

EVOLUTIONARY COMPUTATION

Techniques and Applications

EVOLUTIONARY COMPUTATION

Techniques and Applications

Edited by

Ashish M. Gujarathi, PhD

B. V. Babu, PhD

[image: Images]

	Apple Academic Press Inc.

	Apple Academic Press Inc.

	3333 Mistwell Crescent

	9 Spinnaker Way

	Oakville, ON L6L 0A2

	Waretown, NJ 08758

	Canada

	USA

©2017 by Apple Academic Press, Inc.

Exclusive worldwide distribution by CRC Press, a member of Taylor & Francis Group

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper

International Standard Book Number-13: 978-1-77188-336-8 (Hardcover)

International Standard Book Number-13: 978-1-315-36638-8 (CRC/Taylor & Francis eBook)

International Standard Book Number-13: 978-1-77188-337-5 (AAP eBook)

All rights reserved. No part of this work may be reprinted or reproduced or utilized in any form or by any electric, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publisher or its distributor, except in the case of brief excerpts or quotations for use in reviews or critical articles.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. Copyright for individual articles remains with the authors as indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint.

Trademark Notice: Registered trademark of products or corporate names are used only for explanation and identification without intent to infringe.

Library and Archives Canada Cataloguing in Publication

Evolutionary computation : techniques and applications / edited by Ashish M. Gujarathi, PhD, B.V. Babu, PhD.

Includes bibliographical references and index.
Issued in print and electronic formats.
ISBN 978-1-77188-336-8 (hardcover).--ISBN 978-1-77188-337-5 (pdf)
1. Evolutionary computation. 2. Genetic algorithms. 3. Software engineering. I. Gujarathi, Ashish M., author, editor II. Babu, B. V., author, editor

TA347.E96E96 2016 006.3’823 C2016-905450-0 C2016-905451-9

Library of Congress Cataloging-in-Publication Data

Names: Gujarathi, Ashish M., editor. | Babu, B. V., editor.
Title: Evolutionary computation : techniques and applications / editors, Ashish M. Gujarathi, PhD, B.V. Babu, PhD.
Other titles: Evolutionary computation (Gujarathi)
Description: Toronto ; Waretown, New Jersey : Apple Academic Press, [2017] |
Includes bibliographical references and index.
Identifiers: LCCN 2016035469 (print) | LCCN 2016037827 (ebook) | ISBN 9781771883368 (hardcover : acid-free paper) | ISBN 9781771883375 (ebook) | ISBN 9781771883375 (ebook)
Subjects: LCSH: Evolutionary computation. | System engineering. | Mathematical optimization.
Classification: LCC TA347.E96 E96 2017 (print) | LCC TA347.E96 (ebook) | DDC 006.3/823--dc23
LC record available at https://lccn.loc.gov/2016035469

Apple Academic Press also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Apple Academic Press products, visit our website at www.appleacademicpress.com and the CRC Press website at www.crcpress.com

CONTENTS

List of Contributors

List of Abbreviations

Preface

About the Editors

PART 1. THEORY AND APPLICATIONS IN ENGINEERING SYSTEMS

1. Introduction

Ashish M. Gujarathi and B. V. Babu

2. Bio-Mimetic Adaptations of Genetic Algorithm and Their Applications to Chemical Engineering

Vibhu Trivedi and Manojkumar Ramteke

3. Surrogate-Assisted Evolutionary Computing Methods

Saket Kansara, Sumeet Parashar, and Abdus Samad

4. Evolutionary Algorithms in Ironmaking Applications

Tamoghna Mitra, Henrik Saxén, and Nirupam Chakraborti

5. Harmony Search Optimization for Multilevel Thresholding in Digital Images

Diego Oliva, Erik Cuevas, Gonzalo Pajares, Daniel Zaldívar, Marco Pérez-Cisneros, and Valentín Osuna-Enciso

6. Swarm Intelligence in Software Engineering Design Problems

Tarun Kumar Sharma and Millie Pant

7. Gene Expression Programming in Nanotechnology Applications

Pravin M. Singru, Vishal Jain, Nikilesh Krishnakumar, A. Garg, K. Tai, and V. Vijayaraghavan

PART 2. THEORY AND APPLICATIONS OF SINGLE OBJECTIVE OPTIMIZATION STUDIES

8. An Alternate Hybrid Evolutionary Method for Solving MINLP Problems

Munawar A. Shaik and Ravindra D. Gudi

9. Differential Evolution for Optimal Design of Shell-and-Tube Heat Exchangers

Munawar A. Shaik and B. V. Babu

10. Evolutionary Computation Based QoS-Aware Multicast Routing

Manas Ranjan Kabat, Satya Prakash Sahoo, and Manoj Kumar Patel

11. Performance Assessment of the Canonical Genetic Algorithm: A Study on Parallel Processing Via GPU Architecture

Paulo Fazendeiro and Paula Prata

12. An Efficient Approach for Populating Deep Web Repositories Using SFLA

Shikha Mehta and Hema Banati

13. Closed Loop Simulation of Quadruple Tank Process Using Adaptive Multi-Loop Fractional Order PID Controller Optimized Using Bat Algorithm

U. Sabura Banu

PART 3. THEORY AND APPLICATIONS OF SINGLE AND MULTIOBJECTIVE OPTIMIZATION STUDIES

14. A Practical Approach Towards Multiobjective Shape Optimization

G. N. Sashi Kumar

15. Nature-Inspired Computing Techniques for Integer Factorization

Mohit Mishra, S. K. Pal, and R. V. Yampolskiy

16. Genetic Algorithm Based Real-Time Parameter Identifier for an Adaptive Power System Stabilizer

Wael Mohamed Fayek and O. P. Malik

17. Applied Evolutionary Computation in Fire Safety Upgrading

Iordanis A. Naziris, Nikos D. Lagaros, and Kyriakos Papaioannou

18. Elitist Multiobjective Evolutionary Algorithms for Voltage and Reactive Power Optimization in Power Systems

S. B. D. V. P. S. Anauth and Robert T. F. Ah King

19. Evaluation of Simulated Annealing, Differential Evolution and Particle Swarm Optimization for Solving Pooling Problems

Ying Chuan Ong, Shivom Sharma, and G. P. Rangaiah

20. Performance Improvement of NSGA-II Algorithm by Modifying Crossover Probability Distribution

K. V. R. B. Prasad and P. M. Singru

21. Evolutionary Algorithms for Malware Detection and Classification

Kamran Morovati and Sanjay S. Kadam

Index

LIST OF CONTRIBUTORS

Robert T. F. Ah King

Department of Electrical and Electronic Engineering, University of Mauritius, Reduit 80837, Mauritius

S. B. D. V. P. S. Anauth

Department of Electrical and Electronic Engineering, University of Mauritius, Reduit 80837, Mauritius

B. V. Babu

Vice Chancellor, Galgotias University, Greater Noida, Uttar Pradesh, India, E-mail: profbvbabu@gmail.com, Tel: +91-12-04806849

Hema Banati

Dyal Singh College, Department of Computer Science, University of Delhi, Delhi, E-mail: banatihema@hotmail.com

U. Sabura Banu

Professor Department of Electronics and Instrumentation Engineering, BS Abdur Rahman University, Vandalur, Chennai – 600048, Tamilnadu, India

Nirupam Chakraborti

Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, 712 302, West Bengal, India

Erik Cuevas

Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI, CU-TONALA, Av. Revolución 1500, Guadalajara, Jal, México

Wael Mohamed Fayek

Assistant Professor, Department of Electrical Engineering, Helwan University, Cairo, Egypt

Paulo Fazendeiro

Universityof Beira Interior, DepartmentofInformatics, Portugal
Instituto de Telecomunicações (IT), Portugal,E-mail: fazendeiro@ubi.pt

A. Garg

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

Ravindra D. Gudi

Professor, Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India, E-mail: ravigudi@iitb.ac.in, Tel: +91-22-25767231

Ashish M. Gujarathi

Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod, Muscat-123, Sultanate of Oman, Phone: +968 2414 1320, E-mail: ashishgujrathi@gmail.com, ashishg@squ.edu.om

Vishal Jain

Department of Mechanical Engineering, Birla Institute of Technology and Science, BITS Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India

Manas Ranjan Kabat

Department of Computer Science and Engineering, Veer Surendra Sai University of Technology, Burla, India, E-mail: kabatmanas@gmail.com

Sanjay S. Kadam

Evolutionary Computing and Image Processing Group (ECIP), Center for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University Campus, Ganeshkhind, Pune–411007, India

Saket Kansara

ESTECO Software India Pvt. Ltd., Pune, Maharashtra, India

Nikilesh Krishnakumar

Department of Mechanical Engineering, Birla Institute of Technology and Science, BITS Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India

G. N. Sashi Kumar

Scientific Officer, Computational Studies Section, Machine Dynamics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India–400 085, Tel.: +91-22-2559-3611; E-mail: gnsk@barc.gov.in

Nikos D. Lagaros

Assistant Professor, Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens, 15780, Greece

O. P. Malik

Professor Emeritus, Department of Electrical and Computer Engineering, University of Calgary, Alberta, Canada

Shikha Mehta

Dyal Singh College, Department of Computer Science, University of Delhi, Delhi, E-mail: mehtshikha@gmail.com

Mohit Mishra

Department of Computer Science and Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India

Tamoghna Mitra

Thermal and Flow Engineering Laboratory, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland

Kamran Morovati

Information Security Center of Excellence (ISCX), Faculty of Computer Science, University of New Brunswick, 550 Windsor St., Head Hall E128, Fredericton, NB, E3B 5A3, Canada

Iordanis A. Naziris

PhD Candidate, Laboratory of Building Construction and Building Physics, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124, Greece

Diego Oliva

Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain, E-mail: doliva@ucm.es; pajares@ucm.es

Ying Chuan Ong

Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Republic of Singapore

Valentín Osuna-Enciso

Departamento de Ingenierías, CUTONALA, Universidad de Guadalajara, Sede Provisional Casa de la Cultura – Administración, Morelos #180, Tonalá, Jalisco 45400, México, E-mail: valentin.osuna@cutonala.udg.mx

Gonzalo Pajares

Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain, E-mail: doliva@ucm.es; pajares@ucm.es

S. K. Pal

Senior Research Scientist, Scientific Analysis Group, Defence Research and Development Organization, Ministry of Defence, Govt. of India, New Delhi, India

Millie Pant

Department of Applied Science and Engineering, Saharanpur Campus, IIT Roorkee, India

Kyriakos Papaioannou

Professor Emeritus, Laboratory of Building Construction and Building Physics, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124, Greece

Sumeet Parashar

ESTECO North America, Novi, MI 48375, USA

Manoj Kumar Patel

Department of Computer Science and Engineering, Veer Surendra Sai University of Technology, Burla, India, E-mail: patel.mkp@gmail.com

Marco Pérez-Cisneros

Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI, CU-TONALA, Av. Revolución 1500, Guadalajara, Jal, México

K. V. R. B. Prasad

Professor, Department of E.E.E., MITS, P.B. No: 14, Kadiri Road, Angallu (V), Madanapalle – 517325, Chittoor District, Andhra Pradesh, India, E-mail: prasad_brahma@rediffmail.com

Paula Prata

University of Beira Interior, Department of Informatics, Portugal Instituto de Telecomunicações (IT), Portugal, E-mail: pprata@di.ubi.pt

Manojkumar Ramteke

Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi–110 016, India, E-mail: ramtekemanoj@gmail.com, mcramteke@chemical.iitd.ac.in

G. P. Rangaiah

Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Republic of Singapore

Satya Prakash Sahoo

Department of Computer Science and Engineering, Veer Surendra Sai University of Technology, Burla, India, E-mail: sahoo.satyaprakash@gmail.com

Abdus Samad

Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai–600036, India

Henrik Saxén

Thermal and Flow Engineering Laboratory, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland

Munawar A. Shaik

Associate Professor, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, E-mail: munawar@iitd.ac.in, Tel: +91-11-26591038

Shivom Sharma

Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Republic of Singapore

Tarun Kumar Sharma

Amity School of Engineering & Technology, Amity University Rajasthan, Jaipur, India

Pravin M. Singru

Department of Mechanical Engineering, Birla Institute of Technology and Science, BITS Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India

K. Tai

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

Vibhu Trivedi

Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi–110 016, India

V. Vijayaraghavan

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

R. V. Yampolskiy

Associate Professor, Department of Computer Engineering and Computer Science, University of Louisville, KY, USA

Daniel Zaldívar

Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI, CU-TONALA, Av. Revolución 1500, Guadalajara, Jal, México

LIST OF ABBREVIATIONS

	ABC

	Artificial bee colony

	ACO

	Ant colony optimization

	AGA

	Adaptive genetic algorithm

	AGSAA

	Adaptive genetic simulated annealing algorithm

	AHP

	Analytic hierarchy process

	AI

	Artificial intelligence

	ANN

	Artificial neural networks

	APSS

	Adaptive power system stabilizer

	AR

	Aspect ratio

	ARNA-GA

	Adaptive RNA-GA

	ARX

	Auto regressive model with eXogenous signal

	ASF

	Achievement scalarization function

	ASP

	Active server pages

	AVR

	Automatic voltage regulator

	BF

	Bacterial foraging

	BFA

	Bacterial foraging algorithm

	BFOA

	Bacterial foraging optimization algorithm

	BioGP

	Bi-objective genetic programming

	BITS

	Birla Institute of Technology and Science

	BNNT

	Boron nitride nanotubes

	BT

	Bi-level thresholding

	BW

	Bandwidth factor

	CAD

	Computer aided design

	CEC

	Congress on Evolutionary Computation

	CFD

	Computational fluid dynamics

	CGA

	Cockroach GA

	CNT

	Carbon nanotubes

	COCOMO

	Constructive cost model

	CPSS

	Conventional power system stabilizer

	CTT

	Constrained tree traversal

	CV

	Constraint violations

	DE

	Differential evolution

	DFS

	Depth first search

	DLOC

	Developed line of code

	DM

	Decision maker

	DNA-HGA

	DNA based hybrid genetic algorithm

	DNM

	Deep net meta-crawler

	DRI

	Directly reduced iron

	DSSM

	Delayed S-shaped model

	EAs

	Evolutionary algorithms

	EC

	Evolutionary computation

	EMO

	Electromagnetism-like optimization

	EP

	Evolutionary programming

	ES

	Evolutionary strategies

	EXMP

	Exponential model

	FCCU

	Fluid catalytic cracking unit

	FEM

	Finite element methods

	FLC

	Fuzzy logic control

	FN

	False negative

	FP

	False positive

	FSI

	Fire safety index

	FTA

	Fault tree analysis

	GA

	Genetic algorithm

	GMV

	Generalized minimum variance

	GNFS

	General number sieve algorithm

	GP

	Genetic programming

	GPUs

	Graphic processing units

	H DNA-GA

	Hybrid DNA-GA

	HLGA

	Hajela and Lin’s genetic algorithm

	HM

	Harmony memory

	HMCR

	Harmony-memory consideration rate

	HS

	Harmony search

	HSA

	Harmony search algorithm

	HSMA

	Harmony search multi-thresholding algorithm

	IA

	Inverse-anticodon

	IACC

	International Advance Computing Conference

	ICA

	Imperialist competitive algorithm

	ICIT

	International Conference on Industrial Technology

	ICMST

	International Conference on Mining Science and Technology

	IDE

	Integrated DE

	IET

	Institute of Engineering and Technology

	IJCNN

	International Joint Conference on Neural Networks

	IL

	Intermediate locations

	IT

	Information technology

	ITAE

	Integral time absolute error

	JG

	Jumping genes

	JPSO

	Jumping PSO

	JSP

	Java server pages

	KLOC

	Kilo line of code

	LCI

	Lower confidence interval

	LO

	Local optimum

	LOC

	Lines of code

	LPPE

	Low density polyethylene

	M DNA-GA

	Modified DNA-GA

	MACK

	Multivariate adaptive cross-validating Kriging

	MACO

	Multiobjective ACO

	MAPE

	Mean absolute percentage error

	MAXGEN

	Maximum number of generations

	MCDM

	Multi-criteria decision making

	MCN

	Maximum cycle number

	MD

	Molecular dynamics

	MDE

	Modified differential evolution

	ME

	Methodology

	MFR

	Mixed flow reactor

	MGGP

	Multi-gene genetic programming

	MGO

	Molecular geometry optimization

	MIMO

	Multi input multi output

	MINLP

	Mixed-integer nonlinear programming

	MM

	Maximum-minimum

	MNFE

	Mean number of function evaluations

	MODE

	Multiobjective differential evolution

	MOEAs

	Multiobjective evolutionary algorithms

	MOO

	Multiobjective optimization

	MOPs

	Multiobjective optimization problems

	MRP

	Multiple routing paths

	MSE

	Mean square error

	MSIGA

	Modified self-adaptive immune GA

	MT

	Multilevel thresholding

	MU

	Monetary units

	NACO

	Niched ant colony optimization

	NEMS

	Nano electro mechanical systems

	NFE

	Number of function evaluations

	NI

	National Instrument

	NLP

	Nonlinear programming

	NM

	Normal-mutation

	NMP

	Non-minimum-phase

	NNs

	Neural networks

	NP

	Nondeterministic polynomial time

	NP

	Number of population size

	NPGA

	Niched-Pareto genetic algorithm

	NPI

	Node parent index

	NSGA

	Nondominated sorting genetic algorithm

	NSGA-II

	Elitist nondominated sorting genetic algorithm

	NWeSP

	Next generation web services practices

	OBL

	Opposition based learning

	OF

	Objective functions

	PA

	Phthalic anhydride

	PA

	Pole assignment

	PAES

	Pareto archived evolution strategy

	PAR

	Pitch adjusting rate

	PESA

	Pareto envelope based selection algorithm

	PET

	Polyethylene terephthalate

	PIRGA

	Protein inspired RNA-GA

	PLCs

	Programmable logic controllers

	PM

	Polynomial mutation

	PM10

	Particulate matter

	POS

	Pareto-optimal solutions

	POWM

	Power model

	PS

	Pole shift

	PSNR

	Peak signal-to-noise ratio

	PSO

	Particle swarm optimization

	PSSs

	Power system stabilizers

	QS

	Quadratic sieve

	RBF

	Radial basis functions

	RGA

	Relative gain array

	RJGGA

	Real jumping gene genetic algorithm

	RMSE

	Root mean square error

	RN

	Random number

	RSM

	Response surface models

	RSS

	Random search space

	SA

	Sensitivity analysis

	SA

	Simulated annealing

	SBX

	Simulated binary crossover

	SE mean

	Standard error of mean

	SEDP

	Software engineering design problems

	SFLA

	Shuffled Frog Leaping Algorithm

	SGA

	Simple genetic algorithm

	SI

	Swarm intelligence

	SIMD

	Single instruction multiple data

	SOP

	Single objective optimization problem

	SOR

	Steam over reactant

	SPEA

	Strength-Pareto evolutionary algorithm

	SPMD

	Single program multiple data

	SPP

	Scout production period

	SR

	Success rate

	SRP

	Single routing path

	STD

	Standard deviation

	SWCNT

	Single-walled carbon nanotube

	TBP

	True boiling point

	TCR

	Time constant regulator

	TEM

	Transmission electron microscopy

	TN

	True negative

	TP

	True positive

	TSP

	Traveling salesman problem

	UBBPSO

	Unified bare-bones particle swarm optimization

	UCI

	Upper confidence interval

	VFSA

	Very fast-simulated annealing

	WNYIPW

	Western New York Image Processing Workshop

PREFACE

Evolutionary computation has gained popularity in the recent past due to its several advantages over deterministic methods. Unlike deterministic methods, the evolutionary computation methods start with multiple solutions (both for single and multiobjective optimization (MOO) studies) so as to obtain wide range of initial population members. Evolutionary computation methods are also highly preferred to solve multiobjective optimization problems where conflicting objective functions are involved. The individual evolutionary computation method is expected to converge—to a single optimum solution (global solution) for single objective optimization and—to the Pareto optimal front for multiobjective optimization studies. As multiobjective optimization algorithm results in a set of solutions, the two goals are associated with each multiobjective optimization algorithm. The algorithm should converge to the true Pareto front and the algorithm should maintain a diverse set of solutions on the Pareto front. While achieving these two goals of MOO and dealing with two search spaces, the search for the true Pareto front in case of MOO study depends upon the following key issues, such as, number and type of decision variables (continuous, discontinuous) and nature of decision variable space; type of objective functions (minimization, maximization) and nature of objective space; nonlinearity and stiffness of model equations; type of constraints (equality and inequality); an ability of algorithm to handle the search spaces of objectives and decision variables. This book talks about recent advancement of evolutionary computation on both theory and applications.

This book is broadly organized in three sections. Part 1 contains 7 chapters on ‘Theory and applications in engineering systems.’ Part 2 has 6 chapters on ‘Theory and applications of single objective optimization studies.’ Part 3 has 8 chapters and is titled as ‘Theory and applications of single and multiobjective optimization studies’

Chapter 1 gives introduction on theory of evolutionary algorithms, single and multiobjective optimization. This chapter also includes paragraph on organization of book. In chapter 2 the Bio-Mimetic adaptations of genetic algorithm and their applications to chemical engineering is discussed. An overview of use of surrogate-assisted evolutionary algorithms in various aspects of engineering optimization including single as well as multiobjective optimization evolutionary algorithms is given in chapter 3. Chapter 4 talks about an application of iron making using evolutionary algorithms. They discussed modern ironmaking process optimization aspects using blast furnace and rotary kiln operation. Soft computing techniques, such as Artificial Neural Networks, and evolutionary algorithm are also briefly discussed. Optimization of burden distribution in blast furnace and of production parameters, such as CO2 emissions, and coal injection with respect to multiobjective optimization framework are performed. Chapter 5 represents theory and an application of harmony search optimization for multilevel thresholding in digital images. Chapter 6 talks about swarm intelligence in software engineering design problems. Chapter 7 discusses integrated gene programming approach in simulating the tensile strength characteristic of BNNTs based on aspect ratio, temperature and number of defects of nanoscale materials.

In Part 2, in chapter 8 an application of a nonlinear transformation for representing discrete variables as continuous variables is presented and discussed an alternate method for solving MINLP problems by converting them into equivalent NLP problems. In chapter 9, an application of optimal design of shell and tube heat exchanger using differential evolution algorithm is discussed. Chapter 10 represents the review of various evolutionary algorithms to solve the QoS-aware multicast routing problem. Chapter 11 focuses on the study of the effective parallelization of the canonical GA. Chapter 12 presents an efficient approach for populating deep web repositories using Shuffled Frog Leaping Algorithm (SFLA). Multi-loop fractional order PID controller is optimally tuned using Bat algorithm for quadruple tank process in chapter 13. A practical approach for multiobjective shape optimization using multiobjective ant colony optimization in presented chapter 14. In chapter 15, a review on nature-inspired computing techniques for integer optimization presented. Chapter 16 presents an application of genetic algorithms on adaptive power system stabilizer. Applications of evolutionary computation for solving the budget allocation problem of the fire safety upgrading of a group of buildings are discussed in chapter 17. Chapter 18 focuses on the development and comparative application of elitist multiobjective evolutionary algorithms (MOEAs) for voltage and reactive power optimization in power systems. In chapter 19 stochastic algorithms are used for solving several complex test problems and pooling problems. The authors have evaluated the performance of integrated DE (IDE), unified bare-bones particle swarm optimization (UBBPSO), modified simulated annealing and very fast-simulated annealing (VFSA) algorithms on pooling problems. The NSGA-II algorithm with SBX-A and SBX-LN crossover probability distributions are used to test several multiobjective functions in chapter 20. Finally in chapter 21 an application of evolutionary algorithms for malware detection and classification based on the dissimilarity of op-code frequency patterns is presented.

It is a great pleasure to acknowledge the valuable contribution from several authors across the globe. We wish to express our heartfelt gratitude and indebtedness to the managements of Sultan Qaboos University, Oman and Galgotias University, India.

We are greatly thankful to the editorial staff of Apple Academic Press for their constant encouragement and their plentiful efforts for editing the book.

—Ashish Madhukar Gujarathi, PhD
B. V. Babu, PhD

ABOUT THE EDITORS

Ashish M. Gujarathi, PhD

Assistant Professor, Petroleum and Chemical Engineering Department, College of Engineering, Sultan Qaboos University, Sultanate of Oman

Ashish M. Gujarathi, PhD, is currently an Assistant Professor in the Petroleum and Chemical Engineering Department of the College of Engineering at Sultan Qaboos University, Sultanate of Oman. He was formerly a Lecturer of Chemical Engineering at the Birla Institute of Technology and Science (BITS) in Pilani, India. Dr. Gujarathi has over 11 years of experience as a chemical engineer with diverse work experience comprising a blend of academic research, teaching, and industrial consultancy work. A prolific author with articles, book chapters, and conference proceedings to his credit, he is also an editorial board member of several journals, including the Journal of Developmental Biology and Tissue Engineering and the International Open Access Journal of Biology and Computer Science and has acted as a reviewer for several international journals as well as for books and conference proceedings. His research interests include reaction engineering; process design and synthesis; process modeling, simulation, and optimization; polymer science and engineering; petrochemicals; parametric estimation and optimization of major chemical processes; evolutionary computation; and biochemical engineering.

B. V. Babu, PhD

Vice Chancellor, Galgotias University, Greater Noida, India

B. V. Babu, PhD, is currently Vice Chancellor at Galgotias University in Greater Noida, India. An acknowledged researcher and renowned academician, Dr. Babu has 30 years of teaching, research, consultancy, and administrative experience. Formerly, he was the Pro Vice Chancellor of DIT University, Dehradun, and founding Director of the Institute of Engineering and Technology (IET) at J.K. Lakshmipat University, Jaipur. He is a member of many national and international academic and administrative committees and professional organizations. Professor Babu is a distinguished academician and an acknowledged researcher and is well known internationally for his algorithm MODE (Multi Objective Differential Evolution) and its improved variants. Overall he has over 235 research publications to his credit. He has published several books and has written chapters, invited editorials, and articles in various books, lecture notes, and international journals. He organized several international and national conferences, workshops, and seminars and also chaired several technical sessions. He has been an invited speaker and has delivered keynote addresses at various international conferences, seminars, and workshops. He is the recipient of CSIR’s National Technology Day Award for recognition his research work as well as of many other awards. He is the life member/fellow of many professional bodies, such as IIChE, IE (I), ISTE, ICCE, IEA, SOM, ISSMO, IIIS, IAENG, SPE, ISTD, etc. He is editor-in-chief and editorial board member of several international and national scientific journals.

PART I

THEORY AND APPLICATIONS IN ENGINEERING SYSTEMS

CHAPTER 1

INTRODUCTION

ASHISH M. GUJARATHI1 and B. V. BABU2

1Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod, Muscat-123, Sultanate of Oman, Phone: +968 2414 1320, E-mail: ashishgujrathi@gmail.com, ashishg@squ.edu.om

2Professor of Chemical Engineering and Vice Chancellor, Galgotias University, Greater Noida, India, E-mail: profbvbabu@gmail.com

CONTENTS

1.1 Introduction

1.1.1 Definition of Dominance

1.1.2 Industrial Styrene Reactor

1.1.3 Low Density Polyethylene (LPPE) Tubular Reactor

1.1.4 Supply Chain and Planning

1.2 Organization of Book

1.3 Conclusions

Keywords

References

1.1 INTRODUCTION

An optimization problem involving more than one objective to be optimized is referred as multiobjective optimization problem (MOOP). The optimum solution corresponding to a single objective optimization problem refers to the optimal basic feasible solution (satisfying bounds of variables and the constraints). However, in case of multiobjective optimization, the optimum solution refers to a compromised (not necessarily the optimum with respect to any objective) set of multiple feasible solutions. In the most general form, the multiobjective optimization problem (with m objectives, n variables, p inequality constraints and q equality constraints) can be expressed as given by Eq. (1.1):

[image: Images]

The optimization algorithms can be broadly classified into two categories, i.e., traditional or classical methods and the non-traditional or population based search algorithms. The traditional algorithms often start with a single point (guess value) and end up with a single point solution. The ideal outcome of a single objective optimization problem is a single global solution. However, the outcome of gradient-based traditional algorithms largely depends on its control parameters such as the step size and the direction of search that are being used. In a complex and non-linear search space (as shown in Figure 1.1), which may involve multiple local and a single global solution, an inefficient local search algorithm may get trapped at local optimal solution. In contrast, evolutionary algorithms, which mimic nature’s principle of survival of the fittest, start with multiple population points [7, 8, 16, 17, 19, 20]. Due to the strong genetic operators, evolutionary algorithms are found to achieve the global optimum in majority of industrial applications for single objective optimization [2].

In case of MOO problems, the decision maker is always interested in obtaining a solution suitable to his/her design requirements, i.e., a single solution. But due to the multiobjective nature of the problem and the associated trade-off, the desired solution may vary as per the decision makers need and the choice. Thus providing multiple solutions rather than a single optimum solution (traditional multiobjective optimization algorithms give single optimum solution) would be an advantage to the decision maker, so that one can have a choice of selecting one from the several equally good solutions from the Pareto front. The specialty of such solutions is that as we move from one solution to the other we gain in terms of one objective at the cost of loss in another objective involved in the study. Such a set of solutions is referred as the Pareto optimal set and the solutions in this set are nondominated with respect to each other.

[image: Images]

FIGURE 1.1 Local and global optimal solutions of a complex search space.

1.1.1 DEFINITION OF DOMINANCE

A solution x(1) is said to dominate the other solution x(2), if both the following conditions 1 and 2 are true.

	The solution x(1) is no worse than x(2) in all objectives, or fj(x(1)) ⋫ fj(x(2)) for all j = 1, 2, … M;

	The solution x(1) is strictly better than x(2) in at least one objective, or fj(x(1)) ◃ fj(x(2)) for at least one (j ∊ 1, 2, … M).

If any of the two conditions is violated, the solution x(1) does not dominate the solution x(2) [7]. As multiobjective optimization algorithm results in a set of solutions, the following two goals are associated with each multiobjective optimization algorithm.

	The algorithm should converge to the true Pareto front;

	The algorithm should maintain a diverse set of solutions on the Pareto front.

In pursuit of achieving the convergence, the algorithm may lose diversity of solutions in the Pareto front. But it is worth to mention here that though both convergence and divergence issues are equally important in MOO study, the diverse set of solutions is meaningless if the algorithm did not converge to the true Pareto front. Thus, any efficient multiobjective optimization algorithm should first focus on achieving the convergence to the true Pareto front and then new solutions in the neighborhood of solutions on Pareto front may be searched to enhance the divergence. Though both the goals of achieving convergence and maintaining diverse set of solutions are important, focus should first be given in algorithm to attain the convergence.

Unlike single objective optimization, the MOO problems deal with two kinds of search space. Figure 1.2 shows the decision variable space and objective space with global and local Pareto fronts. The decision variables space is obtained by plotting decision variables and constraints within bounds. On evaluation, each point in the decision variable space generates an additional point in the objective space. Thus a given algorithm proceeds based on the comparison of objective function values from the objective space but perturbation of variables occurs in the decision variable space. Thus multiobjective optimization problems are more difficult to solve as compared to single objective optimization problems.

[image: Images]

FIGURE 1.2 Decision space, objective space, local and global Pareto fronts involved in multiobjective optimization study.

In case of simple test problems (where there exists a direct relationship between the objective function and the decision variables), the cost of the objective function can easily be evaluated and then used in evolutionary algorithm. However, in case of industrial problems, the mathematical model needs to be evaluated first. Once the model is formulated, it needs to be integrated and simulated using suitable numerical technique. Judicious choice of numerical technique is made to solve the mathematical model. During the model based evaluation of Pareto front the decision variables are initialized randomly within the bounds. These decision variables are then converted to the specific input form of model. These input parameters are passed to the model. The model is integrated and simulated along the space coordinate and/or time domain. The objectives are evaluated from the output of the model. The termination criteria are checked, and if not terminated, the offspring is generated after applying the corresponding genetic operators. Selection is performed based on the objective function values of the parent and the offspring. The algorithm continues until the termination criteria are met.

While achieving these two goals of MOO and dealing with two search spaces, the search for the true Pareto front in case of MOO study depends upon the following key issues:

	number and type of decision variables (continuous, discontinuous) and nature of decision variable space;

	type of objective functions (minimization, maximization) and nature of objective space;

	nonlinearity and stiffness of model equations;

	type of constraints (equality, inequality);

	ability of algorithms to handle the search spaces of objectives and decision variables.

Out of the above-mentioned five aspects, first four are problem specific. However, Pareto front output also largely depends on the algorithm’s ability to converge towards the true Pareto front and then produces a well diverse set of solutions. An inefficient algorithm may get trapped at local optimal nondominated set of solutions (Figure 1.2) or may result in a single point solution. Few of the reasons by which algorithm may result in local Pareto front or a single point solutions are:

	Algorithms may not produce a superior offspring which is nondominated with respect to other solutions in the current population;

	An inefficient selection scheme of algorithm may restrict a new solution to enter in the current population;

	In case of binary coded algorithms, accuracy of newly obtained solutions depends on the number of bits used in defining string;

	Of its inability to handle the complexity of a problem (i.e., multidimensional decision variable space).

Thus it is necessary to have an algorithm, which not only overcome above limitations but also results in a well diverse Pareto front and close to true Pareto front. The literature survey on several evolutionary algorithms shows a large demand towards developing new algorithms. The algorithm output also depends on the complexity of MOO problems. The industrial engineering problems and some of the test problems involve multidimensional decision variable space, multi-modal objective space with equality and inequality constraints. Some of the commonly observed tradeoffs associated with process design decisions involved in industrial problems are described below.

1.1.2 INDUSTRIAL STYRENE REACTOR

Styrene is commercially produced from ethyl benzene [3, 21, 22]. The main reaction producing styrene is a reversible endothermic reaction. As per the Li-Chatelier’s principle, for a reversible endothermic reaction, high temperature and low pressure favors the rate of forward reaction. But as the temperature is increased, other side products (due to thermal cracking), such as toluene, benzene, etc. are formed. Thus, at low temperature the yield and productivity are low, while selectivity is high. If the temperature of reactor is increased, the selectivity decreases (due to the formation of byproducts) but the yield increases. But the objectives of the process are to increase simultaneously the yield, selectivity and the productivity. If the decision variables such as temperature of ethyl benzene (feed), steam over reactant (SOR), operating pressure and initial ethyl benzene flow rate are used subject to a constraint on temperature, the optimization problem would become more complex and trade-off among the objectives would clearly be observed. The decision maker has to sacrifice for one of the objectives, while achieving the better value of another objective. Thus, in case of industrial styrene reactor there exits potential trade-off among the said objectives of simultaneous maximization of yield, productivity and the selectivity. Pareto fronts obtained for case-1 (i.e., simultaneous maximization of yield and the selectivity) using various strategies of Multiobjective Differential Evolution (MODE) algorithms (namely, MODE, MODE-III, Elitist MODE, Hybrid MODE and Trigonometric MODE) are shown in Figure 1.3a. The results of Figure 1.3a are re-plotted (for better clarity of Pareto fronts) in Figure 1.3b with vertical shift in value of ordinate by +2 in MODE III, +4 in Hybrid MODE, +6 in Elitist MODE and +8 in Trigonometric MODE data points. Detailed results on multiobjective optimization of styrene reactor using various strategies of MODE algorithms is available in our recent publications [9, 10, 14].

[image: Images]

FIGURE 1.3 (a) Pareto fronts obtained for case-1 using strategies of MODE algorithms; (b) The results of figure (a) are re-plotted (for better clarity of Pareto fronts) with vertical shift in value of ordinate by +2 in MODE III, +4 in Hybrid MODE, +6 in Elitist MODE and +8 in Trigonometric MODE data points.

1.1.3 LOW DENSITY POLYETHYLENE (LPPE) TUBULAR REACTOR

Polyethylene is commercially produced by both high pressure (free-radical) and low pressure (ionic) addition ethylene polymerization processes. Two types of reactors (tubular and stirred autoclave) are essentially applied in the free-radical high-pressure polymerization processes. Ethylene free-radical polymerization is conducted in the presence of free-radical initiators, such as azo-compounds, peroxides, or oxygen at very high pressures (1300–3400 bars) and high temperatures (225–610 K). Under the reaction conditions employed in high-pressure processes, LDPE is produced as a result of short-chain branching formation. A commercial reactor consists of 3–5 reaction zones and several cooling zones [5]. The reactor includes a number of initiator side-feed points. The temperature and flow rate of each coolant stream entering a reaction/cooling zone is used to control the temperature profile in the reactor. A mixture of ethylene, a free-radical initiator system, and a solvent are injected at the entrance of reactor. Maximization of monomer conversion is one of the objectives to be considered during MOO of LDPE. While maximizing the conversion, the undesirable side chain concentration (sum of methyl, vinyl, and vinylidene) also increases. Thus, minimization of unwanted side products and maximization of monomer conversion gives rise to conflicting set of objectives. More meaningful and industrially important results can be generated if these sets of objectives are coupled with equality constraints on number average molecular weight. Figure 1.4 shows the Pareto optimal solutions for various end point constraints on the number-average molecular weight (i.e., MN,f = 21, 900 ± 20; MN,f = 21, 900 ± 200; MN,f = 21, 900 ± 1100) using MODE III algorithm. The Pareto front obtained with an end point constraint, of MN,f = 21, 900 ± 1100, covers a wide range of solutions as compared to the range of solutions obtained when a strict constraint on MN,f is used [13, 14].

[image: Images]

FIGURE 1.4 Pareto optimal solutions for various end point constraints on the number-average molecular weight using MODE III algorithm.

1.1.4 SUPPLY CHAIN AND PLANNING

The supply chain is basically the integrated network [6] among retailers, distributors, transporters, storage facilities and suppliers that participate in the sale, delivery and production of a particular product for the following purposes:

	maximizing the overall profit generated;

	increasing the competitiveness of the whole chain;

	minimizing the system wide costs while satisfying the service level requirements;

	matching the supply and demand profitably for products and services.

It is due to the above reasons that the supply chain optimization problem is considered as a multiobjective optimization problem (MOOP). The supply chain problem therefore has to be considered as a whole (system optimization) without placing the individual preferences of the individual objectives. The built up supply chain model should be capable of integrating all the entities so that the flow of information happens among the entities in order to meet the highly fluctuating demand of the market. The important issues that drive the supply chain models and subsequently govern its design are:

	inventory planning and management;

	transportation and logistics management;

	facilities location and layout design;

	flow of information among the entities.

These four drivers represent the major flows associated with supply chain problem. In order to maximize overall profitability, it is not possible to get a unique solution that satisfies either all the criteria or the objectives. If all the objectives are satisfied then the solution obtained could be a non-Pareto optimal point. Hence in multiobjective optimization problem, we are interested in set of solutions (rather than a single solution), which are non-inferior with respect to each other and are part of Pareto optimal front. Simultaneous optimization of individual objectives is necessary without giving weightage to individual objectives. A goal programming approach to optimization would not result in a set of solutions and a compromised, but a single solution, would result in a single run. Evolutionary algorithms have shown a good potential to generate multiple equally good solutions for many engineering and test problems both for single and multiobjective optimization problems. Hence an attempt to solve such problems using newly developed evolutionary algorithms may result in a possibly better set of solutions.

Thus, to deal with above-mentioned problems there is a need towards development of new and efficient algorithms. To judge the robustness of newly developed algorithms, it needs to be tested on several benchmark test problems and then applied on industrial applications. This motivated us to design following objectives of the present study research.

Figures 1.5 and 1.6 show the Pareto fronts between total operating cost and the ratio of manufacturing cost to total operating cost obtained using MODE algorithm and NSGA-II [18]. Figure 1.6 also shows the effect of NP on Pareto front after 10 generations and comparison of results of MODE study with NSGA-II, where the results are taken from the literature [4, 14, 18]. Several real world problems are recently successfully solved using strategies of multiobjective differential evolution algorithms [11, 13, 15].

[image: Images]

FIGURE 1.5 Comparison of Pareto fronts between TOC and MC/TOC using NSGA-II and MODE and effect of NP on Pareto front using MODE algorithm.

[image: Images]

FIGURE 1.6 Pareto front between TOC and MC/TOC using MODE (at various values of CR) and NSGA-II.

1.2 ORGANIZATION OF BOOK

This book consists of 21 chapters on evolutionary algorithms, which includes both the theory and applications. The book is divided into three sections. Chapter 1, 2, 3, 4, 5, 6 and 7, 8, 9, 10, 11, 12, 13 and 14 and 15, 16, 17, 18, 19, 20, 21 and 22 are divided into Part 1, Part 2, and Part 3, respectively. Chapter 1 gives introduction on theory of evolutionary algorithms, single and multiobjective optimization. Detailed literature review is discussed both for theory on multiobjective optimization and applications. The applications discussed from literature includes, multiobjective optimization of styrene reactor, LDPE tubular reactor, and supply chain and planning. This chapter also includes paragraph on organization of book. Chapter 2 is written by Trivedi and Ramteke and they have discussed the biomemetic adaptations of genetic algorithm and their applications to chemical engineering. The typical applications include multiobjective optimization of parallel reactions in mixed flow reactors and multiobjective optimization of fluidized catalytic cracker unit. Brief working principles of various bio-mimetic adaptations of genetic algorithms (such as jumping gene adaptation of GA, Altruistic GA, GA Based on Biogenetic Law of Embryology, GAs Based on Biological Immune System, Lamarckian GAs, GAs based on Baldwin Effect, GAs based on DNA and RNA Computing, Cockroach GA, GAs with Heterosexual Crossover, etc.) are discussed. Chapter 3 written by Kannsara, Parashar and Samad covers an overview of use of surrogate-assisted evolutionary algorithms in various aspects of engineering optimization including single as well as multiobjective optimization evolutionary algorithms. They discussed how surrogate modeling could help during optimization and different surrogate modeling techniques. It also briefly describes how some existing approaches combine surrogate modeling and evolutionary optimization techniques to speed up engineering optimization procedure. Mitra, Saxén, and Chakraborti talks about an application of iron making using evolutionary algorithms in Chapter 4. They discussed modern ironmaking process optimization aspects using blast furnace and rotary kiln operation. Soft computing techniques, such as Artificial Neural Networks, Evolutionary Algorithm, etc., are briefly discussed. Optimization of burden distribution in blast furnace and of production parameters, such as CO2 emissions, and coal injection with respect to multiobjective optimization framework are discussed. It is recommended to focus on the use of evolutionary techniques in control and decision making systems for the blast furnace. A need for development of faster evolutionary algorithms, which require less calculations before the optima are achieved is also presented. Chapter 5 by Diego Oliva et al. represents theory and an application of harmony search optimization for multilevel thresholding in digital images. Chapter 6 by Sharma and Pant talks about swarm intelligence in software engineering design problems. Their work focuses on concentrates on the recent model instigated by the scavenge behavior of honeybee swarm employed to solve optimization problems in Software Engineering Design. They have shown that Artificial Bee Colony greedy algorithm is analyzed on several problems such as parameter estimation of software reliability growth models, optimizing redundancy level in modular software system models and estimating the software cost parameters arising in the field of Software Engineering. They concluded that the proposed I-artificial bee colony greedy algorithm outperformed basic ABC in terms of solution quality as well as convergence rate for the considered Software design problems. Singru et al. in Chapter 7 discussed integrated gene programming approach in simulating the tensile strength characteristic of BNNTs based on aspect ratio, temperature and number of defects of nanoscale materials. In their study the predictions obtained from the proposed model are in good agreement with the actual results. The dominant process parameters and the hidden non-linear relationships are unveiled, which further validate the robustness of their proposed model.

In Chapter 8, Munawar and Gudi presented an application of a nonlinear transformation for representing discrete variables as continuous variables and discussed an alternate method for solving MINLP problems by converting them into equivalent NLP problems. A parameter based on rapid change in the objective function is used to aid in deciding when to switch from deterministic to stochastic solution. Selected examples from literature are used to illustrate the effectiveness of the hybrid evolutionary method in their study. In Chapter 9, Munawar and Babu discussed an application of optimal design of shell and tube heat exchanger using differential evolution algorithm. They carried out detailed study of Differential evolution strategies by varying the control parameters of DE (e.g., DR, F, and NP, etc.). Detailed algorithm specific study for optimal design of shell and tube heat exchanger is reported. In Chapter 10 Sahoo and Patel represented the review of various evolutionary algorithms to solve the QoS-aware multicast routing problem. Fazendeiro and Prata in Chapter 11 focused on the study of the effective parallelization of the canonical GA. They presented a complete characterization of the relative execution times of the atomic operators of the GA, varying the population cardinality and the genotype size. It is complemented with an analysis of the achieved speedups. The findings of the assessment of the parallelization potential at different granularity levels altogether with the analysis of data parallelism are reported. Chapter 12 written by Banati and Mehta presents an efficient approach for populating deep web repositories using Shuffled Frog Leaping Algorithm (SFLA). The work contributes a simple and effective rule based classifier to recognize the deep web search interfaces. Deep web semantic queries are evolved using SFLA to augment the retrieval of deep web URLs. Multi-loop fractional order PID controller is optimally tuned using Bat algorithm for quadruple tank process in Chapter 13 by Sabura Banu. Gain matrix was computed to measure the interaction of process at steady state. The stability of control loop pairing is analyzed by Niederlinski index. Their proposed controller is validated for servo, regulatory and servo-regulatory problems and the result shows that the scheme will result in a simple design of the multi-loop fractional order PID controller for quadruple tank process. Their study revealed that parameters optimized using Bat algorithm is better than parameters optimized using Genetic Algorithm and Particle Swarm Optimization technique.

Shashi Kumar presented a practical approach for multiobjective shape optimization using multiobjective ant colony optimization in Chapter 14. His study showed that optimizer has capability to search the domain outside the initial parametric space specified by designer. Cases studies in Chapter 14 have shown that shape optimization problem is a strong function of parameterization. The meshless solver minimizes on grid generation for every change in shape of the body. This study reveals that the optimization tools require the use of robust CFD solvers, meshless SLKNS solver along with Kinetic diffusion solver is one such combination of robust solver. In Chapter 15, the authors present a review on nature-inspired computing techniques for integer optimization. Chapter 16, by Fayek and Malik presents an application of genetic algorithms on adaptive power system stabilizer. Their chapter majorly focused on how to develop a controller that can draw the attention of the control engineer by attempting a compromise solution: use the GA for modeling the system dynamics, use the linear feedback controller (e.g., PS-Control) because of its simplicity and acceptance. They also discussed how to use a GA to represent the dynamic characteristics of the power system and real-time tests with APSS on a scaled physical model of a single-machine connected to an infinite-bus power system. Nazaris et al. discussed applications of evolutionary computation for solving the budget allocation problem of the fire safety upgrading of a group of buildings in Chapter 17. The proposed generic selection and resource allocation (S&RA) model was applied to the fire protection measures upgrade of the 20 monasteries of the Mount Athos, yielding feasible fund allocation solutions for different budget scenarios and resulted in optimal selection and resource allocation for network of buildings. Chapter 18 by Anauth and Ah King focuses on the development and comparative application of elitist multiobjective evolutionary algorithms (MOEAs) for voltage and reactive power optimization in power systems. A multiobjective Bacterial Foraging Optimization Algorithm (MOBFA) has been developed based on the natural foraging behavior of the Escherichia coli bacteria and its performance compared with two contemporary stochastic optimization techniques; an improved Strength Pareto Evolutionary Algorithm (SPEA2) and the Nondominated Sorting Genetic Algorithm-II (NSGA-II). The MOBFA was found to be a viable tool for handling constrained and conflicting multiobjective optimization problems and decision making. Ong, Sharma and Rangaiah (in Chapter 19) used stochastic algorithms for solving several complex test problems and pooling problems. They have evaluated the performance of integrated DE (IDE), unified bare-bones Particle swarm optimization (UBBPSO), modified simulated annealing and very fast-simulated annealing (VFSA) algorithms on pooling problems. They found that the performance of IDE was the better than other algorithms tested as it has close to perfect success rate (SR) and has relatively low minimum number of function evaluations (MNFE) for unconstrained problems. IDE was also the most reliable and efficient algorithm for the constrained problems tested in their study. The NSGA-II algorithm with SBX-A and SBX-LN crossover probability distributions are used to test 20 multiobjective functions by Prasad and Singru in Chapter 20. The NSGA-II algorithm with SBX-LN crossover probability distribution found better optimal solutions with good diversity for different multiobjective functions. Finally Chapter 21 by Morovati and Kadam presented application of evolutionary algorithms for malware detection and classification based on the dissimilarity of op-code frequency patterns extracted from their source codes. In binary classification, a new method of malware detection has been proposed by the authors. In multi-class classification, the Random Forest classifier yielded betters result in comparison to other classifiers. All the classifiers successfully achieved a very high accuracy, which confirms the strength and efficiency of the suggested malware detection method. They concluded that if ±2% is considered as an accuracy tolerance to compare classifiers together, all techniques used in their study have a good potential to be used as the malware detector.

1.3 CONCLUSIONS

The brief introduction on evolutionary multi-objective optimization is given in this chapter. The basic theory on comparison of deterministic methods and stochastic methods is discussed. Multiobjective optimization aspects are briefly discussed with respect to the decision variable- and objective-search space. Some of the recent applications in the field of evolutionary multiobjective optimization are also discussed in brief.

KEYWORDS

	deterministic methods

	evolutionary algorithms

	multiobjective optimization

	optimization

	stochastic methods

REFERENCES

1. Agrawal, N., Rangaiah, G. P., Ray, A. K., & Gupta, S. K., Multiobjective optimization of the operation of an industrial low-density polyethylene tubular reactor using genetic algorithm and its jumping gene adaptations. Industrial and Engineering Chemical Research, 2006, 45, 3182–3199.

2. Angira, R. Evolutionary computation for optimization of selected nonlinear chemical processes. PhD Thesis, Birla Institute of Technology and Science (BITS), Pilani, India, 2005.

3. Babu, B. V., Chakole, P. G., & Mubeen, J. H. S. Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor. Chemical Engineering Science, 2005, 60, 4822–4837.

4. Babu, B. V. & Gujarathi, A. M. Multiobjective differential evolution (MODE) for optimization of supply chain planning and management, proceedings of IEEE Congress on Evolutionary Computation, CEC. 2007, 2732–2739.

5. Brandoline, Capiati, N. J., Farber, J. N., & Valles, E. M. Mathematical model for high-pressure tubular reactor for ethylene polymerization. Industrial and Engineering Chemistry Research, 1988, 27, 784–790.

6. Chopra, S., & Meindl, P. Supply Chain Management: Strategy, Planning and operation: Pearson Education, Singapore, 2004.

7. Deb, K. Multiobjective optimization using evolutionary algorithms; John Wiley and Sons Limited, New York, 2001.

8. Goldberg, D. E. Genetic algorithms in search, optimization and machine learning. Addission-Wesley, Reading, MA, 1989.

9. Gujarathi, A. M., & Babu, B. V. Optimization of adiabatic styrene reactor: a hybrid multiobjective differential evolution (H-MODE) approach, Industrial and Engineering Chemistry Research 2009, 48(24), 11115–11132.

10. Gujarathi, A. M., & Babu, B. V. Multiobjective optimization of industrial styrene reactor: Adiabatic and pseudo-isothermal operation, Chemical Engineering Science 2010a, 65(6), 2009–2026.

11. Gujarathi, A. M., & Babu, B. V. Hybrid multiobjective differential evolution (H-MODE) for optimization of polyethylene terephthalate (PET) reactor, International Journal of Bio-Inspired Computation 2010b, 2(3–4), 213–221.

12. Gujarathi, A. M., & Babu, B. V. Multiobjective optimization of industrial processes using elitist multiobjective differential evolution (Elitist-MODE), Materials and Manufacturing Processes 2011, 26(3), 455–463.

13. Gujarathi, A. M., Motagamwala, A. H., & Babu, B. V. Multiobjective optimization of industrial naphtha cracker for production of ethylene and propylene, Materials and Manufacturing Processes 2013, 28(7), 803–810.

14. Gujarathi, A. M. Pareto optimal solutions in Process Design Decisions using Evolutionary Multiobjective optimization. PhD Thesis, Birla Institute of Technology and Science (BITS), Pilani, India, 2010.

15. Gujarathi, A. M., Sadaphal, A., & Bathe, G. A. Multiobjective Optimization of Solid State Fermentation Process, Materials and Manufacturing Processes 2015, 30(4), 511–519.

16. Gujarathi, A. M., & Babu, B. V. In: Handbook of Optimization, Zelinka, I. Snásel, V., & Abraham, A. (Eds.). Multiobjective Optimization of Low Density Polyethylene (LDPE) Tubular Reactor Using Strategies of Differential Evolution, Handbook of Optimization, Springer Berlin Heidelberg, 2013, pp. 615–639.

17. Onwubolu G. C., & Babu, B. V. New optimization techniques in engineering, Springer-Verlag, Heidelberg, Germany, 2004.

18. Pinto, E. G. Supply chain optimization using multi-objective evolutionary algorithm, technical report, available online at http://www.engr.psu.edu/ce/Divisions/Hydro/Reed/Education/CE%20563%20Projects/Pinto.pdf, as on 12th June,. 2007.

19. Rangaiah G. P. (Editor), Stochastic Global Optimization: Techniques and Applications in Chemical Engineering, Vol. 2 in the Advances in Process Systems Engineering, World Scientific, Singapore, 2010.

20. Rangaiah G. P., & Bonilla-Petriciolet A. (Eds.), Multiobjective Optimization in Chemical Engineering: Developments and Applications, John Wiley, 2013.

21. Sheel, J. G. P., & Crowe, C. M. Simulation and optimization of an existing ethyl benzene dehydrogenation reactor, Canadian Journal of Chemical Engineering, 1969, 47, 183–187.

22. Yee, A. K. Y., Ray, A. K., & Rangiah, G. P. Multiobjective optimization of industrial styrene reactor. Computers and Chemical Engineering, 2003, 27, 111–130.

CHAPTER 2

BIO-MIMETIC ADAPTATIONS OF GENETIC ALGORITHM AND THEIR APPLICATIONS TO CHEMICAL ENGINEERING

VIBHU TRIVEDI and MANOJKUMAR RAMTEKE

Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi–110 016, India,
E-mail: ramtekemanoj@gmail.com, mcramteke@chemical.iitd.ac.in

CONTENTS

2.1 Introduction

2.2 Genetic Algorithm for Multiobjective Optimization

2.3 Bio-Mimetic Adaptations of GA

2.3.1 Jumping Genes Adaptations of GA

2.3.2 Altruistic GA

2.3.3 GA Based on Biogenetic Law of Embryology

2.3.4 GAs Based on Biological Immune System

2.3.5 Lamarckian GAs

2.3.6 GAs Based on Baldwin Effect

2.3.7 GAs Based on DNA and RNA Computing

2.3.8 Cockroach GA (CGA)

2.3.9 GAs with Heterosexual Crossover

2.4 Applications of Bio-Mimetic Adaptations of GA in Chemical Engineering

2.5 Summary

Keywords

References

2.1 INTRODUCTION

In our day-to-day life, we often face situations where we have to find the best combination of contradictory factors to get our tasks done. For instance, finding the best combination of traveling time and cost of a journey while planning a tour, finding the best combination of cost and comfort while purchasing a vehicle or finding the best combination of salary package and job satisfaction while searching for a job, etc., often involve the choices that are conflicting in nature. All such situations require satisfying multiple non-commensurate objectives simultaneously and thus lead to multi-objective optimization problems (MOPs). These situations frequently arise in the fields of science, engineering, management and economics. In our day-to-day life, we often cope with such situations using a qualitative decision making, however, finding an optimal solution of a complex industrial MOP, qualitatively, is not so easy and thus a detailed quantitative analysis is required. For quantitative assessment, a general mathematical formulation of an optimization problem is given as follows:

Objectives:

[image: Images]

Constraints: Bounds:

[image: Images]

[image: Images]

Bounds:

[image: Images]

where, x1 – xn are n decision variables, I1 – Im are m objective functions, g1 – gr are r inequality constraints and h1 – hs are s equality constraints. [image: Images] and [image: Images] are the lower and the upper limits of lth variable.

For m = 1 [single objective optimization problem (SOP)], the above formulation often leads to a single optimal solution whereas MOPs (m ≥ 2) lead to a set of ‘equally good’ or ‘nondominated’ solutions. It is to be noted that, there exists no solution in the population having better values of all objectives than these nondominated solutions. These nondominated solutions provide a trade-off between all the objectives and commonly referred as Pareto optimal solutions. Often the operating solution from a set of non-dominated solutions is selected based on intuition or hand on experience of an underlying process and is a focus of current research.

Chemical engineering systems involve a concatenating of various units such as reactors, crackers, distillation columns, froth floatation cells, absorbers, crystallizers, etc. To maximize the profit, these units should be operated, planned and scheduled optimally. This often leads to the complex MOP formulations. However, for the sake of illustration, a simple MOP of parallel reactions [1] in a mixed flow reactor (MFR) is analyzed in detail. The reaction scheme is given as follows:

[image: Images]

Here, T is the desired product whereas S and U are undesired products. The first reaction is of zero order, second is of first order and third is of second order. The rates of production of S, T and U are given in the above reaction scheme. The initial concentration of R is CR0 = 1 mol/min and the feed flow rate is v = 100 L/min (all data is taken from Levenspiel [2]). From an economic point of view, the design stage optimization of a given MFR requires to maximize the yield of the desired product (i.e., instantaneous fractional yield of T, θ(T/R)) while minimizing the reactor volume (V). These two objectives are conflicting in nature since the order of the desired reaction is lower than overall order of undesired reactions [2]. Thus, a two-objective optimization problem can be formulated as follows:

Objectives:

[image: Images]

[image: Images]

Constraints:

[image: Images]

Bounds:

[image: Images]

Here, CR is the instantaneous concentration of R. The Pareto optimal solutions of this problem are shown in Figure 2.1 and the curve formed by these solutions is known as Pareto optimal front [3]. In general, such plots can be spaced in multiple dimensions for MOPs depending on the number of objectives present. Any solution which does not lie on the Pareto optimal front will be dominated by at least one nondominated solution in terms of both (or all) objectives. For example, solution point C is dominated whereas solution points A and B are nondominated (see Figure 2.1).

Until 1960 s, optimization studies were mostly concentrated on solving the SOPs and very often, the MOPs were converted to SOPs by combining the multiple objectives to a single objective using different weights. In later decades, several techniques such as goal programming [4], Kuhn-Tucker multipliers [5], Pontryagin’s minimum principle [6], the ε -constraint methods [7], the method of indifference functions [7], parametric approach [8], the utility function method [9], the lexicographic approach [9], etc., are developed to handle MOPs. All these techniques are termed as conventional techniques and were frequently used until 1990. These techniques were mostly derivative-based and often the quality of solutions was dependent on the choice of the weights selected. In the last two decades, the solving procedure of MOPs is completely revamped with the arrival of meta-heuristic algorithms. These techniques are stochastic in nature, derivative-free and often based on interesting themes from different areas of science. Most prominent among such techniques are genetic algorithm [10] (GA), evolutionary programming (EP) [11], differential evolution (DE) [12], particle swarm optimization (PSO) [13], ant colony optimization (ACO) [14], artificial bee colony algorithm (ABC) [15], etc. The focus of present study is GA, which is inspired from evolutionary biology. The detailed description of GA is given in the next section.

[image: Images]

FIGURE 2.1 Pareto optimal plot for the MOP of parallel reactions in an MFR. Points A and B represent nondominated solutions whereas point C represents a dominated solution.

2.2 GENETIC ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION

Meta-heuristic algorithms based on evolution process are commonly referred as evolutionary algorithms. One of the most widely recognized evolutionary algorithms is GA. It is based on Darwin’s theory of evolution of species. Several versions of GA have been developed over the years. These are listed in their chronological order in Table 2.1. Among these, NSGA-II is the most popular version and its binary-coded form is described next.

In NSGA-II, the variables are represented with binaries as the latter closely symbolize genes. Suppose a given MOP problem has n number of variables. Each of these variables is represented by a set of lstr number of binaries. Thus, n such sets of binaries are arranged in a string to constitute a chromosome comprising total lchrom (= n × lstr) number of binaries. In the initialization step, lchrom number of binaries is generated (either 0 or 1) using a random number (RN). For this, an RN is generated using an RN generator and if it comes out to be in the range, 0 ≤ RN < 0.5, the corresponding binary is taken as ‘0’ else it is taken as ‘1.’ This procedure is repeated with the successive generation of RNs to assign lchrom binaries in a chromosome and thereafter for a population of NP chromosomes. A typical representation of a chromosome is shown in Figure 2.2 for n = 2 and lstr = 3.

TABLE 2.1 Chronology of GA

[image: Images]

[image: Images]

The next step is to decode the binaries into real values. For this, the binaries of a given variable are first converted to a decimal number as follows:

[image: Images]

where, Bz represents zth binary bit of lth variable. The corresponding decimal number is then mapped [8] between lower [image: Images] and upper [image: Images] limits of the lth variable to obtain its real value as follows:

[image: Images]

For example, if the variable is represented with lstr = 3, it can have only 2lstr (= 8) discrete values in the search space starting from a lower limit, represented by [0, 0, 0] to the upper limit, represented by [1, 1, 1]. These permutations along with their respective real values for [image: Images] and [image: Images] are shown in Figure 2.3. It is to be noted that the higher length of binary strings leads to a better accuracy of mapping the search space.

After decoding, the real values of variables are used to evaluate fitness of a chromosome using fitness functions (Fm). Fitness function may differ from objective function (Im). It is due to the fact that meta-heuristic codes are often written for either maximization or minimization and one has to convert the objectives in the compatible form. A popular method [8] of such conversion is:

[image: Images]

[image: Images]

FIGURE 2.2 A typical chromosome (n = 2 and lstr = 3) used in NSGA-II.

[image: Images]

FIGURE 2.3 Decoding of a variable (lstr = 3) into real values with [image: Images] and [image: Images] for 2l (= 8) permutations.

Further, the fitness functions are modified with the addition of constraints. Constraints are taken care by adding (for minimization of Fm) or subtracting (for maximization of Fm) penalty terms to the fitness functions. Thus, the modified fitness functions for the formulation given in Eqs. (1), (2), (3) and (4) can be written as:

[image: Images]

Equation (12) is used to evaluate the fitness functions of all Np chromosomes one after another.

In the next step, all Np chromosomes are ranked using the concept of non-dominance. For this, each chromosome is transferred to a new location (file) one by one. If a chromosome to be transferred is nondominated with respect to chromosomes already present in this new location, the transfer is completed. However, if this new chromosome dominates any of the existing chromosomes, the former replaces the latter whereas the latter comes back to the original location. In this way, only nondominated chromosomes are retained in the new location and these are ranked IR = 1. The procedure is repeated successively for the chromosomes remained in the original location to classify all the chromosomes in successive ranks IR = 2, 3, 4, ….

In traditional GA, it has been found that the Pareto optimal solutions obtained are often clustered in various locations and are not uniformly distributed. Such clustering is not desirable because it gives limited options to a decision maker. This limitation is removed in NSGA-II by using a concept of crowding distance. To measure the crowding distance, the chromosomes having the same rank are arranged in increasing order of their fitness values. This helps in identifying the nearest neighbors having same rank, which encapsulate a given chromosome in fitness function space. These nearest neighbors form a rectangle for two objectives (or hypercuboid for more than two objectives). The sum of the sides (one on each axis) of a hypercuboid gives the crowding distance. An example of crowding distance measurement for a two-objective optimization problem with population size equals to 10 is shown in Figure 2.4. For an identified point ‘g’ in Figure 2.4, the crowding distance (ID) is equal to D1 + D2, a sum of the sides of an enclosing rectangle on x and y axis.

In the next step, the population of chromosomes undergoes the selection operation. In this, a tournament is played between two randomly selected chromosomes in which the one with the lower IR is declared as the winner. If IR is same, the one with the higher ID is declared as the winner. The winner is then copied into a mating pool. This process is repeated Np times to copy Np chromosomes in the mating pool. The above process copies the good chromosomes multiple times while some inferior chromosomes (better of the two worse chromosomes) also find their way into the mating pool. Selecting such inferior chromosomes is necessary in the sense that two worst chromosomes can produce a better one in successive generations.

After the selection operation, the mating pool population undergoes crossover operation. In this operation, two randomly selected chromosomes from the mating pool are checked for the possible crossover operation using the crossover probability, Pcros. For this, an RN is generated and if it is less than Pcros then the genetic contents of two selected parent chromosomes are swapped at the randomly selected crossover site among (lchrom – 1) internal locations as shown in Figure 2.5, otherwise, the parents are copied as it is to produce two offspring chromosomes. This process is repeated Np/2 times to produce a population of Np offspring chromosomes.

[image: Images]

FIGURE 2.4 Ranking and crowding distance of chromosomes illustrated for a two-objective minimization problem with Np = 10.

Despite the large reshuffling of genetic content offered by a crossover operation, it has a severe limitation that it can vary genetic content of a chromosome maximally to that already present in the mating pool. Suppose all chromosomes in the mating pool have 0 as their first binary bit then there is no way to get 1 in this location irrespective of how many times and for how many generations crossover is carried out. This becomes a serious problem if the optimal solution requires a 1 in the first location. This limitation is overcome by another genetic operation, known as mutation. It is a bit-wise operation in which every offspring chromosome is checked bit by bit for possible mutation with a small probability, Pmut. If a bit is selected for mutation operation then its associated binary is changed from its existing value of 1 to 0 or vice versa (see Figure 2.6). The mutation operation helps in maintaining genetic diversity.

In a traditional GA, the offspring population becomes the parent population for the next generation. Thus, the better parents in the current generation do not find their way into the next generation. In order to conserve these better parents, NSGA-II employs a new operation, known as elitism. In this operation, the offspring population is mixed with the original parent population. These 2Np chromosomes are then re-ranked with the previously described procedure. The best Np chromosomes from these are selected as the parents for the next generation and the rest are discarded.

[image: Images]

FIGURE 2.5 Crossover operation illustrated for two parent chromosomes with n = 2 and lstr = 3.

[image: Images]

FIGURE 2.6 Mutation operation illustrated for offspring 1 produced in crossover operation (see Figure 2.5).

As described above, the algorithm involves following steps: (i) initialization, (ii) decoding, (iii) fitness evaluation, (iv) ranking, (v) selection, (vi) crossover, (vii) mutation, and (viii) elitism. The first generation involves all the above-mentioned steps whereas only (ii)–(viii) are repeated in each subsequent generation till the convergence (condition where results start showing little improvement over the generations) or the user defined maximum number of generations is achieved. Also, the performance of the algorithm depends on various parameters associated with above steps such as Np, lstr, Pcros, Pmut. Similar to other meta-heuristic algorithms, values of these parameters are problem-specific. However, the good starting values of these, especially for a wide range of applications in chemical engineering are reported [29, 30 and 31] as Np = 100, lstr = 20, Pcros = 0.9, Pmut = 1/lchrom. If the optimization problem has both continuous and integer variables, all continuous variables are generated as described above whereas the integer variables are often used as a nearest integer of the decoded real values. In some applications, binary variables are present [32, 33] and are generated directly.

As described above, GA was originally developed in binary-coded form. However, it shows certain limitations in handling real-life continuous search space problems. For example, it is very difficult to alter a binary-string [0, 1, 1, 1, 1, 1, 1, 1] to obtain another binary-string [1, 0, 0, 0, 0, 0, 0, 0] using genetic operators of crossover and mutation. However, the real values associated with these binary-strings are 127 and 128, respectively, which are consecutive integers. This situation is called Hamming cliff. It leads to poor performance of binary-coded GA. Other limitations include fixed mapping of problem variables and lack of precision in the solutions. To overcome these limitations, real-coded NSGA-II (RNSGA-II) is developed. In this, initialization, crossover, and mutation steps differ from NSGA-II and decoding step is not required. In initialization step, real-variable strings constitute chromosomes and these real-variables are generated as follows:

[image: Images]

Several schemes of crossover and mutation for real-coded GAs are reported in literature [8]. Among these, most commonly used are simulated binary crossover [34] (SBX) and polynomial mutation (PM) [35] operators. In SBX operation, two parent chromosomes P1 and P2 are selected randomly to produce offspring O1 and O2 in the following manner:

[image: Images]

[image: Images]

[image: Images]

Here, η is crossover index, which is used to generate the distribution function β [see, Eq. (16)]. In general, the value of η is selected in order to keep value of β close to 1. Thus, the perturbation in Eqs. (14)–(15) produces off-spring with variable values close to that of parent chromosomes. Similar to SBX, PM operation is also applied variable-wise. The operation is described as follows:

[image: Images]

[image: Images]

Here, ηmut is mutation index, which is used to generate the distribution function δ [Eq. (17)]. In general, the value of ηmut is selected in order to keep value of δ close to 0. This maintains the perturbation of variable at local level. Also, it is to be noted that PM is applied selectively on those parent chromosomes, which are unsuccessful in SBX unlike NSGA-II. The other steps in RNSGA-II are same as NSGA-II. The parameters used in RNSGA-II are also same as that of NSGA-II except η, Pmut, ηmut. The good starting values of these are reported [8] as 20, 1/n, 20, respectively.

A simple chemical engineering application of NSGA-II is demonstrated using the example of parallel reactions in MFR (see Section 2.1). For this, the objective functions given in Eqs. (5) and (6) are first converted to the fitness functions as follows:

[image: Images]

[image: Images]

[image: Images]

For the same values of parameters (mentioned above), the results are obtained (see Figure 2.1). The results show that the increase in instantaneous fractional yield θ(T/R) requires larger reactor volume V, which matches well with the physical reality. The decision maker can select the appropriate operating point from the Pareto optimal front shown in Figure 2.1 to design the given MFR system.

Unlike the simple illustrative problem solved above, the real-life chemical engineering problems are highly complex in nature. Solving such problems, till convergence, requires rigorous computational efforts and therefore these are often attempted for the restricted number of generations. In such cases, mostly the prematurely converged solutions are obtained and the quality of such solutions depends on the convergence speed of the algorithm. In order to improve the convergence speed of GA, several bio-mimetic adaptations are developed over the period. These are described in detail in the next section.

2.3 BIO-MIMETIC ADAPTATIONS OF GA

GA mimics the most elementary evolutionary operations such as selection, crossover and mutation in its framework. Over the decades, several discoveries in the field of evolutionary biology have revealed that besides these elementary operations, other altruistic operations are also seen in nature. It is obvious to expect that adapting these operations in GA framework can enhance its performance. In recent times, several researchers have worked on this line and developed various GA adaptations based on interesting biological concepts. These adaptations claim to provide better convergence than basic GA and generally termed as bio-mimetic adaptations of GA. In this section, such GA adaptations are discussed in detail.

2.3.1 JUMPING GENES ADAPTATIONS OF GA

In natural genetics, jumping genes (JG) or transposon is a small segment of DNA that can jump in and out of chromosomes. Its existence was first predicted by McKlintock [36] and widely studied thereafter. These are responsible for developing the resistance in bacteria against anti-bodies and drugs and also help in maintaining genetic diversity in organisms. The adaptation of this concept in the framework of NSGA-II (NSGA-II-JG [37]) has shown the significant improvement in its convergence speed.

In NSGA-II-JG, JG operation is applied to offspring population obtained after crossover and mutation. For this, each offspring chromosome is checked for possible jumping gene operation with probability PJG. Once a chromo-some is selected, two JG sites are randomly identified in a chromosomal string using integer random numbers. Finally, all binaries between these two sites are replaced by the same number of randomly generated binaries (see Figure 2.7). This process is repeated for all selected offspring chromosomes. It is to be noted that selection of JG sites varies from chromosome to chromosome (and so the number of binaries to be replaced) due to which it is also called variable length JG operation. It involves a macro-macro-mutation leading to higher genetic diversity. This basic JG operation is modified in several versions of NSGA-II-JG over the years. These include NSGA-II-aJG [38, 39] (fixed length JG operation), NSGA-II-mJG [40] (for optimization problems in which the global optimal of some decision variables may lie exactly at their bounds), NSGA-II-sJG [32, 41] (replacement of a single randomly selected variable) and RNSGA-II-SBJG [42] (simulating the effect of binary-coded JG operation in real-coded NSGA-II).

[image: Images]

FIGURE 2.7 JG operation in NSGA-II-JG.

Another JG adaptation of NSGA-II is JGGA [43, 44] (Jumping Gene Genetic Algorithm). In this adaptation, JG operation differs from that adapted in NSGA-II-JG. Here, JG is performed just after the selection process. In this, a chromosome is selected for possible JG operation based on a jumping gene rate (probability). Two or more adjacent binaries of this chromosome are identified randomly and either copied and pasted to a new location or switched with the binaries in the new location within the chromosome or with another randomly selected chromosome. In another notable adaptation, Ripon et al. [45] developed RJGGA (Real JGGA) for real-coded NSGA-II by modifying the occurrence procedure of existing SBX and PM operators. RJGGA is further modified by Furtuna et al. [46] to develop NSGA-II-RJG. In this adaptation crossover and mutation schemes differ from those used in RJGGA.

The detailed analysis of above-mentioned JG adaptations of NSGA-II and their performance comparison is reported in some excellent literature reviews [47, 48].

2.3.2 ALTRUISTIC GA

This bio-mimetic adaptation [49] of GA is based on the altruistic nature of honeybees. There are three types of bees in the bee hives: a queen bee, a large number of female worker bees (daughters) and few male drones (sons). Honeybees show a strange behavior against the theory of natural selection that is female worker bees raises their siblings (queen’s daughters) rather than producing their own offspring. The reason behind this altruistic behavior is the haplo-diploid character of honeybees. In bees, males have n chromosomes (haploid) whereas females have 2n chromosomes (diploid), which differ from the diploid character of humans (both males and females have 2n chromosomes). In a bee colony, sons are produced from unfertilized eggs of queen bee and thus have n chromosomes randomly selected from 2n chromosomes of the queen. However, daughters are produced by crossing of father-drone and queen bee and thus have 2n chromosomes (all n chromosomes of father and n chromosomes randomly selected from 2n chromosomes of the queen). Since, chromosomal relation of sons and daughters with queen bee is 100 and 50%, respectively, the average chromosomal relation among the sibling worker bees (female) is 75% [= 0.5 × (100 + 50)]. However, if these worker bees produce their own daughters by mating with drones, their chromosomal relation with their daughters will be 50%. Hence, worker bees sacrifice their motherhood and prefer to raise their sisters (altruistic behavior). This increases the inclusive fitness of the entire bee colony.

In altruistic NSGA-II-aJG, altruism is adapted by performing the crossover preferentially between queen chromosomes and rest of the population. The queen chromosomes are basically the best chromosomes present in the parent population. Generally, best 1/10 of the parent chromosomes are denoted as queens in each generation based on their ranking and crowding distance. Thus, the queen chromosomes are updated in every generation. If a chromosome is good, it survives in the process of elitism and is consistently selected as a queen over the generations. In crossover operation, one of the queens selected randomly swaps the genetic content with the chromosome selected randomly from the entire population to produce two offspring. The rest of the procedure is same as that of the original algorithm.

2.3.3 GA BASED ON BIOGENETIC LAW OF EMBRYOLOGY

Biogenetic law of embryology [50] states that ‘ontogeny recapitulates phylogeny.’ It means that the developmental phase of an embryo (ontogeny) shows all the steps of evolution (phylogeny) of the respective species. For example, the developmental phase of nine months in humans shows all the steps of evolution starting from protozoa to mammals. This indicates that the information about the entire evolution process is embedded in an embryo. This observation can be used intelligently in GA by representing a starting population in an embryonic form rather than generating it randomly. Such adaptations can be very useful for cases where an optimization problem is required to be solved repeatedly for the modified conditions on the same system. In industrial systems, MOPs are repeatedly modified because objectives, decision variables and constraints associated keep changing due to economic and environmental factors. For such cases, biogenetic NSGA-II-aJG (B-NSGA-II-aJG [51]) is developed in which Np chromosomes are picked randomly from the solution history of a MOP to constitute the embryo. This embryo is then used as a starting population for solving all subsequent modifications.

2.3.4 GAs BASED ON BIOLOGICAL IMMUNE SYSTEM

In animals, the biological immune system provides protection against harmful pathogens. This system can detect infinite types of pathogens by producing infinitely diverse antigen receptors that exist on the surface of immune cells. It also preserves the memory of pathogens to speed up their resistance in case they attack the body again. Thus, we can say that mechanisms based on diversity and memory play an important role in the survival of organisms in ever changing environment. In GA, diversity is maintained through various schemes of crossover and mutation while memory can be added by mimicking the concept of immunity. Several immunity based GA adaptations [52, 53, 54, 55, 56, 57 and 58] are reported in literature, which have been proved helpful in solving those MOPs in which objectives, decision variables and constraints keep changing due to various factors (economy, environment, system-breakdown, change in consumer demand, etc.). One such popular adaptation, IGA, is proposed by Jiao and Wang [52]. In this adaptation a new operator, known as immune operator is added involving two steps: (i) vaccination, and (ii) immune selection after crossover and mutation. In vaccination, one or more vaccines (genes) with higher fitness are generated by detailed analysis of problem at hand and ‘injected’ in the population to increase fitness of the population. In immune selection, if an offspring has lower fitness than its parent, the parent is included in the next generation. However, the offspring move to the next generation with an annealing probability. This algorithm was used to solve traveling salesman problem (TSP) with 75 and 442 cities and found to be converging faster than GA. It is to be noted that all scheduling problems including those associated with chemical engineering systems resemble to TSP. All immunity based GAs consist some type of memory mechanism that uses problem specific information to find global optima.

2.3.5 LAMARCKIAN GAs

According to Lamarck’s theory of evolution, fitness as well as genetic structure of an individual can change through learning from local environment. Following this approach, Lamarckian GAs involves a local search strategy that improves the genetic structure of an individual. This improved individual is then inserted in the population again. This can speed up the search process of GAs [59], but at the same time exploration skill is compromised due to change in genetic content based on local optimization. This can cause premature convergence. GAs in which chromosomes are repaired to satisfy the constraints fall in the category of Lamarckian GAs and found to be particularly useful for solving combinatorial optimization problems [60].

2.3.6 GAs BASED ON BALDWIN EFFECT

Biologist Baldwin [61] proposed a hypothesis about the effect of individual learning on evolution. According to him the individuals with learning ability does not rely completely on their genetic code for the traits necessary for survival. Instead, they can learn various traits according to the local environment and improve their fitness without a change in genetic content. Also, these individuals can maintain a more diverse gene pool as the non-optimal or ‘absent’ traits in their genetic code can be learnt. In this way individual learning indirectly accelerates the evolutionary adaptation of species by increasing genetic diversity and survivability. This phenomenon is called Baldwin effect. Firstly, Hinton and Nolan [62] simulated the Baldwin effect in GA. These authors used a GA and a simple random learning procedure to develop a simple neural network with the best connection among the 20 possibilities. They found that Baldwin effect can decrease the difficulty level of the fitness landscape of a complex optimization problem as the solutions found by learning direct the genetic search. Besides these benefits, there is a drawback that the computational cost of learning sometimes negates the benefits gained in search process [62]. However, several hybrid GAs based on Baldwin learning [62, 63, 64, 65 and 66] are reported in literature due to its efficiency in finding global optimum.

2.3.7 GAs BASED ON DNA AND RNA COMPUTING

Tao and Wang [67] integrated the concepts of DNA [68] and RNA [69] computing in GA to develop RNA-GA. In this algorithm, the coding pattern is 0123 instead of binaries 0 and 1 where 0, 1, 2, and 3 represent the four-nucleotide bases of the RNA sequence, Cytosine (c), Uracil (U), Adenine (A) and Guanine (G). The crossover and mutation operations are also modified according to the genetic operations of RNA sequence. The crossover includes translocation, transformation and permutation operators whereas mutation includes reversal, transition and exchange operators. In biology, the genetic operations change the length of RNA sequence, which is neglected in the above adaptation in order to maintain the fixed length of the chromosomes. In another adaptation, namely, DNA-GA [70], the coding pattern similar to RNA-GA is followed with the inclusion of DNA sequence methods from biology. In this algorithm, a two-point crossover scheme is used and three mutation operators are applied on each individual, namely, inverse-anticodon (IA) operator, maximum-minimum (MM) operator and normal-mutation (NM) operator, respectively. Several modifications of both of the above-mentioned algorithms are reported in literature [71, 72, 73, 74, 75, 76 and 77] with their applications to various optimization problems of industrial importance.

2.3.8 COCKROACH GA (CGA)

In this GA adaptation [78], the competitive behavior of cockroaches during scarcity of food is mimicked to develop advanced genetic operators. It is a real-coded algorithm and involves a population of NP artificial cockroach individuals. These cockroaches are divided in different groups using golden section search method with each group having a separate leader (individual with best fitness). During the scarcity of food (i.e., during non-optimal generations) the leader from each group finds a chance to snatch the food. The strongest (i.e., the cockroach which occupies the place with most food sources where the place with most food sources indicates the global optimum) of them rushes to the food in a derivative-based way (steepest descent method) while other leaders crawl to the food in a derivative-free way. This leads the strongest leader to a better position if the exploitation succeeds otherwise it stays at the same place. In the next step selfish hungry leaders drive out the weak individuals (weak individuals are moved away from leader) and if the latter reach food-rich places by luck the former replace them. The current best individuals are further improved by neighborhood exploitation in the winner walkabout step. The individuals obtained after these local search steps undergo advanced genetic operations. First of these is replacement in which some invaders (the strongest cockroaches) replace the victims (weaker cockroaches). In the next step, a two-point crossover is performed with mixed inbreeding (crossover between two offspring to produce two more offspring) and backcrossing (crossover between one parent and one child to produce two more offspring). In mutation operation, the competition follows the mutation. It means that the mutated individuals compete with the original ones and winners or losers lying within a prescribed limit of deviation are accepted. Finally, a periodic step (occurring after a cycle of iterations) namely, habitat migration is also included in CGA in which except the strongest cockroach, all cockroaches are made to move away from it. However, the strongest cockroach can determine if it stays at its original place or take tumbling movements (random search) to reach a food-rich place.

Though, the concept of CGA seems similar to PSO and ACO, the main difference is that these algorithms are based on cooperative behavior (each individual accelerates toward local-best or global-best positions) whereas CGA is based on competitive behavior and use of genetic operations in it provides a balance of exploitation and exploration. CGA has been used to optimize the S-type biological systems (expressing protein regulation, gene interaction, and metabolic reactions as power functions) and found to converge faster than various modern versions [79, 80 and 81] of GA.

2.3.9 GAs WITH HETEROSEXUAL CROSSOVER

Although, gender based sexual reproduction plays a crucial role in natural evolution, it is neglected in traditional GAs. However, several researchers have used this concept to improve the performance of GA. Lis and Eiben [82] developed a multi-sexual GA for multiobjective optimization in which there were as many genders as the objectives and each individual had an extra gender feature. The multi-parent crossover was performed between the parents belonging to different genders. Several other similar adaptations [83, 84, 85 and 86] are reported in literature where individuals are divided as males and females to perform crossover between individuals of opposite genders. A recent adaptation [87] incorporates Baldwin effect in GA with heterosexual crossover. In this algorithm, mutation rate for males is kept higher than that of females based on a research of genetic biology [88]. Male and female subgroups have different genetic parameters to improve the exploration ability of male subgroup and local search ability of female subgroup. Also, fitness information is transmitted from parents to offspring and Baldwin learning is used to guide the acquired fitness of an individual. This algorithm has been used to solve ten benchmark functions and results are found to be converged in fewer generations as compared to simple genetic algorithm (SGA) and adaptive genetic algorithm (AGA) [89].

2.4 APPLICATIONS OF BIO-MIMETIC ADAPTATIONS OF GA IN CHEMICAL ENGINEERING

The optimization problems of chemical engineering can be characterized by multiple objectives, complex model equations, a large number of decision variables and strict constraints imposed by economic and environmental factors. These challenges associated with chemical engineering MOPs have drawn the attention of researchers and engineers in this field towards the use of meta-heuristic algorithms and particularly GA. Since the last two decades, GA and its various modifications (e.g., NSGA, NSGA-II, NSGA-II-JG, etc.) have been applied to a variety of chemical engineering applications such as, process design and operation, separation processes, operations of petroleum and petrochemical industry, polymerization processes, pharmaceuticals and biotechnology, conventional and renewable energy production, etc. These have been reviewed extensively in literature [29, 30, 90]. However, the present article focuses on applications of bio-mimetic adaptations for chemical engineering systems. From these, the multiobjective optimization of fluid catalytic cracking unit (FCCU) [37, 91] is discussed in detail and thereafter the other applications are discussed briefly.

Catalytic reactors play an important role in the chemical industry, especially for petroleum refining, petrochemical and polymer production. Interestingly, the first industrial MOP that has been solved with NSGA-II-JG is multiobjective optimization of a FCCU (see Figure 2.8), which is an integral part of a petroleum refinery. In this unit, hydrocarbons of high molecular weight such as heavy gas oils are catalytically converted to hydrocarbons of low molecular weight mainly gasoline with significant amounts of middle distillates. Kasat et al. [91] developed a mathematical model based on five lump kinetic model proposed by Dave [92]. On the basis of this mathematical model they formulated a two objective optimization problem [Eqs. (22) and (23)] and solved it with NSGA-II-JG. The objectives were maximization of gasoline which is the main desired product and minimization of the percentage of coke which is responsible for catalyst deactivation.

Objective:

[image: Images]

[image: Images]

[image: Images]

FIGURE 2.8 Schematic representation [91] of a typical FCCU.

Constraints:

[image: Images]

[image: Images]

Bounds:

[image: Images]

[image: Images]

[image: Images]

[image: Images]

Here, Trgn, Tfeed, Tair, Fcat and Fair are the temperature of dense bed, temperature of feed to riser, temperature of air fed to the regenerator, catalyst flow rate and airflow rate to the regenerator, respectively.

Kasat and Gupta [37] solved this problem using NSGA-II-JG. The results of this problem are compared with that of NSGA-II as shown in Figure 2.9. The results show that the former gives better spread and convergence than the latter in earlier generations (=10) even with different random seeds and both the algorithms converge to near global optimal results as the number of generations are increased to 50. This clearly illustrates the usefulness of JG adaptation for the complex industrial MOPs for which the number of generations is often restricted.

In another application, the multiobjective optimization of phthalic anhydride (PA) catalytic reactor [93] has been carried out using NSGA-II-aJG. PA is the principal raw material for the manufacture of polyester resins, insect repellent, dyes, etc. It is produced by gas phase catalytic oxidation of o-xylene in a multi-tubular reactor with catalyst packed in several layers in each tube. Bhat and Gupta [93] developed a mathematical model for such a reactor that consists of several identical tubes with each tube having nine layers of catalyst and eight intermediate inert cooling zones. They formulated a two-objective optimization problem based on this model where the objectives were the maximization of PA yield and the minimization of the cumulative length of catalyst bed (sum of lengths of all nine layers). The same MOP [49] has been solved with Alt-NSGA-II-aJG and the results obtained were better than that obtained with NSGA-II-aJG. Furthermore, B-NSGA-II-aJG has also been used to solve this MOP [51] with the embryonic population formulated from the solution history of a simpler problem having only seven catalyst layers. This algorithm gave optimal results in less than half of generations taken by NSGA-II-aJG.

[image: Images]

FIGURE 2.9 Comparison of the Pareto optimal fronts for the MOP of FCCU, obtained by NSGA-II-JG and NSGA-II with random-seed numbers (a) 0.88876, (b) 0.8876 and (c) 0.88855 for 10 generations and with random-seed number 0.88876 for (d) 50 generations.

The other notable catalytic reactor applications such as many-objective (upto four objectives) optimization of an industrial low-density polyethylene tubular reactor [94, 95] using NSGA-II-aJG, multiobjective optimization of an industrial LPG thermal cracker using NSGA-II-aJG [96, 97], multiobjective optimization of a nylon-6 semi-batch reactor [98] using NSGA-II-aJG, multiobjective optimization of a fixed bed maleic anhydride reactor [99] using Alt-NSGA-II-aJG, single-objective optimization of a combustion side reaction of p-Xylene oxidation using MSIGA [56], etc., are also reported in literature. The details can be found in the respective references.

Besides, catalytic reactors, other interesting areas of chemical engineering where MOPs are commonly seen are separation processes, networking of equipments and utilities, kinetic parameter estimation, planning and scheduling, etc. One of such interesting applications is multiobjective optimization of a froth flotation circuit [40]. Froth flotation is a separation process used in the mining industry to separate valuable constituents from finely ground ore. This process is carried out in a network of flotation cells. Guria et al. [40] studied a simple two-cell circuit and optimized it for the two objectives (1) maximization of recovery (flow rate of solids in the concentrated stream/flow rate of solids in the feed stream) and (2) maximization of grade (fraction of valuable minerals in the concentrated stream). Optimal solutions for this problem have been generated using NSGA-II-mJG and found to be better than that previously reported in literature.

Multiobjective optimization of a heat exchanger network [32] has also been reported using two JG adaptations of NSGA-II, namely, NSGA-II-sJG and NSGA-II-saJG. The objectives chosen were the minimization of the total annual cost and the minimization of total hot (steam) and cold (water) utility. This problem involved variable length of the chromosomes, which had been successfully handled using above two adaptations. The complete details of problem and results can be found in Agarwal and Gupta [32].

The estimation of optimal values of kinetic and model parameters is often required in chemical engineering. In such problems, the objective function is formulated as a sum of the square error of actual outputs (obtained from the experiments) and that estimated from the simulation. GA selects the values of the parameters in order to minimize this objective function. Tao and Wang [67] solved one such SOP to estimate the parameters for a three-lump model of heavy oil thermo-cracking using RNA-GA. Total eight parameters were estimated by randomly selecting 20 groups of data from literature [100]. These parameters were verified using 56 samples of published data [100]. Also, the deviation from actual values was found to be lesser than that obtained with SGA. Several other problems of similar nature such as parameter estimation of FCCU main fractionator [67], parameter estimation of hydrogenation reaction [70], parameter estimation of dynamic systems [71, 74], parameter estimation in hydrocracking of heavy oil [73], parameter estimation of the 2-chlorophenol oxidation in supercritical water [75], modeling of proton exchange membrane fuel cells [76], etc., are solved over the years using different variants of RNA- and DNA-GA.

An SOP is also reported for short-time scheduling of gasoline blending [72] using DNA-HGA. Gasoline blending is an important process in a petroleum refinery. In this process, various gasoline products are produced by mixing different feedstock with small amounts of additives. There are some quality specifications for these products along with restrictions on the operation including bounds on the availability of blending constituents and storage facilities. These factors give rise to a non-linear optimization problem with several linear and non-linear constraints. In the above-mentioned study, two such problems were formulated with the objective of finding an optimized recipe for blending process with maximum profit for one-day and three-days, respectively. The results show that the profits obtained with DNA-HGA were better than that obtained with GA and PSO.

All the above applications along with the techniques used for problem solving are listed in Table 2.2.

TABLE 2.2 Chemical Engineering Applications of Bio-Mimetic Adaptations of GA

[image: Images]

2.5 SUMMARY

GA is undoubtedly one of the most popular stochastic optimization techniques primarily due to its ability to handle multiple objectives in a derivative-free environment. Very often, the number of generations attempted in GA to solve the MOPs of chemical engineering systems is severely restricted owing to highly complex model equations. Thus, one has to work with prematurely converged solutions. Several bio-mimetic adaptations are developed to improve the quality of these solutions by incorporating different facets of biological systems. These adapted versions have been successfully used for solving computationally intensive problems of chemical engineering. Also, several challenges such as handling a large number of objectives, combinatorial nature and inter-disciplinary applications are continually being posed which foster the development of more robust algorithms.

KEYWORDS

	bio-mimetic adaptations

	chemical engineering applications

	genetic algorithm

	multiobjective optimization

REFERENCES

1. Trambouze, P. J., & Piret, E. L. Continuous Stirred tank Reactors: Design for maximum conversions of raw material to desired product AIChE J. 1959, 5, 384–390.

2. Levenspiel, O. Chemical Reaction Engineering, 3rd ed., Wiley: New York, 1999.

3. Pareto, V. Cours d’economie Politique; F. Rouge: Lausanne, Switzerland, 1896.

4. Charnes, A., & Cooper, W. Management Models and Industrial Applications of Linear Programming; Wiley: New York, 1961.

5. Beveridge, G. S. G., & Schechter, R. S. Optimization: Theory and Practice; McGraw Hill: New York, 1970.

6. Ray, W. H., & Szekely, J. Process Optimization with Applications in Metallurgy and Chemical Engineering; Wiley: New York, 1973.

7. Chankong, V., & Haimes, Y. V. Multiobjective Decision Making-Theory and Methodology; Elsevier: New York, 1983.

8. Deb, K. Multiobjective Optimization Using Evolutionary Algorithms; Wiley: Chichester, UK, 2001.

9. Coello Coello, C. A., Veldhuizen, D. A. V., & Lamont, G. B. Evolutionary Algorithms for Solving Multiobjective Problems, 3rd ed., Springer: New York,. 2007.

10. Holland, J. H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.

11. Fogel, L. J., Owens, A. J., & Walsh, M. J. Artificial Intelligence through Simulated Evolution, Wiley: New York, 1966.

12. Storn, R., & Price, K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces J. Global Optim. 1997, 11, 341–359.

13. Kennedy, J., & Eberhart, R. In Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, November 27-December 01, 1995; IEEE: New Jersey, 1995.

14. Dorigo, M. Optimization, Learning and Natural Algorithms. PhD dissertation, Politecnico di Milano, Italy, 1992.

15. Karaboga, D., & Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm J. Global Optim.. 2007, 39, 459–471.

16. Schaffer, J. D. In Multiple Objective Optimization with Vector Evaluated Genetic Algorithm, Proceedings of the 1st International Conference on Genetic Algorithm and their Applications, Pittsburgh, PA, July 24–26, 1985; Grenfenstett, J. J., Ed., Lawrence Erlbaum Associates: New Jersey, 1988.

17. Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: Reading, MA, 1989.

18. Hajela, P., & Lin, C. Genetic Search Strategies in Multicriterion Optimal Design Structural Optimization 1992, 4, 99–107.

19. Fonseca, C. M., & Fleming, P. J. In Genetic Algorithm for Multiobjective Optimization: Formulation, Discussion And Generalization, Proceedings of the 5th International Conference on Genetic Algorithm, San Mateo, California, July 17–21, 1993; Forrest, S., Ed., Morgan Kauffman: Massachusetts, 1993.

20. Horn, J. N., Nafpliotis, N., & Goldberg, D. In: A Niched Pareto Genetic Algorithm for Multiobjective Optimization, Proceeding of the 1st IEEE Conference on Evolutionary Computation, Orlando, Florida, June 27–29, 1994; IEEE: New Jersey, 1994.

21. Srinivas, N., & Deb, K. Multiobjective Function Optimization using Nondominated Sorting Genetic Algorithm Evol. Comput. 1994, 2, 221–248.

22. Zitzler, E., & Thiele, L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach IEEE Trans. Evol. Comput. 1999, 3, 257–271.

23. Knowles, J. D., & Corne, D. W. Approximating the Nondominated Front using the Pareto Archived Evolution Strategy Evol. Comput. 2000, 8, 149–172.

24. Corne, D. W., Knowles, J. D., & Oates, M. J. In: The Pareto Envelope-based Selection Algorithm for Multiobjective Optimization, Proceedings of the Parallel Problem Solving from Nature, 6th Conference, Paris, France, September 18–20, 2000; Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J. J., Schwefel, H. P., Eds., Springer: Paris, 2000.

25. Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. In PESA-II: Region-based Selection in Evolutionary Multiobjective Optimization, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), San Francisco, California, July 7–11, 2001; Morgan Kauffman: Massachusetts, 2001.

26. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II IEEE Trans. Evol. Comput. 2002, 6, 182–197.

27. Sulfllow, A., Drechsler, N., & Drechsler, R. In: Robust Multiobjective Optimization in High Dimen-Sional Spaces, Proceeding of the Evolutionary Multi-criterion Optimization, 4th International Conference. Lecture Notes in Computer Science, Matsushima, Japan, March 5–8,. 2007; Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T., Eds., Springer: Heidelberg,. 2007.

28. Jain, H., & Deb, K. In An Improved Adaptive Approach for Elitist Nondominated Sorting Genetic Algorithm for Many-Objective Optimization, Proceeding of the Evolutionary Multi-criterion Optimization, 7th International Conference. Lecture Notes in Computer Science, Sheffield, UK, March 19–22, 2013; Purshouse, R., Fleming, P., Fonseca, C., Greco, S., Shaw, J., Eds., Springer-Verlag: Berlin, 2013.

29. Masuduzzaman, Rangaiah, G. P. Multiobjective Optimization Applications in Chemical Engineering. In Multiobjective Optimization: Techniques and Applications in Chemical Engineering; Rangaiah, G. P., Ed., World Scientific: Singapore, 2009; p 27.

30. Sharma, S., & Rangaiah, G. P. Multiobjective Optimization Applications in Chemical Engineering. In Multiobjective Optimization in Chemical Engineering: Developments and Applications; Rangaiah, G. P., Petriciolet, A. B., Eds., Wiley: Oxford, 2013; 1st ed., p 35.

31. Gupta, S. K., & Ramteke, M. Application of Genetic Algorithm in Chemical Engineering II: Case Studies. In Applications of Metaheuristics in Process Engineering; Valadi,J., Siarry, P., Eds., Springer: Switzerland, 2014; p 60.

32. Agarwal, A., & Gupta, S. K. Jumping Gene Adaptations of NSGA-II and their use in the Multiobjective Optimal Design of Shell and Tube Heat Exchangers Chem. Eng. Res. Des. 2008, 6, 123–139.

33. Ramteke, M., & Srinivasan, R. Novel Genetic Algorithm for Short-Term Scheduling of Sequence Dependent Changeovers in Multiproduct Polymer Plants. Comput. Chem. Eng. 2011, 35, 2945–2959.

34. Deb, K., & Agrawal, R. B. Simulated Binary Crossover for Continuous Search Space Complex. Syst. 1995, 9, 115–148.

35. Deb, K., & Agrawal, S. In A Niched-penalty Approach for Constraint handling in Genetic Algorithms, Proceedings of the International Conference Artificial Neural Networks and Genetic Algorithms, ICANNGA-99, Portoroz, Slovenia, 1999; Springer: Vienna, 1999.

36. McClintock, B. The Collected Papers of Barbara McClintock; Garland: New York, 1987.

37. Kasat, R. B., & Gupta, S. K. Multiobjective Optimization of an Industrial FluidizedBed Catalytic Cracking Unit (FCCU) using Genetic Algorithm (GA) with the Jumping Genes Operator Comp. Chem. Eng. 2003, 27, 1785–1800.

38. Bhat, S. A., Gupta, S., Saraf, D. N., & Gupta, S. K. On-Line Optimizing Control of Bulk Free Radical Polymerization Reactors under Temporary Loss of Temperature Regulation: An Experimental Study on a 1-Liter Batch Reactor Ind. Eng. Chem. Res. 2006, 45, 7530–7539.

39. Bhat, S. A. On-Line Optimizing Control of Bulk Free Radical Polymerization of Methyl Methacrylate in a Batch Reactor using Virtual Instrumentation. Ph. D. Dissertation, Indian Institute of Technology, Kanpur,. 2007.

40. Guria, C., Verma, M., Mehrotra, S. P., & Gupta, S. K. Multiobjective Optimal Synthesis and Design of Froth Flotation Circuits for Mineral Processing using the Jumping Gene Adaptation of Genetic Algorithm Ind. Eng. Chem. Res. 2005, 44, 2621–2633.

41. Agarwal, A., & Gupta, S. K. Multiobjective Optimal Design of Heat Exchanger Networks using New Adaptations of the Elitist Nondominated Sorting Genetic Algorithm, NSGA-II Ind. Eng. Chem. Res. 2008, 47, 3489–3501.

42. Ramteke, M., Ghune, N., & Trivedi, V. Simulated Binary Jumping Gene: A Step towards Enhancing the Performance of Real-Coded Genetic Algorithm, submitted.

43. Chan, T. M., Man, K. F., Tang, K. S., & Kwong, S. A Jumping Gene Algorithm for Multiobjective Resource Management in Wideband CDMA Systems Comput. J. 2005, 48, 749–768.

44. Chan, T. M., Man, K. F., Tang, K. S., & Kwong, S. In: Multiobjective Optimization of Radio-to-Fiber Repeater Placement using A Jumping Gene Algorithm, Proceedings of IEEE International Conference on Industrial Technology (ICIT 2005), Hong Kong, December 14–17, 2005.

45. Ripon, K. S. N., Kwong, S., & Man, K. F. A Real-Coding Jumping Gene Genetic Algorithm (RJGGA) for Multiobjective Optimization Inf. Sci.. 2007, 177, 632–654.

46. Furtuna, R., Curteanu, S., & Racles, C. NSGA-II-RJG applied to Multiobjective Optimization of Polymeric Nanoparticles Synthesis with Silicone Surfactants Cent. Eur. J. Chem. 2011, 9, 1080–1095.

47. Sharma, S., Nabavi, S. R., & Rangaiah, G. P. Performance Comparison of Jumping Gene Adaptations of Elitist Nondominated Sorting Genetic Algorithm. In Multiobjective Optimization in Chemical Engineering: Developments and Applications; Rangaiah, G. P., Petriciolet, A. B., Eds., Wiley: Oxford, 2013; 1st ed.

48. Sharma, S., Nabavi, S. R., & Rangaiah G. P. Jumping Gene Adaptations of NSGA-II with Altruism Approach: Performance Comparison and Application, In Recent Advances in Applications of Metaheuristics in Process Engineering; Valadi, J., Siarry, P., Eds., Springer: Switzerland, 2014; p. 395.

49. Ramteke, M., & Gupta, S. K. Biomimicking Altruistic Behavior of Honey Bees in Multiobjective Genetic Algorithm Ind. Eng. Chem. Res. 2009, 48, 9671–9685.

50. Goodnight, C. J., Goodnight, M. L., & Gray, P. General Zoology; Reinhold: New York, 1964.

51. Ramteke, M., & Gupta, S. K. Bio-mimetic Adaptation of the Evolutionary Algorithm, NSGA-II-aJG, using the Biogenetic Law of Embryology for Intelligent Optimization Ind. Eng. Chem. Res. 2009, 48, 8054–8067.

52. Jiao, L., & Wang, L. A Novel Genetic Algorithm Based on Immunity IEEE Trans. Syst., Man, Cybern. A, Syst.,Humans. 2000, 30, 552–561.

53. Simões, A., & Costa, E. In An Immune System-based Genetic Algorithm to Deal with Dynamic Environments: Diversity and Memory, Proceedings of the 6th International Conference on Neural Networks and Genetic Algorithms, Roanne, France, 2003; Pearson, D. W., Steele, N. C., Albrecht, R. F. Eds., Springer Vienna: Vienna, 2003.

54. Yongshou, D., Yuanyuan, L., Lei, W., Junling, W., & Deling, Z. Adaptive Immune-Genetic Algorithm for Global Optimization to Multivariable Function J. Syst. Eng. Electron.. 2007, 18, 655–660.

55. Ru, N., Jian-Hua, Y., Shuai-Qi, D., & Yang-Guang, L. In: Wave Impedance Inversion in Coalfield based on Immune Genetic Algorithm, Proceedings of the 6th International Conference on Mining Science and Technology (ICMST 2009), Xuzhou, PR China, October 18–20, 2009; Ge, S., Liu, J., Guo, C. Eds., Elsevier: Amsterdam, 2009.

56. Qian, F., Tao, L., Sun, W., & Du, W. Development of a Free Radical Kinetic Model for Industrial Oxidation of P-Xylene based on Artificial Network and Adaptive Immune Genetic Algorithm. Ind. Eng. Chem. Res. 2011, 51, 3229–3237.

57. Lili, T., Xiangdong, K., Weimin, Z., & Feng, Q. Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation Chin. J. Chem. Eng. 2012, 20, 1047–1052.

58. Liu, W., & Huang, X. A Multi-population Immune Genetic Algorithm for Solving Multi objective TSP Problem J. Chem. Pharm. Res. 2014, 6, 566–569.

59. Whitley, D., Gordon, S., & Mathias, K. In Lamarckian Evolution, the Baldwin Effect and Function Optimization, Proceedings of the Parallel Problem Solving from Nature—PPSN III. Lecture Notes in Computer Science, Jerusalem, Israel, October 9–14, 1994; Davidor, Y., Schwefel, H. P., Manner, R. Eds., Springer-Verlag: Jerusalem, 1994.

60. Julstrom, B. In: Comparing Darwinian, Baldwinian, and Lamarckian Search in a Genetic Algorithm for the 4-Cycle Problem, Proceedings of the 1999 Genetic and Evolutionary Computation Conference, Late Breaking Papers, Orlando, USA, July 13–17, 1999; Brave, S., Wu, A. S. Eds., Morgan Kauffman: Massachusetts, 1999.

61. Baldwin, J. M. A New Factor in Evolution Am. Nat. 1896, 30, 441–451.

62. Hinton, G. E., & Nowlan, S. J. How Learning can guide Evolution Complex Sys. 1987, 1, 495–502.

63. Hart, W. E., Kammeyer, T. E., & Belew, R. K. The Role of Development in Genetic Algorithms. In: Foundations of Genetic Algorithms; Whitley, L. D., Vose, M. D., Eds; Morgan Kaufmann: San Mateo, California, 1995; Vol. 3; p. 315.

64. Gruau, F., Whitley, D. Adding learning to the Cellular Development of Neural Networks: Evolution and the Baldwin Effect Evol. Comput. 1993, 1, 213–233.

65. Sun, Y., & Deng, F. In Baldwin Effect-Based Self-Adaptive Generalized Genetic Algorithm, Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision, Kunming, China, December 6–9, 2004.

66. Yuan, Q., Qian, F., & Du, W. A Hybrid Genetic Algorithm with the Baldwin Effect Inf. Sci. 2010, 180, 640–652.

67. Tao, J. L., & Wang, N. DNA Computing based RNA Genetic Algorithm with Applications in Parameter Estimation of Chemical Engineering Processes Comput. Chem. Eng.. 2007, 31, 1602–1618.

