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Preface

Compressible fluid dynamics captures interactions between pressure waves and
flow, which are accompanied by beautiful physical nature. It is based on the con-
servation relations of mass, momentum and energy over a control volume. The
readers are believed to master its basic principle in a short period by using only
simple mathematics. In many problems, we should consider how the flow reacts to
the variations of the flow passage area, and to force and heat exchanges. The readers
of this book can produce various flow functions in many applications, thereby
generating important values to the society.

Most of the contents of this book is the translation from a book Compressible
Fluid Dynamics and Shock Waves published in 2017 in Japanese from Corona
Publishing Co., Ltd., Tokyo, Japan, who kindly permitted me to publish this
English version. I am grateful for many illustrations provided by many colleagues
and institutions acknowledged in the respective parts. Also, I appreciate the
excellent editing support by Ms. Akiko Matsuda and many alumni of Shock Wave
and Space Propulsion Research Group, Department of Aerospace Engineering,
Nagoya University, Japan.

Nagoya, Japan Akihiro Sasoh
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Chapter 1
Propagation of Pressure Waves

Gas and liquid are termed fluid because they can flow with changes to their shape.
Most flows occurring in our daily life are not significantly influenced by compress-
ibility. However, in high-speed flows and/or when velocity or pressure rapidly varies,
compressibility is significant. The compression and expansion of a fluid, which cor-
respond to variations of its density, lead to the propagation of pressure waves. In
compressible fluid dynamics, we study the relationship between pressure-wave prop-
agation and its impact on flow properties. In this chapter, we will learn the basic
concepts of pressure-wave propagation through several examples.

1.1 Propagation of Sound

Sound waves are the weakest pressure waves. When sound waves propagate through
a quiescent gas, the gas particles oscillate around a fixed location. A sound wave is
characterized by its amplitude and frequency spectra. Moreover, sound waves are
not accompanied by flow, which is the movement of the center of gravity, but by the
propagation of “information.”

Let us consider the example shown in Fig. 1.1. When a rubber balloon bursts
behind Mr. A, its information has not yet propagated to him in Fig. 1.1a at t = t0.
Later, at t = t1 (Fig. 1.1b), the information has still not reached Mr. A. Mr. A hears
the “bun” sound only at t = t2 (Fig. 1.1c), thereby getting to know about the event.

In the wave diagram of Fig. 1.1d, the regions in which the sound wave arrives
are bounded by the ray of the leading sound. Here, x is defined as the horizontal
coordinate, and its positive direction is from the balloon location toward Mr. A.
xA and xB are the locations of Mr. A and the balloon, respectively. Sound waves
propagate at the speed of sound. The gray, inverse rectangular region with an apex
at (xB, t0) is the domain of influence of the burst. In the region outside of it, the
information has not arrived yet. The domain of influence is bounded by the right-
and left-running rays. The magnitude of the speed of sound is equal to the reciprocal

© Springer Nature Singapore Pte Ltd. 2020
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2 1 Propagation of Pressure Waves

Fig. 1.1 A balloon bursts
behind Mr. A

of the slope of the rays, or the reciprocal of dt
/
dx . A smaller slope means that the

sound propagates faster.
If the speed of sound is constant, a sound cannot catch up with preceding ones.

In Fig. 1.2a, Mr. A says, “The answer is XX.” However, he found the answer wrong
shortly after, and in Fig. 1.2b, he says, “I cancel it!” Unfortunately, he cannot cancel
the sound of his first answer because a propagating sound cannot catch up with
preceding ones.

In compressible fluid dynamics, pressure waves other than sound waves occur. A
“strong” pressure wave influences the flow behind it. The stronger the wave is, the
more the flow changes. Usually, the strength of a pressure wave is evaluated from the
increment of pressure. In high-speed flows and/or when the flow velocity suddenly
varies, a shock wave is generated. Pressure waves behind a shock wave can catch up
with it, as shown in Fig. 1.3. This is an important characteristic in compressible fluid
dynamics, the details of which we will learn step-by-step hereafter.

1.2 Sound Waves from Flying Object

Let us consider sound propagation from a flying object. The topology of sound
propagation depends on whether the flight speed is higher than the speed of sound.
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Fig. 1.2 A sound wave
cannot be canceled

Fig. 1.3 A pressure wave
can catch up with a shock
wave



4 1 Propagation of Pressure Waves

In subsonic flight, in which the object flies at a speed lower than the speed of
sound, sound waves from the object propagate around it in all directions, as shown in
Fig. 1.4. As shown in Fig. 1.2, a propagating wave does not catch up with a preceding
wave; therefore, the latter propagates ahead of the former. Although few waves are
shown in the figure, a large number of waves occur in reality; consequently, the
domain of influence expands toward a wide region.

In supersonic flight in which the flight speed exceeds the speed of sound, the
sound waves from the flying object form an envelope, as shown in Fig. 1.5. Such
an envelope of sound waves is termed a “Mach wave.” Neglecting the size of the
object, the envelope forms aMach cone. The domain of influence is the inside of the
Mach cone, as shown by the gray region in Fig. 1.5. If the size of the object is not
negligible, even stronger pressure waves, compression waves, or shock waves will
be generated. Further details will be presented in Chap. 4 and thereafter.

Fig. 1.4 Propagation of
sound waves in subsonic
flight. The gray region is the
domain of influence

Fig. 1.5 Propagation of
sound waves in supersonic
flight. The gray region is the
domain of influence
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1.3 Motion of One-Dimensional Beads and Wave
Propagation

Let us analyzewave propagation and the associated flow in a simple, one-dimensional
model [1]. Consider the beads on the wire model shown in Fig. 1.6. The beads are
aligned with a separation of l along the x-axis. Each bead has a mass of m. A piston
with a mass of mp collides against the leftmost bead at a constant speed of up.
mp is assumed to be much larger than m. Even in such a simple system, important
characteristics of compressible fluid dynamics are evident.

1.3.1 Piston–Bead Collision

When the piston makes an “elastic” collision against a bead at rest, the following
relations hold.

Conservation of momentum:

mpup = mpu
′
p + mu′, (1.1)

Conservation of energy:

1

2
mpu

2
p = 1

2
mpu

′2
p + 1

2
mu′2, (1.2)

where quantities after the collision are denoted by a prime. From (1.1) and (1.2), and
using the assumption that m/mp << 1,

u′ = 2up
1 + m/mp

� 2up, (1.3)

u′
p = 1 − m/mp

1 + m/mp
up � up. (1.4)

After the piston collides against the bead at rest, the bead recoils at a speed
of 2up, while the speed of the piston remains unchanged. This important collision
dynamics, that is, the fact that a light object recoils from a heavy object after collision
with double the speed of the heavy object, is applied to high-speed launch.

Fig. 1.6 A model of beads
on a wire
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1.3.2 Bead–Bead Collision

Consider that Bead 1 with a speed of u1 = 2up collides from left to right against
Bead 2 with a speed of u2 = 0. By making the substitutions up → u1, u → u2, and
mp → m in (1.3) and (1.4),

u′
1 = 0, (1.5)

u′
2 = u1. (1.6)

That is, the velocities are swapped after the collision such that the bead motion
continues to the right.

1.3.3 Motions of Piston and Beads

The motion of this system is expressed as shown in Fig. 1.7. Because the piston has a
constant velocity of up, its trajectory is a straight line. Let τ denote the time interval
between successive piston–bead collisions:

τ = l

up
. (1.7)

Each bead repeats cycles in which it moves with a velocity of 2up for a period of
τ/2 and stays still for the same period.

Fig. 1.7 Piston and bead
trajectories. The gray region
is the domain of influence of
the piston motion
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1.3.4 Characteristic Velocity

Up to where does the signal of the piston propagate? The velocity of the signal is
termed the characteristic velocity and is denoted by c. This signal is delivered by the
rightmost moving bead. Therefore,

c = 2up. (1.8)

The domain of influence, depicted as the gray region in Fig. 1.7, is formed
behind it.

1.3.5 Mean Bead Velocity

The time-averaged bead velocity, ū, is expressed as

ū = l
τ
2 + τ

2

= up. (1.9)

1.3.6 Mean Kinetic Energy

Let us obtain the mean kinetic energy of a bead after a long period when many beads
have started to move.

Mean kinetic energy obtained from bead motions, K1.
At any moment, half of the beads propagate at a velocity of 2up, and the other

half stay still. Therefore,

K1 = 1

2
m(2up)

2 × 1

2
+ 1

2
m · 02 × 1

2
= mu2p. (1.10)

Mean kinetic energy obtained from input energy from piston, K2.
At the moment after a period τ ′ as the piston first collided against the leftmost

bead,

(Number of beads in the domain of influence) = cτ ′

l
= 2upτ ′

l
, (1.11)

(Number of collisions against the piston) = upτ ′

l
, (1.12)
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(Kinetic energy acquired by the leftmost bead after each collision) = 1

2
m

(
2up

)2 = 2mu2p.

(1.13)

Therefore, the mean kinetic energy is

K2 = 2mu2p
upτ ′
l

2upτ ′
l

= mu2p = K1. (1.14)

Kinetic energy of center of gravity, K3.
When the mean kinetic energy is estimated from the mean velocity, ū,

K3 = 1

2
mū2 = 1

2
mu2p. (1.15)

Therefore,

K1 = K2 = 2K3. (1.16)

What is the physical meaning of these relations? Because the mean velocity ū is
equal to the velocity of the center of gravity, K3 is equal to the kinetic energy of
the system divided by the number of beads. Yet, in the frame of reference fixed to
the center of gravity, no bead stays still: they exhibit “isotropic” motions; half of the
beads move at a velocity of up to the right, while the other half move at −up to the
left. These motions are equivalent to thermal motion. This thermal energy, which is
equivalent to the translational energy of a gas,1 yields

K4 = 1

2
· 1
2
m

(−up
)2 + 1

2
· 1
2
m

(+up
)2 = 1

2
mu2p. (1.17)

It follows from these results that

K1 = K2 = K3 + K4 (K3 = K4). (1.18)

1.3.7 Compression Ratio

Let ρ denote the “density,” which is the mass of beads in a unit length in this case.
The length of the system decreases after piston–bead and bead–bead collisions.

1See Chap. 2.



1.3 Motion of One-Dimensional Beads and Wave Propagation 9

That is, the system becomes “compressed.” Let us obtain the compression ratio,
that is, the ratio of densities before and after the compression2:

Before the compression,

ρ0 = m

l
. (1.19)

After the compression,

ρ1 = 2upτ ′

2upτ ′ − upτ ′
m

l
= 2m

l
. (1.20)

Therefore,

ρ1

ρ0
= 2. (1.21)

1.3.8 Force on the Piston

The force exerted on the piston is obtained as the time average of impulse input onto
the leftmost bead:

F1 = (impulse by single collision) × (collision frequency)

= m · 2up · up
l

= m

l
· up · 2 up = ρ0upc. (1.22)

F is obtained from another consideration. The length of the domain of influence
at τ ′(�τ) after the first piston–bead collision equals cτ ′. The velocity of the center
of gravity of this domain equals ū. The force is equivalent to the momentum that the
system acquires in unit time; that is,

F2 = m cτ ′
l ū

τ ′ = ρ0ūc. (1.23)

As ū = up, F1 = F2 ≡ F . Therefore, the same physical quantity is obtained
from different evaluation processes. Equation (1.23) gives an impulsive force during
collision, F, which is the product of the intact density, particle velocity, and wave-
propagation speed.

In the above analyses, we have obtained the following fluid-dynamics quantities
in this “elastic” system:

2Usually, in fluid dynamics, “density” refers to the mass per unit volume. Here, the unit of density
is different from the usual one.
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– Speed of the wave (characteristic speed): c
– Speed of the center of mass (flow speed): ū
– Average energy per bead in the laboratory frame: K1(=K3 + K4)

– Average energy per bead of the center of gravity: K3

– Average energy per bead around the center of gravity (internal energy): K4

– Compression ratio: ρ1

ρ0

– Impulsive force: F = ρ0ūc

If the collisions are inelastic, the energy is distributed not only to kinetic ener-
gies but also to “thermal” energy, which changes the temperature of the piston and
beads. In a real fluid, the energy is distributed even to the rotational, vibrational, and
electronic excitation energies of atoms and/or molecules.

1.4 Pressure-Wave Propagation After Solid–Solid Collision

Usually, a solid is not regarded as a fluid. However, the processes and behavior of
their mutual collision are equivalent to the processes of compressible-flow dynamics.
Whenwe push a book on a desk or hit a golf ball with a club, the object starts moving.
Even in these cases, “waves” should propagate so that the “propulsive” force is
transferred to other sections. In real life, the propagation period is so short that we
cannot sense this propagation; the object seems to start moving instantaneously.
However, in a physical sense, it should take a finite time for the waves to propagate
through the object before it starts moving. Here, let us consider such processes.

Figure 1.8a shows a wave diagram of solid–solid collision. The two solid objects,
AandB,whichhave the same thickness and aremadeof the samematerial, experience
a normal collision. Here, we neglect shearing forces. Object A moves at a speed of
u1 to the right (state A1) and collides against Object B, which is at rest. Here, the

(a) Schematic wave diagram (b) Pressure–velocity lines 

Fig. 1.8 Collision process between two solid objects
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collision and associated wave propagation are assumed to be one-dimensional. A
wave resulting in a density increase is termed as a compression wave, whereas a
wave resulting in a density decrease is termed as an expansion wave or a rarefaction
wave. The pressure also increases behind a compression wave and decreases behind
an expansion wave. Immediately after A collides against B, the contact surface,
that is, the leftmost surface of B contacting A, first starts to move because of the
compression stress,which is equivalent to a pressure p2. Subsequently, a compression
wave propagates to the right. Behind the compression wave, in B2, a particle velocity
u2 is induced to the right with a pressure increase to p2, as shown in Fig. 1.8b.3 Up
to the moment when the wave completes a round trip across Object B, this particle
velocity and pressure remain constant. When the compression wave arrives at the
right free surface of B, an expansion wave propagates as the reflected wave.4 Behind
the expansion wave (B3), the particle velocity to the right is further increased to
u1, whereas the pressure becomes restored to the ambient one, which vanishes in
the figure. By contrast, a left-propagating compression wave in A propagates with
a pressure increase to p2 and a velocity decrease to u2. Note here that, across the
contact surface, both the particle velocity and pressure are continuous. At the free
surface of A on the left, the compression wave is reflected as an expansion wave.
Behind the expansion wave (A3), the particle velocity is further decreased, and the
pressure is restored to the ambient one. In the case of Fig. 1.8, in state A3, the particle
velocity vanishes because the objects are made of the same material.

When A collides with a velocity of u1 against B, after all the wave-propagation
processes, A becomes still and B starts moving at a velocity of u1. These results are
consistent with the macroscopic behavior of the elastic collision.

As presented in this chapter, the characteristics of compressible flow are closely
related to those of pressure-wave propagation. In this book, we will study compress-
ible fluid dynamics while capturing wave generation induced by object motions, its
impact on flow, and the mutual interactions of waves.

Reference

1. Asay JR, Shahinpoor M (eds) (1993) Beads on a wire model: high-pressure shock compression
of solids. Springer, New York, pp 12–14

3In fluid dynamics, a pressure usually has a positive value, whereas in solid mechanics, a tensile
stress is defined to be positive.
4For simplicity, the expansion wave is drawn as a single ray.



Chapter 2
Motion of Gas Particles
and Thermodynamics

The static characteristics of a gas are described by thermodynamics. Thermodynam-
ics starts with the formulation of experimentally observed phenomena, following
which the formulae are related as results of the behavior of a group of gas particles.
Compressible fluid dynamics is also based on thermodynamics. The local motion
of gas particles is decomposed into that of the center of gravity and that around it.
Flow is the motion of the center of gravity, while flow velocity is the velocity of such
motion. Pressure, temperature, and other thermodynamic properties are determined
from the motion around the center of gravity, that is, the thermal motion. The flow
changes when it experiences a force and/or exchange energy. In this chapter, we will
derive the relations between gas-particle motions and thermodynamic properties.

2.1 Basics of Thermodynamics

In thermodynamics, we study how the behavior of a gas changes with force and/or
heat. A quantity that expresses a thermodynamic condition is termed a property
or state variable. Examples are the temperature T, pressure p, density ρ, internal
energy e, enthalpy h, and entropy s. A dependent property is given as a function of
two independent properties. For example, e is expressed as a function of T and ρ:

e = e(T, ρ). (2.1)

This relation becomes particularly important for differentiation

de =
(

∂e

∂T

)
ρ

dT +
(

∂e

∂ρ

)
T

dρ. (2.2)

An equation of state is a representative equation that relates properties. A gas
with negligible molecule sizes and intermolecular forces is termed an ideal gas. The
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pressure of an ideal gas is determined only from thermal molecular motions, and it
is given by the following equation of state:

p = ρRT or pυ = RT . (2.3)

We must be mindful of which unit each property is evaluated in. The unit may
be different depending on the field of study. In fluid dynamics, many quantities are
evaluated for a unit mass. Such a quantity is called specific.1 For example, a volume
per unit mass, υ, is termed as specific volume, which has an international system of
units (SI unit) of [m3/kg]. Furthermore, a gas constant, R, is a quantity per unit mass.
By using a molecular mass, mmole, R is related to the universal gas constant, �, by

R

[
J

kg · K
]

= �[
J

mol·K
]

mmole

[
kg
mol

] , � = 8.3144. (2.4)

Let us consider a gas element that expands on heating. In Fig. 2.1a, the gas expands
at the same location without flow. The expanding gas element pushes the surround-
ing gas against the ambient pressure, thereby exerting work on the surroundings.
Furthermore, the energy of the gas element is decreased by the amount of work. If
heat is extracted from the gas element, that is, if it is cooled down, the element is
shrunk, thereby receiving work from the surroundings. Such processes follow the
first law of thermodynamics, which is equivalent to the conservation of energy:

δq = de + δw. (2.5)

Here, δq, de, and δw represent the heat input per unit mass, increment of internal
energy, and work done by the gas per unit mass, respectively. Because the internal
energy is a thermodynamic property, its variation is expressed by “d.” The variation
of other quantities is expressed by “δ” because the variation depends on processes.

Such heating/cooling and expansion/shrinkage can occur even with the flow, as
shown in Fig. 2.1b. In this case, the processes are observed by tracing a gas element
with a flow velocity of u.

Here, it is necessary to note the difference between a reversible process and an
irreversible process. If a gas element is slowly heated while it gradually expands and
then slowly cooled down to be restored to its initial volume, each thermodynamic
property is also restored to the initial value. Such a process is termed a reversible
process. On the other hand, if the element is rapidly heated up and cooled down to
its initial volume, other properties would not be restored to their initial values. Such
processes are accompanied by the so-called dissipative processes, such as diffusion,
friction, and heat conduction, and are thereby called irreversible processes. As will
be shown later, if this element is made to expand rapidly, the pressure variation
becomes different from that during a slow expansion.

1In this book, if understood from context, “specific” is omitted for simplicity.
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(a) without flow

(b) with flow

Fig. 2.1 Expansion of a gas element. The gas element is inside the broken line before expansion
and inside the solid line after expansion

An (specific) entropy, s, is an important thermodynamic property that is indicative
of how thermodynamic processes proceed. It is defined by

ds = δqrev
T

. (2.6)

Here, the subscript “rev” indicates that the heat is input through a reversible pro-
cess. The SI unit of s is [J/(kg·K)]. In a reversible process, when a gas element slowly
expands by dυ, it exerts work equal to pdυ toward the surroundings. Therefore, for
reversible processes,

δwrev = pdυ. (2.7)

By applying (2.5)–(2.7) to reversible processes,

T ds = de + pdυ. (2.8)
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This is an equation common in fluid dynamics, and it expresses the first law of
thermodynamics by using only thermodynamic properties.

The first law of thermodynamics, expressed as (2.8), does not give the direction
of energy transfer. For example, when a hot gas and cold gas are in contact with
each other, (2.8) does not prohibit heat transfer from the cold gas to the hot one,
which would not occur in reality. This process is ruled out by the second law of
thermodynamics. There are many ways to express this law. A typical statement is
“the entropy of a system that is irreversibly heated becomes greater than that of
relevant, reversible processes.”

ds = δqirrev
T

+ dsirrev ≥ δqirrev
T

, dsirrev ≥ 0. (2.9)

Here, the subscript “irrev” represents an irreversible process. In (2.9), the quality
is applied only to reversible processes.

A process without heat exchange (δq = 0) is termed an adiabatic process. From
(2.6), the following equation holds for a reversible, adiabatic process:

ds = 0. (2.10)

Therefore, such a process is isentropic.2

Enthalpy is defined as

h ≡ e + p

ρ
= e + pυ. (2.11)

The second term on the rightmost side of (2.11), pυ, corresponds to the energy
“saved” in a volume υ at a pressure p. In order to let an infinitesimally small element
expand slowly from zero volume to υ, the element needs to exert a work of pυ on
the surroundings. On the other hand, if an element with volume υ slowly shrinks to
an infinitesimally small volume, it experiences a work of pυ from the surroundings.
In fluid dynamics, it is often convenient to use enthalpy for modeling flows involving
such energy exchanges.

The thermodynamic properties of a gaseous mixture of various chemically react-
ing species depend on the mixture ratios of the components, which in turn depend on
the temperature and pressure. However, if a gas is composed only of a single species
and the intermolecular force is negligible, the internal energy, e, and enthalpy, h, can
be modeled as a function of T alone:

e = e(T ), (2.12)

h = h(T ). (2.13)

2Note the differences between reversible, adiabatic, and isentropic processes.
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Such a gas is termed a thermally perfect gas.Without volumevariation, the internal
energy increases by the amount of input heat, as expressed in (2.8). Furthermore,
from (2.8) and (2.11),

T ds = d(h − pυ) + pdυ = dh − υdp. (2.14)

Therefore, at a constant pressure, the enthalpy increases by the amount of input
heat. Differentiating (2.12) and (2.13) yields

de = Cυ(T )dT, (2.15)

dh = Cp(T )dT . (2.16)

Here, Cυ and Cp are the specific heat at constant volume and specific heat at
constant pressure, respectively. For a thermally perfect gas, they are functions of T
alone. Moreover, if they are constant,

e = CυT (Cυ = const.), (2.17)

h = CpT (Cp = const.). (2.18)

A gas satisfying (2.17) and (2.18) is termed a calorically perfect gas. For air with
temperature and pressure around their standard values, this simplified treatment is
effective to evaluate flow properties. In this case, the specific heat ratio,

γ ≡ Cp

Cυ

, (2.19)

is also constant. Consequently, variables such as flow properties and shock-wave
relations can be expressed in explicit forms.

2.2 Thermal Speed and Flow Velocity

Particles in a gas move in a random manner with collisions at a finite rate. Here, we
will consider particle motions and the resulting macroscopic quantities, such as flow
velocity and thermodynamic properties.

Consider a group of gas particles with a mass of m with its center of gravity
moving at a velocity of u, as shown in Fig. 2.2. The velocity vector of each particle,
V, is equal to the sum of u and its relative velocity vector, v:

V = u + v. (2.20)
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(a) Location and velocity of particles (b) Velocity decomposition 

Fig. 2.2 Particle motions with a flow velocity of u

Let an upper bar — denote an ensemble average in the group at a moment.
Generally, for functions f and g, the following relations hold:

f · g �= f · g
f = f
f + g = f + g

f · g = f · g = f · g

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (2.21)

By applying (2.21) to (2.20),

V = u + v = u = u, v = 0, (2.22)

where v is equivalent to the thermal velocity. Here, v is isotropically distributed
because the velocity of the center of mass (hereafter flow velocity), u, is constant.

2.3 Pressure

A pressure p is a compressive force exerted in the direction normal to a unit surface.
As per

(force) = (mass) × (acceleration) = (mass) × (velocity)

(time)
= (momentum)

(time)
,

(2.23)

a force in a physical sense is equal to the momentum produced per unit time. Based
on these relations, we will derive the pressure due to the particle motions.

Now, we set a control volume, which is the virtual domain enclosed by the cube of
broken lines in Fig. 2.3a, and analyze particle motions across the control surface A.
Let us evaluate the number of particles and the value of the correspondingmomentum
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(a) Three-dimensional view (b) Side view of the surface

Fig. 2.3 Particle motions across a control surface A

across A. In the side view of Fig. 2.3b, for particles 1 and 3, Vx > 0. That is, when
particles 1 and 3 enter the control volume through the control surface A, the momen-
tum in the x -direction of the control volume is increased if they enter the control
volume from the left. Particles 2 and 4 have a negative component of the velocity,
that is, Vx < 0. If they exit from the control volume to the surroundings through the
control surface A, the “negative” momentum decreases, that is, the momentum in the
x-direction increases here as well. It follows from these results that the momentum
in the x-direction is increased irrespective of the direction of particle motions.

A flux is a physical quantity that quantifies penetration through a control surface
per unit time and area. A particle with Vx > 0 at the control surface A enters the
control volume from the left domain L. The particles passing through the control
surface A stayed in a column with a unit cross-sectional area and a length of Vx a
unit time ago. The mass flux across the control surface A is equal to the mass in the
column,

ρVx . (2.24)

Since the momentum of a unit mass is equal to Vx , the momentum flux in the
x-direction, Ix , is

Ix = ρV 2
x , (2.25)

which has a positive value for Vx �= 0 (Fig. 2.4).
In the same manner, particles with Vx < 0 on the control surface A only leave

the control volume to the region L. Their mass flux is also given by (2.24), but they
have a negative value of mass flux. The momentum flux is obtained by multiplying
the mass flux and Vx , yielding (2.25). In conclusion, irrespective to the sign of Vx ,
the momentum flux of (2.25) has a positive value. By using (2.21) and (2.22), we
take the ensemble average of the momentum flux:
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Fig. 2.4 Particles passing
through a control surface A
with a unit cross-sectional
area during a unit time
stayed in the column with a
length of Vx

Ix = ρV 2
x = ρ(ux + vx )2 = ρ

(
u2x + 2uxvx + v2x

)
= ρ

(
u2x + v2x

)
. (2.26)

The first term on the rightmost side of (2.26) corresponds to the contribution of the
motion of the center of gravity,3 and the second one corresponds to that of thermal
motions. For isotropic, three-dimensional particle motions,

|v|2 = v2 = v2x + v2y + v2z , (2.27)

v2x = v2y = v2z = 1

3
v2. (2.28)

By substituting (2.26) in (2.27) and (2.28),

p = 1

3
ρv2, (2.29)

where p corresponds to a force due to the thermal motion of the particles, that is, a
pressure.4

2.3.1 Column: Thrust of a Rocket Engine5

By applying the results in Sect. 2.3, we can derive the thrust of a rocket engine, F.
When the engine is not in operation, the pressure inside and outside of the engine is
uniform at the ambient value of p0, and F = 0. When the engine is in operation as
shown in Fig. 2.5, exhaust gas is ejected from the exit at a speed of ue. F is equal
to the difference between the momentum ejected per unit time and the force due to
the pressure on the front projection surface. By adding a subscript “e” to quantities

3In this book, we do not use the term “dynamic pressure” because it may cause confusion with
incompressible fluid dynamics.
4Depending on necessity, it is also termed as static pressure, to be distinguished from total pressure,
which will appear later.
5See also Sect. 11.1.3.
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Fig. 2.5 Pressure
distribution of a rocket
engine in operation

at the engine exit, we obtain

F = (
ρeu

2
e + pe

)
Ae − p0Ae. (2.30)

Here, Ae is the cross-sectional area at the exit. The mass flow rate of the exhaust
gas, ṁ, is given by

ṁ = ρeueAe, (2.31)

F = ṁue + (pe − p0)Ae. (2.32)

The first term on the right-hand side of (2.32) is the momentum thrust, which is
caused by the momentum of the center of gravity, and the second one is the pressure
thrust caused by the pressure difference between the engine exit and the surroundings.
Usually, in a rocket for space transportation, the engine exit pressure is designed to
be balanced with the ambient pressure at an appropriate altitude. This implies that,
in the beginning of launch near the ground, the pressure thrust has a negative value,
corresponding to pressure loss in rocket engineering.

2.4 Internal Energy and Temperature

Let us take the ensemble average of kinetic energy of a particle group, ek.

ek = 1

2
|V|2 = 1

2
|u + v|2 = 1

2

(
|u|2 + 2u · v + |v|2

)
= 1

2
|u|2 + 1

2
v2. (2.33)

The first term on the rightmost side of (2.33) corresponds to the kinetic energy
of the center of gravity, and the second one corresponds to the kinetic energy due to
thermal motion, which is equivalent to the translational energy, etr, and is a part of
the internal energy of molecules, as shown in Fig. 2.6.

etr = 1

2
v2. (2.34)
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Fig. 2.6 Translational
motion of a diatomic
molecule

From (2.29) and (2.34),

etr = 3

2

p

ρ
. (2.35)

Temperature is a physical quantity defined based on the proportion of energy of a
molecule. In this book, we introduce the following results obtained from statistical
physics [1]:

An energy of 1
2 kT is distributed to a single degree of freedom in a molecule.

Here, k = 1.38 × 10−23[J/K] is the Boltzmann constant. In a single degree of
freedom, the energy is expressed by

1

2
αX2 (α = const.). (2.36)

The total energy of a molecule having φ degrees of freedom is equal to

φ

2
kT . (2.37)

By quantifying it for a unit mass,

e = φ

2
RT, (2.38)

R ≡ k

m
. (2.39)

Here, R andm are the gas constant and molecular mass, respectively, as described
in Sect. 2.1.

The translational energy, etr, has three degrees of freedom (φ = 3):

1

2
mv2x = 1

2
mv2y = 1

2
mv2z = 1

2
kT . (2.40)
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Fig. 2.7 Rotation of a
diatomic molecule

Fig. 2.8 Vibration of a
diatomic molecule

Fig. 2.9 Electronic
excitation

From (2.28), (2.34), and (2.40),

etr = 3

2

k

m
T = 3

2
RT . (2.41)

The internal energy is the sum of the translational energy (Fig. 2.6), rotational
energy (Fig. 2.7), vibrational energy (Fig. 2.8), and electronic excitation energy
(Fig. 2.9):

e = etr + erot + evib + eel. (2.42)

The molecular internal modes are excited by collisions. The higher the transla-
tional energy, the higher is the rate of excitation. This implies that the higher the
temperature, the larger is the degree of freedom. A diatomic molecule has two axes
of rotation perpendicular to the internuclear axis, thereby having two degrees of
freedom, as shown in Fig. 2.7. In molecule, the rotational energy, erot, is excited at
several tens of kelvins and higher. At several hundreds of kelvins and higher, the
effects of vibrational energy, evib, gradually increases with increasing temperature.
The threshold value of temperature depends on the chemical species. In air, it is of the
order of 600 K. In diatomic molecules, as shown in Fig. 2.8, the vibrational energy
has two degrees of freedom, corresponding to the kinetic and potential energy. With
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further increase in the temperature up to several thousands of kelvins and higher, the
electronic excitation energy, eel, is added, as shown in Fig. 2.9.

The internal-energy distribution in gas can be changed by the flow, energy input,
etc. However, after a sufficient period for the respective energy modes to con-
duct mutual energy exchanges by collisions, the local condition asymptotically
approaches a state called local thermodynamic equilibrium (LTE). In this book,
unless otherwise mentioned, we assume LTE. In monoatomic gases, air, and many
other gases, we can assume

φ =
{
3 (monoatimic gas) = 3(translational)
5 (diatomic gas) = 3 (translational) + 2 (rotational)

, (2.43)

at a room temperature up to approximately 1,000 K.
The total energy of a fluid, et, is the sum of the kinetic energy of the center of

mass and the internal energy:

et = 1

2
|u|2 + e. (2.44)

2.4.1 Column: Velocity Distribution Function
and Thermodynamic Properties in LTE

According to gas kinetics, the distribution of thermal velocity, v, follows a Maxwell
distribution, as shown in Fig. 2.10 [2]:

f (vx , vy, vz) =
( m

2πkT

)3/2
exp

{
− m

2kT

(
v2x + v2y + v2z

)}
. (2.45)

Fig. 2.10 Maxwell
distribution of thermal
velocity
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Here, f is a velocity distribution function,which is defined such that the probability
of velocity components in the rangeofvx ∼ vx+dvx ,vy ∼ vy+dvy , andvz ∼ vz+dvz
is given by

f (vx , vy, vz)dvxdvydvz = f (vx )dvx f (vy)dvy f (vz)dvz . (2.46)

From statistical physics,

f (vx ) =
( m

2πkT

)1/2
exp

(
− m

2kT
v2x

)
, (2.47)

with the normalized condition of

∞∫
vx=−∞

f (vx )dvx = 1, (2.48)

∫ ∞

−∞
exp(−aξ 2)dξ =

√
π

a
, (2.49)

∫ ∞

−∞
ξ 2 exp(−aξ 2)dξ =

√
π

2a3/2
. (2.50)

Using these equations, the following relations are confirmed:

p =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ρv2x f (vx , vy, vz)dvxdvydvz = ρRT, (2.51)

etr =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
1

2

(
v2x + v2y + v2z

)
f (vx , vy, vz)dvxdvydvz = 3

2

kT

m
= 3

2
RT .

(2.52)

Let us obtain the ensemble average of thermal speed. The result depends on the
type of averaging. The ensemble average of the absolute value of thermal speed, v̄,
is given by

v̄ ≡
∞∫

−∞

∞∫
−∞

∞∫
−∞

|v| f (vx , vy, vz)dvxdvydvz, (2.53)

with the spherical symmetry,

dvxdvydvz = 4πv2dv, (2.54)

v2 = v2x + v2y + v2z . (2.55)
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From (2.45), (2.53) to (2.55),

v̄ ≡ 4π
( m

2πkT

)3/2
∞∫
0

v3 exp
(
− m

2kT
v2

)
dv =

√
8kT

πm
. (2.56)

From (2.50), the root mean square,
√
v2, is obtained as

√
v2 =

√
3kT

m
. (2.57)

The value of v that maximizes

f (v) = 4π
( m

2πkT

)3/2
v2 exp

(
− m

2kT
v2

)
(2.58)

is obtained when its derivative is 0:

vm =
√
2kT

m
. (2.59)

These three averages have the following relation:

vm < v̄ <

√
v2. (2.60)

2.5 Equation of State of Ideal Gas

Up to this point, we have ignored the size of molecules and intermolecular forces.
Let us confirm how these assumptions are applicable to reality.

Let us denote the number density by n. The value of n under the standard condition
of p0 = 1.013 × 105[Pa] and T0 = 273.15[K] is known as the Loschmidt constant,
which is n0 ∼= 2.687 × 1025 	 2.7 × 1025[m−3]. It follows that the average inter-
molecular distance is approximately equal to n−1/3

0
∼= (1/3) × 10−8 ∼= 3[nm]. The

frequency and travel distance for molecular collisions are dependent on the collision
cross section, σ . The effective diameter of nitrogen, which is the largest constituent
of air, equals d ∼= 3.8× 10−10[m] = 0.38[nm]; for oxygen, it is 0.36 [nm]. By using
this value, we obtain σ = πd2 ∼= 4.5×10−19[m2]. Themean free path, λ, is the travel
distance between successive collisions: λ = 1/(

√
2σn0) ∼= 6× 10−8[m] = 60[nm].

In summary, in air under standard conditions, the intermolecular distance and mean
free path are one and two orders of magnitude larger than the molecular size, respec-
tively. The volume occupied by the molecules is three orders of magnitude larger
than the volume of molecules. Under such conditions, we can reasonably adopt an
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Fig. 2.11 Typical
dimensions in air under
standard conditions

ideal gas model in which the effects of molecular size and intermolecular forces are
neglected (Fig. 2.11).

The equation of state of an ideal gas is obtained by combining (2.35) and (2.41):

p = ρRT . (2.61)

By substituting

ρ = mn (2.62)

and (2.39) in (2.61), we obtain

p = nkT . (2.63)

Since

n = N

V
, N , number of molecules;V, volume, (2.64)

pV = NkT . (2.65)

By using the universal gas constant, �[J/(mol × K)], and Avogadro’s number,
NA = 6.022 × 1023[mol−1], we obtain

pV = N

NA
kNAT = M

∧

�T, (2.66)

� = kNA, (2.67)

where

M
∧

= N

NA
(2.68)
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is the mole number. Equations (2.61), (2.63), (2.65), and (2.66) are equations of state
expressed in different units, all of which are equivalent to each other.

2.5.1 Column: Mean Free Path

Let us derive the mean free path, λ, by considering the mean free time, τ . These two
quantities are related by the particle speed, v, as follows:

λ = vτ. (2.69)

Let us consider themotions of two particles, particle 1with velocity v1 and particle
2 with velocity v2, as shown in Fig. 2.12a. The relative velocity vector, as shown in
Fig. 2.12b, is given by

v = v1 − v2. (2.70)

By using this relative velocity, the motion of particle 1 is observed from particle
2 in the manner shown in Fig. 2.12c. Assume that they are rigid spheres with radii
of r1 and r2, respectively. For these particles to collide, the distance, R, between the
two lines in Fig. 2.12c should satisfy the following condition:

R ≤ r1 + r2. (2.71)

If we regard each particle as a dot, particle 1 has an effective collision cross section
against particle 2 with a radius of Rm:

Rm = r1 + r2. (2.72)

If the particles are of the same type, Rm is equal to the diameter of the particle.
In any case, the collision cross section, σ , is given by

σ = πR2
m. (2.73)

The condition for a certain particle to collide with another one is equivalent to the
condition that one particle exists in the volume swept by that particle; that is,

σλn = 1, (2.74)

or

λ = 1

σn
. (2.75)
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(a) Locations and velocity vectors (b) Relative velocity vector

(c)  Motion of particle 1 observed from particle 2

(d) Particle 1 having a circular cross section with a radius of mR

Fig. 2.12 Motions of two particles, particle 1 (left) and 2 (right)

Equation (2.75) is valid if all particles have the same speed. However, in reality, as
shown in the previous column, the particles have a velocity distribution determined
from statistics physics. In this case, the value of λ needs to be corrected.

In order to obtain an accurate value of λ, let us determine the collision frequency
with the effect of velocity distribution taken into account. Here, we assume gas parti-
cles of the same type. Let a colliding particle be labeled 1 and the counterpart particle
be labeled 1’. Of course, in practice, we cannot discriminate between particles. The
particle collision frequency, Z11, per unit volume and unit time is obtained by multi-
plying n2 and the integration of the reciprocal of the free flight time before collision,
|v1 − v1′ |σ , with respect to the respective velocity distribution functions. By using
(2.45),
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Z11 = n2σ

2

( m

2πkT

)3
∫

dv1

∫
dv1′ |v1 − v1′ | exp

{
− m

2kT

(
v21 + v21′

)}
, (2.76)

where the integration is divided by 2 because each collision is doubly counted such
as particle 1 to particle 1’ and particle 1’ to particle 1. The velocity of the center of
mass, vG, and the relative velocity, v, are expressed using v1 and v1′ :

vG = m1

m1 + m1′
v1 + m1′

m1 + m1′
v1′ = v1 + v1′

2
, (2.77)

v = v1 − v1′ . (2.78)

Therefore,

v1 = vG + v
2
, (2.79)

v1′ = vG − v
2
. (2.80)

By substituting (2.76) in (2.79) and (2.80), we obtain

Z11 = n2σ

2

( m

2πkT

)3 ∫
dvG

∫
dv v exp

{
− m

2kT

(
2v2G + v2

2

)}
= n2σ√

2

√
8kT

πm
= n2σ v̄√

2
.

(2.81)

The collision frequency for a certain particle to collide against other particles is
given as the reciprocal of τ :

1

τ
= 2Z11

n
= √

2nσ v̄. (2.82)

Here, Z11 is multiplied by 2 because we specify the colliding particle. From (2.69)
and (2.82) with v = v̄,

λ = v̄√
2nσ v̄

= 1√
2nσ

. (2.83)

Note here that (2.83) differs from (2.75) by a factor of 1/
√
2 because only (2.83)

is obtained by taking the effects of velocity distribution into account.
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2.5.2 Column: Real Gas

When the density of the gas is such that the effects of molecular size and intermolec-
ular forces cannot be neglected, the equation of state does not follow (2.61). Such a
gas is termed a real gas. If we apply the order estimation in Sect. 2.5 to a gas at room
temperature with a pressure 1,000 times as high as the atmospheric pressure, from
simple calculus, the intermolecular distance would become of the same order as the
molecular dimensions. With such a high density, real gas effects become significant.
A typical equation of state for a real gas includes the compressibility, z:

p = zρRT . (2.84)

Here, z = 1 leads to the ideal gas equation. As shown in Fig. 2.13, at T = 300 [K]
and p < 15.5 [MPa], z = 1.00 ± 0.01. Therefore, air is regarded as an ideal gas in
this range.

Another form of the real gas equation is the van der Waals equation of state [3]:

Fig. 2.13 Pressure
dependence of
compressibility of air

Fig. 2.14 Comparison of
pressure–volume curves of
real gases and an ideal gas
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(
p + a

υ2

)
(υ − b) = (

p + aρ2
)( 1

ρ
− b

)
= RT, (2.85)

where a and b are constants. A resultant force exerted on a molecule is proportional
to the density. The number of molecules experiencing the intermolecular force is
also proportional to the density. Consequently, the effect of the intermolecular force
scales as ρ2 = 1/υ2. Therefore, the term a/υ2 corresponds to a decrease in pressure
due to the intermolecular force. The term −b reflects a decrease in the effective
volume due to the volume occupied by the molecules.6

2.6 Isentropic Processes

Generally, flow is accompanied by loss due to heat, friction, vortices, shock waves,
etc. Entropy, s, is a thermodynamic property that quantifies such losses. Unlike
other thermodynamic properties, the variation in s is usually more important than its
absolute value. Let us formulate e as a function of s and υ.

de =
(

∂e

∂s

)
υ

ds +
(

∂e

∂υ

)
s

dυ, e = e(s, υ). (2.86)

On comparing the above with (2.8),

(
∂e

∂s

)
υ

= T, (2.87)

(
∂e

∂υ

)
s

= −p. (2.88)

Even without heating, entropy increases with the generation of friction, vortices,
shock waves, etc.

By transforming (2.8) for a calorically perfect gas,

ds = Cυ

dT

T
+ R

d
(

1
ρ

)
1
ρ

= Cυd ln T + Rd ln

(
1

ρ

)
= Cυd ln(Tρ1−γ ), (2.89)

ds

Cυ

= d ln(Tρ1−γ ) = d ln
(
p1−γ T γ

) = d ln(pρ−γ ). (2.90)

Therefore, for isentropic processes with ds = 0, the following relations hold:

T

ργ−1
= const.,

p

T
γ

γ−1

= const.,
p

ργ
= const. (2.91)

6For air, a = 1.6 × 102[J · m3/kg2] and b = 1.3 × 10−3[m3/kg] (Fig. 2.14).
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2.7 Enthalpy, Total Temperature, and Total Pressure

In steady flow, a stream line is drawn by connecting the tangents to the velocity
vector of a flow element. For inviscid flow, the stream line is equivalent to the wall
that separates adjoining flow elements. Let us consider a control volume bounded by
two stream lines, as shown by the gray region in Fig. 2.15. Here, we neglect gravity.
The fluid flows in through control surface 1 and flows out through control surface 2.
Howmuch energy does this fluid gain after passing through the control volume? The
fluid element in the control volume experiences a force of p1A1 in the flow direction
on control surface 1. The fluid on the left-hand side of the flow element pushes it in
the same manner as of a “piston” with a velocity of u1, thereby inputting a power
of p1u1A1 to the element. On the other hand, on control surface 2, the flow element
pushes the fluid on the right-hand side, consuming a power of p2u2A2. By using
a constant mass flow rate of ρ1u1A1 = ρ2u2A2( �= 0), this power balance can be
expressed as follows:

ρ2u2A2et,2 − ρ1u1A1et,1 = p1u1A1 − p2u2A2

ρ1u1A1

(
et,1 + p1

ρ1

)
= ρ2u2A2

(
et,2 + p2

ρ2

)
,

et,1 + p1
ρ1

= et,2 + p2
ρ2

. (2.92)

Here,

et = e + 1

2
u2 (2.93)

is the total energy. By using the enthalpy, as expressed in (2.11), (2.92) is expressed
in a simpler form:

ht ≡ h + 1

2
u2 = const., (2.94)

where ht is the total enthalpy or stagnation enthalpy. Equation (2.94) implies that the
total enthalpy is conserved along a stream line. When a flow becomes stagnated at a

Fig. 2.15 Work exerted on a
flow element bounded by
two stream lines
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Fig. 2.16 Subsonic flow
over an immersed body

point on an immersed body, as shown in Fig. 2.16, ht is equal to the static enthalpy
at the stagnation point.

From (2.11), (2.38), and (2.61),

h ≡ e + pυ = e + p

ρ
= e + RT =

(
φ

2
+ 1

)
RT . (2.95)

Equation (2.95) implies that h is larger than e by two degrees of freedom. This
difference corresponds to an energy of pυ, which is necessary to create a vacant
volume of υ at a pressure of p. For a calorically perfect gas, they are given by

e = CvT = φ

2
RT = 1

γ − 1
RT = 1

γ − 1

p

ρ
, (2.96)

h = CpT = φ + 2

2
RT = γ

γ − 1
RT = γ

γ − 1

p

ρ
, (2.97)

γ =
φ+2
2
φ

2

= φ + 2

φ
=

{ 5
3 (monoatomic gas at room temperature,φ = 3)
7
5 (diatomic gas at room temperature,φ = 5)

. (2.98)

When the flow of a calorically perfect gas with u, p, and T stagnates to yield a
pressure of p0 and a temperature of Tt, from (2.94),

γ R

γ − 1
Tt = γ R

γ − 1
T + 1

2
u2, (2.99)

Tt = T + γ − 1

2γ R
u2. (2.100)

The temperature when the flow stagnated, Tt, is termed the total temperature or
stagnation temperature. In order to distinguish T from Tt, the former is termed static
temperature. Tt does not depend on stagnation processes or on entropy variation.

