quad \mbox{ in matrix form} }$$
]

 (7.7a)

 [image: 
$$\displaystyle{ =<\boldsymbol{S}_{r}^{(1)},\boldsymbol{S}_{ r}^{(2)},\ldots> \left \{r\right \} = \left [\boldsymbol{S}_{ r}\right ]\ \left \{r\right \} = \left [\boldsymbol{S}_{\phi }\right ]\ \left \{\phi \right \} }$$
]

 (7.7b)

 [image: 
$$\displaystyle{ \mathbf{notation:}\mbox{ the nodal quantities are suffixed with }r }$$
]

 (7.7c)

 [image: 
$$\displaystyle{ \mbox{ the modal quantities are suffixed with }\phi }$$
]

 (7.7d)



The non-singular (coordinate) transformation in Eq. (7.3), and the relation in Eqs. (7.4a) and (7.7b) can relate the shape functions [image: 
$$\boldsymbol{S}_{r}$$
] and the Rayleigh coordinates [image: 
$$\boldsymbol{S}_{\phi }$$
] (to be used as test functions) in the form1: [image: 
$$\displaystyle{ <\boldsymbol{S}_{r}>=<\boldsymbol{S}_{\phi }>\ \left [G\right ]^{-1} }$$
]

 (7.8)



Whether the problem is two-dimensional (c = (x, y)) or three-dimensional (c = (x, y, z)), when all mode shapes are collected in allModes columnwise, then for an element whose nodal coordinates are collected row-wise, the following Mathematica function can evaluate [image: 
$$\left [G\right ]$$
].
Listing 7.1 G-matrix from allModes and nodes

                g[allModes_, c_, nodes_] :=
Partition[Flatten[(Transpose[allModes] /. Thread[c -> #] &) /@ nodes],
 Times @@ Dimensions[nodes]]



              


7.1.4 Relation Between the Nodal Forces and Their Modal Counterparts
The uppercase letters will be used to denote forces: [image: 
$$\displaystyle{ \left \{R\right \}: \mbox{ nodal force associated with }\left \{r\right \} }$$
]

 (7.9a)

 [image: 
$$\displaystyle{ \left \{\varPhi \right \}: \mbox{ conjugate of modal participation factor}\ \left \{\phi \right \} }$$
]

 (7.9b)

 [image: 
$$\displaystyle{ \mbox{ such that}: \left \{R\right \}^{T}\ \left \{r\right \} = \left \{\varPhi \right \}^{T}\ \left \{\phi \right \} }$$
]

 (7.9c)





7.2 Rayleigh Modes [image: 
$$\boldsymbol{\mathcal{R}}_{i}$$
] for Linear Stress Distribution
The notation [image: 
$$\boldsymbol{\mathcal{R}}_{i}$$
] is from “R” for Rayleigh. The bold font emphasizes that these modes are vectors that are distinct from Taig’s scalar interpolants. In “bold-calligraphic” font, {\boldsymbol {\mathcal R}}_{i} typesets [image: 
$$\boldsymbol{\mathcal{R}}_{i}$$
] in LaTeX. 
              
              
            

In the physical x, y coordinate frame, linear stress profiles necessarily mandate quadratic polynomial displacement fields u(x, y), v(x, y). The full form: [image: 
$$\displaystyle{ u = a(1) + x {\ast} a(2) + y {\ast} a(3) + x^{2} {\ast} a(4) + x {\ast} y {\ast} a(5) + y^{2} {\ast} a(6) }$$
]

 (7.10a)

 [image: 
$$\displaystyle{ v=b(1)+y {\ast} b(2) + x {\ast} b(3) + y^{2} {\ast} b(4) + y {\ast} x {\ast} b(5) + x^{2} {\ast} b(6) }$$
]

 (7.10b)

 only for a(i), b(i), i > 3 will be examined2 next for point-wise equilibrium.
7.2.1 Equilibrated Field
For compressible cases, [image: 
$$-1 <\nu <\frac{1} {2},$$
] under the plane strain conditions the displacement equations of equilibrium, in the respective x, y directions are: [image: 
$$\displaystyle{ \frac{4a(4)(1-\nu )} {1 - 2\nu } + 2a(6) + \frac{2b(5)\nu } {1 - 2\nu } + b(5) = 0, }$$
]

 (7.11a)

 [image: 
$$\displaystyle{ \frac{2a(5)\nu } {1 - 2\nu } + a(5) + \frac{4b(4)(1-\nu )} {1 - 2\nu } + 2b(6) = 0 }$$
]

 (7.11b)

 The following elimination rules will reduce the two variables: [image: 
$$\displaystyle{ b(5) \rightarrow 2(2a(4)\nu + 2a(6)\nu - 2a(4) - a(6)) }$$
]

 (7.12a)

 [image: 
$$\displaystyle{ a(5) \rightarrow 2(2b(4)\nu + 2b(6)\nu - 2b(4) - b(6)) }$$
]

 (7.12b)

 leading to the following general quadratic displacement modes [image: 
$$\left \{\begin{array}{*{10}c} u\\ v \end{array} \right \}$$
]: [image: 
$$\displaystyle{ \left \{\begin{array}{*{10}c} a(4)x^{2} + a(6)y^{2} + 4b(4)\nu xy + 4b(6)\nu xy - 4b(4)xy - 2b(6)xy \\ 4a(4)\nu xy + 4a(6)\nu xy - 4a(4)xy - 2a(6)xy + b(6)x^{2} + b(4)y^{2}\end{array} \right \} }$$
]

 (7.13)



7.2.1.1 Shear-Free Pure Bending Field
The shear strain associated with Eq. (7.13) is: [image: 
$$\displaystyle{ \gamma _{xy} = 4a(4)\nu \ y + 4a(6)\nu \ y - 4a(4)y + 4b(4)\nu \ x + 4b(6)\nu \ x - 4b(4)x }$$
]

 (7.14)

 If the shear strain has to vanish identically, i.e., for all x, y, then: [image: 
$$\displaystyle{ a(6) \rightarrow \frac{a(4) - a(4)\nu } {\nu } \mbox{ and }b(6) \rightarrow \frac{b(4) - b(4)\nu } {\nu } }$$
]

 (7.15)

 must be satisfied. From the physics point of view, there is no singularity at ν = 0. Also, at ν = 0, a(4) and b(4) are both identically zero. Hence, it is legitimate to multiply each displacement component in Eq. (7.15) by ν leading to the general form of the coupled displacement field: [image: 
$$\displaystyle{ \left \{\begin{array}{*{10}c} u&=& a(4)\nu x^{2} - a(4)\nu y^{2} + a(4)y^{2} + 2b(4)\nu xy - 2b(4)xy \\ v &=&2a(4)\nu xy - 2a(4)xy + b(4)(-\nu )x^{2} + b(4)x^{2} + b(4)\nu y^{2}\end{array} \right \} }$$
]

 (7.16)




7.2.1.2 Selection for Two Distinct Cases
In Eq. (7.16), there are two independent coefficients, a(4) and b(4). They refer to two distinct bending modes in the x and y directions. Thus the two flexure modes can be evaluated from Eq. (7.16): [image: 
$$\displaystyle{ a(4) \rightarrow 1\mbox{ and }b(4) \rightarrow 0: \left \{\begin{array}{*{10}c} u\\ v \end{array} \right \} = \left \{\begin{array}{*{10}c} \nu x^{2} -\nu y^{2} + y^{2} \\ 2\nu xy - 2xy \end{array} \right \}\mbox{ and } }$$
]

 (7.17a)

 [image: 
$$\displaystyle{ b(4) \rightarrow 1\mbox{ and }a(4) \rightarrow 0: \left \{\begin{array}{*{10}c} u\\ v \end{array} \right \} = \left \{\begin{array}{*{10}c} 2\nu xy - 2xy \\ -\nu x^{2} + x^{2} +\nu y^{2} \end{array} \right \} }$$
]

 (7.17b)



Six linear displacement modes and the two pure bending (only in x- and y-directions) quadratic displacement modes constitute the entire space of Courant’s admissible functions or Ritz-coordinates. These are selected as the Rayleigh mode vectors [image: 
$$\boldsymbol{\mathcal{R}}_{i}(x,y)$$
] in Table 7.1. 
                  
                
Table 7.1Rayleigh mode vectors for four-node elements
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7.2.1.3 Interrelation of Two Rayleigh Modes
The choice of orthogonal x, y is arbitrary. Since x to y-direction is counterclockwise, y to (−x)-direction is an appropriate substitution in Eq. (7.17a). Then u, v to v, −u substitution yields Eq. (7.17b).


7.2.2 Mathematica Steps
There is some basic initialization needed. The code to generate full quadratic polynomial coupled displacement fields and strain calculations are written first. The In[]:= and Out[]= sequences are omitted where obvious.
Listing 7.2 Initialize calculations

                (* Global variables *)
Global‘x; Global‘y;
Global‘u; Global‘v;
Global‘nu; Global‘mu;
xy = {x, y};



              

Listing 7.3 Full quadratic coupled displacement vector

                (* uv *)
In[19]:= linearTerms = Flatten[{1, xy}]
Out[19]= {1, x, y}
poly2 = (List @@ Expand[(1 + x + y)^2]) /. c_Integer * alpha_ -> alpha
Out[20]= {1, x, x^2, y, x y, y^2}
In[21]:= quadraticTerms = Complement[poly2, linearTerms]
Out[21]= {x^2, x y, y^2}
In[22]:= poly = Flatten[{linearTerms, quadraticTerms}]
Out[22]= {1, x, y, x^2, x y, y^2}
In[23]:= u = poly. Array[a, Length[poly]]; TeXForm[u]
Out[23]//TeXForm=
a(4) x^2+a(5) x y+a(2) x+a(6) y^2+a(3) y+a(1)
(* Full quadratic representation: *)
In[24]:= v = u /. {a -> b, x -> y, y -> x};uv = {u, v};
Out[25]= {a[1] + x a[2] + y a[3] + x^2 a[4] + x y a[5] + y^2 a[6],
        b[1] + y b[2] + x b[3] + y^2 b[4] + x y b[5] + x^2 b[6]}



              

Listing 7.4 Strains from coupled displacement fields

                Clear[shearStrainGammaFromUV, strainsFromUV];

shearStrainGammaFromUV::usage = "shearStrainGammaFromUV[{u,v}, {x, y}]
returns the shear strain gammaxy = 2 epsilonxy for the coupled displacement field {u,v}, in {x, y} coordinates."

shearStrainGammaFromUV[{u_, v_}, {x_, y_}] := (D[u, y] + D[v, x])
shearStrainGammaFromUV[uv_?MatrixQ, {x_, y_}] :=
                              shearStrainGammaFromUV[#, {x, y}] & /@ uv
strainsFromUV::usage = "strainsFromUV[{u,v}, {x, y}]
returns the strains {epsilonxx, epsilonyy, gammaxy}."

strainsFromUV[{u_, v_}, {x_, y_}] := {D[u, x], D[v, y], (D[u, y] + D[v, x]) };
strainsFromUV[uv_?MatrixQ, {x_, y_}] := strainsFromUV[#, {x, y}] & /@ uv



              

For this two-dimensional elasticity problem, different stress fields will result in the plane strain and plane stress conditions.
Listing 7.5 Stresses from the displacement vector under the plane strain condition

                Clear[stressesFromUVPlaneStrainCondition];

stressesFromUVPlaneStrainCondition::usage =
      "stressesFromUVPlaneStrainCondition[{u,v}, {x, y},nu]
returns the stresses {sigmaxx, sigmayy, tauxy} for unit shear modulus
(mu=1) and Poisson’s ratio nu for the Plane Strain Condition."

stressesFromUVPlaneStrainCondition[{u_, v_}, {x_, y_}, nu_] :=
Module[{dMatrixPlaneStrainCondition = {{(2 (1 - nu))/(1 - 2 nu), (2 nu)/(
    1 - 2 nu), 0}, {(2 nu)/(1 - 2 nu), (2 (1 - nu))/(1 - 2 nu), 0}, {0, 0,
    1}}},
 dMatrixPlaneStrainCondition . strainsFromUV[{u, v}, {x, y}]]

stressesFromUVPlaneStrainCondition[uv_?MatrixQ, {x_, y_}, nu_] :=
stressesFromUVPlaneStrainCondition[#, {x, y}, nu] & /@ uv



              

Obtaining equations of equilibrium and verifying that the coupled displacement field satisfies equilibrium are frequent and important tasks. The Mathematica code is in Listing 7.6.
Listing 7.6 Plane strain-displacement equations of equilibrium

                Clear[equilibriumQ, equilibriumEquations];
equilibriumQ::usage = "equilibriumQ[{u,v}, {x, y}, nu] returns True if the \
coupled displacement field {u,v}
in {x, y} coordinates satisfy equilibrium."

equilibriumQ[{u_, v_}, {x_, y_}, nu_] := Module[{sigmaxx, sigmayy, tauxy},
 {sigmaxx, sigmayy, tauxy} =
           stressesFromUVPlaneStrainCondition[{u, v}, {x, y}, nu];
           And @@ {FullSimplify[D[sigmaxx, x] + D[ tauxy, y]] == 0,
                    FullSimplify[D[tauxy, x] + D[sigmayy, y]] == 0}]

equilibriumQ[uv_?MatrixQ, {x_, y_}, nu_] :=
And @@ (equilibriumQ[#, {x, y}, nu] & /@ uv)

equilibriumEquations[{u_, v_}, {x_, y_}, nu_] := Module[
                       {sigmaxx, sigmayy, tauxy},
 {sigmaxx, sigmayy, tauxy} =
  stressesFromUVPlaneStrainCondition[{u, v}, {x, y}, nu];
                           {D[sigmaxx, x] + D[ tauxy, y] == 0,
                           D[tauxy, x] + D[sigmayy, y] == 0} ]



              

In Listing 7.6 we followed the Mathematica convention to name a variable with the last character Q as in equilibriumQ to test the argument to be True of False. Such a construct is handy when we examine whether the point-wise equilibrium condition is satisfied or not.
Next, there are necessary functions that identify the degrees-of-freedom and generate (similar) Rayleigh modes by utilizing (tensor) symmetry.
Listing 7.7 Determining unknown polynomial coefficients as degrees-of-freedom

                Clear[termList, termCount];

termList::usage = "termList[x]returns the list of parameters (a[], b[] etc.) in x."
termList[x_] := Cases[ Flatten[
            x /. Thread[{Power, Times, Plus} -> List]], a_[b_]] // Union

termCount::usage = "termCount[x] returns the number of parameters in x."
termCount[x_] := termList[x] // Length



              

Listing 7.8 Determining the similar coupled mode by tensorial symmetry

                Clear[nextMode];
nextMode::usage = "nextMode[thisMode,xy] generates the mode by rotating left
the coordinate system xy from the given thisMode."

nextMode[thisMode_?VectorQ, xy_] :=
RotateRight[thisMode /. Thread[xy -> RotateLeft[xy]]]

      nextMode[theseModes_?MatrixQ, xy_] := nextMode[#, xy] & /@ theseModes



              


7.2.3 Execution
The three rigid body modes and three constant strain (stress) modes are:
Listing 7.9 Modes associated with a triangle

                linearModes = {{1, 0}, {0, 1}, {y, -x}, {x, y}, {x, -y}, {0, x}};



              

The quadratic mode needs to impose equilibrium:

point-wise with SolveAlways[]

Listing 7.10 Impose equilibrium condition on quadratic modes

                In[102]:= allQuadraticTerms = uv /. a_[b_ /; (b < 4)] -> 0
Out[102]= {x^2 a[4] + x y a[5] + y^2 a[6], y^2 b[4] + x y b[5] + x^2 b[6]}
In[103]:= eqn = equilibriumEquations[allQuadraticTerms, {x, y}, nu]
Out[103]= {(4 (1 - nu) a[4])/(1 - 2 nu) + 2 a[6] + b[5] + (2 nu b[5])/
              (1 - 2 nu) == 0,
a[5] + (2 nu a[5])/(1 - 2 nu) + (4 (1 - nu) b[4])/(1 - 2 nu) + 2 b[6] == 0}
In[106]:= sol = SolveAlways[eqn, {x, y}]
Out[106]= {{b[5] -> 2 (-2 a[4] + 2 nu a[4] - a[6] + 2 nu a[6]),
         a[5] -> 2 (-2 b[4] + 2 nu b[4] - b[6] + 2 nu b[6])}}

In[110]:= equilibriumField = Expand[allQuadraticTerms //. Flatten[sol]]



              

Pure-bending modes are captured by selecting zero shear strain in the quadratic modes:
Listing 7.11 Impose shear-free condition

                In[114]:= eqn = shearStrainGammaFromUV[equilibriumField, {x, y}] == 0
Out[114]= -4 y a[4] + 4 nu y a[4] + 4 nu y a[6] - 4 x b[4] + 4 nu x b[4] +
             4 nu x b[6] == 0

In[117]:= sol = SolveAlways[eqn, {x, y}]
Out[117]= { {a[4] -> 0, b[4] -> 0, nu -> 0},
          {a[6] -> (a[4] - nu a[4])/nu, b[6] -> (b[4] - nu b[4])/nu}}



              

Observe that there are two solution rules, one for the ν = 0 and the other for the general case. Here it is demonstrated that [image: 
$$\nu \left \{u,v\right \}$$
] captures both the ν = 0 and ν ≠ 0 cases.
Listing 7.12 Capture all cases irrespective of ν


                In[71]:= shearFreeequilibriumField = Expand[nu equilibriumField //. sol[[2]]]
Out[71]= {nu x^2 a[4] + y^2 a[4] - nu y^2 a[4] - 2 x y b[4] + 2 nu x y b[4],
       -2 x y a[4] + 2 nu x y a[4] + x^2 b[4] - nu x^2 b[4] + nu y^2 b[4]}

In[74]:= termList[shearFreeequilibriumField]
Out[74]= {a[4], b[4]}
In[75]:= mode7 = Simplify[shearFreeequilibriumField //. {a[4] -> 1, b[4] -> 0}]
Out[75]= {y^2 + nu (x^2 - y^2), 2 (-1 + nu) x y}

In[120]:= mode7 /. nu -> 0
Out[120]= {y^2, -2 x y}
In[124]:= shearFreeequilibriumFieldNuZero =
Expand[  equilibriumField //. sol[[1]]] //. {a[6] -> 1, b[6] -> 0}
Out[124]= {y^2, -2 x y}



              



                
                
               Observe that the two parts sol[[1]] and sol[[2]] yielded identical mode7: [image: 
$$\displaystyle{ \boldsymbol{\mathcal{R}}_{7} = \left \{\begin{array}{*{10}c} y^{2} +\nu (x^{2} - y^{2}) \\ 2(-1+\nu )x\ y \end{array} \right \} }$$
]

 (7.18)



Listing 7.13 Flexure in the y-direction by tensorial manipulation

                In[125]:= nextMode[mode7, {x, y}]
Out[125]= {2 (-1 + nu) x y, x^2 + nu (-x^2 + y^2)}



              

leading to: [image: 
$$\displaystyle{ \boldsymbol{\mathcal{R}}_{8} = \left \{\begin{array}{*{10}c} 2(-1+\nu )x\ y \\ x^{2} +\nu (-x^{2} + y^{2}) \end{array} \right \} }$$
]

 (7.19)





7.3 Modal Element Stiffness Matrix
Listing 7.14 Code for strain generalized displacement transformation matrix

              BMatrix::usage = "BMatrix[shapeFunctions, {x,y}]
yields the strain-displacement matrix
for shapeFunctions in {x,y} coordinates."

bMatrix[s_, {x_, y_}] :=
Transpose[{D[#[[1]], x], D[#[[2]], y], D[#[[1]], y] + D[#[[2]], x]} & /@ s]



            

7.3.1 The Modal b-Matrix
Listing 7.15 Execution: strain generalized displacement transformation matrix

                In[192]:= bPhi = bMatrix[allModes, xy]
Out[192]= {{0, 0, 0, 1, 1, 0, x/2, -((3 y)/2)},
        {0, 0, 0, 1, -1, 0, -((3 x)/2), y/2},
        {0, 0, 0, 0, 0, 1, 0, 0}}



              

From Table 7.1, the strain modal displacement transformation matrix is: [image: 
$$\displaystyle{ \left [b_{\phi }\right ] = \left [\begin{array}{*{10}c} 0&0&0&1& 1 &0& \frac{x} {2} & -\frac{3y} {2} \\ 0&0&0&1&-1&0&-\frac{3x} {2} & \frac{y} {2} \\ 0&0&0&0& 0 &1& 0 & 0 \end{array} \right ] }$$
]

 (7.20)



Here, in the interest of avoiding a very large output, the following particular value of the Poisson’s ratio3 is selected: [image: 
$$\displaystyle{ \nu = \frac{1} {4};\quad \mbox{ for plane strain: }d = \left [\begin{array}{*{10}c} 3&1&0\\ 1 &3 &0 \\ 0&0&1 \end{array} \right ] }$$
]

 (7.21)



Note that zero elements, of [image: 
$$\left [b_{\phi }\right ]$$
] in Eq. (7.20), economize [image: 
$$\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]$$
] analytical integration in the closed-form.
Since for convex elements, the numerical quadrature is ineffective, for all elements, the divergence theorem-based integration of Appendix E is recommended.


7.4 Numerics of Stiffness Matrix for Four Node Elements
In order to emphasize the fact that there should not be any restriction to element shapes, a concave element of Fig. 7.1 is selected, with nodes at: [image: 
$$\displaystyle{ (0,0),(1,0),(-1,1),(0,-1) }$$
]

 (7.22)


[image: A300727_1_En_7_Fig1_HTML.gif]
Fig. 7.1A four node element






Exact area integration for terms such as x
        
              m
             y
        
              n
            , can be easily performed within any polygon. Integration of [image: 
$$\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]$$
] does not need anything beyond the second area moment calculations.
Closed form expressions are published in Appendix I of [2]. Any four-node element with straight sides can be handled without resorting to numerical quadrature.
The Mathematica routine in Listing E.1, based on the divergence theorem, is used to calculate: [image: 
$$\displaystyle{ \int \left [b_{\phi }\right ]^{T}\ \left [d\right ]\ \left [b_{\phi }\right ]\ d\mathcal{A} = \left [k_{\phi \phi }\right ] }$$
]

 (7.23)

 [image: 
$$\displaystyle{ \left [k_{\phi \phi }\right ] = \left [\begin{array}{*{10}c} 0&0&0& 0 & 0 &0& 0 & 0\\ 0 &0 &0 & 0 & 0 &0 & 0 & 0 \\ 0&0&0& 0 & 0 &0& 0 & 0 \\ 0&0&0& 8 & 0 &0& \frac{2} {3} & -\frac{2} {3} \\ 0&0&0& 0 & 4 &0&-\frac{2} {3} & -\frac{2} {3} \\ 0&0&0& 0 & 0 &1& 0 & 0 \\ 0&0&0& \frac{2} {3} & -\frac{2} {3} & 0& 1 & \frac{1} {6} \\ 0&0&0&-\frac{2} {3} & -\frac{2} {3} & 0& \frac{1} {6} & 1 \end{array} \right ];\qquad \mbox{ eigenvalues} = \left \{\begin{array}{*{10}c} \frac{36362} {4477} \\ \frac{8283} {1933} \\ 1 \\ \frac{1199} {1360} \\ \frac{594} {835} \\ 0\\ 0 \\ 0 \end{array} \right \} }$$
]

 (7.24)



In [2] detailed steps are presented.
7.4.1 A Note on Exact Integration of [image: 
$$\left (\left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]\right )$$
]

The generic polynomial terms in Eq. (7.23) involve integrals of: [image: 
$$\displaystyle{ 1,x,y,x^{2},x\ y,y^{2}\ \mathrm{for\ nodes\ in\ Eq.\,(7.22)}}\ $$
]

 (7.25)

 The respective area integrals, from Listing E.1, are: [image: 
$$\displaystyle{ \left \{1,-\frac{1} {6}, \frac{1} {6}, \frac{1} {6},-\frac{1} {12}, \frac{1} {6}\right \}: \mbox{ from Listing 7.16} }$$
]

 (7.26)



Listing 7.16 Area moments for Fig. 7.1

                In[4]:= nodes = {{0, 0}, {1, 0}, {-1, 1}, {0, -1}}
Out[4]= {{0, 0}, {1, 0}, {-1, 1}, {0, -1}}
     In[5]:= z = {1, x, y, x^2, x*y, y^2}
      Out[5]= {1, x, y, x^2, x y, y^2}
In[6]:= areaIntegrate[z, {x, y}, nodes]
Out[6]= {1, -(1/6), 1/6, 1/6, -(1/12), 1/6}



              



7.5 Nodal Element Stiffness Matrix
The matrix [image: 
$$\left [G\right ]$$
] is evaluated using Listing 7.1, where allModes is the transpose of the Rayleigh vector modes expressions in Table 7.1: [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{nodes} = \left (\begin{array}{cc} 0 & 0\\ 1 & 0 \\ - 1& 1\\ 0 & -1 \\ \end{array} \right );\quad \left [G\right ] = \left [\begin{array}{*{10}c} 1&0& 0 & 0 & 0 & 0 & 0 & 0\\ 0 &1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1&0& 0 & 1 & 1 & 0 & \frac{1} {4} & 0 \\ 0&1&-1& 0 & 0 & 1 & 0 & \frac{3} {4} \\ 1&0& 1 &-1&-1& 0 & 1 & \frac{3} {2} \\ 0&1& 1 & 1 &-1&-1& \frac{3} {2} & 1 \\ 1&0&-1& 0 & 0 & 0 & \frac{3} {4} & 0 \\ 0&1& 0 &-1& 1 & 0 & 0 & \frac{1} {4} \end{array} \right ]& &{}\end{array}$$
]

 (7.27)



Now, from Eqs. (7.6) and (7.24): [image: 
$$\displaystyle\begin{array}{rcl} \left [k_{rr}\right ] = \left [\begin{array}{*{10}c} \frac{1291} {49} & -\frac{2465} {98} & -\frac{1073} {98} & \frac{865} {147} & -\frac{463} {49} & \frac{2759} {294} & -\frac{583} {98} & \frac{1453} {147} \\ -\frac{2465} {98} & \frac{1291} {49} & \frac{1453} {147} & -\frac{583} {98} & \frac{2759} {294} & -\frac{463} {49} & \frac{865} {147} & -\frac{1073} {98} \\ -\frac{1073} {98} & \frac{1453} {147} & \frac{285} {49} & -\frac{593} {294} & \frac{325} {98} & -\frac{517} {147} & \frac{89} {49} & -\frac{1279} {294} \\ \frac{865} {147} & -\frac{583} {98} & -\frac{593} {294} & \frac{89} {49} & -\frac{107} {49} & \frac{227} {98} & -\frac{165} {98} & \frac{89} {49} \\ -\frac{463} {49} & \frac{2759} {294} & \frac{325} {98} & -\frac{107} {49} & \frac{187} {49} & -\frac{361} {98} & \frac{227} {98} & -\frac{517} {147} \\ \frac{2759} {294} & -\frac{463} {49} & -\frac{517} {147} & \frac{227} {98} & -\frac{361} {98} & \frac{187} {49} & -\frac{107} {49} & \frac{325} {98} \\ -\frac{583} {98} & \frac{865} {147} & \frac{89} {49} & -\frac{165} {98} & \frac{227} {98} & -\frac{107} {49} & \frac{89} {49} & -\frac{593} {294} \\ \frac{1453} {147} & -\frac{1073} {98} & -\frac{1279} {294} & \frac{89} {49} & -\frac{517} {147} & \frac{325} {98} & -\frac{593} {294} & \frac{285} {49} \end{array} \right ]& &{}\end{array}$$
]

 (7.28)

 The eigenvalues are: [image: 
$$\displaystyle{ \left \{\frac{105445} {1516},\quad \frac{2861} {1100},\quad \frac{2378} {985},\quad \frac{557} {1090},\quad \frac{443} {867},\quad 0,\quad 0,\quad 0\right \} }$$
]

 (7.29)




7.6 Element Shape Functions
Using the value of [image: 
$$\left [G\right ]$$
] in Eq. (7.27), from Eq. (7.8): [image: A300727_1_En_7_Figa_HTML.gif]

 (7.30)



It can now be verified that: [image: 
$$\displaystyle{ \mbox{ for odd }i: \boldsymbol{S}_{r\vert x}^{(i)}(x_{ j},y_{j}) =\delta _{i,j}\mbox{ and }\boldsymbol{S}_{r\vert y}^{(i)}(x_{ j},y_{j}) = 0 }$$
]

 (7.31a)

 [image: 
$$\displaystyle{ \mbox{ for even }i: \boldsymbol{S}_{r\vert x}^{(i)}(x_{ j},y_{j}) = 0\mbox{ and }\boldsymbol{S}_{r\vert y}^{(i)}(x_{ j},y_{j}) =\delta _{ij} }$$
]

 (7.31b)



by using:
Listing 7.17 Shape functions at nodes yield identity matrix

              {0} === (Flatten[Table[
    ((allShapeFunctions[[i]] /. Thread[{x, y} -> #]) & /@ nodes) //
     Flatten, {i, 8}] - IdentityMatrix[8]] // Union)



            

This concludes the complete derivation of a four-node element.

7.7 Term Problems
Detailed numerics can be found in [2]. Reproduce those results. Analyze both three constant stress and two linear stress cases.
Pay special attention to how the nodal forces are calculated as virtual work quantities.
Develop figures with different traction blocks, such as Fig. 6.3


7.8 Computer Programming Assignment
Write your own computer code (in your favorite language) to verify the results of [2].
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Footnotes
1When [image: 
$$\left [G\right ]$$
] is not invertible in the classical sense, then [image: 
$$\left [G\right ]^{+}$$
] the pseudoinverse of [image: 
$$\left [G\right ]$$
] is to be used in generating [image: 
$$<\boldsymbol{S}_{r}>=<\boldsymbol{S}_{\phi }>\ \left [G\right ]^{+}$$
]


 

2Linear displacement fields unconditionally satisfy equilibrium.

 

3Note, there is no restriction on the Poisson’s ratio, so long as [image: 
$$\nu \neq \frac{1} {2}.$$
]
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Abstract
A procedure, which takes the Poisson’s ratio ν to be exactly 1∕2, is developed here by selecting only those Rayleigh mode vectors that point-wise satisfy the isochoric, i.e., zero-volume-change, condition. A more research-type exposé can be found in Dasgupta (Acta Mech 223:1645–1656, 2012). A continuum mechanics treatment of the isochoric formulation in Cartesian coordinates can be found in Spencer (Continuum mechanics. Longman, Harlow, 1980) (Spencer indicated the dilatation by Δ; we use Θ instead, in this textbook.).
For four-node plane strain incompressible elements, the Rayleigh polynomial vectors, which satisfy equilibrium point-wise, are associated with:	1.three rigid body modes, which trivially satisfy incompressibility


 

	2.uniform deviatoric stresses (2 modes), and these necessarily conform with the incompressibility condition


 

	3.two incompressible linearly varying axial strains without shear (ε
                
                      xx
                     + ε
                
                      yy
                     = 0, ε
                
                      xy
                     = 0; ε
                
                      xx
                    , ε
                
                      yy
                    : linear combinations of (x, y).).


 





Within each element level, a uniform element pressure must be taken as the eighth independent variable. Interestingly, the pseudoinversion (in Sect. 1.8, the Moore–Penrose weak inverse of rectangular matrices is described) of the modal-to-nodal (eight rows by seven columns) rectangular matrix makes this chapter very distinct from popular isochoric formulations.
Incompressibility disqualifies the nodal displacements from being counted as the degrees-of-freedom. An independent nodal displacement invariably alters the element volume. Hence, the equilibrium and nodal compatibility equations are solved by determining the weights of the seven Rayleigh mode vectors and one (constant) pressure variable per element (To facilitate symbolic programming an additional notation to indicate the element number, which is encased within superscript parentheses, has been introduced.). Thus, without assembling the global stiffness matrix, all nodal displacements as well as all unknown element pressures are determined. As usual, concavity does not pose any difficulty.

8.1 
Isochoric Displacement Modes


              
             The word isochoric is derived from iso meaning “the same” and the Greek word [image: 
$$\chi \acute{\omega }\rho o\varsigma$$
] (choros) meaning “space.” In mechanics, isochoric means volume preserving, and for two-dimensional cases the area preserving process.
For small strain linear kinematics, the uppercase theta Θ popularly symbolizes dilatation, which is also called the 
              
            : 
              
            

              
             [image: 
$$\displaystyle\begin{array}{rcl} \varTheta & =& \text{ change in volume per unit volume, and:}{}\end{array}$$
]

 (8.1a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{in }\mathfrak{R}^{3}:\ \varTheta & =& \epsilon _{ xx} +\epsilon _{yy} +\epsilon _{zz}{}\end{array}$$
]

 (8.1b)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{in }\mathfrak{R}^{2}:\ \varTheta & =& \epsilon _{ xx} +\epsilon _{yy}{}\end{array}$$
]

 (8.1c)

 Since the three-dimensional isochoric formulation is almost an extension from (x, y) to (x, y, z), the rest of this chapter will be solely devoted to formulating the “constant area element” for plane strain cases. 
              
             In mechanics, isochoric means “equal volume:” [image: 
$$\displaystyle\begin{array}{rcl} \epsilon _{xx} +\epsilon _{yy} +\epsilon _{zz} = 0& &{}\end{array}$$
]

 (8.2)



For the two-dimensional plane strain cases, isochoric implies equal area: [image: 
$$\displaystyle\begin{array}{rcl} \epsilon _{zz} = 0;\quad \epsilon _{xx} +\epsilon _{yy} = 0\quad & &{}\end{array}$$
]

 (8.3)



Note, for all (x, y) plane strain problems in (x, y, z): [image: 
$$\displaystyle\begin{array}{rcl} \epsilon _{zz},\epsilon _{zx},\epsilon _{zy}\text{ each is assumed to be zero}& &{}\end{array}$$
]

 (8.4)




Plane Stress Incompressible Cases Will Not Be Considered 
In plane stress cases: σ
        
              zz
             = 0, then the strain ε
        
              zz
             ≠ 0 → w(x, y, z) ≠ 0. This three-dimensional formulation is outside the scope of this textbook.

Seven Rayleigh Modes with Constant Element Pressure p
        
              0
             
For all four-node element shapes, the “zero area change” (kinematic) constraint is enforced point-wise. Seven isochoric Rayleigh mode vectors1 are the unique polynomials in (x, y) that satisfy point-wise equilibrium.

            
              
            
          
The exact area integration, Appendix E, involves only polynomials to yield nodal forces that must be obtained as virtual work quantities—refer to Clough’s directive in Quotation III of the Introduction.
8.1.1 A Two-Dimensional Isochoric Formulation
The kinematic constraint equation (8.3), in terms of the displacement components u(x, y) and v(x, y), becomes: [image: 
$$\displaystyle\begin{array}{rcl} \epsilon _{xx} +\epsilon _{yy} = 0\quad \rightarrow \quad \frac{\partial u} {\partial x} + \frac{\partial v} {\partial y} = 0,\quad \because \epsilon _{ij} = \frac{1} {2}\left (\frac{\partial u_{i}} {\partial x_{j}} + \frac{\partial u_{j}} {\partial x_{i}} \right )& &{}\end{array}$$
]

 (8.5a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{from Eq. (8.4): }w(x,y)\text{ is assumed to be zero;}\quad w(x,y) = 0& &{}\end{array}$$
]

 (8.5b)



To reproduce the quadratic incompressible vector field we start with the expression for u to be the following full quadratic polynomial in (x, y): [image: 
$$\displaystyle\begin{array}{rcl} u(x,y)& =& a(1) + x {\ast} a(2) + y {\ast} a(3) \\ & & +x^{2} {\ast} a(4) + x {\ast} y {\ast} a(5) + y^{2} {\ast} a(6){}\end{array}$$
]

 (8.6a)

 [image: 
$$\displaystyle\begin{array}{rcl} & & \text{by replacing: }a \rightarrow b,\text{ and interchanging }(x,y), \\ & & \text{i.e., substituting: }x \rightarrow y\text{ and }y \rightarrow x: \\ v(x,y)& =& b(1) + y {\ast} b(2) + x {\ast} b(3) \\ & & +y^{2} {\ast} b(4) + x {\ast} y {\ast} b(5) + x^{2} {\ast} b(6) {}\end{array}$$
]

 (8.6b)



From the displacement fields in Eqs. (8.6a) and (8.6b) the plane strain incompressibility condition in Eq. (8.5a) indicates: [image: 
$$\displaystyle\begin{array}{rcl} \text{for {\it all} }x\text{ and }y:\ & 2a(4)x + a(5)y + a(2) + b(5)x + 2b(4)y + b(2) = 0&{}\end{array}$$
]

 (8.7)

 hence the constant part, the coefficient of x and the coefficient of y must be zero individually. Then Eq. (8.7) in fact stands for three distinct equations, Mathematica’s SolveAlways for variables (x, y) yields: [image: 
$$\displaystyle\begin{array}{rcl} \left \{a(2) \rightarrow -b(2),a(5) \rightarrow -2b(4),a(4) \rightarrow -\frac{b(5)} {2} \right \}& &{}\end{array}$$
]

 (8.8)

 Thus, the incompressible coupled vector field [image: 
$$\left \{u(x,y),v(x,y)\right \}$$
] becomes: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} u\\ v \end{array} \right \} = \left \{\begin{array}{*{10}c} a(6)y^{2} + a(3)y + a(1) -\frac{1} {2}b(5)x^{2} - 2b(4)xy - b(2)x \\ b(6)x^{2} + b(5)xy + b(3)x + b(4)y^{2} + b(2)y + b(1) \end{array} \right \}& &{}\end{array}$$
]

 (8.9)

 The (x, y) terms2 in Eq. (8.9) are arranged by Mathematica’s defaults.
8.1.1.1 The Full Isochoric Displacement Vectors
The displacement vector in Eq. (8.9) is full in the sense that all possible quadratic expressions with zero dilatation are encompassed via a(i), b(j). 


                  
                 
                  
                 Here, the term complete is avoided, because in vector space analyses completeness is related to convergence. Polynomials are not complete.3


8.1.1.2 Rigid Body and Constant Isochoric Strain Modes
The suffixes o, 1, and 2 indicate constant, linear and quadratic displacements: [image: 
$$\displaystyle\begin{array}{rcl} \text{uniform field: }\left \{\begin{array}{*{10}c} u_{o}(x,y) \\ v_{o}(x,y)\end{array} \right \}& =& \left \{\begin{array}{*{10}c} a(1) \\ b(1) \end{array} \right \}{}\end{array}$$
]

 (8.10a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{linear part: }\left \{\begin{array}{*{10}c} u_{1}(x,y) \\ v_{1}(x,y)\end{array} \right \}& =& \left \{\begin{array}{*{10}c} a(3)y - b(2)x \\ b(3)x + b(2)y \end{array} \right \}{}\end{array}$$
]

 (8.10b)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{quadratic terms: }\left \{\begin{array}{*{10}c} u_{2}(x,y) \\ v_{2}(x,y)\end{array} \right \}& =& \left \{\begin{array}{*{10}c} a(6)y^{2} -\frac{1} {2}b(5)x^{2} - 2b(4)xy \\ b(6)x^{2} + b(5)xy + b(4)y^{2} \end{array} \right \}{}\end{array}$$
]

 (8.10c)

 
                  
                 
                  
                 
                  
                 
                  
                

Since the strains are obtained from first order (partial) derivatives of the displacement fields, the polynomial orders of displacements will be one more than the strain orders. However, to respect invariance of coordinate translations, the set of Rayleigh modes whose highest order, say, is n, without exception, must contain all lower order polynomials,4 for both [image: 
$$\mathfrak{R}^{2},\mathfrak{R}^{3}.$$
]

The constants in the displacement polynomials, in Eq. (8.10a), encompass the rigid body modes that are necessary in all element formulations.5 There, the two unknown coefficients a(1) and b(1) can be arbitrarily set to a non-zero constant leading to two incompressible fields: 
                  
                  
                 
                  
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} \text{field-1:}\left \{\begin{array}{*{10}c} 1\\ 0 \end{array} \right \}\text{ and }\text{field-2:}\left \{\begin{array}{*{10}c} 0\\ 1 \end{array} \right \};\ \text{leading to rigid body translations:}& &{}\end{array}$$
]

 (8.11a)

 [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{\mathcal{R}}_{1}(x,y) = \left \{\begin{array}{*{10}c} 1\\ 0 \end{array} \right \}\text{ and }\boldsymbol{\mathcal{R}}_{2}(x,y) = \left \{\begin{array}{*{10}c} 0\\ 1 \end{array} \right \};\quad \boldsymbol{\mathcal{R}}_{i}(x,y)\text{ is the ith mode}& &{}\end{array}$$
]

 (8.11b)

 The same notation was used in Table 7.1 for ν ≠ 1∕2. 


8.1.2 The Linear Displacement Fields

              
                
                
              
            
The method to generate modes is to assign one at a time one constant to unity and the rest zero. Thus, Eq. (8.10b), which has three coefficients: a(3), b(2) and b(3) will yield the following three modes: [image: 
$$\displaystyle\begin{array}{rcl} \text{field-3: }\left \{\begin{array}{*{10}c} y\\ 0 \end{array} \right \};\ \text{field-4: }\left \{\begin{array}{*{10}c} -x\\ \ \ y \end{array} \right \}\text{ and }\text{field-5: }\left \{\begin{array}{*{10}c} 0\\ x \end{array} \right \}& &{}\end{array}$$
]

 (8.12)

 We shall utilize an important property of modal formulation, that states a linear combination of independent modes f
          
                i
               is indeed a mode: [image: 
$$\displaystyle\begin{array}{rcl} \quad \text{ for constant }a_{i}:\sum _{i}a_{i}\ f_{i}\text{ is a mode}& &{}\end{array}$$
]

 (8.13)



Accordingly, the rigid body rotation about the origin is obtained by subtracting field-3 from field-5, leading to: [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{\mathcal{R}}_{3}(x,y) = -\left \{\begin{array}{*{10}c} y\\ 0 \end{array} \right \} + \left \{\begin{array}{*{10}c} 0\\ x \end{array} \right \} = \left \{\begin{array}{*{10}c} -y\\ \ \ x \end{array} \right \}& &{}\end{array}$$
]

 (8.14)



Since field-4 indicates zero-dilatation, when the axial strains ε
          
                xx
               and ε
          
                yy
               are, respectively, − 1 and 1, we can conveniently indicate: [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{\mathcal{R}}_{4}(x,y) = -\left \{\begin{array}{*{10}c} -x\\ \ \ y \end{array} \right \}(\text{from field-4})& &{}\end{array}$$
]

 (8.15a)

 [image: 
$$\displaystyle\begin{array}{rcl} = \left \{\begin{array}{*{10}c} \ \ x\\ -y \end{array} \right \}: \text{a shear-free field}& &{}\end{array}$$
]

 (8.15b)



By themselves, field-3 and field-5 do not point to any intuitively obvious physical displacement pattern. But, by adding fields 3 and 5 of Eq. (8.12), we get a constant shear field without any axial strain in the x − y plane, so we select: [image: 
$$\displaystyle\begin{array}{rcl} \boldsymbol{\mathcal{R}}_{5}(x,y) = \left \{\begin{array}{*{10}c} y\\ 0 \end{array} \right \} + \left \{\begin{array}{*{10}c} 0\\ x \end{array} \right \} = \left \{\begin{array}{*{10}c} y\\ x \end{array} \right \}(\text{from fields: 3 and 5})& &{}\end{array}$$
]

 (8.16)



8.1.2.1 The Constant Strain Modes Without Dilatation
Pure shear does not introduce any dilatation. The former terms can be viewed as constant ε
            
                  xx
                 and ε
            
                  yy
                . Representing dilatational Θ = ε
            
                  xx
                 + ε
            
                  yy
                 and deviatoric components6: ± (ε
            
                  xx
                 −ε
            
                  yy
                ) is standard in analyzing isochoric criteria. We have constrained Θ to be zero in Eqs. (8.15b) and (8.16).


8.1.3 Pure Bending Modes: Along x and y, Only in Two Directions
This chapter is motivated by meeting the patch test requirements for compressible solids, [image: 
$$\left (\nu \neq \frac{1} {2}\right )$$
], when four-node elements are selected to cover the domain. Four-node elements cannot guarantee the patch test compliance in any arbitrary direction.7

Let us select (x, y) to be the orthogonal axes along which shear-free linear stresses will be reproduced.
To prevent shear-locking, when pure bending occurs only in the x- and y-directions, the quadratic field from Eq. (8.10c) should be “shear-free:” [image: 
$$\displaystyle\begin{array}{rcl} \frac{\partial u_{2}} {\partial y} + \frac{\partial v_{2}} {\partial x} = 0 \rightarrow 2a(6)y - 2b(4)x + 2b(6)x + b(5)y = 0,\quad \forall x,y& &{}\end{array}$$
]

 (8.17)

 The Mathematica function SolveAlways[] yields: [image: 
$$\displaystyle\begin{array}{rcl} \left \{a(6) \rightarrow -\frac{b(5)} {2},\quad b(4) \rightarrow b(6)\right \}& &{}\end{array}$$
]

 (8.18a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{that leads to: }\left \{\begin{array}{*{10}c} u_{3} \\ v_{3}\end{array} \right \} = \left \{\begin{array}{*{10}c} -\frac{1} {2}b(5)x^{2} - 2b(6)xy -\frac{1} {2}b(5)y^{2} \\ b(6)x^{2} + b(5)xy + b(6)y^{2} \end{array} \right \}& &{}\end{array}$$
]

 (8.18b)

 There are two independent coefficients b(5) and b(6). By taking these from the columns of 2 × 2 identity matrix: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} b(5)\\ b(6) \end{array} \right \} = \left \{\begin{array}{*{10}c} 1\\ 0 \end{array} \right \} \rightarrow \left \{\begin{array}{*{10}c} u_{2} \\ v_{2}\end{array} \right \} = \left \{\begin{array}{*{10}c} -\frac{x^{2}+y^{2}} {2}\\ xy \end{array} \right \}\text{ and }& &{}\end{array}$$
]

 (8.19a)

 [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} b(5)\\ b(6) \end{array} \right \} = \left \{\begin{array}{*{10}c} 0\\ 1 \end{array} \right \} \rightarrow \left \{\begin{array}{*{10}c} u_{2} \\ v_{2}\end{array} \right \} = \left \{\begin{array}{*{10}c} -2xy \\ x^{2} + y^{2} \end{array} \right \}& &{}\end{array}$$
]

 (8.19b)

 [image: 
$$\displaystyle\begin{array}{rcl} & & \text{and by multiplying the latter with } -\frac{1} {2}\text{ we construct:} \\ \boldsymbol{\mathcal{R}}_{6}(x,y)& =& \left \{\begin{array}{*{10}c} xy \\ -\frac{1} {2}(x^{2} + y^{2}) \end{array} \right \}\text{ and }\boldsymbol{\mathcal{R}}_{7}(x,y) = \left \{\begin{array}{*{10}c} -\frac{1} {2}(x^{2} + y^{2}) \\ xy \end{array} \right \}{}\end{array}$$
]

 (8.19c)

 By interchanging x, y and u, v we can obtain [image: 
$$\boldsymbol{\mathcal{R}}_{7}\text{ from }\boldsymbol{\mathcal{R}}_{6}.$$
] This is an application of the principle of material frame-indifference.
All seven isochoric modes are shown in Table 8.1.

              
                
                
              
            

              Table 8.1Rayleigh incompressible mode vectors: displacement functions for [image: 
$$\nu = \frac{1} {2}$$
]
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$$\boldsymbol{\mathcal{R}}_{1}$$
]
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$$\boldsymbol{\mathcal{R}}_{2}$$
]
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$$\boldsymbol{\mathcal{R}}_{3}$$
]
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$$\boldsymbol{\mathcal{R}}_{4}$$
]
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$$\boldsymbol{\mathcal{R}}_{5}$$
]
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$$\boldsymbol{\mathcal{R}}_{6}$$
]
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$$\boldsymbol{\mathcal{R}}_{7}$$
]
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$$-\frac{1} {2}\left (x^{2} + y^{2}\right )$$
]
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	0
	1
	x
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                          [image: 
$$-\frac{1} {2}\left (x^{2} + y^{2}\right )$$
]
                        
	xy




            
From Table 7.1, by setting the Poisson’s ratio ν to [image: 
$$\frac{1} {2}$$
] and deleting the dilatational mode: [image: 
$$\left \{\begin{array}{*{10}c} x\\ y \end{array} \right \}$$
], we can obtain Table 8.1. Thus the general case, [image: 
$$-1 \leq \nu \leq \frac{1} {2}$$
] in Chap. 7 encompasses the isochoric case 8
[image: 
$$\nu = \frac{1} {2}$$
].

8.1.4 Isochoric Strains
Using the linear strain expressions from Table 8.1 we can generate the isochoric strains, [image: 
$$\mathfrak{H}_{\phi }^{(i)}$$
] for the ith mode, of Table 8.2.

              
                
              
            

              Table 8.2
Incompressible strain modes for four-node elements


	 	
                          [image: 
$$\mathfrak{H}_{\phi }^{(1)}$$
]
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$$\mathfrak{H}_{\phi }^{(2)}$$
]
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$$\mathfrak{H}_{\phi }^{(3)}$$
]
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$$\mathfrak{H}_{\phi }^{(4)}$$
]
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$$\mathfrak{H}_{\phi }^{(5)}$$
]
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$$\mathfrak{H}_{\phi }^{(6)}$$
]
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$$\mathfrak{H}_{\phi }^{(7)}$$
]
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 Since in each column of Table 8.2, ε
          xx + ε
          yy is exactly zero, any linearcombination of all those Rayleigh modes will be isochoric.
All shape function vectors, which are linear combinations of Rayleigh mode vectors—with the “Kronecker property” of Eq. (3.2), will be isochoric.


8.2 The Element Pressure Profile p(x,y)
Within an element, the stress-strain equation contains the isotropic pressure p(x,y) (positive value for compression) as follows: [image: 
$$\displaystyle\begin{array}{rcl} \sigma _{ij} = -p(x,y)\ \delta _{ij} + 2\mu \ \epsilon _{ij}& &{}\end{array}$$
]

 (8.20)

 
              
             
              
             
              
             But, without the pressure term p(x,y), we cannot achieve: [image: 
$$\displaystyle\begin{array}{rcl} \text{the equilibrium condition: }\sigma _{ij,j} = 0 \rightarrow \epsilon _{ij,j} = 0 \rightarrow \epsilon _{xy,y} +\epsilon _{yy,y} = 0& &{}\end{array}$$
]

 (8.21)

 For an example, in x-pure bending, where ε
        xy = 0, let: [image: 
$$\displaystyle\begin{array}{rcl} \epsilon _{xx} = y \rightarrow \epsilon _{yy} = -y;\text{ hence: }\epsilon _{yy,y}\neq 0& &{}\end{array}$$
]

 (8.22)



8.2.1 Shear-Free Bending Along x-Axis—τ
          xy,γ
          xy Zero
Let us now investigate stresses and strains from the 6th and 7th columns of Table 8.2. Without ambiguity let us use p for p(x,y). In [image: 
$$\mathfrak{H}_{\phi }^{(6)}:$$
] [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \epsilon _{xx}\\ \epsilon _{yy} \\ \gamma _{xy}\end{array} \right \} = \left \{\begin{array}{*{10}c} y \\ -y \\ 0\end{array} \right \} \rightarrow \left \{\begin{array}{*{10}c} \sigma _{xx}\\ \sigma _{yy } \\ \tau _{xy}\end{array} \right \} = -p\left \{\begin{array}{*{10}c} 1\\ 1 \\ 0 \end{array} \right \} + 2\mu \left \{\begin{array}{*{10}c} \epsilon _{xx}\\ \epsilon _{yy } \\ \gamma _{xy}\end{array} \right \}& &{}\end{array}$$
]

 (8.23a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{i.e., }\quad \left \{\begin{array}{*{10}c} \sigma _{xx}\\ \sigma _{yy} \\ \tau _{xy}\end{array} \right \} = \left \{\begin{array}{*{10}c} -p(x,y) + 2\mu y \\ -p(x,y) - 2\mu y \\ 0 \end{array} \right \}& \text{ then:}&{}\end{array}$$
]

 (8.23b)

 [image: A300727_1_En_8_Figa_HTML.gif]

 (8.23c)

 The item (i) in Eq. (8.23c) implies p(x,y) is not a function of x, then: [image: 
$$\displaystyle\begin{array}{rcl} p(x,y) = p^{{\ast}}(y) + c_{ 1};\quad c_{1}: \text{a constant, an initial confining pressure }& &{}\end{array}$$
]

 (8.24)

 
                
               
                
               In fact, the constant c1 in the above Eq. (8.24) has no effect since its non-zero value is referred to as the datum pressure, like the ground voltage in circuit analysis. So, we shall assume that the calculation is carried out with respect to the ambient pressure, and take c1 to be zero.