68. Adleman, L. M. Molecular Computation of Solutions to Combinatorial Problems Science 1994, 266, 1021–1023.

69. Cukras, A. R., Faulhammer, D., Lipton, R. J., & Landweber, L. F. Chess Games: A Model for RNA based Computation Biosystems 1999, 52, 35–45.

70. Chen, X., & Wang, N. A DNA based Genetic Algorithm for Parameter Estimation in the Hydrogenation Reaction Chem. Eng. J. 2009, 150, 527–535.

71. Wang, K. T., & Wang, N. A Novel RNA Genetic Algorithm for Parameter Estimation of Dynamic Systems Chem. Eng. Res. Des. 2010, 88, 1485–1493.

72. Chen, X., & Wang, N. Optimization of Short-time Gasoline Blending Scheduling Problem with a DNA based Hybrid Genetic Algorithm Chem. Eng. Process. 2010, 49, 1076–1083.

73. Wang, K., & Wang, N. A Protein Inspired RNA Genetic Algorithm for Parameter Estimation in Hydrocracking of Heavy Oil Chem. Eng. J. 2011, 167, 228–239.

74. Dai, K., & Wang, N. A Hybrid DNA based Genetic Algorithm for Parameter Estimation of Dynamic Systems Chem. Eng. Res. Des. 2012, 90, 2235–2246.

75. Zhang, L., & Wang, N. A Modified DNA Genetic Algorithm for Parameter Estimation of the 2-Chlorophenol Oxidation in Supercritical Water Appl. Math. Model. 2013, 37, 1137–1146.

76. Zhang, L., & Wang, N. An Adaptive RNA Genetic Algorithm for Modeling of Proton Exchange Membrane Fuel Cells Int. J. Hydrogen Energy 2013, 38, 219–228.

77. Sun, Z., Wang, N., & Bi, Y. Type-1/Type-2 Fuzzy Logic Systems Optimization with RNA Genetic Algorithm for Double Inverted Pendulum Appl. Math. Model. 2014, http://dx.doi.org/10.1016/j.apm.2014.04.035.

78. Wu, S., & Wu, C. Computational Optimization for S-Type Biological Systems: Cockroach Genetic Algorithm Math. Biosci. 2013, 245, 299–313.

79. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., & Tomita, M. Dynamic Modeling of Genetic Networks using Genetic Algorithm and S-System Bioinformatics 2003, 19, 643–650.

80. Ho, S. Y., Hsieh, C. H., Yu, F. C., & Huang, H. L. An Intelligent Two-stage Evolutionary Algorithm for Dynamic Pathway Identification from Gene Expression Profiles IEEE/ ACM Trans. Comput. Biol. Bioinf.. 2007, 4, 648–660.

81. Caponio, A., Cascella, G. L., Neri, F., Salvatore, N., & Sumner, M. A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives IEEE Trans. Syst. Man Cybern.-Part B: Cybern.. 2007, 37, 28–41.

82. Lis, J., & Eiben, A. E. In A Multi-sexual Genetic Algorithm for Multiobjective Optimization, Proceedings of the 1997 IEEE International Conference on Evolutionary Computing, Indianapolis, USA, April 13–16, 1997; IEEE: New Jersey, 1997.

83. Rejeb, J., & AbuElhaija, M. In New Gender Genetic Algorithm for Solving Graph Partitioning Problems, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Lansing, MI, USA, August 8–11, 2000; IEEE: New Jersey, 2000.

84. Vrajitoru, D. In Simulating Gender Separation with Genetic Algorithms, Proceedings of the 2002 Genetic and Evolutionary Computation Conference, New York, NY, USA, July, 9–13, 2002.

85. Sanchez-Velazco, J., & Bullinaria, J. A. In Sexual Selection with Competitive/ Co-operative Operators for Genetic Algorithms, Proceedings of the IASTED International Conference on Neural Networks and Computational Intelligence, Cancun, Mexico, May 19–21, 2003.

86. Raghuwanshi, M. M., & Kakde, O. G. In Genetic Algorithm with Species and Sexual Selection, Proceedings of the 2006 IEEE Conference on Cybernetics and Intelligent System, Bangkok, Thailand, June 7–9, 2006; IEEE: New Jersey, 2006.

87. Zhang, M. A Novel Sexual Adaptive Genetic Algorithm based on Baldwin Effect for Global Optimization Int. J. Intell. Comput. Cybern. 2011, 4, 2011.

88. Dennis, C., & Gallagher, R. The Human Genome; Nature Publishing Group: London, 2001.

89. Srinivas, M., & Patnaik, L. M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithm IEEE Trans. Syst. Man Cybern. 1994, 24, 656–67.

90. Bhaskar, V., Gupta, S. K., & Ray, A. K. Applications of Multiobjective Optimization in Chemical Engineering Reviews Chem. Eng. 2000, 16, 1–54.

91. Kasat, R. B., Kunzru, D., Saraf, D. N., & Gupta, S. K. Multiobjective Optimization of Industrial FCC Units using Elitist Nondominated Sorting Genetic Algorithm Ind. Eng. Chem. Res. 2002, 41, 4765–4776.

92. Dave, D. Modeling of a Fluidized Bed Catalytic Cracker Unit. MTech. Dissertation, Indian Institute of Technology, Kanpur, India, 2001.

93. Bhat, G. R., & Gupta, S. K. MO Optimization of Phthalic Anhydride Industrial Catalytic Reactors using Guided GA with the Adapted Jumping Gene Operator. Chem. Eng. Res. Des. 2008, 86, 959–976.

94. Agrawal, N., Rangaiah, G. P., Ray, A. K., & Gupta, S. K. Multiobjective Optimization of the Operation of an Industrial Low-Density Polyethylene Tubular Reactor Using Genetic Algorithm and its Jumping Gene Adaptations. Ind. Eng. Chem. Res. 2006, 45, 3182–3199.

95. Agrawal, N., Rangaiah, G. P., Ray, A. K., & Gupta, S. K. Design Stage Optimization of an Industrial Low-Density Polyethylene Tubular Reactor for Multiple Objectives using NSGA-II and its Jumping Gene Adaptations Chem. Eng. Sci.. 2007, 62, 2346–2365.

96. Nabavi, S. R., Rangaiah, G. P., Niaei, A., & Salari, D. Multiobjective Optimization of an Industrial LPG Thermal Cracker using a First Principles Model. Ind. Eng. Chem. Res. 2009, 48, 9523–9533.

97. Nabavi, S. R., Rangaiah, G. P., Niaei, A., & Salari, D. Design Optimization of an LPG Thermal Cracker for Multiple Objectives. Int. J. Chem. React. Eng. 2011, 9.

98. Ramteke, M., & Gupta, S. K. Multiobjective Optimization of an Industrial Nylon-6 Semi Batch Reactor using the Jumping Gene Adaptations of Genetic Algorithm and Simulated Annealing. Polym. Eng. Sci. 2008, 48, 2198–2215.

99. Chaudhari, P., & Gupta, S. K. Multiobjective Optimization of a Fixed Bed Maleic Anhydride Reactor using an Improved Bio-mimetic Adaptation of NSGA-II. Ind. Eng. Chem. Res. 2012, 51, 3279–3294.

100. Song, X.-F., Chen, D.-Z., Hu, S.-X., Xiao, J.-Z, & Liu F.-Z. Eugenic Evolution Strategy Genetic Algorithms for Estimating Parameters of Heavy Oil Thermal Cracking Model. J. Chem. Eng. Chin. Univ. 2003, 17, 411–417.

CHAPTER 3

SURROGATE-ASSISTED EVOLUTIONARY COMPUTING METHODS

SAKET KANSARA,1 SUMEET PARASHAR,2 and ABDUS SAMAD3

1ESTECO Software India Pvt. Ltd., Pune, Maharashtra, India

2ESTECO North America, Novi, MI 48375, USA

3Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai–600036, India

CONTENTS

3.1 Overview

3.2 Introduction to Optimization

3.2.1 Single Objective Optimization Formulation

3.2.2 Multiobjective Optimization Formulation

3.2.3 General Optimization Procedure

3.2.4 Optimal Designs and Pareto Optimal Frontier

3.3 Evolutionary Algorithms

3.4 Introduction to Surrogate Modeling

3.5 Different Surrogate Modeling Techniques

3.5.1 Polynomial Regression

3.5.2 Kriging

3.5.3 Radial Basis Functions

3.5.4 EvoNN Algorithms

3.6 Surrogate-Assisted Evolutionary Algorithms

3.6.1 Adaptive RSM Based Optimization

3.7 Example Problem

3.8 Conclusion

Keywords

References

3.1 OVERVIEW

This chapter covers an overview of the use of surrogate-assisted evolutionary algorithms in engineering optimization. More specifically, it describes various aspects of engineering optimization including single as well as multiobjective optimization, evolutionary algorithms, how surrogate modeling can help during optimization. It also discusses different surrogate modeling techniques. Finally, it briefly describes how some existing approaches combine surrogate modeling and evolutionary optimization techniques to speed up engineering optimization procedures.

3.2 INTRODUCTION TO OPTIMIZATION

3.2.1 SINGLE OBJECTIVE OPTIMIZATION FORMULATION

Optimization can be used to effectively search for a system or design using automatic and intelligent algorithms. In simplest terms, optimization refers to maximization or minimization of some performance metrics. Although we do face many optimization problems in our daily life, the process we use to arrive at solutions is usually based on intuition, past experience or some preliminary calculations. Optimization of real world complex engineering problems is more involved, even though it uses the same idea of minimizing/maximizing performance metric/s. A formal engineering design optimization approach can make use of mathematically advanced techniques rather than relying on ‘intuition’ and ‘experience.’ To understand the concept of optimization problem formulation, a simple example of cantilever beam design is used throughout this chapter. The design problem is formulated as a single-objective as well as a multiobjective, constrained as well as unconstrained optimization problems.

Figure 3.1 shows a cantilever beam of rectangular cross-section made of steel with a constant force of 1000N applied at the end of the beam. The beam has a fixed length of 20 m, but its breadth (b) and height (H) are free parameters to be designed. Free parameters are also called as design variables or design parameters, which can be independently controlled within their upper and lower bounds. The bounds are also sometimes referred to as side constraints. The design variable values directly affect the system performance defined by the design goals/objectives and constraints. The objective function/s is/are design goals or performance targets that one aims to achieve. They are typically expressed as functions or performance measures to be either maximized or minimized. Apart from the design variables and the objectives, it is also common to have certain restrictions posed as constraints. The constraints are performance measures, which have to meet certain limiting values of the optimal solution to be valid.

A formal problem statement can be written as an optimization problem in the form of Eq. (1) as follows:

[image: Images]

Now, from intuition, it can be quickly inferred that minimizing deflection means the height and the width of the beam have to be increased.

[image: Images]

FIGURE 3.1 Cantilever beam optimization.

If height and width are increased, it does make the beam stronger, however, it also automatically increases volume of the beam thus increasing material required to manufacture the beam. This would clearly lead to an increase in the cost of the beam. Hence, it is necessary to choose the ‘optimum’ values of height and width so as to not increase cost beyond its acceptable limit.

3.2.2 MULTIOBJECTIVE OPTIMIZATION FORMULATION

In real life, most problems have multiple objectives, which were traditionally modeled as single objective problems with constraints. However, with recent advances in multiobjective optimization algorithms, it is quite common to see optimization problems being formulated and effectively solved with more than one objective [1].

For better understanding, the concept of multiobjective optimization, the above-mentioned beam optimization problem is formulated as a multiobjective problem. Along with minimizing the deflection, the second objective is to minimize cost of the beam. Minimizing deflection would lead to adding more cost and minimizing cost would result in adding more deflection to the beam. It is apparent that the two objectives of minimizing deflection and minimizing cost are conflicting with each other. Figure 3.2 explains this scenario in a better way. It shows two graphs, each showing breadth (b) and height (H) on the horizontal axes. Figure 3.2(a) shows cost on the vertical axis while Figure 3.2(b) shows deflection. It is evident from the figures that the two objectives are conflicting with each other.

[image: Images]

FIGURE 3.2 Multiobjective optimization.

The mathematical formulation of the above problem can be represented as:

[image: Images]

3.2.3 GENERAL OPTIMIZATION PROCEDURE

A number of systematic mathematical optimization processes can be applied to solve the above-mentioned problem both in single as well as in multiobjective formulations. A general optimization procedure is shown in Figure 3.3. Once an optimization problem is formulated, it is generally fed to an optimization algorithm for generating a solution/s. Every optimization algorithm needs to be initialized, meaning, it needs at least one starting point to start optimization (initialization is not shown in the figure). The optimization algorithm then automatically takes these input values, feeds it to the solvers and evaluates output values. Once it has calculated outputs, it also computes values for objective functions and constraints. It then analyzes these values to check if the results have converged to a satisfactory solution. If yes, then it stops. If it has not found a satisfactory solution, it automatically and intelligently changes values of input variables and repeats the procedure until it finds a good solution. It can also be asked to exit after reaching maximum number of iterations to avoid it going into an infinite loop.

[image: Images]

FIGURE 3.3 General optimization procedure.

Many algorithms have been developed to solve such optimization problems. Derivate-based algorithms and evolutionary/heuristic algorithms are two of the most widely used categories of optimization algorithms. The derivative based algorithms include gradient descent [2], sequential quadratic programming [3], etc. The heuristic algorithms consist of genetic algorithm [4, 5 and 6], particle swarm optimization [7], simulated annealing [8], etc. Details of these algorithms are not covered in this chapter. All the algorithms use different techniques to come up with optimum designs; however, the common theme behind all is that they change the inputs intelligently based on previous results. The idea of using these algorithms is that, once we provide the algorithm the information in Eq. (2), it keeps changing the values of input variables intelligently so that we reach our objectives while also satisfying the constraints. At the end of the optimization, the algorithm gives optimum values of input variables and functions. One can write his/her own optimization algorithm routine or use many available commercial software such as modeFRON-TIER [9], MAT LAB [10], etc., for solving his/her own optimization problem.

3.2.4 OPTIMAL DESIGNS AND PARETO OPTIMAL FRONTIER

Different optimization formulations of the same problem can greatly affect the quality of results and the speed at which the algorithm arrives at them. Each sub-figure in Figure 3.4 represents a scatter chart of deflection (on x-axis) vs. cost (on y-axis). Each sub-figure shows the solutions obtained for the above-mentioned beam optimization problem but using different formulation. The same problem is formulated in four different ways as shown in Figure 3.4(a–d). A multiobjective genetic algorithm (MOGA-II) [11] available in modeFRONTIER [9] has been applied to solve each formulation. For each formulation, the algorithmic initialized with 20 random design points, meaning 20 random combinations of B and H are generated. MOGA-II then takes these inputs, evaluates and analyzes the outputs before intelligently creating new combinations of B and H. For each of these formulations, MOGA-II was allowed to run for 1000 generations resulting in a total of 20,000 design points. Optimum designs are marked in blue bubbles while infeasible designs, if any, are marked with orange diamonds. The gray squares represent designs that the genetic algorithm evaluated while trying to reach optimum designs.

[image: Images]

FIGURE 3.4 Results from different optimization formulations for the beam optimization problem.

The first formulation represented by Figure 3.4(a), is a single objective optimization without any constraints. This leads to a single optimum design, which has the least deflection. This can be seen in Figure 3.4(a) where the optimum design is shown in the top left corner. It is also worth noting that cost for this optimum design is very high as the only objective is to minimize deflection. Figure 3.4(b) depicts a formulation containing a single objective to minimize deflection and a constraint on cost. Here it can be seen that because of a constraint on cost, all designs which have cost >$4000 are marked as infeasible designs. The optimum design is found when cost is equal to $4000 (maximum allowable cost). Notice that there are not many designs where cost >$4000. This is because the MOGA-II is intelligent enough to recognize that violating the constraint leads to infeasible designs. Hence, the algorithm intelligently generates values of B and H such that cost would be kept below the acceptable limit. Please note that although Figures 3.4(a) and 3.4(b) both result only in a single optimum solution, the entire history of the optimization runs is shown in both charts.

Figure 3.4(c) shows results for a pure multiobjective optimization formulation without any constraints. Here the two objectives are: minimize deflection and minimize cost. From the optimization problem statement, an ideal design should be a beam, which has minimum deflection and minimum cost, both at the same time. However, due to the nature of the problem, it is simply not possible to obtain such a design. Hence, as the two objectives are conflicting in nature, the optimization results in not one single optimum solution but a set of optimum nondominated solutions called the ‘Pareto optimal solutions [12]. The set of all ‘Pareto optimal’ designs is also known as ‘Pareto optimal frontier.’ All solutions belonging to Pareto frontier are nondominated solutions. A solution is known as nondominated if there is no other solution, which is clearly better in all objectives than the current solution. Once the Pareto frontier of solutions is achieved, it becomes a subjective choice of the designer/decision maker to choose the best design for his/her application. For example, if one wishes to give more importance to minimizing deflection, one can choose a design, which is near the top left corner of Pareto frontier in Figure 3.4(c). On the other hand, if one intends to provide more importance to minimizing weight, he/she should choose a design near the bottom right corner of the Pareto frontier in Figure 3.4(c). Figure 3.4(d) shows results from Multiobjective optimization with constraints. Notice that similar to the single objective constrained case, the optimization algorithm was intelligent to recognize that violating constraints (cost > $4000) is not useful as it leads to infeasible designs. Hence, very few designs with cost > $4000 are seen in Figure 3.4(d). Also notice that a Pareto frontier is still formed in this case, but it is trimmed at the top to avoid infeasible region. The Pareto optimal fronts seen in Figures 3.4(c) and 3.4(d) are called convex Pareto frontiers. Pareto frontier can also be non-convex, discontinuous (also known as ‘broken Pareto frontier’), they can also look like inverted ‘L’ or of different types depending on whether the objectives are to be maximized or minimized.

3.3 EVOLUTIONARY ALGORITHMS

This section briefly discusses the algorithms that are commonly used to solve optimization problems. In particular, it focuses on a very popular and widely used class of evolutionary algorithm called genetic algorithms (GA). This section discusses the core idea behind the algorithm without delving deep into the mathematical details.

Evolutionary algorithms or GAs are a part of the family of heuristic algorithms and are based on the theory of evolution. The GAs, for example, attempts to model the principal of ‘survival of the fittest’ and the assumption that healthy population members will most likely lead to healthy offspring. Figure 3.5 renders the idea behind workings of a GA. As discussed before, GAs need multiple points to start with. These starting points are also called as ‘starting population.’ In Figure 3.5, a starting population of five designs is provided to the algorithm, it evaluates (function evaluation) each one to acquire output and objective values. This process is followed by a step called ‘selection.’ Selection picks pairs of designs to treat them as parents. It is a probabilistic approach, which favors the selection of “fit” or “healthy” designs, which are good in terms of their objective performance while the “weaker” or “unfit” members/designs are rarely selected. This is typically modeled as a tournament selection or roulette wheel selection. Next, the genetic information of the pairs of designs selected is exchanged to produce new designs. This is known as ‘crossover’ operation in GA. We can draw similarities between the selection and crossover operations in a GA and in human evolution. The ‘selection’ operation is similar to selecting the best “parents” out of the current population. The crossover operation is similar to combining the genetic features of parents in order to generate a new child population. A design is considered ‘stronger’ if it is closer to meeting objectives than previous designs. As shown in step 2 in Figure 3.5, the crossover operation breaks the designs in their binary formats and combines the two binary strings to produce new designs in binary format. The newly created designs are then treated as ‘child designs’ or designs belonging to a new generation. Along with selection and crossover, one more important parameter of a GA is ‘mutation.’ Mutation, in terms of human evolution theory, can be viewed as a random change to DNA. GAs use a tactic similar to mutation, in that they randomly change some characteristic of the child population. If mutation is not performed, the child population might end up looking very similar to the parent population. This might lead the algorithm to a local minimum and thus make it less robust. Hence, once a child population is obtained, the GA randomly makes a small change in some properties of the children. Mutation ensures that the design space is searched extensively before converging to optimum solutions. Step 3 in Figure 3.5 explains the mutation step by randomly flipping a ‘0’ to ‘1’ at a random location in a new design. The idea is, if the steps of selection and crossover and mutation process are repeated over a number of generations, the latest generation of designs will be stronger than the starting population and hence it will be closer to satisfying the objectives. GAs repeat this selection-crossover-mutation process until a termination criterion is reached. The termination criterion can be set to maximum number of iterations or to a specific value of objective functions. Figure 3.6 shows a flowchart explaining steps in a GA and complete schematics of a GA. Please note that the above description of GA is a very simplistic one and actual implementation of GAs is usually much more complex. There are many articles/books such as [6, 7 and 8] that describe the mathematical and implementation details of a GA.

[image: Images]

FIGURE 3.5 Typical steps in a genetic algorithm.

[image: Images]

FIGURE 3.6 Schematic of a typical implementation of genetic algorithm.

There are many reasons why GAs are very popular in today’s optimization community.

To start with, GAs are considered very “robust” in finding global optimum solutions. As opposed to this, derivative based algorithms have a high chance of getting stuck in a local optimum. While one can never be sure if the solution obtained is a local or a global optimum, a GA has fewer chances to get stuck in local optimum solutions. However, derivative based strategies are considered very fast as compared to GAs, while GAs are known to require large number of function evaluation.

Another big advantage of a GA is that it can be easily adapted to handle multiobjective problems while it is little more difficult to adapt a derivative based algorithm to handle multiple objectives.

Derivative based algorithms also need a lot of parameter tuning during optimization. For example, one has to accurately adjust the step size to calculate finite differences. If this is not set correctly, optimization might take a long time to converge or worse, it can even diverge from the optimum solution. For GAs, there are a lot of possible combinations of different settings for crossover, mutation, etc. However, once a GA is implemented, it is not mandatory to tune these parameters. The same algorithm can be used for many different problems. Hence, GAs do not require much parameter tuning.

GAs do have some disadvantages as well. Because of their slightly random nature, GAs take more time to converge to optimum solutions as compared to a derivative based algorithm. GAs are very good at exploring the space and finding the region where an optimum design can be found. Once they find the region, they are however very slow in converging to the actual optimum solution. Hence, GAs require a large number of design evaluations. This is a major drawback in using a GA for practical applications. To overcome this limitation, surrogate-modeling techniques are often used. The next sections discuss surrogate modeling in more details.

3.4 INTRODUCTION TO SURROGATE MODELING

Real world engineering problems are much more complex than the mathematical optimization problems. To start with, they are often multiobjective in nature and they also have many constraints. Also, it is very difficult to represent a real world problem in simple mathematical equations such as the beam example described earlier. In order to solve the real world problems, it is often the case that we need to use computationally intensive methods such as finite element methods (FEM), computational fluid dynamics (CFD), etc. There are many commercial simulation tools available to model and simulate such analysis. They can usually be far more computationally expensive than a set of simple mathematical equations.

Although such FEM/CFD solutions are very useful and widely used, the primary difficulty in using these tools in optimization process is that they are computationally very expensive. For example, a typical CFD analysis can easily take anywhere between a few hours to even a few days for solving a single simulation. This is even when running on high performance computing cluster of a large number of CPUs. To optimize such problems is an extremely resource intensive task because optimization involves iterations and often requires evaluation of hundreds if not thousands of designs depending on the size of the problem (which is often measured in terms of number of design variables). If one design evaluation takes, e.g., 24 h, it is impractical to run hundreds or thousands of such evaluations during optimization.

Surrogate modeling techniques are often used to tackle such problems. Automatic algorithm-based optimization removes the trial and error approach by automating the process of finding the best solution in much less time through the use of intelligent search. Even though automatic direct optimization is effective in terms of number of function evaluations, it is also possible to reduce the total clock time and computational expense required, especially when dealing with computationally expensive simulation processes. In this case, virtual or surrogate model based optimization is a valid and good alternative strategy. It can use a surrogate model in place of expensive simulation software, thus allowing to fast-track the optimization process and get similar outcome.

A surrogate model is also known as response surface models (RSM) or metamodel or transfer function or in very simple terms an approximation model. They are mathematical models that approximate the input/output behavior of the system under investigation. Starting from a dataset of a limited number of designs, an RSM algorithm creates a mathematical approximation of the actual model and using this, it can predict the output value of any unknown input combination.

In simple terms, creating a surrogate model can be viewed as fitting a curve to an existing dataset of discrete points. Consider an example of an output (y) dependent on an input (x). The mathematical relation between x and y, to express it in terms of y=f(x), is not known. Actual physical experiments are performed to get observations of y based on set values of x. Five such experiments have been performed with input variable (x) set to different values from x1 to x5. The respective values of y ranging from y1 to y5 have been obtained. The five experiments are called as ‘data points.’ These data points are plotted as Blue bubbles in Figure 3.7. The aim of generating a response surface is to fit a mathematical function to model the curve passing through the data points such as the one shown in Figure 3.7. Once a mathematical function is obtained, it is possible to evaluate y when, e.g., x = x6, without the need to perform the actual experiment again. One can simply use the curve and interpolate the values of y for any given x. This saves tremendous amount of time and efforts while evaluating new designs. One can imagine the computationally heavy and high fidelity FEA or CFD models/simulations to be similar to physical experiments, and one can benefit by creating a simple mathematical approximation model based on what can be called as computer experiments (simulations) of few design points. This mathematical function can be used as a substitute for the actual heavy simulation (e.g., FEA/CFD) during optimization studies. Notice that here we have used the mathematical function as a surrogate (substitute) for the actual simulation. Hence, the name ‘surrogate modeling’ is being used. While CFD and FEM codes are models of reality, a surrogate model can be seen as model of a model within the bounds of experiments. When using surrogate models, the process is to predict the value of outputs based on current inputs without running the high fidelity model. Hence, there will always be some error in values calculated by surrogate models and values obtained after running high fidelity CFD/FEM simulations. As long as the error is small or within acceptable limits, it is feasible to use a surrogate model. If the errors are too high, it is advisable to first improve accuracy of the surrogate models before using them for any further studies. There are a number of ways of increasing accuracy of the surrogate models as described in Ref. [13], although this section does not cover them in detail.

[image: Images]

FIGURE 3.7 Curve fitting (RSM/Surrogate model generation).

RSM accuracy depends on several factors: the complexity of the output variation, the number of points in the original training set and the choice of the type of RSM. As an example, Figure 3.8 shows an RSM using the same data used in Figure 3.7, but with different algorithms to fit a curve to the data-set. Figure 3.8(a) shows that if a very simple approximation such as linear regression is used, it might not capture the information correctly resulting in ‘underfitting.’ On the other hand, if a very high order polynomial is used, it might result in ‘overfitting’ problem. In case of ‘overfitting’ Figure 3.8(b), the algorithm results in a fit with increased non linearity than the original model. It can be seen as a curve with unnecessary peaks and valley which might result in incorrect predictions of the output variables. Please note that the example described using Figures 3.7 and 3.8 contains one output and one input. However, it is possible to create a surrogate model for an output based on any number of inputs. For example, Figure 3.9, which looks very similar to Figures 3.7 and 3.8, contains two plots of surrogate models for cost and deflection respectively from the beam optimization example described earlier in the chapter. Both these models are based on two variables, height and width. The black dots seen in each chart are data points, which are used to create this approximation surface. A total of 500 data points are used to create this surrogate model. A “3D surface” was modeled/fit to these data points. The continuous surfaces, which can be seen in both figures, are in principal, similar to the curve fit in Figure 3.7. Note that it is also possible to create a surrogate model based on more than 2 input variables. In that case, however, it becomes very difficult to visualize the response surface.

[image: Images]

FIGURE 3.8 Underfitting and overfitting in RSMs.

3.5 DIFFERENT SURROGATE MODELING TECHNIQUES

As is the case with optimization algorithms, there are many algorithms to create surrogate models. They range from simple regression models such as linear or quadratic equations to more sophisticated ones such as Artificial Neural Networks (ANN) [14, 15 and 16], Kriging [17, 18], radial basis functions (RBF) [19, 20 and 21] are some more examples of different surrogate modeling techniques. Many commercial tools such as MATLAB [10], modeFRONTIER [9] offer at least a few of these algorithms. It is advisable to create multiple RSMs for the same output variable using different algorithms and validate them one against another in order to select the best one, i.e., the RSM which best approximates the system analysis model. Figure 3.10 shows a response surface created for deflection variable in the beam optimization problem using a linear first order polynomial algorithm. The black dots represent real design points similar to Figure 3.9. It can be clearly seen that the polynomial response surface does not represent a very accurate approximation to the outputs.

It must be noted that, it is a very important and essential step to always check quality of surrogate model before making any further use of it. This is because if the quality of the model is not good, there are high chances that the predicted values will be way off than actual values for the same set of inputs and it is likely to produce not so useful results during optimization.

[image: Images]

FIGURE 3.9 Cost and deflection surrogate models and data points used to create the models.

[image: Images]

FIGURE 3.10 Example of a bad surrogate model.

If the quality of obtained RSM is unsatisfactory, there are many methods that can be adopted to improve its accuracy. Generating a well-distributed set of data points in the first place is a commonly used technique to obtain an accurate surrogate model. Generating more number of data points is one method, choosing a different type of algorithm is another one. There are also special algorithms called adaptive RSM algorithms where data points are iteratively added where the RSM error is high [22].

A few surrogate-modeling techniques are described briefly below.

3.5.1 POLYNOMIAL REGRESSION

As described in [23], a second order polynomial regression metamodel can be represented as:

[image: Images]

In optimization, the smoothing capability of polynomial regression allows quick convergence of noisy functions [24]. There are many drawbacks when applying Polynomial Regression to model highly nonlinear behaviors. Using higher-order polynomials for problems with a large number of design variables may lead to instabilities [25]. Also, it may be too difficult to take sufficient sample data to estimate all of the coefficients in the polynomial equation in case of large dimensional problems.

3.5.2 KRIGING

Kriging is a Bayesian methodology named after professor Daniel Krige, which is the main tool for making previsions employed in geostatistics, e.g., for soil permeability, oil and other minerals extraction etc. The Kriging behavior is controlled by a covariance function, called a variogram, which rules how the correlation varies between the values of the function at different points. Kriging is particularly suitable for highly nonlinear responses and for virtual optimization. The Kriging is a computationally intensive method, so it could be slow or fail to converge on large datasets (>1000). For details on Kriging algorithm, the reader is referred to Refs. [17, 18].

3.5.3 RADIAL BASIS FUNCTIONS

Radial basis functions are a powerful tool for multivariate scattered data interpolation. Scattered data means that the training points do not need to be sampled on a regular grid. A radial basis function (RBF) is a real-valued function whose value depends only on the distance from the origin, so that

[image: Images]

or alternatively on the distance from some other point c, called a center, so that

[image: Images]

Radial basis functions are typically used to build up function approximations of the form

[image: Images]

TABLE 3.1 Radial Basis Functions With Expressions

	Function Name

	Expression

	Gaussian

	[image: Images]

	Hardy’s Multiquadrics

	[image: Images]

	Inverse Multiquadrics

	[image: Images]

where the approximating function y(x) is represented as a sum of N radial basis functions, each associated with a different center xi, and weighted by an appropriate coefficient wi. A set of commonly used Radial Functions are writing r = (||x − xi ||).

3.5.4 EVONN ALGORITHMS

Evolutionary algorithms can also be used to train surrogate models more accurately. Evolutionary neural networks (EvoNN) are good examples of this. Although ANNs are very powerful and are used for solving a variety of problems, they still have some limitations. One of the most common limitations in ANN is associated with training the network. Usually a back-propagation algorithm is used for training the network. However, the back-propagation learning algorithm might converge to a local optimum. In real world applications, the back-propagation algorithm might converge to a set of sub-optimal weights from which it cannot escape. Hence, the ANN is often unable to find an accurate fit to the data. Another difficulty in ANNs is related to the selection of proper architecture of the network. The number of hidden layers in a neural network and also the number of neurons in each hidden layer is usually decided by intuition, experience or some previously set rules. In EvoNN algorithms, GAs are used to train the neural network instead of the standard back propagation algorithms. This helps avoid neural network getting stuck in a local optimum and hence increase its accuracy.

3.6 SURROGATE-ASSISTED EVOLUTIONARY ALGORITHMS

All steps described in previous sections can be put together into a surrogate-assisted optimization procedure. Figure 3.11 describes this optimization procedure. The first step is to generate a starting population or design samples using a suitable DoE technique. The DoE generation step involves creating different combination of input variables, which are well spread across the design space. Once the design samples are generated, the next step is to use these designs and run the analysis codes to generate output values for each DoE sample. After completing the DoE runs, the next step is to create response surfaces for each output using these data points. It is always better to create response surfaces using many different algorithms and select the best among them. Checking accuracy is a good way to select the best RSM.

[image: Images]

FIGURE 3.11 General optimization procedure using surrogate models.

If no RSM is accurate enough, the DoE data can be modified and more design points can be added/removed to improve accuracy. Good quality RSMs can be used as surrogate models during optimization. Many optimization algorithms can now be used to perform optimization. Once the optimization is finished, a few designs are selected from the best designs (Pareto optimal designs). Once these designs are selected, the real analysis can be run and the results can be validated. If the difference between outputs from real analysis and from surrogate model runs is small, the solutions are considered good. If the difference is large, it signals a need to check accuracy of surrogate models and rerun optimization.

Note that this is just one possible and quite commonly used procedure in surrogate-assisted optimization. Usually the surrogate model-building step has to be done manually. Recently, a lot of research has been focused on surrogate-assisted evolutionary computing methods. Loshchilov [27] highlights the growth in research publications on surrogate models and surrogate-assisted evolutionary computing methods. It is mentioned that, while the number of publications per year on surrogate-assisted evolutionary algorithms was in order of 10 s in 1990 s, it has grown to the order of 1000 s in 2012, representing the growing amount of attention being given to the field. Ong et al. [28] report various versions of surrogate-assisted evolutionary computing methods for engineering optimization problems. Ratle [29] proposes the use of Kriging interpolation for function approximation in order to speed up evolutionary optimization. El-Beltagy [30] also propose a similar framework combining Gaussian processes with evolutionary algorithms. Jin et al [23] present an approach to combine neural networks with evolutionary strategies and also compare the results using academic as well as real world problems. The RBF surrogate-assisted co-evolutionary search procedure as described in Ref. [31] is an attempt to tackle the ‘curse of dimensionality,’ which hampers the accuracy of surrogate modeling. Ong et al. [32] present an approach to combine local surrogate models based on radial basis functions to speed up evolutionary optimization search. Multivariate adaptive cross-validating Kriging (MACK) and Lipschitz [22] approaches available in modeFRONTIER [9] are aimed towards improving quality of surrogate models. These algorithms are capable of detecting regions of non-linearity in a response and intelligently add new design points in these regions so as to quickly improve surrogate model accuracy. A hybrid approach of combining various metamodel techniques with strength Pareto evolutionary algorithm (SPEA2) is described in Ref. [33]. The approach is also applied to various structural optimization problems to demonstrate the effectiveness. Although there has been considerable research in this field for several years, most of it focuses on small-scale problems (upto 10–15 design variables). Liu et al. [34] propose a Gaussian process surrogate model assisted evolutionary algorithm for medium-scale (i.e., 20–50 design variables) computationally expensive optimization problems. In order to tackle the curse of dimensionality, dimensionality reduction techniques are applied before building surrogate models [34]. The importance of managing surrogates is emphasized to prevent the evolutionary algorithms from being misled to a false optimum that can be introduced in a surrogate [35]. Sun et al. [36] have proposed a surrogate-assisted interactive genetic algorithm to handle uncertainties in fitness assignment by human beings. A surrogate-assisted mimetic co-evolutionary algorithm to handle expensive constrained optimization problems is presented in Ref. [37]. A cooperative co-evolutionary mechanism is adopted as the backbone of the framework to improve the efficiency of surrogate-assisted evolutionary techniques. The idea of random problem decomposition is introduced to handle interdependencies between variables, eliminating the need to determine the decomposition in an ad-hoc manner. Gambarelli and Vincenzi [38] propose an algorithm for dynamic structural identification problems. They combined robustness of differential evolution (DE) strategy with computation efficiency using a second-order surrogate approximation of objective function. Ray and Smith [39] put forward a surrogate-assisted evolutionary algorithm combining RBF metamodels with GAs.

3.6.1 ADAPTIVE RSM BASED OPTIMIZATION

Rigoni et al. [40] presented the idea of automatic adaptive RSMs used for evolutionary computing. The approach is capable of combining any of the polynomial regression, Kriging, RBF and ANN metamodeling techniques with evolutionary algorithms such as MOGA-II, NSGA-II, MOSA, etc. A brief description of the implementation of algorithm in commercial software modeFRONTIER [9] is given below. The process of generation of RSM and optimization as well as validation can be iterated in an automated way by using FAST optimization algorithms as described in the Ref. [40]. At every iteration, new designs evaluated by real optimization are used for creating new training points for RSM. This method helps in generation of accurate metamodels in an automated and adaptive way.

In an iterative loop, after evaluation of DoE, RSMs are created on the evaluated design database. The RSM is used for function evaluation for a complete optimization run. Few good solutions are selected from the optimization run and these designs are evaluated using the real function evaluation. Next step in the iterative loop is to virtually explore region around the obtained real Pareto optimal designs. Some points are also selected from the virtual exploration phase to form the new validation set. The validation set, which consists of points picked from optimization run and exploration run are appended to the previous real runs to form the training set for RSM. Hence, every iteration the RSM keeps improving not just in the optimal zone but also in the overall design space to cover global search. Thus in each iteration better designs are obtained, continuing till the algorithm reaches total number of generations. In mode-FRONTIER [9], such an adaptive RSM based strategy combined with various optimization algorithm is called FAST. For example, FAST strategy combined with MOGA-II optimizer will be termed FMOGA-II (FAST-MOGA-II).

To demonstrate the effectiveness of this automatic adaptive RSM technique, a connecting rod optimization problem is taken as an example case as described in Figure 3.12. Commercial tools ANSYS [41] and modeFRONTIER [9] have been used for structural analysis and optimization respectively. Figure 3.14 shows the history of optimization run in a two dimensional scatter chart with the design number plotted on a color scale. Newer designs are depicted by red color while earlier designs are closer to blue color. As can be seen from Figure 3.13, the combination of surrogates and evolutionary algorithm FMOGA-II (FAST-MOGA-II) is able to find a much better solution in just 600 total evaluations as compared to the ones found by traditional MOGA-II in 1500 iterations.

[image: Images]

FIGURE 3.12 Connecting Rod Optimization.

[image: Images]

FIGURE 3.13 Comparison of results from surrogate-assisted evolutionary algorithm and evolutionary algorithm.

3.7 EXAMPLE PROBLEM

Figure 3.14 shows a three bar planar truss hinged at node 1. It is constrained in y direction at node 2 and constrained at 45° angle at node 3. A constant force of 1000kN is applied at node 2 in horizontal direction. Modulus of elasticity of the material is 210GPa. Elements 1 and 2 are of length 1 m each while element 3 has a length of 1.41 m. The lengths of all elements are fixed. Each element has a rectangular cross-section. The width and breadth of every member of the truss can vary between 0.01 m to 0.06 m. The objective is to find the width and breadth of each element so that the mass of the truss is minimized and the displacement at node 2 is also minimized.

[image: Images]

FIGURE 3.14 Planar truss optimization problem.

The CD with this book contains a solution to the above planar truss optimization problem. It contains an excel sheet which will guide you step by step through the optimization procedure described in Figure 3.11. Learners are suggested to try creating different DoEs, RSMs and optimizing the problem so that you can understand the optimization procedure.

3.8 CONCLUSION

This chapter has reviewed basics of single and multiobjective optimization as well as the concept of a Pareto Optimal Frontier. The concept behind evolutionary algorithms and Genetic algorithms in particular has been discussed. The notion of surrogate models as well as the need for surrogate modeling and different types of surrogate modeling techniques has been described. An extensive review of current applications of surrogate-assisted evolutionary algorithms is presented. Finally, an adaptive RSM based optimization algorithm is described in more details and results are compared with a traditional evolutionary algorithm.

In future, attention could be focused on reviewing the application of surrogate-assisted evolutionary algorithms for real world problems. Also, emphasis has to be given to create more accurate surrogate models with fewer samples in order to reduce the computational effort as well as to increase the reliability of the algorithms.

KEYWORDS

	multiobjective optimization

	Pareto Optimal Frontier

	single optimization

REFERENCES

1. Sobieszczanski-Sobieski, J., “A linear decomposition method for optimization problems – blueprint for development.” NASA TM 83248, Feb. 1982.

2. Vanderplaats, G. N., “Numerical optimization techniques for engineering design: With applications.” Vol. 1. New York: McGraw-Hill, 1984.

3. Powell, M. J. D., “A fast algorithm for nonlinearly constrained optimization calculations,” in: G. A. Watson (Ed.), Numerical Analysis, Dundee, Springer-Verlag, Berlin, 1977, pp. 144–157.

4. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation, April 2002, 6(2), 182–197.

5. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. “Optimization by simulated annealing.” Science 1983, 220(4598), 671–680.

6. Reyes-Sierra, M., & Coello, C. A. C., “Multiobjective particle swarm optimizers: A survey of the state-of-the-art.” International Journal of Computational Intelligence Research, 2006, Vol. 2, No. 3, pp. 287–308.

7. Poles, S., Rigoni, E., & Robic, T., “MOGA-II performance on noisy optimization problems.” International Conference on Bioinspired Optimization Methods and their Applications, Ljubljana, Slovenia. 2004.

8. Goldberg, D. E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley, Reading Mass, USA, 1988.

9. modeFRONTIER. http://www.esteco.com/ (accessed March 25, 2015).

10. MATLAB. http://in.mathworks.com/ (accessed March 25, 2015).

11. Rigoni, E., & Poles, S. “NBI and MOGA-II, two complementary algorithms for Multiobjective optimizations.” Practical Approaches to Multiobjective Optimization, 2005 (04461).

12. Vincent, T. L., “Game theory as a design tool.” Journal of Mechanical Design, 1983, 105(2), 165–170.

13. Xue, Z. L. R., Rigoni, E., Parashar, S., & Kansara, S., “RSM improvement methods for computationally expensive industrial CAE analysis.” 10th World Congress on Structural and Multidisciplinary Optimization, May 19–24, 2013, Orlando, Florida, USA.

14. Hagan, M. T. A. M., “Training feed forward networks with the Marquardt algorithm,” IEEE Trans. on Neural Networks, 1994, Vol. 5(6).

15. Haykin, S., “Neural Networks—A comprehensive foundation.” Prentice Hall International Editions, 1999.

16. Nguyen, D. A. W. B., “Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights.” IJCNN International Joint Conference on Neural Networks, San Diego, CA, USA, 1990.

17. Matheron, G., “Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature.” Masson, Paris, France, 1965.

18. Rasmussen, C. E. A. W., “Gaussian processes for machine learning,” MIT Press, 2006.

19. Buhmann, M. D., “Radial basis functions: Theory and implementations.” Cambridge University Press, Cambridge, UK, 2003.

20. Iske, A., “Multiresolution methods in scattered data modeling.” Springer-Verlag Berlin Heidelberg, 2004.

21. Wendland, H., “Scattered data approximation,” Cambridge University Press, 2004.

22. Alberto, L. E. R., “Adaptive sampling with a Lipschitz criterion for accurate metamodeling.” Communications in Applied and Industrial Mathematics 2010. 1, No. 2, DOI: 10.1685/2010CAIM545.

23. Jin, R., Chen, W,, & Simpson. T. M., Comparative studies of metamodeling techniques under multiple modeling criteria. Structural and Multidisciplinary Optimization 2001, 23(1), 1–13.

24. Giunta, A. A., Dudley, J. M., Narducci, R., Grossman, B., Haftka, R. T., Mason, W. H., & Watson, L. T., “Noisy aerodynamic response and smooth approximation in HSCT design,” Proceedings Analysis and Optimization (Panama City, FL), Vol. 2, AIAA, Washington, DC, 1994, pp. 1117–1128.

25. Barton, R. R., “Metamodels for simulation input-output relations,” Proceedings of the 1992 Winter Simulation Conference (Swain, J. J., et al., eds.), Arlington, VA, IEEE, 1992, December 13–16, pp. 289–299.

26. Queipo, N. V., Haftka, R. T., Shyy, Wei, Goel, T, Vaidyanathan, R, Tucker, P. K., “Surrogate-Based Analysis and Optimization.” Progress in Aerospace Sciences 2005, 41, 1–28.

27. Loshchilov, I. “Surrogate-sssisted evolutionary algorithms. optimization and control.” Universite Paris Sud—Paris XI; Institut national de recherche en informatique et en automatique—INRIA, https://tel.archives-ouvertes.fr/tel-00823882/document, accessed on March 25, 2015.

28. Ong, Y. S., et al., “Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems.” Knowledge incorporation in evolutionary computation. Springer Berlin, Heidelberg, 2005, 307–331.

29. Ratle, A., Kriging as a surrogate fitness landscape in evolutionary optimization.” AI EDAM January 2001, Vol. 15, Issue 01, pp. 37–49.

30. El-Beltagy, M. A., & Keane, A. J. “Metamodeling techniques for evolutionary optimization of computationally expensive problems: Promises and limitations.” Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), Orlando, USA, 13–17 Jul 1999.

31. Ong, Y., Keane A. J., & Nair P. B., 2002, “Surrogate-assisted co-evolutionary search.” Neural Information Processing, 2002. ICONIP’02. Proceedings of the 9th International Conference on. Vol. 3. IEEE.

32. Yew S, O., Nair P. B., & Keane A. J., “Evolutionary optimization of computationally expensive problems via surrogate modeling.” AIAA Journal 2003, 41(4) 687–696.

33. Kunakote, T., & Sujin Bureerat, “Surrogate-assisted multiobjective evolutionary algorithms for structural shape and sizing optimization.” Mathematical Problems in Engineering, 2013.

34. Liu, B., Qingfu Zhang, & Georges Gielen, “A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems.” IEEE Transactions on Evolutionary Computation, April 2014, Vol. 18, No. 2, pp. 180–192.

35. Jin, Y. “A comprehensive survey of fitness approximation in evolutionary computation.” Soft Computing 9(1), 3–12.

36. Sun, X., Gong, D., & Jin Y., “A new surrogate-assisted interactive genetic algorithm with weighted semisupervised learning.” IEEE Transactions on Cybernetics 2013, 43(2), 685–698.

37. Goh, C. K., Lim, D., Ma, L., Ong, Y. S., & Dutta, P. S., “A surrogate-assisted mimetic co-evolutionary algorithm for expensive constrained optimization problems.” IEEE Congress on Evolutionary Computation (CEC), 5–8 June 2011, New Orleans, LA.

38. Gambarelli, P., & Vincenzi, L. “A surrogate-assisted evolutionary algorithm for dynamic structural identification.” Engineering Optimization 2014, 93–98, DOI: 10.1201/b17488-18.

39. Ray, T., & Smith W., “Surrogate-assisted evolutionary algorithm for multiobjective optimization.” Engineering Optimization, 2006, Vol. 38, Issue 8, pp. 997–1011.

40. Rigoni, E., Metamodels for fast multiobjective optimization: Trading of global exploration And local exploration, simulated evolution and learning,” 8th International Conference, SEAL 2010, Kanpur, India, December 1–4, 2010.

41. ANSYS. Available from: http://www.ansys.com/ (accessed March 25, 2015).

CHAPTER 4

EVOLUTIONARY ALGORITHMS IN IRONMAKING APPLICATIONS

TAMOGHNA MITRA,1 HENRIK SAXÉN,1 and NIRUPAM CHAKRABORTI2

1Thermal and Flow Engineering Laboratory, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland

2Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, 712 302, West Bengal, India

CONTENTS

4.1 Background

4.2 Ironmaking Process

4.2.1 History

4.2.2 Modern Ironmaking

4.2.3 Process Optimization

4.3 Process Units

4.3.1 Blast Furnace

4.3.2 Rotary Kiln

4.4 Soft Computing Techniques

4.4.1 Artificial Neural Networks

4.4.2 Evolutionary Algorithms

4.4.2.1 Evolutionary Neural Network Algorithm

4.4.2.2 Genetic Programming

4.4.2.3 Differential Evolution

4.5 Applications in Ironmaking

4.5.1 Modeling of Silicon Content in Hot Metal

4.5.2 Optimization of Burden Distribution in Blast Furnace

4.5.3 Optimization of Production Parameters

4.5.3.1 Carbon Dioxide Emissions

4.5.3.2 Coal Injection

4.5.4 Estimation of the Internal Hearth Profile

4.5.5 Optimization of the Performance of a Rotary Kiln

4.6 Conclusions and Future Prospects

Acknowledgements

Keywords

References

4.1 BACKGROUND

Iron is probably the single most important metal for the world’s industrial economy. In nature iron is mostly available in the form of oxides (mainly hematite, Fe2O3, and magnetite, Fe3O4) or hydroxides (Fe(OH)x). Ironmaking refers to a number of processes, which are implemented for extracting metallic iron from these oxides, predominantly using a reductant like carbon mon-oxide. In order to cater to the various applications of this metal, the metallic iron is often alloyed with other elements, which can improve properties specific for an application. These alloys are known as steel and the process is called “steelmaking.” Typically, steel is an iron-carbon alloy of variable composition, where other alloying elements are added to obtain various useful properties. For example, to improve the corrosion resistance, chromium is added to iron and the product is commercially available as stainless steel. World average steel use per capita has been steadily increasing. In the last decade it has increased from 150 kg in 2001 to 225 kg in 2013 [58].

Increasing global competition and a need for a relatively pollution free production now necessitates considerable optimization tasks in the ferrous industry. The application of classical optimization routines is, however, often cumbersome and sometimes impossible for a real-life ironmaking process, due to their inherent complexity. Although first principles models have been applied in such optimization [40], they have proven to have several limitations for this use, and optimization in tandem with data-driven modeling is increasingly emerging as powerful alternate [22]. In this context biologically inspired genetic and evolutionary algorithms [56] play a major role. This chapter aims to provide a state-of-the-art overview of the use of evolutionary techniques for optimization of ironmaking. In the next section the background of the ironmaking process is presented. The section contains a brief description of the history of the process and some facts about the modern process. Next, a brief description of different optimization methods applied to the ironmaking process is provided. Subsequently, the major process units in the ironmaking process, which form the focus of optimization, are described, followed by a presentation of various applications pertaining to evolutionary algorithms. Finally, conclusions are drawn regarding the studies carried out in the field and some future prospects of these methods are suggested.

4.2 IRONMAKING PROCESS

4.2.1 HISTORY

Earliest ironmaking dates back to the unrecorded part of human history, and therefore the origin has been claimed by different civilizations all over the world. The earliest use of this metal was in form of weapons or tools with superior strength compared to that of bronze. Earliest ironmaking techniques involved burning of the iron ore with wood in a covered oven. It was difficult to reach the melting point of the iron, but it separated the impurities that formed a crust on the pure iron. This crust could be hammered off to get iron. The process was gradually improved by blowing in air to increase the temperature and the production rate. These furnaces were known as bloomeries and were extensively used in early industrial age. Since then the production process has been improved steadily and the use has been extensively diversified [14].

4.2.2 MODERN IRONMAKING

Reduction of iron ore in modern industries is carried out predominantly through two alternative routes. The first option is the smelting route where the ore is reduced, then the melted, and finally stored or transported to the steelmaking units for steel production. The other option is to reduce the ore in solid form using reducing gases in lower temperatures. This is called direct reduction and the end product is known as Directly Reduced Iron (DRI).

The blast furnace route is one of the most important ironmaking smelting techniques and has existed for more than 500 years and accounts for about 70% of the iron used for crude steel production, which was 1164 million tons in 2013. This showed a 73% increase from the 669 million tons in 2003 [59, 60]. The most important reason for the success compared to alternative techniques has been fuel efficiency, productivity and scalability of the process. There are about 21 furnaces in the world, which have a volume of more than 5000 m3 and the largest of them till date is at POSCO, South Korea, with a volume of 6000 m3 and annual production capacity of 5.48 million tons of pig iron [21]. The other and more recent alternatives of producing liquid iron from ore include the COREX, FINEX and Hismelt processes [28], which are steadily finding their niche in ironmaking smelting techniques. It should be stressed that the remaining 30% of the steel production mostly uses recycled steel scrap or DRI as feed material. Midrex, HYL and Rotary kiln are the most important choices for producing DRI [14]. In 2013, world DRI production amounted to 70 million tons 2003 [60].

4.2.3 PROCESS OPTIMIZATION

The operation of an ironmaking blast furnace is extremely challenging due to complex interactions between different concurrent physical and chemical processes, but there are a limited number of variables, which may be directly influenced by the operator. With increasing demand of steel in the world, higher quality requirements and decreasing availability of resources, increasing material costs and enormous environmental challenges, optimization of different parameters involved in the process in parts and in entirety becomes extremely important for achieving an efficient production of good quality steel.

The earliest optimization methods applied to the process were seen in the late 1950 s [12] for optimizing the production sequences in an integrated steel plant. Until this time very little was known about the conditions inside a blast furnace during operation, but a series of dissections of quenched furnaces in Japan provided a deeper understanding which led to the development a large number of mathematical models [38].

In the next decades along with the advent of computers, modeling became an increasingly important tool for scientists to gain a deeper understanding of the various interrelated and extremely complicated processes involved in the production of iron and steel. Most of the early work was based upon analytical closed-form expressions, which required extensive derivation and computation and were not well suited for optimization. Interestingly, some of the problems still remain for advanced modeling techniques, such as discrete element modeling, DEM, which require computationally prohibitive efforts [2].

However, by the early 1990 s a large number of soft computing techniques, such as Artificial Neural Networks and fuzzy logic, were used to describe ironmaking processes. These models provided decent accuracy and were computationally tractable and could, furthermore, address the strong nonlinearities of the process [18].

In the later years, raw material shortages and awareness about the climate change threat caused by carbon dioxide emissions became key drivers for the industry to focus intensely on operating at high efficiency and low carbon rate. The evolutionary algorithms were already being used for various real life problems in the domains of classification, fuzzy controllers, scheduling, etc. By the turn of the century as the computational hardware grew more powerful, computationally demanding optimization techniques like those of evolutionary algorithms were being increasingly used to solve problems in industry. Evolutionary algorithms provide a distinct advantage over other optimization techniques due to their versatility and simplicity. The biggest issue with the gradient-based methods is that they, by contrast to evolutionary algorithms, do not work on non-differentiable cases, which form a big section of the real life problems and they cannot efficiently tackle problems with multiple minima. Evolutionary approaches may also be used for multiobjective optimization, where more than one objective should be optimized simultaneously, and the strategies that are available for this purpose are now very efficient and far less cumbersome than the existing gradient based methods [7, 29].

4.3 PROCESS UNITS

4.3.1 BLAST FURNACE

In an integrated steel plant, the main unit processes are a coke plant, one or several blast furnace, basic oxygen furnaces, reheating furnaces and a rolling mill. In addition to these, each blast furnace has a set of regenerative heat exchangers for heating the combustion air (termed “blast”) and the steelmaking site also has a power plant where residual gases are burned to produce power (and heat). These residual gases are mainly coke oven gas, blast furnace gas and basic oxygen furnace gas, part of which is used for internal heating of hot stoves, for ladle preheating and for steel slab reheating purposes [62].

The blast furnace is a counter current heat exchanger for smelting of iron oxide using an oxygenated blast. Figure 4.1 shows the cross-section of a typical blast furnace. The raw materials, i.e., iron ore (often in preprocessed form, as sinter or pellets), coke and limestone are charged into the furnace from the top. The iron ore, which is mainly hematite (Fe2O3) is reduced mainly by the ascending CO produced when the charged coke is oxidized by the hot blast in the lower part of the furnace. The reduction of iron ore occurs in three steps to obtain the final hot metal, which mainly consists of liquid metallic iron.

[image: Images]

FIGURE 4.1 Cross-section of a typical blast furnace.

[image: Images]

Production of a ton of hot metal requires about 500 kg of reductants, of which coke is the major part. Coking coal is the second most expensive component of the raw materials after iron ore [53]. To reduce the amount on coking coal, hydrocarbons, such as pulverized coal, plastic, oil etc., are injected into the furnace along with the hot blast.

The components of the raw materials are charged in the form of layers. These layers slowly descend into the furnace as they are “consumed” (melted, gasified, or combusted) in the lower parts of the furnace. The burden distribution plays a major role for a smooth operation of the furnace [47]. At the center of the lower parts of the furnace a “deadman” of slowly reacting and dissolving coke is formed. This coke bed, which sits in a pool of molten slag and hot metal, supports the upper burden layers. The hot metal and the slag are tapped at regular intervals. The slag is usually cooled and sold as a byproduct for cement industries, insulation etc. [13], whereas the hot metal is transported to the steel shop to be post processed further.

4.3.2 ROTARY KILN

Rotary kiln furnaces (Figure 4.2) are used for producing DRI using reducing gases, mainly carbon monoxide and hydrogen. The raw materials mainly consist of iron ore and coal, which are fed continuously from one end and the DRI is discharged from the other end of the cylindrical reactor. Air is introduced into reactor and reacts with the coal to produce the reducing gases. The cylinder rotates around its axis and mixes the content in the furnace.

[image: Images]

FIGURE 4.2 Left: Schematic of a rotary kiln. Right: Cross-section of the cylinder.

4.4 SOFT COMPUTING TECHNIQUES

4.4.1 ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANN) are computational tools inspired by the action in biological nervous systems, where neurons are the basic decision making entities (Figure 4.3). ANN, which can be for function approximation, classification, data processing, pattern recognition, control, is a very good tool for creating data-driven computational models of complex systems.

In nature the neurons distribute electrical pulses along their connections and transfer information to their neighboring neurons, if the received impulse exceeds a certain threshold. Similarly, computational neuron (i) transmits a signal (yi), which is a function of the accumulated incoming signals (yi). The action of a node can be represented mathematically as

[image: Images]

where the input is a weighted sum of external inputs or outputs from other nodes.

[image: Images]

Weights of an input xj to node i are denoted by wij. The activation function fj may be any function, e.g., linear, piecewise linear, sigmoidal, etc. The output from a node can serve as output from the system to the environment or as an input to node in the next layer, together forming a network as illustrated in Figure 4.4. The input and the output layers correspond to the set of nodes, which receive the input signals to and generate the output signals from the system. The layers between these two layers communicating with the environment are called “hidden layers.” Each such layer receives as inputs the output signals from the previous layer and transmits the outputs to the next layer. The number of nodes in the hidden layers, as well as the number of hidden layers, are internal model parameters which affect the performance of the network. The weights of all connections and the activation functions and biases of all nodes together define the ANN.

[image: Images]

FIGURE 4.3 Left: Computational neuron i. Right: Biological neuron.

For example, the simple networks shown in Figure 4.5 realize an AND and an OR operation between two inputs, x1 and x2, described in Table 4.1. In this network n = 1, i = 3 and therefore y = x3. The activation function for the output node (node 3) is in this case a threshold function defined by h, the Heaviside function

[image: Images]

The values of the weights and biases in more complex networks is difficult to determine intuitively, so the networks must be “trained” by an algorithm to estimate the weights which would satisfy the goal of the task. There are several algorithms available for training neural networks. The most common of is the back propagation algorithm, which was used extensively after the publication of the paper by Rumelhart et al. [48], but higher order methods (such as the Levenberg-Marquardt method) are commonly used today because of their higher efficiency.

[image: Images]

FIGURE 4.4 Schematic of an artificial neural network.

[image: Images]

FIGURE 4.5 ANN implementation for AND (left) and OR (right) operators.

TABLE 4.1 Truth Table Showing the Working of the Networks in Figure 4.5

[image: Images]

Neural networks are good tools for function approximation. According to the universal approximation theorem proved by Cybenko [9] for sigmoid activation function, a feed-forward network with a single hidden layer containing a finite but sufficient number of neurons can approximate any continuous (twice differentiable) function to any accuracy. However, in practice the “curse of dimensionality” plagues such approximators and often makes their use problematic: As the dimensions of a problem increases the number of nodes that are required to approximate the function increases exponentially. Along with this need, the possibility of over-fitting the data, incorporating errors in the measurements and noise, increases.

4.4.2 EVOLUTIONARY ALGORITHMS

The previous chapters of this book describe the general evolutionary algorithms in detail. Therefore, only some specialized evolutionary algorithms, which have been used in ironmaking processes are described briefly in the following paragraphs.

4.4.2.1 Evolutionary Neural Network Algorithm

Pettersson et al. [41] introduced the Evolutionary Neural Network Algorithm (EvoNN), which used multiobjective genetic algorithms to achieve optimum combination of network complexity and network accuracy so that noisy data from a physical process can be represented by a neural network without the risk of over-fitting or under-fitting. The multiobjective part of the problem used an adapted version of the Predator Prey algorithm as suggested by Li [27]. Each prey in the neighborhood matrix represents a network describing a network with a certain number of nodes and the weights for each connection. The crossover operation in this algorithm involves swapping of similarly positioned hidden nodes of two individuals with a certain probability, as schematically depicted in Figure 4.6. The mutation of any weight [image: Images] of a population member m results in

[image: Images]

where [image: Images] is the mutated weight and k and l are randomly chosen population members. The extent of mutation is governed by the second half of the equation.

A fitness function (ϕp,q) is computed for predator q evaluating a prey p to decide if the prey stays alive in the next generation.

[image: Images]

where Ep is the training error of the ANN and Np is the number of active connections joining the input layer to the hidden layer. In Eq. (6) χq is a weight value attributed randomly to the predator q such that χq = [0, 1].

[image: Images]

FIGURE 4.6 The crossover mechanism in Evolutionary Neural Network.

The authors used this algorithm to train a neural network using data from an actual blast furnace operation for prediction of changes in the carbon, silicon and sulfur content of hot metal. The right panel of Figure 4.7 presents the Pareto front, expressing the minimum training error as a function of the number of weights in the networks, obtained at the end of the training. The left panel of the figure depicts the networks’ predictions and the measured changes in the silicon content for three different individuals at different positions of the Pareto front (labeled A, B and C). Each of the results fit the data to various extents and the best solution is often chosen on the basis of a desired tradeoff between goodness of fit and the complexity of model. A very sparse network (e.g., A) would execute fast but would fail to reproduce the data accurately, whereas a very dense network (e.g., C) would tend to reproduce many peaks and valleys in the data and therefore also fit noise. The choice of the network in such cases should depend much on the quality and quantity of training data.

4.4.2.2 Genetic Programming

Genetic programming [7, 45] is a powerful alternative to neural networks for creating a data-based model of any system. As mentioned above, neural networks are flexible approximators, but they are limited by the overall structure of the function. Genetic Programming (GP), on the other hand, provides the flexibility of selecting the pertinent mathematical operators for modeling a particular system [23]. GPs are similar to genetic algorithms in that they apply operators like crossover, mutation and selection, though they need to be reformulated as GP essentially uses a tree representation rather than binary or real encoding. Here the tree structure is a representation of a candidate function linking the variables in the optimization problem. Figure 4.8 represents one such possible candidate function linking the four variables a, b, c and d using the operators addition (+), subtraction (−), multiplication (*) and division (/). The aim of this optimization routine would be to find the most representative tree structure for a particular set of data points.

[image: Images]

FIGURE 4.7 Network training from Pettersson et al. [41]. Right: The Pareto front at the end of the simulation. Left: Darker lines each show the simulation results predicting the weekly change in silicon levels in hot metal using the networks from the Pareto front using three individuals A, B and C indicated in the right panel. Lighter line is the industrial measurement over a period of 200 weeks.

Each node in the tree (Figure 4.8) represents a member of the function set and the terminal nodes represent the input variables or constants. The standard crossover operation between two individuals of the population in practice means exchanging two sub-trees from each of them. Another form of crossover is height fair crossover, when the sub-trees at selected depths are exchanged. The standard mutation operator deletes a sub-tree and then grows it randomly. Small mutation operator replaces a terminal and perturbs a numerical constant in the terminal slightly. Sometimes, this operator also exchanges one of the operators with another randomly chosen operator of same parity. A mono-parental exchange operator for mutation exchanges two sub-trees belonging to the same tree. The selection technique is usually similar to that of a genetic algorithm, though a large population size and a large tournament size are usually employed and the calculations continue for a lesser number of generations, as compared to genetic algorithms. The fitness is usually evaluated as the root mean square of the error of the tree to represent the actual data.

Kovačič et al. [24] used genetic programming to predict the particulate matter (PM10) concentrations at a couple of residential areas close to a steel plant as a function of production and meteorological conditions. These factors formed the terminal nodes for each of the solutions [weekday, month, wind speed (m/s), wind direction (°), air temperature (°C), rainfall (ml), electric arc furnace efficiency (min/hour)]. The other nodes were chosen from the function set consisting of addition, subtraction, multiplication and division. The month and weekday were considered to reflect the influence of seasons and traffic, respectively. Each individual tree from a population 500 individuals was evaluated by comparing the prediction with the measured PM10 concentration. The population was then modified using some genetic operations to generate the next generation. After about 100 generations the best model was selected for the particulate matter prediction with a mean deviation of approximately 5 μg/m3.

[image: Images]

FIGURE 4.8 A typical genetic programming tree representing function (a.b) + ((5 – c)/(9 + d)).

Bi-Objective Genetic Programming (BioGP): This is a special variant of the GP proposed by [15, 16] which tackles different issues in the evolution in GP trees along with EvoNN. The problematic issues addressed include unmanageable growth of a sub-tree or growth without any improvement in accuracy. In BioGP, each tree representing a solution evolves in parts as distinct sub-trees, which are aggregated with some weights and biases. These weights and biases are optimized with a linear least square algorithm. A variable measures the performance of each sub-tree and if any of the sub-trees show issues while evolving, then they are pruned and regrown. The individual solutions are then evolved similar to EvoNN using predator-prey algorithm. The complexity of the network and the error in prediction are minimized using this bi-objective GA.

4.4.2.3 Differential Evolution

Differential evolution is an evolutionary algorithm for real coded genetic algorithm and is an algorithm with fast convergence and reasonable robustness [26, 54]. This algorithm is especially suited for problems with a large number of variables. Mapping of all the variables in binary format for binary coded GAs creates a Hamming Cliff problem [10]. This problem states that in situations where the binary coded chromosome is made of a large number of genes, any small change in the real space requires a significantly larger change in binary chromosome. Therefore, it takes larger time to obtain the solution and often makes it impossible to reach the optimal solution despite being at a near optimal scenario.

The algorithm starts with initialization of the population and then proceeds to mutation, crossover and selection. The last three steps are repeated until the population converges to minima in the objective function. The key element distinguishing differential evolution from genetic algorithms is its mutation technique. Each mutated individual [image: Images] is given by

[image: Images]

where Fm is a constant and xa and xb are randomly chosen individuals from the population. This mutation is self-adjusting in nature: If the population is very diverse, the mutation is quite large, but as the population approaches the optimum solution the mutation decreases. Fm is here a constant, which can be adjusted to expand or contract the search space.

For example, in phase equilibria research the calculation of structures of various compounds has had very far-reaching consequences. However, it is difficult to ascertain the minimum energy configuration among atoms especially for bigger molecules. The objective in such cases is to find the ground state (minimum total energy) for a system of atoms. It is a function of the sum of potentials for each pair of atoms and can therefore have a large number of variables. Thus, the optimization problem is extremely challenging but it can be readily tackled by differential evolution. Chakraborti et al. [6] used this method for evaluating the minimum energy configuration of some Si-H clusters. Figure 4.9 shows the ground state of a Si6H cluster calculated using differential evolution.

[image: Images]

FIGURE 4.9 Final configuration with minimum energy for Si6H molecule evaluated using differential evolution.

4.5 APPLICATIONS IN IRONMAKING

4.5.1 MODELING OF SILICON CONTENT IN HOT METAL

Silicon enters the blast furnace as an impurity in iron ore and coke, mainly in the form of silicates. Typically the silicon content is about 3.5% in sinter and 2% in pellets and in coke the value is 5–6% as the main component in coke ash is silica. The hot metal silicon content is an indicator of the thermal state of the process; high silicon content indicates a surplus of coke (high energy reserve) in the blast furnace. Therefore, optimum operation requires low hot metal silicon content, still avoiding cooling down the hearth, which can have catastrophic consequences. Modeling of the silicon content in the hot metal is extremely difficult because of the complexity of the silicon transfer processes and the flow conditions in the furnace hearth. A lack of direct measurements of the internal conditions in the lower furnace further complicates the modeling.

A number of data-driven models for prediction of hot metal silicon content in the blast furnace have been presented based on neural networks, fuzzy logic, support vector machines, etc. [49]. These models typically correlate the hot metal silicon with inputs such as blast volume, temperature and pressure, hydrocarbon injection levels, overall pressure loss and ore-to-coke ratio. Sheel and Deo (1999) created a linear fuzzy regression model on blast furnace data, applying a genetic algorithm to determine the fuzzy coefficients of the linear equations describing the silicon content. This method was found to be much better than the linear programming approach.

Time series approach: In the time series approach, models also consider the input values of previous time steps. This is especially important in silicon prediction, as the levels tend to be a manifestation of a large number of complex processes. In this case the silicon level is given by,

[image: Images]

where t – 1, t – 2, …, t – n are the n preceding time steps.

Pettersson et al. [41] and Saxén et al. [51] used an evolutionary neural network algorithm for creating a model from noisy data from a blast furnace by correlating the real time input variables with the silicon level measured in the hot metal. The problem of selecting model complexity and input variables were thus tackled simultaneously, and the results demonstrated that parsimonious models could be evolved by the approaches.

4.5.2 OPTIMIZATION OF BURDEN DISTRIBUTION IN BLAST FURNACE

The efficiency of a blast furnace is largely dictated by how well the iron ore is reduced in the upper part of the furnace, which is strongly connected to the radial distribution of the gas and burden. The burden distribution also affects the size of the coke slits in the cohesive zone and the shape of the deadman lower down in the process. A primary method to control the conditions in the furnace is, therefore, to adjust the radial distribution of the burden materials, due to the large differences in the permeability and density of ore and coke. Bell and bell-less charging equipment are the two primary means of feeding the raw materials into the process. Bell-top systems are used in the older blast furnaces while newer installations are based on the more flexible bellless approach (cf. Figure 4.1).

The flow and distribution of the burden is complex and several attempts have been made to capture the behavior of burden as it flows out of the chute [30, 63], distributes on the burden surface [61] and descends in the shaft [39]. Many recent models are based on discrete element modeling or computational fluid dynamics. These models provide very elaborate results but have limited application to control due to prohibitive computational requirements. Therefore, simple models may provide a feasible alternative for optimization. In particular, in evolutionary approaches, which require a huge number of computations of individual cases the complexity of the model is a crucial issue.

Figure 4.10 describes the setup of one simple burden distribution model [50]. The left panel shows a schematic of a bell-type charging system and the layer formation as the charged material slides along the bell to hit the movable armor, forming a layer on the burden surface. The right side of the figure shows the mathematical representation of the arising burden layer, assuming a piecewise linear profile with coefficients for layer i.

[image: Images]

[image: Images]

FIGURE 4.10 Left: Schematic of the upper part of the blast furnace with bell charging equipment. Right: Schematic of the implementation of the layer formation.

By expressing the falling trajectories the impact point (rc,i) can be solved, and with given repose angles the coefficients can be determined if the previous burden layer profile is known.

Pettersson et al. [44] used the above model for evolving charging program to minimize the difference between the calculated and the desired radial ore-to-coke distribution. The charging program consisted of two coke dumps followed by a pellet dump and pellet and coke mixture. The dump sizes and the armor positions were evolved using the Simple Genetic Algorithm as devised by Holland (1975).

The mathematical model was later significantly improved to work on bell-les top charging, incorporating thinner layers and ensuring robustness of the results. This gave more degrees of freedom to evolve the layers [34]. The improved model was applied (Mitra et al., 2013) with similar targets as used by Pettersson et al. [44] and it was demonstrated that the genetic algorithm could evolve feasible charging programs that fulfilled the given requirements. Some results are presented in Figure 4.11.

A main problem with the above approach is that not only the burden distribution but also the gas distribution plays an important role, and since gas temperatures are measured radially in and/or above the burden surface, these measurements are used for interpretation by the operators. Mitra and Saxén [33], therefore, developed a gas distribution model based on the burden distribution model to simulate the gas distribution in the shaft of the furnace (Figure 4.12). This gave a significant advantage compared to the burden distribution model as the targets could be related to the gas distribution.

[image: Images]

FIGURE 4.11 A, B – Left: Target and achieved coke volume fraction represented with discontinuous and continuous lines, respectively. A, B – Right: Respective layer formation in the furnace for each case. Dark layers represent coke, light ones represent iron ore.

In another approach for modeling the burden layer formation, Pettersson et al. [42] used an evolutionary neural network algorithm to estimate the layer thickness of a charged layer in a furnace with a bell charging system. The inputs to the ANN included movable armor position, mass and volume of the dump, impact point of trajectory. The observed layer thickness for these variables from a real furnace was used to train the network. This eliminated the dependence on mathematical models and used data directly from the process.

[image: Images]

FIGURE 4.12 Some results from Mitra and Saxén [33]. A: Target temperature for the GA and the corresponding evolved temperature, B: Corresponding layer formation, C: ore-to-coke ratio, D: Gas temperature, E: Burden temperature, and F: Pressure contours for a cross-section of the furnace.

4.5.3 OPTIMIZATION OF PRODUCTION PARAMETERS

4.5.3.1 Carbon Dioxide Emissions

Carbon dioxide emissions have been a serious concern for the steel industry. Around 1.7 tons of CO2 is emitted for every ton of hot metal produced in the blast furnace [20]. Reduced emissions can be achieved by lowering the coke rate, but the coke rate is usually minimized for reasons of process economics. Other parameters, which control the efficiency are the material properties, gas flow rate, blast oxygen levels, etc. There have been several attempts to model the CO2 emissions from blast furnaces [37] and the steel plant as a whole [37, 57] for different operation scenarios.

CO2 emissions depend on the carbon content of the charge and injectants per unit of production and on the efficiency of the process. Therefore, decreasing the carbon rate or increasing the efficiency can lead to the decrease in the emissions. This, on the other hand, leads to an increase in production cost as the process needs to run with better quality of raw materials or, alternatively, investments in fundamentally new (and less proven) technology, such as blast furnace top gas recycling. Therefore, this problem is inherently bi-objective.

Pettersson et al. [43] used a linear model derived from the first principle thermodynamic model [45] to get a cost function (F1) and emission function (F2)

[image: Images]

[image: Images]

Here [image: Images] are the mass flow rates for resource i, ci and ei are the corresponding cost (€/t) and emission (tCO2/t) terms, [image: Images] is the hot metal production rate and A is the legal emission allowance. The authors used the Predator prey genetic algorithm to obtain the Pareto front describing the best combinations for the cost and emission for different production rates as described in Figure 4.13.

Instead of relying on thermodynamic models, Agarwal et al. (2010) used the Evolutionary Neural Networks (cf. Subsection 4.2.1) to create models of the carbon dioxide emissions and productivity using actual data from the blast furnace. The best network to describe the process was selected using the Bayesian, Akaike [1] and corrected Akaike criteria [4, 5]. After this, a predator prey algorithm, described by Pettersson et al. [41], was used to compute the Pareto fronts for different silicon levels in a blast furnace, as shown in Figure 4.14.

[image: Images]

FIGURE 4.13 (a) Pareto frontier for cases with target production of [image: Images] and 160 thm/h. (b) Pareto frontier for production capacity of [image: Images].

[image: Images]

FIGURE 4.14 Pareto frontier for minimizing CO2 emissions and maximizing productivity at different Si levels in hot metal. Variables are normalized.

In order to provide a better understanding of different methods of optimizing the emissions, Jha et al. [22] performed an extensive comparison of some of the aforementioned methods (Bi-objective Genetic programming and Evolutionary Neural Networks) in comparison with some established algorithms (Nondominated Sorting Genetic algorithm II, Deb et al., 2002) and available commercial optimization alternatives (mode-FRONTIER and KIMEME) for the same set of data. All the models were trained using data from a real blast furnace covering about a year. Figure 4.15 shows the Pareto fronts obtained using modeFRONTIER and the discussed methods. For low and medium silicon levels the results are comparable, but Evolutionary Neural Network and Bi-objective Genetic Programming fares better. For high silicon case Nondominated Sorting Genetic algorithm II in modeFRONTIER fared best.

Unlike the previous models which optimized blast furnace units, Porzio et al. [46] attempted to optimize the use of residual gases in the whole integrated steel plant in order to suppress emissions under various operating conditions. The authors approached the problem by modeling the distribution of gases posing the task as an optimization problem where both costs and emissions are minimized. A non-evolutionary technique based on linear model (ε-constraint Linear Programming) was compared with a Strength Pareto Evolutionary Algorithm 2 (SEPA2, Zitzler et al., 2002) formulation. The non-evolutionary technique was found to exhibit much better performance for the task at hand since linearizing the problem made it easier to find the optimum operating points.

[image: Images]

FIGURE 4.15 Pareto frontiers for minimizing CO2 emissions and maximizing productivity at different Si levels in hot metal. Variables are normalized.

In order to further reduce the CO2 emission in a blast furnace the top gases may be stripped of CO2 and fed back in the tuyere level, termed top gas recycling. While a linear model can describe normal blast furnace operation, the top gas recycling introduces severe non-linearities into the system. Linearizing an inherently non-linear problem introduces errors especially at the end points of the objective space, where the optimum lies. Therefore, methods based on linearization may give inaccurate results as the solutions are found in the vertices. Mitra et al. [31] handled this non-linearity by using a genetic algorithm and obtained the Pareto optimal solutions for different top gas recycling conditions for the whole integrated steel plant.

Deo et al. [11] compared different non-evolutionary and evolutionary methods (Sequential Quadratic Programming, Annealed Simplex Method, Genetic Algorithm) for minimizing the cost of steel production at an integrated steel plant. The authors found that the genetic algorithm outperformed other classical methods. Hodge et al. [19] extended the work by adding another objective of minimizing constraint violation. Their work used Nash Genetic Algorithm [52] for getting Pareto optimal solutions between the two objectives and they achieved operating points with lower cost of operation.

4.5.3.2 Coal Injection

Coal injection is an important technique for reducing the coke rate and increasing the production rate in the blast furnace. Furthermore, the pulverized coal injected through the tuyeres is cheaper than coke. When coal is injected into the raceway, it combusts first and furnishes heat and carbon monoxide for the reduction reactions. Therefore, it is in general favorable to maximize the injection rate, which minimizes the coke solution loss. Giri et al. [16] tackled this problem using Bi-objective Genetic Programming. Figure 4.16 shows the Pareto frontier for the solutions maximizing coal injection and minimizing solution loss.

[image: Images]

FIGURE 4.16 Pareto frontiers between solution loss and coal injection calculated by Giri et al. [16].

4.5.4 ESTIMATION OF THE INTERNAL HEARTH PROFILE

The blast furnace hearth is a hot region of the blast furnace with flows of molten iron and slag and therefore the wall and bottom lining experience wear and erosion. The hot metal temperatures can reach up to 1500°C and that of slag is usually 50–100°C higher. At these high temperatures and in this hostile environment it is impossible to continuously carry out measurements, so the internal state of the hearth is largely unknown. Mathematical models have therefore been used to shed light on the hearth conditions. For instance, the hearth wear and possible buildup formation has been estimated by solving inverse heat conduction problems in two dimensions [17, 25, 55].

Bhattacharya et al. [3] applied differential evolution in such an inverse problem formulation to evolve the position of the hot face. The fitness was evaluated as the differences between temperatures measured by thermocouples in the lining and those obtained from a numerical solution of the heat transfer equations. The top left panel of Figure 4.17 describes the computational grid, which is used to solve the heat conduction equations, the position of the thermocouples and the control points, which define the boundary of the hearth region. The lower left portion of the figure shows how the solution converges after a sufficient number of generations. Different seed points provided marginally different results, as there may be multiple, yet similar profiles which describe a particular set of thermocouple readings. The profiles achieved after such computations are never very accurate as they only provide an approximate profile. From the figure it may be argued that this problem is ill-posed as the formulation attempts to solve the location of too many points on the internal surface compared to the number of residuals in the objective function.

[image: Images]

FIGURE 4.17 Top left: Computational grid representing the hearth for evaluating the heat flow equations, showing the control points for differential evolution. Bottom left: Convergence history of the profile. TD: Total Deviation; TV: Total variation; FF: Fitness function. Right: Converged solution for a set of the thermocouple reading. (adapted from Bhattacharya et al. (2013)).

4.5.5 OPTIMIZATION OF THE PERFORMANCE OF A ROTARY KILN

The quality of DRI produced by rotary kiln is judged in terms of its metallic iron content. This and the production rate are functions of different operating parameters like iron ore quality, particle size and feed rate, coal quality and feed rate and the kiln rotation speed. In a study by Mohanty et al. [35] an ANN was used to model the production rate and metallic iron content using data from an actual operation. Thereafter, a predator-prey algorithm [27] was used to obtain the Pareto front for the quantity and quality of the product. It was shown that the current point of operation was non-optimal and that it is possible to improve reactor performance by changing some of the operating parameters.

4.6 CONCLUSIONS AND FUTURE PROSPECTS

This chapter has reviewed papers on evolutionary algorithms used to tackle problems in the field of ironmaking. Even though the number of papers on this specific topic is still relatively limited, the results have already demonstrated the potential of the algorithms for tackling complex modeling and optimization problems. Evolutionary algorithms have a clear advantage in non-linear optimization and the methods are especially useful for solving multiobjective problems and for solving problems where the gradients are ill-defined or do not exist. Therefore, also mixed problems with both integer and real numbered variables can be tackled. The evolutionary methods have found their use in various iron-making applications, particularly since the turn of the century. However, real-world applications of them are still very few, probably due to the complexity of the process and a lack of fast and accurate models upon which the optimization could be based.

In the future, attention should be focused on the use of evolutionary techniques in control and decision making systems for the blast furnace. Faster evolutionary algorithms should be developed which require less calculations before the optima are achieved. By such methods complex and time consuming process models that are available now could be used for improved control and optimization of the ironmaking process.

ACKNOWLEDGEMENTS

The work was supported by the SIMP research program under FIMECC. Financial support of Tekes and the participating companies: The financial support from the project, as well as from the Graduate School in Chemical Engineering of Åbo Akademi University is gratefully acknowledged.

KEYWORDS

	genetic algorithm

	evolutionary algorithm

	ironmaking

REFERENCES

1. Akaike, H. A new look at the statistical model identification. IEEE T. Automat. Contr. 1974, 19 (6), 716–723.

2. Ariyama, T., Natsui, S., Kon, T., Ueda, S., Kikuchi, S., & Nogami, H. Recent Progress on Advanced Blast Furnace Mathematical Models Based on Discrete Method. ISIJ Int. 2014, 54 (7), 1457–1471.

3. Bhattacharya, A. K., Aditya, D., & Sambasivam, D. Estimation of operating blast furnace reactor invisible interior surface using differential evolution. Appl. Soft. Comput. 2013, 13, 2767–2789.

4. Bhattacharya, B., Dinesh Kumar, G. R., Agarwal, A., Erkoç, S., Singh, A., & Chakraborti, N. Analyzing Fe-Zn system using molecular dynamics, evolutionary neural nets and multiobjective genetic algorithms. Comp. Mater. Sci. 2009, 46, 821–827.

5. Burnham, K. P., & Anderson, D. R. Model selection and multimodel interface; Springer, 2002.

6. Chakraborti, N., Misra, K., Bhatt, P., Barman, N., & Prasad, R. Tight-binding calculations of Si-H clusters using genetic algorithms and related techniques: studies using differential evolution. J. Phase Eqilib. 2001, 22 (5), 525–530.

7. Coello Coello, C. A., Van Veldhuizen, D. A., & Lamont, G. B. Evolutionary algorithms for solving multiobjective problems; Kluwer Academic Publishers, New York, 2002.

8. Collet, P. Genetic programming. In Handbook of Research on Nature Inspired Computing for Economics and Management; Rennard, J.-P. Ed., Idea, Hershey, PA,. 2007, p. 59–73.

9. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signal 1989, 2, 303–314.

10. Deb, K., & Agrawal, R. M. Simulated binary crossover for continuous search space. Complex Systems 1995, 9, 115–148.

11. Deo, B., Deb, K., Jha, S., Sudhakar, V., & Sridhar, N. V. Optimal operating conditions for the primary end of an integrated steel plant: Genetic adaptive search and classical techniques. ISIJ Int. 1998, 38 (1), 98–105.

12. Fabian, T. A Linear Programming Model of Integrated Iron and Steel Production. Manag. Sci. 1958, 4, 415–449.

13. Geiseler, J. Use of steelworks slag in Europe. Waste. Manage. 1996, 16 (1–3), 59–63.

14. Ghosh, A., & Chatterjee, A. Ironmaking and steelmaking: Theory and Practice; Prentice-Hall of India, New Delhi, 2008.

15. Giri, B. K., Hakanen, J., Miettinen, K., & Chakraborti, N. Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives. Appl. Soft Comput. 2013a, 13 (5), 2613–2623.

16. Giri, B. K., Pettersson, F., Saxén, H., & Chakraborti, N. Genetic programming evolved through bi-objective genetic algorithms applied to a blast furnace. Mater. Manuf. Process. 2013b, 28, 776–782.

17. Gonzalez, M., & Goldschmit, M. B. Inverse heat transfer problem based on a radial basis functions geometry representation. Int. J. Num. Met. Eng. 2006, 65, 1243–1262.

18. Haykin, S. S. Neural networks and learning machines, Prentice-Hall, 2009. Holland, J. H. Adaptation in natural and artificial systems; The University of Michigan Press: Ann Arbor, MI, 1975.

19. Hodge, B., & Pettersson, F., Chakraborti, N. Re-evaluation of the optimal operating conditions for the primary end of an integrated steel plant using multiobjective genetic algorithms and nash equilibrium. Steel. Res. Int. 2006, 77 (7), 459–461.

20. Hu, C., Han, X., Li, Z., & Zhang, C. Comparison of CO2 emission between COREX and blast furnace iron-making system. J. Environ. Sci. 2009, 21 (Supplement 1), S116-S120.

21. Japan Metal Bulletin. POSCO blows in no.1 blast furnace in Gwangyang steel works. Jun 10, 2013.

22. Jha, R., Sen, P. K., & Chakraborti, N. Multiobjective genetic algorithms and genetic programming models for minimizing input carbon rates in a blast furnace compared with a conventional analytic approach. Steel. Res. Int. 2014, 85 (2), 219–232.

23. Kobashigawa, J., Youn, H., Iskander, M., & Yun, Z. Comparative study of genetic programming vs. neural networks for the classification of buried objects. In Antennas and Propagation Society International Symposium, Charleston, SC, 2009, p. 1–4.

24. Kovačič, M., Senčič, S., & Župerl, U. Artificial intelligence approach of modeling of PM10 emission close to a steel plant. In Quality 2013, Neum, Bosnia and Herzegovina, 2013, p. 305–310.

25. Kumar, S. Heat Transfer Analysis and Estimation of Refractory Wear in an Iron Blast Furnace Hearth Using Finite Element Method. ISIJ Int. 2005, 45, 1122–1128.

26. Lampinen, J., Storn, R. Differential evolution. Stud. Fuzz. Soft. Comp.2004, 141, 123–166.

27. Li, X. A real-coded predator-prey genetic algorithm for multiobjective optimization. In Evolutionary Multi-Criterion Optimization; Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb, K., Thiele, L., Eds., Proceedings of the Second International Conference on Evolutionary Multi-Criterion Optimization; Lecture Notes in Computer Science 2003, 2632, 207–221.

28. Meijer, K., Zeilstra, C., Teerhuis, C., Ouwehand, M., & van der Stel, J. Developments in alternative ironmaking. T. Indian I. Metals 2013, 66 (5–6), 475–481.

29. Miettinen, K. M. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers, Boston, Massachusetts, 1998.

30. Mio, H., Komatsuki S., Akashi, M., Shimosaka, A., Shirakawa, Y., Hidaka, J., Kadowaki, M., Matsuzaki, S., & Kunitomo, K. Validation of particle size segregation of sintered ore during flowing through laboratory-scale chute by discrete element method. ISIJ. Int. 2008, 48 (12), 1696–1703.

31. Mitra, T., Helle, M., Pettersson, F., Saxén, H., & Chakraborti, N. Multiobjective optimization of top gas recycling conditions in the blast furnace by genetic algorithms. Mater. Manuf. Process. 2011, 26 (3), 475–480.

32. Mitra, T., Mondal, D. N., Pettersson, F., & Saxén, H. Evolution of charging programs for optimal burden distribution in the blast furnace. Computer Methods in Material Science 2013, 13 (1), 99–106.

33. Mitra, T., & Saxén, H. Evolution of charging programs for achieving required gas temperature profile in a blast furnace. Mater. Manuf. Process. 2015, 30 (4), 474–487.

34. Mitra, T., & Saxén, H. Model for fast evaluation of charging programs in the blast furnace. Metall. Mater. Trans. B. 2014, 45 (6), 2382–2394.

35. Mohanty, D., Chandra, A., & Chakraborti, N. Genetic algorithms based multiobjective optimization of an iron making rotary kiln. Comp. Mater. Sci. 2009, 45, 181–188.

36. Nogami, H., Chu, M., & Yagi, J. Multi-dimensional transient mathematical simulator of blast furnace process based on multi-fluid and kinetic theories. Comput. Chem. Eng. 2005, 29 (11–12), 2438–2448.

37. Nogami, H., Yagi, J., Kitamura, S., & Austin, P. R. Analysis on material and energy balances of ironmaking systems on blast furnace operations with metallic charging, top gas recycling and natural gas injection. ISIJ. Int. 2006, 46 (12), 1759–1766.

38. Omori, Y. Blast furnace phenomena and modeling; Elsevier, London, 1987.

39. Park, J-I., Baek, U-H., Jang, K-S., Oh, H-S., & Han, J-W. Development of the burden distribution and gas flow model in the blast furnace shaft. ISIJ. Int. 2011, 51 (10), 1617–1623.

40. Paul, S., Roy, S. K., & Sen, P. K. Approach for minimizing operating blast furnace carbon rate using Carbon-Direct Reduction (C-DRR) Diagram. Metall. Mater. Trans. B 2013, 44 (1), 20–27.

41. Pettersson, F., Chakraborti, N., & Saxén, H. A genetic algorithms based multiobjective neural net applied to noisy blast furnace data. Appl. Soft. Comput. 2007, 7, 387–397.

42. Pettersson, F., Hinnelä, J., & Saxén, H. Evolutionary neural network modeling of blast furnace burden distribution. Mater. Manuf. Process. 2003, 18 (3), 385–399.

43. Pettersson, F., Saxén, H., Deb, K. Genetic algorithm-based multicriteria optimization of ironmaking in the blast furnace. Mater. Manuf. Process. 2009, 24 (3), 343–349.

44. Pettersson, F., Saxén, H., & Hinnelä, J. A genetic algorithm evolving charging programs in the ironmaking blast furnace. Mater. Manuf. Process. 2005, 20 (3), 351–361.

45. Poli, R., Langdon, W. B., & McPhee, N. F. A field guide to genetic programming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (With contributions by J. R. Koza), 2008.

46. Porzio, G. F., Nastasi, G., Colla, V., Vannucci, M., & Branca, T. A. Comparison of multiobjective optimization techniques applied to off-gas management within an integrated steelwork. Appl. Energ. 2014, 136, 1085–1097.

47. Poveromo, J. J. Blast furnace burden distribution fundamentals. Iron and Steelmaker 1995–1996, 22–23.

48. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

49. Saxén, H., Gao, C., & Gao, Z. Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace – A review. IEEE T. Ind. Inform. 2013, 9 (4), 2213–2225.

50. Saxén, H., & Hinnelä, J. Model for burden distribution tracking in the blast furnace. Miner. Process. Extr. M. 2004, 25, 1–27.

51. Saxén, H., Pettersson, F., & Gunturu, K. Evolving nonlinear time-series models of the hot metal silicon content in the blast furnace. Mater. Manuf. Process.. 2007, 22, 577–584.

52. Sefrioui, M., & Periaux, J. Nash genetic algorithms: examples and applications. In proceedings of the 2000 congress on evolutionary computation, La Jolla, CA, 2000, p. 509–516.

53. Steelonthenet.com. Basic Oxygen Furnace Route Steelmaking Costs 2014. http://www.steelonthenet.com/cost-bof.html (accessed Sep 19, 2014).

54. Storn, R., & Price, K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 1997, 11, 341–359.

55. Torrkulla, J., & Saxén, H. Model of the state of the blast furnace hearth. ISIJ International 2000, 40, 438–447.

56. Valadi, J., & Siarry, P. Applications of metaheuristics in process engineering; Springer, 2014.

57. Wang, C., Larsson, M., Ryman, C., Grip, C. E., Wikström, J.-O., Johnsson, A., & Eng-dahl, J. A model on CO2 emission reduction in integrated steelmaking by optimization methods. Int. J. Energy Res. 2008, 32, 1092–1106.

58. World Steel Association. Key facts about the world steel industry. http://www.world-steel.org/media-center/key-facts.html (accessed Jul 17, 2014a).

59. World Steel Association. Resource efficiency. http://www.worldsteel.org/steel-by-topic/sustainable-steel/environmental/efficient-use.html (accessed Jul 17, 2014b).

60. World Steel Association. Annual iron production archive. http://www.worldsteel.org/statistics/statistics-archive/annual-iron-archive.html (accessed Jul 17, 2014c).

61. Xu, J., Wu, S., Kou, M., Zhang, L., & Yu, X. Circumferential burden distribution behaviors at bell-less top blast furnace with parallel type hoppers. Appl. Math. Model. 2011, 35, 1439–1455.

62. Yang, Y., Raipala, K., & Holappa, L. Ironmaking. In Treatise on Process Metallurgy; Seetharaman, S., Ed., Elsivier, Oxford, 2013.

63. Yu, Y., & Saxén, H. Particle flow and behavior at bell-less charging of the blast furnace. Steel Res. Int. 2013, 84 (10), 1018–1033.

CHAPTER 5

HARMONY SEARCH OPTIMIZATION FOR MULTILEVEL THRESHOLDING IN DIGITAL IMAGES

DIEGO OLIVA,1, 2 ERIK CUEVAS,2 GONZALO PAJARES,1 DANIEL ZALDÍVAR,2 MARCO PÉREZ-CISNEROS,2 and VALENTÍN OSUNA-ENCISO3

1Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain, E-mail: doliva@ucm.es; pajares@ucm.es

2Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI, CU-TONALA, Av. Revolución 1500, Guadalajara, Jal, México, E-mail: diego.oliva@cucei.udg.mx, erik.cuevas@cucei.udg.mx, daniel.zaldivar@cucei.udg.mx, marco.perez@cucei.udg.mx

3Departamento de Ingenierías, CUTONALA, Universidad de Guadalajara, Sede Provisional Casa de la Cultura – Administración, Morelos #180, Tonalá, Jalisco 45400, México, E-mail: valentin.osuna@cutonala.udg.mx

CONTENTS

5.1 Introduction

5.2 Harmony Search Algorithm

5.2.1 The Harmony Search Algorithm (HSA)

5.2.2 Initialization of the Problem and Algorithm Parameters

5.2.3 Harmony Memory Initialization

5.2.4 Improvisation of New Harmony Vectors

5.2.5 Updating the Harmony Memory

5.2.6 Computational Procedure

5.2.7 A Numerical Example of HSA Implementation

5.3 Multilevel Thresholding (MT) for Digital Images

5.3.1 Theory of Multilevel Thresholding

5.3.2 Otsu’s Method (Between-Class Variance)

5.3.3 Kapur’s Method (Entropy Criterion Method)

5.3.4 Thresholding Example Using Otsu’s and Kapur’s Methods

5.4 Multilevel Thresholding Using Harmony Search Algorithvm (HSMA)

5.4.1 Harmony Representation

5.4.2 Implementation of HSA for Multilevel Thresholding

5.5 Experimental Results

5.5.1 Results Using Otsu’s Method

5.5.2 Results Using Kapur’s Method

5.5.3 Comparisons of the Use of Otsu and Kapur in HSMA

5.5.4 Comparisons Among HSMA and Other Similar Approaches

5.6 Conclusions

Acknowledgments

Keywords

References

5.1 INTRODUCTION

Evolutionary computation (EC) is a relatively new field of research in computer sciences, it becomes popular due to its application in several fields to solve problems where is necessary to find the best solution in a considerably reduced time. Numerous methods have been proposed and they are inspired by different natural behaviors, for instance Genetic Algorithms (GA) [1] that their operators are based on the species evolution or Electromagnetism-like Optimization (EMO) that imitates the attraction-repulsion forces in electromagnetism theory [2]. The use of these methods has been extended in recent years, they can be used and applied in areas as science, engineering, economics, and other that mathematically fulfill the requirements of the algorithms.

Image segmentation is a problem where the EC methods can be used. Moreover this is considered one of the most important tasks in image processing. Segmentation permits to identify whether a pixel intensity corresponds to a predefined class. For example, this process is used to separate the interest objects from the background in a digital image, using the information provided by the histogram (see Figure 5.1). Thresholding is the easiest method for segmentation. On its simplest explanation, it works taking a threshold (th) value and apply it in the image histogram. The pixels whose intensity value is higher than th are labeled as first class, while the rest correspond to a second class label. When the image is segmented into two classes, it is called bi-level thresholding (BT) and requires only one th value. On the other hand, when pixels are separated into more than two classes, the task is named as multilevel thresholding (MT) and demands more than one th value [3].

There exist two classical thresholding methods. Considering a th value, the first approach, proposed by Otsu in [4] maximizes the variance between classes while the second method, submitted by Kapur in [5], uses the maximization of the entropy to measure the homogeneity among classes. They were originally proposed for bi-level segmentation and keep balance between efficiency and accuracy. Although both Otsu and Kapur can be expanded for MT, however the computational complexity increases exponentially when a new threshold is incorporated [6]. An alternative to classical methods is the use of evolutionary computation techniques. They have demonstrated to deliver better results than those based on classical techniques in terms of accuracy, speed and robustness. Numerous evolutionary approaches have been reported in the literature. Methods as Particle Swarm Optimization (PSO) [7, 8] and Bacterial Foraging Algorithm (BFA) [9], have been employed to face the segmentation problem using both Otsu’s and Kapur’s objective functions.

The Harmony Search Algorithm (HSA) introduced by Geem, Kim, and Loganathan [10] is an evolutionary computation algorithm, which is based on the metaphor of the improvisation process that occurs when a musician searches for a better state of harmony. The HSA generates a new candidate solution from a feasible search space. The solution vector is analogous to the harmony in music while the local and global search schemes are analogous to musician’s improvisations. HSA imposes fewer mathematical requirements as it can be easily adapted for solving several sorts of engineering optimization challenges. It has been successfully applied to solve a wide range of practical optimization problems such as discrete and continuous structural optimization [11] and design optimization of water distribution networks [12] among others.

In this chapter, a multi-thresholding segmentation algorithm is introduced. The proposed approach, called the Harmony Search Multi-thresholding Algorithm (HSMA), combines the original HSA and the Otsu′s and Kapur’s methodologies. The proposed algorithm takes random samples (th values) from a feasible search space defined by the image histogram distribution. Such samples build each harmony (candidate solution) in the HSA context, whereas its quality is evaluated considering the objective function that is employed by the Otsu’s or the Kapur’s method. Guided by these objective values, the set of candidate solutions are evolved using the HSA operators until the optimal solution is found. The approach generates a multilevel segmentation algorithm, which can effectively identify the threshold values of a digital image within a reduced number of iterations. Experimental results over several complex images have validated the efficiency of the proposed technique regarding accuracy, speed and robustness. An example of the implementation of HSMA using the Otsu’s method is presented in Figure 5.1, it shows the original image in gray scale, the best threshold values and the evolution of the objective function values for a predefined number of iterations.

The remainder chapter is organized as follows: In Section 5.2, the HSA is introduced and some examples of optimization are shown. Section 5.3 gives a description of the Otsu’s and Kapur’s methods for thresholding. Section 5.4 explains the implementation of the proposed algorithm. Section 5.5 discusses experimental results after testing the proposed method over a set benchmark images. Finally, some conclusions are discussed in Section 5.6.

5.2 HARMONY SEARCH ALGORITHM

5.2.1 THE HARMONY SEARCH ALGORITHM (HSA)

In the theory of the harmony search algorithm, each solution is called a “harmony” and is represented by an n-dimension real vector. First is necessary the generation of an initial population of harmony vectors that are stored within a Harmony Memory (HM). A new candidate harmony is thus generated from the elements in the HM by using a memory consideration operation either by a random re-initialization or a pitch adjustment operation. Finally, the HM is updated by comparing the new candidate harmony and the worst harmony vector in the HM. The worst harmony vector is replaced by the new candidate vector when the latter delivers a better solution in the HM. The above process is repeated until a certain termination criterion is met. The basic HS algorithm consists of three main phases: HM initialization, improvisation of new harmony vectors and updating of the HM. The following discussion addresses details about each stage and their operators.

[image: Images]

FIGURE 5.1 (a) Test image in gray scale, (b) histogram of (a) and the thresholds obtained by HSMA, (c) segmented image and (d) evolution of the objective function values in this case Otsu function.

5.2.2 INITIALIZATION OF THE PROBLEM AND ALGORITHM PARAMETERS

In general terms, a global optimization problem can be defined as follows:

[image: Images]

where f(x) is the objective function that depends on the problem to be treated, x = (x1, x2,…,xn is the set of design variables, n is the number of design variables, and jj and uj are the lower and upper bounds for the design variable xj, respectively. The parameters for HSA are the harmony memory size, such value is the number of solution vectors lying on the harmony memory (HM), the harmony-memory consideration rate (HMCR), the pitch adjusting rate (PAR), the distance bandwidth (BW) and the number of improvisations (NI), which represents the total number of iterations. The performance of HSA is strongly influenced by values assigned to such parameters, which in turn, depend on the application domain [13].

5.2.3 HARMONY MEMORY INITIALIZATION

In this stage, the initial values of a predefined number (HMS) of vector components in the harmony memory are configured. Considering x = (x1, x2,…,xn) that represents the i-th randomly generated harmony vector, each element of x is computed as follows:

[image: Images]

where rand(0,1) is a uniform random number between 0 and 1, the upper and lower bounds of the search space are defined by lj and uj respectively. Then, the HM forms a matrix that is filled with the HMS harmony vectors as follows:

[image: Images]

5.2.4 IMPROVISATION OF NEW HARMONY VECTORS

Once the vectors of the HM are generated, the next step is create a new harmony using the improvisation operators. Thus in this phase a new harmony vector xnew is built by applying the following three operators of HSA: memory consideration, random re-initialization and pitch adjustment.

The process of generating a new harmony is known as ‘improvisation’ under the HSA context. In the memory consideration step, the value of the first decision variable [image: Images] for the new vector is chosen randomly from any of the values already existing in the current HM, i.e., from the set [image: Images]. For this operation, a uniform random number r1 is generated within the range [0, 1]. If r1 is less than HMCR, the decision variable [image: Images] is generated through memory considerations; otherwise, [image: Images]is obtained from a random re-initialization between the search bounds [l1, u1]. Values of the other decision variables [image: Images] are also chosen accordingly. Therefore, both operations, memory consideration and random re-initialization, can be modeled as follows:

[image: Images]

Every component obtained by memory consideration is further examined to determine whether it should be pitch-adjusted. For this operation, the Pitch-Adjusting Rate (PAR) is defined as to assign the frequency of the adjustment and the Bandwidth factor (BW) to control the local search around the selected elements of the HM. Hence, the pitch adjusting decision is calculated as follows:

[image: Images]

Pitch adjusting is responsible for generating new potential harmonies by slightly modifying original variable positions. Such operation can be considered similar to the mutation process in evolutionary algorithms. Therefore, the decision variable is either perturbed by a random number between 0 and BW or left unaltered. In order to protect the pitch adjusting operation, it is important to assure that points lying outside the feasible range [l, u] must be re-assigned i.e., truncated to the maximum or minimum value of the interval. Similar to the HMCR for Eq. (5), a uniform random number r2is generated within the range [0, 1]. If r2 is less than PAR the decision new harmony is adjusted using the BW, otherwise it preserves its value.

5.2.5 UPDATING THE HARMONY MEMORY

After a new harmony vector xnew is generated, the harmony memory is updated by the survival of the fit competition between xnew and the worst harmony vector xw in the HM. Therefore, xnew will replace xw and become a new member of the HM in case the fitness value of xnew is better than the fitness value of xw.

5.2.6 COMPUTATIONAL PROCEDURE

The computational procedure of the basic HSA can be summarized as follows [14]:

Step 1: Set the parameters HMS, HMCR, PAR, BW and NI

Step 2: Initialize the HM and calculate the objective function value of each harmony vector.

Step 3: Improvise a new harmony xnew as follows:

 [image: Images]

Step 4: Update the HM as xw = xnew if f(xnew) < f(xw)

Step 5: If NI is completed, the best harmony vector xb in the HM is returned; otherwise go back to Step 3.

This procedure is implemented for minimization. If the intention is to maximize the objective function, a sign modification of Step 4 (xw = xnew if f (xnew) > f(xw)) is required. In the implementation proposed the HSA is used for maximization.

5.2.7 A NUMERICAL EXAMPLE OF HSA IMPLEMENTATION

Usually the evolutionary computing methods are tested using mathematical functions with different complexity. One of the most popular benchmark functions using for testing the optimization performance is the Rosenbrock function [15], which is a 2-D function defined as follows:

[image: Images]

The optimization features of the Rosenbrock function, used for this example, are defined in Table 5.1.

Therefore, the intervals of the search space for each parameter under the optimization context are: u = [5, 5] and I = [–5, –5] that are the upper and lower limits for each dimension, respectively. The parameter configuration of HSA used for the example is suggested in [16]. Such values are presented in Table 5.2. In the literature there exist several methods for parameter calibration, some methods are automatic. However, here are used the values proposed for the original HSA.

Considering the values of Table 5.2, the harmony memory is initialized with HM random elements (harmonies). The surface of the Rosenbrock function in the 2-D space is presented in Figure 5.2 (a) and the distribution of harmonies in the search space is shown in Figure 5.2 (b). The HSA runs NI times and the values of HM are modified with the improvisation of new harmonies. Figure 5.2 (c) shows the position of the HM elements when NI = 100, the red point is the best harmony in the HM and the green point represents the current improvisation. Finally the positions of the HM elements when the stop criterion is achieved (NI = 1200) are shown in Figure 5.2 (d).