For example, when a space ship reenters the Earth’s atmosphere, the entry speed
is as high as 8 km/s. For a calorically perfect gas with T = 200 [K], the stagnation
temperature is as high as
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Tt = 200 + 1.4 − 1

2 × 1.4 × 8.31
29×10−3

× (8 × 103)2 = 3.2 × 104 [K].

Note here that, in reality, the temperature would not increase so much because
the values of specific heat would increase with the increasing temperature.

Let us see how the pressure varies with stagnation. From (2.90) and (2.100),

p0
p

=
(
Tt
T

) γ

γ−1

exp

(
−�s

R

)
=

(
1 + γ − 1

2
M2

) γ

γ−1

exp

(
−�s

R

)
, (2.101)

a = √
γ RT =

√
γ p

ρ
, (2.102)

M ≡ u

a
. (2.103)

where a and M are the speed of sound and Mach number which is the ratio of the
flow speed to the speed of sound, respectively. In particular, the pressure, pt, resulting
from isentropic stagnation, �s = 0, is termed as a stagnation pressure.

pt
p

=
(
Tt
T

) γ

γ−1

=
(
1 + γ − 1

2
M2

) γ

γ−1

(2.104)

Comparing (2.101) and (2.104), we see that the pressure is decreased by a factor
of exp

(−�s
R

)
which is caused by the entropy increase. This is termed as a pressure

loss.
Pitot tube, Fig. 2.17, is a device to measure the Mach number of flow. A Pitot

pressure, pPitot, is measured with its tip being directed against the flow direction.
Also, the static pressure, p1, on the side wall is measured.7 From (2.94),

(a)Pitot tube in flow (b) Flow near tube tip in supersonic flow

Fig. 2.17 Measurement of flow Mach number using Pitot tube

7For subsonic flow, the static pressure is measured using through the outer passage of a double tube.
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dht = d

(
h + 1

2
u2

)
= 0. (2.105)

Letting ds = 0 in (2.14),

dh − dp

ρ
= 0, (2.106)

dp

ρ
+ d

u2

2
= 0. (2.107)

The integration of (2.107),

∫
dp

ρ
+ u2

2
= const. (2.108)

is Bernoulli’s equation.8 Note here that this equation is applicable only for isentropic
flows.

As shown in Fig. 2.17b, if we put a Pitot tube in supersonic flow, a shock wave
is generated ahead of it, being accompanied with an entropy increase. On the center
axis of the Pitot tube, the shock wave becomes normal to the flow. Behind the normal
shock wave, the flow becomes subsonic, then is isentropically decelerated to the
stagnation point. From these relations and using results of Chap. 4, Rayleigh’s Pitot
tube formula is obtained.

p1
p

= 1 + 2γ

γ + 1
(M2 − 1) (2.109)

ρ1

ρ
= (γ + 1)M2

(γ − 1)M2 + 2
(2.110)

M1 =
(
p1
p

)−1/2(
ρ1

ρ

)−1/2

M (2.111)

pPitot
p1

=
(
1 + γ − 1

2
M2

1

) γ

γ−1

(2.112)

pPitot
p

= p1
p

pPitot
p1

=
(

γ+1
2 M2

) γ

γ−1

(
2γ M2−γ+1

γ+1

) 1
γ−1

(2.113)

As seen in Fig. 2.18, the Pitot pressure is approximately equal to the total pressure
for M ∼= 1, yet becomes lower for highMach numbers. This is caused by the entropy

8Equation (2.108) differs from that for incompressible flow.
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Fig. 2.18 Comparison
between Pitot pressure and
total pressure

increase due to the normal shock wave. With M = 4.4, pPitot becomes one order in
magnitude smaller than pt.

2.8 Multicomponent Gas Mixture

Many gases including air are mixtures of plural chemical species. Let us derive
relations about thermodynamics properties of multicomponent gas. Here, we assume
that each component behaves as ideal and thermally perfect gas at a temperature of T.
According toDalton’s law, the pressure, p, is equal to the sum of the partial pressure
of the components, pi (i = 1 · · · N ).

p =
N∑
i=1

pi =
N∑
i=1

ρi Ri T =
N∑
i=1

Yiρ
�
Wi

T = ρRT, (2.114)

R = �
W

= �
N∑
i=1

Yi
Wi

, (2.115)

whereYi andWi are themass fraction andmolecularmass, respectively, of a chemical
species i. A quantity with is a mass-averaged value. R is the gas constant of the
mixture, and has a unit of [J/kg ·K]. In the same way, the enthalpy of the mixture is
given by

h =
N∑
i=1

Yihi , (2.116)
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Fig. 2.19 Enthalpy of air in
equilibrium, Tref = 0 (K),
the broken line corresponds
to calorically perfect gas
with γ = 1.4 courtesy to
Prof. T. Sakai (Tottori
University)

hi = hf,i (Tref) +
T∫

Tref

Cp,i dT . (2.117)

hf,i (Tref) is the standard enthalpy of formation of a species i at a reference tem-
perature, Tref, which is a necessary energy to produce the chemical species from
fundamental elements such as nitrogen gas, oxygen gas, solid carbon, etc. Although
hi is a function only of T, h depends not only on T but also on p because Yi depends
on both.

Figure 2.19 shows the equilibrium air enthalpy at various temperatures and pres-
sures. Up to around 1,000 K, the assumption of calorically perfect gas with γ = 1.4
is reasonably applied. Up to about 2,000 K, the pressure dependence is small.

In order to obtain the speed of sound of the mixture,9 it is necessary to relate
variation of species mass fraction with pressure. If the chemical reactions are so fast
that the mass fractions follow to an equilibrium state, we can obtain an equilibrium”
speed of sound.

ae =
(

∂p

∂ρ

)
s,Yi=Yi,e(s,ρ)

, (2.118)

where Yi,e(s, ρ) is a mass fraction in equilibrium at an entropy s and density ρ.
Yet, in many practical conditions as is dealt with in this book, pressure fluctuation

is so weak that we can neglect variation in mole fractions. Under this condition,
we use a frozen speed of sound, which can be expressed in an explicit form. For
isentropic processes,

dh − dp

ρ
= 0.

9We will learn the definition and derivation of speed of sound in Chap. 8. Here, we only use the
result.
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Assuming calorically perfect gas,

dhi = Cp,idT . (2.119)

h =
N∑
i=1

Yihi . (2.120)

Under the condition that Yi of each species is kept constant,

dh =
N∑
i=1

(Yidhi + hidYi ) =
N∑
i=1

Yidhi =
N∑
i=1

YiCp,idT . (2.121)

Substituting (2.118) with (2.121) with

C p =
N∑
i=1

YiCp,i . (2.122)

C pdT − dp

ρ
= C p

R
d

(
p

ρ

)
− dp

ρ
= C p − R

ρ R̄
dp − pC p

ρ2R
dρ = 0. (2.123)

where (2.114) is applied. Transforming this to substituting (8.6), the frozen speed of
sound is obtained such that

af ≡
(

∂p

∂ρ

)
s,Yi (i=1···N )

=
√

γ
p

ρ
=

√
γ RT , (2.124)

γ = C p

C p − R
= C p

Cυ

. (2.125)

Here, the specific heats and the specific heat ratio do no need to be constant, but
should depend only on the temperature. Equation (2.124) is in the same form as of
a single component gas.
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Chapter 3
Basic Equations

When analyzing flow, it is often sufficient to observe the spatiotemporal variation of
macroscopic quantities of a continuum fluid, such as the flow velocity and thermo-
dynamic properties, rather than to trace all particles. In this chapter, we will derive
the basic equations of compressible fluid dynamics. Although diffusion, viscosity,
and heat conduction are important transport phenomena, their influence on pressure-
wave propagation is quite limited. Therefore, unless otherwise stated, we will deal
with inviscid flow in this book.

3.1 Conservation Equations

Let us consider a control volume with a volume V, as shown in Fig. 3.1. This is
enclosed by a control surface A, which is a virtual surface constructed for the anal-
ysis. Let u be the flow velocity, which is a vector quantity. We shall formulate the
conservation relations of mass, momentum, and energy.

First, let us learn an important quantity, flux, which quantifies a physical quantity
through a control surface per unit area and during a unit time. We have “mass,”
“momentum,” and “energy” fluxes, depending on the type of quantity.

3.1.1 Conservation of Mass

A mass flux passing through a control surface with a cross-sectional area of dA and
an outward normal vector (unit vector) of dn is equal to

ρu · ndA. (3.1)

Here, the flux exiting through the control surface is defined as positive. The time
variation of mass in the control volume is equal to the net mass that enters and exits

© Springer Nature Singapore Pte Ltd. 2020
A. Sasoh, Compressible Fluid Dynamics and Shock Waves,
https://doi.org/10.1007/978-981-15-0504-1_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0504-1_3&domain=pdf
https://doi.org/10.1007/978-981-15-0504-1_3


42 3 Basic Equations

Fig. 3.1 Control volume

through the control surface:

∂

∂t

∫
V

ρdV = −
∫
A
ρ(u · n)d A. (3.2)

Assume that the control volume does not move or change its shape. By applying
Gauss’s divergence theorem, we obtain

∫
V

∂ρ

∂t
dV +

∫
V

∇ · (ρu)dV = 0,

∫
V

{
∂ρ

∂t
+ ∇ · (ρu)

}
dV = 0. (3.3)

Since the above equation is applicable to any control volume,

∂ρ

∂t
+ ∇ · (ρu) = 0. (3.4)

The above is the equation of mass conservation.

3.1.2 Conservation of Momentum

For the variation ofmomentum in the control volume during a unit time, the following
equation holds:

[momentum increment in control volume]= [
momentum through control surface

]
+ [force on control surface]+[force in control volume]. (3.5)

Since momentum is a vector quantity, its conservation equation should be formu-
lated for the respective components. The momentum per unit volume is ρu, and the
momentum flux is −ρu(u · n). Several types of forces are directly exerted on each
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molecule, such as the force of gravity and electromagnetic forces. We name such a
force as a volume force. While the force due to pressure over a control volume is
evaluated only by accounting for the pressure on the control surface, the force due
to the volume force should be evaluated by integrating over the whole volume. Let
a volume force be designated by f . Thus, (3.5) yields

∂

∂t

∫
V

ρudV = −
∫
A
ρu(u · n)d A +

∫
A
σ · nd A +

∫
V

ρfdV . (3.6)

By applying Gauss’s divergence theorem to the i-th component of the first term
on the right-hand side, we obtain

[∫
A
ρu(u · n)d A

]
i

=
∫
A
ρui (u · n)d A =

∫
V

∇ · (ρuiu)dV =
∫
V

3∑
j=1

∂ρuiu j

∂x j
dV .

(3.7)

σ in the second termon the right-hand side of (3.6) denotes the stress tensor.Assuming
an inviscid fluid, it only has diagonal pressure components:

σi j = −pδi j , (3.8)

where i and j correspond to the direction of force and the direction of the normal
vector, respectively. δi j is the Kronecker delta function.

δi j =
{
1 (i = j)

0 (i �= j)
,

[∫
A
σ · nd A

]
i

=
3∑
j=1

∫
A
σi j n j d A =

∫
V

3∑
j=1

∂σi j

∂x j
dV = −

∫
V

∂p

∂xi
dV . (3.9)

Therefore, in the same manner as for the mass conservation, the i-th component
of the momentum conservation equation, (3.6), is written as

∫
V

⎧⎨
⎩

∂

∂t
(ρui ) +

3∑
j=1

∂ρuiu j

∂x j
+ ∂p

∂xi
− ρ fi

⎫⎬
⎭dV = 0,

∂

∂t
(ρui ) +

3∑
j=1

∂ρuiu j

∂x j
= − ∂p

∂xi
+ ρ fi . (3.10)

By designating the flow velocity components of u by (u, v,w) on Cartesian
coordinates (x, y, z), the x component of (3.10) is expressed as (Fig. 3.2)
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Fig. 3.2 The x-component
of momentum fluxes

x - component:
∂ρu

∂t
+ ∂ρu2

∂x
+ ∂ρuv

∂y
+ ∂ρuw

∂z
= −∂p

∂x
+ ρ fx , (3.11)

where the three momentum flux terms on the left-hand side correspond to the
momentum flux past a control surface normal to the x-, y-, and z-axes, respectively:

∂ρu2

∂x = ∂ρu·u
∂x : x component of momentum difference through control surfaces

normal to the x-axis,
∂ρuv
∂y = ∂ρv·u

∂y : x component of momentum difference through control surfaces
normal to the y-axis,

∂ρuw
∂z = ∂ρw·u

∂z : x component of momentum difference through control surfaces
normal to the z-axis,

y - component:
∂ρv

∂t
+ ∂ρvu

∂x
+ ∂ρv2

∂y
+ ∂ρvw

∂z
= −∂p

∂y
+ ρ fy, (3.12)

z - component:
∂ρw

∂t
+ ∂ρwu

∂x
+ ∂ρwv

∂y
+ ∂ρw2

∂z
= −∂p

∂z
+ ρ fz . (3.13)

In vector form,

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = −∇ p + ρf, (3.14)

where a ⊗ b denotes a tensor product1:

a ⊗ b =
⎛
⎜⎝
a1
a2
a3

⎞
⎟⎠(

b1 b2 b3
) =

⎛
⎝a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎞
⎠,

1Here, x1 = x , x2 = y, and x3 = z.
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∇ · (a ⊗ b) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂a1b1
∂x1

+ ∂a1b2
∂x2

+ ∂a1b3
∂x3

∂a2b1
∂x1

+ ∂a2b2
∂x2

+ ∂a2b3
∂x3

∂a3b1
∂x1

+ ∂a3b2
∂x2

+ ∂a3b3
∂x3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Equation (3.14) is the momentum conservation equation without viscosity, named
Euler’s equation of motion in a conserved form, in which no differentiation has a
variable coefficient. This form fits the instinctive understanding of a conservation
relation and minimizes discretization error.

Euler’s Eq. (3.14) is transformed into another form after decomposing it to a
vector form and utilizing the mass conservation equation given by (3.4):

ρ
∂u
∂t

+ u
{

∂ρ

∂t
+ ∇ · (ρu)

}

=0

+ρ(u · ∇)u = −∇ p + ρf,

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇ p + ρf . (3.15)

In this, non-conservative form of Euler’s equation, the physical meaning of each
component is clear. The convective derivative,

u · ∇ = u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
, (3.16)

corresponds to a variation observed on a flow element. The second term on the
left-hand side of (3.15) is named the convective term, which is the origin of flow
nonlinearity.

A substantial derivative,

D

Dt
≡ ∂

∂t
+ u · ∇, (3.17)

is the total derivativewith respect to dx
dt = u, which quantifies flowvariation observed

on a flow element. By using the substantial derivative, (3.15) yields

ρ
Du
Dt

= −∇ p + ρf . (3.18)
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3.1.3 Conservation of Energy

The total energy, et, of a fluid element is the sum of the internal energy and kinetic
energy.

et = e + 1

2
|u|2 (3.19)

The variations of the total energy in a control volume per unit time are formulated
as follows:

[
total energy increment

]= [
energy flux through control surface

]
+ [

work with pressure on control surface
] + [heat transfer on control surface],

+ [
heat input to control volume

] + [work with volume force],

∂

∂t

∫
V

ρetdV = −
∫
A

ρetu · ndA −
∫
A
pu · ndA −

∫
A
q · ndA +

∫
V

ρ Q̇dV +
∫
V

ρf · udV (3.20)

where Q̇ denotes the heat input per unit time to a unit volume. By using Gauss’s
divergence theorem,

∂

∂t

∫
V

ρetdV = −
∫
A

∇ · (ρetu)dV −
∫
V

∇ · (pu)dV −
∫
V

∇ · qdV +
∫
V

ρ Q̇dV +
∫
V

ρf · udV .

(3.21)

For (3.21) to be applicable to any volume element,

∂ρet
∂t

+ ∇ · (ρet + p)u = −∇ · q + ρ Q̇ + ρf · u, (3.22)

ρ
∂et
∂t

+ ρu · ∇et + et

{
∂ρ

∂t
+ ∇ · (ρu)

}

[A]
+p∇ · u + u · ∇ p

[B]
= −∇ · q + ρ Q̇ + ρf · u.

By applying (3.4) and (3.15) to [A] and [B] in the above equation, respectively,
and by using (3.19), we obtain

ρ
∂

∂t

(
e + 1

2
|u|2

)
+ ρu · ∇

(
e + 1

2
|u|2

)
+ p∇ · u + u ·

{
−ρ

∂u
∂t

− ρ(u · ∇)u + ρf
}

= −∇ · q + ρ Q̇ + ρf · u

ρ
∂e

∂t
+ ρu · ∇e + p∇ · u + ρu · ∇ |u|2

2
− ρu · {(u · ∇)u} = −∇ · q + ρ Q̇.

Since
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u · {(u · ∇)u} =
⎛
⎜⎝

u

v

w

⎞
⎟⎠ ·

⎛
⎜⎝

(u · ∇)u

(u · ∇)v

(u · ∇)w

⎞
⎟⎠ = 1

2
(u · ∇) |u|2,

ρ
De

Dt
+ p∇ · u = −∇ · q + ρ Q̇. (3.23)

By using (3.4) and (3.17), we obtain

∇ · u = − 1

ρ

Dρ

Dt
. (3.24)

Combing with (3.23), we obtain

De

Dt
= p

ρ2

Dρ

Dt
− 1

ρ
∇ · q + Q̇ = −p

Dυ

Dt
− 1

ρ
∇ · q + Q̇, , (3.25)

υ ≡ 1

ρ
. (3.26)

Equation (3.25) gives the variation in internal energy due to a variation in volume,
heat transfer, and volumetric heat input. By substituting the second and third terms
on the rightmost side of (3.25) with the heat input δQ and the substantial derivative
of X with dX, we obtain

δQ = de + pdυ. (3.27)

The above is the first law of thermodynamics applied to a flow element. By using
the enthalpy, h:

h = e + p

ρ
= e + pυ, (3.28)

δQ = dh − υdp. (3.29)

Note here that, in (3.27) and (3.29), the effect of volume force does not appear,
because it affects only the motion of the center of gravity and not the compression
and expansion of the element.

Next, let us consider the variation of kinetic energy of the center of mass. By
taking the inner product of (3.15) and u, we obtain

u · ∂u
∂t

+ u · (u · ∇)u = D

Dt

(
1

2
|u|2

)
=

(
−∇ p

ρ
+ f

)
· u. (3.30)



48 3 Basic Equations

This equation implies that the flow kinetic energy varies with the pressure gradient
and volume force. Because the pressure varies with the internal energy, the flow
kinetic energy and internal energy are coupled with each other.

To summarize these results, in the total energy, the internal energy varies based on
the first law of thermodynamics, as expressed by (3.27), and the flow kinetic energy
varies based on the equation of motion, as expressed by (3.30).

3.1.4 Other Relations

In three-dimensional flows, a flow condition is defined by five independent parame-
ters—two thermodynamic properties and three velocity components—each of which
is a function of position (x, y, z) and time t. In this chapter, we have derived five
conservation equations: one for mass, three for momentum components, and one
for energy. Therefore, the number of governing equations is equal to the number of
unknown parameters. However, the conservation equations involve more than two
thermodynamic parameters: e, p, ρ, and, after a transformation, a, which is expressed
by thermodynamic properties such as h and T. A thermodynamic property can be
given as a function of two other properties. For example, the internal energy is given
as a function of pressure and density:

e = e(p, ρ). (3.31)

Therefore, the number of governing equations is equal to that of independent
unknown parameters. Such a flow problem can be solved with appropriate initial
and/or boundary conditions.

3.1.5 Similarity in Inviscid Flow

In this book, we deal with inviscid flows, in which we implicitly neglect diffusion,
viscosity, and heat conduction. In such flows, no characteristic length exists, that
is, the flow is self-similar. Let us show this similarity in Euler’s equation. Let the
variables appearing in (3.15) be normalized using three characteristic parameters
p∞, L , and U∞:

f̃ ≡ f
U 2∞/L

, p̃ ≡ p

p∞
, ũ ≡ u

U∞
, t̃ ≡ t

L/U∞
, ∇̃ ≡ L∇, ρ̃ ≡ ρ

p∞/U 2∞
, (3.32)

∂ũ
∂ t̃

+ (ũ · ∇̃)ũ = −∇̃ p̃

ρ̃
+ f̃ . (3.33)
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The Euler’s equation in a dimensionless form, given by (3.33), holds irrespective
of the value of the length scale, L. Therefore, under the same flow conditions, flows
with similar shapes are similar.

3.2 Galilean Transformation

A flow field around an airplane flying at a constant velocity observed from the
ground is different from that observed from the airplane with respect to the flow
velocity. In the sense of dynamics, the flow is observed on different inertial frames
of reference that move at a constant relative velocity. However, the distribution of
thermodynamic properties such as pressure and temperature should be uniquely
determined irrespective of the inertial frameof reference. For theflow tobe consistent,
the form of governing equations must remain unchanged on any inertial frame of
reference. In this section, we will confirm this.

3.2.1 Inertial Frame of Reference

A frame of reference fixed on the ground is termed a laboratory frame. A laboratory
frame on Earth is approximately regarded as an inertial frame of reference.2 Assume
that an airplane is flying with a constant velocity vector of U in a quiescent atmo-
sphere, as shown in Fig. 3.3. When observed from the airplane, as shown in Fig. 3.4,
the flow comes toward the airplane with a velocity vector of −U. For transformation
between these frames, we will perform the Galilean transformation as follows.

Fig. 3.3 Motion of an
airplane flying in a quiescent
atmosphere at a constant
velocity of U observed from
the ground

2Strictly speaking, a frame fixed on Earth is not an inertial frame of reference, because an object
experiences an inertial force due to Earth’s spin. Yet, for example, a centrifugal force due to Earth’s
spin is equal to 0.03 cosφ[m/s2] (ϕ, latitude) of Earth’s gravity, which is only 0.3% at most.



50 3 Basic Equations

Fig. 3.4 Incoming flow with
a velocity vector of −U
observed from the airplane

3.2.2 Galilean Transformation

Let us consider an inertial frame of reference A with the origin O, as shown in
Fig. 3.5a. Let the pointing vector of a particle, x, be defined by

x =
⎛
⎜⎝
x

y

z

⎞
⎟⎠. (3.34)

Next, consider another inertial frame of reference B with the origin O’, which
moves at a constant translational velocity vectorU on FrameA, as shown in Fig. 3.5b.
There is no relative rotation between these frames. The pointing vector of the same
particle on Frame B, as shown in Fig. 3.5b, is defined as

(a) Frame A (b) Frame B, moving at a constant velocity 
of U with respect to Frame A

Fig. 3.5 Two inertial frames
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x′ =
⎛
⎜⎝
x ′

y′

z′

⎞
⎟⎠. (3.35)

As shown in Fig. 3.6, these two pointing vectors are related to each other by

x′ ≡ x − xO′ , (3.36)

⎛
⎜⎝
x ′

y′

z′

⎞
⎟⎠ =

⎛
⎜⎝
x − xO′(t)

y − yO′(t)

z − zO′(t)

⎞
⎟⎠, , (3.37)

t ′ = t, (3.38)

where t and t ′ are the time in Frame A and B, respectively. Here, we assume that U
is constant. Then, the position of O’, xO’, is a function of t alone.

U = dxO’(t)
dt

≡
⎛
⎜⎝
Ux

Uy

Uz

⎞
⎟⎠. (3.39)

By using the above relations, let us conduct a transformation from Frame A to B.
The derivatives between these frames are related by a Jacobian matrix Y:

Y =
∣∣∂(t ′, x′)

∣∣
|∂(t, x)| =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂t ′

∂t

∂x ′

∂t

∂y′

∂t

∂z′

∂t
∂t ′

∂x

∂x ′

∂x

∂y′

∂x

∂z′

∂x
∂t ′

∂y

∂x ′

∂y

∂y′

∂y

∂z′

∂y
∂t ′

∂z

∂x ′

∂z

∂y′

∂z

∂z′

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.40)

Therefore,

Fig. 3.6 Relation between
two pointing vectors
referring to the same particle
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂t
∂

∂x
∂

∂y
∂

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Y

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂t ′
∂

∂x ′
∂

∂y′
∂

∂z′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

∂
∂t ′ −Ux

∂
∂x ′ −Uy

∂
∂y′ −Uz

∂
∂z′

∂
∂x ′

∂
∂y′

∂
∂z′

⎞
⎟⎟⎟⎠. (3.41)

In a vector form,

∂

∂t
= ∂

∂t ′
− U · ∇′, (3.42)

∇ = ∇′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂

∂x ′
∂

∂y′
∂

∂z′

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.43)

Equations (3.42) and (3.43) are the equations for Galilean transformation. The
spatial derivatives are expressed in the same form.However, note that the term−U·∇′
should be added to correct for the relative translational motion between the frames.

3.2.2.1 Galilean Transformation of Conservation Equations

Let flow velocities u and u′ on Frame A and B, respectively, be defined by

u = dx
dt

, (3.44)

u′ = dx′

dt ′
. (3.45)

From (3.36), (3.38), and (3.39),

u′ ≡ u − U. (3.46)

Let us transform the conservation equations, given by. (3.4), (3.15), and (3.23),
by using (3.42), (3.43), and (3.46).

(1) Conservation of mass
By applying Galilean transformation to (3.4), we obtain
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∂ρ

∂t ′
− U · ∇′ρ + ∇′ · ρ(U + u′) = 0. (3.47)

U is a spatiotemporal invariant, that is,

∇′ · U = 0, , (3.48)

∂U
∂t ′

= 0. (3.49)

Thus, Eq. (3.47) becomes

∂ρ

∂t ′
+ ∇′ · (ρu′) = 0. (3.50)

The above equation has the same form as (3.4).

(2) Conservation of momentum
In the same manner as for the conservation of mass, Galilean transformation is

applied to (3.15):

ρ

(
∂

∂t ′
− U · ∇′

)
(U + u′) + ρ(U + u′) · ∇′(U + u′) = −∇′ p + ρf,

ρ
∂u′

∂t ′
+ ρu′ · ∇′u′ = −∇′ p + ρf .

, (3.51)

which has the same form as (3.15).

(3) Conservation of energy
By applying Galilean transformation to (3.23),

ρ

(
∂

∂t ′
− U · ∇′

)
e + ρ

{
(U + u′) · ∇′}e + p∇′ · (U + u′) = −∇′ · q + ρδ Q̇,

ρ
∂e

∂t ′
+ ρ

(
u′ · ∇′)e + p∇′ · u′ = −∇′ · q + ρδ Q̇. (3.52)

From (3.50) to (3.52), each conservation equation is expressed in the same form
on (t ′, x′) coordinates. Moreover, a substantial derivative does not change its form
by Galilean transformation.

D

Dt
= ∂

∂t
+ u · ∇ = ∂

∂t ′
− U · ∇′ + (U + u′) · ∇′ = ∂

∂t ′
+ u′ · ∇′ = D′

Dt ′
. (3.53)

Note here that Galilean transformation is applicable only under the condition that
U does not vary; it is not applicable to frames with relative acceleration.



Chapter 4
Discontinuity

When we drive a car on a highway, we occasionally have to press the brake pedal
at a sudden traffic jam, the cause of which we do not readily understand. From a
bird’s-eye view, we see a boundary past which the car density and speed sharply
change, as shown in Fig. 4.1a. Moreover, Fig. 4.1b shows water and oil in contact
with each other, while Fig. 4.1c shows a stone slipping on ice. In such cases, two
media with different densities and/or velocities are in contact. Such a discontinuity
can appear even in flows.

In this book, we deal with flows of continuum fluids; the dimensions of objects
are much larger than the mean free path of the fluids. It seems contradictory that
discontinuity exists in continuum fluid. Yet, the flow can have a significant spatial
variation within a short distance of the order of tens of the mean free path (or, in a
traffic flow, within a distance of tens of the vehicle-separation distance). We regard
such a short-distance variation as a discontinuity. There are several types of discon-
tinuities classified according to how the conservation relations in fluid dynamics are
satisfied through them.

4.1 Condition and Classification of Discontinuity

4.1.1 Rankine–Hugoniot Relation

Let us assume a discontinuity in a flow and consider a control volume � (ABCDE-
FGH) that encloses it by the control surface �, as shown in Fig. 4.2. The control
volume � is assumed to be so thin that the flow does not temporally change in the
period during which the flow passes through it. The flow is uniform along the dis-
continuity. By applying Galilean transformation to the conservation equations in a
conserved form, given by (3.4), (3.14), and (3.22), we obtain

© Springer Nature Singapore Pte Ltd. 2020
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(a) Traffic jam suddenly appearing on a highway, courtesy 
of Prof. K. Nishinari (The University of Tokyo)

(b) Contact between water 
and oil

(c) Slip surface

Fig. 4.1 Examples of discontinuity

∇ · (ρu) = 0, (4.1)

∇ · (ρu ⊗ u) = −∇ p + ρf, (4.2)

∇ · {(ρet + p)u} = ∇ · (ρhtu) = ρ
(
δ Q̇ + f · u). (4.3)

By using Gauss’s divergence theorem with respect to the control volume � with
a control surface �, we obtain

∫

�

∇ · (ρu)dV =
∫

�

ρu · ndA = 0, (4.4)
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Fig. 4.2 A control volume
(ABCDEFGH) with a
control surface � enclosing a
discontinuity

∫

�

{∇ · (ρu ⊗ u) + ∇ p}dV =
∫

�

ρfdV,

∫

�

{(ρu ⊗ u)} · ndA +
∫

�

∇ pdV =
∫

�

ρfdV , (4.5)

∫

�

∇ · (ρhtu)dV =
∫

�

(ρhtu) · ndA =
∫

�

ρ
(
δ Q̇ + f · u)dV . (4.6)

We set the x coordinate to be normal to the discontinuity, with the control volume
having a thickness of dx and widths of dy and dz. n is a unit vector normal to a control
surface element toward the outward direction. With dx decreasing to an infinitesi-
mally small value, dx → 0, the volume of � also decreases to an infinitesimally
small value as dV = dxdydz → 0, with dydz remaining finite. Under this ultimate
condition, we can neglect fluxes through the side elements of the control surface and
the source terms.

From (4.4),

(ρu)ADHE · nADHEdydz + (ρu)BFGC · nBFGCdydz = 0,

{(ρu)ADHE − (ρu)BFGC} · nADHE = 0. (4.7)

By denoting the value on the upstream side on ADHE and that on the downstream
side on BFGC by subscripts 1 and 2, respectively, we have

ρ1u1 = ρ2u2. (4.8)

In the same manner, the right-hand side of the momentum conservation equation,
expressed as (4.5), vanishes with dx → 0:
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ρ1u
2
1 + p1 = ρ2u

2
2 + p2 (4.9)

ρ1u1v1 = ρ2u2v2,

ρ1u1w1 = ρ2u2w2.

By performing a transformation using (4.8),

ρ1u1(v1 − v2) = 0, (4.10)

ρ1u1(w1 − w2) = 0. (4.11)

From the energy conservation equation, expressed as (4.6), we obtain

ρ1u1ht,1 = ρ2u2ht,2,

ρ1u1
(
ht,1 − ht,2

) = 0. (4.12)

Equations (4.8)–(4.12) are known asRankine–Hugoniot equations. They describe
flow variations even past a discontinuity. Note here that, except for the momentum
equation along the normal to the discontinuity, expressed as (4.9), each equation has
a form of the product with the mass flux of (4.8).

4.1.2 Classification of Discontinuity

The solutions of Rankine–Hugoniot equations are classified depending on whether
the flow values change or on whether the mass flux has a non-null value past the
control surface.

(1) Continuous solution: X1 = X2

This solution corresponds to the condition that the flow remains continuous past the
surface, and it is applicable to any place except for the following discontinuities.

(2) Shock wave: u1 �= 0

Because we assume a continuous fluidwith ρ �= 0, we obtain the following equations
for u1 �= 0:

ρ1u1 = ρ2u2 �= 0, (4.13)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2, (4.14)

v1 = v2, (4.15)
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w1 = w2, (4.16)

ht,1 = ht,2. (4.17)

A discontinuity that satisfies (4.13)–(4.17) is a shock wave. In a shock wave, the
flow velocity normal to the wave front is not zero and discontinuously varies across
it, together with the density, pressure, and temperature. However, the total enthalpy
and flow velocity along the wave front do not change. Important and interesting
characteristics of compressible fluid dynamics are often attributed to shock waves.
Depending onwhether a tangential velocity component accompanies the shockwave,
shock waves are classified into two: normal shock waves and oblique shock waves
(Fig. 4.3).

(2.1) Normal shock wave: v1 = v2 = w1 = w2 = 0
This is a shock wave without a tangential velocity component. The wave front is
normal to the flow velocity vector, and it is the strongest shock wave, with the largest
pressure ratio for a certain Mach number.

(2.2) Oblique shock wave: v1 = v2 �= 0 and/or w1 = w2 �= 0
This is a shock wave accompanied by a tangential velocity component, as shown
in Fig. 4.4. For the same upstream conditions, the post-shock pressure, density, and
temperature are lower than those of a normal shock wave.

Fig. 4.3 Normal shock wave

Fig. 4.4 Oblique shock
wave
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Fig. 4.5 Contact surface

(b) Schlieren image around a supersonically flying 
body.

(a) Schematic illustration

Fig. 4.6 Slip surface. We will learn about expansion waves in Chap. 7

(3) Interface: u1 = u2 = 0

Without flow across the discontinuity, by combining u1 = u2 = 0 and (4.9),

p1 = p2. (4.18)

That is, the pressure is continuous. In this case, from (4.8) and (4.10)–(4.12),
any of ρ, v, w, and h can be discontinuous. Such a surface is called an interface.
Interfaces are subdivided into two depending on the discontinuous quantity.

(3.1) Contact surface: v = w = 0 (ρ1 �= ρ2 and/or h1 �= h2)
Across a contact surface, two media with different densities and/or temperatures
(enthalpies) are in contact with each other, as shown in Fig. 4.5.

(3.2) Slip surface: v1 �= v2 and/or w1 �= w2

Across a slip surface, tangential velocities are discontinuous, as shown in Fig. 4.6.
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4.2 Normal Shock Wave

A normal shock wave has fundamental characteristics applicable even to oblique
shock waves. We will first learn general characteristics applicable to any kind of gas,
following which we will explore useful relations for a calorically perfect gas.

4.2.1 General Characteristics

4.2.1.1 Derivation of Post-shock Conditions

Here, we consider a normal shock wave normal to the x-direction, as shown in
Fig. 4.7a. Quantities on the upstream and downstream sides of the shock wave are
labeled “1” and “2,” respectively. The velocity relative to the wave front is designated
by u. From the Rankine–Hugoniot relations, expressed by (4.8), (4.9), and (4.12),
we have

ρ1u1 = ρ2u2 ≡ j, (4.19)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2, (4.20)

h1 + 1

2
u21 = h2 + 1

2
u22. (4.21)

From (4.19) and (4.20),

(a) Spatial variation (b) Pressure–volume coordinates 

Fig. 4.7 Shock relation on the shock coordinates and pressure–volume coordinates
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p2 − p1
υ2 − υ1

= − j2. (4.22)

This equation gives the Rayleigh line on υ − p coordinates with a slope of − j2.
Next, an equation involving only thermodynamic properties is obtained from

(4.19)–(4.22):

h2 − h1 = p2 − p1
2

(
1

ρ2
+ 1

ρ1

)
= p2 − p1

2
(υ1 + υ2). (4.23)

By using the internal energy, e,

e2 − e1 = p1 + p2
2

(
1

ρ1
− 1

ρ2

)
= p1 + p2

2
(υ1 − υ2). (4.24)

Equations (4.23) and (4.24) are applicable to any gas, irrespective of its equation
of state, and are termed Hugoniot equations. This is a kind of equation of state
that relates thermodynamic properties across a normal shock wave. Since enthalpy
and internal energy can be expressed as functions of volume and pressure, that is,
e = e(υ, p) and h = h(υ, p), (4.23) and (4.24) give a unique relation between υ

and p, which corresponds to the Hugoniot curve, as shown in Fig. 4.7b.
As shown in Fig. 4.7b, the conditions upstream and downstream of a normal shock

wave correspond to intersections between the Rayleigh line and Hugoniot curve.
Intersection 4.1, which occurs at a lower pressure, corresponds to the upstream,
while intersection 4.2 corresponds to the downstream. On the shock coordinate, the
flow velocity is decreased across the shock wave.

4.2.1.2 Variation in Energy

Equation (4.24) gives the increment in internal energy across the shock wave, which
is equal to the area of Trapezoid A in Fig. 4.8. Here, we consider the shock relation
on a laboratory frame in the x-coordinate, as shown in Fig. 4.9. Here, quantities on
the laboratory frame are discriminated by using an under bar . In Fig. 4.9, the flow
velocity and x to the right are defined to be positive, but the direction of x is opposite
to that in Fig. 4.7a. By using the shock velocity on the laboratory frame, U s, u on
the shock frame and u on the laboratory frame are related by

u = U s − u. (4.25)

By using (4.19), (4.20), and (4.25), the post-shock velocity is obtained as

1

2

(
u2 − u1

)2 = 1

2
(u1 − u2)

2 = 1

2
(p2 − p1)(υ1 − υ2). (4.26)
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Fig. 4.8 Increase in energy
across a shock wave

Fig. 4.9 Properties across a
shock wave in laboratory
coordinates

This is equal to the area of Triangle B. The increment in the total energy is

et,2 − et,1 = e2 − e1 + 1

2

(
u2 − u1

)2 = p2(υ1 − υ2), (4.27)

which corresponds to the area of Rectangle A + B. From (4.24) and (4.26),

e2 − e1︸ ︷︷ ︸
Internal energy increment

(AreaA)

>
1

2

(
u2 − u1

)2

︸ ︷︷ ︸
Kinetic energy increment

(AreaB)

. (4.28)

As expressed in (4.28), past a shock wave, the increment in internal energy is
greater than that in the kinetic energy. In other words, a shock wave “heats” the
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gas, rather than “accelerate” it. This characteristic is useful for generating a high-
temperature condition. We can generate even high-speed flow by expanding the
shock-heated gas so that internal energy is converted to kinetic energy.1

4.2.1.3 Entropy Variation

The shock-wave relations of (4.19)–(4.21) are applicable even after swapping states
1 and 2. In these equations, we cannot determine which state corresponds to the
upstream and downstream. However, from a microscopic point of view, momentum
and energy dissipation occur across the shock wave; these processes are irreversible
[1]. Only processes through which the entropy increases are physically possible. Let
us consider the variation of entropy across a shock wave.

Here, we regard enthalpy as a function of entropy and pressure:

h = h(s, p). (4.29)

From the first law of thermodynamics,

dh = T ds + υdp, (4.30)

T =
(

∂h

∂s

)

p

, (4.31)

υ =
(

∂h

∂p

)

s

. (4.32)

With these equations, the Taylor expansion of enthalpy yields

h2 − h1 = T1(s2 − s1) + υ1(p2 − p1) + 1
2

(
∂υ
∂p

)

s,1
(p2 − p1)

2 + 1
6

(
∂2υ
∂p2

)

s,1
(p2 − p1)

3

+O
[
(p2 − p1)

4
]

+ O[(s2 − s1)(p2 − p1)] + O
[
(s2 − s1)

2
]

υ2 − υ1 =
(

∂υ
∂p

)

s,1
(p2 − p1) + 1

2

(
∂2υ
∂p2

)

s,1
(p2 − p1)

2 + O
[
(p2 − p1)

3
]

+ O[s2 − s1].

Substituting the above into the equation of the Hugoniot curve, (4.23), yields

T1(s2 − s1) + υ1(p2 − p1) + 1

2

(
∂υ

∂p

)

s,1
(p2 − p1)

2 + 1

6

(
∂2υ

∂p2

)

s,1
(p2 − p1)

3 + [
higher order

]

= p2 − p1
2

[

2υ1 +
(

∂υ

∂p

)

s,1
(p2 − p1) + 1

2

(
∂2υ

∂p2

)

s,1
(p2 − p1)

2 + O
[
(p2 − p1)

3]+ O[s2 − s1]

]

s2 − s1 = 1

12T1

(
∂2υ

∂p2

)

s,1

(p2 − p1)
3 + [

higher order
]
. (4.33)

1Detailed methodologies will be presented in Sects. 11.5 and 11.6.
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Therefore, the entropy variation is of the third order of the pressure variation. On
υ − p coordinates, the Hugoniot curve and the entrope are tangential to the second
order. We call a shock wave with a small pressure increment a weak shock wave. A
weak shock wave is isentropic up to the second order. With a strong shock wave,
which is accompanied by a large pressure increment, the entropy increases to a large
extent.

Typical gases including air satisfy2

(
∂2υ

∂p2

)

s

> 0. (4.34)

Because shock waves act as irreversible processes, the entropy increases behind
it. Therefore, from (4.33) and Inequality (4.34), p2 − p1 > 0. Following Fig. 4.8,
the density increases, and the flow speed relative to the shock wave decreases, as
expressed by (4.19).

4.2.1.4 Variation in Mach Number

The slope of the Rayleigh line has an important meaning related to the flow Mach
number. Let us obtain the slope − j2t of the tangent to the Hugoniot curve at state 1,
upstream of the shock wave. For υ2 → υ1, we can assume an isentropic process.

j2t,1 = ρ2
1u

2
1 = −

(
∂p

∂υ

)

s,1

= ρ2
1

(
∂p

∂ρ

)

s,1

= ρ2
1a

2
1, (4.35)

where we utilize the equation for the speed of sound.3

a =
√(

∂p

∂ρ

)

s

. (4.36)

From (4.35), u1 = a1; the tangent to the Hugoniot curve corresponds to a sonic

flow. Since
(

∂2υ
∂p2

)

s
> 0, the Hugoniot curve, as shown in Fig. 4.10, has a downward

convex shape.
For the Rayleigh line,

j2υ2
1 = u21 = − p2 − p1

υ2 − υ1
υ2
1 > j2t,1υ

2
1 = −υ2

1

(
∂p

∂υ

)

s,1

= a21,

u1 > a1, (4.37)

2In special cases where the differential has a negative value, an expansion shock wave is generated.
3See Chap. 8.
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Fig. 4.10 Slope of the
Hugoniot curve and flow
Mach number

j2υ2
2 = u22 = − p2 − p1

υ2 − υ1
υ2
2 < j2t,2υ

2
2 = −υ2

2

(
∂p

∂υ

)

s,2

= a22,

u2 < a2. (4.38)

Therefore, the flowupstreamof a shockwave is supersonic,while that downstream
of a shock wave is subsonic.

4.2.2 Equations for Calorically Perfect Gas

If the condition upstream of a shock wave, state 1, is known, the unknown to be
solved is that downstream of the shock wave, state 2, which is specified by two
thermodynamic properties, such as p2 andρ2, and the flow speed, u2. For a calorically
perfect gas, such a post-shock state is expressed in an explicit form. The equation of
state is

p = ρRT . (4.39)

The speed of sound, a, and Mach number, M, are given by

a =
√

γ
p

ρ
= √

γ RT , (4.40)

γ ≡ Cp

Cυ

, (4.41)

M ≡ u

a
. (4.42)

From (4.19) and (4.20),
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p2
p1

= ρ1u21
p1

(
1 − ρ1

ρ2

)
+ 1.

By using (4.40) and (4.42), we obtain

ρ1u21
p1

= γ u21
γ p1
ρ1

= γ u21
a21

= γ M2
1 .

M1 is the Mach number with which a normal shock wave propagates relative to
the upstream flow, and it is termed the shock Mach number. Hereafter, following our
convention, we will write Ms in place of M1. Because Ms is defined based on the
shock-wave propagation velocity relative to the upstream flow, it remains unchanged
in any inertial frame of reference.

p2
p1

= −γ M2
s

(
ρ1

ρ2
− 1

)
+ 1 = −γ M2

s

(
υ2

υ1
− 1

)
+ 1. (4.43)

Now,we consider variations past a normal shockwave inυ/υ1−p/p1 coordinates,
as shown in Figs. 4.11 and 4.12. Equation (4.43) gives a Rayleigh line. Its slope is
−γ M2

s (Fig. 4.11).
Next, from (4.24) and

e = 1

γ − 1

p

ρ
, (2.96)

p2
p1

=
ρ1

ρ2
− γ+1

γ−1

1 − γ+1
γ−1

ρ1

ρ2

=
υ2
υ1

− γ+1
γ−1

1 − γ+1
γ−1

υ2
υ1

. (4.44)

Fig. 4.11 Variation of flow
condition in
pressure–volume coordinates
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Fig. 4.12 Comparison
between shock and
isentropic compressions in
pressure–volume coordinates

This is an explicit form of the Hugoniot curve, giving the post-shock state without
including flow velocity. In general, to specify a gas condition, two independent
parameters need to be specified. However, with the condition of shock compression,
the post-shock condition is uniquely determined only by (4.44).

Let us compare the shock compression, given by (4.44), with isentropic compres-
sion:

p2
p1

=
(

ρ2

ρ1

)γ

=
(

υ1

υ2

)γ

. (2,91)

As shown in Fig. 4.12, the shock compression υ2/υ1 < 1 yields a higher pressure
than the isentropic compression. As will be shown in Sect. 4.2.2.3, the latter corre-
sponds to quasi-static processes; the compression is gradually performed with the
pressure in the gas being uniformly distributed. However, in the shock compression,
the local pressure on the contact surface becomes higher than that in the quasi-
static processes; consequently, excess work is performed. From (4.33), the pressure
increases owing to an increase in entropy.