                
               Now from the second equation of Eq. (8.23c): [image: 
$$\displaystyle\begin{array}{rcl} \frac{\mathrm{d}p^{{\ast}}} {\mathrm{d}y} + 2\mu = 0 \rightarrow p^{{\ast}} = -2\mu y + c_{ 2}(\text{a constant, set this to p}_{_{0}})& &{}\end{array}$$
]

 (8.25a)

 [image: 
$$\displaystyle\begin{array}{rcl} p_{o}:\textit{ thegeneralsolution}\text{ of Eq.\,(8.23b) } \rightarrow \sigma _{xx} = 4\mu y - p_{o}& &{}\end{array}$$
]

 (8.25b)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{ or }p(x,y) = -2\mu y + p_{o}\quad \text{where:}& &{}\end{array}$$
]

 (8.25c)





                
               For po = 0, the stresses σ
          xx,σ
          yy and τ
          xy, for the ith mode, are collected in [image: 
$$\mathfrak{S}_{\phi }^{(i)}$$
](x,y). The two pure bending modal stresses, only in x- and y-directions are the particular solutions of Eq. (8.23b), then: [image: 
$$\displaystyle\begin{array}{rcl} \mathfrak{S}_{\phi }^{(6)}(x,y)& = \left \{\begin{array}{*{10}c} \sigma _{xx} =&4\mu y \\ \sigma _{yy} = & 0 \\ \tau _{xy} =& 0 \end{array} \right \}\text{ and }\quad \mathfrak{S}_{\phi }^{(7)}(x,y) = \left \{\begin{array}{*{10}c} \sigma _{xx} =& 0 \\ \sigma _{yy} = &4\mu x \\ \tau _{xy} =& 0 \end{array} \right \}&{}\end{array}$$
]

 (8.26a)




8.2.2 Modal Stresses Excludes p0

The modal stress matrix, [image: 
$$\left [\mathfrak{S}_{\phi }\right ],$$
] is [image: 
$$< \mathfrak{S}_{\phi }^{(i)}(x,y),i = 1\ldots 7 > ^{T}$$
]:

              [image: 
$$\displaystyle\begin{array}{rcl} \left [\mathfrak{S}_{\phi }\right ] =\mu \left [\begin{array}{*{10}c} 0&0&0& 2 &0&4y& 0 \\ 0&0&0&-2&0& 0 &4x\\ 0 &0 &0 & 0 &2 & 0 & 0 \end{array} \right ] \rightarrow \left \{\begin{array}{*{10}c} \sigma _{xx}\\ \sigma _{yy } \\ \tau _{xy}\end{array} \right \} = \left [\mathfrak{S}_{\phi }\right ]\left \{\phi \right \}& &{}\end{array}$$
]

 (8.27a)


              [image: 
$$\displaystyle\begin{array}{rcl} \left \{\phi \right \}^{T} =<\phi _{ 1},\phi _{2},\phi _{3},\phi _{4},\phi _{5},\phi _{6},\phi _{7} >: \text{modal participation factors}& &{}\end{array}$$
]

 (8.27b)


            
Listing 8.1, generates the Table 8.3.
Listing 8.1 Modal stresses [image: 
$$\mathfrak{S}_{\phi }^{(i)}(x,y)$$
]


                stressModes =
mu {{0, 0, 0, 1, 0, 2 y, 0}, {0, 0, 0, -1, 0, 0, 2 x}, {0, 0, 0, 0, 2, 0, 0}}



              


              Table 8.3
Incompressible stress modes for four-node elements
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$$\mathfrak{S}_{\phi }^{(2)}(x,y)$$
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$$\mathfrak{S}_{\phi }^{(3)}(x,y)$$
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$$\mathfrak{S}_{\phi }^{(4)}(x,y)$$
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$$\mathfrak{S}_{\phi }^{(5)}(x,y)$$
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$$\mathfrak{S}_{\phi }^{(6)}(x,y)$$
]
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$$\mathfrak{S}_{\phi }^{(7)}(x,y)$$
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8.2.3 The General Solution po for the Pressure p(x,y)
The constant pressure p0, in Eq. (8.25b), is the general solution of the stress equilibrium equation (8.23c). Due to incompressibility, no work is done by superimposing a constant pressure on an element in equilibrium.
An arbitrary prescription of p0 will alter the nodal loads. Hence, we may conceive the constant pressure to come into play in order to secure the overall equilibrium at the element level. Using superposition: 
                
               
                
               
                
               
                
               
                
               [image: 
$$\displaystyle\begin{array}{rcl} \left \{R\right \} = \left \{R_{o}\right \} + \left \{R_{\phi }\right \}\left \{R_{o}\right \} = p_{_{0}}\left \{a\right \}\text{ and }\left \{R_{\phi }\right \} = \left [q\right ]\left \{\phi \right \}\text{ when:}& &{}\end{array}$$
]

 (8.28a)

 [image: 
$$\displaystyle\begin{array}{rcl} \left \{R_{o}\right \}: \text{due to }p_{_{0}};\ \left \{R_{\phi }\right \}: \text{due to}\ \mathit{ incompressible}\ \text{modes}& &{}\end{array}$$
]

 (8.28b)

 [image: 
$$\displaystyle\begin{array}{rcl} \left \{R\right \} = p_{_{0}}\left \{a\right \} + \left [q\right ]\ \left \{\phi \right \};\quad \left [q\right ] = \left [G^{+}\right ]^{T}\left [\kappa _{\phi \phi }\right ]& &{}\end{array}$$
]

 (8.28c)



8.2.3.1 Averaging Approximation for Nodal Loads

                [image: A300727_1_En_8_Fig1_HTML.gif]
Fig. 8.1End loads due to constant pressure




              
The equivalent end loads due to uniform pressure are shown in Fig. 8.1.
Let (xi,yi) and (xi+1,yi+1) be coordinates of nodes i and i+1. On a straight side of length ℓ, each end reaction9 is [image: 
$$\frac{1} {2}p_{_{0}}\ \ell$$
].
From Fig. 8.1, the (x,y) components of the equivalent nodal load, at node i, from the total of [image: 
$$\frac{1} {2}p_{_{0}}\ \ell,$$
] which makes [image: 
$$\frac{1} {2}\pi +\theta _{s}$$
] are: [image: 
$$\displaystyle\begin{array}{rcl} \frac{1} {2}p_{_{0}}\ \ell\left \{\begin{array}{*{10}c} \cos (\pi /2 +\theta _{s}) \\ \sin (\pi /2 +\theta _{s})\end{array} \right \} = \frac{1} {2}p_{_{0}}\ \ell\ \left \{\begin{array}{*{10}c} -\sin \ \theta _{s}\\ \cos \ \theta _{s } \end{array} \right \} = \frac{p_{_{0}}} {2} \left \{\begin{array}{*{10}c} y_{i} - y_{i+1} \\ x_{i+1} - x_{i} \end{array} \right \}& &{}\end{array}$$
]

 (8.29a)

 [image: 
$$\displaystyle\begin{array}{rcl} \ \ \because \left \{\begin{array}{*{10}c} \sin (\theta _{s}) \\ \cos (\theta _{s}) \end{array} \right \} = \frac{1} {\ell} \left \{\begin{array}{*{10}c} y_{i+1} - y_{i} \\ x_{i+1} - x_{i} \end{array} \right \}& &{}\end{array}$$
]

 (8.29b)

 At the node i two adjacent sides contribute to the total reaction, thus: [image: 
$$\displaystyle\begin{array}{rcl} \frac{p_{_{0}}} {2} \left \{\begin{array}{*{10}c} y_{i} - y_{i+1} \\ x_{i+1} - x_{i} \end{array} \right \} + \frac{p_{_{0}}} {2} \left \{\begin{array}{*{10}c} y_{i-1} - y_{i} \\ x_{i} - x_{i-1} \end{array} \right \} = \frac{p_{_{0}}} {2} \left \{\begin{array}{*{10}c} y_{i-1} - y_{i+1} \\ x_{i+1} - x_{i-1} \end{array} \right \}& &{}\end{array}$$
]

 (8.30)



Let us start with i = 1, note (x0,y0) → (x4,y4), and we get the x- and y-forces for node 1 to be y4 − y2 and − x4 + x2. Now i = 1,2,3,4 leads to the list of non-zero nodal forces due to a uniform pressure p0
10 to be: [image: 
$$\displaystyle\begin{array}{rcl} p_{_{0}}\left \{a\right \}^{T}& =& \frac{p_{_{0}}} {2} \{y_{4} - y_{2},-x_{4} + x_{2},y_{1} - y_{3},-x_{1} + x_{3}, \\ & & y_{2} - y_{4}. - x_{2} + x_{4},y_{1} - y_{3},-x_{1} + x_{3}\}{}\end{array}$$
]

 (8.31)

 Now, Eq. (8.31) is realized in the Mathematica code in Listing 8.2.
Listing 8.2 Uniform pressure to nodal loads (valid for all polygonal elements)

                  pressureToNodalLoads[{ {x1_, y1_}, {x2_, y2_}, {x3_, y3_}, {x4_, y4_}},
 p_: 1] := (p/2) {{-y2 + y4,
    x2 - x4}, {y1 - y3, -x1 + x3}, {y2 - y4, -x2 + x4}, {-y1 + y3,
    x1 - x3}} // Flatten // N



                


8.2.3.2 Nodal Loads as Virtual Work Quantities
In Sect. 8.8, as an interesting computer programming exercise, the problem of obtaining the nodal forces using the element shape functions has been assigned.
The theoretical development will entail resolving p0 in the coordinate directions and then taking the inner product with each shape function vector.
It will be easier to obtain the modal loads first and then transform these to the nodal forces; Eq. (8.28c) will be useful. Some lengthy derivations in the next section, Sect. 8.3, will clarify these issues and therefore this topic is deferred for now.



8.3 A Pressure po: An Element Degree-of-Freedom
This physical quantity p0 can develop independently in addition to the modal participation factors. Its value assures the overall equilibrium of element i. Hence, in the generalized sense p0
        (i) is indeed a degree-of-freedom. For a four-node element, the other seven modal (generalized) degrees-of-freedom are associated with the incompressible displacement-modes that are indicated in Table 8.1. These variables are indicated as: ϕ
        j
        (i), where the subscript j runs from 1 to 7. For the element i, at node j the nodal coordinates [image: 
$$\left (x_{j}^{(i)},y_{ j}^{(i)}\right )$$
] are known, hence the associated nodal displacement vector [image: 
$$\left \{r_{j}^{(i)}\right \}$$
] becomes: 
              
              
             [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} u^{(i)}(x,y) \\ v^{(i)}(x,y)\end{array} \right \}& =& \sum _{l=1}^{7}\ \phi _{ l}^{(i)}\ \left \{\boldsymbol{\mathcal{R}}_{ l}(x,y)\right \}\text{and leads to}:{}\end{array}$$
]

 (8.32a)

 [image: 
$$\displaystyle\begin{array}{rcl} \left \{r_{j}^{(i)}\right \}& =& \sum _{ l=1}^{7}\ \phi _{ l}^{(i)}\ \left \{\boldsymbol{\mathcal{R}}_{ l}\left (x_{j}^{(i)},y_{ j}^{(i)}\right )\right \}{}\end{array}$$
]

 (8.32b)

 Such a formalism has already been explained in Chap. 7, especially in Sect. 7.1 with some details in Eqs. (7.3)–(7.9c).
The modal participation factors are housed in [image: 
$$\left \{\phi \right \}$$
]. Those, along with the constant element pressure p0 constitute the eight degrees-of-freedom: 
              
             
              
             [image: 
$$\displaystyle\begin{array}{rcl} \left \{\boldsymbol{\varphi }\right \} = \left \{p_{_{0}},\phi _{1},\ldots,\phi _{7}\right \}: \text{isochoric element degrees-of-freedom}& &{}\end{array}$$
]

 (8.33)

 No variable in [image: 
$$\left \{\boldsymbol{\varphi }\right \}$$
] will permit any dilation anywhere within the element. Only [image: 
$$\left \{\phi \right \}$$
] contributes to the nodal displacements [image: 
$$\left \{r\right \}$$
] via the transformation matrix [image: 
$$\left [G\right ]$$
]: [image: 
$$\displaystyle\begin{array}{rcl} & & \text{from Eq. (7.3): } \\ & & \left \{r\right \} = \left [G\right ]\left \{\phi \right \} \rightarrow \left \{r^{(i)}\right \} = \left [G^{(i)}\right ]\left \{\phi ^{(i)}\right \}\text{ for each element }i{}\end{array}$$
]

 (8.34)

 In this case [image: 
$$\left [G^{(i)}\right ]$$
] is an 8 × 7 matrix.
The issue of the modal to nodal transformation was addressed in Sect. 7.1. Most importantly, for such 8×7 matrices, the unique pseudoinverse, vide Sect. 1.8, empowers us to treat [image: 
$$\left [G\right ]$$
] like any other square non-singular matrix. [image: 
$$\displaystyle\begin{array}{rcl} \left \{\phi ^{(i)}\right \} = \left [G^{(i)}\right ]^{+}\ \left \{r^{(i)}\right \};\quad \left [G^{(i)}\right ]^{+}: \mathit{pseudoinverse}\ \text{ of }\ \left [G^{(i)}\right ]& &{}\end{array}$$
]

 (8.35a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{ and }\left \{r^{(i)}\right \},\mathit{strictly}\ \text{conserves the element area}& &{}\end{array}$$
]

 (8.35b)




All incompressible configurations indicated by [image: 
$$\left \{r^{(i)}\right \}$$
] will lead to unique value of the modal participation factors [image: 
$$\left \{\phi ^{(i)}\right \}$$
].
The nodal force [image: 
$$\left \{R_{o}^{(i)}\right \}$$
] is related to its modal counterpart [image: 
$$\left \{\varPhi ^{(i)}\right \}$$
], which is the conjugate of [image: 
$$\left \{\phi ^{(i)}\right \}$$
] in the energy-norm, hence: [image: 
$$\displaystyle\begin{array}{rcl} \left \{R_{o}^{(i)}\right \}^{T}\ \left \{r^{(i)}\right \}& =& \left \{\varPhi ^{(i)}\right \}^{T}\ \left \{\phi ^{(i)}\right \}\text{ prevails, and }{}\end{array}$$
]

 (8.36a)

 [image: 
$$\displaystyle\begin{array}{rcl} \left \{R_{o}^{(i)}\right \} = \left [G^{(i)}\right ]^{+}\left \{\varPhi ^{(i)}\right \}\ & =& \left [G^{(i)}\right ]^{+}\ \left [\kappa _{\phi \phi }^{(i)}\right ]\ \left \{\phi ^{(i)}\right \}{}\end{array}$$
]

 (8.36b)

 [image: 
$$\displaystyle\begin{array}{rcl} = \left [q^{(i)}\right ]\ \left \{\phi ^{(i)}\right \}\ \text{from: Eq.(8.28b)}& &{}\end{array}$$
]

 (8.36c)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{then, from Eq.(8.28a), we obtain:}& & {}\\ \end{array}$$
]


 [image: 
$$\displaystyle\begin{array}{rcl} \text{nodal forces: }\left \{R^{(i)}\right \} = \left [\left \{a^{(i)}\right \},\left [q^{(i)}\right ]\right ]\ \left \{\varphi ^{(i)}\right \}& &{}\end{array}$$
]

 (8.36d)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{ and nodal displacements: }\left \{r^{(i)}\right \} = \left [\left \{0\right \},\left [G^{(i)}\right ]\right ]\ \left \{\varphi ^{(i)}\right \}& &{}\end{array}$$
]

 (8.36e)



In an assembly of m elements, the 8×m degrees-of-freedom (independent variables) are in [image: 
$$\left \{\varphi ^{(1)}\right \},\ldots \left \{\varphi ^{(m)}\right \}.$$
]

The prescribed force-displacement conditions on the entire system are on the global n number of nodes. The associated force and displacements are [image: 
$$\left \{R\right \}\text{ and }\left \{r\right \}$$
], each containing 2 × n variables for this two-dimensional problem. Let r2i−1 and r2i denote the horizontal and vertical displacements at a node i.
The element number of all j number of elements sharing that common node can be collected as [image: 
$$\left \{\mathfrak{m}^{(\mathfrak{i})}\right \} =$$
]
[image: 
$$\left \{\mathfrak{m}_{ 1}^{(i)},\ldots,\mathfrak{m}_{ j}^{(i)}\right \}$$
] from the prescribed mesh connection specification. Furthermore, let the s(i)th node of the element number k correspond to i. Then using the [image: 
$$\displaystyle\begin{array}{rcl} \text{compatibility relation: }r_{2i-1} = r_{2s(i)-1}^{(k)}\text{ and }r_{ 2i} = r_{2s(i)}^{(k)}& &{}\end{array}$$
]

 (8.37a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{ for all }k \in \left \{\mathfrak{m}^{(\mathfrak{i})}\right \}\quad \text{we obtain:}& &{}\end{array}$$
]

 (8.37b)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{equilibrium condition: }R_{2(i-1)} =\sum _{ }^{}r_{2s(i)}^{(k)},\text{ and }R_{ 2i} =\sum _{ }^{}r_{2s(i)}^{(k)}& &{}\end{array}$$
]

 (8.37c)

 Now, Eqs. (8.37a) and (8.37c) along with Eqs. (8.36d) and (8.36e) will yield the complete set of Mathematica expressions to determine all constant pressure and modal participation terms in all elements.
It is quite straightforward to deal with all integer indexing in Mathematica. Thus it will not be necessary to collect equations in a certain order, Mathematica will internally reorganize the equations for optimal computing.
8.3.1 The Modal Stiffness Matrix [image: 
$$\left [\kappa _{\phi \phi }\right ]$$
]

For the ith element, the evaluation of [image: 
$$\left [\kappa _{\phi \phi }^{(i)}\right ]$$
] in Eq. (8.36b) will involve the strains from Table 8.1 and stresses from Table 8.3.
The modal strain matrix [image: 
$$\left [b_{\phi }\right ]$$
] is calculated from Table 8.1: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} \epsilon _{xx}\\ \epsilon _{yy} \\ \gamma _{xy}\end{array} \right \} = \left [b_{\phi }\right ]\ \left \{\phi \right \} \rightarrow \ \left [b_{\phi }\right ] = \left [\begin{array}{ccccccc} 0&0&0& 1 &0& y & - x \\ 0&0&0& - 1&0& - y& x \\ 0&0&0& 0 &2& 0 & 0\\ \end{array} \right ]& &{}\end{array}$$
]

 (8.38a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{ leading to: }\left [b_{\phi }\right ]^{T}\ \left [\mathfrak{S}_{\phi }\right ] = \left [\begin{array}{ccccccc} 0&0&0& 0 &0& 0 & 0\\ 0 &0 &0 & 0 &0 & 0 & 0 \\ 0&0&0& 0 &0& 0 & 0\\ 0 &0 &0 & 2\mu &0 & 2\mu y & - 2\mu x \\ 0&0&0& 0 &4\mu & 0 & 0 \\ 0&0&0& 2\mu y &0& 2\mu y^{2} & - 2\mu xy \\ 0&0&0& - 2\mu x&0& - 2\mu xy& 2\mu x^{2}\\ \end{array} \right ]& &{}\end{array}$$
]

 (8.38b)

 The symmetry in Eq. (8.38b) establishes symmetry in [image: 
$$\left [\kappa _{\phi \phi }\right ]$$
]: [image: 
$$\displaystyle\begin{array}{rcl} \text{because: }\left [\kappa _{\phi \phi }\right ] =\int _{\varOmega:\text{element area}}\left [b_{\phi }\right ]^{T}\ \left [\mathfrak{S}_{\phi }\right ]\ \ d\varOmega & &{}\end{array}$$
]

 (8.39)

 The exact integration needs the element area, and the first and second area moments. Note that even for concave elements, we can still use Listing E.1. For curve sided elements Listing E.2 provides the code for exact integration.


              
                
              
              
                
              
            
It is worthwhile to repeat (“an inconvenient fact”) that there cannot be any nodal degree-of-freedom for incompressible elements. All element degrees-of-freedom are indeed modal.
The seven Rayleigh modal displacements are given in Table 8.1. We can take the constant of integration, po from Eq. (8.25c), to be an independent variable. If we hold all nodes locked (or rigidly fixed—in Courant’s terms), then an arbitrary imposition of po will only alter the nodal loads that are virtual work quantities. For unit po, these nodal loads are shown on the left-hand side of Fig. 8.2.
Recall, as evidenced in Eq. (8.25c), the element pressure profile, p(x,y), in general is linear in (x,y), but not a constant. The consequence of this linear pressure distribution is further elaborated in the next section Sect. 8.3 with a step-by-step demonstration for a single element.


8.4 Some Examples with a Single Isolated Element
The node numbering starts at the lower left-hand corner and continues counterclockwise. The non-trivial case of constant pressure on a square element is verified first.
8.4.1 Results on a Square and an Irregular Element

              Fig. 8.2Results on a unit square for po = 1


[image: A300727_1_En_8_Fig2_HTML.gif]


            
The input data, vide Sect. 8.4.1.1, was:	1.the nodal coordinates in the counterclockwise sense:

                       nodes = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};  
                    


 

	2.boundary data to be input as rules [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} r_{1} \rightarrow 0 & r_{2} \rightarrow 0 & r_{3} \rightarrow 0 & r_{4} \rightarrow 0 \\ R_{5} \rightarrow -\frac{1} {2} & R_{6} \rightarrow -\frac{1} {2} & R_{7} \rightarrow \frac{1} {2} & R_{8} \rightarrow -\frac{1} {2}\end{array} \right \}& & {}\end{array}$$
]

 (8.40)





 





Values, from Listing 8.7, were returned as a Mathematica rule: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} p_{_{0}} \rightarrow 1 \\ r_{1} \rightarrow 0 & r_{2} \rightarrow 0 & r_{3} \rightarrow 0 & r_{4} \rightarrow 0 \\ r_{5} \rightarrow 0 & r_{6} \rightarrow 0 & r_{7} \rightarrow 0 & r_{8} \rightarrow 0 \\ R_{1} \rightarrow \frac{1} {2} & R_{2} \rightarrow \frac{1} {2} & R_{3} \rightarrow -\frac{1} {2} & R_{4} \rightarrow \frac{1} {2} \\ R_{5} \rightarrow -\frac{1} {2} & R_{6} \rightarrow -\frac{1} {2} & R_{7} \rightarrow \frac{1} {2} & R_{8} \rightarrow -\frac{1} {2} \\ \phi _{1} \rightarrow 0 & \phi _{2} \rightarrow 0 & \phi _{3} \rightarrow 0 & \phi _{4} \rightarrow 0 \\ \phi _{5} \rightarrow 0 & \phi _{6} \rightarrow 0 & \phi _{7} \rightarrow 0\end{array} \right \}& &{}\end{array}$$
]

 (8.41)



Listing 8.7 does not depend on the element’s geometrical shape.

              [image: A300727_1_En_8_Fig3_HTML.gif]
Fig. 8.3Generated results on an irregular quadrilateral




            
8.4.1.1 
Mathematica Input: Geometry, BCs, and Modes

                
                  
                
              
Listing 8.3 Data for Fig. 8.3

                  (* nodal coordinates and prescribed data *)
In[1]:= nodes = {{0, 0}, {1/2, 0}, {1, 1}, {1/4, 3/4}}
Out[1]= {{0, 0}, {1/2, 0}, {1, 1}, {1/4, 3/4}}

In[2]:= boundaryDataRule = Flatten[{Thread[{r[1], r[2], r[3],
         r[4]} \to 0], { R[5] \to -.5, R[6] \to -.5, R[7] \to 0, R[8] \to 0}}]
Out[2]= {r[1] \to 0, r[2] \to 0, r[3] \to 0, r[4] \to 0, R[5] \to -\frac{1}{2},
       R[6] \to -\frac{1}{2}, R[7] \to 0, R[8] \to 0}



                

Listing 8.4 Prescribed incompressible displacement and stress modes

                  (* prescribed displacement and stress modes *)
In[3]:= displacementModes = {{1, 0}, {0, 1}, {-y, x}, {x, -y}, {y, x}, {x y,
  1/2 (-x^2 - y^2)}, {1/2 (-x^2 - y^2), x y}};

In[4]:= stressModes = {{0, 0, 0, mu, 0, 2 y mu, 0}, {0, 0, 0, -mu, 0, 0, 2 x mu}, {0, 0, 0, 0, 2 mu, 0, 0}};



                

Note that the shear modulus μ is written as mu in the Mathematica code.
In the interest of completion, in Listing 8.5, the Mathematica function to evaluate the [image: 
$$\left [G\right ]$$
] matrix is repeated.
Listing 8.5 Mathematica function to generate the G matrix

                  (* function to generate the [G] matrix *)
getGMatrix[displacementModes_, c_, nodes_] := Transpose[Flatten[
   Table[# /. Thread[c \to nodes[[i]]], {i, Length[nodes]}]] & /@
                     displacementModes]



                

Note that the same code to generate [image: 
$$\left [G\right ]$$
] prevails for all cases: [image: 
$$\displaystyle\begin{array}{rcl} \text{in two-dimensions: }\mathtt{c{\_}}\text{is: }\mathtt{\{x,y\}}& &{}\end{array}$$
]

 (8.42a)

 [image: 
$$\displaystyle\begin{array}{rcl} \text{in three-dimensions: }\mathtt{c{\_}}\text{is: }\mathtt{\{x,y,z\}}& &{}\end{array}$$
]

 (8.42b)



The calculated [image: 
$$\left [G\right ]$$
] is: [image: 
$$\displaystyle\begin{array}{rcl} \left [\begin{array}{ccccccc} 1&0& 0 & 0 & 0 & 0 & 0\\ 0 &1 & 0 & 0 & 0 & 0 & 0 \\ 1&0& 0 & \frac{1} {2} & 0 & 0 & -\frac{1} {8} \\ 0&1& \frac{1} {2} & 0 &\frac{1} {2} & -\frac{1} {8} & 0\\ 1 &0 & - 1 & 1 & 1 & 1 & -1 \\ 0&1& 1 & - 1 & 1 & - 1 & 1 \\ 1&0& -\frac{3} {4} & \frac{1} {4} & \frac{3} {4} & \frac{3} {16} & - \frac{5} {16} \\ 0&1& \frac{1} {4} & -\frac{3} {4} & \frac{1} {4} & - \frac{5} {16} & \frac{3} {16}\\ \end{array} \right ];\left \{\begin{array}{*{10}c} \text{ recall, }\left \{r\right \}_{8\times 1} = &\left [G\right ]\left \{\phi \right \}_{7\times 1} \\ \text{hence, }\left [G\right ]\text{is }8 \times 7 \end{array} \right.& &{}\end{array}$$
]

 (8.43)



The Mathematica built-in function PseudoInverse can be used to obtain the generalized inverse of [image: 
$$\left [G\right ]$$
]. Since [image: 
$$\left [G\right ]$$
] is rectangular, its pseudoinverse is denoted by [image: 
$$\left [G\right ]^{+}$$
] in Eqs. (8.35b) and (8.45) that presents numerical values. But [image: 
$$\displaystyle\begin{array}{rcl} \left [G^{T}\right ]^{+} = \left [G^{+}\right ]^{T}\text{ prevails in}\mathit{all}\ \text{cases}& &{}\end{array}$$
]

 (8.44)



This modal to nodal transformation is indeed a coordinate transformation in the sense of functional analysis. These Rayleigh modes are generalized coordinates11—the term used by both Ritz and Courant [1, 3].
The numerical value of the pseudoinverse, [image: 
$$\left [G\right ]^{+},$$
] of the [image: 
$$\left [G\right ]$$
] matrix is: [image: 
$$\displaystyle\begin{array}{rcl} \left [G\right ]^{+} = \left (\begin{array}{cccccccc} \frac{907} {1076} & - \frac{13} {1076} & \frac{52} {269} & - \frac{52} {269} & \frac{117} {1076} & \frac{65} {1076} & - \frac{39} {269} & \frac{39} {269} \\ - \frac{13} {1076} & \frac{1075} {1076} & \frac{4} {269} & - \frac{4} {269} & \frac{9} {1076} & \frac{5} {1076} & - \frac{3} {269} & \frac{3} {269} \\ \frac{187} {269} & -\frac{296} {269} & \frac{57} {538} & \frac{481} {538} & \frac{217} {538} & \frac{1} {538} & -\frac{324} {269} & \frac{55} {269} \\ -\frac{463} {538} & \frac{461} {538} & \frac{425} {538} & \frac{113} {538} & - \frac{57} {269} & \frac{58} {269} & \frac{76} {269} & -\frac{345} {269} \\ - \frac{89} {269} & -\frac{131} {269} & - \frac{56} {269} & \frac{56} {269} & \frac{103} {269} & \frac{117} {269} & \frac{42} {269} & - \frac{42} {269} \\ \frac{782} {269} & \frac{474} {269} & -\frac{590} {269} & -\frac{486} {269} & \frac{576} {269} & \frac{320} {269} & -\frac{768} {269} & -\frac{308} {269} \\ \frac{472} {269} & \frac{864} {269} & -\frac{374} {269} & -\frac{702} {269} & \frac{294} {269} & \frac{522} {269} & -\frac{392} {269} & -\frac{684} {269}\\ \end{array} \right )& &{}\end{array}$$
]

 (8.45)



It is instructive to verify that: [image: 
$$\displaystyle\begin{array}{rcl} \left [G^{T}\right ]\left [G^{T}\right ]^{+} = \left [I\right ];\quad \left [G\right ]\left [G\right ]^{+}\neq \left [I\right ]& &{}\end{array}$$
]

 (8.46)

 This has been elaborated in Sect. 1.8.1, vide Eq. (1.70).
From Eqs. (8.38b) and (8.39) the modal stiffness matrix becomes: [image: 
$$\displaystyle\begin{array}{rcl} \left [\kappa _{\phi \phi }\right ] = \left [\begin{array}{ccccccc} 0&0&0& 0 &0& 0 & 0\\ 0 &0 &0 & 0 &0 & 0 & 0 \\ 0&0&0& 0 &0& 0 & 0 \\ 0&0&0& \mu &0& \frac{11\mu } {24} & -\frac{11\mu } {24} \\ 0&0&0& 0 &2\mu & 0 & 0 \\ 0&0&0& \frac{11\mu } {24} & 0& \frac{53\mu } {192} & - \frac{47\mu } {192} \\ 0&0&0& -\frac{11\mu } {24} & 0& - \frac{47\mu } {192} & \frac{49\mu } {192}\\ \end{array} \right ];\ \ \ \left \{\begin{array}{*{10}c} \text{by}\ \mathit{exact}\ \text{integration}\\ \text{of Listing E.1} \end{array} \right.& &{}\end{array}$$
]

 (8.47)



There is no need to spend numerical efforts to calculate the nodal stiffness matrix [image: 
$$\left [k_{rr}\right ]$$
] because the nodal displacements will be calculated directly from the modal participation factors.
From Eq. (8.28c), and using the Listing 8.2, the constant pressure to nodal load transformation vector [image: 
$$\left \{a\right \}$$
] of Eqs. (8.28c) and (8.31) becomes: [image: 
$$\displaystyle\begin{array}{rcl} \left [q\right ]& =\mu \left (\begin{array}{ccccccc} 0&0&0& -\frac{1073} {3228} & -\frac{178} {269} & - \frac{185} {8608} & \frac{3373} {25824} \\ 0&0&0& \frac{207} {1076} & -\frac{262} {269} & \frac{2399} {25824} & - \frac{113} {25824} \\ 0&0&0& \frac{227} {538} & -\frac{112} {269} & \frac{313} {3228} & - \frac{581} {3228} \\ 0&0&0& \frac{311} {538} & \frac{112} {269} & \frac{763} {3228} & -\frac{1033} {3228} \\ 0&0&0& \frac{289} {1076} & \frac{206} {269} & \frac{1949} {8608} & -\frac{1275} {8608} \\ 0&0&0& - \frac{415} {3228} & \frac{234} {269} & - \frac{1235} {25824} & \frac{2717} {25824} \\ 0&0&0& -\frac{289} {807} & \frac{84} {269} & -\frac{1949} {6456} & \frac{425} {2152} \\ 0&0&0& -\frac{518} {807} & - \frac{84} {269} & -\frac{1817} {6456} & \frac{1415} {6456}\\ \end{array} \right );\quad \left \{a\right \} = p_{o}\left \{\begin{array}{*{10}c} \frac{3} {8} \\ \frac{1} {8} \\ -\frac{1} {2} \\ \frac{1} {2} \\ -\frac{3} {8} \\ -\frac{1} {8} \\ \frac{1} {2} \\ -\frac{1} {2} \end{array} \right \}&{}\end{array}$$
]

 (8.48)

 The values in [image: 
$$\left \{a\right \}$$
] are from linear approximation, vide footnote 9.

A Comment on Verifying the Results by Readers 
Depending on the default setting in Mathematica the function Rationalize will yield different fractions. It is advisable to set the tolerance explicitly.
Execute ?Rationalize and follow the examples in:

Rationalize[x, dx].
To appreciate the default setting in Mathematica, execute:

Rationalize[N[Pi], 0]; most likely the result will be:

                [image: 
$$\frac{245850922} {78256779}$$
]
              
The eight nodal interpolant vectors, [image: 
$$< \boldsymbol{S}_{r} >=< \boldsymbol{S}_{\phi } >\ \left [G\right ]^{+}$$
], from the seven Rayleigh mode vectors, and [image: 
$$\left [G\right ]^{+},$$
] become: [image: 
$$\displaystyle\begin{array}{rcl} \left [\begin{array}{*{10}c} \\ 8 \\ \text{Nodal}\\ \text{ interpolant} \\ \text{vectors}\\ \\ \\ \\ \\ \\ \text{each} \\ \text{vector is}\\ \text{in the form:} \\ \left \{\begin{array}{*{10}c} u\\ v \end{array} \right \}\\ \\ \end{array}\right ] \rightarrow \left (\begin{array}{c} \left \{\begin{array}{*{10}c} -944x^{2} - (926 - 3128y)x - 944y^{2} - 1104y + 907 \\ -1564x^{2} + 8(236y + 49)x - 1564y^{2} + 926y - 13 \end{array} \right \} \\ \left \{\begin{array}{*{10}c} -1728x^{2} + 2(948y + 461)x - 1728y^{2} + 660y - 13 \\ -948x^{2} + 4(864y - 427)x - 948y^{2} - 922y + 1075 \end{array} \right \} \\ \left \{\begin{array}{*{10}c} 2\left (374x^{2} - 5(236y - 85)x + 374y^{2} - 169y + 104\right ) \\ 2\left (590x^{2} - 11(68y + 5)x + 590y^{2} - 425y + 8\right ) \end{array} \right \} \\ \left \{\begin{array}{*{10}c} 2\left (702x^{2} + (113 - 972y)x + 702y^{2} - 369y - 104\right ) \\ 2\left (486x^{2} + (593 - 1404y)x + 486y^{2} - 113y - 8\right ) \end{array} \right \} \\ \left \{\begin{array}{*{10}c} -588x^{2} - (228 - 2304y)x - 588y^{2} - 22y + 117 \\ 3\left (-384x^{2} + (392y + 282)x - 384y^{2} + 76y + 3\right ) \end{array} \right \} \\ \left \{\begin{array}{*{10}c} -1044x^{2} + 8(160y + 29)x - 1044y^{2} + 466y + 65 \\ -640x^{2} + (2088y + 470)x - 640y^{2} - 232y + 5 \end{array} \right \} \\ \left \{\begin{array}{*{10}c} 4\left (196x^{2} + (76 - 768y)x + 196y^{2} + 366y - 39\right ) \\ 4\left (384x^{2} - 2(196y + 141)x + 384y^{2} - 76y - 3\right ) \end{array} \right \} \\ \left \{\begin{array}{*{10}c} 4\left (342x^{2} - (308y + 345)x + 342y^{2} - 97y + 39\right ) \\ 4\left (154x^{2} + (13 - 684y)x + 154y^{2} + 345y + 3\right ) \end{array} \right \} \\ \end{array} \right )& &{}\end{array}$$
]

 (8.49)




Changing the Order of x,y Terms in Polynomials 
The Mathematica function MonomialList allows the output in a specified order of (x,y). Execute ?MonomialList to view the examples.
Now the nodal load equations are completely described in terms of the eight degrees-of-freedom, as stated in Eq. (8.28a): [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} R_{1} & =& -\frac{1073\mu \phi _{4}} {3228} -\frac{178} {269}\mu \phi _{5} -\frac{185\mu \phi _{6}} {8608} + \frac{3373\mu \phi _{7}} {25824} + \frac{3} {8}p_{_{0}} \\ R_{2} & =& \frac{207\mu \phi _{4}} {1076} -\frac{262} {269}\mu \phi _{5} + \frac{2399\mu \phi _{6}} {25824} - \frac{113\mu \phi _{7}} {25824} + \frac{1} {8}p_{_{0}} \\ R_{3} & =& \frac{227} {538}\mu \phi _{4} -\frac{112} {269}\mu \phi _{5} + \frac{313\mu \phi _{6}} {3228} -\frac{581\mu \phi _{7}} {3228} -\frac{1} {2}p_{_{0}} \\ R_{4} & =& \frac{311} {538}\mu \phi _{4} + \frac{112} {269}\mu \phi _{5} + \frac{763\mu \phi _{6}} {3228} -\frac{1033\mu \phi _{7}} {3228} + \frac{1} {2}p_{_{0}} \\ R_{5} & =& \frac{289\mu \phi _{4}} {1076} + \frac{206} {269}\mu \phi _{5} + \frac{1949\mu \phi _{6}} {8608} -\frac{1275\mu \phi _{7}} {8608} -\frac{3} {8}p_{_{0}} \\ R_{6} & =& -\frac{415\mu \phi _{4}} {3228} + \frac{234} {269}\mu \phi _{5} -\frac{1235\mu \phi _{6}} {25824} + \frac{2717\mu \phi _{7}} {25824} -\frac{1} {8}p_{_{0}} \\ R_{7} & =& -\frac{289} {807}\mu \phi _{4} + \frac{84} {269}\mu \phi _{5} -\frac{1949\mu \phi _{6}} {6456} + \frac{425\mu \phi _{7}} {2152} + \frac{1} {2}p_{_{0}} \\ R_{8} & =&-\frac{518} {807}\mu \phi _{4} - \frac{84} {269}\mu \phi _{5} -\frac{1817\mu \phi _{6}} {6456} + \frac{1415\mu \phi _{7}} {6456} -\frac{1} {2}p_{_{0}}\end{array} \right \}& &{}\end{array}$$
]

 (8.50)



Eight each in [image: 
$$\left \{R\right \}$$
] and [image: 
$$\left \{r\right \}$$
], are the nodal unknowns. For each node either the force or the displacement will be prescribed.12 For the input data in Listing 8.3 the eight equations with the prescribed left-hand side are: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} -\frac{1} {2} & =& \frac{289\mu \phi _{4}} {1076} & +\frac{206} {269}\mu \phi _{5} & +\frac{1949\mu \phi _{6}} {8608} & -\frac{1275\mu \phi _{7}} {8608} & -\frac{3} {8}p_{_{0}} \\ -\frac{1} {2} & =& -\frac{415\mu \phi _{4}} {3228} & +\frac{234} {269}\mu \phi _{5} & -\frac{1235\mu \phi _{6}} {25824} & +\frac{2717\mu \phi _{7}} {25824} & -\frac{1} {8}p_{_{0}} \\ 0 &=& \phi _{1} \\ 0 &=& \phi _{2} \\ 0 &=& \phi _{2} & +\frac{\phi _{3}} {2} & +\frac{\phi _{5}} {2} & -\frac{\phi _{6}} {8} & \\ 0 &=& \phi _{1} & +\frac{\phi _{4}} {2} & -\frac{\phi _{7}} {8} \\ 0 &=&-\frac{289} {807}\mu \phi _{4} & + \frac{84} {269}\mu \phi _{5} & -\frac{1949\mu \phi _{6}} {6456} & +\frac{425\mu \phi _{7}} {2152} & +\frac{1} {2}p_{_{0}} \\ 0 &=&-\frac{518} {807}\mu \phi _{4} & -\frac{84} {269}\mu \phi _{5} & -\frac{1817\mu \phi _{6}} {6456} & +\frac{1415\mu \phi _{7}} {6456} & -\frac{1} {2}p_{_{0}}\end{array} \right \}& &{}\end{array}$$
]

 (8.51)



There are exactly eight linear relations in Eq. (8.51) and this leads to the unique solution, for the pressure p0 and the seven isochoric modal participation factors ϕ
            1,…,ϕ
            7: [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} p_{_{0}} & \rightarrow & \frac{483} {1465} & & & & & & & \text{: constant pressure} \\ \phi _{1} & \rightarrow & 0, &\phi _{2} & \rightarrow & 0,\ &\phi _{3} & \rightarrow & \frac{1381} {2930\mu } & \text{: rigid body modes} \\ \phi _{4} & \rightarrow &-\frac{147} {1465\mu },&\phi _{5} & \rightarrow & -\frac{1} {2\mu } & & & & \text{: constant stresses} \\ \phi _{6} & \rightarrow &-\frac{168} {1465\mu },&\phi _{7} & \rightarrow &-\frac{588} {1465\mu } & & & & \text{: shear free flexures}\end{array} \right \}& &{}\end{array}$$
]

 (8.52)

 The rigid body rotation ϕ
            3 ≠ 0. Only for geometrically symmetric elements under symmetric loading ϕ
            3 will be zero. The nodal solution becomes: [image: 
$$\displaystyle\begin{array}{rcl} \left.\begin{array}{*{10}c} R_{1} \rightarrow & \frac{1283} {2930}, &R_{2} \rightarrow & \frac{1} {2}, &R_{3} \rightarrow & \frac{91} {1465}, &R_{4} \rightarrow & 0, \\ r_{5} \rightarrow &-\frac{230} {293\mu },& r_{6} \rightarrow &-\frac{63} {293\mu },& r_{7} \rightarrow &-\frac{3807} {5860\mu },& r_{8} \rightarrow & \frac{42} {1465\mu } \end{array} \right \}& &{}\end{array}$$
]

 (8.53)





8.4.2 Steps in Mathematica Language
Listing 8.6 Steps for determining variables; this code should not be used


                (*      gMatrix = getGMatrix[displacementModes, {x, y}, nodes];
fs = Table[f[i], {i, 7}];
nodalDisplacementEquations = Thread[Table[r[i], {i, 8}] == gMatrix .fs];
aVector = pressureToNodalLoads[nodes, p0];
nodalForceEquations = Thread[Table[R[i], {i, 8}]==aVector + Pseudoinverse[Transpose[gMatrix]] . (
areaIntegrate[bTranspose.stressModes, {x, y}, nodes].fs)];
allEquations=Flatten[{nodalForceEquations, nodalDisplacementEquations}] //. boundaryDataRule;equationsForSubstitution =
 allEquations[[#]] & /@ (First /@
   Position[allEquations /. {R[i_] ∖to gg, r[i_] ∖to gg}, gg]);
equationsForSolution = Complement[allEquations,equationsForSubstitution];
independentUnknowns = Prepend[fs, p0];
sol1 = Solve[equationsForSolution, independentUnknowns] // Flatten;
sol2 = (equationsForSubstitution //. sol1) /. Equal ∖to Rule;
allSolutions = Flatten[{boundaryDataRule, sol1, sol2}] // Union*)



              



8.5 Development of a Computer Code
An improved version13 of Listing 8.6 in Listing 8.7 uses the Module structure that identifies the local variables. Note, \[RawDoubleQuote] and \[RawBackquote] are used in: BeginPackage  and  Begin statements.
Listing 8.7 Package for determining variables in four-node isochoric elements

              BeginPackage[ \[RawDoubleQuote]isochoric4NodeElement\[RawBackquote]
\[RawDoubleQuote],\[RawDoubleQuote]Global\[RawBackquote]
\[RawDoubleQuote]]

isochoric4NodeElement::usage = "
isochoric4NodeElement[nodes, {R,r,f,p0},boundaryDataRule, mu]
returns a list of rules containing the following variables:
R: the nodal forces, r: nodal displacements, f: modal participation factors,
p0:constant element pressure; for element shear modulus mu with prescribed boundary data in boundaryDataRule"
Begin[\[RawDoubleQuote]\[RawBackquote]Private\[RawBackquote]
\[RawDoubleQuote]]

isochoric4NodeElement[nodes_, {R_, r_, f_, p0_},
 boundaryDataRule_, mu_] := Module[{x, y, nRr, fs, gMatrix,
  nodalDisplacementEquations, bTranspose, kff,
  nodalForceEquations, allEquations, equationsForSubstitution, sol},

nRr = Times @@ Dimensions[nodes]; fs = Table[f[i], {i, nRr - 1}];

gMatrix = getGMatrix[displacementModes[x, y], {x, y}, nodes];
nodalDisplacementEquations = Thread[Table[r[i], {i, nRr}] == gMatrix . fs];

bTranspose = {D[#[[1]], x], D[#[[2]], y], D[#[[1]], y] + D[#[[2]], x]} & /@
  displacementModes[x, y];
kff = areaIntegrate[ bTranspose . stressModes[{x, y}, mu], {x, y}, nodes ];
nodalForceEquations =
 Thread[Table[R[i], {i, nRr}] == pressureToNodalLoads[nodes, p0] +
   PseudoInverse[Transpose[gMatrix]] . (kff. fs)];

allEquations = Flatten[{nodalForceEquations, nodalDisplacementEquations}];
equationsForSubstitution =Select[allEquations //.
          boundaryDataRule, (MemberQ[#, r[i_]] || MemberQ[#, R[i_]]) &];
(* solutions *) sol = Solve[
     Complement[allEquations, equationsForSubstitution] //.
      boundaryDataRule, Prepend[fs, p0]] // Flatten // Simplify // Chop;
Union[sol, (allEquations //. sol // Chop) /. Equal \to Rule]]

End[]
EndPackage[]



            

The package in Listing 8.7 needs the auxiliary functions of Listing 8.8.
Listing 8.8 Auxiliary Functions for Listing 8.7

                                  (* Auxiliary Function *)

displacementModes[x_, y_] := {{1, 0}, {0, 1}, {-y, x}, {x, -y}, {y, x}, {x y,
   1/2 (-x^2 - y^2)}, {1/2 (-x^2 - y^2), x y}};
getGMatrix[displacementModes_, {x_, y_}, nodes_] := Transpose[
  Flatten[
    Table[# /. Thread[{x, y} \to nodes[[i]]], {i, Length[nodes]}]] & /@
   displacementModes];

stressModes[{x_, y_}, mu_] :=
 mu {{0, 0, 0, 1, 0, 2 y, 0}, {0, 0, 0, -1, 0, 0, 2 x}, {0, 0, 0, 0, 2, 0, 0}};
pressureToNodalLoads[{ {x1_, y1_}, {x2_, y2_}, {x3_, y3_}, {x4_, y4_}},
  p_: 1] := (p/2) {{-y2 + y4,
    x2 - x4}, {y1 - y3, -x1 + x3}, {y2 - y4, -x2 + x4}, {-y1 + y3,
    x1 - x3}} // Flatten;

areaIntegrate[z_, {x_, y_}, nodes_] :=Module[{ t, segments},
   segments = Partition[Append[nodes, nodes[[1]]], 2, 1];
  Plus @@ Map[lineIntegrate[Integrate[z, x], {x, y, t}, #] &, segments] ];
lineIntegrate[z_, {x_, y_, t_},
      {{x1_, y1_}, {x2_, y2_}}] := Integrate[
   ((y2 - y1) z) /. {x \to x1 + t (x2 - x1), y \to y1 + t (y2 - y1)},
   {t, 0, 1}];



            

Figure 8.4 shows the results on a concave quadrilateral incompressible element; the nodes are: (0, 0), (1.5, −1), (.5, 0), (1,.8).

            [image: A300727_1_En_8_Fig4_HTML.gif]
Fig. 8.4A concave incompressible quadrilateral element




          

8.6 Homework Problems
Follow the method of solution with the unknown element pressure po.

8.7 Term Problems
Repeat Sect. 7.7 problems for the plane strain incompressibility.

8.8 Programming Problems
Write a program to evaluate the nodal forces due to the general solution for the pressure po using the element shape function. Show, in Sect. 8.2.3.1, that the averaging only corresponds to the linear terms of the shape functions.
8.8.1 Hint
Review Sect. 8.2.3.2.
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Footnotes
1They are the (three) rigid body motions, (two) and (two) flexural stresses without shear—under pure bending in two directions.

 

2These expressions, as usual, are cut and paste in LaTeX from TeXForm to avoid “typos” in the manuscript.

 

3Because the limits of polynomials are not polynomials themselves.

 

4All frame-invariant (n − i) Rayleigh mode vectors can be derived from the n one.

 

5Within the context of bar problems vide Eq. (1.97).

 

6This splits a symmetric matrix into the trace and the rest—the deviatoric part.

 

7It is proved in Sect. 9.9.1 that, at the least, ten degrees-of-freedom in [image: 
$$\mathfrak{R}^{2}$$
] are necessary to reproduce the pure bending stresses exactly in all directions.


 

8In Table 7.1, columns 4,5,6,7,8 correspond to columns 3,4,5,6,7 in Table 8.1.

 

9Rigorously, the nodal loads should be determined from the isochoric shape functions.

 

10This does not introduce any additional displacement whatsoever. This is the reason why a standard displacement formulation is not possible for [image: 
$$\nu = \frac{1} {2}.$$
]


 

11Had all coordinates been geometrical object, it could have been reasonable to investigate whether [image: 
$$\left [G^{+}\right ]$$
] would have any similarity with [image: 
$$\left [G^{T}\right ]$$
].

 

12For the uniqueness of the solution at least three nodal displacements must be prescribed to exclude arbitrary rigid body motions.

 

13In Listing 8.6 the sans-serif font is used to warn not to use code with improper programming constructs, a package should include all auxiliary functions. Nevertheless, such an attempt is helpful in developing a package.
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Abstract
The patch test, which was one of Iron’s brilliant ideas, initiated various innovations in formulating new finite elements. 
              
            

              
            

              
            

              
            

              
            

              
            

              
            In the spirit of eliminating MacNeal’s (Finite Elem Anal Des 5(1):31–37, 1989) element deficiencies or “failure modes” all terms from the Rayleigh modes, which are necessarily in equilibrium, are included. Here the minimum number of additional nodes, where equilibrium of forces and displacement compatibility should be enforced, are preferred over rotational degrees-of-freedom.

The Poisson’s Ratio: Its Rôle in Dimensional Analysis 
This parameter couples the displacement components that are the primary variables in finite elements discussed here. Accuracy, in the algorithmic sense, cannot be attained unless this non-dimensional quantity is explicitly inserted into the test functions that indeed are the Courant coordinate functions in the Ritz variational principle.
The equilibrated Rayleigh modes, for elasticity problems, will invariably contain the Poisson’s ratio.

Continua Abstracted to a Collection of Distinct Points  
The possible mismatch of tractions and displacement fields on element boundaries is not considered. Clough’s systematic development with displacement test functions demands equilibrium and compatibility only at the system nodes. This complies with all the requirements for the virtual work principle to be applicable. The needs posed by the Ritz and Courant variational formulation for elliptic boundary value problems are met as well.
For a prescribed error bound, the allowable element sizes, i.e., the fineness of discretization, must be modeled according to the h-convergence criterion.
              
             In practice this is achieved by trial and error.

Limitations 
Error analysis for
              
             coupled vector field elliptic partial differential equations is highly technical and quite rare. However, a considerable body of research exists for scalar elliptic boundary value problems. These are appropriate for temperature distributions but not when the displacement vector field is a partial sum mentioned in the Ritz variational formulation (Ritz, J Reine Angew Math 135:1–61, 1908). This topic is outside the scope of this textbook.

Locking-Free Four Node Elements 
The patch test was primarily motivated to account for bending that could not be accommodated within constant stain/stress triangular finite elements. In four node plane elements, pure bending stresses cannot be reproduced in all directions simultaneously. We show that we need at least five nodes, i.e., ten degrees-of-freedom, to reproduce pure bending stresses pertaining to neutral axes in arbitrary directions. Thus, in Dasgupta (Acta Mech 223(8):1645–1656, 2012) patch tests for the four-node element was restricted to
              
             two-orthogonal pure bending cases.

Generalization to Capture Higher Degree Stress Fields 
Following Clough’s classical displacement formulation, higher degree stresses demand more element nodes. In order to enhance computation from n − 1 to n,  n = 1, 2⋯ degrees of stress distributions, we need at least 2 additional nodes for plane elasticity problems (and 2n + 3 additional ones for solid three-dimensional elements).

Symbolic Computation 

Mathematica helps to carry out exact integration that avoids subjectivity in selecting numerical quadratures to integrate strain energy density functions within the element domain.

Rayleigh Mode Formulation and Incompatible Elements 
Here, the finite element basis functions are linear combinations of Rayleigh mode vectors that satisfy point-wise equilibrium. The displacements along the boundary will not be linear beyond constant strain elements. This treatment debuts in this textbook. Hence, a summary of the core ideas is in order here.

Concluding Remarks 
The intent of this textbook has been to develop the finite element concepts following Ritz’s foot steps. He introduced a series of polynomial test functions and calculated their weights by minimizing an energy-type integral. Courant harmonized spatial discretization with piecewise continuous functions. Iron’s patch tests safeguards against variational crimes.
              
            

              
            

              
             Symbolic computation permitted treating results in the unadulterated algebraic form. Using object-oriented procedural programming languages, modern computers make large scale design-analysis a reality.

9.1 Frame-Independent Patch Tests

Are four nodes adequate to reproduce shear-free pure bending stresses? Can we fully comply with the frame-independence requirement, [11]?
Beyond piecewise constant stress/strain triangular elements,1 the patch test, e.g. on Fig. 9.1, guides us in designing accurate four-node elements.2
[image: A300727_1_En_9_Fig1_HTML.gif]
Fig. 9.1A patch of quadrilateral elements under pure bending in coordinate directions. (a) Horizontal neutral axis. (b) Vertical neutral axis





9.1.1 General Considerations


                
               Defect-free elements, [17], are mandated to reproduce available analytical solutions. For stresses of degree n in (x, y), arbitrary displacement polynomials of degree n + 1 in (x, y) will generally violate point-wise equilibrium. To comply with the principle of reference frame invariance [11], all independent polynomial vectors, which satisfy point-wise equilibrium, must be included in determining the element shape functions.

9.1.2 Pure Bending Not Possible in All Directions: A Shortcoming of Four-Node Elements
The traction blocks of continuum mechanics yield pure bending in Fig. 9.2.
[image: A300727_1_En_9_Fig2_HTML.gif]
Fig. 9.2The neutral axis is along the x-direction for x-pure bending (without shear)





The right and left moments vectors,3 which are perpendicular to planes of Figs. 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10 and 9.11, are of equal magnitude but opposing signs. Between the dot and cross, along the x-axis the canonical beam indicates the importance of the Euler–Bernoulli beam theory in analyzing plane elements. 
                
               
                
              
[image: A300727_1_En_9_Fig3_HTML.gif]
Fig. 9.3Problem of Fig. 9.2 modeled with four-node elements with inclined interface




[image: A300727_1_En_9_Fig4_HTML.gif]
Fig. 9.4Non-parallel linear traction blocks in equilibrium can produce pure bending




[image: A300727_1_En_9_Fig5_HTML.gif]
Fig. 9.5Parallel traction blocks, not along the beam axis, for the same end moments should produce shear stress in the (x, y) frame in patch tests





[image: A300727_1_En_9_Fig6_HTML.gif]
Fig. 9.6Flexural traction blocks for the neutral axis along x
                  ∗ (θ from x-direction)





9.1.2.1 Figures 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10 and 9.11, Examples with Same End Moments
We can analytically solve stresses and displacements for pure bending of beams, Fig. 9.2. To highlight the role of non-rectangular elements, we superimpose the two element beam patch [33] on Fig. 9.2 leading to Fig. 9.3.
[image: A300727_1_En_9_Fig7_HTML.gif]
Fig. 9.7Problem of Fig. 9.4 modeled with four-node elements




[image: A300727_1_En_9_Fig8_HTML.gif]
Fig. 9.8Problem of Fig. 9.5 modeled with four-node elements




[image: A300727_1_En_9_Fig9_HTML.gif]
Fig. 9.9Problem of Fig. 9.5 modeled with triangular elements with side nodes




[image: A300727_1_En_9_Fig10_HTML.gif]
Fig. 9.10Problem of Fig. 9.5 where the model includes a concave element




[image: A300727_1_En_9_Fig11_HTML.gif]
Fig. 9.11Problem of Fig. 9.5 modeled with five-node elements





For x-pure bending, the eight modes, which are quadratic polynomials in (x, y), vide Table 7.1, should suffice for patch tests.
                  
                 The nodal forces must be evaluated as virtual work quantities, vide Clough’s Quotation III of the Introduction (also Sect. 6.3.1
4). Nonlinear displacement fields in incompatible elements will yield non-zero nodal forces on the interface nodes.


9.1.3 Applicability of the St. Venant Principle
Now we explore the cases, shown in Figs. 9.4 and 9.5, where the linear traction blocks do not align with the neutral axis.
In Fig. 9.4 the left-hand traction block of Figs. 9.2 and 9.3 is rotated by an angle θ. However, the right-hand traction block underwent a rotation of −θ. Thus the arrows showing the end traction blocks are not parallel, although, in “some average sense,” these two blocks may be construed to be parallel. This practical simplification stems from the St. Venant’s concept. Now let us examine Fig. 9.5.
In Fig. 9.5, as in Fig. 9.4, the left-hand traction block of Figs. 9.2 and 9.3 is rotated by θ. Unlike Fig. 9.4, the right-hand traction block was also turned by θ. The arrows showing the end traction blocks are indeed parallel. Then this is a pure bending with respect to the neutral axis that is rotated by θ. 
Even under the action of the same end moments, the stress solutions in beams of Figs. 9.2 and 9.4 will differ significantly. This is obscured in one-dimensional structural mechanics solutions of beams under pure bending because in this case the only independent force quantities are the end moments. Details of the applied end tractions disappear in the integrated values. Defect-free elements should yield linear axial stresses both in Figs. 9.4 and 9.5. Shear stresses will vanish in the latter but not in the former.
9.1.3.1 St. Venant’s Principle Is Inapplicable for 2D Beams
The eight nodal degrees-of-freedom are fully consumed by the following eight modes: three rigid body motions; three constant stress profiles; and two shear-free bending cases that we have selected in the (x, y) directions.
In the x-pure bending, σ
            
                  xx
                 is linear in y—independent of x; τ
            
                  xy
                 is identically zero.

An important question is:
“Can shear-free linear stress distribution for Fig. 9.6, with shape functions from Eqs. (7.17a) and (7.17b), be achieved as a linear combination of x- and y-pure bending, shown in Fig. 9.1?”
We now analyze pure bending in the light of continuum mechanics in two-dimensions. Let us examine Fig. 9.6 when the neutral axis is rotated from x to x
            ∗, by an angle θ. 
This case of x
            ∗-pure bending, when the neutral axis is x
            ∗, is not equivalent to any linear combination of x- and y-pure bending shown in Fig. 9.1. We cannot draw any inference based on statically equivalent loading on beams. A system of loads in equilibrium, especially on thin walled structures, will propagate a significant amount of displacement at a large distance.