TABLE 5.1 Features of Rosenbrock Function

	Higher limit

	Lower limit

	Global minima

	x = 5

	x = –5

	xbest = 1

	y = 5

	y = –5

	ybest = 1

TABLE 5.2 Parameter Configuration of HSA

	HM

	HMCR

	PAR

	BW

	NI

	20

	0.95

	0.7

	0.1

	1200

[image: Images]

FIGURE 5.2 (a) Surface of Rosenbrock function, (b) initial positions of HM, (c) position of HM, current improvisation and best harmony after 100 iterations and (d) final positions of HM, current improvisation and best harmony.

5.3 MULTILEVEL THRESHOLDING (MT) FOR DIGITAL IMAGES

The thresholding methods can be divided in two groups parametric and nonparametric. These methods select thresholds searching the optimal value of objective functions applied to image processing. In parametric techniques the distribution of the intensity levels for each class has a probability density function that for definition is considered as a Gaussian distribution. For these approaches is necessary to estimate the distribution parameters that provides a best fitting between the proposed model and the original image histogram. On the other hand, nonparametric approaches find the thresholds that separate the intensity regions of a digital image in optimal classes using a metric that determines if a value belongs to a class depending of its intensity value. Some of these metrics commonly used for thresholding are the between class variance and the cross entropy. The popular method, Otsu’s method [4], selected optimal thresholds by maximizing the between class variance. Shoo et al. [17] found that the Otsu’s method is one of the better threshold selection methods for real world images with regard to uniformity and shape measures. There exist several entropy measures as minimum cross entropy, maximum entropy and their variants. One of this entropy metrics is the proposed by Kapur et al. [5] for gray images thresholding. Basically this method depends of the maximum entropy value to obtain the best thresholds for the image histogram.

[image: Images]

FIGURE 5.3 Evolution of the objective function (Rosenbrock) using HSA.

5.3.1 THEORY OF MULTILEVEL THRESHOLDING

Thresholding is a process in which the pixels of a gray scale image are divided in sets or classes depending on their intensity level (L). For this classification it is necessary to select a threshold value (th) and follows the simple rule of Eq. (7).

[image: Images]

where p is one of the m × n pixels of the gray scale image Ig that can be represented in L gray scale levels L = {0,1,2,…L − 1}. C1 and C2 are the classes in which the pixel p can be located, while th is the threshold. The rule in Eq. (7) corresponds to a bi-level thresholding and can be easily extended for multiple sets:

[image: Images]

where {th1 th2 … thi+1 thk} represent different thresholds. The problem for both bi-level and MT is to select the th values that correctly identify the classes. Although, Otsu’s and Kapur’s methods are well-known approaches for determining such values, both propose a different objective function which must be maximized in order to find optimal threshold values, just as it is discussed below.

Figure 5.4 presents an example for bi-level thresholding and for multilevel thresholding. The values for each example are: L = 2 and L = 4 for bi-level and multilevel thresholding respectively. Figure 5.4 (a) shows the original image in gray scale and its corresponding histogram is shown in Figure 5.4 (b). The segmented (binarized) image using only one threshold is presented in Figure 5.4 (c) and the histogram with the th = {94} in Figure 5.4 (d). Finally the resultant image using the values TH = {56, 107, 156} are shown in Figure 5.4 (e) and Figure 5.4 (f).

5.3.2 OTSU’S METHOD (BETWEEN-CLASS VARIANCE)

This is a nonparametric technique for thresholding proposed by Otsu [4] that employs the maximum variance value of the different classes as a criterion to segment the image. Taking the L intensity levels from a gray scale image or from each component of a RGB (red, green, blue) image, the probability distribution of the intensity values is computed as follows:

[image: Images]

FIGURE 5.4 (a) original test image in gray scale, (b) histogram of (a), (c) result after apply the bi-level segmentation process, (d) histogram and threshold for bi-level segmentation, (e) result after apply the multilevel segmentation process, (f) histogram and thresholds for multilevel segmentation.

[image: Images]

where i is a specific intensity level (0 ≤ i ≤ L – 1), c is the component of the image which depends if the image is gray scale or RGB whereas NP is the total number of pixels in the image. [image: Images] (histogram) is the number of pixels that corresponds to the i intensity level in c. The histogram is normalized within a probability distribution [image: Images]. For the simplest segmentation (bi-level) two classes are defined as:

[image: Images]

where ω0(th) and ω1(th) are probabilities distributions for C1 and C2, as it is shown by Eq. (11).

[image: Images]

It is necessary to compute mean levels [image: Images] and [image: Images] that define the classes using Eq. (12). Once those values are calculated, the Otsu variance between classes σ2c is calculated using Eq. (13) as follows:

[image: Images]

[image: Images]

Notice that for both equations, Eqs. (12) and (13), c depends on the type of image. In Eq. (13) the number two is part of the Otsu’s variance operator and does not represent an exponent in the mathematical sense. Moreover [image: Images] and [image: Images] in Eq. (13) are the variances of C1 and C2 which are defined as:

[image: Images]

where [image: Images] and [image: Images]. Based on the values [image: Images] and [image: Images], Eq. (15) presents the objective function.

[image: Images]

where σ2c (th) is the Otsu´s variance for a given th value. Therefore, the optimization problem is reduced to find the intensity level (th) that maximizes Eq. (15).

Otsu’s method is applied for a single component of an image. In case of RGB images, it is necessary to apply separation into single component images. The previous description of such bi-level method can be extended for the identification of multiple thresholds. Considering k thresholds it is possible separate the original image into k classes using Eq. (8), then it is necessary to compute the k variances and their respective elements. The objective function J(th) in Eq. (15) can thus be rewritten for multiple thresholds as follows:

[image: Images]

where TH = [th1, th2,…thk−1], is a vector containing multiple thresholds and the variances are computed through Eq. (17) as follows.

[image: Images]

Here, i represents and specific class, [image: Images] and [image: Images] are respectively the probability of occurrence and the mean of a class. In multilevel thresholding, such values are obtained as:

[image: Images]

And for the mean values:

[image: Images]

Similar to the bi-level case, for multilevel thresholding using the Otsu’s method c corresponds to the image components, RGB c = 1, 2, 3 and gray scale c = 1.

5.3.3 KAPUR’S METHOD (ENTROPY CRITERION METHOD)

Another nonparametric method that is used to determine the optimal threshold values has been proposed by Kapur [5]. It is based on the entropy and the probability distribution of the image histogram. The method aims to find the optimal th that maximizes the overall entropy. The entropy of an image measures the compactness and separability among classes. In this sense, when the optimal th value appropriately separates the classes, the entropy has the maximum value. For the bi-level example, the objective function of the Kapur’s problem can be defined as:

[image: Images]

where the entropies H1 and H2 are computed by the following model:

[image: Images]

[image: Images] is the probability distribution of the intensity levels which is obtained using Eq.(9). ω0(th) and ω1(th) are probabilities distributions for C1 and C2. 1n(γ) stands for the natural logarithm. Similar to the Otsu’s method, the entropy-based approach can be extended for multiple threshold values; for such a case, it is necessary to divide the image into k classes using the similar number of thresholds. Under such conditions, the new objective function is defined as:

[image: Images]

where, TH =[th1, th2,…thk−1], is a vector that contains the multiple thresholds. Each entropy is computed separately with its respective th value, so Eq. (23) is expanded for k entropies.

[image: Images]

The values of the probability occurence [image: Images] of the k classes are obtained using Eq. (18) and the probability distribution [image: Images] with Eq. (12). Finally, it is necessary to use Eq. (8) to separate the pixels into the corresponding classes.

5.3.4 THRESHOLDING EXAMPLE USING OTSU’S AND KAPUR’S METHODS

In order to better explain the thresholding processes using the techniques proposed by Otsu and Kapur, there is presented a graphical example. The image to be segmented is presented in Figure 5.5 (a), meanwhile it histogram is in Figure 5.5 (b). For this example are used two different number of thresholds first for bi-level thresholding where L = 2 and the second one for multilevel thresholding where L = 5.

[image: Images]

FIGURE 5.5 (a) original test image in gray scale, (b) histogram of (a).

Otsu’s and Kapur’s methods are applied over the histogram of Figure 5.5 (a), they use as search strategy the exhaustive search, that is time consuming and computationally expensive. The results obtained are presented in Figures 5.6 and 5.7. The value for bi-level segmentation using Otsu is th = {170}, the binarized image and the histogram are shown in Figure 5.6 (b) and 5.6 (c). For Kapur threshold value found is th = {164} and the resultant binarized image and the histogram are exposed in Figures 5.6 (d) and 5.6 (e).

[image: Images]

FIGURE 5.6 (a) Original image in gray scale, (b) segmented image using Otsu’s method for bi-level thresholding, (b) histogram and the best threshold value, (d) segmented image using Kapur’s method for bi-level thresholding, (e) histogram and the best threshold value.

[image: Images]

FIGURE 5.7 (a) Original image in gray scale, (b) segmented image using Otsu’s method for multilevel thresholding, (c) histogram and the best threshold values, (d) segmented image using Kapur’s method for multilevel thresholding, (e) histogram and the best threshold values.

The results obtained for bi-level thresholding using Otsu’s and Kapur’s techniques are very similar, however the differences between both methods can be observed in multilevel thresholding. In this case the threshold values obtained using Otsu are TH = {75, 108, 139, 200} and for Kapur TH = {81, 122, 160, 198}. In Figure 5.7 (b) and 5.7 (c) are exposed the segmented image and the histogram with the threshold values obtained by Otsu’s function, meanwhile Figures 5.7 (d) and 5.7 (e) presents the result using the Kapur’s function. From the histograms is possible to see how the classes are defined by the threshold values, this is one of the main differences between both methods.

5.4 MULTILEVEL THRESHOLDING USING HARMONY SEARCH ALGORITHVM (HSMA)

In this section the implementation of the harmony search algorithm as a search strategy for multilevel thresholding using as objective function one of the methods proposed by Otsu or Kapur is introduced. First is necessary to define how the harmonies are generated by the algorithm. Finally a description of each step of the proposed technique is provided.

5.4.1 HARMONY REPRESENTATION

Each harmony (candidate solution) uses k different elements as decision variables within the optimization algorithm. Such decision variables represent a different threshold point th that is used for the segmentation. Therefore, the complete population is represented as:

[image: Images]

where T refers to the transpose operator, HMS is the size of the harmony memory, xi is the i-th element of HM and c = 1,2,3 is set for RGB images while c = 1 is chosen for gray scale images. For this problem, the boundaries of the search space are set to l = 0 and u = 255, which correspond to image intensity levels.

5.4.2 IMPLEMENTATION OF HSA FOR MULTILEVEL THRESHOLDING

The proposed segmentation algorithm has been implemented considering two different objective functions: Otsu and Kapur. Therefore, the HSA has been coupled with the Otsu and Kapur functions, producing two different segmentation algorithms. The implementation of both algorithms can be summarized into the following steps:

Step 1: Read the image I and if it is RGB separate it into IR, IG and IB. If I is gray scale store it into IGr. c = 1,2,3 for RGB images or c = 1 for gray scale images.

Step 2: Obtain histograms: for RGB images hR, hG, hB and for gray scale images hGr.

Step 3: Calculate the probability distribution using Eq. (9) and obtain the histograms.

Step 4: Initialize the HSA parameters: HMS, k, HMCR, PAR, BW, NI, and the limits l and u.

Step 5: Initialize a HM [image: Images] of HMS random particles with k dimensions.

Step 6: Compute the values [image: Images] and [image: Images]. Evaluate each element of HM in the objective function J(HM) Eq. (16) or Eq. (22) depending on the thresholding method (Otsu or Kapur, respectively).

Step 7:

[image: Images]

Step 8: Update the HM as [image: Images] if [image: Images]

Step 9: If NI is completed or the stop criteria is satisfied, then jump to Step 10; otherwise go back to Step 6.

Step 10: Select the harmony that has the best [image: Images] objective function value.

Step 11: Apply the thresholds values contained in [image: Images] to the image I Eq. (8).

5.5 EXPERIMENTAL RESULTS

The HSMA has been tested under a set of 5 benchmark images. Some of these images are widely used in the image processing literature to test different methods (Lena, Cameraman, Hunter, Baboon, etc.) [18, 19]. All the images have the same size (512 × 512 pixels) and they are in JPEG format. In Figure 5.8 the five images and their histograms are presented, and the numerical outcomes are analyzed later considering the complete set of benchmark images.

[image: Images]

FIGURE 5.8 The selected benchmark images (a) Camera man, (c) Lena, (e) Baboon, (g) Hunter and (j) Butterfly. (b), (d), (f), (h), (j) histograms of the images.

Since HSMA is stochastic, it is necessary to employ an appropriate statistical metrics to measure its efficiency. Hence, the results have been reported executing the algorithm 35 times for each image. In order to maintain compatibility with similar works reported in the literature [8, 9, 20, 21], the number of thresholds points used in the test are th = 2, 3, 4, 5. In the experiments, the stop criterion is the number of times in which the best fitness values remains with no change. Therefore, if the fitness value for the best harmony remains unspoiled in 10% of the total number of iterations (NI), then the HSA is stopped. To evaluate the stability and consistency, it has been computed the standard deviation (STD) from the results obtained in the 35 executions. Since the STD represents a measure about how the data are dispersed, the algorithm becomes more instable as the STD value increases [9]. Equation (25) shows the model used to calculate the STD value.

[image: Images]

where bfi is the best fitness of the i-th iteration, av is the average value of bf and Ru is the number of total executions (Ru = 35).

On the other hand, as an index of quality of the segmentation, the peak-to-signal ratio (PSNR) is used to assess the similarity of the segmented image against a reference image (original image) based on the produced mean square error (MSE) [8, 22]. Both PSNR and MSE are defined as:

[image: Images]

where [image: Images] is the original image, [image: Images] is the segmented image, c = 1 for gray scale and c = 3 for RGB images whereas ro, co are the total number of rows and columns of the image, respectively.

The parameters of HSA are configured experimentally guided by the values proposed in the related literature [16]. Table 5.3 presents the values used for all the test of the proposed HSMA in all the benchmark images and for Otsu’s and Kapur’s methods.

TABLE 5.3 Parameter Configuration of HSMA

	HM

	HMCR

	PAR

	BW

	NI

	100

	0.75

	0.5

	0.5

	300

5.5.1 RESULTS USING OTSU’S METHOD

This section analyzes the results of HSMA after considering the variance among classes (Eq. 16) as the objective function, just as it has been proposed by Otsu [4]. The approach is applied over the complete set of benchmark images whereas the results are registered in Table 5.4. Such results present the best threshold values after testing the proposed method with four different threshold points th = 2,3,4,5. The table also features the PSNR and the STD values. It is evident that the PSNR and STD values increase their magnitude as the number of threshold points also increases.

The processing results for the original images are presented in Tables 5.5, 5.6, 5.7, 5.8 and 5.9. Such results show the segmented images considering four different threshold points th = 2,3,4,5. The tables also show the evolution of the objective function during one execution.

TABLE 5.4 Results After Apply the HSMA Using Otsu’s Function to the Set of Benchmark Images

[image: Images]

TABLE 5.5 Results After Apply the HSMA Using Otsu’s Over the Camera Man Image

[image: Images]

TABLE 5.6 Results After Apply the HSMA Using Otsu’s Over Lena Image

[image: Images]

TABLE 5.7 Results After Apply the HSMA Using Otsu’s Over Baboon Image

[image: Images]

TABLE 5.8 Results After Apply the HSMA Using Otsu’s Over Hunter Image

[image: Images]

TABLE 5.9 Results After Apply the HSMA Using Otsu’s Over Butterfly Image

[image: Images]

5.5.2 RESULTS USING KAPUR’S METHOD

This section analyzes the performance of HSMA after considering the entropy function (Eq. 22) as objective function, as it has been proposed by Kapur in [5]. Table 5.10 presents the experimental results after the application of HSMA over the entire set of benchmark images. The values listed are: PSNR, STD and the best threshold values of the last population [image: Images]. The same test procedure that was previously applied to the Otsu’s method is used with the Kapur’s method, also considering the same stop criterion and a similar HSA parameter configuration.

The results after apply the HSMA to the selected benchmark images are presented in Tables 5.11, 5.12, 5.13, 5.14 and 5.15. Four different threshold points have been employed: th = 2,3,4,5. All tables exhibit the segmented image, the approximated histogram and the evolution of the fitness value during the execution of the HSA method.

TABLE 5.10 Results After Apply the HSMA Using Kapur’s to the Set of Benchmark Images

[image: Images]

TABLE 5.11 Results After Apply the HSMA using Kapur’s Over the Camera Man Image

[image: Images]

TABLE 5.12 Results After Apply the HSMA Using Kapur’s Over the Lena Image

[image: Images]

TABLE 5.13 Results After Apply the HSMA Using Kapur’s Over the Lena Image

[image: Images]

TABLE 5.14 Results After Apply the HSMA Using Kapur’s Over the Hunter Image

[image: Images]

TABLE 5.15 Results After Apply the HSMA Using Kapur’s over the Butterfly Image

[image: Images]

From the results of both Otsu’s and Kapur’s methods, it is possible to appreciate that the HSMA converges (stabilizes) after a determined number of iterations depending on the value. For experimental purposes HSMA continues running still further, even though the stop criterion is achieved. In this way, the graphics show that convergence is often reached in the first iterations of the optimization process. The segmented images provide evidence that the outcome is better with th = 4 and th = 5; however, if the segmentation task does not require to be extremely accurate then it is possible to select th = 3.

5.5.3 COMPARISONS OF THE USE OF OTSU AND KAPUR IN HSMA

In order to statistically compare the results from Tables 5.3 and 5.9, a non-parametric significance proof known as the Wilcoxon’s rank test [23, 24] for 35 independent samples has been conducted. Such proof allows assessing result differences among two related methods. The analysis is performed considering a 5% significance level over the peak-to-signal ratio (PSNR) data corresponding to the five threshold points. Table 5.16 reports the p-values produced by Wilcoxon’s test for a pair-wise comparison of the PSNR values between the Otsu and Kapur objective functions. As a null hypothesis, it is assumed that there is no difference between the values of the two objective functions. The alternative hypothesis considers an existent difference between the values of both approaches. All p-values reported in the Table 5.16 are less than 0.05 (5% significance level), which is a strong evidence against the null hypothesis, indicating that the Otsu PSNR mean values for the performance are statistically better and it has not occurred by chance.

TABLE 5.16 p-Values Produced by Wilcoxon’s Test Comparing Otsu vs. Kapur Over the Averaged PSNR from Tables 5.4 and 5.10

[image: Images]

5.5.4 COMPARISONS AMONG HSMA AND OTHER SIMILAR APPROACHES

The results produced by HSMA have been compared with the generated by state-of-the-art thresholding methods such Genetic Algorithms (GA) [29], Particle Swarm Optimization (PSO) [8] and Bacterial Foraging (BF) [9]. All the algorithms run 35 times over benchmark image. For each image, the PSNR, the STD and the mean of the objective function values are calculated. Moreover, the entire test is performed using both Otsu’s and Kapur’s objective functions.

Table 5.17 presents the computed values for benchmark images. It is clear that the HSMA delivers better performance than the others. Such values are computed using the Otsu’s method as the objective function. On the other hand, the same experiment has been performed using the Kapur’s method. The results of this experiment are presented in Table 5.18 and show that the proposed HSMA algorithm is better in comparison with the GA, PSO and BF.

TABLE 5.17 Comparisons Between HSMA, GA, PSO and BF, Applied Over the Test Images Using Otsu’s Method

[image: Images]

TABLE 5.18 Comparisons Between HSMA, GA, PSO and BF, Applied Over the Test Images Using Kapur’s Method

[image: Images]

5.6 CONCLUSIONS

The proposed approach combines the good search capabilities of HSA algorithm and the use of some objective functions that have been suggested by the popular MT methods of Otsu and Kapur. The peak signal-to-noise ratio (PSNR) is used to assess the segmentation quality by considering the coincidences between the segmented and the original images. In this work, a simple HSA implementation without any modification is considered in order to demonstrate that it can be applied to image processing tasks. The study explores the comparison between two versions of HSMA: one employs the Otsu objective function while the other uses the Kapur criterion. Results show that the Otsu function delivers better results than the Kapur criterion. Such conclusion has been statistically proved considering the Wilcoxon test.

The proposed approach has been compared to other techniques that implement different optimization algorithms like GA, PSO and BF. The efficiency of the algorithm has been evaluated in terms of the PSNR index and the STD value. Experimental results provide evidence on the outstanding performance, accuracy and convergence of the proposed algorithm in comparison to other methods. Although the results offer evidence to demonstrate that the standard HSA method can yield good results on complicated images, the aim of this work is not to devise an MT algorithm that could beat all currently available methods, but to show that harmony search algorithms can be effectively considered as an attractive alternative for this purpose.

ACKNOWLEDGMENTS

The first author acknowledges The National Council of Science and Technology of Mexico (CONACyT) for the doctoral Grant number 215517. The Youth Institute of Jalisco (IJJ), The Ministry of Education (SEP) and the Mexican Government for partially support this research.

KEYWORDS

	evolutionary algorithms

	harmony search

	image segmentation

REFERENCES

1. Holland, J. H. Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.

2. [image: Images]lker Birbil, S., & Shu-Cherng Fang. An Electromagnetism-like Mechanism for Global Optimization. Journal of Global Optimization. 2003, Volume 25, 263–282.

3. Gonzalez, R. C., & Woods, R. E. Digital Image Processing, Addison Wesley, Reading, MA, 1992.

4. Otsu, N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, Cybernetics 1979, SMC-9, 62–66.

5. Kapur, J. N., Sahoo, P. K., & Wong, A. K. C., A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision Graphics Image Processing, 1985, 2, 273–285.

6. Snyder, W., Bilbro, G., Logenthiran, A., & Rajala, S. “Optimal thresholding: A new approach,” Pattern Recognit. Lett., 1990, vol. 11, pp. 803–810.

7. Kennedy, J., & Eberhart, R. Particle swarm optimization, in Proceedings of the 1995 IEEE International Conference on Neural Networks, December 1995, vol. 4, pp. 1942–1948.

8. Akay, B. A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding, Applied Soft Computing (2012), doi: 10.1016/j. asoc.2012.03.072.

9. Sathya, P. D., & Kayalvizhi, R. Optimal multilevel thresholding using bacterial foraging algorithm, Expert Systems with Applications. 2011, Volume 38, 15549–15564.

10. Geem, Z. W., Kim, J. H., & Loganathan, G. V. A new heuristic optimization algorithm: harmony search. Simulations 2001, 76, 60–68.

11. Lee, K. S., Geem, Z. W., Lee, S. H., & Bae, K.-W. The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 2005, 37, 663–684.

12. Geem, Z. W., Optimal cost design of water distribution networks using harmony search. Eng. Optim. 2006, 38, 259– 280.

13. Fernando G. Lobo, Cláudio F. Lima, & Zbigniew Michalewicz (Eds). Parameter Setting in Evolutionary Algorithms, Studies in Computational Intelligence,. 2007, Volume 54, Springer-Verlag Berlin Heidelberg.

14. Geem, Z. W., Kim, J. H., & Loganathan, G. V., A new heuristic optimization algorithm: harmony search. Simulations 2001, 76, 60–68.

15. Dixon, L. C. W., & Szegö, G. P., The global optimization problem: An introduction. In: Towards Global Optimization 2, pp. 1–15. North-Holland, Amsterdam (1978).

16. Yang, X.-S. Engineering Optimization: An Introduction with Metaheuristic Application, Wiley, USA, 2010.

17. Horng, M. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Systems with Applications, 2011, Volume 38, 13785–13791.

18. Pal, N. R., & Pal, S. K. “A review on image segmentation techniques,” Pattern Recognit., 1993, vol. 26, pp. 1277–1294.

19. Hammouche, K., Diaf, M., & Siarry, P. A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem, Engineering Applications of Artificial Intelligence 2010, 23, 676–688.

20. Lai, C., & Tseng, D. A Hybrid Approach Using Gaussian Smoothing and Genetic Algorithm for Multilevel Thresholding. International Journal of Hybrid Intelligent Systems. 2004, 1, 143–152.

21. Yin, Peng-Yeng. A fast scheme for optimal thresholding using genetic algorithms. Signal Processing, 1999, 72, 85–95.

22. Pal, S. K., Bhandari, D., & Kundu, M. K. Genetic algorithms, for optimal image enhancement. Pattern Recognition Lett. 1994, Volume 15, 261–271.

23. Wilcoxon, F. Individual comparisons by ranking methods. Biometrics 1945, 1, 80–83.

24. Garcia, S., Molina, D., Lozano, M., & Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behavior: a case study on the CEC’2005 Special session on real parameter optimization. J. Heurist. (2008). doi: 10.1007/s10732-008-9080-4.

CHAPTER 6

SWARM INTELLIGENCE IN SOFTWARE ENGINEERING DESIGN PROBLEMS

TARUN KUMAR SHARMA1 and MILLIE PANT2

1Amity School of Engineering & Technology, Amity University Rajasthan, Jaipur, India

2Department of Applied Science and Engineering, Saharanpur Campus, IIT Roorkee, India

CONTENTS

Abstract

6.1 Introduction

6.2 Applications of Artificial Bee Colony Algorithm in Software Engineering Design Optimization

6.3 Artificial Bee Colony Optimization Algorithm and Its Variant

6.3.1 Artificial Bee Colony

6.3.2 Formulation of Artificial Bee Colony Algorithm

6.3.2.1 Initialization Process

6.3.2.2 Employed Bee Process

6.3.2.3 Onlooker Bee Process

6.3.2.4 Scout Bee Process

6.3.3 Intermediate ABC Greedy (I – ABC greedy)

6.3.3.1 Opposition Based Learning (OBL)

6.3.3.2 Proposed I-ABC Greedy

6.4 Software Engineering Design Problems

6.4.1 Software Reliability Growth Models

6.4.2 Software Effort Estimation

6.4.3 Optimizing Redundancy Level in Modular Software System Models

6.5 Parameter and Experimental Settings

6.6 Experimental Results

6.6.1 Software Reliability Growth Models

6.6.2 Software Effort Estimation

6.6.3 Optimizing Redundancy Level in Modular Software System Models

6.7 Summary

Keywords

References

Appendix

ABSTRACT

Being a social animal we have learned much by studying the behavior of Swarm of biological organisms. The fascinating aspect of such swarms is the fact that they reveal complex social co-operative behavior in spite of the simplicity of the individuals that forms Swarm. The collective interacting behavior of individuals in a Swarm focuses on the discipline called Swarm Intelligence (SI). SI is a new research paradigm that mimics the natural phenomenon of species, to solve successfully, complex real world optimization problems. Optimization problems exist in almost every sphere of human activities. Here our focus is on the problems of optimization in software engineering design process.

Quality Software is a sturdy foundation of Information Technology (IT) and developing the tactical competence among nationalities. It has been experienced that the working and life style is changed drastically with the emergence of Software. However, developing the quality software, involves several key issues like software reliability, costs, redundancy, user requirements, time, manpower, etc. and needs to be done in a very judicious manner. Software crises can be defused with the enhancement of software process. As it plays a significant role in influencing the management and software development system. A lot of research has been done and is still continuing to overcome the various issues in software development and design process. Hence software engineering design process possesses wide range of scope like software cost estimation, parameter estimation of reliability growth models, reducing redundancy level in modular software system models where optimization can be applied.

This chapter concentrates on the recent model instigated by the scavenge behavior of honey bee swarm, initiated by Karaboga in 2005 and employed to solve optimization problems in Software Engineering Design.

6.1 INTRODUCTION

Software engineering coined in late 1970’s describes the collection of techniques that apply an engineering approach to the construction and support of software products. Software is a strong foundation of Information Technology to develop the strategic competence among nationalities [1, 2]. The development of software involves several issues and goals like reliability, overrun of costs, user requirements, etc. The improvement of software process has important practical significance to defuse software crisis, as it is influences the development and management of software [3].

Software engineering activities include managing, costing, planning, modeling, analyzing, specifying, designing, implementing, testing and maintaining software products. In the past decade numerous metaheuristic or swarm intelligence techniques have been applied to a wide range of software engineering topics namely requirement analysis, design (redundancy level), testing, estimation of reliability growth models, cost estimation.

This chapter focuses on the application of recently introduced Artificial Bee Colony (ABC) [4] and one of its novel variant to optimize three software engineering design problems (SEDP). These problems are (a) parameter estimation of software reliability growth models, (b) optimizing redundancy level in modular software system models, and (c) estimating the software cost parameters. The swarm intelligence based ABC and its variant is discussed in Section 6.3 followed by applications of ABC in SEDP. The brief description of the above named SEDP is given in Section 6.4. Experimental and Parameter settings are presented in Section 6.5. Simulation results description and conclusion drawn are presented in Sections 6.6 and 6.7, respectively.

6.2 APPLICATIONS OF ARTIFICIAL BEE COLONY ALGORITHM IN SOFTWARE ENGINEERING DESIGN OPTIMIZATION

In the field of software engineering Artificial Bee Colony (ABC) has been widely applied to software testing, cost estimation, and software reliability. Brief descriptions of the applications of ABC in software engineering are given below.

	Mala et al. [5, 6] applied ABC in optimization of software test suite.

	Bacanin et al. [7] proposed modified variant of basic ABC to describe an object-oriented software system for continuous optimization.

	Dahiya et al. [8] introduced automatic structural software tests generation using a novel search technique based on ABC.

	Kilic et al. [9] presented a solution for solving hard combinatorial automated software refactoring problem which is the lies in the domain of search-based software engineering. Adi Srikanth et al. [10] introduced optimal software test case generation to attain better path coverage using ABC algorithm.

	Liang and Ming [11] discussed and studied the use of ABC optimization technique with two-tier bitwise interest oriented QRP to reduce message flooding and improve recall rate for a small world peer-to-peer system.

	Suri and Kalkal [12] presented a review of software testing applications of ABC and its variants.

	Li and Ma [13] a solution method for logic reasoning using ABC was proposed.

	Bacanin et al. [14] improved ABC optimization was studied on the performance of object-oriented software system.

	Sharma et al. [15] applied modified version of ABC to parameter estimation of software reliability growth models.

	Koc et al. in [16] proposed a solution for automated maintenance of object-oriented software system designs via refactoring using ABC.

	Sharma and Pant [17] estimated the software cost parameters using halton based ABC optimization.

	Singh and Sandhu [18] presented a survey of ABC on software testing environment and its advantages over the Genetic Algorithm.

	Suri and Mangal [19] introduced a hybrid algorithm using ABC to reduce the test suite.

	Lam et al. [20] proposed automated generation of independent paths and test suite optimization using ABC algorithm.

	Sharma et al. [21] applied ABC to optimize the redundancy model in modular software system.

6.3 ARTIFICIAL BEE COLONY OPTIMIZATION ALGORITHM AND ITS VARIANT

6.3.1 ARTIFICIAL BEE COLONY

ABC is relatively a new swarm intelligence based optimizer proposed by Karaboga to solve continuous optimization problems [4]. ABC and its variants have been implemented on various real world problems arising in different disciplines [22, 23, 24, 25, 26, 27, 28, 29, 30 and 31] and have proved their mettle over various variants of Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Differential Evolution (DE) [32]. ABC divides the bee swarm into three groups namely Scout, Employed and Onlooker. Scout bees randomly search the space for the new food sources, once they get the food sources they become Employed bees. Then the Employed bees share the information about the food source to the Onlooker bees, which are waiting in the hive. This information sharing is done by performing a special kind of dance known as waggle dance, which describes the quality and quantity of the food source in particular direction. There are equal number of employed and onlooker bees in the colony. The number of employed bees represents the food sources. The position of food source represents solution to the optimization problem. And the quality of the nectar represents the fitness of the solution. The iterative process followed by ABC algorithm is discussed in the following steps:

a) Food sources are generated randomly i.e., population of randomly distributed solutions.

b) Nectar amount is calculated by sending employed bees to the food sources.

c) After getting information about food sources from employed bees, onlooker bees select the food sources and determine the quality of the nectar.

d) If the food source is abandoned, Scout bees come into play to search for the new food sources.

6.3.2 FORMULATION OF ARTIFICIAL BEE COLONY ALGORITHM

6.3.2.1 Initialization Process

FS denotes the randomly generated D-dimensional vector (food Sources), let the ith food source in population be represented by Xi = (xi1, xi2, …, xiD) and then each food source is generated by:

[image: Images]

for j = 1, 2, ..., D and i = 1, 2, ..., FS, lbj and ubj are the lower and upper bounds respectively for the dimension j.

6.3.2.2 Employed Bee Process

Then the candidate (new) food source vij is generated by each employed bee xi in the neighborhood of its present position by using:

[image: Images]

where k ∈ {1,2,..., FS} such that k is not equals to i and j ∈ {1, 2, ..., D} are randomly chosen indexes. Ø is a uniformly distributed random number in the range of [–1, 1].

Then greedy selection is done by comparing vi with the position of xi, the better one become the member of the food source (population).

6.3.2.3 Onlooker Bee Process

At this stage an Onlooker bee selects the food source xi based on its probability value pi, which is calculated by using:

[image: Images]

where fitnessi is the fitness value of the food source xi.

6.3.2.4 Scout Bee Process

If the food sources xi gets abandoned or not improved through predetermined number of trials (limit) then corresponding employed bee becomes Scout bee and discovers the new food sources using Eq. (1).

For solving constrained optimization problems, Karaboga and Basturk [32] proposed the variant of ABC that employs the given Deb’s rule for constraint handling [33]:

a) If we have two feasible food sources, we select the one giving the best objective function value;

b) If one food source is feasible and the other one is infeasible, we select the feasible one;

c) If both food sources turn out to be infeasible, the food source giving the minimum constraint violation is selected.

The new food sources are generated using Eq. (4):

[image: Images]

where MR is a modification rate, a control parameter that controls whether the parameter xij will be modified or not.

The general algorithmic structure of the ABC optimization approach is given as follows:

STRUCTURE OF ABC ALGORITHM

Initialization of the Food Sources

Evaluation of the Food Sources

Repeat

Produce new Food Sources for the employed bees

Apply the greedy selection process

Calculate the probability values for Onlookers

Produce the new Food Sources for the onlookers

Apply the greedy selection process

Send randomly scout bees

Memorize the best solution achieved so far.

Until termination criteria are met.

ALGORITHM 1.1 PSEUDOCODE OF CONSTRAINED ABC

Step 1: Initialize the D-dimensional food sources using equation (1)

Step 2: Evaluate the food sources.

Step 3: cycle = 1

Repeat

Step 4: Produce new solutions (food source positions) using Eq. (4).

Step 5: Apply the selection process between xij, and vij based on Deb’s method.

Step 6: Calculate the probability values pi for the solutions xij, using fitness of the solutions (food sources) and constraint violations (CV):

[image: Images]

CV is defined by:

[image: Images]

Step 7: Produce the new solutions (new food source positions) vij, for the onlookers from the solutions xij using Eq. (4), selected depending on pi, and evaluate them.

Step 8: Apply the selection process between xij, and vij based on Deb’s method.

Step 9: If Scout Production Period (SPP) is completed, determine the abandoned food sources (solutions) by using limit parameter, if exists, and replace it with a new randomly produced solution xi for the scout using the Eq. (1).

Step 10: Memorize the best food source position (solution) achieved so far.

Step 11: cycle = cycle + 1.

Until cycle = Maximum Cycle Number (MCN).

6.3.3 INTERMEDIATE ABC GREEDY (I – ABC GREEDY)

The convergence speed of ABC algorithm is typically slower than those of representative population-based algorithms e.g., PSO and DE, when handling unimodal problems [34]. ABC algorithm can easily get trapped in the local optima when solving multimodal problems [35]. While, it is observed that the solution search equation of ABC algorithm which is used to generate new candidate solutions based on the information of previous solutions, is good at exploration but poor at exploitation, which results in the above two insufficiencies [35].

The first algorithm, I-ABC greedy suggested in this Chapter incorporates the concept of OBL [36] for generating initial food sources and search is always forced to move towards the solution vector having the best fitness value in the population to achieve above-mentioned two goals.

I-ABC greedy differs from the basic ABC in the initial step when the population (called food sources in case of ABC) is generated. Here, two sets of populations are considered each having SN food sources out of which SN are generated using the uniform random numbers while the remaining SN food sources are generated using opposition based learning (OBL).

After that, intermediate food locations are generated by taking the mean of the food sources generated by uniform random numbers and by OBL. Once the potential food sources are located, the usual ABC algorithm is applied to determine the best solution (optimal solution in this case). The term greedy here refers that the population is always forced to move towards the solution vector having best fitness value.

Before explaining the proposed algorithms in detail the concept of Opposition Based Learning (OBL), used in I-ABC and I-ABC greedy is briefly described.

6.3.3.1 Opposition Based Learning (OBL)

The main idea behind OBL is the simultaneous consideration of an estimate and its corresponding opposite estimate (i.e., guess and opposite guess). Opposition based initial population is based on the concept of opposite numbers generated as follows:

if x ∈ [l, u] is a real number, then its opposite number x’ is defined as:

[image: Images]

where l and u indicates the lower and upper bounds of the variables. This definition can be extended for higher dimensions. Thus it can be said that if X = (x1, x2,...xn), is a point in n-dimensional space, where x1, x2,..., xn ∈ R and xi − [li, ui] ∀i ∈ {1,2,...,n}, then the opposite point is completely defined by its components

[image: Images]

In case of optimization algorithms, OBL is used for generating the initial population as follows:

	Let X′ = (x1, x2,..., xn) be a candidate solution in an n-dimensional space with xi ∈ [li, ui] and assume f(x) is a fitness function which is used to measure candidate’s optimality. According to the opposite point definition, [image: Images] is the opposite of X = (x1, x2,..., xn).

	Evaluate the fitness of f (X) and f(X’)

	If f(X’) ≤ f (X) (for minimization problem), then replace X with X’; otherwise, continue with X.

6.3.3.2 Proposed I-ABC greedy

I-ABC greedy differs from basic ABC in the initial step when the initial population (food sources) is generated with the help of following easy steps:

	In the beginning, generate food sources (population) of size 2SN consisting of uniformly distributed random vectors. Out of these, store SN vectors in a set P1 and denote P1 as {U1, U2… USN}.

	The remaining SN vectors are stored in the set P2 where OBL rules are applied to generate the corresponding opposition vector and the one having better fitness value is retained in the set P2. Suppose, P2 is denoted as {O1, O2, …., OSN} then the initial population consisting of intermediate locations (IL) of [image: Images] and P2 is generated as:

[image: Images]

The vectors generated by XIL will serve as the initial food sources for the bees. After initializing the food locations the usual procedure of the ABC algorithm described in the previous section is employed to find the optimal solution.

The initial population generated using the above scheme for sphere and Griekwank functions are shown in Figure 6.1.

To make ABC greedy a small change is made in Eq. (2), by replacing xij with xbest,j. where xbest,j represents the solution vector having best fitness value. It will be called ‘greedy bee’ since the search is always forced to move towards the best solution obtained so far. Equation (2) can now be written as:

[image: Images]

The remaining notations have the same meaning as defined in the previous section. Figure 6.2 demonstrates the flow chart of I-ABC greedy algorithm.

[image: Images]

FIGURE 6.1 Food source (population) generation graphs of (a) Sphere function using random numbers (b) Sphere function using intermediate locations (c) Griekwank function using random numbers (d) Griekwank function using intermediate locations.

[image: Images]

FIGURE 6.2 Flow chart of I-ABC greedy algorithm.

ALGORITHM 1.2 PSEUDOCODE OF BASIC I-ABC GREEDY ILLUSTRATING THE PROCEDURE OF INITIALIZING FOOD LOCATIONS AND PRODUCING NEW FOOD POSITIONS

Step 1: Initialize the D-dimensional food sources using Eq. (1).

Follow Step 2 to 3 as Algorithm 1.1

Repeat

Step 4: Produce new solutions (food source positions) using Eq. (8).

Follow Step 5 to 6 as Algorithm 1.1

Step 7: Produce the new solutions (new food source positions) vij, for the onlookers from the solutions xij, using Eq. (8) selected depending on pi, and evaluate them.

Follow Step 8 to 11 as Algorithm 1.1

Until cycle = Maximum Cycle Number (MCN).

6.4 SOFTWARE ENGINEERING DESIGN PROBLEMS

In this Chapter three Software Engineering design problems are taken for experiment and to test the performance of I-ABC greedy algorithm. The problems are:

6.4.1 SOFTWARE RELIABILITY GROWTH MODELS

Software reliability is the probability of failure free operation of a computer program in a specified environment for a specified period of time [37]. Failure process modeling represents a challenge because of the various natures of faults discovered and the methodologies to be used in order to isolate the faults [38, 39]. Many software techniques were developed to assist in testing the software before its final release for public use. Most of these techniques are simply based on building prediction models that have the ability to predict future faults under different testing conditions [40, 41]. These models normally called ‘software reliability growth models’ and are defined as:

A. Power Model (POWM)

The model objective is to compute the reliability of a hardware system during testing process. It is based on the non-homogeneous Poisson process model and was provided in Ref. [42]. The equations which govern the relationship between the time t and μ(t; β) and λ(t; β) are:

[image: Images]

B. Exponential Model (EXMP)

This model is known as a finite failure model was first provided in Refs. [43, 44].

The relationship among various parameters is given as:

[image: Images]

where μ(t; β) and λ(t; β) represent the mean failure function and the failure intensity function, respectively. The parameters β0 is the initial estimate of the total failure recovered at the end of the testing process (i.e., v0). β1 rep-resents the ratio between the initial failure intensity λ0 and total failure v0. Thus, β1 = λ0/v0. It is important to realize that:

[image: Images]

C. Delayed S-Shaped Model (DSSM)

This model describes the software reliability process as a delayed S-shaped model [45]. It is also a finite` failure model. The system equation for μ(t; β) and λ(t; β) are:

[image: Images]

6.4.2 SOFTWARE EFFORT ESTIMATION

Software effort estimation is a form of problem solving and decision making, and in mostly cases the effort estimate for a software project is too complex to be considered in a single piece. The accuracy prediction of effort estimation depends on various things like the size of the project, estimation to transform the size estimate into human effort, time duration and money.

Some of the options for achieving reliable costs and efforts estimate include:

	Estimates on similar type of software already been developed or completed.

	Decomposition techniques (software sizing, problem based estimation, lines of code (LOC) based estimation, functional points (FP) based estimation, and process based estimation) used to generate cost and effort estimation.

	More than one empirical method used to estimate the software cost and effort estimation.

A model based on experience takes the form:

[image: Images]

where d is one of the estimated values like – effort, cost in dollars, project duration and are selected independent parameters like – estimated LOC or FP.

Constructive Cost Model (COCOMO) is one of the most famous and effective model estimate the effort, and was developed by Boehm [46, 47]. The model helps in defining the mathematical relationship between the software development time, the effort in man-months and the maintenance effort [48]. An evolutionary model for estimating software effort using genetic algorithms was developed by Alaa F. Sheta [49].

6.4.3 OPTIMIZING REDUNDANCY LEVEL IN MODULAR SOFTWARE SYSTEM MODELS

In terms of software system, reliability can be defined as the probability that software operates without failure in a specified environment, during a specified exposure period [44]. A discrepancy between expected and actual output is called failure.

Failure is a consequence of fault, also called a defect in the program that, when executed results a failure. The reliability of the software can be improved by carefully implementing the application of redundancy, but it requires additional resources. A number of reliability models have been proposed and developed for the prediction and the assessment of the reliability of fault-tolerant software systems [50]. In the present work, the models proposed by Berman and Ashrafi [51] are considered. The following notations are used unless otherwise mentioned.

Notations:

	K:

	is the number of functions that the software system is required to perform.

	n:

	Number of modules within the software system.

	Fk:

	Frequency of the use of function k, k = 1, 2, …, K.

	mi:

	is the number of available versions for module i, i = 1, …, n.

	Rij:

	Reliability estimation of version j of module i.

	Xij:

	Binary variable, i.e., 1 if version j is selected for module i, else 0.

	Ri:

	Estimated reliability of module i.

	R:

	Estimated reliability of the software system.

	Cij:

	Development cost for version j for module i.

	B:

	Available budget.

A. Model 1

In this model an optimal set of modules are selected to perform one function without redundancy. The model that describes the situation of optimal selection of modules for a single program in order to optimize (maximize) reliability with respect to the development budgetary constraints is given below:

[image: Images]

with respect to

[image: Images]

where

[image: Images]

B. Model 2

Here in this model an optimal set of modules are selected to perform one function with redundancy. The key objective that arises in this situation is to determine the optimal set of modules, allowing redundancy, and to maximize the reliability of the software system with the budgetary constraint. The model is presented below:

[image: Images]

with respect to Xij = 0,1; i = 1,...,n; j = 1,..., mi

where

[image: Images]

[image: Images]

The probability that at least one of the mi, versions is performing correctly defines the reliability of the module i (given as one minus the probability that none of the mi, versions is performing correctly). Constraint set mentioned for the model assures that for each module i at least one version is selected.

C. Model 3

In the model 3 the set of modules without having redundancy, are selected for a system with K functionality. The objective of this model is again just like discussed above in two models i.e., to determine the optimal set of modules for the programs, without allowing redundancy, and in such a way that the reliability of the software system is maximized within the budgetary constraints. Model 3 is presented below:

Let Sk symbolize the set of modules corresponding to program k. For each module i∈Sk there are mi, versions available. Here different programs can call the same module. All the modules to be called by all programs are numbered from 1 to n. The problem can be formulated as follows:

[image: Images]

with respect to

[image: Images]

[image: Images]

where Ri is referred from Model 1.

D. Model 4

This model is similar to the model 3 above. In this case models are selected with redundancy, i.e., the choice of more than one version for each one of the modules are allowed. The problem is presented as follows:

[image: Images]

with respect to

[image: Images]

where Ri is referred from Model 2.

6.5 PARAMETER AND EXPERIMENTAL SETTINGS

After conducting several experiments and referring to various literatures, in order to make the comparison with other algorithm(s), settings given in Table 6.1, have been taken for all the experiments unless otherwise mentioned.

TABLE 6.1 Parameter and Experimental Settings

[image: Images]

6.6 EXPERIMENTAL RESULTS

6.6.1 SOFTWARE RELIABILITY GROWTH MODELS

Test/Debug data for estimating the parameters of software reliability growth models

I-ABC greedy is used to find the best parameters to tune the exponential model, power model and Delayed S-Shaped model. A Test/Debug dataset of 111 measurements (Tables 6.2(a) and 6.2(b)) presented in Ref. [49] was used for the experiments.

Root-mean-square error (RMSE) criterion is used to measure the performance of the proposed I-ABC greedy. RMSE is frequently used to measure differences between values predicted by a model or estimator and the values actually observed from the thing being modeled or estimated. It is just the square root of the mean square error as shown in equation given below:

[image: Images]

where yi represents the ith value of the effort, [image: Images] is the estimated effort and N is the number of measurements used in parameter estimation of growth models. The convergence graph of the three growth models are shown in Figure 6.3. The computed parameters and RMSE (training & testing) of all the three software reliability growth models using ABC and proposed I-ABC greedy algorithms are given in the Tables 6.3 and 6.4, respectively. It can clearly be analyzed that Delayed S-Shaped model provided the minimum RMSE in comparison of other models.

TABLE 6.2(A) Test Data (53–111) Those Marked with * Are Interpolated Data

[image: Images]

TABLE 6.2(B) Test Data (1–52) Those Marked with * Are Interpolated Data

[image: Images]

[image: Images]

FIGURE 6.3 Actual and accumulated failures for the three growth models using test/debug data (111 Measurements).

TABLE 6.3 Estimated Reliability Growth Model Parameters Using ABC and I-ABC greedy

[image: Images]

TABLE 6.4 Computed RMSE for Test/Debug Data

[image: Images]

6.6.2 SOFTWARE EFFORT ESTIMATION

In this problem, the data is taken from Bailey and Basili [52]. The dataset consist of three variables: Developed Line of Code (DLOC), the Methodology (ME) and the measured effort. DLOC is described in Kilo Line of Code (KLOC) and the effort is in man months. The dataset is given in Table 6.5.

Effort Model Based KLOC:

The Constructive Cost Model (COCOMO) was provided by Boehm [46, 47]. This model structure is classified on the type of projects to be handled. These include the organic, semidetached and embedded projects. This model structure is as follows:

TABLE 6.5 NASA Data of Effort Estimation

[image: Images]

[image: Images]

The parameters are generally fixed for these models based on the software project type. New parameters are estimated using I-ABC greedy for the COCOMO model parameters. Consequently, the effort developed for the NASA software projects is computed.

I-ABC greedy is used to develop the following model:

[image: Images]

Table 6.6, presents the actual measured effort over the given 18 NASA projects and the effort estimated based on the GA [49], ABC and by our proposed algorithm I-ABC greedy model. The search space domain of ‘a’ is taken as 0:10, and for ‘b’ is 0.3:2.

Figure 6.4 illustrates the measured efforts and estimated efforts using GA and I-ABC greedy algorithms w.r.t project number and KLOC.

TABLE 6.6 Measured and Estimated Efforts Using GA, ABC, I-ABC and I-ABC greedy

[image: Images]

[image: Images]

FIGURE 6.4 Measured Efforts and Estimated Efforts Using GA and I-ABC greedy Algorithms with respect to (a) Project Number and (b) KLOC.

6.6.3 OPTIMIZING REDUNDANCY LEVEL IN MODULAR SOFTWARE SYSTEM MODELS

To solve the above-discussed software system structure models, numerical examples have been taken.

A. Numerical example for the Model 1 is as: Let there are three modules in the software, i.e., n = 3 (m1=3, m2=3, m3=3). The cost and the reliability of the modules are taken as R11=0.90, R12=0.80, R13=0.85; C11=$3, C12=$1, C13=$2; R21=0.95, R22=0.80, R23=0.70; C21=$3, C22=$2, C23=$1; R31=0.98, R32=0.94; C31=$3, C32=$2 and given budget, i.e., B = 6, the Model 1 can be formulated as follows:

Maximize

[image: Images]

with respect to

[image: Images]

where

X11, X12, X13, X21, X22, X23, X31, X32 = 0, 1.

The optimal solution found by ABC and the proposed variant called I-ABC greedy is presented in the Table 6.7. The objective function value obtained using basic I-ABC greedy is better than that of basic ABC. Also I-ABC greedy took only 27913 function evaluations to solve Model 1, which is about 30% faster than ABC.

B. The same problem discussed above is considered for solving Model 2, with a difference of budget only. Here the budget is taken as $10. The optimal solution of the model using ABC and modified variant is given in Table 6.8. In this case I-ABC greedy performs 34% faster than basic ABC in achieving objective function value.

C. To solve Model 3, the numerical example considered is as follows: K = 2, F1 = 0.70, F2 = 0.30, n = 3, s1 = (1, 2}, s2 = (2, 3}; m1 = 2, m2 = 2, m3 = 2; R11 = 0.80, Rl2 = 0.85; R2l = 0.70, R22 = 0.90; R31 = 0.95 R32 = 0.90; C11 = $2, C12 = $3; C21 = $1, C22 = $3; C31 = $4, C32 = $3 and the available budget is taken as $8. Mathematically, Model can be formulated as:

[image: Images]

with respect to

[image: Images]

where

Xij = 0,1; i = 1, 2, 3 j = 1, ..., mi.

In this model both the algorithms achieved the same optimal solution and is presented in Table 6.9. But I-ABC greedy as above again performed better in terms of function evaluation i.e., 20% faster than basic ABC.

D. For the Model 4 the same problem discussed above is again considered with the budget of $9 and the optimal result for this model is presented in Table 6.10. Here, once again the proposed variant performed better in achieving better objective function value as well as better convergence of 19% when compared with basic ABC.

The number of function evaluation taken to execute the considered Models 1 - 4 using ABC and I-ABC greedy are shown graphically in Figure 6.5.

TABLE 6.7 Optimal Solution of Model 1

	Algorithm

	Decision Variables

	Obj. Func. Value

	Cost ($)

	Func. Eval. Number

	ABC

	X31, X22, X12

	0.6272

	6

	36,176

	I-ABC greedy

	X12, X21, X32

	0.714

	6

	27,913

TABLE 6.8 Optimal Solution of Model 2

	Algorithm

	Decision Variables

	Obj. Func. Value

	Cost ($)

	Func. Eval. Number

	ABC

	X11, X12, X22, X23, X31

	2.499

	10

	36219

	I-ABC greedy

	X31, X21, X23, X12, X13

	2.6680

	10

	26984

TABLE 6.9 Optimal Solution of Model 3

	Algorithm

	Decision Variables

	Obj. Func. Value

	Cost ($)

	Func. Eval. Number

	ABC

	X11, X22, X32

	0.747

	8

	39134

	I-ABC greedy

	X11, X22, X32

	0.747

	8

	32546

TABLE 6.10 Optimal Solution of Model 4

	Algorithm

	Decision Variables

	Obj. Func. Value

	Cost ($)

	Func. Eval. Number

	ABC

	X11, X21, X22, X32

	0.8052

	9

	39034

	I-ABC greedy

	X11, X12, X21, X32

	0.9975

	9

	32612

[image: Images]

FIGURE 6.5 NFE taken to solve Model 1–Model 4 using ABC & I-ABC greedy.

6.7 SUMMARY

In this chapter, the performance of I-ABC greedy algorithm is analyzed on real world problems like parameter estimation of software reliability growth models, optimizing redundancy level in modular software system models and estimating the software cost parameters arising in the field of Software Engineering. Conclusions drawn at the end of this chapter can be summarized as follows:

	In case of software effort estimation, it can be analyzed that the proposed I-ABC greedy performs comparably better, specially in case of higher KLOC when compared with the measured efforts, estimated efforts by GA and ABC.

	I-ABC greedy can be easily modified for solving the problems having integer or/and binary restrictions imposed on it.

	I-ABC greedy outperformed basic ABC in terms of solution quality as well as convergence rate for the considered Software design problems.

From the above-mentioned points, a conclusion that can be drawn at this stage is that the proposed swarm intelligence I-ABC greedy is competent in dealing with such problems, which is evident from the solution quality and rate of convergence.

KEYWORDS

	Artificial Bee Colony

	Convergence

	Optimization

	Software Engineering Design Problems

	Swarm Intelligence

REFERENCES

1. Carbone, P., Buglione, L., & Mari, L. A comparison between foundations of metrology and software measurement. IEEE T. Instrum. Meas. 2008, 57(2), 235–241.

2. Wang, Y. X., & Patel, S. Exploring the cognitive foundations of software engineering. Int. J. Soft. Sci. Comp. Intel. 2009, 1(2), 1–19.

3. Hagan, P., Hanna, E., & Territt, R. Addressing the corrections crisis with software technology. Comp. 2010, 43(2), 90–93.

4. Karaboga, D. An Idea based on Bee Swarm for Numerical Optimization,Technical Report, TR-06, Erciyes University Engineering Faculty, Computer Engineering Department 2005.

5. Mala, D. J., Kamalapriya, M., & Shobana, R., Mohan, V. A non-pheromone based intelligent swarm optimization technique in software test suite optimization. In: IAMA: 2009 International Conference on Intelligent Agent and Multi-Agent Systems. 2009, 188–192.

6. Mala, D. J., Mohan, V., & Kamalapriya, M. Automated software test optimization framework—an artificial bee colony optimization-based approach. IET Softw. 2010, 4(5), 334–348.

7. Bacanin, N., Tuba, M., & Brajevic, I. An object-oriented software implementation of a modified artificial bee colony (abc) algorithm. In: Recent Advances in Neural Networks, Fuzzy Systems and Evolutionary Computing. 2010, 179–184.

8. Dahiya, S. S., Chhabra, J. K., & Kumar, S. Application of artificial bee colony algorithm to software testing. In: 2010 21st Australian Software Engineering Conference (ASWEC), 2010, 149–154.

9. Kilic, H., Koc, E., & Cereci, I. Search-based parallel refactoring using population-based direct approaches. In: Search Based Software Engineering. 2011, 271–272.

10. Adi Srikanth, Kulkarni, N. J., Naveen, K. V., Singh, P., & Srivastava, P. R. Test case optimization using artificial bee colony algorithm. In: Advances in Computing and Communications, Communications in Computer and Information Science. 2011, 570–579.

11. Liang, C. Y., & Ming, L. T. Using two-tier bitwise interest oriented QRP with artificial bee colony optimization to reduce message flooding and improve recall rate for a small world peer-to-peer system. In: 2011 7th International Conference on Information Technology in Asia (CITA 11), 2011, 1–7.

12. Suri, B., & Kalkal, S. Review of artificial bee colony algorithm to software testing. Int J Res Rev Comput Sci. 2011, 2(3), 706–711.

13. Li, L. F., & Ma, M. Artificial bee colony algorithm based solution method for logic reasoning. Comput Technol Dev. 2011. (doi:CNKI:SUN:WJFZ.0.2011–06–035).

14. Bacanin, N., Tuba, M., & Brajevic, I. Performance of object-oriented software system for improved artificial bee colony optimization. Int J Math Comput Simul. 2011, 5(2), 154–162.

15. Sharma, T. K., & Pant, M. Dichotomous search in ABC and its application in parameter estimation of software reliability growth models. In: Proceedings of Third World Congress on Nature and Biologically Inspired Computing (NaBIC), Salamica, Spain. 2011, 207–212.

16. Koc, E., Ersoy, N., Andac, A., Camlidere, Z. S., Cereci, I., & Kilic, H. An empirical study about search-based refactoring using alternative multiple and population-based search techniques. In: Computer and information sciences II, 2012, 59–66.

17. Sharma, T. K., & Pant, M. Halton Based Initial Distribution in Artificial Bee Colony Algorithm and its Application in Software Effort Estimation. In: Proceedings of Bio-Inspired Computing: Theories and Applications (BIC-TA), Penang, Malaysia. 2011, 80–84.

18. Singh, T., & Sandhu, M. K. An Approach in the Software Testing Environment using Artificial Bee Colony (ABC). Optimization. International Journal of Computer Applications. 2012, 58(21), 5–7.

19. Suri, B., & Mangal, I. Analyzing Test Case Selection using Proposed Hybrid Technique based on BCO and Genetic Algorithm and a Comparison with ACO. Computer Science and Software Engineering International Journal. 2012, 2(4), 206–211.

20. Soma, S. B. L., Raju, M. L. H. P., Uday, K. M., Swaraj, Ch., & Srivastav, P. R. Automated Generation of Independent Paths and Test Suite Optimization Using Artificial Bee Colony. In: Proc. of International Conference on Communication Technology and System Design – 2011. Procedia Engineering 2012, 30, 191–200.

21. Sharma, T. K., & Pant, M. Redundancy Level Optimization in Modular Software System Models using ABC. International Journal of Intelligent Systems and Applications (IJISA). 2014, 6(4), 40.

22. Singh, A. An artificial bee colony algorithm for the leaf constrained minimum spanning tree problem. Applied Soft Computing Journal. 2009, 9(2), 625–631.

23. Pan, Q. K., Tasgetiren, M. F., Suganthan, P., & Chua, T. A discrete artificial bee colony algorithm for the lot-streaming flow shop-scheduling problem. Information Sciences. 2011, 181(12), 2455–2468.

24. Kalayci, C. B., & Surendra, Gupta, M. Artificial bee colony algorithm for solving sequence-dependent disassembly line balancing problem. Expert Systems with Applications. 2013, 40(18), 7231–7241.

25. Pan, Q. K., Wang, L., Li, J. Q., & Duan, J. H. A novel discrete artificial bee colony algorithm for the hybrid flow shop-scheduling problem with make-span minimization. Omega. 2014, 45, 42–56.

26. Sharma, T. K., & Pant, M. Enhancing the food locations in an artificial bee colony algorithm. Soft Computing. 2013, 17(10), 1939–1965.

27. Sharma, T. K., Pant, M., & Singh, M. Nature-Inspired Metaheuristic Techniques as Powerful Optimizers in the Paper Industry. Materials and Manufacturing Processes. 2013, 28(7), 788–802.

28. Kumar, S., Kumar, P., Sharma, T. K., & Pant, M. Bi-level thresholding using PSO, Artificial Bee Colony and MRLDE embedded with Otsu method. Memetic Computing, 2013, 5(4), 323–334.

29. Sharma, T. K., & Pant, M. Enhancing the food locations in an Artificial Bee Colony algorithm, In: Proceedings of IEEE Swarm Intelligence Symposium (IEEE SSCI 2011) Paris, France. 2011, 1–5.

30. Sharma, T. K., Pant, M., & Bansal, J. C. Some Modifications to Enhance the Performance of Artificial Bee Colony. In: Proceedings of IEEE World Congress on Computational Intelligence (CEC), Brisbane, Australia. 2012, 3454–3461.

31. Sharma, T. K., Pant, M., & Ahn, C. W. Improved Food Sources in Artificial Bee Colony. In: Proceedings of IEEE Swarm Intelligence Symposium, IEEE SSCI 2013, Singapore. 2013, 95–102.

32. Karaboga, D., & Basturk, B. A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) algorithm. Journal of Global Optimization, Springer Netherlands.. 2007, 39, 459–471.

33. Deb, K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering. 2000, 186(2/4), 311– 338.

34. Karaboga, D., & Basturk, B. On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput. 2008, 8(1), 687–697.

35. Zhu, G., & Kwong, S. Gbest-Guided Artificial Bee Colony Algorithm for Numerical Function Optimization. Appl Math Computing. 2010, 217(7), 3166–3173.

36. Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. A Novel Population Initialization Method for Accelerating Evolutionary Algorithms. Computer and Applied Mathematics with Application.. 2007, 53, 1605–1614.

37. Musa, JD., Iannino, A., & Okumoto, K. Software Reliability: Measurement, Prediction, Applications. McGraw Hill, 1987. H. Pham. Software Reliability. Springer-Verlag, 2000.

38. Bishop, P. G., & Bloomfield, R. Worst case reliability prediction on a prior estimate of residual defects. In: 13th IEEE International Symposium on Software Reliability Engineering (ISSRE-2002). 2002, 295–303.

39. Xie, M. Software reliability models – past, present and future. In: Recent Advances in Reliability Theory: Methodology, Practice and Inference. 2002, 323–340.

40. Yamada, S., & Osaki, S. Optimal software release policies with simultaneous cost and reliability requirements. European J. Operational Research. 1987, 31(1), 46–51.

41. Yamada, S., & Somaki, H. Statistical methods for software testing-progress control based on software reliability growth models (in Japanese). Transactions Japan SIAM. 1996, 317–327.

42. Crow, L. H. Reliability for complex repairable systems. Reliability and Biometry, SIAM. 1974, 379–410.

43. Moranda, P. B. Predictions of software reliability during debugging. In: Annual Reliability and Maintainability Symposium. 1975, 327–332.

44. Musa, J. D. A theory of software reliability and its application. IEEE Trans. Software Engineering. 1975, 1, 312–327.

45. Yamada, S., Ohba, M., Osaki, S. S-Shaped software reliability growth models and their applications. IEEE Trans. Reliability. 1984, R-33(4), 289–292.

46. Boehm, B. Software Engineering Economics, Englewood Cliffs, NJ. Prentice-Hall, 1981.

47. Boehm, B. Cost Models for Future Software Life Cycle Process: COCOMO2 Annals of Software Engineering, 1995.

48. Kemere, C. F. An empirical validation of software cost estimation models. Communication ACM. 1987, 30, 416–429.

49. Sheta, A. F. Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects. Journal of Computer Science. 2006, 2(2),118–123.

50. Belli, F., & Jedrzejowicz, P. An approach to reliability optimization of software with redundancy. IEEE Transactions on Software Engineering. 1991, 17(3), 310–312.

51. Berman, O., & Ashrafi, N. Optimization Models for Reliability of Modular Software Systems. IEEE Transactions on Software Engineering. 1993, 19(11), 1119–1123.

52. Bailey, J. W., & Basili, V. R. A meta model for software development resource expenditure. In: Proceedings of ICSE ‘81, 5th International Conference on Software Engineering, 1981, 107–116.

APPENDIX

Benchmark Functions

	The Sphere function described as:

[image: Images]

where the initial range of x is [–100, 100]n, and n denotes the dimension of the solution space. The minimum solution of the Sphere function is x* = [0, 0,…, 0] and f1(x*)=0.

	The Griewank function described as:

[image: Images]

where the initial range of x is [—600, 600]n. The minimum of the Griewank function is x* = [100, 100, …, 100] and f6(x*)=0.

CHAPTER 7

GENE EXPRESSION PROGRAMMING IN NANOTECHNOLOGY APPLICATIONS

PRAVIN M. SINGRU,1 VISHAL JAIN,1 NIKILESH KRISHNAKUMAR,1 A. GARG,2 K. TAI,2 and V. VIJAYARAGHAVAN2

1Department of Mechanical Engineering, Birla Institute of Technology and Science, BITS Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India

2School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

CONTENTS

7.1 Background

7.2 Proposed Computational Methodology

7.3 Design of Tensile Loading in BNNT Material

7.3.1 Description of Data

7.4 Statistical Evaluation of the Proposed Model

7.5 Mechanics of BNNT Material Using Sensitivity and Parametric Analysis

7.6 Conclusions

Keywords

References

Research in nanomaterials has gained enormous interest in recent years due to its wide spread applications. The desirable qualities of nanomaterials have enabled them to find promising applications in emerging areas such as nano-fluidics, nano-biotechnology and nano electro mechanical systems (NEMS). In this chapter, an integrated Genetic Programming (GP) simulation approach for modeling the material properties of nanoscale materials is proposed. A sensitivity and parametric analysis will also be conducted to validate the robustness of the proposed theme and for identifying the key input factors that govern the material characteristics at nanoscale.

7.1 BACKGROUND

Investigating the properties of Boron Nitride Nanotubes (BNNT) has attracted significant interest in material science [1, 2]. The exceptional qualities of BNNT has been widely studied and investigated to explore its diverse possible applications in real world. These include applications in electric circuits such as BNNT-based integrated circuits (ICs), structural composite materials and hydrogen storage applications [3, 4 and 5]. In addition, BNNT is an ideal candidate for potential applications in nano-biological and nano-level drug delivery devices [6, 7]. Numerous studies have been undertaken to predict the mechanical properties of BNNT using experimental and computational techniques. Tang et al [8] determined the mechanical properties of BNNT under tension using in situ Transmission Electron Microscopy (TEM) and Molecular Dynamics (MD) simulation approach. They found that the mechanical properties and deformation behaviors are correlated with the interfacial structure under atomic resolution, which clearly demonstrates a geometry strengthening effect. Liew and Yuan [9] studied the structural performance of double-walled BNNT under compression at high temperatures using computational modeling approach. They found that the tensile strength and thermal stability of BNNTs are superior to carbon nano-tubes (CNT). Shokuhfar et al. [10] studied the buckling strength of BNNTs at various temperatures using MD simulation technique. They found that the buckling strength generally decreases at high temperatures. Furthermore, the buckling resistance of BNNT was also found to decrease with increasing the length of BNNT.

The effect of vacancy defects on the structural properties of BNNT were studied by Shokuhfar and Ebrahimi-Nejad [11]. It was found from their analysis that the tensile strength of BNNT decreases with increasing vacancy defect concentration in BNNT structure. The tensile strength of BNNT for hydrogen storage applications was analyzed by Ebrahimi-Nejad et al. [12]. They found that hydrogen storage decreases the room temperature buckling strength of BNNT. The above-mentioned literature studies clearly indicate that the tensile strength of BNNTs depends on various factors such as system size, chirality, temperature and defects. Hence, understanding the influence of each factor on the tensile strength of BNNTs is important for optimizing the elastic properties of BNNT. One way of optimizing system properties of nanoscale materials is to form an explicit model formulation, which can then be used to extract system input variables for desirable material performance.

Therefore, there is a need to develop an integrated GP simulation technique for modeling the material properties of BNNT. The new hybrid approach combines powerful advantages of accuracy and low cost of MD simulation with the explicit model formulation of GP approach. These methods require input training data, which can be obtained from the MD simulations, which is based on a specific geometry and temperature. Considering the input data, the GP technique can then be able to generate meaningful solutions for the complicated problems [13, 14, 15 and 16]. The parametric and sensitivity analysis is conducted in this chapter to validate the robustness of the proposed model by unveiling important hidden parameters and non-linear relationships.

7.2 PROPOSED COMPUTATIONAL METHODOLOGY

The tensile characteristics of BNNTs described in this work are modeled entirely using an integrated GP simulation approach as shown in Figure 7.1. In this approach, the MD is integrated in the paradigm of popular GP approach. The data obtained from the MD simulation is further fed into GP cluster. GP based on Darwin’s theory of ‘survival of the fittest,’ finds the optimal solution by mimicking the process of evolution in nature [17].

The initial population of models is obtained by randomly combining the elements from the function and terminal sets. The elements in the function set can be arithmetic operators (+, −, /, ×), non-linear functions (sin, cos, tan, exp, tanh, log) or Boolean operators. The elements of the terminal set are input process variables and random constants. The present study has three input process variables, and, therefore these are chosen as elements of terminal set. The constants are chosen randomly in the range as specified by the user since these accounts for the human or experimental error. The performance of the initial population is measured using the fitness function, which compares the predicted values of the Multi-gene Genetic Programming (MGGP) model to that of the actual values. Fitness function must be minimized for obtaining better solutions. Typically used fitness function, namely, root mean square error (RMSE) is given by:

[image: Images]

FIGURE 7.1 Mechanism of Integrated GP approach for modeling tensile strength of BNNT.

[image: Images]

where Gi is the valued predicted of ith data sample by the MGGP model, Ai is the actual value of the ith data sample and N is the number of training sample.

The performance of the initial population is evaluated and the termination criterion is checked. The termination criterion is specified by the user and is the maximum number of generations and/or the threshold error of the model. If the performance does not match the criterion, the new population is generated by performing the genetic operators on the selected individuals of the initial population. Genetic operators applied are crossover, mutation and reproduction. Tournament selection method is used to select the individuals for the genetic operations. This selection method maintains genetic diversity in the population and thus avoids local/premature convergence. Tournament sizes of 2, 4 and 7 are preferred. The models with lowest fitness value reproduce or copied in the next generation. The crossover operation, namely, subtree crossover is used. Figure 7.2 shows the functioning of subtree crossover in which the branch of the two models is chosen randomly and swapped. The mutation used is subtree mutation (Figure 7.3) in which the branch of the model is replaced with the newly randomly generated model/tree. By Koza [17], the probability rate of reproduction, crossover and mutation kept is 85%, 10% and 5%, respectively. This indicates that most of the new population came from the application of crossover operation. The iterative phenomenon of generating new population continues as long as the above-mentioned termination criterion is met. The best model is selected based on minimum RMSE and its performance is evaluated on testing data.

[image: Images]

FIGURE 7.2 Subtree crossover operation.

[image: Images]

FIGURE 7.3 Subtree Mutation Operation.

7.3 DESIGN OF TENSILE LOADING IN BNNT MATERIAL

The BNNT structure is first thermally equilibrated in an NVT ensemble (Number of particles, Volume and Temperature is conserved) to release any residual stresses. The simulations are carried out by maintaining the desired system temperature. Six temperatures ranging from 0 K to 1500 K are considered in our study to gather the required data of mechanical strength. The mechanical strength in our study is defined as the maximum tensile force that BNNT structure can sustain under compression. The temperature stability of the system is attained by using the Nose-Hoover thermostat [18, 19]. Following equilibration, the single-walled carbon nanotube (SWCNT) is subjected to tensile loading as shown in Figure 7.4. It can be seen from Figure 7.4 that the end atoms enclosed inside the red rectangle is subjected to a constant inward displacement (strain rate = 0.001 ps−1). The system is allowed to relax after every 1000 time steps such that the atoms attain the favorable minimum energy positions. The inward velocity and the trajectories of end atoms are calculated and the atoms are subsequently shifted to the new position. The remaining atoms are relaxed in an NVT ensemble and the procedure is repeated until failure occurs. We used a total of 600,000 time steps (including 200,000 time steps for initial equilibration) with each time step equivalent to 1 fs. The effect of size on mechanical strength of BNNTs is studied by varying the aspect ratio (ratio of length to diameter of the BNNT). The diameter of BNNT is varied by changing the chirality of BNNT structure. The effect of temperature is studied by carrying out the mechanical loading of BNNT at six different temperatures, viz. 0 K, 300 K, 600 K, 900 K, 1200 K and 1500 K. The influence of vacancy defects on the mechanical strength of BNNT is studied by manually reconstructing vacancy defects ranging from 1 to 4 missing atoms in the perfect hexagonal lattice of BNNT.

[image: Images]

FIGURE 7.4 Procedure of mechanical loading of BNNT under compression. The end atoms enclosed within the red colored rectangle is subjected to inward displacement to effect compression.

7.3.1 DESCRIPTION OF DATA

Data obtained from the MD simulations comprise of three input process variables i.e., Aspect ratio of BNNTs (x1), temperature (x2), number of vacancy defects (x3) and the one output process variable, namely, the tensile strength (y1). 47 data points for BNNTs are obtained from the MD simulations. Nature of the data points collected is shown in Table 7.1. Selection of the training samples affect the learning phenomenon of the proposed model. In this work, 80% of the total samples are chosen randomly as training samples with the remaining used as the set of the test samples. Data is then fed into cluster of the proposed model.

In the present work, GPTIPS [20, 21] is used to perform the implementation of proposed approach for the evaluation of tensile strength of BNNTs. Approach is applied to the dataset as shown in Table 7.1. For the effective implementation of the proposed approach, the parameter settings are adjusted using the trial-and-error method (Table 7.2). Wide range of elements is chosen in the function set so as to generate the mathematical models of different sizes. Depending on the problem, the values of population size and generations are set. Based on having good number of 47 data points, the value of population size and generations is kept lower (100) to avoid any over-fitting. The size and variety of forms of the model to be searched in the solution space is determined by the maximum number of genes and depth of the gene. Based on collection of good number of data samples for the BNNTs, the maximum number of genes and maximum depth of gene is chosen at 8 and 6 respectively. The performance of the best model (see Eq. (2)) selected is shown in the following section. In this model, x1, x2 and x3 are aspect ratio, temperature and number of vacancy defects for the BNNTs.

TABLE 7.1 Descriptive Statistics of the Input and Output Process Variables Obtained from MD Simulations for BNNTs

[image: Images]

TABLE 7.2 Parameter Settings for Proposed Integrated GP Approach

[image: Images]

[image: Images]

7.4 STATISTICAL EVALUATION OF THE PROPOSED MODEL

The results obtained from the integrated model are illustrated in Figure 7.5 on the training and testing data. Performance of the proposed model is evaluated against the actual results [12] using the five metrics: the square of the correlation coefficient (R2), the mean absolute percentage error (MAPE), the RMSE, relative error (%) and multiobjective error function (MO) given by:

[image: Images]

[image: Images]

[image: Images]

FIGURE 7.5 Performance of the Integrated GP model for the BNNTs on (a) training and (b) testing data.

[image: Images]

[image: Images]

[image: Images]

where Mi and Ai are the predicted and actual values respectively, [image: Images] and [image: Images] are the average values of the predicted and actual respectively and n is the number of training samples. Since, the values of R2 do not change by changing the models values equally and the functions: MAPE, RMSE and relative error only shows the error and no correlation. Therefore, a MO error function that is a combination of these metrics is also used.

The result of the training phase shown in Figure 7.5a indicates that the proposed model have impressively learned the non-linear relationship between the input variables and tensile strength with high correlation values and relatively low error values. The result of the testing phase shown in Figure 7.5b indicates that the predictions obtained from the model are in good agreement with the actual data, with achieved values of R2 as high as 0.98.

MO values of the proposed model are computed on the training and testing data as shown in Table 7.3. The descriptive statistics of the relative error of the proposed model are shown in Table 7.4, which illustrates error mean, standard deviation (Std dev), Standard error of mean (SE mean), lower confidence interval (LCI) of mean at 95%, upper confidence interval (UCI) of mean at 95%, median, maximum and minimum. The lower values of range (UCI-LCI) of the confidence intervals of the proposed model indicates that it is able to generalize the tensile strength values satisfactory based on the variations in aspect ratio (AR), temperature and incursion of defects.

Goodness of fit of the proposed model is evaluated based on the hypothesis tests and shown in Table 7.5. These are t-tests to determine the mean and f-tests for variance. For the t-tests and the f-tests, the p-value of the model is >0.05, so there is not enough evidence to conclude that the actual values and predicted values from the model differ. Therefore, the proposed model has statistically satisfactory goodness of fit from the modeling point of view.

TABLE 7.3 Multiobjective Error of the Proposed Model

	Integrated GP model

	Training data

	Testing data

	BNNTs

	54.84

	59.25

TABLE 7.4 Descriptive Statistics Based on the Relative Error (%) of the Proposed Model

[image: Images]

TABLE 7.5 P-Values to Evaluate Goodness of Fit of the Model

	95% CI

	BNNTs

	Mean paired t test

	0.98

	Variance F test

	0.97

Thus, from the statistical comparison presented, it can be concluded that the proposed model is able to capture the dynamics of the nanosystem.

7.5 MECHANICS OF BNNT MATERIAL USING SENSITIVITY AND PARAMETRIC ANALYSIS

Sensitivity and parametric analysis about the mean is conducted for validating the robustness of our proposed model. The sensitivity analysis (SA) percentage of the output to each input parameter is determined using the following formulas:

[image: Images]

[image: Images]

where fmax (xi) and fmin (xi) are, respectively, the maximum and minimum of the predicted output over the ith input domain, where the other variables are equal to their mean values.

Figure 7.6 shows the plots of the sensitivity results of input variables in the prediction of tensile strength of BNNTs. From Figure 7.6, it is clear that the process input variable, namely the aspect ratio, has the greater impact on the tensile strength of BNNTs followed by number of defects and temperature. This reveals that by regulating the aspect ratio of BNNTs, a greatest variation in tensile strength of BNNTs can be achieved. The parametric analysis provides a measure of the relative importance among the inputs of the model and illustrates how the tensile strength of BNNTs varies in response to the variation in input variables. For this reason, on the formulated model, the first input is varied between its mean ± definite number of standard deviations, and the tensile strength is computed, while, the other input is fixed at its mean value. This analysis is then repeated for the other inputs. Figure 7.7 displays the plots generated for each input variable and the tensile strength of BNNTs. These plots reveal that, for example, the tensile strength decreases with an increase in all three input variables.

[image: Images]

FIGURE 7.6 Amount of impact of input variables to the tensile strength of BN.

7.6 CONCLUSIONS

The integrated GP approach is proposed in simulating the tensile strength characteristic of BNNTs based on aspect ratio, temperature and number of defects. The results show that the predictions obtained from the proposed model are in good agreement with the actual results. Furthermore, the dominant process parameters and the hidden non-linear relationships are unveiled, which further validate the robustness of our proposed model. The higher generalization ability of the proposed model obtained is beneficial for experts in evaluation of tensile strength in uncertain input process conditions. The proposed method evolve model that represents the explicit formulation between the tensile strength and input process parameters. Thus, by using the model, the vital economic factors such as time and cost for estimating the tensile strength using the trial-and-error experimental approach can be reduced.

[image: Images]

FIGURE 7.7 Parametric analysis of the Integrated GP model showing the effect of variation of tensile strength in respect to input variables for BNNT.

KEYWORDS

	Defects

	Inorganic compounds

	Mechanical properties

	Nanostructures

REFERENCES

1. Wang, J., Lee, C. H., & Yap, Y. K. Recent Advancements in Boron Nitride Nanotubes. Nanoscale, 2010, 2(10), p. 2028–2034.

2. Griebel, M., & Hamaekers, J. Molecular Dynamics Simulations of Boron-Nitride Nanotubes Embedded in Amorphous Si-B-N. Computational Materials Science,. 2007, 39(3), p. 502–517.

3. Mohajeri, A., & Omidvar, A. Density Functional Theory Study on the Static Dipole Polarizability of Boron Nitride Nanotubes: Single Wall and Coaxial Systems. Journal of Physical Chemistry C, 2014, 118(3), p. 1739–1745.

4. Yan, H., et al., Enhanced Thermal-Mechanical Properties of Polymer Composites with Hybrid Boron Nitride Nanofillers. Applied Physics A: Materials Science and Processing, 2014, 114(2), p. 331–337.

5. Lu, H., Lei, M., & Leng, J. Significantly Improving Electro-Activated Shape Recovery Performance of Shape Memory Nanocomposite by Self-Assembled Carbon Nanofiber and Hexagonal Boron Nitride. Journal of Applied Polymer Science, 2014.

6. Ferreira, T. H., et al., Boron Nitride Nanotubes Coated with Organic Hydrophilic Agents: Stability and Cytocompatibility Studies. Materials Science and Engineering C, 2013, 33(8), p. 4616–4623.

7. Del Turco, S., et al., Cytocompatibility Evaluation of Glycol-Chitosan Coated Boron Nitride Nanotubes in Human Endothelial Cells. Colloids and Surfaces B: Biointerfaces, 2013, 111, p. 142–149.

8. Tang, D. M., et al., Mechanical Properties Of Bamboo-Like Boron Nitride Nanotubes by in situ TEM and MD Simulations: Strengthening effect of interlocked joint interfaces. ACS Nano, 2011, 5(9), p. 7362–7368.

9. Liew, K. M., & Yuan, J. High-Temperature Thermal Stability and Axial Tensile Properties of a Coaxial Carbon Nanotube Inside a Boron Nitride Nanotube. Nanotechnology, 2011, 22(8).

10. Shokuhfar, A., et al., The effect of temperature on the tensile buckling of boron nitride nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2012, 209(7), p. 1266–1273.

11. Ebrahimi-Nejad, S., et al., Effects of structural defects on the tensile buckling of boron nitride nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 48, p. 53–60.

12. Ebrahimi-Nejad, S., & Shokuhfar, A. Tensile Buckling of Open-Ended Boron Nitride Nanotubes in Hydrogen Storage Applications. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 50, p. 29–36.

13. Vijayaraghavan, V., et al., Estimation of Mechanical Properties of Nanomaterials Using Artificial Intelligence Methods. Applied Physics A: Materials Science and Processing, 2013, p. 1–9.

14. Vijayaraghavan, V., et al., Predicting the Mechanical Characteristics of Hydrogen Functionalized Graphene Sheets Using Artificial Neural Network Approach. Journal of Nanostructure in Chemistry, 2013, 3(1), p. 83.

15. Cevik, A., et al., Soft Computing Based Formulation for Strength Enhancement of CFRP Confined Concrete Cylinders. Advances in Engineering Software, 2010, 41(4), p. 527–536.

16. Gandomi, A. H., & Alavi, A. H. Multi-Stage Genetic Programming: A New Strategy to Nonlinear System Modeling. Information Sciences, 2011, 181(23), p. 5227–5239.

17. Koza, J. R., Genetic Programming as a Means for Programming Computers by Natural Selection. Statistics and Computing, 1994, 4(2), p. 87–112.

18. Hoover, W. G., Canonical Dynamics – Equilibrium Phase-Space Distributions. Physical Review A, 1985, 31(3), p. 1695–1697.

19. Nose, S., A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. Journal of Chemical Physics, 1984. 81(1), p. 511–519.

20. Hinchliffe, M., et al. Modelling Chemical Process Systems Using a Multi-Gene Genetic Programming Algorithm, 1996.

21. Searson, D. P., Leahy, D. E., & Willis, M. J. GPTIPS: An Open Source Genetic Programming Toolbox for Multigene Symbolic Regression. In Proceedings of the International MultiConference of Engineers and Computer Scientists. 2010, Citeseer.

PART II

THEORY AND APPLICATIONS OF SINGLE AND MULTIOBJECTIVE OPTIMIZATION STUDIES

CHAPTER 8

AN ALTERNATE HYBRID EVOLUTIONARY METHOD FOR SOLVING MINLP PROBLEMS

MUNAWAR A. SHAIK1 and RAVINDRA D. GUDI2

1Associate Professor, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, E-mail: munawar@iitd.ac.in, Tel: +91-11-26591038

2Professor, Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India, E-mail: ravigudi@iitb.ac.in, Tel: +91-22-25767231

CONTENTS

8.1 Nonlinear Transformation

8.2 Application of Differential Evolution

8.3 Hybrid Evolutionary Method

8.4 Selected Case Studies

Acknowledgements

Keywords

References

Appendix A: Mathematical Model for Examples 8.3

Most of the real world optimization problems in engineering involve several inherent nonlinearities in their model and often require solution of either nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP) problems [15]. The presence of discrete variables, bilinearities, and non-convexities further makes it challenging to determine global optimal solutions to these problems, which has been one of the important research topics in the literature [1, 7, 8, 9, 10 and 11, 16, 19, 28]. Optimization techniques can be broadly classified as deterministic (or traditional) and stochastic (or non-traditional) approaches. On one hand, most of the deterministic optimization techniques such as branch-and-bound, cutting plane, and decomposition schemes either fail to obtain global optimal solutions or have difficulty in proving global optimality; while on the other hand, most of the stochastic optimization techniques have critical issues related to either slower convergence, longer computational times, and/or difficulty in handling of discrete variables.

Most of the deterministic optimization methods assume convexity and often guarantee determination of global optimum solutions. Handling of discrete variables is very cumbersome especially of the bilinear and binomial terms leading to non-convexities [5, 13, 19], and many approaches have been proposed based on relaxation, partitioning and bounding steps that result in an evolutionary refinement of the search space [9, 10, 28, 30, 31]. However, strategies for generalizing these relaxation and partition methods are yet unknown. Therefore, for non-convex MINLP problems, in general, there are no known robust deterministic algorithms that can guarantee global optimal solutions.

Nontraditional optimization techniques [24] such as Simulated Annealing (SA), Genetic Algorithms (GA), and Differential Evolution (DE), among many such methods, do not make any assumptions related to the nature of convexity of the problem. They have been widely used in numerous engineering applications and are known to yield global optimal solutions to complex real-life problems. Handling of integer variables is relatively easier and the solution is generally unaffected by the presence of bilinear/binomial terms involving discrete variables. For instance in DE, the algorithm works by assuming discrete variables as continuous variables during all the steps, but only for the objective function evaluation a truncation operation is used for forcing the integrality requirements. However, these methods are often slow and do not guarantee convergence.

In this chapter, we discuss both the convergence issues and alternate ways of handling discrete variables. We present application of a nonlinear transformation for representing discrete variables as continuous variables [18] and discuss an alternate method for solving MINLP problems by converting them into equivalent NLP problems. Since the resulting NLP problem is nonconvex a hybrid method involving switching between deterministic and stochastic optimization techniques is discussed [21, 23]. For the deterministic part of the solution either standard gradient based methods or commercial solvers available with optimization software (such as GAMS [12]) are used with a better starting point, which is provided by the stochastic part of the solution obtained using Differential Evolution [27]. A parameter based on rapid change in the objective function is used to aid in deciding when to switch from deterministic to stochastic solution. Selected examples from literature are used to illustrate the effectiveness of the hybrid evolutionary method.

8.1 NONLINEAR TRANSFORMATION

A binary variable y∈{0,1} can be modeled as a continuous variable x∈[0,1], using the following nonlinear binary condition from Li [18]:

[image: Images]

which enforces x to take either 0 or 1. The function x (1 – x) is a non-convex nonlinear function as shown in Figure 8.1. For MINLP problems involving more than one binary variable the binary condition of Eq. (8.1) was generalized in Munawar and Gudi [23] as follows:

[image: images]

[image: Images]

FIGURE 8.1 Non-convex Plot of the Binary Condition (source: Munawar [21]).

From Figure 8.1, which is plotted for single variable case, it can be observed that x(1– x) is never negative within the specified bounds and hence the inequality in Eq. (8.2) can only be satisfied as an equality. Using this transformation any MINLP model can be converted into an equivalent NLP model. Li [18] solved the resulting NLP using a modified penalty function method, however only local optimal solutions were reported due to the presence of non-convexities. In this chapter, we demonstrate the use of differential evolution for solving the resulting NLP problem based on the hybrid evolutionary approach. The following example illustrates the use of binary condition.

Example 8.1: Consider the following simple convex MINLP problem from Floudas [8], which has one continuous variable x and one binary variable y.

min F(x, y) = 2x – y – ln(0.5x)

subject to

[image: images]

The global optimum for this problem is reported to be (x, y; F) = (1.375, 1; 2.1247). The objective function F(x, y) and the inequality constraint G(x,y) for y=0 and y=1 are shown in Figure 8.2. The feasible region corresponds to all negative values of G(x,y). For y = 1, F has a minimum at x=1.375 where G(x,1) is negative. Using the binary condition on y, Example 8.1 can be transformed into an equivalent NLP problem with two continuous variables x and z as given in Eq. (8.4). The resulting nonconvex NLP problem is shown in Figure 8.3.

[image: Images]

FIGURE 8.2 Objective Function and the Inequality Constraint for Example 8.1 (Source: Munawar [21]).

min F(x, z) = 2x – z – ln(0.5x)

subject to

[image: images]

8.2 APPLICATION OF DIFFERENTIAL EVOLUTION

DE is a simple and efficient evolutionary method that has been successfully used for solving numerous engineering optimization problems. It is a population-based random search technique and an improved version compared to binary coded genetic algorithms based on ‘survival of the fittest’ principle of nature. From the initial randomly generated populations (vectors of decision variables each analogous to a gene) newer generations are created through successive application of genetic operators such as mutation, crossover and selection. It is an enhanced version of GA as it uses addition operator for mutation and a non-uniform crossover wherein the parameter values of the child vector are inherited in unequal proportions from the parent vectors.

[image: Images]

FIGURE 8.3 Objective function and constraints for the transformed problem of Example 8.1 (Source: Munawar [21]).

For reproduction, DE uses a tournament selection where the child vector competes against one of its parents. The overall structure of the DE algorithm resembles that of most other population based searches. The original DE algorithm [26, 27] is capable of handling only continuous variables and for solving unconstrained optimization problems. Few simple modifications were discussed in the literature [24] to extend it for optimization involving discrete variables and for handling inequality and equality constraints. Real values are converted to integer values by truncation but only for the purpose of objective function evaluation. Truncated values are not used elsewhere during the search. Discrete values can been handled by assigning the elements to another parameter and using its index, thus converting it into integer variable. Constraints are normally handled as soft constraints in DE using penalty function method where the sum of the squares of the violation of the constraints is augmented with a penalty to the objective function.

Different strategies can be adapted in DE algorithm [27] which vary based on (i) vector to be perturbed, (ii) number of difference vectors considered for perturbation, and (iii) type of crossover used. There are ten different working strategies proposed by Price and Storn [27]: (1) DE/best/1/exp, (2) DE/rand/1/exp, (3) DE/rand-to-best/1/exp, (4) DE/best/2/exp, (5) DE/ rand/2/exp, (6) DE/best/1/bin, (7) DE/rand/1/bin, (8) DE/rand-to-best/1/bin, (9) DE/best/2/bin, and (10) DE/rand/2/bin.

The general convention used above is DE/u/v/w. DE stands for Differential Evolution, u represents a string denoting the vector to be perturbed, v is the number of difference vectors considered for perturbation of u, and w stands for the type of crossover being used (exp: exponential; bin: binomial). The perturbation can be either in the best vector of the previous generation or in any randomly chosen vector, and for perturbation either single or two vector differences can be used.

8.3 HYBRID EVOLUTIONARY METHOD

A general MINLP problem can be formulated as:

min f(X,Y)

subject to

[image: images]

In the above problem the scalar real-valued objective function f(X,Y), subject to real constraints G(X,Y) and H(X,Y), is required to be minimized in the space of continuous variables X and binary variables Y. It is generally assumed here that Y can occur in a nonlinear fashion in both F and G. Using the binary condition of Eq. (8.2), the above problem can be transformed into an equivalent NLP in the space of Z = [X,Y] as in Eq. (8.6)

min F(Z)

subject to.

[image: images]

where F(Z), Q(Z), W(Z) are the transformed objective function and constraints set, and W(Z) constitutes nonlinear binary condition in addition to H(X,Y) to preserve the integrality of Y. As mentioned earlier, the NLP problem in Eq. (8.6) resulting from this transformation is necessarily non-convex and hence global optimization algorithms need to be used to solve this. If a deterministic method is used to solve this nonconvex NLP using one of the commercially available standard NLP solvers (such as CONOPT2, SNOPT, MINOS in GAMS software [12]) then mostly local optimal solutions can be expected, and global optimal solution may also be obtained depending on the right initial guess. Since a single run from an initial guess could terminate in local optima, one can use multiple potential initial guesses to search for the global optima. Such good initial guesses can be conveniently generated by stopping a population based stochastic algorithm such as DE at the right time before it begins to develop convergence issues.

The hybrid evolutionary method [21, 23] has two steps: (i) application of initial DE algorithm, and (ii) solution of the deterministic NLP. In the first step the DE algorithm is applied to the problem in Eq. (8.5) or (8.6) and the progress of the algorithm is monitored based on diversity of the population members at each generation in terms of the cost or population variance. Consider that the population at any generation i during the progress of the algorithm is denoted by Gi. The diversity of the population can be measured in terms of its cost variance σi from the mean µi. As the DE algorithm progresses to solve for the global optimum, the diversity of the population can be expected to decrease, with the rate of decrease being fairly rapid initially and then slowly as the global optimum is reached. During the early phase of rapid decrease in diversity, the DE algorithm can be expected to generate potential candidates that may be optimal in the discrete domain, which are further improved in the continuous domain in the subsequent generations towards global optimality. To overcome the slower convergence issue in the latter phase, the DE algorithm is terminated whenever there is a dramatic change in the cost/population variance (as indicated by a ‘knee’ in the cost variance versus generation plot), and best available population members are stored. In the second step the solution obtained from the first step is used as an initial guess for solving the deterministic NLP problem to global optimality.

Quantitatively, the knee can be described as an abrupt change in the cost variance with orders of magnitude difference in generation i to i+1(σi >>σi+1). Considering that there could be several abrupt changes or knees, and to avoid the omission of global solutions, the quantitative termination criteria for the initial DE algorithm is defined to be either of the following two cases: (i) until there is no further improvement in the objective function of the deterministic NLP solution for two successive knees, or (ii) σi≤1, whichever occurs earlier. The second termination condition is more rigorous in the sense that for the cost variance to reach less than or equal to 1, in the worst case, the complete classical DE algorithm may sometimes need to be enumerated. But in most cases the first termination criteria is general, that the initial DE would be terminated much before the completion of the classical DE algorithm, thus improving the efficiency of the overall solution.

The direct application of DE algorithm to an MINLP problem in Eq. (8.5), with integer rounding off during objective function evaluation, is termed as Integer-DE. The application of DE algorithm to the transformed NLP problem in Eq. (8.6) with the binary condition is termed as NLP-DE. The application of hybrid evolutionary method in which either Integer-DE or NLP-DE is used in the first step to generate initial solutions followed by a deterministic NLP solver to ensure faster rate of convergence, is termed as Hybrid-DE. Generally, Integer-DE is recommended for generation of the initial solution, because in the first few generations of the DE algorithm, NLP-DE is sometimes slower because of the satisfaction of the binary condition being expressed as penalty function in the objective function. When closer to the optimum, Integer-DE is generally slower may be because of the disconnectedness between the continuous treatment of binary variables in the algorithm and the rounding off of the integer requirements in the objective function evaluation.

8.4 SELECTED CASE STUDIES

In this section, we present selected case studies from literature to illustrate the hybrid evolutionary method based on Integer-DE, NLP-DE and Hybrid-DE approaches. For each of the example problems, the different DE versions are tried with different random seeds, strategies and different key parameters (NP, F, and CR), and the best solutions are reported after trial-and-error.

Example 8.2: The following problem with one binary and one continuous variable was proposed by Kocis and Grossmann [16]; and was solved by many authors [2, 4, 6, 9, 21, 23, 28].

min f(x, y) = 2x + y

subject to

[image: images]

The reported global optimum is (x, y; f) = (0.5, 1; 2). The first nonlinear inequality constraint has a non-convex term in continuous variable x. This MINLP problem is solved in GAMS software using SBB solver. The binary condition on y, Eq. (8.1), is applied and the problem is converted into an equivalent NLP by replacing y by a continuous variable z ∈[0, 1] as follows:

min f(x, z) = 2x + z

subject to

[image: images]

This resulting NLP problem is solved in GAMS using available solvers SNOPT (using SQP) and CONOPT2 (using GRG). Since the problem in Eq. (8.8) is still non-convex, depending on the initial guess as shown in Table 8.1, local solutions and sometimes global solutions are obtained. As this is a small case study, all possible initial guesses are tried. From Table 8.1 it can be seen that SNOPT yields several local minima. For z = 0.5,

TABLE 8.1 Results for Example 1.2 for Different Initial Guesses Using GAMS Solvers (Source: Munawar [21])

[image: Images]

CONOPT2 fails for all x, while SNOPT solves and yields global optima as well. It is also seen that the algorithms are also sensitive to the initial guesses in z. For example, for an initial guess of z = 0.25 and 0.4, depending on initial guess of x, it is seen that z takes either 0 or 1 in the optimal solution. These results further justify that the strategy related to rounding off to the nearest integer does not always yield satisfactory solutions.

RESULTS USING INTEGER-DE: If we use DE for directly solving the problem (8.7) as MINLP using conventional truncation operator with strategy 10 and random seed of 99 (used for generating population members randomly), the problem in Eq. (8.7) is solved to the same global optimality of a specified accuracy in about 35 generations. For some representative generations the cost variance (Cvar) and the best solution found (Cmin) until a given generation (G) are shown in Table 8.2.

Here it can be observed that DE has slower convergence closer to the optimum (w.r.t the results discussed later in Table 8.4); the reason for this could be attributed to the disconnectedness introduced due to rounding off the integer values only during the objective function evaluation. A plot of the cost variance (Cvar) at each generation is shown in Figure 8.4. The key parameter values of DE used here are: NP = 20, F = 0.9, CR = 0.8.

TABLE 8.2 Performance of Integer-DE for Example 8.2 (Source: Munawar [21])

[image: Images]

[image: Images]

FIGURE 8.4 Cost Variance for Example 8.2 using Integer-DE (Source: Munawar [21).

RESULTS USING NLP-DE: For the NLP problem in Eq.(8.8) if we apply DE using the binary condition, the problem is solved to the same global optimality in about 14 generations with strategy 1 and random seed of 10. For some representative generations the cost variance (Cvar) and the best solution found (Cmin) until a given generation (G) is shown in Table 8.3.

Since the cost function has same penalty for violations of the integrality constraints, in the initial generations the cost variance is zero here, perhaps because none of the population members satisfy the integrality constraints initially. A plot of the cost variance (Cvar) at each generation is shown in Figure 8.5. The key parameter values of DE used are: NP = 20, F = 0.9, CR = 0.8.

RESULTS USING HYBRID-DE: Since the traditional DE algorithm has slower convergence as shown in Table 8.2, instead of continuing DE up to 56 generations we can prematurely stop the DE algorithm at a point where Cvar changes dramatically (at generation 8 for this problem) and switch to the local deterministic NLP solution of (8.8) using SNOPT/CONOPT2 in GAMS. Hence the initial guess here for use in deterministic NLP algorithm x1 = 0.50192, z1 = 1 where f1 = 2.00383. It is found that the NLP problem is easily solved to global optimality using SNOPT in GAMS in just two additional iterations of the deterministic NLP solver.

TABLE 8.3 Performance of NLP-DE for Example 8.2 (Source: Munawar [21])

	G

	Cvar

	Cmin

	1

	0

	100

	13

	908.95

	2.00075

	14

	0.00175

	2.00075

	24

	3.96 × 10–7

	2.0000099

[image: Images]

FIGURE 8.5 Cost Variance for Example 8.2 using NLP-DE (Source: Munawar [21]).

Example 8.3 (Cyclic Scheduling): This is a simpler instance of the cyclic scheduling problem discussed in Munawar et al. [22] and Munawar and Gudi [23]. The model is an extension of Pinto and Grossmann [25] for incorporating the slopping losses and for accounting inverted triangular inventory profiles. Consider the plant topology as shown in Figure 8.6 with two sequential stages (Stages 1 and 2) for production of three product grades (A, B and C). Finite inventory storage is considered only for the intermediate grades, while for the feed and product grades unlimited storage capacity is assumed. The nomenclature and the mathematical formulation for this problem are given in Appendix-A.

This cyclic scheduling problem has 207 variables including 24 binary variables and 208 constraints. The demand rates for the products A, B and C are 100, 150 and 250 m3/hr; and the sale price for these products is 15, 40, and 65 $/m3, respectively. The yield is considered as 1 for all grades in both the stages for simplicity. The inventory costs are assumed to be $15/m3 and the upper bound on maximum breakpoint for each intermediate grade is assumed to be 30 m3. The average processing rates, the sequence and stage dependent transition times and costs are given in Table 8.4.

Results using GAMS: The MINLP model has several bilinearities and nonlinearities. With maximization of profit as the objective function, when this model is directly solved on GAMS using the available standard solvers, it was found that the solutions differed based on the MINLP solver that was chosen. Table 8.5 represents the nature of the solutions obtained with each of these solvers.

[image: Images]

FIGURE 8.6 Problem Topology for Example 8.3 (Source: Munawar [21]).

TABLE 8.4 Problem Data for Example 8.3 (Source: Munawar [21])

[image: Images]

The model was initially solved with SNOPT or CONOPT2 as the solver at the root node for the RMINLP (relaxed MINLP problem) to generate a feasible solution for use in MINLP. Then SBB was used as the MINLP solver, again with SNOPT or CONOPT2 as the solvers at the root node. For the NLP sub-problems at each subsequent node, if one solver fails to obtain a feasible solution then another solver is tried as per the sequence given in Table 8.5. For different solver permutations four different solutions (local and global) were obtained after convergence. For some of the other solver combinations GAMS reports the problem to be infeasible. It can be seen that depending on the solvers used, different local and global solutions can be realized. The Gantt chart and the inventory profiles for the global solution corresponding to the objective function of $48,800.69 are shown in Figures 8.6 and 8.7, respectively. The dark bands in the Gantt chart represent the transition times.

Results using DE: Both Integer-DE and NLP-DE took more than 20,000 generations for solving this problem to the same global optimal solution of $48,800. Hence, the Hybrid-DE is used for quickly generating some good initial guesses using DE, and then the NLP problem is solved in GAMS from these initial guesses. For instance, the problem was solved using Integer-DE in about 15 generations using strategy 6 for a random seed of 9, with NP = 270, F = 0.9, CR = 0.8 to obtain an initial guess. Using this initial guess, the deterministic NLP solution in GAMS solved much faster giving the same global optimal solution. However, there is a word of caution that the choice of the DE strategies and the key parameters also has similar effect as that of the choice of the NLP solver used in SBB, and that Hybrid-DE is also not an exception and may get entrapped in local optima. In general, the hybrid method is found to outperform and improve the convergence rate of both versions of the DE algorithm, viz. Integer-DE and NLP-DE (Munawar and Gudi [21]).

TABLE 8.5 MINLP Solution of Example 8.3 Using Different GAMS Solvers (Source: Munawar [21])

	RMINLP

	MINLP

	Objective

	Solver

	Root node solver

	NLP sub-solver sequence

	($)

	

	CONOPT2

	SNOPT

	CONOPT2 SNOPT

	44428.64

	

	CONOPT2

	CONOPT2

	CONOPT2 SNOPT

	45620.61

	

	SNOPT

	CONOPT2

	SNOPT CONOPT2

	48396.87

	

	CONOPT2

	CONOPT2

	SNOPT CONOPT2

	48800.69

	(global)

[image: Images]

FIGURE 8.7 Gantt Chart for Example 8.3.

[image: Images]

FIGURE 8.8 Inventory Profiles for Example 8.3.

Example 8.4 (Optimal Component Lumping): Characterization of complex fluid mixtures is an important problem in modeling, simulation, and design of chemical processes, especially in oil and gas sector. Due to the presence of large number of components in these complex mixtures it is practically not feasible to consider detailed composition based models. Instead, the overall mixture is represented using hypothetical components, in which several components with similar properties are lumped into a single pseudo component with average mixture property. There are several lumping schemes proposed in the literature [3, 20]. Lumping obviously leads to loss of information and there is a trade-off between accuracy that can be achieved and dimensionality that can be handled. Hence, it has been referred to as the optimal component lumping problem.

The optimal component lumping problem may be defined as follows [20]: Given a system of n components with mole fractions {xi}, i = 1, 2, …, n and the corresponding ordered property of {pi}, pi−1 ≤ pi ≤ pi+1, i = 1, 2, …, n, the objective is to optimally lump the n components into m pseudo components, {Sk}, k = 1, 2, …, m by minimizing loss of information through a specified objective function. The basic assumption of this formulation is that one component belongs to one and only one lump. A binary variable δi,k is defined such that δi,k = 1 if component i is in lump Sk, otherwise, δi,k = 0. The mixture property is calculated assuming a linear weighting rule using mole fractions as the weighting factors. The average property of each lump, Pk, is thus calculated in Eq. (8.9) as a weighted sum of the component properties, pi:

[image: images]

The objective function is defined in Eq. (8.10) through minimization of square of the difference between the property of each component of a lump (pi, δi,k = 1) and the average component property value, Pk.

[image: images]

The constraints are as follow:

[image: images]

[image: images]

[image: images]

Constraint (8.11) states that there is at least one component in each lump. Constraint (8.12) enforces each component to belong to exactly one lump. If component i is in lump Sk, component i + 1 must be in either in Sk or in Sk+1 as restricted in constraint (8.13). The resulting MINLP problem needs to be solved using number of lumps (m) as a parameter. The resulting model will have very large number of variables and constraints for a typical multi-component mixture comprising large number of components. However, considering the nature of the objective function it is more important to find good feasible solutions rather than looking for a global optimal solution. Hence, the application of stochastic optimization techniques might be a good choice, since they are effective at finding good solutions quickly.