From (4.44) with 1 < p2/p1 < ∞, the density range is 1 <
ρ2

ρ1
<

γ+1
γ−1 .

For a calorically perfect gas, the post-shock condition (state 2) is obtained as the
intersection between the Rayleigh line and Hugoniot curve, as shown in Fig. 4.11.
From (4.43),

ρ1

ρ2
= υ2

υ1
= 1

γ M2
s

(
1 − p2

p1

)
+ 1. (4.45)

By substituting the above in (4.44), we obtain
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p2
p1

=
1

γ M2
s

(
1 − p2

p1

)
+ 1 − γ+1

γ−1

1 − γ+1
γ−1

{
1

γ M2
s

(
1 − p2

p1

)
+ 1

} ,

[
(γ + 1)

p2
p1

− {
2γ M2

s − (γ − 1)
}
](

p2
p1

− 1

)
= 0. (4.46)

The solution for p2
p1

�= 1 is

p2
p1

= 1 + 2γ

γ + 1

(
M2

s − 1
)
. (4.47)

The specific heat ratio, γ , is constant for a specified gas species. Equation (4.47)
gives the pressure ratio across a normal shock wave as a function of the shock Mach
number, Ms, alone. From (4.45) and (4.47),

ρ2

ρ1
= υ1

υ2
= (γ + 1)M2

s

(γ − 1)M2
s + 2

. (4.48)

By combining the above with (4.19), we obtain

u1 − u2 = u2 − u1 = 2a1
γ + 1

(
Ms − 1

Ms

)
, (4.49)

Ms = u1
a1

= U s − u1
a1

. (4.50)

Other thermodynamic properties are obtained using the equation of state:

T2
T1

=
(
a2
a1

)2

= p2/ρ2

p1/ρ1
= p2

p1

(
ρ2

ρ1

)−1

=
(
2γ M2

s − γ + 1
){

(γ − 1)M2
s + 2

}

(γ + 1)2M2
s

.

(4.51)

A shock wave is a nonlinear wave, in which the pressures of two waves cannot be
superimposed. With a high shock Mach number, this nonlinearity becomes signifi-
cant. If we utilize these characteristics in favorable ways, shock waves can become
a useful tool to generate high-pressure, high-temperature, and high-speed flows. On
the other hand, shock waves can accompany serious hazards such as by explosions.

Figure 4.13 shows the ratio of thermodynamic properties across a normal shock
wave as a function of the shock Mach number. Ms = 1 corresponds to an infinites-
imally weak shock wave, that is, a sound wave in which the time average of the
properties remains unchanged. The pressure ratio, p2/p1, sharply increases with
increasing Ms almost quadratically for a large Ms. On the other hand, the den-
sity ratio ρ2/ρ1, given by (4.48), saturates with increasing Ms and asymptotically
approaches (γ + 1)/(γ − 1), which is equal to 6 with γ = 1.4 (gases such as
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Fig. 4.13 Ratio of
thermodynamic properties
across a normal shock wave
for a calorically perfect gas
(γ = 1.4)

air) and 4 with γ = 5/3 (monoatomic gases such as helium and argon). This is a
result of the heating-dominant characteristic of shock compression, as explained in
Sect. 4.2.1.2. Shock compression results in energy input mainly to thermal energy.
With compression, the temperature and, subsequently, the pressure increase, limit-
ing the compression work. Since the temperature scales with the pressure-to-density
ratio, with a large Ms, it behaves in a similar manner as the pressure.

Next, let us consider entropy variation. By denoting a variation from state 1 to 2
by 	, from the first law of thermodynamics, we have

T	s = 	e + p	

(
1

ρ

)
. (4.52)

By using the equation of state of a calorically perfect gas, we obtain

	s = s2 − s1 = 1

T
	

(
1

γ − 1

p

ρ

)
+ p

T
	

(
1

ρ

)
= 1

γ − 1

1

ρT
	p + 1

γ − 1

p

T
	

(
1

ρ

)
+ p

T
	

(
1

ρ

)

= R

γ − 1

	p

p
− γ R

γ − 1

	ρ

ρ
= Cv

[

ln

{
p2
p1

(
ρ2

ρ1

)−γ
}]

. (4.53)

By substituting the above in (4.47) and (4.48), we obtain

	s = Cvln

[{
1 + 2γ

γ + 1

(
M2

s − 1
)}{ (γ + 1)M2

s

(γ − 1)M2
s + 2

}−γ
]

. (4.54)

As shown in Fig. 4.14, 	s is an increasing function of Ms.
Let us derive a relation between flow velocities. From (4.19) and (4.20),

u1 + p1
ρ1u1

= u2 + p2
ρ2u2

,
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Fig. 4.14 Entropy
increment, 	s, as a function
of Ms (γ = 1.4)

u1 + a21
γ u1

= u2 + a22
γ u2

. (4.55)

From (4.21),

a21
γ − 1

+ 1

2
u21 = a22

γ − 1
+ 1

2
u22 ≡ a2∗

γ − 1
+ 1

2
a2∗ = γ + 1

2(γ − 1)
a2∗, (4.56)

a21 = γ + 1

2
a2∗ − γ − 1

2
u21,

a22 = γ + 1

2
a2∗ − γ − 1

2
u22,

where a∗ is the value of the speed of soundwhen it is equal to the flow speed. Because
the total enthalpy is conserved across the shock wave, this value is also kept constant.
By inputting the above equations in (4.55), we obtain

u1u2 = a2∗ . (4.57)

This is called the Prandtl relation, which expresses the relation between the flow
velocities across the shock wave in a simple form.

4.2.2.1 Relations Under Ultimate Conditions

For very weak shock waves, in which Ms
∼= 1, the shock-wave relations can be

approximated by simpler equations, which are convenient for quickly determining
values such as the pressure increment. Under this condition,
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M2
s − 1 ∼= 2

(
Ms − 1

)
. (4.58)

For example, for air under the standard condition (γ = 1.4),

2γ

γ + 1
= 2 × 1.4

1.4 + 1
= 2.8

2.4
= 7

6
∼ 1.

Hence, from (4.43),

	p

p1
= p2 − p1

p1
∼= 2(Ms − 1).

For Ms = 1.05, the pressure increment is approximately 2 × (1.05 − 1) = 0.1
times the ambient value.

On the other hand, for a very strong shock wave, in which MS → ∞, we have
from (4.43) and (4.45),

p2
p1

≈ 2γ

γ + 1
M2

s ,
ρ2

ρ1
≈ γ + 1

γ − 1
. (4.59)

With increasing Ms, the pressure ratio will increase without limitation, but the
density ratio will saturate to a constant value.

4.2.2.2 Mach Number Behind Normal Shock Wave

Let us confirm (4.38), which implies that the flow behind a normal shock wave is
subsonic. From (4.47) and (4.48),

M2 = u2
a2

= ρ2u2
ρ2a2

= ρ1u1
ρ2a2

= ρ1a1u1
ρ2a2a1

=
(

ρ1

ρ2

)(
a1
a2

)
Ms =

(
p2
p1

)−1/2(ρ2

ρ1

)−1/2
Ms

=
{

(γ − 1)M2
s + 2

2γ M2
s − γ + 1

}1/2
. (4.60)

As shown in Fig. 4.15, M2 < 1 for Ms > 1. Therefore, the flow behind a normal
shock wave is subsonic.

After a normal shock wave propagates in quiescent air, a post-shock flow is
induced. From (4.49) and (4.51), the post-shock flow Mach number is obtained
such that

M2 = u2
a2

= 2
(
M2

s − 1
)(
2γ M2

s − γ + 1
)−1/2{

(γ − 1)M2
s + 2

}−1/2
. (4.61)

As shown in Fig. 4.16, M2 is an increasing function of Ms. With
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Fig. 4.15 Relation between
M2 and Ms for γ = 1.4

Fig. 4.16 M2 versus Ms for
γ = 1.4 and M1 = 0

Ms = Ms,c ≡
{
7 − γ +√

γ 2 + 2γ + 17

4(2 − γ )

} 1
2

, (4.62)

M2 = 1. With a high shock Mach number, we can generate a supersonic flow.
For γ = 1.4, this threshold value is Ms,c

∼= 2.068. Supersonic flow can be generated
with even higher shock Mach numbers.
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4.2.2.3 Shock Compression

Usually, we start learning thermodynamic cycles in an engine as quasi-static pro-
cesses in which the working gas is compressed and heated slowly enough such that
the system is in equilibrium without any nonuniformity. What will happen if we
quickly compress the gas? Will any difference appear in the processes and engine
performance?

Consider situations in which we compress the gas in the cylinder in Fig. 4.17.
In Fig. 4.17a, we compress the gas in the cylinder by slowly pushing the piston.
Through the piston motion, pressure waves propagate back and forth in the cylinder,
and the pressure is kept almost uniform. Without the addition of external heat, the
process is isentropic. On the other hand, in Fig. 4.17b, when we rapidly push the
piston to compress the gas, a normal shock wave is formed in front of it. Is there
any difference in the force required to push the piston? In the quasi-static processes
of Fig. 4.17a, the pressure in the cylinder is kept constant, thereby following the
isentropic relation of (2.91). In the case of Fig. 4.17b, the piston with a speed of Up

pushes the gas at an initial pressure of p1, driving a normal shock wave ahead with
a post-shock pressure of p2. From (4.49) with u1 = 0 and u2 = Up,

Up = 2a1
γ + 1

(
Ms − 1

Ms

)
, (4.63)

Mp = Up

a1
, (4.64)

where a1 and Mp are the speed of sound in the initial condition and theMach number
of the piston, respectively. From (4.63),

(a) Quasi-static compression: inner 
pressure is kept uniform

(b) Rapid compression: only the pressure 
in the domain of influence is increased

Fig. 4.17 Gas compression in a cylinder
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Ms = 1

2

⎡

⎣γ + 1

2
Mp +

√(
γ + 1

2
Mp

)2

+ 4

⎤

⎦. (4.65)

By substituting (4.47) with (4.65), we obtain

p2
p1

= 1 + γ (γ + 1)M2
p

4

⎡

⎣1 +
√

1 +
(

4

(γ + 1)Mp

)2
⎤

⎦. (4.66)

The dynamic-to-static pressure ratio behind the shock wave is

ρ2U 2
p

2p1
= γ M2

p

2

ρ2

ρ1
= γ M2

p

2

(γ + 1)M2
s

(γ − 1)M2
s + 2

. (4.67)

After the shock wave is reflected on the right-end wall, a reflected shock wave
propagates to the left, and the pressure increases further. By using (9.48) of Chap. 9,
the pressure ratio across the reflected shock wave is

p5
p1

= p5
p2

p2
p1

=
(
3γ−1
γ−1

)
p2
p1

− 1

p2
p1

+ γ+1
γ−1

p2
p1

, (4.68)

where the subscript “5” refers to the state behind the reflected shock wave. Equa-
tion (4.68) is obtained using the boundary condition u5 = 0. Variations of the post-
shock pressures are shown in Fig. 4.18. At a low Mp(≤ 0.3), the dynamic pressure
is negligible. The faster the piston moves, the higher is the post-shock pressure, p2,
becomes. This leads to an increase in the work done by the piston on the gas. There-
fore, the gas gains larger energy with rapid compression. With repeated shock-wave

Fig. 4.18 Post-shock
pressures as functions of the
piston Mach number, Mp
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reflections, the static pressure is further increased. With the same compression ratio,
that is, the density ratio, the temperature scales with the pressure. Therefore, this
result suggests that shock compression is effective also to generate high-temperature
gases. In particular, for Mp � 1, the static pressure is much higher than the dynam-
ics pressure, implying that the static pressure can be substantially increased by the
shock compression even with a low speed. In other words, “quick” motion enables
high-pressure/high-temperature generation through shock compression.

Let us compare temperature–pressure variation between shock and isentropic
compressions. From (4.47) and (4.48),

T2
T1
p2
p1

= (γ − 1) p2
p1

+ γ + 1

(γ + 1) p2
p1

+ γ − 1
,

T2
T1

= (γ − 1) p2
p1

+ γ + 1

(γ + 1) p2
p1

+ γ − 1

(
p2
p1

)
. (4.69)

The variation in isentropic processes is obtained from (2.91) as

T2
T1

=
(
p2
p1

) γ−1
γ

.

As shown in Fig. 4.19, in isentropic compression, the temperature follows the
power law of T2/T1 = (p2/p1)

0.29 with γ = 1.4. On the other hand, in the case of
shock compression, they have an almost linear dependence, as expressed by (4.69),
thereby increasing the temperature much more efficiently.

Fig. 4.19 Comparison
between shock and
isentropic compressions in
terms of temperature and
pressure ratios
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Fig. 4.20 Glancing
incidence

4.2.3 Glancing Incidence

When a normal shock wave experiences a local fluctuation, at what velocity will it
propagate along the wave front? Figure 4.20 illustrates the propagation of fluctuation
behind a normal shock wave. If a fluctuation occurs on the wave front with a velocity
of U s, its influence will propagate at the speed of sound behind the shock wave,
a2. In this case, the fluctuation propagates along the shock wave front at a glancing
incidence, χ . From (4.49) and (4.51),

u2 = 2a1
γ + 1

(
Ms − 1

Ms

)
,

a2
a1

=
√(

2γ M2
s − γ + 1

){
(γ − 1)M2

s + 2
}

(γ + 1)Ms

. (4.70)

Therefore,

tan χ =
√
a22 − (

U s − u2
)2

U s

= 1

M2
s

√{
(γ − 1)M2

s + 2
}(
M2

s − 1
)

γ + 1
. (4.71)
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Fig. 4.21 Stability of a
shock wave front

4.2.4 Stability of Shock Wave Front

A shock wave front is stable; even if the front is disturbed for some reason, the wave
front will be restored to its initial shape. A disturbed plane shock wave will restore
to a plane as shown in Fig. 4.21 [2]. In order to understand this characteristic, we
apply a result from Sect. 8.6 that the shock-wave propagation speed is a decreasing
function of the cross-sectional area of a passage. Therefore, if a part of the shock
wave front deforms in a convex shape toward the propagation direction, as shown in
the uppermost part of Fig. 4.21a, the propagation speed decreases with the expansion
of the passage. On the other hand, if the front deforms in a concave shape, the prop-
agation speed increases so that the wave front will catch up with the surroundings.
In any case, the wave front will behave to alleviate its deformation.

4.2.5 Shock-Wave Propagation with Boundary Layer

When a normal shock wave propagates along a wall in viscous flow, a boundary layer
is induced behind. As shown in Fig. 4.22a, behind a shock wave with a propagation
velocity of U s, a post-shock flow with a velocity of u2 is induced. However, in a
viscous flow, the flow velocity should vanish on the wall. Thus, the flow-velocity
distribution shown in Fig. 4.22a is formed. On observing this flow on a frame fixed
to the shock wave, the flow-velocity distribution behind the shock wave takes the

(a) In laboratory frame (b) In shock frame

Fig. 4.22 Shock-wave propagation with boundary-layer formation
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Fig. 4.23 Oblique shock
wave and flow velocity
vector

form shown in Fig. 4.22b. On the wall, the flow comes in at a speed of u1 = U s and
leaves at the same speed: u2(y = 0) = u1 = U s. Outside the boundary layer, the
flow follows the Rankine–Hugoniot relations. The y distribution of u2 and u2 can
be obtained based on the boundary-layer equation. The reader should refer to other
articles4 for further details.

4.3 Oblique Shock Wave

In an oblique shock wave, although only a tangential velocity component to the wave
front is added to a normal shock wave, various characteristics are added, as will be
seen in the following. Here, we will deal with a calorically perfect gas to quantify
the characteristics.

4.3.1 Oblique Shock Relations

Let us consider the oblique shock wave shown in Fig. 4.23. The states upstream
and downstream of the shock wave are referred to as “1” and “2,” respectively. The
flow velocity vector u is decomposed into a normal component, u, and a tangential
component, v, with respect to the wave front. The angle between u1 and the shock
wave is denoted by β, and the deflection angle past the shock wave is denoted by θ .

Combining the shock-wave relations given by (4.13)–(4.15) and (4.17), the same
equation as (4.19)–(4.21) remain applicable to the normal velocity component, u.
Therefore, in order to obtain the relations for the oblique shock wave, the following
geometrical relation should be input to the normal shock wave equations given by
(4.47), (4.48), and (4.49)5:

4For example, P. A. Thompson: Compressible-fluid dynamics, McGraw-Hill, 1972, Chap. 10
5In the oblique-shock-wave relations, the upstream flow Mach number is designated by M1.
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M1 = |u1|
a1

, (4.72)

Ms = u1
a1

= M1 sin β, (4.73)

p2
p1

= 1 + 2γ

γ + 1

(
M2

1 sin
2 β − 1

)
, (4.74)

ρ2

ρ1
= υ1

υ2
= (γ + 1)M2

1 sin
2 β

(γ − 1)M2
1 sin

2 β + 2
, (4.75)

u1 − u2 = 2a1
γ + 1

(
M1 sin β − 1

M1 sin β

)
. (4.76)

In the tangential direction, no force is exerted. Hence, the tangential velocity does
not change across the shock wave, as expressed by (4.15).

v1 = v2 = |u1| cosβ. (4.77)

From (4.73) and (4.77), and the geometrical relation shown in Fig. 4.23,

M1a1 cosβ = u2
tan(β − θ)

. (4.78)

By substituting (4.76) with (4.73) and (4.78), we obtain

M1 sin β − M1 cosβ tan(β − θ) = 2

γ + 1

(
M1 sin β − 1

M1 sin β

)
,

tan θ = 2 cot β
(
M2

1 sin
2 β − 1

)

M2
1 (γ + cos 2β) + 2

. (4.79)

Equation (4.79) gives the relation between β and θ with constant γ and M1, as
shown in Fig. 4.24.

As shown in Figs. 4.24 and 4.25, with β increasing from βM (see the next section),
θ first increases and then decreases, whereas the pressure ratio p2/p1 monotonically
increases and M2 monotonically decreases, even becoming smaller than unity. For
any M1 value, β has a maximum of 90

◦
with θ = 0

◦
.

4.3.2 Mach Wave

As shown in Chap. 1, pressure waves emitted from a fixed place in a supersonic flow
forms form a Mach wave as their envelope. The Mach wave is the boundary of the
domain of influence and is regarded as the weakest shock wave across which the
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Fig. 4.24 Oblique-shock-
wave relations among M1, β,
and θ for γ = 1.4. The gray
domain on the right-hand
side of the M2 = 1 curve
corresponds to M2 < 1, and
the region on the left-hand
side corresponds to M2 > 1

Fig. 4.25 Oblique-shock-
wave relations: the variation
of pressure ratio and M2 as
functions of β for γ = 1.4

time averages of flow quantities remain unchanged. Figure 4.26 shows Mach waves
that are equivalent to those in Fig. 1.5 but in the form of Fig. 4.23. TheMach angle,
βM, is given by

sin βM = at

ut
= a

u
= 1

M
, (4.80)

βM = sin−1

(
1

M

)
, (4.81)
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Fig. 4.26 Mach wave in
supersonic flow

M = u

a
. (4.82)

βM is uniquely determined by the Mach number,M. In the far field of a superson-
ically flying body, disturbances induced by the body become so weak that the angle
of the oblique shock wave asymptotically approaches βM.

4.3.3 Two Solutions and Their Post-shock Mach Numbers

With a constant value of M1, the maximum value of θ is obtained by applying the
condition

dθ

dβ
= 0 (4.83)

to (4.79):

2γ M4
1 sin

4 β + {
4 − (γ + 1)M2

1

}
M2

1 sin
2 β − (γ + 1)M2

1 − 2 = 0,

sin2 β = 1

4γ M2
1

[

(γ + 1)M2
1 − 4 + (γ + 1)

1
2

{
(γ + 1)M4

1 + 8(γ − 1)M2
1 + 16

} 1
2

]

,

sin β = 1

2
√

γ M1

[

(γ + 1)M2
1 − 4 + (γ + 1)

1
2

{
M4
1 (γ + 1) + 8(γ − 1)M2

1 + 16
} 1

2

] 1
2

.

(4.84)

By substituting (4.79) with (4.84), θ = θmax(M1) is obtained, as shown in
Fig. 4.24. For θ < θmax(M1), two solutions exist for a value of θ . We will name
the solutions β = βw and β = βs

(
βw < βs, p2,w < p2,s

)
as the weak and strong

solution, respectively.
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In the case of a normal shock wave, the post-shock flow is always subsonic.
However, because the tangential velocity to a shock wave is conserved, the post-
shock flow velocity can be higher than the speed of sound. Let us obtain the speed
of sound behind an oblique shock wave.

a2 =
(
T2
T1

) 1
2

a1 =
( p2

p1
ρ2

ρ1

) 1
2

a1 =
⎡

⎣
1 + 2γ

γ+1

(
M2

1 sin
2 β − 1

)

(γ+1)M2
1 sin

2 β

(γ−1)M2
1 sin

2 β+2

⎤

⎦

1
2

a1

= a1
(γ + 1)M1 sin β

[{
2γ M2

1 sin
2 β − (γ − 1)

}{
(γ − 1)M2

1 sin
2 β + 2

}] 1
2 .

(4.85)

By using the above equation, the post-shock flow Mach number is obtained as

M2 = |u2|
a2

= u2
a2 sin(β − θ)

= ρ1

ρ2

u1
a2 sin(β − θ)

= ρ1

ρ2

a1
a2

u1
a1 sin(β − θ)

= ρ1

ρ2

a1
a2

M1 sin β

sin(β − θ)
= 1

sin(β − θ)

[
(γ − 1)M2

1 sin
2 β + 2

2γ M2
1 sin

2 β − (γ − 1)

] 1
2

. (4.86)

By using (4.79),

M2 =
[{

(γ − 1)M2
1 sin

2 β + 2
}2 + (γ + 1)2M4

1 sin
2 β cos2 β

{
2γ M2

1 sin
2 β − (γ − 1)

}{
(γ − 1)M2

1 sin
2 β + 2

}

] 1
2

. (4.87)

In Fig. 4.24, the solution for M2 = 1 is also plotted. In the domain right of this
curve, shown in gray, the post-shock flow is subsonic (M2 < 1), while the flow is
supersonic in the left domain. In the weak shock domain (β = βw), the post-shock
flow is supersonic (M2 > 1) in most cases, but becomes subsonic under limited
conditions. However, in the strong shock domain (β = βs), the post-shock flow is
always subsonic (M2 < 1). As shown in Fig. 4.24, the condition for θ = θmax and
that for M2 = 1 is very close to each other. In practice, we can neglect the difference
and regard a strong shock wave to have subsonic post-shock flow and a weak one to
have supersonic post-shock flow.

The solution in real flows depends on the boundary conditions and flow history.
As will be shown later, in general, for weak disturbances due to objects such as a
slender body, a weak shock solution is obtained. When disturbances are strong, as
in the case of stagnated flow on a blunt body, a strong shock solution is obtained.
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Column: Newtonian Flow Approximation
IsaacNewton, in his famous article “Principia (1687),” dealtwith a force on aflat plate
with an oblique angle to a uniform flow. His model is referred to as the Newtonian
flow approximation.6 Consider an incoming flow with a speed of u1 on a flat plate
with an inclination angle of θ . In Newton’s era, when fluid dynamics was not yet
well developed, the concept of shock waves did not exist. Newton assumed that the
flow was bent to the direction parallel to the plate; that is, the velocity component
normal to the plate was assumed to vanish, and the force, F, exerted normal to the
plate was assumed equal to the rate of variation in the momentum component. Let
ρ, l, and w be the density of the fluid, plate length, and plate width, respectively.

F = ρu1lw sin θ · u1 sin θ = ρu21lw sin2 θ. (4.88)

Therefore, the overpressure, that is, the excessive pressure value relative to the
upstream one, is

�p = F

lw
= ρu21 sin

2 θ. (4.89)

By using the pressure coefficient, Cp, we obtain

Cp ≡ �p
1
2ρu

2
1

= 2 sin2 θ, (4.90)

�p

p1
= γ u21

γ
p1
ρ

sin2 θ = γ M2
1 sin

2 θ. (4.91)

As shown in Fig. 4.28, the Newtonian flow approximation underestimates the
pressure increment, particularly at a low Mach number. The difference is less at a
high Mach number (Fig. 4.27).

Fig. 4.27 Newtonian flow
approximation

6Note that this approximation is different from a “Newtonian fluid,” in which viscous stress is
proportional to the gradient of tangential velocity.
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(a) 2M = (b) 10M =

Fig. 4.28 Comparison of pressure increment between the Newtonian flow approximation and an
oblique shock wave

4.3.4 Attached and Detached Shock Waves

When the flow behind an oblique shock wave is directed along a wall, a solution of an
attached shock wave exists for θ < θmax. In this case, a weak shock wave, β = βw,
occurs; as shown in Fig. 4.29a, the shock wave attaches to the leading edge of a sharp
body, and the flow behind it is supersonic. If the body has an infinite length with a
constant deflection angle of θ , the shock wave is maintained. If a strong solution,

(a) Shock wave and stream line (b) Solution in θ – β  coordinates

Fig. 4.29 Example of an attached shock wave
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(a) Time-averaged flow field. (b) Variation of post-shock condition in 
θ β− coordinates for 1 2M =

Fig. 4.30 Example of a detached shock wave in front of a circular cylinder for γ = 1.4, M1 = 2,
and p2/p1 = 4.50

β = βs, occurs under the flow condition of Fig. 4.29, the flow behind the shock wave
would become subsonic, which cannot be maintained. In short, only a weak shock
solution occurs under the condition of Fig. 4.29a.

If θ > θmax, a detached shock wave occurs, forming a shock layer behind it.
Figure 4.30 showsMach2 supersonicflowaround a circular cylinder. Theflowbehind
the shock wave is bifurcated by a stagnation line.7 The stagnation line intersects
normal to the shockwave, across which the normal-shock-wave relations are applied.
For a Mach 2 flow (M1 = 2) with γ = 1.4, the pressure ratio across the oblique
shock wave in Fig. 4.29 is equal to 2.17, whereas that for the normal shock wave in
Fig. 4.30 is as large as 4.5. The flow speed further decreases along the stagnation
and then vanishes at the so-called stagnation point on the wall, where the pressure is
equal to the pitot pressure given by (2.113): pPitot/p1 = 5.64 for M1 = 2.0, which
is 2.6 times that behind the attached shock wave. This implies that, if a detached
shock wave occurs, the drag is strongly enhanced. As shown in Fig. 4.30b, the flow
near the stagnation line in the shock layer corresponds to the strong shock wave
solution, β = βs; therefore, it is subsonic. The bow shock wave becomes weaker
with increasing distance from the stagnation line, and it eventually approaches a
Mach wave asymptotically. In this manner, around a circular cylinder or a sphere in
supersonic flows, a bow shock wave is formed.

Figure 4.31 shows a Schlieren image of a flow around a scaled model of the
“Hayabusa” re-entry capsule. It comprises a hemisphere and a truncated cone with
an apex angle of 45

◦
. Strong radiation emission from the shock layer is observed.

The most important parameters for determining the shape of a supersonically
flying object are the drag and heat transfer. On one hand, to make the drag small, a

7In the book, it is shown as a line, but in reality, it is a plane in two-dimensional flow.
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Fig. 4.31 Bow shock wave
around a 1/16-scale model of
the “Hayabusa” reentry
capsule model
experimentally observed in
an expansion tube. The
shadow on the right-hand
side is the sting used to
support the model. M1 = 8.4

sharp nose is favorable so that the standing shock wave is weak. On the other hand,
to decelerate a body such as a re-entry capsule or parachute quickly, a strong shock
wave should be generated with a blunt body.

How is the heat transfer to a body scaled? The primary cause for the evaporation of
an asteroid entering the atmosphere is the heat transfer from the shock layer, which
is technically not due to the friction. Such aerodynamic heating is subdivided to
convective and radiative heat transfer. The former corresponds to the heat conduction
through a thermal boundary layer over the body, and the latter corresponds to the
heat from the radiative emission of the high-temperature gas in the shock layer,
which is significant only in hypersonic8 flows. If we assume that the thickness of the
shock layer is proportional to the characteristic dimension of the body, the effective
temperature gradient is inversely proportional to the body dimension. Therefore, the
heat transfer to a unit area is alleviated by increasing the body size. In other words,
to decrease the heat transfer, the body shape should be blunt.

In summary, a sharp nose is favorable to decrease aerodynamic drag, whereas a
blunt nose is favorable to decrease aerodynamic heating. Furthermore, a blunt nose
in a re-entry body enhances the deceleration of the flight speed. However, if the flow
Mach number is so high that the radiative heat transfer is dominant, this scaling is
not applicable.

4.4 Interface and Its Stability

As is shown in Sect. 4.2.4, a shockwave front is stable against disturbances. However,
in many cases, an interface is unstable without any restoring force [3]. The instability
of a contact surface or slip surface can induce mixing, transition to turbulence, or
other complicated flow evolutions. If such flow instability occurs in compressible
flows, the flow behavior will become complicated through interaction with shock
waves.

8Flow with a flow Mach number of approximately 5 or higher.
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(a) Stable contact surface  
( 1 2ρ ρ> )  

(b) Unstable contact surface  
( 1 2ρ ρ< ) 

Fig. 4.32 Rayleigh–Taylor instability with a downward body force

4.5 Rayleigh–Taylor Instability

Rayleigh–Taylor (R–T) instability appears when a body exerts force over a contact
surface from a heavy to light fluid. For example, under gravity, a contact surface with
a light fluid (e.g., oil) on the upper side and a heavy fluid (e.g., water) on the lower
side is stable (Fig. 4.32a). However, if the locations of the fluids are swapped, the
contact discontinuity becomes unstable (Fig. 4.32b).

4.6 Richtmyer–Meshkov (R–M) Instability

Richtmyer–Meshkov (R–M) instability refers to the instability of a contact surface
that experiences a sudden acceleration. The phenomenon occurs when a shock wave
is incident on a contact surface. An important difference of R-M instability from R-T
instability is that the contact discontinuity is unstable irrespective of the direction of
shock-wave incidence.

Figure 4.33 schematically illustrates shock-wave incidences on a curved contact
surface, which will hereafter be referred to as the “interface.” In the case of incidence
from the light fluid to the heavy one, as shown in Fig. 4.33a, the curvature of the
interface is further enhanced. On the other hand, in the case of the heavy to light
incidence, as shown in Fig. 4.33b, the sign of the curvature of the interface becomes
inversed, and its amplitude increases. In both cases, after the large-scale instabil-
ity grows, smaller scale instabilities will be developed, thereby inducing turbulent
mixing.

The mechanisms of the interface deformation in R-M instability is explained by
the baroclinic effect. By taking the rotation of (3.15), an equation for the generation
of vorticity, ω, is obtained as follows:
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(a) Light to heavy 
incidence ( 1 2ρ ρ< ) 

(b) Heavy to light 
incidence ( 1 2ρ ρ> ) 

Fig. 4.33 Richtmyer–Meshkov instability. A body force does not exist, but the contact surface
experiences the passage of a shock wave

dω

dt
= (ω · ∇)u − ω(∇ · u) + 1

ρ2
∇ρ × ∇ p. (4.92)

The third term on the right-hand side is called the baroclinic term, which implies
that a vorticity is produced by the vector product of a density gradient and a pressure
gradient. The former corresponds to a density jump across the interface, while the
latter corresponds to a pressure jump across the shock wave.9 In Fig. 4.33, a planar
shock wave, in which the pressure increases downward, propagates from the bottom
to the top and is incident on a curved interface. In the incidence from a light fluid to
a heavy one, as shown in Fig. 4.33a, the curvature of the interface is enhanced in the
same phase owing to the induced vorticity. However, in the heavy to light incidence,
as shown in Fig. 4.33b, a vorticity in the opposite direction is induced; the interface
instability grows with the reversal of sign of the curvature.

In supernova explosion, inertia fusion, or other ultimately high-energy physics, it
is critical how long and how high the pressure and temperature are kept in implosion
processes. In such processes, R-H instability that breaks up the symmetry of the
high-pressure/high-temperature domain determines the reaction time and whether
explosive heat release proceeds or not.

Column: Discovery of Inversed Phase Deformation (Meshkov’s Experiment)
Dr. Evgeny. E. Meshkov from the Union of Soviet Socialist Republics (USSR; cur-
rently the Sarov Physics and Technology Institute of the National Research Nuclear
University in the Russian Federation) used a shock tube to investigate the behavior

9Here, a gradient and a jump or discontinuity have the same role.
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(a) From light gas to heavy gas (b) From heavy gas to light gas

Fig. 4.34 Thefirst series ofMeshkov’s experiments, conducted in 1966. The shockwave propagates
from left to right (courtesy of Dr. E. E. Meshkov)

of a normal shock wave interacting with a curved interface. Figure 4.34 shows the
results obtained in his first series of experiments. Two types of gases were separated
by a 0.5-µm-thick polymer sheet on which a shock wave was incident from left to
right. The separation is sinusoidally curved so that the shock wave is incident at an
oblique angle. In the experiment of Fig. 4.34a, the shock wave propagates from a
light gas to a heavy gas, and the curvature of the interface increased after the shock
wave was transmitted. This result is consistent with the theoretical prediction pro-
posed in Richtmyer’s linear theory [4]. Next, he investigated shock-wave incidence
from the heavy gas to the light gas and was surprised to observe, for the first time in
the world, that the curvature of the interface became reversed, as shown in Fig. 4.34b.
Dr. Meshkov remembered that he conducted this series of experiments in December,
and he was so surprised by this discovery that he felt it to be a Christmas gift from
God.

In his second series of experiments, which were performed with better instru-
mentation, the behavior of the interface was better visualized, as shown in Fig. 4.35.
Later, these phenomena of interface instability and the resulting mixture of fluids
appearing solely in compressible fluid dynamics were named Richtmyer–Meshkov
instability.

Column: Experiments of Mushroom Cloud
Let us consider another example of the behaviors of an interface and a shock wave.
Figure 4.36 shows framing Schlieren images of the interaction between a contact
surface and a shock wave generated by focusing a collimated, pulsed laser beam
reflected from a parabolic mirror set at the bottom of the images [5]. The gas that
directly absorbed the laser pulse was rapidly heated and is recognized as the “bright”
zone, named “laser-heated plasma.”When the laser-heated plasma expands outward,



4.6 Richtmyer–Meshkov (R–M) Instability 91

(a) Before interaction      (b) After interaction  

Fig. 4.35 Result of Meshkov’s second series of experiments, conducted in 1968. A clear image of
the interface phase inversion in heavy to light incidence was obtained

Fig. 4.36 Experimentally visualized behavior of a shock wave and an interface of laser-heated
plasma. The time, t, starts at the moment of laser-pulse initiation. The gas species is krypton, initial
pressure is 40 kPa, and laser pulse energy is 3.7 J

it produces a spherical shock wave, as shown in the image at t = 64 µs, where t
represents the time measured from the moment of laser-pulse initiation. The energy
output from the irradiation lasts for approximately 3 µs. Even in the first frame, a
nearly spherical shock wave driven by the laser-heated plasma is clearly recognized.
The shock wave has a smooth surface. The boundary between the bright zone and the
surroundings corresponds to an interface. At t = 112 µs, the shock wave reflected
from the parabolic mirror at the bottom of each frame starts the interaction with the
laser-heated plasma. At t = 144µs, the curvature of the lower half of the laser-heated
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Fig. 4.37 Kelvin–
Helmholtz
instability

plasma is about to be reversed. With time elapsing further, the interface at the lower
half became upward convex. At t = 240 µs, the interface experiences a topological
transition, forming a mushroom cloud. Subsequently, fluctuations of smaller scales
dominate the flow.

4.6.1 Kelvin–Helmholtz (K–H) Instability

Kelvin–Helmholtz instability refers to the instability at a slip surface. The interface
instability grows in the manner shown in Fig. 4.37. This instability appears in a wake
from a supersonically flying object, fuel injection in an aerospace engine, and a slip
surface in the Mach reflection of shock waves.
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Chapter 5
Quasi-One-Dimensional Flows

Why do we make a small mouth when blowing out candle flames or playing with
a mouth whistle? The same question can be applied to a shower, spray, or rocket
nozzle, in which high-speed flow is generated by varying the cross-sectional area
of a flow passage. When heated, is a flow accelerated or decelerated? Is a flow
really accelerated when a force is exerted in the same direction as the flow? In this
chapter, we will study quasi-one-dimensional flow with a variable cross-sectional
area, exchange of heat, and an external force, as well as its important applications
(Fig. 5.1).

5.1 Control Volume and Basic Equations

5.1.1 Control Volume and Associated Equations

Let us consider a one-dimensional, steady flow with a variable cross-sectional area
along the x-axis. Let us write the conservation equations for a control volume with a
thickness of �x, which is shown as a gray zone in Fig. 5.2. Here, a viscous force is
also included by assuming that the boundary layer is infinitesimally thin. The flow
velocity, u, and thermodynamic properties are assumed to be uniform over the cross
section at x. On the flow element, a pressure acts on walls and boundaries, and a
friction force acts on walls1; a heat of dQ and a body force of f are input per unit
mass. Note here that the pressure and friction force act only on boundary surfaces
including walls, whereas the heat and body force act directly on the entire volume of
the gas element. At the entrance of the control volume at x = x, the cross-sectional
area is equal to A; at the exit at x = x + dx , the cross-sectional area is equal to
A + dA. The same applies to other parameters.

1Although this book mostly deals with inviscid flows, friction force is taken into consideration in
this chapter because it is often important in internal flows.
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Fig. 5.1 Blowing out candle
flames

Fig. 5.2 Control volume

Let us apply the conservation equations in Sect. 3.1 to an ideal, calorically perfect
gas.

(1) Conservation of mass: From (3.2), by neglecting the time derivative,

∫
CS

ρ(u · n)d A′ = 0. (5.1)

Here, for distinction from the cross-sectional area, let a surface element in the
control surface enclosing the control volume (CS) be designated by d A′. Since the
mass flux through the wall is zero, (5.1) yields

d(ρuA) = 0. (5.2)

On integrating the above, we obtain

ρuA = const. ≡ ṁ, (5.3)

where ṁ is the mass flow rate.
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Fig. 5.3 Pressure balance
over the control volume

(2) Conservation of momentum: By applying (3.6) to the control volume of Fig. 5.2
and neglecting the time derivative, we obtain

∫
CS

ρu(u · n)dA′ =
∫
CS

σ · nd A′ +
∫
CV

ρfdV . (5.4)

Here, the first and second terms on the right-hand side correspond to the stresses,
that is pressure and friction force on the control surface, and the body force exerted
in the control volume. The x-component of (5.4) is

dρu2A = ρuAdu =
∫
CS

[σ · n]xdA′ +
∫
CV

ρ f dV , (5.5)

where f is the x-component of f. Figure 5.3 illustrates the pressure balance over the
control volume. Note here that the force exerted by the pressure on the sidewall has
an x-component, and the sidewall has a diverging angle of θ . The reaction force on the
sidewall has a positive sign with a diverging cross section, that is, for a positive value
of θ ; the reaction force has a negative sign with a negative θ . For an infinitesimally
small dx, the force exerted on the control volume as a result of the pressure balance
is

pA − (p + dp)(A + dA) +
(
p + dp

2

)
dA

sin θ
sin θ ∼=

−pdA − Adp + pdA = −Adp. (5.6)

Equation (5.6) implies that the direction of the resultant force over the control
volume depends solely on the sign of the pressure gradient; the flow is accelerated
if the pressure decreases with x, whereas it is decelerated if the pressure increases.
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The hydraulic diameter, D, and friction coefficient, cf, are defined as

πD2

4
= A, (5.7)

cf ≡ τw

1
2ρu

2
. (5.8)

By using these definitions,

τwπDdx = πDcf
1

2
ρu2dx = cf

1

2
ρu2

4A

D
dx, (5.9)

∫
CS

[σ · n]xdA′ ∼= −Adp − cf
1

2
ρu2

4A

D
dx . (5.10)

The body force is approximately given by

∫
CV

ρ f dV ∼= ρ f Adx . (5.11)

Combining (5.5)–(5.11), the following first-order equation is obtained:

ρudu = −dp − cf
1

2
ρu2

4

D
dx + ρ f dx . (5.12)

It should be noted here that, except for the viscous term, which is the second term
on the right-hand side of (5.12), the terms do not contain A or D.

(3) Conservation of energy: We apply (3.20) to steady-state flow without heat
conduction. The friction force on the wall does not contribute to any energy
exchange, because the flow velocity vanishes on the wall.

∫
CS

ρ

(
et + p

ρ

)
u · ndA′ =

∫
CV

ρ Q̇dV +
∫
CV

ρf · udV . (5.13)

As the velocity component normal to the wall is equal to zero,

d

{
ρuA

(
et + p

ρ

)}
= ṁd

(
et + p

ρ

)
= ρ

(
f u + Q̇

)
Adx, (5.14)

Q̇ ≡ udQ/dx . (5.15)
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Since

et + p

ρ
= e + 1

2
u2 + p

ρ
= h + 1

2
u2,

d

(
h + u2

2

)
= dQ + f dx . (5.16)

(4) Equation of State

p = ρRT, h = γ

γ − 1

p

ρ
, etc. (5.17)

(5) Speed of Sound

a2 = γ RT = γ
p

ρ
= (γ − 1)h. (5.18)

(6) Mach number

M ≡ u

a
. (5.19)

5.1.2 Equations in Derivative Form

Let us transform the equations obtained so far into their respective derivative forms.
From (5.3),

du

u
+ dρ

ρ
+ dA

A
= 0. (5.20)

From (5.12),

γ M2 du

u
+ dp

p
+ γ M2

2

4cf
D

dx − ρ f dx

p
= 0. (5.21)

From (5.16),

d

(
γ

γ − 1

p

ρ
+ u2

2

)
= dQ + f dx,
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(γ − 1)M2 du

u
− dρ

ρ
+ dp

p
− dQ

h
− γ − 1

γ

ρ f dx

p
= 0. (5.22)

From (5.17)–(5.19),

dT

T
+ dρ

ρ
− dp

p
= 0, (5.23)

da2

a2
+ dρ

ρ
− dp

p
= 0, (5.24)

dM2

M2
− 2du

u
+ da2

a2
= 0. (5.25)

Equations (5.20)–(5.25) are expressed in a matrix form as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

· 1 · · 1 · 1 · · ·
· γ M2 · · · 1 · · −1 γ M2/2
· (γ − 1)M2 · · −1 1 · −1 −(γ − 1)/γ ·
· · · 1 1 −1 · · · ·
· · 1 · 1 −1 · · · ·
1 −2 1 · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dM2/M2

du/u
da2/a2

dT/T
dρ/ρ

dp/p
dA/A
dQ/h

ρ f dx/p
4cf
D dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= O

By transforming this equation, we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · · · −
{
(γ − 1)M2 + 2

}
γ M2 + 1 −(γ + 1)/γ

{
(γ − 1)M2 + 2

}
γ M2/2

· 1 · · · · −1 1 −1/γ γ M2/2

· · 1 · · · (γ − 1)M2 −γ M2 + 1 (γ − 1)/γ −
{
(γ − 1)M2

}
γ M2/2

· · · 1 · · (γ − 1)M2 −γ M2 + 1 (γ − 1)/γ −
{
(γ − 1)M2

}
γ M2/2

· · · · 1 · M2 −1 1/γ −γ M2/2

· · · · · 1 γ M2 −γ M2 1 −
{
(γ − 1)M2 + 1

}
γ M2/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dM2/M2

du/u
da2/a2

dT/T

dρ/ρ

dp/p
dA/A(M2 − 1)
dQ/h(M2 − 1)

ρ f dx/p(M2 − 1)
4cfdx/D(M2 − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= O
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

dM2/M2

du/u
da2/a2

dT/T

dρ/ρ

dp/p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(γ − 1)M2 − 2 γ M2 + 1 −(γ + 1)/γ (γ − 1)M2 + 2
−1 1 −1/γ 1

(γ − 1)M2 −γ M2 + 1 (γ − 1)/γ −(γ − 1)M2

(γ − 1)M2 −γ M2 + 1 (γ − 1)/γ −(γ − 1)M2

M2 −1 1/γ −1
γ M2 −γ M2 1 −(γ − 1)M2 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1
1−M2

dA
A

1
1−M2

dQ
h

1
1−M2

ρ f dx
p

γ M2/2
1−M2

4cfdx
D

⎞
⎟⎟⎟⎟⎟⎠

(5.26)

5.2 Flow Characteristics

5.2.1 Influence Coefficients

From (5.26), the variation in a fluid-dynamics quantity, X, is given by the following
linear function:

dX

X
= C1

dA

A
+ C2

dQ

h
+ C3

ρ f dx

p
+ C4

4cfdx

D
, (5.27)

where Ci (i = 1, 2, 3, 4) are influence coefficients.
Note here that (5.27) holds only if appropriate boundary conditions are satisfied.

For example, a candle flame is not blown out by merely protruding one’s mouth; to
blow out the flame, high-pressure airflow needs to be supplied from the lungs.

The signs of all influence coefficients are reversed withM = 1. Let us summarize
the effects of these actions.