9.1.3.2 Restating the Patch Test for Four-Node Elements: “Can Plane Elements Reproduce an Arbitrary Exact Linear Stress Solution?”
We will examine two-dimensional beam models with the left traction block as shown in Fig. 9.6. The patch will consist of two non-rectangular elements. The right-hand traction block will vary, vide Figs. 9.7 and 9.8.
With identical left traction blocks as those in Figs. 9.4 and 9.5, the (one-dimensional) beam theory will yield identical stresses. However, two-dimensional continuum mechanics solutions will differ5; let us clarify this important issue.

9.1.3.3 A Continuum Mechanics Interpretation of Patch Tests

If the stress blocks on the left side are identical in the two problems, then the difference between the two is also a valid well-posed boundary value problem, vide [1], with zero traction vector on the left end. However, if the right stress blocks have a mismatch, then their difference is non-zero and that will cause a non-trivial stress distribution within the beam.

9.1.3.4 A Structural Mechanics Interpretation of Patch Tests

Here we deal with end moments and do not probe into the detail of the traction distribution that caused the external moment.
Two end moment vectors of exactly the same magnitude and direction can result from two different traction profiles. This is highlighted in Figs. 9.7 and 9.8.
Now we can observe the anomaly; from the continuum mechanics standpoint, the stress distributions in Figs. 9.7 and 9.8 should differ. However, invoking the St. Venant principle, the engineering intuition of structural mechanics will not be able to distinguish the difference in stress profiles.
Identification of the external nodal forces as virtual work quantities is essential! It is very appropriate to remind ourselves (once more) Clough’s Quotation III of the Introduction!!

9.1.3.5 Four Node Elements of All Shapes for Patch Tests

Since in this textbook computational thinking is the overarching theme, we should include degenerated triangular and concave elements, shown in Figs. 9.9 and 9.10, in the same computer program that analyzes the patch test with two elements.

9.1.3.6 Pure Bending in an Arbitrary Direction: Five-Node Elements of All Shapes for Patch Tests

To comply with patch tests of Sect. 9.1.3.2, the Fig. 9.11 is proposed.6

Next, we investigate why we need an additional node beyond the four-node element to comply with patch tests in arbitrary directions, as shown in Fig. 9.11. For Fig. 9.5, elements having at least ten degrees-of-freedom7 will be necessary to capture shear-free axial stresses in the (x
            ∗, y
            ∗)-frame.

9.1.3.7 Exact Integration on Elements with Curved Boundaries: Incompatible Modes Included
The intent is to exactly reproduce all linear stress fields that arise from pure bending in arbitrary directions, irrespective of geometrical shapes and uniform material properties. Curved sides, e.g. vide Fig. 9.12, should not pose any hurdle (to emphasize this point, Fig. 9.14c from Sect. 9.3 is reproduced below).
[image: A300727_1_En_9_Fig12_HTML.gif]
Fig. 9.12Problem of Fig. 9.5 to be modeled with five-node curve sided elements







9.1.4 Translation and Rotation of Coordinates
The (x
          ∗, y
          ∗) values, due to the translation [image: 
$$\left \{\alpha,\beta \right \}$$
] and rotation θ, become: [image: 
$$\displaystyle{ \left \{\begin{array}{*{10}c} x^{{\ast}} \\ y^{{\ast}}\end{array} \right \} = \left \{\begin{array}{*{10}c} \alpha \\ \beta \end{array} \right \}+\left [\begin{array}{*{10}c} \ \ \ \cos (\theta ) &\sin (\theta ) \\ -\sin (\theta )&\cos (\theta ) \end{array} \right ]\left \{\begin{array}{*{10}c} x\\ y \end{array} \right \};\quad \alpha,\beta \mbox{ and }\theta \mbox{: arbitrary} }$$
]

 (9.1)



The traction blocks are rotated by θ, as shown in Fig. 9.8. The Mohr circle in Fig. 9.13 eases transforming τ
          
                ij
               to τ
          
                ij
              
          ∗ rather than by using Eq. (9.1).
[image: A300727_1_En_9_Fig13_HTML.gif]
Fig. 9.13Mohr circle for bending stresses





The shear free condition dictates that the stress components be represented by two points on the horizontal line. Shear-free stresses at a generic point in Fig. 9.1a, b, σ
          
                xx
               and σ
          
                yy
              , are shown on the Mohr’s circle.
In Fig. 9.6, in the (x
          ∗
          y
          ∗)-frame, σ
          
                xx
               ≠ 0, σ
          
                yy
               = 0, τ
          
                xy
               = 0, and σ
          
                yy
               ≠ 0, σ
          
                xx
               = 0, τ
          
                xy
               = 0 are combined. The Mohr circle Fig. 9.13 clearly depicts the impossibility of shear-free linear axial stresses in the x
          ∗− y
          ∗ frame when two pure bending situations along x- and y-are superposed.
In other words, the pure bending patch test can never be successful with the Rayleigh mode vectors of Eqs. (7.17a) and (7.17b), where zero-shear linear flexural stresses have been attained along the x- and y-directions individually. Therein, the shear stress [image: 
$$\tau _{x^{{\ast}}y^{{\ast}}}$$
] can never be zero!

9.1.5 The Reference Frame Invariance Principle: Principal Stresses and Displacement Vectors
The same numerical values of principal stresses and displacement vectors must be obtained from [image: 
$$\left \{\left \{u,v\right \},\left \{\sigma _{xx},\sigma _{yy},\tau _{xy}\right \}\right \}$$
] (x, y) as if we calculated [image: 
$$\left \{u(x^{{\ast}},y^{{\ast}}),v(x^{{\ast}},y^{{\ast}})\right \}$$
] and [image: 
$$\left \{\sigma _{x^{{\ast}}x^{{\ast}}},\sigma _{y^{{\ast}}y^{{\ast}}},\tau _{x^{{\ast}}y^{{\ast}}}\right \}$$
] in the (x
          ∗, y
          ∗) frame of Eq. (9.1) to begin with. For n-degree stress analysis: [image: 
$$\displaystyle{ \left \{\sigma _{xx},\sigma _{yy},\tau _{xy}\right \}\mbox{ proportional to: }x^{i}\ y^{(n-i)},i = 0,1,2\ldots n }$$
]

 (9.2a)

 [image: 
$$\displaystyle{ \left \{u,v\right \}\mbox{ proportional to: }x^{i}\ y^{(n+1-i)},i = 0,1,2\ldots n + 1 }$$
]

 (9.2b)




9.1.6 A Possible Solution with an Extra Side Node
The patch test will guarantee the compliance with all available analytical solutions where there will be no mismatch of displacements along element boundaries. This rescinds objections for interface displacement discrepancies.
Two additional modes,8 with quadratic shape functions, can counteract shears, see Fig. 9.13, due to axis rotation. Along with nodal equilibrium and compatibility, point-wise equilibrium should be guaranteed. The element gap or overlap,9 after deformation due to non-optimal meshing, can be smoothened during post-processing10 [20].
9.1.6.1 How Can We Achieve Frame-Independence?
We need to have additional quadratic displacement Rayleigh mode vectors to produce shear stresses linear along x and y to counteract the shear stress that arises due to rotation of coordinates. Four-node elements can guarantee shear-free bending stresses only for neutral axes along two orthogonal directions, as shown in Fig. 9.1. The selection of coordinate axes should not influence the calculated values of the principal stresses. This important issue is analyzed next.



9.2 Two Additional Degrees-of-Freedom Assure Locking-Free Flexure Along Any Arbitrary Direction

            
              
            
          
From Eq. (7.13), the coupled displacement field [image: 
$$\left \{u,v\right \}$$
] is: [image: 
$$\displaystyle{ \left \{\begin{array}{*{10}c} a(4)x^{2} + a(6)y^{2} + 4b(4)\nu xy + 4b(6)\nu xy - 4b(4)xy - 2b(6)xy \\ 4a(4)\nu xy + 4a(6)\nu xy - 4a(4)xy - 2a(6)xy + b(6)x^{2} + b(4)y^{2}\end{array} \right \} }$$
]

 (9.3)



Four distinct Rayleigh modes,11 [image: 
$$\boldsymbol{\mathcal{R}}_{7},\boldsymbol{\mathcal{R}}_{8},\boldsymbol{\mathcal{R}}_{9},\boldsymbol{\mathcal{R}}_{10},$$
] emerge with a unit value for a coefficient, a(i) or b(j) in Eq. (9.3), while others are zero: [image: 
$$\displaystyle{ \begin{array}{c|c|c} \boldsymbol{\mathcal{R}}_{}\qquad & \qquad \qquad u\qquad \qquad & v \\ \boldsymbol{\mathcal{R}}_{7}\qquad & \qquad\qquad(1-\nu )xy\qquad\qquad & -\frac{y^{2}} {4} \\ \boldsymbol{\mathcal{R}}_{8}\qquad &\qquad\qquad y^{2} -\frac{(1-2\nu )} {2(1-\nu )}\ x^{2} \qquad\qquad& 0 \\ \boldsymbol{\mathcal{R}}_{9}\qquad & \qquad\qquad-\frac{x^{2}} {4} \qquad\qquad& (1-\nu )xy \\ \boldsymbol{\mathcal{R}}_{10}\qquad & \qquad\qquad0 \qquad\qquad&\ \ \ \ \ x^{2} -\frac{(1-2\nu )} {2(1-\nu )}\ y^{2} \\ \end{array} }$$
]

 (9.4)

 
              
            



              
             From Eq. (9.4), [image: 
$$\boldsymbol{\mathcal{R}}_{7},\boldsymbol{\mathcal{R}}_{8}$$
] of Table 7.1 can then be obtained from: [image: 
$$\displaystyle{ \mbox{ with constant }c(i): c(1)\ \boldsymbol{\mathcal{R}}_{7} + c(2)\ \boldsymbol{\mathcal{R}}_{8} + c(3)\ \boldsymbol{\mathcal{R}}_{9} + c(4)\ \boldsymbol{\mathcal{R}}_{10} }$$
]

 (9.5a)

 [image: 
$$\displaystyle{ \mbox{ by assigning: }c(1) \rightarrow 0,\ c(2) \rightarrow 1-\nu,\ c(3) \rightarrow -2,\ c(4) \rightarrow 0\ \mbox{ and} }$$
]

 (9.5b)

 [image: 
$$\displaystyle{ c(1) \rightarrow -2,\ c(2) \rightarrow 0,\ c(3) \rightarrow 0,\ c(4) \rightarrow (1-\nu );\mbox{ respectively} }$$
]

 (9.5c)

 The complete set of the flexure modes are furnished in Table 9.1:

            
              
            
            Table 9.1Quadratic coupled displacement mode vectors


	 	
                        [image: 
$$\boldsymbol{\mathcal{R}}_{7}$$
]
                      
	
                        [image: 
$$\boldsymbol{\mathcal{R}}_{8}$$
]
                      
	
                        [image: 
$$\boldsymbol{\mathcal{R}}_{9}$$
]
                      
	
                        [image: 
$$\boldsymbol{\mathcal{R}}_{10}$$
]
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νx
                    2 −νy
                    2 + y
                    2
                  
	2νxy − 2xy

	
                        [image: 
$$y^{2} -\frac{(1-2\nu )} {2(1-\nu )}x^{2}$$
]
                      
	0

	
                        v
                      
	2νxy − 2xy

	−νx
                    2 + x
                    2 + νy
                    2
                  
	0
	
                        [image: 
$$x^{2} -\frac{(1-2\nu )} {2(1-\nu )}y^{2}$$
]
                      




          
In Table 9.1, [image: 
$$\boldsymbol{\mathcal{R}}_{i},i = 7,8,9,10$$
] are linearly independent. The expression in Eq. (9.5a) is zero for [image: 
$$\forall x,y\mbox{ iff all }c(i) = 0.$$
] Exact bending stresses in any direction, not just in (x, y), can be obtained from Eq. (9.5a).
9.2.1 A Mathematica Code for Rayleigh Modes
Listing 9.1 Functions to generate equilibriated stress polynomials

                Clear[RayleighModes2D];
RayleighModes2D::usage = "RayleighModes2D[n, {x,y},
      nu (defaulted to \[Nu])]
         yields the four (additional) coupled displacement fields
         for stress polynomials of degree (n-1) in x-y coordinates
         for plane strain elements of Poissons ratio nu
                              (shear modulus is set to unity)."
    RayleighModes2D[n_Integer, {x_, y_}, nu_: \[Nu]] :=
              Module[{a, b, uv, eqsBodyForce, solAll, uvEquilibrium},
                      uv = uvTerms[{x, y}, {a, b}, n];
     eqsBodyForce = Thread[bodyForces[uv, xy, nu] == 0];
               solAll = SolveAlways[eqsBodyForce, xy];
   uvEquilibrium = Select[(uv /. #) & /@ solAll,
                      MemberQ[#, nu, Infinity] & ] // First;
 FullSimplify[(uvEquilibrium /. #) & /@ dofs[getVars[uvEquilibrium ] ] ] ]



              

The mechanism to ensure equilibrium is to set the body force vector to zero. This is achieved in Listing 9.1. Evaluation of the body force vector is accomplished in Listing 9.2, as follows:
Listing 9.2 Auxiliary functions for Listing 9.1 to enforce point-wise equilibrium

                divergenceOfaVector[v_?VectorQ, x_?VectorQ] := Module[{len},
  len = Length[v];
  Plus @@ Table[D[v[[ii]], x[[ii]]], {ii, len}]
  ] /; Length[v] === Length[x]

divergenceOfaTensor[t_?MatrixQ, x_?VectorQ]:= divergenceOfaVector[#, x] & /@ t

strainTensorFromDisplacementVector[uv_, xy_] := Module[{f},
 f = Outer[D, uv, xy]; Simplify[(f + Transpose[f])/2]]

Clear[stressTensorFromStrainTensor];stressTensorFromStrainTensor
       [strainTensor_, nu_: \[Nu]] :=
(* calculations for \[Mu]=1 *)
Module[{dilatation, size, \[Lambda]},
 size = Length[strainTensor]; \[Lambda] = (2 nu/(1 - 2 nu));
 dilatation = Simplify[Plus @@ Table[strainTensor[[i, i]], {i, size}]];
 (* Print["dilatation=",dilatation]; *)
 Simplify[\[Lambda] * IdentityMatrix[size]*dilatation + 2 strainTensor]]

bodyForces[uv_, xy_, nu_: \[Nu]] := Module[{\[Epsilon], \[Sigma]},
 \[Epsilon] = strainTensorFromDisplacementVector[uv, xy];
 \[Sigma] = stressTensorFromStrainTensor[\[Epsilon], nu];
 divergenceOfaTensor[\[Sigma], {x, y}] // Simplify]



              

Listing 9.3 Auxiliary functions for Listing 9.1 to structure the displacement vector

                getVars[x_] := Cases[Flatten[x /. Thread[{Plus, Power, Times} -> List]],
  aa_[ii_]] // Union
         displacementTerms[{x_, y_}, n_] :=Table[x^(n - i) * y^i, {i, 0, n}]
uvTerms[{x_, y_}, {a_, b_}, n_] := Module[{terms, m},
 terms = displacementTerms[{x, y}, n]; m = Length[terms];
 {Array[a, m]. terms, Array[b, m]. Reverse[terms]}]
         dofs[vars_] := Thread[vars -> #] & /@ IdentityMatrix[Length[vars]]



              


9.2.2 Cubic Stress Fields: Beyond the Ten Modes of Table 9.1


                
               We now need [image: 
$$\boldsymbol{\mathcal{R}}_{11},\boldsymbol{\mathcal{R}}_{12},\boldsymbol{\mathcal{R}}_{13},\boldsymbol{\mathcal{R}}_{14}$$
] for quadratic stress distributions and [image: 
$$\boldsymbol{\mathcal{R}}_{15},\boldsymbol{\mathcal{R}}_{16},\boldsymbol{\mathcal{R}}_{17},\boldsymbol{\mathcal{R}}_{18}$$
] for the cubic ones to constitute a nine-node element. We can start with n = 4, in Listing 9.3, and obtain [image: 
$$\boldsymbol{\mathcal{R}}_{11},\boldsymbol{\mathcal{R}}_{12},\boldsymbol{\mathcal{R}}_{13},\boldsymbol{\mathcal{R}}_{14}$$
] from: [image: 
$$\displaystyle{ \left [\begin{array}{c|c|c} \mbox{ Mode}& u\mbox{ -component} & v\mbox{ -component} \\ \boldsymbol{\mathcal{R}}_{15} & \frac{(1-2\nu )x^{4}+y^{4}(3-2\nu )} {12(\nu -1)} + x^{2}y^{2},& \frac{xy^{3}} {3(\nu -1)} \\ \boldsymbol{\mathcal{R}}_{16} & \frac{y(1-2\nu )x^{3}} {2(\nu -1)} + y^{3}x, & \frac{x^{4}-y^{4}} {8-8\nu } \\ \boldsymbol{\mathcal{R}}_{17} & \frac{x^{3}y} {3(\nu -1)} & \frac{(3-2\nu )x^{4}+y^{4}(1-2\nu )} {12(\nu -1)} + x^{2}y^{2} \\ \boldsymbol{\mathcal{R}}_{18} & \frac{x^{4}-y^{4}} {8(\nu -1)} & yx^{3} + \frac{y^{3}(1-2\nu )x} {2(\nu -1)}\\ \end{array} \right ] }$$
]

 (9.6)

 due to reference-frame invariance of the Rayleigh mode vectors.12 Similarly, the quadratic terms can also be obtained from: [image: 
$$\left \{\begin{array}{*{10}c} \boldsymbol{\mathcal{R}}_{15},\boldsymbol{\mathcal{R}}_{16},\boldsymbol{\mathcal{R}}_{17},\boldsymbol{\mathcal{R}}_{18}\end{array} \right \}$$
]: [image: 
$$\displaystyle\begin{array}{rcl} & & \left \{\begin{array}{*{10}c} \boldsymbol{\mathcal{R}}_{11}(x,y),\boldsymbol{\mathcal{R}}_{12}(x,y),\boldsymbol{\mathcal{R}}_{13}(x,y),\boldsymbol{\mathcal{R}}_{14}(x,y) \end{array} \right \}: \mbox{ are the cubic terms in:} \\ & & \left \{\begin{array}{*{10}c} \boldsymbol{\mathcal{R}}_{15}(x + 1,y),\boldsymbol{\mathcal{R}}_{16}(x + 1,y),\boldsymbol{\mathcal{R}}_{17}(x + 1,y),\boldsymbol{\mathcal{R}}_{18}(x + 1,y) \end{array} \right \} {}\end{array}$$
]

 (9.7)





9.3 Straight or Curved Higher Order Elements: Higher Spatial Degrees of Equilibrium Stress Fields

            [image: A300727_1_En_9_Fig14_HTML.gif]
Fig. 9.14More nodes on Γ capture higher degree of stress profiles in Ω for patch tests. (a) Uniform strains. (b) Orthogonal bending. (c) All linear stresses. (d) All cubic stresses




          

            
              
            
            
              
            
          
From the required (n-degree) of stress polynomials on Ω, the total (2n + 3) number of element boundary nodes are determined. The geometrical shape of the boundary Γ or the placement of nodes on Γ does not matter since we shall use the exact (analytical) value of [image: 
$$\int \left [b\right ]^{T}\ \left [D\right ]\ \left [b\right ]\ d\varOmega$$
], as described in Sect. E.4 in Appendix E. Equilibrium and compatibility will be enforced on those interface nodes (Fig. 9.14).
9.3.1 A Triangulation with Cubic Stress Elements
For a given domain Ω with boundary Γ, Fig. 9.15a, data is prescribed on Γ, and the solution is sought at some interior points shown in Fig. 9.15b. This is triangulated as shown in Fig. 9.16a using Mathematica’s PlanarGraphPlot.
[image: A300727_1_En_9_Fig15_HTML.gif]
Fig. 9.15The continuum and mesh nodes. (a) Region Ω with smooth Γ. (b) Nodal locations




[image: A300727_1_En_9_Fig16_HTML.gif]
Fig. 9.16The eighteen Rayleigh mode vectors of Sect. 9.2.2 are used in all elements. (a) Triangulation of Ω. (b) Cubic stress elements—with nine nodes







9.4 Variational Crimes?


              
             In 1972 [26], Strang coined the term “variational crimes.”


              
             Wilson et al. published their seminal paper on Incompatible Elements [35], in 1973.13 By incompatible elements we mean that, on element boundaries, possible nonlinear displacements will produce displacement mismatch (separation or overlap) between two adjacent elements.14

However, Wilson first presented the concept of incompatible elements at a conference in 1971 [34]. In the beginning of §6.1 of his textbook [33], he introduced the section on “INCOMPATIBLE ELEMENTS,” saying:

            When Incompatible Elements Were Introduced in 1971, Mathematics Professor Strang of MIT Stated “In Berkeley, Two Wrongs Make a Right.”


          
Strang and Fix, in §4 of [27], focused on
              
             Taig’s15 transformations16 that related to
              
             Iron’s patch test [16]. For curved boundaries17 the mapping [image: 
$$\big(x(\xi,\eta ),y(\xi,\eta )\big)$$
], was stated in [27, §2.2, p. 109].
Strang and Fix, in [27], did not mention Céa’s seminal lemma, [2] of 1964. Therein, the error estimation mechanism pointed to departures from the Ritz assumptions. Wilson in §6 of [33] wrote:

            The two theoretical crimes committed were displacement compatibility was violated and the method was not verified with examples using non-rectangular elements [2]. As a consequence of these crimes, Bruce Irons introduced the patch test restriction and the displacement compatible requirement was eliminated [3].


          
Therein, [2] denotes [26] and [3] patch tests [16], that we now revisit.
9.4.1 Point-Wise Reproduction of Analytical Solutions
The patch test, with arbitrary meshing, demands that degree n shape function polynomials in (x, y) should exactly reproduce stress polynomials from the rigid body (zero-degree) up to degree n − 1. This compliance with continuum mechanics rules out all displacement discrepancies within any mesh.
Thus, Iron’s patch test is the unsurpassable embodiment of Ritz-Courant’s admissible (coordinate) functions [6, 21], for the calculus of variations.


9.4.2 “Crime-3”
Among the three “crimes,” the third objection is presumedly on numerical quadratures [14, 15]. This has no bearing in this textbook. We will evaluate all integrals, Courant’s (1) through (7) on pages 2 and 3, in §1 of [6], exactly, vide Appendix E without resorting to quadratures. The Rayleigh vector mode polynomials are most suitable for closed-form integrations.

9.4.3 “Crime-2”
The second “crime” relates to Courant’s rigid boundary conditions. Note that all integrals in §1 of [6] are correctly represented within the virtual work principle. Furthermore, Courant wrote, on page 4, §2:

              Such fixed or rigid or artificial boundary conditions must be explicitly stipulated for the variational problem not only for the differential equation. However, we shall recognize them as limiting cases or degenerations of natural conditions.18



            
The principle of virtual work makes this second crime a moot point.

9.4.4 “Crime-1”
The shortcomings with piecewise nonlinear interpolants for incompatible displacement models [29, 33, 35] are analyzed as the first variational crime.19 With trapezoidal elements, Taylor’s success in patch tests [30], with corrective terms in the physical (x, y) domain along with properly accounting for the corresponding weight in quadrature, faced a sarcastic comment20 on the top of page 178 of [27]. Taylor’s innovative approach21 is in line with the comment of Poincaré22 as Courant quoted in [6]:

              …Pure mathematicians sometimes are satisfied with showing that the non-existence of a solution implies a logical contradiction, while engineers might consider a numerical result as the only reasonable goal. Such one sided views seem to reflect human limitations rather than objective values. In itself mathematics is an indivisible organism uniting theoretical contemplation and active application.


            

9.4.5 Variational Forgiveness in Rayleigh Modal Formulation with Polynomials in (x, y)

              Differentiations highlight peaks but integrations smear discrepancies out!
            
Rtiz [21] justified approximations with a finite number of test functions in the light of Fourier series. He pointed out that for a partial differential equation of order 2n, the integrals in the variational principle demand only the n derivatives that substantially reduce the smoothness requirement.
Ritz, after his Eq. (4) of [21], mentioned that the measure of precision should be a scalar integral. With Courant’s piecewise nonlinear coordinate functions, the discontinuities at the element interface23 are of no surprise. Their (spatial) derivatives overshoot at element interfaces.24 However, Iron’s patch tests resolves the issue squarely, when a finite element system is examined to reproduce known analytical responses. The Rayleigh vector modes satisfy strong (point-wise) equilibrium and thus qualify as the best set of polynomial coordinate functions to meet a prescribed stress order.

9.4.6 Some Closing Remarks on Courant’s Paradigm
If the interelement displacement discrepancies raise concerns, then higher order elements with refined meshes should be employed. There is no need to forsake postprocessing that smoothens discontinuous fields. This is in line with smearing errors in integral formulations akin to variational principles.
Courant, page 21 of [6], enriched the linear field variable:

ϕ = a(1 − x) with a quadratic term leading to: ϕ = a(1 − x)[1 + α(x − 3∕4)y] and demonstrated an improvement in numerical calculations. Was he the first to commit a variational crime? Field values across the element boundaries in his finer mesh, item (d) of Fig. 2, were indeed discontinuous. This makes “variational crime-1” of Sect. 9.4.4 a very minor offence as if the design-analyst is jaywalking through discontinuous, uneven and choppy response fields across a mesh that Courant termed a “net.”
Successful completion of Iron’s patch tests absolves us from all variational crimes. Integral formulations are inherently forgiving. For ideal boundary value problems, for which analytical solutions are available, we must aspire to produce the stress profile independent of the discretizing mesh.
Courant’s last three paragraphs of [6] are favorable to incompatible elements,25 under the “generalized method,” which he referred to as the piecewise implementation of the Rayleigh–Ritz procedure.
And this is what we call the finite element method!



9.5 Designing Elements
Ritz started with Euler’s integral formulation, [9].26 The virtual work principle adheres to the variational formulation where the convergence is interpreted in the weak (distributional) sense [25] as differential operators are replaced by integrals.
Wendroff [32], on §II. RAYLEIGH–RITZ METHOD of [6], writes:

            In the classical Rayleigh–Ritz method one finds the stationary values of the Rayleigh quotient J(u) as u varies over a finite- dimensional subspace27 of the space of admissible functions. The subspace usually consists of analytic functions, for example, polynomials.


          
Courant, in [6], very carefully introduced the term “admissible functions” (between Eqs. (7) and (8) on page 3) to assure that their inner product integrals—in his Eqs. (5), (6), and (7)—be piecewise continuous. When the equivalent virtual work principle is complied with, those integrals exist at the least in the sense of distributions [25].28

Here, in addition, the polynomial Rayleigh mode vectors satisfy equilibrium. Therein ν appeared29 explicitly and the Poisson locking [18] is avoided.
The inter-element displacement mismatch is due to nonlinear interpolants. Courant used quadratic interpolants to improve overall accuracy. The interface discontinuity on his triangular mesh did not raise any theoretical concern. The mesh fineness and higher order interpolants factored into the overall accuracy of the numerical procedure.
9.5.1 Generating Finite Element Numerical Responses

              	1.Meshing: Spatial tessellation should follow the changes in the material properties and locations of external forces and reactions.


 

	2.A predetermined stress degree, say n, will dictate the number of element boundary nodes, e.g., 3+2n in [image: 
$$\mathfrak{R}^{2}$$
].


 

	3.Equilibrium condition will eliminate coefficients from full polynomials of n + 1 degree in (x, y). Thus, the Rayleigh modes will contain all independent polynomials of n + 1 degree in (x, y). This constitutes the set of Courant’s admissible functions.



 

	4.The stiffness matrices should be formed by exact integration.


 

	5.The assembly procedure and solving for unknowns can follow the computer programs for truss problems.


 




            


9.6 Conceiving Ritz’s Formulation with Tensors: Linear Elastostatics for a Single Finite Element

            
              
            
            
              
              
            
            
              
              
            
            
              
              
            
            
              
              
              
            
            
              
              
              
            
            
              
              
            
            
              
              
            
          
Rayleigh mode tensors were mentioned on the book cover. Objectivity demands that we reproduce target stress polynomials of degree n, in a coordinate frame-independent fashion.
To avoid burdening readers, the tensor extension of the Rayleigh–Ritz formalism has been postponed until now. For brevity, we consider an arbitrary-shaped single element
30 only in the two-dimensions.

            
              
            
          
The tensor form for the first equation of Ritz’s 1908 paper [21], with i-degree polynomials (Ritz mentioned “Polynomen,” on line 9 ) [image: 
$$\boldsymbol{\psi }_{i}$$
] is: [image: 
$$\displaystyle{ \mathbf{u}(x,y) =\boldsymbol{\psi } _{o}(x,y) + a_{1}\boldsymbol{\psi }_{1}(x,y) + a_{2}\boldsymbol{\psi }_{2}(x,y) + \cdots + a_{n}\boldsymbol{\psi }_{n}(x,y) }$$
]

 (9.8)

 where the appropriate modifications are:
	(a)the scalar variable w
                
                      n
                     has been replaced by the displacement vector u



 

	(b)scalars ψ
                
                      i
                     are replaced by their two-dimensional counterparts [image: 
$$\boldsymbol{\psi }_{i}(x,y):$$
] [image: 
$$\displaystyle{ a_{i}\ \boldsymbol{\psi }_{i}(x,y) = \left \{\begin{array}{*{10}c} \psi _{x}^{(i)}\wp _{ i}(x,y) \\ \psi _{y}^{(i)}\wp _{i}(x,y)\end{array} \right \};\left [\begin{array}{*{10}c} \mbox{ in components, degree}\ i\ \mbox{ is a } \\ \mbox{ superscript within parenthesis } \\ not\ \mbox{ an exponent }\end{array} \right ] }$$
]

 (9.9a)

 [image: 
$$\displaystyle{ \psi _{x}^{(i)},\psi _{ y}^{(i)}: \mbox{ coefficient }scalars;\wp _{ i}(x,y): i\mbox{ -degree polynomial; and} }$$
]

 (9.9b)

 [image: 
$$\displaystyle{ \psi _{x}^{(i)}\ \wp _{ i}(x,y) =\sum _{ j=0}^{i}q_{ x}^{ij}\ x^{j}y^{i-j};\mbox{ and }\psi _{ y}^{(i)}\ \wp _{ i}(x,y) =\sum _{ j=0}^{i}q_{ y}^{ij}\ x^{j}y^{i-j} }$$
]

 (9.9c)





 





For finite elements, let us concentrate on the fundamental object r
        
              i
            , which is the displacement at the ith degree-of-freedom of our single element Ω. 
The Rayleigh modes  [image: 
$$\boldsymbol{\mathcal{R}}_{j}$$
](x, y), where j is the degree of the polynomial, are the basic building blocks to construct the Ritz method in calculating the unknowns q
        
              x
            
        
              ij
             and q
        
              y
            
        
              ij
             in Eq. (9.9c). With: [image: 
$$\displaystyle\begin{array}{c} \mathbf{s}_{i}(x,y):  \mbox{ shape function for the $i$th degree-of-freedom} \\ \phi _{i}^{(j)}:  \mbox{ $j$th modal participation factors for }\mathbf{s}_{ i}(x,y) \\ \mathbf{u}(x,y) = \sum _{j}\mathbf{s}_{j}(x,y)\ r_{j}\mbox{ where }\mathbf{s}_{i}(x,y) =\sum _{j}\phi _{i}^{(j)}\ \boldsymbol{\mathcal{R}}_{ j}(x,y) {}\end{array}$$
]

 (9.10)

 The frame-independence characteristic of [image: 
$$\boldsymbol{\mathcal{R}}_{j}(x,y)$$
] legitimizes this tensorial extension of Ritz’ formulation. The power of tensorial thinking entitles us computational advantages of generating all lower order Rayleigh modes:

[image: 
$$\boldsymbol{\mathcal{R}}_{m-1}(x,y),\boldsymbol{\mathcal{R}}_{m-2}(x,y),\cdots \boldsymbol{\mathcal{R}}_{o}(x,y)$$
] from [image: 
$$\boldsymbol{\mathcal{R}}_{m}(x + 1,y),$$
] vide Eq. (9.7).

            
              
            
          
9.6.1 Ritz’s Solution for Coupled Vector Field Problems
We restrict ourselves to elasto-static problems of linear elasticity, which is the focus of this textbook. From the book-cover, within the context of n-degree stress polynomials, we now clarify the statement (or the claim):

              
Exact integrations yield stiffness matrices and nodal loads from Rayleigh mode tensors encompassing the Poisson’s ratio


            

              
                
              
            
9.6.1.1 Calculation of Scalar Coefficients
From Eqs. (9.8) and (9.9a), in order to construct a solution u we need a (n + 1)-degree polynomial to reproduce a traction prescription of n-degree.
The objective, following Ritz’s footsteps, is to calculate all coefficients: [image: 
$$\displaystyle{ \mathrm{\ in Eq.\,(9.9c): }\ \ \ q_{x}^{ij}\mbox{ and }q_{ y}^{ij},i = 1,\ldots,n + 1;j = 1,\ldots,i }$$
]

 (9.11)

 
                  
                 by minimizing a functional [image: 
$$\boldsymbol{\mathfrak{F}}$$
]
31 constructed from the equilibrium statement: [image: 
$$\displaystyle{ \mathcal{L}\mathbf{u} -\mathbf{f} = 0;\quad \mathcal{L}:\mbox{ a self-adjoint linear operator} }$$
]

 (9.12)

 Since we are solving a problem of mathematical physics, Eq. (9.12) is independent of a reference frame; hence: [image: 
$$\displaystyle{ \mathcal{L},\mathbf{u}\mbox{ and }\mathbf{f}\quad \mbox{ are all }tensor\ quantities }$$
]

 (9.13)

 For our two-dimensional problems: [image: 
$$\displaystyle{ \mathbf{u} = \left \{\begin{array}{*{10}c} u_{x} \\ u_{y} \end{array} \right \}\mbox{ and }\mathbf{f} = \left \{\begin{array}{*{10}c} f_{x} \\ f_{y} \end{array} \right \};\quad \mathcal{L} = \left [\begin{array}{*{10}c} L_{11} & L_{12} \\ L_{12} & L_{22} \end{array} \right ] }$$
]

 (9.14a)

 [image: 
$$\displaystyle{ L_{ij}: \mbox{ scalar, }\mathit{zero - rank}\ tensor,\mbox{ operators} }$$
]

 (9.14b)



Ritz’s energy-based arguments empower us to convert32: [image: 
$$\displaystyle{ \boldsymbol{\mathfrak{F}}\Big(\overbrace{\mathbf{u}(x,y),\ \mathbf{f}(x,y)}^{\mbox{ functions of $(x,y)$}}\Big)\mbox{ to }\boldsymbol{\mathfrak{F}}\Big(\overbrace{q_{x}^{ij},\ q_{ y}^{ij}}^{\mbox{ real numbers}}\Big)\mbox{ via an integration in }\varOmega }$$
]

 (9.15a)

 [image: 
$$\displaystyle{ \mbox{ construct a system of linear equations: } \frac{\partial \boldsymbol{\mathfrak{F}}} {\partial q_{x}^{ij}} = 0\mbox{ and } \frac{\partial \boldsymbol{\mathfrak{F}}} {\partial q_{y}^{ij}} = 0 }$$
]

 (9.15b)

 The simultaneous solution of Eq. (9.15b) clearly establishes that the x- and y-components of u are coupled.

9.6.1.2 Traction and Stress Tensors (Ranks One and Two)
Coordinate transformations from (x, y) to (x
            ∗, y
            ∗) [13, 24] dictates: [image: 
$$\displaystyle{ \left \{\begin{array}{*{10}c} \tau _{x^{{\ast}}} \\ \tau _{y^{{\ast}}}\end{array} \right \} = \left [Q\right ]\left \{\begin{array}{*{10}c} \tau _{x}\\ \tau _{y } \end{array} \right \}\mbox{ and }\left [\begin{array}{*{10}c} \sigma _{x^{{\ast}}x^{{\ast}}}&\sigma _{x^{{\ast}}y^{{\ast}}} \\ \sigma _{y^{{\ast}}x^{{\ast}}}&\sigma _{y^{{\ast}}y^{{\ast}}} \end{array} \right ] = \left [\begin{array}{*{10}c} Q \end{array} \right ]\left [\begin{array}{*{10}c} \sigma _{xx}&\sigma _{xy}\\ \sigma _{ yx}&\sigma _{yy} \end{array} \right ]\left [\begin{array}{*{10}c} Q \end{array} \right ]^{T} }$$
]

 (9.16a)

 [image: 
$$\displaystyle{ \mbox{ where }\left \{\begin{array}{*{10}c} x^{{\ast}} \\ y^{{\ast}}\end{array} \right \} = \left [Q\right ]\left \{\begin{array}{*{10}c} x\\ y \end{array} \right \}\mbox{ and }\left [Q\right ] = \left \{\begin{array}{*{10}c} \ \ \ \cos \theta &\ \ \ \sin \theta \\ -\sin \theta &\ \ \ \cos \theta \end{array} \right \} }$$
]

 (9.16b)

 
                  
                 
                  
                

We prescribe an n-degree polynomial33 traction vector34 [image: 
$$\boldsymbol{\tau }$$
], and solve for the (n + 1)-degree displacement polynomial u related to the n-degree stress polynomial tensor problems.

9.6.1.3 Rayleigh Modes for n-Degree Stress Polynomials [image: 
$$\boldsymbol{\sigma }(x,y)$$
]

We consider all35 polynomial terms for all parts in Eq. (9.11) to construct the full set of Rayleigh modes [image: 
$$\boldsymbol{\mathcal{R}}_{i}(x,y).$$
] There is no directional preference. In all cases, we obtain [image: 
$$\boldsymbol{\mathcal{R}}_{i}(x,y)$$
] by solving partial differential equations of equilibrium point-wise, hence [image: 
$$\boldsymbol{\mathcal{R}}_{i}(x,y)$$
] is the strong solution.
For compressible materials, − 1 < ν < 1∕2, each Rayleigh mode [image: 
$$\boldsymbol{\mathcal{R}}_{i}(x,y)$$
] satisfies the homogeneous equilibrium equation. Hence, [image: 
$$\boldsymbol{\mathcal{R}}_{i}(x,y)$$
] is necessarily a function of the Poisson’s ratio ν. 
For the incompressible case [image: 
$$\nu = \frac{1} {2},$$
] there is an element pressure variable p
            
                  o
                 along with isochoric Rayleigh modes that are of zero dilatation point-wise. The equilibrium solution yields p
            
                  o
                . 

9.6.1.4 A Note on Single Element Tests

We can prescribe arbitrary traction polynomials on the boundary of an assembly of finite elements. We need adequate Dirichlet displacement boundary conditions for the unique solution. We stipulate that our element assembly program and equation solvers have been thoroughly tested for correctness.
As stated in the title of Sect. 9.6 we are addressing a single element here. Within the context of the finite element spatial discretization of this textbook, we sample responses only at boundary nodes and interpolate solutions inside. To define a shape function, we specify a unit displacement at one degree-of-freedom at a time. This is achieved exactly by the modal participation factors in Eq. (9.10).


9.6.2 Clough’s Classical Displacement Formulation and Taig’s Quadrilateral Elements

              
                
              
              
                
              
              
                
                
              
              
                
                
              
            
Let us first review Clough’s original formulation, [3–5] and his triangular element. In the displacement formulation, the displacement vector u(x, y) is calculated from the nodal displacements [image: 
$$\left \{r_{i}\right \}$$
] and shape functions s
          
                i
              (x, y): [image: 
$$\displaystyle{ \mbox{ let: }\mathbf{s}_{i}(x,y) = \left \{\begin{array}{*{10}c} s_{x}^{(i)}(x,y) \\ s_{y}^{(i)}(x,y) \end{array} \right \};\quad \mathbf{u} = \left \{\begin{array}{*{10}c} u_{x} \\ u_{y} \end{array} \right \} =\overbrace{ \left \{\begin{array}{*{10}c} s_{x}^{(i)}(x,y) \\ s_{y}^{(i)}(x,y) \end{array} \right \}\left \{r_{i}\right \}}^{\mbox{ implied summation in }i} }$$
]

 (9.17)




              
                
              
            
In constant stress/strain field triangulation, Clough assumed for i = 1, 2, 3: [image: 
$$\displaystyle{ \mathbf{s}_{j}(x,y) = \left \{\begin{array}{*{10}c} \mathfrak{n}_{i}(x,y)\\ 0 \end{array} \right \},j = 2i-1\mbox{ and }\mathbf{s}_{j}(x,y) = \left \{\begin{array}{*{10}c} 0\\ \mathfrak{n}_{i } (x,y) \end{array} \right \},j = 2i }$$
]

 (9.18)

 In Eqs. (3.5a) through (3.5c), [image: 
$$\mathfrak{n}_{i}(x,y)$$
] are given. For scalar fields in Sect. 3.1, those expressions are derived entirely on the basis of geometry.
In Eq. (9.18), there is a zero in each s
          
                j
              , the x, y components are not uncoupled, s
          
                j
              (x, y) are the exact solutions.36 Patch tests are successful.
Now let us turn to Taig’s quadrilaterals, i = 1, 2, 3, 4; from Eq. (5.8): [image: 
$$\displaystyle{ \mathbf{s}_{j}(x,y) = \left \{\begin{array}{*{10}c} \mathcal{M}_{i}(x,y)\\ \mathbf{0} \end{array} \right \},j = 2i-1;\ \mathbf{s}_{j}(x,y) = \left \{\begin{array}{*{10}c} \mathbf{0}\\ \mathcal{M}_{i } (x,y) \end{array} \right \},j = 2i }$$
]

 (9.19)

 All s
          
                j
               have been uncoupled, they cannot satisfy equilibrium point-wise. This caused shear stresses to appear under pure bending.

9.6.3 Orientation Dependent Rayleigh Modes: Neutral Axes Only Along x and y Directions
For four-node elements, only along the x- and y-directions, patch tests are satisfied. Polynomial terms, which contributed the shear for bending in the x − y-frame, were discarded. This bias, towards the x- and y-directions, annihilates the tensorial
37 nature of four-node elements.
To duplicate pure bending in all directions, we need to include the two quadratic displacement terms related to shear stresses, vide Sect. 9.1.6. This insertion qualifies the five-node element formulation as tensorial.


9.7 Homework Problems
9.7.1 Stiffness Matrix of a Five-Node Element
Recall, the Rayleigh mode vectors are full
38 polynomials with coefficients dictated by a zero body force condition.39 For linear stress field elements, we need ten displacement degrees-of-freedom, which can be accommodated in five-node (plane) elements.
9.7.1.1 Exercises

                	1.Construct a regular pentagon of sides a. Use the ten Rayleigh modes from Tables 9.1 and 7.1 to obtain the element stiffness matrix.


 

	2.Verify that the stiffness matrix is independent of the value of a. Prove this using dimensional analysis.


 

	3.Verify, for the element stiffness matrix, that there are exactly three zero eigenvalues and the remaining seven eigenvalues are positive.


 




              


9.7.2 Patch with Linear Stress Fields
Show that the patch in Fig. 9.17 passes the patch test
40 i.e., the axial stresses are linear in (x, y) for the traction blocks shown in Fig. 9.2.
[image: A300727_1_En_9_Fig17_HTML.gif]
Fig. 9.17The Neutral axis is along the horizontal direction







9.8 Term Problems
9.8.1 Number of Rayleigh Modes
We would like to design an element to reproduce all n-degree polynomial stresses. What is the minimum number of nodes you will need?

9.8.2 Stiffness Matrix of a “Triangular” Element
Develop one program to generate stiffness matrices for all the following elements. Also develop a program to evaluate nodal forces41:
	1.triangle with two side nodes on each side


 

	2.an element, with one curved side, and two side nodes on each side


 

	3.an element, with two curved sides, and two side nodes on each side.


 






9.8.3 Patch with Cubic Stress Fileds

              [image: A300727_1_En_9_Fig18_HTML.gif]
Fig. 9.18Patch of triangles with straight or one curved side




              [image: A300727_1_En_9_Fig19_HTML.gif]
Fig. 9.19Patch of triangles with straight or one or two curved sides




            
Set up a computer code to compare results due to boundary tractions of your choice with meshes in Figs. 9.18 and 9.19 and Fig. 3.1, p. 38 of [10]. You may collect the Mathematica programs furnished in the textbook.
Repeat the patch tests of Figs. 9.18 and 9.19 for:
	1.
ν = 0. 25, 0. 3 and 0. 495; plot your results


 

	2.incompressible media; compare your results with [image: 
$$\nu \neq \frac{1} {2}$$
] cases and comment


 

	3.Verify the frame-independent aspects of your results in the light of Sect. 9.6. Keep all problem specifications to be the same but rotate the coordinates from (x, y) to (x
                  ∗, y
                  ∗).
	(a)Carry out your calculations with [image: 
$$\theta = \frac{\pi } {4}$$
] with Eq. (9.16b)


 

	(b)For [image: 
$$\theta = \frac{\pi } {2}\mbox{ and }\theta = -\frac{\pi }{2}$$
] compare the stress plots.


 







 






9.8.4 Patch Test for Scalar Harmonic Problems
Repeat the patch tests of Figs. 9.18 and 9.19 for ϕ(x, y) that satisfies the
Start from Poisson’s flux balance statement of Eq. (F.6).
	1.Review Chap. 3 of [10].


 

	2.Solve for the temperature problem the systems in Figs. 9.18 and 9.19. (Select the boundary data to be positive.) Plot the temperature distribution in the system. Comment on the non-negativity of your results.


 







9.9 Hints
9.9.1 Number of Modes to Capture n-Degree Invariant Stresses: For Sect. 9.8.1
For a target stress distribution of degree n, in [image: 
$$\mathfrak{R}^{2},(x,y)$$
] and [image: 
$$\mathfrak{R}^{3},(x,y,z)$$
], the number of polynomial terms in n + 1 degree displacement polynomials are n + 2 and [image: 
$$\frac{(n+3)(n+2)} {2}$$
], respectively: [image: 
$$\displaystyle\begin{array}{rcl} & & (n + 2)\mbox{ terms in: } \\ & & a[1]\ x^{n+1} + a[2]\ x^{n}\ y + \cdots + (\ldots )\ y^{n+1}\mbox{ and }{}\end{array}$$
]

 (9.20)

 [image: 
$$\displaystyle\begin{array}{rcl} & & \frac{(n + 3)(n + 2)} {2} \mbox{ in: } \\ & & a[1]\ x^{n+1} + a[2]\ x^{n}\ y + a[3]\ x^{n}\ z\cdots + (\ldots )\ y^{n+1} + (\ldots )\ z^{n+1}{}\end{array}$$
]

 (9.21)

 The body force expressions are polynomials of degree (n − 1). The number of equations to guarantee equilibrium in [image: 
$$\mathfrak{R}^{2}$$
] and [image: 
$$\mathfrak{R}^{3}$$
] are n and [image: 
$$\frac{n(n+1)} {2}$$
]. This leaves (n + 2) − n = 2 and [image: 
$$\frac{(n+3)(n+2)} {2} -\frac{n(n+1)} {2} = 2n + 3$$
] arbitrary coefficients per displacement component. Hence, in [image: 
$$\mathfrak{R}^{2}$$
] or [image: 
$$\mathfrak{R}^{3}$$
], to improve from n − 1 to n,  n = 1, 2⋯ degrees of stress distributions, we need 2 or 2n + 3 extra nodes, i.e., 4 or 6n + 9 extra Rayleigh mode vectors. ■

9.9.1.1 
Patch Test with Elements: Convex, Concave, and Triangle with a Side Node: For Sect. 9.8
The evaluation of nodal forces, in addition to obtaining the element stiffness matrices and assembling them, is perhaps the most crucial part. The procedure is fully presented42 in [8]. Pay particular attention to Fig. 6.3

The most important clue is Clough’s remarks, Quotation III of the Introduction. The virtual work principle43 mandates the additional nodal forces due to the nonlinear boundary profiles in these non-conforming or incompatible elements. Before solving the patch test problem for bending, verify that the rigid body modes yield zero stresses throughout. Also, check that uniform stresses can be exactly reproduced.



References
1.
Almansi E (1907) Un teorema sulle deformazioni elastiche dei solidi isotropi. Atti della reale accademia dei nazionale Lincei 16:865–868MATH

2.
Céa J (1964) Approximation variationnelle des problèmes aux limites. PhD thesis, Université de Grenoble, Grenoble. Annales de l’institut Fourier

3.
Clough RW (1958) Structural analysis by means of a matrix algebra program. In: Proceedings, conference on electronic computation, A.S.C.E. structural division, Kansas City, pp 109–132

4.
Clough RW (1960) The finite element method in plane stress analysis. In: Proceedings, 2nd conference on electronic computation, A.S.C.E. structural division, Pittsburgh, pp 345–378

5.
Clough RW (1979) The finite element method after twenty-five years: a personal view. In: Proceedings, international conference on engineering application of the finite element method, Computas, Veritas Center, Hovik, pp 345–378

6.
Courant R (1943) Variational methods for the solution of problems of equilibrium and vibration. Bull Am Math Soc 49(1):1–29MathSciNetCrossrefMATH

7.
Dasgupta G (2012) Incompressible and locking-free finite elements from rayleigh mode vectors: quadratic polynomial displacement fields. Acta Mech 223(8):1645–1656MathSciNetCrossrefMATH

8.
Dasgupta G (2014) locking-free compressible quadrilateral finite elements: Poisson’s ratio-dependent vector interpolants. Acta Mech 225(1):309–330MathSciNetCrossrefMATH

9.
Euler L (1744) Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti (The method of finding plane curves that show some property of maximum or minimum…). Aapud Marcum-Michaelem Bousquet & Socios, Lausannæ & Genevæ; Eulero L (1952) MDCCXLIV. In: Carathéodory C (ed) Opera Omnia I, vol XXIV, Bern

10.
Fenner RT (1975) Finite element methods for engineers. Imperial College Press/Macmillan, London/New YorkMATH

11.
Frewer M (2009) More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech 202(1):213–246CrossrefMATH

12.
Gander MJ, Wanner G (2012) From Euler, Ritz, and Galerkin to modern computing. SIAM Rev 54(4). doi:10.1137/100804036

13.
Green AE, Zerna W (1968) Theoretical elasticity. Oxford University Press/Dover, Oxford/New YorkMATH

14.
Irons BM (1963) Stress analysis by stiffnesses using numerical integration. Tech. Rep. ASM 622, Rolls Royce Ltd.

15.
Irons BM (1971) Quadrature rules for brick based finite elements. Int J Numer Methods Eng 3:293–294CrossrefMATH

16.
Irons BM, Razzaque A (1972) Experience with the patch test for convergence of finite elements method. In: Aziz A (ed) Mathematical foundations of the finite element method with application to partial differential equations. Academic, New York, pp 557–587Crossref

17.
MacNeal RH (1989) Toward a defect-free four-noded membrane element. Finite Elem Anal Des 5(1):31–37Crossref

18.
MacNeal RH (1994) Finite elements: their design and performance. Marcel Dekker, New York

19.
Michal Křížek PN, Stenberg R (eds) (1994) Finite element methods: fifty years of the Courant element. CRC Press, Boca Raton (Marcel Dekker, Jyvaskyla, 1993)

20.
Quek S (1983) Spline smoothing of two-dimensional data series with precision estimation applied to satellite navigation. Technical Report. Department of Surveying Engineering, University of New Brunswick. URL https://books.google.com/books?id=gNwyNAEACAAJ


21.
Ritz W (1908) Über eine neue methode zur lösung gewisser variationalprobleme der mathematischen physik. J Reine Angew Math 135:1–61MATH

22.
Robinson J (1976) A single element test. Int J Comput Methods Appl Mech Eng 7:191–200Crossref

23.
Rogers DF, Adams JA (1990) Mathematical elements of computer graphics. McGraw-Hill, New York

24.
Spencer AJM (1980) Continuum mechanics. Longman, London (also 1990 Dover, New York)

25.
Stakgold I (1967) Boundary value problems of mathemtical physics. Macmillan series in advanced mathematics and theoretical physics, vol 1. Macmillan, New York

26.
Strang G (1972) Variational crimes in the finite element method. In: Aziz AK (ed) Mathematical foundations of the finite element method with application to partial differential equations. Proceedings Symposium, University of Maryland, Baltimore. Academic, New York, pp 689–710

27.
Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice-Hall, Englewood CliffsMATH

28.
Taig IC (1962) Structural analysis by the matrix displacement method. Tech. rep., British Aircraft Corporation, Warton Aerodrome: English Electric Aviation Limited, Report Number SO 17 based on work performed ca. 1957

29.
Taylor RL (1972) On completeness of shape functions for finite element analysis. Int J Numer Methods Eng 4(1):17–22MathSciNetCrossrefMATH

30.
Taylor RL, Beresford PJ, Wilson EL (1976) A nonconforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219CrossrefMATH

31.
Wachspress E (2015) Rational bases and generalized barycentrics: applications to finite elements and graphics. Springer, New YorkMATH

32.
Wendroff B (1965) Bounds for eigenvalues of some differential operators by the Rayleigh-Ritz method. Math Comput 19(90):218–224MathSciNetCrossrefMATH

33.
Wilson EL (2003) Static and dynamic analysis of structures. Computers & Structures, Berkeley

34.
Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1971) Incompatible displacement models. In: Fenves ST (ed) Proceedings, ONR symposium on numerical and computer method in structural mechanics, University of Illinois, Urbana

35.
Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: Fenves SJ, Perrone N, Robinson AR, Schnobrich WC (eds) Numerical and computer models in structural mechanics. Academic, New York, pp 43–57



Footnotes
1Interelement displacement discontinuity is absent, and patch tests can be satisfied.

 

2After improving the accuracy from linear to quadratic displacement fields, the h-convergence criterion can reduce discretization errors by making element sizes smaller.

 

3Shown as the dot and cross within circles in the outward and inward directions.

 

4In Sect. 6.3 the two element problem was analyzed for uniform axial stresses.

 

5St. Venant’s principle will no longer prevail, this has caused many patch test failures.

 

6This will show that elements are better characterized by the number of nodal degrees-of-freedom rather than the polygonal sides.


 

7This will be achieved in Sect. 9.2.

 

8In Eq. (9.5c) the Rayleigh mode vectors for the fifth node are derived. In Sect. 9.9.1, it is proved that each additional degree in stress polynomials requires four degrees-of-freedom that is accommodated by two additional nodes.

 

9By selecting a smaller element size monotonically, any prescribed error bound can be met. This is the “h-convergence” criterion for elliptic partial differential equations.

 

10Courant’s last sentence in [6] is: “However, it might be expected that a smooth interpolation of the net functions obtained will yield functions which themselves with their derivatives are fairly good approximations to the actual quantities.” Courant definitely envisioned smoothing the response field (he termed “net functions”) discontinuities, especially when only a few elements are used. This testifies to the assertion for “variational forgiveness,” elaborated in Sect. 9.4.5.

 

11Recall, the notation [image: 
$$\boldsymbol{\mathcal{R}}_{i}$$
] denotes the ith Rayleigh displacement mode vector.

 

12Ordinarily, RayleighModes2D[3, x, y] will be essential. The efficiency due to Eq. (9.7) exhibits the power of computational thinking that harnesses a physical principle.

 

13For quadratic interpolants Wilson analyzed the issue in detail in Chap. 6 of [33].

 

14This is unavoidable when the displacements u(x, y), v(x, y) are not linear in (x, y).

 

15In their monograph [27], Taig nor his seminal report [28] was mentioned.

 

16Its limitations can be diagonsed due to its lack of a geometric foundation unlike perspective geometry [23], or projective geometry and its Padé representation [31].

 

17Strang and Fix continued: “Piecewise polynomials are the best element boundaries ….” This is questionable because many boundaries are described with trigonometric functions.

 

18The author emphasized this sentence to clearly point out that the “essential boundary conditions” should not be singled out to be an entity that “should be respected,” as implied by Strang and Fix on page 172 of [27]

 

19This author is unaware of “derivatives in the mean-square sense” outside stochasticity.