A representative case study of a crude oil comprising 42 components has been considered [3]. The distilation properties, volume fractions and True Boiling Point (TBP) data is given in Table 8.6. The objective is to reduce the problem size by combining these components into a specified number of lumps and minimize the loss of information. This problem is solved for four different cases: from 3-lumps scheme to 6-lumps scheme.

TABLE 8.6 Properties of Crude-oil for Example 8.4

[image: Images]

Tables 8.7, 8.8 and 8.9 show the results obtained for this case study using different optimization methods: Hybrid-DE, SA, GA, and GAMS software. In Table 8.9, the original MINLP problem was directly solved in GAMS software using BARON solver. The results indicate the value of the objective function, lumping scheme, and average temperature of each lump. The objective function gives the value of the sum of squares of the deviations of TBP of all components from their respective average TBP of lumped pseudo components. Lumping scheme indicates the boundary components. For instance, in case of 4-lumps scheme solved using hybrid-DE in Table 8.7, lumping scheme obtained is (9, 21, 33), which means that components 1–9 are grouped as lump-1, 10–21 belong to lump-2, 22–33 belong to lump-3 and 34–42 to lump-4. T(lump) gives the average temperature of the lump in °C.

From these tables one can observe that as number of lumps increases the deviation (objective function) naturally decreases. The SA and GA methods yield identical solutions. If we compare Tables 8.7, 8.8 and 8.9, we can see that all the different optimization methods yield similar results with minor variations in the lumping schemes and average temperatures. However, when we compared the CPU times it was found that all the stochastic optimization techniques had a similar behavior and solve relatively faster compared to the deterministic method used in GAMS software. For instance in Table 8.10, we compare the solutions obtained using hybrid-DE and GAMS software. The CPU times given in Table 8.10 are for completeness only, since it may not be the right indicator for evaluating the performance of stochastic optimization techniques. From this table we can observe that solution time increases as the number of lumps increases. Hybrid-DE solves relatively faster compared to GAMS software especially when large number of lumps are considered.

TABLE 8.7 Solution of Example 8.4 using Hybrid-DE

[image: Images]

TABLE 8.8 Solution of Example 8.4 using SA & GA

[image: Images]

TABLE 8.9 Solution of Example 8.4 using GAMS (BARON)

[image: Images]

TABLE 8.10 Comparison of Hybrid-DE & GAMS Solutions for Example 8.4

[image: Images]

ACKNOWLEDGEMENTS

The authors would like to thank Mr. Rahul Chauhan (B.Tech student) at IIT Delhi for help in implementing the optimal component lumping problem given in Example 8.4.

KEYWORDS

	Binary condition

	Differential evolution

	Hybrid evolutionary method

	MINLP

	Nonlinear transformation

	Optimization

REFERENCES

1. Adjiman, C. S., Androulakis, I. P., & Floudas, C. A. Global Optimization of Mixed Integer Nonlinear Problems. AIChE. J. 2000, 46(9), 1769–1797.

2. Angira, R., & Babu, B. V. Optimization of Process Synthesis and Design Problems: A Modified Differential Evolution Approach. Chem. Eng. Sci. 2006, 61, 4707–4721.

3. Behrenbruch, P., & Dedigama. T. Classification and Characterization of Crude Oils Based on Distillation Properties. J. Petrol. Sci. Eng.. 2007, 57, 166–180.

4. Cardoso, M. F., Salcedo, R. L., Feyo de Azevedo, S., & Barbosa, D. A Simulated Annealing Approach to the Solution of MINLP Problems. Comp. Chem. Eng. 1997, 21(12), 1349–1364.

5. Chang, C. T., & Chang, C. C. A Linearization Method for Mixed 0–1 Polynomial Programs. Comp. Oper. Res. 2000, 27, 1005–1016.

6. Costa, L., & Olivera, P. Evolutionary Algorithms Approach to the Solution of Mixed Integer Nonlinear Programming Problems. Comp. Chem. Eng. 2001, 25, 257–266.

7. Duran, M. A., & Grossmann, I. E., An Outer Approximation Algorithm for a Class of MINLPs. Math. Prog. 1986, 36, 307–339.

8. Floudas, C. A. Nonlinear and Mixed Integer Optimization: Theory, Methods and Applications, Oxford Univ. Press, New York, 1995.

9. Floudas, C. A., Aggarwal, A., & Ciric, A. R. Global Optimum Search for Nonconvex NLP and MINLP Problems. Comp. Chem. Eng. 1989, 13(10), 1117–1132.

10. Floudas, C. A., & Gounaris, C. E. A Review of Recent Advances in Global Optimization, J. Glob. Optim. 2009, 45(1), 3–38.

11. Floudas, C. A., Pardalos, P. M., Adjiman, C. S., Esposito, W. R., Gumus, Z. H., Harding, S. T., Klepis, J. L., Meyer, C. A., & Schweiger, C. A. Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, Dordrecht, Netherlands, 1999.

12. GAMS – A User’s Guide; GAMS Development Corporation: Washington, D. C., 2012.

13. Glover, F. Improved Linear Integer Programming Formulations of Nonlinear Integer Problems. Mgmt Sci. 1975, 22(4), 455–460.

14. Grossmann, I. E., & Sargent, R. W. H. Optimal Design of Multipurpose Chemical Plants. Ind. Eng. Chem. Proc. Des. Dev. 1979, 18, 343–348.

15. Grossmann, I. E., Mixed Integer Nonlinear Programming Techniques for the Synthesis of Engineering Systems, Res. Eng. Des. 1990, 1, 205–228.

16. Kocis, G. R., & Grossmann, I. E. Global Optimization of Nonconvex Mixed-Integer Nonlinear Programming (MINLP) Problems in Process Synthesis. Ind. Eng. Chem. Res. 1988, 27, 1407–1421.

17. Lampinen, J., & Zelinka, I. Mixed Integer-Discrete-Continuous Optimization by Differential Evolution, Part 1: The Optimization Method. In P. Osmera, Eds., Proceedings of MENDEL 1999 – 5th International Mendel Conference on Soft Computing, Brno (Czech Republic). 9–12 June 1999, 71–76.

18. Li, H.-L. An Approximate Method for Local Optima for Nonlinear Mixed Integer Programming Problems. Comp. Oper. Res. 1992, 19 (5), 435–444.

19. Li, H.-L., & Chang, C. T. An Approximate Approach of Global Optimization for Polynomial Programming Problems. Euro. J. Oper. Res. 1998, 107, 625–632.

20. Lin, B., Leibovici, C. F., & Jorgensen, S. B. Optimal Component Lumping: Problem Formulation and Solution Techniques. Comp. Chem. Eng. 2008, 32, 1167–1172.

21. Munawar, S. A. Multilevel Decomposition based Approaches to Integrated Planning and Scheduling, PhD Dissertation, Indian Institute of Technology, Bombay, 2005.

22. Munawar, S. A., Bhushan, M., Gudi, R. D., & Belliappa, A. M. Cyclic Scheduling of Continuous Multi-product Plants in a Hybrid Flowshop Facility. Ind. Eng. Chem. Res. 2003, 42, 5861–5882.

23. Munawar, S. A., & Gudi, R. D. A Nonlinear Transformation Based Hybrid Evolutionary Method for MINLP Solution. Chem. Eng. Res. Des. 2005, 83 (A10), 1218–1236.

24. Onwubolu, G. C., & Babu, B. V. New Optimization Techniques in Engineering, Springer, Germany, 2004.

25. Pinto, J. M., & Grossmann, I. E., Optimal Cyclic Scheduling of Multistage Continuous Multiproduct Plants. Comp. Chem. Eng. 1994, 18, 797–816.

26. Price, K., & Storn, R. Differential Evolution – A Simple Evolution Strategy for Fast Optimization. Dr. Dobb’s J. 1997, 22 (4), 18–24.

27. Price, K., & Storn, R. Website of Differential Evolution, Jul 2014. URL: http://www1.icsi.berkeley.edu/~storn/code.html

28. Ryoo, H. S., Sahinidis, B. P. Global Optimization of Nonconvex NLPs and MINLPs with Application in Process Design. Comp. Chem. Eng. 1995, 19, 551–566.

29. Salcedo, R. L. Solving Nonconvex Nonlinear Programming Problems with Adaptive Random Search. Ind. Eng. Chem. Res. 1992, 31, 262–273.

30. Sherali, H. D., & Wang, H. Global Optimization of Nonconvex Factorable Programming Problems. Math. Prog. 2001, 89, 459–478.

31. Smith, E. M. B., & Pantelides, C. C. A Symbolic Reformulation/Spatial Branch-and-Bound Algorithm for Global Optimization of Nonconvex MINLPs. Comp. Chem. Eng. 1999, 23, 457–478.

APPENDIX A: MATHEMATICAL MODEL FOR EXAMPLE 8.3

The following is the nomenclature and model used for cyclic scheduling problem (Munawar et al. [23]) given in Example 8.3.

Indices:

	i,j

	grades ∈ I = {A, B, C}

	k

	slots (1,2 and 3)

	m

	Stages (1 and 2)

Variables:

	I0i, I1i, I2i, I3i

	inventory breakpoints of grade i, m3

	Imaxi

	maximum of the inventory breakpoints of grade i, m3

	Nc

	Number of cycles

	qsi

	binary variable to denote which stage (Stage 1 or Stage 2) starts processing grade i first

	qei

	binary variable to denote which stage (Stage 1 or Stage 2) ends processing grade i first

	Tc

	overall cycle time, maximum over the cycle times of stages 1 and 2, hr

	Tepikm

	end time of processing of grade i in slot k in stage m, hr

	Tppikm

	processing time of grade i in slot k in stage m, hr

	Tspikm

	start time of processing of grade i in slot k in stage m, hr

	Trepikm

	end time of slopping of grade i in the end of slot k in stage m, hr

	Trppikm

	total slot time (processing + transition) of grade i in slot k in stage m, hr

	Trspikm

	start time of slopping of grade i in the beginning of slot k in stage m, hr

	Wpi

	production rate per cycle of final products i from stage 2, m3/hr

	yikm

	binary variable denoting allotment of grade i to slot k in stage m

	zijkm

	transition from grade j to i in slot k in stage m

Parameters:

	Cinvi

	Inventory holding cost of product i, $/m3

	Ctrijm

	transition cost from grade j to i in stage m, $

	Qdi

	specified bulk demand of product i, m3

	Td

	specified time horizon, hr

	Di

	specified demand rate of product i, m3/hr (Di = Qdi/Td)

	Pi

	price of final products i, $/m3

	[image: Images]

	upper limit on inventory for grade i, m3

	UT

	upper limit on time, hr

	Rpim

	processing rate of grade i in stage m, m3/hr

	αim

	yield or conversion of grade i in stage m

	τijm

	transition time from grade j to i in stage m, hr

The mathematical formulation is as follows:

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

[image: images]

Constraints (A.1) enforce unique allotment of a grade to a slot with no grade repetitions within a cycle. Similarly, the transition variable zijkm is uniquely defined by constraints (A.2) and is a continuous variable between 0 and 1. Whenever there is transition from grade j, being produced in slot k–1, to a grade i, to be produced in the current slot k, then zijkm = 1, else it is zero. The non-negativity inequalities of (A.3) ensure that when a product is not assigned to a slot the corresponding start, end and processing times are all zero. Constraint (A.4a) defines the start time of processing of the first slot in any cycle, while for all other slots the start time of processing constraint is defined by (A.4b). The Eqs. (A.3) and (A.4) of Tspikm and Tepikm are written for the slopping variables Trspikm and Trepikm as given in Eqs. (A.5) and (A.6). The cycle time is defined in constraint (A.7) and the material balance between Stage 1 and Stage 2 is given by constraint (A.8). The production rate per cycle is defined by constraint (A.9a) and over production of a product is allowed as given in (A.9b). The binary variable qsi defined by Eq. (A.10a) is used to find out which of Stage 1 or Stage 2 first starts the processing of grade i. If qsi = 1 then Stage 1 starts first else, if qsi = 0, then Stage 2 starts processing grade i first. Similarly, the binary variable qei is defined by the Eq. (A.10b). The inventory breakpoints are as given in constraints (A.11) and the objective function is maximization of profit subject to penalties for grade transition costs and inventory costs as defined by Eq. (A.12), where the number of cycles Nc = Td/Tc.

CHAPTER 9

DIFFERENTIAL EVOLUTION FOR OPTIMAL DESIGN OF SHELL-AND-TUBE HEAT EXCHANGERS

MUNAWAR A. SHAIK1 and B. V. BABU2

1Associate Professor, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, E-mail: munawar@iitd.ac.in, Tel: +91-11-26591038

2Vice Chancellor, Galgotias University, Greater Noida, Uttar Pradesh, India, E-mail: profbvbabu@gmail.com, Tel: +91-12-04806849

CONTENTS

9.1 Introduction

9.2 Optimal Design of Shell-and-Tube Heat Exchangers

9.2.1 Bell’s Method

9.2.2 Optimization Problem

9.3 Application of Differential Evolution

9.4 Results and Discussion

9.4.1 Comparison of GA and DE

Keywords

References

Appendix A: Pressure Drop Calculations

A.1. Tub-Side Pressure Drop

A.2. Shell-Side Pressure Drop

9.1 INTRODUCTION

Heat exchangers are used extensively in the process and allied industries and thus are very important during design and operation. The most commonly used type of heat exchanger is the shell-and-tube heat exchanger, the optimal design of which is the main objective of this chapter. The secondary objective is performance evaluation of different non-traditional optimization techniques such as Genetic Algorithms (GA) and Differential Evolution (DE) for the optimal design of shell-and-tube heat exchangers.

The design of a shell-and-tube heat exchanger involves finding an optimal heat exchanger configuration to match the desired heat transfer area required for a specified heat duty. Different design variables such as tube outer diameter, tube pitch, tube length, number of tube passes, different shell head types, baffle spacing, and baffle cut, are used in deciding a particular heat exchanger configuration. Traditionally, the design of a shell-and-tube heat exchanger involves trial and error procedure where for a certain combination of the design variables the heat transfer area is calculated and then another combination is tried to check if there is any possibility of reducing the heat transfer area. The numerous combinations of different design variables lead to a combinatorial explosion of different heat exchanger configurations with different overall heat transfer area available for heat exchange. Thus, the optimal design of a heat exchanger can be posed as a large scale, discrete, combinatorial optimization problem [8]. The presence of discrete decision variables, and the absence of a definite mathematical structure for directly determining the overall heat transfer area as a function of these design variables renders the heat exchanger design problem a challenging task. Therefore, application of non-traditional optimization techniques [19] is a natural choice for solving the optimal design problem for shell-and-tube heat exchangers. In this chapter, we illustrate the application of differential evolution for solving the optimal heat exchanger design problem and present comparison with genetic algorithms.

Chaudhuri et al. [8] used Simulated Annealing (SA) for the optimal design of heat exchangers and developed a procedure to run the HTRI design program coupled to the annealing algorithm, iteratively. They compared the results of SA with a base case design and concluded that significant savings in heat transfer area and hence the heat exchanger cost can be obtained using SA. Manish et al. [17] used GA to solve this optimal problem and compared the performance of SA and GA. They presented GA strategies to improve the performance of the optimization framework. They concluded that these algorithms result in considerable savings in computational time compared to an exhaustive search, and have an advantage over other methods in obtaining multiple solutions of the same quality, thus providing more flexibility to the designer. Munawar [18] and Babu and Munawar [5, 6] demonstrated the first successful application of DE to the optimal heat exchanger design problem and studied the effect of DE key parameters and different strategies of DE on the optimality along with presenting a comparison of GA and DE. The DE algorithm and its variants have been successfully applied in diverse applications [1, 3, 4, 13, 14].

Serna and Jimenez [26] presented a compact formulation of Bell-Delaware method for heat exchanger design and optimization. There are several applications of other techniques for solving this problem such as genetic algorithms [7, 17, 20, 23], tube count table search [9], harmony search algorithm [10], particle swarm optimization [21], artificial bee colony algorithm [25], constructal theory [2], multiobjective optimization [11], imperialist competitive algorithm [15], and biogeography-based algorithm [16].

In the next section, the general procedure of shell-and-tube heat exchanger design is discussed followed by the optimal problem formulation.

9.2 OPTIMAL DESIGN OF SHELL-AND-TUBE HEAT EXCHANGERS

The design of a process heat exchanger usually proceeds through the following steps [22] involving trial and error:

	Process conditions (stream compositions, flow rates, temperatures, pressures) must be specified.

	Required physical properties over the temperature and pressure ranges of interest must be obtained.

	The type of heat exchanger to be employed is chosen.

	A preliminary estimate of the size of the exchanger is made, using a heat transfer coefficient appropriate to the fluids, the process, and the equipment.

	A first design is chosen, complete in all details necessary to carry out the design calculations.

	The design chosen is now evaluated or rated, as to its ability to meet the process specifications with respect to both heat duty and pressure drop.

	Based on this result a new configuration is chosen if necessary and the above step is repeated. If the first design was inadequate to meet the required heat load, it is usually necessary to increase the size of the exchanger, while still remaining within specified or feasible limits of pressure drop, tube length, shell diameter, etc. This will sometimes mean going to multiple exchanger configurations. If the first design more than meets heat load requirements or does not use all the allowable pressure drop, a less expensive exchanger can usually be designed to fulfill the process requirements.

	The final design should meet process requirements (within the allowable error limits) at lowest cost. The lowest cost should include operation and maintenance costs and credit for ability to meet long-term process changes as well as installed (capital) cost. Exchangers should not be selected entirely on a lowest first cost basis, which frequently results in future penalties.

The corresponding flow chart given in Figure 9.1 [27] gives the sequence of steps and the loops involved in the optimal design of a shell-and-tube heat exchanger. In the present study, Bell’s method of heat exchanger design is used to find the heat transfer area for a given design configuration. Bell’s method gives good estimates of the shell-side heat transfer coefficient and pressure drop compared to Kern’s method, as it takes into account the factors for leakage, bypassing, flow in window zone etc.

9.2.1 BELL’s METHOD

The following are the details of the steps involved in Bell’s method of heat exchanger design as given in Figure 9.1 [27]:

	The first step in any heat exchanger design is to calculate the heat duty (Q) and the unspecified outlet temperatures or flow rates.

	The next step is to collect together the fluid physical properties required: density, viscosity, thermal conductivity, and specific heat.

	From the literature a trial value for the overall heat transfer coefficient is assumed (Uo,ass).

	The mean temperature difference, ∆Tm = (∆TLMTD Ft) is evaluated, where Ft is the temperature correction factor, which is a function of the shell and tube fluid temperatures and the number of tube and shell passes. It is normally correlated as a function of two dimensionless temperature ratios:

[image: Images]

FIGURE 9.1 Design Algorithm for Shell-and-Tube Heat Exchangers (Source: Sinnott [27]).

[image: Images]

	The total heat transfer area thus required can be calculated from Ao = Q/(Uo,ass ∆Tm).

	Since the shell and tube geometry and layouts are user supplied the next step is to calculate the number of tubes required to achieve the area Ao. Area of one tube is πDoL. So, the number of tubes Nt, is Ao/At, rounded off to the next higher integer.

	Once the number of tubes are calculated the bundle diameter can be calculated from Db = Do(Nt/k1)1/n where k1, n1 are constants dependent on tube pitch and number of tube passes.

	The shell diameter (Ds) must be selected now to give as close a fit to the tube bundle as is practical; to reduce bypassing round the outside of the bundle. The clearance required between the outermost tubes in the bundle and the shell inside diameter will depend on the type of exchanger and the manufacturing tolerances.

	Tube-side heat transfer coefficient (ht): The correlation used here is

[image: Images]

where jh is the tube-side heat transfer factor which is a function of Reynolds number.

Viscosity correction factor: This factor will normally only be significant for viscous fluids. To apply the correction an estimate of the wall temperature is needed. This is done by trial and error. First, ht is calculated without the viscosity correction. Then, the tube wall temperature is estimated from the relation ht (tw – t) = U (T – t). Now, the viscosity is evaluated at the wall temperature and ht is calculated using the viscosity correction factor, iteratively.

	Shell-side heat transfer coefficient (hs): The main difference between Kern’s method and Bell’s method lies in the evaluation of shell-side heat transfer coefficient and pressure drop. In Bell’s method the heat transfer coefficient (h.t.c.) and pressure drop are estimated from the correlations for flow over ideal tube banks, and the effects of leakage, bypassing and flow in the window zone are allowed for by applying the correction factors. This approach will give more satisfactory predictions of the h.t.c. and pressure drop than Kern’s method. The shell-side h.t.c. is given by

[image: Images]

where hoc – h.t.c. calculated for cross-flow over an ideal tube bank, no leakage or bypassing; Fn – corrector factor to allow for the effect of the number of vertical tube rows; Fw – window effect correction factor; Fb – bypass stream correction factor; FL – leakage correction factor.

The total correction will vary from 0.6 for a poorly designed exchanger with large clearances, to 0.9 for a well-designed exchanger.

hoc, ideal cross-flow coefficient: The correlation used here is

[image: Images]

where jh, the factor for cross-flow tube banks is a function of Reynolds number.

Fn, Tube row correction factor: The mean h.t.c. will depend on the number of tubes crossed. For turbulent flow the correction factor Fn is close to 1.0. In laminar flow the h.t.c. may decrease with increasing rows of tubes crossed, due to the build up of the temperature boundary layer. The factor given below can be used for various flow regimes. Here, Nw = number of constrictions crossed i.e., number of tube rows between the baffle tips.

	Re > 2000, turbulent, take Fn from nomograph.

	Re > 100 to 2000, transition region, take Fn = 1.0;

	Re < 100, laminar region, Fn α (N’c)−0.18.

Fw, window correction factor: This factor corrects for the effect of flow through the baffle window, and is a function of the heat transfer area in the window zone and the total heat transfer area. The correction factor is plotted versus. Rw, the ratio of the number of tubes in the window zone to the total number in the bundle, Rw = 2 Ra where Ra is the ratio of the bundle cross sectional area in the window zone to the total bundle cross sectional area. Ra can be obtained from nomograph for the appropriate bundle cut, Bb. (Bb = Hb/Db).

[image: Images]

where α = 1.5 for laminar flow, Re < 100.

= 1.35 for transitional and turbulent flow, Re > 100.

Ab = clearance area between the bundle and the shell,

Ab = lB (Ds – Db).

As – maximum area for cross flow.

FL, leakage correction factor: This factor corrects for the leakage through the tube to baffle clearance and the baffle-to-shell clearance.

[image: Images]

where βL – a factor obtained from Figure A.8; Atb – the tube-to-baffle clearance area, per baffle; Asb – shell-to-baffle clearance area, per baffle; AL – total leakage area = (Atb + Asb).

	Overall heat transfer coefficient: Once the shell-side and tube-side h.t.c. are calculated the overall h.t.c. can be determined from the following relation:

[image: Images]

where hid = inside dirt coefficient (fouling factor); hod = outside dirt coefficient; kw = thermal conductivity of the tube wall material. The calculated overall h.t.c. is compared with the assumed value and is iterated until it converges, as shown in the flow chart.

	Now, the tube side and shell side pressure drops are to be calculated to check whether they are within the specifications required. Then, if the pressure drops are huge, accordingly the shell or the tube geometries have to be changed. But as we are considering all possible design combinations of the variables, in the Differential Evolution function itself, here we just assign a high value for heat exchanger cost or we can keep generating new design configurations in DE until the pressure drop constraints are matched. Otherwise, the design is accepted and the heat exchanger cost is calculated for the area Ao, obtained by taking the converged value for overall h.t.c. The details of shell side and tube side pressure drops are given in Appendix-A.

9.2.2 OPTIMIZATION PROBLEM

The objective function and the optimal problem of shell-and-tube heat exchanger design can be represented as shown below [17, 18].

min C(X) or A(X)

X ∈ {x1, x2, x3, x4, x5, x6, x7}

where

x1 = {1,2,...,12}

x2 = {1,2}

x3 = {1,2,3,4}

x4 = {1,2,...,5}

x5 = {1,2,..,8}

x6 = {1,2,...,6}

x7 = {1,2,...,7}

subject to

[image: Images]

The objective function can be minimization of heat exchanger cost C(X) or heat transfer area A(X) and X is a solution string representing a design configuration. The design variable x1 takes 12 values for tube outer diameter in the range of 0.25” to 2.5” (0.25”, 0.375”, 0.5”, 0.625”, 0.75”, 0.875”, 1.0”, 1.25”, 1.5”, 1.75”, 2”, 2.5”). x2 represents the tube pitch – either square or triangular – taking two values represented by 1 and 2. x3 takes the shell head types: floating head, fixed tube sheet, U tube, and pull through floating head represented by the numbers 1, 2, 3 and 4, respectively. x4 takes number of tube passes 1–1, 1–2, 1–4, 1–6, 1–8 represented by numbers from 1 to 5. The variable x5 takes eight values of the various tube lengths in the range 6’ to 24’ (6’, 8’, 10’, 12’, 16’, 20’, 22’, 24’) represented by numbers 1 to 8. x6 takes six values for the variable baffle spacing, in the range 0.2 to 0.45 times the shell diameter (0.2, 0.25, 0.3, 0.35, 0.4, 0.45). x7 takes seven values for the baffle cut in the range 15 to 45 percent (0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45).

The pressure drop on the fluids exchanging heat is considered as a feasibility constraint. Generally a pressure drop of more than 1 bar is not desirable for the flow of fluid through a heat exchanger. For a given design configuration, whenever the pressure drop exceeds the specified limit, a high value for the heat transfer area is returned so that as an infeasible configuration it will be eliminated in the next iteration of the optimization routine. The total number of design combinations with these variables are 12 × 2 × 4 × 5 × 8 × 6 × 7 = 1,61,280. This means that if an exhaustive search is to be performed it will take at the maximum 1,61,280 function evaluations before arriving at the global minimum heat exchanger cost. So the strategy, which takes few function evaluations, is the best one. Considering minimization of heat transfer area as the objective function, differential evolution technique is applied to find the optimum design configuration as discussed in next section.

9.3 APPLICATION OF DIFFERENTIAL EVOLUTION

The overall structure of the DE algorithm resembles that of most other population based searches. The parallel version of DE maintains two arrays, each of which holds a population of NP, D-dimensional, real valued vectors. The primary array holds the current vector population, while the secondary array accumulates vectors that are selected for the next generation. In each generation, NP competitions are held to determine the composition of the next generation. Every pair of vectors (Xa, Xb) defines a vector differential: Xa – Xb. When Xa and Xb are chosen randomly, their weighted differential is used to perturb another randomly chosen vector Xc. This process can be mathematically written as X’c = Xc + F (Xa – Xb). The scaling factor F is a user supplied constant in the range (0 < F ≤ 1.2). The optimal value of F for most of the functions lies in the range of 0.4 to 1.0 [24]. Then in every generation, each primary array vector, Xi is targeted for crossover with a vector like X’c to produce a trial vector Xt. Thus, the trial vector is the child of two parents, a noisy random vector and the target vector against which it must compete. The non-uniform crossover is used with a crossover constant CR, in the range 0 ≤ CR ≤ 1. CR actually represents the probability that the child vector inherits the parameter values from the noisy random vector. When CR = 1, for example, every trial vector parameter is certain to come from X’c. If, on the other hand, CR = 0, all but one trial vector parameter comes from the target vector. To ensure that Xt differs from Xi by at least one parameter, the final trial vector parameter always comes from the noisy random vector, even when CR = 0. Then the cost of the trial vector is compared with that of the target vector, and the vector that has the lowest cost of the two would survive for the next generation. In all, just three factors control evolution under DE, the population size, NP; the weight applied to the random differential, F; and the crossover constant, CR.

The algorithm of Differential Evolution as given by Price and Storn [24], is in general applicable for continuous function optimization. The upper and lower bounds of the design variables are initially specified. Then, after mutation because of the addition of the weighted random differential the parameter values may even go beyond the specified boundary limits. So, irrespective of the boundary limits initially specified, DE finds the global optimum by exploring beyond the limits. Hence, when applied to discrete function optimization the parameter values have to be limited to the specified bounds. In the present problem, since each design variable has a different upper bound when represented by means of integers, the same DE code given by Price and Storn [24] cannot be used. Munawar [18] used normalized values for all the design variables and randomly initialized all the design variables between 0 and 1. Whenever it is required to find the heat transfer area using Bell’s method for a given design configuration, these normalized values are converted back to their corresponding boundary limits.

The pseudo code of the DE algorithm (adapted from Ref. [24]) for the optimal heat exchanger design problem as used in Refs. [6, 18] is given below:

	Choose a strategy and a seed for the random number generator.

	Initialize the values of D, NP, CR, F and MAXGEN.

	Initialize all vectors of the population randomly. Since the upper bounds are all different for each variable in this problem, the variables are all normalized. Hence generate a random number between 0 and 1 for all the design variables for initialization.

for i = 1 to NP

{for j = 1 to D

xi,j = random number}

	Evaluate the cost of each vector. Cost here is the area of the shell-and-tube heat exchanger for the given design configuration, calculated by a separate function cal_area() using Bell’ method.

for i = 1 to NP

Ci = cal_area()

	Find out the vector with the lowest cost i.e. the best vector so far.

Cmin = C1 and best =1

for i = 2 to NP

{if (Ci < Cmin)

then Cmin = Ci and best = i}

	Perform mutation, crossover, selection and evaluation of the objective function for a specified number of generations.

While (gen < MAXGEN)

{for i = 1 to NP}

	For each vector Xi (target vector), select three distinct vectors Xa, Xb and Xc (select five, if two vector differences are to be used) randomly from the current population (primary array) other than the vector Xi do

{

r1 = random number * NP

r2 = random number * NP

r3 = random number * NP

} while (r1 = i) OR (r2 = i) OR (r3 = i) OR (r1 = r2) OR (r2 = r3) OR (r1 = r3)

	Perform crossover for each target vector Xi with its noisy vector Xn,i and create a trial vector, Xt,i. The noisy vector is created by performing mutation. If CR = 0 inherit all the parameters from the target vector Xi,

except one which should be from Xn,i.

for exponential crossover

{ p = random number * 1

 r = random number * D

 n = 0

do

{Xn, i = Xa, i + F (Xb, i – X c, i) /* add two weighted vector differences for

r = (r+1) % D two vector perturbation. For best / random

increment r by 1 vector perturbation the weighted vector } while

((p<CR) and (r<D)) difference is added to the best / random

vector of the current population. */

}

for binomial crossover

{ p = random number * 1

r = random number * D

for n = 1 to D

{ if ((p<CR) or (p = D-1)) /* change at least one parameter if CR=0 */

Xn, i = Xa, i + F (X b, i - X c, i)

r = (r+1)%D }

}

if (Xn, i > 1) Xn, i = 1 /* for discrete function optimization check the

if (Xn, i < 0) Xn, i = 0 values and restrict within limits */

/* 1 – normalized upper bound;

0 – normalized lower bound */

	Perform selection for each target vector, Xi by comparing its cost with that of the trial vector, Xt,i; whichever has the lowest cost will survive for the next generation.

Ct,i = cal_area()

if (Ct,i < Ci) new Xi = Xt,i

else new Xi = X i } /* for i=1 to NP */

}

The entire scheme of optimization of shell-and-tube heat exchanger design is performed by the DE algorithm, while intermittently it is required to evaluate the heat transfer area for a given design configuration. This task is accomplished through the separate function cal_area() which employs Bell’s method of heat exchanger design. Bell’s method gives accurate estimates of the shell-side heat transfer coefficient and pressure drop compared to Kern’s method, as it takes into account the factors for leakage, bypassing, flow in window zone etc. The various correction factors in Bell’s method include: temperature correction factor, tube-side heat transfer and friction factor, shell-side heat transfer and friction factor, tube row correction factor, window correction factor for heat transfer and pressure drop, bypass correction factor for heat transfer and pressure drop, friction factor for cross-flow tube banks, baffle geometrical factors etc. These correction factors are reported in the literature in the form of nomographs [22, 27]. The data on these correction factors from the nomographs were fitted into polynomial equations and incorporated in the computer program [18].

9.4 RESULTS AND DISCUSSION

As a case study the following problem for the design of a shell-and-tube heat exchanger [27] is considered as presented in Munawar [18] and Babu and Munawar [6]: 20,000 kg/hr of kerosene leaves the base of a side-stripping column at 200176;C and is to be cooled to 90oC with 70,000 kg/hr light crude oil coming from storage at 40oC. The kerosene enters the exchanger at a pressure of 5 bar and the crude oil at 6.5 bar. A pressure drop of 0.8 bar is permissible on both the streams. Allowance should be made for fouling by including fouling factor of 0.00035 (W/m2 °C)–1 on the crude stream and 0.0002 (W/m2 °C)−1 on the kerosene side.

By performing enthalpy balance, the heat duty for this case study is found to be 1509.4 kW and the outlet temperature of crude oil to be 78.6°C. The crude is dirtier than the kerosene and so is assigned through the tube-side and kerosene to the shell-side. Using a proprietary program (HTFS, STEP5) the lowest cost design meeting the above specifications is reported to be a heat transfer area of 55 m2 based on outside diameter [27]. The result of the above program is considered as the base case design and DE is applied for the same problem with all ten different strategies (listed in Section 9.2). As a heuristic, the pressure drop in a heat exchanger normally should not exceed 1 bar. Hence, the DE strategies are applied for this case study separately with both 0.8 bar and 1 bar as the constraints. In both cases, same global minimum heat exchanger area was obtained using DE. In the subsequent analysis, the results for 1 bar as the constraint are referred here.

A seed value for the pseudo random number generator must be selected by trial and error. In principle any positive integer can be taken. Different integer values were tried (say 3, 5, 7, 10, 15 and 20) with all the strategies for a NP value of 70 (10 times D). The F values were varied from 0.1 to 1.1 in steps of 0.1 and CR values from 0 to 1 in steps of 0.1, leading to 121 combinations of F and CR for each seed. When DE algorithm was executed for all the above combinations, the global minimum heat exchanger area for the above heat duty was found to be 34.44 m2 as against 55 m2 for the base case design. For each seed, out of the 121 combinations of F and CR considered, the percentage of the combinations converging to this global minimum (CDE) in less than 30 generations is listed for each strategy in Table 9.1 [6, 18]. The average CDE for each seed as well as for each strategy are also listed in the same table. This average was considered to be a measure of the ‘likeliness’ in achieving the global minimum [18].

The average CDE for each seed ranges from 40.7 to 64.8 and the average CDE for different strategies varies from 44.2 to 59.4. If we consider a benchmark CDE as 40, then seeds 5, 7 and 10 stand good from the rest, and excepting strategy numbers 2, 7 and 8 all other strategies can be considered as good for this problem.

Considering ‘speed’ as the other criteria, to further consolidate the effect of strategies on each seed and vice versa, the best combinations of F and CR – taking the minimum number of generations to converge to the global minimum (termed as Gmin) – are listed in Table 9.2 [6, 18].

The criteria for choosing a good seed from ‘speed’ point view could be: (1) it should yield the global minimum in less number of generations, and (2) it should yield the same over a wide range of F and CR for most of the strategies. Based on these criteria, seed 10 can be considered to be good as it gives the global minimum in two generations and for more combinations of F and CR compared to other seed values. From the ‘speed’ point of view it can be observed from Table 9.2 that the strategy numbers 2, 5, 7, and 10 are good. Hence, from both ‘more likeliness’ and ‘speed’ point of view, for different seeds, strategy numbers 1, 3, 4, 6, and 9 are good.

TABLE 9.1 Effect of Seed on DE Strategies Based on CDE

[image: Images]

TABLE 9.2 Effect of Seed on DE Strategies Based on F, CR and Gmin

[image: Images]

To further explore the effect of the key parameters in detail, the NP values are varied along with F & CR. The maximum number of generations, MAXGEN, is taken as 15 because as can be seen from Table 9.2, a maximum of 12 generations are required to converge to the global minimum with NP=70. With MAXGEN = 15, and for the selected seed value of 10, the percentage of combinations converging to the global minimum (CDE) are listed for each strategy in Table 9.3 [6, 18] for different NP values. From this table, it is seen that the individual CDE values cover a wide range from 0.8 to 66.1. Considering CDE of 10 as a benchmark it can be observed that NP value of 70 and above stand good from the rest. From ‘more likeliness’ point of view, with a benchmark of 20 for CDE values, again NP values of 70 and above are good. But for NP values of 100 and above it is observed that the likeliness decreases. Considering ‘speed’ as the other criteria, the best combinations of F and CR, taking the least number of generations to converge to the global minimum (Gmin), are listed in Table 9.4 [6, 18] for various strategies for different NP values.

TABLE 9.3 Effect of NP on DE Strategies Based on CDE

[image: Images]

From the ‘speed’ point of view it is evident that the NP values of 70 and above are good – indicating that at least a population size of 10 times D is essential to have more likeliness in achieving the global minimum. Combining the results of variations in seed and NP, from ‘more likeliness’ as well as ‘speed’ point of view, it can be concluded that DE/best/… (strategy numbers 1, 4, 6, and 9) are good. Hence, for the optimal heat exchanger design problem, the best vector perturbations either with a single or two vector differences are the best with either exponential or binomial crossovers. The relationship between number of function evaluations (NFE) and population size (NP) is NFE = NP * (Gmin + 1) (plus one corresponds to the function evaluations in the initial population). It can be inferred from Table 9.4 (using NP and Gmin values to compute NFE) that NFE varies from 100 to 1300, out of the 1,61,280 possible function evaluations considered. Hence, the best combination corresponding to the least function evaluations from Table 9.4 is for NP = 50 and DE/best/1/exp strategy, with 100 function evaluations as it converges in one generation itself. Regarding the effect of parameters F and CR, it is observed that the DE strategies are more sensitive to the values of CR than to F. Extreme values of CR are worth to be tried first. Selection of a good seed is indeed the first hurdle before investigating the right combination of the key parameters and the choice of the strategy.

9.4.1 COMPARISON OF GA AND DE

For comparison, Genetic Algorithms with binary coding for the design variables are also applied for the same case study with Roulette-wheel selection, single-point crossover, and bit-wise mutation as the operators for creating the new population. The GA algorithm is executed for various values of N – the population size, pc – the crossover probability and pm – the mutation probability. With a seed value of 10 for the pseudo random number generator, N is varied from 32 to 100 in steps of 4; pc from 0.5 to 0.95 in steps of 0.05; and pm from 0.05 to 0.3 in steps of 0.05, leading to a total of 1080 combinations. N/2 has to be an even number for single-point crossover and hence the starting value of 32 and the step size of 4 are taken. The step size is smaller for GA compared to DE, as it can be seen later that GA has less likeliness so more search space is required. For each population size, 60 combinations of pc and pm are possible in this range. For the case study considered, the same global minimum heat transfer area is obtained (34.44 m2) by using GA also. The minimum number of generations required by GA to converge to the global minimum (Gmin), in the above range of the key parameters is listed in Table 9.5 [6, 18] along with the Number of Function Evaluations (NFE).

For each combination of N and pc listed in this table, GA is converging to the global minimum heat transfer area of 34.44 m2 for all the six values of pm from 0.05 to 0.3 in steps of 0.05. While executing the GA program, it is observed that more number of generations are taken by GA to converge and hence, the maximum number of generations (MAXGEN) is specified as 100. For a given N, the percentage of the combinations converging to the global minimum (CGA) in less than 100 generations, out of the 60 possible combinations of pc and pm considered, is also listed in Table 9.5. As can be seen, CGA ranges from 10 to 50 compared to CDE (in Table 9.3), which varies from 0.8 to 66.1. From Table 9.5, the average CGA is calculated to be 20.9, whereas the average CDE from Table 9.3 is 22 for four out of the ten strategies (strategy numbers 1, 4, 6 and 9). But the CDE values are reported in Table 9.3 for MAXGEN of only 15. It is interesting to note that, had the basis of MAXGEN been same (i.e., 100) for both GA and DE then, it is quite obvious that the CDE values would have been very high (may be close to 100), indicating that DE has ‘more likeliness’ of achieving the global optimum compared to GA, as it has a wide range of the individual CDE values. Also DE has more strategies to choose from, which is an advantage over GA. As a measure of ‘likeliness’ another criteria was identified by Babu and Munawar [6] and defined as the percentage of the key parameter combinations converging to the global minimum, out of the total number of combinations considered (Ctot). In Table 9.5, out of the 1080 combinations of the key parameters considered with GA, only 138 combinations (i.e., Ctot = 12.8) are converging to the global minimum in less than 100 generations. Whereas in DE, out of the total of 9680 possible combination of key parameters considered 1395 combinations (i.e., Ctot = 14.4) are converging to global minimum in less than 15 generations itself. It is also evident from Table 9.5 that the best combination corresponding to the least function evaluations is for N = 48, pc = 0.75, and pm 0.05 to 0.3 (entire range of pm), with 288 function evaluations as it converges in 5 generations itself.

TABLE 9.4 Effect of NP on DE Strategies Based on Gmin

[image: Images]

TABLE 9.5 GA Parameters Converging to the Global Minimum

[image: Images]

The relation between NFE and the number of generations in GA also remains the same as in DE, NFE = N * (Gmin + 1). Using GA, with a seed value of 10, NFE varies from 288 to 8148 as against a small range of 100 to 1300 for DE (from Table 9.4), which is an indication of the tremendous ‘speed’ of the DE algorithm. The above two observations clearly demonstrate that for the case study taken up, the DE algorithm is significantly faster and has more likeliness in achieving the global optimum and so is efficient compared to GA. The summary of results for the selected seed value of 10 is listed in Table 9.6 [6, 18]. The performance of DE and GA is compared for the present problem in Table 9.7 [6, 18], with respect to the ‘best’ parameters – parameter values converging to the global minimum out of the entire range considered. For NP=50, with DE/best/1/exp strategy, CR=0.7 and F = 0.8 to 1.1 (any value in steps of 0.1), DE took one generation, and 100 function evaluations. But with GA, for N = 48, pc = 0.75, and pm = 0.05 to 0.3 (any value in steps of 0.05) it took 5 generations, and 288 function evaluations. The best design variables for the given case study are listed in Table 9.8 [6, 18] along with the best key parameters of the DE algorithm used for this optimization. However, practical difficulties, if any, in implementation of the resulting heat exchanger can only be verified through suitable experimentation after fabrication. However, if it is known a priori that some combinations of design variables may lead to difficulties in practical implementation, then such solutions can be eliminated during design by assigning a very high cost.

TABLE 9.6 Comparison of DE and GA Based on Various Criteria

[image: Images]

TABLE 9.7 Comparison of DE and GA for the Best Parameters

[image: Images]

TABLE 9.8 Summary of the Final Design for the Case Study

[image: Images]

KEYWORDS

	Bell’s method

	differential evolution

	heat exchanger design

	optimization

	shell-and-tube heat exchangers

REFERENCES

1. Angira, R., & Babu, B. V. Optimization of Process Synthesis and Design Problems: A Modified Differential Evolution Approach, Chem. Eng. Sci. 2006, 61, 4707–4721.

2. Azad, A. V., & Amidpour, M. Economic Optimization of Shell and Tube Heat Exchanger based on Constructal Theory, Energy 2011, 36, 1087–1096.

3. Babu, B. V., & Angira, R. Modified Differential Evolution (MDE) for Optimization of Nonlinear Chemical Processes, Comp. Chem. Eng. 2006, 30, 989–1002.

4. Babu, B. V., Chakole, P. G., & Mubeen, J. H. S. Multiobjective Differential Evolution (MODE) for Optimization of Adiabatic Styrene Reactor, Chem. Eng. Sci. 2005, 60, 48224837.

5. Babu, B. V., & Munawar, S. A. Differential Evolution for the Optimal Design of Heat Exchangers, Proceedings of All-India Seminar on Chemical Engineering Progress on Resource Development: A Vision 2010 and Beyond, IE (I), Bhubaneswar, India, March 11, 2000.

6. Babu, B. V., & Munawar, S. A. Differential Evolution Strategies for Optimal Design of Shell-and-Tube Heat Exchangers, Chem. Eng. Sci.. 2007, 62, 3720–3739.

7. Caputo, A. C., Pelagagge, P. M., & Salini, P. Heat Exchanger Design based on Economic Optimization, App. Therm. Eng. 2008, 28, 1151–1159.

8. Chaudhuri, P. D., Urmila, M. D., & Jefery, S. L. An Automated Approach for the Optimal Design of Heat Exchangers, Ind. Eng. Chem. Res. 1997, 36, 3685–3693.

9. Costa, A. L. H., & Queiroz, E. M. Design Optimization of Shell-and-Tube Heat Exchangers, App. Therm Eng. 2008, 28, 1798–1805.

10. Fesanghary, M., Damangir, E., & Soleimani, I. Design Optimization of Shell and Tube Heat Exchangers using Global Sensitivity Analysis and Harmony Search Algorithm, App. Therm. Eng. 2009, 29, 1026–1031.

11. Fettaka, S., Thibault, J., & Gupta, Y. Design of Shell-and-Tube Heat Exchangers Using Multiobjective Optimization, Int. J. Heat Mass Tran. 2013, 60, 343–354.

12. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley, 1989.

13. Gujarathi, A. M., & Babu, B. V. Optimization of Adiabatic Styrene Reactor: A Hybrid Multiobjective Differential Evolution (H-MODE), Ind. Eng. Chem. Res. 2009, 48, 11115–11132.

14. Gujarathi, A. M., & Babu, B. V. Multiobjective Optimization of Industrial Styrene Reactor: Adiabatic and Pseudo-Isothermal Operation, Chem. Eng. Sci. 2010, 65, 2009–2026.

15. Hadidi, A., Hadidi, M., & Nazari, A. A New Design Approach for Shell-and-Tube Heat Exchangers using Imperialist Competitive Algorithm (ICA) from Economic Point of View, Ener. Conv. Mgmt. 2013, 67, 66–74.

16. Hadidi, A., & Nazari, A. Design and Economic Optimization of Shell-and-Tube Heat Exchangers using Biogeography-based (BBO) Algorithm, App. Therm. Eng. 2013, 51, 1263–1272.

17. Manish, C. T., Yan, F., & Urmila, M. D. Optimal Design of Heat Exchangers: A Genetic Algorithm Framework, Ind. Eng. Chem. Res. 1999, 38, 456–467.

18. Munawar, S. A. Expert Systems for the Optimal Design of Heat Exchangers, M. E. Dissertation, Birla Institute of Technology and Science, Pilani, 2000.

19. Onwubolu, G. C., & Babu, B. V. New Optimization Techniques in Engineering, Springer, Germany, 2004.

20. Özçelik, Y. Exergetic Optimization of Shell and Tube Heat Exchangers using a Genetic based Algorithm, App. Therm. Eng.. 2007, 1849–1856.

21. Patel, V. K., & Rao, R. V. Design Optimization of Shell-and-Tube Heat Exchanger using Particle Swarm Optimization Technique, App. Therm. Eng. 2010, 30, 1417–1425.

22. Perry, R. H., & Green, D. Perry’s Chemical Engineers’ Handbook, 6th ed., New York: McGHI Editions, Chem. Eng. Series, 1993.

23. Ponce-Ortega, J. M., Serna-González, M., & Jiménez-Gutiérrez, A. Use of Genetic Algorithms for the Optimal Design of Shell-and-Tube Heat Exchangers, App. Therm. Eng. 2009, 29, 203–209.

24. Price, K., & Storn, R. Differential Evolution – A Simple Evolution Strategy for Fast Optimization. Dr. Dobb’s J. 1997, 22 (4), 18–24.

25. Şahin, A. S., Kiliç, B., & Kiliç, U. Design and Economic Optimization of Shell and Tube Heat Exchangers using Artificial Bee Colony (ABC) Algorithm, Ener. Conv. Mgmt. 2011, 52, 3356–3362.

26. Serna, M., & Jimenez, A. A Compact Formulation of the Bell–Delaware Method for Heat Exchanger Design and Optimization, Chem. Eng. Res. Des. 2005, 83 (A5), 539–550.

27. Sinnot, R. K. Coulson and Richardson’s Chemical Engineering (Design), vol. 6, 2nd ed., New York: Pergamon, 1993.

APPENDIX A: PRESSURE DROP CALCULATIONS

The pressure drop calculations in Bell’s method of heat exchanger design are given below for shell-side and tube-side separately.

A.1. TUBE-SIDE PRESSURE DROP

There are two major sources of pressure loss on the tube-side of a shell-and-tube heat exchanger: the friction loss in the tubes, the losses due to the sudden contraction and expansion and flow reversals that the fluid experiences in flow through the tube arrangement. The following correlation is widely used to estimate the tube side pressure drop [27].

[image: Images]

where jf is the friction factor obtained from nomograph plotted as a function of Reynolds number.

A.2. SHELL-SIDE PRESSURE DROP

Bell’s method suggests that pressure drops in cross flow and window zones be determined separately and summed up with that in end zones to give the total shell side pressure drop.

Cross flow Zones: The pressure drop in the cross flow zones between the baffle tips is calculated from the correlations for ideal tube banks, and corrected for leakage and by passing.

[image: Images]

where ∆Pc – the pressure drop in cross flow zone between the baffle tips, corrected for by passing and leakage; ∆Pi – the pressure drop calculated for an equivalent ideal tube bank; F’b – bypass correction factor; F’L – leakage correction factor.

∆Pi, ideal tube bank pressure drop: The correlation used here is:

[image: Images]

where the friction factor jf for cross-flow tube banks can be obtained from nomograph at the appropriate Reynolds number.

F’b, bypass correction factor for pressure drop: Bypassing will affect the pressure drop only in the cross flow zones. If no sealing strips are used:

[image: Images]

where α = 5.0 for Laminar region, Re < 100

= 4.0 for transition and turbulent region, Re > 100.

F’L, Leakage correction factor for pressure drop: Leakages will effect the pressure drop in both the cross-flow and window zones.

[image: Images]

where β‘L is obtained from nomograph.

Window zone pressure drop: The correlation used here is:

[image: Images]

where uz – the geometric mean velocity.

[image: Images]

where uw – the velocity in the window zone, based on the window area less the area occupied by the tube, Aw, (uw = Ws/Awρ); Ws – shell-side mass flow, kg/s.

The window area is:

[image: Images]

where Ra is obtained from nomograph for the appropriate baffle cut Bc.

End Zone Pressure Drop: There will be no leakage paths in an end zone (the zone between the tube sheet and baffle).

[image: Images]

Total shell Side Pressure Drop: Summing the pressure drops over all the zones in series from inlet to outlet gives:

ΔPs = 2 end zones + (Nb − 1) cross flow zones + Nb window zones

[image: Images]

where Nb is the number of [image: Images]. An estimate of the pressure loss incurred in the shell inlet and outlet nozzles must be added to that calculated by Eq. (A.9).

CHAPTER 10

EVOLUTIONARY COMPUTATION BASED QoS-AWARE MULTICAST ROUTING

MANAS RANJAN KABAT, SATYA PRAKASH SAHOO, and MANOJ KUMAR PATEL

Department of Computer Science and Engineering, Veer Surendra Sai University of Technology, Burla, India,

E-mail: sahoo.satyaprakash@gmail.com, kabatmanas@gmail.com, patel.mkp@gmail.com

CONTENTS

Abstract

10.1 Introduction

10.2 Problem Statement

10.3 Evolutionary Computation Based QoS-Aware Multicast Routing

10.3.1 GA Based QoS Multicast Routing

10.3.2 GSA Based QoS Multicast Routing

10.3.3 ACO Based Algorithms for QoS Multicast Routing

10.3.4 HS Based Algorithms for QoS Multicast Routing

10.3.5 PSO Based Algorithms for QoS Multicast Routing

10.3.6 Hybrid Algorithms for QoS Multicast Routing

10.4 Simulation Results

10.5 Conclusion

Keywords

References

ABSTRACT

The real-time multimedia applications on today’s Internet require the data transmission from one or more senders to a group of the intended receivers with certain Quality of Service (QoS) requirements. These applications need the underlying network to create a distribution tree structure, which spans the source and the group of receivers. This QoS multicast tree construction problem is a non-linear combinatorial optimization problem which has been proved to be NP-complete. In the event of involving more number of QoS parameters, deterministic heuristic algorithms for QoS multicast routing are usually very slow. The evolutionary computation techniques have attracted many researchers over the years to find the near optimal solution of many combinatorial optimization problems. Hence methods based on evolutionary computation such as Genetic Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) technique, etc. are found to be more suitable to find the multi constrained QoS routing problems. In this chapter, we present the review of various evolutionary algorithms to solve the QoS-aware multicast routing problem.

10.1 INTRODUCTION

The proliferation of the Internet has led to the increase in demand of real time multimedia applications such as video/audio conferencing, video on-demand, news distribution and on-line games, etc. These applications require send information from a source to multiple destinations through a communication network. Multicasting is the ability of the network to send the same message to multiple intended receivers in a computer network. The multicast employs a tree structure to deliver the same message efficiently to a group of receivers. The membership of a host in a group is dynamic. The host may be a member of more than one group at a time, while the multicast sources need not be the members of the group. There are the following three general categories of multicast applications [20]. Those are (i) one-to-many (ii) many-to-many (iii) many-to-one. The one-to-many applications have a single sender, and multiple simultaneous receivers.

The scheduled audio/video distribution, push media, file distribution and caching, announcements, monitoring stock prices, sensor equipments are some examples of one-to-many applications. The many-to-many applications are characterized by two-way multicast communications where two or more of the receivers may act as senders. The multimedia conferencing, shared/distributed databases, distributed parallel processing, shared document editing, distance learning, distributed interactive simulations, multi-player games are real life examples pertaining many-to-many applications. The many-to-one application has multiple senders and one (or a few) receiver(s). The many to one application can either be one-way or two-way request/response types, where either senders or receiver(s) may generate the request. The data collection, auctions, polling, jukebox, accounting describes some important many-to-one applications.

The QoS is considered as an important aspect of multicasting. The various QoS parameters are delay, delay jitter, loss rate, bandwidth, etc. The cost may be either the monetary cost or any other measure of resource utilization, which must be optimized. The delay of each link is defined as the sum of switching, queuing, and transmission and propagation delays. The delay jitter of the multicast tree is the delay variation among the delays along the individual source-destination paths. The bandwidth of the link can be defined as the residual bandwidth of the physical or logical link. The real time messages involving one-to-many applications must be transmitted from the source node to their destinations within a predefined end-to-end delay for smooth delivery to the audiences. These applications also require a bound on the variation among the delays along the individual source destination paths to avoid causing inconsistence or unfairness problem among the users. The main dimension of QoS-aware multicast routing problem is the need to construct trees that will satisfy the QoS requirements of networked multimedia applications (delay, delay jitter, loss, etc.). The cost optimal solution of the QoS multicast routing problem is defined in Molnar et al. [14]. The problem is to find the minimum cost multicast tree where the end-to-end paths from source to destinations satisfying the QoS constraints.

There are several researchers who have developed several heuristics and evolutionary algorithms (EA) for QoS multicast tree generation. The heuristic algorithms first compute the least delay spanning trees. Then the least delay paths are replaced by cost sensitive paths so that the delay can be relaxed with respect to the delay bound and the cost of the multicast tree can be minimized. Though these algorithms are fast in generating multicast trees, they consider only one QoS criterion that is the delay constraint. The evolution of EAs such as genetic algorithm (GA), harmony search (HS), particle swarm optimization (PSO), ant colony optimization (ACO) has attracted the researchers to find the cost optimal solution of the multicast tree under multiple constraints. The tree generation in EA shares a common conceptual base of simulating the evolution of individual structures via processes of selection, mutation, and reproduction. More precisely, EAs maintain a population of structures that evolve according to rules of selection and other search operators, such as recombination and mutation. The EAs proposed for QoS multicast routing are either path based or tree based. In path based techniques, a set of least delay or least cost paths are computed from source to all the destinations of the multicast group. Then the candidate multicast tree structures are evolved as the random combination of the paths from the source to the destinations of the multicast group. The evolutionary algorithms generate the new multicast trees by using mutation and crossover operations. This tree evolution process continues till the optimal multicast tree is generated. These methods are slow and complex. In tree-based techniques, the candidate multicast tree structures are generated randomly or heuristically. Each individual in the population receives a measure of its fitness in the environment. Reproduction focuses attention on high fitness individuals, thus exploiting the available fitness information. Recombination and mutation perturb those individuals, providing general heuristics for exploration. Although it is simple from the viewpoint of a biologist, these algorithms are the backbone of QoS multicast routing because these algorithms not only consider multiple QoS constraints but also helps in obtaining more cost-efficient multicast trees. The next section focuses on the problem definition of QoS multicast routing. The evolutionary computation based techniques for QoS multicast routing is presented in Section 10.3. The Section 10.4 presents the simulation results to illustrate the performance of the path based and tree-based algorithms. The summary of conclusion is presented in Section 10.5.

10.2 PROBLEM STATEMENT

Let G= (V, E) be an undirected weighted graph representing the communication network, where V is the set of nodes that represents routers or switches and E is the set of edges that represent the physical or logical connection between nodes. Let s ∈ V be the source node, M ⊆ V be the set of destinations such that M={dj ∈ V, dj ≠ s, j=1,2,…m} and m be the number of destinations. Each edge is associated with the set of non-negative real numbers representing the QoS metrics such as bandwidth, delay, jitter and loss rate etc. Let R+ is the set of all real numbers. The QoS metric for each link e∈E is defined as bandwidth(e), delay(e), jitter(e) and lossrate(e) where e ∈E and E → R+.

The QoS can be roughly classified as additive (delay), multiplicative (loss-rate) and bottleneck metrics (bandwidth). We can easily deal with the bottleneck metric, i.e., available bandwidth by pruning the links from the group that do not satisfy the QoS constraint. The end-to-end delay of the path PT(s,dj) from source s to destination dj of the multicast group is the sum of the delay of the links in the path.

[image: Images]

The delay, jitter and cost of the tree, lossrate of the path PT(s, d) are defined as follows :

[image: Images]

[image: Images]

[image: Images]

where delay_avg denotes the average value of delay of the paths from the source to the destination.

The objective of QoS multicast tree problem is to construct the least cost multicast tree under multiple QoS constraints [14]. The QoS constraints are roughly defined as link constraint (bandwidth), path constraints (delay, lossrate) and tree constraints (delay, jitter). The least cost multiconstrained multicast tree problem is defined as

Minimize Cost(T(s,M)), subject to :

[image: Images]

[image: Images]

[image: Images]

[image: Images]

where DC, LC, DJC and BC represent delay constraint, loss constraint, delay jitter constraint and bandwidth constraints, respectively.

10.3 EVOLUTIONARY COMPUTATION BASED QoS-AWARE MULTICAST ROUTING

The evolutionary algorithm is inspired by biological evolution, such as reproduction, mutation, recombination, selection of the fittest ones. This technique has been used earlier to find near-optimal solution to many combinatorial optimization problems. In this section, we present the evolutionary computation based algorithms such as GA, HS, ACO, PSO and the hybrid algorithms for QoS-aware multicast routing. The set of candidate solutions is considered as the population. The fitness function is used to find the live solutions and the evolution of the population is decided by repeatedly using this fitness function. The recombination and mutation process is used to create new solutions in the population. The selection process forces to find the best quality solution to the problem.

10.3.1 GA BASED QoS MULTICAST ROUTING

In this section we present various algorithms based on GA to solve QoS multicast routing. The GA (Hwang, 2010) has been used by many researchers to solve the optimization problems because of efficient search in complex spaces. The candidate solutions at each iteration are represented as a population. Then the GA uses three basic operations namely reproduction, cross over and mutation to generate new offspring. This process is repeated to find the fittest chromosome as the desired solution.

The solution of QoS multicast routing problem using genetic algorithm was proposed by Hwang et al. [8]. This algorithm first computes all the possible routes between source and destination pairs using k-shortest path algorithm [32]. Let there are k paths to each destination (dj∈M, 1≤ j ≤ m) from the source. The chromosome of the population is represented by a string of integers with length m, where the gene of the chromosome is an integer from 1 to k. The paths are sorted either with respect to the hop count or delay so that a better path will get a smaller number. Each chromosome represents the combination of paths from source to all destinations of the multicast group, which is not necessarily being a multicast tree. Though a coding system proposed in Palmer et al. [15] can be used to represent chromosome as a multicast tree. It requires complex transformation to obtain the links from the tree. The algorithm generates C different chromosomes randomly in the first generation where C is the size of the population. The Figure 10.1(a) shows the example network where v0 is the source and v4 is one of destinations of the multicast group. The Figure 10.1(b) shows relationship of the chromo-some, gene and the routing table for the source-destination pair (v0, v4).

[image: Images]

FIGURE 10.1(A) Example Network; (b) Relationship of the chromosomes, gene and routing table.

The fitness value of each chromosome hi, 1≤ i ≤ |C| in the initial population is computed as [image: Images] where cost (hi) is the sum of the cost of the links of the graph represented by the chromosome hi and cost(L) is the sum of the costs of all links in the network. The chromosomes are sorted according to their fitness values. Then the duplicate chromosomes are removed from the population so that the search ability of the algorithm can be improved. Then some of the chromosomes are selected on the basis of the fitness function to generate more offspring through crossover and mutation procedure. This process helps to find the chromosomes with high fitness by killing the chromosomes with low fitness. Then a certain number of chromosomes with the best fitness values are selected from the current generation for reproduction. Another set of chromosomes with the best fitness values is selected to reproduce offspring through the crossover operation. However, the total number of chromosomes in the population remains C. The crossover operation considers two chromosome strings with larger fitness values of the population. Then the start point and length of the substring to be exchanged are randomly selected. The two new offspring is created and placed in the population as shown in Figure 10.2.

Wang et al. used a tree-based approach to construct the set of the multicast tree as the candidate solution. This method starts with the source and randomly selects the unvisited nodes by using a random depth first search. This process continues till all the destination nodes are included in the tree.

Another GA-based heuristic algorithm for bandwidth-delay-constrained least-cost multicast routing is proposed by Haghighat et al. [7]. This algorithm uses a randomized depth first search DFS to construct the multicast trees. First, a path is constructed from the source node s to one of the destination nodes. Then, one of the unvisited destinations is selected and the path to a node in the sub-tree constructed in the previous step is set up by selecting the next unvisited node. This process continues till all the destinations are included in the tree. This process is called C times to create the total population.

The fitness function considered in this algorithm is an improved version of the scheme proposed in Wang et al. [30]. The fitness functions for each individual tree T(s, M) using the penalty technique is defined as follows:

Fitness (T(s, M))

[image: Images]

[image: Images]

FIGURE 10.2 Crossover operation.

[image: Images]

The α is a positive real coefficient, Ø(z) is the penalty function and γ is the degree of penalty. The optimal solution depends on the degree of penalty. Then, they have used the approach for crossover of Steiner trees [21] with some modifications. In this scheme, two multicast trees, T1(s, M) and T2(s, M) are selected as parents and the crossover operation produces an offspring T3(s, M) by identifying the links that are common to both parents. The operator selects the same links of two parents for quicker convergence of the genetic algorithm. The genetic algorithms [7, 8] for QoS multicast routing are based on mutation and crossover operator. However, both of the algorithms have some drawbacks such as lack of local search ability, premature convergence and slow convergence speed (Zhang et al., 2009).

10.3.2 GSA BASED QoS MULTICAST ROUTING

The method proposed in GSA [36] is a tree-based approach that combines GA and simulated annealing (SA) adequately to avoid the premature convergence of the GA. The SA has the capability of escaping from local optima [12]. The GA has the character of parallel processing and high convergence speed. In GSA, the multicast trees spanning the source and destinations are represented as chromosomes. The tree initialization is done in two steps: trunk creating and limb appending. The trunk-creating step starts from the source and goes on selecting links randomly till the one of the destination nodes is reached. The limb-appending step starts from an unvisited destination and goes on selecting the links till it is added to the previous tree. This process is repeated till all the destinations are added into the multicast tree. The selection operation uses the last chromosome to record the best individual in all generations to make sure that the algorithm can converge to the global optimal solution. The crossover operation is performed with an adaptive probability to improve the evolutionary efficiency.

Subsequently, Peng et al. [17] presented an adaptive genetic simulated annealing algorithm (AGSAA) to solve the QoS multicast routing problem. This is a path0based approach in which the chromosomes are created as discussed in Section 3.1 and shown in Figure 10.1. This algorithm adopts a roulette wheel selection method and best individual preservation strategy. The probability of selection of an individual is the ratio of the fitness function of that individual and the sum of the fitness values of all the individuals in the population. The improved adaptive crossover and mutation probabilities are adopted in this algorithm, which is varied depending on the fitness values of the solutions. This not only improves the convergence rate, but also prevents the GA to lock at local optima.

The SA algorithm is used to set the initial temperature at a high value so that all neighboring solutions can be accepted with high probability and a very good convergence can be ensured. The initial population of the SA algorithm is the population generated by mutation operation of the GA in the current generation. Then the neighboring solution is created by randomly replacing one path (gene) by another path (gene) from the path set to the corresponding destination.

10.3.3 ACO BASED ALGORITHMS FOR QoS MULTICAST ROUTING

The basic ACO and its formulation were presented in Dorigo et al. [12]. Gong et al. [6] presented an efficient QoS multicast routing algorithm based on ACA considering multiple QoS metrics. This is a path-based approach which finds the shortest paths from the source to each destination separately by the ant algorithm and then merging the resulting paths to form a multicast tree. This algorithm was framed up into four steps. Those are data structures, state transition rule, pheromone updating rule and the merge operation. In the data structure phase, the data structure of ant, link and node were described. In the second phase, they modified the state transition rule for the ant and defined the probability for the ant to move from one node to another node with the pheromone guide. Thirdly, after all the ants have found their path as per the probability, the pheromone amount of edges is updated and the cost of the path was calculated and finally the pheromone updating rule of an ant algorithm was applied to ensure the feasibility of a solution, and devise a flexible approach to merge the multiple paths by ants.

A modified ACO was devised by Wang et al. [6] for finding the least cost multicast tree by adding an orientation factor in it. This path based multicast tree generation algorithm is based on the orientation factor. The orientation factor is introduced while computing the probability of selecting the next hop. The orientation factor is calculated after repetitive simulation experiments by using the equation ηij = a + cos θ, where a = 2, and θ is the polar coordinates of the two orientation vectors. The first one is directed from the current node to the candidate node and the second one is from the current node to the destination node. The orientation factor ηij is computed by using the following formula.

[image: Images]

where candidatesk denote the node set allowed to select by ant k, ηij(t) denotes the value of the orientation factor of the path from the current node i to next node j in the tth search cycle. α is the adjustment factor of pheromone τij(t), β is the adjustable factor of the orientation factor τij(t). The orientation factor affects the computation of the probability of the next hop. Besides the addition of the orientation factor, the ideas of Tabu search and Simulated Annealing are also integrated to speed up convergence and avoid the search result converging in locally optimal solution.

A path based ant algorithm for QoS multicast routing is proposed by Younes [34]. each part of the path set to a destination is assigned an initial value 0. In each iteration, a number of ants move on the paths in set Pi. The pheromone value left by the ants in a path pk of Pi. Then, the local pheromone value is updated. The corresponding probability function fk for each pk is computed and global pheromone value is updated. This is repeated for a fixed number of iterations. After the fixed number of iterations, the values of the pheromone of the paths are computed and compared to get the best path for the destinations di.

A delay-constrained multicast routing algorithm based on the ant colony algorithm is proposed by Shi et.al. [23]. This is a path-based approach which first computes a set of alternate paths to the destinations. Then the candidate multicast trees are generated by integrating randomly the paths to the destinations. The fitness function is used to choose the jth path in an alternative path set Ωi to a destination di.

[image: Images]

where phePj(s,di) is the pheromone of the jth path indicating that a higher pheromone of the path assures higher probability of being selected. The pheromone of the routes in which the ant passes is updated by using the equation [image: Images], where a is the constant parameter.

When all ants finish one path, the volatile secretions of all paths are adjusted by the following equation.

[image: Images]

where, ρ is the volatility, and ∆ is the initial information strength on each path. When ants found the entire destination nodes to form a multicast tree, and then pheromone is adjusted by using the equation [image: Images], where B is a constant parameter, cost(T) is the cost of the multicast tree.

The tree growth based ant colony algorithm for the QoS multicast routing problem is proposed by Wang et al. [29]. This is a tree-based approach, which directly constructs the multicast trees as the candidate solutions. The multicast tree starts with the source and record the link set that satisfies the bandwidth constraint, end-to-end delay and loss rate constraint from the source node to the current node. Then, the ant selects one link and adds it to the current tree according to the probability in order to make the tree grow constantly. When the tree covers all the multicast members it stops growing. The tree obtained is then pruned and rendezvous links are removed to get the real multicast tree. This algorithm forms a positive feedback mechanism by updating the pheromone of the links regularly. The ants are sent for a number of generations. The best tree generated after the generation (local best) and the global best trees are updated when updating the pheromone. The pheromone of the link l(i, j) is updated by using the formula τij=(1–ρ) τij+ ρ∆τij, where ρ is used to control the evaporating speed of pheromone and ∆τij is the increase in pheromone on the link (i, j) obtained by local optimization and global optimal tree in that generation. This process is repeated until the algorithm converges. This algorithm has three basic operations-tree growth, tree pruning, and pheromone updating. The tree growth is critical among these three operations. Considering the effect of parameter selection of ant colony algorithm on algorithm performance, one can adopt orthogonal experiments to optimize ant colony algorithm parameters in order to achieve better performance.

Yin et al. [33] proposed a Niched ant colony optimization (NACO) algorithm which uses the colony guide algorithm (NACOg) to solve the QoS multicast routing problem. The NACO algorithm is basically a hybridization of tree-based and a path based approach. This first performs a constrained tree traversal (CTT) strategy to generate a set of feasible trees with respect to the QoS constraints. These feasible trees are constructed by considering the delay constraint of each path. The NACO algorithm for multicast routing manages multiple pheromone matrices for better diversity among individual solutions. Next, the use of the colony guides enhances the intensification search capability of each niche-colony. The NACOg algorithm used in NACO algorithm divides the colony of ants into n niche-colonies. Each candidate multicast tree is represented by a niche-colony. Each niche-colony has its own pheromone matrix and evolves to optimize an individual multicast tree. The number of ants in each niche-colony is equal to the number of destination nodes and each constrained routing path from the source node to one of the destination nodes is represented as an ant. The CTT strategy employed by every ant of a niche-colony ensures the feasibility of the obtained multi-constrained multicast tree. The cost of the multicast tree can be minimized through the evolutionary optimization process by use of two different factors. The first one is the pheromone matrix τ, which estimates the long-term experience about the desirability for using a particular transmission link. The other one is the visibility matrix η, which estimates immediate reward for traversing the link.

Let us illustrate the optimization of path-routing mechanism employed by an ant. Let the current position of the ant is at node i, and Π denotes the set of all candidate nodes for serving as the next node in the routing with reference to the CTT strategy. A selection probability is assigned to every node in Π and the probability of choosing node j as the next node for extending the routing path is calculated as follows:

[image: Images]

where τij is the pheromone amount that is sensed on edge eij, ηij is the visibility on edge eij, and α∈(0,1) is the weighting value for tuning the trade-off significance for pheromone and visibility. The denominator is a normalization term for ensuring that the sum of all the probability values equals one. The selection of the next node in the routing process is following a learning scheme that takes into account both of the long-term experience (pheromone) and the immediate reward (visibility). The pheromone matrix is updated according to the fitness of the produced multicast tree as will be noted. The visibility value reflects the immediate reward that encourages the selection for the edges that are in the completed routing paths and for those edges with little transmission cost. The visibility value of selecting edge eij is defined as follows.

[image: Images]

where Rij is the merit for the reuse of edge eij and Q1 is the parameter for tuning the relative importance between increasing the edge-reuse rate and decreasing the incurred cost. The value of Rij is inversely proportional to the level of eij in the multicast tree because the reuse of higher-level edges can avoid a dramatic change in the topology of the multicast tree after the inclusion of the current routing-path. In order to update the long-term evolutionary experience in the individual pheromone matrices, two forms of feedback have been collected. The path-level feedback estimates the fitness of the routing path constructed by each ant and the tree-level feedback appraises the value of the two colony guides (the best multicast tree obtained by each niche-colony and the overall best multicast tree obtained by the entire colony). The pheromone-updating rule of the proposed NACOg algorithm uses the following equation to update the pheromone matrix of each niche-colony.

[image: Images]

where ρ is the evaporation rate for pheromone trails, [image: Images] is the pheromone increment by reference to the routing path constructed by the kth ant, and [image: Images] and [image: Images] are the additive pheromone quantities contributed by the niche-colony guide and the entire- colony guide, respectively. The pheromone entry τij receives positive values for the three long-term rewards ([image: Images], [image: Images] and [image: Images]) only when eij is contained in their respective routing representations. The values of these three rewards are derived as follows.

[image: Images]

where Costk, Costng, and Costcg are respectively the total transmission cost over all the edges contained in the path constructed by the kth ant, the best multicast tree for each niche-colony, and the overall best multicast tree for the entire colony. Q2 is the parameter for weighting the additive pheromone amounts.

10.3.4 HS BASED ALGORITHMS FOR QoS MULTICAST ROUTING

Forsati et al. [3] proposed a HS based algorithm for bandwidth-delay-constrained multicast routing problem. The Harmony search (HS) based algorithms are meta-heuristic algorithms, mimicking the improvisation process of music players. During the last several years, the HS algorithm has been rigorously applied to various optimization problems [4, 5]. The algorithm has several advantages with respect to the traditional optimization techniques [13]. The HS algorithm imposes fewer mathematical requirements and does not require initial value setting of decision variables. As the HS algorithm uses stochastic random searches, the derivative information is also not necessary. Further, the HS algorithm generates a new vector, after considering all of the existing vectors, whereas the GA considers two parent vectors. These features increase the flexibility of the HS algorithm and produce the best solution.

The HS algorithm is applied to find the bandwidth delay constrained least cost multicast routing tree. It assumes a source node and requests to establish a least-cost multicast tree with two constraints: bandwidth constraint in all the links of the multicast tree and end-to-end-delay constraint from the source node to each of the destinations. The HS algorithm is a centralized routing algorithm. That is, the complete network topology information available at the source node and the central node that is responsible for computing the entire routing table. The algorithm is designed in two phases. The first was HS-based algorithm called HSPR. The Prüfer number representation is modified, which was used for multicast tree and was used to encode the solution space. The authors proposed a novel representation called as node parent index (NPI) representation for encoding trees, in order to overcome the poor performance of the prufer in representing incomplete graphs [3].

The NPI representation possesses properties, which are necessary to a heuristic algorithm to function most effectively. Later, a new HS-based algorithm using NPI representation named as HSNPI to find the bandwidth and end-toend delay constrained multicast tree was proposed [4].

10.3.5 PSO BASED ALGORITHMS FOR QoS MULTICAST ROUTING

The original PSO algorithm was proposed by J. Kennedy as a simulation of social behavior of bird flock [9]. In some cases the PSO does not suffer the difficulties met by GA and has been proven as an efficient approach for many continuous problems.

The tree-based PSO algorithm (PSOTREE) for QoS multicast routing is proposed by Wang et al. [27] which optimizes the multicast tree directly constructing the trees rather than combining the paths. The algorithm constructs the candidate multicast trees by calculating the fitness of the link considering cost, delay and bandwidth of the links. The fitness of the link is calculated by using the following formula.

[image: Images]

where, BC is the bandwidth constraint of the link, the parameters a1, a2 are the weight values of the cost and delay function of the link, and the variables averagecost and averagedelay represent the average cost and delay of the set of links in network topology. The multicast tree construction starts with the source node. Then the neighboring nodes of the current node that satisfy the bandwidth, delay requirements are placed into a candidate set. Then one of the neighbor nodes is selected randomly and added to the multicast tree. The delay up to that node is updated. This process is repeated till all the destination nodes are included in the multicast tree. The multicast tree generated is represented by a particle. Each particle flies in the best-known direction and interacts with other particle to generate a new particle. The new multicast tree is generated by merging, loop trimming and edge pruning of two candidate trees. The merging operation can be simply viewed as the addition of all the links of the two trees T1 and T2 into the new tree T3, i.e., T3[i][j] = T1[i][j] ∨ T2[i][j]. The new tree obtained is not necessarily being a tree. This may contain circles or nested circles. In PSOTREE, the Depth First Search (DFS) algorithm is used for loop trimming and then the nodes with in-degree bigger than 1 is eliminated. The fitness of the new particle is computed and then the global best solution is updated according to the fitness. The fitness of the multicast tree is evaluated by using the formula given below.

[image: Images]

where cost, delay and jitter are the values of cost, delay, and delay jitter of the multicast tree. The bestcostsofar, bestdelaysofar, bestjittersofar stand for the cost, delay, jitter of the best solution of the current multicast tree, respectively. This process continues till the number of iterations reaches the maximum number of iterations or the best solution has not changed for some consecutive iteration.

The PSO algorithm based on jumping PSO (JPSO) algorithm was proposed by Qu et al. [19] for QoS multicast routing. This is a tree-based approach in which a set of multicast trees is randomly generated. These multicast trees are represented as a swarm of random particles. Each multicast tree is constructed starting from the source node and randomly adding the links into the on-tree node until all destination nodes are added to the tree. The multicast tree is represented by using a predecessor array with |V| elements. The multicast tree representation of predecessor array is shown in Figure 10.3.

For each particle i in the swarm at iteration j, its position (solution) xi,j and velocity (rate of change) vi,j are updated on the evolution by using the following two equations:

[image: Images]

[image: Images]

The velocity update vi,j+1 consists of four components:

	the first component, c0vi,j, is the inertia and that enables the particle to maintain the flow of its previous movement to avoid abrupt moves and premature convergence;

[image: Images]

FIGURE 10.3 Representation of the multicast tree by using Predecessor array.

	the second component, c1r1(bi −xi,j), uses the particle’s best achieved position so far as the reference to encourage its self learning ability

	the third component, c2r2(gj −xi,j), is the social factor that remembers the particle’s best position so far within the swarm, gj,

	the fourth component, c3r3(gi,j − xi,j), uses the particle’s best position found so far in a neighborhood sub-swarm gi,j. This is to enhance the exploration capacity of the particles and also to prevent premature convergence within the swarm.

The first part c0vi,j enables the particle to continue the exploration of its current position. The second part c1r1(bi −xi,j)+c2r2(gj −xi,j)+c3r3(gi,j −xi,j) encourages the particle to move towards a better location with respect to other particles’ positions. Therefore, the particle that performs the move follows the other three different attractors, and is thus named the follower in the literature.

At every iteration of the evolution the movement of each particle is selected either based on its current position or the position of the attractor that is chosen by using the weight. The local search is applied after the particle jumped to a new position. Then the best position of both the particle and the swarm are updated. This process is repeated till achieving the best position of the swarm.

In PSO base multicast routing, there are two types of moves: the first one moves towards an attractor and the second one moves around the current position without involving the attractor.

	If r∈ [0, c0) then no attractor is selected, then a super path from the tree is randomly removed and the resulting two sub-tree are connected by using a random link. The super path considered in the algorithm is the longest path between two end nodes where all the internal nodes except the two end nodes of the path has a node degree of two.

	If r ∈ [c0, c0+c1), the best position achieved by the particle so far (bi) is chosen as the attractor. If r ∈ [c0+c1, c0+c1+c2), the attractor is the best position achieved by the whole swarm so far (gj). If r ∈ [c0 +c1 +c2, 1], the best located particle in the neighborhood of the current particle (gi,j) acts as the attractor.

[image: Images]

FIGURE 10.4 Path replacement operation.

If the attractor is selected the path replacement operator adds the least cost path from the source to the destination in the selected attractor and removes the corresponding path in the follower particle. If the added path is already in the follower particle, then a random move is applied to the follower particle. The path replacement operator is used to update a particle’s position based on a chosen attractor. The Figure 10.4 shows the newly generated particle from the follower particle (current tree) and attractor particle (attractor tree). The least cost path (F A B) in the follower tree is found by the path replacement operator and the corresponding path (F D C B) of the attractor tree is replaced.

In QPSO [26] each single particle is treated as a spin-less one in quantum space. By this modification he has attempted to explore the QPSO applicability to combinatorial optimization problems. In this method, the problem was converted to constrained integer program and then QPSO algorithm was applied to solve the problem through loop deletion operation.

The QPSO algorithm for the QoS multicast routing problem has been proposed by Sun et al. [24]. This method first converts the multicast routing problem into a constrained integer programming and then solves by the QPSO algorithm with the loop deletion operation. The main issues to be tackled are the representation of a particle’s position and determination of the fitness function. This is a path-based approach in which the paths generated to a destination are numbered as an integer. Then, the multicast tree is represented by m-dimensional integral vector. The QPSO based QoS multicast routing is reduced to a m-dimensional integer programming. The fitness of the multicast tree is computed

[image: Images]

where ω1, ω2, ω3 and ω4 are the weights of bandwidth, delay, jitter and loss-rate respectively. The functions fc, fb, fd, fdj and fpl, are defined by

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

The personal position and the global best position are updated after the completion of fitness values of trees in each iteration. Then each component of the particle position is updated and the integer representing the path is also adjusted. In the next step, the loops existing in the tree are deleted to make the multicast tree feasible. If there exists loop between ith and jth path of the path serial then the costs of the routes that constitute the loop and the more expensive route is deleted.

10.3.6 HYBRID ALGORITHMS FOR QoS MULTICAST ROUTING

The hybrid discrete PSO with GA for QoS multicast routing is proposed by Abdel-Kader [1]. The hybrid PSO-GA algorithm combines the power of both PSO and GA to solve the multicast routing problem. This hybrid algorithm uses the position velocity update rules of PSO along with crossover, mutation and selection operators of GA. This is a path-based approach in which a particle represents a multicast tree. The particle (chromosome in GA) C = (g1, g2,…..,gn) is a string of integers where gi is the gene of the particle. The given gi ∈ {1, 2,…., k} represents one of the k paths from the source to the ith destination. The particle is constructed by choosing the paths that satisfy the QoS constraints and removing the loops from the combination of paths. Then the fitness of the particle is computed by using the following equation.

[image: Images]

where η1 and η2 are punishment coefficients and the value of the coefficients decide the punishment extent. If α ≥ 0, then min (α, 0) = α; else min (α,0) = 0.

This hybrid algorithm uses a two-point crossover operation to generate new particles. The two-point crossover operation is depicted in Figure 10.2. It gives single routing path (SRP) and multiple routing paths (MRP) mutation operations to generate new particles. In SRP mutation, a single path gene is selected and replaced randomly by another gene from the set of paths to the corresponding destination. In MRP mutation, multiple path genes are selected and replaced by other genes randomly. If the new particle has better fitness then it replaces the old particle. The algorithm replaces the duplicate particles by new particles generated randomly. The algorithm terminates after a fixed number of iterations if the fitness value of the particle is not improved more than a fixed threshold value.

An improved Bacteria Foraging Algorithm was proposed by Korani [10] in the year 2008, naming it BF-PSO algorithm. A unit length direction of tumble characteristic shown in bacteria is randomly generated by BFO algorithm. This generation of random direction may lead to delay in reaching the global solution. Thus, the PSO ability to exchange the social information and the ability to find a new solution by elimination and dispersal of BFO algorithm is incorporated in BF-PSO. In this algorithm, the global best position and local best position of each bacterium can decide the unit length random direction of tumble behavior of the bacteria. The tumble direction update during the process of chemotaxis loop is determined by using the following equation:

[image: Images]

where, pcurrent is the current position of the bacteria and plbest is the local best position of each bacteria and pgbest is the global best position of each bacteria.

Pradhan et al. [18] proposed a BF-PSO algorithm for QoS multicast routing (BFQMR). In BFQMR, the QoS multicast tree is generated by setting the delay of the links to infinite which have the available bandwidth less than the required bandwidth. Then k-least delay paths are generated by using the k-Bellman-Ford algorithm. The delay constrained paths to each destination of the multicast group are selected from the k-least delay paths. For a set of multicast destination nodes, where M = {d1, d2,...., dm} and a given source node s, a bacterium in our proposed BFO algorithm is represented as {x1, x2,, xm}. Each bacterium represents a multicast tree and each bacterium has m number of components, i.e., {x1, x2,...., xm}, where the ith component represents the path to the ith destination in a multicast tree. Each component in bacteria selects a feasible path from k-number of delays constrained paths to each destination.

Each bacterium is a candidate solution of QoS multicast tree from source node to each destination. A bacterium represents a multicast tree after randomly combining the paths from the generated k-least cost, delay constrained paths and removing the loops, if any. After the multicast trees are randomly generated and chosen by bacteria, loop deletion and calculation of fitness function is performed.

The movement of bacteria is defined by tumbling and swimming during the process of chemotaxis. In the chemotactic process, the fitness of the ith bacterium, 1 ≤ i ≤ S in the jth chemotactic step, 1 ≤ j ≤ Nc is computed as Fitness (P(i, j)). The Nc is the maximum number of chemotactic steps taken during the iteration, where P(i, j) is the current position of the ith bacterium at jth chemotactic step. The bacterium at position P(i, j) represents a multicast tree T (s, M). The fitness function evaluated is stored in the Jlast. The fitness value of the bacterium is computed by modifying the fitness function used in the hybrid PSO/GA algorithm for QoS multicast routing [1].

[image: Images]

where τ1, τ2, τ3 are the weights predefined for the delay, delay-jitter and bandwidth respectively.

After computing the fitness value of a bacterium at current position, the local position of the bacterium with respect to the next chemotactic step is updated. During the lifetime, a bacterium must undergo one tumble behavior. The φ(m, i) decides the direction for the tumble behavior for the bacterium. A bacterium in its chemotactic phase undergoes a maximum of Ns number of swimming steps. During swimming, if the updated local position of the bacterium is better than the previous local best position Jlast, then Jlast is updated by J(i, j+1). The PSO parameter pcurrent is evaluated. The current position pcurrent is updated if the current position of the bacterium is better than the previous current position of the bacterium. With each movement the current position of the bacteria is updated as well as the fitness function. Thus, each bacterium moves towards the optimum solution of QoS multicast tree in the chemotactic step. The local best position plocal and global best position pgbest of each bacterium is evaluated after the loop swimming for maximum of consecutive Ns steps. If the global best position pgbest does not change over three chemotactic phase, then the chemotactic step is stopped and the reproduction phase starts.

In the reproduction phase, the multicast trees obtained in the chemotactic step are sorted and arranged with respect to their fitness values Ji health. The bacterium that has the best fitness value for each chemotactic step are chosen and arranged in ascending order. The bacteria with worst fitness values die and the remaining bacteria with best value remains and copies.

[image: Images]

In elimination-dispersal step the weakest or the poor bacteria are dispersed with probability.

A hybrid-swarming agent based ACO/PSO algorithm is proposed by Patel et al. (2014). This algorithm generates n multicast trees randomly where each multicast tree has m attributes for m destinations. The structure of the pattern is defined as Ti = (ai1, ai2, …..aim) for i = 1 to n. Where Ti is the ith multicast tree pattern and aij represents the jth attribute of ith pattern. Then n numbers of fixed pattern agents are created to associate with n tree patterns. The n numbers of mobile particle agents are generated and each particle agent is randomly attached to a pattern agent. The arrangement of particle and pattern agent is shown in Figure 10.5.

[image: Images]

FIGURE 10.5 Particle agents and patterns arranged in a grid.

The particle agents can move from one pattern to another pattern to interact with other particle agents dynamically. The particle agents are allowed to deposit pheromones and sense local attributes in each pattern. The pattern agent executes the dynamics of pheromone aggregation, dispersion and evaporation. Each pattern agent maintains the pheromones in two levels that are pattern pheromone and attribute pheromone. When a particle agent moves to another particle agent the particles attract dynamically to replace the attribute of one pattern by a better pattern. After some iteration the particle agent converges to the fittest patterns. The ACO algorithm basically works on the three ideas. First, each ant’s movement is associated with the candidate solution. Secondly, when an ant moves in a path the amount of pheromone deposited on that path is proportional to the quality of that solution. When there are two or more paths, then the ant follows the path with the best pheromone value.

The PSO algorithm represents each candidate solution as a particle and each particle’s movement is the composition of an initial random velocity and two randomly weighted influences: individuality, the tendency to return to the particle’s best previous position, and sociality, the tendency to move towards the neighborhood’s best previous position.

The velocity and position of the particle at any iteration is updated based on the following equations:

[image: Images]

[image: Images]

where [image: Images] is the component in dimension d of the i-th particle velocity in iteration t, [image: Images] is the component in dimension d of the i-th particle position in iteration t, c1, c2 are constant weight factors, pi is the best position achieved by particle i, pgd is the best position found by the neighbors of particle i, r1, r2 are random factors in the [0,1] interval, and w is the inertia weight.

10.4 SIMULATION RESULTS

We evaluate the performance of the path based and tree-based evolutionary algorithms for QoS multicast routing by implementing these algorithms in Visual C++. The experiments are performed on an Intel Core i3 @ 2.27 G.Hz. and 4 GB RAM based platform running Windows 7.0. The nodes are positioned randomly in an area of size 4000 km x 2400 km. The Euclidean metric is then used to determine the distance between each pair of nodes. The network topology used in our simulation was generated randomly using Waxman’s topology [35]. The edges are introduced between the pairs of nodes u, v with a probability that depends on the distance between them. The edge probability is given by p(u, v) = β exp(– l(u, v)/αL), where l(u,v) is the Euler distance from node u to v and L is the maximum distance between any two points in the network. The delay, loss rate, bandwidth and cost of the links are set randomly from 1 to 30, 0.0001 to 0.01, 2 to 10 Mbps and 1 to 100, respectively.

The source node is selected randomly and destination nodes are picked up uniformly from the set of nodes chosen in the network topology. The delay bound, the delay jitter bound and the loss bound are set 120 ms, 60 ms and 0.05, respectively. The bandwidth requested by a multicast application is generated randomly. We generate 30 multicast trees randomly to study and compare the performance of the tree-based algorithms. The simulation is run for 100 times for each case and the average of the multicast tree cost is taken as the output. We also generate 20 shortest paths for each destination to study and compare the performance of the path-based algorithms. We vary the network size from 20 to 140 and the number of destinations is considered as 20% of the number of nodes in the network. The performance of these algorithms is studied in terms of multicast tree cost, delay and delay-jitter.

The Figure 10.6 shows the comparison of multicast tree cost of various path based algorithms such as BFPSO [18], QPSO [24], GAPSO [1], PSO [26] with respect to varying network size .The results show that the BF-PSO performs better than QPSO, PSO and GA-PSO in terms of cost. This is because the BFPSO uses an efficient loop deletion procedure to generate a better-multicast tree while combining the paths to the destinations. Furthermore, the BFO has a powerful searching capability to select the optimal set of paths to generate the best possible tree. The convergence speed of BFO has also been improved with PSO..The Figure 10.7 shows the multicast tree cost verses the network size with 20 percent of the nodes as the group size. The multicast trees generated by PSOTREE [27], TGBACA [29], TBSIA [16] and TBCROA satisfy the delay, delay jitter, loss rate and bandwidth constraints. However, the figures clearly illustrate that the cost of the multicast tree generated by our proposed algorithm is less than the multicast trees generated by PSOTREE and TGBACA and TBSIA. The PSOTREE algorithm constructs the multicast tree by combining the multicast trees and removing directed cycles. This algorithm removes the links that are in any of the trees, but not in both and have minimum fitness. However, this approach may not generate a better tree, because the links deleted from the cycle may be better than the links not in the directed cycles. The TGBACA algorithm follows a pheromone updating strategy to construct the best-multicast tree. The algorithm updates pheromones on the links used by the global best tree and the best tree generated after each generation. Though this strategy fasts the convergence process, but the solution may fall into local optimization. The TBSIA combines two multicast tree patterns by bringing the better attributes of one pattern to another pattern. It generates a new tree pattern after each iteration, which is better than both the patterns. Since the whole path of one tree is replaced by another path from another multicast tree, some better links may be excluded from the tree. This may fail to generate an optimal tree in some cases.

[image: Images]

FIGURE 10.6 Multicast tree cost vs. Network size of path based algorithm with 20% nodes as destinations.

[image: Images]

FIGURE 10.7 Multicast tree cost vs. Network size of tree-based algorithm with 20% nodes as destinations.

The Figures 10.8 and 10.9 show the multicast tree delay of path based and tree-based algorithms versus number of network nodes with 20% nodes as destinations respectively. It is observed that both the path based and tree-based algorithms satisfy the delay constraints. The BFPSO experiences less delay than QPSO, GAPSO and PSO. This is because the BFPSO computes k-least delay paths to the destinations and uses the searching power of BFO to select the best delay paths to generate the least cost delay constraint multicast tree. The TGBACA experience less delay than PSOTREE and TBSIA. The PSOTREE and TBSIA attempts to minimize the cost of the trees keeping in mind that the delay constrant should should not be violated. The TGBACA generates the candidate multicast trees considering the pheromone of the paths selected in previous iterations. The Figures 10.10 and 10.11 show the comparison of multicast tree delay jitter versus number of network nodes with 20% nodes as destinations respectively. It is observed that both the path based and tree-based algorithms satisfy the delay jitter constraints. The BFPSO experiences less delay jitter than QPSO, GAPSO and PSO. The PSOTREE experience less delay jitter than TGBACA and TBSIA. The PSOTREE uses a merging procedure to merge two trees and delete the loops to generate the cost optimal multicast tree. This may select longer delay paths to minimize the cost of the tree.

[image: Images]

FIGURE 10.8 Multicast tree Delay vs. Network size of path based algorithms with 20% nodes as destinations.

[image: Images]

FIGURE 10.9 Multicast tree Delay vs. Network size of tree-based algorithms with 20% nodes as destinations.

[image: Images]

FIGURE 10.10 Multicast tree Delay Jitter vs. Network size of path based algorithms with 20% nodes as destinations.

[image: Images]

FIGURE 10.11 Multicast tree Delay Jitter vs. Network size of tree-based algorithms with 20% nodes as destinations.

10.5 CONCLUSION

The cost optimal QoS-aware multicast routing problem can be reduced to constrained Steiner tree problem which have been proven to be NP-complete. Therefore, many heuristics and evolutionary algorithm have been proposed to generate cost optimal QoS multicast tree. In this chapter, we studied various evolutionary algorithms developed for the above problem. The EAs attack this problem by using either path-based techniques or tree-based techniques. The path-based techniques generate a set of constrained paths to each destination. Let there are k number of paths to each of the m destinations. Then the number of candidate trees that can be generated by combining these paths is km, which is very high. The EAs combined these paths either heuristically or randomly to generate a set of fixed number of candidate feasible solutions. Similarly, in a tree-based approach, the multicast trees are directly created either randomly or heuristically. The EAs and their hybridization usually combine these solutions to generate a set of new and better solution in each iteration using recombination or mutation. These algorithms run for a fixed number of iterations and after each iteration, the global best solution and local based solution are recorded. Though these algorithms run for a fixed number of iterations the termination criteria can be set very sensibly to stop the algorithm when they converge. This not only generates the best solution but also reduces the execution time.

KEYWORDS

	Ant colony optimization

	Bacteria foraging

	Evolutionary algorithm

	Genetic algorithm

	Harmony search

	Multicast

	Particle swarm optimization

	QoS routing

REFERENCES

1. Abdel-Kader, R. F., Hybrid discrete PSO with GA operators for efficient QoS-multicast routing. Ain Shams Engineering Journal. 2011, 2, 21–31.

2. Dorigo, M., & Caro G. D., The ant colony optimization meta-heuristic, new ideas in optimization. McGraw-Hill, 1999.

3. Forsati, R., Haghighat, A. T., & Mahdavi, M., Harmony search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Computer Communications. 2008, 31, 2505–2519.

4. Geem, Z. W., Kim, J. H., & Loganathan, G. V., A new heuristic optimization algorithm: harmony search. Simulation. 2001, 76 (2), 60–68.

5. Geem, Z. W., Tseng, C., & Park, Y., Harmony search for generalized orienteering problem. Lecture Notes in Computer Science. 2005, 3412, 741–750.

6. Gong, B., Li, L., Wang, X., Multicast Routing Based on Ant Algorithm with Multiple Constraints. IEEE International Conference on Wireless Communications, Networking and Mobile Computing,. 2007, 1945–1948.

7. Haghighat, A. T., Faez, K., Dehghan, M., Mowlaei, A., & Ghahremani, Y., GA-based heuristic algorithms for bandwidth-delay-constrained least-cost multicast routing. Computer Communications. 2004, 27, 111–127.

8. Hwang, R. H., Do, W. Y., & Yang, S. C., Multicast Routing Based on Genetic Algorithms. Journal of Information Science and Engineering. 2000, 16, 885–901 .

9. Kennedy, J., & Eberhart, R. C., Particle Swarm Optimization. IEEE International Conference on Neural Networks. 1995, 1942–1948.

10. Korani, W., Bacterial Foraging Oriented by Particle Swarm Optimization Strategy for PID Tuning, GECCO, 2008.

11. Kosiur, D., IP Multicasting: The Complete Guide to Interactive Corporate Networks. Wiley, New York, 1998.

12. Kun Z., Heng W., & Liu F. Y., Distributed multicast routing for delay and delay variation-bounded Steiner tree using simulated annealing. Computer Communications. 2005, 28 (11), 1356–1370.

13. Lee, K. S., & Geem, Z. W., A new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering. 2004, 194, 3902–3933.

14. Molnar, M., Bellabas, A., & Lahoud, S., The cost optimal solution of the multi-constrained multicast routing problem. Computer Networks. 2012, 56, 3136–3149.

15. Palmer, C. C., & Kershenbaum, A., Representing trees in genetic algorithms. IEEE world Congress on Computational Intelligence. 1993, 1, 379–384.

16. Patel, M.K; Kabat, M. R., & Tripathy, C. R., A Hybrid ACO/PSO based algorithm for QoS multicast routing problem. Ain Shams Engineering Journal. 2014, 5,113–120.

17. Peng, B., & Lei L., A Method for QoS Multicast Routing Based on Genetic Simulated Annealing Algorithm. International Journal of Future Generation Communication and Networking. 2012, 5 (1), 43–60.

18. Pradhan, R., Kabat, M. R., & Sahoo, S. P., A Bacteria Foraging-Particle Swarm Optimization Algorithm for QoS multicast Routing. Lecture notes on Computer Science. 2013, 8297,590–600.

19. Qu, R., Xu, Y., & Castro, J. P., Particle swarm optimization for the Steiner tree in graph and delay delay-constrained multicast routing problems. Journal of Heuristics, 2013, 19, 317–342.

20. Quinn, B., IP Multicast Applications: Challenges and Solutions. IETF RFC 3170, 2001.

21. Ravikumar, C. P., & Bajpai, R., Source-based delay-bounded multicasting in multimedia networks. Computer Communications. 1998, 21, 126–132.

22. Rong, Q., Ying X,; Castro, J. P., & Landa-Silva, D., Particle swarm optimization for the Steiner tree in graph and delay-constrained multicast routing problems. Journal of Heuristics. 2013, 19, 317–342.

23. Shi, L., Li, L., Zhao, W., & Qu, B., A Delay constrained Multicast Routing Algorithm Based on the Ant Colony Algorithm. Lecture Notes in Electrical Engineering. 2013, 219, 875–882.

24. Sun, J., Fang, W., Xiaojun, W; Xie, Z., & Xu, W., QoS multicast routing using a quantum-behaved particle swarm optimization algorithm. Engineering Applications of Artificial Intelligence. 2011, 24, 123–131,

25. Sun, J., Feng, B., & Xu, W. B., Particle swarm optimization with particles having quantum behavior, In Proceedings of Congress on Evolutionary Computation. 2004, 325–331.

26. Sun, J., Xu, W. B., & Feng, B., A global search strategy of quantum-behaved particle swarm optimization, In Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, 2004, 111–116.

27. Wang, H., Meng, X., Li, S., & Xu, H., A tree-based particle swarm optimization for multicast routing. Computer Network. 2010, 54, 2775–86.

28. Wang, H., Shi, Z., & Li, S., Multicast routing for delay variation bound using a modified ant colony algorithm. Journal of Network and Computer Applications. 2009, 32, 258–272.

29. Wang, H., Xu, H., Yi, S., & Shi, Z., A tree-growth based ant colony algorithm for QoS multicast routing problem. Expert Systems with Applications. 2011, 38, 11787–11795.

30. Wang, Z., Shi, B., & Zhao, E., Bandwidth-delay-constrainted least-cost multicast routing based on heuristic genetic algorithm. Computer Communications. 2001, 24, 685–692.

31. Xi-Hong, C., Shao-Wei, L., Jiao, G., & Qiang, L., Study on QoS multicast routing based on ACO-PSO algorithm. Proceedings of 2010 International Conference on Intelligent Computation Technology and Automation. 2010, 534–753.

32. Yen, J. Y., Finding the k-shortest loop-less paths in a network, Manage Science. 1971, 17(11), 712–716.

33. Yin, P. Y., Chang, R. I., Chao, C. C., & Chu. Y. T., Niched ant colony optimization with colony guides for QoS multicast routing. Journal of network and computer applications. 2014, 40, 61–72.

34. Younes, A., An Ant Algorithm for Solving QoS Multicast Routing Problem. International Journal of Computer Science and Security (IJCSS). 2011, 5(1), 766–777.

35. Waxman, B. M. “Routing of multipoint connections,” IEEE J Select Areas Communications 1988, 6(9), pp. 1617–1622.

36. Zhang, L., Cai, L., Li, M., & Wang, F., A method for least-cost QoS multicast routing based on genetic simulated annealing algorithm. Computer Communications. 2009, 32, 105–110.

CHAPTER 11

PERFORMANCE ASSESSMENT OF THE CANONICAL GENETIC ALGORITHM: A STUDY ON PARALLEL PROCESSING VIA GPU ARCHITECTURE

PAULO FAZENDEIRO1 and PAULA PRATA2

Universityof Beira Interior, Department of Informatics, Portugal Instituto de Telecomunicações (IT), Portugal,

1E-mail: pprata@di.ubi.pt
2E-mail: fazendeiro@ubi.pt

CONTENTS

Abstract

11.1 Introduction

11.2 GA Parallel Design

11.2.1 Fitness Assignment

11.2.2 Selection

11.2.3 Crossover

11.2.4 Mutation

11.3 The Environment of the Study

11.4 Experiments and Results

11.4.1 Sequential Workload

11.4.2 Parallel Workload

11.4.3 Using a Two-Dimensional Index Space

11.5 Conclusion

Acknowledgment

Keywords

References

ABSTRACT

Genetic Algorithms (GAs) exhibit a well-balanced operation, combining exploration with exploitation. This balance, which has a strong impact on the quality of the solutions, depends on the right choice of the genetic operators and on the size of the population. The results reported in the present work shows that the GPU architecture is an efficient alternative to implement population-based search methods. In the case of heavy workloads the speedup gains are quite impressive. The reported experiments also show that the two-dimensional granularity offered by the GPU architecture is advantageous for the operators presenting functional and data independence at the population+genotype level.

11.1 INTRODUCTION

The Genetic Algorithms (GAs) are bio-inspired population-based computational methods with application in search, (multiobjective) optimization and learning problems [1, 3, 8]. A GA requires a limited amount of knowledge about the problem being solved. Relative evaluation of the candidate solutions is enough and no derivatives of cost functions are required. This can be a definitive advantage when compared with other candidate methods of optimization, as the derivatives of the involved functional in various real world problems can be computationally demanding or have no closed form [15].

These computationally intensive population-based search methods present heavy time requirements, hence reducing their applicability especially in what concerns real time applications. The potential for acceleration of population-based, stochastic function optimizers using Graphic Processing Units (GPUs) has been already verified in a number of recent works [4, 6, 10, 13, 16, 17, 18, 19 and 20] over a representative set of benchmark problems.

This chapter is focused on the study of the effective parallelization of the canonical GA. The chapter presents a complete characterization of the relative execution times of the atomic operators of the GA, varying the population cardinality and the genotype size. It is complemented with an analysis of the achieved speedups. The findings of the assessment of the parallelization potential at different granularity levels (population and population+genotype) altogether with the analysis of data parallelism are also reported in the experimental part.

The remaining of this chapter is organized as follows. For the sake of self-containment, Section 11.2 presents a brief introduction to the design of a parallel canonical GA. Next in Section 11.3 is introduced the programming model of the OpenCL framework and described the architecture of the used GPU. In Section 11.4, the details of the experimental setup are described and the obtained results are shown. Finally in Section 11.5, the main results and some directions for future work are discussed.

11.2 GA PARALLEL DESIGN

The basic principles of GAs were established rigorously by Holland in 1975 [9]. They operate on a population of individuals, each representing a possible solution to a given problem. Each individual receives a reward value according to how worthwhile is the solution that it represents for the problem in question. This figure of merit (or fitness) determines which the most capable individuals are; these are given more opportunities to reproduce by crossing its genetic material with other individuals in the population. This results in a new generation of descendants inheriting characteristics of each one of their parents. The least-fit individuals, with little chance of being selected to mate, die (almost invariably) without descendants. A new population of possible solutions appears as a result of selection of the best individuals of the present generation and their subsequent mating, giving birth to a new set of individuals. This new population contains a greater proportion of the characteristics of the good elements of the preceding generation. Thus, from generation to generation, these good characteristics are spread by the population and are mixed and recombined with each other. The prioritization of the superior individuals and their pairing leads the exploration of the search space for its most promising areas. Consequently the population will tend to converge to a near-optimal solution.

A properly implemented GA should be able to evolve the population generation after generation so that both the merits of the best individual and the average merit of the population “move” towards the global optimum.

Optimizing the population and not a single individual contributes to the robustness of these algorithms: even if inadvertently a desirable characteristic is lost in an individual it may have been retained in other elements of the population and often reappear in later generations.

Informally a GA can be conceptualized as an iterative algorithm where the successive epochs mimic in silico, in a search space context, the necessary processes in order to a successfully reproduction of the biological organisms. The evolution of potential solutions over successive generations comprises different phases that succeed each other in continuum until a stopping criterion is met. The result of each generation is a new offspring population, which replaces (or sometimes competes with) the previous population.

Most GAs use fixed population size so it is necessary to decide which offspring are inserted in the next generation. In this work, after some preliminary tests, we have followed a deterministic elitist approach combining a fitness-based replacement (the two parents of higher rank are kept) with and age-based one (the remaining parents are replaced by the offspring). Figure 11.1 presents an overview of the different modules applied in our implementation.