5.2.2 Effects of Variation in Cross-Sectional Area

From Table 5.1, a variation in the cross-sectional area has the following effects:

(1) Subsonic flow (M < 1)
(1-1) The flow is accelerated through a converging duct:

dA< 0 → dM > 0, du > 0.
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Table 5.1 Influence coefficients

X C1 C2 C3 C4

M2 − (γ−1)M2+2
1−M2

1+γ M2

1−M2 − γ+1
γ

1
1−M2

(γ−1)M2+2
1−M2 · γ M2

2

u − 1
1−M2

1
1−M2 − 1

γ
1

1−M2
1

1−M2 · γ M2

2

a2,T (γ−1)M2

1−M2
1−γ M2

1−M2
γ−1
γ

1
1−M2 − (γ−1)M2

1−M2 · γ M2

2

ρ M2

1−M2 − 1
1−M2

1
γ

1
1−M2 − 1

1−M2 · γ M2

2

p γ M2

1−M2 − γ M2

1−M2
1

1−M2 − (γ−1)M2+1
1−M2 · γ M2

2

(a) Converging nozzle (b) Diverging nozzle (c) Laval nozzle

Fig. 5.4 Different types of nozzles

(1-2) The flow is decelerated through a diverging duct:

dA> 0 → dM < 0, du < 0.

(2) Supersonic flow (M > 1)
(2-1) The flow is decelerated through a converging duct:

dA < 0 → dM < 0, du < 0.

(2-2) The flow is accelerated through a diverging duct:

dA > 0 → dM > 0, du > 0.

We unconsciously perform (1-1) when we blow out a candle flame. The same
principle applies to a shower, spray, etc. A nozzle is a device that accelerates flows
with a variable cross-sectional area. A nozzle for subsonic flow has a converging
shape (Fig. 5.4a), and that for supersonic flow has a diverging shape (Fig. 5.4b).
In order to accelerate a flow from subsonic to supersonic, a converging–diverging
nozzle called the Laval nozzle (Fig. 5.4c) is used. In a Laval nozzle, the connection
part, which has the minimum cross-sectional area, is termed as a throat, where the
flow becomes sonic (M = 1).
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A device that decelerates flow is termed a diffuser.2 Variations in the cross-
sectional area of a diffuser are opposite to those of a nozzle.

A subsonic flow is accelerated through a converging duct. In this case, the flow
experiences a force in the opposite direction from the duct wall. Why is the flow
accelerated even with the force in the opposite direction? In (5.12) with cf = 0 and
f = 0, the direction of flow acceleration is determined solely by the sign of the
pressure gradient. In subsonic flow, the pressure gradient has a negative sign with
dA < 0, which accelerates the flow.

5.2.3 Effects of Heating/Cooling

(1) Subsonic flow (M < 1)
(1-1) The flow is accelerated with heating: dQ > 0 → dM > 0, du > 0.
(1-2) The flow is decelerated with cooling: dQ < 0 → dM < 0, du < 0.

(2) Supersonic flow (M > 1)
(2-1) The flow is decelerated with heating: dQ > 0 → dM < 0, du < 0.
(2-2) The flow is accelerated with cooling: dQ < 0 → dM > 0, du > 0.

In Table 5.1, the variation in temperature,T, changes its sign at twoMach numbers.
In almost all regimes, T increases with heating (dQ > 0). However, in the regime
of 1/

√
γ < M < 1, T decreases with heating! We do not experience this interesting

variation in daily life. However, this behavior occasionally appears in the numerical
simulation of transonic flows.

5.2.4 Effects of Friction

Friction force is always exerted in the direction opposite to the flow direction. From
Table 5.1,

(1) Subsonic flow (M < 1)
The flow is accelerated with friction:

cf > 0 → dM > 0, du > 0.

(2) Supersonic flow (M > 1)
The flow is decelerated with friction:

cf > 0 → dM < 0, du < 0.

2For further details, refer to Sect. 11.2.
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Friction force affects the flow in the same manner as a flow through a converging
duct. However, unlike a body force, it is not involved in an external energy input.

5.2.5 Effects of Body Force

(1) Subsonic flow (M < 1)
(1-1) The flow is decelerated with a body force in the same direction:

f > 0 → dM < 0, du < 0.

(1-2) The flow is accelerated with a body force in the opposite direction:

f < 0 → dM > 0, du > 0.

(2) Supersonic flow (M > 1)
(2-1) The flow is accelerated with a body force in the same direction:

f > 0 → dM > 0, du > 0.

(2-2) The flow is decelerated with a body force in the opposite direction:

f < 0 → dM < 0, du < 0.

(1-1) is explained in the same manner as the variation in cross-sectional area. By
substituting (5.12), dA = 0, cf = 0, and dQ = 0 with the influence coefficients, we
obtain

ρudu = −dp + ρ f dx = −dp + (
1 − M2

)
dp = −M2dp. (5.28)

Therefore, whether the flow is accelerated depends only on the sign of the pressure
gradient. In subsonic flows, the flow is accelerated with f < 0 if the pressure
difference past the duct is sufficiently large.

5.2.6 Choking Condition

The condition under which a quasi-one-dimensional flow becomes sonic is termed
as the choking condition. From Table 5.1,
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dM2

M2 =
−

{
2 + (γ − 1)M2

}
dA
A +

(
1 + γ M2

)
dQ
h − γ+1

γ
ρ f dx
p + γ M2

{
(γ−1)M2+2

}
2

4cfdx
D

1 − M2

(5.29)

For the right-hand side of (5.29) to have a finite value withM = 1, the numerator
needs to vanish. That is,

−dA

A
+ dQ

h
− 1

γ

ρ f dx

p
+ γ

2

4cfdx

D
= 0 for M = 1. (5.30)

The above is the equation of the choking condition, which is a linear function of
the variations of cross-sectional area, heating, body force, and friction. With only
the variation in cross-sectional area,

dA = 0 for M = 1. (5.31)

The above corresponds to the fact that the flow becomes sonic at the throat in a
Laval nozzle, as shown in Fig. 5.4c.

Choking with heating alone is termed thermal choking.

dQ = 0 for M = 1. (5.32)

For subsonic flow to be thermally chocked, the heating needs to be terminated at
the sonic point.

For solving a flow with choking, the choking condition gives an additional
condition.

5.3 Duct Flow with Friction

In many fluid devices, fluid passes through narrow passages, and such a flow is
accompanied by a pressure loss due to friction force. This section focuses on the
flow in a duct with a constant cross-sectional area and friction force, which is termed
Fanno flow.

From (5.27),

dM2

M2
= (γ − 1)M2 + 2

1 − M2
· γ M2

2

4cfdx

D
, (5.33)

4γ cfdx

D
= −γ + 1

2
d lnM2 + γ + 1

2
d ln

(
M2 + 2

γ − 1

)
− d

(
1

M2

)
. (5.34)

Here, D is the effective inner diameter of the duct, usually termed the hydraulic
diameter. By integrating (5.34) for a constant value of cf with respect to the location
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x from the inlet (x = 0), we obtain

4γ cf
D

x = 1

M2
1

− 1

M2
+ γ + 1

2
ln

M2 + 2
γ−1

M2
1 + 2

γ−1

· M
2
1

M2
. (5.35)

As summarized in Table 5.1, with a friction force, the Mach number increases
in subsonic flow and decreases in supersonic flow. In either case, it approaches the
sonic speed. By applying (5.35) up to a sonic point x∗, we obtain

4γ cf
D

x∗ = 1 − M2
1

M2
1

+ γ + 1

2
ln

(γ + 1)M2
1

(γ − 1)M2
1 + 2

. (5.36)

From the choking condition expressed by (5.29),

dx = 0 for M = 1. (5.37)

This implies that the flow can be sonic only at the exit.
From (5.27),

dp

p
= − (γ − 1)M2 + 1

1 − M2
· γ M2

2

4cfdx

D
. (5.38)

By substituting (5.38) with (5.33), we obtain

dp

p
= − (γ − 1)M2 + 1

(γ − 1)M2 + 2

dM2

M2
. (5.39)

By integrating the above to the sonic point, we obtain

p

p∗
= 1

M

√
γ + 1

(γ − 1)M2 + 2
, (5.40)

where p∗ is the pressure at the sonic point. Equation (5.40) holds even with a normal
shock wave in the duct.

Figure 5.5 shows the flow variation of a Fanno flow with an inlet Mach number
of 3. The abscissa is the normalized distance from the inlet. Without a normal shock
wave, the supersonic flow monotonically decelerated owing to the friction force. If
the dimensionless duct length is less than 0.73, the flow exits at a supersonic speed.
If the length is equal to 0.73, the flow becomes sonic at the inlet. If the duct is
even longer, a normal shock wave is generated so that the post-shock, subsonic flow
becomes sonic at the exit. The location of the normal shock wave is such that the
choking condition is satisfied. In Fig. 5.5, flows with a normal shock wave at M =
1.5, 2.0, 2.5, and 3.0 are shown. With a length of 1.81, the normal shock wave occurs
at the inlet. With an even longer duct, the flow upstream of the inlet is affected.



5.3 Duct Flow with Friction 105

(a) Mach number (b) Pressure ratio at the inlet

Fig. 5.5 Variations of the Mach number and pressure in a Fanno flow for γ = 1.4, cf = 0.005,
and M1 = 3.0

As shown in Fig. 5.5b, in the supersonic flowon the upstream side of a shockwave,
the pressure increases with the friction force. Further, the pressure jumps across the
shock wave. Subsequently, the flow becomes subsonic, and the pressure decreases
in the downstream. Irrespective of where a normal shock wave appears, the pressure
at the exit remains constant.



Chapter 6
Systems with Source Terms

A system accompanying a shockwave that exchanges energy and/ormomentumwith
the external environment can enhance the strength of the shock wave or generate a
thrust. In this chapter, we will study such a system based on the generalized Rankin–
Hugoniot relations that contain source terms.

6.1 Generalized Rankine–Hugoniot Relations

The conservation equations in Chap. 4 can be applied to a control volume with a
finite thickness, if fluxes through the lateral surface are absent. Let us consider the
control volume in Fig. 6.1a. The flow is steady and uniform at its inlet and at the
exit. Because the control volume is in a black box, the details of the inside state are
unknown.We only know that the box exchanges a net mass ofW ′, momentum I ′, and
energy Q′ with the external environment. For example, the distribution of pressure
and friction force on the walls contribute to the net momentum exchange.

We use subscripts 1 and 2 for quantities at the inlet and exit of the control volume,
respectively. The variation of the cross-sectional area in the control volume does not
need to be determined. The flow passage may change, such as in Fig. 6.1b or a center
body may exist in the control volume, like in Fig. 6.1c.

For steady-state flow, the following conservation relations hold:

Mass conservation : ρ2u2 = ρ1u1 + W ′ (6.1)

Momentum conservation : p2 + ρ2u
2
2 = p1 + ρ1u

2
1 + I ′ (6.2)

Energy conservation : h2 + 1

2
u22 = h1 + 1

2
u21 + Q′ (6.3)
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(b) With cross-sectional area variation           (c) With a center body

(a) Black box model

Fig. 6.1 Control volume with mass, momentum, and energy exchange with the external envi-
ronment. The gray regime is enclosed with dashed lines. Walls and internal objects are not
included

Here W ′, I ′, and Q′ denote the source terms. Note here that parts of I ′ and Q′
may be contributed by the mass W ′ introduced into the system. Equation (6.2) is
derived for inviscid flows. However, it is applicable even to viscous flows. The flow
behavior is determined uniquely by the net value of the momentum exchange; the
respective contributions of the pressure and viscous stress do not affect the result of
the present analyses. Since at the wall, the flow does not have a velocity component
in the direction of the pressure or friction force, these forces do not contribute to the
energy source term. Equations (6.1)–(6.3), in which the source terms are added to
the Rankine–Hugoniot relations of (4.19)–(4.21), are generalized Rankine–Hugoniot
relations. We deal with detonation and deflagration occurring with the energy source
term, Q′ in Sect. 6.2. Moreover, by combining with the momentum source term, I ′,
we model the ram accelerator operation in Sect. 6.3.

When heat is generated by chemical reactions, the fluid is a mixture comprised of
multiple chemical species, as described in Sect. 2.8. In this chapter, an enthalpy, h,
is defined as the sum of a static enthalpy, hs, and a standard enthalpy of formation,
hf, with a reference temperature of Tref.1 For a gas with N chemical components and
a mass fraction of Yi (i = 1 · · · N ),

h =
N∑

i=1

Yihi ,
N∑

i=1

Yi = 1 (6.4)

1Chemical reactions are explicitly dealt with only in this chapter. In the other chapters, the static
enthalpy is designated by h.
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hi = hf,i + hs,i (T ) (6.5)

hs,i ≡
T∫

Tref

Cp,idT (6.6)

From Sect. 2.8,

C p =
N∑

i=1

YiCp,i (2.122)

γ = C p

C p − R̄
= C p

Cv

(2.125)

Here C denotes a mass-averaged quantity. From (6.3) to (6.6),

hs,2 + 1

2
u22 = hs,1 + 1

2
u21 + Q′′ (6.7)

hs, j ≡
N∑

i=1

Yi, j

Tj∫

Tref

Cp,idT (6.8)

Q′′ ≡
N∑

i=1

(
Yi,1 − Yi,2

)
hf,i + Q′ (6.9)

The first term on the right-hand side of (6.9) corresponds to a heat due to chemical
reactions, the second term corresponds to the other heating.

Here, we assume that W ′ = 0. From (6.1) and (6.2),

p2 − p1 − I ′
1
ρ1

− 1
ρ2

= j2 (6.10)

j ≡ ρ1u1 = ρ2u2 (6.11)

Transforming (6.10),

p2
p1

= u21
p1
ρ1

(
1 − ρ1

ρ2

)
+ 1 + I (6.12)

I ≡ I ′

p1
(6.13)

Equation (6.12), which is applicable irrespective to the equation of state of the
gas, is the equation for the generalized Rayleigh line. Since the energy conservation
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(a) 0I = (b) 1 4M =

Fig. 6.2 Generalized Rayleigh lines

Eq. (6.3) is not used, it does not contain Q. Defining aMach number based on frozen
speed of sound,

a =
√

γ
p

ρ
=

√
γ R̄T (6.14)

M = u

a
(6.15)

p2
p1

= −γ M2
1

(
ρ1

ρ2
− 1

)
+ 1 + I (6.16)

This corresponds to a line that passes at (1, 1 + I ) and has a slope of −γ M2
1 . For

I = 0 (Fig. 6.2a), it is the same as in (4.43), and a solution with M1 < 1 does not
exist. However, as shown later, with Q > 0, solutions with M1 < 1 also exist. The
corresponding lines are plotted in the figure. The line is shifted by I if I �= 0.

From (6.1) to (6.3),

hs,2 − hs,1 − 1

2

(
p2 − p1 − I ′)

(
1

ρ1
+ 1

ρ2

)
= Q′′. (6.17)

Otherwise, using hs = e + p
ρ
,

e2 − e1 + 1

2
(p2 + p1)

(
1

ρ2
− 1

ρ1

)
+ 1

2

(
1

ρ1
+ 1

ρ2

)
I ′ = Q′′. (6.18)
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Fig. 6.3 Generalized
Hugoniot curves

Equations (6.17) and (6.18) hold irrespective of the equation of state of the gas,
corresponding to the generalized Hugoniot curve.2 hs and e are given as the func-
tions of p and υ = 1/ρ. Once the form of the functions and the value of Q′′ are
given, the curve can be plotted. The intersections between the Rayleigh line and the
Hugoniot curve correspond to the states at the inlet 1 and exit 2. Later we showwhich
corresponds to which.

For a calorically perfect gas, the Hugoniot curve is given as an explicit formula.

p2
p1

= 1 − γ−1
γ+1 (1 + I ) ρ1

ρ2
+ 2γ

γ+1Q − γ−1
γ+1 I

ρ1

ρ2
− γ−1

γ+1

(6.19)

Q ≡ Q′′

C̄ pT1
= Q′′

hs,1
= Q′′

γ

γ−1
p1
ρ1

(6.20)

For I = Q = 0, (6.19) coincides with (4.44). Equation (6.19) is shifted positively
by Q and negatively by I , as shown in Fig. 6.3.

6.2 Detonation/Deflagration

Let us assume a system with only an energy source term, W ′ = I = 0 and Q �= 0.
The solution of the Rankine–Hugoniot relations is obtained by combining (6.12)
and (6.17). However, it is difficult to understand the characteristics of the solution
based on such general forms. Here, we analyze the basic behavior of detonation and
deflagration based on a thermally perfect gas with constant specific heat.

2Hereafter, for simplicity, we will omit the notation “generalized.”
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Fig. 6.4 Flow with heating
through a constant
cross-sectional area

6.2.1 Solution Regime

Let us consider a system of Fig. 6.1 with I = 0 and Q > 0, that is shown in Fig. 6.4.
From (6.16) and (6.19),

The Rayleigh line : p2
p1

= −γ M2
1

(
ρ1

ρ2
− 1

)
+ 1 (6.21)

is not affected by Q.

Meanwhile, the Hugoniot curve : p2
p1

= 1 − γ−1
γ+1

ρ1

ρ2
+ 2γ

γ+1Q
ρ1

ρ2
− γ−1

γ+1

(6.22)

is shifted up with Q > 0.
The solutions are subdivided, as shown in Table 6.1 and Fig. 6.5. The solution

with supersonic flow at the inlet (M1 > 1, Regimes I–III) corresponds to detonation,
where the shock wave is enhanced by heating. The solution with subsonic flow at
the inlet corresponds to deflagration, where the flow expands and is accelerated with
the heating. Because a Rayleigh line does not have a positive gradient, no solution
exists in the gray portion of the Huroniot curve in Fig. 6.5. As will be shown later,
in the regime of III and IV, a physically meaningful solution does not exist.

Table 6.1 Types of detonation and deflagration

M1 M2 Solution

I Overdriven/Strong detonation M1 > 1 M2 < 1 Backup driver is necessary

II C–J detonation M1 > 1 M2 = 1 Possible

III (Weak detonation) (M1 > 1) (M2 > 1) Impossible

IV (Strong deflagration) (M1 < 1) (M2 > 1) Impossible

V C–J deflagration M1 < 1 M2 = 1 Possible

VI Weak deflagration M1 < 1 M2 < 1 Possible
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Fig. 6.5 Solution regimes of
detonation and deflagration

Fig. 6.6 Examples of
detonation solution, [1] inlet,
[2] exit, [2(I)] overdriven
detonation, [2(II)] C–J
detonation, [2(III)]
physically meaningless
solution, refer to Table 6.1

6.2.2 Detonation

The solution of the Rankine–Hugoniot relation provides the states only at the inlet
and the outlet of the control volume. However, the flow inside of the control volume
also satisfies the fluid dynamics conservation relations. In a detonation, a normal
shock wave stands at the inlet of the control volume. Behind the shock wave, the
flow becomes subsonic and accelerates with the heating. Figure 6.6 shows examples
of the detonation solution. The point [1] at (1, 1) corresponds to the state at the inlet.
The state at the exit corresponds to another intersection. In this figure, three Rayleigh
lines against a Hugoniot curve for Q = 4 associated with the respective values of
M1 are plotted. With M1 = 4, no solution exists.

The Rayleigh line with M1 = 5 has two intersections, Points 2(I) and 2(III).
Point 2(I) corresponds to the condition where the flow becomes subsonic at the exit.
Such a solution is illustrated in Fig. 6.7, where the shock wave propagated in the
quiescent mixture to the right. The speed of the shock wave propagation, Us, equals
to the absolute value of u1 in Fig. 6.4, but in the opposite direction. Since the flow at
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Fig. 6.7 Overdriven
detonation propagating in
quiescent gas in a laboratory
flame

the exit is subsonic (M2 < 1), the flow inside the control volume is affected by the
condition at the exit. The shock Mach number, M1, equals toUs/a1. The shock wave
is driven by a piston or equivalent, thereby propagating at a Mach number higher
than that of the C–J detonation (which will be explained later). The higher the driving
pressure or the higher the piston speed, the higher the shock Mach number becomes.
Such a detonation, which is enhanced by the motion of a piston or its equivalent, is
referred to as an overdriven detonation.

In Fig. 6.6, the Rayleigh line with M1 � 4.51 becomes tangent to the Hugoniot
curve at Point 2(II), (0.588, 11.9), corresponding to the Chapman–Jouguet (C-J)
detonation. As shown in Sect. 4.2.1.4, the flow becomes sonic at the exit, M2 = 1,
regime (II) in Fig. 6.5. The flow downstream of the exit does not affect the flow
in the control system. The shock wave can propagate without any driver. The C–J
detonation is the unique self-sustained solution. Almost all one-dimensional detona-
tions appearing in laboratories, artificial products, and nature are C–J detonations.
In reality, the shock wave front has a complicated three-dimensional shape that is
caused by unsteady fluid dynamics associated with chemical reactions. Nevertheless,
its propagation Mach number is very close to the solution of C–J detonation, MCJ.
For a calorically perfect gas, this has a closed form.3

MCJ, detonation =
[
1 + (γ + 1)Q +

√
{1 + (γ + 1)Q}2 − 1

] 1
2

(6.23)

At Point 2(III) in Fig. 6.6, comparing the slopes of the Rayleigh line and the
Hugoniot curve, the flowat the exit should become supersonic.However, as described
in Chap. 5, the Mach number of the subsonic flow behind the shock wave cannot
exceed unity just by heating. Therefore, such a solution does not have a physical
sense. For this reason, in regime III in Fig. 6.5, no solution exists, depicted by the
Hugoniot curve with dashed lines.

Experimentally observed detonation phenomena are further complicated by the
influence of finite-rate chemical reactions, multidimensionality, etc. The detonation
propagation speeds, experimentally measured and calculated in chemical equilib-
rium under typical conditions, are shown in Table 6.2 [1]. In spite of complicated
phenomena in practice, the C–J model provides a fairly accurate estimation. The
stoichiometric ratio of the hydrogen–oxygen mixture is equal to 2, corresponding to

3See Sect. 6.3.2.
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Table 6.2 Comparison between the experimentally measured detonation speed, U1, and the
calculated value for the chemical equilibrium, UCJ, at p1 = 100 kPa, T1 = 298 K. p2,CJ and
T2,CJ are depict calculated values

Mixture U1 (km/s) UCJ (km/s) p2,CJ (MPa) T2,CJ (K)

A 2H2 + O2 2.82 2.81 1.80 3580

B 2H2 + O2 + 5N2 1.82 1.85 1.44 2690

C 8H2 + O2 3.53 3.75 1.42 2650

mixture A.Mixtures B and C contain diluting molecules, thereby decreasing the spe-
cific heat release, and subsequently the pressure and temperature. On the one hand,
the detonation speed is also decreased in mixture B, while on the other hand that of
mixture C is increased, because the diluted gas is hydrogen itself, thus increasing the
speed of sound.

6.2.3 Deflagration

As described in Chap. 5, one-dimensional. subsonic flow expands and is accelerated
with heating. At the frame fixed to the inlet of the control volume, where the heating
starts (state 1), the Mach number increases and the pressure decreases toward the
downstream. Ifwe label the state at the exitwhere the heating terminates,we can apply
Rankine–Hugoniot relations to this system even though they are not accompanied
by a shock wave. This solution is referred to as deflagration. The exit Mach number,
M2, depends on the amount of input heat, Q. With a relatively small Q, M2 remains
smaller than unity, thereby indicatingweak deflagration, i.e., the regimeVI in Fig. 6.5
and Table 6.1. Increasing Q past a certain value yields a sonic condition of M2 = 1,
corresponding toChapman–Jouguet (C–J) deflagration, i.e., the regime V in Fig. 6.5
and Table 6.1. For a given value of Q, the value of M1(< 1) is uniquely determined.
In C–J deflagration, the flow becomes sonic at the exit, not being affected by the
further downstream. As shown in Table 6.1 and Fig. 6.5, the regime in which the
deflagration solution has a physical meaning is limited to the regime of M2 ≤ 1,
which are only the regimes V and VI. Since the supersonic flow cannot be generated
only by heating, a solution with M2 > 1 (the regime IV) does not exist. The Mach
number of C–J deflagration is given in a closed form for a calorically perfect gas.

MCJ, deflagration =
[
1 + (γ + 1)Q −

√
{1 + (γ + 1)Q}2 − 1

] 1
2

(6.24)
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6.2.4 Entropy Variation

Let us investigate how entropy varies behind a detonation and deflagration. Here, we
apply the same approach as in Chap. 4 for Q = 0. Substituting (6.18) with υ = 1/ρ
and I ′ = 0,

e2 − e1 = 1

2
(p2 + p1)

(
1

ρ1
− 1

ρ2

)
+ Q′ = 1

2
(p2 + p1)(v1 − v2) + Q′. (6.25)

Differentiating this expression,

de2 = 1

2
(v1 − v2)dp2 − 1

2
(p2 + p1)dv2 + dQ′. (6.26)

From the first law of thermodynamics,

T2ds2 = de2 + p2dv2. (6.27)

Combining (6.26) and (6.27),

T2
ds2
dv2

= 1

2
(v1 − v2)

dp2
dv2

+ 1

2
(p2 − p1) + dQ′

dv2
. (6.28)

Since on a Hugoniot curve (HG) dQ′ = 0,

T2

[
ds2
dv2

]

HG

= 1

2
(v1 − v2)

[
dp2
dv2

]

HG

+ 1

2
(p2 − p1). (6.29)

Equation (6.29) gives the variation in entropy on the Hugoniot curve. Further
differentiating this expression,

T2

[
d2s2
dv2

2

]

HG

= 1

2

(
− 1

p2

)
(v1 − v2)

[
dp2
dv2

]2

HG

+
{
1

2

p1
p2

− 1

2

(
v1

v2

)}[
dp2
dv2

]

HG

+ 1

2
(v1 − v2)

[
d2 p2
dv2

2

]

HG

+ 1

2

(
− 1

v2

)
(p2 − p1). (6.30)

Because at the C–J point, (6.10) and

u2 = a2 =
√

−v2
2

dp2
dv2

(6.31)

are applied,
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p2 − p1
v1 − v2

= ṁ2 = 1

v2
2

(
−v2

2

[
dp2
dv2

]

CJ

)
= −

[
dp2
dv2

]

CJ

. (6.32)

Substituting (6.32) into (6.29) and (6.30),

T2

[
ds2
dv2

]

CJ

= 0, (6.33)

T2

[
d2s2
dv2

2

]

CJ

= 1

2
(v1 − v2)

[
d2 p2
dv2

2

]

CJ

. (6.34)

From (6.33), the entropy has a maximum at the C–J point. For ordinal gases,

d2 p2
dv2

2

> 0. (6.35)

Therefore, in the C–J detonation where v1 − v2 > 0,
[
d2s2
dv22

]

CJ
> 0.

In C–J deflagration, where v1 − v2 < 0,
[
d2s2
dv22

]

CJ
< 0.

It follows from these results that along a Hugoniot curve, the entropy has a
minimum at the C–J detonation, and a maximum at the C–J deflagration.

6.2.5 Energy Variation

Let us determine how the internal and kinetic energy of a flow change by heating,
shock compression, or expansion. Substituting (6.18) with υ = 1/ρ and I ′ = 0,

e2 − e1 = 1

2
(p2 + p1)(v1 − v2) + Q′. (6.36)

The kinetic energy induced behind the detonation from a quiescent state is
obtained from (4.26).

1

2

(
u2 − u1

)2 = 1

2
(u1 − u2)

2 = 1

2
(p2 − p1)(υ1 − υ2). (6.37)

Therefore, the variation of the total energy, et, becomes

et,2 − et,1 = e2 − e1 + 1

2

(
u2 − u1

)2 = p2(v1 − v2) + Q′. (6.38)

Figure 6.8 shows the energy variations induced by a detonation on pressure-
specific volume coordinates. The area C equals to the second term on the right-hand
side of (6.36). Equations (6.36)–(6.38) correspond to the respective areas.
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Fig. 6.8 Energy increments
by detonation

Fig. 6.9 Energy increments
by deflagration

Increment in the internal energy (6.36) = Area B + C
Increment in the kinetic energy (6.37) = Area A
Increment in the total energy (6.38) = Area A + B + C
e is further increased than the input heat (Area C) by compression (Area B). The

kinetic energy is generated as a consequence of the acceleration of the gas resulting
from the pressure imbalance (AreaA). In the detonation, the increment in e dominates
over the increment in the kinetic energy due to heating.

At the same, the energy variation behind a deflagration is analyzed in Fig. 6.9.
Increment in the internal energy (6.36) = Area – (A + B) + C
Increment in the kinetic energy (6.37) = Area A
Increment in the total energy (6.38) = Area – B + C
In deflagration, the gas expands (v2 > v1), and the pressure decreases (p2 < p1).

Therefore, the increment in e equals the difference from the input heat (Area C),
and the work done to the external environment (Area A + B). The increment in the
kinetic energy is depicted by the Area A. However, the direction of the induced flow
is opposite to that of the detonation.
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Fig. 6.10 Schematic of the
ZDN model

6.2.6 ZND Model

Let us consider internal flow in the detonation. We have analyzed the system only by
considering the flow states at the inlet and the exit of the control volume. Zel’dovich,
von Neumann, and Döring developed amodel in which the flow regime is subdivided
into two sub-regimes (ZNDmodel), see Fig. 6.10. The sub-regime i entails the shock
wave, and is not accompanied by heating (Q = 0). The sub-regime ii has a thickness
with heating and covers the subsonic flow between the shock wave and the exit. If the
heat is input by exothermic chemical reactions, the thickness equals the convection
distance for completing the reactions. Immediately behind the shock wave, there
is an induction zone where the pressure and temperature are kept almost constant,
which is followed by a reaction zone where the pressure and temperature vary. At
the inlet of the sub-regime ii, the flow is subsonic; and at the exit, the flow becomes
sonic. Therefore, the flow in the latter is equivalent to C–J deflagration. In summary,
we can treat a C–J detonation in two ways:

(1) As a single system, this is C–J detonation.
(2) We can subdivide it to a shock wave and a subsequent C–J deflagration.

Let us trace the processes on p − υ coordinates, see Fig. 6.11. Note here that
the processes of the pressure and the specific volume variation do not exactly follow
these paths, but experience the states of [1], ([N]), and [2]. In the process (1), the
state changes directly from [1] on the Hugoniot curve with Q = 0 to the tangent
point [2] to the Hugoniot curve with Q = 4. In the process (2), the process once
changes from [1] to [N] on the Hugoniot curve with Q = 0, then transitions to the
tangent point [2] of the subsonic Rayleigh line to the Hugoniot curve with Q = 4.
The pressure at [N] is higher than that at [2], is referred to as the von Neumann spike.
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Fig. 6.11 ZDN model on
p − υ coordinates

6.2.7 Cellular Structure

Detonation involves in the coupling between shock waves and chemical reactions.
Usually chemical reaction rates are sensitive to the pressure and the temperature of
the mixture, which in turn is strongly affected by the strength of a shock wave. Often
a chemical reaction rate, kr, is assumed to follow the Arrhenius equation,

kr = A exp

(
− Ea

kT

)
, (6.39)

where the activation energy, Ea, differs depending on elemental chemical reaction.
From (6.39), kr is an increasing function of T and is sensitive to it. Usually, a shock
wave appearing in detonation has a shock Mach number on the order of five or even
higher. Since the post-shock temperature is almost proportional to the square of the
shock Mach number, this chemical reaction system coupled by the shock wave is
considerably sensitive to the variation of the local behavior of the shock wave. If
the shock wave becomes locally stronger, the post-shock temperature and then the
chemical reaction rate increase, thereby further enhancing the shock wave. Because
of such unstable mechanisms, the shock wave in detonation hardly keeps its planar
wave front, but has a complicatedwave structure as shown in the left Schlieren images
of Fig. 6.12a and b. In the regime where the shock wave is locally stronger, behind
M in Fig. 6.12b, the exothermic chemical reaction progresses faster, and thereby the
shock wave is further enhanced. In contrast, in the regime where the shock wave is
relatively weak, behind I in Fig. 6.12b, the exothermic chemical reaction takes place
at a distant location from the shock wave. The generated pressure nonuniformity in
the transversal direction induces the transversal shock waves. Coupling these shock
waves, the concave and convex wave fronts transversely move in the direction of the
detonation.
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(a) -1 Regular pattern, 2H2 + O2 + 12Ar

(a) -2 Irregular pattern, 2H2+ N2O + 1.33N2

(a) Schlieren images (left) and soot traces (right) of detonation propagation, initial pres-
sure, 20 kPa; high of test section, 150 mm, courtesy of Prof. J. Austin, California Institute 
of Technology.

(b) Schematic illustration of shock wave propagation with chemical reaction to form cellu-
lar structure; I, incident shock wave; R, reflected shock wave; M, Mach stem; S, slip line.

Fig. 6.12 Cellular structure of detonation waves

The right pictures in Fig. 6.12a are photographs of the tubewall observed after det-
onation propagation. Before the experiment, the wall was covered by soot. After the
detonation propagation, the trajectories of a triple point are recorded as the cellular
structure. This structure is caused by the above-mentioned transversal wave propa-
gation. The shock wave reflections as shown in Fig. 6.12b are repeated [2]. Along the
leading front, the fast portion and slow portion are not smoothly connected, but form
a Mach reflection.4 The slow portion is the incident shock wave (I), the fast portion
is the Mach stem (M), and the transversal wave corresponds to the reflected shock
wave (R). The intersection of these waves is the triple point. Because I is weaker

4Refer to Chap. 7.
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Fig. 6.13 Schematic
illustration of ram
accelerator, the region
enclosed by the dashed lines
is the control volume

than M, it has a lower propagation speed, and the chemical reaction behind I takes
place behind M. Along the propagation path of R, the location of the triple point also
moves in the transverse direction. From the triple point, the slip line (S) is generated,5

then a vorticity for the flow to approach the Mach stem is induced. The trajectory of
such triple points is recorded as the soot pattern. The maximum width of the cellular
structure is referred to as the cell size. In experiments, the cellular structure pattern
depends on the type of mixture and the initial pressure. The pattern in Fig. 6.12a-1
has a regular, while that in (a)-2 has an irregular pattern.

6.3 Ram Accelerator

6.3.1 Operation Principle and Characteristics

In Rankine–Hugoniot relations, a thrust is generated if a source term is introduced
not only in the energy conservation equation but also in the momentum conservation
equation. Employing such relations, we can model a ram accelerator [3]. In the
ram accelerator, the acceleration tube is filled with combustible mixture. As seen
in Fig. 6.13, the projectile is injected into the acceleration tube at a supersonic
speed. Around the projectile, a shock wave is formed and repeats reflection between
the tube wall and the projectile, thereby compressing and heating the combustible
mixture. If appropriate conditions are satisfied, the mixture is ignited on the aftbody
of the projectile. If the combustion is sustained there, the local pressure is enhanced,
yielding a thrust.

This device has a great advantage over the conventional power gun of obtaining a
large thrust over a larger tube length. In a conventional gun (Fig. 6.14), the projectile
is accelerated by a high-pressure driver gas at the bottom of the acceleration tube that
is produced by combusted propellant power (sometimes in liquid) or pre-charged,
high-pressure gas. However, the farther the projectile travels from the bottom, the
lower the thrust becomes due to the expansion of the driver gas. Nevertheless, in a
ram accelerator, a high pressure immediately behind the projectile and hence a large

5We traditionally refer to a “line” instead of “plane” in the three-dimensional phenomena.
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Fig. 6.14 Schematic
illustration of a conventional
gun

Fig. 6.15 Schematic
illustration of thermally
choked flow in the control
volume (see Fig. 6.13). On
the frame fixed to the
projectile, the flow direction
is reversed

thrust can be kept for a much longer travel distance, thereby obtaining a much larger
impulse that is transferred to the momentum of the projectile.

Figure 6.15 illustrates the flow around the projectile on the frame fixed to it. The
flow direction is reversed, such that the right direction has a positive sign. The com-
bustible mixture flows at a supersonic speed, M1, in the space between the projectile
and the acceleration tube wall. Around the projectile, oblique shock waves are gen-
erated, repeat reflection on the tube wall and the projectile, thereby the pressure and
the temperature are increased. In appropriate conditions, the mixture is ignited, and
combusted such that the pressure around the aftbody of the projectile is enhanced. A
thrust is produced as the surface integration of the pressure on the projectile in the
left direction. The combustion is terminated in the downstream at the location 2. As
will be shown later, in the thermally choked operation, the Mach number at the exit,
M2, equals unity.

6.3.2 Derivation of Thrust

Let us obtain the thrust by applying Rankine–Hugoniot relations to the system of
Fig. 6.15. Note here that the general form obtained in this section is applicable
not only to the thermally choked operation, M2 = 1, but to other values of M2.
The following equations will be applied to multicomponent gas. A mass-averaged
quantity is depicted by { }. Dividing (6.7) by C p,1T1 using

C p =
N∑

i=1

Yi, jCp,i (6.40)
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(
hs,2

C p,2T2
+ 1

2

u22
C p,2T2

)
C p,2T2
C p,1T1

= hs,1
C p,1T1

+ 1

2

u21
C p,1T1

+ Q (6.41)

Q ≡ Q′′

C p,1T1
(6.42)

Here,

C pT = γ̄

γ̄ − 1
R̄T = γ̄

γ̄ − 1

p

ρ
= a2

γ̄ − 1
(6.43)

The Mach number is defined using the frozen speed of sound, a.

M = u√
γ̄

p
ρ

= u√
γ̄ R̄T

. (6.44)

Substituting (6.41) with (6.43),

(
hs,2

C̄ p,2T2
+ γ̄2 − 1

2
M2

2

) γ̄2
γ̄2−1
γ̄1

γ̄1−1

p2
p1

ρ1

ρ2
= hs,1

C̄ p,1T1
+ γ̄1 − 1

2
M2

1 + Q,

(
p2
p1

)2

=
γ̄1

γ̄1−1
γ̄2

γ̄2−1

p2
p1

ρ2

ρ1

hs,1
C̄ p,1T1

+ γ̄1−1
2 M2

1 + Q

hs,2
C̄ p,2T2

+ γ̄2−1
2 M2

2

.

Since

p2
p1

ρ2

ρ1
=

p2
ρ2
p1
ρ1

ρ2
2

ρ2
1

= γ̄2
p2
ρ2

γ̄1
p1
ρ1

γ̄1u21
γ̄2u22

= γ̄1M2
1

γ̄2M2
2

,

∴ p2
p1

= γ̄1M1

γ̄2M2

√√√√√ γ̄2 − 1

γ̄1 − 1

hs,1
C̄ p,1T1

+ γ̄1−1
2 M2

1 + Q

hs,2
C̄ p,2T2

+ γ̄2−1
2 M2

2

. (6.45)

Next, from (6.12) and (6.13),

p2
p1

= u21
p1
ρ1

− ρ21u
2
1

ρ2

1

p1
+ 1 + I = u21

p1
ρ1

− ρ22u
2
2

ρ2

1

p1
+ 1 + I

= γ̄1M
2
1 − γ̄2M

2
2
p2
p1

+ 1 + I,

I = p2
p1

(1 + γ̄2M
2
2 ) − (1 + γ̄1M

2
1 ). (6.46)

I ≡ I ′

p1
. (6.47)
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Fig. 6.16 I versus M1 for
calorically perfect gas

From (6.45) and (6.46),

I = (1 + γ̄2M
2
2 )

γ̄1M1

γ̄2M2

√√√√√ γ̄2 − 1

γ̄1 − 1

hs,1
C̄ p,1T1

+ γ̄1−1
2 M2

1 + Q

hs,2
C̄ p,2T2

+ γ̄2−1
2 M2

2

− (1 + γ̄1M
2
1 ). (6.48)

Equation (6.48) provides the thrust of a ram accelerator, which is applicable even
to a variable γ̄ . For a constant value of γ̄ ,

I = (1 + γ M2
2 )

M1

M2

(
1 + γ−1

2 M2
1 + Q

1 + γ−1
2 M2

2

) 1
2

− (1 + γ M2
1 ). (6.49)

The dimensionless thrust, I , is given as a function ofM1,M2, and Q, see Fig. 6.16.
Since the value of Q is determined by the initial mixture conditions, I becomes a
function of M1 for a given M2. As will be described in the next section, a self-
sustainable solution is possible only with M2 ≥ 1.

6.3.3 Thermally Choked Operation

A thermally choked operation corresponds to a ram accelerator operation mode with
M2 = 1. As in detonation, this operation mode has special meanings. Figure 6.17
shows an example of the pressure–volume relation in a thermally chock operation
for a calorically perfect gas with γ = 1.3. A Rayleigh line (6.16) is shifted up by
I . A Hugoniot curve (6.19) is shifted up with Q and down with I . With a given
combination of M1 and Q, a unique value of I (in Fig. 6.17, I � 3.514) exists,
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Fig. 6.17 Pressure–volume
relation related to a
thermally chocked operation

Fig. 6.18 Dimensionless
thrust in thermally choked
mode, ITC, versus M1

with which a Rayleigh line becomes a tangent to the Hugoniot curve (at Point [2] in
Fig. 6.17). As described in Sect. 4.2.1.4, this tangent condition is equivalent to the
sonic condition at exit [2].

In a calorically perfect gas, the following quadratic equation is obtained by
combining (6.16) and (6.19).

M2
1

(
ρ1

ρ2

)2

− 2

γ + 1

(
I + 1 + γ M2

1

)(ρ1

ρ2

)
+ (γ − 1)M2

1 + 2(Q + 1)

γ + 1
= 0.

(6.50)

The solution in the thermally choked mode is obtained by setting its discriminant
to 0, as shown in Fig. 6.18.

ITC = M1

√
(γ + 1)

{
(γ − 1)M2

1 + 2(Q + 1)
} − (1 + γ M2

1 ). (6.51)
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ITC does not explicitly depend on the size, shape of the projectile, or details of the
flow field around the projectile. Conveniently, it is determined only by the projectile
Mach number, the specific heat ratio, and the amount of heat release. In this mode,

(
ρ1

ρ2

)

TC

= 1 + γ M2
1 + I

(γ + 1)M2
1

=
√

(γ − 1)M2
1 + 2(Q + 1)

(γ + 1)M2
1

, (6.52)

(
p2
p1

)

TC

= 1 + γ M2
1 + I

γ + 1
= M1

√
(γ − 1)M2

1 + 2(Q + 1)

γ + 1
. (6.53)

When the effect of the acceleration of the projectile vanishes, the thermally
choked mode becomes a unique, self-sustainable solution as is in C–J detonation.
As will be shown in the next section, this solution agrees well with the experimental
performance.

For a value of Q, a unique value ofM1 (> 1) exists with ITC = 0. In this condition,
no momentum is exchanged between the projectile and the gas. This condition is
equivalent to the one where a projectile does not exist, and subsequently to the
Chapman–Jouguet detonation. The corresponding Mach number, MCJ, is obtained
by setting the left-hand side of (6.51) to zero.

ITC has a positive value in the regime Mmin < M1 < MCJ. The value of Mmin
is determined from the operational condition of the diffuser that is formed between
the forebody of the projectile and the acceleration tube wall.6 In theory, operation
with M2 > 1 is possible. In that case, a positive thrust can be obtained even with
M1 > MCJ. However, no clear experimental evidence of this super-detonative mode
has been obtained.

6.3.4 Experiments on the Ram Accelerator

The ram accelerator was invented by a research group at the University of Washing-
ton, Seattle, WA, U.S.A., led by Prof. A. Herzberg in 1986. Intensive investigations
were conducted by his group, including the groups ofA. P. Bruckner andC.Knowlen,
and by other followers in the U.S.A., France, Germany, China, Brazil, Korea, and
Japan [4].

Figure 6.19 shows the device developed at the University of Washington with
its almost optimal performance. The ram acceleration tube has an inner diameter of
38 mm (1.5 inch), and a total length of 16 m (Fig. 6.19a). Figure 6.19b illustrates
the typical projectile, which has a conical nose and a center body with 4 to 5 fins for
stabilizing its in-tube attitude. In order to save the mass, it is made of aluminum alloy
A7075-T6, and its parts are hollowed and threaded. Figure 6.19c is the representative
projectile acceleration profile, where a speed close to the world record of 2.7 km/s

6See Sect. 11.2 on the supersonic diffuser.
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(a) Schematic of the system

(b) Projectile                    (c) Projectile speed profile in a four-stage operation

Fig. 6.19 Ram accelerator (RAMAC38) at the University of Washington and its performance

was attained [5]. Above this speed level, the projectile itself starts combusting due
to the ambient high-pressure oxygen in the shock-heated mixture.

Figure 6.20 shows the ram accelerator (RAMAC25) at Tohoku University.
Through the open base of the projectile (Fig. 6.20a), the pressures between the inside
and the outside of the projectile wall are almost balanced, such that the light projec-
tile achieved an average acceleration of 4.4 × 104 g (g, gravitational acceleration)
through the 6-m-long acceleration tube [6].

6.4 Thrust by Exhaust Jet

Let us add a source term in the mass conservation Rankine–Hugoniot relations to
obtain a thrust, F , generated by an exhaust jet. Here, even the cross-sectional area
varies. First, let us consider a jet exhausted from a rocket shown in Fig. 6.21. When
the rocket flies in quiescent air at a speed u1 to the left, on the frame fixed to the
rocket, a uniform flow enters the control volume through the inlet 1 with a speed u1 to
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(a) Open-base projectile

(b) Projectile speed profile (c) Projectile acceleration profile

Fig. 6.20 Ram accelerator (RAMAC25) at Tohoku University and its performance

Fig. 6.21 Flow around a
rocket on a frame fixed to the
rocket. The broken lines
correspond to control
surfaces. The boundary
between the exhaust jet and
the surrounding area is a slip
surface

the right. The upper and lower boundaries are along the streamline. The downstream
exit of the control volume is labeled “2.” The static pressure on the boundaries,
depicted by dashed lines, equals p1. The flow in the exhaust jet at the exit boundary
2 is higher than the rocket by u2. Let the mass flow rate, the exhaust speed, static
pressure, and cross-sectional area from or at the rocket exit be designated by ṁp, up,
pp, and Ap, respectively. The boundary between the exhaust jet, the gray regime in
Fig. 6.21, and the surrounding air is a slip surface with a static pressure of p1. With
the expansion of the exhaust jet gas, its flow cross-sectional area increases. The mass
flow rate of the incoming flow is ṁ1.