 

20It says: “two wrongs do make a right, in California.”

 

21Especially, when procedural programming was the only available tool.

 

22Quoted from the opening remark of [6]; on May 3, 1941, in this invited address Courant literally initiated finite elements with triangulation for elliptic boundary value problems, vide [19].

 

23Any undesirable departure can be tempered with a finer mesh.

 

24Like the Gibbs phenomenon, overshoots do not die out with higher order elements.

 

25In the last paragraph, he used the term “element” to designate a discretizing triangle.

 

26Differential equations of 2n order needed n-degree continuous test functions, [12].

 

27Where all norms are equivalent; convergence in one norm guarantees it in others.

 

28The first and second objections are thus inconsequential to our formulation.

 

29The Buckingham Π theorem needs this non-dimensional parameter for invariance.

 

30Before undertaking the single element test [22], the main computer code should be thoroughly tested. A boundary load calculation module, which suits the element to be tested, should be added.

 

31Particularly helpful when: (1) the analytical solution of the governing equation is intractable; (2) the appropriate boundary conditions are non-intuitive, as in the plate problems with free-edges.

 

32
Closed-form exact integration circumvents numerical contaminations. Due to the polynomial structure of variables only one routine to integrate z
                
                      n
                     yielding z
                
                  n+1∕(n + 1) suffices.

 

33We consider only polynomials, not, for example, any square root function.

 

34The term vector in linear algebra means a column matrix. For tensors, physical quantities with one index, e.g.[image: 
$$\hat{\mathbf{n}}$$
]: unit outward normal on Γ, is a first rank tensor or a vector.

 

35The number of degrees-of-freedom is presented in Sect. 9.9.1.

 

36Linear displacement functions recreate constant stress/strain fields exactly.

 

37This is why the flexural patch tests, in arbitrary directions, are not successful with four-node elements.

 

38In (x, y), all n + 1 terms x
              
                    i
                  
              y
              
                n−i
              , i = 0, …, n are taken for nth degree polynomials.

 

39The intent is to eliminate all failure modes that MacNeal [17] mentions in his section entitled “Comparison of the failure modes of various element formulations”.

 

40To draw Fig. 9.17, select a rectangular region and draw a curved diagonal, then select two nodes on the curve.

 

41For incompatible modes, the nodal forces are virtual work quantities.

 

42Not included in this textbook but is recommended as a reading assignment.

 

43From the variational formulation, the generalized “forces” (dual of the Ritz’s generalized coordinates) are indeed the virtual quantities shown in Fig. 6.3


 




              Appendix A Symbolic Computation with
              Mathematica
              (for Scalar and Vector Fields)
            

              Abstract
              To enhance concept development,
              Mathematica
              combines
              Lisp
              (McCarthy et al., LISP I Programmers manual. Tech. rep., Artificial Intelligence Group, M.I.T. Computation Center and Research Laboratory, Cambridge, 1960) and
              Prolog
              (Dougherty, Natural language computing: an English generative grammar in prolog. Lawrence Erlbaum, Hilsdale, 1994) structures. Thus codes presented in this textbook for 2D continua can be employed in 3D with minor modifications. All useful
              Mathematica
              concepts and syntaxes are explained here. All necessary
              Mathematica
              routines are included in the book. The reader does not have to type ASCII source codes.
              Copy-paste
              from PDF to
              Mathematica
              notebook
              is encouraged. Readers can easily acquaint themselves with using notations such as:
            

              @@, /@, /.
            

              They behave like other familiar
              symbols
              like:
            

              +, *
            

              Implicit looping via the
              Map
              function makes the code quite readable. The
              pure function
              construct with
              #, &
              furnishes on-the-fly definitions that are handy and easy to modify.
            

              The reader should consult available on-line help files to learn the complete capabilities of symbolic formulations in concept development. For example,
              Nest, NestList, Fold, FoldList, FixedPoint
              to name a few accelerate experimentations with algorithms and computer code development. For example:
              http://www.mathprogramming-intro.org/book/node535.html
              presents the Gram–Schmidt orthogonalization procedure that is enormously helpful in a multitude of designs of computing procedures.
            

              For engineers and general readers the texts (Ruskeepää H, Mathematica navigator: mathematics, statistics and graphics. Elsevier/Academic, Amsterdam/Boston, 2009; Trott, The
              mathematica
              guidebook for programming. Springer, New York, 2004) provide an excellent introduction. For physicists (Grozin, Introduction to
              mathematica
              ®;
              for physicists. Springer, New York, 2013) is recommended.
            

                A.1 Everything Is a
                Variable
              

                If the
                UNIX
                system is conceived to be a ‘giant’ word processor, then the finite element method, by the same token, behaves like a general purpose interpolation scheme. The analyst should
                furnish
                the order of interpolations from physical considerations to navigate through a ‘third party’ code. Students and practitioners can avoid the back-box approach by judiciously implementing algebraic constructs of concept development by harnessing the power of symbolic computation. Therein, all mathematical structures and operations (even the rules of addition and multiplication) are variable and hence, can be modified. This signifies the marked difference between (regular) mathematics and
                computer mathematics.
              
A.1.1 Changing Addition and Multiplication Rules

                  Will it not be effective and desirable to calculate the sensitivities of a generic solution with respect to parent design parameters? The problem is therefore to obtain the solution, say
                  s
                  (
                  a
                  ), associated with a parent parameter
                  a
                  , when
                  a
                  →
                  a
                  +
                  b
                  , 
                  b
                  : small. Here is how ds∕da can be effectively obtained alongside s(a) by
                  re-defining symbolically
                  addition, multiplication, and exponential operations—as indicated in Listing
                  A.1
                  .
                

                    Listing A.1 Sensitivity analysis; by changing definitions of
                    Times
                    and
                    Power
                  

                    In[1]:= Global\[RawBackquote]b
In[2]:= Unprotect[Expand];
Expand[x_[a_. + y_. b]] := (
x[a] + y b x’[a]) /; (
x =!= Plus && x =!= Times  )
Protect[Expand];

In[5]:=Unprotect[Power, Times];
(a_ + y_. b)^n_ := a^n + n a^(n - 1) y b
0. b := 0
b^n_ /; n > 1 := 0
a_./(c_ + d_ b) := (a/c) (1 - (d/c) b)
Times[(x_ + y_  b), (xx_ + yy_ b)] := x xx + (xx *y + yy * x) b
Times[c_ , (x_ + y_ b)] := x c + y c b
Protect[Power, Times];

In[13]:=$Post = Expand



                  


                  First time readers can skip the
                  Mathematica
                  syntax in Listing
                  A.1
                  .
                

                  An eigenvalue computation example can be cited when the code in Listing
                  A.1
                  is pre-loaded. Let us start with a random symmetric matrix:
                  [image: $$\displaystyle{ \left [x\right ] = \left [\begin{array}{*{10}c} 117,99\\ 99, 85 \end{array} \right ];\qquad \begin{array}{*{10}c} \text{calculated eigenvalues are: }\dfrac{77092} {383} \text{ and }\dfrac{274} {383}\\ \text{using the} \ \mathit{Mathematica } \ \text{function} \ \mathtt{Eigenvalues} \end{array} }$$]

 (A.1)


                  Now
                  [image: $$\left [x\right ]$$]
                  is perturbed to
                  [image: $$\left [y\right ]:$$]
                  [image: $$\displaystyle{ \left [y\right ] = \left [\begin{array}{*{10}c} 117 &99 + b\\ 99 + b & 85 \end{array} \right ];\qquad \begin{array}{*{10}c} \text{eigenvalues: }\dfrac{407\ b} {702} + \dfrac{77092} {383} \text{ and }\dfrac{295\ b} {702} + \dfrac{274} {383}\\ \text{after the first order perturbation with a } `small'\ b \end{array} }$$]

 (A.2)


                  The result can be organized, for the eigenvalue solution function s, as:
                  [image: $$\displaystyle{ s\Big(\left [x\right ]\Big) = \left \{\begin{array}{*{10}c} \dfrac{77092} {383} \\ \dfrac{274} {383} \end{array} \right \}\text{ and }\quad \left.\frac{\partial s\Big(\left [x\right ]\Big)} {\partial b} \right \vert _{b=0} = \left \{\begin{array}{*{10}c} \dfrac{407} {702} \\ \dfrac{295} {702} \end{array} \right \} }$$]

 (A.3)


                  when b is the perturbation on the diagonal terms.
                
The aforementioned idea can be generalized for more than one perturbation variable.

                  The important point to be recognized in this example is that even the standard rules of arithmetic operations can be modified as needed. These capabilities in
                  Mathematica
                  have contributed to the concept of
                  Computer Mathematics
                  where ‘restrictions’ in conventional mathematics can be conveniently bypassed. A useful example with
                  vectors
                  is now presented.
                  [image: $$\displaystyle{ \left \{v\right \} = \left \{\begin{array}{*{10}c} a\\ b \\ c \end{array} \right \};\quad \begin{array}{*{10}c} \text{in}\ \mathit{Mathematica}:\ \mathtt{v =\{ a,b,c\}};\ \text{ with the }\ \mathtt{List}\ \text{ operator: } \\ \mathtt{v = List[a,b,c]}\quad \text{where}\ \mathtt{List}\ \text{is the function name} \\ \text{ the arguments are encased in square brackets }\mathtt{[}\ and\ \mathtt{]} \end{array} }$$]



                  With a scalar t, using the
                  in-fix
                  notation in classical mathematics:
                  [image: $$\displaystyle{ t+\left \{v\right \}\text{ is undefined};\text{ but }t{\ast}\left \{v\right \}\text{is }\left \{\begin{array}{*{10}c} t {\ast} a\\ t {\ast} b \\ t {\ast} c \end{array} \right \};\text{ however,} }$$]

 (A.4a)


                  [image: $$\displaystyle{ \begin{array}{*{10}c} \text{in}\ \mathit{Mathematica}:\ \mathtt{v + t}\ \text{yields}\ \mathtt{List[a + t,\ b + t,\ c + t]}:\end{array} \left \{\begin{array}{*{10}c} a + t \\ b + t\\ c + t \end{array} \right \} }$$]

 (A.4b)


                

                  The argument is that by treating ∗ and + as symbols
                  Mathematica
                  extends the same idea without jeopardizing any other mathematical concept. For example, For a matrix
                  [image: $$\left [m\right ]$$]
                  ,
                  Mathematica
                  defines
                  [image: $$t + \left [m\right ]$$]
                  accordingly.
                


                  A.1.2 Rewriting Listing A.1 as a
                  Mathematica
                  Package
                

                  Let us note that a user can define ‘structured functions’ in
                  Mathematica
                  utilizing the
                  BeginPackage[]
                  constructs, as in Listing
                  A.2
                  .
                

                    Listing A.2 Do not use this code. First time readers—focus
                    only
                    on the structures with
                    [RawBackquote]
                    :
                    Begin and End
                    ,
                    BeginPackage and EndPackage
                    . Use Listing A.3 for testing
                  

                    BeginPackage["FirstOrderWithEpsilon\[RawBackquote]", "Global\[RawBackquote]"]
(*copyright 1994, Gautam Dasgupta *)

FirstOrderWithEpsilon::usage = "FirstOrderWithEpsilon[x]
sets up rules for first order arithmetic."

FirstOrderPerturbation::usage =
"FirstOrderPerturbation[\[Lambda]]
sets up rules for first order perturbation with \[Lambda]."

Begin["\[RawBackquote]Private\[RawBackquote]"]

FirstOrderWithEpsilon[\[Epsilon]_] := Module[{headers},
headers = {Plus, Times, Equal};

Unprotect[Expand];
Expand[x_[a_. + b_. \[Epsilon]]] := (x[a] + b \[Epsilon] x’[a]) /; (
Not[ MemberQ[headers, x]] );   Protect[Expand];

Unprotect[Power, Times];
(a_ + b_. \[Epsilon])^n_ := a^n + n a^(n - 1) b \[Epsilon];
0. \[Epsilon] := 0; \[Epsilon]^n_ /; n > 1 := 0;
a_./(c_ + d_ \[Epsilon]) := (a/c) (1 - (d/c) \[Epsilon]) ;
Times[(c_ + d_ \[Epsilon]), (a_ + b_ \[Epsilon])] :=
a c + (a d + b c) \[Epsilon] ;
Times[c_ , (a_ + b_ \[Epsilon])] := a c + b c \[Epsilon] ;
Protect[Power, Times]; $Post = Expand;      ]

FirstOrderPerturbation[\[Lambda]_] := FirstOrderWithEpsilon[\[Lambda]]

End[]
EndPackage[]



                  


                  To execute
                  Mathematica
                  we should also use
                  [RawDoubleQuote]
                  as in Listing
                  A.3
                  .
                

A.1.3 Rewriting Listing A.1 for Use

                  We can copy-paste Listing
                  A.3
                  on a
                  Mathematica
                  notebook.
                

                    Listing A.3 Use this code with
                    [RawBackquote]
                    and
                    [RawDoubleQuote]
                  

                    BeginPackage[
\[RawDoubleQuote]FirstOrderWithEpsilon\[RawBackquote]
\[RawDoubleQuote],\[RawDoubleQuote]Global\[RawBackquote]
\[RawDoubleQuote]
]
(*copyright 1994, Gautam Dasgupta *)

FirstOrderWithEpsilon::usage = "FirstOrderWithEpsilon[x]
sets up rules for first order arithmetic."

FirstOrderPerturbation::usage =
"FirstOrderPerturbation[\[Lambda]]
sets up rules for first order perturbation with \[Lambda]."

Begin[
\[RawDoubleQuote]\[RawBackquote]Private\[RawBackquote]
\[RawDoubleQuote]
]

FirstOrderWithEpsilon[\[Epsilon]_] := Module[{headers},
headers = {Plus, Times, Equal};

Unprotect[Expand];
Expand[x_[a_. + b_. \[Epsilon]]] := (x[a] + b \[Epsilon] x’[a]) /; (
Not[ MemberQ[headers, x]] );   Protect[Expand];

Unprotect[Power, Times];
(a_ + b_. \[Epsilon])^n_ := a^n + n a^(n - 1) b \[Epsilon];
0. \[Epsilon] := 0; \[Epsilon]^n_ /; n > 1 := 0;
a_./(c_ + d_ \[Epsilon]) := (a/c) (1 - (d/c) \[Epsilon]) ;
Times[(c_ + d_ \[Epsilon]), (a_ + b_ \[Epsilon])] :=
a c + (a d + b c) \[Epsilon] ;
Times[c_ , (a_ + b_ \[Epsilon])] := a c + b c \[Epsilon] ;
Protect[Power, Times]; $Post = Expand;      ]

FirstOrderPerturbation[\[Lambda]_] := FirstOrderWithEpsilon[\[Lambda]]

End[]
EndPackage[]



                  


                  As in the case of a built-in function:
                  ?FirstOrderWithEpsilon
                  reproduces the
                  usage
                  message provided for
                  FirstOrderWithEpsilon
                  :
                

                  [image: A300727_1_En_BookBackmatter_Figa_HTML.gif]
                



                A.2 A
                Mathematica
                Overview
              

                All necessary
                Mathematica
                routines are included in the book. The reader does not have to type. Take a PDF and run an OCR
                1
                and obtain the source code in ASCII
                2
                characters.
              

                In the early chapters,
                Mathematica
                Greek characters are not used (some PDF readers improperly interpret special characters). The user can input a Greek character; for example, by typing
                ∖[Alpha]
                the character
                α
                is generated. There is a short-cut to typing Greek characters; the escape key
                esc
                should be pressed before and after
                a
                to get
                α
                on the screen. Similarly
                esc b esc
                will write
                β
                and the
                palettes
                pull-down menu in
                Mathematica
                facilitates the input of special mathematical characters and symbols.
              
A.2.1 Input and Output

                  The notebook
                  frontend
                  is the development environment in
                  Mathematica
                  with a complete user-interface. It generates a file with extension
                  .nb
                  as a record of the session activity. In addition, the
                  compact
                  version is saved with the
                  .m
                  extension.
                

                  The
                  frontend
                  communicates with the
                  Mathematica
                  engine, which is called the
                  kernel
                  , via a two-way connection provided by the program
                  MathLink
                  . The
                  frontend
                  allows user-friendly syntax but the
                  kernel
                  stores information input data in an unambiguous rigorous form akin to the
                  LISP
                  programming language, as shown in Listing
                  A.4
                  .
                

                    Listing A.4
                    FullForm
                    operation
                  

                    In[1]:= a = x/Sqrt[5] (*define a to be x divided by square root of 5 *)
Out[1]= x/Sqrt[5]

In[2]:= FullForm[a]
Out[2]//FullForm=
Times[Power[5,Rational[-1,2]],x]



                  


                  Note that
                  [image: $$a = \frac{x} {\sqrt{5}}$$]
                  is input as the one-dimensional character string in the typewriter-like format. When executed,
                  Mathematica
                  provides the input sequence designator
                  In[1]:=
                  before the user input. The output is tagged with the same numerical sequence indicator and typed out as
                  Out[1]=
                  the calculated result. The convention of
                  :=
                  with the input will be explained later within the context of
                  SetDelayed
                  .
                

                  In Fig. 
                  A.1
                  , the
                  TreeForm
                  graph of
                  [image: $$\Big(x/\sqrt{(}5)\Big)$$]
                  is displayed.
                  [image: A300727_1_En_BookBackmatter_Fig1_HTML.gif]
Fig. A.1
                          TreeForm of
                          [image: $$\frac{x} {\sqrt{5}}$$]
                          ; the levels of different objects are more clear
                        




                

                  The
                  LISP
                  -like output with
                  kernel
                  operators
                  Times, Power, Rational
                  are
                  Mathematica
                  native commands that
                  always
                  start with an uppercase roman character. The system variables, e.g. the
                  search path
                  ,
                  $Path
                  , starts with a
                  $
                  . This naming convention for
                  Mathematica
                  objects motivated the author to name his user-defined variables with a lowercase first character. The
                  notebook
                  for Fig. 
                  A.1
                  is in Listing
                  A.4
                  .
                

A.2.2 Symbols and Functions

                  A legitimate statement in
                  Mathematica
                  is called an
                  expression
                  . An
                  expression
                  consists of
                  symbols
                  and operations on them designated by
                  functions
                  . The numbers 1,2… are special symbols, because they play a special role that cannot be altered by the user. On the other hand, broadly speaking, computing deals with character strings and their structures, which can be altered by functions. Hence functions can be recursively defined to be symbols.
                

A.2.3 Atomic Expressions

                  This necessitates a clarification via the definition of an
                  atomic expression
                  when there cannot be any simpler form for the said
                  expression.
                

                  Since strings are the fundamental objects of computing, the mechanism for string declaration is important:
                  [image: $$\displaystyle{ \mathtt{z = \textquotedblright abc\textquotedblright }:\ \text{ a string is delimited with double quotes} }$$]

 (A.5)


                  Since the string
                  z
                  cannot be broken down into any simpler form, it is an
                  atomic expression
                  . There is a
                  function
                  called
                  AtomQ
                  that asks a question (because of this, the name ends with a
                  Q
                  ) about its argument and yields
                  True
                  or
                  False
                  . Thus,
                  AtomQ[z]
                  will return
                  True
                  .
                

                  In the ‘labyrinth’ of
                  symbols
                  and
                  functions
                  the mathematical structure is implemented by a special function
                  List
                  that is the fundamental object of symbolic computation. After
                  FORTRAN
                  , list manipulation was realized in computer programs by McCarthy [
                  6
                  ,
                  7
                  ]. There is a rich logical foundation for this computing philosophy provided by Church’s
                  λ
                  -calculus [
                  1
                  ], which is outside the scope of this discourse. The
                  List
                  function ties its arguments in the given order. Furthermore, a list of functions could be one symbol. This complete recursive formation of symbols, functions, and lists bestows tremendous computing strength to
                  Mathematica
                  that can simulate any other programming paradigm [
                  5
                  ].
                  
                    
                  
                  
                    
                  
                

                  The argument of a function is a
                  placeholder
                  . The definition has to abide by this restriction without confusing it with variables. This is the reason why the variables in a function definition must be underscored, like
                  f[ x_ ]
                  . Operations on the variable constitute the right-hand side (the body) of the function definition, such as
                  Sqrt[x]
                  . Most of the
                  Mathematica
                  names, which start with an uppercase roman character, are pretty intuitive. Evaluation means rewriting the body with the supplied value of the variable. Hence it does not make any sense for the
                  kernel
                  to look at the right-hand side until execution. This is why, a function with a placeholder is linked to its body by the binary operator
                  SetDelayed
                  , denoted by
                  :=
                  (i.e., colon equal) rather than immediately setting with
                  =
                  (equal ) symbol.
                

                  Thus, to designate
                  [image: $$\Big(x/\sqrt{(}5)\Big)$$]
                  the structure of the definition of a
                  function
                  f
                  with an argument
                  x
                  is:
                  [image: $$\displaystyle{ \mathtt{f[x\_]:= x/Sqrt[5]} }$$]

 (A.6)


                  This at once suggests the construction of a
                  pure function
                  where without a name the function is defined by its action. For example, the first and second place holders (
                  free variable
                  ) can be slots number 1,2, which can be designated by
                  #1, #2
                  , respectively. Without ambiguity for a function with only one variable,
                  #1
                  can be condensed to
                  #
                  . But we need an expression without a name to be a function with a special designator called
                  Function
                  in
                  Mathematica
                  .
                


                  A.2.4
                  Pure
                  or Anonymous Function
                

                  A function can be described by its
                  action
                  , which will avoid designating a function with a (proper) name. Thus:
                  [image: $$\displaystyle{ \mathtt{f[x\_]:= Sqrt[x]}\ \text{ is identical with }\ \mathtt{Function[Sqrt[\#]]} }$$]

 (A.7a)


                  [image: $$\displaystyle{ \text{for example}\quad \mathtt{Function[Power[\#1  ,\#2]]} }$$]

 (A.7b)


                  means “the value of the first argument raised to the power by the second argument,” thus:
                  [image: $$\displaystyle{ \mathtt{a = Function[Power[\#1\,\#2]];\ a[2,3]}\ \text{ yields }8\text{ equivalently,} }$$]

 (A.8a)


                  [image: $$\displaystyle{ \mathtt{Function[Power[\#1\,\#2]][x,y]};\ \text{ yields }x^{y} }$$]

 (A.8b)


                  This mechanism of constructing a nameless function
                  3
                  is also known as the
                  pure function
                  and (from the computing point of view) reflects the construction according to the
                  λ
                  -calculus highlighted by the notion of variable binding. Since the local variables are to be protected within the scope of a function, the versatile
                  function
                  in
                  Mathematica
                  is
                  Module
                  :
                  [image: $$\displaystyle{ \mathtt{f[x\_,\ a]:= Module[\{b\},\ x = 5x;\ b = a\ Log[x];\ Sqrt[b]\ ]} }$$]

 (A.9a)


                  [image: $$\displaystyle{ \text{ yields }a\ \log (\sqrt{5x}) }$$]

 (A.9b)


                  where the local variable
                  b
                  is declared to be the first argument of the
                  Module
                  . Since the implementation of the rewrite rule is essentially
                  call by value
                  , execution of
                  f
                  does not alter the input value of
                  x
                  . The
                  Mathematica
                  rule-rewrite paradigm is akin to call by value. An exception is shown in Listing
                  A.5
                  .
                
A.2.4.1 Call by Reference Updates the Function Argument

                    AddTo[]
                    in Listing
                    A.5
                    alters the content of the symbol
                    x.
                  
Listing A.5 Updating the function argument; first time readers can skip this

                      In[1]:= x = 5
Out[1]= 5
In[2]:= AddTo[x, 5]
Out[2]= 10
In[3]:= x
Out[3]= 10



                    


                    For list objects,
                    AppendTo[]
                    changes the argument:
                  

                    x = {a, b}; AppendTo[x, c]; x
                  
outputs {a, b, c}


A.2.5 Pre-Fix, In-Fix, and Post-Fix Notations

                  In everyday language we say ‘add a and b’. Therein, the verb comes before the nouns.
                  Functions
                  are defined by action that has a quality of verbs. Of course, arguments of a function are noun-like objects. An almost literal translation of ‘add a and b’ will be
                  Plus[a,b]
                  . This is a pre-fix notation, because the function
                  Plus
                  comes before (
                  pre
                  ) the arguments. However, it is much more convenient to state a + b where the noun
                  Plus
                  has been replaced by a non-alphabetic notation +. Since the function is inside (
                  in
                  ) we term it to be the in-fix notation. The syntax in
                  in-fix
                  notation is (
                  ∼
                  separated):
                  [image: $$\displaystyle{ \mathtt{a}\ ^{\sim }\ \ \mathtt{h}\ ^{\sim }\ \mathtt{b}\quad \text{ and that is identical with the}\mathit{pre - fix}\ \text{form }\quad \mathtt{h[a,b]} }$$]

 (A.10)


                  This is extremely advantegeous in frequently used
                  Mathematica
                  special functions (such as
                  Map
                  to be discussed in Sect. 
                  A.3
                  whose
                  in-fix
                  notation is
                  /@
                  ).
                

                  As the name signifies, in a
                  post-fix
                  notation the function name comes last:
                  [image: $$\displaystyle{ \text{in}\ \mathit{post - fix}\ \text{notation: }\ \mathtt{a\ //\ h} }$$]

 (A.11a)


                  [image: $$\displaystyle{ \text{ is identical with the}\ \mathit{pre - fix}\ \text{form }\ \quad \mathtt{h[a]} }$$]

 (A.11b)


                  For a single argument function this is useful. For example, we can say ‘generate the LaTeX code for the
                  Mathematica
                  result of ∫log[sin(x)] dx’. First, the result is:
                  [image: $$\displaystyle{ \frac{1} {2}i\left (x^{2} + \text{Li}_{ 2}\left (e^{2ix}\right )\right ) - x\log \left (1 - e^{2ix}\right ) + x\log (\sin (x)) }$$]

 (A.12a)


                  [image: $$\displaystyle{ \text{to typeset execute:}\quad \mathtt{Integrate[Log[\ Sin[x]],\ x]\ //\ TeXForm} }$$]

 (A.12b)


                  whose output is:
                  [image: A300727_1_En_BookBackmatter_Equ19_HTML.gif]

 (A.12c)


                  The ASCII string of Eq. (
                  A.12c
                  ) is used to typeset Eq. (
                  A.12a
                  ).
                

                  In order to produce Eq. (
                  A.12c
                  ) in LaTeX, following comma separated TE X
                  special characters
                  :
                  [image: A300727_1_En_BookBackmatter_Equ20_HTML.gif]

 (A.13a)


                  [image: A300727_1_En_BookBackmatter_Equ21_HTML.gif]

 (A.13b)


                  Only these ten LaTeX symbols need careful typesetting.
                



                A.3 List Operations and
                for each: Map[]
              

                In procedural languages the
                for, do
                loops require the bound on the indexing variables, even if the operation has to be performed on all elements. In object oriented languages
                foreach
                circumvents this. Listing
                A.6
                shows how
                Mathematica
                achieves this.
              

                  Listing A.6
                  Map
                  operation
                

                  In[5]:= a = {b, c, d} (* define a list *)
Out[5]= {b, c, d}

In[6]:= Clear[f]; f[a] (* function on a list *)
Out[6]= f[{b, c, d}]
In[7]:= Map[f, a] (* function on each item *)
Out[7]= {f[b], f[c], f[d]}

In[8]:= f /@ a (* short-cut with in-fix notation *)
Out[8]= {f[b], f[c], f[d]}

In[9]:=Clear[g]; SetAttributes[g, Listable](* to Map automatically *)
In[10]:= g[a]
Out[10]= {g[b], g[c], g[d]}

In[11]:= Sqrt[a] (* Listable attribute is by default in many functions*)
Out[11]= {Sqrt[b], Sqrt[c], Sqrt[d]}



                


                [image: $$\displaystyle\begin{array}{rcl} & & \text{The }\mathit{in - fix}\text{ notation for }\ \mathtt{Map}\ \text{ is }\ \mathtt{/@}\ \text{ thus: }\ \mathtt{f/@a}{}\end{array}$$]

 (A.14)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{ is identical with: }\mathtt{Map[f,a]}{}\end{array}$$]

 (A.15)


              

                The reader is strongly encouraged to visit
                Mathematica
                help files. For example,
                ? Map
                (a question mark before a
                Mathematica
                named object) will point to a description file. Also,
                ? *Map*
                will indicate all related functions. A very useful function is
                MapAt
                (notice, two words
                Map
                and
                at
                are connected together where each new word is capitalized—this convention is followed also in this textbook). Another important operator is
                MapIndexed
                where the positions of the arguments are automatically retrieved:
                [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{MapIndexed[f,\{a,b,c\}]}\text{ yields } \\ & & \mathtt{\{f[a,\{1\}],f[b,\{2\}],f[c,\{3\}]\}} {}\end{array}$$]

 (A.16)


              

                MapThread
                applies a function
                column-wise
                :
                [image: $$\displaystyle\begin{array}{rcl} \left [m\right ] = \left [\begin{array}{*{10}c} a&b\\ c &d \end{array} \right ];\quad \mathtt{MapThread[f,m]}\text{ yields }\mathtt{\{f[a,c],f[b,d]\}}& &{}\end{array}$$]

 (A.17)


                Note,
                Mathematica
                (unlike
                FORTRAN
                ) stores a matrix
                row-wise
                .
              


                A.4 Expression Structures:
                Head
                and
                Apply
                Replacement
              

                A syntactically valid input in
                Mathematica
                is an
                expression
                —often written as
                expression
                where the font emphasizes the computer mathematics aspect:
                [image: $$\displaystyle\begin{array}{rcl} \text{ with the structure: }expression = head[content]& &{}\end{array}$$]

 (A.18)


                The
                Mathematica
                built-in function
                Head
                can extract the head from any
                expression
                as shown in Listing
                A.7
                :
              

                  Listing A.7
                  Head
                  operation
                

                  In[1]:= Clear[a, f]; Head /@ {a, 2, 2.0, Pi, f[a]}
Out[1]= {Symbol, Integer, Real, Symbol, f}

In[2]:= Real /@ {a, 2, 2.0, Pi, f[a]}
Out[2]= {False, True, True, True, False}

In[3]:= Clear[g]; g[x_Real] := Sqrt[x] (* defined only for a Real argument *)
In[4]:= g /@ {a, 2, 2.0, Pi, f[a]}
Out[4]= {g[a], g[2], 1.41421, Sqrt[Pi], g[f[a]]}

In[5]:= Clear[h]; h[x_?NumericQ] := Sqrt[N[x]]
(* h returns a numerical value when possible *)
In[6]:= h /@ {a, 2, 2.0, Pi, f[a]}
Out[6]= {h[a], 1.41421, 1.41421, 1.77245, h[f[a]]}



                


                In computations, the definition of a
                real
                number is different from real vs. complex issues of traditional mathematics. A decimal number is called
                Real
                . Since 2 is an integer (not with a decimal point hence not
                Real
                )
                Mathematica
                keeps
                g[2]
                unevaluated, because the
                pattern
                of the argument:
                g[x_Real]
                does not
                match
                . A deep understanding of the
                pattern matching
                concept in
                Mathematica
                requires considerable familiarity with advanced materials. Maeder meticulously presents these aspects in his book [
                4
                ]. Wolfram emphasizes the fundamentals in [
                11
                ], while useful examples can be found in [
                10
                ].
              

                
                  
                
                
                  
                
              

                Apply
                is a
                function
                that changes the head in Eq. (
                A.18
                ):
                [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{Apply[g,f[a,b,c]]}\text{ yields }\mathtt{g[a,b,c]}: \text{ by replacing the head}{}\end{array}$$]

 (A.19a)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{due to popularity, with the }\textit{in - fix}\text{ notation: } \\ & & \mathtt{g@@f[a,b,c]}\text{ gives }\mathtt{g[a,b,c]} {}\end{array}$$]

 (A.19b)


                A useful example is
                mean,
                the sum of items in a list is obtained using
                Plus
                as the
                head
                :
                [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{Plus@@\{a,b\}}\text{ yields }\mathtt{a + b};{}\end{array}$$]

 (A.20)


                [image: A300727_1_En_BookBackmatter_Equ30_HTML.gif]

 (A.21)


              
A.4.1 Replacement Mechanisms and Part Selection

                  The common replacement
                  functions
                  are
                  Replace
                  and
                  ReplaceAll
                  :
                  [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{Replace[x,Rule[x,Log[y]]]}\text{ yields }\mathtt{Log[y]};{}\end{array}$$]

 (A.22a)


                  [image: $$\displaystyle\begin{array}{rcl} & & \text{ using }\textit{in - fix}\text{ notation for }\mathtt{Rule}: \\ & & \mathtt{Replace[x,x-> Log[y]]}; {}\end{array}$$]

 (A.22b)


                  [image: $$\displaystyle\begin{array}{rcl} & & \text{but }\mathtt{Replace}\text{ does }\textit{not}\text{ work on }\textit{sub - expressions} \\ & & \mathtt{Replace[\{x\},Rule[x,Log[y]]]}\text{ yields }\mathtt{\{x\}} {}\end{array}$$]

 (A.22c)


                  [image: $$\displaystyle\begin{array}{rcl} & & \text{ without looking into the }\mathtt{Rule} \\ & & \mathtt{ReplaceAll[\{x\},x-> Log[y]]}\text{ yields }\mathtt{\{Log[y]\}};{}\end{array}$$]

 (A.22d)


                  [image: $$\displaystyle\begin{array}{rcl} & & \textit{in - fix}\text{ form is }\mathtt{\{x\}/.x-> Log[y]}{}\end{array}$$]

 (A.22e)


                

                  Associated with
                  lists
                  one would like to replace one or more element(s) as in:
                  [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{ReplacePart[\{a,b,c,d,e\},\{2-> x,4-> y\}]}{}\end{array}$$]

 (A.23a)


                  [image: $$\displaystyle\begin{array}{rcl} & & \text{ yields }\mathtt{\{a,x,c,y,e\}}{}\end{array}$$]

 (A.23b)


                

                  The function
                  Part
                  (used in
                  ReplacePart
                  ) relates to the item number:
                  [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{Part[\{a,b,c,d,e\},2]}\text{ yields }\text{b}\text{: counted from the front}{}\end{array}$$]

 (A.24a)


                  [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{Part[\{a,b,c,d,e\},-2]}\text{ yields }\text{d} \\ & & \text{because a negative part is counted from the end} \\ & & \textit{in - fix}\text{ notation: double square brackets; }\mathtt{\{a,b,c,d,e\}[[3]]}\text{ yields }\mathtt{c}{}\end{array}$$]

 (A.24b)


                  For matrix computations, selection of a column with the parameter
                  All
                  is useful:
                  [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{\{\{a1,b1,c1\},\,\{a2,b2,c2\},\,\{a3,b3,c3\}\}[[All,2]]}\text{ yields} {}\\ & & \mathtt{\{b1,b2,b3\}}\text{ the same as: } {}\\ & & \mathtt{Transpose[\{\{a1,b1,c1\},\,\{a2,b2,c2\},\,\{a3,b3,c3\}\}][[2]]} {}\\ & & \text{or: }\mathtt{(\#[[2]])\&/@\{\{a1,b1,c1\},\,\{a2,b2,c2\},\{a3,b3,c3\}\}} {}\\ \end{array}$$]



                  Position
                  is the inverse operation of
                  Part
                  :
                  [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{\{\{a1,b1,c1\},\,\{a2,b2,c2\},\,\{a3,b3,c3\}\}[[2,3]]}\text{ yields }\mathtt{c2} {}\\ & & \mathtt{Position[\{\{a1,b1,c1\},\{a2,b2,c2\},\{a3,b3,c3\}\},c2]} {}\\ & & \text{yields the location }\mathtt{\{\{2,3\}\}}where\mathtt{c2}\text{ occurs in the }\textit{expression.} {}\\ \end{array}$$]



                

                  Part
                  has a short-cut
                  [[ ]]
                  but
                  Position
                  does not.
                  Part
                  or
                  Position
                  does not need a matrix (rectangular array) but
                  Transpose
                  does.
                  Dimensions
                  yields the size of a rectangular array with any number of indices.
                

A.4.2 Mathematica Miscellany

                  The
                  Mathematica
                  on-line help files describe complete capabilities of built-in objects. For example, in linear and nonlinear iterations
                  Nest, NestList
                  and
                  Fold, FoldList
                  , respectively, with
                  FixedPoint
                  to name a few, are frequently called.
                  4
                  For example,
                  ? Nest
                  is useful, and
                  ?? Nest
                  will show
                

                  [image: A300727_1_En_BookBackmatter_Figb_HTML.gif]
                

                  By double clicking
                  >>
                  we can get the full detail about the
                  Nest
                  function.
                
A.4.2.1 Concept Development

                    Mathematica
                    combines
                    Prolog
                    and
                    Lisp
                    structures. This permits extending the codes presented here for two-dimensional continua to three-dimensional cases with little modifications.
                  

                    To test out new ideas, implicit looping via the
                    Map
                    function makes the code quite readable. The
                    pure function
                    construct with
                    #, &
                    furnishes on-the-fly definitions that are handy and easy to modify.
                  


A.4.3 Graphics in Mathematica

                  Geometrical primitives, e.g.
                  Points[]
                  and
                  Line[]
                  , are the basic building blocks for
                  Graphics[]
                  . In addition, we need
                  directives
                  , e.g.
                  RGBColor[], PointSize[], AbsoluteThickness[]
                  to govern the primitives.
                

                  The names of
                  Mathematica
                  functions are quite intuitive. In fact, the purpose of
                  Plot[], Show[]
                  —to name a few—can be easily guessed.
                

                  Graphics[]
                  is displayed on the screen as a
                  side effect,
                  not as an output. In the same way
                  Sound[]
                  is rendered on speakers. Three-dimensional figures are displayed on two-dimensional screens using additional geometrical transformations. This is the reason why the
                  Graphics3D[]
                  function is needed to display a
                  Point[{x,y,z}].
                

                  Again, the reader is urged to read the on-line help files and review examples, whenever a new
                  Mathematica
                  object is encountered.
                




Appendix B Drawing and Analyzing Trusses

              Abstract
              Some practice problems are worked out using the code fragments given in Sect. 2 through Sect. 
              2.3.4
              . Here detailed developments are presented.
            
The truss problem captures all essential components of the finite element method. Basically, in other problems, the element stiffness matrix replaces the bar stiffness matrix. However, the boundary conditions in general are not as straightforward as in these truss problems.
A brief review of the bar element is included to help recall its crucial features.

              Some of the concepts, equations, and computer code fragments are repeated here (mainly from Chap. 
              2
              ) to emphasize formulations and computations.
            

              A Note on Color Graphics
            

              Mathematica
              facilitates color and gray shades. In the main body of the text color graphics were deemed unnecessary. To accent different physical aspects of symbolic variables, color graphics are included in this chapter.
            

              To turn a color graphics
              g
              into black and white only, most often the ASCII of
              g
              has to be destructed. This is not always an easy task, and
              should be avoided
              by implementing a replace rule such as:
              g/.RGBColor[__]->Black
            

              Additional Reading
            

              General development of the force and displacement methods can be found in [
              2
              ].
            

              For an excellent treatment of
              Mathematica
              graphics, consult [
              3
              ].
            
B.1 Summary of Truss Elements

                The
                virtual displacement
                is small and is indicated by a prefix
                δ
                . As in the calculus of variation, the prefix
                δ
                has an infinitesimally small magnitude for a physical quantity. For Fig. 
                1.19
                δ
                u(x) becomes:
                [image: $$\displaystyle\begin{array}{rcl} \delta u(x) = \mathfrak{n}_{2}(x)\ \delta u_{2}& &{}\end{array}$$]

 (B.1)


              

                In the general case, one can introduce independent nodal virtual displacements,
                δ
                u
                1
                and
                δ
                u
                2
                , as shown in Fig. 
                1.20
              

                Linear superposition holds for virtual fields; hence, in Fig. 
                1.20
                from the kinematic considerations alone:
                [image: $$\displaystyle\begin{array}{rcl} \delta u(x)& =& \mathfrak{n}_{1}(x)\ \delta u_{1} + \mathfrak{n}_{2}(x)\ \delta u_{2}\quad \text{or, }{}\end{array}$$]

 (B.2a)


                [image: $$\displaystyle\begin{array}{rcl} & =& <\mathfrak{n}_{1}(x),\ \mathfrak{n}_{2}(x)> \left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \}{}\end{array}$$]

 (B.2b)


                [image: $$\displaystyle\begin{array}{rcl} & =& <\mathfrak{n}_{1}(x),\ \mathfrak{n}_{2}(x)>\delta \left \{\begin{array}{*{10}c} u_{1} \\ u_{2}\end{array} \right \}{}\end{array}$$]

 (B.2c)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{leading to: }\delta \left [u(x)- <\mathfrak{n}_{1}(x),\ \mathfrak{n}_{2}(x)> \left \{\begin{array}{*{10}c} u_{1} \\ u_{2}\end{array} \right \}\right ] = 0{}\end{array}$$]

 (B.2d)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{for }\textit{linear systems}: u(x)- <\mathfrak{n}_{1}(x),\ \mathfrak{n}_{2}(x)> \left \{\begin{array}{*{10}c} u_{1} \\ u_{2}\end{array} \right \} = 0 \\ & & \text{because the functions: }\mathfrak{n}_{1},\mathfrak{n}_{2}\textit{don ot change}\text{ when }u_{1},u_{2}\text{ are small} {}\end{array}$$]

 (B.2e)


              

                A Notation for Nodal Forces
                [image: $$\mathfrak{V}$$]
                : Defined from Virtual Work-Like Scalars
              

                Let us now turn to the virtual work aspects. Let us define some (abstract) column matrix
                [image: $$\mathfrak{V}:$$]
                [image: $$\displaystyle\begin{array}{rcl} \mathfrak{V} = \left \{\begin{array}{*{10}c} \mathfrak{V}_{1} \\ \mathfrak{V}_{2} \end{array} \right \};\quad \text{which is conjugate to }\left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \}.& &{}\end{array}$$]

 (B.3)


                Just for the reference,
                [image: $$\mathfrak{V}$$]
                is typeset in LaTeX as:
                $\mathfrak{V}$
                with the Fraktur (a German calligraphic style). The character “V”  appearing as
                [image: $$\mathfrak{V}$$]
                will carry through the
                virtual work
                characteristics.
              

                Physically,
                [image: $$\mathfrak{V}$$]
                should be the force associated with the nodal displacement
                [image: $$\left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \}$$]
                . Mathematically—especially from the variational calculus point of view—the ‘product’ of
                [image: $$\left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \}$$]
                and
                [image: $$\mathfrak{V}$$]
                yields a work-like quantity.
              

                For the bar element the boundary is two disjointed end nodes. Let us define:
                [image: $$\displaystyle\begin{array}{rcl} & & \delta W\Big\vert _{\mathrm{boundary}} = \left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \} \odot \mathfrak{V}\vert _{\mathrm{boundary}} = \mathfrak{V}\vert _{\mathrm{boundary}} \odot \left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \};{}\end{array}$$]

 (B.4a)


                [image: $$\displaystyle\begin{array}{rcl} & & \odot \text{ represents the dot or inner product} \\ & & \mathfrak{V}\vert _{\mathrm{boundary}}\ \text{ is conjugate to }\left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \}{}\end{array}$$]

 (B.4b)


                Since there is no ambiguity, let us drop the suffix boundary from
                [image: $$\mathfrak{V},$$]
                and simply designate
                [image: $$\mathfrak{V}\big\vert _{\mathrm{boundary}},$$]
                by
                [image: $$\mathfrak{V}.$$]
                Let us be sure that only the nodal forces at degrees-of-freedom, as indicated by R
                1
                ,R
                2
                in Fig. 
                1.18
                , yield work terms when conjugated with the corresponding displacement degrees-of-freedom at nodes. Therefore it is consistent to identify,
                [image: $$\displaystyle\begin{array}{rcl} \mathfrak{V}& =& \left \{\begin{array}{*{10}c} R_{1} \\ R_{2} \end{array} \right \}: \text{end forces shown in Fig. 1.18}{}\end{array}$$]

 (B.5a)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{this clearly demonstrates that }R_{1},R_{2}\text{ are related to }virtual\ work \\ & & \text{hence, }R_{1},R_{2}\text{ can be termed to be }virtual\ work\ quantities \\ & & \text{due to }`unit'\ virtual\ displacements;\text{ all confined to the nodes}{}\end{array}$$]

 (B.5b)


                At this juncture, it is worthwhile to remember Clough’s profound cautionary comments,
                vide
                Quotation III of the Introduction, that system nodal forces on finite elements are none other than some appropriate
                virtual work quantities
                . No other meaning, like averaging of distributed forces (boundary traction, etc.) mimicking the St. Venant principle, should not be entertained. In fact, in all uni-axial structural members, such as tension or compression, torsion and bending of bars, the St. Venant principle definitely does not hold. In general, discrete boundary loads should always be evaluated as
                virtual work quantities
                associated with the corresponding
                ‘unit’ virtual displacement
                . This term, unit virtual displacement,
                by convention
                should mean that for the degree-of-freedom i,
                δ
                u
                i
                = 1, in the strict sense,
                δ
                u
                i
                is merely an infinitesimally small quantity. Mathematics does allow such loose use of words and symbols. However, in the
                operational sense
                ,
                δ
                u
                i
                = 1 could be permitted—for example, we accept factorial zero to be one because it does not conflict with any conventional operations, since we do not attach a dimension
                5
                like
                inch
                or
                cm
                with
                δ
                u
                i
                . In other words, Eq. (
                B.5a
                ) tells us that the distributed load intensity f(x) causes end loads
                [image: $$\left \{\begin{array}{*{10}c} R_{1} \\ R_{2}\end{array} \right \}$$]
                to appear. Then f(x) can be replaced by
                [image: $$\left \{\begin{array}{*{10}c} R_{1} \\ R_{2} \end{array} \right \}$$]
                for practicality. Obviously, if the bar is broken down into many pieces, the effect of f(x) would be captured more accurately.
              

                The total effect of f(x) is ∫
                0
                ℓ
                f(x)dx, which is to be balanced by the ‘equal and opposite’ of
                [image: $$\left \{\begin{array}{*{10}c} R_{1} \\ R_{2} \end{array} \right \}$$]
                , hence:
                [image: $$\displaystyle\begin{array}{rcl} & & \left (\int _{0}^{\ell}f(x)dx - (R_{ 1} + R_{2})\right )\text{ must }vanish\text{ to guarantee static equilibrium} \\ & & R_{1} + R_{2} =\int _{ 0}^{\ell}f(x)dx\text{ for arbitrary (integrable) function }f(x) {}\end{array}$$]

 (B.6)


                This important physical requirement, of Eq. (
                B.6
                ), demands the ‘energy conservation’ principle; the work done by the distributed load f(x) undergoing a displacement field
                δ
                u(x) dictates the value of
                [image: $$\mathfrak{V}$$]
                , which comes into play (or simply stated—develops) as the effect of the external work done by
                δ
                W. This demands a systematic analysis as follows. Observe:
                [image: $$\displaystyle\begin{array}{rcl} \delta W& =& \int _{0}^{\ell}f(x)\ \delta u(x)\ dx{}\end{array}$$]

 (B.7a)


                [image: $$\displaystyle\begin{array}{rcl} & =& \int _{0}^{\ell}f(x)\ <\mathfrak{n}_{ 1}(x),\mathfrak{n}_{2}(x)> \left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \}dx{}\end{array}$$]

 (B.7b)


                [image: $$\displaystyle\begin{array}{rcl} & =& \left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \} \odot \int _{0}^{\ell}f(x)\ \left \{\begin{array}{*{10}c} \mathfrak{n}_{1}(x) \\ \mathfrak{n}_{2}(x) \end{array} \right \}dx{}\end{array}$$]

 (B.7c)


                [image: $$\displaystyle\begin{array}{rcl} & =& \left \{\begin{array}{*{10}c} \delta u_{1} \\ \delta u_{2}\end{array} \right \} \odot \mathfrak{V}\quad \text{from Eq. (B.4a)}{}\end{array}$$]

 (B.7d)


                [image: $$\displaystyle\begin{array}{rcl} \text{hence: }\mathfrak{V}& =& \int _{0}^{\ell}f(x)\ \left \{\begin{array}{*{10}c} \mathfrak{n}_{1}(x) \\ \mathfrak{n}_{2}(x) \end{array} \right \}dx{}\end{array}$$]

 (B.7e)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{from Eq. (B.5a): }\mathfrak{V} = \left \{\begin{array}{*{10}c} R_{1} \\ R_{2} \end{array} \right \}{}\end{array}$$]

 (B.7f)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{ hence: }\left \{\begin{array}{*{10}c} R_{1} \\ R_{2} \end{array} \right \} =\int _{ 0}^{\ell}f(x)\ \left \{\begin{array}{*{10}c} \mathfrak{n}_{1}(x) \\ \mathfrak{n}_{2}(x) \end{array} \right \}dx{}\end{array}$$]

 (B.7g)


                as demonstrated in Eq. (1.59b) in the indicial notation. The (displacement) interpolants
                [image: $$\mathfrak{n}_{1},\mathfrak{n}_{2},$$]
                which are basic building blocks of finite elements,
                consistently
                approximate the distributed force effects as well.
              
B.1.1 Global Equilibrium Must Be Satisfied

                  Let us verify the equilibrium statement
                  6
                  in Eq. (
                  B.6
                  ):
                  [image: $$\displaystyle\begin{array}{rcl} R_{1} + R_{2} =\int _{ 0}^{\ell}f(x)\ \Big(\mathfrak{n}_{ 1}(x) + \mathfrak{n}_{2}(x)\Big)\ dx& &{}\end{array}$$]

 (B.8a)


                

                  From Eq. (1.60a):
                  [image: $$\mathfrak{n}_{1}(x) + \mathfrak{n}_{2}(x) = 1,$$]
                  implies:
                  [image: $$\displaystyle\begin{array}{rcl} \text{as demanded in Eq. (B.6): }R_{1} + R_{2} =\int _{ 0}^{\ell}f(x)\ dx& &{}\end{array}$$]

 (B.9)


                  Thus the equilibrium statement is retrieved from the energy principle using appropriate kinematic displacement profiles. In addition, end forces R can be applied, leading to the force boundary condition. In an infinitesimal neighborhood at a location x, equilibrium is satisfied:
                  [image: $$\displaystyle\begin{array}{rcl} \frac{d} {dx}\sigma (x)& =& f(x) \rightarrow \frac{d} {dx}\epsilon (x) = \frac{f(x)} {\mathcal{E}};\quad \epsilon (x): \text{ strain profile}{}\end{array}$$]

 (B.10)


                  Note, Eq. (
                  1.18
                  ) is still valid but:
                  [image: $$\displaystyle\begin{array}{rcl} \epsilon (x) = \frac{P} {\mathcal{A}\xi } + \frac{1} {\mathcal{E}}\int _{0}^{x}f(x)\ dx;\text{ because: }\epsilon (0) = \frac{P} {\mathcal{A}\xi }& &{}\end{array}$$]

 (B.11)


                  In Eqs. (
                  B.10
                  ) and (
                  B.11
                  ), we have expressions for the stress and strain that vary with x. By integrating
                  ε
                  (x) we can determine the relative motion of the two ends, and this leads to:
                  [image: $$\displaystyle\begin{array}{rcl} r_{2}& =& r_{1} +\int _{ 0}^{\ell}\epsilon (x)\ dx;\quad \text{and }\epsilon (x) = \frac{du} {dx},\text{ then: }\sigma (x) = \mathcal{E}\ \epsilon (x){}\end{array}$$]

 (B.12a)


                  [image: $$\displaystyle\begin{array}{rcl} \text{or: }u(x)& & = r_{1} +\int _{ 0}^{x}\epsilon (x^{{\prime}})\ dx^{{\prime}};\text{where }x^{{\prime}}\text{:(dummy) variable }{}\end{array}$$]

 (B.12b)


                  The basic physical law of uniqueness of energy in any frame of reference allows the spring to be the discrete model of continua but the formalism with the Eulerian scalar, originating from the internal energy and external work done, remains intact. This establishes a close relationship between variational calculus and the virtual work principle that can be employed interchangeably.
                

B.1.2 Synthesizing the System Variables

                  The end displacements, r
                  1
                  and r
                  2
                  , of Fig. 
                  1.13
                  , constitute the
                  axial
                  degree-of-freedoms.
                

                  Force R
                  i
                  and displacement r
                  i
                  correspond to the same degree-of-freedom i. The labels 1 and 2 are the end locations that describe the geometry of the bar; points 1 and 2 are termed nodes in the finite element literature.
                

                  We can introduce the basic (and very general) finite element concepts, e.g. the displacement formulation,
                  modal
                  to nodal transformation and
                  energy invariance
                  using this bar example. For example, the most important system matrix for static analysis is
                  [image: $$\left [k\right ]$$]
                  , which describes the force-deformation relation. As has been mentioned earlier, for
                  linear
                  analysis the system matrices are independent of the value of displacements (provided that they obey the linear kinematics, where only the first partial derivatives of the displacements appear in the strains).
                

                  The stiffness matrix k associated with the degrees-of-freedom r
                  1
                  and r
                  2
                  can be obtained by observing the fact that the internal energy, i.e., the strain energy, is independent of the
                  frame of reference
                  that described the deformation. By definition:
                  [image: $$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} R_{1} \\ R_{2}\end{array} \right \} = \left [k\right ]\left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \};\mbox{ then, $\left [k\right ]$ must be }2 \times 2& &{}\end{array}$$]

 (B.13)


                  The strain energy in the F −
                  Δ
                  and R − r systems should be identical, hence:
                  [image: $$\displaystyle\begin{array}{rcl} \frac{1} {2}F\ \varDelta & =& \frac{1} {2}\left \{\begin{array}{*{10}c} R_{1} \\ R_{2}\end{array} \right \} \odot \left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \}{}\end{array}$$]

 (B.14a)


                  [image: $$\displaystyle\begin{array}{rcl} \text{for this scalar: }\frac{1} {2}k_{\phi }\ \varDelta ^{2}& =& \frac{1} {2} <r_{1},r_{2}> \left [k\right ]\left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \}{}\end{array}$$]

 (B.14b)


                  [image: $$\displaystyle\begin{array}{rcl} = \frac{1} {2} <r_{1},r_{2}> \left [k\right ]^{T}\left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \}& &{}\end{array}$$]

 (B.14c)


                  [image: $$\displaystyle\begin{array}{rcl} & & \text{hence: }\left [k\right ] = \left [k\right ]^{T} \\ & & \rightarrow \text{the stiffness matrix is }symmetric{}\end{array}$$]

 (B.14d)


                

                  If we apply only a unit r
                  1
                  while locking the other degree-of-freedom
                  , i.e., r
                  2
                  = 0, then the bar shrinks by unity and hence the stretching is −1. Similarly, with r
                  2
                  = 1 and r
                  1
                  = 0, the stretching is +1.
                