[image: Images]

FIGURE 11.1 Modules of a Genetic Algorithm.

The parallel design of a GA implementation must consider the different granularity levels subsumed in these different phases. The fitness evaluation is eminently a one-dimensional operation (in the sense that usually each chromosome, taken as a whole, can be evaluated in parallel) whereas the crossover and mutation operators are, in the general case, 2D operators allowing the parallel treatment of not only each chromosome but also each gene inside it. Regarding the selection operator (tournament with two chromosomes) it is also a one-dimensional operation including the tournament and posterior inclusion (copy) of the winner into the population.

For each problem it is necessary to establish beforehand an adequate representation or codification of solutions and a fitness function to grade them. During the execution of the algorithm the parents are selected for reproduction and from their recombination are produced new offsprings.

It is assumed that a potential solution to a problem can be represented by a set of parameters called genes. These are grouped in a structure called chromosome (an individual).

In the biogenetic terminology each of these parameters is a feature codified by a gene whose value is referred to as allele. The set of parameters represented by a chromosome is called genotype. It contains information needed to produce an organism designated the phenotype. The merit of an individual therefore depends on the performance of the phenotype (assessed by the fitness function) inferred from its genotype (decoding it).

Traditionally the applications of GAs use a binary encoding to represent the chromosomes. This is consistent with the point of view put forward by Holland [9] and reiterated by Goldberg [8] suggesting that the ideal number of elements of the alphabet is 2.

However higher cardinality alphabets (where typically each symbol is an integer or a real number) have been used with satisfactory results in some research studies, cf. [1]. When the parameters of the problem are numerical in nature, which often happens, the direct representation as numbers (instead of strings of bits) can facilitate the definition of the crossover and mutation operators with a clearer meaning to a specific problem.

11.2.1 FITNESS ASSIGNMENT

The merit function depends on the nature of the problem to be solved. Given a chromosome, the fitness function returns a numeric value of fitness or merit that is supposed proportional to its usefulness as an individual. In optimization of a known function the obvious choice to the fitness function is the function itself or one of its simple transformations.

Since the GAs are designed to maximize the merit function, minimization problems must be transformed into problems of maximization. This can be done, for example, through the following transformation:

[image: Images]

where J is the objective function to minimize. For a successful reproduction it is necessary to have a fitness function that correctly distinguishes the best from the worst elements. The population is initialized with a random distribution of values of each gene by the set of chromosomes, so there is great variability in the individual values of merit. With the evolution of the population there are alleles in certain positions that begin to exert their dominance.

With the convergence of the population the variability of the fitness decreases, giving rise to two possible scaling problems:

	Premature Convergence: the genes of a group of individuals with high degree of fitness (but non-optimal) quickly dominate the population causing it to converge to a local maximum.

	Slow Finishing: the population evolves in general, but with a uniform degree of fitness, there are no individuals who “drag” the population towards the maximum. The possibility of the best individuals being selected is substantially the same as the one of the other individuals in the population, leading to a decrease in the rate of convergence [7].

The technique to overcome these problems consists in changing the codo-main of the fitness function: a compression to avoid premature convergence and its expansion to avoid a slow finish. For a description of some of the available techniques for scaling, the interested reader is referred to Ref. [1].

The reproduction phase of the GA begins by the selection of the individuals that are going to be in the mating pool. From their recombination, typically applying crossover and mutation mechanisms will result a new generation of offsprings.

11.2.2 SELECTION

The parents are selected randomly according to a scheme that favors the fittest. This scheme can present various “nuances.” Some of them are:

	Selection by tournament: there are randomly chosen pairs of individuals and the best individual of each pair passes to the next generation.

	Viability selection: selection proportional to the fitness where the proportionality constant is given by the ratio between the fitness of the individual and the total fitness of the population.

	Roulette wheel selection: selection proportional to the merit but probabilistic; the elements of greatest merit are assigned larger areas of the wheel (proportional to their relative merit) and the wheel spins randomly.

	Selection by sorting: the individuals are ordered by merit and the best ones are chosen.

In the scheme of selection by roulette wheel – one of the most popular – the best element may not be selected. The elitist strategy can solve this problem copying always the best element (or a percentage of the best elements) of each generation into the next. In the determination of the number of individuals who should be removed from the old generation there are two extreme views based on the observation of nature: the generational replacement, by which all members of the population are replaced by the descendants and stationary replacement that specifies a very small number of elements to be replaced in order to allow the parents to “educate” the children by competing with them.

11.2.3 CROSSOVER

The crossover operates on two individuals exchanging and recombining their genetic material in order to produce two offspring. Usually crossover is not applied to all individuals selected to mate: instead it is performed a random selection of individuals who will crossover (usually with a probability of applying crossover between 0.6 and 1. When crossover is not applied the descendant is created by simple duplication of the parent. This procedure gives selected individuals opportunity to transmit to future generations their genetic material without any tampering. Among the crossover techniques commonly used are the following:

	Crossover with a single cutoff point: given two individuals it is randomly chosen a position that breaks the chains of genes in two shares, viz. beginning and end. Two new individuals are created by binding the beginning of one to the end of the other and vice-versa.

	Two-point crossover: Similar to above but more generic, in that the two points define a section that does not have to coincide with the beginning or the end of the chromosomal string. Yet it is possible to define crossover operators with a greater number of cutoff points.

	Uniform crossover: a mask is generated composed by n binary digits, where n is the number of genes in the chromosomes. The first offspring is created as follows: if the i-th position of the mask has the value 1 the i-th gene is copied from the first parent, otherwise it is copied from the second parent. The second strain is created similarly, changing the order of the parents.

In non-binary representations this operator can be defined, for instance, as the average or as the geometric mean of the parents. The blend crossover operator, BLX-α, is another option specifically designed for real-valued chromosomes [5]. The resulting offsprings are distributed across a hyper-box encompassing the two parents. The parameter α extends the bounds of the hyper-box, hence to the children is given the possibility to explore new search space inside of an extended range given by their parents, see Figure 11.2.

Besides these many other crossover techniques have been suggested, however there is no consensus about the superiority of one over the other, cf. [1]. This aspect is dependent on the population characteristics and on the encoding used.

[image: Images]

FIGURE 11.2 The BLX-α crossover operator. The big dots represent the parents, while the small dots in the rectangle indicate possible children.

11.2.4 MUTATION

Mutation reintroduces diversity in the form of new genetic material and can restore genes previously lost in the selection process, allowing them to be tested in a new context. This operator is applied to each gene after the crossover, usually with a very low probability (typically between 0.01 and 0001) because a too high mutation rate can turn the genetic search into a random search. In the binary encoding, the value of a mutated gene can be calculated as genenew = |1 − geneold|.

Due to its typical low probability one might be tempted to underestimate this operator. However, this operator helps to ensure that there is no point in the search space with null probability of being evaluated by the GA. Moreover Davis [2] refers that as the population converges mutation becomes a more fruitful operation as opposed to crossover that sees its importance diminished. An interesting strategy linked to this aspect is to use dynamic probabilities for each of these operators or adjust these probabilities according to the environment in order to improve the performance of the algorithm.

11.3 THE ENVIRONMENT OF THE STUDY

The need to take advantage of the parallel processing power of GPU has been promoting the development of several high level programming interfaces for the GPU architecture. Some of the most proeminent examples include CUDA (Compute Unified Device Architecture) from NVIDIA [14], Brook+ from AMD/ATI and OpenCL [11]. OpenCL has the advantage of being platform-independent, providing a cross-platform (CPU/GPU) programming language.

An OpenCL application allows the parallel execution of a set of threads launched by a host program. The host program is executed in the CPU (in the host machine) while the kernels are executed in one or more OpenCL devices. An OpenCL device is divided into one or more compute units, which are further divided into one or more processing elements, or cores. Each thread, viz. each kernel instance, is called a work-item and is identified by its point in an index space. The same code can be executed over different data items following a Single Instruction Multiple Data (SIMD) model, thus implementing a data parallel programming model. Additionally, work-items can be organized into work-groups executed in a Single Program Multiple Data (SPMD) model.

According to the OpenCL terminology, a streaming multiprocessor is a compute unit, and a processor core is a processing element. When a kernel is launched, the work-groups, and corresponding work items are numbered and automatically distributed by the compute units with capacity to execute them. Work groups are assigned to compute units, and the work items of each work group are executed on the processing elements of the compute unit. Work items of the same work group can communicate through the multiprocessor-shared memory (called local memory in OpenCL). Because the GPU just processes data stored in its memory, the program data must be copied from the host to the global memory of GPU before executing the kernel. In the end the results must be copied back to CPU memory.

In the reported experiments we used an NVIDIA GeForce GTX 295 GPU built as an array of multithreaded streaming multiprocessors. Each one consists of eight scalar processor cores, with a set of registers associated, and a common shared memory area of 16KB (Wong et al., 2010). The GTX 295 has 240 cores (at 1.24 GHz) and 1GB of global memory. It was programmed with OpenCL version 1.1. The host machine is an Intel Core 2 Quad Q9550 at 2.83 GHz with 4 GB of RAM and the operating system Windows 7, 64 bits.

11.4 EXPERIMENTS AND RESULTS

The solution quality and obtained speedups of the implemented GA were assessed using two artificial benchmark functions commonly used for GA analysis: Rosenbrock’s and Griewangk’s functions [1]. Since there was observed no statistically significant difference between the quality of the solutions in the tested implementations our analysis will be exclusively focused on the execution times and consequent speedups.

The parameters of the GA were kept constant in the presented experiments. The minimization problems were transformed into maximization through the transformation f = c/(c + J), where J is the objective function to minimize and c>0 a proper regularization constant. The employed selection operator was tournament with two contenders. All the population individuals were subjected to the blend crossover (BLX-alpha) operator chosen due to its suitability to a real-valued chromosome encoding [5]. The probability of mutation was equal to 0.025. It was used an elitist approach maintaining the first and second best solutions.

The population’s sizes were varied in a geometric progression from 256 to 262,144 with a constant ratio of four and the number of genes was varied from 2 to 16 with a constant ratio of two. Results were obtained as the average of 20 runs with 500 iterations each.

11.4.1 SEQUENTIAL WORKLOAD

Prior to build a parallel version of the canonical genetic algorithm for GPU, the sequential execution was characterized. This is done, calculating the execution time percentages in CPU for each main step of the algorithm. The sequential implementation is briefly outlined in Algorithm 1.

In Figures 11.3 and 11.4 the graphs with the relative execution time in CPU for the Rosenbrock and Griewangk functions, considering a population of 262144 individuals and varying the dimensionality of the problem for 2, 4, 8 and 16 genes, are depicted.

	Algorithm 1 – Sequential implementation of the canonical GA

	1 – Initialise and evaluate the first population

	2 – Repeat until convergence

	2.1 – Selection (Tournament)

	2.2 – Crossover

	2.3 – Mutation

	2.4 – Compute the two best elements (Best)

	2.5 – Evaluation

[image: Images]

FIGURE 11.3 Execution time percentages for the Rosenbrock function in CPU (population’s size = 262,144) varying the number of genes.

[image: Images]

FIGURE 11.4 Execution time percentages for the Griewangk function in CPU (population’s size = 262144) varying the number of genes.

As can be seen, in the sequential implementation for the Rosenbrock function, most of the execution time is spent with the crossover operator. It corresponds to about 42% of the time for all the considered dimensionalities and also for all the studied populations’ sizes. Only the graphs with the results for the largest population are presented because for the others populations the results are similar. The evaluation comes in second place with percentages varying from about 24% (2 genes) to about 41% (16 genes) in all the population’s sizes. The mutation operator spends about 13% of the time for all the cases and the selection operation decreases from about 18% for 2 genes until about 3% of the time for 16 genes. Computing the best values just depends on the population’s size, thus its absolute execution time remains the same when the number of genes is increased. In sequential versions for CPU, the time spent in computing the best values is less than about 0.6% of the time for all the studied cases, being difficult to observe its value in the graphics.

Considering the sequential implementation for the Griewangk function, the more noticeable alteration is the exchange of positions between the crossover operator and the evaluation. The evaluation is now the most time consuming operation, which is justifiable by the Griewangk function to be more complex than the Rosenbrock function. Now, the time spending in evaluation varies from about 45% (2 genes) to about 52% (16 genes).

Crossover comes second with about 32% of the time and mutation spends about 11% of the time. Selection varies now from about 13% (2 genes) to about 3% (16 genes).

In summary, when the absolute execution time for evaluation increases, the portion of time spent in each of the other operators decreases because its absolute time remains approximately the same. The absolute execution times for the sequential and parallel versions can be observed in Tables 11.1 (Rosenbrock) and 11.2 (Griewangk) for the largest population. From the results obtained with other population’s sizes, it can also be concluded that the time portion spent in each operator is almost independent of the population’s size.

11.4.2 PARALLEL WORKLOAD

In the parallel algorithm outlined in Algorithm 2, four kernels (K1, … K4) are considered, one for each genetic operation. In the parallel implementation, the four kernels are totally executed in parallel. The calculation of the two best values used in the elitist approach is done in CPU since, according to our tests, it is faster to compute those values in CPU rather than in GPU.

TABLE 11.1 Single Iteration Execution Times (Milliseconds) for the Rosenbrock Function in CPU and GPU for a Population Size of 262,144 Individuals*

[image: Images]

TABLE 11.2 Single Iteration Execution Times (Milliseconds) for the Griewangk Function in CPU and GPU for a Population Size of 262,144 Individuals*

[image: Images]

	Algorithm 2 – Parallel implementation in GPU

	1 – Initialize, evaluate and copy to GPU the first population

	2 – Repeat until convergence

	2.0 – Copy the two best elements to GPU

	2.1 – Launch kernels

	K1 – Selection [roulette | tournament]

	K2 – Crossover

	K3 – Mutation

	K4 – Evaluation

	2.2 – Copy the fitness vector from GPU to CPU

	2.3 – Compute the two best elements

The Figures 11.5 and 11.6 present the relative parallel execution times in GPU for the Rosenbrock and Griewangk functions respectively, considering the largest population.

Now, as can be seen from these figures, the relative importance of the best values computation (Best) has increased since the execution time is almost the same as before, but the four kernels are much faster than in the sequential implementation. According to Tables 11.1 and 11.2, the time to compute the two best elements in the parallel version is slightly higher than in the sequential version, this happens because the time to copy the fitness vector from GPU to CPU is now included in the “Best” column.

[image: Images]

FIGURE 11.5 Execution time percentages for the Rosenbrock function in GPU (population’s size = 262,144) varying the number of genes.

[image: Images]

FIGURE 11.6 Execution time percentages for the Griewangk function in GPU (population’s size = 262,144) varying the number of genes.

In the parallel version the more time consuming operations are the selection and computing the best values. For large populations, computing the best values is the most time consuming operation when the number of genes is the smallest (2) and selection is the most time consuming operation when the number of genes is bigger. Evaluation, crossover and mutation operations show a huge advantage in being parallelized. From these three operations, evaluation is nearly always the operation that spends the highest percentage of time, followed by crossover and mutation for the last.

[image: Images]

FIGURE 11.7 Speedups (sequential CPU/Parallel GPU) for the Rosenbrock function depending on the population’s size and the number of genes.

[image: Images]

FIGURE 11.8 Speedups (sequential CPU/Parallel GPU) for the Griewangk function depending on the population’s size and the number of genes.

When comparing CPU and GPU times for the biggest population size, a speedup (sequential time/parallel time) of around one hundred times for the Griewangk function, and a speedup of around 60 times for the Rosenbrock function can be observed (see Figures 11.7 and 11.8). For a population of 1024 individuals the speedup is less than 18 times for Griewangk function and less than 12 times for the Rosenbrok function. It can also be seen that in most of the cases the speedup grows when the number of genes increases.

11.4.3 USING A TWO-DIMENSIONAL INDEX SPACE

The previous parallel implementation of the kernels considered a one-dimensional index space. This means that, one thread operates over a chromosome. By using multi-dimensional index spaces, instead of having a single work item per individual, it is possible to have one work item for each gene of each individual. This can be applied to the crossover and mutation operators. As for big populations the mutation operator just corresponds to about 2 or 3% of the execution time, the use of a bi-dimensional index space is studied for the crossover operation. Thus, the kernel for crossover is defined using a bi-dimensional index-space, where one dimension is the number of genes and the second dimension is the population’s size. The speedups obtained with this version are shown in Figures 11.9 and 11.10.

As can be seen, in the parallel version with a bi-dimensional crossover kernel (called GPU 2D) the speedups are smaller than in the one-dimensional version for 2 and 4 genes, but the speedups are bigger for 8 and 16 genes. That is, the parallelization at the gene level is just worthwhile for large dimensionalities.

[image: Images]

FIGURE 11.9 Speedups (sequential CPU/Parallel GPU 2D) for the Rosenbrock function depending on the population’s size and the number of genes.

[image: Images]

FIGURE 11.10 Speedups (sequential CPU/Parallel GPU 2D) for the Griewangk function depending on the population’s size and the number of genes.

11.5 CONCLUSION

In this work a set of evolutionary optimization schemes was set up in an attempt to obtain a better understanding of the putative gains resulting from the adoption of a GPU architecture when tackling optimization problems solved by population-based metaheuristic methods. In our implementation the different granularity levels subsumed in the different phases of a canonical GA were considered. The crossover and mutation operators were implemented as 2D operators allowing the parallel treatment of not only each chromosome but also each gene inside it.

For the cases of heavy workloads the results show that a proper design can result in significant speedup gains. The reported experiments also show that the two-dimensional granularity offered by the GPU architecture is an asset for the implementation of operators presenting population and inter-genotype independence, both functional and data wise.

Although the presented results were obtained with two particular benchmark functions, the conclusions stimulate both the study of other parallelization models, as well as a theoretical analysis on the relationship between the performance gains and the critical parameters population’s cardinality and chromosome’s length. The goal being to determine a priori the expected speedup, if any, for a given unforeseen optimization problem.

Another interesting observation, heighten by the fact that we used a real representation for the chromosomes, is that the parallelization at the gene level is only justifiable for problems requiring a large chromosome length. Nevertheless, this suggests that for a wide range of optimization problems, e.g., feature selection in the analysis of DNA microarrays or biometric facial recognition, the bi-dimensional parallelization is the right design choice.

ACKNOWLEDGMENT

This work was partly supported by Fundação para a Ciência e Tecnologia (FCT) under the project UID/EEA/50008/2013.

KEYWORDS

	data parallelism

	GPGPU

	OpenCL

	parallel genetic algorithms

REFERENCES

1. Bäck, T., Fogel, D., & Michalewicz, Z., Handbook of Evolutionary Computation, Institute of Physics Publishing Ltd, Bristol and Oxford Univ. Press, New York, 1997.

2. Davis, L. Handbook of genetic algorithms. Van Nostrand Reinold, 1991.

3. Deb, K. Multiobjective Optimization Using Evolutionary Algorithms, John Wiley & Sons, New York, USA, 2001.

4. de Veronese, L., & Krohling, R., Differential evolution algorithm on the GPU with C-CUDA, IEEE Congress on Evolutionary Computation, CEC, 2010, pp. 1–7.

5. Eshelman, L., & Schaffer, J., Real-coded genetic algorithms and interval-schemata, FOGA, volume 3, Morgan Kaufmann, San Mateo, CA, 1993, pp. 187–202.

6. Fujimoto, N., & Tsutsui, S., Parallelizing a Genetic Operator for GPUs. IEEE Congress on Evolutionary Computation June 20–23, Cancún, México, 2013, pp. 1271–1277.

7. Geva, A. Hierarchical unsupervised fuzzy clustering. IEEE Trans. Fuzzy Systems, 1999, 7(6), 723–733.

8. Goldberg, D., Genetic Algorithms in search, optimization and machine learning. Addison-Wesley, 1989.

9. Holland, J., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975.

10. Johar, F., Azmin, F., Suaidi, M., Shibghatullah, A., Ahmad, B., Salleh, S., Aziz, M., & Shukor, M., A Review of Genetic Algorithms and Parallel Genetic Algorithms. Graphics Processing Unit (GPU), IEEE International Conference on Control System, Computing and Engineering, 29 Nov. – 1 Dec. Penang, Malaysia, 2013, pp 264–269.

11. Khronos group: OpenCl – The Open Standard Parallel Computing for Heterogeneous Devices, http://www.khronos.org/opencl/ (accessed in March, 2015).

12. Khronos Group: The OpenCL Specification Version: 1.1, Khronos OpenCL Working Group, editor: Aaftab Munshi, 385 pages, 2011.

13. Lorentz, I., Andonie, R., & Malita, M., An Implementation of Evolutionary Computation Operators in OpenCL. Chapter of Intelligent Distributed Computing V, Studies in Computational Intelligence, Springer-Verlag, 2012, Volume 382, pp. 103–113.

14. NVIDIA Corporation: NVIDIA CUDA Programming guide, version 4.0, 2011.

15. Oliveira, J. V., Semantic constraints for membership function optimization, IEEE Trans. on Systems, Man, and Cybernetics, Part A: Systems and Man, 1999, 29(1), 128–38.

16. Pospichal, P., Jaros, J., & Schwarz, J., Parallel Genetic Algorithm on the CUDA Architecture, Di Chio et al. (Eds.): EvoApplications, Part I, LNCS vol. 6024, Springer, Heidelberg, 2010, pp. 442–451.

17. Prata, P., Fazendeiro, P., Sequeira, P., & Padole, C., A Comment on Bio-Inspired Optimization via GPU Architecture: The Genetic Algorithm Workload. B.K. Panigrahi et al. (Eds.): SEMCCO 2012, LNCS 7677, Springer-Verlag Berlin Heidelberg. 2012, pp. 670–678.

18. Shah, R., Narayanan, P., & Kothapalli, K., GPU-Accelerated Genetic Algorithms. Workshop on Parallel Architectures for Bio-inspired Algorithms, 2010.

19. Tsutsui, S., Parallelization of an evolutionary algorithm on a platform with multi-core processors. 9th International Conference on Artificial Evolution (EA’09), Springer-Verlag, Berlin, Heidelberg, 2009, pp. 61–73.

20. Wahib, M., Munawar, A., Munetomo, M., & Akama, K., Optimization of parallel Genetic Algorithms for nVidia GPUs. IEEE Congress on Evolutionary Computation (CEC), New Orleans, LA, 5–8 June 2011, pp. 803–811.

21. Wong, H., Papadopoulou, M., Sadooghi-Alvandi, M., & Moshovos, A., Demystifying GPU Microarchitecture through Microbenchmarking, IEEE International Symposium on Performance Analysis of Systems & Software, 2010, pp. 236–246.

CHAPTER 12

AN EFFICIENT APPROACH FOR POPULATING DEEP WEB REPOSITORIES USING SFLA

SHIKHA MEHTA1 and HEMA BANATI2

1Jaypee Institute of Information Technology, Noida, India
2Dyal Singh College, University of Delhi, Delhi
E-mail: 1mehtshikha@gmail.com; 2banatihema@hotmail.com

CONTENTS

Abstract

12.1 Introduction

12.2 Shuffled Frog Leaping Algorithm Based Approach to Populate Contextual Deep Web Repositories

12.2.1 Deep Web Search Interface Classification/Filtering

12.2.2 Formulation of Deep Web Semantic Contextual/Thematic Terms

12.2.3 Evolution of Deep Web Semantic Contextual Terms Using Shuffled Frog Leaping Algorithm (SFLA)

12.2.3.1 Initialization

12.2.3.2 Objective Function

12.2.3.3 Convergence Criteria

12.3 Evaluation of SFLA Based Deep Net Meta-Crawler (SFLADNM)

12.3.1 Compute the Classification Accuracy of Hidden Web Classifier

12.3.2 Assess the Effect of Evolving Deep Net Meta-Crawler with Semantic and Non-semantic Queries using SFLA

12.3.3 Comparison of SFLA-Based Deep Net Meta-Crawler (SFLADNM) with Genetic Algorithm (GA)-Based Deep Net Meta-Crawler (GADNM)

12.3.4 Evaluate the Effectiveness of SFLADNM vs. GADNM in Maintaining Diversity of Optimal Species

12.4 Conclusion

Keywords

References

ABSTRACT

Since its inception, search engine websites like Google, Yahoo!, AltaVista, etc. are serving the information needs of the billions of users. However, these general purpose search engines employ generic crawlers that have limited capabilities to distinguish the web pages as static/surface web page or deep web pages. Hence, the number of deep web urls retrieved (for a particular query) by these search engines is very less to satisfy the users. This derives the need to create separate repositories for both the surface and deep web to serve deep web information requirements of the users. This chapter proposes a distinct meta-crawler approach to locate and populate the deep web urls for populating the contextual deep web repositories. Development of deep-net meta-crawler eliminates the need of performing broad search for crawling deep web urls. The main contributions in the development of deep net meta-crawler (DNM) include: (i) an approach to articulate deep web semantic thematic queries, (ii) development of rule based classifier/filter to recognize the web pages with deep search interfaces, and (iii) evolution of deep web semantic queries using Shuffled Frog Leaping Algorithm (SFLA) to augment crawler performance. Experimental studies were performed over varied contextual domains such as ‘computers,’ ‘vehicles,’ ‘health,’ and ‘consumer electronics.’ Results established that formulation of deep web semantic terms improved precision of DNM up to 15% as compared to non-semantic deep web queries. Subsequent optimization of deep web semantic terms using SFLA, accelerated precision of DNM to more than 90%. Presented deep web classifier is able to achieve high classification accuracy of up to 98%. Evaluation of SFLA based DNM with respect to Genetic algorithm based DNM further substantiated the efficacy of proposed approach. SFLADNM significantly outperformed GADNM by retaining upto 22% more diverse optimal species. Thus presented SFLA based DNM may serve as good choice for populating the deep web repositories in order to serve the deep web requirements of the users.

12.1 INTRODUCTION

The current size of World Wide Web is approximately 50 billion pages and continues to grow. The unprecedented growth of Internet has resulted in considerable focus on Web crawling/spidering techniques. Crawlers are defined as “software programs that traverse the World Wide Web information space by following hypertext links and retrieve web documents by standard HTTP protocol” [9]. Crawlers are used to populate the local repositories with web pages to be indexed later using various ranking algorithms [10]. Prevalent search engines use generic web crawlers that automatically traverse the web by downloading documents and following links from page to page. Thus, these search engines cover only the surface web or “publicly indexable Web” [22] whereas large portion of the WWW is dynamically generated. This covert side of the WWW is popularly known as the Hidden [13] or Invisible Web [33]. Bergman [6] pointed that the invisible web contains 400 to 550 times more information as compared to the surface web and is often stored in specialized databases [23]. Deep web constitutes 307,000 sites, 450,000 databases, and 1,258,000 interfaces [15]. The volume of the hidden web is estimated to increase more rapidly with the advancements in web technology trends. As more web applications are developed using server-side scripts like java server pages (JSP), active server pages (ASP/ASP.net) and hypertext pre-processor (PHP) etc. and databases like MySql, Oracle etc., rather than just HTML, the amount of hidden web content will grow more. Despite of this importance, very limited studies have been performed to populate the repositories with deep web urls. Ntoulas et al. [29] proposed a strategy for automatic query generation to excavate the high quality gold mine of deep web data. Jianguo et al. [18] presented a sampling technique to select the appropriate queries to be submitted to search interface. The approach mainly focuses on formulation of queries in order to minimize the retrieval of duplicate data. Lu et al. [24] employed linguistic, statistics and HTML features to formulate the queries for crawling the deep web. An approach to automatically fill the forms was proposed Caverlee et al. [7], Xiang et al. [37] and by Banati & Mehta [2]. Alvarez et al. [1] presented an approach to automatically fill and submit only the domain specific forms. Similarly Madhavan et al. [25] also presented techniques for indexing deep websites with multiple search interfaces. All these studies focus on crawling the deep web data from individual deep web websites via automatic query generation and submission of forms. The various techniques discussed above work with the assumption that deep websites are already recognized.

On the contrary, Raghavan and Garcia-Molina [31] introduced ‘HiWeb’ architecture, a task-specific approach to crawl the hidden web pages. However, the architecture had limited capability to recognize and respond to dependencies between multiple search interfaces and for processing the forms with partial values. Lage et al. [21] presented a technique for collecting hidden web pages for data extraction based on web wrappers. However, this technique was limited to access only the web sites having common navigation patterns. Cope et al. [11] developed a decision tree based technique to automatically discover the web pages with search interfaces. The algorithm incorporated long rules and large number of features in training samples, which may lead to over-fitting. Fontes and Silva [14] developed SmartCrawl strategy to automatically generate the queries to crawl the deep web pages. However, Smartcrawl had limited capabilities to analyze the web pages, thus it also indexed the web pages with errors/no results. Barbosa & Freire [5] presented Form Focused Crawler (FFC) to crawl the web pages with search forms. Nevertheless, FFC requires substantial manual tuning including identification of features. Besides, the set of forms retrieved by FFC are highly heterogeneous and it could be time consuming to train the link classifier. Umara et al. [35] presented an ontology-based approach for automatic classification of deep web databases, which can be used for building focused information retrieval systems. Tim et al. [34] presented OPAL—a comprehensive approach to understand the forms via form labeling and form interpretation. Heidi et al. [16] formulated eight rules to classify the web query interfaces and evaluated them using various machine-learning techniques. It was observed that J48 algorithm performed the best with 99% accuracy.

The various studies discussed above focus either on optimization of queries to fetch data or content from individual deep web sites or to recognize the web pages with deep web search interfaces. This chapter presents a comprehensive approach to develop the contextual deep web repositories along with developing the simple yet efficient approach to recognize the deep web query interfaces. The approach involves formulation of semantic queries to crawl the deep web urls via search portals. These deep web semantic queries are submitted to the search engines for crawling the deep web urls. The work also contributes a simple and effective rule based classifier to recognize the deep web search interfaces. Subsequently deep web semantic queries are evolved using Shuffled Frog Leaping Algorithm (SFLA) to augment the retrieval of deep web urls. The rest of the chapter is organized as follows. Section 12.2 presents the methodology for formulation of semantic contextual queries and their evolution using SFLA. This is followed by experiments and discussion of results in Section 12.3. Section 12.4 outlines the future prospects and conclusion.

12.2 SHUFFLED FROG LEAPING ALGORITHM BASED APPROACH TO POPULATE CONTEXTUAL DEEP WEB REPOSITORIES

The proposed approach to populate the contextual deep web repositories involves development of deep web meta-crawler to crawl the deep web urls. The working of Deep Net Meta-Crawler (DNM) involves automatic formulation of semantic deep web queries by associating domain specific terms with keywords, which semantically refer to deep web repositories/databases etc. These semantic deep web queries are submitted to state-of-the-art search engines to retrieve the deep web urls. Subsequently, semantic deep web terms are evolved using SFLA to boost the retrieval of deep web urls from prevalent search engines.

The detailed approach to populate the deep web repositories is depicted in Figure 12.1. It begins with the formulation of deep web semantic contextual/thematic terms. These terms are submitted to the search engine to fetch the context relevant deep web urls from the WWW. From the retrieved results, deep web urls are identified using the proposed deep web classifier/filter. The filtered deep web urls are subsequently stored in the repositories.

Thereafter, fitness of the formulated semantic terms is computed based on their capability to retrieve the deep web urls. Subsequently, the thematic terms are evolved using SFLA and the process continues till the convergence criterion is satisfied. Thus, the efficacy of presented deep web meta-crawler is determined mainly by the techniques used to develop the following approaches:

[image: Images]

FIGURE 12.1 Deep Web Meta-crawler Approach.

	Deep web search interface pages classification/filtering;

	Formulation of deep web semantic contextual/thematic terms;

	Evolution of deep web semantic contextual terms using SFLA.

12.2.1 DEEP WEB SEARCH INTERFACE CLASSIFICATION/FILTERING

Deep web classifier is a tool to filter the deep web urls from the other urls. To develop the filter, a comprehensive study of approx 150 different dynamic web applications was performed. The study revealed that all dynamic web applications have a common feature; presence of ‘form’ tag in the HTML source code. Further analysis exposed that there are two types of forms—search forms and other/non search forms. Search forms precisely refer to those forms in web pages which retrieve website content from the databases on submitting a query. They may be simple search forms with single textbox or complex search forms having multiple drop-down boxes with different selection criterion as shown in Figures 12.2 and 12.3, respectively.

As highlighted in the figures, all the search forms contain terms like “search” one or more times either in the entire <form> tag or in its surrounding code. The keyword “search” is also present in form id, value of submit button, label, action url or in the form of comments. Besides, there are other forms as shown in Figure 12.4, such as the custom search form, login form, registration form and subscription form etc. The login form contains keywords like “login,” “sign in,” “password” etc. Many websites also provide search forms to search the web pages from the world-wide web e.g. various websites include “Custom Search Engine” or “site search” in their pages in order to facilitate the users while browsing their website. These search forms are identified through strings such as “id=‘cse-search-box’,” “Search this site,” “Google search,” “Google custom search,” “Google CSE Search Box,” “Search Google,” “Search Bing,” “cse-search,” “20 search,” “alltheweb,” “altavista,” “aolsearch,” “askjeeves,” “ebay,” “excite,” “iwon,” “jocant,” “lycos,” “msn,” “netscape,” “dmoz,” “webcrawler,” “yahoo,” “bing,” etc. Since such search forms are not deep web forms, they are categorized as web pages with conventional search engines. The presented deep web classifier uses all these features to filter and extract ‘hidden’ web page urls from the other web pages with textboxes as shown in Figure 12.5. Since hidden web belongs to dynamic part of the web, hidden web classifier begins with input urls and primarily filters the static web pages from the dynamic web pages. In the second stage, dynamic web pages are classified and filtered into hidden web pages, web pages with login, registration forms, conventional search engine etc. Thus, based on this information four rules are formulated, which are used by the proposed hidden web classifier are discussed in the next paragraph.

[image: Images]

FIGURE 12.2 Single Text Box based Search Forms with varied ways to use ‘search’ keyword in web pages.

[image: Images]

FIGURE 12.3 Search Boxes with Multiple Selection Criteria.

[image: Images]

FIGURE 12.4 ‘Custom’ search and ‘Login’ Forms.

[image: Images]

FIGURE 12.5 Multi-level Filtering by Hidden Web Classifier.

Proposed Set of Rules to be Employed by the Hidden Web Classifier:

Rule 1: Check the presence of the <form> tag in the HTML document. If Exists, classify the document as a dynamic web page else classify it as a static web page.

Apply rule 2 to 4 for all dynamic web pages, which contain more than one form

For a dynamic web page:

Rule 2: Check if form id in search form contains any values of V where V={“cse-search-box’,” “Search this site,” “Google search,” “Google custom search,” “Google CSE Search Box,” “Search Google,” “Search Bing,” “cse-search,” “20 search,” “alltheweb,” “altavista,” “aolsearch,” “askjeeves,” “ebay,” “excite,” “iwon,” “jocant,” “lycos,” “msn,” “netscape,” “dmoz,” “webcrawler,” “yahoo,” “bing” etc.}, then classify it as a form with conventional search engine interface; else classify it as a deep web interface.

Rule 3: If web page is dynamic, check HTML code present within the opening <form> and closing </form> tags contains the keyword “search” in any of values (U) where U= {“form id,”” value of submit button,” “label” and” action url”}. If exists classify it as a deep web search form.

Rule 4: Check if the HTML code section within the opening <form> and closing </form> tags contains the keyword “login,” “sign in,” “password” in any of values (W) where W= {“form id,”” value of submit button,” “label” and” action url”} then classify it as a registration or login form.

12.2.2 FORMULATION OF DEEP WEB SEMANTIC CONTEXTUAL/THEMATIC TERMS

Schlein [27] pointed that the usage of additional terms such as database; repository or archive, etc., along with the query keywords may boost the retrieval of deep web resources from the existing search engines. For example to get the list of science databases, use the search term “science + database or repository or archive.” However, authors did not validate their hypothesis. Thus, to corroborate this hypothesis, a query “science database” was submitted to Google, Yahoo and Bing search engines (Figure 12.6). An analysis of the results obtained in Figure 12.6 revealed that majority of the urls obtained by these major search engines belonged to the deep web repositories.

[image: Images]

FIGURE 12.6 Results of Semantic Query “Science Database.”

Thus, the usages of keywords like ‘archive,’ ‘repository,’ ‘collection,’ ‘databases,’ ‘portal’ and ‘articles,’ etc., which semantically refer to the collection/repositories/databases, etc., facilitate in filtering out the unnecessary web urls from the vast collection of web. To further establish this observation, an experiment was carried out to evaluate the effectiveness of semantic thematic terms in extracting deep web urls. Experiment involved random generation of group of ten thematic queries from two different domains – consumer electronics and computers. These thematic queries were associated with varied deep web semantic terms. Subsequently, for each semantic query submitted to the Google search engine, top 10 results were extracted and used to evaluate the strength of both the semantic and non-semantic/normal queries in extracting deep web urls. Efficiency of these semantic thematic terms was measured using the commonly used decision support accuracy metric; precision, which is defined as the total number of deep web urls retrieved out of the top 10 urls extracted on submitting the query.

The confusion matrix used to compute the precision for deep web classifier is as follows:

TABLE 12.1 Confusion Matrix

	True

	

	

	Actual

	

	

	

	True

	Predicted

	Positive

	True Positive (TP)

	False Positive (FP)

	

	Negative

	False Negative (FN)

	True Negative (TN)

[image: Images]

Accordingly, precision (Eq. 1) is defined as the positive predictive value or the total number of deep web pages, which were actually deep web urls and are also classified as deep web urls by the classifier out of the total number true positives and false positives. Figure 12.7 and 12.8 demonstrate the results obtained from 20 independent runs for both non-semantic query and deep web semantic queries formulated by associating the various deep web semantic terms. It can be observed from the results that precision range of non-semantic query terms varies from 22% to 30% whereas precision of deep web semantic terms varies in the range of 40–45%. These results also demonstrate the limited capabilities of prevalent search engines to satisfy the deep web information needs of the users. Thus, the approach to associate deep web semantic terms with thematic terms although fostered precision by approximately 15%; the maximum average precision of approx 45% is not adequate for developing the deep web repositories. To further enhance the precision, deep web semantic thematic terms are subsequently optimized using shuffled frog leaping algorithm as discussed in the next section.

12.2.3 EVOLUTION OF DEEP WEB SEMANTIC CONTEXTUAL TERMS USING SHUFFLED FROG LEAPING ALGORITHM (SFLA)

The low values of precision attained in Section 12.2.2 indicate that the vocabulary used to generate the thematic terms determines the quality of the resources collected. Prevalent search engines exploit only a fixed number of initial query terms to retrieve the results and ignore subsequent terms. Thus, articulation of appropriate thematic terms to retrieve the deep web urls forms a big challenge and is observed as an optimization problem. Yang & Korfhage [38] investigated the utility of genetic algorithm (GA) for query modification in order to improve the performance of information retrieval systems. Owais [30], Cecchini et al. [8] and Hogenboom et al. [17] employed genetic algorithm for optimization of Boolean queries, topical queries and RDF-chain queries, respectively. Nasiraghdam et al. [28] employed hybrid genetic algorithm for query optimization in distributed databases. Banati and Mehta [4] employed SFLA to evolve the queries for populating contextual web repositories. It was established that SFLA performs better than GA in evolving contextual queries. Banati & Mehta [4] evaluated the performance of genetic algorithm, memetic algorithm, particle swarm optimization and shuffled frog leaping algorithm over benchmark test functions for global optimization. These studies confirmed that SFLA has better chance of attaining global optimal results. It was also established that context aware filtering using shuffled frog leaping algorithm depicts better results as compared to GA [4]. Hence, in the presented work, shuffled frog leaping algorithm is used for evolving the contextual queries to optimize the performance of deep net meta-crawler for populating the contextual deep web repositories.

[image: Images]

FIGURE 12.7 Precision of Deep Web Semantic vs. Non-Semantic Terms in ‘Consumer Electronics’ domain.

[image: Images]

FIGURE 12.8 Precision of Deep Web Semantic vs. Non-Semantic Terms in ‘Computer’ domain.

SFLA is a memetic meta-heuristic for combinatorial optimization developed by Eusuff and Lansey [12]. It is a random search algorithm inspired by natural memetics. A simple and high performance algorithm, SFLA integrates the benefits of both the Memetic Algorithm (MA) [27] and the Particle Swarm Optimization (PSO) [20] algorithm. It is based on the evolution of memes carried by interactive individuals and global exchange of information within the population. Population in SFLA consists of a set of frogs divided into diverse clusters known as memeplexes. Each frog in the memeplex represents a viable solution to an optimization problem. Within each memeplex, every frog holds beliefs that can be influenced by the ideas of other frogs and cultivates through a process of memetic evolution known as local search. After a number of memetic evolutionary steps, all the memeplexes are shuffled together leading to global evolution. The local search and the shuffling processes continue until the defined convergence criteria are satisfied. The precise steps of SFLA are enumerated as the pseudo-code in Figure 12.9. In SFLA, an initial population P of frogs (solutions) Fk is generated randomly. After computing the fitness of all initial solutions, whole population is sorted in the descending order of their fitness and global best solution is determined. Subsequently all solutions (Fk) are distributed into ‘m’ memeplexes M1, M2, M3…Mm as follows:

[image: Images]

In Eq. (2), k = 1, 2…n represent the solution number in the population and d=1, 2, 3…m refers to the memeplex number of solution k.

In Figure 12.9, Dmax and Dmin are respectively the maximum and minimum allowed changes in a frog’s position and rand() function generates a random number between 0 and 1. Within each memeplex, the fitness of worst solution is improved by adjusting the fitness landscape according the local and global best solutions as per the Eqs. (3) and (4), respectively.

[image: Images]

FIGURE 12.9 Pseudo-code for Shuffled Frog Leaping Algorithm.

[image: Images]

[image: Images]

Accordingly, if the fitness of solution improves, it replaces the worst solution else a new solution is generated at random to replace the least fitted solution. The SFLA parameters adapted to evolve the quality of deep web semantic contextual terms are as follows:

12.2.3.1 Initialization

The initial population (P) of solutions consists of semantic domain specific set of terms that can be submitted to a search engine. Each individual in the population refers to the deep web semantic query. This constitutes a list of terms extracted from the thematic context associated with the term obtained from the deep web semantic term set. The number of terms in each of the initial queries is random with fixed upper and lower bound on the query size.

12.2.3.2 Objective Function

For every individual i P, fitness is computed to evaluate its quality. Quality of the deep web semantic query is computed as its ability to retrieve deep web urls when submitted to a search engine. The relevance of these urls is being assessed manually to verify the results. Thus the precision/fitness F(q) of an individual query q is defined as number of deep web urls (N) retrieved out of the total number of resultant urls (R) as shown in equation 5 and fitness of the whole population of size n is computed as mean fitness of all the queries as given equation 6

[image: Images]

[image: Images]

12.2.3.3 Convergence Criteria

The convergence criterion was fixed to number of generations to stop the evolution of deep web semantic terms using shuffled frog leaping algorithm.

12.3 EVALUATION OF SFLA BASED DEEP NET META-CRAWLER (SFLADNM)

To demonstrate the effectiveness of presented SFLA based deep web contextual meta-crawler, experiments were performed on Core2 Duo 1.67 GHz processor and 3-GB RAM computer. The algorithm was implemented in Java using Jdk1.6 toolkit. Meta-crawler takes an incremental approach to evolve high quality terms for retrieving context relevant web resources. It starts by generating an initial population of queries using terms extracted from a thematic context. Among the various prevailing search engines, Google search engine has the biggest repository of web urls. Thus, thematic terms were submitted to the Google search engine for retrieving the context relevant web urls. Due to the practical limitations, only the snippets (or webpage summary) of the top ten results returned by the search engine were used to evaluate the fitness of the queries. The queries were then evolved incrementally based on their ability to retrieve the context relevant web urls. For experiments, thematic contexts were created from Concept hierarchy of Open Directory Project popularly known as DMOZ (www.DMOZ.org).

The strength of SFLA based deep web meta-crawler was evaluated with respect to GA as it is the most common algorithm being used for query optimization. For SFLA the whole population was divided into 5 memeplexes of equal size such that Population = m × n (m is number of memeplexes = 5 and n is number of individual solutions in each memeplexes = 20). Each experiment was performed for 20 independent runs for the population of 100 queries. The strength of the presented SFLA based contextual deep web meta-crawlers was evaluated using Eq. (6). The studies were performed to:

	Compute the Classification Accuracy of Hidden Web Classifier employed by Deep-Net Meta-Crawler

	Assess the Effect of Evolving Deep Net Meta-Crawler with Semantic and Non-semantic Queries using SFLA

	Compare the performance of SFLADNM with GA based Deep Net Meta-Crawler (GADNM)

	Evaluate the effectiveness of SFLADNM in maintaining Diversity of Optimal Species as compared to GADNM

12.3.1 COMPUTE THE CLASSIFICATION ACCURACY OF HIDDEN WEB CLASSIFIER

This study validates the classification accuracy of rule based hidden web classifier employed in deep net meta-crawler. Experiment involved random generation of 10 queries for the domains – ‘Vehicles,’ “Book,” “Science,” and ‘Health.’ Subsequently, for each query submitted to the Google search engines top 10 results were extracted and used to evaluate the strength of deep web classifier. The results retrieved by the deep net meta-crawler on submitting these queries were tested manually to compute their actual classification accuracy. The classification accuracy was computed using the commonly used decision support accuracy metrics; recall, precision and f1 measure. The confusion matrix used to compute the precision, recall and f1 measure for deep web classifier is shown in Table 12.1.

[image: Images]

[image: Images]

Equations (1), (7), and (8) depict the formulas for precision, recall and F1 measure respectively. Accordingly, precision is defined as the positive predictive value or the total number of deep web pages, which were actually deep web urls and are also classified as deep web urls by the classifier out of the total number true positives and false positives. Similarly recall is defined as the true positive rate of the classifier. F1 measure is the harmonic mean of precision and recall.

Figure 12.10 displays the precision, recall and f1 measure for all the domains. Results portray that for all the presented domains, classifier is able to achieve high classification accuracy with precision up to 98%, recall 97% and f1 measure up to 97%. Table 12.2 depicts the results of various conventional approaches used for developing the classifier. Assuming that authors have given the best results of their work, it can be observed that classification accuracy of proposed approach is better than the first three approaches. Although accuracy of presented approach is slightly less than Heidi et al. [16]; this slight difference is negligible due to the fact that our approach employs only four rules and Heidi et al. [16] classifier is based on eight rules which increase the time complexity of the classifier. Moreover the rules formulated by Heidi et al. [16] ignore the case where forms with conventional search engines are embedded within the HTML documents. Such forms search WWW rather than deep web and should be considered non-searchable forms. These results establish the effectiveness of presented rule based classifier for filtering deep web urls. Thus the approach presents a simplistic methodology to obtain promising results.

[image: Images]

FIGURE 12.10 Performance of Deep Web Classifier various domains.

TABLE 12.2 Different Approaches for Hidden Web Classifier

[image: Images]

12.3.2 ASSESS THE EFFECT OF EVOLVING DEEP NET META-CRAWLER WITH SEMANTIC AND NON-SEMANTIC QUERIES USING SFLA

This experiment assesses the effect of optimizing the performance of deep web meta-crawler with semantic thematic queries and non-semantic thematic queries. Semantic queries were formulated by associating the randomly generated domain specific keywords with the terms, which semantically refer to deep web repositories/databases. Figures 12.11, Figures 12.12, Figures 12.13, and 12.14 illustrate the Mean Fitness/Mean Precision (as given in Eq. 5) of population after every generation for both the deep web semantic query and the non-semantic query for the domains – computer, health, vehicles and consumer electronics.

[image: Images]

FIGURE 12.11 Semantic vs. Non-semantic Query Optimization using SFLA over ‘Health’ domain.

[image: Images]

FIGURE 12.12 Semantic vs. Non-semantic Query Optimization using SFLA over ‘Vehicles’ domain.

[image: Images]

FIGURE 12.13 Semantic vs. Non-semantic Query Optimization using SFLA over ‘Consumer Electronics’ domain.

[image: Images]

FIGURE 12.14 Semantic vs. Non-semantic Query Optimization using SFLA over ‘Computer’ domain.

All these results precisely exhibit that over the generations, using SFLA, deep web semantic meta-crawler evolve faster and more to attain global maxima as compared to non-semantic meta-crawler. Tables 12.3 and 12.4 depict the percentage improvement in precision obtained due to evolution of meta-crawler using semantic terms as compared to non-semantic terms.

Bold values in Table 12.3 illustrate that using deep web semantic terms, SFLA based meta-crawler converges faster and achieves gain in precision up to 16%. Table 12.4 establishes that optimization of meta-crawler using SFLA brings significant improvement in the precision of deep web meta-crawler. Shuffled frog leaping algorithm enhances the performance of deep net meta-crawler by up to 70% in consumer electronics domain and more than 50% in all the other three contextual domains. Thus the presented SFLA based semantic deep web metacrawler enhances the precision more than 90% as compared to FFC [5], whose average precision is only 16% for the given set of domains. FFC employs broad search technique to crawl the deep web. Barbosa and Freire [5], developed Adaptive Crawler for Hidden Web Entries (ACHE) to address the limitations of their previous work. Authors work did not provide information about the exact precision attained. An analysis of their performance graphs (in published work) depicts that although the performance is improving over time, ACHE is able to retrieve on an average 1100 forms after crawling 100,000 web pages from the various domains. These results substantiate the strength of presented approaches to develop the deep web meta-crawler.

TABLE 12.3 Enhancement in Precision of SFLA-Based Semantic Deep Net Meta-Crawler

[image: Images]

TABLE 12.4 Enhancement in Precision of SFLA-Based Semantic Deep Net Meta-Crawler

[image: Images]

12.3.3 COMPARISON OF SFLA-BASED DEEP NET META-CRAWLER (SFLADNM) WITH GENETIC ALGORITHM (GA)-BASED DEEP NET META-CRAWLER (GADNM)

This study compares the convergence speed of SFLA with respect to GA for deep net meta-crawler. GA was implemented on same lines as SFLA. It was initialized with the population of 100 queries. For GA, crossover probability was set to 0.7 and mutation probability of 0.03. The experiment involves optimization of deep web semantic thematic queries using SFLA and GA for deep net meta-crawler. Results as depicted in Figures 12.15, Figures 12.16, Figures 12.17, and 12.18 establish that SFLA based meta-crawler performs significantly better than GA in evolving deep web semantic queries for all the four domains – Computer, Vehicle, Health and Consumer Electronics. SFLA based DNM depicts steady improvement whereas GA based DNM is fluctuating and stagnates early. Thus, SFLA based DNM has better chance to attain global optima.

12.3.4 EVALUATE THE EFFECTIVENESS OF SFLADNM VS. GADNM IN MAINTAINING DIVERSITY OF OPTIMAL SPECIES

It is very important for the meta-crawler to populate the repositories with diverse web urls in order to serve the varied information needs of the users.

[image: Images]

FIGURE 12.15 Comparison of Convergence Speed for SFLADNM vs. GADNM over ‘Computer’ domain.

[image: Images]

FIGURE 12.16 Comparison of Convergence Speed for SFLADNM vs. GADNM over ‘Vehicles’ domain.

[image: Images]

FIGURE 12.17 Comparison of Convergence Speed for SFLADNM vs. GADNM over ‘Health’ domain.

Thus, the efficiency of SFLADNM and GADNM to retain varied optimal species is evaluated for all the four domains on the basis of:

	Percentage of Diverse Species/Queries Retained in Optimized Population;

	Percentage of Diverse Deep Web Urls Retrieved by the Optimal Species/Queries.

[image: Images]

FIGURE 12.18 Comparison of Convergence Speed for SFLADNM vs. GADNM over ‘Consumer Electronics’ domain.

For SFLADNM results depicted in Table 12.5 were obtained after 20 generations when mean fitness of the population reached to more than 90% as illustrated in previous experiment. Since for GA, convergence was quite slow for DNM, only the solutions with 90% or more fitness are considered. As shown in Table 12.6, presented SFLADNM is able to enhance retention of varied optimal queries up to 27 percent as compared to GADNM. Results also establish that SFLADNM is able to generate up to 22% of more unique urls as compared GADNM. These results substantiate that SFLADNM may serve as better choice for populating the contextual deep web repositories.

12.4 CONCLUSION

The chapter presented SFLA-based deep net meta-crawler to populate the deep web repositories. The approach involved formulation of deep web semantic thematic terms and their submission to a search engine. From the retrieved results, web pages with deep web interfaces are filtered using proposed rule based classifier. Subsequently, based on their ability to retrieve the deep web urls, deep web semantic terms are evolved using SFLA. Experimental evaluation demonstrated a significant increase in precision of meta-crawler (from 45% to 90%) through formulation of semantic deep web queries and their subsequent optimization using SFLA. SFLA based meta-crawler also performed better than Genetic algorithm based approach. Hence, the deep web repositories populated using proposed deep net meta-crawler may provide better search experience to the user.

TABLE 12.5 Percentage of Diverse Queries and Urls Generated by SFLADNM and GADNM

[image: Images]

TABLE 12.6 Percentage Enhancement in Diversity of SFLADNM vs. GADNM

[image: Images]

KEYWORDS

	deep web classifier

	deep web meta-crawler

	deep web semantic query optimization

	SFLA based query optimization

	shuffled frog leaping algorithm

REFERENCES

1. Alvarez, M., Raposo, J., Pan, A., Cacheda, P., Bellas, F., & Carneiro V.: Crawling the Content Hidden Behind Web Forms, Proceedings ICCSA, LNCS 4706(II),. 2007, 322–333.

2. Banati, H., & Mehta, S.: VibrantSearch: A BDI Model of Contextual Search Engine, Next Generation Web Services Practices (NWeSP), 2010, 623–629.

3. Banati, H., & Mehta, S.: SEVO: Bio-inspired Analytical Tool for Uni-modal and Multimodal Optimization, Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011), Advances in Intelligent and Soft Computing, Springer 2011, 130, 557–566.

4. Banati, H., & Mehta, S.: Evolution of Contextual queries using Shuffled Frog Leaping Algorithm, 2010 International Conference on Advances in Communication, Network, and Computing, IEEE, 2010b, 360–365.

5. Barbosa, L., Freire, J.: An Adaptive Crawler for Locating Hidden-Web Entry Points, International Proceedings of the 16th international conference on World Wide Web,. 2007, 441–450.

6. Bergman, M. K.: The Deep Web: Surfacing Hidden Value. The Journal of Electronic Publishing, 2001, 7(1), 4.

7. Caverlee, J., Liu, L., & David, B.: Probe, Cluster and discover: focused extraction of qa-pagelets from the deep web. Proceeding of the 20th International Conference of Data Engineering, 2004, 103–114.

8. Cecchini, R. L., Lorenzetti, C. M., Maguitman, A. G., & Brignole, N.B.: Using genetic algorithms to evolve a population of topical queries, Information processing and Management, 2008, 44, 1863–1878.

9. Cheong, F. C.: Internet Agents: Spiders, Wanderers, Brokers, and Bots. New Riders Publishing, Indianapolis, Indiana, USA (1996).

10. Cho, J., & Garcia-Molina, H.: The Evolution of the Web and Implications for an Incremental Crawler, In Proceedings of the 26th International Conference on Very Large Databases, 2000, 200–209.

11. Cope, J., Craswell, N., & Hawking, D.: Automated discovery of search interfaces on the web. Fourteenth Australasian Database Conference, 2003, 181–189.

12. Eusuff, M. M., & Lansey, K. E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 2003, 129(3), 210–225.

13. Florescu, D., Levy, A., & Mendelzon, A.: Database techniques for the World-Wide Web: a survey. ACM SIGMOD Record, 1998, 27(3), 59–74.

14. Fontes, A. C., & Silva, F. S.: SmartCrawl: A New Strategy for the Exploration of the Hidden Web, Proceedings of the 6th annual ACM international workshop on Web information and data management, 2004, 9–15.

15. He, B., Patel, M., Zhang, Z., & Chang, K. C. C.: Accessing the deep web: Attempting to locate and quantify material on the Web that is hidden from typical search engines, Communications of the ACM, 50(5),. 2007, 95–101.

16. Heidy M. Marin-Castro, Victor J. Sosa-Sosa, Jose, F. Martinez-Trinidad, & Ivon Lopez-Arevalo: Automatic discovery of web Query Interfaces using Machine Learning techniques. Journal of Intelligent Information Systems, 2013, 40, 85–108

17. Hogenboom, A., Milea, V., Frasincar, F., Kaymak, U., RCQ-GA: RDF Chain query optimization using genetic algorithms, Proceedings of the Tenth International Conference on E-Commerce and Web Technologies (EC-Web), 2009, 181–192.

18. Jianguo, L., Yan, W., Jie, L., Jessica, C.: An Approach to Deep Web Crawling by Sampling 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008, 718–724.

19. Kabisch, T., Dragut, E. C., Yu, C. T., & Leser U.: A hierarchical approach to model web query interfaces for web source integration. Proceedings, Very Large Databases, 2009, 2(1), 325–336.

20. Kennedy, J., & Eberhart, R. C. Particle Swarm Optimization. In: Proceedings of the IEEE International Joint Conference on Neural Networks, 1995, 1942–1948.

21. Lage, J. P., Da, Silva, A. S., Golgher, P. B., & Laender, A. H. F.: Collecting hidden web pages for data extraction, Proceedings of the 4th international workshop on Web Information and Data Management, 2002, 69–75.

22. Lawrence, S., & Giles, C. L.: Accessibility of information on the web. Nature 400 (6740): 107. DOI: 10.1038/21987. PMID 10428673 (1999).

23. Lin, K., & Chen, H.: Automatic Information Discovery from the “Invisible Web.” Proceedings of the International Conference on Information Technology: Coding and Computing, IEEE, 2002, 332–337.

24. Lu J., Zhaohui W., Qinghua Z., & Jun L.: Learning Deep Web Crawling with Diverse Features, 2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology – Workshops, 2009, 572–575.

25. Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., & Halevy, A.: Google’s Deep-Web Crawl, Proceedings of VLDB Endowment, 2008, 1(2), 1241–1252.

26. Mehta, S., & Banati, H., “Context aware Filtering Using Social Behavior of Frogs,” Swarm and Evolutionary Computation, Volume 17, August 2014, Pages 25–36, Elsevier.

27. Moscato, P., & Cotta, C.: A Gentle Introduction to Memetic Algorithms. In: Handbook of Meta- heuristics, Kluwer, Dordrecht, 1999, 1–56.

28. Nasiraghdam, M., Lotfi, S., & Rashidy, R.: Query optimization in distributed database using hybrid evolutionary algorithm, International Conference on Information Retrieval & Knowledge Management, (CAMP), 2010, 125–130.

29. Ntoulas, A., Zerfos, P., & Cho, J.: Downloading textual hidden web content through keyword queries. Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries, 2005, 100–109.

30. Owais, S. S. J.: Optimization of Boolean Queries in Information Retrieval Systems Using Genetic Algorithms – Genetic Programming and Fuzzy Logic, Journal of Digital Information and Management, 2006, 4(1), 249–255.

31. Raghavan, S., & Garcia-Molina, H.: Crawling the hidden web, Proceedings of the 27th International Conference on Very Large Data Bases, 2001, 129–138.

32. Schlein, A. M.: Find it online: The complete guide to online research. 3rd ed., Tempe, AZ: Facts on Demand Press, 2002, 122–131.

33. Sherman, C., & Price, G.: The Invisible Web: Uncovering Information Sources Search Engines Can’t See. Thomas H. Hogan, Sr. 4th edition (2003).

34. Tim F., Georg G., Giovanni G., Xiaonan G., Giorgio O., Christian S.: OPAL: Automated Form Understanding for the Deep Web, WWW 2012, 829–838.

35. Umara N., Zahid R., & Azhar R.: TODWEB: Training-less Ontology based Deep Web Source Classification. iiWAS’11-The 13th International Conference on Information Integration and Web-based Applications and Services, 2011, 190–197.

36. Wang, Y., Li, H., Zuo, W., He, F., Wang, X., & Chen, K.: Research on discovering deep web entries. Computer Science and Information Systems, 2011, 8(3), 779–799.

37. Xiang, P., Tian, K., Huang, Q.: A Framework of Deep Web Crawler. Proceedings of the 27th Chinese Control Conference, 2008, 582–586.

38. Yang, J., & Korfhage, R.: Query Optimization in Information Retrieval using Genetic Algorithms, Proceedings of the 5th International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., 1993, 603–613.

CHAPTER 13

CLOSED LOOP SIMULATION OF QUADRUPLE TANK PROCESS USING ADAPTIVE MULTI-LOOP FRACTIONAL ORDER PID CONTROLLER OPTIMIZED USING BAT ALGORITHM

U. SABURA BANU

Professor, Department of Electronics and Instrumentation Engineering, BS Abdur Rahman University, Vandalur, Chennai – 600048, Tamilnadu, India

CONTENTS

Abstract

13.1 Introduction

13.2 Quadruple Tank Process Description

13.2.1 Mathematical Modeling

13.2.2 State Space Model

13.2.3 Approximation of the Higher Order Transfer Function to First Order Plus Dead Time Model for the Quadruple Tank Process

13.3 Interaction Analysis

13.3.1 Condition Number

13.3.2 Calculating RGA With Steady State Gain Matrix

13.3.3 NI Analysis with RGA

13.4 Bat Algorithm

13.4.1 Procedure for Bat Algorithm

13.5 Basics of Fractional Calculus

13.6 Multiloop Fractional Order PID Controller Tuning Using Bat Algorithm

13.7 Analysis

13.7.1 Servo Response

13.7.2 Regulatory Response

13.7.3 Servo Regulatory Response

13.8 Conclusion

Keywords

References

ABSTRACT

Quadruple Tank process is a two-input-four-output process. Control of the Quadruple tank is a mind-boggling problems. Using law of conservation, the mathematical modeling of the MIMO process is computed. Linear model, the State space model is obtained using Jacobian method. State space model is converted into transfer function matrices. Reduced order FOPDT model is obtained from the fourth order transfer function model. Interaction study is performed using Relative Gain Array (RGA) and the input and output are paired. Steady state gain matrix is used for determining illness of MIMO system. Singular value decomposition technique is used to determine condition number to avoid sensitivity problem, which arises due to small change of process output. In proposed method, multiloop decentralized fractional order PID controller is designed for minimum phase Quadruple Tank process. The fractional order PID controller parameters are obtained using Bat Algorithm. Simulation studies show the likelihood of the proposed method for the computational analysis of the nonlinear minimum phase interacting process. The experimental results indicate that the developed control schemes work well under servo, regulatory and servo-regulatory conditions.

13.1 INTRODUCTION

The control of liquid level in tank process is basic control problem in many process industries. Nonlinear multi input multi output process with high interaction are complex to control. Such multivariable system can be controlled either by centralized multivariable control scheme or decentralized multi loop control scheme. In many process industries multi-loop PID control scheme is used for it advantage. The main advantage of multi-loop scheme is that if any loop fails, the control engineer can easily identify and replace controller, easy to implement and tune. In this technique multi input multi output (MIMO) process decomposed into single input single output process. Condition numbers are found to determine the worst-case deviation of the open loop transfer function. Some linear systems, a small change in one of the values of the coefficient matrix or the right-hand side vector causes a large change in the solution vector. A solution of some linear system more sensitive to small change in error. That is small error in process can change large error in control action, therefore such system can to be decomposed. The ill conditioned plant estimated in terms of certain singular values and condition numbers. Gain matrix with large condition number said to be ill-conditioned [1]. Many methods has been proposed for tuning decentralized PID controller such as auto-tuning method from step tests [2], effective transfer function based methods [3], automatic tuning method [4], relay feedback tuning method [5], detuning method, sequential loop closing method [6]. The steps involved in tuning of multi-loop PID are tedious. From simulation point of view, the mathematical model of the process needs to be computed. The linear region should be chosen from input output characteristics and state space and transfer function for each linear need to be computed. The influence of manipulated variable and controlled variable should be analyzed by interaction study [7, 8]. Process interaction plays vital role in design of optimal controller, such interaction can be compensated by feed forward element called decoupler [9].

Many of MIMO process are higher order dynamics because of sensors and final control element. For decentralized control design, higher order models approximated into reduced first order model plus dead time or second order model plus dead time. All the real world system is not an exact integer order system. In earlier time, all the real world processes are approximated into integer order process due to lack of method availability. But now, emerging numerical techniques used to convert approximated integer order process into accurate fractional order process [10].

The fractional calculus was 300 years old topic in the branch of mathematics. Mathematician was privileged to deal with fractional order calculus. Now the engineering start to explore fractional order technique in engineering application. The physical meaning of fractional order system elaborated and identified in recent times. For last three decades, the occurrence and importance of fractional calculus techniques in control engineering has been increased [11, 12]. PID controllers have been widely used in all kind of processing industries because of simplicity and lower percentage overshoot, robustness [13]. The conventional PID controller flexibility, robustness and accuracy improved by additional two extra degree of freedom called integral order λ and derivative order µ. [14, 15]. The reason for using Fractional order PID control is that it produces satisfactory control performance than integer order controllers.

Tuning of five different parameters of controller is difficult and challenging task. Recently various swarm intelligence techniques like particle swarm optimization, bee colony optimization, bacterial foraging, particle swarm optimization, bat algorithm [16, 17], differential evolution (DE) [18], Genetic algorithm and some hybrid optimization [19, 20 and 21], etc., has gained popularity in the field of automation. Bat algorithm is a new metaheuristic method to find global optimum value. The micro bats find their prey by its natural echolocation behavior. The global optimum value of fractional order controller parameters is found by bat algorithm [22, 23]. In the proposed work, multiloop fractional order PID controller parameters are brought out by using the optimal values obtained from Bat algorithm for quadruple tank process.

In this chapter, multi loop fractional order PID control is used for quadruple tank process. The chapter has been organized as follows: Section 13.2 discusses the quadruple tank process, Section 13.3 elaborates the bat algorithm in general, Section 13.4 gives an insight on the fractional calculus, Section 13.5 details multiloop fractional order PID controller tuning, section 6 discusses result analysis and discussion and finally Conclusion.

13.2 QUADRUPLE TANK PROCESS DESCRIPTION

The schematic diagram for quadruple tank process is shown in Figure 13.1. Johannson [25] proposed laboratory Quadruple tank process, which consists of four interconnected water tanks with two pumps v1 and v2. Pump v1 is connected to tanks 1 and 4 with distribution valve γ1. Similarly pump 2 is connected to tanks 2 and 3 with distribution valve γ2. By adjusting the valve position γ1 and γ2, the dynamic of process can be changed by introducing transmission poles and interaction. If the sum of distribution valve γ1, γ2 is between 1 and 2, then the system is minimum phase with transmission zero in left half. If the sum is between 0 and 1, then the system is non-minimum phase with transmission zero in right half, which makes the process unstable. If the sum of distribution valve constant is 1, then transmission zero will be at origin. The flow of tank is the product of pump gain, ratio of valve opening and voltage applied to the pump. The voltage to the pump is manipulated variable, which is applied pump driver circuit. The inflow water to Tank 1 is γ1k1v1 and flow to Tank 4 is (1–γ1)k1v1, Similarly for Tanks 2 and 3. The control objective is to maintain the level in the lower two tanks 1 and 2 with two pumps.

[image: Images]

FIGURE 13.1 Schematic diagram of Quadruple tank process.

13.2.1 MATHEMATICAL MODELING

Mathematical models of system were developed for many reasons. They may be constructed to assist in the interpretation of experimental data, to predict the consequences of changes of system input or operating condition, to deduce optimal system or operating conditions and for control purposes. But the main problem in modeling is the process dynamics should be captured otherwise no use in modeling the process. The dynamic model of the process has been derived from the application of fundamental physical and chemical principles to the system, using a conventional mathematical modeling approach.

[image: Images]

[image: Images]

[image: Images]

[image: Images]

The nominal values of the parameters and variables are tabulated in Table 13.1.

The open loop data was generated in the Quadruple tank system by varying the inflow rate by V1 and V2 open loop data generated. Operating points found out from the input output characteristics.

13.2.2 STATE SPACE MODEL

State space model for the quadruple tank process is obtained by linearizing the mathematical model using Jacobian approximation and substituting the operating conditions. In Table 13.2, State space model and transfer function matrix is shown.

The linearized state space model represented as

TABLE 13.1 Nominal Values of the Parameters Used

[image: Images]

TABLE 13.2 Operating Conditions and the Conventional State Space and Transfer Function Model of the Quadruple Tank Process

[image: Images]

[image: Images]

[image: Images]

where [image: Images]

13.2.3 APPROXIMATION OF THE HIGHER ORDER TRANSFER FUNCTION TO FIRST ORDER PLUS DEAD TIME MODEL FOR THE QUADRUPLE TANK PROCESS

Any higher order process can be approximated to first order plus dead time. Analysis and controller design will be easy if higher order system is approximated to a FOPDT system. An attempt has been made to approximate the second order process to FOPDT system.

[image: Images]

13.3 INTERACTION ANALYSIS

13.3.1 CONDITION NUMBER

Gain matrix for the entire process is computed from Transfer function matrix. Normally Gain matrix is used to determine illness of MIMO process and also whether system can be decoupled or not. The Singular value decomposition is a matrix technique that determines if a system is able to be decoupled or not. The eigenvalues for the system are obtained from gain matrix. s1 and s2 are the positive square roots of the respective eigenvalues. The condition number is the ratio of the larger value to the smaller value. The plant is said to be ill-conditioned when the condition number has higher value. The CN indicates how close a matrix is to singularity. A system with high value of condition number indicates how the linear dependent system is based on Singular value decomposition of the gain matrix. When dealing with condition number concept in control system, if it is below 50 then the system can be easily decoupled.

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

where σmax and σmin are the maximum and minimum singular values of Gain matrix.

13.3.2 CALCULATING RGA WITH STEADY STATE GAIN MATRIX

Relative gain array is formed. RGA is a normalized form of the gain matrix. RGA has been widely used for the multi-loop structure design, such as a ratio of an open-loop gain to a closed-loop gain. It is used to find the influence of input to output. Form the transfer function matrix dynamic relative gain arrays are formulated. Variable pairing is done by selecting the values of relative gain close to value 1 (Table 13.3).

13.3.3 NI ANALYSIS WITH RGA

The stability of control loop pairing is analyzed by Niederlinski index. Stability analysis of control loop pairing is calculated by Niederlinski Index.

TABLE 13.3 Condition Number For Operating Range

	Gain matrix

	Condition No.

	RGA

	[image: Images]

	C.N=3.3

	[image: Images]

This stability analysis is perfectly applicable for two input two output system. Negative value of NI indicates the instability of pairing [26].

[image: Images]

[image: Images]

NI can be calculated by

[image: Images]

13.4 BAT ALGORITHM

Swarm Intelligence techniques, such as particle swarm optimization, ant colony optimization, bee colony optimization are gaining popularity in the recent past in the control engineering areas to solve complex problems. In the proposed research work, Bat algorithm is used for the optimization purpose. Bats have echolocation property [1, 2] based on SONAR effects to identify prey, shun obstruction, to find gap in the dark. Loud sound emanates from Bats, which is bounced back by the surrounding objects. The resultant signal bandwidth is correlated to the various species. The duration of the pulse is a few thousandths of a second (approx. 8 to 10 ms), with a constant frequency in the range of 25kHz to 150kHz. During hunting, the pulse rate is about 200 pulses per second nearer to their prey, specifying the signal processing capability of the bats. The bat ear has an integration time around 300 to 400 s. Speed of sound in air is typically v = 340 m/s, the wavelength λ of the ultrasonic sound bursts with a constant frequency f is given by λ=v/f, which is in the range of 2 mm to 14 mm for the typical frequency range from 25kHz to 150 kHz. The loudness varies from loudest to quietest from searching to nearing the prey. They even avoid hinderance in the size of hair. The time dealy between emission and reception gives three-dimensional view of the scene Bats have the capability to identify the location of the prey, its moving speed and its direction. The sight, smell properties and the Doppler effect helps detect their prey with easiness. Steps involved for the Bat algorithm is given below:

	Echolocation a doppler effect is used to locate the prey and obstacles.

	Bats start at position xi with a velocity vi and fixed frequency fmin and varying wavelength λ and loudness A0 to search for prey. They vary the pulse emission based on the location of the target.

	Loudness changes from a large (positive) A0 to a minimum constant value Amin. 3D view is not generated which is available in nature. Also, the range of the wavelength and the frequency and the detectable range are chosen arbitrarily and not fixed.

13.4.1 PROCEDURE FOR BAT ALGORITHM

Step 1: Bat population xi (i = 1,2,...., n) for the ten parameters Kp1, Ki1, Kd1, λ1, µ1, Kp2, Ki2, Kd2, λ2, µ2 (Controller parameters for the two loops considering the interactions) and their corresponding vi are initialized.

Step 2: Pulse frequency fi at xi, pulse rate ri and loudness Ai are defined.

Step 3: The population xi to the Multiloop PI controller are applied and the multiobjective optimal function are computed by providing 50% weightage given to the ITAE of the first loop and 50% weightage given to the ITAE of the second loop.

Step 4: New solutions are generated by adjusting frequency, Updating velocities and locations/solution. If rand >ri

A solution is selected among the best solution.

A local solution is generated around the selected best solution.

Step 5: A new solution is generated by flying randomly.

Step 6: If rand <Ai and f(xi) < f(x+).

The new solutions are accepted. The parameter ri is increased and Ai is reduced.

Step 7: The bats are ranked and the current best x+ is found.

Step 8: The results are post processed and visualized.

Step 9: Step 3 is proceeded till the maximum number of iteration is reached or the sopping criteria met.

13.5 BASICS OF FRACTIONAL CALCULUS

The differ-integral operator, [image: Images], is a combined differentiation-integration operator commonly used in fractional calculus. This operator is a notation for taking both the fractional derivative and the fractional integral in a single expression and is defined by

[image: Images]

where q is the fractional order which can be a complex number and a and t are the limits of the operation. There are some definitions for fractional derivatives. The commonly used definitions are Grunwald-Letnikov, Riemann-Liouville and Caputo definitions. The Grunwald-Letnikov definition is given by

[image: Images]

The Riemann-Liouville definition is the simplest and easiest definition to use. This definition is given by

[image: Images]

where n is the first integer which is not less than q, i.e., n–1≤q<n and Γ is the Gamma function.

[image: Images]

For functions f(t) having n continuous derivatives for t≥0 where n–1≤q<n, the Grunwald-Letnikov and the Riemann-Liouville definitions are equivalent. The Laplace transforms of the Riemann-Liouville fractional integral and derivative are given as follows:

[image: Images]

The Riemann-Liouville fractional derivative appears unsuitable to be treated by the Laplace transform technique because it requires the knowledge of the non-integer order derivatives of the function at t=0.

This problem does not exist in the Caputo definition that is sometimes referred as smooth fractional derivative in literature. This definition of derivative is defined by

[image: Images]

where m is the first integer larger than q. It is found that the equations with Riemann-Liouville operators are equivalent to those with Caputo operators by homogeneous initial conditions assumption. The Laplace transform of the Caputo fractional derivative is

[image: Images]

Contrary to the Laplace transform of the Riemann-Liouville fractional derivative, only integer order derivatives of function f are appeared in the Laplace transform of the Caputo fractional derivative. For zero initial conditions, previous equation reduces to

[image: Images]

The numerical simulation of a fractional differential equation is not simple as that of an ordinary differential equation. Since fractional order differential equations do not have exact analytic solutions, approximations and numerical techniques are used. The approximation method, Oustaloup filter is given by

[image: Images]

The approximation is valid in the frequency range [ωl, ωh]; gain k is adjusted so that the approximation shall have unit gain at 1 rad/sec; the number of poles and zeros N is chosen beforehand (low values resulting in simpler approximations but also causing the appearance of a ripple in both gain and phase behaviors); frequencies of poles and zeros are given by

[image: Images]

13.6 MULTILOOP FRACTIONAL ORDER PID CONTROLLER TUNING USING BAT ALGORITHM

Multi loop single input single output controller widely used in all multivariable process. Whole MIMO process is treated into many SISO process to make control strategy simple lower order control can be improved by decentralized control. In spite of many advanced control strategies, multi loop control strategies widely used in process industry due to reasonable performance and easy implementation, easiness to handle loop failure. Multi loop control design involves two methods. First one is decentralized single input single output system and second one is decoupler to eliminate the interaction effect.

m × m process output can be described as

[image: Images]

2 × 2 process output can be described as

[image: Images]

Input output pairing is very essential in multi loop control design. Interaction study such as Relative gain array RGA are used to find the interaction between input and output, so maximum interaction between input and output at some conditions is selected for pairing. So desired output can be controlled by manipulating the paired input. Paired input and output is U1, Y1 so G12(s)·U2(s) is a disturbance for output Y1 due to interaction effect.

The interaction affects the SISO PI/PID controller performance. So tuning of PID is very difficult due to interaction. Many detuning methods available such as sequential loop closing method, Relay auto tuning method, independent loop method. Generally, the improvement of high-level control is dependents on performance of low level PID loops. Decentralized PID controller with decoupler is widely used to get satisfactory performance.

2 × 2 process represented by,

[image: Images]

A multivariable controller,

[image: Images]

where Kpij is the proportional gain, Tiij is integral time constant or reset time (mins/repeat), Tdij derivative time, λij integrator order and µij derivative order. The control law of PID rewritten as

[image: Images]

where integral gain kiij = kpij/Tiij and derivative gain.

In the proposed method, decentralized control of MIMO interaction of one input on another output consider as disturbance. But normally disturbance are independent on input, however designing multi loop fractional order PID will reject all disturbances by optimal tuning methods. Here interactions are considered as disturbance for tuning purpose alone. The multi objective optimization function of Bat algorithm is weighted percentage of ITAE of the two loops. Table 13.4 shows the FOPID parameters from the proposed scheme. Figure 13.2 shows the block diagram of the multiloop fractional order PID controller tuned using Bat Algorithm. The objective function is selected to be the Integral Time Absolute Error (ITAE). The aim of the controller is to tune the FOPID parameters for the two loops considering the interactions. Normally, a multiloop PID controller requires various steps, such as determination of the relative gain array and find the interaction effects, then tune fractional order PID controllers for the loop with higher interaction effects. Then detune the controller parameters so that the effect of the other manipulated variable is taken into account leading to a complex and lengthy procedure. Whereas, in the proposed technique, the closed loop process is selected and fractional order PID controller parameters were computed for minimum Integral time Absolute error.

TABLE 13.4 FOPID Parameters for the Proposed Scheme

[image: Images]

[image: Images]

FIGURE 13.2 Block diagram of the Multiloop fractional order PID controller tuned using Bat Algorithm for two interacting conical tank process.

13.7 ANALYSIS

13.7.1 SERVO RESPONSE

Figure 13.3 shows the servo response for quadruple tank process. Variable set point is given at an interval of 2×103 sec and the controller has complete control over the process and the controller tracks the set point. The ISE, IAE, ITAE value of Fractional order PID controller 1,2 under servo problem is tabulated in Table 13.5.

[image: Images]

FIGURE 13.3 Servo response of FOPID controller 1,2.

13.7.2 REGULATORY RESPONSE

Figure 13.4 shows the regulatory response of the proposed control scheme for quadruple tank process. Disturbance is given to the process at an interval of 1000 sec. By adjusting the manipulated variable, the process output is maintained constant irrespective of the disturbance applied within the range of ±10%. The response of disturbance rejection at steady sate is shown in Figure 13.4. The ISE, IAE, ITAE value of Fractional order PID controller 1,2 under regulatory problems is tabulated in Table 13.6.

13.7.3 SERVO REGULATORY RESPONSE

Figure 13.5 shows the servo regulatory response of the proposed controller. A variable step inputs are applied and a disturbance is applied after the response reaches the steady state value. Even though both the set point and disturbance are applied simultaneously, the proposed Fractional order PID controller scheme is capable of providing efficient control action. The ISE,IAE,ITAE value of Fractional order PID controller 1,2 under regulatory problems is tabulated in Table 13.7.

TABLE 13.5 Performance Indices Under Servo Problems

	Servo

	IAE

	ISE

	ITAE

	Loop 1

	3375

	38480

	5.727e6

	Loop 2

	4522

	3.949e4

	1.016e6

TABLE 13.6 Performance Indices Under Regulatory Problems

	Servo

	IAE

	ISE

	ITAE

	Loop1

	1588

	9904

	3.783e6

	Loop2

	1113

	7753

	5.907e5

[image: Images]

FIGURE 13.4 Regulatory Response of FOPID controller 1,2.

[image: Images]

FIGURE 13.5 Servo and Regulatory Response of FOPID controller 1,2.

TABLE 13.7 Performance Indices under Servo-Regulatory Problems

[image: Images]

13.8 CONCLUSION

In the proposed work, multi-loop fractional order PID controller is optimally tuned using Bat algorithm for quadruple tank process. Gain matrix was computed to measure the interaction of process at steady state. The sensitivity problem due to interaction is determined from SVD conditional number. The stability of control loop pairing is analyzed by Niederlinski index. Multi-loop fractional order PID parameters are computed using Bat algorithm minimizing Integral Time Absolute Error. The proposed controller is validated for servo, regulatory and servo-regulatory problems and the result shows that the scheme will result in a simple design of the multi-loop fractional order PID controller for quadruple tank process. Performance Indices shows that the parameters optimized using Bat algorithm is far better than parameters optimized using Genetic Algorithm and Particle Swarm Optimization technique.

KEYWORDS

	Bat

	Condition number

	Multi loop fractional order PID control

	Nonlinear process

	Quadruple tank process

	Relative gain array

REFERENCES

1. Jie Chen, James S. Freudenberg, & Carl N. Nett: The role of the condition number and the relative gain array in robustness analysis. Automatica, 1994, 30(6), 1029–1035.

2. Wang, Q.-G., Huang, B., & Guo, X., Auto tuning of TITO decoupling controllers from step test. ISA Transaction, 2000, 39, 407–418.

3. Xiong, Q., Cai, W.-J., & He, M.-J., Equivalent transfer function method for PI/PID controller design of MIMO processes. Journal of Process Control,. 2007, 13, 665–673.

4. Palmor, Z. J., Halevi, Y., & Kransney, N., Automatic tuning of decentralized PID controllers for TITO process. Automatica, 1995, 31(7), 1001–1010.

5. Wang, Q.-G., Zou, B., Lee, T. H., & Bi, Q., Auto tuning of multivariable PID controllers from decentralized relay feedback. Automatica, 1997, 33(3), 319–330.

6. Hovd, M., & Skogestad, S., Sequential design of decentralized controllers. Automatica, 1994, 30, 1601–1607.

7. Xiong, Q., Cai, W. J., & He, M. J. A practical loop pairing criterion for multivariable processes. Journal of Process Control, 2005, 15, 741–747.

8. Bristol, E. H. On a new measure of interaction for multivariable process control. IEEE Transactions on Automatic Control, 1966, 11 (1), 133–134.

9. Nordfeldt, P., & Hagglund, T. “Decoupler and PID controller design of TITO systems,” Journal of Process Control, 2006, 16, 923–933.

10. Petras, I. The fractional order controllers: Methods for their synthesis and application. Journal of Electrical Engineering, 1999, 284–288.

11. Manabe, S. The non-integer integral and its application to control systems. ETJ of Japan, 1961, 6(3/4), 83–87.

12. Podlubny, “Fractional-Order Systems and Controller,” IEEE Transaction on Automatic Control, 1999, 44(1), 208–214.

13. Astrom, K., & Hagglund, T. “The Future of PID Control,” Control Engineering Practice, 2001, 9, 1163–1175.

14. Fabrizio Padula, VisioliA, Tuning rules for optimal PID and fractional-order PID controllers. Journal of Process Control, 2011, 21, 69–81.

15. Truong Nguyen Luan Vu, & Moonyong Lee: Analytical design of fractional-order proportional-integral controllers for time-delay processes. ISA Transactions, 2013, 52, 583–591.

16. Zamani, M., Karimi-Ghartemani, M., Sadati, N., & Parniani, M. Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 2009, 17, 1380–1387.

17. Mendes, R., Kennedy, J., & Neves, J. The fully informed particle swarm: simpler, maybe better. IEEE Transaction on Evolutionary Computation, 2004, 8, 204–21.

18. Arijit Biswas, Swagatam Das, Ajith Abraham, & Sambarta Dasgupta: Design of fractional order PIλDμ controller with improved differential evolution. Engineering Applications of Artificial Intelligence, 2009, 22, 343–350.

19. Duarte Valerio, & Jose Sada Costa: Tuning of fractional PID controllers with Ziegler–Nichols-type rules, Signal Processing, 2006, 86(10), 2771–2784.

20. Concepción A. Monje, Blas M. Vinagre, Vicente Feliu, & Yang Quan Chen: “Tuning and auto-tuning of fractional order controllers for industry applications,” Control Engineering Practice, 2008, 16(7), 798–812.

21. Fabrizio Padula, & Antonio Visioli: “Tuning rules for optimal PID and fractional order PID controllers,” Journal of Process Control, 2011, 21, 69–81.

22. Xin-She Yang, A New Metaheuristic Bat-Inspired Algorithm. Studies in Computational Intelligence, 2010, 284, 65–74.

23. Xin She Yang, A. H. Gandomi, Bat algorithm: a novel approach for global engineering optimization, Engineering Computation, 2012, 29 (5), 464–483.

24. Johansson, K. H. The Quadruple-Tank Process: A Multivariable Laboratory Process with an Adjustable Zero. IEEE Transactions on Control Systems Technology, 2000, 8(3), 456–465.

25. Niederlinski, A., A heuristic approach to the design of linear multivariable interacting control systems. Automatica, 1971, 7, 691–701.

PART III

THEORY AND APPLICATIONS OF SINGLE AND MULTIOBJECTIVE OPTIMIZATION STUDIES

CHAPTER 14

A PRACTICAL APPROACH TOWARDS MULTIOBJECTIVE SHAPE OPTIMIZATION

G. N. SASHI KUMAR

Scientific Officer, Computational Studies Section, Machine Dynamics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India–400 085, Tel.: +91-22-2559-3611; E-mail: gnsk@barc.gov.in

CONTENTS

14.1 Introduction to Shape Optimization

14.2 Parameterization

14.3 A Practical Approach For Multi Objective Optimization

14.4 Ant Colony Optimization for MOO

14.5 Application Test Cases

14.5.1 Case 1

14.5.2 Case 2

14.5.3 Case 3

14.6 Conclusions

Author’s Contributions

Acknowledgments

Keywords

References

Appendix

14.1 INTRODUCTION TO SHAPE OPTIMIZATION

Shape optimization problem is unlike other optimization problems involving in finding the optimal set of parameters. These sets of parameters, which represent the shape of a body should optimize the required objective functions. Thus, the parameters to be optimized are indirectly related to the objective functions, through parameterization and flow solution. The first challenge in shape optimization is to find appropriate parameterization, so that the feasible set P is best represented. The bounds for these parameters are to be specified by the designer, which is sometimes, a difficult task. Ant Colony Optimization (ACO) resolves this difficulty, as it has the capability to reach an optimum, which is outside the designer specified bounds. The shape optimization problems are generally governed by partial differential equation leading to multi-modal objective functions (OF). Multi-modal objective functions have numerous local optima. The evolutionary algorithms with ability to search global optimum are best suited for shape optimization problems.

The computational cost (time and effort in obtaining a Computational Fluid Dynamics (CFD) solution) involved in the evaluation of OF is high. Any evolutionary approach converging in less number of function evaluations is preferred [15]. Most of the engineering applications in shape optimization involve more than one objective function [3, 5, 18, 19]. For example in the optimization of a process plant, such as a multistage flash desalination plant, the production of potable water is of prime concern yet the uniformity of flashing in various stages is also a necessary criterion for enhanced life of the equipment [18]. Such an optimization needs multiobjective optimization (MOO) approach. Figure 14.1 shows the schematic of multiobjective shape optimization approach with ACO.

Since the doctoral work of Tiihonen on shape optimization in 1987 [22], numerous approaches have evolved in this area with majority of the applications in aerodynamics and engineering [9]. Shape optimization has been traditionally practiced by evaluating the gradients using adjoint/ADIFOR solver. Automatic differentiation, using tools such as TAPENEDE (http://www-sop.inria.fr/) is expected to ease out the difficulties in gradient based approaches. These Newton based solvers converge to the nearest local optimum (LO) and do not have a mechanism to neither escape LO nor get out of it, when trapped in LO. With the development of evolutionary techniques many researchers have successfully adapted them for shape optimization. Evolutionary technique using a population, with its heuristics has mechanisms that help the algorithm avoid convergence to LO. A few of the evolutionary algorithms are also known for their capability to attain the optimum in minimum number of function evaluations.

[image: Images]

FIGURE 14.1 Shape optimization in MOO framework.

The process of developing an efficient shape optimizer involves: (i) Appropriate parameterization of the shape, (ii) Selection of appropriate global optimizer like Genetic Algorithm (GA), ACO, etc., (iii) Objective function evaluators like CFD solver or surrogate model, etc., and (iv) Selection of MOO variant. Thus, the development of an efficient shape optimizer involves many disciplines.

14.2 PARAMETERIZATION

The shape Γ which is defined by a small number of design variables xc are considered for optimization as parameters. Parameterization should be able to represent exhaustive family of complex geometries, including constraints and singularities. The number of parameters should be as minimum as possible and there should be a mechanism for controlling the smoothness of the geometry. There are numerous approaches used in parameterization of shape [2]. Most popular three approaches are: (i) computer aided design (CAD) based, (ii) polynomial representation, and (iii) free form deformation approach. Use of CAD tools cuts down the development time of optimization solver. The CAD representation uses boundary represented (B-rep) solids. It is more versatile and many of the current large-scale multi disciplinary optimization solvers are based on CAD parameterization. In polynomial approach the commonly used methods are: i) Polynomial representation, ii) Bezier curve, iii) B-spline, and iv) NURBS. Parameterization P(x) can be represented as follows.

[image: Images]

where Ai, Bi, p, Ni, p (x), Wi are control points, Bezier, B-spline of degree p and weights respectively. However, these methods are suitable for two-dimensional optimization and simple 3 dimensional geometries. The free form deformation originates from computer graphics [20]. It does not depend on the surface/curve definition. The displacement caused due to deformation (δq) can be defined by a third order Bezier tensor product.

[image: Images]

where Bi,ni, Bj, nj, Bk, nk are Bernstein polynomials of order ni, nj, nk, respectively. ΔPijk are control point displacements.

14.3 A PRACTICAL APPROACH FOR MULTI OBJECTIVE OPTIMIZATION

Multi objective optimization (MOO) problem is defined as finding the optimum parameters, [image: Images], [image: Images] such that the objective functions [image: Images] are simultaneously minimized. Here [image: Images], i = 1, 2, … m, are m continuous and bounded functions and [image: Images] is the search space of [image: Images]. The solution approach to MOO problem can be classified as cooperative and non-cooperative strategies. The prominent non-cooperative approach, Nash Equilibrium has been applied to aerodynamic shape/design optimization problems [21]. Bi-level approach, a type of Stackelberg strategy has also been applied for shape optimization [10]. The Pareto-optimal solution is the popular cooperative strategy. Pareto-optimal solutions consist of a set of non-dominated design points [image: Images] and [image: Images] represented as [image: Images] and [image: Images].

In many of the engineering problems the decision maker has an a priori knowledge of the target/reference values of the objective functions. There has been a class of algorithms based on these target values. There are three approaches depending on, when the decision maker intervenes, namely, (i) prior to the search (a priori), (ii) during the search (interactive), and (iii) after the search (a posteriori). The goal programming (a priori approach) requires the target vector [image: Images] to be supplied before the search. The objective function is defined as Minimization of [image: Images]. This is referred as goal programming [11]. The reference point method proposed by Wierzbicki [23] is an interactive MOO technique based on achievement scalarization function (ASF). When a MOO problem is posed, the decision maker (DM) supplies a reference point (not target value). If the optimum is not within the expected bounds of DM a new reference point is supplied and the process continues till the DM attains a satisfactory solution. The ASF s: Q × F → R1, where reference vector [image: Images], the min-max scalarization can be defined as [image: Images]. The posteriori approach common in MOO is the weighted metrics method. The objective function is defined as minimization of scalarization function, Lp.

[image: Images]

This approach becomes linear combination of weights when p = 1 and becomes a Tchebycheff problem if p = ∞. Miettinen [14] shows that the weighted metrics is Pareto optimal, if (i) the optimal solution is unique, and (ii) wi > 0 for 1 ≤ p < ∞.

The method of determining ranking is based on either (i) distance from the reference point or (ii) based on ε-dominance [19] defined by the following equation (see Figure 14.2).

[image: Images]

[image: Images]

FIGURE 14.2 The scalarization approach leads to a Pareto optimal point.

where the values of [image: Images] determines the region considered for further evaluations. A larger [image: Images] would require longer time for optimization, at same time a smaller region may miss the global optimum of the problem.

14.4 ANT COLONY OPTIMIZATION FOR MOO

The popular shape optimizers based on evolutionary algorithms use GA, ACO or swarm colony optimization [7, 15]. GA has been applied to shape optimization since early 1990’s [13]. The multi objective concept of NSGA-II by Deb et al. [6] has yielded a reliable multiobjective optimizer. GA based search is limited to the bounds of the parametric space specified by the designer. ACO has been preferred in this work for its advantages over GA, namely (i) The parametric search space is not restricted to that of the designer defined bounds, (ii) ACO takes less number of function evaluations to attain the optimum compared to GA [19]. The multi objective optimization based on ant colony optimization is discussed in this chapter. The concept of goal vector has been used for solving multi objective optimization (MOO) problems.

Ant Colony optimization a population based technique, has proved itself in field of combinatorial optimization [8]. Abbaspour et al. [1] has successfully extended it to parametric optimization using the route of inverse modeling. The author has earlier demonstrated shape optimization using ACO coupled with computational fluid dynamics (CFD) solver [15, 16, 17].

In multiobjective ACO (MACO) algorithm the search space of each parameter i (i = 1,.. n) with bounds [image: Images] is discretized into finite number of levels, li (i = 1,.. n). Ant path is defined as the set obtained by choosing one level from each parameter (see Figure 14.5). So, there will be M = l1 × l1×.. × ln exhaustive ant paths (or exhaustive search space, ESS). Each ant path requires a function evaluation for knowing it’s worth. In order to minimize the number of function calls a subset of M is chosen randomly, named as random search space (RSS). RSS is typically > 0.2×ESS. The author from his experience with numerous problems arrived at a formula for optimum RSS (Equation 5). This value is less than Abbaspour’s recommendation [1] when n > 3 and more when n ≤ 3.

[image: Images]

Each of the ant pathway determines a heuristic for that iteration. The intensity of trial (τu(i)) on each pathway u for the iteration i as defined by Abbaspour et al. [1] is

[image: Images]

where Lp,u is value of the scalarization function for the uth pathway (Eq. 3), Lp,cr is the critical value above which τu is forced to be zero. Lp,min is the minimum of all Lp’s. The trail share for each stratum βij, (j = 1,2,..li) from each path can be summed to yield Φij. Scores (Sij) are calculated for each stratum βij.

[image: Images]

Crossing pathways are all the ant paths that cross stratum βij, σij is the standard deviation of all values of the scalarization function involving βij. The values of A,N,T as given by Abbaspour et al. [1] and later modified by author [19] are A = 1, N = ηij/μg and T = Lp,min + σg. μij, ηij are mean and standard deviation of trail for βij stratum. μg, σg are mean and standard deviation of scalarization function. A pseudo code of ACO is given in the appendix

The steps involving (i) descritization of parametric space, (ii) ant path selection, (iii) evaluation of scalarization function, and (iv) calculation of scores for each stratum constitute one iteration. The low scoring strata have been dropped and higher scored strata are retained. The ACO has a constraint, the new bounds obtained from the retained strata should be continuous. There can be two situations arising while truncating the bounds of parameters, namely, (i) the maximum scoring stratum is within the previous defined bounds (see Figure 14.3a), or (ii) the maximum scoring stratum is at the edge of the bound (see Figure 14.3b). In such a case the domain is extended in the direction to accommodate the optimum (see Figure 14.3b). This facilitates the searching of optimum, which is outside parametric bounds defined by the designer. The bounds thus obtained forms the search space for next iteration. The iterations are continued till the convergence criterion is satisfied.

Pseudo code

Initialize the domain for all parameters (Iteration = 0)

10 The entire range of all the parameters is discretized into levels

Iteration = Iteration + 1

Do i = 1, Number of ants (RSS)

Choose a path for ant i by selecting one level from each parameter randomly

Construct the shape of the body defined by the path of the ant

If (Are you using a Meshless solver. eq. yes) then

Regenerate connectivity in the zone near to the body

else

Generate the Grid with new shape

End If

Run the CFD solver for prescribed convergence

Evaluate the Scalarization function with solution from CFD solver

End Do

Evaluate the scores for each level in all of the parameters

Apply cut-off criteria, which shrinks the range for the parameters

New range for the parameters are thus obtained

If (does not meet the convergence criteria) go to 10

Print the best optimum obtained

The methodology of MACO is further elaborated using a test case in Section 14.5.

[image: Images]

FIGURE 14.3 Change in bounds of a parameter using MACO algorithm (the intensity of gray defines the score value).

14.5 APPLICATION TEST CASES

In order to illustrate the methodology of MACO shape optimization, a quasi 1D supersonic nozzle with a shock has been discussed in detail. Case 1 has four parameters, which represent the shape of a supersonic nozzle. Nozzle is of 3 units length and 1 square unit area at the throat. Throat is at the middle, i.e., 1.5 units length. The target of optimization in case 1 is to determine the shape of the nozzle that would produce a shock in the nozzle with downstream pressure at 0.6784. This shock should occur at distance of 2 units from inlet and velocity of the gas before shock should be 3 Mach. Case 2 demonstrates the same problem in case 1 with an additional parameter. The backpressure which was fixed in case 1 was assumed to be a parameter. Thus these two cases would emphasize the importance of correct parameterization in shape optimization problems.

14.5.1 CASE 1

Step 1: Parameterization: The nozzle is assumed to be axi-symmetric. A Bezier curve is used for constructing the surface of nozzle (i.e., radius Vs length). Four control points have been chosen (see Figure 14.4) at various positions along the length of nozzle. The x-coordinates of control points remain fixed, while the y-coordinates are variables. The area of throat is a fixed value (=1). Two Bezier curves are used to represent the subsonic and supersonic sections independently. A Bezier curve representing the nozzle shape (with b grid nodes) is given as.

[image: Images]

Here (xCj, yCj), j = 1, 2, 3 are control points. Two Bezier curves require 6 control points. The xCi, i = 1,2,3,4,5,6 are fixed while values yCi, i = 1,2,5,6 are function of parameters (αi, i = 1,..4) that are to be optimized. yC3(= yC4) is radius of throat. The only constraint on parameters is that α3 > 0.6 (i.e., should be > throat radius). The domain for optimization for these 4 parameters is defined (see Figure 14.4). At end of optimization these bounds shrink to represent the optimized nozzle shape.

Step 2: Discretization of parameters: The 4 parameters, αi, i = 1,..4 are discretized into 5 levels each (see Figure 14.5). An ant chooses any one level from each parameter, which forms its path. This ant path represents a unique nozzle shape. There could be 54 = 625 ant paths (ESS) from which a RSS of 80 has been chosen (=54/23 using Eq. 5). These 80 ant paths are randomly chosen to form the candidate shapes in each iteration.

Step 3: Objective functions and its evaluation: The two objective functions chosen are (i) the position, f1 and (ii) Mach number (f2) at which shock occurs. The reference point chosen, q = (2,3), that is we are interested in arriving at a nozzle shape where a shock is seated in the supersonic zone at length = 2 and the shock should be occurring at Mach = 3 with a fixed downstream pressure of 0.6784 (Pupstream = 1). The scalarization function has been taken as.

[image: Images]

FIGURE 14.4 Parameterization of Nozzle.

[image: Images]

FIGURE 14.5 Parameters and their discretization.

[image: Images]

Varying the weights one can generate various points on the Pareto front [11]. It is authors observation that wi = 1/m = 1/2, optimizes to a Pareto point nearest to the reference point [19].

An explicit MacCormack technique [4] with quasi one-dimensional flow equations was solved for determining the objective functions. The codes accompanying this chapter has the complete implementation in ForTran (nozshk.for).

Step 4: Ranking of the solutions: Ordering of the scalarization function is performed such that the equation

[image: Images]

is satisfied. The first few members [image: Images]; typical value is 0.1) are considered for ranking. The ranking is based on the ε- dominance criterion defined in Section 14.2.

Step 5: Arriving at bounds for next iteration: Each of the ant pathways determines a heuristic for that iteration. The scores for each stratum are evaluated. Depending on the criterion for cut-off, (see Table 14.1) the levels with scores > (Scoremin × 1.5) are retained. These form the bounds for the next iteration.

Step 6: Looping and Termination: The steps 1 to 5 constitute of one iteration in shape optimization problem. The steps are repeated till the convergence criterion is satisfied. Convergence criterion could be: (i) the bounds of the parameters shrink to <5% of initial bounds, or (ii) the best individual obtained within designers tolerance.

The bounds arrived after 5th iteration for α1, α2 and α4 are outside the initial specified limits (see Table 14.2). The domain of α1 after 10th iteration is larger than the initial guess. Such a situation arises when all the levels in a parameter are performing equally good or equally bad. This emphasizes that the optimization problem has been ill-posed. Figure 14.6 shows the change of nozzle shape with iterations. Any experienced designer would identify that arrived optimum shape of nozzle is unusual/unphysical.

The optimization process has been stopped after 20 iterations. Table 14.2 (see Figure 14.9) shows that the improvement in the scalarization function with iteration is negligible. A possible reason could be: (i) insufficient number of parameters used in optimization, or (ii) bad parameterization.

TABLE 14.1 The Details of 1st Iteration

	Parameter

	Initial guess

	Scores after 1st iteration

	New bounds

	α1

	[0, 1.0]

	0.021 0.017 0.017 0.100 0.055

	[0.6, 1.0]

	α2

	[0, 0.5]

	0.050 0.090 0.061 0.000 0.017

	[0.0 0.5]

	α3

	[0.6, 1.0]

	0.210 0.056 0.000 0.000 0.000

	[0.6, 0.76]

	α4

	[0, 0.5]

	0.000 0.000 0.000 0.204 0.065

	[0.3,0.5]

Criterion for cut-off: Levels with scores > (Scoremin × 1.5) are retained.

TABLE 14.2 The Progress of Shape Optimization Using MACO

[image: Images]

[image: Images]

FIGURE 14.6 Change in nozzle shape with iteration.

An additional parameter, the back-pressure of the nozzle has been added to see whether MACO succeeds in attaining a better optimum. This parameter (back pressure) was fixed at 0.6784 in case 1. This extended case 1 with one additional parameter will be discussed as case 2.

14.5.2 CASE 2

The shape parameterization of case 1 has been used unaltered. 195 ant paths are used to represent the RSS (=55/24 using Eq. 5). The addition of new process parameter has reduced the Scalarization function value from 0.7 (in case 1) to 0.08 (see Figure 14.9). This shows the importance of appropriate parameterization for obtaining the optimal shape. Readers attention is brought to another test case that use 3 control points in supersonic zone (instead of 2 control points as in case 1 and 2) improves the scalarization function to 0.002 [19]. Figures 14.7 and 14.8 show the convergence and change in nozzle shape up to 10th iterations. Thus, it is very important in shape optimization problems to: (i) incorporate the right controlling variables as parameters to be optimized, and (ii) to use appropriate shape definition.

14.5.3 CASE 3

Third test case demonstrated is shape optimization of a bump in a closed channel flow. The motive fluid is Nitrogen gas with trace amounts of Oxygen. This problem addresses the transportation/flow of binary gas in a viscous dominated closed channel. The target of the study is to obtain a bump shape with given constraints of length and height, so that there is minimum change in minor component composition across the shape. The free stream Mach number of inlet Nitrogen gas (N2=99.5%, O2=0.5%) has been fixed as 0.3 (NRe=1,000) at temperature of 273 K and density 1.08 × 10–2 kg/m3. The bump shape is to be optimized for a fixed length and height. The shape of the bump is constructed using three parameters {α1. α2, xmean}. The upward and downward y-coordinates of bump shape are parameterized as follows.

[image: Images]

The initial domains of these three parameters are discretized into 5 levels each.

[image: Images]

FIGURE 14.7 Progress of optimization with iteration.

[image: Images]

FIGURE 14.8 Change in nozzle shape change with iteration.

[image: Images]

FIGURE 14.9 Comparison of convergence for cases 1 and 2.

RSS of 31 (=53/22 using Eq. 5) has been used. The two objectives (functions) in this problem are: (i) the deviation of concentration of O2 (WA) from inlet value at any location inside the channel should be minimum, that is, [image: Images], and (ii) pressure drop due to the bump should be minimum, that is, f2 = ΔP. Both these optimization functions have contradicting influence on the shape of the bump. Each objective function evaluation requires a CFD solution. For this purpose a Meshless flow solver has been used. The kinetic flux vector splitting based SLKNS solver [12] was used in evaluation of the flow. It is a compressible flow solver, which is inherently stable due to its upwinding at molecular level [12]. The modified split stencil approach proposed by Mahendra et al. makes the solver accurate for viscous solutions [12, 19]. For detailed discussion on the update equations and boundary conditions, please refer [12, 15]. The flow simulation predicts the pressure drop, bulk velocity and temperatures. As the heavier component of Oxygen is of small quantity dilute mixture assumption has been used in evaluation of diffusive flux of the heavier species. There are two important contributions that lead to the solution of this problem. Firstly, the use of meshless CFD solver which does not require grid generation after every shape change. Figure 14.11 shows the procedure adopted in meshless solver by which grid generation step is bye-passed. In meshless flow solver each node is defined by its location and its connectivity set (see Figure 14.10). The least squares formula is used within the connectivity to obtain the gradients of state vectors [12].

Gradient of flux g at node p with respect to x, y can be written as

[image: Images]

where ∑ stands for [image: Images]. The procedure is as follows: A background grid is generated. The changed shape is constructed from the control points. This shape is appended to the background grid.

[image: Images]

FIGURE 14.10 The connectivity set for node p.