The mass conservation in Fig. 6.21 is satisfied by the fact that the total mass flow
rate through the exit 2 equals the sum of ṁp in the exhaust jet from the rocket and ṁ1.
Themomentum conservation relations are expressed in the following twoways. First,
let us consider the control volume enclosing only the rocket. The thrust occurring
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because of the momentum produced by the flow velocity, Fm, i.e., the momentum
thrust, equals the product of the mass flow rate and the exhaust speed.

Fm = ṁ pup (6.54)

Next, let us consider the pressure balance over the rocket. In the control surface
around the rocket, a pressure imbalance exists only at the projection area of the
engine exit. The pressure thrust is obtained as the surface integration of the pressure
over the surfaces.

Fp = (
pp − p1

)
Ap. (6.55)

The net thrust exerting on the rocket equals the sum of these.

F = Fm + Fp = ṁpup + (
pp − p1

)
Ap. (6.56)

By launching a rocket on the ground, the thrust becomes smaller than that in the
vacuum by a frontal pressure of p1.7

Then, we consider the overall momentum conservation. The thrust exerted on the
rocket is balanced with the momentum balance during a unit time through the control
surfaces 1 and 2.

F = ṁ1u1 + ṁpu2 − ṁ1u1 = ṁpu2 (6.57)

Employing (6.57), the thrust is measured by determining the exhaust speed of u2
over the control surface with the ambient pressure.

6.5 Air-Breathing Engine

A rocket engine obtains thrust from the momentum of the jet exhausted from the
propellant preloaded before the launch. If oxygen from the ambient air is used, it is
not loaded on board. An engine utilizing ambient air is referred to as an air-breathing
engine. In automobiles and airplanes, such air breathing is common. Nevertheless, if
an engine breathes the ambient without any reciprocating or rotating mechanics, and
powers it using chemical, electrical, beam (laser or microwave), or nuclear power,
then a device different from the conventional ones can be constructed. Here, let us
consider such an air-breathing engine.

7In rocket engineering, a loss in a vehicle velocity increment for this reason is referred to as pressure
loss.
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Fig. 6.22 Ramjet

Fig. 6.23 SCRAM jet

Fig. 6.24 Air-breathing
engine model. The pressure
in the outside equals p1

A ramjet is a kind of air-breathing engine, capable of generating a thrust even at
supersonic speeds without any rotating part. As shown in Fig. 6.22, the supersonic
flow coming in through the inlet is compressed and decelerated in the diffuser.8 After
fuel injection and heat addition due to burning, the flow expands and is accelerated in
the nozzle. In particular, ramjet, where the flow is kept at supersonic speed even in the
combustion zone, is termed SCRAMjet (Supersonic Combustion Ramjet, Fig. 6.23).

Let us obtain the thrust of the air-breathing engine shown in Fig. 6.24. At inlet 1,
the flow is uniform and supersonic. In the engine, a fuel is injected with a mass flow
rate of ṁp, a specific enthalpy of hp, and a pressure that is equal to the surrounding.
The flow speed and the pressure at exit 2 is determined from the nozzle design.

The mass conservation equation is

ρ2u2A2 = ṁ1 + ṁp. (6.58)

Here, no body force exists. The thrust equals the resultant force acting on the inside
and the outside walls of the engine. At the same time, a force of equal magnitude but
in the opposite direction exerts on the fluid passing through the engine. The force on
the outside of the engine is

Fext = (A1 − A2)p1. (6.59)

8The compression due to the dynamic pressure of the flow itself is referred to as ram compression.
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The force on the inside of the engine is obtained by the following momentum
conservation relation.

Fint = (
p2 + ρ2u

2
2

)
A2 + ṁpup − (

p1 + ρ1u
2
1

)
A1. (6.60)

Note here that the effect of pressure distribution over the center body is not taken
into account.

Therefore, the thrust is obtained by the net force.

F = Fint + Fext = (p2 − p1)A2 + (
ṁ1 + ṁp

)
u2 + ṁpup − ṁ1u1. (6.61)

The energy conservation is given by

(
ṁ1 + ṁp

)(
h2 + 1

2
u22

)
= ṁ1

(
h1 + 1

2
u21 + Q′

)
+ ṁp

(
hp + 1

2
u2p

)
. (6.62)

Here, the enthalpy, h, does not contain a standard enthalpy of formation. The heat
from the chemical reactions is taken into account in Q′. The mass flow ratio, αp, is
defined by

αp ≡ ṁp

ṁ1
. (6.63)

In many cases of air-breathing engines, the fuel injected in the engine reacts with
the oxygen breathed from the intake; the gases are not necessarily calorically nor
thermally perfect. Yet, in the following, for simplicity, we will deal with a calorically
perfect gas.

h = γ

γ − 1

p

ρ
= a2

γ − 1
. (6.64)

M2 = u2

a2
= u2

γ
p
ρ

. (6.65)

Transforming (6.58) and (6.61)–(6.65),

F̃ ≡ F

p1A1
= (

1 + γ M2
2

)M1

M2

√√√√√(
1 + αp

)1 + γ−1
2 M2

1 + Q + αpχp

(
1 + γ−1

2 M2
p

)

1 + γ−1
2 M2

2

−
(
A2

A1
+ γ M2

1

)
+ F̃p, (6.66)

Q ≡ Q′

h1
, (6.67)
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χp ≡ hp
h1

, (6.68)

F̃p = αpγ M2
1

up
u1

. (6.69)

In (6.66), with the conditions of the injected propellant, αp, χp, and F̃p being
given, the dimensionless thrust, F̃ , becomes a function of M1, M2, and Q. M1 equals
the flight Mach number; M2 is determined from the nozzle design; Q is given from
the mixture composition or the specific energy input to the gas.With αp = 0, F̃p = 0,
and A2/A1 = 1, (6.66) becomes equivalent to (6.49).
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Chapter 7
Two-Dimensional Flows

Real flows are usually three dimensional. However, many important flow characteris-
tics appear even in two-dimensional flows. In this chapter, we deal with steady state,
two dimensional, supersonic flows. In such flows, compression/shock and expan-
sion waves appear. A Mach wave, which is an envelope of sound waves, depicts the
weakest wave. If a flow is bent toward compression, compression waves are gener-
ated, which then make a transition to a shock wave after propagating over a certain
distance. If a supersonic flow is bent by an object, either an attached or a detached
shock wave appears in front of it. The shape of the shock wave, which for the most
part is an oblique shock wave, is determined according to the boundary condition set
by the object. If the flow is bent toward expansion, expansion waves are generated.
In particular, when the flow turns a corner, an expansion fan is formed.

7.1 Compression/Expansion Waves

When a flow is compressed moderately such that shock waves do not appear, or
experiences expansion, such processes are isentropic. In such a flow, the relation
between a flowMach number and a deflection angle is obtained by the Prandtl–Meyer
function. Let us derive and study it.

We apply the conservation equations in Sect. 3.1 to steady, two-dimensional flows.
Here, we assume that the processes are isentropic. Body force and heat input are
neglected. From (3.4),

∇ · ρu = 0

ρ
∂u

∂x
+ u

∂ρ

∂x
+ ρ

∂v

∂y
+ v

∂ρ

∂y
= 0

. (7.1)

The momentum conservation Eq. (3.14) yields
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ρ(u · ∇)u = −∇ p

ρ

⎛
⎜⎜⎝

u
∂u

∂x
+ v

∂u

∂y

u
∂v

∂x
+ v

∂v

∂y

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

∂p

∂x
∂p

∂y

⎞
⎟⎟⎠

. (7.2)

By substituting the energy conservation (3.27) with

δQ = δQreversible = T ds (7.3)

T ds = de + pd

(
1

ρ

)
= dh − dp

ρ
= 0 (7.4)

Using the result in Chap. 8, in the isentropic flow the speed of sound, a, is given
by

dp

dρ
= a2. (7.5)

Using (7.5), (7.1) is transformed to

ρa2 ∂u

∂x
+ u

∂p

∂x
+ ρa2 ∂v

∂y
+ v

∂p

∂y
= 0. (7.6)

Equations (7.2) and (7.6) are combined into the following form:

(
Ā

∂

∂x
+ B̄

∂

∂y

)
V = O (7.7)

Ā =
⎛
⎝

ρa2 0 u
ρu 0 1
0 ρu 0

⎞
⎠ (7.8)

B̄ =
⎛
⎝
0 ρa2 v

ρv 0 0
0 ρv 1

⎞
⎠ (7.9)

V =
⎛
⎜⎝

u

v

p

⎞
⎟⎠. (7.10)

Multiplying Ā−1 to (7.7),

(
∂

∂x
+ Â

∂

∂y

)
V = O (7.11)
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Â = Ā−1B̄ =
⎛
⎜⎝

− 1
ρ(u2−a2)

u
ρ(u2−a2)

0

0 0 1
ρu

u
u2−a2 − a2

u2−a2 0

⎞
⎟⎠
⎛
⎝
0 ρa2 v

ρv 0 0
0 ρv 1

⎞
⎠

= 1

u2 − a2

⎛
⎜⎝

uv −a2 − v
ρ

0 v
u

(
u2 − a2

)
1
ρu

(
u2 − a2

)
−ρva2 ρua2 uv

⎞
⎟⎠

. (7.12)

Substituting (7.11) with a wave-form solution

V = V0ei(ωt−k·r) (7.13)

(
kx I + kyÂ

)
V = O, I, identity matrix (7.14)

with

λ = −kx/ky (7.15)

(
Â − λI

)
V = O. (7.16)

To find a nontrivial solution to (7.16), its determinant should be set to 0.

∣∣∣Â − λI
∣∣∣ = 0 (7.17)

∣∣∣∣∣∣∣

uv − (
u2 − a2

)
λ −a2 − v

ρ

0
(
v
u − λ

)(
u2 − a2

)
1
ρu

(
u2 − a2

)
−ρva2 ρua2 uv − (

u2 − a2
)
λ

∣∣∣∣∣∣∣
= 0 (7.18)

(
λ − v

u

)[(
u2 − a2

)
λ2 − 2uvλ + v2 − a2

] = 0 (7.19)

λ = v

u
,

uv ± αa2

u2 − a2
(7.20)

α =
√

u2 + v2

a2
− 1 =

√
M2 − 1. (7.21)

Therefore, three eigenvalues are obtained as follows:

λ1 = v

u
(7.22)

λ2 = αv + u

αu − v
(7.23)
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Fig. 7.1 Geometrical wave
relations

λ3 = αv − u

αu + v
. (7.24)

Here, we apply the relation between the deflection angle, θ , and the Mach angle,
βM, which is shown in Fig. 7.1, and (7.20).

tan θ = v

u
(7.25)

α =
√(

1

sin βM

)2

− 1 = 1

tan βM
(7.26)

λ1 = tan θ (7.27)

λ2 = tan(θ + βM) (7.28)

λ3 = tan(θ − βM). (7.29)

As shown in Fig. 7.1, λ1 is the tangent of the flow velocity vector, u, to the x-axis;
λ2 and λ3 are the tangents to Mach waves cL and cR, respectively. In other words, in
two dimensional, steady state, compressible flows, the characteristic velocity, u, cL,
and cR exist.

With

� =
⎛
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎠. (7.30)

Let us obtain L−1 for
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L−1Â = �L−1. (7.31)

L−1 =
⎛
⎝

ρu ρv 1
− ρv

α

ρu
α

1
ρv
α

− ρu
α

1

⎞
⎠ (7.32)

Its inverse matrix is

L =
⎛
⎜⎝

u
ρ(u2+v2)

− u+αv
2ρ(u2+v2)

αv−u
2ρ(u2+v2)

v
ρ(u2+v2)

αu−v
2ρ(u2+v2)

− v+αu
2ρ(u2+v2)

0 1
2

1
2

⎞
⎟⎠. (7.33)

From (7.11) and (7.31),

L−1 ∂V
∂x

+ �L−1 ∂V
∂y

= O (7.34)

Defining

(
dy

dx

)

i

= λi (7.35)

Equation (7.34) has a form of

∂

∂x
+
(
dy

dx

)

i

∂

∂y
= 0, i = 1, 2, 3

which gives an invariant along a characteristic line with a slope of λi .

L−1dV = O along
dy

dx
= λi , i = 1, 2, 3. (7.36)

Writing the respective components,

ρudu + ρvdv + dp = 0 along
dy

dx
= λ1 = tan θ. (7.37)

Using (7.4),

ρudu + ρvdv + dp = ρudu + ρvdv + ρdh = ρd

(
1

2
|u|2 + h

)
= 0

dht = d

(
h + 1

2
|u|2

)
= 0. (7.38)
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This is Bernoulli’s equation in compressible flows,1 which implies that along the
streamline total enthalpy is conserved.

From (7.36) with i = 2,

−ρv

α
du + ρu

α
dv + dp = 0 along

dy

dx
= λ2 = tan(θ + βM). (7.39)

Here the flow is uniform in the upstream, such that (7.38) is applied there. From
(7.26), (7.38), and (7.39),

(u + v tan βM)du + (−u tan βM + v)dv = 0. (7.40)

Using relations shown in Fig. 7.1,

(cos θ + sin θ tan βM)d(|u| cos θ) + (− cos θ tan βM + sin θ)d(|u| sin θ) = 0

1

tan βM

d|u|
|u| − dθ = 0 (7.41)

Defining

dν ≡ 1

tan βM

d|u|
|u| (7.42)

d(ν − θ) = 0 (7.43)

ν is the Prandtl–Meyer function. From the definition of the Mach number,

M = |u|
a

= 1

sin βM
.

Applying (7.38) to calorically perfect gas,

2ada

γ − 1
+ |u|d|u| = 0

2

(γ − 1)M2

da

a
+ d|u|

|u| = 0. (7.44)

Using these equations, the right hand side of (7.42) is expressed as a function of
M .

1

tan βM
= cosβM

sin βM
=
√
1 − sin2 βM

sin βM
=
√

M2 − 1

da

a
+ dM

M
= d|u|

|u| (7.45)

1For incompressible flows, p + 1
2ρ|u|2 = const.
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2

(γ − 1)M2

(
d|u|
|u| − dM

M

)
+ d|u|

|u| = 0 (7.46)

d|u|
|u| = 1

1 + γ−1
2 M2

dM

M
(7.47)

dν =
√

M2 − 1

1 + γ−1
2 M2

dM

M
. (7.48)

Usually the integral constant is set such that ν(M = 1) = 0. ν is obtained in the
explicit form.

ν(M) =
∫ M

1

√
M2 − 1

1 + γ−1
2 M2

dM

M

=
√

γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1) − tan−1

√
M2 − 1

. (7.49)

From (7.36) with i = 3,

ρv

α
du − ρu

α
dv + dp = 0 along

dy

dx
= λ3 = tan(θ − βM)

(u − v tan βM)du + (u tan βM + v)dv = 0 (7.50)

(cos θ − sin θ tan βM)d(|u| cos θ) + (cos θ tan βM + sin θ)d(|u| sin θ) = 0

d(ν + θ) = 0
.

(7.51)

To summarize the above,

Along
dx
dt

= u,
dy

dx
= tan θ, ds = 0, dht = 0 (7.52)

Along
dx
dt

= cL,
dy

dx
= tan(θ + βM), dR ≡ d(ν − θ) = 0 (7.53)

Along
dx
dt

= cR,
dy

dx
= tan(θ − βM), dQ ≡ d(ν + θ) = 0. (7.54)

In (7.52)–(7.54), s, R, Q are Riemann invariants.
A steady, supersonic flow is decelerated if it is bent at the compression side,

and accelerated at the expansion side. Along a slowing bending wall, the flow is
kept isentropic, irrespective of whether it is compressed or expanded. However, at a
certain distance from the wall, if compression waves are taken over by proceeding
compression waves from behind, the transition to a shock wave occurs. In that case,
the isentropic assumption is violated, and thus (7.53) and (7.54) cannot be applied.
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(a) Flow and waves   (b) Variation in Prandtl-Meyer function

Fig. 7.2 Supersonic flow with moderate compression, �θ > 0

(a) Flow and waves (b) Variation in Prandtl-Meyer function

Fig. 7.3 Supersonic flow with moderate expansion, �θ < 0

Using the Prandtl–Meyer function, (7.49), (7.53), and (7.54), a variation in flow
Mach number �M is obtained from a deflection angle, �θ . Figure 7.2 shows super-
sonic flow that is moderately compressed on a concave surface. In the flow field, the
invariant Q = ν + θ , which is kept constant along cR , equals to that in the upstream.

�ν = −�θ. (7.55)

With�θ being given,�ν then�M is obtained from (7.49), as shown in Fig. 7.2b.
In this case, the flow is decelerated, meaning that �M < 0.

When the flow is bent toward expansion, as shown in Fig. 7.3a, the flow is
accelerated, that is �ν > 0 and �M > 0.
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Fig. 7.4 Prandtl–Meyer
expansion across an
expansion corner

7.2 Prandtl–Meyer Expansion

If a supersonic flow is incident to a compression corner, a shock wave, either attached
or detached, is formed. Figure 7.4 illustrates the behavior of a supersonic flow in the
case where it is incident to an expansion corner. After a supersonic flow at state 1
turns the corner by an angle of �θ , its condition changes to state 2. Resultantly, the
flow is accelerated due to expansion, M1 < M2. This expansion occurs only in the
expansion fan, which is sandwiched by cL,1 and cL,2 waves originating in the corner.
Such expansion of a supersonic flow across a corner is termed as the Prandtl–Meyer
expansion. M2 is obtained by inputting �θ into (7.54). From (7.44) and (7.47),

da

a
= − (γ − 1)M

2 + (γ − 1)M2
dM

d ln a = −1

2
d ln

{
2 + (γ − 1)M2

}

a2
{
2 + (γ − 1)M2

} = const.

Then, the temperature, T, is given by

T

TM=1
= a2

a2
M=1

=
γ+1
γ−1

M2 + 2
γ−1

. (7.56)

The pressure p is obtained from the isentropic relation.

p

pM=1
=
(

T

TM=1

) γ

γ−1

=
(

γ+1
γ−1

M2 + 2
γ−1

) γ

γ−1

. (7.57)

Let us examine how much the flow can be refracted. From (7.49) and (7.55),
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Fig. 7.5 Refraction limit of
supersonic flow

(−�θ)max = ν(∞) − ν(M1)

= π

2

(√
γ + 1

γ − 1
− 1

)
−
√

γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2

1 − 1) + tan−1
√

M2
1 − 1

(7.58)

ν(∞) = π

2

(√
γ + 1

γ − 1
− 1

)
. (7.59)

If the flow is refracted up to this angle, theMach number becomes infinity, and the
pressure, temperature, and density vanish. For air with γ = 1.4, ν(∞) = 130.45◦.
This value equals the maximum refraction angle of an incident flow of M1 = 1. For
M1 > 1, the maximum refraction angle is given by (7.58), see Fig. 7.5.

7.3 Supersonic Flow Around a Cone

Figure 7.6 illustrates a supersonic flow over a cone. The flow is assumed to be
inviscid and axisymmetric. If the cone has an infinite length, the flow becomes self-
similar. The shock wave likewise has a cone shape. The solution is referred to as the
Taylor–Maccoll solution [1].

From the mass and momentum conservation equations, (3.4) and (3.15), respec-
tively,

∇ · (ρu) = 0 (7.60)

ρ(u · ∇)u + ∇ p = 0. (7.61)

The half-apex angles of the cone and the shock wave are designated by θw and β.
The two-dimensional polar coordinates, (r, θ), are set as shown in Fig. 7.6. Since the
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Fig. 7.6 Flow over a cone

flow is self-similar, the flow velocity vector (ur , uθ ) and thermodynamics properties
become a function only of θ , and the derivative with respect to r vanishes. With those
conditions, (7.60) and (7.61) yield to

1

r2
d

dr

(
ρr2ur

)+ 1

r sin θ

d

dθ
(ρuθ sin θ) = 0

2ρur sin θ + d

dθ
(ρuθ sin θ) = 0 (7.62)

ρ

(
uθ

r

dur

dθ
− u2

θ

r

)
= 0 (7.63)

ρ

(
uθ

duθ

dθ
+ ur uθ

)
+ dp

dθ
= 0. (7.64)

From (7.63),

uθ = dur

dθ
. (7.65)

This leads to the result that the flow is free from vorticity ω.

ω = ∇ × u =
(

uθ

r
− 1

r

∂ur

∂θ

)
eφ = 0. (7.66)

From (7.62) and (7.65),

2ρur + uθ

dρ

dθ
+ ρ

d2ur

dθ2
+ ρuθ cot θ = 0. (7.67)

For the isentropic flow,

dp = a2dρ. (7.68)
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From (7.64), (7.65), (7.67), and (7.68),

d2ur

dθ2
+ ur = −ur + uθ cot θ

1 − u2
θ

a2

. (7.69)

From Bernoulli’s equation (7.38),

d

(
h + u2

r + u2
θ

2

)
= d

(
a2

γ − 1
+ u2

r + u2
θ

2

)
= 0 (7.70)

1

2
u2
t ≡ ht = a2

γ − 1
+ u2

r + u2
θ

2
. (7.71)

Here, ut is a constant and equals the flow speed attainedwhen it expands to vacuum
in a steady-state manner. From (7.65) and (7.67),

( dur
dθ
duθ

dθ

)
=
⎛
⎝ uθ

−ur − ur +uθ cot θ

1− u2
θ

a2

⎞
⎠. (7.72)

Integrating (7.72), the solutions ur = ur (θ) and uθ = uθ (θ) are obtained. The
boundary conditions on the cone wall (subscript, w) are

ur (θw) = ur,w (7.73)

uθ (θw) = 0. (7.74)

With M1 and θw given, β needs to be found. Here, we use subscripts 1 and 2 for
the state upstream and immediately behind the shock wave. Defining

ur,2 ≡ ur (β) (7.75)

uθ,2 ≡ uθ (β) < 0 (7.76)

u2
t

2
= a2

γ − 1
+ u2

r,2

2
+ u2

θ

2
= a2∗

γ − 1
+ u2

r,2

2
+ a2∗

2
= γ + 1

2(γ − 1)
a2

∗ + u2
r,2

2
(7.77)

a2
∗ = γ − 1

γ + 1

(
u2
t − u2

r,2

)
. (7.78)

Applying the Prandtl relation (4.57),

M1a1 sin β
(−uθ,2

) = γ − 1

γ + 1

(
u2
t − u2

r,2

)
. (7.79)
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Since the flow velocity tangent to the shock wave does not change,

M1a1 cosβ = ur,2. (7.80)

From (7.79) and (7.80),

(−uθ,2
) = γ − 1

γ + 1

u2
t − u2

r,2

ur,2 tan β
. (7.81)

Applying (7.77) to the upstream of the shock wave, and using (7.78),

1

2
u2
t =

(
1

γ − 1
+ 1

2
M2

1

)
a2
1 =

(
1

γ − 1
+ 1

2
M2

1

)(
ur,2

M1 cosβ

)2

M2
1 = 2

γ − 1

u2
r,2

u2
t cos2 β − u2

r,2

. (7.82)

The above relations are expressed using dimensionless quantities:

ũr ≡ ur

ut
, ũθ ≡ uθ

ut
, ã ≡ a

ut

( dũr
dθ
dũθ

dθ

)
=
(

ũθ

−ũr − ã2(ũr +ũθ cot θ)

ã2−ũθ
2

)
(7.83)

ã2 = γ − 1

2

{
1 − (

ũr
2 + ũθ

2
)}

(7.84)

ũr (θw) = ũr,w (7.85)

ũθ (θw) = 0 (7.86)

ũr,2 = M1 cosβ√
2

γ−1 + M2
1

(7.87)

(−̃uθ,2
) = γ − 1

γ + 1

1 − ũr,2
2

ũr,2 tan β
. (7.88)

For a given combination of M1 and θw, and assuming the value of β and ũθ,w,
ũr = ũr (θ), ũθ = ũθ (θ) are calculated by numerically integrating (7.83). The
calculation should be repeated until a solution is obtained satisfying both (7.87) and
(7.88).
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(a) Shock wave and streamlines (b) Variation of pressure and Mach number

Fig. 7.7 Supersonic flow around a cone, M1 = 2.0, θ = 20°

Once the solution is obtained, the flow quantities at the state 2 are obtained using
the oblique shock-wave relations. Those between the shockwave and the cone surface
are obtained using Bernoulli’s and isentropic equations.

p2

p1
= 1 + 2γ

γ + 1

(
M2

1 sin
2 β − 1

)
(7.89)

γ

γ − 1

p(θ)

ρ(θ)
+ u2

r (θ)

2
+ u2

θ (θ)

2
= γ

γ − 1

pt

ρt
= u2

t

2
(7.90)

p(θ)

p2
=
(

ρ(θ)

ρ2

)γ

(7.91)

p(θ)

p2
=
{
1 − ũr

2(θ) − ũθ
2(θ)

1 − ũr,2
2 − ũθ,2

2

} γ

γ−1

. (7.92)

The deflection angle, ψ , is given by

ψ = θ + tan−1

(
ur

uθ

)
= θ + tan−1

(
ũr

ũθ

)
< θ. (7.93)

An example of a solution is shown in Fig. 7.7. In two-dimensional flow, for
M1 = 2.0 and θ = 20°, β = 53.4°, and p2/p1 = 2.84, whereas in the conical flow
β = 37.8° and p2/p1 = 1.59 (the pressure ratio on the cone surface to the upstream
equals 1.91). Thereby, in the latter the shock wave becomes much weaker.
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7.4 Reflection of Shock Waves

7.4.1 Shock Reflection Patterns in Steady Flow

A shock wave is reflected on a wall. However, its reflection pattern is different from
that of electromagnetic waves including light. In steady flows, the reflection pattern is
subdivided to regular reflection (Fig. 7.8) and Mach reflection (Fig. 7.9). If we place
a wedge with a deflection angle of θw in a M0(>1) flow, an oblique shock wave is
generated. This shock wave propagates to the lower wall as an incident shock wave
i. Here, it is assumed that the expansion fan originated in the lower corner of the
wedge does not affect i.

In the case of regular reflection (Fig. 7.8), the incident shock wave is reflected on
the point R, and subsequently, a reflected shock wave r is generated at the same point.
In the upstream flow (state 0), the flow is along the bottom wall and has an angle β1

from i. Behind i (state 1), the flow is bent toward the bottomwall by a reflection angle
of θ1. After the flow passes r, the flow becomes bent back by θ2 = −θ1, restoring
the same direction as the upstream (state 2). The last process is equivalent to that
occurring during the formation of an attached shock wave, as described Sect. 4.3.4.

In the Mach reflection (Fig. 7.9), the incident shock wave i is bent at the point
T, at which the incident shock (i), reflected shock (r), and Mach stem (m) intersect.
This point is referred to as a triple point, T. In many cases, i is connected to m with
a kink. The flow above T passes through i and r; the flow direction of state 2 is not
necessarily along the bottom wall. The flow below T has only m, becomes subsonic
at state 3. Therefore, state 2 and 3 are interfaced with a slip line, tangent to each other

Fig. 7.8 Regular reflection

Fig. 7.9 Mach reflection
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at the same pressure, but with a different flow velocity, density, and temperature. On
the bottom wall, the shock wave is normal to the flow.

7.4.2 Shock Polar

In order to analyze the shock wave reflection, it is convenient to use the relation
between a pressure, p, and a deflection angle, θ , that is p – θ shock polar. Here, we
apply the oblique shock-wave relations presented in Sect. 4.3 to a supersonic flow
with an upstream Mach number of M0.

p1

p0
= 1 + 2γ

γ + 1

(
M2

0 sin
2 β − 1

)
(7.94)

tan θ = 2 cot β
(
M2

0 sin
2 β − 1

)

M2
0 (γ + cos 2β) + 2

. (7.95)

The pressures in front and behind the shock wave are designated by p0 and
p1, respectively. From (7.94) and (7.95), the shock polar equation is obtained, see
Fig. 7.10.

� ≡ p1

p0
= �(M0, θ). (7.96)

This equation is applicable to any shock wave appearing in the reflection with
corresponding subscripts. The flowMach number behind the shock wave is given by

Fig. 7.10 Shock polar, γ =
1.4. The two circles on each
polar correspond to
θ = θmax (upper) and M1 =
1 (lower), respectively
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M1 =
[{

(γ − 1)M2
0 sin

2 β + 2
}2 + (γ + 1)2M4

0 sin
2 β cos2 β{

2γ M2
0 sin

2 β − (γ − 1)
}{

(γ − 1)M2
0 sin

2 β + 2
}

] 1
2

. (7.97)

In Fig. 7.10, three polars are plotted. Tracing from (p1/p0, θ) = (1, 0◦) along
each one, the shock strength increases with increasing θ in the weak shock regime.
The flow behind the shock wave is supersonic. The condition for the post-shock
flow to become sonic is close to that with the maximum θ . By further increasing
the shock strength, θ decreases in the strong shock regime. The strongest condition
corresponds to a normal shock wave.

7.4.3 Two Shock Theory

Let us analyze the regular reflection, Fig. 7.8. With an upstream flow Mach number
M0, and an angle of the incident shock wave β1 being specified, for the incident
shock wave,

p1 = p0�(M0, θ1). (7.98)

Meanwhile, for the reflected shock wave,

p2 = p1�(M1, θ2). (7.99)

The boundary conditions here are

θ1 = θw (7.100)

θ1 − θ2 = 0. (7.101)

Figure 7.11 shows the shock polar for M0 = 3 and β1 = 30°. In the upstream (0),
θ0 = 0 and p/p0 = 1. The polar for the incident shock originates at (0) and is plotted
on θ > 0 side, going through the post-shock state (1). Here, β1 is given, and thereby
the corresponding deflection angle is determined as θ1 = 12.8°. Across the incident
shock, the pressure becomes 2.46 times larger. The shock polar of the reflected shock
originates at (1) and extends to the left. In regular reflection, the intersection of the
polar with the vertical ordinate (θ = 0°) corresponds to the post-shock state of the
reflected shock. From the two intersections, only the lower one is the solution. In
this case, the post-shock pressure becomes 5.20 times larger.
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Fig. 7.11 Example of shock
polar for regular reflection

7.4.4 Three-Shock Theory

Let us analyze the Mach reflection, shown in Fig. 7.9. M0 and β1 are specified, and
thus θ1(=θw) is obtained using (7.95). In the same way as for the regular reflection,
for the incident shock wave,

p1 = p0�(M0, θ1). (7.102)

Meanwhile, for the reflected shock wave,

p2 = p1�(M1, θ2). (7.103)

To the state immediately below the Mach stem (3),

p3 = p0�(M0, θ3). (7.104)

The boundary conditions are

θ1 = θw (7.105)

θ1 − θ2 = θ3 (7.106)

p2 = p3. (7.107)

Figure 7.12 shows the shock polars for M0 = 3 and θw = 40°. The polar for
the Mach stem is shared with the incident shock wave. The polar for the reflected
shock has a unique intersection, which corresponds both to the state 2 and 3, with
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Fig. 7.12 Example of shock
polar for Mach reflection

Fig. 7.13 Photograph of
exhaust plume from a liquid
rocket engine, LE-7A. In the
middle of the plume, a
conical radiation emission
region is observed behind the
Mach stem. Courtesy of
Mitsubishi Heavy Industries
Ltd.

the incident one. Behind the incident shock, the pressure becomes 4.17 times larger,
and θ1 = 21.8°. Behind the reflected shock, the pressure becomes 10.3 times of the
upstream value with a deflection angle toward the wall of θ2 = θ3 = 4.21°. The
direction of the Mach stem varies toward the wall. On the reflection point R on the
wall, θ vanishes, and thereby the normal shock wave condition is applied.

We can observe theMach reflection in the exhaust plume of a liquid rocket engine,
as shown in Fig. 7.13. The exhaust jet from a rocket engine is shaped like a feather,
and it is called an exhaust plume. Usually, the rocket engine is designed such that on
the ground the flow is over-expanded, meaning that the static pressure in the plume
is lower than the ambient pressure.2 In order to recover the pressure, a shock wave
system where the flow repeats the compression and expansion cycle appears. In the
compression processes, oblique shock waves are generated around the peripheral of
the plume. At the center axis, a Mach reflection is formed. In such an axisymmet-
ric configuration, the Mach stem is configured as a disk (Mach disk). Behind the

2For further details, refer to Sect. 11.1.
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Mach disk, the temperature and pressure become high, such that they are visually
observable.

7.4.5 Transition Criteria

Thus far, we dealt with two-dimensional shock wave reflection with the shock angle
β, as a given parameter. Yet, in the shock polar analyses, the relation between the
pressure ratio and a deflection angle, θ , is more useful. Therefore, we analyze the
shock reflection phenomena based on the θ dependence. In the condition of Fig. 7.11,
only regular reflection is possible, while in Fig. 7.12, onlyMach reflection is possible.
However, combinations of M0 and θw (wedge angle) exist, with which both patterns
are possible.

A necessary condition for the regular reflection is that the polar of a reflected
shock wave intersects with the coordinate of θ = 0◦. As a critical condition, the
polar of the reflected shock wave becomes tangent to the coordinate. This is termed
as the detachment criterion, as depicted in Fig. 7.14.

θ2,max = θw ≡ θw,d. (7.108)

As described in Sect. 4.3, the condition for a maximum θ variation is effectively
equivalent to the sonic condition for the post-shock flow (sonic criterion).

A necessary condition for the Mach reflection is that the reflected shock polar
intersects with the incident shock polar in θ > 0◦ The critical condition is the polars
having an intersection at θ = 0◦ (mechanical equilibrium criterion).

θw − θ2 = θ3 = 0, θw ≡ θw,m. (7.109)

Fig. 7.14 Shock polars
under critical conditions



7.4 Reflection of Shock Waves 155

Fig. 7.15 Regimes of
possible shock reflection
patterns, γ = 1.4; MR, Mach
reflection; RR, regular
reflection

For a given flow Mach number M0, the conditions for the respective reflection
patterns are

Mach reflection:

θw,m ≤ θw < θmax (7.110)

Regular reflection:

0 ≤ θw < θw,d. (7.111)

Figure 7.15 maps the reflective domains. θmax is the maximum deflection angle
(see Sect. 4.3). There is no solution of an attached shock wave for θw > θmax.
With θw,m < θw,d, dual solutions exist in θw,m < θw < θw,d. This is experimentally
validated. In the case of theMach reflection, the flow behind theMach stem becomes
subsonic, and thereby it is affected by the downstream condition. Which reflection
pattern appears depends on boundary conditions and histories of the flow.

7.4.6 Shock Wave Reflection in Pseudo-Steady Flows

In this section, we deal with the reflection of a shock wave propagating in space over
an object, e.g., awedge. In Fig. 7.16,A planar shockwavewith a shockMach number,
Ms, is reflected on a wedge of an apex angle of θw. In inviscid flow, if the wedge has
an infinite length, a characteristic length cannot be defined, and thereby the shock
reflection pattern becomes self-similar (pseudo-steady flow). Setting a coordinate
originating at an appropriate point, a self-similar solution is obtained. The shock
reflection that appears in pseudo-steady flows is categorized into various patterns
[2].
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Fig. 7.16 A planar shock
wave incident on a wedge

Fig. 7.17 Regular reflection
in pseudo-steady flow

Fig. 7.18 Mach reflection in
pseudo-steady flow

Figure 7.17 schematically illustrates regular reflection. At the coordinate of the
origin that is set at the reflection point R, a supersonic flow with a Mach number of
Ms
/
sin β1 enters with an angle of β1 = (

π
/
2 − θw

)
with respect to the shock wave

front. The deflection angle in (2) equals that in (0).
Figure 7.18 shows the Mach reflection. A self-similar solution is obtained with

an origin set at the triple point. In pseudo-steady flows, various irregular reflection
patterns including the Mach reflection appear. In particular, with a shallow angle of
θw and/or Ms close to unity, a reflection pattern that does not agree with the three-
shock theory is observed. In this case, the incident shock wave is smoothly connected
even at the intersection point with the reflected shock wave. The reflection pattern
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regimes of this unsteady flow on M0 − θw coordinates do not necessarily agree with
those of the steady flow.

7.5 Shock Wave—Boundary Layer Interaction

This book basically deals with inviscid flows. However, in many real flows, prob-
lems regarding the interaction between a shock wave and a boundary layer becomes
important. In a boundary layer, the flow speed is low, and the pressure disturbance
may propagate upstream; a shock wave over the boundary layer forms an inverse
pressure gradient, which may extend upstream through the boundary layer. As a
result, flow separation may be induced.

Figure 7.19 schematically illustrates the reflection of an oblique shock wave on
a flat plate. Without the boundary layer (Fig. 7.19a), the incident shock wave is
reflected on the wall. However, if a boundary layer exists (Fig. 7.19b), the inverse
pressure gradient propagates back toward the upstream, inducing flow separation
and a separation bubble. In front of the bubble, the flow is directed off the wall,
accompanied by a separation shock, which is connected to the reflected shock wave.
Behind the bubble, the flow reattaches with the accompanying compression waves.
If the compression waves coalesce, an oblique shock wave appears (not shown in the
figure). In the boundary layer, the flow Mach number varies from 0 (on the wall) to
a supersonic value. Under the sonic line, the flow is subsonic, and the shock wave
smears out.

(a) Inviscid flow

(b) With boundary layer

Fig. 7.19 Reflection of oblique shock wave on a plate
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 (a) Inviscid flow 

(b)With boundary layer

Fig. 7.20 Modification of supersonic flow over a ramp

Figure 7.20 illustrates the supersonic flows incident to a ramp. In inviscid flow
(Fig. 7.20a), an oblique shock wave attaches to the corner. However, with a boundary
layer (Fig. 7.20b), the flow is separated due to an effective, inverse pressure gradient
being accompanied by a separation shock wave in front of the separation bubble.
Downstream of the bubble, the flow reattaches, inducing a reattachment shock wave.

If such a shock wave boundary layer interaction is significant in the real flow, the
effective streamline changes, possibly degrading the performance of aerodynamic
devices, such as a supersonic intake. In these flows, instability often matters to a
large degree. Therefore, the design should be carefully constructed.

7.6 Practice: Supersonic Flow Incident on an Inverted
Triangle Wing

Let us analyze the flow around an inverted triangle wing in a supersonic flow, and
evaluate its aerodynamics performance. This is good practice to deal with two-
dimensional flow, where shock waves and/or expansion waves appear. The inverted
isosceles triangle wing with a base angle of φ is in a uniform flow with a Mach num-
ber M0 and an angle of attack α (Fig. 7.21). In the figure, under the leading wedge
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Fig. 7.21 Supersonic flow
around an inverted triangle
wing

(C1), an oblique shock wave (SW01) is generated. Here, the shock wave is assumed to
be attached to the wing. At the apex corner (C2), an expansion fan (EW12) is formed.
Above C1, an expansion fan (EW03) is formed. At the trailing edge (C3), the two
flows with a different angle of φ impinge on each other, forming a slip line (SL45)
across which the pressures are equal. Whether the waves W34 and W25 become a
shock wave or an expansion fan depends on the mutual flow conditions.

The variation of the deflection angle, θ (which has a positive sign in the clockwise
direction), past an expansion fan is defined as

�θ = θd − θu (7.112)

where subscripts “u” and “d” indicate the upstream and downstream conditions,
respectively. On the upper surface (3), an oblique shock wave is generated with
�θ < 0, while an expansion fan is generated with �θ > 0 on the lower surface (1
and 2), and vice versa, respectively.

First, let us obtain the flow condition behind an oblique shock wave. The angle
between the shock wave and the upstream flow, β, is obtained by implicitly solving
(4.79).

tan|�θ | = 2 cot β
(
M2

u sin
2 β − 1

)
M2

u (γ + cos 2β) + 2
. (7.113)

Substituting (4.74) and (4.87) with β as the solution of (7.112), the downstream
pressure and Mach number are obtained.

pd

pu
= 1 + 2γ

γ + 1

(
M2

u sin
2 β − 1

)
(7.114)

Md = 1

sin(β − |�θ |)
[

(γ − 1)M2
u sin

2 β + 2

2γ M2
u sin

2 β − (γ − 1)

] 1
2

. (7.115)

The downstream condition past an expansion fan is obtained as the solution of
the implicit Eqs. (7.43) and (7.49).

|�θ | = ν(Md) − ν(Mu) (7.116)
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Fig. 7.22 Pressure ratio
versus deflection angle, γ =
1.4, Mu = 2.0

Fig. 7.23 Example of flow field, γ = 1.4, M0 = 2.0, φ = 10°, α = 5°

ν(M) ≡
√

γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1) − tan−1

√
M2 − 1. (7.117)

The pressure ratio is obtained from the isentropic relation given by (7.57).
The above variations are graphically illustrated in Fig. 7.22. The regime of

pd
/

pu > 1 corresponds to a shock wave, pd/pu < 1 to Prandtl–Meyer expan-
sion. The curves for the upper and lower sides are symmetrical to each other, as the
compression and expansion directions are opposite.

The example of the flow field is shown in Figs. 7.23 and 7.24. On the lower side
of the wing, the flow is compressed by the oblique shock wave (1) and then expanded
at the apex corner (2). On the upper side, the flow is expanded (3). Downstream of
the trailing edge, the flow is separated by the slip line to regimes 4 (upper) and 5
(lower), which in turn are formed behind the respective oblique shock waves. Note
that these flows have a small deflection angle of –0.10°, as shown in Fig. 7.24b.
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(a) Whole flow field (b) Flow around trailing edge

Fig. 7.24 Pressure versus deflection angle under the condition of Fig. 7.23

Fig. 7.25 Direction of
forces on the respective
surface

The aerodynamics performance of the wing is calculated with definitions shown
in Fig. 7.25. The span and cord lengths of the wing are designated by b and c, respec-
tively. With the forces exerted on the respective surface, the resultant force is decom-
posed to a drag D in the stream-wise direction and a lift L, (upward) perpendicular
to it.

L = p1b
c

2 cosφ
cos(α + φ) + p2b

c

2 cosφ
cos(α − φ) − p3bc cosα (7.118)

D = p1b
c

2 cosφ
sin(α + φ) + p2b

c

2 cosφ
sin(α − φ) − p3bc sin α (7.119)

CL = L
1
2ρ0U2

0 bc
= 2

γ M2
0 p0

[
p1

1

2 cosφ
cos(α + φ) + p2

1

2 cosφ
cos(α − φ) − p3 cosα

]

(7.120)

CD = D
1
2ρ0U2

0 bc
= 2

γ M2
0 p0

[
p1

1

2 cosφ
sin(α + φ) + p2

1

2 cosφ
sin(α − φ) − p3 sin α

]

(7.121)

L

D
= p1

1
2 cosφ

cos(α + φ) + p2
1

2 cosφ
cos(α − φ) − p3 cosα

p1
1

2 cosφ
sin(α + φ) + p2

1
2 cosφ

sin(α − φ) − p3 sin α
. (7.122)
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(a) Mach number  (b) Pressure, normalized

(c) Deflection angle (d) Aerodynamics performance

Fig. 7.26 Variation of flow and aerodynamic performance as a function of α, γ = 1.4, M0 = 2.0,
φ = 10°

In the case of Fig. 7.23, CL = 0.255, CD = 0.068, and L/D = 3.8. The aerody-
namics performance for M0 = 2.0 is shown in Fig. 7.26. In the figures, only solutions
where the flow is supersonic in the entire regime are shown.
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Chapter 8
Unsteady, One-Dimensional Flows

Pressure waves appearing in this book are categorized in Table 8.1. The density of
gas is increased by the compression wave, and decreased by the expansion wave. A
shockwave is a special type of compression wave, and it is thus dealt with differently.
A sound wave is an infinitesimally weak wave, in which the time average of the flow
velocity and thermodynamic properties remain unchanged. The speed of sound is
a fundamental quantity obtained in characteristic velocities of wave propagation,
which will be formulated for unsteady, one-dimensional flow in this chapter. As
described in the Appendix, this formulation can be extended to three-dimensional
flow.

8.1 Sound Wave

Generally, sound signifies a pressure oscillation of air in an audible frequency band
(from 20 to 20 kHz). The amplitude, frequency, and its spectra determine the sound
pressure, pitch, and tone color. With the pressure oscillation, the density also oscil-
lates while their time-averaged values vary only with much longer time scales com-
pared to the oscillation period. As shown in Fig. 8.1, the amplitude of the oscillation is
locally constant in a spatiotemporal sense, and at most on the order of one ten thou-
sands.1 Therefore, this variation is treated as a disturbance. In compressible fluid
dynamics, the sound wave is fundamental pressure wave, which propagates pressure
and density disturbances. As long as the fluctuations are treated as disturbances, there
are no constraints in their frequency ranges, and they can be superimposed onto each
other, such that the waves are linear.

1The sound pressure level is defined by LP = 20 log
{
(�p)rms/p0

}
[dB], where (�p)rms is the

effective sound pressure, the root-mean-square of the pressure oscillation, and p0 = 2×10−5 [Pa].
At LP = 120 [dB], we cannot conduct daily conversation with (�p)rms=20 [Pa], which is one five
thousands of the atmospheric pressure.
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Fig. 8.1 Oscillation of X (pressure, density, or flow velocity) with respect to space, x, or time, t

Table 8.1 Categorization of pressure waves

Expansion wave Sound wave Compression
wave

Shock wave

Linearity Nonlinear Linear Nonlinear

Density variation �ρ < 0 �ρ > 0 �ρ > 0

Entropy
variation, �s

0 O
(
(�p)3

)
> 0

Variation in flow
parameters

Continuous Time average,
unchanged

Continuous Discontinuous

Changes in the density of a medium induce pressure variations, which propagate
toward the surroundings. In adiabatic processes, if part of a gas is compressed, its
pressure is increased, thereby exerting force on the surrounding gas in order for it
to expand. If expanded, the pressure is decreased, thereby being compressed by the
surroundings (Fig. 8.2). These scenarios apply even to condensed matter, liquid, or
solid. The speed of sound is a function of thermodynamic properties, in a calorically
perfect gas only of a temperature. In a uniform gas, the speed of sound is likewise
uniform. As shown in Fig. 1.2, a preceding sound wave is not caught up with the
proceeding sound waves. The sound wave is an infinitesimally weak pressure wave.