                  The two independent nodal deformations lead to the axial modal loading, therefore:
                  [image: $$\displaystyle\begin{array}{rcl} \varDelta =<-1,1> \left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \} \rightarrow \varDelta =<r_{1},r_{2}> \left \{\begin{array}{*{10}c} -1\\ 1 \end{array} \right \}& &{}\end{array}$$]

 (B.15)


                  From Eq. (
                  B.14c
                  ):
                  [image: $$\displaystyle\begin{array}{rcl} & & <r_{1},r_{2}> \left \{\begin{array}{*{10}c} -1\\ 1 \end{array} \right \}k_{\phi }\ <-1,1> \left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \}{}\end{array}$$]

 (B.16a)


                  [image: $$\displaystyle\begin{array}{rcl} & & \quad =<r_{1},r_{2}> \left (\frac{\mathcal{A}\xi } {L}\right )\left [\begin{array}{*{10}c} \ \ 1 &\ \ -1\\ -1 & \ \ \ \ 1 \end{array} \right ]\left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \}{}\end{array}$$]

 (B.16b)


                  From Eqs. (
                  B.14c
                  ) and (
                  B.16b
                  ):
                  [image: $$\displaystyle\begin{array}{rcl} \left [k\right ] = \left (\frac{\mathcal{A}\xi } {L}\right )\left [\begin{array}{*{10}c} \ \ 1 &\ \ -1\\ -1 & \ \ \ \ 1 \end{array} \right ]& &{}\end{array}$$]

 (B.17)


                  The nodal force-displacement relations, in Fig. 
                  1.13
                  , are written as:
                  [image: $$\displaystyle\begin{array}{rcl} & & \left \{\begin{array}{*{10}c} R_{1} \\ R_{2} \end{array} \right \} = \left (\frac{\mathcal{A}\xi } {L}\right )\left [\begin{array}{*{10}c} \ \ 1 &\ \ -1\\ -1 & \ \ \ \ 1 \end{array} \right ]\left \{\begin{array}{*{10}c} r_{1} \\ r_{2}\end{array} \right \}{}\end{array}$$]

 (B.18a)


                  [image: $$\displaystyle\begin{array}{rcl} \rightarrow \left \{R\right \} = \left [k\right ]\left \{r\right \};\text{ symmetry of }\left [k\right ]\text{ is verified}& &{}\end{array}$$]

 (B.18b)


                  Taking into account the symmetry property of k (a real matrix), we observe that all eigenvectors and all corresponding eigenvalues are composed of real numbers. Since
                  [image: $$\left (\frac{\mathcal{A}\xi } {L} \right )$$]
                  is strictly positive, eigenpairs
                  7
                  of
                  [image: $$\left [\begin{array}{*{10}c} \ \ 1 &\ \ -1\\ -1 & \ \ \ \ 1 \end{array} \right ]$$]
                  are:
                  [image: $$\displaystyle\begin{array}{rcl} \text{eigenvalue, eigenvector: }\overbrace{0,\left \{\begin{array}{*{10}c} 1\\ 1 \end{array} \right \}}^{\text{rigid body mode}}\text{ and }\overbrace{2,\left \{\begin{array}{*{10}c} \ \ 1\\ -1 \end{array} \right \}}^{\text{extension mode}}& &{}\end{array}$$]

 (B.19)


                  Positive strain energy dictates that the eigenvalues are
                  always non-negative.
                

                  It is not possible to define an analogous element
                  flexibility
                  matrix because the element stiffness matrix is
                  not
                  invertible. In order to determine the displaced configuration, for a bar, we must prescribe the displacement at one end. For example, if r
                  1
                  = 0 and R
                  2
                  is given, then r
                  2
                  and R
                  1
                  can be calculated from Eq. (
                  B.18a
                  ). Hence, for a single bar problem, the two forces and two displacements at the two nodes can be uniquely calculated. If r
                  1
                  is not prescribed, then under a force R
                  2
                  the other nodal force R
                  1
                  will always be −R
                  2
                  (in the absence of skin force, shown in Fig. 
                  1.18
                  ). In that case r
                  2
                  is determined to a single unknown constant.
                

                  An alternate way to view the bar deformation is that it is subjected to two independent
                  modes,
                  which are the rigid body displacement and relative displacement of the nodes. These modal descriptions are the Rayleigh modes that are somewhat distinct from the nodal treatment presented in Eq. (
                  B.13
                  ). We shall investigate the Rayleigh modes next.
                

B.1.3 Symmetry of a Stiffness Matrix: From the Energy Perspective

                  The energy stored in the bar due to deformation is the strain energy whose expression is akin to Eq. (
                  1.4
                  ):
                  [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{I}}& =& \frac{1} {2}\left \{R\right \}^{T}\left \{r\right \} = \frac{1} {2}\left \{r\right \}^{T}\ \left [k\right ]\ \left \{r\right \}{}\end{array}$$]

 (B.20a)


                  [image: $$\displaystyle\begin{array}{rcl} & & \text{: the internal energy is indicated by I in the Fraktur font}{}\end{array}$$]

 (B.20b)


                  Looking at the force-displacement diagram Fig. 
                  1.4
                  the triangular area can be obtained as:
                  [image: $$\displaystyle\begin{array}{rcl} \epsilon (x)& =& \frac{x} {L};\quad \sigma (x) = E\ \epsilon (x) = E\ \frac{x} {L};\quad \text{for a }stretch\ \varDelta \text{ in Fig. 1.8}{}\end{array}$$]

 (B.21a)


                  [image: $$\displaystyle\begin{array}{rcl} P(x)& =& \mathcal{A}\ \sigma (x) = (\mathcal{A}E)\ \epsilon (x) = (\mathcal{A}E)\ \frac{x} {L};\quad P(\varDelta ) = (\mathcal{A}E)\ \frac{\varDelta } {L};\quad {}\end{array}$$]

 (B.21b)


                  [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{I}}\Big(\varDelta \Big)& = \frac{1} {2}\ P(\varDelta )\ \varDelta = \frac{1} {2}\ \frac{\mathcal{A}E} {L} \ \varDelta ^{2}&{}\end{array}$$]

 (B.21c)


                

                  In Eq. (1.5a), we introduced
                  [image: $$\boldsymbol{\mathfrak{B}}\Big(\varDelta \Big) = F\ \varDelta$$]
                  —merely as a ‘work-like’ term. Here we denote the actual work done by the
                  gradually applied
                  external force system to be:
                  [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{W}}\Big(\varDelta \Big) = \frac{1} {2}\ F\ \varDelta & &{}\end{array}$$]

 (B.22)


                

                  Observe that the energy scalar remains the same after the
                  transpose operation.
                  Then from Eq. (
                  B.20b
                  ):
                  [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{I}} = \left (\boldsymbol{\mathfrak{I}}\right )^{T}& =& \frac{1} {2}\left \{r\right \}^{T}\left \{R\right \} = \frac{1} {2}\left \{r\right \}^{T}\ \left [k\right ]^{T}\ \left \{r\right \} = \frac{1} {2}\left \{r\right \}^{T}\ \left [k\right ]\ \left \{r\right \}{}\end{array}$$]

 (B.23)


                  for
                  arbitrary
                  non-zero
                  [image: $$\left \{r\right \}$$]
                  . The energy principle always guarantees the symmetry of any stiffness matrix:
                  [image: $$\displaystyle\begin{array}{rcl} \left [k\right ]^{T} = \left [k\right ]& &{}\end{array}$$]

 (B.24)


                  This is an advantage in the finite element method over the boundary element formulation when the system matrices are not symmetric.
                

                  To avoid any confusion, let us state the balance of energy principle to be:
                  [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{I}} =\boldsymbol{ \mathfrak{W}};\quad \boldsymbol{\mathfrak{W}}\text{ is a physical (or real) quantity}& &{}\end{array}$$]

 (B.25)


                  but the equilibrium statement is an
                  extremum
                  as follows:
                  [image: $$\displaystyle\begin{array}{rcl} \frac{\mathrm{d}} {\mathrm{d}\varDelta }\left [\boldsymbol{\mathfrak{I}}\Big(\varDelta \Big) -\boldsymbol{\mathfrak{B}}\Big(\varDelta \Big)\right ] = 0;\quad \boldsymbol{\mathfrak{B}}\Big(\varDelta \Big)\text{ is a }`virtual'\ \text{ quantity}& &{}\end{array}$$]

 (B.26)


                


B.2 Drawing Trusses

                The variables are:
                	1.
                        Geometry
                        	(a)nodal point coordinates


 

	(b)each element connecting two nodes


 

	(c)
                                boundary conditions
                                	(i)roller: nodal location and orientation


 

	(ii)hinge: nodal location


 




                              


 




                      


 

	2.
                        Member properties
                        	(a)area


 

	(b)Young’s modulus


 




                      


 

	3.Loading

                        The output should consist of:
                        	(a)Support reactions


 

	(b)Member forces, stresses, and strains


 

	(c)displacement of joints


 




                      


 




              
B.2.1 Exercise-1

                  Collect all code fragments from Sect. 2 through Sect. 
                  2.3.4
                  , and use Listing
                  B.3
                  , to develop a new
                  Package
                  that will draw a truss and evaluate the forces and displacements using a function call in Listing
                  B.1
                  :
                
Listing B.1 Calling a function to draw a truss, and evaluate forces and displacements

                    calculateAndDrawTruss[nodes_, connections_, rollers_, hinges_, elementProperties_, forces_ ]



                  


                  We can then call a package (e.g.,
                  TrussDraw
                  ) within a package (e.g.,
                  calculateAndDrawTruss
                  ), with a
                  BeginPackage[]
                  command (using the one suggested below):
                

                    Listing B.2 Including
                    Mathematica
                    contexts
                    in
                    BeginPackage[]
                  

                    BeginPackage[
\[RawDoubleQuote]calculateAndDrawTruss\[RawBackquote]
\[RawDoubleQuote],\[RawDoubleQuote]TrussDraw\[RawBackquote]
\[RawDoubleQuote],\[RawDoubleQuote]Global\[RawBackquote]
\[RawDoubleQuote]]



                  


                    Listing B.3
                    Package
                    to draw a truss with data (for example, Listing B.4)
                  

                    BeginPackage[\[RawDoubleQuote]TrussDraw\[RawBackquote]
\[RawDoubleQuote],\[RawDoubleQuote]Global\[RawBackquote]
\[RawDoubleQuote]]

TrussDraw::usage = "TrussDraw[ nodes, connections, rollers, hinges ]
Two-dimensional Truss drawing."

Begin[\[RawDoubleQuote]\[RawBackquote]Private\[RawBackquote]
\[RawDoubleQuote]]

(* evaluates roller/hinge size *)
sizeCalculator[nodes_, reductionFactor_: 200] := Module[{xMin,xMax,yMin,yMax},
{{xMin, xMax}, {yMin, yMax}} = Through[{Min, Max}[#]] & /@ Transpose[nodes];
Sqrt[(-xMin + xMax)^2 + (-yMin + yMax)^2]/reductionFactor ]
(* draw a bar between nodes*)
bar[{node1_, node2_}, nodes_] := Line[({#[[node1]], #[[node2]]}) &[nodes]]
(* roller and hinge drawing functions *)
rollarShape[c_, a_, angle_] := {Thickness[.01], Circle[c, a],
Line[rotation[{c - {2 a, a}, c + {2 a, -a}}, angle, c]] }
hingeShape[c_, a_, angle_] := {Thickness[.01],
Circle[c, a, {0, Pi} + angle],
Line[rotation[{c - {a, 0}, c - {a, a}, c - {2 a, a}, c - {2 a, a},
c + {2 a, -a}, c + {a, -a}, c + {a, 0}}, angle, c]]}
drawRollers[rollers_, nodes_, sSize_] := rollarShape[nodes[[#[[1]]]], sSize, #[[2]] ] & /@ rollers
drawHinges[hinges_, nodes_, sSize_] := hingeShape[nodes[[#[[1]]]], sSize, #[[2]] ] & /@ hinges

TrussDraw[nodes_, connections_, rollers_, hinges_] := Module[
{pSize, sSize, g1, g2, g3, g4},
pSize = sizeCalculator[nodes];
sSize = 4 pSize; barThickness = pSize/40;
g1 = Circle[#, 2 pSize] & /@ nodes;
g2 = {AbsoluteThickness[2.5], Map[bar[#, nodes] &, connections]};
g3 = drawRollers[rollers, nodes, sSize];
g4 = drawHinges[hinges, nodes, sSize]; Graphics[{g3, g4, g1, g2}] ]

rotation[p_, th_, {x_, y_}] := Module[{directions},
directions = ({{#1, #2}, {-#2, #1}}) &[Cos[th], -Sin[th]];
Which[MatrixQ[p],
Map[coordinateTransformation[#, directions, {x, y}] &, p],
VectorQ[p], coordinateTransformation[p, directions, {x, y}] ] ]
(*first translate then rotation*)
coordinateTransformation[point_?VectorQ, directions_?MatrixQ, about_] := (
about + directions.(point - about) )
End[]
EndPackage[]



                  


                  [image: A300727_1_En_BookBackmatter_Fig2_HTML.gif]
Fig. B.1Multiple hinges and rollers can be prescribed




                

                    Listing B.4 Sample Data—
                    hinges, rollers
                    are lists of
                    {nodeNumber,angle}
                  

                    nodes = {{0, 0}, {2, 0}, {1, 1}};     connections = {{1, 2}, {2, 3}, {3, 1}};
rollers = {{1, 0}}; hinges = {{2, 0}};



                  


                  The ability to include more than one roller and/or hinge is guaranteed by the list structures of the variables
                  rollers, hinges
                  in Listing
                  B.4
                  . The data in Listing
                  B.5
                

                    Listing B.5 Sample Data—
                    hinges, rollers
                    are lists of
                    {nodeNumber,angle}
                  

                    nodes = {{-(1351/78), -10}, {1351/78, -10}, {0, 20}, {-(181/39),
209/78}, {181/39, 209/78}, {0, -(209/39)}};
connections = {{1, 2}, {2, 3}, {3, 1}, {4, 5}, {5, 6}, {6, 4},
{1, 4}, {2, 6}, {3, 5}};
rollers = {{2, 0}, {4, -3 \[Pi]/4}}; hinges = {{1, 0}, {5, \[Pi]/2}};



                  


                  will generate Fig. 
                  B.1
                  . The structures of
                  hinges, rollers
                  are:
                  [image: $$\displaystyle\begin{array}{rcl} \mathtt{hinges} =\{ \mathtt{hinge1},\mathtt{hinge2}\ldots \}\ \text{ and }\mathtt{rollers}& =& \{\mathtt{roller1},\mathtt{roller2}\ldots \} \\ \text{where: }\mathtt{hingei}\text{ or }\mathtt{rolleri}& =& \mathtt{\{nodei,anglei\}}{}\end{array}$$]

 (B.27)


                  where
                  nodei
                  is the node number where the hinge and/or roller is located, and
                  anglei
                  is the orientation (measured counterclockwise from the x-axis) of the corresponding hinge and/or roller.
                

B.2.2 Exercise

                  Change the
                  Mathematica
                  Package
                  of Listing
                  B.3
                  to have the lines for rollers and hinges to be of four printer’s points, and the circles to denote the joints to be of two printer’s points.
                
Solution to B.2.2: Use of Printer’s Points

                    In
                    Mathematica
                    dimensions in
                    printer’s points
                    can be prescribed with:
                  


                    Listing B.6
                    Absolute
                    dimensions in printer’s point
                  

                    AbsoluteDashing, AbsoluteThickness, AbsolutePointSize



                  


                  However, for the prescription of the radius in
                  printer’s points
                  for a
                  Circle
                  or
                  Disk
                  , we need to use
                  Offset[]
                  .
                  ?Offset
                  in
                  Mathematica
                  yields:
                

                  [image: A300727_1_En_BookBackmatter_Figc_HTML.gif]
                

                  The primary use of
                  Offset[{dx,dy},{x,y}]
                  is to designate a point that is away from
                  {x,y}
                  by an amount
                  {dx,dy}
                  but
                  {dx,dy}
                  is measured in
                  printer’s points
                  , whereas, for radius
                  Offset[{cx,cy}]
                  will mean that the radii in the x,y directions are
                  cx
                  and
                  cy
                  printer’s points
                  , respectively. By default, mathematical operations are
                  not
                  defined for
                  Offset[]
                  . A session is presented in Listing
                  B.7
                  to circumvent this deficiency.
                

                    Listing B.7 Extending
                    Plus
                    for
                    Offset
                  

                    In[1]:= Offset[{a, b}] + Offset[{c, d}]
(* no addition of the coordinates is performed*)
Out[1]= Offset[{a, b}] + Offset[{c, d}]

In[2]:= (* redefine the rule of addition *)
Unprotect[Plus];
Plus /: Offset[{a_, b_}] + Offset[{c_, d_}] := Offset[{a + c, b + d}];
Protect[Plus]
Out[4]= {"Plus"}
In[5]:= (* now we get the desired result *)
Offset[{a, b}] + Offset[{c, d}]

Out[5]= Offset[{a + c, b + d}]



                  


                  It may not be unnecessary to be reminded that while ‘copy pasting’ from a
                  .pdf
                  , the
                  In[]=, Out[]:=
                  should not be included. In
                  In[2], /:
                  stands for
                  UpValues
                  (see,
                  ?UpValues
                  ).
                

                  Graphical representations of hinges and rollers at various slanted positions need some coordinate rotation. This is described in a fresh
                  Mathematica
                  session in Listing
                  B.8
                  .
                
Listing B.8 2-D coordinate transformation due to rotation about a point

                    In[1]:= rotation::usage = "rotation[p,th,{x0,y0}] is the coordinates \
of the point p rotated about {x0,y0} by an angle \[Theta] , measured \
counterclockwise from x-axis.
For a number of points in p, the rotated coordinates for all points \
are evaluated."

Out[1]= "rotation[p,th,{x0,y0}] is the coordinates of the point p \
rotated about {x0,y0} by an angle \[Theta] , measured \
counterclockwise from x-axis.
For a number of points in p, the rotated coordinates for all points \
are evaluated."

rotation[p_, th_, {x_, y_}] :=
Module[{directions},
directions = ({{#1, #2}, {-#2, #1}}) &[Cos[th], -Sin[th]];
Which[MatrixQ[p],
Map[coordinateTransformation[#, directions, {x, y}] &, p],
VectorQ[p], coordinateTransformation[p, directions, {x, y}]]]

(*first translate then rotation*)
coordinateTransformation[point_?VectorQ, directions_?MatrixQ,
about_] := (directions.(point - about)) + about



                  


                  A better version will be to restrict the transformation in Listing
                  B.8
                  only for 2-D cases. Recall that
                  Mathematica
                  is (somewhat) ‘typeless,’ so we can make sure that
                  {x,y}
                  —the point about which rotation will take place, and a generic point
                  p
                  to be converted—is first translated, then rotated, and finally restored by translating back; all are vectors of two entries.
                

                  Since
                  {x,y}
                  always appears as one entity in Listing
                  B.8
                  , it is convenient to simply replace
                  {x,y}
                  with
                  xy
                  that will be a vector of length 2. Since all variables will pertain to 2-D space, we can ascertain this in one statement as shown in Listing
                  B.9
                  8
                  .
                
Listing B.9 Coordinate transformation restricted to 2D

                    coordinateTransformation[point_?VectorQ, directions_?MatrixQ,
about_?VectorQ] := ((directions.(point - about)) + about) /; (
Union[Flatten[Dimensions /@ { point , directions, about}]] == {2}      )



                  



                  B.2.3 Using
                  Offset[ ]
                  : To Indicate Distances and Sizes in Printers Point in Graphics
                

                  Now let us explore how to adapt
                  rotation[]
                  of Listing
                  B.8
                  to accommodate
                  Offset[]
                  . If a function
                  f[{x}]
                  is given when
                  x
                  does not
                  involve
                  Offset[]
                  , then Listing
                  B.10
                  extends the needed functionality:
                

                    Listing B.10 Convert
                    Offset[a,b]
                    to a +
                    ε
                    b and restore after evaluation
                  

                    Unprotect[Offset];
Offset[{0, 0}, x_List] := x
Protect[Offset];

Clear[simplifyOffset];
SetAttributes[simplifyOffset, HoldFirst];
simplifyOffset[f_Symbol[x_List]] := Module[{ \[Epsilon], temp, secondPart},
temp = f[x /. Offset[p_, q_] :> q + \[Epsilon] p];
secondPart = temp /. \[Epsilon] -> 0;
Offset[(temp - secondPart) /. \[Epsilon] -> 1, secondPart] ]



                  



                  B.2.4
                  Offset[]
                  of
                  Offset[]
                

                  Consider a sequence of points: P
                  1
                  ,P
                  2
                  ,…,P
                  n
                  . We would like to define P
                  i
                  with an
                  Offset
                  t
                  i−1
                  ,i = 2…n, from P
                  i−1
                  . We will encounter a nested
                  Offset
                  structure that
                  Mathematica
                  does not understand.
                

                  Listing
                  B.11
                  resolves this issue.
                

                    Listing B.11 Extending the functionality of
                    Offset[]
                  

                    Unprotect[Offset];
Offset[a_, Offset[b_, c_]] := Offset[a + b, c]
Protect[Offset]



                  


                    Offset[t]
                    and
                    Offset[{a,b}]
                  

                    To draw circles and ellipses, and circular and elliptic disks with radii prescribed in the unit of
                    printers point
                    we need a special meaning for
                    Offset
                    because the coordinate offset from the center will change with directions.
                  

                    For circular and elliptic shapes
                    Offset[t_?NumericQ]
                    and
                    Offset[ {a_?NumericQ, b_?NumericQ} ]
                    , which can be used in circles and disks, are provided in
                    Mathematica
                    .
                  



B.3 Solving Plane Truss Problems: Step-by-Step
A demonstration problem will be worked out in detail for the reader to get acquainted with the necessary steps required for the calculations and graphical representation. We shall focus on a ‘small problem’ that is ‘big’ enough to demonstrate the generic finite element computation.
B.3.1 Geometric Specifications

                  We shall start with a
                  statically determinate
                  problem; the geometrical data will be:
                
Listing B.12 Description of the truss geometry

                    nodes={{0, 0}, {1, 0}, {2, 0}, {1.5, 1}, {0.5, 1}};
connections = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {5, 2}, {4, 2}};
geometry = {nodes, connections};



                  


                  First, we
                  sketch
                  the structure, Fig. 
                  B.2
                  , to detect any typing error, before calculations. The degrees-of-freedom are shown in Fig. 
                  B.3
                  .
                  [image: A300727_1_En_BookBackmatter_Fig3_HTML.gif]
Fig. B.2
                          Sketch checking
                          nodes
                          and
                          connections
                          from data Listing
                          B.12
                        




                

                    Listing B.13 Nodes are connected via
                    GraphicsComplex
                  

                    g0 = GraphicsComplex[ nodes, Line /@ connections];g1 = nodeTags[nodes, 10, 15];
g2 = elmTags[{nodes, connections}, 10, 15];        Graphics[{g0, g1, g2},
AxesLabel -> {" x- axis ", " y-axis "}, Axes -> True, AxesOrigin -> {.2, .2}]



                  


                  Adequate
                  supports ensure stability (so that the truss does not ‘fly off!’):
                

                    Listing B.14 There can be more than one roller and hinge in
                    hinges, rollers
                    lists
                  

                    hinges = {{1,0}}; rollers = {{3,0}}; (* hinges, rollers list of : {i, theta}
i: nodeNumber, theta: angleOfInclination from x-axis *)



                  


                  In Listing
                  B.14
                  ,
                  rollers = {{3,0}, {2,0}}
                  will indicate another roller at node 2:
                

                    Listing B.15 Items in variables
                    rollers, hinges; details in Eq. (
                    B.27
                    )
                  

                    rollers={roller1, roller2, ...}; rolleri={iNode, iTheta}



                  


                  A vertical load −P is applied at node 4, at degree-of-freedom 8 (Fig. 
                  B.4
                  ).
                

                    Listing B.16 Lists:
                    {iDOF, value}
                    in prescribed loading and displacements
                  

                    prescribedLoading = {{8, -1}}; (* at dof 8 a force -1 is
applied *)
prescribedDisplacements = {{}}; (* no displacement is applied *)



                  


                  We modify Listing
                  B.13
                  to obtain Listing
                  B.17
                  , and to generate Fig. 
                  B.4
                  .
                
Listing B.17 Graphics for boundary conditions

                    hingeGraphics = oneHinge[{nodes[[#[[1]] ]], #[[2]]}] & /@ hinges;
rollerGraphics = oneRoller[{nodes[[#[[1]] ]], #[[2]]}] & /@ rollers;
forceGraphics = XYForceDraw[nodes, prescribedLoading[[1]] , "+"];
g0 = {RGBColor[0, 1, 1], AbsoluteThickness[3],
GraphicsComplex[ nodes, Line /@ connections]};
g1 = nodeTags[nodes, 5, 9];     Clear[r]; g2 = {Red, dofDrawXY[nodes, r]};
Graphics[{g0, g1, g2, hingeGraphics, rollerGraphics, forceGraphics},
Epilog -> Text["Applied force(s) and supports\n", {.75, 1.25}]]



                  


                  [image: A300727_1_En_BookBackmatter_Fig4_HTML.gif]
Fig. B.3
                          Nodes and degrees-of-freedom
                          r[i]
                          of a generic truss using Listing
                          B.13
                        




                  [image: A300727_1_En_BookBackmatter_Fig5_HTML.gif]
Fig. B.4
                          Roller and hinge supports;
                          arrow(s)
                          for actual direction(s) of force(s)
                        




                

                  From the automatically generated Fig. 
                  B.4
                  , it could be confusing to interpret the external loading at node 4. The arrow shows the
                  actual
                  loading direction where the value within the circle shows the
                  algebraic
                  quantity that is positive along the coordinate axes. The degrees-of-freedom, shown in red dashed arrows in Fig. 
                  B.3
                  , are positive along the positive coordinate axes.
                

                    Creating a
                    Mathematica
                    Notebook with a Button
                  

                    To facilitate development, Listing
                    B.18
                    creates a customized blank notebook.
                  

Listing B.18 A notebook of 200% magnification

                    SetOptions[InputNotebook[], AutoGeneratedPackage -> Automatic];
Button["New 200% Notebook", CreateNotebook["Default",
Magnification :> 2. Inherited]] // CreatePalette



                  


B.3.2 Boundary Conditions as Rules
We shall use the following notational conventions:
Listing B.19 Array variables to designate force and displacement

                    (*     r[i]: displacement at dof number i;
R[i]: force at dof number i;
q[j]: roller displacement at node number j;
Q[j]: roller reaction at node number j;
F[k]: prescribed force at dof number k
d[k]: prescribed displacement at dof number k *)



                  

The boundary conditions for the problem are:
Listing B.20 Boundary conditions are input manually

                    boundaryConditionsAsPrescribed= {r[1] -> 0, r[2] -> 0, r[5] -> q[3], r[6] -> 0,
R[5] -> 0, R[6] -> Q[3], R[8] -> -1}



                  

We can uniquely determine:
Listing B.21 Determining boundary condition rules

                    zeroForcesAtOtherDOFs ={R[3] -> 0, R[4] -> 0, R[7] -> 0, R[9] -> 0, R[10] -> 0}



                  

leading to:
Listing B.22 All boundary condition rules

                    boundaryCondition =
Join[boundaryConditionsAsPrescribed, zeroForcesAtOtherDOFs] // Sort



                  

which is:
Listing B.23 All boundary conditions as a list of rules

                    boundaryCondition = {r[1] -> 0, r[2] -> 0, r[5] -> q[3], r[6] -> 0, R[3] -> 0,
R[4] -> 0, R[5] -> 0, R[6] -> Q[3], R[7] -> 0, R[8] -> -1,R[9] -> 0,R[10] -> 0}



                  


                  To generate Figs. 
                  B.5
                  ,
                  B.6
                  ,
                  B.7
                  and
                  B.8
                  , execute Listing
                  B.24
                  .
                
Listing B.24 Executing a function to solve a truss problem

                    results = TrussSolutionDemo1[geometry, {boundaryCondition, {r, R}}]



                  


                  [image: A300727_1_En_BookBackmatter_Fig6_HTML.gif]
Fig. B.5
                          Displacements at degrees-of-freedom are calculated from Listing
                          B.28
                        




                

                  In Listing
                  B.20
                  the boundary conditions are not generated from the
                  rollers, hinge
                  data.
                
Listing B.25 Forces and displacements are returned as rules

                    {
q[3] -> 0.5, Q[3] -> 0.75,

r[1] -> 0, r[2] -> 0, r[3] -> 0.125,
r[4] -> -0.948771, r[5] -> 0.5, r[6] -> 0, r[7] -> 0.0625,
r[8] -> -1.26691, r[9] -> 0.3125, r[10] -> -0.505636,

R[1] -> 0,
R[2] -> 0.25, R[3] -> 0, R[4] -> 0, R[5] -> 0, R[6] -> 0.75,
R[7] -> 0, R[8] -> -1, R[9] -> 0, R[10] -> 0
}



                  

Listing B.26 List showing tensions

                    "tensions" -> {0.125, 0.375, -0.838525, -0.25, -0.279508, 0.279508, -0.279508}



                  


                  [image: A300727_1_En_BookBackmatter_Fig7_HTML.gif]
Fig. B.6
                          Member forces, from Listing
                          B.29
                          , and roller and hinge reactions
                        




                  [image: A300727_1_En_BookBackmatter_Fig8_HTML.gif]
Fig. B.7
                          Displacements at degrees-of-freedom are calculated from Listing
                          B.28
                        




                  [image: A300727_1_En_BookBackmatter_Fig9_HTML.gif]
Fig. B.8
                          Member forces, from Listing
                          B.29
                          , and roller and hinge reactions
                        




                
All crucial results are summarized here; for your exercises, present summary pages like these.
Exporting Graphics to the Notebook Directory

                    When we develop a set of LaTeX files, to display the figure with
                    ∖includegraphics{fig}
                    the
                    fig.eps
                    graphics should be in the same folder.
                  

                    Usually, we keep all
                    Mathematica
                    notebooks in the same folder where we save
                    .tex
                    files. A typical
                    fig=Show[...]
                    command generates the figure. To be sure that the
                    .eps
                    file resides in the same folder, we can use:
                    exportGraphics["fig"]
                    by using Listing
                    B.27
                    .
                  


                    Listing B.27 Export
                    .eps
                    graphics to the notebook directory
                  

                    exportGraphics[z_String] := Export[StringJoin[
NotebookDirectory[], z, ".eps"], ToExpression[z] , "eps"]



                  


                    Listing B.28
                    trussSolutionDemo1
                    :
                    boundaryCondition
                    explicitly input
                  

                    Clear[trussSolutionDemo1]; (* parts are demarcated by comments *)
trussSolutionDemo1[{nodes_?MatrixQ, connections_?MatrixQ},
{boundaryCondition_, {r_Symbol, R_Symbol}}, orientation_: {}] := Module[
{sinCosSTransposed, elementStiffnesses, assembledEquations, tensions,
elementDofs,equationsToBeSolved, solvedUnkowns, allValues, unknowns},

(* generate element stiffness matrices *)
{sinCosSTransposed,
elementStiffnesses} =
Transpose[
Table[trussElementStiffnessMatrix[
nodes[[#]] & /@ connections[[elementNumber]]],
{elementNumber, Length[connections]}]];

(* solve unknown displacements and forces*)

assembledEquations =
systemEquations[{r, R}, connections, elementStiffnesses];

equationsToBeSolved = assembledEquations /. boundaryCondition;
unknowns = arrayExtract[equationsToBeSolved] // Union;

solvedUnkowns = Flatten[Solve[equationsToBeSolved, unknowns]];
If[solvedUnkowns === {}, Print["*** solution failed ***"];
Abort[]];
allValues = Union[solvedUnkowns, boundaryCondition];

(* evaluate member tensile forces*)

elementDofs =
numberOfDOFS[#,
Length[elementStiffnesses[[1]]]/Length[connections[[1]]]] & /@
connections;
tensions = Table[
tensileForce[elementStiffnesses, elementNumber, elementDofs, r,
allValues, sinCosSTransposed], {elementNumber,
Length[connections]}];

(*return calculated quantities as rules *)
{"allValues" -> allValues,
figureWithTensileForces[{nodes, connections}, {tensions,orientation}]  }]



                  


                    Listing B.29 Auxiliary functions for
                    trussSolutionDemo1
                    in Listing B.28
                  

                    arrayExtract[expression_] :=
Extract[expression, Position[expression, a_[j_Integer]]] // Union

trussElementStiffnessMatrix[{node1_, node2_}, ae_: 1] :=
Module[{\[Theta], h, c, s, L},
L = Sqrt[(node2 - node1). (node2 - node1)];
\[Theta] = N[ArcTan @@ (node2 - node1)];
c = Cos[\[Theta]]; s = Sin[\[Theta]]; h = {{c, 0}, {s, 0}, {0, c}, {0, s}};
{{s, c}, N[ae ((h.{{1, -1}, {-1, 1}}).Transpose[h])/L]}]

systemEquations[{r_, R_}, connections_, kS_] := Module[
{elementDofs, numberOfDOFS},
numberOfDOFS[connectionNodes_, v_Integer] :=
Module[{upperList = v*connectionNodes, lowerList},
lowerList = upperList - (v - 1);
Flatten[(Range @@ #) & /@ Transpose[{lowerList, upperList}]] ];
elementDofs = numberOfDOFS[#,
Length[kS[[1]]]/Length[connections[[1]]]] & /@ connections;

Table[R[iDofForce] ==
Plus @@ ((Part[ kS, #[[1]], #[[2]]].(r[#] & /@
Part[elementDofs, #[[1]]])) & /@
Position[elementDofs, iDofForce]), {iDofForce, (Length[
kS[[1]]]/Length[connections[[1]]])* Max[Flatten[connections]]}] ]

tensileForce[kS_, i_, elementDofs_, r_, allValues_,
sinCosSTransposed_] := Module[{f1, f2, f3, f4, s, c},
{s, c} = sinCosSTransposed[[i]];
{f1, f2, f3, f4} = kS[[i]]. (r[#] & /@ elementDofs[[i]]) /. allValues;
-(f1 * c + f2 * s) ]

numberOfDOFS[connectionNodes_, v_Integer] :=
Module[{upperList = v*connectionNodes, lowerList},
lowerList = upperList - (v - 1);
Flatten[(Range @@ #) & /@ Transpose[{lowerList, upperList}]] ]



                  


B.3.3 Exercise: Statically Indeterminate Problem

                  Add a roller support at node 2 of Fig. 
                  B.3
                  . The roller will only move in the x-direction. Add a horizontal force, of magnitude −2 at node 5 (external forces are considered positive along the positive directions of the coordinate axes). Follow the steps in this section and modify the
                  Mathematica
                  statements (experiment as you like).
                
B.3.3.1 Answer to B.3.3
Listing B.30 Forces and displacements are returned as rules

                      {q[2] -> -1.36777, q[3] -> -1.48555,

Q[2] -> -0.0289013, Q[3] -> -0.235549,

r[1] -> 0, r[2] -> 0, r[3] -> -1.36777, r[4] -> 0,
r[5] -> -1.48555, r[6] -> 0,
r[7] -> -3.48258, r[8] -> -0.669328, r[9] -> -4.21813, r[10] -> 0.341944,

R[1] -> 2., R[2] -> 1.26445, R[3] -> 0, R[4] -> -0.0289013,
R[5] -> 0, R[6] -> -0.235549, R[7] -> 0, R[8] -> -1, R[9] -> -2,
R[10] -> 0}



                    

Listing B.31 List showing tensions

                      {-1.36777, -0.117775, 0.263352, 0.735549, -1.4137, 1.4137, -1.38139}



                    

Always Check Static Equilibrium
By hand calculation, verify that the loads and reactions are in equilibrium.
Write your own program to verify static equilibrium for every finite element problem you solve.



B.3.4 Some Useful Length Units

                  The internet is a convenient resource to learn
                  digital publication workflow.
                  Stefan Kottwitz’s response (
                  vide
                  [
                  1
                  ] for details) from:
                  https://tex.stackexchange.com/questions/41370/what-are-the-possible-dimensions-sizes-units-latex-understands
                  provides a chart showing the following LaTeX units:
                  pt, pc, in, bp, cm, mm, dd, cc, sp, ex
                  and
                  em
                  .
                  [image: A300727_1_En_BookBackmatter_Fig10_HTML.gif]
Fig. B.9Inclined roller




                


B.4 Boundary Conditions from Data

                When the roller is inclined, as shown in Fig. 
                B.9
                , the second parameter in
                rolleri
                of Listing
                B.15
                is non-zero. Consequently, the forces and displacements at the roller node must be expressed in terms of the roller reaction and roller displacement
                Q, q
                , as shown in Fig. 
                B.10
                .
              

                For a roller, at a node i, the roller reaction (in the positive coordinate direction when the roller inclination angle
                θ
                = 0)
                Q[i]
                will be accompanied by a roller displacement normal to the force by an amount
                q[i]
                .
              

                Thus, when the platform slope
                [image: $$\theta = \mathtt{th}$$]
                :
                [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{r[2{\ast}i-1]-> q[i]Cos[th]};{}\end{array}$$]

 (B.28a)


                [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{r[2{\ast}i]-> q[i]Sin[th];}{}\end{array}$$]

 (B.28b)


                [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{R[2{\ast}i-1]-> -Q[i]Sin[th];}{}\end{array}$$]

 (B.28c)


                [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{R[2{\ast}i]-> Q[i]Cos[th];}{}\end{array}$$]

 (B.28d)


              

                It is necessary and sufficient to account for the nodal compatibility conditions, Eqs. (
                B.28a
                ) and (
                B.28b
                ), and the associated equilibrium requirements Eqs. (
                B.28c
                ) and (
                B.28d
                ) in formulating the displacement and force boundary conditions, respectively.
              

                The geometrical data (
                data
                is used in plural), such as
                th
                , dictate, as specified in Eqs. (
                B.28a
                ) through (
                B.28d
                ), the appropriate boundary conditions, adequate in number, to solve the unknown reaction and displacement at the roller support.
                [image: A300727_1_En_BookBackmatter_Fig11_HTML.gif]
Fig. B.10Roller reaction and displacement along degrees-of-freedom




              
B.4.1 A Note on Fonts in Graphics

                  A subtle feature, as seen in Fig. 
                  B.10
                  , is that
                  Mathematica
                  and LaTeX use different fonts. Note, in Fig. 
                  2.6
                  ,
                  Mathematica
                  fonts were used. However, an open source program
                  MaTeX
                  9
                  allows
                  Mathematica
                  graphics to employ LaTeX fonts.
                

                  For example, q,Q,sin(
                  θ
                  ),cos(
                  θ
                  ) in Fig. 
                  B.11
                  a, employed LaTeX fonts, whereas in Fig. 
                  B.11
                  b, mathematical expressions were displayed with
                  Mathematica
                  font. Consistency is always desirable in order to avoid confusions related to mathematical symbols in
                  Mathematica
                  graphics.
                  [image: A300727_1_En_BookBackmatter_Fig12_HTML.gif]
Fig. B.11
                          LaTeX and
                          Mathematica
                          fonts for figures. (
                          a
                          ) Using LaTeX fonts. (
                          b
                          ) Using
                          Mathematica
                          fonts
                        




                

                  This situation could change as symbolic computer programs are accepting available fonts in a more transparent fashion. For the time being Listing
                  B.32
                  suffices.
                

                    Listing B.32 Places “a” at
                    location
                    ;
                    magnification->1
                    is for
                    FontSize->12
                  

                    Text[    MaTeX[ToString[a], Magnification -> magnification],      location]



                  


                  MaTeX
                  , Fig. 
                  B.12
                  , facilitates precisely locating a subscript with
                  Offset[]
                  , as presented in:
                  [image: A300727_1_En_BookBackmatter_Fig13_HTML.gif]
Fig. B.12
                          Response to
                          ?MaTeX
                        




                
Listing B.33 MaTeX with subscript

                    Clear[subscriptedMaTeX];

subscriptedMaTeX::usage = \
"subscriptedMaTeX[{u_,magu_},{i_,magi_},xy_,indexOffset_:{0,0}]
returns Inset[] objects to be included in Graphics[].
u: variable name
i: subscript name
magu, mag1: Magnification for u and i
xy location of u, coordinates as {x,y} or Offset[{a,b},{x,y}]
indexOffset: relative position of i wrt u

For magu=2, magi=1 a simpler form is
subscriptedMaTeX[u,i,xy,indexOffset]"
subscriptedMaTeX[u_, i_, xy_,
indexOffset_: {0, 0}] := {Inset[
MaTeX[ToString[u], Magnification -> 2], xy],

Inset[MaTeX[ToString[i], Magnification -> 1],
Offset[indexOffset, xy]]}

subscriptedMaTeX[{u_, magu_}, {i_, magi_}, xy_,
indexOffset_: {0, 0}] := {{Inset[
MaTeX[ToString[u], Magnification -> magu], xy],

Inset[MaTeX[ToString[i], Magnification -> magi],
Offset[indexOffset, xy]]}}

(* *** examples *** *)
(*inset1=subscriptedMaTeX[{u,2},{1,1},{0,0},{8,-5}]; Graphics[inset1]*)
(* subscriptedMaTeX[{"\\delta u",2},{1,1},{0,0},{8,-5}]*)
(* subscriptedMaTeX[{"P",2},{1,1},{0,0},{8,-5}]*)
(* subscriptedMaTeX[{P,2},{1,1},{0,0},{8,-5}]*)
(* subscriptedMaTeX[{$P$,2},{1,1},{0,0},{8,-5}] *)



                  


                  For the complete instruction to install
                  MaTeX
                  visit:
                  https://github.com/szhorvat/MaTeX
                  and
                  http://szhorvat.net/pelican/latex-typesetting-in-mathematica.html
                  Horvát is the creator of
                  MaTeX
                  and he has maintained the package.
                

                  
                    
                  
                
B.4.1.1 Exercise
Generate graphics for Fig. 2.15b employing the LaTeX font.
Listing B.34 Dimension lines and MaTeX with subscript

                      Clear[dimensionLineWithSubscriptedMaTeX]

dimensionLineWithSubscriptedMaTeX[{start_, end_}, {separation_,
segmentVertical_, segmentHorizontal_},
{u_, magu_}, {i_, magi_}, indexOffset_: {0, 0}] :=
{   dimensionLinesVertical[{start, end}, {separation,
segmentVertical, segmentHorizontal}],
subscriptedMaTeX[{u, magu}, {i, magi}, (start + end)/2, indexOffset] }

dimensionLineWithSubscriptedMaTeXR[{start_, end_}, {separation_,
segmentVertical_, segmentHorizontal_},
{u_, magu_}, {i_, magi_}, indexOffset_: {0, 0}] :=

dimensionLineWithSubscriptedMaTeX[{Offset[{segmentHorizontal, 0}, start],
Offset[{segmentHorizontal, 0}, end]}, {separation,
segmentVertical, segmentHorizontal},
{u, magu}, {i, magi}, indexOffset]

(* example: a parabolic segment *)
x1 = 1; x2 = 2;
tempDimLin[x1_] := dimensionLinesVertical[{{x1, 0}, {x1, x1}}, {10, 22, 10}]

lDimLine = tempDimLin[x1]; rDimLine = tempDimLin[x2];
u = (x - x1) (x2 - x) + x1 + (x - x1)/(x2 - x1);
uPlot = Plot[u, {x, x1, x2}, Axes -> False,
PlotStyle -> {GrayLevel[.8], AbsoluteThickness[5]}];
dimLinesInVW =
Show[ uPlot,
Graphics[{lDimLine, rDimLine, {White, Point[{1.1 x2, 0}]},
subscriptedMaTeX[{"u", 2}, {1, 1}, {x1, (x1/2)}, {8, -5}],
subscriptedMaTeX[{"u", 2}, {2, 1}, {x2, x2/2}, {10, -5}]}],
PlotRange -> All, Axes -> False]



                    


                    Listing
                    B.34
                    generates Fig. 
                    B.13
                    :
                    [image: A300727_1_En_BookBackmatter_Fig14_HTML.gif]
Fig. B.13A sample of graphics with vertical dimension lines




                  


B.4.2 Roller Boundary Conditions

                  The boundary conditions at a hinge do not depend on the orientation of the hinge. For example, the vertical hinge in Fig. 
                  B.1
                  will have two zero displacements and two unknown reactions at the associated degrees-of-freedom.
                
B.4.2.1 Exercise

                    For the truss shown in Fig. 
                    B.9
                    , develop the force and displacement rules in the same way as Listing
                    B.23
                    . The horizontal at node 5 is reversed but the vertical one is the same as in Fig. 
                    B.5
                    .
                  

B.4.2.2 Exercise

                    Add a vertical force at the roller in Fig. 
                    B.9
                    —node 3. Rewrite the list of force and displacement rules as Listing
                    B.23
                    .
                  

B.4.2.3 Exercise

                    Write a program to develop the boundary conditions to be used in Listing
                    B.28
                    for Fig. 
                    B.9
                    as needed in the aforementioned exercises, Exercises
                    B.4.2.1
                    and
                    B.4.2.2
                    .
                  

                    When the support sinks, at a degree-of-freedom
                    i
                    , the displacement and corresponding reaction can be indicated by
                    s[i], S[i]
                    , respectively.
                  


                    B.4.2.4 Always Include
                    Usage
                    in
                    Mathematica
                  

                    Listing
                    B.35
                    provides the
                    usage
                    messages for Listing
                    B.36
                    .
                  
Listing B.35 Definitions of arguments for Hinge and roller drawing code

                      oneHinge::usage = "oneHinge[{c_,th_},a_:10]
generates Graphics objects for a hinge at c, inclined by th,
a: absolute radius parameter;
for AbsoluteThickness[4a/10]."

oneRoller::usage = "oneRoller[{c_,th_},a_:10]
generates Graphics objects for a roller at c, inclined by th,
a: absolute radius parameter;
for AbsoluteThickness[4a/10]."



                    


B.4.2.5 Drawing a Hinge and a Roller

                    Listing
                    B.36
                    can be used to draw hinges and rollers.
                  
Listing B.36 Hinge and roller drawing code

                      oneRoller[{c_, th_}, a_: 10] := Module[{directions},
directions = ({{#1, #2}, {-#2, #1}}) &[
Cos[th], -Sin[th]]; {AbsoluteThickness[4 a/10], Circle[c, Offset[{1, 1} a]],
Line[Offset[(directions . #), c] & /@ (a {{2, -1}, {-2, -1}})]}]

oneHinge[{c_, th_}, a_: 10] := Module[{directions},
directions = ({{#1, #2}, {-#2, #1}}) &[Cos[th], -Sin[th]];
{AbsoluteThickness[4 a/10], Circle[c, Offset[{1, 1} a], {0, Pi} + th],
Line[Offset[(directions . #), c] & /@ (a {{1, 0}, {1, -1}, {2, -1},
{-2, -1}, {-1, -1}, {-1, 0}})]}]



                    



                    B.4.2.6 Hints and
                    Concept Development
                    for Exercise B.4.2.3
                  
First prepare the input data:
Listing B.37 Prescribe problem data

                      nodes = {{0, 0}, {1, 0}, {2, 0}, {1.5, 1}, {0.5, 1}};
connections = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {5, 2}, {4, 2}};
hinges = {{1, 0}};
rollers = {{3, \[Pi]/4}, {2, 0}};
prescribedLoading = {{8, -1}, {9, 2}};
prescribedDisplacements = {{}};



                    


                    Now, verify the correctness of Listing
                    B.37
                    from its graphics.
                  

                    Execute Listing
                    B.38
                    to obtain the problem description of Fig. 
                    B.14
                    .
                  
Listing B.38 Generate a graphic description of the problem

                      hingeGraphics = oneHinge[{nodes[[#[[1]] ]], #[[2]]}] & /@ hinges;
rollerGraphics = oneRoller[{nodes[[#[[1]] ]], #[[2]]}] & /@ rollers;
forceGraphics =
XYForceDraw[nodes, # ] & /@
Transpose[ {prescribedLoading, {"+", "-"}}];
g0 = {RGBColor[0, 1, 1], AbsoluteThickness[3],
GraphicsComplex[ nodes, Line /@ connections]};
g1 = nodeTags[nodes, 5, 9];
Clear[r]; g2 = {Red, dofDrawXY[nodes, r]};
exercise2BC =
Graphics[{g0, g1, elmTags[{nodes, connections}, 5, 7], hingeGraphics,
rollerGraphics, forceGraphics},
Epilog -> Text["Applied force(s) and supports\n", {.75, 1.25}]]



                    


                    [image: A300727_1_En_BookBackmatter_Fig15_HTML.gif]
Fig. B.14Inclined roller: external forces are shown along nodal degrees-of-freedom




                  

                    Figure
                    B.14
                    cannot be converted to a black and white image by substituting all colors to Black. The members are to be redrawn, as in Fig. 
                    B.15
                    .
                    [image: A300727_1_En_BookBackmatter_Fig16_HTML.gif]
Fig. B.15
                            Redrawing figures. (
                            a
                            ) Using cyan. (
                            b
                            ) Using black
                          




                  
Write functions to generate boundary conditions for a roller and a hinge:
Listing B.39 Roller, hinge boundary conditions

                      bcsForOneHinge[r_Symbol, {iNode_Integer, iTheta_}] :=
Thread[(r /@ {2 iNode - 1, 2 iNode}) -> 0]

bcsForOneRoller[{q_Symbol, Q_Symbol}, {r_Symbol,
R_Symbol}, {jNode_Integer, iTheta_}] :=
With[{j1 = 2 jNode - 1, j2 = 2 jNode, s = Sin[iTheta], c = Cos[iTheta]},
{r[j1] -> q[jNode]* c, r[j2] -> q[jNode]*s,
R[j1] -> -Q[jNode]*s, R[j2] -> Q[jNode]* c}]



                    

Generate rules for each item of prescribed forces and displacements:
Listing B.40 Prescribe displacement and load at a joint

                      bcsForOneprescribedDisplacement[r_Symbol, {iDof_Integer, \[CapitalDelta]i_}] :=
{r[iDof] -> \[CapitalDelta]i}
bcsForOneprescribedLoading[R_Symbol,{iDof_Integer, f_}]:={R[iDof] -> f}



                    

Collect the contributions from all hinges, rollers, and prescribed conditions:

                      Listing B.41 Needs a ‘fix’ for empty
                      prescribedLoading, prescribedDisplacements
                    

                      In[54]:=   boundaryConditionsAsPrescribed = Flatten[Join[
bcsForOneHinge[r, #] & /@ hinges,
bcsForOneRoller[{q, Q}, {r, R}, #] & /@ rollers,
bcsForOneprescribedLoading[R, #] & /@ prescribedLoading,
bcsForOneprescribedDisplacement[r, #] & /@ prescribedDisplacements ] ]
(* obtain output *)
Out[54]=
{r[1] -> 0, r[2] -> 0, r[5] -> q[3]/Sqrt[2], r[6] -> q[3]/Sqrt[2],
R[5] -> -(Q[3]/Sqrt[2]), R[6] -> Q[3]/Sqrt[2], r[3] -> q[2],
r[4] -> 0, R[3] -> 0, R[4] -> Q[2], R[8] -> -1, R[9] -> -2,
bcsForOneprescribedDisplacement[r, {}]}



                    



                    B.4.2.7 Add Additional Arguments to
                    MapIndexed
                  

                    In using node numbers from the list of nodes
                    MapIndexed
                    is very efficient. See the documentation with:
                    ?MapIndexed
                  

                    We very often need to add additional, one or more arguments
                    d
                    as described in Listing
                    B.42
                    .
                  

                      Listing B.42
                      myMapIndexed
                      extends the functionality of
                      MapIndexed
                    

                      myMapIndexed::usage = "myMapIndexed[f,x,d] extends
MapIndexed[f,x] with a trailing Sequence."



                    


                      Listing B.43 code for
                      myMapIndexed
                      , usage in Listing B.42.
                    

                      myMapIndexed[f_, x_List] := MapIndexed[f, x]
myMapIndexed[f_, x_List, d__] :=
Table[f[x[[i]], {i}, d], {i, Length[x]}]
(*indexing can start from a specified number iStart*)
myMapIndexed[iStart_Integer, f_, x_List, d__] :=
Table[f[x[[i]], {i + iStart - 1}, d], {i, Length[x]}]



                    


                    Note, in Listing
                    B.43
                    ,
                    d__
                    with
                    two
                    underscores can process both a single variable and a sequence of variables. The best way to examine any function is to execute some sample problems, some examples are shown in Listing
                    B.44
                    :
                  

                      Listing B.44 Examples of
                      myMapIndexed
                    

                      In[8]:= x = {a, b}; myMapIndexed[f, x]
Out[8]= {f[a, {1}], f[b, {2}]}
In[9]:= myMapIndexed[f, x, d]
Out[9]= {f[a, {1}, d], f[b, {2}, d]}
In[10]:= myMapIndexed[f, x, d, {e}]
Out[10]= {f[a, {1}, d, {e}], f[b, {2}, d, {e}]}



                    



                    B.4.2.8 Empty 
                    prescribedLoading
                     or 
                    prescribedDisplacements
                  

                      Listing B.45 Considering empty
                      prescribedLoading, prescribedDisplacements
                    

                      boundaryConditionsAsPrescribed =
Flatten[Join[   bcsForOneHinge[r, #] & /@ hinges,
bcsForOneRoller[{q, Q}, {r, R}, #] & /@ rollers,
If[prescribedLoading =!= {{}},
bcsForOneprescribedLoading[R, #] & /@ prescribedLoading, {{}}],
If[prescribedDisplacements =!= {{}},
bcsForOneprescribedDisplacement[r, #] & /@ prescribedDisplacements, {{}}]]]



                    


                    Using
                    TrussSolutionDemo1
                    of Listing
                    B.28
                    , we obtain, for example:
                  

                      Listing B.46 Recovery of responses from
                      Rule
                      ;
                      In, Out
                      numbers vary
                      in general
                    

                      In[273]:=results = TrussSolutionDemo1[{nodes, connections}{boundaryCondition,
{r, R}}]; allValues = Sort["allValues" /. results[[1]]]
Out[274]= {q[2] -> 0.0969652, q[3] -> -0.786401, Q[2] -> 0.887861,
Q[3] -> 1.84706, r[1] -> 0, r[2] -> 0, r[3] -> 0.0969652, r[4] -> 0,
r[5] -> -0.55607, r[6] -> -0.55607, r[7] -> 2.57955,
r[8] -> -0.813547, r[9] -> 3.38562, r[10] -> -0.0242413,
R[1] -> -0.69393, R[2] -> -1.19393, R[3] -> 0, R[4] -> 0.887861,
R[5] -> -1.30607, R[6] -> 1.30607, R[7] -> 0, R[8] -> -1, R[9] -> 2,
R[10] -> 0, S[1] -> -0.69393, S[2] -> -1.19393}



                    


B.4.2.9 Exercise: Sinking Supports

                    Apply a preassigned displacement at a support and design a problem (Fig. 
                    B.16
                    ).
                  

B.4.2.10 Exercise: Winkler Foundation
Choose a problem with support displacements and proportional reactions.


                    B.4.2.11 Hints and
                    Concept Development
                    for ‘Sinking Supports’ Exercises B.4.2.9 and B.4.2.10
                  

                    The objective is to generate Fig. 
                    B.17
                    .
                    [image: A300727_1_En_BookBackmatter_Fig17_HTML.gif]
Fig. B.16
                            Solution: force and displacement at all degrees-of-freedom. (
                            a
                            ) External forces are shown along nodal degrees-of-freedom. (
                            b
                            ) Deformed configuration
                          




                    [image: A300727_1_En_BookBackmatter_Fig18_HTML.gif]
Fig. B.17
                            Solution: force and displacement at all degrees-of-freedom. (
                            a
                            ) Roller reaction at node 2 reduces due to support sinking; compare results with Fig. 
                            B.16
                            a. (
                            b
                            ) Roller support at node 2 sinks
                          




                  

                    The modification:
                    prescribedDisplacements = {{4, s[4]}}
                    ; introduces an unknown displacement at degree-of-freedom 4. Obviously, all results will be in terms of
                    s[4]
                    .
                    Mathematica
                    cautions:
                    because the number of variables is greater than the number of equations
                    :
                    Solve::svars: Equations may not give solutions for all "solve" variables.
                  

B.4.2.12 Drawing Node and Element Numbers

                    Listing
                    B.47
                    has been used several times in this chapter.
                  