[image: Images]

FIGURE 14.11 Process flow sheet “How is grid generation step avoided?”.

A few boundary layer nodes are also added along the surface. Next nodes that fall outside the domain (bump) are flagged, but not removed. The changed connectivity set is generated in the vicinity of the bump shape. Now the new grid is ready to be used by the CFD solver. In this process, the generation of connectivity near the changed shape is less time consuming than generation of full grid at each shape change [17]. Figure 14.12 shows the addition of bump nodes on the background grid and flagging of nodes. An elaborate discussion on the use of meshless CFD solver in shape optimization problems can be found in reference [17].

The second contribution is the implementation of kinetic based splitting in the diffusion equation. The generalized Stefan-Maxwell equation for solution of concentration profile in flow field reduces to

[image: Images]

when a binary species with very low concentration of heavier species such that (1 - WA) →1, WA is mole fraction of species A and

[image: Images]

FIGURE 14.12 Parameterization of shape and flagging of nodes.

[image: Images]

where C is the concentration in kmole/m3, p is pressure in N/m2, ρA is density of species A in kg/m3, DAB is diffusion coefficient in m2/s. The derivatives of diffusive flues Jx and Jy are evaluated using full stencil connectivity. Traditionally the derivative of convective fluxes ρAu and ρAv are evaluated using streamline upwinding. The approach of kinetic flux vector splitting has been used to derive the expressions for upwind stencils. These use CIR splitting at molecular level implemented by stencil subdivision at macroscopic level [15]. The derivatives can be written as

[image: Images]

where [image: Images] are the positive and negative split fluxes in x and y directions, respectively. N1 and N2 are positive and negative stencil in x-direction. Similarly, N3 and N4 are positive and negative stencil in y-direction.

[image: Images]

β = 1/2RT, Wall Boundary condition is implemented by equating the gradient of J along surface normal to zero.

For validation and elaborate discussion on the topic the user is encouraged to download the author’s thesis [15]. The advantages of using kinetic based approaches are (i) high robustness, and (ii) negative concentration are never encountered. A typical Mach profile of the shape is shown in Figure 14.13. The change in shape of bump as optimization progressed for the reference point q(x) = (0.001, 20 Pa) is shown in Figure 14.13.

[image: Images]

FIGURE 14.13 (a) Typical Mach contours; (b) Change in shape with iteration.

14.6 CONCLUSIONS

The reference point multi objective shape optimization approach has been demonstrated as a practical way of attaining solutions to engineering problems. The combination of reference point strategy along with parametric ant colony optimization using with ε-dominance based ranking was successful in capturing the members of the Pareto front, which are closest to the reference point.

The optimizer has capability to search the domain outside the initial parametric space specified by designer. Cases studies in this chapter have shown that shape optimization problem is a strong function of parameterization. The meshless solver minimizes on grid generation for every change in shape of the body.

Optimization tools require the use of robust CFD solvers, meshless SLKNS solver along with Kinetic diffusion solver is one such combination of robust solver. The present strategy (MACO) of shape optimization is a powerful tool for engineering applications.

AUTHOR’S CONTRIBUTIONS

Author has been working in area of development and applications of compressible CFD solvers, which are based on Kinetic Flux Vector Splitting and meshless discretization [15, 17, 19]. He has been working in the development of shape optimization solvers based on GA and ACO. Involved in applying the tools on various process/shape optimization problems [15, 16, 18].

ACKNOWLEDGMENTS

Author is deeply indebted to Dr. A.K. Mahendra, B.A.R.C., Trombay, Mumbai, India for his guidance and for many invaluable discussions on optimization and meshless compressible flow solvers. The author acknowledges Prof. S.V. Raghurama Rao, Aerospace Department, I.I.Sc., Bangalore, India for introducing him to ant colony optimization.

KEYWORDS

	ant colony optimization

	computational fluid dynamics

	convergent divergent nozzle

	kinetic diffusion solver

	MACO

	meshless

	multi objective optimization

	shape optimization

	SLKNS

REFERENCES

1. Abbaspour, K. C., Schulin, R., & Genuchten, M.Th. van., Estimating unsaturated oil hydraulic parameters using ant colony optimization, Adv. Water Res., 2001, 24, 827–841.

2. Abou El Majd, B., & Desideri, J-A., Duvigneau, R., Shape design in Aerodynamics: Parameterization and sensitivity, Eu. J. Comp. Mech., 2008, 17(1–2).

3. Ali Elhama, Michel, J. L., & van Toorenb, Winglet multiobjective shape optimization, Aerospace Science and Technology, 2014, 37, 93–109.

4. Anderson, J. D. Jr., Compuational Fluid Dynamics, The Basics with Applications, McGraw-Hill, Inc., 1st Ed., 1995.

5. Arias-Montaño, A., Coello Coello Carlos, A., & Mezura-Montes Efrén, Evolutionary Algorithms Applied to Multiobjective Aerodynamic Shape Optimization, In Koziel, S. Yang, Xin-She, ed., Computational Optimization, Methods and Algorithms, Studies in Computational Intelligence, Springer Berlin Heidelberg, 2011, 211–240.

6. Deb, K., Multiobjective Optimization Using Evolutionary Algorithms, John Wiley and Sons, 2001.

7. Deb, K., Sundar, J., Bhaskara, U., & Chaudhuri, S., Reference Point Based Multiobjective Optimization Using Evolutionary Algorithms, ISSN Intl. J. Comp. Intel.Res., 2006, 2(3), 273–286.

8. Dorigo, M., & Stutzle, T., Ant Colony Optimization, Prentice-Hall of India Pvt. Ltd., 2005.

9. Haslinger, J., Mäkinen, R. A. E., Introduction to Shape Optimization, Theory, Approximation and Computation, SIAM, 2003.

10. Herskovits, J., Leontiev, A., Dias, G., & Santos, G., Contact shape optimization: a bilevel programming approach. Int. J. of Struc. and Multidisc. Optim., 2000, 20, 214–221.

11. Ignizio, J., Goal Programming and Extensions, DC Heath Lexington, Massachusetts, USA, 1976.

12. A. K. Mahendra, R. K. Singh, and G. Gouthaman. Meshless kinetic upwind method for compressible viscous rotating flows. Computers & Fluids, 46:325–332, 2011.

13. Mohammadi, B., & Pironneau, O., Applied Shape Optimization for Fluids, Oxford University Press, 2nd Edn., 2009.

14. Miettinen, K. M., Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, Massachusetts, USA, 1998.

15. Sashi Kumar, G. N., Shape Optimization using a Meshless Flow Solver and Modern Optimization Techniques,” MSc(Engg.) thesis, Indian Institute of Science, Bangalore, India, 2006.

16. Sashi Kumar, G. N., Mahendra, A. K., & Raghurama Rao, S. V., AIAA paper No.. 2007–3830, 18th AIAA-CFD Conference Miami, FL, 25th–28th June,. 2007.

17. Sashi Kumar, G. N., Mahendra, A. K., & Deshpande, S. M., Optimization using Genetic Algorithm and Grid-Free CFD solver, Intl. Soc. of CFD/CFD J., 2008, 16(4), 425–433.

18. Sashi Kumar, G. N., Mahendra, A. K., Sanyal, A., & Gouthaman, G., Genetic algorithm-based optimization of a multi-stage flash desalination plant, Desal. and Water Treat., 2009, 1(1–3), 88–106.

19. Sashi Kumar, G. N., Mahendra, A. K., & Gouthaman, G., Multiobjective shape optimization using ant colony coupled computational fluid dynamics solver, Comp. and Fluids, 2011, 46(1), 298–305.

20. Sederberg, T., & Parry, S., Free form deformation of solid geometric models, Comp. Grap., 1986, 20(4), 151–160.

21. Tang, Z., Désidéri, J. A., & Périau, J., Multicriterion Aerodynamic Shape Design Optimization and Inverse Problems Using Control Theory and Nash Games, J. Opti. Th. and Appl.,. 2007, 135(3), 599–622.

22. Tiihonen, T., Shape Optimization and Unilateral Boundary Value Problems, PhD Thesis, U. of Jyvaskyla, Finland, 1987.

23. Wierzbicki, A. P., The use of reference objectives in multiobjective optimization, In Fandel, G., Gal, T., ed., Multiple Criteria Decision Making Theory and Applications, Springer-Verlag, 1980, p.468.

24. Zitzler, E., Deb, K., & Thiele, L., Comparison of multiobjective evolutionary algorithms: Empirical results, Evol. Comp., 2000, 8, 173–195.

APPENDIX

An analytical MOO test case (cited as ZDT2 [24]) is illustrated here for better understanding to beginners in MOO. Each of the design parameters xi ∈ (0,1, i = 1,..5 were discretized into 5 levels and 195 (=55/24 using Equation 5) ant paths were chosen randomly. The two objective functions were scalarized with respect to various reference points. It was observed that one arrives to a value on the Pareto front nearest to the reference point (see Table A1).

[image: Images]

TABLE A1 Optimized Results for Various Reference Points

	Reference point

	(0.2, 0.8)

	(0.1, 0.5)

	(0.6, 0.2)

	Initial Min. distance

	1.459

	1.766

	2.045

	Final distance

	0.141

	0.452

	0.194

	# function evaluations

	1950

	975

	4095

	Best solution

	(0.35, 0.89)

	(0.63, 0.75)

	(0.86, 0.27)

Data for test case 3: The properties of the Nitrogen used at 875 Pa (i)Thermal conductivity, k = 1.68 × 10–4 W/(mK), (ii) Viscosity, μ = 2.21 × 10–5 kg/(m.s) at 20°C and (iii) N2–O2, DAB = 1.13 × 10–5 T1.724 atm-cm2/s

Codes included with this chapter

(1) MACO solver for a test function ZDT2.

(2) MACO solver coupled with nozzle solver for multi objective optimization of a supersonic nozzle. (i) Case 1 and (ii) Case 2 discussed in this chapter.

Pseudo code of ACO

	1

	Initialize the domain for all parameters (Iteration = 0)

	2 10

	The entire range of all the parameters is discretized into levels

	3

	Iteration = Iteration + 1

	4

	Do i = 1, Number of ants (RSS)

	5

	Choose a path for ant i by selecting one level from each parameter randomly

	6

	Evaluate the Objective function for each ant pat

	7

	End Do

	8

	Calculate intensity of trial (τu(i)) on each pathway u for the iteration i

	

	

[image: Images]

	

	where Lp,u is value of the OF for the uth pathway, Lp,cr is the critical value above which τu is forced to be zero. Lp,min is the minimum of all Lp’s

	9

	The trail share for each stratum βij, (j = 1,2,..li) from each path can be summed to yield Φij.

	

	

[image: Images]

	

	Crossing pathways are all the ant paths that cross stratum βij,

	10

	Evaluate the scores (Sij) for each level in all of the parameters

	

	

[image: Images]

	

	σij is the standard deviation of all values of the OF involving βij.

	

	A = 1, N = ηij/μg and T = Lp,min + σg.

μij, ηij are mean and standard deviation of trail for βij stratum.

μg, σg are mean and standard deviation of OF

	11

	Apply cut-off criteria (for example, Sij < Sij,Max/2 will be removed), which shrinks the range for the parameters

	12

	New range for the parameters are thus obtained

	13

	If (optimization meets convergence criteria) else goto 10

	14

	Print the best optimum obtained

CHAPTER 15

NATURE-INSPIRED COMPUTING TECHNIQUES FOR INTEGER FACTORIZATION

MOHIT MISHRA,1 S. K. PAL,2 and R. V. YAMPOLSKIY3

1Department of Computer Science and Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India

2Senior Research Scientist, Scientific Analysis Group, Defence Research and Development Organization, Ministry of Defence, Govt. of India, New Delhi, India

3Associate Professor, Department of Computer Engineering and Computer Science, University of Louisville, KY, USA

CONTENTS

15.1 The Problem of Integer Factorization

15.2 Complexity Classes of the Problem

15.3 State-of-Art of the Problem

15.4 Integer Factorization as Discrete Optimization Task

15.5 Towards Nature-Inspired Computing

15.5.1 Genetic Algorithm

15.5.2 Firefly Algorithm

15.5.3 Molecular Geometry Optimization

15.6 Conclusion

Keywords

References

15.1 THE PROBLEM OF INTEGER FACTORIZATION

Integer Factorization is a vital number theoretic problem often used in field of cryptography and security. Resolving a semi-prime number into its component prime factors is one of the most important arithmetic task in mathematics and computer science.

Integer factorization can be formally defined as the decomposition or resolving a composite number into its component prime factors, which are nontrivial. The most difficult instances of integer factorization problems are the task of figuring out the prime factors of a semi-prime number.

A semiprime number is a composite number comprising two non-trivial divisors which are prime and when multiplied together yield the semi-prime number under consideration. For instance, 77 is a semi prime number since it is composed of two prime factors, 7 and 11. The prime factorization task becomes even harder when:

	The two prime numbers are randomly chosen, and are very large (of the order more than thousands of bits).

	The two prime numbers are of similar sizes in terms of number of digits.

For such problems, no efficient polynomial time algorithm exists on non-quantum computers. However, Shor [2] introduced a quantum computer based algorithm that solves it. The reason is absolutely understandable. The integer factorization function is a one-way mathematical function [3]. Given two prime numbers, it is easy to multiply the numbers to produce a semi-prime number. However, given a semi-prime number, it is hard to compute the prime factors of the number which when multiplied together would yield the same semi-prime number. Because of the computational intractability, integer factorization is widely used in many public-key cryptographic protocols such as RSA encryption [1].

The state-of-the-art of the problem records the largest semi-prime known to have been factored is RSA-768 (232 digits) reportedly in December 2009 that Lenstra et al. [4]. This task was accomplished using a much-optimized version of the general number sieve algorithm (GNFS) [5], which has the best-known asymptotic running time complexity for a b-bit semi-prime number:

[image: Images]

It is essential that we discuss about the complexity nature of integer factorization problem, which can provide us with a deep understanding of the designing of functions that can help compute the prime factors of semiprime numbers. We discuss about the complexity classes involved in integer factorization in Section 15.2.

A number of approaches have been taken to solve the problem of integer factorization. Broadly and categorically, they can be classified into three different forms:

	general;

	special; and

	alternative.

The general form aims at solving any type of number, in contrast to the special form where the algorithm takes advantage of the specific structure or form of the number involved, which results in better efficiency as compared to general forms. Alternative forms provide an altogether different ways of approaching the problem like genetic programming, swarm intelligence, neural networks, etc.

15.2 COMPLEXITY CLASSES OF THE PROBLEM

Integer Factorization can be represented in two different forms, which lead to different categories of complexity classes defining the problem’s complexity [5]:

	Function Problem: The function problem version can be stated: Given an integer N (a semi-prime number), find an integer/integers (prime number(s)) that divide N. This problem lies in NP, that is, it can be solved by a non-deterministic Turing machine in polynomial time. However, we cannot suggest if it does lie in FP, that is, if the problem is solvable by a deterministic Turing machine in polynomial time. This problem is more complex than a decision problem since it does not just involves a YES or NO as its output but involves figuring out the prime factors of the number.

	Decision Problem: The decision problem for integer factorization can be defined as: Given an integer N (a semi-prime) and an integer. M such that M∈[1,N], does R have a factor f such that f (1,M)? Thus the output is basically either YES or NO. This representation is useful because most well-studied complexity classes are defined as classes of decision problems. In combination with a binary search algorithm, a solution-function to a decision version of Integer Factorization can solve the general case of Integer Factorization in logarithmic number of queries [15]. However, the determination of classifying the decision version into a certain specific complexity class still remains an open question.

Integer Factorization is known to belong to both nondeterministic polynomial time (NP) and co-NP classes, because both ‘yes’ and ‘no’ decisions can be verified given the prime factors either via polynomial time primality test such as AKS primality test [16, 17] or via simple multiplication of divisors.

15.3 STATE-OF-ART OF THE PROBLEM

In the quest for solving the integer factorization problem, we have seen a remarkable progress in the computationally difficult task, which directly affects the security systems based on the computationally intractability of integer factorization in polynomial times for non-quantum computers.

As discussed before in Section 15.1, overall, the approaches to solving the problem of integer factorization can be classified into three groups, namely Special, General and Alternative. Table 15.1 (Source: www.crypto-world.com [23]) presents a brief chronological order of the Integer Factorization by record and year using GNFS, MPQS, SNFS and QS.

Table 15.2 presents a brief chronological order of the top 10 Integer Factorization records using Elliptic Curve Method [24] (Source: Zimmerma [25]).

TABLE 15.1 Integer Factorization Records Using GNFS, SNFS, MPQS and QS*

[image: Images]

TABLE 15.2 Top 10 Integer Factorization Records Using ECM

[image: Images]

15.4 INTEGER FACTORIZATION AS DISCRETE OPTIMIZATION TASK

We can formulate the problem of integer factorization as discrete optimization task in the form of instances of integer programming problems in two ways:

Form 1:

[image: Images]

Having found a pair (x, y) that satisfies the above equation, we can find then find the prime factors of the semi-prime number N by determining the GCD between either (x-y, N) or (x+y, N).

Form 2:

[image: Images]

Form 1 is a two-variable integer-programming problem. The output is a pair of integers (x, y) which satisfies f(x, y). There are multiple solutions to this discrete optimization problem, which are almost symmetrical in nature (Figures 15.1 and 15.2), and thus we are at a privilege to just determine one such pair satisfying the problem statement. However, domain of the problem becomes enormously large with increasing N.

[image: Images]

FIGURE 15.1 Surface plot of (x2–y2) mod(667) (produced by Octave).

The problem of integer factorization can also be represented as Form 2, a one-variable integer-programming problem with a smaller domain as compared to Form 1 problem formulation. However, unlike Form 1 where we had a number of possible combinations of solutions, in case of Form 2, there is exactly one solution. This form is a combination of the function problem and the decision problem. As a function problem, we need to figure x that would divide N. At the same time, as a decision problem, we need to determine if there exists a factor f such that f ∈ (1,√N).

[image: Images]

FIGURE 15.2 Contour plot of (x2–y2) mod(77) with domain [2, 76] (produced by Octave).

Figure 15.1 shows the surface plot of Eq. (2) for N = 667. Same has been depicted as a contour in Figure 15.2 but for value of N as 77 (for better understanding). Further, if we make use of the symmetry observed in Figure 15.2 by scaling down the domain to [2, (N-1)/2], we obtain the contour plot as shown in Figure 15.3. Figure 15.4 presents a function plot for Eq. (3). As observed, there are multiple steep slopes and peaks, which can make convergence suboptimal.

It is vital to understand that the design of an objective function in case of integer factorization is high importance since the objective function drives the entire evolutionary or swarm computing process. Form 1 and Form 2 are exact mathematical functions that satisfy the property of a semi-prime number. We will also discuss about an alternative approach based on the degree of similarity of digits of the given semi-prime number and the number formed from the product of evolving prime numbers in Section 15.1.

15.5 TOWARDS NATURE-INSPIRED COMPUTING

The exact algorithms often incur huge memory and runtime expenses as we have seen in many such algorithms applied to various NP-Hard problems. For a simple instance, dynamic programming applied to Traveling Salesman Problem leads to enormous memory and runtime cost.

[image: Images]

FIGURE 15.3 Contour plot of (x2–y2) mod(77) with domain [2, 38] (produced by Octave).

[image: Images]

FIGURE 15.4 Function plot for 77 mod (x) with domain in Refs. [2, 25] (produced by Octave).

On the other hand, approximation algorithms and soft computing techniques may not guarantee the exactness or accuracy of the solutions obtained. However, they may provide reasonably acceptable and approximate solutions in polynomial times with less memory overhead. A lot of optimization problems can solved using these algorithms where exact algorithms incur huge overhead upon time and memory.

In recent years, researchers have adapted nature-inspired computing techniques to solve a number of problems for whom no polynomial time algorithms exist. These techniques have proven to be highly successful and easy to implement with less memory and runtime complexity. Modeling natural phenomenon for our computationally difficult tasks provide a great deal of insight into working towards resolving solutions for our problems.

There have been such alternative approaches to solving integer factorization found in Refs. [7, 8, 9, 10, 11 and 12] which suggest the growing interest of researchers across the academia towards nature-inspired computing for integer factorization. We discuss about some recent research work done in this field using Genetic Algorithms [12], Firefly Algorithm [11] and Molecular Geometry Optimization Algorithm [21] as a part of the authors’ contribution to this field.

15.5.1 GENETIC ALGORITHM

Genetic Algorithms [22] have been shown to solve a number of linear and nonlinear optimization problems. However, some optimization problems contain numerous local optima, which may be difficult to distinguish from the global maximum. This can result in suboptimal solutions. As a consequence, several population diversity mechanisms have been proposed to “delay” or “counteract” the convergence of the population by maintaining a diverse population of members throughout its search.

Evolution inspired algorithms face in solving problems in which the only measure of fitness is a binary – correct/incorrect result, since there is no possibility for the algorithm to converge on a solution via hill climbing. On one hand, one can assume that the integer factorization problem exhibits such binary information (a number is a factor or is not a factor), however, it is actually not the case as can be seen from the following trivial example, which demonstrates a series of partial solutions with gradual increase in fitness value of factor-approximating numbers.

The proposed GA is generational [6]:

	a population of N possible solutions is created

	the fitness value of each individual is determined

	repeat the following steps N/2 times to create the next generation a choose two parents using tournament selection b with probability pc, crossover the parents to create two children, otherwise simply pass parents to the next generation c with probability pm for each child, mutate that child d place the two new children into the next generation

	repeat new generation creation until a satisfactory solution is found or the search time is exhausted.

Yampolskiy in his paper [12] described a way to factorize a semi-prime composed of prime numbers p and q of equal number of digits. The measure of fitness considers the degree of similarity between the number being factored and the product of evolving factors p and q in terms of placement and value of constituting numbers as well as overall properties of the numbers such as size and parity.

The implementation involves assumption of a chromosome to be a string consisting of the factors (say p and q) of semi-prime N. We assume that the number of digits in the factors is same since we are interested in solving the most difficult cases of integer factorization.

In a typical genetic algorithm, there are two major operations, namely crossover and mutation. The crossover operation, in our case, is accomplished by exchanging subsets of varying size of numbers between individuals selected to be “parents.” This is done according due the superiority of the fitness values. Mutation operation transfers a chosen digit to another digit, making sure that the legitimacy is not violated. For example, it is absolutely sure that the least significant digit cannot be even and the most significant digit cannot be zero.

Following, we present the algorithm used for integer factorization. For extensive details, readers are advised to refer to Ref. [12].

Algorithm:

	Initialize chromosomes. Each chromosome is a string concatenation of p and q, the prime factors to be figured out.

	Evaluate the fitness values by comparing the digits of the product of p and q with the given value of semi-prime number.

	While (termination condition is not met).

	Perform selection operation.

	Perform cross-over between the parents selected to produce offspring.

	Perform mutation on offspring by changing a digit to a legitimate digit.

	End while.

It is interesting to note that this approach results in a number of suboptimal solutions because of presence of local extrema. This leads to leakage of information partially about the relationship between semi-prime number given to be factored, and product of candidates solutions for p and q. The example provided in Table 15.2 given a number N = 4885944577 [12] depicts such relationship. Observe that as the size of N increases the degree of inter-influence of digits of N located at a distance from each other further reduces. This results in more independent evaluation of partial solutions. In semi-prime numbers like RSA numbers the local maxima points come from numbers which are also a product of at least two integers and which match the number to be factored in terms of its constituting digits to a certain degree.

TABLE 15.2 Partial Solutions to a Sample Factorization Problem With Increasing Fitness

[image: Images]

Such local maxima are frequent in the IF domain; in fact, Yampolskiy [12] showed that given any semi-prime number N with n decimal digits there are exactly 2 × 10n–1 unique pairs of numbers pi and qi up to n digits each, which if multiplied, have a product matching all n digits of N precisely. For example for N = 77 (n = 2), that number is 2 × 102–1 = 2 × 101 = 20, or to list explicitly: (01 × 77 = 77), (03 × 59 = 177), (07 × 11 = 77), (13 × 29 = 377), (09 × 53 = 477), (21 × 37 = 777), (17 × 81 = 1377), (27 × 51 = 1377), (19 × 83 = 1577), (39 × 43 = 1677), (31×67 = 2077), (23 × 99 = 2277), (57×61 = 3477), (49 × 73 = 3577), (41 × 97 = 3977), (91 × 47 = 4277), (63 × 79 = 4977), (33 × 69 = 5577), (87 × 71 = 6177), and (93 × 89 = 8277).

The best result reported by Yampolskiy’s approach [12] was a factorization of a 12 digit semi-prime (103694293567 = 143509 × 722563). This result took a little over 6 h on a Intel 2 core 1.86 GHz processor with 2 GB of RAM and was achieved with a population consisting of 500 individuals, two point crossover, mutation rate of 0.3% and genome represented via decimal digits.

15.5.2 FIREFLY ALGORITHM

The Firefly Algorithm [11] is a recent addition to the family of swarm-based metaheuristics. It is inspired by the flashing behavior of the fireflies. The less bright fireflies get attracted towards brighter fireflies taking into account the media around the problem domain. Three assumptions are made while designing the algorithm:

	All fireflies are unisex, such that each firefly gets attracted to all other fireflies.

	The attractiveness factor is proportional to the brightness of the firefly. A less bright firefly will get attracted to a brighter firefly. Also, as the distance between two fireflies increase, the attractiveness factor between them reduces since the intensity of brightness reduces, which is inversely proportional to the square of the distance between the fireflies.

	Landscape of the problem domain also affects the movement of the fireflies. That is, a media with a large absorption coefficient will reduce the intensity of brightness of the fireflies, thereby hampering movement.

The firefly algorithm has been exploited to solve a number of hard optimization problems. Suppose there are N fireflies, that is, N candidate solutions. Each candidate solution xi has a cost associated with it, which is obtained from the objective function of the problem under consideration. The objective function determines the brightness function Ii of each firefly:

[image: Images]

Based on the computed fitness values, the less bright firefly gets attracted and moves towards the brighter one. At the source, the brightness is higher than any other point in the environment. This brightness decreases with increase in the distance between any two fireflies. At the same time, surrounding media absorbs some amount of light determined by an absorption coefficient, γ. For two fireflies i and j, the fitness values vary inversely with distance between the two fireflies rij. Since light intensity follows the inverse square law, we have the light intensity as a function of the distance between any two fireflies at distance r from each other as:

[image: Images]

where I0 is the light intensity at the source.

By incorporating the media absorption coefficient γ, light intensity can be represented in the Gaussian Form as:

[image: Images]

The attractiveness function thus becomes:

[image: Images]

where β0 is the attractiveness value at r = 0.

The movement of a firefly in the search domain consists of two essential components:

	attraction component (involving β), and

	randomization component (involving α).

A firefly moves towards a brighter firefly, and while doing so, a small radius of randomization is maintained to exploit the search domain around the point where the firefly has reached while moving towards the brighter firefly, thus applying the principle of exploration and exploitation.

In the classical firefly algorithm, when firefly i is less bright than the firefly j, the movement of the firefly i follows the equation:

[image: Images]

where k = 1,2,3,…D (D is the dimension of the problem in consideration). The term with α is called the randomization parameter. Sk is the scaling parameter over the domain of the problem.

[image: Images]

where uk and lk are the upper and lower bounds of xik. Distance between two fireflies i and j are calculated by the Cartesian distance between them:

[image: Images]

Mishra et al. [11] adapted a multithreaded bound varying chaotic firefly algorithm for factorizing semi-prime numbers. The objective function used was Form-1 function as described in Section 15.3:

[image: Images]

where N is the semi-prime to be factored out, and x∈(lower_bound, square_root (N)). The lower_bound is defined as

[image: Images]

where d is the number of digits in the square root of N floored to an integer value. Since the above objective function is dependent on a single independent variable, we can parallelize our function and introduce multithreading. In this case, each thread works on a domain size of 10d−1. Each thread will return local minima, out of which one will be the global minimum when the objective function evaluates to zero, giving us one factor of our semi-prime in consideration. The other factor will then be easily computed.

Further, Mishra et al. [11] introduce chaos in the algorithm parameters α and γ using Logistic maps [18] and [19], and update them after each iteration as follows:

[image: Images]

[image: Images]

where t is the sample, μ1 and μ2 are control parameters,

[image: Images]

The best result reported was factorization of 14 digit semi-prime 51790308404911 (= 5581897 × 9278263) in 1880.6 iterations with 500 fireflies.

Algorithm:

	Initialize the algorithm parameters – α0 (≠ {0.0, 0.25, 0.5, 0.75, 1.0}), β0 and γ.

	Initialize the firefly population (x1, x2, x3,.., xn. Each firefly is a candidate solution, i.e., it represents the prime factors.

	While (t < MaxGeneration)

	for i = 1 : n (all n fireflies)

	for j = 1 : n (n fireflies)

	if (f(xi) > f(xj)), // where f(x) is same as Eq. (2)/Eq. (3)

	move firefly i towards j;

	end if

	Vary attractiveness with distance r via Eq. (6)

	Evaluate new solutions and update light intensity;

	end for j

	end for i

	Rank fireflies and find the current best;

	end while

	Report the best solution

	end

In our experiments, we initialized α0 to 0.65, β0 to 1.0 and γ to 0.6. The firefly population was initialized to 500 and maximum iterations set to 5000. Each test case was run 10 times. The results of the experiments are shown in Table 15.3. For extensive details on this work, readers may refer to our previous work [11].

15.5.3 MOLECULAR GEOMETRY OPTIMIZATION

Molecular Geometry Optimization (MGO) Algorithm [21] is inspired by the computational chemistry behind the arrangement of a group of atoms in space such that the net inter-atomic forces between the atoms are minimized (close to zero). This would lead to minimum surface energy potential which any molecule would try to achieve, that is, the position on the potential energy surface is a stationary point.

For instance, while optimizing the geometry of a water molecule, the aim is to establish the hydrogen-oxygen bond lengths and the hydrogen-oxygen-hydrogen bond angle which would minimize the inter-atomic forces that would otherwise be either pulling or pushing the atoms apart.

However, it should be noted that not always the molecular geometry optimization process seeks to obtain global or local minimum energy, but may optimize to a saddle point on the potential energy surface (transition state), or to fix certain coordinates as may be the case.

TABLE 15.3 Experiment Results and Observations with Firefly Algorithm

[image: Images]

The positions of atoms are represented by position vectors which in turn can be represented by Cartesian Coordinates. With such representation, one can introduce energy function as a function of the position vector r, E(r). With such energy function, the molecular geometry optimization essentially becomes a mathematical optimization task, in which the aim is to find the position vectors of the atoms such that it E(r) is at a local minimum. That means, the derivative of the energy function with respect to the position of the atoms ∂E/∂r is a zero vector 0. For such an arrangement, the second derivative matrix of the system, ∂∂E/∂ri∂rj, known as Hessian Matrix, is positive definite, that is, all the Eigen values are positive.

We use the above concept in modeling an algorithm for our problem of integer factorization. Below is the description of the Molecular Geometry Optimization (MGO) Algorithm:

	Initialize the position of atoms which represent the solutions with values drawn from uniform random distribution. Let n be the number of atoms (solution pool)

	While a stopping criterion is met, follow steps through 3 to

	For i=1:n

	For j=1:n

	Calculate the force between atoms i and j, fi,j.

	If force > target threshold:

	Move the atoms by some computed step Δr that is predicted to reduce the force

	If the new position yields the energy function lower than the current energy function value of atom i, update the energy value with the energy at this new position.

	Go to step 3.

A. Energy Function

The energy function in the algorithm represents the objective functions defined in Section III.

B. Force between two atoms

The force function plays a vital role in determining the movement of the atoms. Theoretically, the force function is the derivative of the energy function with respect to the position vector of the atom. But in our case, we are dealing with discrete spaces, and hence the energy functions are not differentiable. However, we represent the force function in a way that closely represents a differentiable form. The force function is different for different energy functions and position vectors.

For Form-1 of the objective function in Section 15.3, we adopt the following force function between two atoms i and j, when atom i moves towards j, or towards a better possible solution:

[image: Images]

where δri,j = |ri − rj|

Formulation of force function for Form-2 of the objective function in Section 15.3 is a difficult task, and is open to various formulations as long as it closely represents the force between the two atoms that can provide an effective measure for movement of the atoms around. In our case, we adopt the following force function:

[image: Images]

C. Movement equation

The movement equation involves a computed step ∆r which is predicted to reduce the force between atoms i and j. With this in view the movement equation for our problem consists of an attraction term and a randomization term. We formulate the movement equation as follows:

[image: Images]

where rand() is a function that generates a random number ∈ (0,1) drawn from a random distribution (uniform in our case). The randomization term computes a random step-size in a way that ri does not cross the boundary of the search domain. To implement such a randomization term, the following steps are followed:

	Calculate ri while excluding the randomization term, i.e., ri = ri + rand().(rj – ri)

	u = ri – lower_bound

	v = upper_bound – ri

	s = rand()-0.5

	if (s<0)

	rand_factor = -1.α.rand()*u

	else

	rand_factor = α.rand().v

	ri = ri + rand_factor

α is the randomization parameter drawn from Logistic Map [18, 19] as follows:

[image: Images]

where μ is the control parameter which is 4 in our case. α was initialized to 0.65.

Table 15.4 presents the testing of the algorithm with Form-2 type of objective function on semi-prime numbers extending upto 46 bits with 100 atoms (solution vectors) and maximum iterations set as 5000.

15.6 CONCLUSION

TABLE 15.4 Observations for Form-2 Using MGO Algorithm on Bigger Semi-Primes

[image: Images]

Recent advances in nature-inspired computing techniques have proven to possess a great potential in solving some of the hardest problems in computer science in an efficient manner. In this chapter, we explored how such techniques can help solve the problem of integer factorization though we do not assert that these will guarantee the results and if they are scalable or not. We presented three algorithms as part of the authors’ contribution in this field, namely Genetic Algorithm, Firefly Algorithm and Molecular Geometry Optimization. The preliminary results presented in Refs. [11], [12] and [21] show that these algorithms provide a deep insight into the problem as well as provide new directions to solve the problem. The research work also talks about the difficulty in solving the problem owing to the designing of appropriate objective function and binary nature of the problem. Readers are advised to refer to Ref. [26] for details on the limitations of bio-inspired approaches for problems of binary nature. However, it is a great progress in this field in exploring the power of natural phenomena in optimizing hard computing problems like integer factorization itself.

KEYWORDS

	firefly algorithm

	genetic algorithm

	integer factorization

	molecular geometry optimization

	swarm intelligence

REFERENCES

1. Rivest, R., Shamir, A., & Adleman, L. “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems,” Communications of the ACM, Feb. 1978, vol. 21, Issue 2, pp. 120–126.

2. Shor, P. W. “Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal Sci. Statist. Computing, 1997, Vol. 26, pp. 1484–1509.

3. Goldwasser, S., & Bellare, M. “Lecture Notes on Cryptography,” July 2008, retrieved from http://cseweb.ucsd.edu/~mihir/papers/gb.pdf in Jan–Feb 2013.

4. Kleinjung, T. et al., “Factorization of a 768-Bit RSA Modulus,” Advances in Cryptology – CRYPTO 2010, Lecture Notes in Computer Science, 2010, vol. 62223, pp. 333–350.

5. Pomerance, C. “A Tale of Two Sieves,” Notices of the AMS, 1996, Vol. 43, pp. 1473–1485.

6. Yampolskiy, R., Anderson, P., Misic, P., Arney, J., Misic, V., & Clarke, T. “Printer model integrating genetic algorithm for improvement of halftone pattern,” Western New York Image Processing Workshop (WNYIPW), IEEE Signal Processing, 2004.

7. Society, Rochester, N. Y., & Chan, D. M. “Automatic generation of prime factorization algorithms using genetic programming,” Genetic Algorithms and Genetic Programming at Stanford. pp. 52–57, Stanford Bookstore. Stanford, California, 2002.

8. Meletiou, G., Tasoulis, D. K., & Vrahatis, M. N. “A first study of the neural network approach to the RSA cryptosystem,” IASTED 2002 Conference on Artificial Intelligence, Banff, Canada, 2002, pp. 483–488.

9. Jansen, B., & Nakayama, K. “Neural networks following a binary approach applied to the integer prime-factorization problem,” IEEE International Joint Conference on Neural Networks (IJCNN), July 2005, pp. 2577–2582.

10. Laskari, E. C., Meletiou, G. C., Tasoulis, D. K., & Vrahatis, M. N. “Studying the performance of Artificial Neural Networks on problems related to cryptography,” Nonlinear Analysis: Real World Applications, 2006, Vol. 7, pp. 937–942.

11. Mishra, M., Chaturvedi, U., & Pal, S. K. “A Multithreaded Bound Varying Chaotic Firefly Algorithm for Prime Factorization,” IEEE International Advance Computing Conference (IACC), Feb 2014, Gurgaon, pp. 1321–1324.

12. Yampolskiy, R. V. “Application of bio-inspired algoritm to the problem of intger factorization,” International Journal of Bio-inspired Computation. 2010, Vol. 2, No. 2, pp. 115–123.

13. “Energy Minimization,” Wikipedia, The Free Encyclopedia, Retrieved from http://en.wikipedia.org/wiki/Energy_minimization on Jan. 10, 2014.

14. Elaine Rich, “Automata, computability and complexity: theory and applications,” Prentice Hall, 2008.

15. Adi Shamir, E. T. “Factoring large numbers with the TWIRL device,” Crypto – The 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, pp. 1–26, 2003.

16. Agrawal, M., Kayal, N., & Saxena, N. ‘PRIMES is in P,’ Annals of Mathematics 2004, 160 (2), 781–793.

17. Brent, R. P. “Recent progress and prospects for integer factorisation algorithms,” Computing and Combinatorics: Sixth Annual International Computing and Combinatorics Conference, Sydney, Australia, pp. 3–22, 2000.

18. May, R. M. “Simple mathematical models with very complicated dynamics,” Nature 1976, 261(5560), pp. 459–467.

19. Eric, W. Weisstein, “Logistic Equation,” MathWorld. Retrived from http://mathworld.wolfram.com/LogisticEquation.html on Jan. 14, 2014.

20. Laskari, E. C., Meletiou, G. C., & Vrahatis, M. N. “Problems of cryptography as discrete optimiation tasks,” Nonlinear Analysis, 2005, Vol. 63, pp. 831–837.

21. Mishra, M., Chaturvedi, U., & Shukla, K. K. “A New Heuristic Algorithm based on Molecular Geometry Optimization Algorithm and its Application to the Integer Factorization Problem,” Accepted for publication in the proceedings of the 2014 Intl. Conference on Soft Computing and Machine Intelligence, Sept. 26–27, 2014, New Delhi, India.

22. Goldberg, D. E. “Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA, Addison-Wesley Professional, 1989.

23. Factorization Announcements, crypto-world. Retrieved from www.crypto-world.com/Factor/FactorAnnoucements.html on July 09, 2015.

24. Zimmermann, P. “Elliptic Curve Method for Factoring,” Encyclopedia of Cryptography and Security, Springer, 2005.

25. 50 Largest Factors Found By ECM. Retrieved from www.loria.fr/~zimmerma/records/top50.html on July 09, 2015.

CHAPTER 16

GENETIC ALGORITHM BASED REAL-TIME PARAMETER IDENTIFIER FOR AN ADAPTIVE POWER SYSTEM STABILIZER

WAEL MOHAMED FAYEK1 and O. P. MALIK2

1Assistant Professor, Department of Electrical Engineering, Helwan University, Cairo, Egypt

2Professor Emeritus, Department of Electrical and Computer Engineering, University of Calgary, Alberta, Canada

CONTENTS

16.1 Power System Stabilizers

16.1.1 Conventional Power System Stabilizers

16.1.2 Adaptive Power System Stabilizers

16.2 Self-Tuning Adaptive Control

16.2.1 On-Line Parameter Identifier

16.2.2 Controller

16.3 Computational Intelligence Based APSS

16.3.1 Fuzzy Logic Based APSS

16.3.2 Neural Network Based APSS

16.3.3 Genetic Algorithm Based APSS

16.4 System Configuration and Model

16.4.1 Genetic Algorithm Based On-Line Identifier

16.4.2 Control Strategy

16.4.3 Controller Start-Up

16.5 Simulation Studies

16.5.1 Normal Load Conditions

16.5.2 Light Load Conditions

16.5.3 Leading Power Factor Load Conditions

16.5.4 Voltage Reference Change Test

16.5.5 Dynamic Stability Test

16.6 Laboratory Implementation

16.6.1 Power System Model

16.6.2 Real Time Control Environment

16.6.3 Experimental Studies

16.6.3.1 Full Load Tests

16.6.3.2 Light Load Tests

16.6.3.3 Leading PF Load Tests

16.6.4 Summary

16.7 Conclusions

Keywords

References

Appendix A Single Machine Power System

A.1 Generator Model

A.2 Governor Model

A.3 AVR and Exciter Models

A.4 IEEE PSS1A CPSS

Appendix B Physical Model of Power System

Electric power systems are complex multi-component dynamic systems. Spread over vast geographical areas and no longer operating as isolated systems, but as interconnected systems, they are subjected to many kinds of disturbances and abnormalities. Their characteristics vary with the variation of loads and generation schedules. The present-day tendency of operating generators with relatively small stability margins has made these systems even more fragile. A good system should have the ability to retain its normal operating condition after a disturbance. As stability is ultimately concerned with the quality of the electric power supply, it is considered as one of the main topics of power systems research.

Most power system elements are highly non-linear and some of them are combinations of electrical and mechanical parts that have very different dynamic behavior. Interaction between electrical and mechanical parts within an individual element and the interactions between the elements results in complicated system dynamics and transient behavior. Consequently, these lead to various kinds of unstable characteristics.

Although there are several sources of positive damping in a power system, there are also sources of negative damping, notably voltage-regulating and speed-governing systems. Furthermore, although the natural positive damping predominates, in some circumstances the net damping is negative.

If the natural damping of a power system is negative, the cure is to add artificial positive damping. The most important use of artificial damping is to make net damping positive. Even if the natural damping is already positive, there is a considerable benefit in increasing it artificially to achieve stronger damping.

Most of the generating units installed in the electric utility systems are equipped with continuously acting voltage regulators. The high gain voltage regulator action has a detrimental impact upon the dynamic stability of the power system. Oscillations of small magnitude and low frequency often persist for long periods of time and in some cases present limitations on power transfer capability. Power System Stabilizers (PSSs) were developed to aid in damping these oscillations via modulation of the generator excitation. This development has involved the use of various tuning techniques and input signals, employing various control strategies, and learning to deal with practical problems such as noise and interaction with turbine-generator shaft torsion modes of vibration.

A combined on-line Genetic Algorithm (GA) identifier and Pole Shift (PS) linear feedback controller as an Adaptive Power System Stabilizer (APSS) is presented in this Chapter. Genetic algorithms have excellent search capabilities and produce good results in tracking the dynamics of a system. The PS control is preferable for its robustness and stability conditions. The hybrid system combines their advantages while avoiding their weaknesses. The identifier goes through two stages of learning, off-line training and on-line update. The off-line training is used to store a priori knowledge about the system. After the off-line training the identifier is further updated every sampling period making it an adaptive approach. The GA population is searched every sampling instant to obtain its best member as the system regression coefficients. The PS control uses these regression coefficients to calculate the closed-loop poles. The unstable poles are moved inside the unit circle in the z-plane and the control is calculated so as to achieve the desired performance. A third order Auto Regressive model with eXogenous signal (ARX) has been used to model the power system dynamics.

The main drawback of GA is the long time required for convergence. A new method, suitable to the problem under study, is proposed to greatly reduce the time required to identify the system parameters in real-time for the on-line identifier. To the authors; knowledge it is the first time that GA gas been used for real-time control.

Simulation studies are carried out on a single-machine infinite bus power system to assess the performance of the APSS. After successful simulation studies, the APSS is further tested on a scaled physical model of a power system. The performance of the APSS shows significant benefits over Conventional Power System Stabilizer (CPSS) in terms of performance improvement and no requirement for parameter tuning.

16.1 POWER SYSTEM STABILIZERS

The basic function of a power system stabilizer is to extend stability limits by modulating generator excitation to damp the oscillations of synchronous machine rotors relative to one another. These oscillations of concern typically occur in the frequency range of approximately 0.2–2.5 Hz, and insufficient damping of these oscillations may limit the ability to transmit power. To provide damping, the stabilizer must produce a component of electrical torque on the rotor, which is in phase with speed variations. The implementation details differ, depending upon the stabilizer input signal and control strategy employed. However, for any input signal the transfer function of the stabilizer must compensate for the gain and phase characteristics of the excitation system, the generator, and the power system, which collectively determine the transfer function from the stabilizer output to the component of electrical torque that can be modulated via excitation control. This transfer function is strongly influenced by voltage regulator gain, generator power level, and AC system strength.

16.1.1 CONVENTIONAL POWER SYSTEM STABILIZERS

The most commonly used PSS, referred to as the Conventional PSS (CPSS), is a fixed parameter lead-lag type of device. The first CPSS, proposed in 1950’s, is based on the use of a transfer function designed using the classical control theory [1]. A supplementary stabilizing signal derived from speed deviation, power deviation or accelerating power, and a lead-lag compensating network to compensate for the phase difference from the excitation controller input to the damping torque output, is introduced to the excitation controller. By appropriately tuning the phase and gain characteristics of the compensation network, it is possible to make a system have the desired damping ability. The CPSS is widely used in today’s excitation controls and has proved effectiveness in enhancing power system dynamic stability.

The CPSS, however, has its inherent drawbacks. It is designed for a particular operating condition around which a linearized transfer function model of the system is obtained. Usually the operating condition where control is needed most is chosen. The high non-linearity, very wide operating conditions and stochastic properties of the actual power system present the following problems to the CPSS:

	How to choose a proper transfer function for the CPSS that gives satisfactory supplementary stabilizing signal covering all frequency ranges of interest?

	How to effectively tune the PSS parameters?

	How to automatically track the variation of the system operating conditions?

	How to consider the interaction between the various machines?

Extensive research has been carried out to solve the above problems. Different CPSS transfer functions associated with different systems have been proposed [2]. Various tuning techniques have been introduced to effectively tune PSS parameters [3]. Effective placement and mutual cooperation between the PSSs in multi-machine systems are also presented [4]. To solve the parameter-tracking problem, variable structure control theory was introduced to design the CPSS [5]. All this research has resulted in great progress in understanding the operation of the PSS and effectively applying PSS in the power systems. However, it cannot change the basic fact – the CPSS is a fixed-parameter controller designed for a specific operating point, which generally cannot maintain the same quality of performance at other operating points [6]. It is for this reason that adaptive control, control that ‘adapts’ to changing system characteristics, has so much potential to improve power system performance. This idea has led to the research and development of Adaptive Power System Stabilizers (APSSs).

16.1.2 ADAPTIVE POWER SYSTEM STABILIZERS

The adaptive control theory provides a possible way to solve the abovementioned problems relating to the CPSS. All adaptive control techniques can be classified in two categories:

	Direct Adaptive Control – In this type of control, the objective is to adjust controller parameters so that the output coordinate of the controlled system agrees with that of a reference model. Usually the value of mismatch between the controlled coordinates (yp) of the system and the model (yr) is used to perform parameter adjustment.

[image: Images]

where ε is called the mismatch error. This kind of adaptive control is often referred as the model reference adaptive control (Figure 16.1). The performance of this algorithm depends on the choice of a suitable reference model and the derivation of an appropriate learning mechanism.

[image: Images]

FIGURE 16.1 Direct Adaptive Control.

	Indirect Adaptive Control – In this kind of adaptive control, the objective is to control the system so that its behavior has the given properties. The controller can be thought in terms of two loops. One loop, called the inner loop, consists of the controlled process and an ordinary linear feedback controller. The parameters of the controller are adjusted by the second loop, or outer loop, which is composed of an on-line parameter identifier. This kind of adaptive control is often referred as the self-tuning adaptive control (Figure 16.2).

16.2 SELF-TUNING ADAPTIVE CONTROL

Self-tuning adaptive control is one of the most effective and well-established indirect adaptive control techniques. The self-tuning property lies in its online identifier, which is used to estimate the varying parameters of the plant. The control is obtained based on the estimated parameters. The technique has gained recognition because of its flexibility (can be applied to different plants with minimal changes), auto-tuning properties, and ease of implementation using Programmable Logic Controllers (PLCs).

The structure of the self-tuning APSS is shown in Figure 16.2. From this structure, it can be seen that the development of such a device involves the following two parts, an on-line parameter identifier and a controller.

[image: Images]

FIGURE 16.2 Indirect Adaptive Control.

16.2.1 ON-LINE PARAMETER IDENTIFIER

This part is the essence of the APSS, which gives the PSS the ability to adapt. At each sampling instant, input and output of the generating unit are sampled, and a mathematical model is obtained by some on-line identification method to represent the dynamic behavior of the generating unit at that instant of time. For a time varying stochastic system, such as a power system, its dynamic behavior varies from time to time. With this on-line identifier, it is expected that the mathematical model obtained each sampling period can track changes in the controlled system. Obviously, the extent to which the identified model fits the dynamics of the actual generating unit determines the failure or success of the APSS. It is for this reason that the online identification methods have always been the main subject of research.

A number of identification methods have been proposed, from off-line to on-line methods [7, 8 and 9]. It is difficult to say which one is the best for all adaptive control applications. Some methods may be more suitable for some specific applications, while others may not be.

16.2.2 CONTROLLER

This part produces the control signal for the generating unit based on the identified model. The control strategy is generally developed by assuming that the identified model is the true mathematical description of the generating unit. However, since the power system is a complex high-order non-linear stochastic continuous system, it is hard for the discrete identified model to precisely describe the dynamic behavior of the power system. Consequently, it is desirable that the control strategy has good tolerance to the errors in the identified model.

The above discussion on identifier and controller highlights two main points:

	Firstly, the on-line identifier should be improved to achieve an identified model, which represents the controlled system as closely as possible.

	Secondly, the control strategy should have the ability to tolerate the identification errors.

With these two parts working together, successful application of the APSS can be achieved.

The identified model of the generating unit is often a Non-Minimum-Phase (NMP) system, which restricts the application of some control strategies in this situation. To overcome the excessive control signal amplitude problem and the unstable feature of the NMP closed-loop system, aGeneralized Minimum Variance (GMV) technique has been proposed and widely used [10, 11 and 12]. Though it is simple, its closed-loop performance does not often meet the needs of the controller designer. For example, stability, which is an important issue in control design, is not taken into consideration in the GMV control.

Pole Assignment (PA) control strategy is also well known in adaptive control applications. It puts the emphasis on the closed-loop stability rather than the time domain responses. By choosing the closed-loop poles properly, the closed-loop system can be robust to some extent even if the identified model has some errors. However, selection of the proper closed-loop pole locations to meet the need of both the stability and time domain response requirements offers a hard task to the designer.

Pole Shifting (PS) control strategy is a modified version of the PA control strategy [13]. In this strategy, controller parameters are selected on the basis that the closed-loop poles are shifted from the identified open-loop poles in a stabilizing direction (radially inward away from the unit circle in the z-domain). The amount of shift is determined by one parameter, called the pole-shifting factor, which can be adjusted to achieve desired damping. This control strategy simplifies the PA strategy because only one parameter needs to be selected. Obviously, the way to select the pole-shifting factor determines the behavior of the controller.

16.3 COMPUTATIONAL INTELLIGENCE BASED APSS

The last two to three decades have seen a growing interest in applying Artificial Intelligence (AI) techniques such as fuzzy logic, Artificial Neural Networks and evolutionary algorithms for on-line control of power systems to overcome the problems associated with CPSS.

16.3.1 FUZZY LOGIC BASED APSS

The Fuzzy Logic Control (FLC) technique appears to be the most suitable one whenever a well-defined control objective cannot be specified, the system to be controlled is a complex one, or its exact mathematical model is not available. FLCs are robust and have relatively low computation requirements. This decreases the development time and cost.

PSS based on FLC is an active area and satisfactory results have been obtained [14, 15]. Although FLC introduces a good tool to deal with complicated, nonlinear and ill-defined systems, it has the following limitations:

	It is not always easy to construct a rule-base for FLC.

	The selection of membership functions and parameter tuning is a nontrivial task.

The above problems have been overcome using neural networks, self-organizing networks and genetic algorithms to find the rule sets, parameter tuning and optimum number of memberships [16]. However, the complexity of the above models often discourages the user from incorporating the above models in the FLC design process. This limits the application of FLC. Furthermore, the membership functions are decided off-line and then varied during the on-line operation. This sometimes negates the meaning of membership function in FLC.

16.3.2 NEURAL NETWORK BASED APSS

Artificial Neural Networks (ANNs) attempt to achieve good performance via dense interconnection of simple computational elements. ANN structure is based on the present understanding of biological nervous system. The ability to learn is one of the main features of the Neural Networks (NNs) [17]. ANNs can also provide, in principle, significant fault tolerance, since damage to a few links need not significantly impair the overall performance. The massive parallelism, natural fault tolerance and implicit programming of NN computing architectures suggest that they are good candidates for implementing real-time controllers for non-linear dynamic systems, such as power systems.

System identification and control using neural networks was proposed in a pioneering work [18]. Neural networks allow many of the ideas of system identification and adaptive control originally applied to linear and non-linear (or linearized) dynamic systems to be generalized, so as to cope with more severe non-linearities. In various adaptive control techniques (Figures 16.1 and 16.2), ANNs can replace both identifier and controller. Since ANNs have the capability to learn arbitrary non-linearity by adapting their weights they are good candidates for adaptive control applications.

Stability is another important issue in designing ANN based control schemes. Stability of neural network learning algorithm does not necessarily mean stability of the closed-loop system. A detailed review of the neuro-control techniques can be found in Ref. [19].

The disadvantages of the ANN control schemes are:

	The ‘black-box’ like description of the ANN. It is difficult for an outside user to understand the control process. This discourages the user from applying the control scheme that may yield satisfactory results but cannot describe how the control scheme is obtained.

	ANN may require a long training time to obtain the desired performance. The larger the size of the ANN and the more complicated the mapping to be performed, the longer the training time required.

	The selection of the number of hidden layers and the number of neurons in each layer is not a trivial task. It is, to a large extent, a process of trial and error.

To overcome these problems evolutionary algorithms have been proposed.

16.3.3 GENETIC ALGORITHM BASED APSS

Genetic Algorithms (GAs) are search algorithms, which are based on the genetic processes of biological evolution. GAs work with a population of individuals, each representing a possible solution to a given problem. Each individual is assigned a fitness score according to how well it solves the given problem. The highly adapted individuals will have relatively large number of off-springs. Poorly performing ones will produce few or even no off-springs at all. The combinations of selected individuals produce super-fit off-springs, whose fitness is greater than that of the parents. In this way, the individuals evolve to become more suited to their environment [20]. For these reasons, PSS based on GA is an active area and satisfactory results with off-line training of CPPs have been obtained [21, 22 and 23].

Although GA is a global optimization method it has the following limitations [20]:

	The optimal solution is determined by going through a number of generations. However, the number of generations necessary to ensure that the most-fit individual is found is a priori unknown.

	Since there are many parameters involved in the algorithm, there is no guarantee that the genetic algorithm can reach a near optimal solution. If the parameters are not properly selected, it can fall into a local optimal point depending on the topology of the search space.

16.4 SYSTEM CONFIGURATION AND MODEL

The system under study is a single-machine connected to a constant-voltage bus through a double circuit transmission line as shown in Figure 16.3. The sampling frequency is 20 Hz. The mathematical model and parameters of the generator, AVR and governor are given in Appendix A.

The generating unit is identified as a third order ARX discrete model of the form:

[image: Images]

where y(t), u(t) and ζ(t) are the system output, system input and white noise, respectively. A(z–1) and B(z–1) are polynomials in the backward shift operator z-1 defined as:

[image: Images]

[image: Images]

[image: Images]

FIGURE 16.3 System Model Used in the Simulation Studies.

The continual re-estimation of the plant model parameters, ai and bi, is called recursive parameter estimation such that, at the commencement of each sample interval, the estimations obtained during the previous recursion are made available and form a start-up point ready to be updated. A GA based on-line identifier is used for updating these parameter estimates.

The controller synthesis stage can take any one of a number of different forms dependent upon the specified requirements of the controller and overall control objective. A variable PS control algorithm is used.

16.4.1 GENETIC ALGORITHM BASED ON-LINE IDENTIFIER

Referring to Figure 16.2, new control is computed each sampling interval on the assumption that the updated system parameter estimate obtained by the system identifier is ‘accurate.’ This is carried out in the same way as an off-line procedure. However, in a self-tuning controller it is carried out recursively on-line. This means that while the model parameter estimates are good, the controller output is good, whereas if the model parameter estimates are bad then almost surely the computed control will be bad. This point is particularly important on controller start-up, in that the self-tuning control algorithm will work even if fairly arbitrary initial estimates are entered for the model parameter estimates. This may provide pretty “violent” control; however, the estimates will converge to their true values in a short-space of time.

Different identification quality criteria will result in different identification schemes. Selection of the identification algorithm mainly depends on the mathematical model used. Generally speaking, more sophisticated identification methods will require more computation time. For this reason, when designing an on-line identifier, a compromise must be made between the quality of identification and a reasonable computation time among all possible identification methods.

GA is used as it needs few computations and can be adapted to give better performance. Also, the number of generations needed for convergence is small which is suitable for online identification.

The proposed identifier uses a standard real-valued GA algorithm. The population size is chosen to consist of 99 individuals. The members of the new generation are chosen using the Stochastic Universal Sampling method [24]. At each generation, the member with the best fitness is compared with the best member of the previous population and the fittest to the current measurements is chosen as the best member of the current population.

Rewriting Eq. (2) in the following form suitable for identification:

[image: Images]

where θ(t) is the parameter vector and ϕ(t) is the measurement vector defined as

[image: Images]

[image: Images]

Then the predicted value ŷ(t) for the system output y(t) is given by

[image: Images]

The prediction error is defined as

[image: Images]

The GA objective function is chosen to minimize the square of the identification error defined in Eq. (9). In order to set a one-to-one relationship between the GA genes and the system parameters, each individual member of the GA population represents an assumption for the parameter vector θ(t) defined in Eq. (6).

Each member is ranked according to its fitness to the current measurements φ(t) using the Linear Rank-Based Fitness Assignment method [25]. The termination condition is satisfied when either the number of populations reaches its maximum value of 50 generations or the best member fitness is less than 10–6.

The identifier goes through two stages of training, namely off-line training and on-line update. In off-line training, first the identifier is trained using input-output data for a variety of operating conditions and disturbances. This data is obtained using the system shown in Figure 16.3. The disturbances applied are the voltage reference disturbances, input torque reference disturbances and three phase to ground fault. The training is iteratively done until a pre-specified tolerance of 10–4 is met.

After the off-line training, the identifier is further updated on-line. The population of the on-line identifier is selected mostly from best members of the off-line training cases. The rest of the population is selected randomly.

Since the system parameters are varying slowly, the number of members selected to undergo the mutation process is much larger than the number of members selected to undergo the recombination process. This process significantly reduces the time needed to converge making the GA algorithm suitable for the on-line update.

At each sampling instant, the input and the output of the generator are sampled and the input vector to the identifier is formed as in Eq. (7). The GA objective function is to minimize the mean-squared error between the plant output, i.e., desired output, and the identifier estimated output. This process is repeated every sampling period making the on-line update, which in turn results in an adaptive approach to identify a plant.

Typical curves for the convergence of the identified parameters when the system under study undergoes a three phase to ground short circuit fault in the middle of one of the transmission lines, cleared after 100 ms, are shown in Figure 16.4.

[image: Images]

FIGURE 16.4 On-Line Regression Parameters Variation During a Three-Phase to Ground Fault.

16.4.2 CONTROL STRATEGY

Once the system model parameters are identified, the control signal can be calculated based on the ARX discrete model given in Eq. (2). Using PS control algorithm, the characteristic polynomial of the closed-loop system is assumed to have the same form as that of the open-loop system. Also in the closed-loop, the open-loop poles are shifted radially towards the center of the unit circle in the z-plane by a factor α. If the pole-shift factor α is fixed, the PS control algorithm degenerates into a special case of the PA control algorithm. It is evident that the rule determining the pole-shifting factor is very important. For optimum performance α is modified on-line according to the operating conditions of the controlled system [26].

16.4.3 CONTROLLER START-UP

New control is computed each sampling interval on the assumption that the updated system parameter estimate obtained by the system identifier is ‘accurate.’ This is carried out in the same way as an off-line procedure. However, in a self-tuning controller it is carried out recursively on-line. This means that while the model parameter estimates are good, the controller output is good, whereas if the model parameter estimates are bad then almost surely the computed control will be bad. This point is particularly important on controller start-up, in that the self-tuning control algorithm will work even if fairly arbitrary initial estimates are entered for the model parameter estimates. This may provide pretty “violent” control; however, the estimates will converge to their true values in a short-space of time [27].

This particular point is considered one of the main advantages of the proposed controller as it already has a prior knowledge of the system parameters from the off-line training stored in its initial population which as a result would give a better start up than a controller that has a random estimation of the system parameters.

16.5 SIMULATION STUDIES

Performance of the APSS with the proposed GA-identifier is investigated on a synchronous generator connected to a constant voltage bus through two transmission lines (Figure 16.3). An IEEE Standard 421.5, Type ST1A AVR and Exciter Model [28] is used in simulation studies. The speed deviation (∆ω) is sampled for parameter identification and control computation. Sampling frequencies above 100 Hz provide no practical benefit and the performance deteriorates for sampling rates under 20 Hz. A sampling rate of 20 Hz is chosen to make sure there is enough time available for updating the online GA-identifier and to perform control computations. The absolute physical limits for the control output are ±0.1 pu.

16.5.1 NORMAL LOAD CONDITIONS

The identifier performance is tested with the system working under the full load condition of 0.8pu generated power with a 0.85 power factor lag. The system is subjected to a 0.1pu change in input mechanical power at 1 sec that is removed at 6 s followed by a 0.05pu change in reference voltage at 11 s and removed at 16 s. A three phase to ground fault is applied at 21 s at the middle of one of the transmission lines, the fault is cleared after 100 ms by opening the breakers at both ends of the faulted transmission line. The line is closed back at 26 s.

The speed change under (i) no PSS but with a third order identified model is shown in Figure 16.5, and (ii) PSS with a third-order identified model is shown in Figure 16.6. The results show a good tracking for low frequency oscillations using the GA-identifier for both open-loop and closed-loop control.

In order to verify these results analytically, the residual analysis is applied. Figures 16.7 and 16.8 show the validation results when residual analysis is applied to cases (i) and (ii) described above. The highlighted area denotes the confidence interval. It is clear that these figures give much more precise information about the model quality from an identification point of view.

The high values for the cross correlation during closed-loop control, Figure 16.8, are not due to any deficiency in the identification, but are due to the fact that the system input at time (t+τ) is dependent on the system output at time (t) through the controller transfer function. This creates a correlation between the identification error at time (t) and the system input at time (t+τ).

In order to test the controller as well, a test at full load conditions is conducted. Under these conditions, the CPSS parameters were tuned using the tuning procedure described in Ref. [22]. The parameters of the CPSS were then kept unchanged for all the tests. A disturbance of 0.1 pu step increase in input torque is applied at 1 s, then removed at 6 s. The power angle response of the APSS, CPSS and the open-loop, without stabilizer, are shown in Figure 16.9. It can be seen that CPSS and APSS damp out the oscillations very quickly. In addition, the CPSS and the APSS have a close system response statistics as the CPSS is optimized at this operating condition.

[image: Images]

FIGURE 16.5 (a) GA-identifier and plant responses to a 0.1pu step increase in input mechanical power (zoomed in (b)) followed by a 0.03pu step increase in reference voltage (zoomed in (c)) followed by a 3 phase to ground fault at the middle of one of the transmission lines (zoomed in (d)) followed by the re-closure of the faulted transmission line (zoomed in (e)) under full load condition on open-loop control.

[image: Images]

FIGURE 16.6 GA-identifier and plant responses to a 0.1pu step increase in input mechanical power (zoomed in (b)) followed by a 0.03pu step increase in reference voltage (zoomed in (c)) followed by a 3 phase to ground fault at the middle of one of the transmission lines (zoomed in (d)) followed by the re-closure of the faulted transmission line (zoomed in (e)) under full load condition on closed-loop control.

16.5.2 LIGHT LOAD CONDITIONS

In this test, the initial conditions are 0.4 pu power and 0.8 lagging pf. A disturbance of 0.2 pu step increase in input torque is applied at 1 s, then removed at 6 s. The disturbance is large enough to cause the system to operate in anon-linear region. System response for these non-linear conditions is shown in Figure 16.10.

[image: Images]

FIGURE 16.7 Model validation when the system is working at full load condition on open-loop control.

[image: Images]

FIGURE 16.8 Model validation when the system is working at full load condition on closed-loop control.

[image: Images]

FIGURE 16.9 System Response to a 0.1pu Step Increase in Torque and Return to Initial Conditions Under Full Load.

[image: Images]

FIGURE 16.10 Response to a 0.2pu Step Increase in Torque and Return to Initial Conditions Under Light Load.

16.5.3 LEADING POWER FACTOR LOAD CONDITIONS

The behavior of the proposed controller is also investigated under leading power factor condition with initial conditions of 0.7 pu power and 0.9 leading pf. It is a difficult situation for the controller because the stability margin is reduced. However, in order to absorb the capacitive charging current in a high voltage power system, it may become necessary to operate the generator at a leading power factor. It is, therefore, desirable that the controller be able to guarantee stable operation of the generator under leading power factor condition.

A disturbance of 0.05 pu step increase in input torque is applied at 1 s then removed at 11 s. Figure 16.11 shows that the oscillation of the system is damped out rapidly and demonstrates the effectiveness of the APSS to control the generator under leading power factor operating conditions.

Although the CPSS might have a better performance from the classical control theory point of view in terms of a quicker response shown as less rising time than the APSS, the APSS has a better performance from the power system point of view as it has much less over-shoot which results in a better damping of the system oscillation and a smoother transition to the new operating point thus improving the dynamic stability properties of the generators.

16.5.4 VOLTAGE REFERENCE CHANGE TEST

In this test, the operating condition is 0.7 pu power, 0.8 pf lagging and 1.092 pu terminal voltage. A 0.05pu decrease in voltage reference is applied at 1 s and removed after 10 s. The power angle and the generator terminal voltage are shown in Figures 16.12 and 16.13, respectively.

In the open loop system without any PSS the severity of the oscillations increases as the reference voltage drops since the system stability margin decreases as the reference voltage drops for a certain active power output.

Figure 16.12 shows that the oscillations are effectively damped by APSS without any over-shoot for both reference voltage increase and decrease which means that the system stability margin is enhanced by using APSS. Although the APSS has a good effect on damping the system oscillations, it has a detrimental effect on the terminal voltage, as seen in Figure 16.13, since it is preferable to have a quick change in terminal voltage.

[image: Images]

FIGURE 16.11 Response to a 0.05pu step increase in torque and return to initial conditions under leading power factor load.

[image: Images]

FIGURE 16.12 Response to a 0.05 pu Step Decrease in Reference Voltage and Return to Initial Conditions.

[image: Images]

FIGURE 16.13 Generator Terminal Voltage When a 0.05 pu Step Decrease in Reference Voltage is Applied and Return to Initial Conditions.

16.5.5 DYNAMIC STABILITY TEST

In this test the machine is initially working at 1 pu power at unity power factor and the terminal voltage is 1 pu. A ramp of 10–3 pu/s slope is added to the mechanical torque reference at 1 s. Figure 16.14 shows the speed deviation of the generator. It can be seen that the proposed APSS enhances the stability margin of the system. Using the APSS increases the maximum mechanical torque from 1.767 pu (with CPSS) to 1.784 pu.

The simulation results show that the proposed APSS has very good damping characteristics for different operating conditions and disturbances applied on the generating unit. The machine settles to the new operating conditions with very small overshoot and oscillation thus improving the dynamic stability properties of the generator. In addition, the GA population stores a priori knowledge because of off-line training. The genes are further updated on-line adaptively to track the different operating conditions and disturbances. Also, the PS-control uses the on-line updated ARX parameters to calculate the closed-loop poles of the system. The unstable poles are moved inside the unit circle in the z-plane and the control is calculated to optimize the output performance. The PS algorithm assures the stability of the closed-loop system.

[image: Images]

FIGURE 16.14 Generator speed deviation during the dynamic stability test.

16.6 LABORATORY IMPLEMENTATION

In Section 16.5 the theoretical model and simulation results using an APSS consisting of an on-line GA-Identifier and PS-Controller are discussed. The APSS showed enhanced performance compared to a CPSS because of its adaptive parameter tracking capability.

In the computer simulations, the power system was simulated by a set of differential equations, given in Appendix A, and the APSS algorithm was implemented as a sequential algorithm. The numerical model of the power system can only approximate the dynamics of a system to a certain extent. There is always some unexpected dynamic behavior inherent in a system that is not accounted for by any given mathematical model. There exist noise and saturation of elements as well as unexpected disturbances that cause the power system to operate under a continuous small perturbation. Generally, it is necessary to do some laboratory and/or field tests to further assess the evidence from the computer simulation before the installation of the proposed APSS on an actual system. This is especially true for a power system in which the damage could be expensive. For such a system, one solution is to build a scaled physical model of the target system. The scaled physical model is able to emulate the behavior of the actual power plant in the laboratory environment.

16.6.1 POWER SYSTEM MODEL

A physical model of a single machine infinite bus power system is available in the Power System Research Laboratory at the University of Calgary. It consists of a 3-phase, 3 kVA micro-synchronous generator connected to an infinite bus through a double circuit transmission line. An overall schematic diagram of this physical model is given in Figure 16.15. The major units of this model are the turbine model, the generator model, the transmission line model and the AVR.

The turbine is modeled by a 5.5 kW separately excited DC motor. The technical parameters of this DC motor are 220 V, 30 A, 1800 RPM, 7.5 hp.

The generator unit is modeled by a 3-phase, 3 kVA, 220 V micro synchronous generator. The name-plate details of this alternator are 220/127 V, 7.9 A, 3-phase, 60 Hz with a 0.8 power factor. The parameters of this machine are given in Appendix B.

[image: Images]

FIGURE 16.15 Structure of the power system model.

The field winding resistance of the synchronous machine, on a per unit basis, is much higher than that of the large machines to be simulated. This results in a comparatively low field transient time constant of 0.765 s, whereas the transient time constant of the large machines is in the neighborhood of 5 s. An electrical device called the Time Constant Regulator (TCR) is used to reduce the effective field resistance and thereby alter the field transient time to the order of that required for the simulation of large machines. With the TCR, the effective field time constant of the micro synchronous generator can be increased up to 10 s.

The transmission line is modeled by a lumped element transmission line. The physical model consists of six 50 km equivalent π sections and gives a frequency response that is close to the actual transmission line response up to 500 Hz. This model simulates the performance of a 300 km long 500 kV, double circuit transmission line connected to an infinite bus as shown in Figure 16.15.

A variety of disturbances can be applied to the system. Using the switch shown in the excitation circuit of the DC motor, Figure 16.15, a step change in input torque of the generator can be applied. Similarly, the input reference voltage of the AVR can be stepped down or up. In addition, different types of faults can be applied to simulate large disturbances. The faults are simulated using relays controlled by short circuit simulation logic (Figure 16.15). The operating condition of the generator, i.e., active power and power factor, can also be changed by changing the armature current of DC motor and terminal voltage of the generator, respectively.

16.6.2 REAL TIME CONTROL ENVIRONMENT

The APSS is implemented using Matlab© Simulink© Real Time Windows© toolbox based model to provide a convenient interface for the operator to monitor the controller variables and parameters. Input/Output (I/O) signals are transferred between the AVR and the controller model using an AT-MIO-16E-2 National Instrument (NI) DSP card through A/D channels.

16.6.3 EXPERIMENTAL STUDIES

Using the physical model of the power system (Figure 16.15) and the real time digital control environment, the experimental studies are conducted. For comparison purposes results using digital CPSS are also included. All experimental results are saved using the Matlab workspace and plotted later. In the graphs, in order to make the disturbances seem to happen at the same point of time for the different tests, the time axis is adjusted by artificial padding of steady state conditions.

16.6.3.1 Full Load Tests

The machine is delivering 0.85 pu power at a 0.9 lagging power factor. At this operating point, two tests are done, a step change in the torque reference and a step change in voltage reference.

In order to make a comparison between CPSS and the proposed APSS under different operating conditions, the parameters of the CPSS are tuned using the Ziegler-Nichols rules for tuning PID controllers [29] to give the best response for the operating conditions of this test. The parameters are given in Appendix B.

Figure 16.16 shows the system response when a 0.1 pu decrease in torque reference is applied at 2 s and removed at 10 s. It can be seen from the figure that the performance of both PSSs (the APSS and the CPSS) are close to each other as the CPSS is designed at this operating point.

[image: Images]

FIGURE 16.16 System response when subjected to a 0.1 pu step change in torque reference under full load condition.

The system response when a 0.1 pu decrease in voltage reference is applied at 2 s and removed at 10 s is shown in Figure 16.17. It can be seen that the APSS can damp the system oscillation while maintaining the terminal voltage at a reasonable value.

16.6.3.2 Light Load Tests

Three extra tests are applied when the machine was delivering 0.5 pu power at 0.84 lagging power factor.

Figure 16.18 shows the system response when a 0.2 pu step decrease in torque reference is applied at 2 s and removed at 10 s. It can be seen that the APSS can adapt itself for the new operating point and maintain a good damping of the system oscillations whereas the CPSS cannot maintain its previous good performance as it was designed for a different operating point.

[image: Images]

FIGURE 16.17 System response when subjected to a 0.05 pu step change in voltage reference under full load condition.

[image: Images]

FIGURE 16.18 System response when subjected to a 0.2 pu step change in torque reference under light load condition.

Figure 16.19 shows the system response when a 0.05 pu step decrease in voltage reference is applied at 2 s and removed at 10 s. The results show that both PSSs give a smooth transition to the new voltage settings.

Figure 16.20 shows the system response when a 3 phase to ground short circuit occurs in the middle of one of the transmission lines. The results show that not only the APSS is able to damp the system oscillation effectively but also it can adapt itself to the new operating condition.

16.6.3.3 Leading PF Load Tests

The last sets of tests are done when the machine was delivering a 0.6 pu power at 0.9 leading power factor.

During the first test the machine is subjected to a 0.1 pu step decrease in torque reference applied at 2 s and removed at 10 s. Figure 16.21 shows that the response of the APSS is slightly better than the CPSS as the machine is working close to its stability limit.

Figure 16.22 shows the system response during the second test when subjected to a 0.05 pu step decrease in voltage reference applied at 2 s and removed at 10 s. The APSS still can damp the system oscillation while maintaining a reasonable change in the terminal voltage.

[image: Images]

FIGURE 16.19 System response when subjected to a 0.05 pu step change in voltage reference under light load condition.

[image: Images]

FIGURE 16.20 System response when subjected to a 3 phase to ground short circuit in the middle of one of the transmission lines.

[image: Images]

FIGURE 16.21 System response when subjected to a 0.1 pu step change in torque reference under leading pf load condition.

[image: Images]

FIGURE 16.22 System response when subjected to a 0.05 pu step change in voltage reference under leading pf load condition.

16.6.4 SUMMARY

Implementation of APSS and CPSS in a laboratory environment and realtime test results on a physical model of power system are presented in this chapter. The APSS was developed as a Matlab© Simulink© Real Time Windows© model with a sample time of 50 ms. The proposed APSS has the following advantages:

	The GA-Identifier is not trained again on-line in the laboratory set-up. Instead, the GA parameters obtained in computer simulation studies in Section 1.5 are directly adopted here. This is favorable from the user point of view as it circumvents the need for on-line training whenever the APSS is used on a new generating unit.

	The identifier is further updated on-line every sampling interval to track the dynamic conditions. The PS-control uses the parameters obtained on-line from the identifiers to compute the control signal.

	Finally the experimental results with the proposed APSS are compared to those of the CPSS. It is demonstrated that the APSS exhibits good performance over a wide range of operating conditions without requiring any further tuning unlike the CPSS.

16.7 CONCLUSIONS

The importance of using PSS in power systems is discussed in this chapter. Due to the non-linear time varying characteristics of the power system, the conventional fixed-parameter controllers (CPSSs) pose operational challenges to the operator. The CPSSs have been found to be inadequate in performance at different operating conditions. The power quality and stability margin is sacrificed when the CPSS is not able to improve the performance at all operating conditions. In addition, the current interconnection requirements such as the need for increasing the line limits by using damping controllers on the system introduce difficulties in terms of retuning the existing PID type controller parameters whenever a new generating unit is added to the system.

This chapter focuses on the following primary issues:

	The first issue of investigation is how to develop a controller that can draw the attention of the control engineer. Control engineers are often faced with conflicting issues. The conventional PID controllers are inadequate in terms of performance and the required manual tuning of the parameters. At the same time they are faced with scenarios where the alternative AI control techniques are too complex to use in practice because of the unavailability of information related to their internal working. This chapter addresses this issue by attempting a compromise solution: use the GA for modeling the system dynamics, use the linear feedback controller (such as PS-Control) because of its simplicity and acceptance.

	The second issue focuses on how to use a GA to represent the dynamic characteristics of the power system. Although the techniques for online adaptation are becoming fairly standard, in a real power system environment the demands placed upon adaptive estimation and control techniques can be extremely severe. An ARX methodology is described for problem formulation. The parameters of the linear (PS) controller are obtained by minimizing the square of the identification error. It is possible to achieve the second objective by setting a one-to-one relationship between the GA-genes and the system identified parameters.

	The third issue focuses on computer simulation results to verify the performance of the APSS. Simulation results show that the proposed APSS is effective for damping the power system oscillations under different operating conditions.

	The final issue deals with real-time tests with APSS on a scaled physical model of a single-machine connected to an infinite-bus power system. The APSS is implemented using Matlab© Simulink© Real time windows© toolbox. The performance of the APSS suggests significant advantages over the CPSS: performance improvement and no requirement for parameter tuning.

KEYWORDS

	adaptive power system stabilizer

	genetic algorithm

	on-line system identification

	pole shifting control

	power system stabilizer

	self tuning control

REFERENCES

1. Larsen, E. V., & Swann, D. A. Applying Power System Stabilizers, Part I-III. IEEE Trans. on Power Apparatus and Systems, vol. PAS-100, June 1981, pp. 3017–3046.

2. De-Mello, F. P., & Concordia, C. A. Concepts of Synchronous Machine Stability as Affected by Excitation Control. IEEE Trans. on Power Apparatus and Systems, vol. PAS-88, no. 4, April 1969, pp. 316–329.

3. Farmer, R. W. State-of-the-art Technique for System Stabilizer Tuning. IEEE Trans. on Power Apparatus and Systems, vol. PAS-102, 1983, pp. 699–709.

4. Doi, A., & Abe, S. Coordinated Synthesis of Power System Stabilizer in Multi-Machine Power System. IEEE Trans. on Power Apparatus and Systems, vol. PAS-103, no. 6, June 1984, pp. 1473–1479.

5. Chan, W. C., & Hsu, Y. Y. An Optimal Variable Structure Stabilizer for Power System Stabilization. IEEE Trans. on Power Apparatus and Systems, vol. PAS-102, 1983, pp. 1738–1746.

6. Pierre, D. A. A Perspective on Adaptive Control of Power Systems. IEEE Trans. on Power Systems, vol. PWRS-2, no. 5, Sep. 1987, pp. 387–396.

7. Astrom, K. J., Wittenmark, B. Adaptive Control; Addison Wesley Publishing Company, Reading, MA, 1995.

8. Landau, I. D., Lozano, R., & M’Saad, M. Adaptive Control; Springer, London, 1995.

9. Ljung, L. System Identification: Theory for the User; Prentice Hall PTR, Upper Saddle River, New Jersey, 1999.

10. Clark, D. W., & Gawthrop, P. J. A Self-Tuning Controller. IEE Proceedings, 1975, vol. 122, pp. 929–934.

11. Wittenmark, B., & Astrom, K. J. Practical Issues in the Implementation of Self-Tuning Control. Automatica, vol. 20, no. 5, 1984, pp. 595–605.

12. Borrisson, U., & Syding, R. Self-Tuning Control of an Ore Crusher. Automatica, vol. 12, 1976, pp. 1–7.

13. Malik, O. P., Chen, G. P., Hope, G. S., Qin, Y. H., & Xu, G. Y. An Adaptive Self-Optimizing Pole-Shifting Control Algorithm. IEE Proceedings, Part-D, vol. 139, no. 5, 1992, pp. 429–438.

14. El-Metwally, K. A., & Malik, O. P. Fuzzy Logic Power System Stabilizer. IEE Proceedings on Generation, Transmission and Distribution, vol. 143, no. 3, 1996, pp. 263–268.

15. Hariri, A., & Malik, O. P. “Adaptive Network Based Fuzzy Logic Power System Stabilizer,” IEEE WESCANEX 95 Proceedings, May 1995, pp. 111–116.

16. Hariri, A., & Malik, O. P. A Fuzzy Logic Based Power System Stabilizer with Learning Ability. IEEE Trans. on Energy Conversion, vol. 11, no. 4, Dec. 1996, pp. 721–727.

17. Irwin, G. W., Warwick, K., & Hunt, K. J. Neural Network Applications in Control; The institution of Electrical Engineers, Herts, U.K., 1995.

18. Zhang, Y., Chen, G. P., Malik, O. P., & Hope, G. S. An Artificial Neural Network Based Adaptive Power System Stabilizer. IEEE Trans. on Energy Conversion, vol. 8, no. 1, 1993, pp. 71–77.

19. Hariri, A., & Malik, O. P. Self-Learning Adaptive Network Based Fuzzy Logic Power System Stabilizer, Proceedings of IEEE Int. Conf. On Intelligent Systems Applications to Power Systems, Florida, vol. 1, no. 4, Jan. 28–Feb. 2 1996, pp. 299–303.

20. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison Wesley Publishing Company, 1989.

21. Andreoiu, A., & Bhattacharya, K. Lyapunov’s Method Based Genetic Algorithm for Multi-Machine PSS Tuning, IEEE Power Engineering Society Winter Meeting, vol. 2, Jan. 27–31, 2002, pp. 1495–1500.

22. Huang, Tsong-Liang; Chang, Chih-Han; Lee, Ju-Lin; Wang, & Hui-Mei. Design of Sliding Mode Power System Stabilizer via Genetic Algorithm, IEEE International Symposium on Computational Intelligence in Robotics and Automation, vol. 2, July 16–20, 2003, pp. 515–520.

23. Yamaguchi, H., Mizutani, Y., Magatani, K., Leelajindakrairerk, M., Okabe, T., Kinoshita, Y., & Aoki, H. A Design Method of Multi-Input PSS by Using Auto-Variable Search Space Type High Speed Genetic Algorithm. IEEE Porto Power Tech Proceedings, vol. 2, Sep. 10–13, 2001, pp. 532–538.

24. Hussein, Wael, & Malik, O.P. GA-identifier and predictive controller for multi-machine power system, IEEE Power India Conference, New Delhi, June 2006.

25. Bäck, T., & Hoffmeister, F. Extended Selection Mechanisms in Genetic Algorithms, Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, California, USA: Morgan Kaufmann Publishers, 1991, pp. 92–99.

26. Hussein, Wael, Studies on a Duplicate Adaptive PSS. M.Sc. Thesis, The University of Calgary, Calgary, Alberta, Canada, 2002.

27. Hussein, Wael, & Malik, O. P. Study of System performance with Duplicate Adaptive Power System Stabilizer. Electric Power Components and Systems, vol. 31, No. 9, September 2003, pp. 899–912.

28. IEEE Excitation System Model Working Group, “Excitation System Models for Power System Stability Studies,” IEEE Standard P421.5-1992, 1992.

29. Ogata, K. Modern Control Engineering, 4th Ed. Prentice-Hall, Englewood Cliffs, NJ, 2000.

30. Eitzmann, M. Excitation System tuning and Testing for Increased Power System Stability, GE Energy BROC10605, 2004.

APPENDIX A SINGLE MACHINE POWER SYSTEM

The structural diagram of the single machine infinite bus power system model is shown in Figure 16.3. The generating unit is modeled by seven first order differential equations. The signal to be controlled is the power angle, denoted by δ. The PSS has access to the rotor speed, denoted by ω, or to the generator electric power, denoted by Pe, to produce its control signal, denoted by Upss, which is applied at the input-summing junction of the Automatic Voltage Regulator (AVR) circuit.

A.1 GENERATOR MODEL

The generator is modeled by seven first order differential equations

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

where, ωo: Nominal rotational speed, H: Inertia constant, Kd: damping coefficient, ra: Armature resistance, rf: Field resistance, rkd: Direct-axis resistance, and rkq: Quadrature-axis resistance.

The generator parameters are given in Table A.1.

All resistances and reactances are in pu and time constants in seconds

A.2 GOVERNOR MODEL

The governor used in the system has the following transfer function

[image: Images]

The parameters used in the simulation studies are given in Table A.2.

TABLE A.1 Generator Parameters Used in Simulation

	ra = 0.007

	H = 3.46

	rf = 0.00089

	rkd = 0.023

	rkq = 0.023

	Xd = 1.24

	Xf = 1.33

	Xkd = 1.15

	Xmd = 1.126

	Xq = 0.743

	Xkq = 0.652

	Xmq = 0.626

	Kd = −0.0027

	

	

	

TABLE A.2 Governor Parameters Used in Simulation.

	a = –0.001328

	b = –0.17

	Tg = 0.25

A.3 AVR AND EXCITER MODELS

The AVR and exciter combination used in the system are from the IEEE Standard P421.5–1992, Type ST1A shown in Figure A.1 [28]. The parameter values are given in Table A.3.

The AVR control action is determined by the lead lag compensator with time constants TB, TC, TB1 and TC1, and by the voltage regulator of proportional integral action of time constant TA and gain KA. The local control loop is closed by the proportional derivative action block time constant TF and gain KF.

Excitation systems with high gain and fast response times greatly aid transient stability but at the same time tend to reduce small signal stability [30]. Consequently, to increase the system stability an additional controller is needed which is called the power system stabilizer.

A.4 IEEE PSS1A CPSS

The CPSS used in the system is from the IEEE Standard P421.5–1992, PSS1A, shown in Figure A.2. The transfer function of this PSS consists of a low pass input filter with T6 time constant, followed by a high pass filter, a derivative type regulator block with time constant T5 and stabilizer gain K5. In the third block, a second order torsion filter with A1 and A2 parameters is presented. Lastly, a lead-lag compensator with time constants T1–T4 is shown in the last block. The lead-lag block provides the appropriate phase-lead characteristics to compensate the phase lag between the exciter input and the generator electrical torque. The parameters used in the simulation studies are given in Table A.4.

[image: Images]

FIGURE A.1 AVR and Excitation Model Type ST1A, IEEE Standard P421.5-1992.

TABLE A.3 AVR and Exciter Parameters Used in Simulation

[image: Images]

[image: Images]

FIGURE A.2 IEEE PSS1A PSS.

APPENDIX B PHYSICAL MODEL OF POWER SYSTEM

The parameters of the micro-alternator are summarized in Table B.1.

Each transmission line consists of six 50 km equivalent π sections. For each section, the parameters are summarized in Table B.2.

The parameters of the CPSS are summarized in Table B.3.

TABLE A.4 CPSS Parameters Used in Simulation

	T1 = 0.2

	T2 = 0.05

	T3 = 0.2

	T4 = 0.05

	T5 = 2.5

	T6 = 0.01

	A1 = 0.0

	A2 = 0.0

	VSTMIN = -0.1

	VSTMAX = 0.1

	Ks = 0.11

	

TABLE B.1 Micro Alternator Parameters (All Values Are in pu)

	xd = 1.20

	xq = 1.20

	rd = 0.0026

	rq = 0.0026

	xmd = 1.129

	xmq = 1.129

	xkd = 1.25

	xkq = 1.25

	rkd = 0.0083

	rkq = 0.0083

	H = 4.75

	

	xf = 1.27

	rf = 0.000747

	

	

TABLE B.2 Transmission Line Parameters (All Values Are in pu)

	R = 0.036

	X = 0.0706

	B = 18.779

TABLE B.3 CPSS Parameters (All Time Constants Are in Seconds)

	Ks = 0.5

	T1 = 0.065

	T2 = 0.08

	

	T3 = 0.065

	T4 = 0.08

CHAPTER 17

APPLIED EVOLUTIONARY COMPUTATION IN FIRE SAFETY UPGRADING

IORDANIS A. NAZIRIS,1 NIKOS D. LAGAROS,2 and KYRIAKOS PAPAIOANNOU3

1PhD Candidate, Laboratory of Building Construction and Building Physics, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124, Greece

2Assistant Professor, Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens, 15780, Greece

3Professor Emeritus, Laboratory of Building Construction and Building Physics, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124, Greece

CONTENTS

17.1 Introduction

17.2 Fire Protection Measures

17.3 Evolutionary Computation

17.4 Analytic Hierarchy Process

17.5 Budget Allocation for Fire Safety Upgrading of Group of Structures

17.5.1 Problem Overview

17.5.2 Model Formulation

17.5.3 Mount Athos Monasteries

17.5.4 Fund Allocation for Mount Athos Monasteries

17.6 Fire Safety Upgrading of a Single Building

17.6.1 Problem Overview

17.6.2 Model Formulation

17.6.3 Simonopetra Monastery

17.6.4 Maximizing Fire Safety

17.7 Conclusions

Acknowledgments

Keywords

References

17.1 INTRODUCTION

Preserving cultural heritage is compulsory, since historic structures, monuments and works of art are unique and therefore irreplaceable. A major threat for historic buildings is fire hazard; many examples have been reported in the past, where fire caused significant damages to priceless monuments of world cultural heritage [1]. Until recently many reconstruction, materials and fire protection techniques reflected the norms of the time performed, since historic buildings preservation is a relatively modern concept. However, many of these buildings exhibit special features that are not consistent with the requirements of modern fire protection codes. Therefore, fire protection becomes a difficult task that should be based on modern effective techniques, while history and culture should be respected and fire safety interventions should lead to satisfactory safety levels [2]. However, the necessity to preserve the authenticity of historic structures usually leads to expensive interventions, due to the application of special materials and advanced fire protection measures. The main problem is that in such fire safety upgrade actions the available budget is limited and therefore has to be optimally allocated in order to maximize the level of fire safety upgrade.

During the last three decades many numerical methods have been developed to meet the demands of engineering design optimization. These methods can be classified in two categories, gradient-based and derivative-free ones. Mathematical programming methods are among the most popular methods of the first category. Metaheuristic algorithms are nature-inspired or bio-inspired as they have been developed based on processes found in nature like the successful evolutionary behavior of natural systems and these methods belong to the derivative-free category of methods. Metaheuristic algorithms include genetic algorithms [3], simulated annealing [4], particle swarm optimization (PSO) [5], ant colony algorithm [6], artificial bee colony algorithm [7], harmony search [8], cuckoo search algorithm [9], firefly algorithm [10], bat algorithm [11], krill herd [12], and many others. Evolutionary computation algorithms are the most widely used class of metaheuristic algorithms and in particular evolutionary programming [13], genetic algorithms [3, 14], evolution strategies [15, 16] and genetic programming [17]. These methods have been found to be efficient in a variety of engineering problems, both for single and multiobjective formulations. This is the reason that evolutionary computation techniques were adopted in this chapter.

Fire protecting a historic structure can lead in decision-making problems (e.g., selection between two different fire protection measures). The analytic hierarchy process (AHP) is a structured technique used in multiple-criteria decision analysis. It was developed by Thomas L. Saaty in the 1970 s [18, 19] and has been extensively studied and refined since then, having a wide range of applications [20, 21 and 22]. AHP provides the framework for structuring a decision problem, representing and quantifying its multiple elements, relating those elements to overall goals, and evaluating alternative possible solutions. Specifically the decision problem is decomposed into a hierarchy of sub-problems, each of which can be considered independently. Once the levels of the hierarchy have been identified, the various elements in each level are specified and evaluated with respect to their impact on the elements of the immediate above level. These evaluations are converted to numerical values that can be processed and compared over the entire range of the problem. In the final step of the process, numerical priorities are calculated for each of the decision alternatives.

In this area, methods for multi objective decision making in fire protection of historic buildings has been extensively used. More particular AHP has been incorporated in many previous works in order to facilitate the reduction of fire risk in cultural heritage premises. Shi et al. [23] proposed an improved AHP, based on the coherence of conventional AHP and the Fault Tree Analysis (FTA), which was applied at the Olympic venues in China. Shen et al. [24] discussed the factors of apartment building fire hazards, and used the Analytic Hierarchy Process (AHP) to determine the weights of all fire hazard factors in order to provide a reference for public fire safety assessment. Fera and MacChiaroli [25] using different techniques from the decision support tools, such as the analytic hierarchy process, and through the use of a fire dynamics simulator, suggested a new priority in the classification of the fire-fighting systems in tunnels. Vedrevu et al. [26] designed a participatory multicriteria decision making approach involving Analytical Hierarchy Process to arrive at a decision matrix that identified the important causative factors of fires. Results from this study were quite useful in identifying potential “hotspots” of fire risk, where forest fire protection measures can be taken in advance.

A holistic preservation approach of historic buildings should include, among others, as an inherent part the concern for suitable fire protection design. Such actions, however, are frequently subjected to stringent budget restrictions and specific architectural constraints that lead designers to face challenging decision-making type of problems. Moreover, historic structures, monuments and works of art are subjected to more strict protection policy than modern structures. In this context, the subject of this chapter is composed by two parts where evolutionary computation is applied to real world applications of fire safety upgrading. In the first part, the objective is to provide an integrated systemic scheme, which embodies innovative tools and new technologies for the solution of the budget allocation problem for the fire protection of historic buildings. In particular, we propose a generic selection and resource allocation (S&RA) model for fire safety upgrading of historic buildings; the efficiency of this model is presented for the case of the Mount Athos monasteries. In the second part, we present an AHP hierarchy combined with S&RA for fire safety upgrading of historic buildings; the effectiveness of the proposed approach is assessed for the case of Simonos Petra monastery.

17.2 FIRE PROTECTION MEASURES

The fire safety design can incorporate a number of the available fire protection measures, depending on the special characteristics of the building and the priorities of the designer. For the needs of the present work the measures that can be used in order to improve the fire protection level of a building are subdivided into the following 16 (16) groups. Each one of these can be fully or partially implemented, or be totally absent, depending on the desirable goals, available budget, possible restrictions, etc.: (i) compartmentation, (ii) fire resistance of structural elements, (iii) control of fire load, (iv) materials (reaction to fire), (v) control of fire spread outside the building, (vi) design of means of escape, (vii) signs and safety lighting, (viii) access of the fire brigade, (ix) detection and alarm, (x) suppression and extinguishing, (xi) smoke control systems, (xii) training of the personnel, (xiii) fire drills – emergency planning, (xiv) management of fire safety, (xv) maintenance of fire safety system, and (xvi) salvage operation.

The existing situation can be characterized by the fact that each class of fire safety measures may already be implemented to a certain degree, which defines the present fire safety level of the building under investigation. The cost of the above measures, in order to be considered, include: capital, manpower-installation, annual running, maintenance and replacement costs. The estimation of the proposed measures’ cost is not an easy task and has to be performed for each new project, since it is highly dependent on the particular characteristics of every project.

17.3 EVOLUTIONARY COMPUTATION

Storn and Price [27] proposed a floating-point evolutionary algorithm for global optimization and named it differential evolution (DE), by implementing a special kind operator in order to create offsprings from parent vectors. Several variants of DE have been proposed so far [28]. According to the variant implemented in the current study, a donor vector vi,g+1 is generated first:

[image: Images]

Integers r1, r2 and r3 are chosen randomly from the interval [1,NP] while i≠ r1, r2 and r3. NP is the population size, F is a real constant value, called the mutation factor. In the next step the crossover operator is applied by generating the trial vector ui,g+1 which is defined from the elements of si,g or vi,g+1 with probability CR:

[image: Images]

where randji ~ U[0,1], Irand is a random integer from [1,2,...,n] that ensures that vi,g+1 ≠ si,g. The last step of the generation procedure is the implementation of the selection operator where the vector si,g, is compared to the trial vector ui,g+1:

[image: Images]

where F(s) is the objective function to be optimized, while without loss of generality the implementation described in Eq. (3) corresponds to maximization.

17.4 ANALYTIC HIERARCHY PROCESS

Analytic hierarchy process (AHP) is a widely used model for dealing with multi-criteria decision making (MCDM) problems, and represents a sub-discipline of operations research which refers to making decisions in the presence of multiple, usually conflicting, criteria. AHP provides a comprehensive and rational framework able to formulate a decision problem, for representing and quantifying its elements, for relating those elements to overall goals, and for evaluating alternative solutions. The basic concept of the hierarchical approach is the decomposition of the problem into multiple levels of hierarchy, usually four or five. The development of a hierarchical approach to fire ranking was initially undertaken at the University of Edinburgh [29, 30 and 31], in order to facilitate the fire risk assessment on one hand and the fire safety upgrade on the other hand.

Usually there is a need for more than two levels in the hierarchy of fire safety. In this paper four different “decision making levels” have been used (see Figure 17.1): (i) Policy (PO) level which represents the general plan for overall fire safety; (ii) Objectives (OB) level which are specific fire safety goals to be achieved; (iii) Strategies (ST) level which are independent fire safety alternatives, each of which contributes wholly or partially to the fulfillment of the fire safety objectives; and (iv) Measures (M), which are components of the fire risk that are determined by direct or indirect measure or estimate.

Once the levels of hierarchy have been identified the corresponding parameters in each level have to be specified. These parameters have to be specified for every type of building, especially those of the lower levels. Each one of these parameters has to be expressed numerically in terms of the parameters in the immediate upper level using a weight, which is expressed in a pre-defined scale (in this paper from 1 to 4). The weight coefficients, which are provided by experts, are normalized in order to receive the percentage contribution of a parameter to the parameters of the above level. The parameters of the lowest level are also given an “implementation grade” depending on the extend of implementation of each one (in this paper from 0 to 1). The sum of the products of each parameter with the corresponding parameters of the above level results to a factor, which describes the fire safety level and takes values in the range of 0 to 1 (the larger this factor is, the better in terms of fire safety). In this context, according to the AHP model the fire safety index (FSI) is calculated as follows:

[image: Images]

FIGURE 17.1 Typical form of AHP network with 4 levels, like the one used in the present study.

[image: Images]

where, OB(i) is the weight coefficient of objective OBi in terms of the policy PO, ST(I,j) is the weight coefficient of strategy STj in terms of the objective OBi, M(j,k) is the weight coefficient of measure Mk in terms of the strategy STj and G(k) is the implementation grade of measure Mk. The following expressions have to be fulfilled:

[image: Images]

In the same context cost is assessed as follows:

[image: Images]

where G(k) is the Implementation grade of measure Mk, C(k) is the Cost per square meter of measure Mk, and A is the area of the building under investigation.

17.5 BUDGET ALLOCATION FOR FIRE SAFETY UPGRADING OF GROUP OF STRUCTURES

17.5.1 PROBLEM OVERVIEW

According to the proposed S&RA model each historic building i is characterized with the implementation level vector si,initial that denotes the type and implementation grade of the fire protection measures selected. Moreover, each building is assumed to be ranked with reference to its population, the building itself and the significance of its contents. The administration of a group of historic buildings wishes to upgrade their fire safety level to the highest possible level on the basis of existing conditions, building importance and under the available budget constraint; thus, the main objective is to optimally allocate the available budget to the historic buildings for achieving the best overall fire safety upgrade of the group.

17.5.2 MODEL FORMULATION

Optimal fund allocation in this context is defined as follows:

[image: Images]

subject to

[image: Images]

where N is the total number of historic buildings, i represents a historic building (where, i ∈ [1, N]), σpop,I is the importance factor of historic building i related to its population, σbuild,I is the importance factor of historic building i related to its building value, σcont,I is the importance factor of historic building i related to its contents value, supgrade,I denotes the anticipated (post-upgrade) fire safety level of building i, sinitial,i denotes the current fire safety level of building i, Agei is the age of historic building i, Sizei is the size of historic building i, Disti is the distance of historic building i from the nearest fire service station, Extrai represents special unquantifiable factors related to fire safety, K is the cost for upgrading historic building i from level sinitial,i to level supgrade,I and BTarget is the available budget.

The aim of the objective function given in Eq. (7) is to maximize the fire safety upgrade level of historic buildings; a premium is given to the historic buildings with increased importance rating. The budget constraint given in Eq. (8) implies that cost K per historic building is a function of its characteristics (age, size, distance from fire service station and extra factors) as well as its current and anticipated fire safety level. It should be noted that the aforementioned model is a variant of the well-known knapsack problem [32].

17.5.3 MOUNT ATHOS MONASTERIES

Mount Athos is called a mountain and peninsula situated in Macedonia, Greece. Also known as the Holy Mountain, it is a world heritage site and autonomous polity into the Hellenic Republic, hosting 20 (20) monasteries (see Figure 17.2) under the direct jurisdiction of the Patriarch of Constantinople. Athonite monasteries possess immense deposits of invaluable medieval art treasures, including icons, liturgical vestments and objects (crosses, chalices, etc.), codices and other Christian texts, imperial chryso-bulls, holy relics etc. Buildings themselves, their contents referred above, as well as the environment consist a triplet that has to be protected against all possible hazards, including fire, which is one of the major and permanent threats that could cause multiple irreversible damages in many levels, not only economically.

[image: Images]

FIGURE 17.2 Map of Mount Athos.

17.5.4 FUND ALLOCATION FOR MOUNT ATHOS MONASTERIES

In this work, we apply the S&RA model to the case of the 20 monasteries of Mount Athos, each one composed of different characteristics that affect the cost of the possible fire protection measures that can be applied to achieve the desirable fire safety upgrading. Namely these parameters are age, size, distance from Karyes and a special extra index that represents some additional specificities, such as: existence of a multi-story building into the territory of one monastery, distance from the forest, complexity of the monastery’s layout, etc. The objective function to be maximized is related to three importance factors that characterize each monastery, setting a hierarchy on the priority for application of the fire protection measures. Since human life is always of major significance to be protected, the first importance factor is related to the population of the monastery, including both monks and visitors. The second importance factor is connected to the building value, and for the needs of the present work depends on the Athonite hierarchy, while the third importance factor is connected to the value of the contents of the monastery. All parameters mentioned above for the 20 monasteries are provided in Table 17.1. It should be stated that some of these data are based on observations and personal judgment and may defer from the real situation, since it is extremely difficult to accurately assess some parameters, especially those related to the cultural value.

In this part of the chapter, we apply the proposed S&RA model to the case of the Mount Athos (shown in Figure 17.2) and particularly to its 20 monasteries, each one featured by different age, size and distance from the capital of Mount Athos Karyes (where the a fire service station is situated) along with additional special characteristics. In particular, eight different test cases are examined with varying target budget referring to the available budget for fire protection measures upgrading, aiming to achieve the highest fire safety level for all monasteries: 10.0, 40.0, 160.0 and 640.0 million given in monetary units (MU, corresponding to Dollars or Euros). The parameters used for the implementation of DE algorithm for solving the following budget allocation problem are as follows: the population size NP = 110, the probability CR = 0.125, the constant F = 0.340, while the control variable λ = 0.733 based on the parameter study presented in Ref. [33].

The budget requirements for upgrading the i-th monastery from its existing fire safety level to different (higher) levels are given in Table 17.1. The estimation of the cost was achieved combining the fire protection measures given in previous section of this chapter. In order to take into account the additional cost requirements imposed by the monastery age for the i-th monastery parameter σage is used. This parameter corresponds to the ratio of the budget for upgrading, to specific fire safety level, a monastery of the same size and type to that of the same monastery constructed today. Further, in order to consider the requirements for upgrading monasteries of different parameter σsize is used; σsize corresponds to the ratio of the budget for upgrading a monastery, to specific fire safety level, to that of the lower size category monastery. Additionally, the distance from Karyes which is the Capital of Mount Athos, where a fire service station is situated, is taken into account with σdist, which expresses the additional cost imposed by the access time of the fire brigade, corresponding to the ratio of the budget for upgrading a monastery, to specific fire safety level, to that of the nearest distance category monastery. Finally some other unquantifiable factors or characteristics of monasteries, which have a significant positive or negative impact on their fire safety level and are not included in the previously mentioned parameters, are represented by σextra, a parameter which penalizes some special requirements of certain monasteries (e.g., the fact that Monastery of Simonos Petras is a multi-story building imposes additional cost for the implementation of specific fire safety measures, compared to a single story one), or accounts for some benefit factors of other monasteries in order to reduce the total cost (e.g., some monasteries have simple architectural forms/features, that reduces the application cost of specific fire protection measures). Further information about the parameters described above can be found in Ref. [33].

TABLE 17.1 Monasteries of Mount Athos-Characteristics

[image: Images]

The list of the 20 monasteries along with the age level, size, distance from Karyes, additional factors, population importance factor (related to the number of monks and visitors), building importance (related to the building fabric value), contents importance (related to the value of the artifacts) and the initial fire safety level of the monasteries is provided in Table 17.1.

Figure 17.3 depicts the solutions obtained for the optimal fund allocation problem for the four target budgets examined in this work (10.0, 40.0, 160 and 640.0 million MUs). The figure presents the fire safety level of the 20 monasteries before (initial fire safety level, before upgrading) and after the fire safety upgrading (final fire safety level). It can be seen that for the maximum target budget of 640.0 million MUs the highest fire safety level is achieved for all monasteries, while worth mentioning that in all test cases the available budget is allocated satisfying the constraint considered.

[image: Images]

FIGURE 17.3 Fire safety levels for different target budgets (in MU).

17.6 FIRE SAFETY UPGRADING OF A SINGLE BUILDING

17.6.1 PROBLEM OVERVIEW

According to the proposed model, the fire safety level of the building under investigation is expressed by means of the fire safety index. FSI depends on the implementation grade of the fire protection measures selected and ranges between zero (0.0), for total absence of all measures, to monad (1.0), for the case where all measures all fully implemented in the building. The contribution of each fire protection measure to FSI is determined through the AHP network, described in previous section, according to the selected weights that connect the elements of the adjacent levels. The administration of the specific building wishes to upgrade the fire safety level of it to the highest possible level on the basis of the proposed fire protection measures under the available budget constraint; thus, the main objective is to optimally allocate the available budget to the fire protection measures for best overall fire safety upgrade of the building.