Fig. 8.2 Generation and
propagation of sound waves
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8.2 Characteristic Velocity and Invariants

Here, we derive characteristic velocity and invariants in unsteady, one-dimensional
flow (in x-direction). Volume force and heat conduction are not taken into account.
The flow is assumed to be isentropic. The x-components of the mass (3.4) and
momentum (3.15) conservation equations are as follows:

Mass conservation : ∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 (8.1)

Momentum conservation : ∂u

∂t
+ u

∂u

∂x
+ 1

ρ

∂p

∂x
= 0. (8.2)

Energy conservation (isentropic flow):

T ds = de + pd

(
1

ρ

)
= dh − 1

ρ
dp = 0. (8.3)

Applying the equation of state of an ideal gas (2.3) and that of a calorically perfect
gas (2.97),

T ds = CpdT − 1

ρ
dp = Cpd

(
p

ρR

)
− 1

ρ
dp = p

ρR

[(
Cp − R

)dp
p

− Cp
dρ

ρ

]
= 0.

(8.4)

From (8.4),

(
∂p

∂ρ

)

s

= Cp

Cp − R

p

ρ
= Cp

Cv

p

ρ
= γ

p

ρ
= γ RT . (8.5)

We will see in the following that a which is defined by

a ≡
√(

∂p

∂ρ

)

s

(8.6)

has a physical meaning as the speed of sound. For a calorically perfect gas, this
is in proportion to the square root of the temperature. For example, a monoatomic
gas has a small number of degrees of freedom, such that the portion of translational
motion is large. Therefore, with a large value of γ , a is high. Moreover, with a small
atomic mass, for example, hydrogen and helium, a is likewise high, as illustrated in
Table 8.2.

For isentropic flow, (8.6) is expressed as a substantial derivative.

dp = a2dρ (8.7)
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Table 8.2 Speed of sound in a calorically perfect gas

Species Molecular mass [g/mol] γ a [m/s] T = 288 K a [m/s] T = 400 K

H2 2.0 1.4 1290 1530

He 4.0 1.67 1000 1180

Air 29 1.4 340 400

Ar 40 1.67 320 370

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= 0. (8.8)

Combining (8.1) and (8.8),

∂p

∂t
+ u

∂p

∂x
+ ρa2

∂u

∂x
= 0. (8.9)

The conservation Eqs. (8.1), (8.2), and (8.9) are combined as

∂V
∂t

+ A
∂V
∂x

= 0 (8.10)

V =
⎛

⎜
⎝

ρ

u

p

⎞

⎟
⎠, A =

⎛

⎜
⎝
u ρ 0
0 u 1

ρ

0 ρa2 u

⎞

⎟
⎠, 0 =

⎛

⎜
⎝

0

0

0

⎞

⎟
⎠. (8.11)

Let us assume a wave-form solution

V = V̄eiφ(x, t), (i, imaginary unit). (8.12)

Substituting (8.10) with (8.12),

(ωI − kA)V̄ = 0, (I, unit vector) (8.13)

ω ≡ ∂φ

∂t
(8.14)

k = −∂φ

∂x
. (8.15)

Multiplying (8.13) with 1/k, and defining the phase velocity, λ,

λ ≡ ω

k
(8.16)

(A − λI)V̄ = 0. (8.17)
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In order for V̄ to have nontrivial solutions, the following characteristic equation
should hold.

|A − λI| = 0. (8.18)

Since

AV̄ = λ V̄ (8.19)

λ and V̄ become the eigenvalue and eigenvector of the matrix A, respectively. As a
3×3matrix,A has three eigenvalues, λ1, λ2, λ3, and the corresponding eigenvectors,
V̄1 , V̄2 , V̄3. Defining

� =
⎛

⎝
λ1 0 0
0 λ2 0
0 0 λ3

⎞

⎠ (8.20)

L = ( V̄1 , V̄2 , V̄3
)
. (8.21)

Equation yields

AL = L	 or � = L−1AL. (8.22)

From (8.18),

∣∣∣∣∣∣∣

u − λ ρ 0
0 u − λ 1

ρ

0 ρ a2 u − λ

∣∣∣∣∣∣∣
= 0

(λ − u − a)(λ − u + a)(λ − u ) = 0. (8.23)

Therefore, the solutions are

⎧
⎪⎨

⎪⎩

λ1 = u + a

λ2 = u − a

λ3 = u

. (8.24)

With (8.19) and

V̄ ≡
⎛

⎜
⎝

X1

X2

X3

⎞

⎟
⎠ (8.25)
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uX1 + ρ X2 = λ X1

uX2 + 1

ρ
X3 = λ X2

ρ a2X2 + uX3 = λ X3

. (8.26)

Therefore, with λ = u ± a,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uX1 + ρ X2 = (u ± a)X1

uX2 + 1

ρ
X3 = (u ± a)X2

ρ a2X2 + uX3 = (u ± a)X3
{

ρ X2 = ±aX1

X3 = ±ρaX2
(double sign corresponds).

The eigenvectors are

For λ1 = u + a, V̄1 =
⎛

⎝
ρ

a
ρa2

⎞

⎠, (8.27)

For λ2 = u − a, V̄2 =
⎛

⎝
ρ

−a
ρa2

⎞

⎠. (8.28)

For λ = u, (8.26) yields

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uX1 + ρ X2 = u X1

uX2 + 1

ρ
X3 = uX2

ρ a2X2 + uX3 = u X3

.

Therefore,

⎧
⎪⎨

⎪⎩

X1, arbitrary

X2 = 0

X3 = 0

.

Therefore, with generality,

For λ3 = u, V3 =
⎛

⎜
⎝

1

0

0

⎞

⎟
⎠. (8.29)
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Substituting (8.21) with (8.27) to (8.29),

L = (V̄1, V̄2, V̄3
) =

⎛

⎝
ρ ρ 1
a −a 0

ρa2 ρa2 0

⎞

⎠ (8.30)

L−1 = 1

2ρa3

⎛

⎝
0 ρa2 a
0 −ρa2 a

2ρa3 0 −2ρa

⎞

⎠ =
⎛

⎜
⎝
0 1

2a
1

2ρa2

0 − 1
2a

1
2ρa2

1 0 − 1
a2

⎞

⎟
⎠. (8.31)

Multiplying (8.10) with (8.31),

L−1 ∂V
∂t

+ L−1A
∂V
∂x

= 0 (8.32)

L−1 ∂V
∂t

=
⎛

⎜
⎝
0 1

2a
1

2ρa2

0 − 1
2a

1
2ρa2

1 0 − 1
a2

⎞

⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎝

∂ρ

∂t
∂u

∂t
∂p

∂t

⎞

⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

1

2a

∂u

∂t
+ 1

2ρa2
∂p

∂t

− 1

2a

∂u

∂t
+ 1

2ρa2
∂p

∂t
∂ρ

∂t
− 1

a2
∂p

∂t

⎞

⎟⎟⎟⎟⎟⎟
⎠

(8.33)

L−1A
∂V
∂x

=

⎛

⎜⎜
⎝

0 1
2a

1
2ρa2

0 − 1
2a

1
2ρa2

1 0 − 1
a2

⎞

⎟⎟
⎠

⎛

⎜
⎝
u ρ 0
0 u 1

ρ

0 ρ a2 u

⎞

⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜
⎝

∂ρ

∂x
∂u

∂x
∂p

∂x

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

u + a

2a

∂u

∂x
+ u + a

2ρa2
∂p

∂x
−u + a

2a

∂u

∂x
+ u − a

2ρa2
∂p

∂x

u
∂ρ

∂x
− u

a2
∂p

∂x

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

(8.34)

Therefore,

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

∂u

∂t
+ (u + a)

∂u

∂x
+ 1

ρa

{
∂p

∂t
+ (u + a)

∂p

∂x

}

∂u

∂t
+ (u − a)

∂u

∂x
− 1

ρa

{
∂p

∂t
+ (u − a)

∂p

∂x

}

∂ρ

∂t
+ u

∂ρ

∂x
− 1

a2

(
∂p

∂t
+ u

∂p

∂x

)

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛

⎜
⎝

0

0

0

⎞

⎟
⎠. (8.35)

The variation in Y = Y (t, x) by tracing the velocity c is expressed by

dY

dt
= ∂Y

∂t
+ c

∂Y

∂x
(8.36)

c ≡ dx

dt
. (8.37)
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Applying this to (8.35), the following relations are obtained:

Along λ1 ≡ c+ = u + a (characteristic C+), dJ+ ≡ du + 1

ρa
dp = 0 (8.38)

Along λ2 ≡ c− = u − a (characteristic C−), dJ− ≡ du − 1

ρa
dp = 0 (8.39)

Along λ3 ≡ c0 = u (characteristic C0), dρ − 1

a2
dp = 0 that is dJ0 = 0, J0 ≡ s

(8.40)

c is a characteristic velocity, and J is aRiemann invariant. In (8.40), the characteristic
velocity equals to the flow velocity, along which the entropy is kept constant. For
calorically perfect gas,

e = 1

γ − 1

p

ρ
. (8.41)

From (8.3),

1

γ − 1
d

(
p

ρ

)
+ pd

(
1

ρ

)
= 0

dp

p
= γ

dρ

ρ
. (8.42)

From (8.6) and (8.42),

a2 = γ
p

ρ

da2 = γ d
p

ρ
= γ

(
1

ρ
dp − p

ρ2
dρ

)
.

Substituting with (8.42),

dp

ρa
= 2da

γ − 1
. (8.43)

Therefore, (8.38) and (8.39) are transformed to explicit forms:

d J+ = 0, J+ ≡ u + 2a

γ − 1
along λ1 ≡ c+ = u + a (characteristic C+) (8.44)

d J− = 0, J− ≡ u − 2a

γ − 1
along λ2 ≡ c− = u − a( characteristic C−). (8.45)
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Appendix 8.1 Isentropic Compressibility
An isentropic compressibility, κ , equals to the rate of variation in a specific volume
with respect to a pressure.

κ ≡ − 1

υ

(
∂υ

∂p

)

s

(8.46)

Since

ρ = 1

υ
, (8.47)

dυ = − 1

ρ2
dρ (8.48)

κ = −ρ
dυ

dρ

(
∂ρ

∂p

)

s

= −ρ

(
− 1

ρ2

)(
∂ρ

∂p

)

s

= 1

ρ

(
∂ρ

∂p

)

s

. (8.49)

Using κ , a is given by

a =
√(

∂p

∂ρ

)

s

= 1√
κρ

. (8.50)

8.3 Compression Wave

Let a piston start tomove in quiescent air in the x-direction (Fig. 8.3).When the piston
slowly starts moving, it compresses the air in front of it; the compression waves C+

propagate to the right, such that a flow velocity u(> 0) is induced. Although an
infinite number of compression waves is induced, only small numbers are shown in
Fig. 8.3. At t = t1, the piston velocity is equal to up with the pressure distribution as
shown. A compression wave C+ propagates at a local characteristic velocity,

c+ = u + a (8.51)

Because u and a vary with respect to (x, t), c+ varies also spatiotemporally. The
leading wave “a” is generated when the piston starts to move at t = 0. In front of “a”,
the air is quiescent without information on the piston movement. The flow velocity
u to the right increases while approaching the piston, and is equal to up at the piston
(wave “c”).

In contrast, C− waves (broken lines) propagate toward the piston from the right.
Since they propagate from the quiescent region (0), they have the same invariant
J−,∞. Let us obtain the flow variables from the flow velocity, ub, at “b.” From, (8.45)
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Fig. 8.3 Wave diagram and
pressure distribution induced
by a piston slowly
accelerated to a velocity
up(>0) at t = t1

u − 2a

γ − 1
= − 2a0

γ − 1

a = a0 + γ − 1

2
u. (8.52)

Using the isentropic relation (2.91),

p = p0

(
a

a0

)
2γ

γ−1 = p0

(
1 + γ − 1

2a0
u

)
2γ

γ−1 . (8.53)

As seen in (8.53), the pressure is an increasing function of the flow velocity.
Approaching the piston, the flow velocity and then the pressure gradually increase.

The propagation velocity of C+ is given by
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Fig. 8.4 Formation of a
shock wave from coalesced
compression waves

c+ = u + a0 + γ − 1

2
u = a0 + γ + 1

2
u =

{
γ + 1

2

(
p

p0

) γ−1
2γ

− 1

}
2

γ − 1
a0.

(8.54)

Because (γ − 1)/(2γ ) > 0, the higher the pressure, the larger c+ becomes. That
is, in compression waves the propagation velocity is higher at behind than at in front.
As shown in Fig. 8.4, as time elapses, the separation distance between the compres-
sion waves decreases; and the pressure gradient increases accordingly. Eventually,
waves catch upwith the precedingwaves, and thereby invariants corresponding to the
respective characteristics break up mathematically. Such inconsistencies are solved
by the formation of a shock wave. In other words, if plural compression waves coa-
lesce, the waves cannot keep their smooth variation, thereby making the transition
to a shock wave. At the same time, the assumption of isentropic processes is broken,
and the entropy increases behind the shock wave.

Let us obtain the shock wave formation distance, L, in Fig. 8.4 by considering
the intersection of compression waves that originate from points “a” (xa, 0) and “b”
(xb, 0) at t = 0. Their propagation velocities are

c+,a = ua + aa = a0 (8.55)

c+,b = ub + ab (8.56)
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�x = xa − xb. (8.57)

From geometrical relations,

ts = xs − xa
c+,a

= xs − xb
c+,b

= xs − xa + �x

c+,b
. (8.58)

Here

J−,0 = ua − 2aa
γ − 1

= ub − 2ab
γ − 1

= − 2a0
γ − 1

. (8.59)

From (8.55) to (8.59),

L ≡ xs − xa = c+,a

c+,b − c+,a
�x = 2

γ+1

a0
ub

�x . (8.60)

With �x → 0,

ua − ub
�x

= 0 − ub
�x

= − ub
�x

→
(

∂u

∂x

)

t=0

(8.61)

L = − 2
γ+1

a0(
∂u
∂x

)
t=0

(8.62)

ts = L

a0
= − 2

γ + 1

1
(

∂u
∂x

)
t=0

. (8.63)

Equation (8.62) states that L is inversely proportional to the flow velocity gradient.
In practice, the pressure p is measured rather than the flow velocity u. From (8.45)
and (8.53),

�u = 2

γ − 1
�a ∼= 2

γ − 1

γ − 1

2γ

�p

p
a = a

γ

�p

p
. (8.64)

Combining (8.62) and (8.64),

L = − 2γ
γ+1

p0(
∂p
∂x

)

t=0

(8.65)

L is inversely proportional to the pressure gradient as well. In many cases, the
pressure is measured at a fixed point. From (8.54), the time derivative of the pressure
measured at point “b” is given by

(
∂p

∂t

)

t=0

= −(ub + ab)

(
∂p

∂x

)

t=0

= −
{

γ + 1

2

(
pb
p0

) γ−1
2γ

− 1

}
2a0

γ − 1

(
∂p

∂x

)

t=0
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Fig. 8.5 Generation of
compression waves by a
high-speed train entering a
tunnel

→ −a0

(
∂p

∂x

)

t=0

as pb → p0. (8.66)

Using (8.66), (8.65) is transformed to

L = 2γ
γ+1

p0a0(
∂p
∂t

)

t=0

(8.67)

L is in inverse proportion to the time derivative of the pressure.
When a high-speed train enters a tunnel, the train acts as a “leaky piston,” gen-

erating compression waves (Fig. 8.5). Assume that a train with a nose length of
l = 20 m enters the tunnel with a speed of utrain = 100 m/s (360 km/h). Do the
generated compression waves make the transition to a shock wave? We assume that
the pressure increases by 1 kPa�p/p0 = 1kPa/100kPa = 0.01 after the nose enters
the tunnel. The period of the entry is l/utrain = 20 [m]/100 [m/s] = 0.2 [s]. During
that period, the leading wave advances by a0l/utrain = 340 [m/s]×0.2 [s] = 68 [m].
Substituting these values with (8.65),

L = 2×1.4
1.4+1

100 [kPa]
(
1 [kPa]
68 [m]

) ∼= 7.9 × 103 [m] = 7.9 [km]. (8.68)

Based on this estimation, the compression waves make the transition to a shock
wave in a tunnel longer than this value. If the shock wave emits from the tunnel
exit, it is accompanied by a tunnel sonic boom [1]. However, in practice, a boundary
layer grows in the long tunnel, attenuating the shock wave. To avoid the tunnel sonic
boom, the effective pressure gradient upon entry should be minimized.

As will be shown in the following sections, when compression waves make the
transition to a shock wave, their characteristics greatly change with a large accom-
panying force, impulse, or noise. To utilize such characteristics, L should be small,
whereas it should be large to avoid the formation of a shock wave that can cause
various hazards and noises.
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8.4 Expansion Wave

Let us consider a pistonmotion at a constant velocityup(<0) in the opposite direction,
as shown in Fig. 8.6. On the right-hand side of the piston, the air expands due to the
depletion, inducing expansion waves propagating off the piston. The leading wave
“a” propagates with a speed of sound, a0, in the quiescent air. On the left-hand side
of “a,” the expansion waves that originate in the origin propagate radially on the x-t
coordinates, thereby forming an expansion fan. On the wave “d”, which is closest to
the piston, the flow velocity equals to up. In the regime between the wave “d” and
the piston, the flow is uniform with the velocity

c+,d = a0 + γ + 1

2
up.

The waves in the expansion fan are C+ waves. For a wave with a propagation
velocity of

c+ = u + a, (8.69)

Equations (8.53) and (8.54) yield

Fig. 8.6 Wave diagram,
distributions of pressure and
flow velocity induced by
“pulling” a piston with a
constant velocity up(< 0)
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Fig. 8.7 Trajectories of
expansion waves originate in
a smooth pressure gradient
and are associated by
pressure distributions

u = 2

γ + 1
(c+ − a0) (8.70)

p = p0

(
2

γ + 1
+ γ − 1

γ + 1

c+
a0

)
2γ

γ−1 (8.71)

a0 + γ + 1

2
up = c+,d ≤ c+

between d and a

≤ c+,a = a0. (8.72)

The farther the wave is from “a,” the larger the absolute value of u becomes.
However, in the negative direction, the speed of sound becomes lower. At the wave
“d,” u equals to up. Resultantly, in the case of expansionwaves, the leadingwave goes
ahead; a preceding wave is not caught up by the waves following behind. With the
elapse of time, the distance between the waves increases, and the pressure gradient
becomes smoothed out. Unlike in the shock waves, the isentropic assumption does
not break up. In this way, an expansion fan is formed, not necessarily centered at a
single point, as shown in Fig. 8.7.

8.4.1 Exercise: Piston Falling in Tube

Problem: A straight tube with a cross-sectional area A vertically stands at the atmo-
spheric pressure, p0. At t = 0, a piston with a mass m is released for its free fall
in the tube (Fig. 8.8). The tube is long enough, and perfectly seals the clearance
between the piston. A friction force between the piston and the inner wall of the
tube is negligible. The x coordinated is set vertically downward, and it originates
in the initial location of the piston. The following steps need to be taken within the
condition that compression waves do not make the transition to a shock wave.
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Fig. 8.8 Piston falling in a
straight tube

(1) The forces on the upper and lower surface of the piston need to be obtained as
the function of a piston velocity, U.

(2) The shock wave formation distance needs to be determined.
(3) The piston trajectory and associated wave diagram on x-t coordinates need to

be determined.

Results:

(1) The pressure on the upper and lower surface of the piston, and the gravitational
acceleration are denoted by p1, p2 and g, respectively. The equation of motion
of the piston is

m
d2x

dt2
= mg + (p1 − p2)A (8.73)

d2x

dt2
= g +

(
p1
p0

− p2
p0

)
p0A

m
. (8.74)

Using the piston velocity, U,



8.4 Expansion Wave 179

U = dx

dt
. (8.75)

From, (8.53),

p1 = p0

(
1 − γ − 1

2a0
U

)
2γ

γ−1 (8.76)

a1 = a0 − γ − 1

2
U (8.77)

p2 = p0

(
1 + γ − 1

2a0
U

)
2γ

γ−1 (8.78)

a2 = a0 + γ − 1

2
U. (8.79)

Then, the respective forces exerted on the upper and lower surfaces of the piston
are

p1A = p0A

(
1 − γ − 1

2a0
U

) 2γ
γ−1

(8.80)

−p2A = −p0A

(
1 + γ − 1

2a0
U

) 2γ
γ−1

(8.81)

(2) Since the piston is accelerated downward, expansion waves are generated on
the upper surface, while compression waves are generated on the lower surface.
The transition to a shock wave occurs on the lower side. From (8.74), (8.76),
and (8.78), the acceleration of the piston at t = 0 is

(
dU

dt

)

t=0

= g +
{(

1 − γ − 1

2a0
U

)
2γ

γ−1 −
(
1 + γ − 1

2a0
U

)
2γ

γ−1

}
p0A

m
.

(8.82)

Transforming (8.78) and (8.82) by using the condition of U = 0 at t = 0,

(
dp2
dt

)

t=0
=
(

∂p2
∂t

)

t=0
+ 0 ·

(
∂p2
∂x

)

t=0
=
(

∂p2
∂t

)

t=0
= p0γ

a0

(
1 + γ − 1

2a0
U

)
γ+1
γ−1

(
dU

dt

)

t=0
.

(8.83)

The shock wave formation distance is obtained by substituting (8.67) with (8.82)
and (8.83).
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(a) Piston speed and the pressures            (b) Wave diagram

Fig. 8.9 Example of solution, m = 1 kg, A = 1 × 10−2 m2, p0 = 1 × 105 Pa, T0 = 298 K, g =
9.8 m/s2, air (molecular mass, 29), γ = 1.4

L = 2γ
γ+1

p0a0(
∂p
∂t

)

0

= 2γ
γ+1

p0a0

p0γ
a0

(
1 + γ−1

2a0
U
) γ+1

γ−1

[
g +

{(
1 − γ−1

2a0
U
) 2γ

γ−1 −
(
1 + γ−1

2a0
U
) 2γ

γ−1

}
p0A
m

]

= 2
γ+1

a20
(
1 + γ−1

2a0
U
) γ+1

γ−1

[
g +

{(
1 − γ−1

2a0
U
) 2γ

γ−1 −
(
1 + γ−1

2a0
U
) 2γ

γ−1

}
p0A
m

] .

(8.84)

(3) By substituting (8.74) with (8.80) and (8.81), and numerically integrating it,
the piston trajectory is obtained. An example solution is shown in Fig. 8.9.
The acceleration of the piston decreases, because the pressure on the lower
surface increases and that on the upper surface decreases. Eventually, the drag
vanishes with the balance among the pressure forces and the gravitational force.
The pressures asymptotically approach the respective constant values. From
the piston, compression waves C+ propagate downward, while the expansion
waves propagate upward. In the regime depicted in the figure, the transition to
the shock wave has not been done yet.
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8.5 Pressure-Wave Propagation Around Normal Shock
Wave

In Sect. 4.2.1.4, we show that the flow in front of a normal shock wave is supersonic,
while it is subsonic behind it. Let us examine these relations on the laboratory frame
shown in Fig. 8.10. We compare the shock-wave propagation velocity, Us and the
propagation velocities of c+ in front of the shock wave (subscript 1) and behind it
(subscript 2).

c+,1 = u1 + a1 (8.85)

Us = u1 + Msa1. (8.86)

Applying (4.49) and (4.51) to calorically perfect gas.

c+,2 = u2 + a2 = u1 + a1
(γ + 1)Ms

[

2
(
M2
s − 1

)
+
(
2γ M2

s − γ + 1
) 1
2
{
(γ − 1)M2

s + 2
} 1
2

]

.

(8.87)

From (8.85) to (8.87), because Ms > 1,

c+,1 < Us < c+,2 (8.88)

These relations are shown in Figs. 8.11 and 8.12. Relation (8.88) is equivalent to
the condition in the frame fixed to the shock wave.

1 < Ms, M2 < 1. (8.89)

These imply that pressure waves can catch up with the shock wave from behind
and alter the shock strength. However, the flow in front of the shock wave cannot be
affected by the shock wave before its arrival. Pressure waves in front of the shock
wave eventually catch up with the shock wave.

Fig. 8.10 Wave propagation
relations in a laboratory
frame
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Fig. 8.11 Wave
propagations in a laboratory
frame

Fig. 8.12 Propagation
velocity of a normal shock
wave, and pressure waves in
front of and behind it, in a
laboratory frame. γ = 1.4
and u1 = 0

c+ = c+,1 + c+,2

2

= u1 + a1 + u2 + a2
2

= u1 + a1
2(γ + 1)Ms

[

2
(
M2
s − 1

)
+
(
2γ M2

s − γ + 1
) 1
2
{
(γ − 1)M2

s + 2
} 1
2 + (γ + 1)Ms

]

= u1 + f (Ms)Msa1

f (Ms) ≡
2M2

s + (γ + 1)Ms − 2 +
(
2γ M2

s − γ + 1
) 1
2
{
(γ − 1)M2

s + 2
} 1
2

2(γ + 1)M2
s

.

If Ms � 1,

c+ � u1 + f (1)Msa1 = u1 + Msa1 = Us.

This means, as seen in Fig. 8.12, that the shock speed approximately equals the
average of c+ across the shock wave.
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8.6 Shock-Wave Propagation in Variable Area Duct

Let us analyze the shock wave behavior propagating in a duct with variable cross-
sectional area [2]. The flow is assumed to be along the x-axis, and inviscid. The
cross-sectional area A(x) does not vary with time. As in Chap. 5, the unsteady flow
conservation equations are applied to the control volume of Fig. 5.2 in a quasi-one-
dimensional flow. From the mass conservation Eq. (3.2),

∂

∂t
(ρAdx) = −d(ρuA) (8.90)

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= −ρu

A

dA

dx
. (8.91)

From the momentum conservation Eq. (3.6),

∂

∂t
(ρuAdx) = −d

(
ρu2A

)− Adp. (8.92)

As explained in Sect. 5.1.1, in the second term on the right-hand side of (8.92),
A is not enclosed in the derivative, because the force component exerting forces on
the duct wall is balanced with the force due to the pressure on the deferential in the
cross-sectional area. Transforming (8.92) with (8.90),

(ρAdx)
∂

∂t
u + ρuAdu + Adp = −u

{
∂

∂t
(ρAdx) + d(ρuA)

}
= 0

∂u

∂t
+ u

∂u

∂x
+ 1

ρ

∂p

∂x
= 0. (8.93)

The momentum conservation Eq. (8.93) does not contain A, as described in
Sect. 5.1.

The isentropic relation involves only the variation of thermodynamic properties.

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= 0. (8.94)

Comparing (8.90), (8.93), and (8.94) with those without cross-sectional area vari-
ation, only the mass conservation equation contains A. From these equations, the
following equation for C+ without a ρ variation is obtained.

∂p

∂t
+ (u + a)

∂p

∂x
+ ρa

{
∂u

∂t
+ (u + a)

∂u

∂x

}
+ ρua2

A

dA

dx
= 0. (8.95)
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Here,

∂

∂t
+ dx

dt

∂

∂x
= dx

dt

d

dx
(8.96)

and with

dx

dt
= u + a (8.97)

dp

dx
+ ρa

du

dx
+ ρua2

u + a

1

A

dA

dx
= 0. (8.98)

In (8.98), the third term due to the cross-sectional area variation is added to the
first line of (8.35). Let us apply this equation to the condition behind a shock-wave
propagating in the duct. The condition in front of the shock wave is designated using
a subscript “0”. From the normal shock relations (4.47)–(4.49),

p

p0
= 1 + 2γ

γ + 1

(
M2

s − 1
)

(8.99)

ρ

ρ0
= (γ + 1)M2

s

(γ − 1)M2
s + 2

(8.100)

u = 2a0
γ + 1

(
Ms − 1

Ms

)
. (8.101)

From (8.99) and (8.100),

a

a0
=
√

p

ρ

ρ0

p0
=
√(

2γ M2
s − γ + 1

){
(γ − 1)M2

s + 2
}

(γ + 1)Ms
. (8.102)

Here, u is the flow velocity in the laboratory frame, which is equal to zero in front
of the shockwave. Substituting (8.98) with (8.99) to (8.102), and using a20 = γ p0/ρ0,
the equation with respect to Ms variation is obtained.

g(Ms)
dMs

dx
+ 1

A

dA

dx
= 0 (8.103)

g(Ms) ≡ Ms

M2
s − 1

(
2μ + 1 + 1

M2
s

)(
1 + 2

γ + 1

1 − μ2

μ

)
(8.104)

μ2 ≡ (γ − 1)M2
s + 2

2γ M2
s − γ + 1

. (8.105)
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Fig. 8.13 Ms as a function
of A

Integrating,

A

Aref
= exp

[
−
∫

Mref

g(Ms)dMs

]
. (8.106)

Equation (8.98) depicts a characteristic quantity along C+ propagating behind the
shock wave. Without the cross-sectional area variation, the quantity is kept constant
as long as the shock condition does not change. However, with the cross-sectional
area variation, C− waves from the shock wave are reflected against the duct wall,
thereby interacting with the shock wave as C+ waves. Since (8.106) is obtained by
neglecting this effect, it is not strictly correct. However, this equation is often used,
because the simple relation between A and Ms reproduces real phenomena with a
reasonable accuracy.

Figure 8.13 shows the examples of Ms as a function of A. The larger the A, the
lower Ms becomes, and vice versa. The extent of Ms variation depends on the value
of Ms at a reference area A. Figure 4.21 explains that a planar shock wave is stable
owing to this relation.

8.7 Blast Wave

When energy is suddenly released from a confined medium, such as explosives,
volcanoes, or heating by a laser pulse, a shock wave is generated, and followed
by an expansion zone, causing large impact or hazards. Such a wave is referred to
as a blast wave (Fig. 8.14). The blast wave is induced by a rapid expansion of an
energetic medium through an interface that pushes the surrounding gas. Usually, in
the explosion of an energetic medium, the contact surface experiences the Rayleigh–
Taylor instability (Chap. 4), becoming disturbed.However, because the shockwave is
stable, it shapes almost as a sphere centered at the point of the explosion. The leading
wave propagates as a shock wave. The pressure behind the shock wave decreases,
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(a) Shock wave and flow (b) Pressure variation measured at a fixed point

Fig. 8.14 Blast wave

because the volume of the energetic medium is finite. During its expansion, the
pressure surplus from the surroundings gradually decreases. The contact surface is
decelerated with generating expansion waves propagating outward. As shown in
Fig. 8.14b, the measured pressure p at a fixed point reaches the peak value ps, and
then decreases. During a period �t+, the impulse has a positive sign with respect to
the atmospheric value, p0. Then, the pressure becomes lower than p0, resulting in a
negative impulse.2

It is important to estimate the pressure and the impulse inducedby an explosion as a
function of a distance from the center. The theoretical model is applicable to a limited
extent. Usually, practical estimation needs to be done by combining measurements
and numerical simulations, as well as theoretical considerations.

Here, from dimensional analyses, let us obtain a similarity in blast waves induced
by a point explosion. In order to ease the analyses, approximations for a strong shock
wave are applied. The energetic medium expands from an infinitesimal to an infinite
volume. Two independent parameters, the energy of the medium, E, and the density
of the surrounding gas, ρ0, determine the phenomena, meaning that the elapsed
time, t, shock speed, Us, pressure immediately behind the shock wave, ps, etc., are
determined as a function of the shock wave radius, R. E and ρ0 have a dimension
of [ML2 T−2] and [ML-3], respectively. They cannot define a characteristic time.
Therefore, a dimensionless quantity, η, is defined together with r[L] and t [T].

η ≡ E− 1
5 ρ

1
5
0 r t

− 2
5 = r

(
E
ρ0

) 1
5
t
2
5

. (8.107)

Defining η0 as the value of η at a shock location, r = R. From (8.107),

2When the contact surface is decelerated, compression waves are generated, propagating to the
center. These compression waves are reflected from the center, propagating as the secondary shock
wave, which in Fig. 8.14 is not drawn for simplicity.
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R = η0

(
E

ρ0

) 1
5

t
2
5 . (8.108)

Therefore, the shock wave location is proportional to t
2
5 . Differentiating (8.108),

Us = dR

dt
= 2

5
η0

(
E

ρ0

) 1
5

t−
3
5 = 2

5

R

t
= 2

5
η

5
2
0 R

− 3
2

(
E

ρ0

) 1
2

. (8.109)

Applying the strong shock relation (4.59),

ps ≈ 2γ

γ + 1
p0M

2
s = 2γ p0

γ + 1

U 2
s

a20
= 2γ p0

γ + 1

U 2
s

γ p0
ρ0

= 2

γ + 1
ρ0U

2
s . (8.110)

Substituting with (8.109),

ps ≈ 2

γ + 1
ρ0U

2
s ∼ R−3

(
E

ρ0

)
(8.111)

R ∼
(
E/ρ0

ps

) 1
3

. (8.112)

Equation (8.112) provides a scaling law in the overpressure due to the explo-
sion. In order to reproduce the same magnitude of overpressure, the pressure should
be measured at a distance proportional to the cubic root of the explosion energy.
This relation is useful in estimating a safety distance from an explosive by scaled
experiments.

Appendix: Characteristics and Invariants in Three-Dimensional Flow
Let us derive the characteristics and invariants in the three-dimensional Euler equa-
tion. Transforming the equation to the form shown below, characteristics are obtained
as eigenvalues. Here, we neglect the body force and heat transfer. The conservation
equations shown in Chap. 3 are as follows:

Mass conservation : ∂ρ

∂t
+ ∇ · ρu = 0 (8.113)

Momentum conservation : ρ
∂u
∂t

+ ρ(u · ∇)u = −∇ p (8.114)

Energy conservation : ρ
De

Dt
= −p∇ · u. (8.115)

In three-dimensional flows, the momentum conservation (8.114) has three com-
ponents. Then, we have five equations in total. Now, we will transform those equa-
tions to differential equations with respect only to the following five parameters, ρ,
u = (u, v, w) and p.
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From the first law of thermodynamics,

T ds = de + pd

(
1

ρ

)
= de − p

ρ2
dρ. (8.116)

Assuming isentropic flow,

(
∂e

∂ρ

)

s

= p

ρ2
. (8.117)

Using the definition of the speed of sound from (8.6),

(
∂e

∂p

)

s

=
(

∂e
∂ρ

)

s(
∂p
∂ρ

)

s

=
p
ρ2

a2
= p

ρ2a2
. (8.118)

Substituting it with (8.116),

ρ
De

Dt
= ρ

[(
∂e

∂p

)

s

Dp

Dt

]
= p

ρa2
Dp

Dt
= −p∇ · u

∂p

∂t
+ u · ∇ p + ρ a2∇ · u = 0. (8.119)

Expressing (8.113), (8.114), and (8.119) using the velocity components,

∂ρ

∂t
+
(
u

∂ρ

∂x
+ ρ

∂u

∂x

)
+
(

v
∂ρ

∂y
+ ρ

∂v

∂y

)
+
(

w
∂ρ

∂z
+ ρ

∂w

∂z

)
= 0 (8.120)

⎛

⎜⎜⎜⎜⎜
⎝

∂u

∂t
∂v

∂t
∂w

∂t

⎞

⎟⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜⎜⎜
⎝

u
∂u

∂x
+ 1

ρ

∂p

∂x
+ v

∂u

∂y
+ w

∂u

∂z

u
∂v

∂x
+ v

∂v

∂y
+ 1

ρ

∂p

∂y
+ w

∂v

∂z

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+ 1

ρ

∂p

∂z

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

0

0

0

⎞

⎟⎟⎟⎟⎟⎟
⎠

(8.121)

∂p

∂t
+
(
u

∂p

∂x
+ ρa2

∂u

∂x

)
+
(

v
∂p

∂y
+ ρa2

∂v

∂y

)
+
(

w
∂p

∂z
+ ρa2

∂w

∂z

)
= 0.

(8.122)

These are written in a vector form.

∂V
∂t

+ (Ã · ∇)V = 0, (Ã · ∇)V =
(
A

∂

∂x
+ B

∂

∂y
+ C

∂

∂z

)
V (8.123)
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V =
⎛

⎜
⎝

ρ

u

P

⎞

⎟
⎠, Ã =

⎛

⎜
⎝

A

B

C

⎞

⎟
⎠, ∇ =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∂

∂x
∂

∂y
∂

∂z

⎞

⎟⎟⎟⎟⎟⎟
⎠

(8.124)

A =

⎛

⎜⎜⎜⎜⎜
⎝

u ρ 0 0 0
0 u 0 0 1

ρ

0 0 u 0 0
0 0 0 u 0
0 ρ a2 0 0 u

⎞

⎟⎟⎟⎟⎟
⎠

(8.125)

B =

⎛

⎜⎜⎜⎜⎜
⎝

v 0 ρ 0 0
0 v 0 0 0
0 0 v 0 1

ρ

0 0 0 v 0
0 0 ρ a2 0 v

⎞

⎟⎟⎟⎟⎟
⎠

(8.126)

C =

⎛

⎜⎜⎜⎜⎜
⎝

w 0 0 ρ 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w 1

ρ

0 0 0 ρ a2 w

⎞

⎟⎟⎟⎟⎟
⎠

(8.127)

0 =
⎛

⎜
⎝

0

0

0

⎞

⎟
⎠. (8.128)

Assuming a wave solution to (8.123),

V = V̄eiϕ(x,t), (i, imaginary unit) (8.129)

Substituting (8.129) to (8.123),

∂ϕ

∂t
V̄ + Ã · (∇ϕ) V̄ = 0 or

(
∂ϕ

∂t
I + A

∂ϕ

∂x
+ B

∂ϕ

∂y
+ C

∂ϕ

∂z

)
V̄ = 0. (8.130)

We define the followings:

λ ≡ −∂ϕ

∂t
(8.131)

k ≡ ∇ϕ (8.132)
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K ≡ Ã · k (8.133)

k is a unit normal vector (|k| = 1) to a characteristic, where ϕ = const.
Substituting (8.130) with (8.131)–(8.133),

(K − λI)V̄ = 0 KV̄ = λV̄ (8.134)

I is a unit matrix. In order for V̄ to have a solution other than 0, the following
characteristic equation should be satisfied.

|K − λI| = 0 (8.135)

The 5 × 5 matrix, K, has five sets of an eigenvalue, λ, and eigenvector, V̄. Let �
be defined as a matrix that has only diagonal components of the eigenvalues.

KL = L	 or � = L−1KL (8.136)

L = (V̄1, V̄2, . . . V̄5
)

(8.137)

� =

⎛

⎜⎜
⎝

λ1

·
·
λ5

⎞

⎟⎟
⎠ (8.138)

K =

⎛

⎜⎜⎜⎜⎜
⎝

u · k ρ kx ρ ky ρ kz 0
0 u · k 0 0 1

ρ
kx

0 0 u · k 0 1
ρ
ky

0 0 0 u · k 1
ρ
kz

0 ρ a2kx ρ a2ky ρ a2kz u · k

⎞

⎟⎟⎟⎟⎟
⎠

. (8.139)

Therefore, (8.135) yields

∣∣∣∣∣∣∣∣∣∣∣

u · k − λ ρ kx ρ ky ρ kz 0
0 u · k − λ 0 0 1

ρ
kx

0 0 u · k − λ 0 1
ρ
ky

0 0 0 u · k − λ 1
ρ
kz

0 ρ a2kx ρ a2ky ρ a2kz u · k − λ

∣∣∣∣∣∣∣∣∣∣∣

= 0 (8.140)

( u · k − λ )3
[
( u · k − λ)2 − a2

] = 0. (8.141)
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Using the solutions

⎧
⎪⎨

⎪⎩

λ1 = λ2 = λ3 = u · k
λ4 = u · k + a = (u + ak) · k
λ5 = u · k − a = (u − ak) · k

(8.142)

V̄ =

⎛

⎜⎜
⎝

X1

...

X5

⎞

⎟⎟
⎠. (8.143)

Equation (8.134) is transformed to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u · kX1 +ρ kx X2 +ρky X3 +ρ kz X4 = λ X1

u · kX2 + 1
ρ
kx X5 = λ X2

u · kX3 + 1
ρ
ky X5 = λ X3

u · kX4 + 1
ρ
kz X5 = λ X4

ρ a2kx X2 +ρ a2ky X3 +ρ a2kz X4 +u · kX5 = λ X5

. (8.144)

For λ = u · k,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X1 = arbitrary
⎛

⎜
⎝

X2

X3

X4

⎞

⎟
⎠ ·
⎛

⎜
⎝

kx
ky
kz

⎞

⎟
⎠ = 0

X5 = 0

. (8.145)

For example, the following unit vectors satisfy (8.145).

V̄1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

kx
0

kz
−ky

0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, V̄2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

ky
−kz

0

kx
0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, V̄3 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

kz
ky

−kx
0

0

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (8.146)

For λ = u · k ± a (double-sign corresponds),
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1 = 1

a2
X5

X2 = ± kx
ρa

X5

X3 = ± ky
ρa

X5

X4 = ± kz
ρa

X5

. (8.147)

For example,

V4 =

⎛

⎜⎜⎜⎜⎜
⎝

ρ

2a
kx
2
ky
2
kz
2
ρa
2

⎞

⎟⎟⎟⎟⎟
⎠

for λ = u · k + a, (8.148)

V̄5 =

⎛

⎜⎜⎜⎜⎜
⎝

ρ

2a
− kx

2

− ky
2

− kz
2

ρa
2

⎞

⎟⎟⎟⎟⎟
⎠

for λ = u · k − a. (8.149)

The inverse matrix of (8.137) is

L−1 =

⎛

⎜⎜⎜⎜⎜
⎝

kx 0 kz −ky − kx
a2

ky −kz 0 kx − ky
a2

kz ky −kx 0 − kz
a2

0 −kx ky kz
1
ρa

0 kx −ky −kz
1
ρa

⎞

⎟⎟⎟⎟⎟
⎠

. (8.150)

Multiplying (8.150) to the left of (8.123)

L−1 ∂V
∂t

+ L−1(Ã · ∇)V = 0 (8.151)

L−1 ∂V
∂t

=

⎛

⎜⎜⎜⎜⎜
⎝

kx
∂ρ

∂t +kz
∂v
∂t −ky

∂w
∂t − kx

a2
∂p
∂t

ky
∂ρ

∂t −kz
∂u
∂t +kx

∂w
∂t − ky

a2
∂p
∂t

kz
∂ρ

∂t +ky
∂u
∂t −kx

∂v
∂t − kz

a2
∂p
∂t

kx
∂u
∂t +ky

∂v
∂t +kz

∂w
∂t + 1

ρa
∂p
∂t

−kx
∂u
∂t −ky

∂v
∂t −kz

∂w
∂t + 1

ρa
∂p
∂t

⎞

⎟⎟⎟⎟⎟
⎠

(8.152)
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Ã · ∇ =

⎛

⎜⎜⎜⎜⎜⎜
⎝

u · ∇ ρ ∂
∂x ρ ∂

∂y ρ ∂
∂z 0

0 u · ∇ 0 0 1
ρ

∂
∂x

0 0 u · ∇ 0 1
ρ

∂
∂y

0 0 0 u · ∇ 1
ρ

∂
∂z

0 ρa2 ∂
∂x ρa2 ∂

∂y ρa2 ∂
∂z u · ∇

⎞

⎟⎟⎟⎟⎟⎟
⎠

(8.153)

L−1(Ã · ∇) =
⎛

⎜⎜⎜⎜⎜⎜
⎝

kxu · ∇ 0 kzu · ∇ −kyu · ∇ kz
1
ρ

∂
∂y − ky

1
ρ

∂
∂z − kx

a2
u · ∇

kyu · ∇ −kzu · ∇ 0 kxu · ∇ −kz
1
ρ

∂
∂x + kx

1
ρ

∂
∂z − ky

a2
u · ∇

kzu · ∇ kyu · ∇ −kxu · ∇ 0 ky
1
ρ

∂
∂x − kx

1
ρ

∂
∂y − kz

a2
u · ∇

0 kxu · ∇ + a ∂
∂x kyu · ∇ + a ∂

∂y kzu · ∇ + a ∂
∂z kx

1
ρ

∂
∂x + ky

1
ρ

∂
∂y + kz

1
ρ

∂
∂z + 1

ρa u · ∇
0 −kxu · ∇ + a ∂

∂x −kyu · ∇ + a ∂
∂y −kzu · ∇ + a ∂

∂z −kx
1
ρ

∂
∂x − ky

1
ρ

∂
∂y − kz

1
ρ

∂
∂z + 1

ρa u · ∇

⎞

⎟⎟⎟⎟⎟⎟
⎠

(8.154)

Substituting (8.151) with (8.152) and (8.154), the first line yields

kx

[(
∂

∂t
+ u · ∇

)
ρ − 1

a2

(
∂

∂t
+ u · ∇

)
p

]

︸ ︷︷ ︸
(A)

−ky

[(
∂

∂t
+ u · ∇

)
w + 1

ρ

∂p

∂z

]

︸ ︷︷ ︸
(B)

+kz

[(
∂

∂t
+ u · ∇

)
v + 1

ρ

∂p

∂y

]

︸ ︷︷ ︸
(C)

= 0..