Listing B.47 Draw node and element numbers

                      nodeNum::usage = "nodeNum[c,{i},discSize,textSize (defaulted to 12)]
writes the node number at c in textSize,
in white on a black disc of e discSize specified in Printer’s point \
(1/72 th international inch,
also known as DTP point --- desktop publishing point)."
nodeNum[c_?VectorQ, {i_Integer}, t_,
textSize_: 12] := {{Black, Disk[c, Offset[t]]},
Style[Text[ToString[i], c], FontSize -> textSize, White, Bold]}
elmNum[c_?VectorQ, {i_Integer}, t_,
textSize_: 12] := {{Black, Circle[c, Offset[{t, t}]]}, {White,
Disk[c, Offset[.9 t]]},
Style[Text[ToString[i], c], FontSize -> textSize, Black, Bold]}
nodeTags[nodes_?MatrixQ, t_, textSize_: 12] :=
myMapIndexed[nodeNum, nodes, t, textSize]
nodeTags[nodes_?MatrixQ, t_: 6] := nodeTags[nodes, t, 2 t]
elmTags[{nodes_?MatrixQ, connections_?MatrixQ}, t_, textSize_: 12] :=
With[{elements = (Plus @@ nodes[[#]]/2) & /@ connections}, Table[
elmNum[elements[[i]], {i}, t, textSize], {i, Length[elements]}]]
elmTags[{nodes_?MatrixQ, connections_?MatrixQ}, t_: 6] :=
elmTags[{nodes, connections}, t, 2 t]



                    


                      Listing B.48
                      q[2]
                      not
                      s[4]
                      becomes the independent variable
                    

                      {q[3] -> -1.06066 + 2.82843 q[2], Q[2] -> 0.5 + 4. q[2], Q[3] -> 2.12132 - 2.82843 q[2],
r[1] -> 0, r[2] -> 0, r[3] -> q[2], r[4] -> -0.6875 + 7.09017 q[2],
r[5] -> (-1.06066 + 2.82843 q[2])/Sqrt[2], r[6] -> (-1.06066 + 2.82843 q[2])/Sqrt[2], r[7] -> 2.48258 + 1. q[2], r[8] -> -1.23002 + 4.29508 q[2], r[9] -> 3.48258 - 1. q[2], r[10] -> -0.34375 + 3.29508 q[2],
R[1] -> -0.5 - 2. q[2], R[2] -> -1. - 2. q[2], R[3] -> 0, R[4] -> 0.5 + 4. q[2], R[5] -> -((2.12132 - 2.82843 q[2])/Sqrt[2]), R[6] -> (2.12132 - 2.82843 q[2])/Sqrt[2], R[7] -> 0, R[8] -> -1, R[9] -> 2, R[10] -> 0,
s[4] -> -0.6875 + 7.09017 q[2], S[1] -> -0.5 - 2. q[2], S[2] -> -1. - 2. q[2]}



                    


                    Mathematica
                    selects variables alphabetically; since ‘q’ precedes ‘s,’
                    s[i]
                    is solved in terms of
                    q[j].
                    Consequently, if
                    a[4]
                    denotes the settlement, then:
                  

                      Listing B.49 Since
                      a
                      precedes all variables,
                      a[4]
                      becomes a
                      parameter
                      in
                      Solve
                    

                      {q[2] -> 13/134 + (11 a[4])/78, q[3] -> -(81/103) + (69 a[4])/173,
Q[2] -> 95/107 + (22 a[4])/39, Q[3] -> 157/85 - (69 a[4])/173,
r[1] -> 0, r[2] -> 0, r[3] -> 13/134 + (11 a[4])/78, r[4] -> a[4],
r[5] -> (-(81/103) + (69 a[4])/173)/Sqrt[2],
r[6] -> (-(81/103) + (69 a[4])/173)/Sqrt[2],
r[7] -> 227/88 + (11 a[4])/78, r[8] -> -(48/59) + (63 a[4])/104,
r[9] -> 237/70 - (11 a[4])/78, r[10] -> -(3/124) + (33 a[4])/71,
R[1] -> -(34/49) - (11 a[4])/39, R[2] -> -(80/67) - (11 a[4])/39,
R[3] -> 0, R[4] -> 95/107 + (22 a[4])/39,
R[5] -> -((157/85 - (69 a[4])/173)/Sqrt[2]),
R[6] -> (157/85 - (69 a[4])/173)/Sqrt[2], R[7] -> 0, R[8] -> -1,
R[9] -> 2, R[10] -> 0, S[1] -> -(34/49) - (11 a[4])/39,
S[2] -> -(80/67) - (11 a[4])/39}



                    


                    For graphics, Listing
                    B.48
                    needs a ‘fix,’ and the symbolic variable
                    s[4]
                    appears in responses.
                  

                      Listing B.50 Solve for
                      q[2]
                      ,
                      s[4]
                      becomes the independent variable
                    

                      settlement = Solve[s[4] == (s[4] /. allValues), q[2]] // Flatten // Simplify;
allValues = Simplify[allValues /. settlement] // Chop



                    


                    For the Winkler foundation problem assume a
                    negative
                    k
                    so that
                    Q[2] = k* s[4]
                    (the foundation will push up when the roller pushes it down!). Listing
                    B.51
                    suffices (Fig. 
                    B.18
                    ).
                  

                      Listing B.51 A linear settlement/reaction is explicitly stated for
                      Q
                      in terms of
                      s
                    

                      prescribedLoading = {{8, -1}, {9, 2}};
k = -.25; Q[2] = k* s[4]; prescribedDisplacements = {{4, s[4]}};



                    


                    [image: A300727_1_En_BookBackmatter_Fig19_HTML.gif]
Fig. B.18
                            Node 2 on a Winkler foundation. (
                            a
                            ) Roller 2 on elastic foundation. (
                            b
                            ) To furnish an upward reaction, node 2 sinks
                          




                  



B.5 Code Verification: Bells and Whistles

                The reader is encouraged to devise examples using the
                Mathematica
                programs provided in this textbook.
              
B.5.1 Checking Input Data
Use the graphics program to draw trusses with the loads and boundary conditions that you intended.

B.5.2 Checking Static Equilibrium

                  For each problem that you have designed for yourself, check the overall equilibrium and the equilibrium at each joint. You may find it to be handy to write your own
                  Mathematica
                  program for this purpose.
                


B.6 A Set of Exercises for Code Verification

                	1.Verify that each element stiffness is correct.


 

	2.Verify that the correct equation of equilibrium is constructed at each joint.


 

	3.Pick problems from other books, the internet and any available resource and try to solve problems that interest you. Check your member force and displacement results.


 




              

B.7 Why This Chapter Is So Important

                In all problems in this textbook, the truss model serves as a template! Only the elements are replaced. Special cases of incompressibility utilize the Moore–Penrose pseudoinverses, which is the most important computational tool. This is also addressed within the context of coordinate transformation in Sect. 
                1.8
                and Fig. 
                1.22
              



Appendix C Triangulation of 2-D Regions

              Abstract
              Triangulation is the most common and fundamental tessellation technique on two-dimensional objects. Two-dimensional temperature distribution, as the scalar variable, is solved. Elasticity displacements, as response vectors, are developed for plane stress and plane strain problems. On
              convex
              polygons for automatic Delaunay triangulation,
              Mathematica
              routine,
              PlanarGraphPlot
              is used.
            

              Mathematica
              routines for triangulating
              convex
              polygons is provided. Concavity poses difficulties, but Chazelle papers (SIAM J Comput 13(3):488–507, 1984) and Chazelle and Dobkin (Optimal convex decompositions. In: Toussaint GT (ed) Computational geometry. Elsevier Science/North Holland, Amsterdam. Preliminary version in STOC 1979, 1985) furnish an O(n) algorithm (Chazelle, Comput Geom 6(13):485–524, 1991). OpenGL provides codes that convert concave polygons into a set of convex polygons.
            

              On a straight line, the Lagrange’s interpolation is a polynomial. For
              two
              non-zero data points it is a straight line. What should be the analog of such linear interpolants in
              [image: $$\mathfrak{R}^{n}$$]
              ? A
              simplex
              solid is the generalization of a triangle or tetrahedron in
              [image: $$\mathfrak{R}^{n}$$]
              . The two-dimensional counterpart of a straight line is the linear interpolation over triangular regions. Similarly, linear interpolants on simplex solids in
              [image: $$\mathfrak{R}^{n}$$]
              are linear polynomials in n-coordinate variables. Laplace’s operator is the most frequent, hence important, operator that governs smooth response fields. In heat flow, electro-static charge distributions, and fluid flow problems to name a few, the Poisson’s equations need to be solved. Here we shall concentrate on
              [image: $$\mathfrak{R}^{2}$$]
              first. Its generalization in
              [image: $$\mathfrak{R}^{n}$$]
              logically follows, and the
              same
              finite element
              Mathematica
              package can be employed for all simplex solids in
              [image: $$\mathfrak{R}^{n}$$]
              without any modification for higher spatial dimensionality.
            
C.1 Triangulation

                All interpolants on simplex elements are linear functions of coordinates. The partial differential equations of mathematical physics are, at the least, of order two. Hence, each interpolant and their linear combinations
                exactly
                satisfy all homogeneous field equations. Thus any available basic analytical solution can be captured
                piece-wise
                with ‘triangular meshing.’ Courant in [
                5
                ] implemented this idea within the context of a non-circular shaft under torsion, and paved the way for more applications. The error, which is due to the characteristic mesh size h, is known as the h-approximation.
                [image: A300727_1_En_BookBackmatter_Fig20_HTML.gif]
Fig. C.1
                        Γ
                        : Continuous boundary of the continuum
                        Ω
                      




              
C.1.1 Boundary Discretization

                  In order to simplify the geometrical domain, the continuous boundary
                  Γ
                  is substituted by ‘closely’ spaced
                  discrete
                  points in Fig. 
                  C.1
                  . The measure of closeness dictates accuracy (and is the basis of ‘h-approximation’ in finite element methods).
                

                  In the approximating polygon, in Fig. 
                  C.2
                  , the boundary nodes are indicated with black solid points on
                  Γ
                  to create
                  Γ
                  ∗
                  . In Fig. 
                  C.2
                  , the polygonal boundary
                  Γ
                  ∗
                  , naturally, approximates the domain
                  Ω
                  into a polygon
                  Ω
                  ∗
                  (not necessarily convex).
                  [image: A300727_1_En_BookBackmatter_Fig21_HTML.gif]
Fig. C.2
                          Γ
                          ∗
                          : Straight boundary segments of Fig. 
                          C.1
                          approximating
                          Ω
                          →
                          Ω
                          ∗
                        




                

                  
                    
                  
                  
                    
                  
                

                  Convex tessellation, i.e., breaking the region into convex polygons [
                  3
                  ] generalizes triangulation. The Wachspress coordinates, based on projective geometry, furnished the Courant type degree-one (analogous to linear) interpolants on the boundary for Fig. 
                  C.2
                  .
                  [image: A300727_1_En_BookBackmatter_Fig22_HTML.gif]
Fig. C.3
                          Solution to be determined in
                          Ω
                          of Fig. 
                          C.2
                        




                

                  Some interior points (x
                  i
                  ,y
                  i
                  ) were selected at random in Fig. 
                  C.3
                  where the unknown values u(x
                  i
                  ,y
                  i
                  ) are to be evaluated. All differential equations are valid only within the interior
                  Ω
                  , and
                  not
                  on the boundary
                  Γ
                  . This mathematical requirement is strictly abided by in the finite element method because the interior nodes and the boundary ones are disjoined.
                  [image: A300727_1_En_BookBackmatter_Fig23_HTML.gif]
Fig. C.4
                          Node numbering in
                          Ω
                          of Fig. 
                          C.2
                        




                

                  For the purpose of this introduction, there has been
                  no
                  optimal criterion imposed on nodal point numbering in Fig. 
                  C.5
                  . Mesh generation is a sophisticated area of finite element research.
                
There are triangulation schemes available in almost all computing packages, and symbolic operations are amenable in most of those systems.

                  Here, in Fig. 
                  C.4
                  , the nodal numbers are extracted from the
                  Mathematica
                  PlanarGraphPlot
                  . Now by ‘connecting’ (in an appropriate order) the discrete points of Fig. 
                  C.4
                  , a triangular mesh is generated in Fig. 
                  C.5
                  .
                  [image: A300727_1_En_BookBackmatter_Fig24_HTML.gif]
Fig. C.5
                          Triangulation of
                          Ω
                          of Fig. 
                          C.1
                        




                


C.2 Tiling with Triangles for Constant Stress Fields

                Figure
                C.5
                shows the Delaunay triangulation on the nodes of Fig. 
                C.4
                . This was generated by
                PlanarGraphPlot
                of
                Mathematica
                .
              

                The region chosen for triangulation in
                Mathematica
                must be a convex one (otherwise triangulation on a
                convex hull
                will result). Concavity poses difficulties, Chazelle [
                1
                ,
                3
                ] furnishes an O(n) algorithm [
                2
                ],
                OpenGL
                provides codes to partition a concave polygon into a set of convex ones. The mathematics and computer implementation are challenging.
                [image: A300727_1_En_BookBackmatter_Fig25_HTML.gif]
Fig. C.6
                        Triangular elements in
                        Ω
                        of Fig. 
                        C.1
                      




              

                Piecewise constant stress modeling of two-dimensional continua is universally achieved according to the original finite element formulation that Clough published,
                vide
                [
                4
                ] where the name “Finite Element”  first appeared.
              

                The region
                Ω
                ∗
                in Fig. 
                C.6
                is tessellated into triangular elements. The ith element will be labeled
                Ω
                (i)
                , and its perimeter
                Γ
                (i)
                . The linear interpolants are:
                [image: $$\left \{\mathfrak{n}_{1}^{(i)}(x,y),\mathfrak{n}_{2}^{(i)}(x,y),\mathfrak{n}_{3}^{(i)}(x,y)\right \}$$]
              

                [image: $$\mathfrak{n}_{j}^{(i)}:$$]
                for the ith element, jth node.
              
C.2.1 Tiling with Pentagons for Linear Stress Fields

                  It was proved in Sect. 
                  9.2
                  that ten degrees-of-freedom are needed to guarantee successful
                  patch tests
                  for linear stress distributions in two-dimensions. This could be achieved with interior pentagons. The elements on any arbitrary boundary could then be constructed with triangles and quadrilaterals with side nodes as needed.
                  [image: A300727_1_En_BookBackmatter_Fig26_HTML.gif]
Fig. C.7
                          Pentagonal tiling from the
                          MathWorld
                        




                

                  With the
                  same
                  geometrical element,
                  vide
                  Fig. 
                  C.7
                  , Karl Reinhardt, in 1918, discovered the first five types of pentagons. Recently, in 2015, Casey Mann, Jennifer McLoud, and David Von Derau constructed the fifteenth one, as in Fig. 
                  C.7
                  .
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                




Appendix D Review of Linear Elasticity for Finite Element Formulations

              Abstract
              A review summary is presented here. Most of the topics and equations can be found in standard elasticity textbooks, e.g. Love (A treatise on the mathematical theory of elasticity. Dover, New York, 1994), Timoshenko and Goodier (Theory of elasticity, 3rd edn. McGraw-Hill, New York, 1970), Spencer (Continuum mechanics. Dover, New York, 1980) to name a few.
            
D.1 Variables in Continuum Mechanics

                Consider a body
                Ω
                with boundary
                Γ
                , as shown in Fig. 
                D.1
                . Strictly speaking,
                Ω
                denotes the interior of the body, in the interest of classical differential operations.
                [image: A300727_1_En_BookBackmatter_Fig27_HTML.gif]
Fig. D.1
                        Ω
                        : domain;
                        Γ
                        : boundary;
                        [image: $$\hat{t},\hat{n},\hat{\tau }$$]
                        : tangent, normal, traction; vectors
                        σ
                        : stress tensor; ⊙: dot product
                      




              
D.1.1 Boldface Characters Denote Geometrical Vectors; Caret Circumflex Hat Identifies a Physical Vector

                  In the Cartesian frame, a point (x,y,z) in
                  Ω
                  or on
                  Γ
                  is also denoted by the vector
                  [image: $$\boldsymbol{x}.$$]
                  Like all vectors (in the tensorial sense) in LaTeX we use ∖
                  boldsymbol
                  {x}.
                

                  
                    
                  
                  
                    
                  
                

                  The continuum displacement fields: u(x,y,z),u(x,y,z) and w(x,y,z) are the primary variables in developing the displacement-based finite element method in the general three-dimensional Cartesian frame (x,y,z):
                  [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{x}(x,y,z) =\{ x,y,z\};\quad \boldsymbol{u}(x,y,z) =\{ u(x,y,z),v(x,y,z),w(x,y,z)\}& &{}\end{array}$$]

 (D.1)


                  The usage of boldface characters avoids any confusion between
                  [image: $$x\text{ and }\boldsymbol{x}.$$]
                

                  In Fig. 
                  D.1
                  , a hat denotes the physical vectors: e.g.
                  [image: $$\hat{t}(\boldsymbol{x}),\hat{n}(\boldsymbol{x}),\text{ and }\hat{\tau }(\boldsymbol{x})$$]
                  are, respectively, the tangent, the normal, and the traction vectors.
                

D.1.2 Linear Kinematics

                  In the interest of generality, we use a three-dimensional domain
                  Ω
                  . In (x,y,z), the displacement vector is:
                  [image: $$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} u(x,y,z) \\ v(x,y,z) \\ w(x,y,z)\end{array} \right \}& &{}\end{array}$$]

 (D.2)


                

                  The small strains are defined from displacement gradients as follows:
                  [image: $$\displaystyle\begin{array}{rcl} \epsilon _{xx} = \frac{\partial u} {\partial x};\ \epsilon _{yy} = \frac{\partial v} {\partial y};\ \epsilon _{zz} = \frac{\partial w} {\partial z};& &{}\end{array}$$]

 (D.3a)


                  [image: $$\displaystyle\begin{array}{rcl} \epsilon _{xy} = \frac{1} {2}\left (\frac{\partial u} {\partial y} + \frac{\partial v} {\partial x}\right );\ \epsilon _{yz} = \frac{1} {2}\left (\frac{\partial v} {\partial z} + \frac{\partial w} {\partial y} \right );\ \epsilon _{zx} = \frac{1} {2}\left (\frac{\partial w} {\partial x} + \frac{\partial u} {\partial z}\right );& &{}\end{array}$$]

 (D.3b)


                  [image: $$\displaystyle\begin{array}{rcl} \gamma _{xy} = 2\epsilon _{xy};\gamma _{yz} = 2\epsilon _{yz};\gamma _{zx} = 2\epsilon _{zx};& &{}\end{array}$$]

 (D.3c)


                  [image: $$\displaystyle\begin{array}{rcl} \epsilon _{yx} =\epsilon _{xy};\epsilon _{zy} =\epsilon _{yz};\epsilon _{xz} =\epsilon _{zx};\text{ and }\gamma _{yx} =\gamma _{xy};\gamma _{zy} =\gamma _{yz};\gamma _{xz} =\gamma _{zx};& &{}\end{array}$$]

 (D.3d)


                  In the tensor form:
                  [image: $$\displaystyle\begin{array}{rcl} \left [\epsilon \right ] = \left [\begin{array}{*{10}c} \epsilon _{xx}&\epsilon _{xy}&\epsilon _{xz}\\ \epsilon _{ yx}&\epsilon _{yy}&\epsilon _{yz}\\ \epsilon _{zx } & \epsilon _{zy } & \epsilon _{zz } \end{array} \right ] = \left [\begin{array}{*{10}c} \epsilon _{xx}&\epsilon _{xy}&\epsilon _{xz}\\ \epsilon _{ xy}&\epsilon _{yy}&\epsilon _{yz}\\ \epsilon _{xz } & \epsilon _{yz } & \epsilon _{zz } \end{array} \right ]& &{}\end{array}$$]

 (D.4)


                  Using the indicial notation, Eqs. (
                  D.3a
                  ) through (
                  D.3d
                  ) and Eq. (
                  D.4
                  ) can be written in the following compact form:
                  [image: $$\displaystyle\begin{array}{rcl} \epsilon _{ij} = \frac{1} {2}\left (u_{i,j} + u_{j,i}\right );\quad \gamma _{ij} = 2\epsilon _{ij},(i\neq j)& &{}\end{array}$$]

 (D.5a)


                  [image: $$\displaystyle\begin{array}{rcl} \text{since, }\epsilon _{ij} =\epsilon _{ji}\text{ the strain tensor is symmetric, i.e., }\ \left [\epsilon \right ] = \left [\epsilon \right ]^{T}& &{}\end{array}$$]

 (D.5b)


                  [image: $$\displaystyle\begin{array}{rcl} \left [\epsilon \right ] = \left [\begin{array}{*{10}c} \epsilon _{xx}&\epsilon _{xy}&\epsilon _{xz}\\ \epsilon _{ yx}&\epsilon _{yy}&\epsilon _{yz}\\ \epsilon _{zx } & \epsilon _{zy } & \epsilon _{zz } \end{array} \right ] = \left [\begin{array}{*{10}c} \epsilon _{xx} & \dfrac{\gamma _{xy}} {2} & \dfrac{\gamma _{xz}} {2} \\ \dfrac{\gamma _{yx}} {2} & \epsilon _{yy} & \dfrac{\gamma _{yz}} {2} \\ \dfrac{\gamma _{zx}} {2} & \dfrac{\gamma _{zy}} {2} & \epsilon _{zz} \end{array} \right ]& &{}\end{array}$$]

 (D.5c)


                

                  Throughout the book such a convenient notation will be adopted, where:
                  [image: $$\displaystyle\begin{array}{rcl} x = x_{1};y = x_{2};z = x_{3};& &{}\end{array}$$]

 (D.6a)


                  [image: $$\displaystyle\begin{array}{rcl} u = u_{1};v = u_{2};w = u_{3};\text{ and }i,j,k,l = 1,2,3& &{}\end{array}$$]

 (D.6b)


                

D.1.3 Linear Constitutive Law

                  Using the Lamé constants
                  λ
                  ,
                  μ
                  , the stress tensor
                  [image: $$\left \{\sigma \right \}$$]
                  is defined as:
                  [image: $$\displaystyle\begin{array}{rcl} & & \sigma _{ij} =\lambda \ \delta _{ij}\epsilon _{kk} + 2\mu \epsilon _{ij};\ \text{(summation}\ implied\ \text{on repeated indices)} \\ & & \delta _{ij}: \text{ Kronecker's delta, }1\text{ when }i = j;\text{ and }0\text{ when }i\neq j{}\end{array}$$]

 (D.7a)


                  [image: $$\displaystyle\begin{array}{rcl} \varTheta =\epsilon _{kk}\:\ \text{dilatation}\text{ (note, summation is}\ implied)& &{}\end{array}$$]

 (D.7b)


                  [image: $$\displaystyle\begin{array}{rcl} \sigma _{ij} =\lambda \ \delta _{ij}\varTheta + 2\mu \epsilon _{ij}\text{ and when }\varTheta = 0:\sigma _{ij} = -\ \delta _{ij}\wp + 2\mu \epsilon _{ij}& &{}\end{array}$$]

 (D.7c)


                  [image: $$\displaystyle\begin{array}{rcl} \lambda = \frac{2\mu \ \nu } {1 - 2\nu };\quad \nu \ \text{: Poisson's ratio};\quad \wp:\ compressive\ \text{pressure}& &{}\end{array}$$]

 (D.7d)


                  [image: $$\displaystyle\begin{array}{rcl} \text{since, }\sigma _{ij} =\sigma _{ji}\text{ the stress tensor is symmetric, i.e., }\ \left [\sigma \right ] = \left [\sigma \right ]^{T}& &{}\end{array}$$]

 (D.7e)


                


                  D.1.4 The Traction Vector:
                  [image: $$\hat{\tau }$$]
                

                  The traction vector shown in Fig. 
                  D.1
                  [image: $$\hat{\boldsymbol{\tau }}$$]
                  is the boundary force intensity. On
                  Γ
                  , the outward normal vector
                  [image: $$\hat{\boldsymbol{n}}$$]
                  , whose Cartesian components are n
                  x
                  ,n
                  y
                  , and n
                  z
                  , transforms the stress tensor
                  [image: $$\left [\boldsymbol{\sigma }\right ]$$]
                  into
                  [image: $$\hat{\boldsymbol{\tau }}$$]
                  :
                  [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\tau } = \left [\boldsymbol{\sigma }\right ] \odot \hat{\boldsymbol{ n}},\ \text{i.e., in the indicial notation: }\ \tau _{i} =\sigma _{ij}\ n_{j}& &{}\end{array}$$]

 (D.8)


                  In the Cartesian frame, standard textbooks, e.g. [
                  7
                  ], present all the details.
                

D.1.5 Equilibrium Equation for Linear Elasticity

                  The momentum balance requirement yields:
                  [image: $$\displaystyle\begin{array}{rcl} \text{balance of linear momentum: }\sigma _{ij,j} = f_{i};\quad f_{i}: \text{ body force}\text{ and }& &{}\end{array}$$]

 (D.9a)


                  [image: $$\displaystyle\begin{array}{rcl} \text{balance of angular momentum: }\sigma _{ij} =\sigma _{ji};\quad \text{thus, the vector form:}& &{}\end{array}$$]

 (D.9b)


                  [image: $$\displaystyle\begin{array}{rcl} \mu \boldsymbol{\nabla }^{2}\boldsymbol{u} + (\lambda +\mu )\boldsymbol{\nabla }(\boldsymbol{\nabla }\odot \boldsymbol{ u}) =\boldsymbol{ f}: \text{equilibrium for displacements}& &{}\end{array}$$]

 (D.9c)


                

                  The
                  bold
                  characters indicate
                  [image: $$\boldsymbol{u,f,\nabla }$$]
                  the displacement and the body force vectors, and the gradient operator, respectively; ⊙ indicates the dot product.
                
D.1.5.1 The Invariant Form of the Equilibrium Equation

                    In Eq. (
                    D.9c
                    ), ∇: the gradient operator assumes different forms for different coordinate systems.
                  



D.2 Classical Boundary Conditions: Unique Solution

                The following four classical problems need data on the entire boundary
                Γ
                , from Fig. 
                D.2
                :
                Γ
                =
                Γ
                o
                ∪
                Γ
                ∗
                ; note that
                Γ
                o
                or
                Γ
                ∗
                could be the empty set ∅.
                [image: $$\displaystyle\begin{array}{rcl} & & \mathbf{Dirichlet\ problem:} \\ & & \text{On the entire boundary }\varGamma \text{ the displacement }\boldsymbol{u}(\boldsymbol{x})\text{ is given}{}\end{array}$$]

 (D.10a)


                [image: $$\displaystyle\begin{array}{rcl} & & \mathbf{Neumann\ problem:} \\ & & \text{On }\varGamma \text{ the traction vector }\boldsymbol{\tau }(\boldsymbol{x})\text{ is given}{}\end{array}$$]

 (D.10b)


                [image: $$\displaystyle\begin{array}{rcl} & & \mathbf{Mixed\ problem:} \\ & & \text{In Fig. D.2, on a boundary subset }\varGamma _{o}\text{ the displacement }\text{ is given and on the } \\ & & \text{rest of the boundary }\ \varGamma ^{{\ast}}\text{ the traction vector is given } {}\end{array}$$]

 (D.10c)


                [image: $$\displaystyle\begin{array}{rcl} & & \mathbf{Robin\ problem:} \\ & & \text{On the entire }\varGamma,\text{a }`\text{ weighted average' } \alpha \boldsymbol{u} +\beta \boldsymbol{\tau } \text{ is prescribed } \\ & & \alpha,\beta: \text{ functions of the spatial coordinate vector: }\boldsymbol{x} {}\end{array}$$]

 (D.10d)


                In order to yield a unique solution, the
                Neumann problem
                of Eq. (
                D.10b
                ) requires displacement vectors for at least three separate points (in
                Ω
                ∪
                Γ
                of Fig. 
                D.1
                ) to prevent any rigid body motion.
              

                The overwhelming majority of finite element models are governed by Eqs. (
                D.10a
                ) and (
                D.10d
                ). It is essential to note that
                arbitrary prescription
                —without any restriction whatsoever—of boundary data in classical boundary value problems will guarantee a unique solution for the stress tensor
                [image: $$\boldsymbol{\sigma }.$$]
                [image: A300727_1_En_BookBackmatter_Fig28_HTML.gif]
Fig. D.2
                        A classical
                        Mixed
                        boundary value problem on the domain
                        Ω
                      




              
D.2.1 Almansi Problem: Non-classical (Ill-Posed) Boundary Condition

                  In modeling unbounded media, such as the soil domain in earthquake engineering, the following
                  ill-posed
                  boundary value problem is encountered:
                  [image: $$\displaystyle\begin{array}{rcl} & & \text{On }\varGamma _{o}\text{: a proper subset of }\varGamma,both\ \text{the displacement and the traction vectors} \\ & & \boldsymbol{u},\boldsymbol{\tau }\text{ are}\ simultaneously\ \text{prescribed } {}\end{array}$$]

 (D.11a)


                  [image: $$\displaystyle\begin{array}{rcl} \text{and, nothing is prescribed on }\varGamma ^{{\ast}}: \text{ the complement of }\varGamma _{ o}\text{ in }\varGamma & &{}\end{array}$$]

 (D.11b)


                  This problem is called
                  ill-posed
                  because the vectors,
                  [image: $$\boldsymbol{u},\boldsymbol{\tau },$$]
                  of Eq. (
                  D.11a
                  )
                  cannot
                  be prescribed arbitrarily. Recall, in classical
                  well-posed
                  boundary value problems, Eqs. (
                  D.10a
                  ) through (
                  D.10d
                  ), arbitrary boundary data can be entertained (Fig. 
                  D.3
                  ).
                  
                    
                  
                  
                    
                  
                

                  Almansi [
                  1
                  ] addressed the difficulties and proved that:
                

                  if a solution exists then it is unique
                

                  To establish the uniqueness, Almansi in [
                  1
                  ] proved that:
                

                  if both displacement and traction are zero
                

                  on a non-zero boundary subset,
                

                  then the solution is identically zero on the entire domain
                

                  For anisotropic solids, similar results were established in [
                  3
                  ].
                

                  
                    
                    
                  
                  
                    
                    
                  
                  [image: A300727_1_En_BookBackmatter_Fig29_HTML.gif]
Fig. D.3
                          Non-classical
                          Almansi
                          boundary value problem
                        




                



                D.3 Fundamental Objects Related to Finite Elements for Linear Elasticity: Test Functions and Interpolants, Courant’s
                Admissible Function
                s and Shape Functions
              

                Test functions, which are trail solutions for approximately solving partial differential equations, merely satisfy certain continuity and differentiability requirements. They are of theoretical interest in constructing weak solutions of partial differential equations of mathematical physics [
                8
                ,
                9
                ]. The theoretical analysis provides the foundation for approximate and reliable numerical solutions. This treatment is obviously outside the scope of this textbook.
              

                We can start with interpolants,
                10
                which will
                exactly
                reproduce constant, linear, …(as the case be ) spatial variation of field variables. If they satisfy
                point-wise
                (or strong)
                equilibrium
                , then we will call them (Courant’s) admissible functions. And on the top of this, if
                [image: $$\left [G\right ]$$]
                of Sect. 
                3.2.3
                is non-singular, only
                11
                then we can get the shape functions associated with the nodes.
              

                It is of the utmost importance to distinctly formulate scalar responses (e.g., in temperature and torsion problems) from their vector field counterparts,
                12
                (e.g., continuum mechanics displacements in two- and three-dimensions).
              

                In general, Courant’s admissible functions for elasticity will be vectors that are coupled via the (non-dimensional) Poisson’s ratio −1 <
                ν
                < 1∕2. The shape functions will be linear combinations to be dictated by the Kronecker’s condition Eq. (
                3.2
                ), where the nodal coordinates will enter. For example, there will be n polynomials in
                [image: $$\mathfrak{R}^{n}$$]
                to designate each admissible function vector for n = 2,3(x,y) and (x,y,z), in
                [image: $$\mathfrak{R}^{2}\text{ and }\mathfrak{R}^{3}$$]
                .
              
For simplex (triangular and tetrahedral) elements, shape function vectors with zero components suffice. But that will not be true when more element nodes, for example quadrilateral and brick elements, are employed to improve accuracy. For coupled vector field elasticity problems the explicit employment of calculus of variation can be avoided, that is why the temperature problem is presented after plane elasticity triangular elements.

                Practice Problems
              

                Standard problems from elasticity textbooks [
                2
                ,
                4
                ,
                5
                ,
                10
                ] are not repeated here. The readers are encouraged to follow problems from these standard textbooks.
              




              Appendix E
              Exact
              Integration on Plane Elements
            

              Abstract
              The divergence theorem is the most powerful tool in formulating field equations as well as the subsequent numerical evaluations of field variables in engineering mechanics. The local stress equilibrium equations are derived from the global equilibrium by employing this theorem. We study variational calculus by employing its application in deriving the statement of equilibrium and admissible boundary conditions.
            

              Controversies related to numerical quadrature schemes (Irons, Numerical integration applied to finite element method. In: Use of digital computers in structural engineering: conference publication, University of Newcastle, Newcastle upon Tyne, 1966), on
              [image: $$\mathfrak{R}^{n},n> 1,$$]
              can be completely circumvented by implementing a better and more efficient analytical formulation based on the divergence theorem. To assure this accurate implementation of the
              exact, analytic integration
              on finite elements, computer programs are presented here following summary derivations. Details given in Dasgupta (J Aerosp Eng ASCE 16(1):9–18, 2003; J Aerosp Eng ASCE, 2013; J Aerosp Eng ASCE 28:04014141, 2015) are not repeated here.
            

              When symbolic computation is employed, all polygons share the common property, hence a common computer program. Even though we started with the
              patch test
              on four-node elements, the
              Mathematica
              routine should be good for all n-gons, including the concave ones. Furthermore, curved sides do not pose any difficulty because the divergence theorem converts the area integral into a boundary line integral. Therein, the curved boundary coordinates, x(t),y(t), are described by a single running parameter 0 < t < 1. This is the significant advantage of employing computer algebra that enhances calculations to computations.
            
E.1 Gaussian Quadrature for Element-Level Integration

                Within arbitrary polygons, innovative computational schemes can be found, e.g. in [
                7
                ]. However, the existence of the
                determinant of the Jacobian
                ,
                vide
                Eq. (
                5.16
                ), makes expression of the strain energy density quite cumbersome.
                13
                An advantage of the integration operation is that the domain can be tessellated, hence the boundary is inconsequential. However, numerical error worsens when the region is broken down into more pieces. On rectangular regions integration is carried out in the light of Cartesian products.
              

                Extending the Gaussian quadrature strategy from a one-dimensional line to domains bounded by curves and surfaces, the selection of the locations of sampling points cannot be determined optimally when a preassigned error margin is stipulated. In summary, there is no algorithmic way to efficiently calculate the numerical value of an integral
                14
                using quadrature technics.
              

                  E.1.1 Integration in
                  Mathematica
                

                  To automate the integration process the
                  Mathematica
                  object
                  Integrate[]
                  can be used. If a
                  closed-form
                  result can be found, no matter how intricate the expression is, a definite integral can be systematically calculated.
                

                  The
                  Mathematica
                  object
                  NIntegrate[]
                  invokes additional resources and
                  PrecisionGoal, AccuracyGoal
                  features. User-defined one-dimensional integration can refine the control on the numerics by using a Taylor and Padé series [
                  1
                  ,
                  8
                  ] to approximate the integrant and then proceed to select a Gaussian quadrature, for which a preassigned accuracy can be achieved.
                

E.1.2 Numerical Integration in One-Dimension: The Final Common Tool

                  The divergence theorem converts a domain integral in
                  [image: $$\mathfrak{R}^{n}$$]
                  into a boundary integral
                  [image: $$\mathfrak{R}^{n-1}.$$]
                  Curved boundaries and surfaces are described piecewise. Therein, an analytical integration is involved.
                  15
                  This recursive reduction brings us to a set of integrals on a straight line. Then we invoke our (favorite) one-dimensional numerical evaluation routine most likely based on Gaussian quadrature.
                



                E.2 Integration on Boundary and Domain,
                Γ
                and
                Ω
              

                Now we will employ the same Eq. (
                F.69
                ) to develop a numerical strategy to evaluate, as stated in Eq. (
                F.38c
                ):
                [image: $$\displaystyle\begin{array}{rcl} b_{i} =\int _{\varOmega }\mathfrak{n}_{i}(x,y)\ f(x,y)\ d\varOmega \quad \text{rewritten here as: }Q_{i} =\int _{\varOmega ^{{\ast}}}q_{i}(x,y)\ d\varOmega ^{{\ast}}& &{}\end{array}$$]

 (E.1)


                Recall,
                Ω
                ∗
                is the
                polygonal approximation
                of
                Ω
                ,
                vide
                Fig. 
                C.2
                . Now,
                Γ
                ∗
                and
                Γ
                are the boundaries of
                Ω
                ∗
                and
                Ω
                , respectively. We can analytically integrate most—it may even be all—of the single-variable functions encountered in engineering mechanics. Also, we can always integrate numerically on a line!
                [image: $$\displaystyle\begin{array}{rcl} \int _{x_{1}}^{x_{2} }f(x)\ dx\cong \sum _{i}w_{i}\ f(x_{i});\text{ where }w_{i}: \text{ weights for the quadrature}& &{}\end{array}$$]

 (E.2)


                Mathematica
                automatically implements an optimal quadrature needed in Eq. (
                E.2
                ) in its
                NIntegrate
                constructs. For a prescribed error bound, such as
                [image: $$\bar{\delta }$$]
                as in Eq. (
                1.10
                ), the quadrature points and weights, x
                i
                , and w
                i
                of Eq. (
                E.2
                ) can be algorithmically evaluated. The convergence is guaranteed because in the rigorous formulation
                16
                [
                4
                ,
                5
                ], f(x,y) in Eq. (
                E.1
                ) is
                square integrable
                , which makes q
                i
                (x,y) also
                square integrable
                .
                
                  
                
              

                
                  
                
                
                  
                
              

E.3 Integration Within Polygons

                Let us define S(x,y), an
                indefinite
                integral, of an arbitrary (‘integrable’) s(x,y) that can stand for the integrands to calculate b
                i
                and Q
                i
                in Eq. (
                E.1
                ). Let
                [image: $$\hat{\imath}\text{ and }\hat{\jmath}$$]
                be the unit coordinate vectors in (x,y):
                [image: $$\displaystyle\begin{array}{rcl} S(x,y) =\int s(x,y)\ dx;\text{ now, define a vector: }\boldsymbol{S}(x,y) =\hat{\imath}\ S(x,y)& &{}\end{array}$$]

 (E.3a)


                [image: $$\displaystyle\begin{array}{rcl} \text{observe: }\boldsymbol{\nabla }\odot \boldsymbol{S} = s;\text{ hence }\int _{\varOmega ^{{\ast}}}s(x,y)\ d\varOmega =\int _{\varOmega ^{{\ast}}}\boldsymbol{\nabla }\odot \boldsymbol{S}\ d\varOmega;\quad \text{now:}& &{}\end{array}$$]

 (E.3b)


                [image: $$\displaystyle\begin{array}{rcl} \overbrace{\int _{\varOmega ^{{\ast}}}\boldsymbol{\nabla }\odot \boldsymbol{S}\ d\varOmega =\int _{\varGamma ^{{\ast}}}\mathbf{n} \odot \boldsymbol{S}\ d\varGamma }^{\text{from the divergence theorem}} =\sum _{m}\int _{\varGamma _{m}^{{\ast}}}\mathbf{n} \odot \boldsymbol{S}\ d\varGamma;\ \varGamma _{m}^{{\ast}}\text{: side of }\varOmega ^{{\ast}}& &{}\end{array}$$]

 (E.3c)


                Each one-dimensional integral on
                Γ
                i
                can be evaluated, most likely analytically or at the least numerically,
                faithfully
                conforming to a pre-assigned numerical error-bound.
              
Listing E.1 Integration within a polygon

                  areaIntegrate::usage = "areaIntegrate[z, {x, y}, nodes, proc] yields an integral
of z(x,y), using any procedure indicated by the variable proc defaulted to Integrate, within the polygon nodes."

areaIntegrate[z_, {x_, y_}, nodes_, proc_: Integrate] := Module[{t},
Plus @@ Map[lineIntegrate[Integrate[z, x], {x, y, t}, #, proc] &,
Partition[Append[nodes, nodes[[1]]], 2, 1]]]
lineIntegrate[z_, {x_, y_, t_}, {{x1_, y1_}, {x2_, y2_}}, proc_] := (proc[
((y2 - y1) z) /. {x -> x1 + t (x2 - x1), y -> y1 + t (y2 - y1)}, {t, 0, 1}])



                


                In Listing
                E.1
                , the variable
                proc
                is defaulted to carry out analytical integration. If that fails—
                not foreseeable for engineering mechanics problems
                even for singularities and cracks—then this optional parameter should be set to
                NIntegrate
                . If the analytical integration:
                [image: $$\displaystyle\begin{array}{rcl} \int z(x,y)\ dx: \text{the partial indefinite integral}& &{}\end{array}$$]

 (E.4)


                cannot be performed by
                Mathematica
                , then, in such a rare
                pathological case
                a rational polynomial expansion of z(x,y) in x may be sought with sufficient terms to guarantee the pre-assigned error bound.
              
E.3.1 Nodal Equivalent for Boundary Variables

                  When a variable g(x,y),(x,y) ∈
                  Γ
                  , is prescribed, for a boundary node i, the element(s)
                  Ω
                  (j)
                  , which share(s) that node must be identified. Let
                  [image: $$\mathfrak{n}_{i}^{(j)}$$]
                  be the shape function for element j pertaining to node i. Let
                  Γ
                  i
                  (j)
                  be the boundary segment of the element j, on which the node i lies. Then from the definition of interpolants, considering boundary interpolation:
                  [image: $$\displaystyle\begin{array}{rcl} g_{i} =\sum _{j}\int _{\varGamma _{i}^{(j)}}g(x,y)\ \mathfrak{n}_{i}^{(j)}\ d\varGamma & &{}\end{array}$$]

 (E.5)


                  This general form in Eq. (
                  E.5
                  ) can be used for obtaining equivalent nodal temperatures on the boundary as in Eq. (
                  F.44f
                  ). We shall use this to interpolate displacements and tractions in elasticity problems.
                


E.4 Exact Integration Within Curved Boundaries

                The divergence theorem is utilized in the x,y-frame, where the unit vectors in the respective directions are indicated by
                [image: $$\hat{\imath}\text{ and }\hat{\jmath}$$]
                .
              

                The theorem implements (reference frame invariance) the objectivity principle of Physics. Consequently, the coordinate independent notion of the gradient operator
                [image: $$\widehat{\nabla }$$]
                :
                [image: $$\displaystyle{ \widehat{\nabla } =\hat{\imath} \frac{\partial } {\partial x}+\hat{\jmath} \frac{\partial } {\partial y} }$$]

 (E.6)


                plays a central role. In this textbook, all fundamental results are presented in the Cartesian coordinates. Hence we restrict ourselves to the Cartesian form, shown in Eq. (
                E.6
                ).
              

                A vector quantity, e.g.
                [image: $$\hat{F},$$]
                will be indicated by a
                hat
                . For clarification the dot product will be indicated by ⊙, as in:
                [image: $$\displaystyle{ \text{divergence of }\hat{F} = \widehat{\nabla }\odot \hat{F} }$$]

 (E.7)


              

                On the x-y plane a function f(x,y) is to be integrated within an element
                Ω
                with a closed boundary
                Γ
                . On a differential segment d
                Γ
                , the outer normal
                [image: $$\hat{n}$$]
                is represented in its x,y components by:
                [image: $$\displaystyle{ \hat{n} =\hat{\imath}\ n_{x}+\hat{\jmath}\ n_{y} }$$]

 (E.8)


                Now the area integral
                [image: $$\mathfrak{A}$$]
                can be obtained as a contour integral:
                [image: $$\displaystyle\begin{array}{rcl} \mathfrak{A} =\int _{\varOmega }f(x,y)d\varOmega =\int _{\varGamma }\hat{F}(x,y)\ \hat{n}\ d\varOmega \quad \text{when:}& &{}\end{array}$$]

 (E.9a)


                [image: $$\displaystyle\begin{array}{rcl} \nabla \widehat{F}(x,y) = f(x,y)\quad \text{if:}& &{}\end{array}$$]

 (E.9b)


                [image: $$\displaystyle\begin{array}{rcl} \widehat{F}(x,y) = \hat{\imath}\int f(x,y)\ dx + \hat{\jmath} {\ast} 0\quad \text{then:}& &{}\end{array}$$]

 (E.9c)


                [image: $$\displaystyle\begin{array}{rcl} \mathfrak{A} =\int _{\varGamma }\left (\int f(x,y)\ dx\right )\ n_{x}\ d\varGamma & &{}\end{array}$$]

 (E.9d)


                [image: $$\displaystyle\begin{array}{rcl} \text{for }k\text{ segments: }\mathfrak{A} =\sum _{ \alpha }^{k}\int _{ \varGamma _{\alpha }}\left (\int f(x,y)\ dx\right )\ n_{x}\ d\varGamma & &{}\end{array}$$]

 (E.9e)


              

                Separate integrals have to be calculated for distinct curved segments
                17
                that constitute the complete boundary. Next we focus on representing one such integral.
              

                If the boundary curve for the
                α
                -segment is parametrically defined in the variable t by:
                [image: $$\displaystyle\begin{array}{rcl} \varGamma _{\alpha }: \left \{\begin{array}{*{10}c} x^{(\alpha )}(t) \\ y^{(\alpha )}(t) \end{array} \right \}\text{ and }0 <t <1& &{}\end{array}$$]

 (E.10a)


                [image: $$\displaystyle\begin{array}{rcl} \quad \text{then: }\quad \mathfrak{A}& &{}\end{array}$$]

 (E.10b)


                [image: $$\displaystyle\begin{array}{rcl} =\sum _{\alpha }\left [\left (\int _{0}^{1}\left (\int f(x,y)\ dx\right )\Bigg\vert _{ x^{(\alpha )}(t),y^{(\alpha )}(t)}\right )\ \left (\frac{dy^{(\alpha )}(t)} {dt} \right )\right ]\ dt& &{}\end{array}$$]

 (E.10c)


                Then Eq. (
                E.10c
                ) reduces to a sum of integrals in t between 0 and 1 leading to the
                exact
                analytical value of the integral of f(x,y) within the curved boundary.
              

                From Rayleigh modes, all functions to be integrated are in the form: x
                m
                y
                n
                for which writing
                FORTRAN
                or
                C
                ++
                functions is straightforward.
              

                  E.4.1 A
                  Mathematica
                  Program
                
Listing E.2 Integration within a curved element

                    curveBoundaryIntegrate::usage = "
curveBoundaryIntegrate[f, x, y, t, curveSegments]
returns the analytical integral of
f: prescribed function in x and y
curveSegments: prescribed boundary with parametric
representation of {x,y} as {x(t), y(t)} in t."

(* auxiliary function *)
segInt[f_, x_, y_, t_, {xCurve_, yCurve_}] := Integrate[
(Integrate[f, x] /. {x -> xCurve, y -> yCurve})* D[yCurve, t], {t, 0, 1}]

(* main function *)
curveBoundaryIntegrate[f_, x_, y_, t_, curveSegments_] := Simplify[
Plus @@ (segInt[f, x, y, t, #] & /@ curveSegments)]



                  


                  It is very important to traverse the boundary
                  Γ
                  in the counterclockwise sense, because the derivation of Eq. (
                  E.10c
                  ) is valid
                  only
                  with the vector notion of the contour integration convention.
                

                  An example of a circular sector is presented with the
                  Mathematica
                  data:
                

                    Listing E.3
                    Mathematica
                    data for a quarter circle
                  

                    b = /4;
seg1 = Cos[b] {-t, t};
seg2 = {Cos[b*t + 3 b], Sin[3 b + b*t]};
seg3 = {Cos[b*t + 4 b], Sin[4 b + b*t]};
seg4 = {1 - t, 1 - t}*(-Cos[b]);
curvedBoundarySegments = {seg1, seg2, seg3, seg4}



                  


                  [image: A300727_1_En_BookBackmatter_Fig30_HTML.gif]
Fig. E.1A four node curved element: circular boundary




                

                  The area of the element in Fig. 
                  E.1
                  is calculated with the integrant f(x,y) = 1 in Eq. (
                  E.9b
                  ), where:
                  [image: $$\displaystyle{ \hat{F}(x,y) =\{ \hat{\imath}x,0\} }$$]

 (E.11)


                  For Eq. (
                  E.9e
                  ), the integrands on segments in t are given in Table
                  E.1
                  .
                  Table E.1
                          Integrands for each segment of Fig. 
                          E.1
                        


	Segment
	t-Function

	# 1
	
                              [image: $$-\frac{t} {2}$$]
                            

	# 2
	
                              [image: $$\frac{1} {4}\pi \cos ^{2}\left ( \frac{\pi }{ 4} - \frac{\pi t} {4}\right )$$]
                            

	# 3
	
                              [image: $$\frac{1} {4}\pi \cos ^{2}\left ( \frac{\pi t} {4}\right )$$]
                            

	# 4
	
                              [image: $$\frac{t-1} {2}$$]
                            




                

                  The
                  Mathematica
                  program in Listing
                  E.2
                  yields
                  [image: $$\frac{\pi }{4}$$]
                  to be the calculated area of the quadrant of the unit circle shown in Fig. 
                  E.1
                  .
                


E.5 Problem Sets

                	1.
                        Convince yourself that an arbitrary function f(x,y) can be Padé approximated with a linear denominator polynomial:
                        
                          
                        
                        [image: $$\displaystyle{ f(x,y)\cong g(x,y) + \frac{a} {1 -\alpha \ x -\beta \ y} }$$]

 (E.12)


                        With shape functions of the form of Eq. (
                        E.12
                        ),
                        [image: $$\int \left [b\right ]^{T}\ \left [d\right ]\ \left [b\right ]\ d\varOmega$$]
                        can always be obtained without resorting to any quadrature.
                      


 

	2.
                        Obtain analytical expressions of integrals of f(x,y) in Eq. (
                        E.13
                        ) for i = 1,2,3,4.
                        [image: $$\displaystyle{ f(x,y) = \left (\frac{((a - x)(c - y))} {((b - x)(d - y))}\right )^{i} }$$]

 (E.13)


                        What is the significance for i = 1,2,3,4?
                      

                        Verify that for a shape function in the form of f(x,y) in Eq. (
                        E.12
                        ), in the stiffness calculations the form in Eq. (
                        E.13
                        ) with i = 4 will appear.
                      


 

	3.
                        Curved element problems are incorporated into Chap. 
                        9
                      


 




              




              Appendix F
              Scalar
              Fields on Triangular Elements: Conductivity Matrices from the Variational Principle
            

              Abstract
              Temperature T is a scalar. In the Cartesian (x,y) frame, the spatial profile of T(x,y) is studied in this chapter.
            

              In the Dirichlet problem, a linear operator,
              [image: $$\mathcal{L}$$]
              governs T(x,y) subjected to a heat source distribution function f(x,y), in a domain
              Ω
              with boundary
              Γ
              , when T(x,y) on
              Γ
              is prescribed:
              [image: $$\displaystyle{ \mathcal{L}\ T = f\text{ in }\varOmega;\quad \text{Dirichlet problem: }T\Big\vert _{\varGamma }\text{ is prescribed as: }g(x,y) }$$]

 (F.1)


            

              It should be mentioned in parentheses that certain smoothness and integrability conditions are assumed in engineering approximations. From the finite element viewpoint, it is important to note that the temperature
              scalar field
              is governed by the Poisson’s equation. Here, the variational principle is employed to get the system matrix that relates the nodal (steady) temperature with the heat flow rate by employing linear interpolants on triangular elements.
            
Derivations of the analytical responses are crucial in this chapter. Readers are encouraged to go over the theoretical steps carefully and to gain confidence in their ability to derive all results in ‘closed notes’ sessions! No additional problem set is assigned; there are sufficient analytical examples and their numerical counterparts will provide a rich volume of practice problems.
F.1 Steady Heat Flow
In the interest of clarity, the temperature T and heat source Q will replace the generic variables r and R of stress analysis problems.
F.1.1 One-Dimensional Problems

                  We start with Fig. 
                  F.1
                  , the simplest, most often an ideal, one-dimensional case.
                  [image: A300727_1_En_BookBackmatter_Fig31_HTML.gif]
Fig. F.1
                          Heat flow in a uniform rod element between two sections at x = x
                          1
                          and x
                          2
                        




                

                  Let us consider a section of a bar between x
                  1
                  ,x
                  2
                  . Conventionally, all algebraic quantities are stated to increase with the spatial coordinates. Accordingly, we assume:
                  [image: $$\displaystyle{ x_{2} = x_{1} +\varDelta x;\quad T_{2} = T_{1} +\varDelta T;\quad T_{1} <T_{2}\text{ and }Q_{2} = Q_{1} +\varDelta Q }$$]

 (F.2)


                  It is important to note that, by convention with
                  Δ
                  T,
                  Δ
                  Q > 0:
                  [image: $$\displaystyle{ \frac{\varDelta Q} {\varDelta T} <0,\ \text{since heat flows from a higher to lower temperature} }$$]

 (F.3)


                  Considering
                  Δ
                  x → 0, and the heat source intensity to be f(x) we derive:
                  [image: $$\displaystyle{ -c\frac{\mathrm{d}^{2}T} {\mathrm{d}x^{2}} = f;\ \text{everywhere the thermal conductivity parameter }c> 0}$$]

 (F.4)


                

                  
                    
                  
                

F.1.2 Two-Dimensional Dirichlet Problems

                  
                    
                  
                

                  In standard textbooks of mathematical physics, e.g. [
                  3
                  ,
                  11
                  ,
                  12
                  ], the reader will find a derivation of the steady (time independent) heat flow equation. The Poisson’s equation for the temperature
                  18
                  T(x,y) depicts the energy balance statement within an infinitesimal neighborhood of (x,y):
                  [image: $$\displaystyle\begin{array}{rcl} \ \ \ \ \ \ \text{for }c> 0: -c\ \nabla ^{2}T(x,y) = f(x,y): \text{Poisson's equation }\quad & &{}\end{array}$$]

 (F.5)


                  [image: A300727_1_En_BookBackmatter_Equ147_HTML.gif]

 (F.6)


                

                  In the two-dimensional Cartesian coordinates (x,y), associated with the unit coordinate vectors
                  i
                  
                    x
                  
                  and
                  i
                  
                    y
                  
                  we have
                  19
                  :
                  [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\nabla } = \mathbf{i_{x}}\ \frac{\partial } {\partial x} + \mathbf{i_{y}}\ \frac{\partial } {\partial y}: \text{ the gradient operator (a vector)}& &{}\end{array}$$]

 (F.7a)


                  [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\nabla }T\ = \mathbf{grad}\ T(x,y);\quad \text{with } \odot \text{ indicating the dot product }& &{}\end{array}$$]

 (F.7b)


                  [image: $$\displaystyle\begin{array}{rcl} \nabla ^{2} = \boldsymbol{\nabla }\odot \boldsymbol{\nabla } = \frac{\partial ^{2}} {\partial x^{2}} + \frac{\partial ^{2}} {\partial y^{2}}: \text{ the Laplacian (a scalar)}& &{}\end{array}$$]

 (F.7c)


                
F.1.2.1 The Strong or the Classical Solution

                    The requirements for a classical temperature profile, which is related to a boundary value problem of heat conduction, can be summarized as:
                    	1.
                            The classical solution T(x,y) at
                            every
                            point in
                            Ω
                            must satisfy Eq. (
                            F.6
                            ).
                          


 

	2.
                            The function T(x,y) is
                            smooth enough
                            such that the second partial derivative of T(x,y) necessarily exists in all directions.
                          


 

	3.
                            In addition, on
                            Γ
                            : the boundary of
                            Ω
                            , for the prescribed temperature distribution g(x,y), the classical solution T(x,y)
                            exactly
                            satisfies:
                            [image: $$\displaystyle{ \text{Dirichlet boundary condition: }T(x,y) = g(x,y)\;\quad \forall (x,y) \in \varGamma }$$]

 (F.8)


                          


 




                  
The existence and uniqueness of the solution are described in standard texts on partial differential equation. Also, solutions are generally sought by the method of separation of variables for rectangular (or circular) domains.


                    F.1.2.2 Necessities to Seek
                    Non-classical
                    Solutions
                  

                    In Eq. (
                    D.10a
                    ) of Sect. 
                    D.2
                    we stated the Dirichlet boundary value problem.
                  