17.6.2 MODEL FORMULATION

The optimal fund allocation is defined as a nonlinear programming problem formulated as follows:

[image: Images]

In the AHP framework described previously the following criteria and parameters where adopted to describe the fire protection problem of a historic building. On top of the hierarchy, as the main policy, is placed the reduction of the fire risk, representing the fire risk index. On second level the objectives that were chosen are: OB1 – protection of the people (occupants and visitors), OB2 – protection of the building fabric, OB3 – protection of the cultural contents, OB4 – protection of the environment, OB5 – protection of the firemen, and OB6 – safeguard continuity of activity. On next level, which represents the strategies, the following seven parameters were selected: ST1 – reduce the probability of fire start, ST2 – limit fire development in the fire compartment, ST3 – limit fire propagation out of the fire compartment. ST4 – facilitate egress, ST5 – facilitate fire fighting and rescue operations, ST6 – limit the effects of fire products, and ST7 – protection from forest fires. Finally on last level, where the most specific parameters are placed, the following 16 measures were taken into account: Μ1 – compartmentation, Μ2 – fire resistance of structural elements, Μ3 – control of fire load, Μ4 – materials (reaction to fire), Μ5 – control of fire spread outside the building, Μ6 – design of means of escape, Μ7 – signs and safety lighting, Μ8 – access of the fire brigade, Μ9 – detection and alarm, Μ10 – suppression and extinguishing, Μ11 – smoke control systems, Μ12 – training of the personnel, Μ13 – fire drills and emergency planning, Μ14 – management of fire safety, Μ15 – maintenance of fire safety system, and Μ16 – salvage operation. The weight coefficients of the above elements, required form the AHP network as it was described previously, can be found in Ref. [33].

17.6.3 SIMONOPETRA MONASTERY

The monastery of Simonos Petra, also known as Simonopetra, is probably the most impressive monastery of Mount Athos, founded on a 333 m height steep rock, located in the south-western side of Holy Mountain (see Figure 17.4). The main building complex gives the impression of hovering between sky and earth, and makes its view staggering. Constructed of unreinforced bearing masonry, with the walls on its foundation reaching thickness of 2.0 m, it is a wondrous architectural achievement, described as the “most bold construction of the peninsula” by the Greek Ministry of Culture. The 7.000 sq.m. complex has seven floors with many wooden balconies. The monastery was protected from several invaders due to its inaccessible position, but many times was almost destroyed by several fires such as the ones in 1580, 1622 and 1891 when the Catholicon and the library were burnt down. After the fire of 1891 the monastery was rebuilt to its current form. The last disaster that Simonopetra suffered from, occurred in the summer of 1990, when a big forest fire approached the building complex causing several damages.

Among the monastery’s heirlooms, the most important is a piece of Saviour’s Cross, holy reliquaries and others. The library, after the last fire, possesses only a few modern manuscripts and books. Currently the monastery is inhabited by a brotherhood of approximately 60 monks, which originates from the Holy Monastery of Great Meteoron in Meteora as in 1973 the Athonite community headed by Archimandrite Emilianos decided to repopulate the almost abandoned monastery. Moreover the monastery can accommodate about 30 visitors.

[image: Images]

FIGURE 17.4 The main building complex of Simonopetra Monastery.

17.6.4 MAXIMIZING FIRE SAFETY

In this part of the chapter, we apply the proposed AHP model to the case of the monastery of Simonos Petra (Simonopetra) of Mount Athos. In particular, the formulation described by Eq. (9) is used in order to maximize fire safety level for a given budget. Fire safety level is expressed in terms of FSI, which is an indicator of the fire risk for the building under investigation. FSI directly expresses the policy which is on the top of AHP hierarchy described in previous section of the present study and depends on the implementation grades G(k) of the fire protection measures that are adopted, the approximate cost of which is given in Table 17.2. In fact, and referring to the present situation, most of these measures are partially implemented up to a specific grade, which is given also in Table 17.2 and thus the budget available is invested on the extension of their implementation, which drives to the overall fire safety upgrade of the building.

For comparative reasons two different formulations with reference to the constraint have been implemented while for both ones the same method has been adopted for handling the constraint. In particular, in constraint type 1 (C.t.1) the following inequality constraint has been considered:

[image: Images]

while in the constraint type 2 (C.t.2) the equality constraint, given in the formulation of Eq. (9) is transformed into an inequality one according to the following implementation:

[image: Images]

The simple yet effective, multiple linear segment penalty function [34] is used in this study for handling the constraints. According to this technique if no violation is detected, then no penalty is imposed on the objective function. If any of the constraints is violated, a penalty, relative to the maximum degree of constraints’ violation, is applied to the objective function.

Table 17.2 summarizes the solutions of the proposed formulation for the 1st constraint type. Five different test cases are examined with varying target budget referring to the available budget for the fire protection measures upgrade: 300,000, 600,000, 900,000, 1,200,000 and 1,500,000 Monetary Units (MU). Figure 17.5 depict the percentage distribution of the total budget on the measures available for 2 out of total 5 cases examined, in particular the solutions for the cases of 600,000 and 1,200,000 MU and only for the 1st constraint type.

TABLE 17.2 Optimized Implementation Grades for the 16 Fire Protection Measures for 5 Different Budgets Available

[image: Images]

[image: Images]

FIGURE 17.5 Percentage distribution of the total budget of (a) 600,000 MU and (b) 1,200,000 MU for C.t.1.

17.7 CONCLUSIONS

In this chapter two real world applications of evolutionary computation are presented in the framework of fire safety upgrading. In particular, we present an evolutionary computation based optimization approach for solving the budget allocation problem of the fire safety upgrading of a group of buildings. The proposed generic selection and resource allocation (S&RA) model was successfully applied to a real world case, the fire protection measures upgrade of the 20 monasteries of the Mount Athos, yielding feasible fund allocation solutions for different budget scenarios. Our proposed approach can successfully lead to optimal selection and resource allocation for any network of buildings.

In the second part, we solve the fire safety-upgrading problem for a single building, which is formulated as a multi-criteria decision making problem based on analytic hierarchy process by means of evolutionary computation. The AHP network, which was adopted for the problem incorporates four hierarchy levels, while the metaheuristic optimization based approach for solving the S&RA model involves differential evolution search algorithms. The proposed model was successfully applied to a real world case, the fire protection measures upgrade of the Mount Athos monastery of Simonos Petra, and can be well implemented in any project that is related to the fire protection design of a building. It should be noted that in both models the results obtained correspond to the indicative parameter values considered and can significantly differ depending to the designer’s judgment and priorities.

ACKNOWLEDGMENTS

The first author acknowledges the financial support of the “Anastasios Anastasiou” endowment.

KEYWORDS

	analytic hierarchy process

	cultural heritage

	evolutionary computation

	fire safety

	selection and resource allocation

REFERENCES

1. Vandevelde, P., & Streuve, E., Fire Risk Evaluation To European Cultural Heritage (FiRE-TECH), Project Proceedings, Laboratorium voor Aanwending der Brandstoffen en Warmteoverdacht, Department of Flow, Heat and Combustion Mechanics, Gent, 2004.

2. Watts, J. M., Jr. Fire Protection Performance Evaluation for Historic Buildings, J. Fire Prot. Eng., 2001, Vol. 11, 197–208.

3. Holland, J., Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, Michigan, 1975.

4. Kirkpatrick, S., Jr. Gelatt, C. D., & Vecchi, M. P., Optimization by simulated annealing. Science, 1983, 220, 671–680.

5. Kennedy, J., & Eberhart, R., Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks. IV, 1995.

6. Dorigo, M., & Stützle, T., Ant Colony Optimization, The MIT Press, 2004.

7. Bozorg Haddad, O., Afshar, A., & Mariño, M. A., Honey bees mating optimization algorithm: a new heuristic approach for engineering optimization, Proceeding of the First International Conference on Modelling, Simulation and Applied Optimization (ICMSA0/05), 2005.

8. Geem, Z. W., Kim, J. H., & Loganathan, G. V., A new heuristic optimization algorithm: harmony search. Simulation, 2001, 76, 60–68.

9. Yang, X. S., & Deb, S., Engineering optimization by cuckoo search, Int. J. Math. Model. Num. Optim., 2010, 1(4), 330–343.

10. Yang, X. S., Nature-Inspired Metaheuristic Algorithms. Frome: Luniver Press, 2008.

11. Yang, X. S., & Gandomi, A. H., Bat Algorithm: A novel approach for global engineering optimization, Eng. Computation, 2012, 29(5).

12. Gandomi, A. H., & Alavi, A. H., Krill Herd: A New Bio-Inspired Optimization Algorithm, Commun. Nonlinear Sci., 2012.

13. Fogel, D. B., Evolving artificial intelligence. PhD thesis, University of California, San Diego, 1992.

14. Goldberg, D. E., Genetic Algorithms in Search Optimization And Machine Learning. Addison Wesley, 1989.

15. Rechenberg, I., Evolution strategy: optimization of technical systems according to the principles of biological evolution. (in German), Frommann-Holzboog, Stuttgart, 1973.

16. Schwefel, H. P., Numerical optimization for computer models. Wiley & Sons, Chichester, UK, 1981.

17. Koza, J. R., Genetic Programming/On the Programming of Computers by Means of Natural Selection, The MIT Press, 1992.

18. Saaty, T. L., A Scaling Method for Priorities in Hierarchical Structures, J. Math. Psychol., 1977, 15: 57–68.

19. Saaty T. L., The Analytic Hierarchy Process, McGraw Hill International, New York, NY, U.S.A., 1980.

20. Forman, Ernest H., & Saul I. Gass. “The analytical hierarchy process – an exposition.” Oper. Research, July 2001, 49 (4): 469–487.

21. Omkarprasad Vaidya, S., & Sushil Kumar “Analytic hierarchy process: An overview of applications.” Eur. J. Oper. Research, 2006, 169, 1–29.

22. Thomas Saaty, L., & Luis G. Vargas “Models, Methods, Concepts & Applications of the Analytic Hierarchy Process” (International Series in Operations Research & Management Science) by ISBN-13: 978–1461435969 ISBN-10: 146143596X Edition: 2nd ed., 2012.

23. Shi, L., Zhang, R., Xie, Q., & Fu, L., Improving analytic hierarchy process applied to fire risk analysis of public building, Chinese Sci. Bull., 2009, 54 (8), pp. 1442–1450.

24. Shen, T.-I., Kao, S.-F., Wu, Y.-S., Huang, C.-J., Chang, K.-Y., & Chang, C.-H., Study on fire hazard factors of apartment building using analytic hierarchy process, J. Applied Fire Sci., 2009, 19 (3), pp. 265–274.

25. Fera, M., & MacChiaroli, R., Use of analytic hierarchy process and fire dynamics simulator to assess the fire protection systems in a tunnel on fire, I. J. R. A. M., 2010, 14 (6), pp. 504–529.

26. Vadrevu, K. P., Eaturu, A., & Badarinath, K. V. S., Fire risk evaluation using multicriteria analysis—a case study, Environ. Monit. Assess., 2010, 166 (1–4), pp. 223–239.

27. Storn, R., & Price, K., Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, J. Global Optim., Kluwer Academic Publishers, 1997, Vol. 11 341–359.

28. Das, S., & Suganthan, P. N., Differential evolution: A survey of the state-of-the-art. IEEE T. Evolut. Comput., 2011, 15(1), 4–31.

29. Marchant, E. W., “Fire Safety Evaluation (Points) Scheme for Patient Areas Within Hospitals,” Department of Fire Safety Engineering, University of Edinburgh, 1982.

30. Marchant, E. W., Fire Safety Engineering – A Quantified Analysis, Fire Prevention, June 1988, No. 210, pp. 34–38.

31. Stollard, P., “The Development of a Points Scheme to Assess Fire Safety in Hospitals,” Fire Safety J., 1984, Vol. 7, No. 2, pp. 145–153.

32. Winston, W., Operations Research: Applications and Algorithms, 4th edition, Duxbury Press, Belmont, CA, 2003.

33. Naziris, I. A., Optimum Performance-Based Fire Protection of Historic Buildings, PhD Thesis, Aristotle University of Thessaloniki, Greece, 2016.

34. Lagaros, N. D., & Papadrakakis, M., Applied soft computing for optimum design of structures, Struct. Multidiscip. O., 2012, 45, 787–799.

CHAPTER 18

ELITIST MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS FOR VOLTAGE AND REACTIVE POWER OPTIMIZATION IN POWER SYSTEMS

S. B. D. V. P. S. ANAUTH, and ROBERT T. F. AH KING

Department of Electrical and Electronic Engineering, University of Mauritius, Reduit 80837, Mauritius

CONTENTS

Abstract

18.1 Introduction

18.2 Problem Formulation

18.2.1 Objective Functions

18.2.1.1 Real Power Loss

18.2.1.2 Voltage Deviation

18.2.1.3 Investment Cost

18.2.2 Constraints

18.2.2.1 Equality Constraints

18.2.2.2 Inequality Constraints

18.2.3 Multiobjective Formulation

18.3 The Bacterial Foraging Algorithm

18.3.1 Chemotaxis

18.3.2 Swarming

18.3.3 Reproduction

18.3.4 Elimination – Dispersal

18.4 The Proposed Multiobjective Bacterial Foraging Algorithm

18.4.1 Description of MOBFA

18.4.2 Constraint Handling

18.4.3 Adaptive Chemotaxis in MOBFA

18.5 Simulation Results and Discussion

18.5.1 IEEE 30-Bus Test System

18.5.2 Settings of the Proposed Approach

18.5.2.1 Case 1: Ploss and Vd Minimization

18.5.2.2 Case 2: Ploss and Ic Minimization

18.5.2.3 Case 3: Ploss, Vd and Ic minimization

18.6 Performance Analysis

18.6.1 Generation Distance and Spread Metrics

18.6.2 Statistical Analysis

18.6.3 Computational Complexity

18.7 Conclusions

Keywords

References

ABSTRACT

This study focuses on the development and comparative application of elitist multiobjective evolutionary algorithms (MOEAs) for voltage and reactive power optimization in power systems. A multiobjective Bacterial Foraging Optimization Algorithm (MOBFA) has been developed based on the natural foraging behavior of the Escherichia coli bacteria and its performance compared with two contemporary stochastic optimization techniques; an improved Strength Pareto Evolutionary Algorithm (SPEA2) and the Nondominated Sorting Genetic Algorithm-II (NSGA-II).

Simulation results considering different combination of the objective functions on a sample test power system, showed that the three elitist MOEAs were able to locate a whole set of well distributed Pareto-optimal solutions with good diversity in a single run. Fuzzy set theory was successfully applied to select a best compromise operating point from the set of solutions obtained.

A statistical analysis revealed that SPEA2 achieved the best convergence and diversity of solutions among the three MOEAs under study. However, the adaptive chemotaxis foraging behavior modeled in MOBFA allowed the algorithm to refine its search and explore the fitness space more efficiently in lesser computational time thereby producing more extended trade-off solutions curve than NSGA-II and SPEA2.

The proposed MOBFA was found to be a viable tool for handling constrained and conflicting multiobjective optimization problems and decision making, and can be easily applied to any other practical situations where computation cost is crucial.

18.1 INTRODUCTION

This study focuses on the development and comparative application of MOEAs for voltage and reactive power optimization in power systems. Voltage and reactive power control are crucial for power systems to improve their return on investment and to maintain a secure voltage profile while operating closer to their operational limits. This can be achieved by optimal adjustments in voltage controllers such as the field excitation of generators, switchable VAR sources and transformer tap settings.

To achieve a correct balance between conflicting economic and voltage security concerns in power systems and address the main weaknesses of the MOEA in [1], Anauth and Ah King [2] initially applied two stochastic optimization techniques; SPEA2 developed by Zitzler et al. [3] and the NSGA-II developed by Deb et al. [4], to locate a whole set of well distributed Pareto-optimal solutions with good diversity in a single run.

Jeyadevi et al. [5] presented a modified NSGA-II by incorporating controlled elitism and dynamic crowding distance strategies in NSGA-II to multiobjective optimal reactive power dispatch problem by minimizing real power loss and maximizing the system voltage stability. TOPSIS technique is used to determine best compromise solution from the obtained nondominated solutions. Karush–Kuhn–Tucker conditions are applied on the obtained nondominated solutions to verify optimality. Ramesh et al. [6] applied a modified Nondominated Sorting Genetic Algorithm-II to multiobjective Reactive Power Planning problem where three objectives considered are minimization of combined operating and VAR allocation cost, bus voltage profile improvement and voltage stability enhancement. A dynamic crowding distance procedure is implemented in NSGA-II to maintain good diversity in nondominated solutions.

A hybrid fuzzy multiobjective evolutionary algorithm based approach for solving optimal reactive power dispatch considering voltage stability was presented by Saraswat and Saini [7]. A fuzzy logic controller is used to vary dynamically the crossover and mutation probabilities. Based on expert knowledge, the fuzzy logic controller enhances the overall stochastic search capability for generating better pareto-optimal solution. A recent approach using Multi Objective Differential Evolution (MODE) algorithm to solve the Voltage Stability Constrained Reactive Power Planning problem has been proposed by Roselyn et al. [8] where in addition to the minimization of total cost of energy loss and reactive power production cost of capacitors, maximization of voltage stability margin is also considered. MODE emphasizes the non dominated solutions and simultaneously maintains diversity in the non dominated solutions.

Besides, a Bacterial Foraging Optimization approach to multiobjective optimization has been proposed by Niu et al. [9]. Their idea is based on the integration of health sorting approach and pareto dominance mechanism to improve the search to the Pareto-optimal set. Keeping a certain unfeasible border solutions based on a given probability helped to improve the diversity of individuals.

In this chapter, a MOBFA has been developed based on the natural foraging behavior of the Escherichia coli (E.coli) bacteria present in human intestines. The objective of such organism is to minimize its energy consumption when searching food while considering its physiological and environmental constraints. In accordance to Darwin’s theory of evolution by natural selection, bacteria having efficient foraging strategies will survive to pass on their genes to the next generation. These biological concepts and evolutionary principles were modeled in the MOBFA such that it can be applied for optimizing the stated conflicting objectives in power systems. A statistical analysis will be done to evaluate the performance of the proposed MOBFA with NSGA-II and SPEA2 when applied to the voltage and reactive power optimization problem in power systems. Fuzzy set theory [10] will be applied to extract a best compromise operating point from the set of solutions obtained with the three MOEAs under study.

18.2 PROBLEM FORMULATION

The voltage and reactive power optimization problem can be formulated as a nonlinear constrained multiobjective optimization problem where real power loss, the load bus voltage deviations and the allocation cost of additional VAR sources are to be minimized simultaneously.

18.2.1 OBJECTIVE FUNCTIONS

18.2.1.1 Real Power Loss

The real power loss in transmission lines can be expressed as follows [1]:

[image: Images]

where Nbr is the set of numbers of transmission lines in the system; gk is the conductance of the kth transmission line between busses i and j; vi ∠ δi is the voltage at bus i.

18.2.1.2 Voltage Deviation

This objective is to minimize the sum of the magnitude of the load bus voltage deviations that can be expressed as follows [1]:

[image: Images]

where NPQ is the set of numbers of load busses.

18.2.1.3 Investment Cost

The allocation cost of additional VAR sources consists of a fixed installment cost and a variable purchase cost [11] as follows:

[image: Images]

where NC is the set of numbers of load busses for the installation of compensators; Cfi is the fixed installation cost of the compensator at bus i ($); Cci is the per unit cost of the compensator at bus i ($/MVAR); Qci is the compensation at bus i (MVAR).

18.2.2 CONSTRAINTS

The optimization problem is bounded are discussed in the following subsections.

18.2.2.1 Equality Constraints

The following constraints represent typical load flow equations, which are solved by the Newton-Raphson load flow method:

[image: Images]

[image: Images]

where NB is the set of numbers of total busses; NB-1 is the set of numbers of total busses excluding the slack bus; PG and QG are the generator real and reactive power, respectively; PD and QD are the load real and reactive power, respectively; Gij and Bij are the transfer conductance and susceptance between bus i and bus j, respectively.

18.2.2.2 Inequality Constraints

The control and state variables are bounded as follows:

Control Variables

a) Generator voltage limits

[image: Images]

b) Transformer tap setting limits

[image: Images]

c) Reactive power injection limits

[image: Images]

State Variables

a) Reactive power generation limits

[image: Images]

b) Load bus voltage limits

[image: Images]

c) Transmission line flow limit

[image: Images]

18.2.3 MULTIOBJECTIVE FORMULATION

The voltage and reactive power optimization problem can be formulated mathematically as a nonlinear constrained multiobjective optimization problem by aggregating the objective functions and constraints as follows:

[image: Images]

[image: Images]

[image: Images]

where

xT = [QGii∈NG, VLj j∈NPQ, Skk∈Nbr] is the vector of dependent state variables and

yT = [VGi i∈NG, Tj j∈NT, QCn n∈NC] is the vector of control variables.

18.3 THE BACTERIAL FORAGING ALGORITHM

Passino [12] proposed a single objective evolutionary algorithm known as the Bacterial Foraging Optimization Algorithm (BFOA), which is based on the social foraging behavior of the E.coli bacteria present in the human intestines. The foraging strategy of the E.coli bacteria is governed by four processes, namely – chemotaxis, swarming, reproduction and elimination dispersal. These processes have been analyzed in this section before being adapted to MOBFA for multiobjective optimization.

18.3.1 CHEMOTAXIS

Chemotaxis is the foraging behavior that has been formulated as an optimization problem whereby the E.coli bacterium travels up a positive nutrient gradient, always seeking higher nutrient concentrations and avoiding noxious substances. The movement of the ith bacterium at the jth chemotactic, kth reproductive, and lth elimination dispersal step can be mathematically expressed as follows [12]

[image: Images]

The scalar quantity C(i) indicates the size of the step taken in the random direction specified by the unit length vector. Δ(i) If the cost at θ i (j + 1,k,l) is better than that at the preceding position θ i (j,k,l), then the bacterium will keep taking successive steps of size C(i) in the same direction Δ(i) otherwise it will tumble in another direction.

18.3.2 SWARMING

Swarming makes the bacteria gather together and move as concentric patterns of swarms. When an E.coli bacterium has searched the optimum nutrient gradient, it releases an attractant to signal other nearby bacteria to swarm together. The cost of a position is affected by the cell-to-cell signaling effects Jcc(θ,P (j,k,l)) in E.coli swarms as follows [12]:

[image: Images]

[image: Images]

where S is the bacteria population size; p is number of control variables; θi is a point in the p-dimensional search space for the ith bacterium; dattract, wattract, hrepellent and wrepellent determine the intensity of the inter cell attractive and repulsive signals.

18.3.3 REPRODUCTION

The population is sorted in ascending order of fitness or health of each bacterium. The lower half least healthy bacteria die and are replaced when the remaining healthiest ones split into two identical ones, such that each child bacteria undergoes chemotaxis from the same position. Passino [12] defined the health of a bacterium as the cost accumulated during the chemotactic steps. However, if the health is defined like this, reproduction may unknowingly eliminate the best bacterium. A better process has been implemented in MOBFA whereby the minimum cost found by the bacterium during the chemotactic steps is taken as its health.

18.3.4 ELIMINATION – DISPERSAL

Some bacteria are simply dispersed to a random location on the optimization domain, with a very small probability, after some reproduction steps to prevent them from being trapped in local minima. Elimination-dispersal events may help chemotaxis if ever the dispersed bacteria find unexplored higher nutrient concentrations in the search place. However, in most of the cases the chemotactic process is affected due to loss of good solutions. To address the main problem of the single objective BFOA proposed by Passino in Ref. [12], an elitism-preservation mechanism must be implemented in MOBFA to preserve the healthiest bacteria.

18.4 THE PROPOSED MULTIOBJECTIVE BACTERIAL FORAGING ALGORITHM

18.4.1 DESCRIPTION OF MOBFA

Step 1: A random population PO is created by initializing the parameters

S, p, Nf, Nch, NS, Ned, Ped, C(i)(i = 1, 2, ..., S)and θi

where S is the bacteria population; p is number of control variables; Nf is the number of objective functions; Nch is the number of chemotactic steps; Ns is the swim length; Ned is the number of elimination-dispersal events; Ped is the probability of elimination-dispersal events; C(i) is the size of the step taken in the random direction specified by the tumble; θi is a point in the p-dimensional search space for the ith bacterium.

Step 2: Elimination-dispersal loop. l = l + 1.

Step 3: Chemotaxis loop. j = j + 1.

a) For (i = 1,2,...,S), take a chemotactic step for the ith bacterium as follows:

b) Compute fitness function Ji(f,j,l) using (16) for all objective functions (f = 1,2,...,Nf).

c) Let Jlast(f) = Ji(f,j,l) since a better cost may be found during the chemtotaxis.

d) Tumble: Generate a random vector Δ(i)∈ℜp with each element Δn (i) ∈ [−1, 1] (n = 1,2,...,p).

e) Move with a step of size C(i) in the direction of the tumble for the ith bacterium using (15).

[image: Images]

f) Compute Ji (f,j,l) for all objective functions (f = 1,2,...,Nf).

g) Swim.

 (i) Let m = 0 (counter for the swim length).

(ii) While m < Ns (limit the length of swim).

1) Let m = m + 1.

2) If Ji (f, j + 1, l) ≤d (if dominated), let Jlast(f) = Ji (f, j + 1, l) and allow the bacterium to further swim as follows

[image: Images]

and compute the new Ji (f,j + 1,l) for this θi (j + 1,l)as in sub step (f).

3) Else let m = NS to prevent the bacterium from swimming further.

h) If i ≠ S, go to sub step (b) to process the next bacterium.

Step 4: Nondominated sorting to select the better-ranked solutions for the next iteration.

a) Combine the new solutions with the old ones in the mating pool as follows:

[image: Images]

b) Perform a nondominated sorting to R and identify the different fronts: Ft,t = 1,2,...,etc.

c) A new population Pj+1 = Ø of size S is created and the counter t is set to 1. Until |Pj+1| + |Ft| < S, perform Pj+1 = Pj+1 ∪ Ft and t = t + 1

d) Perform the crowding-sort (Ft, <c) procedure as outlined in [4] and include the most widely spread (S − |Pj+1|) solutions by using the crowding distance values in the sorted Ft to Pj+1.

Step 5: If j < Nch, go to step 3 to continue the chemotaxis.

Step 6: Elimination-dispersal: For each i (i = 1,2,...,S), the ith bacterium is dispersed to a random location on the optimization domain with a small probability Ped.

Step 7: Evolution: The step size C(i) of the ith bacterium is decreased as follows:

[image: Images]

Step 8: If l < Ned, then go to step 2, otherwise end.

18.4.2 CONSTRAINT HANDLING

To handle the constrained multiobjective optimization problem using the proposed MOBFA, this study adopts the constrain-domination principle proposed by Deb et al. [4]. In this approach, two solutions i and j are picked from the population and the better one is chosen. Since, each solution can be either feasible or infeasible the following constrain-domination principle can be used effectively to discriminate between solutions. The solution i is said to constrained-dominate a solution j if any of the following conditions is true [4]:

1) Solution i is feasible and solution j is not.

2) Solutions i and j are both infeasible, but solution i has a smaller overall constraint violation.

3) Solutions i and j are feasible and solution i dominates solution j.

In case both solutions are feasible, the following domination principle is applied [4]:

The solution i is said to dominate the solution j if both of the following conditions are true:

1) Solution i is no worse than solution j in all objective functions.

2) Solution i is better than j in at least one objective function.

However, when the tournament takes place between two infeasible solutions, the infeasible solution with a smaller constraint violation is chosen.

18.4.3 ADAPTIVE CHEMOTAXIS IN MOBFA

Bacterial foraging with a fixed step size C(i) suffers from two main problems:

1) If the step size is too high, then the bacteria will reach near the true Pareto-optimal front quickly but they will not be able to swim further to improve the accuracy of the solutions.

2) If the step size is too small, then the bacteria will take many chemo-tactic steps to reach the true Pareto-optimal front. However, if the bacteria find a local Pareto-optimal front, they may get trapped into it as the small step size will prevent them from deviating or tumbling too much in order to escape the local optima.

The step size of each bacterium is the main influential factor for both the speed and accuracy of convergence towards the true Pareto-optimal front. The solution to this problem is to use an adaptive chemotactic behavior during the optimization process. In the initial phase, the bacteria are allowed to search the whole solution space with a large step size. During the next elimination-dispersal stage, the step size is decreased to limit the search such that the healthier (nondominated) bacteria can exploit the rich nutrient regions. This guides the search towards the true Pareto-optimal front with increasing accuracy. The proposed MOBFA uses an initial step size of 0.1, which is decreased during the four elimination and dispersal events, as shown in Figure 18.1. The computational flow of the developed MOBFA is depicted in Figure 18.2.

18.5 SIMULATION RESULTS AND DISCUSSION

18.5.1 IEEE 30-BUS TEST SYSTEM

The three elitist MOEAs were applied to the standard IEEE 30-bus test system [2] [13]. The system consists of 6 generator buses, 24 load buses, 41 transmission lines of which four branches are in-phase transformers with assumed tapping ranges of 10% and 2 installed shunt capacitor banks at bus 10 and bus 24 [2]. The candidate buses for reactive power compensation are 10, 12, 15, 17, 20, 21, 23, 24 and 29 [2]. The lower voltage magnitude limits at all buses are 0.95 p.u while the upper limits are 1.1 p.u for PV buses and 1.05 p.u for load buses and the slack bus [2].

18.5.2 SETTINGS OF THE PROPOSED APPROACH

All three evolutionary algorithms considered in this study were coded in C language on an Intel Core 2 Duo 2.80 GHz processor having 1GB of RAM [2]. The population size of the MOEAs was chosen as 100. The number of chemotactic steps, number of elimination-dispersal steps and the elimination-dispersal probability in MOBFA were set to 125, 4, and 0.1, respectively. The maximum length of swim of the bacteria was set to 2. The crossover and mutation probabilities in NGSA-II and SPEA2 were set to 0.99 and 0.01, respectively [2]. The distribution index for crossover and mutation were set at 5 and 50, respectively and the simulations were run for 500 generations [2]. The annual energy loss cost (Ec) and total cost (Tc) were computed using the cost settings given in Ref. [11].

[image: Images]

FIGURE 18.1 Evolution in Chemotaxis.

[image: Images]

FIGURE 18.2 Computational flow of the developed MOBFA.

18.5.2.1 Case 1: Ploss and Vd Minimization

The first study is a bi-objective optimization case whereby the real power loss and the load bus voltage deviations were simultaneously minimized using the three MOEAs. All three MOEAs were able to locate well-distributed Pareto-optimal solutions as shown in Figures 18.3, 18.4, and 18.5. The results display the conflicting nature of the two objective functions with operation cost increasing considerably when trying to secure the voltage profile of the power system. This is because conduction loss can be reduced significantly by increasing generator voltage [2]. The ability of the proposed MOBFA and the other MOEAs to produce a set of Pareto-optimal solutions make them an excellent tool for decision making and selecting an operating point with such conflicting objective functions in power systems.

The extreme best solutions obtained using the proposed MOBFA are compared to that of SPEA [1], NSGA-II [2] and SPEA2 [2] in Table 18.1. A best compromise operating point for each MOEA was also extracted using the Fuzzy set theory in [10]. The results show that MOBFA, NSGA-II and SPEA2 produced better solutions than that obtained using SPEA [1]. SPEA does not guarantee the preservation of the boundary solutions with its clustering based diversity preservation technique and is easily outperformed by MOBFA, NSGA-II and SPEA2. The proposed MOBFA and the two other MOEAs implement elitism to prevent the loss of good solutions after the chemotactic and variation operators are applied in the evolutionary algorithms, respectively.

Moreover, MOBFA and SPEA2 produced more extended trade-off solutions than NSGA-II. Hence, MOBFA and SPEA2 could refine their search by exploring better nondominated solutions at the extremes of the trade-off curves than NSGA-II. SPEA2 produced both the best real power loss and the best voltage deviation solutions.

For comparison purposes, the problem was treated as a single objective optimization problem by combining the two objective functions using the weighted-sum or parameterized method as in Eq. (22).

[image: Images]

FIGURE 18.3 Pareto-optimal front for Ploss and Vd using MOBFA.

[image: Images]

FIGURE 18.4 Pareto-optimal front for Ploss and Vd using NSGA-II.

[image: Images]

FIGURE 18.5 Pareto-optimal front for Ploss and Vd using SPEA2.

[image: Images]

where w is a weighting factor. The objective function values are normalized to avoid the unnecessary use of a scaling factor as in [1]. The set of nondominated solutions was obtained using real Genetic Algorithm (GA) by linearly varying w from 0 to 1 with an increment of 0.01 for each run. The population size was chosen as 100 and a maximum iteration of 500 was used. The Pareto-optimal front obtained is shown in Figure 18.6.

It can be seen that the proposed MOBFA and the other MOEAs can explore the solution space and find trade-offs between multiple conflicting objectives in one single run while a single objective algorithm such as GA requires multiple runs. The diversity of the solutions obtained using the weighted-sum approach is worst when compared to those obtained using MOEAs. This is because MOEAs use diversity preservation mechanisms and Pareto-dominance based fitness assignment strategies to achieve better diversity and spread of solutions along the Pareto-optimal front.

TABLE 18.1 Best Solutions for Ploss and Vd Minimization

[image: Images]

[image: Images]

FIGURE 18.6 Pareto-optimal front for weighted-sum approach using GA.

18.5.2.2 Case 2: Ploss and Ic Minimization

The second study is a bi-objective optimization case whereby the real power loss and the investment cost were simultaneously minimized using the three MOEAs in order to assess the cost effectiveness of the approach. The trade-off curves obtained are shown in Figures 18.7, 18.8, and 18.9. Table 18.2 shows that the results obtained using MOBFA, NSGA-II and SPEA2 are better than that obtained using EP in [11]. Hence, it is better to minimize the real power loss and investment cost simultaneously with the proposed MOBFA and the other MOEAs rather than combining them linearly and using single objective algorithm [2].

Figure 18.7 shows that MOBFA produced a more extended trade-off curve compared to that obtained by NSGA-II and SPEA2 in Figures 18.8 and 18.9, respectively. The results show that MOBFA produced both the best real power loss and the best investment cost while SPEA2 produced the best total cost due to the excellent diversity of its solutions but failed to span its search over the entire trade-off curve as compared to MOBFA.

The results display the conflicting nature of the two objective functions with investment cost increasing considerably when trying to reduce the operational energy lost cost on real power loss. This is because the reactive power compensation brought by additional VAR sources improves the system power factor and reduces the reactive component of the current, thus reducing the Ohmic energy losses [2].

[image: Images]

FIGURE 18.7 Pareto-optimal front for Ploss and Ic using MOBFA.

[image: Images]

FIGURE 18.8 Pareto-optimal front for Ploss and Ic using NSGA-II.

[image: Images]

FIGURE 18.9 Pareto-optimal front for Ploss and Ic using SPEA2.

TABLE 18.2 Best Solutions for Ploss and Vd Minimization

[image: Images]

18.5.2.3 Case 3: Ploss, Vd and Ic minimization

The third study is a tri-objective optimization case whereby all the three conflicting objective functions were simultaneously minimized using the three MOEAs. Figures 18.10, 18.11 and Table 18.3 show that SPEA2 provided better diversity of Pareto-optimal solutions than MOBFA and NSGA-II and also found the best total cost solution. This is because SPEA2 considers density information during fitness assignment to achieve a better spread of solutions [2]. However, the proposed MOBFA was able to refine its search to find both the best voltage deviation and the best investment cost while NSGA-II could only produce the best real power loss.

18.6 PERFORMANCE ANALYSIS

The two main goals in a multiobjective optimization are to minimize the generation distance of the solutions to the true Pareto-optimal set and to maximize the diversity of the solutions along the Pareto-front [2]. The following performance metrics evaluate the performance of the algorithms based on a reference Pareto-optimal front obtained by selecting the best nondominated solutions from the combined Pareto-optimal solutions of the three MOEAs obtained for the 21 independent runs [2].

18.6.1 GENERATION DISTANCE AND SPREAD METRICS

The generation distance metric [14] evaluates the closeness of the nondominated set obtained by an algorithm to the reference Pareto-optimal front while the spread metric [4] evaluates how evenly the nondominated solutions are distributed in the objective space [2]. Table 18.4 shows that performance of the proposed MOBFA was almost comparable to that of NSGA-II. Moreover, SPEA2 produces better convergence and diversity of solutions than MOBFA and NSGA-II as supplemented by the smallest generation distance and spread metrics.

18.6.2 STATISTICAL ANALYSIS

A statistical analysis was performed using the Mostats5 toolbox [15], which superimposes and samples the attainment surfaces of the three MOEAs throughout the fitness space to determine the percentage by which each algorithm outperforms the others [2].

[image: Images]

FIGURE 18.10 Pareto-optimal solutions for Ploss,Vd and Ic minimization. The upper diagonal plots are for SPEA2 and lower diagonal plots are for MOBFA.

The results in Table 18.5 show that SPEA2 was unbeaten in 75% of the fitness space covered by the three algorithms while in 52.5% of the fitness space it outperformed MOBFA and NSGA-II. The proposed MOBFA is the second best as it outperformed NSGA-II and SPEA2 in 20% of the fitness space and was unbeaten 32.5% of the fitness space. NSGA-II did well in part of the fitness space but could not outperform MOBFA and SPEA2 at the 95% confidence level.

[image: Images]

FIGURE 18.11 Pareto-optimal solutions for Ploss, Vd and Ic minimization. The upper diagonal plots are for SPEA2 and lower diagonal plots are for NSGA-II.

18.6.3 COMPUTATIONAL COMPLEXITY

Table 18.6 shows the computational time of the three MOEAs during the different simulation cases considered. SPEA2 took about twice as much time as NSGA-II for the bi-objective simulation cases and about 3.5 times as much time for the tri-objective simulation case. This is because the truncation operator used in SPEA2 is more computationally expensive than the non-dominated sort technique in NSGA-II [2]. Moreover, the proposed MOBFA is the second best in terms of computational time, as it adopts the same non-dominated sort mechanism as NSGA-II.

TABLE 18.3 Best Solutions for Ploss, Vd and Ic Minimization

[image: Images]

TABLE 18.4 Generation Distance and Spread Metrics

[image: Images]

TABLE 18.5 Statistical Analysis

	

	MOBFA

	NSGA-II

	SPEA2

	Unbeaten (%)

	32.5

	27.5

	75

	Beats all (%)

	20

	0

	52.5

TABLE 18.6 Computational Time of MOBFA, NSGA-II and SPEA2

[image: Images]

18.7 CONCLUSIONS

A comparative application MOBFA with NSGA-II and SPEA2 was provided for voltage and reactive power optimization in power systems. The proposed MOBFA is an extension of the single objective BFOA [12], which was adapted to handle the constrained tri-objective optimization problem. The speed and accuracy of convergence of BFOA was improved by introducing adaptive step size during chemotaxis. Moreover, elitism was introduced in MOBFA to prevent the loss of good solutions when evolving to the next generation.

The optimization cases considered using different combinations of the objective functions, show that the proposed MOBFA and the other two MOEAs were able to locate a whole set of well distributed Pareto-optimal solutions with good diversity in a single run and outperformed those obtained with SPEA in [1] and EP in Ref. [11]. Fuzzy logic theory was successfully applied to select a best compromise operating point from the trade-off solutions obtained during the different simulation cases considered using the three MOEAs.

The simulation results and statistical analysis showed that SPEA2 found better convergence and spread of solutions than MOBFA and NSGA-II. However, the adaptive chemotaxis foraging behavior modeled in MOBFA allowed the algorithm to refine its search and explore the fitness space more efficiently with lesser computational time thereby producing more extended trade-off solutions than NSGA-II and SPEA2.

The main advantages of the proposed MOBFA are that it is easy to implement, capable of exploring better extreme solutions than NSGA-II and requires exceptionally lesser computational time than SPEA2.

Hence, it can be concluded that MOBFA is a viable tool for handling constrained and conflicting multiobjective optimization problems and decision making, and can be easily applied to any other practical situations where computation cost is crucial.

KEYWORDS

	Elitist multiobjective evolutionary algorithms

	fuzzy logic theory

	multiobjective bacterial foraging algorithm

	optimal VAR dispatch

REFERENCES

1. Abido, M. A., & Bakhashwain, J. M. Optimal VAR Dispatch Using a Multiobjective Evolutionary Algorithm. International Journal of Electrical Power & Energy Systems. 2005, 27(1), 13–20.

2. Anauth, S. B. D. V. P. S., & Ah King, R. T. F. Comparative Application of Multiobjective Evolutionary Algorithms to the Voltage and Reactive Power optimization Problem in Power Systems. In proceeding of: Simulated Evolution and Learning – 8th International Conference. SEAL 2010. Springer. Lecture Notes in Computer Science. 2010, 6457, 424–434.

3. Zitzler, E., Laumanns, M., & Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K., et al. (eds.) Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems (EUROGEN 2001). International Center for Numerical Methods in Engineering (CIMNE). 2002, 95–100.

4. Deb, K., Pratap, A., Agrawal, S., & Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002, 6(2), 182–197.

5. Jeyadevi, S; Baskar, S., Babulal, C. K., & Iruthayarajan M. W. Solving multiobjective optimal reactive power dispatch using modified NSGA-II. Electrical Power and Energy Systems. 2011, 33, 219–228.

6. Ramesh, S., Kannan, S., & Baskar, S. Application of modified NSGA-II algorithm to multiobjective reactive power planning. Applied Soft Computing. 2012, 12, 741–753.

7. Saraswat, A., & Saini, A. Multiobjective optimal reactive power dispatch considering voltage stability in power systems using HFMOEA. Engineering Applications of Artificial Intelligence. 2013, 26, 390–404.

8. Roselyn J. P., Devaraj, D., & Dash, S. S. Multi Objective Differential Evolution approach for voltage stability constrained reactive power planning problem. Electrical Power and Energy Systems. 2014, 59, 155–165.

9. Niu, B., Wang, H., Wang, J., & Tan, L. Multiobjective bacterial foraging optimization. Neurocomputing. 2013, 116, 336–345.

10. Dhillon, J. S., Parti, S. C., & Khotari, D. P. Stochastic Economic Load Dispatch. Electric Power Systems Research. 1993, 26, 179–186.

11. Lai, L. L., & Ma, J. T. Evolutionary Programming Approach to Reactive Power Planning. IEE Proceedings-Generation Transmission Distribution. 1996, 143(4), 365–370.

12. Passino, K. M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine. 2002, 22(3), 52–67.

13. Alsac, O., & Scott, B. Optimal Load Flow with Steady-State Security. IEEE Transactions on Power Apparatus and Systems. 1974, 93, 745–751.

14. Veldhuizen, D. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovation. PhD thesis. Department of Electrical Engineering and Computer Engineering. Airforce Institute of Technology. Ohio. 1999.

15. Knowles, D., & Corne, W. Approximating the nondominated front using the Pareto archived evolution strategy. J. Evolutionary Computation. 2000. 8(2), 149–172.

CHAPTER 19

EVALUATION OF SIMULATED ANNEALING, DIFFERENTIAL EVOLUTION, AND PARTICLE SWARM OPTIMIZATION FOR SOLVING POOLING PROBLEMS

YING CHUAN ONG, SHIVOM SHARMA, and G. P. RANGAIAH*

Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Republic of Singapore, E-mail: gprangaiah@gmail.com

CONTENTS

Abstract

19.1 Introduction

19.2 Selected Stochastic Global Optimization Methods

19.3 Evaluation of Modified SA, VFSA, IDE, and UBBPSO

19.3.1 Evaluation Procedure, Constraints Handling and Parameter Settings

19.3.2 Evaluation on Benchmark Unconstrained Problems

19.3.3 Evaluation on Benchmark Constrained Problems

19.4 Pooling Problem Formulation

19.4.1 p- and q-Formulations

19.4.2 r-Formulation

19.4.3 Results and Discussion

19.5 Conclusions

Keywords

References

Appendix

ABSTRACT

In the recent past, several stochastic optimization methods such as simulated annealing (SA), differential evolution (DE) and particle swarm optimization (PSO) have been improved for solving global optimization problems. Pooling problems are a particular type of blending problems involving intermediate storages. Research on its formulation and solution by global optimization is important due to economic and environmental factors. However, SA, DE and PSO have not been applied to pooling problems. Therefore, in this chapter, improved variants of these methods, namely, Modified SA, Very Fast SA, Integrated DE and Unified Bare-Bones PSO are first tested on several benchmark mathematical problems, to establish their relative efficacy. Then, these methods are applied and evaluated for solving pooling problems using r-formulation developed by Zhang and Rangaiah [35]. The results show that IDE is generally more efficient and reliable on benchmark mathematical and pooling problems tested.

19.1 INTRODUCTION

The pooling problem, which merges the features of both the network flow and blending problems, is an important global optimization problem for achieving significant energy and cost savings [17, 24, 25]. A pooling network contains a number of process/source streams flowing to a set of intermediate pools (i.e., storage tanks), which are further connected to a set of final product tanks (Figure 19.1). For example, several source streams emerge from the process units in a petroleum refinery such as distillation columns, reformers and catalytic crackers, to be blended with additives in one or more intermediate pools before being channeled to product tanks [14]. It is possible to send source streams directly from the process units to product tanks but the process involving pools is commonly used due to its greater operational flexibility. However, the process involving pools is more complex and challenging to optimize.

[image: Images]

FIGURE 19.1 Schematic of network for the pooling problem formulation; note that each of the pools P+1, …, P+B has only one inlet stream.

Given the source streams with different costs, composition (e.g., sulfur content) and/or qualities (e.g., octane number), the pooling problem is to determine the optimal flow rates from sources to product tanks through pools, which will minimize the cost while meeting the product demands and specifications. In this optimization problem, product demand, storage capacity and feed availability lead to inequality constraints, and mass balances around each pool are the equality constraints. Pooling problems are categorized into three classes: standard, generalized and extended pooling problems [25]. In the present work, only the standard pooling problems are studied.

Stochastic global optimization (SGO) methods such as genetic algorithms (GA), simulated annealing (SA), differential evolution (DE) and particle swarm optimization (PSO) have been proposed and improved in the last two decades [28]. They require little or no assumptions on the characteristics of optimization problems, are easy to implement and apply, and are likely to locate the global optimum within reasonable computational effort. Further, they have been adopted and extensively used for multiobjective optimization [29].

SA was proposed by Kirkpatrick et al. [21], who drew an analogy between the physical process of slow cooling of a molten metal (i.e., annealing) and the combinatorial optimization whose cost function is defined in a discrete domain. It has been extended to optimization in continuous domain [10]. There have been several modifications such as hybridization with the simplex method [10] and direct search [2], and adaptive parameter tuning [20]. However, SA of Corana et al. [13] is chosen and modified in this study because of its many applications in chemical engineering. For example, it was used for correlation of activity coefficients in aqueous solutions of ammonium salts using local composition models [19], liquid-liquid phase equilibrium modeling [16], and calculation of homogenous azeotropes in reactive and non-reactive mixtures [9]. SA of Corana et al. [13] was found to be reliable but less efficient for these applications. Also, it was claimed to be reliable for parameter estimation in vapor-liquid equilibrium modeling compared to very fast SA (VFSA) and direct search SA [10]. VFSA [30] is chosen as a faster variant of SA. In the calculation of phase stability analyzes for non-reactive and reactive mixtures, it is shown to require far fewer number of function evaluations (NFE, which is an indication of computational effort in application problems) with a tradeoff in reliability as compared to SA [5]. Both SA of Corona et al. [13] and VFSA have not been applied to pooling problems.

DE is a population based optimizer proposed by Storn and Price [32] especially for non-linear and non-differentiable continuous functions; more details on DE can be found in Price et al. [26]. It mimics biological evolution by performing mutation, crossover and selection steps (as in GA) to escape from the local minima. DE has fewer parameters compared to other stochastic algorithms, its principle is easy to understand, has relatively faster convergence and high reliability to find the global optimum [3, 31]. It has been successfully applied to phase stability and parameter estimation problems, fed-batch bioreactor, synthesis of cost-optimal heat exchange networks; see Chen et al. [11] for an overview of these applications. There are also many studies to improve its performance; most of them are focused on two aspects: adaptation of DE parameters [23, 27], and hybridization with other optimization methods [3, 31, 34]. The algorithm used in the present study is the integrated DE (IDE) developed by Zhang and Rangaiah [35] due to its reliability and efficiency in solving chemical engineering applications such as modeling vapor-liquid equilibrium data, phase equilibrium calculations, reactive phase equilibrium calculation and phase stability problems [36, 37]. IDE integrates three solid strategies, namely, tabu list, self-adaptation of parameters and mutation strategy, and a novel stopping criterion [34]. It was recently applied to pooling problems by Zhang and Rangaiah [34].

PSO is also a population-based method proposed by Eberhart and Kennedy [15]; it is inspired by the social behavior of bird flocks and fish schools. In principle, it explores the search space to identify promising areas having better solutions before exploiting these areas for the best solution. In the classical PSO, the population of potential solutions is called the swarm, and each solution is called a particle. Results from PSO application to phase stability and equilibrium calculations in reactive and non-reactive systems, show that it is a reliable method with good performance [7]. It has been applied to parameter estimation in vapor-liquid equilibrium modeling problems [37] and mean activity coefficients of ionic liquids [5]. A number of studies to improve PSO are focused on a parameter-free PSO, known as bare-bones PSO (BBPSO) and hybridization with other stochastic algorithms. For example, BBPSO-MC-gbest and BBPSO-MC-lbest integrate crossover and mutation operators of DE based on global and local best topologies, and both these are combined into unified BBPSO (UBBPSO) by Zhang et al. [37]. UBBPSO has not been applied to pooling problems.

For modeling and solving standard pooling problems, several formulations have been proposed. p-formulation of Haverly [18] uses stream flows and product qualities as the decision variables, q-formulation employs proportion of stream flows entering pools, instead of stream flows, as the decision variables [4], and pq-formulation combines both p- and q-formulations [33]. The recent r-formulation by Zhang and Rangaiah [34], motivated by the q-formulation, reduces the search space, number of decision variables and constraints. Solution of standard pooling problems using p-, q- and r-formulations suggests that r-formulation is better than the other two [34].

In the present chapter, four SGO methods, namely, Modified SA, VFSA, IDE and UBBPSO are studied and compared for solving pooling problems, for the first time. Another novelty in this systematic study is the use of r-formulation of Zhang and Rangaiah [34] for pooling problems. Modified SA, VFSA, IDE and UBBPSO are first tested on benchmark unconstrained and constrained problems to establish their robustness and efficiency. Then, they are applied to 13 benchmark-pooling problems. The results show that IDE is better than Modified SA, VFSA and UBBBPSO for solving the mathematical and pooling problems tested.

19.2 SELECTED STOCHASTIC GLOBAL OPTIMIZATION METHODS

Consider the following minimization problem with bounds on decision variables, inequality and equality constraints.

[image: Images]

[image: Images]

[image: Images]

[image: Images]

Here, x is the vector of D number of decision variables with lower (xL) and upper (xU) bounds; g and h are the set of inequality and equality constraints, respectively.

The flow chart of Modified SA algorithm is shown in Figure 19.2. In order to minimize the objective function f(x), the algorithm begins with initial temperature (T0), initial solution vector (xi, inside the bounds on decision variables) and step length vector for decision variables (v). The value of the objective function (f) is calculated at the initial solution, which is tentatively set as the optimum (xopt, fopt). Then, new trial solutions are generated, one by one along each of all decision variables, and the objective function value at each of them is computed. The trial solution is accepted if it has a lower objective function value or it satisfies the Metropolis criterion (which allows acceptance of a solution having higher objective value with some probability). The trial solution with the smaller objective function value is set as the optimum. The above step (i.e., generation and evaluation of trial solutions along all decision variables) is repeated NV times for each value of v, and then v is adjusted. After NT adjustments of v, temperature is decreased. This completes one iteration/generation of SA. The search is terminated when improvement in the objective function value in the latest Nft iterations is lower than a pre-specified value or temperature is adjusted more than MNG times. See Corana et al. [13] for more details on SA. In the Modified SA, if the updated value of vd is larger than xdU – xdL, then value of vd is changed to xdU – xdL to ensure that trial solutions are likely to satisfy bounds on decision variables. Further, value of v is set to xU – xL after each temperature update for greater exploration.

[image: Images]

FIGURE 19.2 Flow chart of Modified SA algorithm.

VFSA algorithm uses a different strategy for generation of trial solutions and a different cooling scheme [30] and it does not have the step length parameter v. Trial solutions are generated (one by one along each of all decision variables) and evaluated for the objective function value. This is repeated NT times for each value of T, and then T value is modified. Finally, search is terminated based on the termination criteria.

In DE (Figure 19.3), the initial population of NP individuals is generated within the search space using uniformly distributed random numbers. The objective function value for each individual is calculated, and the trial individual is stored in the tabu list. The mutation, crossover and selection steps of DE are performed on the population in each generation. Before these steps, the self-adaptive strategy is used to assign mutation strategy and crossover rate (Cr) for each generation. The i-th trial individual is then produced according to the assigned mutation strategy, a randomly generated F value (with mean 0.5 and standard deviation 0.3) and Cr value, through mutation and crossover steps of DE. A boundary violation check is performed on the decision variable values of the trial individual generated; if lower/upper bound of any variable is violated, this variable value is generated randomly within its bounds, for the trial individual under consideration.

[image: Images]

FIGURE 19.3 Flow chart of IDE algorithm.

The trial individual is then compared with the individuals in the tabu list. If it is near to any in the tabu list (as indicated by the Euclidean distance in the decision variables space), the trial individual is rejected and a new trial individual is generated through the mutation and crossover operations. If the number of such rejections (NR) is greater than the given NRmax for the same trial individual, then it indicates the algorithm has either converged to the global optimum or trapped at a local optimum, and so the best solution found so far is unlikely to improve in the subsequent generations and the search is terminated. If NR is less than NRmax and the generated trial individual is away from all individuals in the tabu list, then the objective function and constraints are calculated.

The evaluated trial individual is stored in the tabu list. Selection between the target and trial individuals is performed based on their objective function values. If the trial individual is selected, it replaces the target individual in the population immediately and may participate in the subsequent mutation and crossover operations to enhance the convergence speed. NR is reset to 0 for generating the trial individual for the next target individual, and the above procedure is repeated until all NP target individuals are covered. This completes one generation in DE. Generations continue for MNG unless the stopping criterion on NRmax is already met in the earlier generations. See Zhang and Rangaiah [34] for more details on IDE.

Figure 19.4 shows the flow chart of UBBPSO algorithm. In PSO, a population of NP particles is initialized randomly within the bounds on decision variables. Then, objective function values are calculated for all particles, and personal best and global best are selected. For each particle in the population, a new particle is generated using particle velocity based on its personal best position and the global best position. Particle velocity and the new particle location should be maintained inside the search space. Value of the objective function is evaluated for each new particle, and personal and global best positions are updated as necessary. These steps are repeated for all particles in the population, to complete one iteration.

[image: Images]

FIGURE 19.4 Flow chart of UBBPSO algorithm.

In order to eliminate the parameters in PSO, Gaussian normal distribution can be used to generate the new particle, and the resulting algorithm is referred as BBPSO. The search does not progress if personal best of the current particle is also the global best. Hence, the global best index particle is updated using mutation and crossover operations of DE algorithm, which is referred as BBPSO-MC-gbest. UBBPSO algorithm employs both global best and local best (among the particle and its two neighbors) topologies with equal probabilities (Figure 19.4). See Zhang et al. [37] for more details on UBBPSO.

The selected four algorithms are implemented in MATLAB platform. The computer system employed is Intel Core i7 (2630QM CPU @ 2 GHz, 4 GB DDR3 RAM) for which MFlops (million floating point operations per second) for the LINPACK benchmark program (at http://www.netlib.org/) for a matrix of order 500 are 899. In this work, a local optimizer is employed, after the global optimization fulfills its stopping criteria, to obtain a precise solution. MATLAB’s inbuilt function: fmincon is used as the local optimizer. There are 4 local methods: trust-region-reflective, interior-point, sequential quadratic programming (SQP) and active-set, in fmincon. Firstly, interior point method is used, which is capable of handling large, sparse and dense problems. Then, SQP and active-set methods are used as they are small scale local methods, and give a precise solution efficiently. This sequence is recommended by MATLAB (http://www.mathworks.com/help/optim/ug/choosing-a-solver.html#bsbwxm7).

Any of the methods in fmincon may give a solution that violates inequality constraints under some circumstances. So, a sanity check on the inequality constraint violation is required after each method. If the constraint violation is more than 0.001, the solution returned by that local optimizer is disregarded and the next local method is continued with the optimal solution obtained by the previous global/local algorithm to find the precise optimum. If all three local optimizers fail to give a solution with constraint violation less than 0.001, then the solution obtained by the global search is considered as the final/optimal solution.

19.3 EVALUATION OF MODIFIED SA, VFSA, IDE, AND UBBPSO

19.3.1 EVALUATION PROCEDURE, CONSTRAINTS HANDLING AND PARAMETER SETTINGS

The performance of the modified SA, VFSA, IDE, and UBBPSO algorithms are tested on eight unconstrained test problems. The ability of global optimizers to handle inequality constraints is evaluated on another 7 benchmark mathematical problems with inequality constraints, given in CEC 2006 [22]. These constrained problems involve 2 to 20 decision variables (with bounds on them) and 2 to 15 inequality constraints. Mathematical characteristics of these benchmark mathematical problems are summarized in the appendix (Tables A1 and A2).

The performance evaluation is based on several criteria such as success rate (SR defined as number of successful runs in 100 trials) after local optimization and mean number of function evaluations (MNFE) after global search, out of 100 trials. Each trial for all the benchmark problems is started with a different random number seed. A successful run means that the algorithm found the objective function value within ±1×10−6 from the known global optimum value. Hence, SR indicates reliability of the algorithm to find the global optimum. The computational efficiency can be inferred from MNFE instead of computational time because function evaluation is computationally intensive in application problems; also, MNFE is independent of the computer used. In the performance comparison, MEGS is the acronym for the median of errors between the best objective function values found by the global solver and the known global optimum value. Similarly, MEGLS is the median of errors of the best objective function values found by local solvers after global search and the known global optimum value. The difference between MEGS and MEGLS shows the usefulness of local optimization after the global search.

The inequality constraints in all constrained test problems are handled by the penalty function approach, which is commonly used for handling inequality constraints [12]. In this approach, constrained minimization problem is transformed into an unconstrained one by adding a penalty term (which is determined by the extent of constraint violation) to the objective function. In this work, static penalty wherein the penalty factor is kept constant throughout the optimization is employed. The penalty factor is tuned using the difficult constrained test problems (g02 and g18 in Table A2) and pooling problems (Adhya 1, Adhya 2, Adhya 3, Adhya 4, Haverly 2 and Foulds 2 in Table A3). The performance of three penalty factors: 100, 1000 and 106 is evaluated, and finally penalty factor of 100 is used in all global optimizers.

It is important to identify suitable values for all parameters in the selected stochastic optimization algorithms. In this study, two different parameter settings are used to solve benchmark mathematical and pooling problems: moderate and high. The moderate parameter values for each and every algorithm are taken from the literature (Table 19.1). If the result of a particular benchmark problem is not satisfactory, then the high parameter settings (Table 19.1) are used to improve the results. High parameter settings require more computational effort.

19.3.2 EVALUATION ON BENCHMARK UNCONSTRAINED PROBLEMS

Figure 19.5 shows the global SR (i.e., average SR of an algorithm on a number of optimization problems) at several different NFE for solving unconstrained test problems using the four algorithms. It can be seen that IDE has the highest SR on all problems tested. UBBPSO has good SR on problems solved using moderate parameter settings (Figure 19.5a) but it has very low SR on Rastrigin and Schwefel problems as can be seen from very high MEGLS in Table 19.2; note that the performance results in this and other similar tables are for the global optimization method using the termination criteria stated in the previous section. Similar performance of UBBPSO is reported in Zhang et al. [37]. For UBBPSO, relatively large MEGS and MEGLS for Rastrigin and Schwefel problems indicate that, unlike other algorithms, the search is trapped in a local minimum, which is away from the global minimum. VFSA has outperformed Modified SA, in terms of efficiency, by a large margin for all test problems; however, its large MEGS, especially on difficult problems (Table 19.2), means that the solution found is far from the known global minimum, and the robust performance of VFSA is mainly due to the local search from the solution found by the global search.

TABLE 19.1 Suggested Parameters Values for Modified SA, VFSA, IDE and UBBPSO

[image: Images]

[image: Images]

FIGURE 19.5 Global success rate at different NFE for solving (a) Ackley, Camelback, Sphere and Step problems using moderate parameter settings, and (b) Griewank, Rastrigin, Rosenbrock and Schwefel problems using high parameter settings, by Modified SA, VFSA, IDE and UBBPSO.

TABLE 19.2 Performance of Modified SA, VFSA, IDE and UBBPSO For Solving Benchmark Unconstrained Problems

[image: Images]

Overall, IDE is the better than other algorithms tested as it has close to perfect SR (Figure 19.5) and has relatively low MNFE (Table 19.2). It also has the highest consistency as it can reliably handle all test problems unlike Modified SA, VFSA and UBBPSO, which have shown relatively low SR on some unconstrained problems. Many times, SR decreases slightly with the progress of search; for example, SR of Modified SA has decreased from 47% after 18,750 function evaluations to 46% after 37,500 function evaluations in Figure 19.5b. This anomaly is because the solution obtained by the global optimization is not in the vicinity of the global optimum, leading the local optimizer to the nearby local optimum. Recall that, after the global optimization algorithm, a local optimizer is used to find the solution precisely and then compare it with the known global solution to determine the success of the run.

19.3.3 EVALUATION ON BENCHMARK CONSTRAINED PROBLEMS

Figure 19.6 shows the global SR at several different NFE for solving all constrained test problems using the four algorithms. Modified SA, IDE and UBBPSO algorithms with moderate parameter settings have nearly same global SR after 15,000 function evaluations for 5 of 7 constrained problems tested. All algorithms have generally a low SR on g02 problem. This observation agrees with Zhang and Rangaiah [34], who have reported a low SR for IDE. The g18 problem requires high parameter settings, and Modified SA, IDE and UBBPSO have SR of around 80% compared to 52% by VFSA for this problem (Figure 19.6c).

Similar to unconstrained test problems, IDE requires fewer MNFE to reach the global optimum compared to the other algorithms (Table 19.3). Modified SA is found to be less efficient but more reliable than VFSA. Overall, the former is less efficient and reliable compared to both IDE and UBBPSO on the constrained problems tested. VFSA has the largest MEGS and MEGLS on all constrained problems, which is similar to its performance on the unconstrained problems. Among four algorithms, IDE is the most reliable and efficient algorithm for the constrained problems tested.

19.4 POOLING PROBLEM FORMULATION

Figure 19.1 shows the general process network for producing D units of desired K products (with η qualities) from N source streams via P pools and B bypasses. To simplify the formulation, each bypass stream is considered as an additional pool.

19.4.1 p- AND q-FORMULATIONS

The bi-linear programming formulation, known as the p-formulation, was proposed by Haverly [18] to describe pooling problems mathematically. As shown in Figure 19.1, the source streams with flow rates (Xi,j from i-th source stream to j-th pool), qualities (λi,w for w-th quality of i-th source stream) and costs (Ci of i-th source stream), are channeled to one or more pools (including those representing bypasses) for blending. In a typical pooling network, not all sources are connected to every pool because of bypass streams and process requirements. Hence, Xi,j will be zero for these unconnected streams from sources to pools. Constraints to limit the availability of i-th source stream, [image: Images] and more than one quality variable can be the extra requirements in some cases. Next, outlet streams from the pools with flow rate (Yj,k from j-th pool to k-th product) and quality (µj,w) are channeled to product tanks to be blended for the second time. Similar to source streams, not all pool outlet streams go to each product tank and so Yj,k will be zero for such unconnected pool outlet streams. Unlike the availability constraints for source streams, requirements on product demand, [image: Images] and product quality (ηk,w) are imposed and have to be satisfied for producing the final products with their respective selling price, Sk.

[image: Images]

FIGURE 19.6 Global success rate at different NFE for solving (a) g01, g07, g08, g19 and g24 problems using moderate parameter settings, (b) g02 problem using high parameter settings, and (c) g18 problem using high parameter settings, by Modified SA, VFSA, IDE and UBBPSO.

TABLE 19.3 Performance of Modified SA, VFSA, IDE and UBBPSO For Solving Benchmark Constrained Problems

[image: Images]

The objective of a pooling problem is to maximize the profit defined as the difference between the revenue from selling the products and the cost of raw materials, or equivalently to minimize the negative of the profit [see Eq. (2)]. Equations (3) and (4) are equality constraints arising from, respectively, mass and quality balances about each pool (including those for bypasses). In Eq. (5), there are N inequality constraints as total flow rates of the source stream cannot exceed the available limit. In Eq. (6), there are K inequality constraints as total flow rate into each product tank cannot exceed its requirements on the product demand. There are K×L inequality constraints in Eq. (7) in order to meet the quality requirements of all products.

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

The bounds for decision variables X, Y and μ are as follows.

[image: Images]

[image: Images]

[image: Images]

In the q-formulation proposed by Ben-Tal et al. (1994), the decision variable, Xi,j is replaced by a new decision variable (qi,j) defined as the fraction of total flow from a pool to all connected product tanks. Hence, Xi,j is given by

[image: Images]

The mass balance about pools is given by the following equation (instead of Eq. (3)).

[image: Images]

For each bypass (j = P+1, …, P+B), only one qi,j is 1.0 for its particular source stream and all other qi,j are 0.0. Hence, Eq. (12) does not include bypasses.

19.4.2 r-FORMULATION

Motivated by q-formulation, two new decision variables, ri,j and Rj,k are introduced in r-formulation to reduce the search space, number of decision variables and constraints [34]. ri,j is the fraction of the maximum possible value for qi,j (used to calculate Xi,j via Eq. (11)), as follows.

[image: Images]

[image: Images]

[image: Images]

Equation (13b) takes into account the previous flow rates from the first to (i − 1)th sources which are connected to j-th pool. The flow rate of the last stream from N-th source to j-th pool is calculated using Eq. (13c). Equation (13) eliminates the equality constraints arising from the mass balances for pools, and also implicitly satisfies Eq. (12). For each pool representing a bypass (j = P+1, …, P+B), only one qi,j is 1.0 for its particular source stream and all other qi,j are 0.0. Hence, ri,j variables are not required for j = P+1, …, P+B.

Similar to ri,j, Rj,k is the fraction of the maximum possible value for Yj,k, as follows.

[image: Images]

[image: Images]

In Eq. (14b), the upper bound of the product demand and the flow rates from all previous j − 1 pools into k-th product tank are taken into account. The decision variables in r-formulation are r’s and R’s which are different to those in p- and q- formulations. Flow rates in the pooling network (X and Y) can be calculated explicitly using Eqs. (11), (13) and (14), and so they are the dependent variables.

The objective function, constraints, decision variables and their bounds in r-formulation are as follows.

[image: Images]

[image: Images]

[image: Images]

Variables and their Bounds

[image: Images]

[image: Images]

In the Eqs. (15), (16), and (17), q’s are calculated via Eq. (13). As in the p-formulation, if a source stream is not connected to a pool, the corresponding ri,j will be zero and can be excluded from the list of decision variables. Similarly, if a pool outlet stream is not connected to a product tank, the corresponding Ri,j will be zero and can be excluded from the list of decision variables. The number of decision variables is thus reduced; also, the decision variables are intrinsically normalized [Eqs. (18) and (19)].

Maximum numbers of decision variables, inequality and equality constraints in the p-, q- and r-formulations are summarized in Table 19.4. It is clear from this table that the number of decision variables and number of constraints are fewer in r-formulation than those in p- and q-formulations. More importantly, r-formulation does not have any equality constraints, which are very difficult to handle in stochastic global optimization. On the other hand, the objective function and inequality constraints in r-formulation are more nonlinear than those in other formulation but stochastic global optimization methods are not much affected by nonlinearity.

19.4.3 RESULTS AND DISCUSSION

In this work, 13 benchmark pooling problems are solved using Modified SA, VFSA, IDE and UBBPSO algorithms. The basic details of these pooling problems including the number of qualities and global optimum are summarized in Table A3 in the appendix; see Adhya et al. [1] for flow charts and other details of these pooling problems. In the present study, Adhya 3 and Haverly 2 pooling problems are solved using high parameter settings, whereas the remaining 11 problems are solved using moderate parameter settings.

TABLE 19.4 Problem Characteristics Obtained Using p-, q- and r-Formulations

	Problem characteristic

	p-formulation

	q-formulation

	r-formulation

	Maximum number of decision variables

	N × (P + B) + P × L + (P+B) × K

	N × (P + B) + (P + B) × K

	(N − 1) × (P + B) + (P + B) × K

	Maximum number of equality constraints

	(L + 1) × K + AC*

	(L + 1) × K + AC*

	L × K + AC*

	Maximum number of inequality constraints

	B + (L + 1) ×P

	P

	Nil

* AC is the number of additional constraints for availability of source streams; it will be zero if source streams are available without any limit.

Figure 19.7 presents global SR at several different NFE for solving the 13 benchmark pooling problems using different algorithms. All algorithms gave nearly same SR on 11 benchmark pooling problems solved using moderate parameter settings. IDE has better SR on Adhya 3 problem, whereas UBBPSO outperformed other algorithms on Haverly 2 problem. VFSA has very low reliability of close to zero SR on these two pooling problems solved using high parameter settings. Further, it gave largest MEGS on most problems, except Adhya 2, Foulds 4, Foulds 5 and Haverly 2. This is similar to the observation made in the testing of the benchmark constrained problems. IDE is the most effective because it generally shows higher efficiency and satisfactory reliability on most pooling problems tested. UBBPSO has consistent reliability on all pooling problems, but it requires significantly more MNFE compared to IDE on all pooling problems (Table 19.5). Modified SA is the least efficient algorithm on pooling problems solved using moderate parameter settings.

[image: Images]

FIGURE 19.7 Global success rate at different NFE for solving (a) all pooling problems (except Adhya 3 and Haverly 2) using moderate parameter settings, (b) Adhya 3 problem using high parameter settings, and (c) Haverly 2 problem using high parameter settings, by Modified SA, VFSA, IDE and UBBPSO.

TABLE 19.5 Performance of Modified SA, VFSA, IDE and UBBPSO For Solving Benchmark Pooling Problems

[image: Images]

19.5 CONCLUSIONS

In this study, performance of Modified SA, VFSA, IDE and UBBPSO is compared on the benchmark unconstrained, constrained and pooling problems. For this, pooling problems are represented using r-formulation, which reduces the search space, number of decision variables and number of inequality constraints, and also eliminates all equality constraints, all of which greatly facilitate solution of pooling problems by stochastic global optimization methods. Results show that IDE is the most consistent, reliable and reasonably efficient optimization algorithm compared to Modified SA, VFSA and UBBPSO, on constrained and unconstrained test problems. Further, it is efficient and reliable for solving most of the benchmark pooling problems tested. Hence, IDE is recommended over Modified SA, VFSA and UBBPSO. The results for unconstrained, constrained and pooling problems tested indicate that Modified SA is generally the least efficient and VFSA is generally the least reliable.

KEYWORDS

	differential evolution

	global optimization

	particle swarm optimization

	pooling problems

	simulated annealing

REFERENCES

1. Adhya, N., Tawarmalani, M., & Sahinidis, N. V. A Lagrangian Approach to the Pooling Problem, Ind. Eng. Chem. Res. 1999, 38, 1956–1972.

2. Ali, M. M., Törn, A., & Viitanen, S. A Direct Search Variant of the Simulated Annealing Algorithm for Optimization Involving Continuous Variables. Computers & Operations Research 2002, 29(1), 87–102.

3. Babu, B. V., & Munawar, S. A. Differential Evolution Strategies for Optimal Design of Shell-and-Tube Heat Exchangers. Chemical Engineering Science. 2007, 62(14), 3720–3739.

4. Ben-Tal, A., Eiger, G., Gershovitz, V., & Israel, T. Global Minimization by Reducing the Duality Gap. Mathematical Programming 1994, 63, 193–212.

5. Bonilla-Petriciolet, A., Fateen, S. E. K., & Rangaiah, G. P. Assessment of Capabilities and Limitations of Stochastic Global Optimization Methods for Modeling Mean Activity Coefficients of Ionic Liquids. Fluid Phase Equilibria 2013, 340, 15–26.

6. Bonilla-Petriciolet, A., & Segovia-Hernández, J. G. Particle Swarm Optimization for Phase Stability. 19th European Symposium on Computer Aided Process Engineering 2009, 635–640.

7. Bonilla-Petriciolet, A; Iglesias-Silva, G. A., & Hall, K. R. Calculation of Homogeneous Azeotropes in Reactive and Non-Reactive Mixtures Using a Stochastic Optimization Approach. Fluid Phase Equilibria 2009, 281(1), 22–31.

8. Bonilla-Petriciolet, A., Rangaiah, G. P., & Segovia-Hernández, J. G. Evaluation of Stochastic Global Optimization Methods for Modeling Vapor–Liquid Equilibrium Data. Fluid Phase Equilibria 2010, 287(2), 111–125.

9. Bonilla-Petriciolet, A., Vazquez-Roma, R., Iglesias-Silva, G. A., & Hall, K. R. Performance of Stochastic Global Optimization Methods in the Calculation of Phase Stability Analyses for Nonreactive and Reactive Mixtures. Ind. Eng. Chem. Res. 2006, 45(13), 4764–4772.

10. Cardoso, M. F., Salcedo, R. L., & Feyo de Azevedo, S. The Simplex-Simulated Annealing Approach to Continuous Non-Linear Optimization. Computers & Chemical Engineering 1996, 20(9), 1065–1080.

11. Chen S. Q., Rangaiah, G. P., & Srinivas, M. Differential Evolution: Methods, Development and Chemical Engineering Applications. In Rangaiah G. P. (editor) Stochastic Global Optimization: Techniques and Applications in Chemical Engineering, World Scientific 2010, 57–109.

12. Coello Coello, C. A. Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art. Computer Methods in Applied Mechanics and Engineering 2002, 191(11–12), 1245–1287.

13. Corana, A., Marchesi, M., Martini, C., & Ridella, S. Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm. ACM Transactions on Mathematical Software 1987, 13(3), 262–280.

14. Dewitt, C. W., Lasdon, L. S., Waren, A. D., Brenner, D. A., & Melhem S. A. An Improved Gasoline Blending System for Texaco, Interfaces 1989, 19(1), 85–101.

15. Eberhart, R., & Kennedy, J. A New Optimizer Using Particle Swarm Theory. Proceedings of 6th International Symposium on Micro Machine and Human Science 1995, 39–43.

16. Ferrari, J. C., Nagatani, G., Corazza, F. C., Oliveira, J. V., & Corazza, M. L. Application of Stochastic Algorithms for Parameter Estimation in the Liquid–Liquid Phase Equilibrium Modeling. Fluid Phase Equilibria 2009, 280(1–2), 110–119.

17. Foulds, L. R., Haugland, D., & Jörnsten, K. A Bilinear Approach to the Pooling Problem. Optimization 1992, 24(1–2), 165–180.

18. Haverly, C. A. Studies of the Behavior of Recursion for the Pooling Problem. ACM SIGMAP Bulletin 1978, 25, 19–28.

19. Jaime-Leal, J. E., & Bonilla-Petriciolet, A. Correlation of Activity Coefficients in Aqueous Solutions of Ammonium Salts Using Local Composition Models and Stochastic Optimization Methods. Chemical Product and Process Modeling 2008, 3(1), Article 38.

20. Jezowski, J. M., Poplewski, G., & Bochenek, R. Adaptive Random Search and Simulated Annealing Optimizers : Algorithms and Application Issues. In Rangaiah G. P. (editor) Stochastic Global Optimization: Techniques and Applications in Chemical Engineering, World Scientific 2010, 57–109.

21. Kirkpatrick, S., Gelatt, C. D., & Vecchi, J. M. P. Optimization by Simulated Annealing, Science 1983, 220, 671–680.

22. Liang, J. J., Runarsson, T. P., Mezura-Montes, E. Clerc, M., Suganthan, P. N., Coello Coello, C. A., & Deb, K. Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization Problem 2006, 1–24.

23. Mernik, M., Brest, J., & Zumer, V. Self-adapting Control Parameters in Differential Evolution : A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 2006, 10(6), 646–657.

24. Misener, R., & Floudas, C. A. Global Optimization of Large-Scale Generalized Pooling Problems: Quadratically Constrained MINLP Models. Ind. Eng. Chem. Res. 2010, 49(11), 5424–5438.

25. Misener, R., Thompson, J. P., & Floudas, C. A. Global Optimization of Standard, Generalized, and Extended Pooling Problems via Linear and Logarithmic Partitioning Schemes. Computers & Chemical Engineering 2011, 35(5), 876–892.

26. Price, K., Storn, R. M., & Lampinen, J. A. Differential Evolution: A Practical Approach to Global Optimization, Springer 2005.

27. Qin, A. K., Huang, V. L., & Suganthan, P. N. Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Transactions on Evolutionary Computation 2009, 13(2), 398–417.

28. Rangaiah G. P. Stochastic Global Optimization: Techniques and Applications in Chemical Engineering, World Scientific 2010.

29. Rangaiah G. P., & Bonilla-Petriciolet A. (Eds.). Multiobjective Optimization in Chemical Engineering: Developments and Applications, Wiley 2013.

30. Sen, M. K., & Stoffa P. L. Global Optimization Methods in Geophysical Inversion, Elsevier Publisher 1995.

31. Srinivas, M., & Rangaiah, G. P. Differential Evolution with Taboo List for Solving Nonlinear and Mixed-Integer Nonlinear Programming Problems. Ind. Eng. Chem. Res.. 2007, 46, 7126–7135.

32. Storn, R., & Price, K. Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, Technical Report TR-95–012, ICSI, March 1995.

33. Tawarmalani, M., & Sahinidis, N. Convexification and Global Optimizationi Continuous Andmixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer Academic: Dordrecht 2002.

34. Zhang, H., & Rangaiah, G. P. Integrated Differential Evolution for Global Optimization and its Performance for Modeling Vapor-Liquid Equilibrium Data. Ind. Eng. Chem. Res. 2011, 50(17), 10047–10061.

35. Zhang, H., & Rangaiah, G. P. Optimization of Pooling Problems for Two Objectives Using ε-Constraint Method. In Rangaiah, G. P., & Bonilla-Petriciolet, A. (editors) Multiobjective Optimization in Chemical Engineering: Developments and Applications, Wiley 2013, 17–34.

36. Zhang, H., Kennedy, D. D., Rangaiah, G. P., & Bonilla-Petriciolet, A. Novel Bare-Bones Particle Swarm Optimization and its Performance for Modeling Vapor–Liquid Equilibrium Data. Fluid Phase Equilibria 2011a, 301(1), 33–45.

37. Zhang, H., Fernández-Vargas, J. A., Rangaiah, G. P., Bonilla-Petriciolet, A., & Segovia-Hernández, J. G. Evaluation of Integrated Differential Evolution and Unified Bare-Bones Particle Swarm Optimization for Phase Equilibrium and Stability Problems. Fluid Phase Equilibria 2011b, 310(1–2), 129–141.

APPENDIX

Details of benchmark unconstrained, constrained and pooling problems are given in Tables A1, A2 and A3, respectively.

TABLE A1 Details of Benchmark Unconstrained Problems

[image: Images]

TABLE A2 Basic Details of Benchmark Constrained Problems;

[image: Images]

TABLE A3 Basic Details of 13 Benchmark Pooling Problems*

[image: Images]

CHAPTER 20

PERFORMANCE IMPROVEMENT OF NSGA-II ALGORITHM BY MODIFYING CROSSOVER PROBABILITY DISTRIBUTION

K. V. R. B. PRASAD1 and P. M. SINGRU2

1Professor, Department of E.E.E., MITS, P.B. No: 14, Kadiri Road, Angallu (V), Madanapalle – 517325, Chittoor District, Andhra Pradesh, India, E-mail: prasad_brahma@rediffmail.com

2Associate Professor, Department of M.E., BITS, Pilani – K.K. Birla Goa Campus, NH-17B, Zuarinagar, South Goa District, Goa, India, E-mail: pravinsingru@gmail.com

CONTENTS

20.1 Introduction

20.2 NSGA-II Algorithm

20.3 SBX-A Operator

20.4 SBX-LN Operator

20.5 Test Functions

20.6 NSGA-II Algorithm for Test Functions

20.7 Summary

20.8 Points for Further Improvement

Keywords

References

20.1 INTRODUCTION

The optimization is the act of obtaining the best result under the given circumstances. The optimization refers to finding one or more feasible solutions, which correspond to extreme values of one or more objectives. The need for finding such optimal solutions in a problem comes mostly from the extreme purpose of either designing a solution for minimum possible cost of fabrication, or for maximum possible reliability, or others. Because of such extreme properties of optimal solutions, optimization methods are of great importance in practice, particularly in engineering design, scientific experiments and business decision-making. In order to widen the applicability of an optimization algorithm in various different problem domains, natural and physical principles are mimicked to develop robust optimization algorithms like evolutionary algorithms (EAs) and simulated annealing (SA). If a physical system is modeled as an optimization problem with one objective function, the task of finding the optimal solutions is called single-objective optimization. If an optimization problem involves more than one objective function, the task of finding one or more optimum solutions is known as multiobjective optimization [1, 3].

The EA mimics nature’s evolutionary principles to drive its search towards an optimal solution. The EAs include genetic algorithm (GA), differential evolution (DE), evolutionary strategies (ES), evolutionary programming (EP), genetic programming (GP), etc. The GA is a search and optimization procedure that is motivated by the principles of natural genetics and natural selection. It gives near global population of optimal solutions. It works with a population of solutions and gives multiple optimal solutions in one simulation run. It has two distinct operations such as selection and search. It is flexible enough to be used in a wide variety of problem domains. It has three main operators such as reproduction, crossover and mutation which are playing important role in creating a new population of solutions. The reproduction or selection operator is used to make duplicates of good solutions and eliminate bad solutions in a population, while keeping the population size constant. The crossover and mutation operators are used to create new solutions [1, 2, 4, 5].

20.2 NSGA-II ALGORITHM

In nondominated sorting genetic algorithm (NSGA), the dual objectives of a multiobjective optimization algorithm are maintained by using fitness assignment scheme which prefers nondominated solutions and by using a sharing strategy which preserves diversity among solutions of each nondominated front. The main advantage of an NSGA is the assignment of fitness according to nondominated sets. The NSGA progresses towards the Pareto-optimal region front-wise, by providing systematic emphasis to better nondominated sets. Moreover, performing sharing in the parameter space allows phenotypically diverse solutions to emerge when using NSGAs. If desired, the sharing can also be performed in the objective space. The NSGA has difficulties which include high computational complexity of nondominated sorting, lack of elitism and need for specifying the sharing parameter (σshare) [1].

The elitist nondominated sorting algorithm (NSGA-II) with actual simulated binary crossover (SBX-A), having normal probability distribution, uses elite-preservation strategy along with an explicit diversity-preserving mechanism. The algorithm carries out nondominated sorting of combined parent and offspring population. For the solutions of the last allowed front, a crowding distance-based niching strategy is used to resolve which solutions are to be carried over to the new population. The diversity among nondominated solutions is introduced by using the crowding comparison procedure which is used with the tournament selection and during the population reduction phase. The elitism does not allow the already found Pareto-optimal solutions (POS) to be deleted.

20.3 SBX-A OPERATOR

The SBX-A operator, used in this algorithm, works with two parent solutions and creates two offsprings. This operator simulates the working principle of the single-point crossover operator on binary strings. This operator respects the interval schemata processing, in the sense that common interval schemata between parents are preserved in children [1, 6, 7].

The probability distribution used to create a child solution is obtained from the following relations [7].

[image: Images]

[image: Images]

where βs is the spread factor and ηc is the crossover index. The value of ηc gives a probability for creating near parent solutions; large value gives a higher probability for creating near parent solutions.

In GA, the reproduction operator makes duplicates of good solutions, to eliminate the bad solutions from the population. The crossover and mutation operators create new solutions, by recombination. The crossover operator is the main search operator in GA. The search power of a crossover operator is defined as a measure of how flexible the operator is to create an arbitrary point in the search space. The role of mutation is to restore lost or unexpected genetic material into population to prevent the premature convergence of GA to suboptimal solutions [1, 7].

20.4 SBX-LN OPERATOR

The SBX-A operator creates children solutions proportional to the difference in parent solutions. In this operator, near parent solutions are more likely to be chosen as children solutions than solutions away from parents. The performance of NSGA-II algorithm is improved by modifying the probability distribution of SBX-A [7, 8].

In this chapter, the probability distribution of SBX-A operator, used in NSGA-II algorithm, is modified with lognormal probability distribution (SBX-LN). In this operator, the probability of creating offspring away from the parents is influenced by the ηc. This possibility decreases with the decrease in ηc and hence the SBX-LN becomes more parent-centric operator. In this operator, both parents are given equal probability of creating offspring in its neighborhood. The variance of intra-member distance increases due to the application of recombination operator, SBX-LN. This operator also assigns children solutions proportional to the spread of parent solutions, thereby making GA with this operator potential to exhibit self-adoption [7].

In single point binary crossover, the functional relationship of the contracting crossover probability distribution is obtained from the following relation

[image: Images]

where k is constant of probability distribution. In single point binary crossover, the functional relationship of the expanding crossover probability distribution is obtained from the following relation.

[image: Images]

The Eq. (4) is modified by expressing the expanding crossover probability distribution in terms of contracting crossover probability distribution. This is shown in the following relation.

[image: Images]

The lognormal distribution, defined with the probability density function, is obtained from the following relation.

[image: Images]

where µ is the mean of variable’s natural logarithm. The βs is defined as the ratio of the absolute difference in children to that of the parent values. The probability distribution of βs, using lognormal distribution (with µ=0), is obtained from the following relation.

[image: Images]

The probability of contracting crossover is more desirable than the expanding crossover. This increases the probability of creating offspring between the parents. This is more parent-centric for small value of ηc.

In order to keep children solutions within the bounds defined for decision variable, the factor Cp is defined with the normal probability distribution. This is shown in the following relation.

[image: Images]

where Z is the standardized normal value and z is the upper limit of standardized normal value. The upper limit of standard normal variable is obtained from the following relation.

[image: Images]

The factor representing normal probability distribution is obtained from the following relation.

[image: Images]

The constant of probability distribution is obtained from the parent solutions. This is shown in the following relation.

[image: Images]

where pimax is the maximum parent value of i-th real variable, pimin is the minimum parent value of i-th real variable, pi1 is the first parent solution of i-th real variable and pi2 is the second parent solution of i-th real variable. The lognormal distribution, after incorporating the factor representing normal probability distribution, is obtained from the following relation.

[image: Images]

From lognormal probability distribution, the ordinate is obtained from the following relations.

[image: Images]

[image: Images]

where zn is the standard normal value and u is the random number. The children solutions are obtained, after obtaining the ordinate, using the following relations.

[image: Images]

where xi(1,tp+1) is the first child solution of i-th real variable at (tp+1)th generation, xi(1,tp) is the first parent solution of i-th real variable at tp-th generation, xi(2,tp) is the second parent solution of i-th real variable at tpth generation and xi(2,tp+1) is the second child solution of i-th real variable at (tp+1)th generation. The use of mutation may destroy already found good information. It is suggested that GAs may work well with a large crossover probability (pc) and small mutation probability (pm). Hence, the mutation index (ηm) is chosen with a small value.

The probability distribution of contracting and expanding crossover is shown in Figure 20.1. From Figure 20.1, it is observed that the probability of contracting crossover is more and non-uniform. The probability distribution of contracting and expanding crossovers for the lognormal distribution is shown in Figure 20.2. From Figure 20.2, it is observed that the probability of contracting crossover is more for small value of ηc.

[image: Images]

FIGURE 20.1 Probability distribution of contracting and expanding crossover.

[image: Images]

FIGURE 20.2 Probability distribution of contracting and expanding crossovers for the lognormal distribution.

The lognormal probability distribution of children solutions along with their parents, for different cases, is shown in Figure 20.3. From Figure 20.3, it is observed that this operator is highly parent-centric.

20.5 TEST FUNCTIONS

In this chapter, 20 different multiobjective functions are tested by using the NSGA-II algorithm with SBX-A and SBX-LN crossover probability distributions. These test functions are described in Table 20.1 [1].

20.6 NSGA-II ALGORITHM FOR TEST FUNCTIONS

In this chapter, the NSGA-II algorithm with SBX-A and SBX-LN crossover probability distributions is used to test 20 different multiobjective functions. The variance generational distance (GD) is the performance metric used to measure the performance of SBX-A and SBX-LN operators. The GD of convergence metric finds an average distance of the solutions of optimum solution set obtained by the algorithm (Q) from Pareto-optimal set of solutions (P*) [1, 9]. The GD is obtained from the following relation.

[image: Images]

FIGURE 20.3 Probability distribution of children solutions (a) with closely spaced parents at 2 and 3; (b) with parents at 2 and 5 (intermediate case); (c) with distant parents at 2 and 8; (d) with parents at 3 and 7 (intermediate case).

TABLE 20.1 Description of Test Functions

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

where di is the Euclidean distance and p and i are the constants. The value of p is equal to two. The di (in the objective space) is the distance between solutions i ∈ Q and the nearest member of P*. The di is obtained from the following relation.

[image: Images]

where the fm*(k) is the m-th objective function value of the k-th member of P* and fm(i) is the m-th objective function value of the i-th member of Q. The GD of diversity metric is obtained from the following relation.

[image: Images]

where di is the distance measure between neighboring solutions, d is the mean value of these distances and dme is the distance between the extreme solutions of P* and Q corresponding to m-th objective function.

The variance GD of convergence and diversity are computed, in each case, to find the performance of algorithm with SBX-A and SBX-LN crossover probability distributions. The probability of contracting crossover is more desirable than the expanding crossover. This increases the probability of creating offspring between the parents. This is more parent-centric for small value of ηc.

The use of mutation may destroy already found good information. It is suggested that GAs may work well with large pc and small pm values. Hence, the ηm is chosen with a small value. The value of pm, for 20 multiobjective functions, is chosen as 0.01 instead of (1/N) where N is number of variables [9].

Five runs are made, for each function, with different random seeds. For all functions, the population size is 100, number of generations is 250, pc is 0.8, pm is 0.01, ηc is 0.05 and ηm is 0.5 [7, 9]. These results are shown in Table 20.2.

TABLE 20.2 Variance GD of Convergence and Diversity

[image: Images]

From Table 20.2, it is observed that the NSGA-II algorithm with SBX-LN crossover probability distribution found better optimum solutions for different types of functions. By comparing the variance GD of convergence and diversity metrics, it is observed that the NSGA-II algorithm with SBX-LN crossover probability distribution is having better convergence for seven functions and better diversity for five functions (9). Classification of these functions is shown in Table 20.3.

From Table 20.3, it is observed that the NSGA-II algorithm with SBX-A is having good convergence and better diversity for some functions. This is because the number of generations, for all the functions, is taken as 250. This is not acceptable for all the functions. Hence, a suitable number of generations, with sufficient number of function evaluations, are to be selected for each function to converge to the Pareto-optimal front (POF). From these results, it is observed that the performance of NSGA-II algorithm is improved by choosing a better parent centric crossover probability distribution.

TABLE 20.3 Classification of Functions Outperformed by NSGA-II (SBX-LN)

[image: Images]

20.7 SUMMARY

The NSGA-II algorithm with SBX-A and SBX-LN crossover probability distributions are used to test 20 multiobjective functions. The NSGA-II algorithm with SBX-LN crossover probability distribution found better optimal solutions with good diversity for different multiobjective functions. The major observations of this work are as follows.

	The performance of NSGA-II algorithm, when used to find the optimal solutions of 20 multiobjective functions, is improved by the SBX-LN crossover probability distribution.

	The NSGA-II algorithm with SBX-LN crossover probability distribution found better optimal solutions for various functions such as unconstrained and constrained functions, unimodal and multimodal functions, functions with different number of variables and functions having continuous and discontinuous solutions.

	Two functions, ZDT4 and ZDT6, have more epitasis. NSGA-II algorithm with SBX-LN crossover probability distribution found the optimal solutions having better convergence for both functions and having better diversity for one function, ZDT6.

20.8 POINTS FOR FURTHER IMPROVEMENT

The performance of NSGA-II algorithm can be improved further by implementing the following points. Using a better crossover probability distribution. Other with SBX-LN crossover probability distributions will be improved by implementing the following points:

	The number of generations, with sufficient number of function evaluations, should be selected for each function to convert to the POF.

	The performance of NSGA-II algorithm will be improved further by using a better probability distribution of SBX-A operator.

KEYWORDS

	actual simulated binary crossover

	differential evolution

	evolutionary programming

	evolutionary strategies

	genetic algorithm

	genetic programming

	nondominated sorting algorithm

REFERENCES

1. Deb, K. Multiobjective Optimization using Evolutionary Algorithms, John Wiley & Sons Limited: Chichester, 2002.

2. Deb, K. Optimization for Engineering Design, Prentice-Hall of India Private Limited: New Delhi, 2004.

3. Rao, S. S. Engineering Optimization, John Wiley & sons: Inc., 1996.

4. Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning, Pearson Education: New Delhi, 2006.

5. Xue, F., Sanderson, A. C., & Graves, R. J. Pareto-based Multiobjective Differential Evolution, IEEE Congress on Evolutionary Computation, Canberra, 2003, 2, 862–869.

6. Deb, K., Agarwal, S., Pratap. A., & Meyariven, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 2002, 6, 182–197.

7. Raghuwanshi, M. M., Singru, P. M., Kale, U., & Kakde, O. G. Simulated Binary Crossover with lognormal distribution, Complexity International, 12, 1–10.

8. Price, K. V., Storn, R. M., & Lampinen, J. A. Differential Evolution – A Practical Approach to Global Optimization, Springer: Verlag Berlin Heidelberg, 2005.

9. Prasad, K. V. R. B., & Singru, P. M. Performance of Lognormal Probability Distribution in Crossover Operator of NSGA-II Algorithm, Proceedings of Eighth International Conference on Simulated Evolution And Learning (SEAL-2010), Kanpur (Lucknow), India, December 01–04, 2010; Deb, K., Bhattacharya, A., Chakraborti, N., Chakroborty, P., Das, S., Dutta, J., & Gupta, S. K., Springer-Berlin: Heidelberg, 2010.

CHAPTER 21

EVOLUTIONARY ALGORITHMS FOR MALWARE DETECTION AND CLASSIFICATION

KAMRAN MOROVATI1 and SANJAY S. KADAM2

1Information Security Center of Excellence (ISCX), Faculty of Computer Science, University of New Brunswick, 550 Windsor St., Head Hall E128, Fredericton, NB, E3B 5A3, Canada

2Evolutionary Computing and Image Processing Group (ECIP), Center for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University Campus, Ganeshkhind, Pune–411007, India

CONTENTS

Abstract

21.1 Introduction

21.2 Calculating Malware Op-Code Frequencies

21.3 ANOVA and Duncan Multiple Range Tests

21.4 Classification of Samples

21.4.1 Binary Classification

21.4.1.1 Decision Tree Classification

21.4.1.2 ANN Classification

21.4.1.3 Naïve Bays Classification

21.4.1.4 Support Vector Machine Classification

21.4.2 Multi-Class Classification

21.4.2.1 Decision Tree Classification

21.4.2.2 ANN Classification

21.4.2.3 Naïve Bays Classifier Classification

21.4.2.4 Support Vector Machine Classification

21.5 Improving Malware Detection Using ACO and Rough Set

21.5.1 Ant Colony Optimization

21.5.2 Data Reduction with Rough Set Theory

21.5.3 ACO Framework

21.5.3.1 Feature Selection with ACO

21.5.3.2 Pheromone Update

21.5.3.3 Experiment Setup

21.5.3.4 Entropy Based Ranking of the Op-Codes

21.5.4 Finding the Maximum Accuracy

21.6 Conclusion

Keywords

References

ABSTRACT

This chapter presents application of evolutionary algorithms for malware detection and classification based on the dissimilarity of op-code frequency patterns extracted from their source codes. To address this problem, the chapter first describes efforts to establish a correlation between the op-code frequencies and the pre-defined class types using the ANOVA test, and then elaborates on the use of Duncan multiple range test to extract effective opcodes (attribute reduction) for the classification purpose. It also elaborates on another attribute reduction technique based on ant colony optimization, rough sets, and InfoGain-Ranker in order to extract effective op-codes for recognition and classification purpose. Using a reduced set of attributes and randomly collected samples, the random forests classifier was built and used to classify the test samples into various malware classes.

21.1 INTRODUCTION

Malware, an abbreviation for “Malicious Software,” is designed to disrupt normal execution of computer operations, gather sensitive information, or gain access to the computer systems. It can also be defined as hostile, intrusive, or annoying software that can appear in the form of code, scripts, and active content, which can infect a single computer, server, or an entire computer network. Malware is usually categorized into “families” (representing particular type of malware with unique characteristics) and “variants” (usually a different version of code in a particular family). Malware is injected into a system in order to harm or subvert the system for purposes other than those intended by its owner(s). Malware includes computer viruses, worms, Trojan horses, spyware, adware, rootkits, logic bombs, bots and other malicious programs.

The current anti-malware software solutions usually rely on the use of binary signatures to identify the corresponding malware. This approach cannot defend against new malware until unless the new malware samples are obtained and analyzed, and their unique signatures are extracted. Therefore, the signature-based approaches are not effective against new and unknown malware. Certain anti-malware solutions use other malware detection techniques such as the “abnormal behavior detection” or “heuristic analysis.” These methods also have some disadvantages like high false alarm rate or are costly to implement.

In this chapter we present a new malware detection technique based on op-code frequency patterns. This work is an extension to the research conducted by Bilar [1], showing the effectiveness of op-codes as malware predictor. We first establish a correlation between op-code frequencies and the pre-defined class types using the ANOVA test. We then use Duncan multiple range test for extracting the effective op-codes in order to increase the accuracy of the classification. To the best of our knowledge, the use of the Duncan test is a novel feature selection method used for malware detection. The classifiers used in our research work include decision trees, Artificial Neural Networks, naïve Bayes,’ and support vector machines. The classification has been done in two phases: identifying of malware against benign files (two-class problem), and use of six-class labels to further determine sample file types (virus, Trojan, worm, adware, etc.).

In addition to the Duncan test, we have also employed another technique to reduce the number of op-codes and extract the effective ones for classification of malware. This technique comprises a feature selection method known as ant rough set attribute reduction (ARSAR), which is based on ACO, and uses the rough set dependency measure. It then employs infogain and a ranker method to rank the selected op-codes. The ranking was based on the “Information Gain” value of the op-codes. We then apply the random forests classifier several times to perform multi-class classification (with class labels as benign, virus, Trojan, worm, adware and rootkit) using the ranked op-codes; adding one op-code at a time to the previous op-code set after completion of every iteration. In this process we could select the best 54 op-codes that gave the maximum classification accuracy.

The chapter is organized as follows. Section 21.2 describes method to extract the op-codes and calculate their frequencies in each malware. Section 21.3 describes the ANOVA test to establish a correlation between the opcode frequencies and the pre-defined class types. It describes the Duncan multiple range test used for extracting the effective op-codes. Section 21.4 describes techniques for classifying malware against the benign files, and methods to identify classes within the malware types (virus, Trojan, worm, adware, etc.). Section 21.5 describes methods to improve classification accuracy using ant colony optimization and rough sets. The chapter concludes with a summary of the research work.

21.2 CALCULATING MALWARE OP-CODE FREQUENCIES

The malware samples were collected from various online virus repositories such as the VX-Heaven1 and the Virus Sign websites2. Out of thousands of malicious files, a total of 200 malware from different families were selected randomly. The normal files representing the “Benign class” comprised Portable Executable (PE) files randomly selected from Cygwin software folders (a collection of tools that provide a Linux look and feel environment for Windows) and “System32” folder of MS-Windows 7 Ultimate version. Malware developers use packing techniques to obfuscate malware source code or to compress the executables. Appropriate unpacking tools available on the web (e.g., www.woodmann.com) were therefore used to acquire the original content of the malware and the normal files. The unpacked files were loaded into the de-facto industry standard disassembler, IDA Pro (6.1) [2], which translates binary content and generates assembly language source code from the machine-executable file format.

After loading each malware sample into IDA Pro and running the InstructionCounter [26], a modified plugin of the IDA disassembler, we extracted the assembly function statistics. For each malware, one text file was generated, which contained the frequency of used assembly functions in the corresponding binary file of the malware. Subsequently, these text files were imported to an MS-Excel spreadsheet and were augmented with the complete list of x86 instruction set available in Ref. [7], totaling 681 assembly functions or op-codes. The total frequency count of the frequency of each of the 681 op-codes across all the 100 benign sample files was around 2 million, and these op-codes were spread across 130 different categories of the assembly functions.

Amongst these op-codes, 85 op-codes accounted for more than 99.8% (ratio of the sum of their frequency count to the total frequency count, expressed in percentage) over the total op-codes found, 14 op-codes accounted for more than 91%, and the top 5 op-codes accounted for 67.7% over the total op-codes extracted. Similarly, the total of the frequency count of each of the 681 op-codes across all the 200-malware sample files was around 7 million, and these op-codes were spread across 163 different categories of the assembly functions. Table 21.1, shows some descriptive statistics of the samples.

TABLE 21.1 Descriptive Statistics of Samples

[image: Images]

21.3 ANOVA AND DUNCAN MULTIPLE RANGE TESTS

According to Ref. [7], a total of 681 assembly op-codes are defined to date, but we observed that less than 200 op-codes are relevant based on the samples we collected for our research study. In a Microsoft Excel spread sheet, a 300 X 681 contingency table was designed (rows represented samples of different classes; columns represented the op-code frequencies). In this phase our aim was to detect the effective op-codes and reduce the number of assembly functions that we were going to be used as inputs to our classifier. We also wanted to know if there was a statistically significant difference in op-code frequencies between the classes for which we used the ANOVA (Analysis of variance) and Duncan Multiple Range tests.

The result of the ANOVA test confirms that there are some associations between the op-codes and the corresponding classes. For example, the variance of the frequency pattern of the 681 op-codes for a Virus is different from the variance of similar such pattern for a Trojan or any other mal-ware or non-malware. This means that the results of the ANOVA test imply that the frequency patterns of the 681 op-codes for different samples are useful in classification of the samples into different malware types and the benign class. After observing the results of the ANOVA test, we run Duncan test to know the most significant and the least significant op-code clusters. Generally, the Duncan test is based on the idea that the means must be compared according to the variable range. In our experiment, the Duncan test clustered the op-codes into 27 segments based on their significance.

Table 21.2, summarizes the segments created by the Duncan multiple range test. Means for groups in homogeneous subsets are displayed. For example, segment 27 has an op-code (Mov) selected from the 681 op-codes. Its ‘Significant’ value is 1, which is based on the mean calculated for the “Mov” op-code. This mean is computed by accumulating the frequency of the “Mov” op-code across each of the 300 samples and taking the mean with respect to the total frequency count of all the 681 op-codes across each of the 300 samples. The entries in Table 21.2, help us to establish that the op-codes are good malware predictors. In addition, Duncan test also helps us to segment the op-codes. In this segmentation, op-code functions belonging to each group have same significance, hence, practically only one member function (op-code) is enough to represent the entire segment/cluster. This significantly reduces the number of the effective op-codes from 681 to 27. Table 21.3 shows a list of selected op-codes by the above-mentioned procedure. For example, “neg” op-code (Segment 10) in Table 21.3 represents the entire cluster 10 depicted in Table 21.2.

TABLE 21.2 Duncan Multiple Test Results

[image: Images]

TABLE 21.3 Selected Op-Codes From the Resulting Clusters of Duncan Test

[image: Images]

21.4 CLASSIFICATION OF SAMPLES

After limiting the op-codes to 27, the next task is to apply different classifiers to classify the samples in two different ways, namely, the binary classification (i.e., malware v/s non-malware) and multi-class classification (i.e., different malware classes and the benign class). In our research work, four different classifiers were tested and compared.

21.4.1 BINARY CLASSIFICATION

21.4.1.1 Decision Tree Classification

To classify our samples using decision trees, we converted our excel database into the CSV (comma-separated values) format and then we imported this data file into the WEKA software [6]. Weka is a collection of machine learning algorithms for data mining tasks and it contains tools for data preprocessing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes. We tested various decision tree classification algorithms, which are available in the tree classifier section of the Weka software. These algorithms include J48 [25], J48-Graft [11], Best-First tree (BFTree) [13], Functional Tree (FT) [14], Multiclass alternating decision trees (LADTree) [10], Logistic Model Trees (LMT) [20], Naive Bayes Tree (NBTree) [24], Random Forests [16], Fast decision tree learner (REPTree) [4], Classification and Regression Trees (SimpleCart) [17].

The results of classification with two class labels (Malware and Benign) using the decision tree classifiers are depicted in Table 21.4. According to our observation, the NB Tree and Random Forest methods achieved the best accuracy with more than 98% classification success rate. Random forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and output the class that is the mode of the classes output by individual trees [16]. The method combines the “bagging” [15] idea and the random selection of features, in order to construct a collection of decision trees with controlled variation. The detailed procedure of the Random Forests algorithm is explained in [16]. Tables 21.4, 21.5 and 21.6 presents more details regarding these two methods.