(8.155)

For this equation to be satisfied for arbitrary wave number components,

(A) Along
dx
dt

= u, dρ − 1

a2
dp = 0 that is ds = 0 (8.156)

(B) is equivalent to the momentum conservation equation in the z-direction.
(C) is equivalent to the momentum conservation equation in the y-direction.

The same results are obtained from the second and third lines of (8.151). From
the fourth line,

k ·
[(

∂

∂t
+ u · ∇

)
u
]

+ a∇ · u + 1

ρa

[
∂

∂t
+ (u + ak) · ∇

]
p = 0. (8.157)

Here, we assume two unit vectors, l and m, which are normal to each other and
to k.

k · l = k · m = l · m = 0, |l| = |m| = 1. (8.158)

Since

∇k = k · ∇, ∇l = l · ∇, ∇m = m · ∇ (8.159)
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∇ · u = k · {(k · ∇)u} + l · {(l · ∇)u} + m · {(m · ∇)u} (8.160)

k is a normal vector,which does not change along l andm, that is. l·∇ = m·∇ = 0,

∇ · u = k · {(k · ∇)u}. (8.161)

From (8.157) and (8.161),

k ·
[{

∂

∂t
+ ( u + ak) · ∇

}
u
]

+ 1

ρa

[
∂

∂t
+ (u + ak) · ∇

]
p = 0. (8.162)

Defining

d+ ≡ ∂

∂t
+ ( u + ak) · ∇ (8.163)

k · d+u + 1

ρa
d+ p = 0. (8.164)

In the same way, from the fifth line of (8.151),

d− ≡ ∂

∂t
+ ( u − ak) · ∇ (8.165)

k ·
[{

∂

∂t
+ ( u − ak) · ∇

}
u
]

− 1

ρa

[
∂

∂t
+ (u − ak) · ∇

]
p = 0 (8.166)

k · d−u − 1

ρa
d− p = 0. (8.167)

Along the characteristics, therefore,

c± = u ± ak (8.168)

dJ± ≡ k · d±u ± 1

ρa
d± p = 0 (8.169)

J+ and J− are Riemann invariants.
In summary of the above results, taking k to the direction of the wave propagation,

Along
dx
dt

= c+ = u + ak, dJ+ = k · d+u + 1

ρa
d+ p = 0 (8.170)
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Along
dx
dt

= c− = u − ak, dJ− = k · d−u − 1

ρa
d− p = 0 (8.171)

Along
dx
dt

= c0 = u, ds = 0. (8.172)
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Chapter 9
Riemann Problem

Using the characteristics and invariants dealt with in Chap. 8, an initial value problem
with two one-dimensional elements can be solved. This is termed as the Riemann
problem, which gives a solution to Euler’s equation that may include a discontinuity.
In this chapter, we study Riemann’s solutions in detail and apply them to practical
problems.

9.1 Definition and Solution

Here, we deal with the interaction between two pressure waves or the interaction
between a pressure wave and a contact surface appearing in two one-dimensional
elements in contact. As shown in Fig. 9.1, at a time t = 0, two uniform states L
and R in which thermodynamic properties and/or a flow velocity may differ, start to
interact at the originO. We do not consider the history before the interaction (t < 0)
and solve this initial value problem.

The boundary between these two states at O is equivalent to a contact surface.
Let us denote the states after the interaction as L* on the left and R* on the right. A
left-running wave linked with the motion of the interface propagates in L, and sub-
sequently a right-running wave propagates in R. Here, the direction of propagation
refers to the interface, which is not necessarily the same as in the laboratory frame.
Each wave is either compression or expansion. In the case of the compression, we
assume that the compression waves coalesce right after the interaction, and the tran-
sition forms into a shock wave. In Fig. 9.1, each wave is represented by two straight
lines. In the case of the shock wave, they should merge to a single line. In the case of
expansion, they represent the leading wave and the tail of an expansion fan between
which the flow experiences a smooth variation.

The solution of the Riemann problem is categorized depending on the type of
waves. In extreme situations, vacuum regions may appear. Figure 9.2 shows all
possible patterns without the vacuum region. Since a possible wave is either a shock
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Fig. 9.1 Wave diagram of the Riemann problem in general form

(a) SW-SW (b) EF-SW 

(c) SW-EF             (d) EF-EF

Fig. 9.2 Solution patterns without a vacuum region

wave (SW) or an expansion fan (EF), four patterns exist: (a) is a shock–shock pattern,
(b) and (c) are the combinations of SW and EF, and (d) is an EF-EF pattern.

Figure 9.3 shows solution patterns with vacuum regions. In all the patterns, the
gas only expands, it is not compressed. Neither a shock wave nor a contact surface is
formed. Including the right and left difference, there are three patterns: (a) the gases
on both sides expand outward, and a vacuum region is formed in the middle; (b) and
(c) one of the initial states is in vacuum; the gas on the other side expands toward
the vacuum.

In the following analyses, the gas is assumed to be ideal and calorically perfect.
With the given states L and R, let us obtain states L* and R* after the interaction
with accompanying wave conditions. Each state is defined by a flow velocity and
two thermodynamic properties. Here, we employ the pressure, p, and density, ρ as
independent parameters.

When the left-running wave is a shock wave with a shock Mach number of Ms,L

and pL*/pL > 1, the states L and L* are related using (4.47) to (4.50),
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(a) EF-VAC-EF

(b) EF-VAC (c) VAC-EF

Fig. 9.3 Solution patterns with a vacuum region

pL*
pL

= 1 + 2γ

γ + 1

(
M2

s,L − 1
)

(9.1)

ρL∗
ρL

= (γ + 1)M2
s,L

(γ − 1)M2
s,L + 2

(9.2)

−uL* + uL = 2aL
γ + 1

(
Ms,L − 1

Ms,L

)
(9.3)

Ms,L = −Us,L + uL
aL

. (9.4)

Here, the flow velocity u is based in a laboratory frame and has a positive value
to the right. The shock Mach number, Ms,L, refers to the upstream flow in the frame
fixed on the shock wave, always having a positive value. From (9.1) and (9.3),

uL* − uL = −aL

(
pL*
pL

− 1

)( 2
γ (γ+1)

pL*
pL

+ γ−1
γ+1

) 1
2

. (9.5)

From (9.1) and (9.2),

ρL*

ρL
=

pL*
pL

+ γ−1
γ+1

γ−1
γ+1

pL*
pL

+ 1
. (9.6)
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If the left-running wave is an expansion fan (pL*/pL < 1), the Riemann invariant,
J+, is kept constant across it. From (8.44),

uL* + 2

γ − 1
aL* = uL + 2

γ − 1
aL. (9.7)

The isentropic equations of (2.91) yield to

ρL*

ρL
=
(
pL*
pL

) 1
γ

(9.8)

aL*
aL

=
(
pL*
pL

) γ−1
2γ

. (9.9)

From (9.7) and (9.9),

uL* − uL = 2aL
γ − 1

{

1 −
(
pL*
pL

) γ−1
2γ

}

. (9.10)

To integrate the results, the pressure ratio is given as an implicit function of the
flow velocity difference.

pL*
pL

≡ �L

(
uL* − uL

aL

)

uL* − uL
aL

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
(

pL*
pL

− 1
){

2

γ
{
(γ+1) pL*

pL
+γ−1

}

} 1
2

,
(

pL*
pL

> 1
)

2
γ−1

{
1 −

(
pL*
pL

) γ−1
2γ

}
,

(
pL*
pL

≤ 1
) (9.11)

ρL*

ρL
=

⎧
⎪⎨

⎪⎩

=
pL*
pL

+ γ−1
γ+1

γ−1
γ+1

pL*
pL

+1
,
(

pL*
pL

> 1
)

=
(

pL*
pL

) 1
γ

,
(

pL*
pL

≤ 1
) . (9.12)

Next, let us obtain the relation between R and R*. These states are separated by a
wave propagating on the right-hand side of the contact surface. By carefully noting
the direction and the invariant of the wave, the following equations are obtained. For
a shock wave (pR*/pR > 1),

pR*
pR

= 1 + 2γ

γ + 1

(
M2

s,R − 1
)

(9.13)

ρR*

ρR
= (γ + 1)M2

s,R

(γ − 1)M2
s,R + 2

(9.14)
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uR* − uR = 2aR
γ + 1

(
Ms,R − 1

Ms,R

)
(9.15)

Ms,R = Us,R − uR
aR

. (9.16)

Therefore,

uR* − uR = aR

(
pR*
pR

− 1

)( 2
γ (γ+1)

pR*
pR

+ γ−1
γ+1

) 1
2

(9.17)

ρR*

ρR
=

pR∗
pR

+ γ−1
γ+1

γ−1
γ+1

pR*
pR

+ 1
. (9.18)

In the case of an expansion fan (pR*/pR < 1), a Riemann invariant, J−, is kept
constant. From (8.45),

uR* − 2

γ − 1
aR* = uR − 2

γ − 1
aR. (9.19)

Because isentropic equations equivalent to (9.8) and (9.9) are applicable,

uR* − uR = 2aR
γ − 1

{(
pR*
pR

) γ−1
2γ

− 1

}

. (9.20)

Those relations are integrated as follows:

pR*
pR

≡�R

(
uR* − uR

aR

)

uR* − uR
aR

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
pR*
pR

− 1
){

2

γ
{
(γ+1) pR*

pR
+γ−1

}

} 1
2

,
(

pR*
pR

> 1
)

2
γ−1

{(
pR*
pR

) γ−1
2γ − 1

}
,

(
pR*
pR

≤ 1
) (9.21)

ρR*

ρR
=

⎧
⎪⎨

⎪⎩

=
pR∗
pR

+ γ−1
γ+1

γ−1
γ+1

pR*
pR

+1
,
(

pR*
pR

> 1
)

=
(

pR*
pR

) 1
γ

,
(

pR*
pR

≤ 1
) . (9.22)

In the extreme condition where the gas expands such that the pressure and the
temperature vanish, the flow velocity has the following limiting value corresponding
to its total enthalpy. Substituting (9.10) with this condition,
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Fig. 9.4 Pressure ratios, �L
and �R with respect to flow
velocity (dimensionless)

ue ≡ [uL* − uL]pL∗/pL→0 = 2aL
γ − 1

(9.23)

ue is the highest velocity achievable by unsteady expansion, which is referred to as
the escape velocity. A similar result in the opposite direction is obtained from (9.20).

As solutionswith the appearance of a vacuum region by the left-running expansion
fan, two patterns of Fig. 9.3a, b are possible. In the pattern of Fig. 9.3a, a vacuum
region appears in the middle of the two states L and R. A left-running expansion
fan propagates between L and L*, while a right-running expansion fan propagates
between R and R*. In the pattern of Fig. 9.3b, L* and R are in vacuum. In either
case, the wave-propagation velocity on the right-hand side is given by

c−,L∗ = uL* − aL∗ = uL + ue = uL + 2aL
γ − 1

. (9.24)

Similar results are obtained for the right-running expansion fan, as shown in
Fig. 9.3a, c. The propagation velocity of the left boundary is given by

c+,R* = uR* + aR* = uR − ue = uR − 2aR
γ − 1

. (9.25)

Figure 9.4 depicts (9.11) and (9.21). A symbol without and with * corresponds to
a quantity before and after the interaction. For the right-running wave (�R), when
a positive flow velocity is induced, the pressure increases, corresponding to a shock
wave solution. When a negative flow velocity is induced, the pressure decreases,
corresponding to an expansion fan. �L is symmetrical to �R, and thus opposite
relations hold.

Figures 9.5, 9.6 and 9.7 show possible solution patterns in dimensional coordi-
nates. After the interaction, a contact surface is generated between L* and R*. Across
the contact surface, u and p are constant, yet ρ and other thermodynamic properties
are not necessarily kept constant, as shown in Figs. 9.5b, 9.6b, and 9.7b.



9.1 Definition and Solution 203

(a) on u-p coordinates                                             (b)  on u-ρρ coordinates

Fig. 9.5 Example of SW-SW solution (Fig. 9.2a)

(a) on u-p coordinates (b) on u-ρρ coordinates 

Fig. 9.6 Example of EF-SW solution (Fig. 9.2b)

(a) on u-p coordinates                                              (b)  on u-ρρ coordinates 

Fig. 9.7 Example of EF-EF solution (Fig. 9.2d)
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Figure 9.5 shows an example of the SW-SW pattern, as shown in Fig. 9.2a. Before
the interaction, L and R have counter-flow velocities. After the interaction, two shock
waves appear on both sides of the contact surface, and the pressures increase on both
sides.

Figure 9.6 shows an example of theEF-SWpattern, as shown inFig. 9.2b.After the
interaction, the flow velocities increase in the positive direction. In L*, the pressure
decreases due to expansion, while in R* the pressure increases due to the generation
of a shock wave.

Figure 9.7 shows an example of the EF-EF pattern, as shown in Fig. 9.2d. After
the interaction, the flow velocities are induced such that the gases on both sides are
expanded, and the pressures are decreased.

9.2 Shock Tube

The shock tube is a device in which a shock wave is generated using a pressure differ-
ence between two gases as a solution of the Riemann problem with uL = uR = 0. As
observed in Fig. 9.8, the straight tube with a closed end on both sides is separated into
high- and low- pressure channels using a sheet of a diaphragm. The gas in the respec-
tive channels can be of different species and/or temperature. Once the diaphragm is
suddenly removed, a shock wave starts propagating in the low-pressure channel, and
an expansion fan in the high-pressure channel.

The test section is placed near the end wall in the low-pressure channel, equipped
with windows, pressure transducers, and other sensors. Using a shock tube, we can
investigate the interaction between a normal shock wave with objects. Moreover,
as will be seen later, a shock tube is useful for investigating characteristics of a
high-temperature gas generated behind the reflected shock wave.

Fig. 9.8 Example of wave
diagram in shock tube
operation, with air in the
low-pressure channel, and
helium in the high-pressure
channel, p1 = 1.0× 104[Pa],
T1 = 290 [K],
p4 = 1.0 × 105[Pa],
T4 = 290 [K]
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As shown in Fig. 9.8, the initial states at t = 0 in the low- and high-pressure
channels are labeled “1” and “4” (p4 > p1), respectively. Once the diaphragm is
removed, an incident shock wave starts propagating in the low-pressure channel. The
state behind the shock wave is labeled “2”. After the removal of the diaphragm, the
two gases that are separated by the diaphragm directly contact with each other at the
contact surface move at a velocity u2 to the right. The state left to the contact surface
is labeled “3” (u3 = u2). In the high-pressure channel, an expansion fan is formed. In
the expansion fan, the gas experiences unsteady expansion, and the flow state varies
smoothly. The leading wave of the expansion fan is a sound wave propagating with
a velocity −a4. The tail of the expansion fan corresponds to the state 3.

The initial conditions 4 and 1 correspond to the states L andR in theRiemann prob-
lem described in Sect. 9.1. The respective gas can have different species, temperature
and/or value of γ . Applying (9.11) and (9.21),

u3 = 2a4
γ4 − 1

{

1 −
(
p3
p4

) γ4−1
2γ4

}

(9.26)

u2 = a1

(
p2
p1

− 1

){ 2
γ1(γ1+1)

p2
p1

+ γ1−1
γ1+1

} 1
2

. (9.27)

For the contact surface,

p2 = p3 (9.28)

u2 = u3 (9.29)

From (9.26) to (2.29),

p4
p1

= p2
p1

⎧
⎪⎪⎨

⎪⎪⎩
1 −

(γ4 − 1) a1a4

(
p2
p1

− 1
)

√
2γ1

[
2γ1 + (γ1 + 1)

(
p2
p1

− 1
)]

⎫
⎪⎪⎬

⎪⎪⎭

− 2γ4
γ4−1

. (9.30)

Using (9.30), the pressure ratio p2/p1 is obtained as an implicit function of the
initial operation parameters (p4/p1, a1/a4, γ1, γ4). The shock Mach number, Ms, is
obtained from (9.13).

Ms =
√

γ1 + 1

2γ1

p2
p1

+ γ1 − 1

2γ1
. (9.31)

The densities of “2” and “3” are obtained from (9.22) and (9.12), respectively.
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ρ2

ρ1
=

p2
p1

+ γ1−1
γ1+1

γ1−1
γ1+1

p2
p1

+ 1
(9.32)

ρ3

ρ4
=
(
p3
p4

) 1
γ4 =

(
p2
p4

) 1
γ4

. (9.33)

The speeds of sound are as follows.

a2
a1

=
(
p2
p1

) 1
2
(

ρ2

ρ1

)− 1
2

=
{
2γ1M2

S − (γ1 − 1)
} 1

2
{
(γ1−1)M2

s + 2
} 1

2

(γ1 + 1)Ms
(9.34)

a3
a4

=
(
p3
p4

) γ4−1
2γ4 =

(
p2
p4

) γ4−1
2γ4

. (9.35)

Let us obtain the pressure distribution in the expansion fan. Here, the origin is set
to O in Fig. 9.8. From (8.44), (8.45), and (2.91),

u + 2a

γ − 1
= 2a4

γ − 1
(9.36)

(
dx

dt

)
= c− = u − a (9.37)

a

a4
=
(

p

p4

) γ4−1
2γ4

. (9.38)

From these equations, the relation between the lay slope and the pressure is given
by

(
dx

dt

)
=
{

1 − γ + 1

2

(
p

p4

) γ4−1
2γ4

}
2a4

γ − 1

p

p4
=
[
γ − 1

γ + 1

{
2

γ − 1
− 1

a4

(
dx

dt

)}] 2γ4
γ4−1

. (9.39)

Herewith, all conditions of “2” and “3” are obtained. Figure 9.9 shows the distri-
butions of the pressure, density, and flow velocity, and Fig. 9.10 shows the solution
with respect to dimensionless pressure-flow velocity coordinates.

Figure 9.11 shows the shock tube operation performance as the function of the
initial pressure ratio. All the quantities shown in Fig. 9.11a are an increasing function
of p4/p1. Only ρ2/ρ1 becomes saturated with p4/p1 → ∞. As seen in (9.30) and
Fig. 9.11b, the higher a4/a1, the stronger the shock wave becomes, that is the higher
p2/p1 becomes. To do so, a light gas, hydrogen or helium, is used. As calculated
using (8.5) and (8.6), the speed of sound of molecular hydrogen gases is 3.8 times
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(a) Pressure                                                         (b) Density

(c) Flow velocity

Fig. 9.9 Pressure, density, and flow velocity distributions at t = t1 in Fig. 9.8

Fig. 9.10 Shock tube
operation on dimensionless
u-p coordinates
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(a)With equal initial temperatures        (b) With different species/temperatures 

Fig. 9.11 Shock tube performance

as high as that of air, and that of helium 2.9 times as high. Moreover, increasing the
temperature of the driver gas also results in an increase in the shock strength.

Column: Counter-Driver Shock Tube
Using a shock tube in the usual style of Fig. 9.8, the interaction between the post-
shockflow“2”andthereflectedshockwavecanbeinvestigated.However,asexplained
later, the strength of the reflected shock wave is uniquely determined by the shock
Mach number of the incident shock wave. Therefore, their conditions cannot be set
in an independent manner, and the counter-driver shock tube (CD-ST, Fig C9.1) was
developedtoperformthis function[1]. Ithas twohigh-pressurechannels (“drivers”)on
both sides. By setting the relative timing of diaphragm rupture, the interaction of the
interest can be placed at a desired location. In Fig. C9.1a, for example, the interaction
between the post-shock flow R-PSF behind the incident shock wave R-SW(i) driven
by the right driver (R-Driver) and the transmitted shock wave L-SW(t) driven by the
left driver (L-Driver) is set to occur at the test section. Each diaphragm is made of
cellophane and ruptured using the needle (Fig. C9.1c) driven by a pneumatic cylinder,
which in turn is driven by the high-pressure air supplied through an electromagnetic
valve.Themutualdiaphragmrupture timingiscontrolledwithelectrical triggersignals
to the respective electromagnetic valves, as shown in Fig. C9.1d.

In the CD-ST, the conditions of a shock wave and a counter flow can be controlled
in an independent manner. Naturally, experiments of the interaction between two
shock waves with different strengths are also possible.
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 (a) Operation principle   

(d) Schematic illustration

(b) Photograph

(c) Diaphragm rupture device

(A)

(B)

(C)

(D)

(E)

Fig. C9.1 Counter-driver shock tube at Nagoya University

9.3 Reflection of Normal Shock Wave

Let us consider a normal shock wave that is reflected on a solid wall as an application
of the Riemann problem. This occurs on the right end of the wall in the shock tube
in Fig. 9.8. After the incident shock wave SW(i) is reflected on the wall, the reflected
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shock wave SW(r) appears. The post-shock state behind SW(r) is labeled “5.” Since
the flow in “5” should have a null velocity, which equals to that of the wall, shown in
Fig. 9.13a, the condition of “5” is obtained using this boundary condition. In (9.5),
L and L* refer to “2” and “5,” respectively. The condition of “2” and u5(= 0) are
known.

−u2 = −a2

(
p5
p2

− 1

){ 2
γ1(γ1+1)

p5
p2

+ γ1−1
γ1+1

} 1
2

. (9.40)

(a) x t− diagram; thick solid line, shock wave; dash-dotted line, contact surface

(b) p u− curves                                                 (c) a u− curve

Fig. 9.13 Reflection of normal shock wave on a solid wall
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Solving (9.40),

p5
p2

= 1 + γ1
u2
a2

⎧
⎨

⎩
γ1 + 1

4

u2
a2

+
√(

γ1 + 1

4

u2
a2

)2

+ 1

⎫
⎬

⎭
. (9.41)

Using (9.31)–(9.33), the shock Mach number of SW(r), Ms,r, the density ratio,
and the speed of sound ratio are obtained.

Ms,r =
√

γ1 + 1

2γ1

p5
p2

+ γ1 − 1

2γ1
(9.42)

ρ5

ρ2
=

p5
p2

+ γ1−1
γ1+1

γ1−1
γ1+1

p5
p2

+ 1
(9.43)

a5
a2

=
(
T5
T2

) 1
2

=
{
2γ1M2

s,r − (γ1 − 1)
} 1

2
{
(γ1−1)M2

s,r + 2
} 1

2

(γ1 + 1)Ms,r
. (9.44)

Note here thatMs,r is the shockMach number referring to “2”, which has a positive
flow velocity. For SW(i), (9.17) and (9.18) are applied.

u2 = a1

(
p2
p1

− 1

)( 2
γ1(γ1+1)

p2
p1

+ γ1−1
γ1+1

) 1
2

(9.45)

ρ2

ρ1
=

p2
p1

+ γ1−1
γ1+1

γ1−1
γ1+1

p2
p1

+ 1
. (9.46)

From (9.40), (9.45), and (9.46),

{(
γ1 − 1

γ1 + 1

p2
p1

+ 1

)
p5
p2

− 3γ1 − 1

γ1 + 1

p2
p1

+ γ1 − 1

γ1 + 1

}(
p2
p1

p5
p2

− 1

)
= 0. (9.47)

With p5 �= p1,

p5
p2

=
(
3γ1−1
γ1−1

)
p2
p1

− 1

p2
p1

+ γ1+1
γ1−1

. (9.48)

Substituting (9.42)–(9.44)with (9.48), the post-shock conditionofSW(r) is related
to the condition of SW(i). For example, applying (9.13) and (9.1) to SW(i) and SW(r),
respectively, the following equation is obtained.
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Ms,r =
√
2γ1M2

s,i − (γ1 − 1)

(γ1 − 1)M2
s,i + 2

. (9.49)

Figure 9.14 shows the variation in the pressure and temperature ratios andMs,r as a
function ofMs,i. For linearwaves, including soundwaves, pressures of an incident and
reflected waves can be superimposed on each other. The pressure amplitude equals
to the sum of the corresponding amplitude. However, a shock wave is a nonlinear
wave, and thus such superimposition is not applicable. Instead, the pressure of the
post-shock state “5” is obtained bymultiplying the pressure ratios across the incident
and reflected shock waves, as shown in Fig. 9.14a. The same scenario applies to the

(a) Pressure                                 (b) Temperature

(c) s,rM

Fig. 9.14 Post-shock condition and Ms,r as a function of Ms,i
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Fig. 9.15 Pressure and
temperature ratios generated
in a shock tube, as a function
of the initial pressure ratio

post-shock temperature (Fig. 9.14b) As seen in Fig. 9.14c, Ms,r is an increasing
function of Ms,i. The higher Ms,i, the higher the pressure and temperature ratios.

In this way, the shock tube is a useful tool to generate the high-
pressure/temperature state by utilizing the principle of unsteady, compressible fluid
dynamics. It is often used to measure chemical reaction rates at high temperature.
The pressure and temperature ratios obtained as a function of the initial pressure
ratio, by a shock tube is shown in Fig. 9.15. Here, a regime where p5 > p4 exists.
This implies that when using the unsteady fluid dynamics principle, a pressure higher
than the initial value can be generated, which is not possible in steady compression.
However, this does not mean that the total energy of the whole system is increased,
but that part of the system can become more energetic during a limited period.

9.4 Reflection of Expansion Fan

In the high-pressure channel of the shock tube in Fig. 9.8, after the diaphragm is
ruptured, the expansion fan propagates to the left end wall and is reflected there.
Unlike the shock wave, it is composed of expansion waves, which form a fan in the
x-t diagram. Accordingly, the reflected waves also span a finite width.

Let us obtain the condition of “8,” the state behind the reflected expansion fan in
Fig. 9.8, with the condition of “3” and “4” being known. The reflected waves are
right-running expansion waves, to which (9.20) applies. Moreover, because u8 = 0,

−u3 = 2a3
γ4 − 1

{(
p8
p3

) γ4−1
2γ4 − 1

}

(9.50)

p8
p3

=
(
1 − γ4 − 1

2
M3

) 2γ4
γ4−1

. (9.51)
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Fig. 9.16 Pressure variation
behind incident and reflected
expansion fan

The relation between “3” and “4” are obtained using (9.9) and (9.10) and u4 = 0.

p4
p3

=
(
1 + γ4 − 1

2
M3

) 2γ4
γ4−1

. (9.52)

Therefore,

p8
p4

=
(
1 − γ4−1

2 M3

1 + γ4−1
2 M3

) 2γ4
γ4−1

(9.53)

ρ8

ρ4
=
(
p8
p4

) 1
γ4

. (9.54)

Figure 9.16 shows the pressure variation behind the incident and reflected expan-
sion fan as a function of M3. Regarding the expansion waves, the pressure variation
is nonlinear, lowering to a large extent with increasing M3.

In the shock tube operation, if the length of the high-pressure channel is not
sufficiently long, the incident shock wave is contaminated by the reflected expansion
fan, and thereby the effective test time may be shortened or even vanish. Figure 9.17
shows the trajectory of the leading wave of the reflected expansion fan. The effective
test flow that is not contaminated by the reflected expansion fan is colored gray.
As long as the reflected expansion waves do not arrive (0 < x < xm), the effective
test time behind the (incident) shock wave increases in proportion to the distance
from the origin. However, for x > xm the reflected expansion wave propagates in
“2” before the contact surface arrives, thereby the test time becomes shortened. As
shown in Fig. 9.17, there is an optimum distance, xm, to maximize the effective test
time to τm. In order to obtain this condition, let us trace the trajectory of the leading
wave of the reflected expansion wave.
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Fig. 9.17 Reflection of
reflected expansion fan on
the left end wall. Only the
leading wave is plotted

For a calorically perfect gas, xm is obtained analytically. In Fig. 9.17, the reflection
point of the leading wave of the reflected expansion fan is labeled “A”, and the point
where this wave terminates the interaction with the incident expansion fan is labeled
“B.” X(x, t) is an arbitrary point in between A and B on the trajectory. In region 3,
the flow condition is uniform. If we can obtain tB , at which the leading reflected wave
terminates the interaction, we can readily trace the trajectory to the contact surface.
At A, the following equation holds.

u4 − a4 = −a4 = xA
tA

. (9.55)

At X, from the geometrical relation and Riemann invariant,

u − a = x

t
(9.56)

u + 2a

γ4 − 1
= u4 + 2a4

γ4 − 1
= 2a4

γ4 − 1
. (9.57)

Solving (9.55) to (9.57)

u = a + x

t
(9.58)

a = 2a4
γ4 + 1

− γ4 − 1

γ4 + 1

x

t
. (9.59)

Because the reflected wave propagates at a characteristic velocity c+,
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dx

dt
= u + a = 1

γ4 + 1

{
(3 − γ4)

x

t
+ 4a4

}
. (9.60)

Equation (9.60) is a homogeneous differential equation,which can be solved using
the transformation of

y = x

t
(9.61)

dy

− 2(γ4−1)
γ4+1 y + 4

γ4+1a4
= dt

t
. (9.62)

From (9.59), (9.61), and (9.62),

dy = − γ4 + 1

γ4 − 1
da

− γ4+1
2(γ4−1)da

a
= dt

t
. (9.63)

Integrating (9.63) with the condition that A is equivalent to “4,”

tX
tA

=
(
aX
aA

)− γ4+1
2(γ4−1)

. (9.64)

Applying (9.64) to B, the condition that is equivalent to that of “3,”

tB
tA

=
(
a3
a4

)− γ4+1
2(γ4−1)

. (9.65)

The duration of the wave passage is expressed by such a simple equation. Using
this, and from Fig. 9.17,

xm =Us,itC = u3tD = (u3 + a3)(tD − tB) + xB
xB =(u3 − a3)tB.

Therefore,

tD =2tB

tC =2u3
Us,i

tB.

From the above equations and substituting (9.9) and (9.26) with (9.65),
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tB =
(
a3
a4

)− γ4+1
2(γ4−1)

tA =
(
a3
a4

)− γ4+1
2(γ4−1) |xA|

a4
=
(
p3
p4

)− γ4+1
4γ4 |xA|

a4

xm = 4

γ4 − 1

{

1 −
(
p3
p4

) γ4−1
2γ4

}(
p3
p4

)− γ4+1
4γ4 |xA| (9.66)

τm = tD − tC = 2

[

1 − 2

γ4 − 1

a4
Us,i

{

1 −
(
p3
p4

) γ4−1
2γ4

}](
p3
p4

)− γ4+1
4γ4 |xA|

a4
. (9.67)

In (9.66) and (9.67), all the variables on the right-hand side including Us,i and
p3/p4 are determined from the shock tube operation condition, and thereby xm and
τm are obtained from the operation parameters. They are proportional to the length
of the high-pressure channel, |xA|.

9.5 Shock–Shock Interactions

9.5.1 Head-on Collision

Figure 9.18 shows the head-on collision of SW(a) and SW(b). SW(a) propagates
with Ms,a = 3 to the right, in the positive direction of the x coordinate, SW(b)
with Ms,b = 2 to the left. The state ahead of the shock waves is labeled as “1”; those
behind SW(a) and SW(b) are labeled “2” and “3,” respectively. After the collision, the
shock waves change their strength and direction of propagation as SW(c) and SW(d).
Between them, a contact surface that separates “4” and “5” appears. The condition
of “4” and “5” is obtained in Fig. 9.18c as the intersection between the left-running
shock polar �−,2 and the right-running shock polar �+,3. The pressures in “4” and
“5” are equal to each other as the flow velocities. However, across the contact surface,
the speed of sound (temperature and density) is different. This is because the shock
compression processes and the entropy productions are different on the respective
sides, although the pressures become equilibrated. The appearance of the contact
surface is an important difference from the interaction between isentropic waves
dealt with in Chap. 8.

In “4” and “5,” the pressure rises to a very high value. For example, in the case of
Fig. 9.18, the pressure increment behindSW(a) andSW(b) equals (p2−p1)/p1 = 9.3
and (p3 − p1)/p1 = 3.5. If the linear relation is applied, both (p4 − p1)/p1 and
(p5 − p1)/p1 would equal to 12.8. However, the solution is nonlinear, and thus
(p4 − p1)/p1 = (p5 − p1)/p1 = 28.3. As observed in this example, the shock
wave is a highly nonlinear wave; the stronger the shock wave, the more significant
its nonlinearity, i.e., the increment in the pressure ratio, will become. Utilizing this
characteristic, we can generate high-pressure/temperature states.
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(a) x t− diagram (b) Pressure distributions

(c) p u− curves (d) a u−  curves

Fig. 9.18 Shock–shock head-on collision

9.5.2 Shock Overtaking Another One

Figure 9.19 shows the case in which the preceding shock wave SW(a) is caught up
with by SW(b) from behind. After catching up, the strength of SW(a) is enhanced;
yet behind the contact surfaces an expansion fan is generated. The pressure across
the CS is constant, whereas the speeds of sound are different.
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(a) x t− diagram (b) Pressure distributions

(c) p u− curves                                                      (d) a u−  curves 

Fig. 9.19 A shock wave overtaking another one

Fig. 9.20 Shock interaction
with contact surface
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9.6 Shock Interaction with Contact Surface

Here two media A and B having different densities (and/or speeds of sound, tem-
perature) are in contact. In A, a shock wave SW(i) propagates to the right, being
incident to the contact surface. Let the initial states of A and B be labeled “1” and
“3,” and the post-shock state behind SW(i) be labeled “2” (u1 = u3 = 0, p1 = p3).
In A, the pressure always increases past SW(i). After the interaction with the contact
surface, a reflected wave propagates in A, and a transmitted wave in B. The pressure
variations after the interaction depend on the interface condition across the contact
surface.

Applying the transformation from a shock-fixed frame to a laboratory frame
(4.25), Rankine–Hugoniot relations, (4.19) and (4.20), are expressed as

ρ1Us,i = ρ2
(
Us,i − u2

)
(9.68)

ρ1U
2
s,i + p1 = ρ2

(
Us,i − u2

)2 + p2. (9.69)

Therefore,

p2 − p1 = ρ1Us,iu2. (9.70)

Note here that (9.70) is equivalent to (1.23), which gives an impulsive force. The
same relation applies to the post-shock state “4” behind the transmitted shock SW(t).

p4 − p3 = p4 − p1 = ρ3Us,tu4. (9.71)

The condition that a reflected wave is not generated is p4 = p2 and u4 = u2,
yielding

ρ1Us,i = ρ3Us,t (9.72)

ρU is referred to as the shock impedance. From (9.72), the condition of no reflected
wave is equivalent to the equality in the shock impedance. However, (9.72) is not
explicitly set using the initial conditions, because in generalU is not known a priori.

In the limiting case of an infinitesimally weak shock wave, U approximately
equals to a, and (9.72) to

ρ1a1 = ρ3a3 (9.73)

ρa is known as acoustic impedance, and it is a more convenient parameter, because
it is determined only by thermodynamic properties of the medium. On the interface
between media with an equal acoustic impedance, sound waves are not reflected.
Recalling that in Sect. 4.2.1.3, a shock wave solution is equivalent to an isentropic
wave to the third order in its pressure, the above reflection criterion is effectively
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(a) p u− curves (b) a u−  curves

c) x t−  diagram 

Fig. 9.21 Shock interaction with contact surface from high-to-low acoustic impedance
(ρ1a1 > ρ3a3). Gray zone marks the expansion fan

applicable to a weak shock wave. The pressure increment,�p, approximately equals
to

�p = ρa�u (9.74)

This implies that the slope of p − u equals the acoustic impedance. The type of
the reflected wave, either the shock SW(r) or the expansion fan EF(r), is determined
from the relative magnitude of their acoustic impedances.

Let us consider the case where SW(i) is incident on the interface from a high-to-
low acoustic impedance, ρ1a1 > ρ3a3 (Fig. 9.21). In p−u coordinates, the respective
shock polars are plotted from the common initial state “1” and “3”. In this case, SW(i)
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curve marks upper, and SW(3) the lower polar. The curve of SW(t) drawn from “2”
should intersect with the SW(t) curve at “5”. Because p5 < p2, the reflected wave
is an expansion fan EF(r).

Next, let us consider a low-to-high incidence ρ1a1 < ρ3a3 (Fig. 9.22). In this
case, the p − u curve of SW(t) is above that of SW(i), and the reflected wave curve
from “2” intersects with SW(t) at “5”, with p5 > p2. The reflected wave is a shock
wave.

Column: Wave Drag Reduction by Energy Deposition
It is known that the drag on an object in supersonic flow can be reduced by depositing
an energy in front of it. As shown in Fig. C9.2, A “bubble” that is a high-temperature,
low-density region, is generated by local heating ahead of the object. The heating can

(a) p u−  curves (b) a u−  curves 

(c) x t−  diagram 

Fig. 9.22 Shock interaction with contact surface from low-to-high acoustic impedance
(ρ1a1 < ρ3a3)
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Fig. C9.2 Schematic
illustration of energy
deposition; 1, upstream
without energy deposition; 2,
immediately behind the bow
shock wave; 3, thermal
bubble generated by energy
deposition

be performed using a laser pulse, electrical discharge, etc. After the bubble enters
the shock layer in front of the object, the wall pressure and subsequently the drag
is reduced. This scheme is referred to as energy deposition, and it is reported to be
effective particularly for high-Mach number flows [2].

Figure C9.3 shows experimental results with a flathead, circular cylinder (diam-
eter, 20 mm) set in Mach 1.94 flow. The laser pulse energy is repetitively sent to the
focal point at 40 mm upstream from the cylinder head. Without energy deposition,
a bow shock wave is formed ahead of the cylinder. When thermal bubbles are repet-
itively generated using a pulse laser, the thermal bubbles transitioned to a toroidal
vortex ring are piled up in front of the cylinder, which in turn act as a virtual spike
to reduce the wave drag.

Although the actual mechanisms of the drag reduction are complicated, here we
analyze the drag reduction as a Riemann problem. The initial condition shown in
Fig. C9.2 is equivalent to theRiemann problemof Fig. 9.21.Here, they are in different
coordinates, as the direction of the wave propagation is opposite.

A part of the region “1” is heated at constant volume by an energy q per unit mass
(state 1’). The state after expansion to the equalized pressure is labeled “3.” Here,
the expansion process is assumed to be isentropic. For a calorically perfect gas, the
following equations hold [3].

p3 = p1 (C9.1)

1

γ − 1
RT1′ = 1

γ − 1
RT1 + q (C9.2)

p1′

T1′
= p1

T1
(C9.3)

p3
p1′

= p1
p1′

=
(

ρ3

ρ1′

)γ

=
(

ρ3

ρ1

)γ

(C9.4)

a3
a1′

=
(
T3
T1′

) 1
2

=
(

ρ3

ρ1

) γ−1
2

. (C9.5)
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(a)Schlieren image without 
        energy deposition      

(b) Schlieren image with f = 80 kHz. 

(c) Normalized drag reduction vs. f 

Fig. C9.3 Example of supersonic drag reduction with energy deposition; f, repetition frequency of
laser pulse; E, laser pulse energy; D0, drag without energy deposition

Therefore,

ρ3

ρ1
= (1 + Q)

− 1
γ (C9.6)

a3
a1

= (1 + Q)
1
2γ (C9.7)

ρ3a3
ρ1a1

= (1 + Q)
− 1

2γ (< 1) (C9.8)

Q ≡ q
RT1
γ−1

= q

e1
. (C9.9)

From (C9.8), the acoustic impedance is decreased with the energy deposition.
Using the normal shock relation, the L and R states in a Riemann problem apply to
“3” and “2,” respectively.
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pR
pL

= p2
p3

= p2
p1

= 1 + 2γ

γ + 1

(
M2

1 − 1
)

(C9.10)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uL
a1

= u3
a1

= M1

ρL

ρ1
= ρ3

ρ1
= (1 + Q)

− 1
γ

aL
a1

= a3
a1

= (1 + Q)
1
2γ

(C9.11)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

uR
a1

= u2
a1

= u1
a1

u2
u1

= M1
ρ1

ρ2
= (γ − 1)M2

1 + 2

(γ + 1)M1

ρR

ρ1
= ρ2

ρ1
= (γ + 1)M2

1

(γ − 1)M2
1 + 2

aR
a1

= a2
a1

=
(
2γ M2

1 − γ + 1
) 1

2
{
(γ − 1)M2

1 + 2
} 1

2

(γ + 1)M1

. (C9.12)

Since for a normal shock wave,

ρ2a2
ρ1a1

>1

ρLaL
ρRaR

=ρ3a3
ρ2a2

= ρ3a3
ρ1a1

ρ1a1
ρ2a2

< 1.

After the bubble enters the shock layer, a transmitted shockwave propagates in the
bubble, whereas behind the bow shock the pressure is decreased due to the expansion
fan. Applying the relation to (9.11) and (9.21), the solution of this Riemann problem
is obtained by combining the following equations.

u∗
a1

− u3
a1

= −a3
a1

(
p∗
p1

− 1

){ 2
γ (γ+1)

p∗
p1

+ γ−1
γ+1

} 1
2

(C9.13)

u∗
a1

− u2
a1

= 2

γ − 1

{(
p∗
p2

) γ−1
2γ

− 1

}
a2
a1

(C9.14)

p∗
p1

= f (Q, M1)

− (1 + Q)
1
2γ

(
p∗
p1

− 1

){ 2
γ

(γ + 1) p∗
p1

+ γ − 1

} 1
2

γ + 1

2
M1 = −

(
M2
1 − 1

)

+ 1

γ − 1

⎧
⎪⎨

⎪⎩

(
p∗
p1

) γ−1
2γ

(
2γ M2

1 − γ + 1

γ + 1

)− γ−1
2γ

− 1

⎫
⎪⎬

⎪⎭

(
2γ M2

1 − γ + 1
) 1
2
{
(γ − 1)M2

1 + 2
} 1
2
.

(C9.15)
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Substituting (C9.13) with (C9.15), the flow velocity after the interaction, u∗, is
obtained. From normal shock wave relations,

p∗
p1

= 1 + 2γ

γ + 1

(
M2

s,3* − 1
)

(C9.16)

Ms,3* =
√

γ + 1

2γ

(
p3∗
p1

+ γ − 1

γ + 1

)
(C9.17)

a3∗
a1

= a3
a1

a3∗
a3

= (1 + Q)
1
2γ

(
2γ M2

s,3* − γ + 1
) 1

2
{
(γ − 1)M2

s,3* + 2
} 1

2

(γ + 1)Ms,3*

. (C9.18)

The velocity of the transmitted shock wave in the bubble, Us,3*, is given by

Us,3*

a1
= u3 − Ms,3*a3∗

a1
= M1 − a3∗

a1
Ms,3*. (C9.19)

As observed in Fig. C9.4, by the energy deposition, the pressure behind the bow
shock wave is decreased; the flow velocity in the opposite direction to the upstream
flow is induced. The transmitted shock wave propagates toward the upstream in the
thermal bubble. This is experimentally observed and termed as the lens effect [4].

(a) Post-shock pressure (b) Flow velocity

(c) Propagation velocity of transmitted shock wave in the thermal bubble. 

Fig. C9.4 Post-shock pressure, flow velocity and propagation velocity of transmitted shock wave
due to interaction with the thermal bubble
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With a low flow Mach number, 1 < M1 < 2, the effects of the pressure decrease
and the induction of the counter flow are large. The direction of the flow becomes
reversedwithM1 ≥ 8.With a high flowMach number, 5 < M1, those effects become
saturated, yet the speed of the transmitted shock wave in the opposite direction,∣∣Us,3∗

∣∣, continues to increase. Thus, the extrusion of the bow shock wave due to the
lens effect becomes significant.
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Chapter 10
Method of Characteristics

In a steady, two-dimensional flow (Chap. 7) and an unsteady, one-dimensional flow
(Chap. 8), the flow velocity and thermodynamic properties are expressed as func-
tions of two independent variables by applying Euler’s equation. In those cases, the
differential equation is hyperbolic and can be solved by sequentially solving inter-
actions between characteristics with an appropriate boundary or initial conditions.
This method, called the method of characteristics, is useful in such simple problems
and will be dealt with in this chapter.

10.1 Design of Supersonic Nozzle

Let us design a supersonic nozzle as an example of steady, two-dimensional flow.
Here, the gas is assumed to flow along the nozzle wall without separation. In the one-
dimensional flow inChap. 5, theflowMachnumber is a functionof the cross-sectional
area uniquely. Yet, in reality, the flow is multidimensional.

10.1.1 Characteristics and Flow Variation

If supersonic flow turns such that the flow passage area increases, its flow Mach
number is increased due to the Prandtl–Meyer expansion. Transforming a smooth
curve of a nozzle wall profile to a polygonal line, the flow is accelerated through an
expansion fan at each corner, as shown in Fig. 10.1a. The expansion fan is sandwiched
by the upstream (1) and downstream (2) regions by the respective Mach waves.
However, such flow variations with a finite width complicate the design procedure of
the flowpassage. Instead, in themethod of characteristics an expansion fan is replaced
by a “representative” characteristic, as shown in Fig. 10.1b, which is defined as the
bisection line of the two Mach waves. The flow on the upstream side should be
uniform as Region 1, and the downstream side as Region 2.
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(a) Acceleration past an expansion fan (b) Approximation by a characteristic.

Fig. 10.1 Acceleration of supersonic flow past a corner

Fig. 10.2 Example of Laval
nozzle resign (γ = 1.4,
Me = 1.7)

If the supersonic flow is deflected for compression, an oblique shock wave is
generated, and the flow condition varies in a discontinuous manner. However, if the
deflection angle, |�θ |, is small, the associated flow variation can be approximated
as isentropic, and the oblique shock angle is approximated to that of the bisection
line of the upstream and downstream Mach waves. In summary, no matter whether
the flow deflection is expansive or compressive, the bisection line is regarded as the
representative characteristic, acrosswhich the flowexperiences a small discontinuous
change. Applying this scheme to the whole flow field, it is divided into finite uniform
regions. The finer the division, the better the accuracy of the flow design becomes.