                    In Fig. 
                    D.2
                    , when the traction boundary portion:
                    Γ
                    ∗
                    is empty ∅, for an arbitrarily shaped domain
                    Ω
                    , classical solutions are intractable.
                  

F.1.2.3 Finite Element Approximations

                    The finite element method furnishes approximations of T(x,y), (x,y) ∈
                    Ω
                    .
                  

                    The partial differential equation (
                    F.6
                    ) and the associated boundary condition equation (
                    F.8
                    ) are satisfied
                    only
                    in “an average
                    overall
                    sense,” on
                    Ω
                    and
                    Γ
                    , respectively. This is akin to the square integrable solutions to linear differential equations [
                    9
                    ]. The energy principle provides the foundation for such approximations.
                  

                    Within the context of the Dirichlet boundary value problems, stated in Eq. (
                    F.1
                    ), the notion of Dirichlet energy,
                    [image: $$\boldsymbol{\mathfrak{D}}$$]
                    20
                    , leads to the Dirichlet principle, the term coined by Riemann [
                    2
                    ,
                    7
                    ]. It states that the minimizer of a certain energy functional is
                    indeed
                    a solution to Poisson’s equation stated in Eq. (
                    F.6
                    ). In finite element methods we assume a set of test functions,
                    [image: $$\mathfrak{n}_{i}(x,y),$$]
                    and adjust their weights T
                    j
                    to construct the solution
                    [image: $$\left \{T_{j}\right \}$$]
                    . The Dirichlet energy
                    [image: $$\boldsymbol{\mathfrak{D}}$$]
                    :
                    [image: $$\displaystyle{ \overbrace{\mathop{\underbrace{\boldsymbol{\mathfrak{D}} = \boldsymbol{\mathfrak{E}}}}\limits _{\text{in Eq. (F.32a)}} = (\boldsymbol{\mathfrak{I}}-\boldsymbol{\mathfrak{B}}),\text{ from Sect. 1.1.2, }}^{\text{in equations (F.23a) through (F.23c)}}\quad \text{is minimized: } \frac{\partial \boldsymbol{\mathfrak{D}}} {\partial T_{i}} = 0 }$$]

 (F.9)


                    leading to the system matrix
                    [image: $$\left [A\right ]$$]
                    and the right-hand side
                    [image: $$\left \{b\right \}$$]
                    21
                    in:
                    [image: $$\displaystyle{ \left [A_{ij}\right ]\ \left \{T_{j}\right \} = \left \{b_{i}\right \} \rightarrow \left (\sum _{j}\mathfrak{n}_{i}(x,y)\ T_{i}\right )\text{: weak solution; }(x,y)\ \in \varOmega }$$]

 (F.10)


                  


                    F.1.2.4 Weak Solution Based on the Entire System Not
                    Point-Wise
                  

                    In Summary:
                    Weak finite element solutions
                    22
                    originate from linear algebraic equations [
                    8
                    ,
                    13
                    ], whereas classical strong solutions are obtained from differential equations that address
                    point-wise
                    [
                    12
                    ] energy balance. The integral
                    23
                    energy norm
                    furnishes the equivalence.
                  



F.2 Weak Solutions by the Variational Formulation

                We shall now derive the Eulerian and the Dirichlet energy expressions employing the concepts from calculus of variations [
                1
                ,
                5
                ].
              

                
                  
                
                
                  
                
                
                  
                
                
                  
                
              
F.2.1 Some Notations in the Variational Calculus

                  For variables p(x,y) and q(p), the differentials dp and dq are infinitesimal increments. These are written with italic d. A familiar set of notions is:
                  [image: $$\displaystyle\begin{array}{rcl} dq = \frac{\mathrm{d}q} {\mathrm{d}p}dp;\quad \text{the derivative is: }\frac{\mathrm{d}p} {\mathrm{d}q}\text{; written with roman d}& &{}\end{array}$$]

 (F.11a)


                  [image: $$\displaystyle\begin{array}{rcl} d(p + q) = dx + dy;\ d(p\ q) = p\ dx + q\ dy;\ da = 0\text{ for constant: }a& &{}\end{array}$$]

 (F.11b)


                  In a similar fashion for functions u(x,y),v(x,y) we introduce the notation
                  δ
                  to indicate a
                  variation
                  that denotes infinitesimal changes:
                  [image: $$\displaystyle\begin{array}{rcl} \delta \Big(u(x,y) + v(x,y)\Big) =\delta u(x,y) +\delta v(x,y);\ \text{or simply: }\delta u +\delta v& &{}\end{array}$$]

 (F.12a)


                  [image: $$\displaystyle\begin{array}{rcl} \text{ if }u(x,y)\text{ is held constant, then: }\delta u = 0\text{ and }& &{}\end{array}$$]

 (F.12b)


                  [image: $$\displaystyle\begin{array}{rcl} \delta (u\ v) = v\ \delta u + u\ \delta v,\text{ then: }& &{}\end{array}$$]

 (F.12c)


                  [image: $$\displaystyle\begin{array}{rcl} \delta (u^{2}) =\delta (u\ u) = u\ \delta u + u\ \delta u = 2u\ \delta u \rightarrow u\ \delta u = \frac{1} {2}\delta (u^{2})& &{}\end{array}$$]

 (F.12d)


                  A scalar function of u and v is called a
                  functional.
                  Consider
                  [image: $$\boldsymbol{\mathfrak{F}}\Big(u,v\Big)$$]
                  24
                  :
                  [image: $$\displaystyle{ \delta \ \boldsymbol{\mathfrak{F}} =\delta u\ \frac{\partial } {\partial u}\boldsymbol{\mathfrak{F}} +\delta v\ \frac{\partial } {\partial v}\boldsymbol{\mathfrak{F}};\ \text{ and }\delta \ \boldsymbol{\mathfrak{F}} = 0\text{ implies, }\boldsymbol{\mathfrak{F}}\text{ is}\ stationary }$$]

 (F.13a)


                

                  
                    
                  
                

                    F.2.1.1 A Variation
                    δ
                    T(x,y) of the Temperature T(x,y)
                  

                    Let us now compare two candidates T(x,y) and T(x,y) +
                    δ
                    T(x,y).
                  

                    We multiply both sides of Eq. (
                    F.6
                    ) by
                    δ
                    T and integrate on
                    Ω
                    . Now, we define
                    [image: $$\delta \ \boldsymbol{\mathfrak{F}}$$]
                    and set it to zero:
                    [image: $$\displaystyle\begin{array}{rcl} \delta \ \boldsymbol{\mathfrak{F}}\Big(T(x,y)\Big) = 0& &{}\end{array}$$]

 (F.14a)


                    [image: $$\displaystyle\begin{array}{rcl} \text{then: }\int _{\varOmega }\delta T(x,y)\ \Big[f(x,y) + c\ \nabla ^{2}T(x,y)\Big]d\varOmega = 0& &{}\end{array}$$]

 (F.14b)


                    [image: $$\displaystyle\begin{array}{rcl} \text{or: }\int _{\varOmega }\delta T(x,y)\ f(x,y)\ d\varOmega + c\int _{\varOmega }\delta T(x,y)\ \nabla ^{2}T(x,y)\ d\varOmega = 0& &{}\end{array}$$]

 (F.14c)


                  

                    It should be noted that c, the conductivity coefficient, comes out of the integral because the medium is homogeneous, i.e., c does
                    not
                    change from point to point in
                    Ω
                    .
                  

                    Even though f(x,y) changes within
                    Ω
                    , between the two states T(x,y) and T(x,y) +
                    δ
                    T(x,y) the function f(x,y) remains unchanged. Hence:
                    [image: $$\displaystyle\begin{array}{rcl} \delta \ f(x,y) = 0& &{}\end{array}$$]

 (F.15a)


                    [image: $$\displaystyle\begin{array}{rcl} \text{ then:}\quad \delta \ \Big[T(x,y)\ f(x,y)\Big] = f(x,y)\ \delta \ T(x,y)& &{}\end{array}$$]

 (F.15b)


                  

                    Now
                    [image: $$\displaystyle\begin{array}{rcl} \int _{\varOmega }f(x,y)\ \delta \ T(x,y)\ d\varOmega =\int _{\varOmega }\delta \ \Big[T(x,y)\ f(x,y)\Big]\ d\varOmega & &{}\end{array}$$]

 (F.16a)


                    [image: $$\displaystyle\begin{array}{rcl} =\delta \ \left [\int _{\varOmega }T(x,y)\ f(x,y)\right ]\ d\varOmega & &{}\end{array}$$]

 (F.16b)


                  

                    Thus, the first integral in Eq. (
                    F.14c
                    ) according to the definition of
                    variation
                    is reduced to Eq. (
                    F.16b
                    ). The second integral in Eq. (
                    F.14c
                    ) is suitable for the application of the following Green’s identity.
                  

                    Let us consider a generic expression:
                    [image: $$\displaystyle\begin{array}{rcl} \int _{\varOmega }v\ \nabla ^{2}u\ d\varOmega = -\int _{\varOmega }\left (\frac{\partial v} {\partial x} \frac{\partial u} {\partial x} + \frac{\partial v} {\partial y} \frac{\partial u} {\partial y}\right )\ d\varOmega \ +\int _{\varGamma }v\frac{\partial u} {\partial n}\ d\varGamma & &{}\end{array}$$]

 (F.17a)


                    [image: $$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial n}\text{ is the}\ normal\ derivative\ \text{operator}& &{}\end{array}$$]

 (F.17b)


                    Set in Eq. (
                    F.17a
                    ): u = T and v =
                    δ
                    T, and obtain:
                    [image: $$\displaystyle\begin{array}{rcl} \int _{\varOmega }\delta T\ \nabla ^{2}T\ d\varOmega & =& -\int _{\varOmega }\frac{\partial T} {\partial x}\left ( \frac{\partial } {\partial x}\delta T\right ) + \frac{\partial T} {\partial y} \left ( \frac{\partial } {\partial y}\delta T\right )\ d\varOmega \\ & & +\int _{\varGamma }\delta T\left (\frac{\partial T} {\partial n}\right )\ d\varGamma {}\end{array}$$]

 (F.18a)


                    [image: $$\displaystyle\begin{array}{rcl} T(x,y)\text{ cannot change in }\varGamma,\text{ it is}\ held\ fixed\ \text{to }g(x,y) \rightarrow \delta T\Big\vert _{\varGamma } = 0& &{}\end{array}$$]

 (F.18b)


                    [image: $$\displaystyle\begin{array}{rcl} \therefore \int _{\varOmega }\delta T\ \nabla ^{2}T\ d\varOmega = -\int _{\varOmega }& \frac{\partial T} {\partial x} \left ( \frac{\partial } {\partial x}\delta T\right ) + \frac{\partial T} {\partial y} \left ( \frac{\partial } {\partial y}\delta T\right )\ d\varOmega &{}\end{array}$$]

 (F.18c)


                    Note, Eq. (
                    F.18c
                    ) is valid
                    only
                    for the Dirichlet boundary condition that is stated in Eq. (
                    F.18b
                    ).
                  

                    If T(x,y) is ‘smooth’ in
                    Ω
                    , then the partial derivatives:
                    [image: $$\frac{\partial T} {\partial x} \text{ and }\frac{\partial T} {\partial y}$$]
                    exist
                    in the
                    classical
                    sense. Thus, the derivative of the change is the change in the derivative, consequently, we can state:
                    [image: $$\displaystyle{ \frac{\partial } {\partial x}\ \delta T =\delta \ \frac{\partial T} {\partial x}\text{ and } \frac{\partial } {\partial y}\ \delta T =\delta \ \frac{\partial T} {\partial y};\text{ i.e., }\ \frac{\partial } {\partial x}, \frac{\partial } {\partial y}\text{ and }\delta \text{ commute} }$$]

 (F.19)


                    Then, according to Eq. (
                    F.12d
                    ):
                    [image: $$\displaystyle\begin{array}{rcl} \frac{\partial T} {\partial x}\ \left ( \frac{\partial } {\partial x}\ \delta T\right ) = \frac{\partial T} {\partial x}\ \left (\delta \ \frac{\partial T} {\partial x}\right )& &{}\end{array}$$]

 (F.20a)


                    [image: $$\displaystyle\begin{array}{rcl} = \frac{1} {2}\ \delta \ \left (\frac{\partial T} {\partial x}\right )^{2};\text{ then from Eq. (F.18c):}& &{}\end{array}$$]

 (F.20b)


                    [image: $$\displaystyle\begin{array}{rcl} \int _{\varOmega }\delta T\ \nabla ^{2}T\ d\varOmega =\delta \left [-\frac{1} {2}\int _{\varOmega }\left (\left (\frac{\partial T} {\partial x}\right )^{2} + \left (\frac{\partial T} {\partial y} \right )^{2}\ \right )d\varOmega \right ]& &{}\end{array}$$]

 (F.20c)


                    Now from Eqs. (
                    F.6
                    ) and (
                    F.15b
                    ):
                    [image: $$\displaystyle{ \text{when }\boldsymbol{\mathfrak{F}}\Big(T(x,y)\Big)\text{ is stationary: }\delta \ \boldsymbol{\mathfrak{F}}\Big(T(x,y)\Big) = 0 }$$]

 (F.21a)


                    [image: $$\displaystyle\begin{array}{rcl} \rightarrow \delta \left [\int _{\varOmega }\left [f\ T -\frac{c} {2}\left (\left (\frac{\partial T} {\partial x}\right )^{2} + \left (\frac{\partial T} {\partial y} \right )^{2}\ \right )\right ]d\varOmega \right ] = 0& &{}\end{array}$$]

 (F.21b)


                    
                      
                    
                    In conformity with the minimum energy principles of physics, the Dirichlet energy:
                    [image: $$\boldsymbol{\mathfrak{D}}\Big(T(x,y)\Big)$$]
                    is defined as the negative of the functional
                    [image: $$\boldsymbol{\mathfrak{F}}\Big(T(x,y)\Big):$$]
                    [image: $$\displaystyle{ \boldsymbol{\mathfrak{D}}\Big(T(x,y)\Big) =\int _{\varOmega }\left [\frac{c} {2}\left (\left (\frac{\partial T} {\partial x}\right )^{2} + \left (\frac{\partial T} {\partial y} \right )^{2}\ \right ) - f(x,y)\ T(x,y)\ \right ]d\varOmega }$$]

 (F.22)


                  

                    Minimization of the Dirichlet energy
                    [image: $$\boldsymbol{\mathfrak{D}}\Big(T(x,y)\Big)$$]
                    denotes a stable equilibrium expressed by the field equation and boundary condition.
                  

                    The Dirichlet energy is identical with the Eulerian functional:
                    
                      
                    
                    
                      
                    
                    
                      
                      
                    
                    
                      
                    
                    [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{D}}\Big(T(x,y)\Big) =\ \ \boldsymbol{\mathfrak{E}}\Big(T(x,y)\Big)& &{}\end{array}$$]

 (F.23a)


                    [image: $$\displaystyle\begin{array}{rcl} =\mathop{ \int }_{\varOmega }\left [\frac{c} {2}\left (\left (\frac{\partial T} {\partial x}\right )^{2} + \left (\frac{\partial T} {\partial y} \right )^{2}\ \right ) - f\ T\right ]d\varOmega & &{}\end{array}$$]

 (F.23b)


                    [image: $$\displaystyle\begin{array}{rcl} \text{for }T(x,y)\Big\vert _{\varGamma }: \text{ prescribed to }g& &{}\end{array}$$]

 (F.23c)


                    thus minimization of
                    [image: $$\boldsymbol{\mathfrak{D}}\Big(T(x,y)\Big)\text{ or }\boldsymbol{\mathfrak{E}}\Big(T(x,y)\Big)$$]
                    is
                    physically
                    equivalent, in the overall energy sense, to solving:
                    [image: $$\displaystyle\begin{array}{rcl} f(x,y) + c\ \nabla ^{2}T(x,y)\ = 0;(x,y) \in \varOmega & &{}\end{array}$$]

 (F.24a)


                    [image: $$\displaystyle\begin{array}{rcl} \text{ and }T(x,y) = g,(x,y) \in \varGamma & &{}\end{array}$$]

 (F.24b)


                    Furthermore, from the structure of
                    [image: $$\boldsymbol{\mathfrak{E}}$$]
                    we can identify:
                    [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{I}}\Big(T(x,y)\Big) =\mathop{ \int }_{\varOmega }\frac{c} {2}\left (\left (\frac{\partial T} {\partial x}\right )^{2} + \left (\frac{\partial T} {\partial y} \right )^{2}\ \right )d\varOmega & &{}\end{array}$$]

 (F.25a)


                    [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{B}}\Big(T(x,y)\Big) =\int _{\varOmega }f(x,y)\ T(x,y)\ d\varOmega & &{}\end{array}$$]

 (F.25b)


                    Note, the minimization process of Eqs. (
                    F.23b
                    ) and (
                    F.23c
                    ) is
                    not
                    mathematically identical with solving T(x,y) from Eq. (
                    F.24b
                    ).
                  

                    The classical statement, Eq. (
                    F.24b
                    ), warrants T(x,y) to be smooth enough to possess the
                    second
                    derivative, whereas a coarser requirement, viz., the existence of only the first derivatives, suffices for the Eulerian minimization scheme. This denotes a
                    weaker
                    requirement on the solution obtained from ‘energy minimization.’
                  



                  F.2.2 Smoothness Requirement is Relaxed in the
                  Weak
                  Solution
                

                  A
                  weak solution
                  from the variational formulation indicates that only the existence of the slope in any arbitrary direction is needed. This is opposed to the
                  strong
                  or classical solution with the curvature requirement.
                

                  For most engineering design-analysis purposes the weak solution is adequate. However, it is more appealing due to its simplicity. Courant’s
                  hand calculation
                  [
                  1
                  ] yielded excellent approximate solution out of a minimization scheme for a formidable problem from the analytical standpoint.
                


F.3 Element Formulation: Using Indicial Notation

                For the triangular element, let the temperature at the ith vertex be T
                i
                . These nodal temperatures are interpolated within the element domain
                Ω
                according to the shape functions (interpolants)
                [image: $$\mathfrak{n}_{i}(x,y)$$]
                of Eqs. (3.5b) and (3.5c):
                [image: $$\displaystyle{ T(x,y) =\sum _{ i}^{3}\mathfrak{n}_{ i}(x,y)\ T_{i} }$$]

 (F.26)


                In the indicial (adjective of index) notation, summation over indices
                repeated twice
                will be assumed, and ∑
                i
                3
                will not be written out (explicitly), then:
                [image: $$\displaystyle{ T(x,y) = \mathfrak{n}_{i}(x,y)\ T_{i}: \quad \text{implied sum over the index }i }$$]

 (F.27)


                Now
                [image: $$\boldsymbol{\mathfrak{E}}\Big(c,f,T(x,y)\Big)$$]
                becomes
                [image: $$\boldsymbol{\mathfrak{E}}\Big(c,f,T_{i}\Big)$$]
                ; hence, the
                weak
                equilibrium statement is:
                [image: $$\displaystyle{ \delta \ \boldsymbol{\mathfrak{E}}\Big(c,f,T(x,y)\Big) = \frac{\partial \boldsymbol{\mathfrak{E}}} {\partial T}\ \delta T = 0 \rightarrow \frac{\partial } {\partial T_{i}}\boldsymbol{\mathfrak{E}}\Big(c,f,T_{i}\Big)\ \delta T_{i} }$$]

 (F.28)


                This was a brilliant contribution of Ritz [
                10
                ] who transformed the variation (the
                δ
                operation) with respect to a continuous function, here T(x,y), into partial derivatives (∂ operations) of (a finite number of) scalars, here the three nodal temperatures. Also:
                [image: $$\displaystyle{ \frac{\partial T(x,y)} {\partial x} = \frac{\partial \mathfrak{n}_{i}(x,y)} {\partial x} \ T_{i}\text{ or }\frac{\partial \mathfrak{n}_{j}(x,y)} {\partial x} \ T_{j} }$$]

 (F.29)


              

                Since the sum does not depend on the repeated indices, these are also called
                dummy
                indices. While constructing an indicial square expression, such as
              

                [image: $$\left (\dfrac{\partial T} {\partial x}\right )^{2}\text{ or }\left (\dfrac{\partial T} {\partial y} \right )^{2}$$]
                , care should be taken not to repeat the dummy indices
              

                beyond the implied sum:
                [image: $$\displaystyle\begin{array}{rcl} \left (\frac{\partial T} {\partial x}\right )^{2}& =& \frac{\partial T} {\partial x}\ \frac{\partial T} {\partial x} \\ & =& \left ( \frac{\partial } {\partial x}(\mathfrak{n}_{i}(x,y)\ T_{i})\right )\ \left ( \frac{\partial } {\partial x}(\mathfrak{n}_{j}(x,y)\ T_{j})\right );\quad i\text{ is distinct from }j{}\end{array}$$]

 (F.30a)


                Dummy indices should be changed as frequently as possible.
              

                Now
                [image: $$\displaystyle\begin{array}{rcl} \left (\frac{\partial T} {\partial x}\right )^{2} = \frac{\partial \mathfrak{n}_{i}} {\partial x} \frac{\partial \mathfrak{n}_{j}} {\partial x} \ T_{i}\ T_{j};\qquad \text{similarly: }& &{}\end{array}$$]

 (F.31a)


                [image: $$\displaystyle\begin{array}{rcl} \left (\frac{\partial T} {\partial y} \right )^{2} = \frac{\partial \mathfrak{n}_{p}} {\partial y} \frac{\partial \mathfrak{n}_{q}} {\partial y} \ T_{p}\ T_{q};\quad p\text{ and }q\ \text{are new dummy indices}& &{}\end{array}$$]

 (F.31b)


                Functionals
                [image: $$\mathfrak{D}\text{ and }\mathfrak{E},$$]
                with another dummy index m, become:
                [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{D}}\Big(c,f(x,y),T(x,y)\Big) =\boldsymbol{ \mathfrak{E}}\Big(c,f(x,y),T(x,y)\Big)& &{}\end{array}$$]

 (F.32a)


                [image: $$\displaystyle\begin{array}{rcl} =\int _{\varOmega }\!\left (\frac{c} {2}\ \left (\frac{\partial \mathfrak{n}_{i}} {\partial x} \frac{\partial \mathfrak{n}_{j}} {\partial x} T_{i}T_{j}+\frac{\partial \mathfrak{n}_{p}} {\partial y} \frac{\partial \mathfrak{n}_{q}} {\partial y} T_{p}T_{q}\right )\! -\! f(x,y)\ \mathfrak{n}_{m}T_{m}\right )d\varOmega & &{}\end{array}$$]

 (F.32b)


                Now, we introduce a
                free
                25
                index
                α
                , then:
                [image: $$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial T_{\alpha }}\boldsymbol{\mathfrak{E}}\Big(T(x,y)\Big)& =& \frac{\partial } {\partial T_{\alpha }}\int _{\varOmega }\frac{c(x,y)} {2} \left (\frac{\partial \mathfrak{n}_{i}} {\partial x} \frac{\partial \mathfrak{n}_{j}} {\partial x} T_{i}T_{j} + \frac{\partial \mathfrak{n}_{p}} {\partial y} \frac{\partial \mathfrak{n}_{q}} {\partial y} T_{p}T_{q}\right )d\varOmega \\ & & - \frac{\partial } {\partial T_{\alpha }}\int _{\varOmega }f(x,y)\ \mathfrak{n}_{m}(x,y)\ T_{m}\ d\varOmega {}\end{array}$$]

 (F.33)


              

                The physical interpretation of the free index is that now we are seeking the consequences due to a particular nodal temperature T
                
                  α
                
                , when the heat flow takes place on the entire triangular element
                Ω
                . Let us examine one term at a time of the right-hand side of Eq. (
                F.33
                ):
                [image: $$\displaystyle\begin{array}{rcl} & & \frac{\partial } {\partial T_{\alpha }}\left [\frac{\partial \mathfrak{n}_{i}} {\partial x} \frac{\partial \mathfrak{n}_{j}} {\partial x} T_{i}T_{j}\right ] = \frac{\partial \mathfrak{n}_{i}} {\partial x} \frac{\partial \mathfrak{n}_{j}} {\partial x} \delta _{i\alpha }T_{j} + \frac{\partial \mathfrak{n}_{i}} {\partial x} \frac{\partial \mathfrak{n}_{j}} {\partial x} T_{i}\delta _{j\alpha } \\ & & \quad = \frac{\partial \mathfrak{n}_{\alpha }} {\partial x} \frac{\partial \mathfrak{n}_{j}} {\partial x} T_{j} + \frac{\partial \mathfrak{n}_{i}} {\partial x} \frac{\partial \mathfrak{n}_{\alpha }} {\partial x}T_{i} \\ & & \quad = 2\frac{\partial \mathfrak{n}_{\alpha }} {\partial x} \frac{\partial \mathfrak{n}_{j}} {\partial x} T_{j};\quad \text{similrly: } \frac{\partial } {\partial T_{\alpha }}\left [\frac{\partial \mathfrak{n}_{i}} {\partial y} \frac{\partial \mathfrak{n}_{j}} {\partial y} T_{i}T_{j}\right ] = 2\frac{\partial \mathfrak{n}_{\alpha }} {\partial y} \frac{\partial \mathfrak{n}_{j}} {\partial y} T_{j}{}\end{array}$$]

 (F.34)


                since
                [image: $$\frac{\partial T_{p}} {\partial T_{q}} =\delta _{pq},$$]
                the
                contraction
                26
                from Eq. (
                F.33
                ) yields:
                [image: $$\displaystyle{ \frac{\partial } {\partial T_{\alpha }}\boldsymbol{\mathfrak{E}}\Big(c,f,T_{i}\Big) =\int _{\varOmega }\left [c\left (\frac{\partial \mathfrak{n}_{\alpha }} {\partial x} \frac{\partial \mathfrak{n}_{j}} {\partial x} + \frac{\partial \mathfrak{n}_{\alpha }} {\partial y} \frac{\partial \mathfrak{n}_{j}} {\partial y} \right )T_{j} - (f\ \mathfrak{n}_{\alpha })\right ]d\varOmega }$$]

 (F.35)


              

                The extremum for the Eulerian is also the minimum, hence the unknown nodal temperatures can be calculated from:
                [image: $$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial T_{\alpha }}\boldsymbol{\mathfrak{E}}\Big(c,f,T_{i}\Big) = 0 \rightarrow T_{j}\ \int _{\varOmega }c\left (\frac{\partial \mathfrak{n}_{j}} {\partial x} \frac{\partial \mathfrak{n}_{\alpha }} {\partial x} + \frac{\partial \mathfrak{n}_{j}} {\partial y} \frac{\partial \mathfrak{n}_{\alpha }} {\partial y}\right )\ d\varOmega & &{}\end{array}$$]

 (F.36)


                [image: $$\displaystyle\begin{array}{rcl} =\int _{\varOmega }\mathfrak{n}_{\alpha }(x,y)\ f(x,y)\ d\varOmega & &{}\end{array}$$]

 (F.37)


                which is equivalent to the matrix equation:
                [image: $$\displaystyle\begin{array}{rcl} \left [A_{ij}\right ]\left \{T_{j}\right \} = \left \{b_{i}\right \};\text{ where:}& &{}\end{array}$$]

 (F.38a)


                [image: $$\displaystyle\begin{array}{rcl} A_{ij} = c\ \int _{\varOmega }\left (\frac{\partial \mathfrak{n}_{i}} {\partial x} \frac{\partial \mathfrak{n}_{j}} {\partial x} + \frac{\partial \mathfrak{n}_{i}} {\partial y} \frac{\partial \mathfrak{n}_{j}} {\partial y} \right )\ d\varOmega;\quad \left [A\right ]\text{: symmetric}& &{}\end{array}$$]

 (F.38b)


                [image: $$\displaystyle\begin{array}{rcl} b_{i} =\int _{\varOmega }\mathfrak{n}_{i}(x,y)\ f(x,y)\ d\varOmega & &{}\end{array}$$]

 (F.38c)


              

                For the triangular element the shape functions from Eq. (3.5b) are linear functions in (x,y). Hence all values such as:
                [image: $$\frac{\partial \mathfrak{n}_{i}} {\partial x}, \frac{\partial \mathfrak{n}_{j}} {\partial y}$$]
                are constants:
                [image: $$\displaystyle\begin{array}{rcl} \text{let }\mathfrak{N}_{x} = \frac{\partial } {\partial x}\left \{\mathfrak{N}(x,y)\right \} = \frac{1} {2\ \mathfrak{A}}\left \{\begin{array}{*{10}c} y_{3} - y_{2} \\ y_{1} - y_{3} \\ y_{2} - y_{1} \end{array} \right \};\text{ similarly:}& &{}\end{array}$$]

 (F.39a)


                [image: $$\displaystyle\begin{array}{rcl} \mathfrak{N}_{y} = \frac{\partial } {\partial y}\left \{\mathfrak{N}(x,y)\right \} = - \frac{1} {2\ \mathfrak{A}}\left \{\begin{array}{*{10}c} x_{3} - x_{2} \\ x_{1} - x_{3} \\ x_{2} - x_{1} \end{array} \right \};\text{ where:}& &{}\end{array}$$]

 (F.39b)


                [image: $$\displaystyle\begin{array}{rcl} & & \mathfrak{A} = \frac{1} {2}(-\text{x1}\ \text{y2} + \text{x1}\ \text{y3} + \text{x2}\ \text{y1} -\text{x2}\ \text{y3} -\text{x3}\ \text{y1} + \text{x3}\ \text{y2}) \\ & & \mathfrak{A}\text{: the area of the triangle } {}\end{array}$$]

 (F.39c)


                Then from Eq. (
                F.38b
                ):
                [image: $$\displaystyle{ \left [A\right ] = c\int _{\varOmega }\left (\mathfrak{N}_{x}\mathfrak{N}_{x}^{T} + \mathfrak{N}_{ y}\mathfrak{N}_{y}^{T}\right )\ d\varOmega = c\ \mathfrak{A}\left (\mathfrak{N}_{ x}\mathfrak{N}_{x}^{T} + \mathfrak{N}_{ y}\mathfrak{N}_{y}^{T}\right ) }$$]

 (F.40)


                Since, particularly for this
                triangular element,
                [image: $$\mathfrak{N}_{x}\text{ and }\mathfrak{N}_{y}$$]
                are constants, we can ascertain from Eq. (
                F.40
                ):
                [image: $$\displaystyle{ \left [A\right ] = c\ \left [A_{o}\right ] {\ast}\overbrace{\int _{\varOmega }1 {\ast}\ d\varOmega }^{\text{the element area}};\text{ where }\left [A_{o}\right ] =\Bigg (\mathfrak{N}_{x}\mathfrak{N}_{x}^{T} + \mathfrak{N}_{ y}\mathfrak{N}_{y}^{T}\Bigg) }$$]

 (F.41)


              

                  F.3.1
                  Inner
                  and
                  Outer
                  Functions in
                  Mathematica
                

                  For two column matrices of the same size, the
                  inner product,
                  which results a scalar, is very frequent in computation.
                

                  In
                  Mathematica
                  , for two column matrices
                  [image: $$\left \{x1\right \}\text{ and }\left \{x2\right \}$$]
                  , in general of two different sizes, the matrix:
                  [image: $$\left [y\right ] =\Big (\left \{x1\right \}\left \{x2\right \}^{T}\Big)$$]
                  is given by:
                  [image: $$\displaystyle{ \mathtt{y\ =\ Outer[Times,\ x1,\ x2]};\quad \text{where: }y_{ij} = x1_{i} {\ast} x2_{j} }$$]

 (F.42)


                  This
                  Mathematica
                  construct of Eq. (
                  F.42
                  ) is utilized in Listing
                  F.1
                  .
                

                    Listing F.1 Calculating the
                    full
                    system conductivity matrix for a triangular element
                  

                    triangularElementSystemMatrix::usage =
"triangularElementSystemMatrix[{{x1,y1},{x2,y2},{x3,y3}}]
yields the full system matrix for
unit isotropic homogeneous constitutive parameter."

triangularElementSystemMatrix[{{x1_, y1_}, {x2_, y2_}, {x3_, y3_}}] :=
Module[{area, ns, x, y, nx, ny},

area = Abs[x2 y1 - x3 y1 - x1 y2 + x3 y2 + x1 y3 - x2 y3]/2;

ns = interpolantsOnATriangle[{x, y}, {{x1, y1}, {x2, y2}, {x3, y3}}];

{nx, ny} = D[ns, #] & /@ {x, y};

Simplify[area *Plus @@ (Outer[Times, #, #] & /@ (D[ns, #] & /@ {x, y}))]]



                  


                  Due to the symmetry of
                  [image: $$\left [A\right ]$$]
                  , it is only necessary to generate its lower triangle,
                  vide
                  Listing
                  F.2
                  .
                

                    Listing F.2 Calculating the
                    lower triangle
                    of the system matrix
                  

                    LowerTriangleTriangularElementSystemMatrix::usage =
"LowerTriangleTriangularElementSystemMatrix[
{{x1,y1},{x2,y2},{x3,y3}}]yields
the lower triangle of
the system matrix for
unit isotropic homogeneous constitutive parameter."

LowerTriangleTriangularElementSystemMatrix[{{x1_, y1_},
{x2_, y2_}, {x3_, y3_}}] := Module[{area, ns, x, y, nx, ny},
area = Abs[x2 y1 - x3 y1 - x1 y2 + x3 y2 + x1 y3 - x2 y3]/2;

ns = interpolantsOnATriangle[{x, y}, {{x1, y1}, {x2, y2}, {x3, y3}}];

{nx, ny} = D[ns, #] & /@ {x, y};

Simplify[area *Table[(nx[[i]]*nx[[j]] +ny[[i]]*ny[[j]]), {i, 3}, {j, i}]] ]



                  


F.3.2 An Example: Conductivity Matrix of a Triangular Element

                  In the interest of convenience to the reader, Fig. 
                  3.2
                  is repeated here,
                  vide
                  Fig. 
                  F.2
                  .
                  [image: A300727_1_En_BookBackmatter_Fig32_HTML.gif]
Fig. F.2
                          A triangular element with nodes:
                          {{0, 1/9}, {1, 0}, {1/3, 2/5}}
                        




                

                  In Fig. 
                  F.2
                  , the nodes are:
                  {{0, 1/9}, {1, 0}, {1/3, 2/5}}
                  .
                

                  The element system matrix from Listings
                  F.1
                  and
                  F.2
                  are:
                  [image: $$\displaystyle\begin{array}{rcl} \text{full matrix: }\left [\begin{array}{ccc} \dfrac{51} {55} & \frac{9} {55} & -\frac{12} {11} \\ \dfrac{9} {55} & \dfrac{197} {660} & - \dfrac{61} {132} \\ -\dfrac{12} {11} & - \dfrac{61} {132} & \dfrac{205} {132} \end{array} \right ]& &{}\end{array}$$]

 (F.43a)


                  [image: $$\displaystyle\begin{array}{rcl} \text{lower triangle }: \left [\begin{array}{ccc} \dfrac{51} {55} & \text{} & \text{} \\ \dfrac{9} {55} & \dfrac{197} {660} & \text{} \\ -\dfrac{12} {11} & - \dfrac{61} {132} &\dfrac{205} {132} \end{array} \right ]& &{}\end{array}$$]

 (F.43b)


                  [image: A300727_1_En_BookBackmatter_Fig33_HTML.gif]
Fig. F.3
                          A six element system, problem description in Eqs. (
                          F.44a
                          ) through (
                          F.44f
                          )
                        




                


F.4 System Equations: Example—A Six Element Assembly

                For Fig. 
                F.3
                , the problem data is:
                [image: $$\displaystyle\begin{array}{rcl} & & \mathbf{nodes} =\{\{ -1,-1\},\{6/5,-(4/5)\},\{3/2,1\},\{-(6/5),4/5\}, \\ & & \{-(1/2),-(1/2)\},\{1,0\}\} {}\end{array}$$]

 (F.44a)


                [image: $$\displaystyle\begin{array}{rcl} & & \mathbf{connections} =\{\{ 1,2,5\},\{1,4,5\},\{2,3,6\}, \\ & & \{2,5,6\},\{3,4,6\},\{4,5,6\}\} {}\end{array}$$]

 (F.44b)


                [image: $$\displaystyle\begin{array}{rcl} \mathbf{prescribedConditions} =\{ Q[5]-> 1,Q[6]-> 1,& &{}\end{array}$$]

 (F.44c)


                [image: $$\displaystyle\begin{array}{rcl} T[1]-> 1,T[2]-> 1,T[3]-> 1,T[4]-> 1\}& &{}\end{array}$$]

 (F.44d)


                [image: $$\displaystyle\begin{array}{rcl} & & \mathtt{TeXForm\ outputs\ T[i]\ and\ Q[i]\ as\ T(i)\ and\ Q(i):\ } \\ & & \{Q(5)-> 1,Q(6)-> 1, {}\end{array}$$]

 (F.44e)


                [image: $$\displaystyle\begin{array}{rcl} T(1)-> 1,T(2)-> 1,T(3)-> 1,T(4)-> 1\}& &{}\end{array}$$]

 (F.44f)


              

                In the equation form, using the
                Mathematica
                notation
                ==
                , the relations between the nodal heat flow Q and the associated temperature T are captured. The following 6 × 6 system of linear equations is obtained explicitly:
                [image: $$\displaystyle\begin{array}{rcl} Q(1)& ==& \frac{129T(1)} {50} + \frac{7T(2)} {20} + \frac{3T(4)} {20} -\frac{77T(5)} {25} \\ Q(2)& ==& \frac{7T(1)} {20} + \frac{703T(2)} {312} + \frac{7T(3)} {12} -\frac{83T(5)} {130} -\frac{265T(6)} {104} \\ Q(3)& ==& \frac{7T(2)} {12} + \frac{316T(3)} {195} + \frac{3T(4)} {52} -\frac{147T(6)} {65} \\ Q(4)& ==& \frac{3T(1)} {20} + \frac{3T(3)} {52} + \frac{2473T(4)} {2392} -\frac{237T(5)} {230} -\frac{505T(6)} {2392} \\ Q(5)& ==& -\frac{77T(1)} {25} -\frac{83T(2)} {130} -\frac{237T(4)} {230} + \frac{41358T(5)} {7475} -\frac{1172T(6)} {1495} \\ Q(6)& ==& -\frac{265T(2)} {104} -\frac{147T(3)} {65} -\frac{505T(4)} {2392} -\frac{1172T(5)} {1495} + \frac{8678T(6)} {1495}{}\end{array}$$]

 (F.45)


              

                The
                Mathematica
                Solve[]
                function calculates six nodal temperatures and the corresponding heat flux sources
                all at the same time
                :
                [image: $$\displaystyle\begin{array}{rcl} & & \Big\{T(1) \rightarrow 1,Q(1) \rightarrow -\frac{659} {1023},T(2) \rightarrow 1,Q(2) \rightarrow -\frac{426} {661}, \\ & & T(3) \rightarrow 1,Q(3) \rightarrow -\frac{2608} {5751},T(4) \rightarrow 1,Q(4) \rightarrow -\frac{156} {605}, \\ & & T(5) \rightarrow \frac{185} {153},Q(5) \rightarrow 1,T(6) \rightarrow \frac{461} {384},Q(6) \rightarrow 1\Big\} {}\end{array}$$]

 (F.46)


              

                  F.4.1 Solving Systems with
                  Lower Triangles
                

                  Due to the economy in storage and long operations (multiplication/division), symmetry of system matrices can be exploited to reduce the time from ‘n
                  3
                  to n
                  2
                  ’ order. Lower triangular matrices are from Listing
                  F.2
                  .
                

                  We assemble the lower triangles of element matrices to construct the lower triangle of the system conductivity matrix. Consider a two element system as shown in Fig. 
                  F.4
                  (this is the minimum illustration to make the point):
                  [image: $$\displaystyle\begin{array}{rcl} \mathbf{nodes} =\{\{ 0,0\},\{1,0\},\{-0.5,1\},\{1,0.8\}\};& &{}\end{array}$$]

 (F.47a)


                  [image: $$\displaystyle\begin{array}{rcl} \mathbf{connections} =\{\{ 1,2,3\},\{3,2,4\}\}& &{}\end{array}$$]

 (F.47b)


                  [image: A300727_1_En_BookBackmatter_Fig34_HTML.gif]
Fig. F.4A two element system




                  Table F.1
                          Lower triangle of the global system matrices from Listing
                          F.3
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                  In Table
                  F.1
                  , k
                  {p,q}
                  indicates the
                  p
                  th row,
                  q
                  th column of the
                  i
                  th element system matrix.
                

                  In Eq. (
                  F.48
                  ), the lower triangle of the global conductivity matrix of the two element assembly of Fig. 
                  F.4
                  is obtained from Listing
                  F.3
                  .
                  [image: $$\displaystyle{ \left [\begin{array}{cccccc} \\ \dfrac{129} {50} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \dfrac{7} {20} & \dfrac{703} {312} & \text{} & \text{} & \text{} & \text{} \\ 0 & \dfrac{7} {12} & \dfrac{316} {195} & \text{} & \text{} & \text{} \\ \dfrac{3} {20} & 0 & \dfrac{3} {52} & \dfrac{2473} {2392} & \text{} & \text{} \\ -\dfrac{77} {25} & - \dfrac{83} {130} & 0 & -\dfrac{237} {230} & \dfrac{41358} {7475} & \text{} \\ 0 & -\dfrac{265} {104} & -\dfrac{147} {65} & - \dfrac{505} {2392} & -\dfrac{1172} {1495} &\dfrac{8678} {1495}\\ \end{array} \right ] }$$]

 (F.48)


                  Listing
                  F.3
                  assembles both symbolic and numeric lower triangular matrices.
                
Listing F.3 Assembling lower triangular system matrices

                    AssembleLowerTriangularSystemMatrices::usage = "initialize the global system matrix KGlobal:Global‘KGlobal; KGlobal = Map[Table[0, {#}] &,
Range[Max[connections]*Length[kElements[[1]]]/Length [connections[[1]]]]]; AssembleLowerTriangularSystemMatrices[kElements, connections]
kElements: lower triangles of elements; connections: element connection list"

AssembleLowerTriangularSystemMatrices[kS_, connections_] := Module[{nDim, elementDOFS, f}, nDim = Length[kS[[1]]]/Length[connections[[1]]];

elementDOFS =
If[nDim == 1, connections, SetAttributes[f, Listable]; f[i_Integer] := i;
f[i_Integer] := nDim*i - Reverse[Range[0, nDim - 1]];
Flatten /@ (f /@ connections)];

Table[assemble[elementDOFS, elementNumber, kS[[elementNumber]],i, j],
{elementNumber, Length[elementDOFS]}, {i, Length[kS[[elementNumber]]]},
{j, i}]; KGlobal]

assemble[elementDOFS_, elementNumber_, kLocal_, i_, j_] := Module[{
ij = Sort[elementDOFS[[elementNumber, #]] & /@ {i, j},Greater]},
(* add element contributions *)

KGlobal[[ Sequence @@ ij]] += kLocal[[i, j]]; ]



                  


F.4.2 Calculation Steps

                  
                    
                  
                

                  Listing
                  F.2
                  yielded the lower triangles of the element conductivity matrix k
                  (i)
                  for element number i:
                  [image: $$\displaystyle\begin{array}{rcl} k^{(1)} = \left \{\left \{\frac{149} {100}\right \},\left \{ \frac{7} {20}, \frac{1} {4}\right \},\left \{-\frac{46} {25},-\frac{3} {5}, \frac{61} {25}\right \}\right \}& &{}\end{array}$$]

 (F.49a)


                  [image: $$\displaystyle\begin{array}{rcl} k^{(2)} = \left \{\left \{\frac{109} {100}\right \},\left \{ \frac{3} {20}, \frac{1} {4}\right \},\left \{-\frac{31} {25},-\frac{2} {5}, \frac{41} {25}\right \}\right \}& &{}\end{array}$$]

 (F.49b)


                  [image: $$\displaystyle\begin{array}{rcl} k^{(3)} = \left \{\left \{\frac{25} {24}\right \},\left \{ \frac{7} {12}, \frac{17} {30}\right \},\left \{-\frac{13} {8},-\frac{23} {20}, \frac{111} {40} \right \}\right \}& &{}\end{array}$$]

 (F.49c)


                  [image: $$\displaystyle\begin{array}{rcl} k^{(4)} = \left \{\left \{\frac{25} {26}\right \},\left \{-\frac{1} {26}, \frac{17} {65}\right \},\left \{-\frac{12} {13},-\frac{29} {130}, \frac{149} {130}\right \}\right \}& &{}\end{array}$$]

 (F.49d)


                  [image: $$\displaystyle\begin{array}{rcl} k^{(5)} = \left \{\left \{\frac{137} {130}\right \},\left \{ \frac{3} {52}, \frac{25} {104}\right \},\left \{-\frac{289} {260},-\frac{31} {104}, \frac{733} {520}\right \}\right \}& &{}\end{array}$$]

 (F.49e)


                  [image: $$\displaystyle\begin{array}{rcl} k^{(6)} = \left \{\left \{\frac{25} {46}\right \},\left \{-\frac{29} {46}, \frac{137} {115}\right \},\left \{ \frac{2} {23},-\frac{129} {230}, \frac{109} {230}\right \}\right \}& &{}\end{array}$$]

 (F.49f)


                

                  It is important to check the
                  positive semi-definiteness
                  of each element matrix with only one zero. The eigenvalues of each element system matrices are:
                  [image: $$\displaystyle{ \begin{array}{ccccccc} \text{eigenvalues} & \text{element:1} & \text{element:2} & \text{element:3} & \text{element:4} & \text{element:5} & \text{element:6} \\ \left \{\begin{array}{*{10}c} \lambda _{1}\\ \lambda _{ 2}\\ \lambda _{3} \end{array} \right \} & \left \{\begin{array}{*{10}c} \dfrac{451} {113} \\ \dfrac{3} {16}\\ 0 \end{array} \right \}&\left \{\begin{array}{*{10}c} \dfrac{100} {37} \\ \dfrac{5} {18}\\ 0\end{array} \right \}&\left \{\begin{array}{*{10}c} \dfrac{143} {34} \\ \dfrac{5} {28}\\ 0\end{array} \right \}&\left \{\begin{array}{*{10}c} \dfrac{247} {124} \\ \dfrac{23} {61}\\ 0\end{array} \right \}&\left \{\begin{array}{*{10}c} \dfrac{98} {41} \\ \dfrac{11} {35}\\ 0\end{array} \right \}&\left \{\begin{array}{*{10}c} \dfrac{34} {19} \\ \dfrac{13} {31}\\ 0\end{array} \right \} \end{array} }$$]

 (F.50)


                
Verify that the Eigenvalues of All Element Conductivity Matrices Are Non-negative

                    Due to its utmost importance, it has been repeated a number of times in this textbook that the positivity of the energy scalar can never be compromised. Thus all eigenvalues of elements or systems must be
                    non-negative.
                    It is also equally important to assure that a uniform field is
                    exactly
                    interpolated. This demands at least one eigenvalue of an element or a system must be zero.
                  

                    Mathematica
                    produced the eigenvalues in Eq. (
                    F.50
                    ) without any numerical contamination.
                  



F.5 Extension to Time-Dependent Cases

                In Eq. (
                F.6
                ) we can add a ‘sink’ that heats up the material that causes the temperature rate to fall, leading to:
                [image: $$\displaystyle{ f(x,y,z,t) - h\frac{\partial T} {\partial t} = -c\ \nabla ^{2}\ T }$$]

 (F.51)


              

                Furthermore, in the
                unsteady
                heat flow Eq. (
                F.51
                ) we can add the Stephan radiation term (proportional to T
                4
                ; T: absolute temperature):
                [image: $$\displaystyle{ f(x,y,z,t) - h\frac{\partial T} {\partial t} -\alpha T^{4} = -c\ \nabla ^{2}\ T }$$]

 (F.52)


              

                The finite element method primarily addresses the spatial aspects. The temporal variation is usually handled by the finite difference method [
                4
                ], where the nonlinear solution strategies can also be encapsulated.
              
F.5.1 Initial Conditions

                  For transient problems of mathematical physics, one or more time derivatives will appear in the governing field equation that essentially states some
                  balance laws.
                  Observe the term
                  [image: $$\frac{\partial T} {\partial t}$$]
                  in Eqs. (
                  F.51
                  ) and (
                  F.52
                  ).
                
To initiate the finite difference solution we need the description of the initial state, which can be conveniently stated for time t = 0.

                  If the
                  highest
                  time derivative in the governing field equation is n, then we need n initial conditions
                  27
                  such as:
                  [image: $$\displaystyle{ T(x,y,z,t)\Big\vert _{t=0}, \frac{\partial T(x,y,z,t)} {\partial t} \Big\vert _{t=0},\quad \cdots \quad \frac{\partial ^{n-1}T(x,y,z,t)} {\partial t^{n-1}} \Big\vert _{t=0} }$$]

 (F.53)


                

                    A Note on
                    ImplicitRungeKutta
                    and
                    ExplicitRungeKutta
                  

                    For
                    Mathematica
                    , useful information can be found in the websites:
                  

                    under
                    http://reference.wolfram.com/language/tutorial/
                    in
                  

                    www.NDSolveImplicitRungeKutta.html.en
                    and
                  

                    www.NDSolveExplicitRungeKutta.html.en
                    .
                  

                    The
                    NDSolve[]
                    function in
                    Mathematica
                    handles all initial and boundary conditions, as shown in Listing
                    F.4
                    . The power of the finite element method can be harnessed for inhomogeneous material [
                    6
                    ] with minor modification of the
                    Mathematica
                    codes presented in Listing
                    F.4
                    .
                  


                    Listing F.4 Using
                    NDSolve
                    for time-dependent and nonlinear aspects
                  

                    t1 = 100; t2 = 10; sol=
NDSolve[{ D[f[x, t], x, x] +100000 Sin[10 \[Pi] t*x ]- .0001 (f[x, t])^4 ==
100 D[f[x, t], t], f[0, t] == t1, f[1, t] == t2,
f[x, 0] == t1 (1 - x)^3 + t2*x}, f, {x, 0, 1}, {t, 0, .5}] // First;

Plot3D[Evaluate[((f[x, t] /. sol))], {t, 0., .4}, {x, .3, .5},
PlotStyle -> GrayLevel[.5], PlotRange -> All,
AxesLabel -> {"Time", " Length", "Temperature      "}, PlotRange -> All,
PlotStyle -> {GrayLevel[.85]}, Boxed -> False, Ticks -> {Automatic, Automatic, {50, 100, 150, 200}}, Lighting -> "Neutral"]



                  


                  [image: A300727_1_En_BookBackmatter_Fig35_HTML.gif]
Fig. F.5
                          Plot generated by Listing
                          F.4
                        




                

                  Here, detailed discussion on the finite difference method is
                  not
                  undertaken. Standard books, e.g. [
                  4
                  ], and a large number of papers, tutorials are widely available. To specialize in the temporal solution a full course on finite difference is highly recommended (Fig. 
                  F.5
                  ).
                


F.6 Anisotropic Media

                Here the constitutive parameter is a positive definite matrix
                [image: $$\left [c\right ]$$]
                :
                [image: $$\displaystyle\begin{array}{rcl} \left [c\right ] = \left [\begin{array}{*{10}c} c_{xx}&\ \ \ c_{xy} \\ c_{yx}&\ \ \ c_{yy} \end{array} \right ];c_{xy} = c_{yx};& &{}\end{array}$$]

 (F.54a)


                [image: $$\displaystyle\begin{array}{rcl} \text{ for arbitrary }real\text{ values of }\left \{\begin{array}{*{10}c} \alpha \\ \beta \end{array} \right \}:\ <\alpha,\beta> \left [c\right ]\left \{\begin{array}{*{10}c} \alpha \\ \beta \end{array} \right \}> 0& &{}\end{array}$$]

 (F.54b)


                The field equation, i.e., the statement of a balance principle of physics, for a
                scalar
                potential T(x,y) is the following
                vector form
                :
                [image: $$\displaystyle\begin{array}{rcl} -\boldsymbol{\nabla }\odot \left (\left [c\right ]\ \boldsymbol{\nabla }\ T(x,y)\right ) = f(x,y);& &{}\end{array}$$]

 (F.55a)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{in matrix the form: } \\ & & \left <\frac{\partial } {\partial x}, \frac{\partial } {\partial y}\right>\ \left [\begin{array}{*{10}c} c_{xx}&\ \ \ c_{xy} \\ c_{yx}&\ \ \ c_{yy} \end{array} \right ]\left \{\begin{array}{*{10}c} \dfrac{\partial T} {\partial x} \\ \dfrac{\partial T} {\partial y} \end{array} \right \} + f(x,y) = 0{}\end{array}$$]

 (F.55b)


                As before, we shall multiply both sides of the field equation with
                δ
                T(x,y), a
                variation
                in T(x,y), and then integrate over the domain
                Ω
                .
              

                There is a temptation to identify from Eq. (
                F.66d
                ):
                [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{B}}\Big(f(x,y),T(x,y)\Big)\text{ to be }\int _{\varOmega }f(x,y)\ \ T(x,y)\ d\varOmega & & {}\\ \end{array}$$]



                Under this general setting, we shall seek the appropriate form of
                [image: $$\boldsymbol{\mathfrak{B}}$$]
                . Recall, that its mathematical structure involves a linear term in the field variable T(x,y). Physically,
                [image: $$\boldsymbol{\mathfrak{B}}$$]
                corresponds to ‘external work’. Observe:
                [image: $$\displaystyle\begin{array}{rcl} & & \delta T(x,y)\ \left <\frac{\partial } {\partial x}, \frac{\partial } {\partial y}\right>\ \left [\begin{array}{*{10}c} c_{xx}&\ \ \ c_{xy} \\ c_{yx}&\ \ \ c_{yy} \end{array} \right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \} \\ & & \quad = \left <\frac{\partial } {\partial x}, \frac{\partial } {\partial y}\right>\left (\delta T\ \left [c\right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \}\right ) -\left <\frac{\partial } {\partial x}\delta T, \frac{\partial } {\partial y}\delta T\right>\left [c\right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \}{}\end{array}$$]

 (F.56)


              

                Let us probe into the first term of the right-hand side of the above statement, Eq. (
                F.56
                ) as follows:
                [image: $$\displaystyle\begin{array}{rcl} \int _{\varOmega }\left <\frac{\partial } {\partial x}, \frac{\partial } {\partial y}\right>\left (\delta T\ \left [c\right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \}\right )\ d\varOmega & =& \int _{\varGamma } <n_{x},n_{y}> \left (\delta T\ \left [c\right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \}\right )\ d\varGamma \\ & =& \int _{\varGamma }\delta T\ \left (<n_{x},n_{y}> \left [c\right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \}\right )\ d\varGamma {}\end{array}$$]

 (F.57)


                Let us define a
                flux vector
                [image: $$\boldsymbol{\boldsymbol{\tau }}$$]
                to be
                [image: $$\left \{\begin{array}{*{10}c} \tau _{x}\\ \tau _{y } \end{array} \right \}$$]
                and its normal component
                τ
                n
                so that:
                [image: $$\displaystyle{ \left \{\begin{array}{*{10}c} \tau _{x}\\ \tau _{y } \end{array} \right \} = \left [c\right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \}\text{ then } <n_{x},n_{y}> \left [c\right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \} =\tau _{n} }$$]

 (F.58)


                Now the boundary integral from Eq. (
                F.57
                ) becomes:
                [image: $$\displaystyle\begin{array}{rcl} \int _{\varGamma }\tau _{n}\ \delta T\ d\varGamma;\text{ let }\delta Q_{n}\text{ be }\int _{\varGamma }\tau _{n}\ \delta T\ d\varGamma;& &{}\end{array}$$]

 (F.59)


                [image: $$\displaystyle\begin{array}{rcl} \text{ when }Q_{n} =\int _{\varGamma }\tau _{n}\ T\ d\varGamma \text{ by definition}& &{}\end{array}$$]

 (F.60)


                Remember that
                only
                for a Dirichlet problem,
                δ
                T on
                Γ
                is identically zero—here, we investigate other possibilities in Sect. 
                F.8
                . In Eq. (
                F.60
                ) only the first order term of the field variable T(x,y) appears.
              