TABLE 21.4 Decision Tree Classification Summary (2 Class Labels)

[image: Images]

TABLE 21.5 Evaluation of NBTree and Random Forest Classifiers

[image: Images]

TABLE 21.6 Confusion Matrix of NBTree and Random Forest Classifier

	Classified As →

	Malware

	Benign

	Malware

	199

	2

	Benign

	3

	96

21.4.1.2 ANN Classification

The NeurosolutionTM [3] software was used for creating an appropriate ANN model, training the model, and testing and performing the classification. In our experiment, we have used a three-layer (input-hidden-output) feed forward ANN model with Levenberg–Marquardt back propagation learning algorithm and sigmoid transfer function (Figure 21.1). For classification with two class labels, the malware and benign labels were tagged as desired outputs, and the 27 op-code frequencies, selected through the Duncan test, were tagged as inputs. Out of the 300 samples collected, 50% of these samples were used for training the neural network, 15% samples were used for cross-validation, and the remaining 35% samples were used for testing. Cross validation set was used to prevent over training and ensure generalization.

The network trained itself for 500 iterations, just before the error for the cross validation set started increasing (which constituted the stopping criteria). The observed MSE versus the epoch values is shown in Figure 21.2. The accuracy for binary classification using ANN was around 97% (for the test samples) as shown in Table 21.7. After training the network, we test the network performance on data that the network was not trained with (test data). The resultant confusion matrix and other the observed results are summarized in Table 21.7.

[image: Images]

FIGURE 21.1 ANN architecture.

[image: Images]

FIGURE 21.2 MSE versus Epoch diagram.

TABLE 21.7 Confusion Matrix (Binary Classification)

[image: Images]

ROC is a matrix used to show how changing the detection threshold affects detection versus false positives. If the threshold is set too high, the network would miss several detections. On the other hand if the threshold is set too low, there would be many false positive. In the following ROC chart, the True Positive Rate is placed on Y axis and the False Positive Rate on the X axis. Area under curve (ROC) is equal to 0.984681854 (Figure 21.3). Since the ROC value is close to 1, we can infer that the performance of the ANN classifier is satisfactory.

21.4.1.3 Naïve Bays Classification

The Bayesian Classifier is capable of calculating the most probable output depending on the input. Naïve Bayes classifier estimates the class conditional probability by assuming that the attributes are conditionally independent, given the class label. Bayesian classification provides practical learning algorithms and prior knowledge and observed data can be combined. Bayesian Classification provides a useful perspective for understanding and evaluating many learning algorithms. It calculates explicit probabilities for hypothesis and it is robust to noise in the input data. Naïve Bayes classifier is a probabilistic learning method based on Bayes’ theorem. It combines evidence e from multiple sources of data to estimate the probability of a hypothesis h:

[image: Images]

[image: Images]

FIGURE 21.3 ROC curve for binary classification (area under curve=0.984681854).

In our experiment, an implementation of the Naïve Bayes Classifier in WEKA software was used. According to WEKA’s manual, weka.classifiers. bayes.NaiveBayes class is a Naive Bayes classifier, which uses estimator classes. Numeric estimator precision values are selected based on the analysis of the training data. For testing the classifier, we used the 10-fold cross validation method. Tables 21.8 and 21.9 show the Naïve Bays binary classification results. Table 21.10 summarizes the classifier evaluation results.

21.4.1.4 Support Vector Machine Classification

TABLE 21.8 Naïve Bays Binary Classification Stratified Cross-Validation Results

[image: Images]

TABLE 21.9 Naïve Bays Binary Classification Confusion Matrix

	Classified As →

	Malware

	Benign

	Malware

	199

	2

	Benign

	4

	95

TABLE 21.10 Naïve Bays Binary Classification Evaluation Results

[image: Images]

The support vector machine is one of the most popular and accurate classifiers. A classification task usually involves dividing the data into training and testing sets. Each instance in the training set contains one “target value” (known as class label) and several “attributes” (i.e., the features or observed variables). The goal of SVM is to produce a model (based on the training data), which predicts the target values of the test data given only the test data attributes. Given a training set, the SVM requires the solution of the following optimization problem [9]:

[image: Images]

subject to

[image: Images]

Here, the training vectors xi are mapped onto a higher (may be infinite) dimensional space by the function φ. SVM finds a linear separating hyper plane with the maximal margin in this higher dimensional space. The variable C > 0 is the penalty parameter of the error term. Furthermore, K(xi, yi) ≡ ϕ(xi)T ϕ(xj)[image: Images] is called the kernel function.

To classify our samples using SVM, the LIBSVM [8] package was used. We used the RapidMiner3 software, which has implemented the SVM classifier by using the LIBSVM package. Figure 21.4 illustrates the model structure in RapidMiner. To evaluate the SVM classifier, X-Validation operator was used to implement a 10-fold cross validation. It is a nested operator. It has two sub-processes: a training sub-process and a testing sub-process. The training sub-process is used for training a model. The trained model is then applied in the testing sub-process. The performance of the model is also measured during the testing phase.

[image: Images]

FIGURE 21.4 SVM classifier in RapidMiner.

The input set is partitioned into k subsets of equal size. Of the k subsets, a single subset is retained as the testing dataset and the remaining k − 1 subsets are used as training data. The cross-validation process is then repeated k times, with each of the k subsets used exactly once as the testing data. The k results from the k iterations can then be averaged (or otherwise combined) to produce a single estimation. The value k can be adjusted using a number of validation parameters. The learning process usually optimizes the model to fit the training data as best as possible. Setting the optimal values for different parameters in a particular SVM kernel results in better classification and more accuracy. By using the “Optimize Parameters (Grid)” component in RapidMiner, we tested different parameter values to see which combination achieves the best accuracy. This operator finds the optimal values of the selected parameters (Figure 21.5).

In our experiment we classified our samples using all four basic SVM kernels. Table 21.11 shows the obtained results. The confusion matrixes and ROC values of different SVM kernels are listed in Table 21.12. As can be seen from Tables 21.11 and 21.12, the SVM classifier gives relatively better results for binary classification in comparision to other classifiers (i.e., Decision tree, ANN, and Naïve Bayes).

[image: Images]

FIGURE 21.5 Parameter configuration operator to find optimal combination for RBF kernel.

TABLE 21.11 SVM Binary Classification Results

[image: Images]

TABLE 21.12 SVM Binary Classification ROC Values and Confusion Matrixes

[image: Images]

21.4.2 MULTI-CLASS CLASSIFICATION

21.4.2.1 Decision Tree Classification

Table 21.13, summarizes the experimental results of the classification with six class labels representing: Virus, Trojan, Adware, Worm, Rootkit and Benign. In this case, again the Random Forest algorithm yields the best accuracy with 82.33% success rate. Table 21.14, recapitulates the classifier evaluation information and Table 21.15 shows the respective confusion matrix.

21.4.2.2 ANN Classification

Classification with six class labels was done using the Matlab software. The ANN architecture is similar as in the previous study except that this time the desired outputs have six class labels instead of two. The dataset was divided as follow: 50% of the total 300 samples were marked as training data, 15% as cross validation set, and 35% marked for testing purpose. Figure 21.6 shows the network’s performance as it improved during the training process. Performance is measured in terms of the mean squared error and is shown in log scale. It decreased rapidly as the network was trained. Performance is shown for each of the training, validation and test datasets.

A good measure of how well the neural network has fitted the data is the confusion matrix plot. Here, the confusion matrix is plotted across all the samples. The confusion matrix shows the percentage of correct and incorrect classifications. Correct classifications are the green squares on the matrix diagonal. Incorrect classifications are represented by the red squares. If the network has learned to classify correctly, the percentages in the red squares should be very small, indicating few misclassifications. If this is not the case then further training or training a network with more hidden neurons could improve the accuracy. Figure 21.7 shows the overall percentages of correct and incorrect classification. The accuracy of the testing phase is 70.5% and overall accuracy is 73.7%.

Another measure of how well the neural network has fitted the data is the ROC (receiver operating characteristic) plot. This plot shows how the false positive and true positive rates relate as the thresholding of outputs is varied from 0 to 1. The nearer the line is to the left as well as to the top; the fewer are false positives that need to be accepted in order to get a high true positive rate. The best classifiers will have a line whose one end goes from the bottom left corner to the top left corner and the other end goes to the top right corner, or closer to that. Figure 21.8 shows the ROC plot for training, cross validation and testing sets. From Figure 21.8, it can be observered that the multi-class classification using ANN was not as expected.

TABLE 21.13 Decision Tree Classification Summary (6 Class Labels)

[image: Images]

TABLE 21.14 Evaluation of Random Forest Classifier (6 Class Labels)

[image: Images]

TABLE 21.15 Confusion Matrix for Random Forest Classifier (6 Class Labels)

[image: Images]

[image: Images]

FIGURE 21.6 MSE versus Epoch.

[image: Images]

FIGURE 21.7 Confusion matrix.

21.4.2.3 Naïve Bays Classifier Classification

For multiclass classification, the Bayes’ theorem provides the probability of each hypothesis being true given the evidence. During the training step, a Naïve Bayes classifier uses the training data to estimate the parameters of a probability distribution (on the right-hand side of the Eq. 1). Again, a 10-fold cross validation was used to test the model. During the testing phase, a naïve Bayes classifier uses these estimations to compute the posterior probability (the left-hand side of the Eq. 1) given a test sample. Each test sample is then classified using the hypothesis with the largest posterior probability. Tables 21.16 and 21.17 show the Naïve Bays multi-class classification results. Table 21.18 summarizes the classifier evaluation results.

[image: Images]

FIGURE 21.8 ANN multiclass classification ROC plot.

TABLE 21.16 Naïve Bays Multiclass Classification Stratified Cross-Validation Results

[image: Images]

TABLE 21.17 Naïve Bays Multiclass Classification Confusion Matrix

[image: Images]

TABLE 21.18 Naïve Bays Multiclass Classification Evaluation Results

[image: Images]

21.4.2.4 Support Vector Machine Classification

To test the performance of the SVM classifier in the multiclass case, we first determined the optimal parameters for each SVM kernel using “Optimize Parameters (Grid)” component in the RapidMiner software. We then performed the classification using the LIBSVM wrapper available in the WEKA software. The reason for selecting the WEKA LIBSVM wrapper is its ability to provide more detailed information (for the multi-class case) compared to other data mining software (such as R, LionSolver, etc.). Tables 21.19, 21.20 and 21.21 show the multi-class classification results obtained by the SVM classifier. The results are stratified for each SVM kernel.

Table 21.22 summarizes the experiment results of the Binary classification. As seen from Table 21.22, for binary classification with Malware and Benign class labels, the SVM classifier (Linear, Polynomial and Sigmoid kernels) performed better than others.

21.5 IMPROVING MALWARE DETECTION USING ACO AND ROUGH SET

In this section we attempt to further improve the classification accuracy of the multi-class classification of the malware. In order to perform this task, we first apply a feature selection method based on the ant colony optimization algorithm to get a reduced feature set comprising the op-codes. We then apply an appropriate classifier on this reduced feature set to classify the samples into various classes (i.e., into six class labels as discussed in Section 21.3). For feature selection, the Ant Rough Set Attribute Reduction algorithm (ARSAR) [23] has been used, which is based on the Rough Set Dependency Measure and Ant Colony Optimization (ACO). In our research work, since the Random Forests classifier performed relatively better than the other classifiers, it has been used to perform the multi-class classification using the reduced feature set.

TABLE 21.19 SVM Multiclass Classification

[image: Images]

TABLE 21.20 SVM Multiclass Classification Evaluation

[image: Images]

TABLE 21.21 SVM Multiclass Classification Confusion Matrices

[image: Images]

TABLE 21.22 Classification Summary

	Classifier

	Classification Accuracy (Multiclass)

	Classification Accuracy (Binary)

	Decision Tree (Random Forest)

	82.33%

	98.33%

	ANN

	73.7%

	97.36%

	Naïve Bayes

	63.33%

	98%

	SVM

	72.66%

	99%

The procedure to improve the accuracy of the multi-class classification process can be summarized as follows:

1) Apply the ARSAR algorithm several times on the op-code frequency dataset to reduce the number of features and find the optimal subset of these op-codes.

2) Rank the reduced op-codes from the optimal set based on their ability of partitioning the dataset (“Information gain” value).

3) Sort the op-codes according to their “Infogain” value, and iteratively perform multi-class classification starting with only one op-code with the highest Infogain value in the first iteration, followed by multi-class classification using the next higher-ranked op-code added to the previous op-code list during each iteration.

4) Plot the observed accuracies for each op-code set (of each iteration) to determine the global maximum (max. accuracy).

The rest of the discussion elaborates on the algorithm used for feature selection, the classification process, and the results.

21.5.1 ANT COLONY OPTIMIZATION

Real ants are able to find the shortest path between their nest and the food sources due to deposition of a chemical substance called as pheromone on their paths. The pheromone evaporates over time. Hence, the shorter paths will contain more pheromone (as the rate of pheromone deposition is relatively greater than the rate of evaporation for such paths) and will subsequently attract a greater number of ants in comparison to the longer paths (which would be taken by only fewer ants). ACO, loosely inspired by the behavior of the real ants, was initially proposed by Colorni, Dorigo and Maniezzo [18, 19]. The main underlying idea is to use ants to find parallel solutions to a given problem based on the local problem data and on a dynamic memory structure containing information (e.g., amount of pheromone depositions, path length, etc.) on the quality of previously obtained result. The collective behavior emerging from the interaction of the different search processes has proved effective in solving combinatorial optimization problems.

21.5.2 DATA REDUCTION WITH ROUGH SET THEORY

Using the rough set theory, the reduction of attributes is achieved by comparing equivalence relations generated by the sets of attributes. Attributes are removed so that the reduced set provides the same predictive capability of the decision feature as the original. Areduct is defined as a subset of minimal cardinality Rmin of the conditional attribute set C such that γR(D) = γC(D), where γ is the attribute dependency measure [5].

[image: Images]

[image: Images]

The intersection of all the sets in Rmin is called the core, the elements of which are those attributes that cannot be eliminated without introducing more contradictions to the dataset. Using Rough Set Attribute Reduction (RSAR), a subset with minimum cardinality is searched. The problem of finding a reduct of an information system has been addressed by numerous researchers. The most basic solution to locating such a subset is to simply generate all possible subsets and retrieve those with a maximum rough set dependency degree. Obviously, this is an expensive solution to the problem and is only practical for very simple datasets. Most of the time only one reduct is required as typically only one subset of features is used to reduce a dataset, so all the calculations involved in discovering the rest are pointless. To improve the performance of the above method an element of pruning can be introduced. By noting the cardinality of any pre-discovered reducts, the current possible subset can be ignored if it contains more elements. However, a better approach is needed one that will avoid computational effort [23].

The QuickReduct algorithm listed below (adapted from Ref. [27]) attempts to calculate a reduct without exhaustively generating all possible subsets. It starts off with an empty set and adds in turn, one at a time, those attributes that result in the greatest increase in the rough set dependency metric, until this produces the maximum possible value for the dataset. When there is no further increase in the dependency measure, this could be considered as a termination criterion. This will produce exactly the same path to a reduct due to the monotonicity of the measure without the computational overhead of calculating the dataset consistency.

QUICKREDUCT (C, D)

C = the set of all conditional features;

D = the set of decision features

R ← {}

Do

T ← R

∀x ∈ (C − R)

if γR∪{x} (D) > γT(D)

T ← R ∪ {x}

R ← T

until γR (D) == γC(D)

Return R

The QuickReduct algorithm, however, is not guaranteed to find a minimal subset as has been shown in [12]. Using the dependency function to discriminate between candidates may lead the search down a non-minimal path. It is impossible to predict which combinations of the attributes will lead to an optimal reduct based on the changes in dependency with the addition or deletion of single attributes. It does result in a close-to-minimal subset, though, which is still useful in greatly reducing dataset dimensionality. However, when maximal data reductions are required, other search mechanisms must be employed [23]. In our research work, we employ the QuickReduct algorithm by building the reduct iteratively, where, during each iteration, one additional op-code gets added to the previous reduct set.

21.5.3 ACO FRAMEWORK

ACO based feature selection method is attractive for feature selection as there seems to be no heuristic that can guide search to the optimal minimal subset (of features). Additionally, the ants may discover the best feature combinations as they proceed throughout the search space. On the other hand, Rough set theory [28] has successfully been used as a selection tool to discover data dependencies and reduce the number of attributes contained in a structural dataset. In general, an ACO algorithm can be applied to any combinatorial problem which satisfies the following requirements [22]:

	Appropriate problem representation. A description of the problem as a graph with a set of nodes and edges between nodes.

	Heuristic desirability (η) of edges. A suitable heuristic measure of the “goodness” of paths from one node to every other connected node in the graph.

	Construction of feasible solutions. A mechanism to efficiently create possible solutions.

	Pheromone updating rule. A suitable method of updating the pheromone levels on edges with a corresponding evaporation rule. Typical methods involve selecting the nbest ants and updating the paths they chose.

	Probabilistic transition rule. A mechanism for the determination of the probability of an ant traversing from one node in the graph to the next.

Each ant in the artificial colony maintains a memory of its history, remembering the path it has chosen so far in constructing a solution. This history can be used in the evaluation of the resulting solution and may also contribute to the decision process at each stage of the solution construction. Two types of information are available to ants during their graph traversal, local and global, controlled by the parameters α and β, respectively. Local information is obtained through a problem-specific heuristic measure.

The extent to which the measure influences an ant’s decision to traverse an edge is controlled by β parameter. This will guide ants towards paths that are likely to result in good solutions. Global knowledge is also available to ants through the deposition of artificial pheromone on the graph edges by their predecessors over time. The impact of this knowledge on an ant’s traversal decision is determined by the α parameter. Good paths discovered by past ants will have a higher amount of associated pheromone. How much pheromone is deposited, and when, is dependent on the characteristics of the problem. No other local or global knowledge is available to the ants in the standard ACO model.

21.5.3.1 Feature Selection with ACO

Feature selection task in our research work can be formulated as an ACO problem. An ACO method requires a problem to be represented as a graph, where nodes represent features (op-codes in our case) and edges denote the choice of the next feature. The search for the optimal feature subset is then an ant traversal through the graph, where a minimum number of nodes (representing a subset of the best features selected by the ants) are visited such that they satisfy a traversal stopping criterion. The stopping criterion could simply be the classification accuracy, which must be achieved with this subset, assuming that the selected features are used to classify certain objects. The ants terminate their traversal and output this best feature subset (optimal op-code set in our case) as a candidate for data reduction.

A suitable heuristic desirability function that enables traversing between the features on the problem graph and the subset evaluation function (i.e., the stopping criteria) can be performed by using different techniques such as entropy-based measure [21], the rough set dependency measure, and several others. Optimality is defined as criteria to select the best path among several paths undertaken by the corresponding ants at the end of each iteration. Depending on how optimality is defined for a particular application, the pheromone may be updated accordingly. For instance, subset minimality and “goodness” are two key factors (or optimality criteria), where the pheromone updates is proportional to the “goodness” and inversely proportional to the size of the path traversed. How “goodness” is determined will also depend on the application. In some cases, there may be a heuristic evaluation of the subset, in others it may be based on the resulting classification accuracy of a classifier produced using the subset [23].

In our research work, we have used entropy-based measure [21] as a heuristic, rough set dependency measure as a subset evaluator (or stopping criteria), and minimality of the paths as optimality criteria. By minimality of the paths we mean the minimum number of nodes or features (op-codes) traversed by the ants. The heuristic desirability function and pheromone factors are combined to form the so-called probabilistic transition rule, denoting the probability of an ant k at feature i choosing to move to feature j at time t:

[image: Images]

where, [image: Images] is the set of ant k’s unvisited features, ηij is the heuristic desirability of selecting feature j (when at feature i), and τij(t) is the amount of virtual pheromone on edge (i, j). The choice of α and β is determined experimentally.

Figure 9 (adapted from [23]), illustrates the attribute selection process with ACO. It begins by generating a number of ants k, which are then placed randomly on the graph (i.e., each ant starts with one random feature). The number of ants could be equal to the number of features.

From these initial positions, the ants traverse edges probabilistically until a traversal stopping criterion is satisfied. The resulting feature subsets are gathered and then evaluated. If an optimal subset has been found or the algorithm has executed a certain number of iterations, then the process halts and outputs the best feature subset encountered. If neither condition holds, then the pheromone is updated, a new set of ants is created and the process iterates again [23].

21.5.3.2 Pheromone Update

As discussed in the earlier section, the pheromone may be updated based on the optimality criteria specified for the particular application. The use of the rough set dependency measure to find the rough set reduct could be used as the stopping criterion. This means that an ant will stop building its feature subset when the dependency of the subset reaches the maximum for the dataset (a value 1 for consistent datasets). The pheromone on each edge is updated according to the following equation:

[image: Images]

FIGURE 21.9 Feature selection with ACO.

[image: Images]

where,

[image: Images]

The above equation is used to update the pheromone if an edge (i, j) has been traversed, otherwise, The value ρ is decay constant used to simulate the evaporation of the pheromone, Sk is the feature subset found by an ant k. The pheromone is updated according to both the rough measure of the “goodness” of the ant’s feature subset (γ`) and the size of the subset itself. By this definition, all ants update the pheromone. Alternative strategies may be used for this, such as allowing only those ants with the most current best feature subsets to proportionally increase the pheromone [23].

21.5.3.3 Experiment Setup

The java version of the ARSAR, which is ported to the WEKA by Richard Jensen4, was used to reduce the number of attributes (op-codes). In our experiment, the pre-computed heuristic desirability of edge traversal was the entropy measure; with the subset evaluation performed using the rough set dependency heuristic (weka.attributeSelection.InfoGainAttributeEval class). In each iteration of applying the ARSAR, the number of ants used was set to the number of features, with each ant starting on a different feature. The ants continue to construct possible solutions until they reach a rough set reduct. To avoid unproductive searches, the size of the best reduct set was used to reject those subsets whose cardinality exceeded this value. The pheromone levels were set at 0.5 with a small random variation added. The pheromone levels were increased by only those ants, which achieved the reduct set. The parameter α was set to 1 and β was set to 0.5.

For classification, the Random Forests algorithm with 100 trees was used. Table 21.23 summarizes the feature selection and classification results using the ARSAR and Random Forests classifier. As can be seen in Table 21.23 while the size of the feature set decreases from 681 to 46, the accuracy also decreases. The best accuracy was achieved by using the first optimal subset, which contains 116 op-codes, that is, the six-label multi-class classification was performed using 116 op-codes selected by the ants.

21.5.3.4 Entropy Based Ranking of the Op-Codes

After getting the optimal feature set (116 op-codes in our problem), in order to further increase the accuracy of the multi-class classification, we ranked each feature in the optimal feature set. We used an entropy measure to rank the op-codes. We ran the InfoGain + Ranker algorithms in the feature selection tab of the Weka software in order to determine the significance of each individual variable that contributed to the classification results. The InfoGainAttributeEval class, evaluates the worth of an attribute by measuring the information gain with respect to the class.

InfoGain(Class, Attribute) = H(Class) – H(Class | Attribute)

TABLE 21.23 Applying ASRAR Algorithm Multiple Times

	Iteration

	Initial Set Size

	Reduced Subset size

	Classification Accuracy

	Round 1

	681

	116

	83.67%

	Round 2

	116

	77

	83%

	Round 3

	77

	54

	82.33%

	Round 4

	54

	46

	81.67%

where, H is the information entropy. The entropy function for a given set is calculated based on the class distribution of the tuples in the set. Let D consist of data tuples defined by a set of attributes and a class-label attribute. The class-label attribute provides the class information per tuple.

The entropy function for a given set (D1) is calculated based on the class distribution of the tuples in the set. For example, given m classes, C1, C2, …, Cm, the entropy of D1 is:

[image: Images]

where, pi is the probability of class Ci in D1, determined by dividing the number of tuples of class Ci in D1 by |D1|, the total number of tuples in D1. After applying ARSAR multiple times and selecting the best subset, we ranked all the op-codes in the selected optimal subset. Table 21.24 shows the corresponding output.

21.5.4 FINDING THE MAXIMUM ACCURACY

After ranking the op-codes and using the Random Forests algorithm, the six-label multi-class classification was performed multiple times. Starting with only one op-code with the highest rank (i.e., push) and each time adding the next higher ranked op-code from the Table 21.24, we repeated the classification. The resulting plot is illustrated in Figure 21.10. The best accuracy (84.33%) was observed with the first 50 four ranked op-codes from Table 21.24.

Table 21.25 summarizes the Random Forests multi-class classification results, which are obtained by using the first 54 highest ranked op-codes from Table 21.24. Tables 21.26 and 21.27 show the confusion matrix and the evaluation results, respectively. To sum up, the combination of RoughSet-ACO and InfoGain-Ranker methods, resulted in a better op-code selection. The multi-class classification with this subset produced better results compared to the Duncan test (i.e., 2% accuracy improvement).

TABLE 21.24 Ranked Op-Codes

[image: Images]

[image: Images]

FIGURE 21.10 Accuracy Plot.

TABLE 21.25 Random Forests Multiclass Classification Stratified Cross-Validation Results

[image: Images]

TABLE 21.26 Random Forests Multiclass Classification Confusion Matrix

[image: Images]

TABLE 21.27 Random Forests Multiclass Classification Evaluation Results

[image: Images]

21.6 CONCLUSION

This chapter presented application of evolutionary algorithms for malware detection and classification based on the dissimilarity of op-code frequency patterns extracted from their source codes. In binary classification, a new method of malware detection has been proposed. Initially, by using the ANOVA test we showed that, statistically, the op-code frequency patterns of our classes differ significantly, which aided their classification. The op-codes were reduced by the Duncan multiple range test. Finally, we performed the classification using multiple classifiers, including decision trees, ANN, Naïve Bayes and SVM. According to Table 21.22, for binary classification with Malware and Benign class labels, the SVM classifier (Linear, Polynomial and Sigmoid kernels) performed better than others. In multi-class classification, the Random Forest classifier yielded betters result in comparison to other classifiers. The goal of this approach is to detect malicious files (binary classification). In this case, all the classifiers successfully achieved a very high accuracy, which confirms the strength and efficiency of the suggested mal-ware detection method. If we consider ±2% as an accuracy tolerance to compare classifiers together, this can be concluded all techniques presented here have a good potential to be used as the malware detector.

In ACO and Rough Set based Classification, we attempted to improve the classification accuracy of the multi-class classification process. We applied a feature selection method known as Ant Rough Set Attribute Reduction (ARSAR), which is based on ACO and uses the Rough Set Dependency Measure, to get a reduced feature set comprising the op-codes. In the next step, we employed the InfoGain+Ranker method to rank the selected features. The ranking was based on the InfoGain value of the op-codes. We then applied the Random Forests classifier several times to perform multi-class classification using the ranked op-codes, adding one op-code to previous op-code set after each iteration. The best accuracy was observed using first 54 ranked op-codes. The multi-class classification with this subset produced better results in comparison to the use of the Duncan test (i.e., 2% accuracy improvement).

KEYWORDS

	ANN and SVM classifier

	ANOVA test

	Ant Rough Set Attribute Reduction

	decision trees classifier

	Duncan multiple range

	malware detection and classification

	Naïve Bayes classifier

	random forests classifier

REFERENCES

1. Bilar, D. Opcodes as predictor for malware, International Journal of Electronic Security and Digital Forensics. 2007, 1–2, 156–168.

2. Hex-Rays, IDA Pro Dissasember, An Advanced Interactive Multiprocessor Disassembler, http://www.hex-rays.com (Accessed Oct, 2012).

3. NeuroSolutions for Excel Product Summary, http://www.neurosolutions.com/products/nsexcel/ (Accessed Jun, 2012).

4. Weka, REPTree Algorithm, http://weka.sourceforge.net/doc/weka/classifiers/trees/REPTree.html (Accessed Aug, 2012).

5. Wikipedia, Rough set, http://en.wikipedia.org/wiki/Rough_set (Accessed Oct 05, 2013).

6. WEKA, The University of Waikato, http://www.cs.waikato.ac.nz/~ml/weka/ (Accessed Oct, 2012).

7. Wikipedia, x86 instruction listings, http://en.wikipedia.org/wiki/X86_instruction_listings (Accessed May, 2012).

8. Chang, C-C., & Lin, C-J., LIBSVM: A Library for Support Vector Machines, ACM Transactions on Intelligent Systems and Technology (TIST) 2011, 2–3, 1–2.

9. Hsu, C. W., Chang, C. C., & Lin, C. J. A Practical Guide to Support Vector Classification, Department of Computer Science, National Taiwan University, Taipei, Taiwan, 2010.

10. Holmes, G., Pfahringer, B., Kirkby, R., Frank, E., & Hall, M. Multiclass Alternating Decision Trees, Lecture Notes in Computer Science, 2002, 2430, 161–172.

11. Webb, G., Decision Tree Grafting From the All-Tests-But-One Partition, 1999.

12. Chouchoulas, A., Halliwell, J., & Shen, Q. On the Implementation of Rough Set Attribute Reduction, Proceedings of the 2002 UK Workshop on Computational Intelligence, 2002.

13. Shi, H. Best-first decision tree learning, University of Waikato: Hamilton, NZ,. 2007.

14. Gama, J. Functional Trees, Machine Learning 2004, 55, 219–250.

15. Breiman, L. Bagging predictors, Machine Learning 1996, 24–2, 123–140.

16. Breiman, L. Random Forests, Machine Learning 2001, 45–1, 5–32.

17. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. Classification and Regression Trees, Wadsworth International Group: Belmont, California, 1984.

18. Colorni, A., Dorigo, M., & Maniezzo, V. Distributed Optimization by Ant Colonies, Proceedings of ECAL’91, European Conference on Artificial Life, Paris, France, 134–142, Elsevier Publishing, 1991.

19. Dorigo, M. Optimization, learning and natural algorithms, PhD Thesis, Polite cnico di Milano, 1992.

20. Landwehr, N., Hall, M., & Frank, E. Logistic Model Trees, Machine Learning 2005, 95, 161–205.

21. JR, Q. C4.5: Programs for Machine Learning, San Mateo; Morgan Kaufmann Publishers: CA, 1993.

22. Jensen, R., & Shen, Q. Computational Intelligence and Feature Selection, IEEE Ed., Hoboken; Wiley Publication: New Jersy, 2008.

23. Jensen, R. Performing Feature Selection with ACO, Swarm Intelligence and Data Mining, Springer-Verlag, 2006, 45–73.

24. Kohavi, R. Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996, 202–207.

25. Quinlan, R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, 1993.

26. Porst, S. InstructionCounter v.1.02 (IDA Plugin), http://www.the-interweb.com/serendipity/index.php?/archives/62-IDA-InstructionCounter-plugin-1.02.html (Accessed 2012).

27. Chouchoulas, A., & Shen, Q. Rough Set-Aided Keyword Reduction for Text Categorisation, Applied Artificial Intelligence, 2001, 15–9, 843–873.

28. Zheng, S. Y., & Liu, J. J. A Secure Confidential Document Model and Its Application, International Conference on Multimedia Information Networking and Security, Nov 4–6, 2010, 516–519.

1 http://www.vxheaven.org

2 http://www.virussign.com

3 http://rapid-i.com

4 Download URL: http://users.aber.ac.uk/rkj/book/wekafull.jar

INDEX

A

Achievement scalarization function (ASF), 379

Adaptive control

applications, 430

techniques, 426, 427, 430

Adaptive Crawler for Hidden Web Entries (ACHE), 341

Adaptive genetic algorithm (AGA), 41

Adaptive Power System Stabilizer (APSS), 16, 421–431, 436, 438, 442–450, 453, 454

Airflow rate, 43

Algorithm parameters, 118, 281, 414

Altruistic

nature, 36

operations, 34

Analytic hierarchy process (AHP), 463–467, 474–480

Analytic solutions, 361

ANOVA/duncan multiple range tests, 574

ANOVA test, 570–574, 608, 609

Ant colony optimization (ACO), 16, 25, 41, 269–274, 278, 292, 376–382, 395, 398, 570, 571, 593, 597–604, 609

framework, 599

Ant Rough SetAttribute Reduction (ARSAR), 571, 593, 596, 603, 604, 608, 609

Application test cases, 383

case 1, 383–386

case 2, 387

case 3, 388

Approximation model, 66, 67

Architectural constraints, 464

Arithmetic operators, 197

Armature resistance, 457

Artificial

bee colony algorithm (ABC), 15, 25, 163–175, 181–190, 241, 265, 463

damping, 423

intelligence (AI), 429, 454

neural networks (ANN), 69, 72, 75, 88–91, 99, 106, 430, 431, 569, 581–583, 586, 588, 591, 592, 596, 608

ANN classification, 569, 581

ANN/SVM classifier, 609

evolutionary algorithms, 429

pheromone, 600

Aspect ratio (AR), 205

Asymptotic running time, 402

Athonite monasteries, 469

Atomic

operators, 15, 302

resolution, 196

Attraction component, 413

Auto Regressive model with eXogenous signal (ARX), 424, 432, 436, 444, 454

Automatic

classification, 324

differentiation, 376

query generation, 323, 324

Automatic Voltage Regulator (AVR), 421, 432, 437, 446, 447, 456–459

exciter models, 458

B

Back-propagation algorithm, 72

Bacteria foraging (BF), 156–159, 290, 294, 298, 352, 580, 589

Bacteria foraging algorithm (BFA), 115, 290, 489

Bacterium, 290, 291, 490–494

Baldwin effect, 39, 41

BAT

algorithm, 16, 352, 358, 363, 364, 369, 463

population, 359

Bayes’ theorem, 583, 591

Bayesian

classification, 583

classifier, 583

methodology, 71

Bee colony optimization, 352, 358

Bell’s method, 242, 244, 249, 251, 263, 265

Bellman-Ford algorithm, 290

Bell-type charging system, 97

Benchmark

functions, 318

pooling problems, 534–537

Bezier curve, 378, 383, 384

Bilevel

approach, 378

segmentation, 115

thresholding (BT), 115, 124

Binary

condition, 215–221, 224, 232

encoding, 305, 309

gas, 388

information, 409

species, 392

strings, 28, 64, 547

variable, 215, 216, 227, 234, 235, 238

Binomial terms, 214

Bi-Objective Genetic Programming (BioGP), 94, 102, 104

Biogenetic

law, 37

terminology, 305

Biological

concepts, 34, 486

nervous systems, 88

organisms, 164, 304

systems, 41, 48

Bio-mimetic adaptations, 14, 21, 34–36, 42, 47–49

altruistic GA, 36

baldwin effect, 39

biogenetic law of embryology, 37

biological immune system, 38

cockroach GA (CGA), 40

DNA and RNA computing, 39

genes adaptations, 35

heterosexual crossover, 41

lamarckian GAs, 38

Blast furnace, 14, 84–86, 92, 96–107

Bloomeries, 83

Blue bubbles, 67

Boolean queries, 332

Boron Nitride Nanotubes (BNNT), 196–201, 206, 208

Boundary components, 230

Bump shape, 388, 392

Burden distribution model, 97, 99

C

Calculating malware op-code frequencies, 572

Canonical genetic algorithm, 311

Caputo

definition, 361

fractional derivative, 361

operators, 361

Carbon dioxide emissions, 85, 100, 101

Carbon nano-tubes (CNT), 196

Cartesian distance, 413

Catalytic reactors, 42

Causative factors, 464

Cement industries, 87

Chaotic firefly algorithm, 413

Chemical

engineering, 14, 32, 33, 38, 42, 46, 48, 516

applications, 42, 47, 49

systems, 23, 42

industry, 42

Chemotactic

phase, 291

process, 291, 491

steps, 291, 491, 492, 497

Chemotaxis, 290, 291, 485, 489–493, 511

Child population, 64

Chromosomal

relation, 36, 37

string, 307

Chromosome, 25–40, 94, 274–277, 289, 305–310, 317–319, 410

Chronological order, 25, 404

Circuit transmission, 432, 446, 447

Class distribution, 604

Classical optimization routines, 82

Classification of samples, 579

binary classification, 579

ANN Classification, 581

decision tree classification, 579

naïve bays classification, 583

support vector machine classification, 584

multi-class classification, 588

ANN Classification, 588

decision tree classification, 588

naïve bays classifier classification, 591

support vector machine classification, 593

Closed-loop stability, 429

Coal injection, 104

Cockroach GA (CGA), 21, 40, 41

Cohesive zone, 97

Coking coal, 87

Combinatorial optimization, 270, 380, 516

Comma-separated values (CSV), 579

Commercial simulation tools, 66

Complexity classes, 403

decision problem, 403

function problem, 403

Component property value, 228

Comprehensive approach, 324

Computation efficiency, 75

Computational

analysis, 350

cost, 39, 376

fluid dynamics (CFD), 16, 66–68, 376–380, 390–395

intelligence based APSS, 429

fuzzy logic based APSS, 429

genetic algorithm based APSS, 431

neural network based APSS, 430

intractability, 402

models, 88

neuron, 88

procedure, 120

Compute units, 309, 310

Computer aided design (CAD), 377, 378

Computer

experiments, 67

simulation, 446, 453, 454

Conical tank process, 364

Constrained tree traversal (CTT), 281

Construction of feasible solutions, 599

Constructive Cost Model (COCOMO), 177, 185 186

Consumer electronics, 322, 330, 340, 341

Control of fire load, 465, 475

Control strategy, 362, 424, 428, 429, 436

Controller

design, 356

parameters, 350, 352, 364, 426, 429, 453

start-up, 433, 436

Conventional mathematical modeling

approach, 353

Conventional Power System Stabilizer (CPSS), 421, 424–426, 429, 437, 438, 442–445, 448–454, 458–460

Conventional techniques, 25

Convergence

criterion, 382

history, 106

Convergent divergent nozzle, 395

COREX, 84

Cross flow zones, 265

Cross- over

operator, 308

probability, 17, 31, 257, 342, 548–552, 565–567

rate (Cr), 521

Cryptographic protocols, 402

Cryptography/security, 402

Cultural heritage, 462, 463, 480

Cygwin software folders, 572

D

Data

extraction, 324

parallel programming model, 309

parallelism, 16, 303, 319

preprocessing, 88, 579

rough set theory, 597

Decision maker (DM), 379

Decision Problem, 403

Decision tree classifier, 609

Decoding, 28, 32, 305

Decomposition techniques, 177

Deep net meta-crawler (DNM), 322–325, 333, 337, 341–345

Deep web

classifier, 322, 325, 328, 337, 346

database, 323, 324

meta-crawler approach, 325, 336, 339, 341, 346

query interfaces, 325

repositories, 16, 322–325, 329–333, 339, 344, 345

search interface classification/filtering, 326

semantic contextual/thematic terms, 326, 329, 335

semantic queries, 325

optimization, 346

semantic terms, 322, 330, 331, 335, 336, 340, 345

sites, 324

urls, 322–326, 330, 331, 335–338, 345

Delayed S-Shaped Model (DSSM), 176

Depth First Search (DFS), 276, 285

Descritization of parametric space, 381

Design

configuration, 242, 247–251

escape, 465, 475

optimization approach, 56

Destination nodes, 276, 277, 280, 281, 284, 285, 294

Deterministic method, 18, 219, 230

Developed Line of Code (DLOC), 185

Developmental phase, 37

Differential evolution (DE), 12, 15, 25, 75, 94, 95, 105, 106, 167, 170, 214–232, 239–241, 246–263, 352, 465, 471, 514–517, 520–523, 538, 567

Diffusion equation, 392

Digital control environment, 447

Dimensional problems, 70

Direct adaptive control, 426

Direct reduction, 84

Directly reduced iron (DRI), 84, 87, 106

Discretization of parameters, 384

Distance category monastery, 473

Dominant process parameters, 15

Doppler effect, 358

Duncan multiple range, 570–574, 578, 608, 609

Dynamic

behavior, 423, 428, 445

memory structure, 597

model, 353

probabilities, 309

stability properties, 442, 444

stability test, 444, 445

structural identification problems, 75

web applications, 326

web pages, 328

E

E.coli bacteria, 489, 490

Echolocation

behavior, 352

doppler effect, 359

property, 358

Economic

environmental factors, 37, 42, 514

factors, 207

Electric

power, 423, 456

utility systems, 423

Electrical

device, 447

mechanical parts, 423

torque, 424, 459

Electromagnetism theory, 114

Electromagnetism-like Optimization (EMO), 114

Elimination

dispersal, 491

probability, 497

Elitism-preservation mechanism, 491

Elitist

multiobjective evolutionary algorithms, 511

strategy, 307

Embryology, 37

Embryonic

form, 37

population, 45

Employed bee process, 168

Encoding trees, 283

End zone pressure drop, 267

Energy

function, 416

production, 42

Engineering

optimization, 14, 56, 74, 217

procedures, 56

Entropy

based measure, 600, 601

criterion method, 128

function, 146, 604

measures, 123

Environmental challenges, 84

Euclidean metric, 293

Evaluation on,

benchmark constrained problems, 528

benchmark unconstrained problems, 525

Evaporation, 282, 292, 597–602

Evolution

inspired algorithms, 409

process, 25, 37

strategies, 463

Evolutionary

algorithms, 4, 7, 8, 12, 14, 17, 18, 25, 56, 63, 72–77, 83, 85, 90, 94, 107, 119, 159, 270–272, 293, 298, 376, 380, 397, 431, 465, 486, 489, 495, 497, 570, 608

biology, 25, 34

computation (EC), 114, 115, 270–274, 463–465, 479, 480

algorithms, 463

computing, 73, 75

methods, 15, 73, 121, 215–221, 232

heuristic algorithms, 60

neural network (EvoNN), 55, 72, 81, 91, 94, 101, 102

algorithm, 91

optimization techniques, 14, 56

programming (EP), 25, 501–504, 511

strategies, 74, 567

swarm computing process, 407

EvoNN algorithms, 72

Excitation system, 424

Expensive interventions, 462

Experiment

setup, 603

studies, 447

Exploitation/exploration, 41

Exponential model (EXMP), 176, 184

F

Fabrication, 261

Factorization, 401–405, 411, 414

function, 402

problems, 402

task, 402

Fault Tree Analysis (FTA), 463

Field resistance, 457

Finite element methods (FEM), 66–68

Fire protection, 17, 462–464, 468, 470–474, 477, 479

measures, 17, 462–464, 468, 470–474, 477, 479

access of the fire brigade, 465

compartmentation, 465

control of fire load, 465

control of fire spread outside the building, 465

design of means of escape, 465

detection and alarm, 465

fire drills emergency planning, 465

fire resistance of structural elements, 465

maintenance of fire safety system, 465

management of fire safety, 465

materials (reaction to fire), 465

salvage operation, 465

signs and safety lighting, 465

smoke control systems, 465

suppression and extinguishing, 465

training of the personnel, 465

Fire resistance structural elements, 465, 475

Fire safety, 16, 462–480

design, 464

level, 465–474, 477

Fireflies, 411–415

Firefly

algorithm, 411–413, 419

population, 414, 415

Fitness

assignment, 74, 305, 499, 505

evaluation, 32, 304

function, 30, 91, 172, 198, 274–276, 279, 288, 290, 291, 305, 306, 492

Flash desalination plant, 376

Fluid phase equilibria, 540

Form Focused Crawler (FFC), 324, 341

Fractional

calculus, 351, 352, 359

derivative, 359–361

integral, 359, 360

order, 16, 350–352, 360–366, 369

Free form deformation approach, 377

Full load tests, 421, 448

Functional points (FP), 177, 331, 403, 581, 584, 590, 593–595, 608

Fuzzy

controllers, 85

logic control (FLC), 429, 430

logic theory, 511

logic, 85, 96, 429, 486

set theory, 484, 486, 497

G

Gamma function, 360

Gas distribution, 98, 99

Gas phase catalytic oxidation, 45

Gasoline products, 46

Gaussian

distribution, 123

process surrogate model, 74

Gene

interaction, 41

programming approach, 15

General

mathematical formulation, 22

optimization procedure, 59

Generation

distance/spread metrics, 505

distance metric, 505

Generational distance (GD), 552, 564, 565

Generator, 249, 252, 257, 423, 424, 432, 435, 442, 444–447, 456–459, 488, 495, 497

model, 446, 456

power level, 424

voltage limits, 488

Generic selection, 17, 464, 479

Genetic

algorithm (GA), 21, 25, 26, 30–49, 60–65, 74, 93–96, 98, 100, 102, 104, 108, 114, 156–159, 167, 186–190, 214, 217, 230, 231, 239, 240, 241, 257, 260–262, 269–278, 283, 284, 289, 291, 294, 301–311, 318, 322, 331, 333, 336, 342, 344, 345, 352, 369, 377, 380, 395, 401, 409, 410, 418–424, 431–439, 444, 445, 453, 454, 485, 499, 501, 515, 516, 548

on-line identifier, 433

multiobjective optimization, 25

biology, 41

code, 39

content, 31, 37–39

diversity, 31, 35, 39, 199

material, 303, 307, 309, 548

operations, 39–41, 199, 313

operators, 4, 7, 32, 40, 199, 217

parallel design, 303

crossover, 307

fitness assignment, 305

mutation, 309

selection, 306

programming (GP), 92–94, 196–198, 202–208, 403, 463, 567

search, 39, 309

Genotype, 15, 302–305, 318

Geometric

mean, 266, 308

velocity, 266

progression, 310

Geometrical factors, 251

Geometry, 196, 197, 244, 377, 415, 416

Geometry strengthening effect, 196

Geostatistics, 71

Global

exchange, 333

knowledge, 600

maxima, 340

maximum, 409, 597

optimal solution, 5, 214, 219, 226–228, 277

optimization, 219, 333, 514, 528, 538

algorithm, 219, 528

problem, 514

optimum, 4, 39, 65, 214, 216, 219, 221, 249, 261, 303, 352, 376, 380, 515, 516, 521, 524, 528, 534

value, 352, 524

pheromone value, 279

solution, 4, 220, 222, 226, 290, 528

Governor model, 457

Granularity levels, 16, 303, 304, 318

Graphic processing units (GPUs), 302

architecture, 302, 309, 318

Greedy

algorithm, 15, 173–175, 190

bee, 173

model, 186

Griewangk function, 173, 312–318

Grunwald-Letnikov definition, 360

H

Hamming cliff, 32

Hamming Cliff problem, 94

Harmony memory (HM), 117–122, 132–136

Harmony representation, 132

Harmony search (HS), 15, 116, 117, 132, 159, 241, 269, 272, 274, 283, 284, 298, 463

Harmony search algorithm (HSA), 113–116, 132, 241

computational procedure, 120

harmony memory initialization, 118

initialization of the problem/algorithm parameters, 118

numerical example of HSA implementation, 121

updating the harmony memory, 120

Harmony memory consideration rate (HMCR) 118, 119, 120, 133, 136

Harmony search multi-thresholding algorithm (HSMA), 114–117, 132–137, 146, 155–159

Heat conduction equations, 105

Heat exchanger, 15, 46, 47, 86, 240–242, 246–252, 256, 261–265

configuration, 240

design, 240, 242, 251, 263, 265

Heat transfer, 105, 240–252, 257, 262

area, 240–252, 257, 262

coefficient (H.T.C.), 241–246, 251

equations, 105

Heterogeneous, 324

Heuristic

algorithms, 60, 63, 270, 271

desirability (η), 600–603

edges, 599

function, 600, 601

Hidden

layers, 72, 89, 431

web classifier, 328, 337

Hierarchical approach, 466

High

energy reserve, 96

gain voltage regulator action, 423

level programming, 309

pressure polymerization processes, 10

robustness, 393

Hismelt processes, 84

Histogram, 115–117, 123–132, 155

Holistic preservation approach, 464

Homogeneous poisson process model, 175

Homogenous azeotropes, 516

Hot metal silicon, 96

Hybrid

evolutionary approach, 216

evolutionary method, 218, 220

genetic algorithm, 332

method, 214, 227

optimization, 352

Hybridization, 281, 298, 516, 517

Hydrocarbon injection levels, 96

Hydrocarbons, 42, 87

Hydrogenation reaction, 46, 47

Hydrogen-oxygen

bond lengths, 415

hydrogen bond, 415

Hypertext pre-processor, 323

Hypothetical components, 227

I

Ideal cross-flow coefficient, 245

Ideal tube bank pressure drop, 266

Identification errors, 428

Image segmentation, 159

Immune selection, 38

Immunity, 38

Incorrect classifications, 588

Industrial styrene reactor, 8

Inequality constraints, 483, 488

Infogain value, 596, 609

Information gain, 571

Initialization, 25, 32, 59, 95, 113, 117, 119, 163, 167, 169, 249, 277, 321, 335

Inorganic compounds, 208

Input summing junction, 456

Insect repellent, 45

Instruction counter, 572

Insulation, 87

Integer

factorization, 402–410, 416–419

alternative, 403

general, 403

special, 403

programming problems, 405, 406

Integral

action, 458

time absolute error (ITAE), 359, 363, 364, 366, 369

Integrated circuits (ICs), 196

Interaction analysis, 356

calculating RGA with steady state gain

matrix, 357

condition number, 356

NI analysis with RGA, 357

Intermediate ABC greedy, 170

Internal model parameters, 89

Inventory

costs, 225, 238

planning and management, 12

profiles, 225, 226

storage, 225

Inverse-anticodon (IA), 40

Investment cost, 483, 487

Iron making, 14, 82–85, 90, 107, 108

blast furnace, 84

modern iron making, 83

process optimization, 84

process, 14, 82, 83, 90, 107

smelting techniques, 84

techniques, 83

J

Jacobian

approximation, 354

method, 350

Java server pages (JSP), 323

Jurisdiction, 469

K

Kapur’s

criterion, 159

function, 132

method, 116, 130, 131, 146, 156

methodologies, 116

objective functions, 115, 156

problem, 128

Karush–Kuhn–Tucker conditions, 485

Kern’s method, 242–245, 251

Kiln rotation, 106

Kilo Line of Code (KLOC), 185

Kinetic

based approaches, 393

based splitting, 392

diffusion, 16, 394

solver, 395

flux, 390

vector splitting, 393

Knapsack problem, 469

Kriging, 71

algorithm, 71

behavior, 71

interpolation, 74

L

Laboratory implementation, 445

Lamarck’s theory, 38

Laplace

transform technique, 360

transforms, 360

Leading PF load tests, 421, 450

Leading power factor load conditions, 442

Leakage correction factor, 245, 246

pressure drop, 266

Legitimate digit, 410

Lexicographic approach, 25

Li-Chatelier’s principle, 8

Light load

condition, 439, 450, 451

tests, 421, 449

Linear

combination, 379

fuzzy regression model, 96

model, 350

systems, 351

Lines of code (LOC), 177

Liquid metallic iron, 86

Liquid-liquid phase equilibrium modeling, 516

Liturgical vestments, 469

Load bus voltage limits, 489

Local optimum (LO), 376, 377

Lognormal distribution, 549–551

Looping and termination, 386

Lower confidence interval (LCI), 205

Lumping scheme, 230, 231

M

MacCormack technique, 385

Machine-learning techniques, 324

Macroscopic level, 393

Maleic anhydride reactor, 45, 48

Malicious Software, 570

Malware

Benign class labels, 593, 608

detection, 17, 570, 571, 608

detection/classification, 17, 609

detector, 17, 608

developers, 572

predictor, 571, 574

samples, 571, 572

Manpower-installation, 465

Massive parallelism, 430

Mathematical

function, 67, 402, 407

model, 7, 42, 45, 98, 351, 354, 428–433, 445

modeling, 350, 353

operators, 92

optimization, 416

problems, 514, 524

programming methods, 462

representation, 97

requirements, 115, 283

Mating pool, 30, 31, 306, 493

Matlab workspace, 448

Maximization, 7–10, 28, 29, 45, 56, 115, 121, 225, 238, 306, 310, 466, 486

minimization, 28, 56

Maximizing fire safety, 476

Maximum-minimum (MM), 40

Mean absolute percentage error (MAPE), 203, 205

Mean square error (MSE), 136, 581, 582, 590

Measures (M), 3, 5, 10, 48, 195, 205, 234, 265, 273–277, 285–291, 333, 381, 385, 403, 466–468, 478, 545, 564

Mechanical

power, 437–439

properties, 196, 208

Memeplexes, 333, 336

Memetic

algorithm, 333

evolution, 333

Memory consideration, 117–119

Memory consideration operation, 117

Merit function, 305, 306

Meshless flow solver, 390

Metabolic reactions, 41

Metaheuristic

algorithms, 25, 32, 42, 283, 462, 463

codes, 28

method, 352

swarm intelligence techniques, 165

Metal production rate, 101

Metallic iron content, 106

Metamodeling techniques, 74, 75

Methodology (ME), 185

Micro synchronous generator, 446

Mimetic co-evolutionary algorithm, 74

Minimum

deflection, 62

energy configuration, 95

number of function evaluations

(MNFE), 17, 524, 527, 528, 530, 536

phase Quadruple Tank process, 350

total energy, 95

Mining industry, 45

Min-max scalarization, 379

Minor component composition, 388

Misclassifications, 588

Mixed-integer nonlinear programming (MINLP), 15, 213–218, 220–223, 225, 226, 228, 230, 232

Model formulation, 197, 468, 474

Modern industries, 83

Molecular dynamics (MD), 196, 197, 201, 202

Molecular geometry optimization (MGO), 415–419

Molecular weight, 10, 11, 42

Monastery’s layout, 470

Monomer conversion, 10

Monotonicity, 598

Mount Athos monasteries, 464, 469

Movement equation, 417

MRP mutation, 289

Multicast, 15, 270–299

destination nodes, 290

routing, 15, 270–281, 283–285, 287–291, 293, 298

problem, 15, 270, 271, 274, 277, 280–283, 288, 289, 298

sources, 270

tree, 270–275, 277, 278, 280–286, 288–292, 294–298

Multiclass classification, 17, 572, 579, 588, 591–597, 603, 604, 608, 609

process, 596, 608

results, 591, 593, 604

Multi-component dynamic systems, 421

Multi-criteria

decision making (MCDM), 466

making approach, 464

Multi-dimensional index spaces, 317

Multi-gene Genetic Programming (MGGP), 198

Multi-input multi output (MIMO), 350, 351, 356, 362, 363

Multi-level thresholding(MT), 15, 114, 115, 122–124, 127–132,159

Kapur’s method entropy criterion method, 128

Otsu’s method, 124

theory of multilevel thresholding, 123

thresholding example using Otsu’s and

Kapur’s methods, 129

Multi-loop

fractional order, 16, 352, 363, 364, 369

scheme, 351

structure design, 357

Multi-machine systems, 425

Multi-media applications, 270

Multi-modal objective functions, 376

Multi-objective bacterial foraging optimization algorithm (MOBFA), 17, 484–486, 489–511

Multi-objective differential evolution (MODE), 9–13, 486

Multi-objective error function (MO), 203, 205

Multi-objective evolutionary algorithms (MOEAs), 17, 484–486, 495–499, 501, 505, 507, 511

Multi-objective formulation, 489

Multi-objective functions, 17, 552, 566

Multi-objective optimal reactive power, 485

Multi-objective optimization (MOO), 3–6, 10–12, 14–18, 41–45, 49, 56, 58, 62, 77, 78, 85, 376, 485–489, 493, 505, 511

Multi-objective optimization formulation, 58

Multi-objective optimization problem (MOOP), 3, 11, 12

Multi-objective optimizer, 380

Multi-objective reactive power planning problem, 485

Multi-objective shape optimization approach, 376

Multiple

criteria decision analysis, 463

exchanger configurations, 242

path genes, 289

pheromone matrices, 281

population points, 4

range test, 570–574, 578, 608

routing paths (MRP), 289

thresholds, 127

Multiprocessors, 310

Multiprocessor-shared memory, 310

Multitubular reactor, 45

Multivariable system, 350

Mutation, 31–41, 64, 65, 91–95, 119, 199, 217, 249, 250, 257, 272–278, 298, 305, 306, 309–313, 316–318, 342, 410, 411, 435, 465, 486, 497, 516, 517, 521, 523, 548, 551, 564

mechanisms, 306

operation, 31, 40, 278

operators, 40, 305, 317, 318, 517, 548

process, 64, 119, 274, 435

strategy, 521

N

Naïve Bayes

classifier, 583, 584, 591, 609

classification, 569, 583

classifier classification, 591

Nano-biological/nano-level drug delivery devices, 196

Nano-biotechnology, 196

Nano-electro mechanical systems (NEMS), 196

Nanoscale materials, 15, 196, 197

Nanostructures, 208

Nash equilibrium, 378

Natural

behaviors, 114

damping, 423

memetics, 333

Nature-inspired computing techniques, 16, 409, 418

Negative

concentration, 393

damping, 423

Net inter-atomic forces, 415

Neural network, 39, 72, 74, 89–92, 96, 99, 403, 430, 431, 581, 588

Neurons distribute electrical pulses, 88

Newton-Raphson load flow method, 488

Niche-colony, 281–283

Niederlinski index, 16, 357, 369

Nitrogen gas, 388

Node parent index (NPI), 283, 284

Noisy random vector, 248

Nomographs, 251

Non-binary representations, 308

Non-deterministic polynomial time, 404

Non-dominated

chromosomes, 29

solutions, 23, 24, 62, 485, 497, 499, 505, 547

sorting algorithm, 507, 547, 567

Non-evolutionary technique, 102, 104

Non-integer order derivatives, 360

Nonlinear

behaviors, 70

conditions, 439

minimum phase, 350

process, 369

programming (NLP), 15, 213–222, 224–227

relationships, 15, 197, 207

stochastic continuous system, 428

transformation, 15, 214, 215, 232

Non-minimum-phase (NMP), 429

Nonparametric

approaches, 123

technique, 124

Non-quantum computers, 404

Non-semantic

deep web queries, 322

thematic queries, 339

NSGA-II algorithm for test functions, 552

Null hypothesis, 156

Null probability, 309

Number of Function Evaluations (NFE), 257

Number of improvisations (NI), 118–121, 133–136, 349, 357, 358, 447

Numeric value, 305

Numerical

model, 445

solution, 105

technique, 7, 351, 361

Numerous evolutionary approaches, 115

O

Objective Function (OF), 14, 21, 42, 106, 119, 132, 155, 166, 169, 174, 200, 201, 206, 211, 216, 239, 248, 257, 301, 309, 321, 329, 331, 335–343, 349, 356, 373, 376, 402, 403, 513, 545

Objective optimization problems, 6, 22

Offspring chromosomes, 35

Ohmic energy, 501

One-dimensional

index space, 317

version, 317

On-line

parameter identifier, 427, 428

system identification, 454

Ontogeny recapitulates phylogeny, 37

Ontology-based approach, 324

Operating conditions, 102, 353, 354, 425, 434, 436, 442, 444, 448, 453, 454

Opposition based learning (OBL), 163, 171, 172

Optimal component lumping, 227, 232

Optimal fund allocation, 468

Optimal scenario, 94

Optimal solution, 4, 22, 23, 31, 45, 57, 94, 116, 171, 172, 188, 197, 223, 270–274, 277, 279, 303, 379, 431, 486, 523

Optimization

algorithm, 59, 60, 73, 75, 537

burden distribution in blast furnace, 97

methods, 83

problems, 12, 15, 39, 40, 42, 56, 58, 63, 65, 74, 107, 116, 164–168, 213, 218, 270, 274, 283, 288, 318, 319, 376, 383, 387, 395, 408, 409, 412, 514, 515, 525, 597

process, 66, 281, 415

production parameters, 100

techniques, 85, 240, 283

Optimize parameters (Grid), 586, 593

Ordinary linear feedback controller, 427

Orientation factor, 278, 279

Oscillations, 423

Otsu’s/Kapur’s

function, 137

method, 116, 123–128, 130, 131, 136, 146, 155, 156

objective functions, 133, 156, 159

techniques, 131

variance, 126

P

Parallel

algorithm, 313

genetic algorithms, 319

treatment, 305, 318

version, 248, 311, 314, 315, 317

workload, 313

Parallelization, 15, 16, 302, 303, 317–319

Parameter

configuration, 121, 146, 586

experimental settings, 180

lead-lag type of device, 425

values, 217, 223, 224, 248, 249, 261, 262, 458, 480, 525, 586

Parameterization, 16, 375–378, 383–387, 392

Parametric

analysis, 196, 206

bounds, 382

search space, 380

space, 16, 380, 394

techniques, 122

Pareto

dominance, 499

evolutionary algorithm, 74

frontier, 62, 101–104

optimal designs, 62, 73, 75

optimal front (POF), 565, 567

optimal frontier, 55, 77, 78

optimal solutions, 10, 11, 23, 30, 62, 104, 378, 484, 497, 505–507, 511, 547

Particle Swarm Optimization (PSO), 17, 25, 41, 46, 60, 115, 156–159, 167, 170, 241, 269–274, 284, 287–292, 293–296, 298, 333, 463, 514–517, 521, 523, 538

Path-based techniques, 298

Pattern recognition, 88

Peak-to-signal ratio (PSNR), 136, 137, 146, 155, 156, 159

Penalty function method, 218

Percentage distribution, 477

Perform

mutation, 410

selection operation, 410

Performance analysis, 505

computational complexity, 507

generation distance and spread metrics, 505

statistical analysis, 505

Perturbation, 6, 33, 218, 250, 446

Petrochemical industry, 42

Petroleum refinery, 42, 46, 514

Pharmaceuticals/biotechnology, 42

Phase equilibrium calculations, 516

Phenotype, 305

Pheromone

guide, 278

levels, 603

matrix, 281, 282

update, 570, 601

updating rule, 278, 599

Phthalic anhydride (PA), 44–47, 429, 436

Physical and chemical

principles, 353

processes, 84

Physical experiments, 67

Physical model, 16, 424, 446, 447, 453, 459

Physical properties, 241, 242

Pitch adjusting rate (PAR), 118–120, 133, 136

Pole shift (PS), 16, 423, 424, 429, 433, 436, 444, 445, 453, 454

Pole shifting control, 454

Polyester resins, 45

Polymerization processes, 10, 42

Polynomial

algorithm, 69

approach, 378

equation, 70, 251

regression, 55, 70, 75

representation, 377, 378

response, 69

time, 402–404, 409

algorithm, 402

Pontryagin’s minimum principle, 25

Pooling problem formulation, 528

Population generation, 303

Positive damping, 423

Posteriori approach, 379

Potential energy surface, 415

Power

compensation, 495, 501

functions, 41

model (POWM), 175

plant, 86, 446

system, 16, 423–428, 442–447, 453–458, 484, 497

system dynamics, 424

system elements, 423

system model, 446

system research laboratory, 423, 446

system stabilizer (PSS), 423–425, 428, 430, 431, 437, 442, 449, 450, 453, 456, 458, 459

adaptive power system stabilizers, 426

conventional power system stabilizers, 425

direct adaptive control, 426

indirect adaptive control, 427

transfer capability, 423

Premature convergence, 306

Pressure drop calculations, 265

Prioritization, 303

Probabilistic

approach, 63

transition rule, 599

Probability

density function, 123, 549

distribution, 17, 124–129, 133, 547–552, 565–567, 591

Problem

formulation, 105, 241, 406, 454, 486, 515

statement, 57, 272, 406

Procedure for Bat algorithm, 359

Process

conditions, 241

design and operation, 42

units, 85, 514

Programmable Logic Controllers (PLCs), 427

Proposed

computational methodology, 197

multiobjective bacterial foraging algorithm, 491

Protein regulation, 41

Prüfer number, 283

Pseudo components, 227, 230

Pseudocode, 333

Public fire safety, 463

Q

Q-formulation, 517, 532, 534

QoS routing, 270, 299

QPSO algorithm, 288

Quadrature-axis resistance, 457

Quadruple tank process, 16, 352–354, 365, 366, 369

description, 352

mathematical modeling, 353

state space model, 354

Quality of Service (QoS), 15, 269–274, 277–285, 288–293, 298

Quantitative

assessment, 22

termination, 220

Quasi one-dimensional flow equations, 385

Queen chromosomes, 37

QuickReduct algorithm, 598, 599

R

Radial basis functions, 69–72, 74

Random

distribution, 306, 416, 417

forest classifier, 17, 570, 603, 608, 609

forests algorithm, 579, 603, 604

generation, 330, 337

re-initialization, 119

search space (RSS), 381–387, 390

selection, 307, 579

Randomization, 413, 417, 418

component, 413

term, 417

Reactive power

generation limits, 488

injection limits, 488

Real power loss, 483, 487

Real time control environment, 447

Real-coded algorithm, 40

Recombination/mutation, 298

Regression, 68, 69, 96, 424, 579

Regulatory response, 366

Relative gain array (RGA), 349, 350, 357, 362, 369

Repository/archive, 329

Reproduction, 41, 199, 218, 272–276, 291, 304, 306, 489, 491, 548

Reproduction phase, 291, 306

Rerun optimization, 73

Response surface models (RSM), 56, 66–73, 75, 77

Reynolds number, 244, 245, 265, 266

R-formulation, 514, 517, 532–537, 543

Riemann-Liouville

definition, 360

operators, 361

Robust deterministic algorithms, 214

ROC chart, 583

Root mean square error (RMSE), 181–184, 198, 199, 203, 205

Rosenbrock function, 121, 122, 311–317

Rosenbrock’s/Griewangk’s functions, 310

Rotary kiln, 14, 87, 106

Rotary kiln furnaces, 87

Rough set attribute reduction (RSAR), 598

Rough set based classification, 608

Rough set theory, 599

Roulette wheel selection, 63, 278, 307

S

Sampling technique, 323

Satisfactory solution, 60, 379, 410

SBX-A operator, 547, 548, 567

SBX-LN operator, 548

Scalarization

function, 379, 381, 385, 387

Scout

bee process, 168

Production Period (SPP), 170

Segmentation, 115

algorithms, 133

problem, 115

Selection/resource allocation (S&RA), 17, 464, 468–471, 479, 480

Selection operator, 305, 310, 466

Self-tuning

adaptive control, 427

property, 427

Semantic

contextual queries, 325

non-semantic, 330

query, 325, 330, 331, 335, 340

thematic queries, 339

thematic terms, 330, 331

vs. non-semantic query optimization, 340

Semi-prime number, 402–407, 410, 411

Sensitivity analysis (SA), 206, 214, 240, 277, 514, 515

Sensor equipments, 271

Separation processes, 42, 45

Sequential

algorithm, 445

implementation, 311–314

parallel versions, 313

quadratic programming (SQP), 222, 523

workload, 311

Servo-regulatory

conditions, 350

response, 365, 366

SFLA-based query optimization, 346

Shape optimization, 16, 376, 380, 383, 395

Shell-and-tube heat exchangers, 240, 263

Shell-side heat transfer coefficient, 244

Shell-side pressure drop, 239, 265

Shuffled frog leaping algorithm, 331, 333, 336, 346

Shuffled Frog Leaping Algorithm (SFLA), 16, 321–326, 331–336, 339–342, 345

Signs/safety lighting, 465, 475

Silicon

content, 92, 96

levels, 92, 101, 102

Simonopetra monastery, 475

Simple genetic algorithm (SGA), 26, 41, 46, 98

Simple transformations, 305

Simulated annealing, 17, 60, 277, 463, 514, 515, 538

Simulation studies, 436, 437, 453, 457, 459

Single Instruction Multiple Data (SIMD), 309

Single machine power system, 456

Single objective optimization formulation, 56

Single objective optimization problem (SOP), 23, 46

Single optimization, 78

Single routing path (SRP), 289

Single-walled carbon nanotube (SWCNT), 200

Smart-Crawl strategy, 324

Social foraging behavior, 489

Soft computing techniques, 88

artificial neural networks, 88

evolutionary algorithms, 90

differential evolution, 94

evolutionary neural network algorithm, 91

genetic programming, 92

Software

effort estimation, 176, 185, 190

engineering activities, 165

engineering design problems (SEDP), 15, 163, 165, 175, 190

engineering design process, 164

process, 164, 165

reliability growth models, 15, 165, 166, 175, 181, 183, 190

Soil permeability, 71

Spidering techniques, 323

SRP mutation, 289

Stability analysis, 358

Stabilizer output, 424

Stackelberg strategy, 378

Standard deviation (STD), 136, 137, 146, 156, 159, 510

Starting population, 37, 63, 64, 72

State space model, 350, 354, 355

Stationary

point, 415

replacement, 307

Steam over reactant (SOR), 8

Steel production, 83, 84, 104

Steelmaking units, 83

Stefan-Maxwell equation, 392

Stochastic

methods, 18

optimization methods, 514

optimization techniques, 17, 48, 214, 228, 230, 232, 484

random searches, 283

Strength Pareto Evolutionary Algorithm (SPEA2), 17, 74, 484–486, 497–511

Subtree mutation, 199

Success rate (SR), 17, 524–528, 535, 536

Supersonic sections, 384

Supply chain and planning, 11, 14

Support vector

machine classification, 584

machines, 96, 571

Surrogate-assisted evolutionary algorithms, 14, 72, 77

adaptive RSM based optimization, 75

Surrogate modeling, 56, 66–70, 73, 74, 77, 377

techniques, 66, 69

polynomial regression, 70

Kriging methodology, 71

radial basis functions, 71

Evonn algorithms, 72

Surrogate-assisted evolutionary techniques, 74

Surrogate-modeling techniques, 70

Swarm

based metaheuristics, 411

colony optimization, 380

Swarm intelligence (SI), 15, 164, 165, 167, 190, 352, 358, 403, 419

Synchronous

generator, 436

machine, 424, 447

System

configuration/model, 432

power factor, 501

T

Target production, 101

Tchebycheff problem, 379

Technical parameters, 446

Tensile strength, 15, 196–198, 202, 205–208

Terminal voltage, 442, 444, 447, 450

Termination condition, 220, 410, 434

Test functions, 333, 552

Thematic

context, 335, 336

queries, 330

terms, 325, 326, 330, 331, 336, 345

Theory of evolution, 25, 63, 486

Thermal

conductivity, 242, 246

state, 96

Thermocouple readings, 106

Thermocouples, 105

Thermodynamic model, 101

Threshold, 88, 89, 115, 116, 123–125, 128–132, 137, 146, 155, 198, 290, 416, 583

Thresholding

methods, 115, 122, 156

processes, 129

Time constant regulator (TCR), 447

Time series approach, 96

Total shell side pressure drop, 267

Tournament selection, 27, 63, 218, 409, 547

Traditional

algorithms, 4

classical methods, 4

Transfer

function, 66, 350, 351, 354, 357, 424, 425, 437, 457, 458, 581

matrix, 354, 357

Transformation/permutation operators, 39

Transformer tap setting limits, 488

Transient time constant, 447

Transition rule, 278, 601

Translocation, 39

Transmission Electron Microscopy (TEM), 196

Transmission line, 437–439, 446, 447, 459, 487

Transmission line flow limit, 489

Transportation/logistics management, 12

Traveling salesman problem (TSP), 38

Trial-and-error experimental approach, 207

Tri-objective simulation case, 507

True boiling point (TBP), 229, 230

Tube row correction factor, 245

Tube-side heat transfer coefficient, 244

Tube-side pressure drop, 265

Two-dimensional

granularity, 302, 318

scatter chart, 76

Typical

Mach contours, 394

pooling network, 529

U

Ultrasonic sound, 358

Unconstrained optimization problems, 56

Unfertilized eggs, 36

Unified barebones particle swarm optimization (UBBPSO), 17, 513, 517, 521–530, 534–538

Uniform

crossover, 308

random number, 118–120

Universal Sampling, 433

Upper confidence interval (UCI), 205

V

Vaccines, 38

Vapor-liquid

equilibrium data, 516

modeling, 516, 517

Variability, 306

Variogram, 71

Velocity, 200, 266, 285, 289, 293, 359, 383, 390, 521, 523

Very fast-simulated annealing (VFSA), 17, 513, 516, 517, 520, 524–530, 534–538

Viability selection, 307

Virtual optimization, 71

Viscosity correction factor, 244

Viscous

fluids, 244

solutions, 390

Voltage

deviation, 487, 497, 505

profile, 485, 497

reactive power control, 485

reactive power optimization, 484

reference change test, 442

reference, 434, 442, 448–452

regulating and speed-governing systems, 423

regulator, 423, 424, 458

security, 485

stability constrained reactive power planning problem, 486

stability, 485, 486

W

Wall Boundary condition, 393

Wavelength, 358, 359

Waxman’s topology, 293

Web

crawling, 323

pages, 322–331, 337, 341, 345

semantic queries, 322, 331, 342

semantic thematic queries, 322, 342

technology trends, 323

Weighted metrics method, 379

Weka software, 579, 584, 593, 603

Weka.classifiers, 584

Wilcoxon test, 155, 159

Winding resistance, 447

Window correction factor, 245, 251

Window zone, 242, 244, 245, 251, 266

Window zone pressure drop, 266

Wooden balconies, 475

World Wide Web, 323

X

X-validation, 585

Xylene, 45

Y

Yampolskiy’s approach, 411

Z

Z-domain, 429

Ziegler-Nichols rules, 448

Z-plane, 424, 436, 444

OEBPS/Images/image00568.jpeg

OEBPS/Images/image00810.jpeg

OEBPS/Images/image01052.jpeg

OEBPS/Images/image00569.jpeg

OEBPS/Images/image00811.jpeg

OEBPS/Images/image00566.jpeg

OEBPS/Images/image00808.jpeg

OEBPS/Images/image01050.jpeg

OEBPS/Images/image00567.jpeg

OEBPS/Images/image00809.jpeg

OEBPS/Images/image01051.jpeg

OEBPS/Images/image00572.jpeg

OEBPS/Images/image00570.jpeg

OEBPS/Images/image00812.jpeg

OEBPS/Images/image00571.jpeg

OEBPS/Images/image00813.jpeg

OEBPS/Images/image00814.jpeg

OEBPS/Images/image00575.jpeg

OEBPS/Images/image00817.jpeg

OEBPS/Images/image00576.jpeg

OEBPS/Images/image00818.jpeg

OEBPS/Images/image00573.jpeg

OEBPS/Images/image00815.jpeg

OEBPS/Images/image00574.jpeg

OEBPS/Images/image00816.jpeg

OEBPS/Images/image00557.jpeg

OEBPS/Images/image00799.jpeg

OEBPS/Images/image01041.jpeg

OEBPS/Images/image00558.jpeg

OEBPS/Images/image00800.jpeg

OEBPS/Images/image01042.jpeg

OEBPS/Images/image00555.jpeg

OEBPS/Images/image00797.jpeg

OEBPS/Images/image01039.jpeg

OEBPS/Images/image00556.jpeg

OEBPS/Images/image00798.jpeg

OEBPS/Images/image01040.jpeg

OEBPS/Images/image00561.jpeg

OEBPS/Images/image00562.jpeg

OEBPS/Images/image00559.jpeg

OEBPS/Images/image00801.jpeg

OEBPS/Images/image00560.jpeg

OEBPS/Images/image00802.jpeg

OEBPS/Images/image01044.jpeg

OEBPS/Images/image00803.jpeg

OEBPS/Images/image01045.jpeg

OEBPS/Images/image01043.jpeg

OEBPS/Images/image00564.jpeg

OEBPS/Images/image00806.jpeg

OEBPS/Images/image01048.jpeg

OEBPS/Images/image00565.jpeg

OEBPS/Images/image00807.jpeg

OEBPS/Images/image01049.jpeg

OEBPS/Images/image00804.jpeg

OEBPS/Images/image01046.jpeg

OEBPS/Images/image00563.jpeg

OEBPS/Images/image00805.jpeg

OEBPS/Images/image01047.jpeg

OEBPS/Images/image00590.jpeg

OEBPS/Images/image00832.jpeg

OEBPS/Images/image00591.jpeg

OEBPS/Images/image00588.jpeg

OEBPS/Images/image00830.jpeg

OEBPS/Images/image00589.jpeg

OEBPS/Images/image00831.jpeg

OEBPS/Images/image00592.jpeg

OEBPS/Images/image00593.jpeg

OEBPS/Images/image00835.jpeg

OEBPS/Images/image00594.jpeg

OEBPS/Images/image00836.jpeg

OEBPS/Images/image00833.jpeg

OEBPS/Images/image00834.jpeg

OEBPS/Images/image00597.jpeg

OEBPS/Images/image00839.jpeg

OEBPS/Images/image00598.jpeg

OEBPS/Images/image00840.jpeg

OEBPS/Images/image00595.jpeg

OEBPS/Images/image00837.jpeg

OEBPS/Images/image00596.jpeg

OEBPS/Images/image00838.jpeg

OEBPS/Images/image00579.jpeg

OEBPS/Images/image00821.jpeg

OEBPS/Images/image00580.jpeg

OEBPS/Images/image00822.jpeg

OEBPS/Images/image00577.jpeg

OEBPS/Images/image00819.jpeg

OEBPS/Images/image00578.jpeg

OEBPS/Images/image00820.jpeg

OEBPS/Images/image00581.jpeg

OEBPS/Images/image00582.jpeg

OEBPS/Images/image00824.jpeg

OEBPS/Images/image00583.jpeg

OEBPS/Images/image00825.jpeg

OEBPS/Images/image00823.jpeg

OEBPS/Images/image00586.jpeg

OEBPS/Images/image00828.jpeg

OEBPS/Images/image00587.jpeg

OEBPS/Images/image00829.jpeg

OEBPS/Images/image00584.jpeg

OEBPS/Images/image00826.jpeg

OEBPS/Images/image00585.jpeg

OEBPS/Images/image00827.jpeg

OEBPS/Images/image00612.jpeg

OEBPS/Images/image00610.jpeg

OEBPS/Images/image00852.jpeg

OEBPS/Images/image00611.jpeg

OEBPS/Images/image00532.jpeg

OEBPS/Images/image00531.jpeg

OEBPS/Images/image00530.jpeg

OEBPS/Images/image00529.jpeg

OEBPS/Images/image00528.jpeg

OEBPS/Images/image00527.jpeg

OEBPS/Images/image00526.jpeg

OEBPS/Images/image00525.jpeg

OEBPS/Images/image00524.jpeg

OEBPS/Images/image00523.jpeg

OEBPS/Images/image00615.jpeg

OEBPS/Images/image00616.jpeg

OEBPS/Images/image00613.jpeg

OEBPS/Images/image00614.jpeg

OEBPS/Images/image00619.jpeg

OEBPS/Images/image00620.jpeg

OEBPS/Images/image00617.jpeg

OEBPS/Images/image00618.jpeg

OEBPS/Images/image00601.jpeg

OEBPS/Images/image00602.jpeg

OEBPS/Images/image00599.jpeg

OEBPS/Images/image00841.jpeg

OEBPS/Images/image00600.jpeg

OEBPS/Images/image00842.jpeg

OEBPS/Images/image00522.jpeg

OEBPS/Images/image00521.jpeg

OEBPS/Images/image00520.jpeg

OEBPS/Images/image00519.jpeg

OEBPS/Images/image00518.jpeg

OEBPS/Images/image00517.jpeg

OEBPS/Images/image00516.jpeg

OEBPS/Images/image00515.jpeg

OEBPS/Images/image00514.jpeg

OEBPS/Images/image00513.jpeg

OEBPS/Images/image00843.jpeg

OEBPS/Images/image00604.jpeg

OEBPS/Images/image00846.jpeg

OEBPS/Images/image00605.jpeg

OEBPS/Images/image00847.jpeg

OEBPS/Images/image00844.jpeg

OEBPS/Images/image00603.jpeg

OEBPS/Images/image00845.jpeg

OEBPS/Images/image00608.jpeg

OEBPS/Images/image00850.jpeg

OEBPS/Images/image00609.jpeg

OEBPS/Images/image00851.jpeg

OEBPS/Images/image00606.jpeg

OEBPS/Images/image00848.jpeg

OEBPS/Images/image00607.jpeg

OEBPS/Images/image00849.jpeg

OEBPS/Images/image00632.jpeg

OEBPS/Images/image00552.jpeg

OEBPS/Images/image00551.jpeg

OEBPS/Images/image00550.jpeg

OEBPS/Images/image00549.jpeg

OEBPS/Images/image00548.jpeg

OEBPS/Images/image00547.jpeg

OEBPS/Images/image00546.jpeg

OEBPS/Images/image00545.jpeg

OEBPS/Images/image00544.jpeg

OEBPS/Images/image00633.jpeg

OEBPS/Images/image00543.jpeg

OEBPS/Images/image00634.jpeg

OEBPS/Images/image00637.jpeg

OEBPS/Images/image00638.jpeg

OEBPS/Images/image00635.jpeg

OEBPS/Images/image00636.jpeg

OEBPS/Images/image00641.jpeg

OEBPS/Images/image00642.jpeg

OEBPS/Images/image00639.jpeg

OEBPS/Images/image00640.jpeg

OEBPS/Images/image00621.jpeg

OEBPS/Images/image00622.jpeg

OEBPS/Images/image00542.jpeg

OEBPS/Images/image00541.jpeg

OEBPS/Images/image00540.jpeg

OEBPS/Images/image00539.jpeg

OEBPS/Images/image00538.jpeg

OEBPS/Images/image00537.jpeg

OEBPS/Images/image00536.jpeg

OEBPS/Images/image00535.jpeg

OEBPS/Images/image00534.jpeg

OEBPS/Images/image00533.jpeg

OEBPS/Images/image00623.jpeg

OEBPS/Images/image00626.jpeg

OEBPS/Images/image00627.jpeg

OEBPS/Images/image00624.jpeg

OEBPS/Images/image00625.jpeg

OEBPS/Images/image00630.jpeg

OEBPS/Images/image00631.jpeg

OEBPS/Images/image00628.jpeg

OEBPS/Images/image00629.jpeg

OEBPS/Images/image00492.jpeg

OEBPS/Images/image00491.jpeg

OEBPS/Images/image00490.jpeg

OEBPS/Images/image00644.jpeg

OEBPS/Images/image00645.jpeg

OEBPS/Images/image00643.jpeg

OEBPS/Images/image00648.jpeg

OEBPS/Images/image00649.jpeg

OEBPS/Images/image00646.jpeg

OEBPS/Images/image00647.jpeg

OEBPS/Images/image00652.jpeg

OEBPS/Images/image00650.jpeg

OEBPS/Images/image00651.jpeg

OEBPS/Images/image00512.jpeg

OEBPS/Images/image00511.jpeg

OEBPS/Images/image00510.jpeg

OEBPS/Images/image00509.jpeg

OEBPS/Images/image00508.jpeg

OEBPS/Images/image00507.jpeg

OEBPS/Images/image00506.jpeg

OEBPS/Images/image00505.jpeg

OEBPS/Images/image00504.jpeg

OEBPS/Images/image00503.jpeg

OEBPS/Images/image00502.jpeg

OEBPS/Images/image00501.jpeg

OEBPS/Images/image00500.jpeg

OEBPS/Images/image00499.jpeg

OEBPS/Images/image00498.jpeg

OEBPS/Images/image00497.jpeg

OEBPS/Images/image00496.jpeg

OEBPS/Images/image00495.jpeg

OEBPS/Images/image00494.jpeg

OEBPS/Images/image00493.jpeg

OEBPS/Images/image01163.jpeg

OEBPS/Images/image01166.jpeg

OEBPS/Images/image01167.jpeg

OEBPS/Images/image01164.jpeg

OEBPS/Images/image01165.jpeg

OEBPS/Images/image01170.jpeg

OEBPS/Images/image01171.jpeg

OEBPS/Images/image01168.jpeg

OEBPS/Images/image01169.jpeg

OEBPS/Images/image01172.jpeg

OEBPS/Images/image01155.jpeg

OEBPS/Images/image01156.jpeg

OEBPS/Images/image01153.jpeg

OEBPS/Images/image01154.jpeg

OEBPS/Images/image01159.jpeg

OEBPS/Images/image01160.jpeg

OEBPS/Images/image01157.jpeg

OEBPS/Images/image01158.jpeg

OEBPS/Images/image01161.jpeg

OEBPS/Images/image01162.jpeg

OEBPS/Images/image01184.jpeg

OEBPS/Images/image01185.jpeg

OEBPS/Images/image01183.jpeg

OEBPS/Images/image01188.jpeg

OEBPS/Images/image01189.jpeg

OEBPS/Images/image01186.jpeg

OEBPS/Images/image01187.jpeg

OEBPS/Images/image01192.jpeg

OEBPS/Images/image01190.jpeg

OEBPS/Images/image01191.jpeg

OEBPS/Images/image01173.jpeg

OEBPS/Images/image01174.jpeg

OEBPS/Images/image01177.jpeg

OEBPS/Images/image01178.jpeg

OEBPS/Images/image01175.jpeg

OEBPS/Images/image01176.jpeg

OEBPS/Images/image01181.jpeg

OEBPS/Images/image01182.jpeg

OEBPS/Images/image01179.jpeg

OEBPS/Images/image01180.jpeg

OEBPS/Images/image00964.jpeg

OEBPS/Images/image01206.jpeg

OEBPS/Images/image00965.jpeg

OEBPS/Images/image01207.jpeg

OEBPS/Images/image01204.jpeg

OEBPS/Images/image00963.jpeg

OEBPS/Images/image01205.jpeg

OEBPS/Images/image00968.jpeg

OEBPS/Images/image01210.jpeg

OEBPS/Images/image00969.jpeg

OEBPS/Images/image01211.jpeg

OEBPS/Images/image00966.jpeg

OEBPS/Images/image01208.jpeg

OEBPS/Images/image00967.jpeg

OEBPS/Images/image01209.jpeg

OEBPS/Images/image00972.jpeg

OEBPS/Images/image00970.jpeg

OEBPS/Images/image01212.jpeg

OEBPS/Images/image00971.jpeg

OEBPS/Images/image01213.jpeg

OEBPS/Images/image01214.jpeg

OEBPS/Images/image00953.jpeg

OEBPS/Images/image01195.jpeg

OEBPS/Images/image00954.jpeg

OEBPS/Images/image01196.jpeg

OEBPS/Images/image01193.jpeg

OEBPS/Images/image01194.jpeg

OEBPS/Images/image00957.jpeg

OEBPS/Images/image01199.jpeg

OEBPS/Images/image00958.jpeg

OEBPS/Images/image01200.jpeg

OEBPS/Images/image00955.jpeg

OEBPS/Images/image01197.jpeg

OEBPS/Images/image00956.jpeg

OEBPS/Images/image01198.jpeg

OEBPS/Images/image00961.jpeg

OEBPS/Images/image00962.jpeg

OEBPS/Images/image00959.jpeg

OEBPS/Images/image01201.jpeg

OEBPS/Images/image00960.jpeg

OEBPS/Images/image01202.jpeg

OEBPS/Images/cover00489.jpeg

OEBPS/Images/image01203.jpeg

OEBPS/Images/image00986.jpeg

OEBPS/Images/image01228.jpeg

OEBPS/Images/image00987.jpeg

OEBPS/Images/image01229.jpeg

OEBPS/Images/image00984.jpeg

OEBPS/Images/image01226.jpeg

OEBPS/Images/image00985.jpeg

OEBPS/Images/image01227.jpeg

OEBPS/Images/image00990.jpeg

OEBPS/Images/image01232.jpeg

OEBPS/Images/image00991.jpeg

OEBPS/Images/image00988.jpeg

OEBPS/Images/image01230.jpeg

OEBPS/Images/image00989.jpeg

OEBPS/Images/image01231.jpeg

OEBPS/Images/image00992.jpeg

OEBPS/Images/image00993.jpeg

OEBPS/Images/image01235.jpeg

OEBPS/Images/image00994.jpeg

OEBPS/Images/image01236.jpeg

OEBPS/Images/image01233.jpeg

OEBPS/Images/image01234.jpeg

OEBPS/Images/image00975.jpeg

OEBPS/Images/image01217.jpeg

OEBPS/Images/image00976.jpeg

OEBPS/Images/image01218.jpeg

OEBPS/Images/image00973.jpeg

OEBPS/Images/image01215.jpeg

OEBPS/Images/image00974.jpeg

OEBPS/Images/image01216.jpeg

OEBPS/Images/image00979.jpeg

OEBPS/Images/image01221.jpeg

OEBPS/Images/image00980.jpeg

OEBPS/Images/image01222.jpeg

OEBPS/Images/image00977.jpeg

OEBPS/Images/image01219.jpeg

OEBPS/Images/image00978.jpeg

OEBPS/Images/image01220.jpeg

OEBPS/Images/image00981.jpeg

OEBPS/Images/image00982.jpeg

OEBPS/Images/image01224.jpeg

OEBPS/Images/image00983.jpeg

OEBPS/Images/image01225.jpeg

OEBPS/Images/image01223.jpeg

OEBPS/Images/image00766.jpeg

OEBPS/Images/image01008.jpeg

OEBPS/Images/image01250.jpeg

OEBPS/Images/image00767.jpeg

OEBPS/Images/image01009.jpeg

OEBPS/Images/image01251.jpeg

OEBPS/Images/image00764.jpeg

OEBPS/Images/image01006.jpeg

OEBPS/Images/image01248.jpeg

OEBPS/Images/image00765.jpeg

OEBPS/Images/image01007.jpeg

OEBPS/Images/image01249.jpeg

OEBPS/Images/image00770.jpeg

OEBPS/Images/image01012.jpeg

OEBPS/Images/image00771.jpeg

OEBPS/Images/image00768.jpeg

OEBPS/Images/image01010.jpeg

OEBPS/Images/image01252.jpeg

OEBPS/Images/image00769.jpeg

OEBPS/Images/image01011.jpeg

OEBPS/Images/image00772.jpeg

OEBPS/Images/image00773.jpeg

OEBPS/Images/image01015.jpeg

OEBPS/Images/image00774.jpeg

OEBPS/Images/image01016.jpeg

OEBPS/Images/image01013.jpeg

OEBPS/Images/image01014.jpeg

OEBPS/Images/image00755.jpeg

OEBPS/Images/image00997.jpeg

OEBPS/Images/image01239.jpeg

OEBPS/Images/image00756.jpeg

OEBPS/Images/image00998.jpeg

OEBPS/Images/image01240.jpeg

OEBPS/Images/image00753.jpeg

OEBPS/Images/image00995.jpeg

OEBPS/Images/image01237.jpeg

OEBPS/Images/image00754.jpeg

OEBPS/Images/image00996.jpeg

OEBPS/Images/image01238.jpeg

OEBPS/Images/image00759.jpeg

OEBPS/Images/image01001.jpeg

OEBPS/Images/image00760.jpeg

OEBPS/Images/image01002.jpeg

OEBPS/Images/image00757.jpeg

OEBPS/Images/image00999.jpeg

OEBPS/Images/image01241.jpeg

OEBPS/Images/image00758.jpeg

OEBPS/Images/image01000.jpeg

OEBPS/Images/image01242.jpeg

OEBPS/Images/image00761.jpeg

OEBPS/Images/image00762.jpeg

OEBPS/Images/image01243.jpeg

OEBPS/Images/image01004.jpeg

OEBPS/Images/image01246.jpeg

OEBPS/Images/image00763.jpeg

OEBPS/Images/image01005.jpeg

OEBPS/Images/image01247.jpeg

OEBPS/Images/image01244.jpeg

OEBPS/Images/image01003.jpeg

OEBPS/Images/image01245.jpeg

OEBPS/Images/image00788.jpeg

OEBPS/Images/image01030.jpeg

OEBPS/Images/image00789.jpeg

OEBPS/Images/image01031.jpeg

OEBPS/Images/image00786.jpeg

OEBPS/Images/image01028.jpeg

OEBPS/Images/image00787.jpeg

OEBPS/Images/image01029.jpeg

OEBPS/Images/image00792.jpeg

OEBPS/Images/image00790.jpeg

OEBPS/Images/image01032.jpeg

OEBPS/Images/image00791.jpeg

OEBPS/Images/image01033.jpeg

OEBPS/Images/image01034.jpeg

OEBPS/Images/image00553.jpeg

OEBPS/Images/image00795.jpeg

OEBPS/Images/image01037.jpeg

OEBPS/Images/image00554.jpeg

OEBPS/Images/image00796.jpeg

OEBPS/Images/image01038.jpeg

OEBPS/Images/image00793.jpeg

OEBPS/Images/image01035.jpeg

OEBPS/Images/image00794.jpeg

OEBPS/Images/image01036.jpeg

OEBPS/Images/image00777.jpeg

OEBPS/Images/image01019.jpeg

OEBPS/Images/image00778.jpeg

OEBPS/Images/image01020.jpeg

OEBPS/Images/image00775.jpeg

OEBPS/Images/image01017.jpeg

OEBPS/Images/image00776.jpeg

OEBPS/Images/image01018.jpeg

OEBPS/Images/image00781.jpeg

OEBPS/Images/image00782.jpeg

OEBPS/Images/image00779.jpeg

OEBPS/Images/image01021.jpeg

OEBPS/Images/image00780.jpeg

OEBPS/Images/image01022.jpeg

OEBPS/Images/image01023.jpeg

OEBPS/Images/image00784.jpeg

OEBPS/Images/image01026.jpeg

OEBPS/Images/image00785.jpeg

OEBPS/Images/image01027.jpeg

OEBPS/Images/image01024.jpeg

OEBPS/Images/image00783.jpeg

OEBPS/Images/image01025.jpeg

OEBPS/Images/image00689.jpeg

OEBPS/Images/image00931.jpeg

OEBPS/Images/image00690.jpeg

OEBPS/Images/image00932.jpeg

OEBPS/Images/image00687.jpeg

OEBPS/Images/image00929.jpeg

OEBPS/Images/image00688.jpeg

OEBPS/Images/image00930.jpeg

OEBPS/Images/image00691.jpeg

OEBPS/Images/image00692.jpeg

OEBPS/Images/image00934.jpeg

OEBPS/Images/image00693.jpeg

OEBPS/Images/image00935.jpeg

OEBPS/Images/image00933.jpeg

OEBPS/Images/image00696.jpeg

OEBPS/Images/image00938.jpeg

OEBPS/Images/image00697.jpeg

OEBPS/Images/image00939.jpeg

OEBPS/Images/image00694.jpeg

OEBPS/Images/image00936.jpeg

OEBPS/Images/image00695.jpeg

OEBPS/Images/image00937.jpeg

OEBPS/Images/image00678.jpeg

OEBPS/Images/image00920.jpeg

OEBPS/Images/image00679.jpeg

OEBPS/Images/image00921.jpeg

OEBPS/Images/image00676.jpeg

OEBPS/Images/image00918.jpeg

OEBPS/Images/image00677.jpeg

OEBPS/Images/image00919.jpeg

OEBPS/Images/image00682.jpeg

OEBPS/Images/image00680.jpeg

OEBPS/Images/image00922.jpeg

OEBPS/Images/image00681.jpeg

OEBPS/Images/image00923.jpeg

OEBPS/Images/image00924.jpeg

OEBPS/Images/image00685.jpeg

OEBPS/Images/image00927.jpeg

OEBPS/Images/image00686.jpeg

OEBPS/Images/image00928.jpeg

OEBPS/Images/image00683.jpeg

OEBPS/Images/image00925.jpeg

OEBPS/Images/image00684.jpeg

OEBPS/Images/image00926.jpeg

OEBPS/Images/image00711.jpeg

OEBPS/Images/image00712.jpeg

OEBPS/Images/image00709.jpeg

OEBPS/Images/image00951.jpeg

OEBPS/Images/image00710.jpeg

OEBPS/Images/image00952.jpeg

OEBPS/Images/image00714.jpeg

OEBPS/Images/image00715.jpeg

OEBPS/Images/image00713.jpeg

OEBPS/Images/image00718.jpeg

OEBPS/Images/image00719.jpeg

OEBPS/Images/image00716.jpeg

OEBPS/Images/image00717.jpeg

OEBPS/Images/image00700.jpeg

OEBPS/Images/image00942.jpeg

OEBPS/Images/image00701.jpeg

OEBPS/Images/image00698.jpeg

OEBPS/Images/image00940.jpeg

OEBPS/Images/image00699.jpeg

OEBPS/Images/image00941.jpeg

OEBPS/Images/image00702.jpeg

OEBPS/Images/image00703.jpeg

OEBPS/Images/image00945.jpeg

OEBPS/Images/image00704.jpeg

OEBPS/Images/image00946.jpeg

OEBPS/Images/image00943.jpeg

OEBPS/Images/image00944.jpeg

OEBPS/Images/image00707.jpeg

OEBPS/Images/image00949.jpeg

OEBPS/Images/image00708.jpeg

OEBPS/Images/image00950.jpeg

OEBPS/Images/image00705.jpeg

OEBPS/Images/image00947.jpeg

OEBPS/Images/image00706.jpeg

OEBPS/Images/image00948.jpeg

OEBPS/Images/image00731.jpeg

OEBPS/Images/image00732.jpeg

OEBPS/Images/image00733.jpeg

OEBPS/Images/image00736.jpeg

OEBPS/Images/image00737.jpeg

OEBPS/Images/image00734.jpeg

OEBPS/Images/image00735.jpeg

OEBPS/Images/image00740.jpeg

OEBPS/Images/image00741.jpeg

OEBPS/Images/image00738.jpeg

OEBPS/Images/image00739.jpeg

OEBPS/Images/image00722.jpeg

OEBPS/Images/image00720.jpeg

OEBPS/Images/image00721.jpeg

OEBPS/Images/image00725.jpeg

OEBPS/Images/image00726.jpeg

OEBPS/Images/image00723.jpeg

OEBPS/Images/image00724.jpeg

OEBPS/Images/image00729.jpeg

OEBPS/Images/image00730.jpeg

OEBPS/Images/image00727.jpeg

OEBPS/Images/image00728.jpeg

OEBPS/Images/image00742.jpeg

OEBPS/Images/image00743.jpeg

OEBPS/Images/image00744.jpeg

OEBPS/Images/image00747.jpeg

OEBPS/Images/image00748.jpeg

OEBPS/Images/image00745.jpeg

OEBPS/Images/image00746.jpeg

OEBPS/Images/image00751.jpeg

OEBPS/Images/image00752.jpeg

OEBPS/Images/image00749.jpeg

OEBPS/Images/image00750.jpeg

OEBPS/Images/image01265.jpeg

OEBPS/Images/image01263.jpeg

OEBPS/Images/image01264.jpeg

OEBPS/Images/image01254.jpeg

OEBPS/Images/image01255.jpeg

OEBPS/Images/image01253.jpeg

OEBPS/Images/image01258.jpeg

OEBPS/Images/image01259.jpeg

OEBPS/Images/image01256.jpeg

OEBPS/Images/image01257.jpeg

OEBPS/Images/image01262.jpeg

OEBPS/Images/image01260.jpeg

OEBPS/Images/image01261.jpeg

OEBPS/Images/image01063.jpeg

OEBPS/Images/image01064.jpeg

OEBPS/Images/image01067.jpeg

OEBPS/Images/image01068.jpeg

OEBPS/Images/image01065.jpeg

OEBPS/Images/image01066.jpeg

OEBPS/Images/image01071.jpeg

OEBPS/Images/image01072.jpeg

OEBPS/Images/image01069.jpeg

OEBPS/Images/image01070.jpeg

OEBPS/Images/image01053.jpeg

OEBPS/Images/image01056.jpeg

OEBPS/Images/image01057.jpeg

OEBPS/Images/image01054.jpeg

OEBPS/Images/image01055.jpeg

OEBPS/Images/image01060.jpeg

OEBPS/Images/image01061.jpeg

OEBPS/Images/image01058.jpeg

OEBPS/Images/image01059.jpeg

OEBPS/Images/image01062.jpeg

OEBPS/Images/image01085.jpeg

OEBPS/Images/image01086.jpeg

OEBPS/Images/image01083.jpeg

OEBPS/Images/image01084.jpeg

OEBPS/Images/image01089.jpeg

OEBPS/Images/image01090.jpeg

OEBPS/Images/image01087.jpeg

OEBPS/Images/image01088.jpeg

OEBPS/Images/image01091.jpeg

OEBPS/Images/image01092.jpeg

OEBPS/Images/image01093.jpeg

OEBPS/Images/image01074.jpeg

OEBPS/Images/image01075.jpeg

OEBPS/Images/image01073.jpeg

OEBPS/Images/image01078.jpeg

OEBPS/Images/image01079.jpeg

OEBPS/Images/image01076.jpeg

OEBPS/Images/image01077.jpeg

OEBPS/Images/image01082.jpeg

OEBPS/Images/image01080.jpeg

OEBPS/Images/image01081.jpeg

OEBPS/Images/image00865.jpeg

OEBPS/Images/image01107.jpeg

OEBPS/Images/image00866.jpeg

OEBPS/Images/image01108.jpeg

OEBPS/Images/image00863.jpeg

OEBPS/Images/image01105.jpeg

OEBPS/Images/image00864.jpeg

OEBPS/Images/image01106.jpeg

OEBPS/Images/image00869.jpeg

OEBPS/Images/image01111.jpeg

OEBPS/Images/image00870.jpeg

OEBPS/Images/image01112.jpeg

OEBPS/Images/image00867.jpeg

OEBPS/Images/image01109.jpeg

OEBPS/Images/image00868.jpeg

OEBPS/Images/image01110.jpeg

OEBPS/Images/image00871.jpeg

OEBPS/Images/image00872.jpeg

OEBPS/Images/image01114.jpeg

OEBPS/Images/image00873.jpeg

OEBPS/Images/image01115.jpeg

OEBPS/Images/image01113.jpeg

OEBPS/Images/image00854.jpeg

OEBPS/Images/image01096.jpeg

OEBPS/Images/image00855.jpeg

OEBPS/Images/image01097.jpeg

OEBPS/Images/image01094.jpeg

OEBPS/Images/image00853.jpeg

OEBPS/Images/image01095.jpeg

OEBPS/Images/image00858.jpeg

OEBPS/Images/image01100.jpeg

OEBPS/Images/image00859.jpeg

OEBPS/Images/image01101.jpeg

OEBPS/Images/image00856.jpeg

OEBPS/Images/image01098.jpeg

OEBPS/Images/image00857.jpeg

OEBPS/Images/image01099.jpeg

OEBPS/Images/image00862.jpeg

OEBPS/Images/image00860.jpeg

OEBPS/Images/image01102.jpeg

OEBPS/Images/image00861.jpeg

OEBPS/Images/image01103.jpeg

OEBPS/Images/image01104.jpeg

OEBPS/Images/image00887.jpeg

OEBPS/Images/image01129.jpeg

OEBPS/Images/image00888.jpeg

OEBPS/Images/image01130.jpeg

OEBPS/Images/image00885.jpeg

OEBPS/Images/image01127.jpeg

OEBPS/Images/image00886.jpeg

OEBPS/Images/image01128.jpeg

OEBPS/Images/image00891.jpeg

OEBPS/Images/image00892.jpeg

OEBPS/Images/image00889.jpeg

OEBPS/Images/image01131.jpeg

OEBPS/Images/image00890.jpeg

OEBPS/Images/image01132.jpeg

OEBPS/Images/image01133.jpeg

OEBPS/Images/image00894.jpeg

OEBPS/Images/image01136.jpeg

OEBPS/Images/image00653.jpeg

OEBPS/Images/image00895.jpeg

OEBPS/Images/image01137.jpeg

OEBPS/Images/image01134.jpeg

OEBPS/Images/image00893.jpeg

OEBPS/Images/image01135.jpeg

OEBPS/Images/image00876.jpeg

OEBPS/Images/image01118.jpeg

OEBPS/Images/image00877.jpeg

OEBPS/Images/image01119.jpeg

OEBPS/Images/image00874.jpeg

OEBPS/Images/image01116.jpeg

OEBPS/Images/image00875.jpeg

OEBPS/Images/image01117.jpeg

OEBPS/Images/image00880.jpeg

OEBPS/Images/image01122.jpeg

OEBPS/Images/image00881.jpeg

OEBPS/Images/image00878.jpeg

OEBPS/Images/image01120.jpeg

OEBPS/Images/image00879.jpeg

OEBPS/Images/image01121.jpeg

OEBPS/Images/image00882.jpeg

OEBPS/Images/image00883.jpeg

OEBPS/Images/image01125.jpeg

OEBPS/Images/image00884.jpeg

OEBPS/Images/image01126.jpeg

OEBPS/Images/image01123.jpeg

OEBPS/Images/image01124.jpeg

OEBPS/Images/image00667.jpeg

OEBPS/Images/image00909.jpeg

OEBPS/Images/image01151.jpeg

OEBPS/Images/image00668.jpeg

OEBPS/Images/image00910.jpeg

OEBPS/Images/image01152.jpeg

OEBPS/Images/image00665.jpeg

OEBPS/Images/image00907.jpeg

OEBPS/Images/image01149.jpeg

OEBPS/Images/image00666.jpeg

OEBPS/Images/image00908.jpeg

OEBPS/Images/image01150.jpeg

OEBPS/Images/image00671.jpeg

OEBPS/Images/image00672.jpeg

OEBPS/Images/image00669.jpeg

OEBPS/Images/image00911.jpeg

OEBPS/Images/image00670.jpeg

OEBPS/Images/image00912.jpeg

OEBPS/Images/image00913.jpeg

OEBPS/Images/image00674.jpeg

OEBPS/Images/image00916.jpeg

OEBPS/Images/image00675.jpeg

OEBPS/Images/image00917.jpeg

OEBPS/Images/image00914.jpeg

OEBPS/Images/image00673.jpeg

OEBPS/Images/image00915.jpeg

OEBPS/Images/image00656.jpeg

OEBPS/Images/image00898.jpeg

OEBPS/Images/image01140.jpeg

OEBPS/Images/image00657.jpeg

OEBPS/Images/image00899.jpeg

OEBPS/Images/image01141.jpeg

OEBPS/Images/image00654.jpeg

OEBPS/Images/image00896.jpeg

OEBPS/Images/image01138.jpeg

OEBPS/Images/image00655.jpeg

OEBPS/Images/image00897.jpeg

OEBPS/Images/image01139.jpeg

OEBPS/Images/image00660.jpeg

OEBPS/Images/image00902.jpeg

OEBPS/Images/image00661.jpeg

OEBPS/Images/image00658.jpeg

OEBPS/Images/image00900.jpeg

OEBPS/Images/image01142.jpeg

OEBPS/Images/image00659.jpeg

OEBPS/Images/image00901.jpeg

OEBPS/Images/image00662.jpeg

OEBPS/Images/image01143.jpeg

OEBPS/Images/image01144.jpeg

OEBPS/Images/image00663.jpeg

OEBPS/Images/image00905.jpeg

OEBPS/Images/image01147.jpeg

OEBPS/Images/image00664.jpeg

OEBPS/Images/image00906.jpeg

OEBPS/Images/image01148.jpeg

OEBPS/Images/image00903.jpeg

OEBPS/Images/image01145.jpeg

OEBPS/Images/image00904.jpeg

OEBPS/Images/image01146.jpeg