                According to the
                variational calculus
                , this term should be accounted within
                [image: $$\boldsymbol{\mathfrak{B}}$$]
                ; the details can be furnished after the second term in the right-hand side of Eq. (
                F.56
                ) is analyzed. Let us rewrite:
                [image: $$\displaystyle{ \left <\frac{\partial } {\partial x}\delta T, \frac{\partial } {\partial y}\delta T\right>\left [c\right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \} = \left <\frac{\partial } {\partial x}\delta T, \frac{\partial } {\partial y}\delta T\right>\left [u\right ]^{T}\ \left [u\right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \}; }$$]

 (F.61)


                The upper triangle
                [image: $$\left [u\right ]$$]
                from:
                [image: $$\displaystyle{ \text{Cholesky factor of }\left [c\right ],\left [u\right ]^{T}\ \left [u\right ] = \left [c\right ]\text{ and }\delta \left [u\right ] = 0; }$$]

 (F.62)


              

                Define:
                [image: $$\displaystyle\begin{array}{rcl} \left \{v(x,y)\right \} = \left \{\begin{array}{*{10}c} p(x,y)\\ q(x, y) \end{array} \right \} = \left [u\right ]\ \left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \}& &{}\end{array}$$]

 (F.63a)


                [image: $$\displaystyle\begin{array}{rcl} \rightarrow \delta \left \{v\right \} = \left [u\right ]\left \{\begin{array}{*{10}c} \frac{\partial } {\partial x} \\ \frac{\partial } {\partial y}\end{array} \right \}\delta \ T(x,y)& &{}\end{array}$$]

 (F.63b)


                In Listing
                F.5
                , the lower triangle of the system matrix is generated.
              
Listing F.5 Lower triangle of the system matrix for 2-D potentials

                  LowerTriangleScalarPotentialSystemMatrix::usage =
"LowerTriangleScalarPotentialSystemMatrix[nodes, {x,y},elementShapeFunctions,c]
yields the lower triangle of system matrix for constitutive matrix c(x,y).

elementShapeFunctions[{x,y},nodes]
generates the interpolants."

LowerTriangleScalarPotentialSystemMatrix2D[nodes_, {x_, y_},
elementShapeFunctions_, c_?MatrixQ] := Module[{u, a, ns, p, q},

u = CholeskyDecomposition[c] /. Conjugate[a_] -> a;

{p, q} = u.({D[#, x], D[#, y]} & [elementShapeFunctions[{x, y}, nodes]]);

Table[areaIntegrate[p[[i]]*p[[j]] + q[[i]]*q[[j]], {x, y}, nodes],
{i, Length[nodes]}, {j, i}]    ]



                


                Since T(x,y) is interpolated as
                [image: $$\sum _{i}\mathfrak{n}_{i}(x,y)\ T_{i}$$]
                , following Eqs. (
                F.38a
                ) through (
                F.38c
                ), the system matrix
                [image: $$\left [A\right ]$$]
                can be obtained from:
                [image: $$\displaystyle\begin{array}{rcl} A_{ij} =\int _{\varOmega }\Big(p_{i}(x,y)\ p_{j}(x,y) + q_{i}(x,y)\ q_{j}(x,y)\Big)\ d\varOmega \text{ when }& &{}\end{array}$$]

 (F.64a)


                [image: $$\displaystyle\begin{array}{rcl} \left \{v(x,y)\right \} =\sum \limits _{i}\left \{\begin{array}{*{10}c} p_{i}(x,y) \\ q_{i}(x,y) \end{array} \right \}\ T_{i};& &{}\end{array}$$]

 (F.64b)


                [image: $$\displaystyle\begin{array}{rcl} \left \{\begin{array}{*{10}c} p_{i}(x,y) \\ q_{i}(x,y)\end{array} \right \} = \left [u\right ]\left \{\begin{array}{*{10}c} \frac{\partial } {\partial x}\mathfrak{n}_{i}(x,y) \\ \frac{\partial } {\partial y}\mathfrak{n}_{i}(x,y) \end{array} \right \}& &{}\end{array}$$]

 (F.64c)


              

F.7 Material Inhomogeneity

                For an anisotropic inhomogeneous medium,
                28
                the scalar constitutive parameter of thermal conductivity c(x,y) depends explicitly on the location (x,y). The heat flux
                [image: $$\left \{\varphi \right \}$$]
                is a vector and the balance law states that the divergence of the flux balances the source f:
                [image: $$\displaystyle\begin{array}{rcl} \left \{\varphi \right \} = \left \{\begin{array}{*{10}c} \varphi _{x}\\ \varphi _{y } \end{array} \right \} = -c(x,y)\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \}& &{}\end{array}$$]

 (F.65a)


                [image: $$\displaystyle\begin{array}{rcl} c(x,y)\text{ is positive everywhere}& &{}\end{array}$$]

 (F.65b)


                [image: $$\displaystyle\begin{array}{rcl} f + \frac{\partial \varphi _{x}} {\partial x} + \frac{\partial \varphi _{y}} {\partial y} = 0& &{}\end{array}$$]

 (F.65c)


                [image: $$\displaystyle\begin{array}{rcl} \rightarrow f + \boldsymbol{\nabla }\odot c(x,y)\boldsymbol{\nabla }T = 0& &{}\end{array}$$]

 (F.65d)


                When c(x,y) is a constant, Eq. (
                F.65d
                ) becomes Eq. (
                F.6
                ):
                [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\nabla }\ \odot \ \Big (c(x,y)\ \boldsymbol{\nabla }T(x,y)\Big) + f(x,y) = 0;& &{}\end{array}$$]

 (F.66a)


                [image: $$\displaystyle\begin{array}{rcl} & & \boldsymbol{\mathfrak{I}}\Big(c(x,y),T(x,y)\Big) \\ & & \quad = \frac{1} {2}\int _{\varOmega }c(x,y)\ \left [\left ( \frac{\partial } {\partial x}T(x,y)\right )^{2} + \left ( \frac{\partial } {\partial y}T(x,y)\right )^{2}\right ]\ d\varOmega {}\end{array}$$]

 (F.66b)


                [image: $$\displaystyle\begin{array}{rcl} \text{ and }\boldsymbol{\mathfrak{B}}\Big(f(x,y),T(x,y)\Big) =\int _{\varOmega }f(x,y)\ \ T(x,y)\ d\varOmega;& &{}\end{array}$$]

 (F.66c)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{ from Eq. (1.8)}: \boldsymbol{\mathfrak{E}}\Big(c(x,y),f(x,y),T(x,y)\Big) \\ & & \qquad \qquad \qquad =\boldsymbol{ \mathfrak{I}}\Big(c(x,y),T(x,y)\Big) -\boldsymbol{\mathfrak{B}}\Big(f(x,y),T(x,y)\Big){}\end{array}$$]

 (F.66d)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{consequently, }\frac{\delta \boldsymbol{\mathfrak{E}}} {\delta T} = 0 \\ & & \text{ will lead to approximate solutions for }T(x,y){}\end{array}$$]

 (F.66e)


              

                The transformation of the domain integral to the boundary one is carried out in the vector form by applying the
                divergence theorem
                :
                [image: $$\displaystyle{ \delta T\boldsymbol{\nabla }\odot c(x,y)\boldsymbol{\nabla }T = \boldsymbol{\nabla }\odot \left (\delta T\ c(x,y)\boldsymbol{\nabla }T\right ) -\boldsymbol{\nabla }\ \delta T\ \odot \ c(x,y)\boldsymbol{\nabla }T }$$]

 (F.67)


              

                Now:
                [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\nabla }\ \delta T\ \odot \ c(x,y)\boldsymbol{\nabla }T = c(x,y)\boldsymbol{\nabla }\ \delta T\ \odot \ \boldsymbol{\nabla }T& &{}\end{array}$$]

 (F.68a)


                [image: $$\displaystyle\begin{array}{rcl} \quad = c(x,y)\ \delta \ \left (\boldsymbol{\nabla }T\right )\ \odot \ \boldsymbol{\nabla }T& &{}\end{array}$$]

 (F.68b)


                [image: $$\displaystyle\begin{array}{rcl} \quad = \frac{c(x,y)} {2} \ \delta \left (\left (\frac{\partial T} {\partial x}\right )^{2} + \left (\frac{\partial T} {\partial y} \right )^{2}\right )\quad \text{implies: }& &{}\end{array}$$]

 (F.68c)


                [image: $$\displaystyle\begin{array}{rcl} & & \qquad \int _{\varOmega }\delta T\boldsymbol{\nabla }\odot c(x,y)\boldsymbol{\nabla }T\ d\varOmega =\int _{\varOmega }\boldsymbol{\nabla }\odot \left (\delta T\ c(x,y)\boldsymbol{\nabla }T\right )\ d\varOmega \\ & & \qquad -\delta \int _{\varOmega }\frac{c(x,y)} {2} \ \left (\left (\frac{\partial T} {\partial x}\right )^{2} + \left (\frac{\partial T} {\partial y} \right )^{2}\right )\ d\varOmega {}\end{array}$$]

 (F.68d)


                The vector form of the divergence theorem is:
                [image: $$\displaystyle{ \int _{\varOmega }\boldsymbol{\nabla }\odot [\cdots \,]\ d\varOmega =\int _{\varGamma }\mathbf{n} \odot [\cdots \,]\ d\varGamma }$$]

 (F.69)


                which reduces the first integral of Eq. (
                F.68d
                ) in the following form:
                [image: $$\displaystyle\begin{array}{rcl} \int _{\varOmega }\boldsymbol{\nabla }\odot \left (\delta T\ c(x,y)\boldsymbol{\nabla }T\right )\ d\varOmega =\int _{\varGamma }\mathbf{n} \odot \left (\delta T\ c(x,y)\boldsymbol{\nabla }T\right )\ d\varGamma & &{}\end{array}$$]

 (F.70a)


                [image: $$\displaystyle\begin{array}{rcl} & =& \int _{\varGamma }\delta T\ c(x,y)\ \left (\mathbf{n} \odot \boldsymbol{\nabla }T\right )\ d\varGamma \\ & =& \int _{\varGamma }\delta T\ c(x,y)\ \frac{\partial T} {\partial n}\ d\varGamma {}\end{array}$$]

 (F.70b)


              

                For the Dirichlet boundary value problem:
                [image: $$\displaystyle\begin{array}{rcl} & & \delta T\Big\vert _{\varGamma } = 0 \rightarrow \int _{\varGamma }\delta T\ c(x,y)\ \frac{\partial T} {\partial n}\ d\varGamma = 0 \rightarrow \int _{\varOmega }\boldsymbol{\nabla }\odot \left (\delta T\ c(x,y)\boldsymbol{\nabla }T\right )\ d\varOmega = 0\quad \\ & & \therefore \delta \left [\ \int _{\varOmega }\frac{c(x,y)} {2} \ \left (\left (\frac{\partial T} {\partial x}\right )^{2} + \left (\frac{\partial T} {\partial y} \right )^{2}\right )\ - f(x,y)\ T(x,y)\ \right ]d\varOmega = 0{}\end{array}$$]

 (F.71)


                [image: $$\displaystyle\begin{array}{rcl} \overbrace{\int _{\varOmega }\frac{c(x,y)} {2} \ \left (\left (\frac{\partial T} {\partial x}\right )^{2} + \left (\frac{\partial T} {\partial y} \right )^{2}\right )d\varOmega }^{\text{obtain: element matrix}}\ \ \ =\ \ \ \overbrace{\int _{\varOmega }f(x,y)\ T(x,y)\ d\varOmega }^{\text{obtain: forcing function}}& &{}\end{array}$$]

 (F.72)


                The inhomogeneity function c(x,y) is within the integral, for discrete data a smooth approximation in Taylor or Padé form will allow
                closed-form
                integration.
              
F.7.1 A Numerical Example

                  For Fig. 
                  3.2
                  , with prescribed c(x,y), the lower triangle of the system matrix
                  [image: $$\left \{k\right \}$$]
                  is obtained from Listing
                  F.5
                  :
                  [image: $$\displaystyle\begin{array}{rcl} c(x,y) = \left \{\begin{array}{*{10}c} \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ & 3\\ \ \ \ \ \ 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ &x^{2 } + y^{2} + 25 \end{array} \right \};& &{}\end{array}$$]

 (F.73a)


                  [image: $$\displaystyle\begin{array}{rcl} \left \{k\right \} = \left \{\begin{array}{*{10}c} \frac{88807} {4455} \\ \frac{72769} {8910} & \frac{12653} {3564} \\ -\frac{83461} {2970} & -\frac{69601} {5940} & \frac{78841} {1980} \end{array} \right \}& &{}\end{array}$$]

 (F.73b)


                

                  The positive definiteness of the constitutive matrix can be verified from its positive diagonals and the determinant x
                  2
                  + y
                  2
                  + 16 to be positive everywhere.
                
F.7.1.1 Cholesky Decomposition

                    In
                    Mathematica
                    the routine for the Cholesky decomposition works beyond real matrices hence the
                    conjugate
                    of a real number is to be recognized by its value. This is the reason why
                    Conjugate[a_] -> a
                    appears in Listing
                    F.5
                    . A conceptual
                    Mathematica
                    program is provided in Listing
                    F.6
                    .
                  
Listing F.6 Upper triangle of Cholesky factorization

                      myCholeskyUpperTriangle::usage="myCholeskyUpperTriangle[X] return the upper triangle of the Chlesky factor of the square matrix X "

myCholeskyUpperTriangle[a_] := Module[ {u},
u[1, 1] = Sqrt[a[[1, 1]]]; u[1, j_] := u[1, j] = a[[1, j]]/u[1, 1];
u[i_/; (i> 1), i_]:= u[i, i] = Sqrt[a[[i, i]] - Sum[u[k, i]^2, {k, i - 1}]];
u[i_, j_ /; (1 < i && i < j)] :=
u[i, j] = ((a[[i, j]] - Sum[u[k, i] u[k, j], {k, i - 1}])/u[i, i]);
u[i_, j_] := 0 /; (i > j); Table[u[i, j], {i, Length[a]}, {j, Length[a]}]]



                    


                    Testing Listing
                    F.6
                  
Listing F.7 Testing Listing F.6 with Eq. (F.73a)

                      In[10]:= u = myCholeskyUpperTriangle[{{1, 3}, {3, x^2 + y^2 + 25}}]
Out[10]= {{1, 3}, {0, Sqrt[16 + x^2 + y^2]}}
In[12]:= Transpose[u] .u
Out[12]= {{1, 3}, {3, 25 + x^2 + y^2}}



                    




F.8 Neumann and Mixed Boundary Value Problems

                The boundary
                Γ
                , in Eq. (
                F.60
                ), may have the field T(x,y) on a part
                Γ
                D
                but what to prescribe on its complement
                Γ
                N
                :
                [image: $$\displaystyle{ \varGamma =\varGamma _{D}\ \cap \ \varGamma _{N};\quad \varGamma _{D}\ \cup \ \varGamma _{N} =\emptyset;\qquad \delta \ T = 0\text{ on }\varGamma _{D} }$$]

 (F.74)


                This simplifies Eq. (
                F.60
                ):
                [image: $$\displaystyle{ \int _{\varGamma }\tau _{n}\ \delta T\ d\varGamma =\int _{\varGamma _{N}}\tau _{n}\ \delta T\ d\varGamma }$$]

 (F.75)


                If
                τ
                n
                on
                Γ
                N
                does not
                vary with the variation
                δ
                T(x,y), then we can further simplify:
                [image: $$\displaystyle{ \int _{\varGamma }\tau _{n}\ \delta T\ d\varGamma =\int _{\varGamma _{N}}\tau _{n}\ \delta T\ d\varGamma =\delta \left [\ \int _{\varGamma _{N}}\tau _{n}\ T\ d\varGamma \right ] }$$]

 (F.76)


                which is equivalent to saying that a trial function T(x,y) yields a given
                τ
                n
                on
                Γ
                N
                according to Eq. (
                F.58
                ). In:
                [image: $$\displaystyle\begin{array}{rcl} \text{a}\ Neumann\ problem:\ \varGamma _{D} =\emptyset;\quad \tau _{n}\text{ is prescribed on }\varGamma,\text{ and in }& &{}\end{array}$$]

 (F.77a)


                [image: $$\displaystyle\begin{array}{rcl} \text{a }mixed\ problem:\ g(x,y)\text{ is prescribed on }\varGamma _{D}\text{ and }\tau _{n}(x,y)\text{ on }\varGamma _{N}& &{}\end{array}$$]

 (F.77b)


                The suffixes D and N refer to the
                D
                irichlet and
                N
                eumann prescribed boundary data. Of course, both problems are specific cases of the mixed problem, so we can treat the general boundary condition for clarity.
              

                We can now put together all terms in Eq. (
                F.55b
                ). Of all T(x,y) that satisfy the boundary condition of Eq. (
                F.77b
                ), the
                unique
                soultion minimizes the Eulerian scalar
                [image: $$\boldsymbol{\mathfrak{E}}$$]
                :
                [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{E}}\Big(\left [c\right ],f,\tau _{n}\Big) =\boldsymbol{ \mathfrak{I}}\Big(\left [c\right ]\Big) -\boldsymbol{\mathfrak{B}}\Big(f,\tau _{n}\Big)\text{ where }& &{}\end{array}$$]

 (F.78a)


                [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{I}}\Big(\left [c\right ]\Big) = \frac{1} {2}\int _{\varOmega }\left <\frac{\partial T} {\partial x}, \frac{\partial T} {\partial y} \right>\left [c\right ]\left \{\begin{array}{*{10}c} \frac{\partial T} {\partial x} \\ \frac{\partial T} {\partial y} \end{array} \right \}& &{}\end{array}$$]

 (F.78b)


                [image: $$\displaystyle\begin{array}{rcl} \boldsymbol{\mathfrak{B}}\Big(f,\tau _{n}\Big) =\int _{\varOmega }f(x,y)\ T(x,y)\ d\varOmega \ +\int _{\varGamma _{N}}\tau _{n}\ T\ d\varGamma & &{}\end{array}$$]

 (F.78c)


                Since g does
                not
                enter into the Eulerian scalar, it is termed to be the
                essential
                boundary condition.
              

F.9 Finite Element Implementation of Robin Problem

                We generalize the mixed boundary value problem of Eq. (
                F.77b
                ), with a linear or weighted combination of Dirichlet and Neumann boundary data:
                [image: $$\displaystyle{ \text{a}\ Robin\ problem:\ \alpha (x,y)\ g(x,y) +\beta (x,y)\ \tau _{n}(x,y)\text{ prescribed on }\varGamma }$$]

 (F.79)


                Again, the Dirichlet and Neumann boundary value problems are special cases of the Robin problem—only if the solution exists. Solutions for Dirichlet and Neumann boundary value problems
                exist unconditionally
                —provided the Neumann data does not violate an equilibrium-type condition.
              

                The responses on the boundary (N
                B
                in number) and on the interior (N
                I
                in number) degrees-of-freedom are grouped as
                [image: $$\left \{T_{B}\right \}$$]
                and
                [image: $$\left \{T_{I}\right \}$$]
                . The Robin data furnishes N
                B
                equations of the form
                [image: $$\left \{\alpha T_{B} +\beta Q_{B}\right \}$$]
                for total 2N
                B
                boundary T and Q. There is just the correct number of equations. Using Eq. (
                E.5
                ) the N
                B
                boundary constraints are calculated from Eq. (
                F.79
                ).
              

                Let us consider the problem of Eq. (
                F.44f
                ) with the Robin data:
                [image: $$\displaystyle\begin{array}{rcl} & & \mathbf{prescribedConditions} =\{ Q[5]-> 1,Q[6]-> 1, \\ & & \quad T[1] + Q[1]-> 1,2T[2] + 3Q[2]-> 1,T[3] - Q[3]-> 1, \\ & & \qquad 5T[4] - Q[4]-> 1\} {}\end{array}$$]

 (F.80)


                The system equations,
                eqs
                , are from Eq. (
                F.45
                ). Listing
                F.8
                yields
                sol
                :
                [image: $$\displaystyle\begin{array}{rcl} & & \Big\{T(1) \rightarrow \frac{6869037243} {6905408266},T(2) \rightarrow \frac{5213616167} {6905408266},T(3) \rightarrow \frac{270581089} {3452704133}, \\ & & T(4) \rightarrow \frac{119281631} {6905408266},T(5) \rightarrow \frac{22191367008} {24168928931},T(6) \rightarrow \frac{31848031631} {48337857862}, \\ & & Q(1) \rightarrow \frac{36371023} {6905408266},Q(2) \rightarrow -\frac{586970678} {3452704133},Q(3) \rightarrow -\frac{3182123044} {3452704133}, \\ & & Q(4) \rightarrow -\frac{6309000111} {6905408266},Q(5) \rightarrow 1,Q(6) \rightarrow 1\Big\} {}\end{array}$$]

 (F.81)


              
Listing F.8 Solution of system in Fig. F.3 with Robin data

                  sol = Flatten[Solve[Join[eqs, RobinData /. Rule -> Equal],
Flatten[{Array[T, 6], Array[Q, 6]}]]]



                

Note that the solution is obtained as replacement rules. This facilitates substitutions for variables leading to numerical values.



Appendix G A Triangle with a Side Node: Square Roots in Shape Function Expressions

              Abstract
              Thermo-mechanical analysis motivated this chapter. Nano- and bio-engineering applications (
              vide
              Hornyak et al., Introduction to nanoscience. CRC Press, New York, NY, 2008; Mow and Huiskes, Basic orthopaedic biomechanics and mechano-biology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia. sBN 0-7817-3933-0; Biomed Eng OnLine 4:28. doi:10.1186/1475-925X-4-28, 2005) demand improved accuracy on pre-existing triangulated meshes. A triangle with a side node will improve linear interpolants. However, at the intermediate node, the slope discontinuity cannot be captured with polynomials. The Wachspress Padé shape functions are derived here to meet such requirements.
            

              A natural extension to concave four node elements (Dasgupta and Wachspress, Comput Math Appl 56(2):459–468, 2008), is
              not
              included here. For generalized homogeneous Barycentric Coordinates, the reader may find Yiu (Int J Math Educ Sci Technol 31:569–578, 2000), Meyer et al. (Generalized barycentric coordinates on irregular polygons. Tech. rep., Department of Civil Engineering, California Institute of Technology, Pasadena, CA.
              http://www.geometry.caltech.edu/pubs/MHBD02.pdf
              , 2002), Wachspress (Rational bases and generalized barycentrics: applications to finite elements and graphics. Springer, New York, NY, 2015), Floater et al. (Comput Aided Geom Des 22(7):623–631, 2005) and research work as in:
              http://www.springerlink.com/index/10.1007/s10444-004-7611-6
              to be useful.
            

              This Appendix is intended to focus on the generality of
              four-node
              plane elements for scalar finite element problems. The Wachspress Coordinates (Lidberg, Barycentric and Wachspress coordinates in two dimensions: theory and implementation for shape transformations. U.U.D.M. Project Report 2011:3, Department of Civil and Environmental Engineering, Uppsala Universitet, Uppsala, Sweden (Examensarbete i matematik, 15 hp Handledare och examinator: Vera Koponen), 1999), mostly employed on convex regions, can be extended to concave quadrilaterals and (degenerated) triangles with a side node. Another important aspect of the derivation is that the square root singularity, which occurs in all isoparametric maps for non-trapezoidal regions, can be traced to the degenerated triangles.
            
This theoretical treatment is better understood by going over the derivations of this chapter, hence no problem has been assigned.
G.1 Motivation from Computer Graphics

                
                  
                
              

                Color plots of temperature distributions facilitate thermo-mechanical design-analyses. On the two-dimensional screen, the R(ed) G(reen) and B(lue) values are between 0 and 1. For a triangular element, an additional side node, as shown in Fig. 
                G.1
                , can depict more realistic color distributions compared to linear variations in color gradients, [
                2
                ].
                [image: A300727_1_En_BookBackmatter_Fig36_HTML.gif]
Fig. G.1Canonical orientation: a side node at the origin and three nodes on the x-axis; the nodes 1, 2, 3 and 4 are at (−a,0),(0,0),(b,0) and (c,h), respectively; a,b,c,h > 0




              

                The Wachspress interpolants [
                11
                ] in the physical (x,y) frame substantially economize the on-screen rendition of color graphics. In this three-scalar (
                RGBColor
                ) field problem, no interpolated result should exceed the corresponding nodal color values.
              

                
                  
                
              

                Introduced in 1971, the Wachspress coordinates assure linearity between nodes, [
                9
                ]. These bases thus adhere to the concept of conforming finite elements that are needed for temperature problems. Wachspress established a consistent way to evaluate shape functions for (convex, concave, and degenerated) polygons in the physical coordinates. He demonstrated that square root expressions were needed to account for any concavity (for four node concave elements
                vide
                [
                3
                ]). Also, we observed in Sect. 
                5.5.2.3
                square root terms in shape functions for isoparametric interpolants. There are two branches in the analytical expression for a square root. The related computational issues are addressed here.
              

                We start the analysis with a three-node bar element that can be extended for two-dimensional cases of a triangle with a side nodes.
                [image: A300727_1_En_BookBackmatter_Fig37_HTML.gif]
Fig. G.2
                        A bar element; end nodes 1 at (a
                        1
                        ,0), 3 at (a
                        3
                        ,0); and node 2 at (a
                        2
                        ,0); discontinuities in shape functions are essential
                      




              

G.2 A Single Bar Element with Three Nodes

                Construction of a discontinuous shape function for Fig. 
                G.2
                invokes the Padé form:
                [image: $$\displaystyle\begin{array}{rcl} \phi _{2}(x,y) = \frac{q(x,y)} {\Big(1 - \frac{x} {a_{3}} \Big)\ \Big(1 - \frac{x} {a_{1}} \Big)};\quad \phi _{2}(x,y\vert _{y=0}) = \hslash (x),\phi _{2}(0,0) = 1& &{}\end{array}$$]

 (G.1a)


                [image: $$\displaystyle\begin{array}{rcl} \hslash (x): \text{ the hat function};\qquad q: \text{ an unknown in }a_{1},a_{3}& &{}\end{array}$$]

 (G.1b)


                
                  
                
                The basic “hat”  function is shown in Fig. 
                G.4
                . The discontinuity in the slope at node 2 can be realized in terms of the Heaviside’s step function (Fig. 
                G.3
                ):
                [image: $$\displaystyle{ H(x) = \left \{\begin{array}{@{}l@{\quad }l@{}} = 0,\quad x <0,\quad \\ = 1, \quad x> 0;\quad \end{array} \right. }$$]

 (G.2)


                or, equivalently, by selecting the positive branch of the square root function:
                [image: $$\displaystyle\begin{array}{rcl} \sqrt{ x^{2}} = \left \{\begin{array}{@{}l@{\quad }l@{}} = -x,\quad x <0,\quad \\ =\ x, \quad x> 0;\quad \end{array} \right.\ \text{also}\quad \|x\| = \left \{\begin{array}{@{}l@{\quad }l@{}} = -x,\quad x <0,\quad \\ =\ x, \quad x> 0;\quad \end{array} \right.\ \text{then:}& &{}\end{array}$$]

 (G.3)


                [image: $$\displaystyle\begin{array}{rcl} \sqrt{ x^{2}} =\| x\| = x\ \Big(H(x) -\ H(-x)\Big)& &{}\end{array}$$]

 (G.4)


                The intent is to use the ‘hat’ in Fig. 
                G.4
                , to construct
                discontinuous
                shape functions, for a triangle with a side node of Fig. 
                G.5
                , as shown in Fig. 
                G.6
                .
                [image: A300727_1_En_BookBackmatter_Fig38_HTML.gif]
Fig. G.3
                        Polynomial shape function for node-1—negative region is
                        grayed
                        ; computer graphics color interpolations will fail for negative values
                      




                [image: A300727_1_En_BookBackmatter_Fig39_HTML.gif]
Fig. G.4The “hat”  function on the x-axis




                [image: A300727_1_En_BookBackmatter_Fig40_HTML.gif]
Fig. G.5A generic triangle with a side node




                [image: A300727_1_En_BookBackmatter_Fig41_HTML.gif]
Fig. G.6
                        Contour plots of shape functions of the triangle with a side node in Fig. 
                        G.5
                      




                [image: A300727_1_En_BookBackmatter_Fig42_HTML.gif]
Fig. G.7
                        Building up the “hat”  function from
                        [image: $$\sqrt{ x^{2}}$$]
                        or |x|. (
                        a
                        ) Plot of
                        [image: $$\sqrt{x^{2}}$$]
                        or |x|. (
                        b
                        ) Plot of
                        [image: $$\frac{x + \sqrt{x^{2}}} {2b}$$]
                        . (
                        c
                        ) Plot of
                        [image: $$\frac{x -\sqrt{x^{2}}} {2a}$$]
                        . (
                        d
                        ) Plot of the “hat” function
                      




              

                The linear combination of x and
                [image: $$\sqrt{x^{2}}$$]
                are illustrated in Fig. 
                G.7
                leading to the “hat”  function shown in Fig. 
                G.4
                .
              

                In Fig. 
                G.7
                a, the
                [image: $$\sqrt{x^{2}}$$]
                function is positive on both sides of the origin. Addition of x makes the left segment flat. Then by dividing with 2b, the unit value is attained at x = b, as shown in Fig. 
                G.7
                b.
              

                A similar procedure leads to Fig. 
                G.7
                c, where the right part is flat and the value is −1 at x = −a. Combination of Fig. 
                G.7
                b c will lead to an ‘inverted
                V
                . ’ Now by adding 1 we assure the value at the origin to be unity. Hence the “hat”  function in Fig. 
                G.7
                d must be:
                [image: $$\displaystyle{ \hslash (x) = \frac{x -\sqrt{x^{2}}} {2a} -\frac{\sqrt{x^{2}} + x} {2b} + 1 }$$]

 (G.5)


                In order to emphasize the ‘inverted
                V
                ’ shape, portions of the x-axis outside the hat are shown in Fig. 
                G.7
                d. With a = −1 and b = 2:
                [image: $$\displaystyle\begin{array}{rcl} \text{hat function is: }\frac{x -\sqrt{x^{2}}} {2} -\frac{\sqrt{x^{2}} + x} {4} + 1& &{}\end{array}$$]

 (G.6a)


                [image: $$\displaystyle\begin{array}{rcl} \text{ or }\hslash (x) = 1 -\frac{3\sqrt{x^{2}}} {4} + \frac{3x} {4} & &{}\end{array}$$]

 (G.6b)


              

                
                  
                
              

G.3 From a “Hat”  Function to an Interpolant

                In order to extend the function ℏ(x) into the triangular region, the equations of the sides s
                41
                ,s
                43
                , where s
                ij
                is the side joining nodes i and j, can be written in the following form:
                [image: $$\displaystyle\begin{array}{rcl} s_{41}: 1 - \frac{x} {a_{1}} - \frac{y} {b_{1}} = 0& & \\ s_{43}: 1 - \frac{x} {a_{3}} - \frac{y} {b_{3}} = 0& &{}\end{array}$$]

 (G.7)


                Observe that Eq. (
                G.7
                ) guarantees that the left-hand sides are positive within the triangular finite element and vanish along the sides s
                41
                ,s
                43
                . Let the boundary pieces not containing the side node be denoted by
                Γ
                :
                [image: $$\displaystyle\begin{array}{rcl} \varGamma (x,y) = \left \{1 - \frac{x} {a_{3}} - \frac{y} {b_{3}}> 0,1 - \frac{x} {a_{1}} - \frac{y} {b_{1}}> 0\right \},\quad (x,y) \in \varGamma & &{}\end{array}$$]

 (G.8a)


                [image: $$\displaystyle\begin{array}{rcl} \text{thus: }\bigg(\Big(1 - \frac{x} {a_{3}} - \frac{y} {b_{3}}\Big)\ \Big(1 - \frac{x} {a_{1}} - \frac{y} {b_{1}}\Big)\ \bigg)> 0,\quad (x,y) \in \varGamma.& &{}\end{array}$$]

 (G.8b)


              

                This leads to
                [image: $$\displaystyle{ q(x,y) = \hslash (x)\ \Big(1 - \frac{x} {a_{3}} - \frac{y} {b_{3}}\Big)\ \Big(1 - \frac{x} {a_{1}} - \frac{y} {b_{1}}\Big)\> 0,\quad (x,y) \in \varGamma }$$]

 (G.9)


                which vanishes along the sides not containing the intermediate node 2, and has the desired slope discontinuity. In the next step, the unit value of the shape function at node 2 is guaranteed. Now we invoke the Padé form by introducing the appropriate denominator polynomial:
                [image: $$\displaystyle\begin{array}{rcl} \phi _{2}(x,y) = \frac{q(x,y)} {\Big(1 - \frac{x} {a_{3}} \Big)\ \Big(1 - \frac{x} {a_{1}} \Big)}\qquad \text{so that:}& &{}\end{array}$$]

 (G.10a)


                [image: $$\displaystyle\begin{array}{rcl} \phi _{2}(x,y\vert _{y=0}) = \hslash (x)\text{ and }\phi _{2}(0,0) = 1& &{}\end{array}$$]

 (G.10b)


                In Eq. (
                G.7
                ), in the interception form, the inclined sides of the element can be represented by:
                [image: $$\displaystyle{ a_{1} = -a;\qquad a_{3} = b; }$$]

 (G.11)


                Hence from Eq. (
                G.10b
                ):
                [image: $$\displaystyle{ \phi _{2}(x,y) = \frac{q(x,y)} {\Big(1 -\frac{x} {b} \Big)\ \Big(1 + \frac{x} {a}\Big)} }$$]

 (G.12)


                Note that the shape function
                ϕ
                2
                has discontinuities only at those vertices that describe the edge containing the intermediate node.
              

                Using the data from Eq. (
                G.14b
                ), Eq. (
                G.12
                ) becomes:
                [image: $$\displaystyle{ \phi _{2}(x,y) = -\frac{(3\ \sqrt{x^{2}} - x - 4)(18x - 25y + 18)(18x + 5y - 36)} {1296(x - 2)(x + 1)} }$$]

 (G.13)


              

                In order to clarify the discontinuity in slopes, steps are included so that the theoretical formulation explained with Fig. 
                G.1
                is given by:
                [image: $$\displaystyle\begin{array}{rcl} \text{node-}1: (-a,0),\ \text{node-}2: (0,0),\ \text{node-}3: (b,0)\ \text{ and }\text{node-}4: (c,h)& &{}\end{array}$$]

 (G.14a)


                [image: $$\displaystyle\begin{array}{rcl} a = 1;\quad b = 2;\quad c = \frac{3} {2};\quad h = \frac{9} {5}.& &{}\end{array}$$]

 (G.14b)


              

G.4 Evaluation of All Shape Functions from the Linearity Conditions for Interpolants

                It is
                absolutely essential
                that an arbitrary linear function should
                always
                be interpolated
                exactly
                . Thus:
                [image: $$\displaystyle{ \sum _{i=1}^{4}\phi _{ i}(x,y) = 1;\quad \sum _{i=1}^{4}x_{ i}\ \phi _{i}(x,y) = x\text{ and }\sum _{i=1}^{4}y_{ i}\ \phi _{i}(x,y) = y }$$]

 (G.15)


              

                Now, using
                ϕ
                2
                from Eq. (
                G.13
                ), we obtain:
                [image: $$\displaystyle\begin{array}{rcl} \phi _{1} = \frac{(18x + 5y - 36)\left (3\sqrt{x^{2}}(18x - 25y + 18) - 54x^{2} + x(25y - 54) + 100y\right )} {1944(x - 2)(x + 1)} & &{}\end{array}$$]

 (G.16a)


                [image: $$\displaystyle\begin{array}{rcl} \phi _{3} = \frac{(18x - 25y + 18)\left (3\sqrt{x^{2}}(18x + 5y - 36) + 54x^{2} - x(5y + 108) - 20y\right )} {3888(x - 2)(x + 1)} & &{}\end{array}$$]

 (G.16b)


                [image: $$\displaystyle\begin{array}{rcl} \phi _{4} = \frac{5y} {9};\quad \text{this is an independent verification}& &{}\end{array}$$]

 (G.16c)


              

                The square root expressions,
                [image: $$\sqrt{x^{2}}$$]
                , in Eqs. (
                G.16a
                ) and (
                G.16b
                ), could be replaced with the absolute value of x i.e., ∥x∥. It should be noted that the denominators of Eqs. (
                G.16a
                ) and (
                G.16b
                ) refer to the ‘same’ adjoint; those polynomials differ only by a multiplicative (scaling) constant. Their singularities are at the end nodes of the base of the triangle (and not at the intermediate node). Thus, to obtain unit values of
                ϕ
                1
                , and
                ϕ
                3
                at nodes 1 and 3 respectively, a limiting operation according to the L’Hospital rule must be used.
              

                The contour plots of the shape functions are showed in Fig. 
                G.8
                . Of course,
                ϕ
                4
                in Eq. (
                G.16c
                ), which expresses the shape function for the apex (not connected to the side containing the intermediate node) yields the same answer had there been no side node. This is an important observation to construct shape functions for polygons with an intermediate side node,
                vide
                Fig. 
                1.5
              

                In Eqs. (
                G.16a
                ) and (
                G.16b
                ), the denominator polynomials do not involve y because the orientation in Fig. 
                G.1
                aligns the intermediate node on the x-axis.
                [image: A300727_1_En_BookBackmatter_Fig43_HTML.gif]
Fig. G.8
                        Contour plots of shape functions for a triangle with a side node. (
                        a
                        ) Discontinuities are pronounced. (
                        b
                        ) Discontinuities die out away from the side node
                      




              


                G.5 Comments on the Use of
                Mathematica
              

                For Fig. 
                G.1
                , the following closed form shape functions were obtained from
                Mathematica
                ’s
                TeXForm
                , where
                [image: $$\Big(x {\ast}\text{ sgn}(x)\Big)$$]
                is identical to
                [image: $$\sqrt{x^{2}}\text{ or }\|x\|$$]
                :
                [image: $$\displaystyle\begin{array}{rcl} & & \text{For Fig. G.1},\text{ as in Listing G.1:} \\ & & \phantom{\text{For Fig. 5.1}}\text{nodes are: }(-a,0),(0,0),(b,0),(c,h){}\end{array}$$]

 (G.17a)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{ we can easily ascertain:} \\ \phi _{4}(x,y)& =& \frac{y} {h} {}\end{array}$$]

 (G.17b)


                [image: $$\displaystyle\begin{array}{rcl} & & \text{From Listing G.2 we generate the following:} \\ \text{let }d& =& \ 2\ a\ b\ h^{2}\ (a + x)\ (b - x) {}\end{array}$$]

 (G.17c)


                [image: $$\displaystyle\begin{array}{rcl} d {\ast}\phi _{1}(x,y)& =& \frac{1} {a + b}\Big(b(b(h - y) + cy - hx) {\ast} \\ & & (x(a + b)\text{ sgn }(x)(h(a + x) - y(a + c)) + \\ & & y(a + c)(2ab - ax + bx) + hx(-(a + b))(a + x))\Big){}\end{array}$$]

 (G.17d)


                [image: $$\displaystyle\begin{array}{rcl} d {\ast}\phi _{2}(x,y)& =& \Big((x(a + b)\text{ sgn }(x) + a(x - 2b) - bx) {\ast} \\ & & (h(a + x) - y(a + c))(b(y - h) - cy + hx)\Big){}\end{array}$$]

 (G.17e)


                [image: $$\displaystyle\begin{array}{rcl} d {\ast}\phi _{3}(x,y)& =& \frac{1} {a + b}\Bigg(a(h(a + x) - y(a + c))(x(a + b)\text{ sgn }(x) {\ast} \\ & & (b(h - y) + cy - hx) + y(b - c)(2ab - ax + bx) + \\ & & hx(a + b)(b - x))\Bigg) {}\end{array}$$]

 (G.17f)


              

                Always Start a
                Mathematica Function with a Usage
                Message
              
Listing G.1 Shape functions for Fig. G.1: Triangle with a side node

                  shapesTriangleWithASideNode::usage = \
"shapesTriangleWithASideNode[{x,y},{a, b, c, h}]
yields shape functions associated with \
nodes={{-a,0},{0,0},{b,0},{c,h}}"



                


                Generating
                Closed-Form Shape Functions for Fig. 
                
                  G.1
                
              
Listing G.2 Shape functions for Fig. G.1: Triangle with a side node

                  shapesTriangleWithASideNode[{x_, y_}, {a_, b_, c_, h_}] :=
Module[{ fac, \[Psi]2,
\[Psi]s, eqs, sol, ss,
\[Psi]1, \[Psi]3, \[Psi]4,
xs, ys},

{xs, ys} = Transpose[{{-a, 0}, {0, 0}, {b, 0}, {c, h}}];

ss = (1 - (x/-a) - (y/((h*a)/(a + c))))*(1 - (x/b) - (y/((h*b)/(b - c))));

fac = ss/(ss /. y -> 0);

\[Psi]2 = (1 + 1/(2*b) (-x - x Sign[x]) + 1/(2*a) (x - x Sign[x]))* fac;
\[Psi]s = {\[Psi]1, \[Psi]2, \[Psi]3, \[Psi]4};

eqs = {Plus @@ \[Psi]s == 1, xs. \[Psi]s == x, ys. \[Psi]s == y};

sol = Expand[
Solve[eqs, {\[Psi]1, \[Psi]3, \[Psi]4}] // Flatten]; \[Psi]s /. sol]



                


                Greek Characters in
                Mathematica
              

                In Listing
                G.2
                ,
                Ψ
                1,…
                Ψ
                s appear as
                \[Psi]1,...\[Psi]s
                because the computer code listing application could not print Greek characters.
              

                By cutting and pasting the content of Listing
                G.2
                on a
                Mathematica
                notebook
                will correctly display the special characters.
              
G.5.1 Shape Function for the Vertex

                  The shape function for the vertex,
                  [image: $$\phi _{4}(x,y) = \frac{y} {h}$$]
                  does not ‘see’ the side node (because when nodes 1, 2, and 3 have zero response, the situation is identical to that of a triangle with no side node). Hence
                  [image: $$\phi _{4}(x,y) = \frac{y} {h}$$]
                  is the same ‘linear’ shape function as in a triangle without any square root term in it.
                

                  Note, in Fig. 
                  G.8
                  b, for
                  ϕ
                  4
                  the contour lines are all parallel to the base. The
                  Mathematica
                  function
                  ContourPlot[]
                  generated Fig. 
                  G.8
                  .
                

                  Recall that often a
                  Mathematica
                  function, which takes arguments, is emphasized by a trailing
                  []
                  .
                



                G.6 Analysis in the Light of Wachspress’
                External Intersection Points
                : EIPs
              

                
                  
                
              

                Wachspress in [
                10
                ] introduced the concept of EIP. He extended the associated concepts in [
                11
                ].
                [image: A300727_1_En_BookBackmatter_Fig44_HTML.gif]
Fig. G.9Limiting values of EIPs create singularity at base vertices




              
The external intersection points (EIPs) are those where the non-adjacent sides intersect outside the convex polygonal region.

                Figure
                G.9
                shows the two EIPs necessarily lying on the two sides when the intermediate node on the base is slightly pushed outwards, by a small amount
                ε
                > 0 to create a convexity. As lim
                ε
                → 0, the EIPs approach the base vertices. Singularities in shape functions, associated with the base vertices (not the apex), can be verified from Eqs. (
                G.16a
                ) and (
                G.16b
                ).
              

                The one-dimensional “hat”  function, Eq. (
                G.10a
                ), can be transformed for the two-dimensional generic element of Fig. 
                G.5
                . Therein calculations will involve a translation and rotation of coordinates.
              

                Recall that the singularity in the shape function associated with the side node,
                vide
                Fig. 
                G.5
                , has been captured using the square root function. Hence in the new coordinates of Fig. 
                G.5
                , there will be square root expressions in the shape functions.
              
G.6.1 Extension: A Convex Polygonal Element with a Side Node

                  
                    
                  
                

                  For the convex polygon with a side node, any number of sides can be entertained. For an illustration, we have selected a convex septagon in Fig. 
                  G.10
                  .
                  [image: A300727_1_En_BookBackmatter_Fig45_HTML.gif]
Fig. G.10
                          Reproduction of Fig. 
                          1.5
                        




                

                  In general, the expressions related to the singularity in shape functions for the triangular element with a side node can be utilized to obtain the shape functions for Fig. 
                  G.10
                  . Observe that in Listing
                  G.2
                  , the side node shape function is the key expression that we obtained analytically. The same singularity will prevail for the shape function of node 8, when Fig. 
                  G.10
                  is shifted and rotated so that nodes 3, 8, and 4 fall on the x-axis, and node 8 becomes the origin. We can utilize Eqs. (
                  G.9
                  ) and (
                  G.10a
                  ).
                

                  The notation is the same as in Eq. (
                  G.7
                  ). The shape functions for nodes 1, 2, 5, 6, and 7 will not be affected by the singularity at 8. This extension should be possible because the formulation adheres to the protective geometry concepts where the number of sides is immaterial.
                

                  Wachspress’ ground breaking monograph [
                  10
                  ] is the pioneering work that extensively addresses the associated generalized concepts.
                

                  
                    
                  
                
G.6.1.1 Coordinate Transformations

                    By translation, rotation and scaling of the coordinate systems, the nodes number 3, 8, and 4 of Fig. 
                    G.10
                    can be captured from node-1, node-2, and node-3, respectively, of Fig. 
                    G.4
                    . The singularity (in the transformed coordinate) for
                    ϕ
                    8
                    (x,y) is to be derived from Eq. (
                    G.10a
                    ).
                    
                      
                    
                  

                    Note that
                    ϕ
                    1
                    (x,y),
                    ϕ
                    2
                    (x,y),
                    ϕ
                    5
                    (x,y),
                    ϕ
                    6
                    (x,y), and
                    ϕ
                    7
                    (x,y) will remain the same as those for the septagon without the side node. These five shape functions can be calculated according to [
                    1
                    ]. Finally, the two remaining shape functions,
                    ϕ
                    3
                    (x,y) and
                    ϕ
                    4
                    (x,y), can be determined using linearity conditions described in Eq. (
                    G.15
                    ).
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              [image: $${\hat n}$$]
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              P
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              i
              
                th
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              x
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              ,
              q
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              (
              x
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              x
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              y
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              x
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              x
              ,
              y
              )
            


              q
              : incompressible modes to nodal loads
            


              R
              : externally applied force vector, at a joint
            


              R
              : force at DOF
            


              R
              : nodal load
            


              R
              
                ϕ
              
              : nodal load due to incompressible modes
            


              R
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              [image: $${\left \{R\right \}}$$]
              : column matrix of forces at DOF
            


              [image: $${\left \{R\right \}}^{(S)}, {\left \{r\right \}}^{(S)}$$]
              : system force and displacement column matrices or system force and displacement column vectors
            


              [image: $${{\boldsymbol {\mathcal {R}}}_{ }}$$]
              : coupled
            
basis vectors


              [image: $${{\boldsymbol {\mathcal {R}}}_{ }}$$]
              : coupled vectors
            
Rayleigh modes


              [image: $${{\boldsymbol {\mathcal {R}}}_{i}}$$]
              : coupled vectors
            

              Rayleigh modes,
              i
              th-component
            


              [image: $${{\boldsymbol {\mathcal {R}}}_{i}}$$]
              : coupled vectors: Rayleigh modes
            


              [image: $${{\boldsymbol {\mathcal {R}}}_{i}}$$]
              : coupled vectors
            
Rayleigh modes


              [image: $${{\boldsymbol {\mathcal {R}}}_{i}}$$]
              : coupled vectors: Rayleigh modes
            


              [image: $${\left \{r_o\right \}}$$]
              : prescribed displacement boundary conditions
            


              [image: $${\left \{r\right \}}$$]
              : column matrix of displacements at DOF
            


              [image: $${\left \{r\right \}}$$]
              : nodal displacements organized as a column matrix
            


              r
              : displacement at DOF
            


              r
              1
              ,
              r
              2
              : joint displacements in (
              x
              ,
              y
              )
            


              S
              : tensor of rank
              m
            


              [image: $${{\mathfrak {S}_\phi ^{(i)}}}(x,y)$$]
              : isochoric stress mode,
              i
              th-component
            


              s
              ,
              t
              : coordinates in the unit square computational domain
            


              s
              (
              x
              ,
              y
              ): inhomogeneity in a biharmonic equation
            


              s
              
                ij
              
              : side joining nodes
              i
              and
              j
            


              u
              : generic variable
            


              u
              (
              x
              ): uniaxial displacement field
            


              u
              1
              ,
              v
              1
              : linear isochoric fields
            


              u
              2
              ,
              v
              2
              : quadratic isochoric fields
            


              u
              
                o
              
              ,
              v
              
                o
              
              : uniform isochoric fields
            


              v
              : generic variable
            


              W
              
                X
              
              : virtual work done by
              X
            


              w
              (
              x
              ,
              y
              ): warping function for torsion problems
            


              x
              : uniaxial coordinate axis
            


              x
              
                i
              
              ,
              y
              
                i
              
              : Cartesian coordinates for the node
              i
            


Greek Symbols


              α
              ,
              β
              ,
              γ
              : constant coefficients
            


              α
              ,
              β
              ,
              γ
              : generic coefficients
            


              α
              
                i
              
              : transformation coefficient
            


              Δ
              : extension
            


              [image: $$\bar {\delta }$$]
              : pre-determined numerical tolerance
            


              [image: $$\bar {\delta }$$]
              : prescribed error bound
            


              δr
              
                (
                i
                )
              
              : virtual displacement at node
              i
              ,
            


              δ
              
                ij
              
              : Kronecker’s Delta
            


              [image: $${\left \{\epsilon \right \}}$$]
              : strain components organized as a column matrix
            


              𝜖
              : axial strain
            


              𝜖
              
                ij
              
              : components of the strain tensor organized as a column matrix
            


              ε
              : smallness bound
            


              [image: $${{\left \{\boldsymbol {\varphi }\right \}}}$$]
              : isochoric degrees-of-freedom
            


              ϕ
              
                i
              
              (
              x
              ): bar shape functions
            


              ϕ
              
                i
              
              (
              x
              ,
              y
              ): shape functions
            


              φ
              : real part (of
              f
              )
            


              φ
              
                i
              
              : Rayleigh mode number
              i
            


              Γ
              : boundary of domain
              Ω
            


              Γ
              ∗
              : Almansi boundary value problem
            
boundary on which neither traction nor displacemnt are prescribed


              Γ
              ∗
              : boundary of element
              Ω
              ∗
            


              Γ
              
                o
              
              : Almansi boundary value problem
            
boundary on which both traction and displacemnt are prescribed


              γ
              
                ij
              
              : engineering shear strain components, twice that of
              𝜖
              
                ij
              
            


              γ
              
                zy
              
              ,
              γ
              
                zy
              
              : engineering shear stresses in torsion problems
            


              ∇
              2
              : Laplacian operator
            


              Ω
              : domain
            


              Ω
              : material domain
            


              Ω
              ∗
              : domain of element
            


              ψ
              
                (
                i
                )
              
              (
              x
              ,
              y
              ): shape function associated with the
              i
              th node
            


              ψ
              : imaginary part (of
              f
              )
            


              σ
              : axial stress
            


              τ
              (
              x
              ,
              y
              ): arbitrary traction vector
            


              [image: $$\delta W_{{ }_X}$$]
              : virtual work done by
              X
              , for example,
              X
              is
              R
              2
            


              ξ
              ,
              η
              : Taig’s parametric coordinates
            


              [image: $${\left [\zeta \right ]}$$]
              : generic matrix
            


Footnotes
1Optical Character Recognition program.

 

2The American Standard Code for Information Interchange handles all computer input and output characters.

 

3
                      In Eq. (
                      A.8b
                      ),
                      (Power[#1, #2])&
                      is the
                      post-fix
                      form of
                      Function
                      (as
                      pre-fix
                      ).
                    

 

4
                      Useful algorithms and computer codes are available in
                      Mathematica
                      related websites.
                    

 

5
                    In the spirit of TE X, we can conceive of a
                    ridiculously small length unit
                    .
                  

 

6
                      We repeat Eqs. (1.59b) and (1.60b) to establish the connection between equilibrium and Ritz and Courant’s
                      admissible functions.
                    

 

7An eigenvalue and the (non-unique by a scale factor) eigenvector form an eigenpair.

 

8
                      The Listing
                      B.9
                      will end with …
                      =={3}
                      , in 3D cases ! The function will not change !!
                      Symbolic computation
                      programs mathematical principles, not the extraneous details !!!
                    

 

9
                      Read
                      MaTeX
                      online documentations and print
                      PlotLabel
                      with different fonts.
                    

 

10Those test functions merely satisfy certain continuity and differentiability requirements.

 

11For incompressibility the admissible functions exist but the shape functions do not because the latter are associated with degrees-of-freedom where displacement values can be assigned independently.

 

12
                    This is the reason the temperature problem is presented separately in Appendix
                    F
                    and not here in Appendix
                    D
                    .
                  

 

13
                    With the advent of symbolic computation software, it possible to integrate
                    almost
                    any function numerically with adaptive meshing.
                    Mathematica
                    allows integration within arbitrary regions, convex, concave, straight or curved sides, details in Sect. 
                    E.4
                    .
                  

 

14Scattering a large number of quadrature points poses unnecessary losses in accuracy.

 

15
                      Mathematica
                      can integrate almost all functions encountered in mathematical physics.
                    

 

16This is outside the scope of this textbook.

 

17
                    In Fig. 
                    E.1
                    we need three equations to describe the three segments, hence, k = 3.
                  

 

18In general: ∇(c ∇T) + f = 0.

 

19
                      Also, for important engineering applications, we employ the polar coordinates (r,
                      θ
                      ) when the Laplacian operator ∇
                      2
                      becomes:
                      [image: $$\frac{\partial ^{2}} {\partial r^{2}} + \frac{1} {r} \frac{\partial } {\partial r} + \frac{1} {r^{2}} + \frac{\partial ^{2}} {\partial \theta ^{2}}$$]
                      ; we do not address curvilinear coordinates in this textbook.
                    

 

20
                        This scalar functional will be derived, in Eq. (
                        F.9
                        ).
                      

 

21
                        Stated in Eqs. (
                        F.26
                        ) and (
                        F.29
                        ) of Sect. 
                        F.3
                        within the context of
                        indicial notations
                        .
                      

 

22
                        Following Ritz and Courant, [
                        1
                        ,
                        10
                        ],
                        [image: $$\left [A\right ]$$]
                        and
                        [image: $$\left \{b\right \}$$]
                        of Eq. (
                        F.10
                        ), are in Eqs. (
                        F.38a
                        ) through (
                        F.38c
                        ).
                      

 

23
                        To carry out
                        exact integration,
                        the
                        Mathematica
                        function in Listing
                        E.1
                        can be utilized.
                      

 

24
                      The generic
                      [image: $$\boldsymbol{\mathfrak{F}}$$]
                      , in Eq. (
                      F.13a
                      ) should not be confused with the internal energy
                      [image: $$\boldsymbol{\mathfrak{I}}$$]
                      in Eq. (
                      F.9
                      ). In LaTeX they are the
                      mbf
                      of
                      mathfrak
                      fonts, F and I, respectively.
                    

 

25
                    The free index
                    α
                    does
                    not
                    repeat within a multiplication operation.
                  

 

26
                    In
                    contraction
                    operations with the indicial notation, the dummy index is set to the free index.
                  

 

27
                      All time derivatives need not be present in the partial differential equation. Some coefficients of:
                      [image: $$\frac{\partial } {\partial t}$$]
                      ,
                      [image: $$\frac{\partial ^{2}} {\partial t^{2}} \cdots \frac{\partial ^{n-1}} {\partial t^{n-1}}$$]
                      may be zero. For example, in an idealized vibration equation n = 2, when there is no damping, there is no
                      [image: $$\frac{\partial } {\partial t}$$]
                      term.
                    

 

28Here, also, the shape functions for triangular elements are spatially linear.
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