Figure 10.2 shows a simple, two-dimensionalLaval nozzle design employed in this
section. The incoming subsonic flow is accelerated in the converging section, which
then becomes sonic at the throat (x = 0). The flow is supersonically accelerated due
to the characteristics generated on the nozzle wall in the expansion section. y = 0
corresponds to the centerline, which is the axis of symmetry. The characteristics are
reflected on the centerline, such that the flow is deflected to the x-direction. The
reflected characteristics are incident to the nozzle wall in the “cancelation” section,
where the wall angles are set such that the respective incident characteristics do
not cause a reflected wave, and so that the flow condition does not change in the
downstream, meaning in the test section.

In the expansion section, the wall has a positive curvature, which is convex toward
the downstream. With increasing the wall angle, expansion waves are generated,
accelerating the expanding flow. The exit of the expansion section (x = xa) is
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Fig. 10.3 Relation among
regional elements in contact

an inflection point; in the downstream the wall is either straight or has a negative
curvature, which is concave toward the downstream. Thus, the expansion wave is not
generated. In the expansion section of Fig. 10.2, the total deflection angle is equally
divided to nine segments of an increment of �θ and the expansive characteristic
at each corner is drawn. Each characteristic is reflected on the centerline, and the
reflected characteristics interact with other incident characteristics before arriving
to the “cancelation” section on the wall. The sections between the expansion and
cancelation are connected by a straight line.

Figure 10.3 shows the relation among regional elements that are in contact. The
flow condition in the element “3” is determined by the interaction between the char-
acteristic c−,1 from the element “1” and c+,2 from “2.” As shown in Sect. 7.1, an
invariant ν + θ is conserved between “1” and “3,” ν − θ between “2” and “3”, where
ν and θ are Prandtl–Meyer function and a deflection angle, respectively.

ν3 + θ3 = ν1 + θ1 (10.1)

ν3 − θ3 = ν2 − θ2 (10.2)

Therefore,

ν3 = ν1 + ν2

2
+ θ1 − θ2

2
(10.3)

θ3 = ν1 − ν2

2
+ θ1 + θ2

2
. (10.4)

Let the angle of the “1”–“3” boundary from the x-axis be α+,13, and the angle of
the “2”–“3” boundary be α−,23. They are obtained as follows:

α+,13 = (θ1 + βM,1) + (θ3 + βM,3)

2
(10.5)

α−,23 = (θ2 − βM,2) + (θ3 − βM,3)

2
. (10.6)
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Fig. 10.4 Reflection of
characteristic on the
centerline

All angles have a positive value for the anticlockwise direction, and βM is the
Mach angle.

βM = sin−1

(
1

M

)
. (10.7)

Figure 10.4 shows the relation on the centerline. The flow inRegion “1”, before the
reflection should be parallel to the centerline. The characteristic c−,12 is reflected on
the centerline, and subsequently the characteristic c+,23 is generated as the reflected
wave. In Region “3,” after the reflection, the flow should be aligned to parallel to the
centerline.

θ2 = θ1 + �θ = �θ(> 0) (10.8)

θ3 = θ1 = 0. (10.9)

Using the Riemann invariants,

ν2 − θ2 = ν1 − θ1 (10.10)

ν3 + θ3 = ν2 + θ2. (10.11)

Combining these equations,

ν2 = ν1 + �θ (10.12)

ν3 = ν2 + �θ. (10.13)

Therefore, the flow is accelerated past c−,12, and then again accelerated past c+,23.
The corresponding deflection angles have equal magnitudes, but opposite signs.

Figure 10.5 shows the general case of the wave reflection on the upper nozzle
wall. The characteristic c+,12 is reflected on the upper wall with a reflection angle
�θ(< 0), as the reflected wave, c−,23 is generated from the corner. Depending on
�θ , it is compressive or expansive.
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(a) With reflection, general case. (b) Cancelled reflected wave.

Fig. 10.5 Reflection on the upper wall

Fig. 10.6 Numbering of
regional elements

θ3 = θ1 + �θ (10.14)

v3 − θ3 = ν2 − θ2 (10.15)

Therefore,

v3 = ν2 + θ3 − θ2. (10.16)

In order for the reflected wave to be canceled, �θ should be set such that

ν3 = ν2 (10.17)

θ3 = θ2. (10.18)

From (10.14) and (10.18),

�θ = θ2 − θ1. (10.19)

Following up the above procedure, the whole flow field is obtained.
Let us label a number (i, j) to the elements as shown in Fig. 10.6. The sonic flow

at the throat is labeled (1, 1). Subsequently, along the upper wall, i is sequentially
increased, j is sequentially increased after passing across the reflected waves. Let us
specify the deflection angle �θ(i, 1) such that
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θ(i, 1) = θ(1, 1) +
i−1∑
k=1

�θ(k) =
i−1∑
k=1

�θ(k) (10.20)

�θ(k) = θ(k + 1, 1) − θ(k, 1). (10.21)

Using the Riemann invariant,

ν(i, 1) − θ(i, 1) = ν(1, 1) − θ(1, 1) = ν(1, 1) = 0

ν(i, 1) = θ(i, 1) =
i−1∑
k=1

�θ(k). (10.22)

In the same way,

ν( j, j) + θ( j, j) = ν( j, 1) + θ( j, 1) = 2
j−1∑
k=1

�θ(k)

θ( j, j) = 0

ν( j, j) = 2
j−1∑
k=1

�θ(k). (10.23)

Using the above results,

ν(i, j) + θ(i, j) = ν(i, 1) + θ(i, 1) = 2
i−1∑
k=1

�θ(k)

ν(i, j) − θ(i, j) = ν( j, j) − θ( j, j) = 2
j−1∑
k=1

�θ(k).

Then,

ν(i, j) =
i−1∑
k=1

�θ(k) +
j−1∑
k=1

�θ(k) = θ(i, 1) + θ( j, 1) (10.24)

θ(i, j) =
i−1∑
k=1

�θ(k) −
j−1∑
k=1

�θ(k) = θ(i, 1) − θ( j, 1). (10.25)

Here, ν and θ were simply related to (i, j) by (10.24) and (10.25).



10.1 Design of Supersonic Nozzle 235

10.1.2 Design Procedure of Laval Nozzle

The design of the Laval nozzle of Fig. 10.6 is performed in the following procedure:

(1) The height, ye, and Mach number, Me, are given at the exit.
(2) Integrating (5.27)with the appropriate influence coefficient, an equation relating

ye and Me is obtained.

dM2

M2
= − (γ − 1)M2 + 2

1 − M2

d A

A

ye
y0

= 1

Me

[
(γ − 1)M2

e + 2

γ + 1

] γ+1
2(γ−1)

. (10.26)

(3) A smooth y curve is given in the subsonic section (x < 0). The choking condition
is

dy

dx
= 0 (x = 0) (10.27)

In order for the derivative in the flow variables to be continuous at the throat,
the second derivative at the throat should likewise be continuous at x = 0..

(4) The y-variation in 0 ≤ x ≤ xa is given under the following boundary conditions:
At x = 0,

y = y0 (10.28)

dy

dx
= 0. (10.29)

At x = xa,

dy

dx
= tan θmax (10.30)

d2y

dx2
= 0. (10.31)

To satisfy the above conditions, y(x) should be cubic at least.

y − y0
xa

= tan θmax

[(
x

xa

)2

− 1

3

(
x

xa

)3
]

(0 ≤ x ≤ xa). (10.32)

(5) The number of divisions, n, is given, and Eq. (10.32) is drawn by an n polygonal
line with θ(i, 1) (i = 1, . . . , n).
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(6) ν(i, j) and θ(i, j)(i = 1, . . . , n) are obtained using (10.24) and (10.25),
respectively.

(7) ν(i, 1) and θ(i, 1)(i = n + 1, . . . , 2n) are obtained using (10.19).
(8) Starting from (0, y0) in the element (1, 1), characteristics are sequentially

obtained applying (10.5) and (10.6).

Here, we have designed the supersonic nozzle. The method presented is the simplest
one, to ensure that readers easily understand the design principle. In real applications,
more sophisticated schemes and/or know-hows should be introduced to improve the
test flow quality. A possible modification is to assume a curved sonic line, and to
set a partial expansion section to moderate the sudden cross-sectional area variation.
One of the most important modifications is the boundary layer correction. In a real
nozzle flow, a boundary layer is developed on the wall, decreasing the effective
cross-sectional area. To obtain a desired test Mach number, the height of the nozzle
should be increased by the boundary layer. If a desired test flow Mach number is
high, the total enthalpy of the test gas becomes so high that the so-called real gas
effect becomes significant, and consequently the assumption of a calorically perfect
gas needs to be revised. In such complicated cases, the method of characteristics
only provides limited information, and the design should be aided by computational
fluid dynamics.

10.2 Wave Diagram of Shock Tube Operation

In unsteady, one-dimensional flow, one of two spatial coordinates in Sect. 10.1 is
replaced by a time coordinate. Yet, a similar approach is possible. Even if shock
waves appear, in many simple problems the method of characteristics is useful by
using the solution of the Riemann problem. Here, we will analyze the behavior
of expansion waves in the high-pressure channel in Fig. 9.8. This problem has an
analytical solution presented in Sect. 9.4.

Consider, as shown in Fig. 10.7, the interaction between the characteristic C+,L

originating in L and the characteristic C-,R in R. Using the results of Sect. 8.2,

uI + 2

γ − 1
aI = uL + 2

γ − 1
aL (10.33)

Fig. 10.7 Interaction
between characteristics in an
unsteady, one-dimensional
flow
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uI − 2

γ − 1
aI = uR − 2

γ − 1
aR. (10.34)

Therefore,

uI = uL + uR
2

+ aL − aR
γ − 1

(10.35)

aI = γ − 1

4
(uL − uR) + aL + aR

2
. (10.36)

Assuming that the total enthalpy is uniform in the entire flow field, pI is obtained
as

pI = pL

(
aI
aL

) 2γ
γ−1

= pR

(
aI
aR

) 2γ
γ−1

. (10.37)

The above procedure should be sequentially applied to the incident and reflected
waves.

As shown in Fig. 10.8a, the end wall of the high-pressure channel and the
diaphragm are located at x = xA and x = xB = 0, respectively. The diaphragm
is instantaneously ruptured at time t = 0. As shown in Fig. 10.8b, the expansion fan
incident to the end wall is divided into n expansion waves, which are numbered as
i = 1 . . . n. Here, i = 1 refers to the state “4,” and i = n to the state “3.” In this exam-
ple, the difference in the propagation velocity between adjacent expansion waves is
set to a constant. The reflected waves are numbered by j based on the sequential
order of reflections. j = 0 refers to the incident wave. The label (i, j) refers to the
intersection between the i-th incident wave and j-th reflected wave.

(a) Whole diagram (b) Interaction among expansion
waves, zoom into the gray zone in (a)

Fig. 10.8 Wave diagram of shock tube operation, the operation condition from Fig. 9.8
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Because u4 = 0, the propagation velocity of i-the incident wave is

c−,R(i, 0) = −a4 + (u3 − a3 + a4)
i − 1

n − 1
. (10.38)

The invariant and the propagation velocity of i-th incident wave before the
interaction with a reflected wave is given by

J−(i) = u(i, 0) − 2

γ − 1
a(i, 0) (10.39)

c−,R(i, 0) = u(i, 0) − a(i, 0) (10.40)

u(i, 0) + 2

γ − 1
a(i, 0) = 2

γ − 1
a4. (10.41)

From (10.39) to (10.41),

a(i, 0) = −γ − 1

γ + 1
c−,R(i, 0) + 2

γ + 1
a4 (10.42)

u(i, 0) = 2

γ + 1
c−,R(i, 0) + 2

γ + 1
a4 (10.43)

J−(i) = 4

γ + 1
c−,R(i, 0) + 2(γ − 3)

(γ + 1)(γ − 1)
a4. (10.44)

Next, let us obtain the condition behind the reflected wave of the tail wave of the
incident expansion fan (i, i). From (10.39), with

u(i, i) = 0 (10.45)

J−(i) = − 2

γ − 1
a(i, i)

a(i, i) = −γ − 1

2
J−(i). (10.46)

The Riemann invariant and the propagation velocity of i-th reflected wave are

J+(i) = 2

γ − 1
a(i, i) (10.47)

c+,L(i, i) = a(i, i). (10.48)

The j-th reflected wave intersects with the i-th incident wave on the order of
i = j+1 . . . n. Let the intersection point between j-th reflectedwave and i-th incident
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wave be P(i, j). Except for the end wall (x = xA), the right-running, reflected wave
past P(i − 1, j) in a Riemann invariant J+( j) and the left-running, incident wave
past P(i, j − 1) with a Riemann invariant J−(i) intersect at P(i, j).

J+( j) = u(i, j) + 2

γ − 1
a(i, j) (10.49)

J−(i) = u(i, j) − 2

γ − 1
a(i, j). (10.50)

Therefore,

a(i, j) = γ − 1

4
{J+( j) − J−(i)} (10.51)

u(i, j) = 1

2
{J+( j) + J−(i)}. (10.52)

Following (10.51) and (10.52), solving with i = j + 1 . . . n sequentially for
j = 1 . . . n provides the entire incident and reflected expansion fan.

c+,L(i − 1, j) = u(i − 1, j) + a(i − 1, j) (10.53)

c−,R(i, j − 1) = u(i, j − 1) − a(i, j − 1) (10.54)

x(i, j) = x(i, j − 1) + c−,R(i, j − 1){t (i, j) − t (i, j − 1)} (10.55)

x(i, j) = x(i − 1, j) + c+,L(i − 1, j){t (i, j) − t (i − 1, j)} (10.56)

t (i, j) = x(i, j − 1) − x(i − 1, j) + c+,L(i − 1, j)t (i − 1, j) − c−,R(i, j − 1)t (i, j − 1)

c+,L(i − 1, j) − c−,R(i, j − 1)
.

(10.57)



Chapter 11
Generation and Utilization
of Compressible Flows

By utilizing the characteristics of compressible flow, we can generate high-speed
flow, high-pressure, and/or high-temperature states. The design of rocket engine noz-
zle and that of air intake for an aircraft engine need to be conducted based on the prin-
ciple of compressible fluid dynamics. In this chapter, we will illustrate representative
examples of such devices.

11.1 Nozzle and Orifice

In Chap. 5, we studied one-dimensional flows with varying cross-sectional areas.
A nozzle is a device that accelerates the flow using this principle. The shape of the
nozzle depends on the purpose and the flow Mach number range.

A converging nozzle is used to accelerate subsonic flow, as shown in Fig. 11.1a.
It is used, for example, at the exit of a spray bottle. The same principle is applied
when blowing out a candle flame.

A Laval nozzle (Fig. 11.1b) is composed of a converging part and a diverging part
smoothly connected to each other. During the choking condition, the flow becomes
sonic at its throat at which the cross-sectional area has a minimum value. In a rocket
engine and a supersonic wind tunnel, the flow is accelerated to a supersonic speed.
This shape is also used to set a constant flow rate. For this purpose, the device is
termed a critical nozzle or a sonic nozzle.

An orifice (Fig. 11.1c) is a blockage in a flow with a circular hole that has a
known cross-sectional area. Near the orifice, circulation zones are formed. The cross-
sectional area of the flow past the orifice has an effective minimum value in the
downstream that is smaller than the geometrical value.
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Fig. 11.1 Orifice and
nozzles

(a) Converging            (b) Laval nozzle

(c) Orifice

The usage of a nozzle is categorized as follows:

(1) To obtain a constant flow rate (mass flow control valve, fuel injector, etc.)
(2) To generate high-speed flow (spray bottle, shower, blowing out a candle flame,

whistle, etc.)
(3) To set a flow speed or Mach number (wind tunnel)
(4) To generate thrust (aircraft and rocket engines).

11.1.1 Isentropic Flow with Varying Cross Section

Assume here a steady, quasi-one-dimensional flow without heat transfer, body force,
or shock waves. The flow variables are obtained using the equations in Chap. 5 if
the pressure difference between the inlet and exit is sufficiently large. The relation
between the flow Mach number M and the cross-sectional area A is given by

dM2

M2
= − (γ − 1)M2 + 2

1 − M2

d A

A
. (11.1)

Integrating (11.1),

(
M2 + 2

γ−1

) γ+1
γ−1

A2M2
= const. (11.2)
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Attaching a subscript * to variables in the choking state, that is, M∗ = 1 and
A = A∗,

A

A∗
=

(
γ−1
γ+1M

2 + 2
γ+1

) γ+1
2(γ−1)

M
. (11.3)

Equation (11.3) gives M as an implicit function of A. In the same way,

du

u
= 1

(γ − 1)M2 + 2

dM2

M2
=

[
−

γ−1
2

(γ − 1)M2 + 2
+

1
2

M2

]
dM2

u2

u2∗
=u2

a2∗
= (γ + 1)M2

(γ − 1)M2 + 2
(11.4)

dp

p
= γ M2

1 − M2

d A

A
= − γ

(γ − 1)M2 + 2
dM2

p

p∗
=

(
γ − 1

γ + 1
M2 + 2

γ + 1

)− γ

γ−1

. (11.5)

The thermodynamics properties are expressed based on the stagnation state using
a subscript t with Mt = ut = 0.

p

pt
=

(
2

(γ − 1)M2 + 2

) γ

γ−1

(11.6)

where pt is the total pressure. Likewise,

dT

T
=da2

a2
= − (γ − 1)dM2

(γ − 1)M2 + 2

T

Tt
=

(
a

at

)2

= 2

(γ − 1)M2 + 2
, (11.7)

where Tt is the total temperature.

ρ

ρt
=

(
2

(γ − 1)M2 + 2

) 1
γ−1

. (11.8)

As seen in Fig. 11.2, the flow variables that are normalized by the choked or
stagnation value become a function only of M . The increment in the cross-sectional
area, dA, has a negative value when M < 1 and a positive value when M > 1. A
has a minimum at the choking point (A = A∗). With increasing M , the gas expands
while p, T , and ρ monotonically decrease.
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Fig. 11.2 Flow variables as
a function of flow Mach
number M

11.1.2 Mass Flow Rate

Let us consider a converging nozzle with dA = 0 at the exit. The following applies
to a choked flow in an orifice and Laval nozzle. The mass flow rate ṁ is determined
by the cross-sectional area at the exit, A∗, pt, and the ambient pressure, pa. Let us
attach to variables at the exit. Using (11.7) and (11.8),

ṁ = ρ ′u′A∗ = ρ ′

ρt

u′

a′
a′

at
ρtatA∗ = M ′

[
2

(γ − 1)M ′2 + 2

] γ+1
2(γ−1)

ρtatA∗. (11.9)

From (11.6),

M ′ =
√√√√ 2

γ − 1

[(
p′

pt

)− γ−1
γ

− 1

]
. (11.10)

From (11.6), (11.9), and (11.10),

φ ≡ ṁ

ρtatA∗
=

(
p′

pt

) γ+1
2γ

√√√√ 2

γ − 1

{(
p′

pt

)− γ−1
γ

− 1

}
. (11.11)

Equation (11.11) gives the normalized mass flow rate φ as a function of p′/pt.
Nulling the differentiation of the rightmost hand of (11.11) with respect to p′/pt, φ
has a maximum of

φc ≡
(

2

γ + 1

) γ+1
2(γ−1)

(11.12)



11.1 Nozzle and Orifice 245

with

p′

pt
≡

(
p′

pt

)

c

=
(

2

γ + 1

) γ

γ−1

. (11.13)

Under this condition, (11.10) yields to

M ′ = 1

This is equivalent to the choking condition. This condition is termed the critical
state, (11.12) is the critical mass flow rate, and (11.13) is the critical pressure ratio.1

From (11.11) and (11.12),

ṁ =
(

2

γ + 1

) γ+1
2(γ−1)

ρtatA∗ =
(

2

γ + 1

) γ+1
2(γ−1) pt

RTt

√
γ RTtA∗ =

(
2

γ + 1

) γ+1
2(γ−1)

ptA∗
√

γ

RTt
.

(11.14)

With a constant value of Tt, the critical mass flow rate is in proportion with the
cross-sectional area at the throat and the total pressure. This is a useful relation to
keep the flow rate as a constant.

If the flow is choked, the mass flow rate is kept constant even with further decreas-
ing pa because the downstream signals do not propagate past the choking point. In
many flow devices, the mass flow rate is controlled using this principle. Substituting
(11.6)–(11.8) with the choking condition M = 1,

p∗
pt

=
(

2

γ + 1

) γ

γ−1

(11.15)

T∗
Tt

=
(
a∗
at

)2

= 2

γ + 1
(11.16)

ρ∗
ρt

=
(

2

γ + 1

) 1
γ−1

, (11.17)

where, for γ = 1.4, p∗/pt � 0.528. The flow is choked when pa ≤ p∗. In other
words, in order to obtain a constant mass flow rate using the choking condition, the
stagnation pressure needs to be almost twice (= 1/0.528 � 1.89 times) as high as
the ambient pressure. With pa > p∗, the flow is not choked; φ follows (11.11) with
p′ = pa , see Fig. 11.3.

1The critical mass flow rate is also expressed by φc = Cm pt/(ρt at ), where Cm is termed the mass
flow coefficient.
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Fig. 11.3 φ versus pa/pt,
γ = 1.4

Fig. 11.4 Gas release from
container

Column: Gas Release from a Container
Let us consider gas (initial pressure p0, initial temperature T0, and specific heat ratio
γ ) being released from a container with an inner volume of V through an orifice with
a cross-sectional area of A∗ to the atmosphere with pa (Fig. 11.4). Let us obtain the
period for the gas flowing out while keeping the critical condition.

Here, t is the time elapsed from the startingmoment of the gas release. The critical
mass flow rate is given by (11.14) and the equation of state for calorically perfect
gas.

ṁ = − d

dt

(
p(t)V

RT (t)

)
=

(
2

γ + 1

) γ+1
2(γ−1)

pA∗

√
γ

RT
. (11.18)

For isentropic expansion, (2.91) applies.

p

p0
=

(
T

T0

) γ

γ−1

. (11.19)



11.1 Nozzle and Orifice 247

Combining (11.18) and (11.19),

(
p

p0

)− γ+1
2γ

d

(
p

p0

) 1
γ

=
(

2

γ + 1

) γ+1
2(γ−1) A∗

V

√
γ RT0dt. (11.20)

The solution is

p

p0
=

{
1 − γ − 1

2

(
2

γ + 1

) γ+1
2(γ−1) A∗a0

V
t

} γ−1
2γ

. (11.21)

This equation gives the time variation of the pressure in the container. At t = tc,
the flow becomes the critical condition (11.13).

tc = 2

γ − 1

(
2

γ + 1

)− γ+1
2(γ−1)

{(
p0
pa

) γ−1
2γ

(
2

γ + 1

) 1
2

− 1

}
V

A∗a0
. (11.22)

11.1.3 Thrust

The gas charged in the chamber of Fig. 11.5 is released through the Laval nozzle.
Let us obtain the thrust F . The chamber has a constant cross section of A1 and is
connected to the Laval nozzle. The gas on the upstream end is assumed to be under a
stagnation condition, designated by the subscript t. The states at the nozzle entrance,
throat, and exit are 1, *, and 2, respectively. The time variation of the pressure is
neglected. Around the outer wall of the chamber and the nozzle, the gas is quiescent
at an ambient pressure of pa.

If we plug the exit of the nozzle, the chamber and the nozzle are exposed by a
gas with pa, and no net force is exerted no matter how the pressure is distributed on
the inside. The thrust is the net force difference from this state and is obtained by

Fig. 11.5 Pressure
distribution in a
high-pressure chamber
releasing gas jet
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integrating the force in the right direction owing to the wall pressure on both sides
of the wall. The exit of the real nozzle is not plugged by a wall; on its projection
area on the left-side wall, a negative force of paA2 is exerted on the outside. On the
inside of the end wall, a positive force ptA2 is exerted. The thrust F is obtained by

adding the force in the right direction inside of the side wall,
2∫
1
pd A, to the forces

on the end wall and the exit.

F = − paA2 + ptA1 +
2∫

1

pd A

= − paA2 + ptA1 + [pA]21 −
2∫

1

Adp

= − paA2 + ptA1 + p2A2 − p1A1 −
2∫

1

Adp. (11.23)

Neglecting the viscous force on the wall, the momentum conservation in the zone
from t to 1 yields

ptA1 = p1A1 + ρ1u
2
1A1 = p1A1 + ṁu1 ∵ ṁ = ρ1u1A1. (11.24)

From (5.12),

dp = − ρudu
2∫

1

Adp = −
2∫

1

ρuAdu = −ṁ(u2 − u1). (11.25)

Substituting (11.23) with (11.24) and (11.25),

F = ṁu2 + (p2 − pa)A2. (11.26)

Equation (11.26) gives F by using only the variables at the nozzle exit, implying
that the thrust equals the momentum ejected in the unit time. The first term on the
right-hand side is the momentum thrust, and the second term is the pressure thrust.
Usually, a rocket engine is designed so that p2 < pa on the ground; the pressure
thrust has a negative value on the ground.

The thrust performance of a nozzle is evaluated using the thrust coefficient CF ,
defined by
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CF ≡ F

ptA∗
= 1

ptA∗

{
ρ2u

2
2A2 + (p2 − pa)A2

} =
{
γ M2

2
p2
pt

+
(
p2
pt

− pa
pt

)}
A2

A∗
.

(11.27)

The upper a rocket goes, the lower pa becomes, and the larger CF results owing
to the increase in the pressure thrust. A2/A∗ is termed the expansion ratio. For an
isentropic flow, the flow Mach number at the exit, M2, and p2/pt are functions of
the expansion ratio. From (11.10),

M2
2 = 2

γ − 1

[(
p2
pt

)− γ−1
γ

− 1

]
. (11.28)

Combining this with (11.3),

A2

A∗
=

(
2

γ+1

) γ+1
2(γ−1)

(
p2
pt

)− γ+1
2γ

√
2

γ−1

[(
p2
pt

)− γ−1
γ − 1

] . (11.29)

Equation (11.29) gives p2/pt as an implicit function of A2/A∗. Substituting
(11.27) with (11.28) and (11.29), CF is given as a function of A2/A∗. Figure 11.6a
shows CF variation in the ultimate condition of pa = 0. The larger the expansion
ratio, the larger CF becomes, although the pressure thrust decreases.

As seen in Fig. 11.6b, for a constant value of pa/pt there exists a value of A2/A∗
that maximizes CF . Differentiating (11.27) with respect to p2/pt,

(a) Thrust components, a 0p = (b) For various a */ 0p p =

Fig. 11.6 CF versus A2/A∗, γ = 1.3
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∂CF

∂
(
p2
pt

) = A2
A∗

∂

∂
(
p2
pt

)
{
γ M2

2
p2
pt

+
(
p2
pt

− pa
pt

)}
+

{
γ M2

2
p2
pt

+
(
p2
pt

− pa
pt

)}
∂

∂
(
p2
pt

) A2
A∗

= A2
A∗

(
γ M2

2 + 1
)

+ A2
A∗

γ
p2
pt

∂M2
2

∂
(
p2
pt

) +
{
γ M2

2
p2
pt

+
(
p2
pt

− pa
pt

)} ∂
(
A2
A∗

)

∂
(
p2
pt

) .

From (11.6),

∂M2
2

∂
(

p2
pt

) = − (γ − 1)M2
2 + 2

γ
(

p2
pt

) .

Then, using (11.5),

∂
(

A2
A∗

)

∂
(

p2
pt

) = 1 − M2
2

γ M2
2

A2
A∗
p2
pt

.

Therefore,

∂CF

∂
(
p2
pt

) = A2
A∗

(
γ M2

2 + 1
)

− (γ − 1)M2
2 + 2

γ
(
p2
pt

) A2
A∗

γ
p2
pt

+
{
γ M2

2
p2
pt

+
(
p2
pt

− pa
pt

)}
1 − M2

2

γ M2
2

A2
A∗
p2
pt

.

=
(
1 − pa

p2

)
1 − M2

2

γ M2
2

A2
A∗

In order to maximize CF for M2 > 1,

p2 = pa (11.30)

CF is at a maximum if the pressure at the nozzle exit equals the ambient pressure.
This operation corresponds to optimum expansion, as seen in (11.27), the pressure
thrust vanishes.

11.1.4 Nozzle Flow Patterns with Various Nozzle Pressure
Ratios

So far, we assumed an isentropic flow in the nozzle and neglected the influence of the
ambient pressure on the nozzle flow. However, under most operation conditions, the
pressure at the nozzle exit differs from the ambient pressure. In order to compensate



11.1 Nozzle and Orifice 251

Fig. 11.7 Nozzle flows under various ambient pressures, γ = 1.4, expansion ratio of 2.4

this difference, shock waves and/or expansion waves appear in and/or outside the
nozzle.2

We define the nozzle pressure ratio (NPR) as

NPR ≡ pt
pa

(> 1). (11.31)

Using NPR, the flow patterns are categorized as shown in Fig. 11.7.

(a) Subsonic flow in entire region: With NPR close to unity, the subsonic flow is
accelerated in the converging section. Past the throat, the flow decelerates in the
diverging section.

2In real nozzle flows, complicated phenomena (for example, interactions with the boundary layer)
and flow separation can occur.
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(b) Critical flow: When increasing NPR to a critical value (critical pressure ratio),
that is, decreasing pa to a critical value with pt kept constant, the flow becomes
sonic at the throat. However, in principle, past the throat, the flow can either be
supersonically accelerated or decelerated as subsonic flow. From (11.15),

βc ≡ p∗
pt

=
(

2

γ + 1

) γ

γ−1

. (11.32)

(c) Choked flow: With NPR > 1/βc, the flow past the throat becomes supersonic,
which is not influenced by pa. Therefore, the mass flow rate is not affected by
pa. If the flow is kept isentropic, the flow Mach number becomes a function
of only the cross-sectional area. As a result, the flow Mach number at the exit
of the nozzle does not equal pa. In order to compensate this mismatch, with
increasing NPR, the flow condition changes as follows:

(c-1) Overexpansion
A nozzle flow in which the static pressure becomes lower than pa is termed an
overexpansion. In order to achieve pressure matching, shock waves appear in the
inside and/or outside of the exit. The wave pattern is determined so that the static
pressure of the flow and the back pressure are balanced with each other. The flow
pattern changes from c-1-1 to c-1-4 in Fig. 11.7.

(c-1-1) When pa is high, a normal shock wave stands in the nozzle. The flow
becomes subsonic behind it so that the static pressure equals pa at the exit.

(c-1-2) The normal shock wave is generated at the exit.
(c-1-3) At the nozzle exit, the static pressure of the flow still is lower than pa,

yet not so much as to have the appearance of a normal shock wave. At the exit, an
oblique shock wave is generated so that the flow is bent inward. On the center axis,
the oblique shock wave is reflected as a Mach reflection; a Mach disk, which is a
normal shock wave, appears.

(c-1-4) At the nozzle exit, an oblique shockwave appears. On the center axis, there
is a regular reflection in which the oblique shock wave appears as a reflected wave.
Then, the reflected wave experiences reflection on the free jet boundary and slip
surface. Expansion waves appear as reflected waves. These processes are repeated
until the flow becomes subsonic.

(c-2) Optimum expansion
At the nozzle exit, the flow static pressure equals pa. If the passage at the nozzle exit
is parallel to the flow, no wave appears because the flow is not bent. A slip surface
appears against the ambient gas.

(c-3) Underexpansion
Even with further decreasing pa, the flow in the diverging section is kept supersonic
and unchanged. At the nozzle exit, the flow static pressure is still higher than pa
(underexpansion); expansion waves are generated with the nozzle flow bent outward
across them. The expansion waves are reflected as compression waves on the outer
boundary where the flow static pressure is matched with pa.
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11.2 Supersonic Diffuser

A diffuser is a device that decelerates flow.With deceleration, the flow static pressure
is increased. In an aircraft engine, air is introduced to its intake and is decelerated
by a diffuser. In a wind tunnel, the test flow is decelerated in a diffuser so that it
is damped or recirculated with low noise and pressure loss. A supersonic diffuser
should decelerate a supersonic flow to subsonicwith a small pressure loss. Figure 11.8
illustrates the operation modes of a supersonic diffuser.

In a real flow, it is impossible to isentropically decelerate the supersonic flow
as shown in Fig. 11.8a. Instead, as shown in Fig. 11.8b, the supersonic flow is
decelerated once in the converging section, supersonically passes the throat, and is
accelerated again in the diverging section. In the diverging section, a normal shock
wave is generated so that the flow is decelerated to a subsonic speed. The flow static
pressure is matched at the exit condition. This flow pattern is robust against flow
fluctuations.

However, if the flow matching is not accomplished, the flow reaches an unstart
situation, as shown in Fig. 11.8c. This leads to large losses in the flow rate and total
pressure and an increase in the drag.

Here, we deal with the supersonic diffuser performance based on quasi-one-
dimensional flow without taking the effects of the boundary layer, flow separation,
etc., into consideration.

(a) Isentropic deceleration, impossible (b) Typical operation

(c) Unstart 

Fig. 11.8 One-dimensional operation model of supersonic diffuser
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11.2.1 Quasi-One-Dimensional Operation

Let us analyze the operation of a supersonic diffuser based on quasi-one-dimensional
flow. In real operation, the entropy of the supersonic flow is increased during its
deceleration with the appearance of shock waves. However, it is assumed here that
the flow is isentropic as long as the flow is kept supersonic. From (11.2), the relation
between the flow Mach number M and the cross-sectional area A is

A

A1
= M1

M

{
(γ − 1)M2 + 2

(γ − 1)M2
1 + 2

} γ+1
2(γ−1)

(11.33)

Figure 11.9 shows the relation among M, p, and A in supersonic flow. The flow
enters the diffuser at the entrance with A = A1. Then, the flow is decelerated in the
converging section, and A decreases. The diffuser works only when the flow does not
reach the sonic condition (M = 1), in other words, only if the flow is not choked. Past
the throat, the flow is accelerated in the diverging section with A increased, as shown
in Fig. 11.10a. Figure 11.10b shows a critical operation in which the flow becomes
choked at the throat. The condition in which the flow becomes sonic in the converg-
ing section (see Fig. 11.10c) is impossible. Therefore, the necessary condition for
supersonic diffuser operation is that the flow is not choked in the converging section.

Athroat ≥ A∗ (11.34)

where A∗ is the value of A for the choked condition. Hereafter, the subscript * will
designate the choked condition. Substituting (11.34) with (11.33),

Fig. 11.9 Isentropic
operation in supersonic
regime γ = 1.4
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(a) Supersonic (b) Choked at throat (c) Choked in converging
section (impossible)

Fig. 11.10 Isentropic flow patterns in converging section

(a) Supersonic at throat (b) Kantrowitz limit (c) Choked in converging
section (impossible)

Fig. 11.11 Flow patterns with normal shock wave at inlet

Athroat

A1
= M1

Mthroat

{
(γ − 1)M2

throat + 2

(γ − 1)M2
1 + 2

} γ+1
2(γ−1)

≥ A∗
A1

= M1

1

{
(γ − 1) · 12 + 2

(γ − 1)M2
1 + 2

} γ+1
2(γ−1)

= M1

{
γ + 1

(γ − 1)M2
1 + 2

} γ+1
2(γ−1)

.

∴ Athroat

A1
≥ M1

{
γ + 1

(γ − 1)M2
1 + 2

} γ+1
2(γ−1)

(11.35)

The left-hand side of (11.35) is termed the contraction ratio. Equation (11.35),
which corresponds to the isentropic unchoked condition, is a necessary condition
for a supersonic diffuser to operate properly. The equality corresponds to a choked
condition at the throat, for example, when M1 = 3 Athroat/A1 ≥ 0.236.

From (11.6) (see Fig. 11.9), the pressure is given by

p

p1
=

[
(γ − 1)M2

1 + 2

(γ − 1)M2 + 2

] γ

γ−1

. (11.36)

Next, let us consider flow patterns with a normal shock wave at the inlet (see
Fig. 11.11). Here, we do not consider the flow spillage at the inlet. The flow behind
the shock wave is subsonic and is thus accelerated in the converging section. In the
present quasi-one-dimensional flow, the flowMach numberM is a function of onlyA.
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IfM is kept lower than unity even at the throat (see Fig. 11.11a), a normal shock
wave cannot stand at the inlet but is “shallowed” down the throat. As a result, the
flow pattern of Fig. 11.11a appears. In this case, the diffuser always becomes started.
Figure 11.11b shows the critical condition for the diffuser to be started in which the
flow becomes sonic at the throat, known as the Kantrowitz limit [1].

If the flow becomes sonic in the converging section (Fig. 11.11c), the flow does
not satisfy the choking condition. The normal shock wave stands in front of the inlet,
and part of the incoming flow that should be introduced into the diffuser spills out,
thereby resulting in unstart (see Fig. 11.8c).

TheKantrowitz limit corresponds to a sufficient condition for a supersonic diffuser
to be started, in which a normal shock wave is swallowed down even if it appears
at the inlet. For a calorically perfect gas, the Kantrowitz limit is given in an explicit
form. Here, as shown in Fig. 11.11b, variables immediately behind the shock wave
have a subscript of 1’. From the normal shock wave condition (4.60),

M1′ =
{

(γ − 1)M2
1 + 2

2γ M2
1 − γ + 1

}1/2

. (11.37)

Substituting (11.37) with (11.3) and the choking condition,

A1

Athroat
=

(
γ−1
γ+1M

2
1′ + 2

γ+1

) γ+1
2(γ−1)

M1′
.

Therefore, the condition for the shock wave being swallowed down is

Athroat

A1
≥

{
(γ − 1)M2

1 + 2
}1/2{

2γ M2
1 − (γ − 1)

} 1
γ−1

(γ + 1)
γ+1

2(γ−1) M
γ+1
γ−1

1

. (11.38)

The equality corresponds to the Kantrowitz limit. Based on (11.35) and (11.38),
three operation domains exist:

(1) Always started, wherein both (11.35) and (11.38) are satisfied.
(2) Dual-solution domain, wherein (11.35) is satisfied but (11.38) is not. In this

domain, whether the diffuser is started or in unstart mode depends on the flow
history.

(3) Always unstart, wherein neither equation is satisfied.

These conditions are displayed usingMach number-flow passage area coordinates
(Fig. 11.12). In the dual-solution domain, whether the diffuser is in a started or
unstart state depends on the flow history and disturbances experienced by the flow.
For example, if the flow enters this domain from the low-Mach-number side, that is,
the unstart side, the operation to some extent stays in unstart even in the dual-solution
domain. Conversely, if the flow enters from the higher Mach-number side, that is,
the start domain, to some extent, the diffuser is maintained in a started state in the
dual-solution domain.
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Fig. 11.12 Supersonic
diffuser operation domains
on M1 − At/A1
coordinates, γ = 1.4

In order for the supersonic flow to be decelerated to a subsonic speed, a normal
shock wave needs to stand as is in Fig. 11.8b. Behind the shock wave, the entropy is
increased. The higher the Mach number in front of the shock wave, the greater the
increase in entropy. In order for the entropy increment to be suppressed, the location
of the shock wave should be close to the throat so that the flowMach number is close
to unity. However, the shock wave cannot stay at the throat.

Aswill be shown later, the location of the shockwave is determined by the pressure
at the exit, p2. Here, the flow passage area at the shock wave is designated by Asw.
The flow variables in front of and behind the shock wave have subscripts sw1 and
sw2, respectively. For the isentropic flow up to the shock wave, by using (11.2), Msw1

is obtained as the following implicit form:

Asw

A1
= M1

Msw1

{
(γ − 1)M2

sw1 + 2

(γ − 1)M2
1 + 2

} γ+1
2(γ−1)

.

The pressure is obtained as

psw1
p1

=
{

(γ − 1)M2
1 + 2

(γ − 1)M2
sw1 + 2

} γ

γ−1

. (11.39)

From normal shock wave relations (4.47) and (4.60),

psw2
psw1

= 1 + 2γ

γ + 1

(
M2

sw1 − 1
)

(11.40)

Msw2 =
{

(γ − 1)M2
sw1 + 2

2γ M2
sw1 − γ + 1

}1/2

. (11.41)

The flow Mach number and the pressure at the exit are obtained as
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A2

Asw
= Msw2

{
(γ − 1)M2

2 + 2
} γ+1

2(γ−1)

M2
{
(γ − 1)M2

sw2 + 2
} γ+1

2(γ−1)

(11.42)

p2
psw2

=
{

(γ − 1)M2
sw2 + 2

(γ − 1)M2
2 + 2

} γ

γ−1

. (11.43)

Note that in (11.42), the subsonic solution should be chosen.With the exit pressure
p2 being given, the location of the shock wave is determined so that (11.43) is
satisfied.

11.2.2 Multidimensional Effects

The diffuser operation analysis so far was based on a quasi-one-dimensional flow.
In reality, however, the flow condition is not only determined by the cross-sectional
area ratio. Figure 11.13 shows three configurations with an equal throat-to-inlet flow
passage area ratio but with different configurations. In Fig. 11.13a, an axisymmetric
center body is set on the center axis of a circular cylinder duct. An oblique shock
wave stands at the leading edge of the center body. It repeatedly reflects between the
duct and the center body walls. Among the three configurations shown in Fig. 11.13,
the shock wave is weakest; the pressure loss is smallest.

In Fig. 11.13b, the configuration is two dimensional, and the shock wave is
stronger than that in Fig. 11.13a. Hence, the pressure loss is greater. In Fig. 11.13c,

(a) Circular cylinder with axisymmetric 
center body  

(b) Two-dimensional view     

(c) Axisymmetrical converging symmetric
center body

Fig. 11.13 Three diffuser configurations with equal throat-to-inlet cross-sectional area ratios
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the flow passage is converged in an axisymmetric manner. The shock wave generated
at the inlet is strongest and experiences Mach reflection. On the axis, a normal shock
wave (the so-called Mach stem) appears, accompanied by a subsonic flow behind it.
The pressure loss is largest among the three configurations, readily leading to unstart.

In a supersonic combustion ram (SCRAM) jet engine, supersonic flow is intro-
duced in an intake. The flow is then decelerated in a diffuser, mixed with fuel, and
burned with its Mach number kept higher than unity. The smaller the pressure loss,
the better the diffuser performance with a widened operational regime. For this pur-
pose, the configuration of Fig. 11.13a is favorable, although the structure to support
the center body is necessary. The configurations of Fig. 11.13b, c have structural
simplicity but have aerodynamics drawbacks.

11.2.3 Pseudo-Shock

So far, we have not dealt with the boundary layer in a duct flow, while a real flow
often is strongly influenced by the boundary layer. The shock wave-boundary layer
interaction (SWBLI) is an important problem in high-speed flows. The flow speed in a
boundary layer is lower than of the outside. If a shock wave exists over the boundary
layer, an inverse pressure gradient is formed in the boundary layer. In other words,
the high-pressure region behind the shock wave penetrates the boundary layer. If
SWBLI becomes significant in duct flows, a pseudo-shock is formed, and thus the
supersonic flow is decelerated to subsonic under a condition different from that by a
single shock wave. A pseudo-shock is generated in the intake of a supersonic engine
and strongly influences the engine performance.

A pseudo-shock (Fig. 11.14) is composed of a shock train in which a boundary
layer and shock waves repeat their interaction, and a mixing region [2]. In the shock
train, Mach/regular reflections appear over the boundary layer. Even a subsonic flow
behind aMach stem in theMach reflection can be accelerated through expansion. By

Fig. 11.14 Transition from
supersonic to subsonic past a
pseudo-shock
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repeating the reflections, the flow is gradually decelerated with the subsonic portions
increased.

In the mixing region, the flow is supersonic around the center but subsonic near
the wall. Even without shock waves, the flow is decelerated by compression waves,
thus eventually becoming subsonic all through.

With regard to the pseudo-shock, the supersonic flow at the entrance (label 1)
becomes subsonic at the exit (label 2) over a distance that is greater than the tube
diameter. At the exit, the static pressure is increased; however, the pressure is lower
than that behind a shock wave for the same entrance Mach number. In the down-
stream of the pseudo-shock wave, the flow is accelerated while the static pressure is
decreased owing to a friction force against the wall.

11.3 Supersonic Test Facilities

Special facilities are necessary for supersonic flow testing. Although their operation
principle is simple, they are expensive with respect to size and cost. There are two
methodologies: the generation of supersonic flow or the launching of a model at a
supersonic speed. In this section, representative facilities will be introduced.

11.3.1 Supersonic Wind Tunnel

In order to generate steady-state supersonic flow, a Laval nozzle is used (Fig. 11.15a).
Gas under a high-pressure stagnation condition is introduced to a converging section,
is choked at the throat, and is accelerated supersonically in a diverging section before
the test section, where the flow is diagnosed and/or the force components are mea-
sured. After the test section, the flow is decelerated to subsonic speed, and exhausted
or recirculated. There are three categories of tunnel:

In a continuous, closed-circuit tunnel (Fig. 11.15b), steady-state operation is pos-
sible with (1) and (2) in Fig. 11.15a connected to form a closed cycle. Flow from (2)
is compressed, cooled, and often dried, and is then introduced to (1) again. Usually,
a facility of this type usually has a large size and necessitates a high running cost. In
an intermittent wind tunnel, (1) and/or (2) in Fig. 11.15a is connected to a chamber
with a finite volume.

A facility connected to a high-pressure gas reservoir at (1) is a blow-down tun-
nel (Fig. 11.15c), and that with a vacuum chamber at (2) is an in-draft tunnel
(Fig. 11.15d). In the latter, the air sucked in the Laval nozzle contains moisture
that may be frozen through the expansion. In order to eliminate this influence, in
some in-draft tunnels, dry air is packed in a bag that is connected to the intake of the
nozzle (1). In intermittent wind tunnels, the test time is limited by the volume of the
airbag or the vacuum chamber.
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(a) Basic components

(b) Continuous closed-
circuit tunnel

(c) Blow-down tunnel

(d) In-draft tunnel

Fig. 11.15 Supersonic wind tunnels using Laval nozzle

Fig. 11.16 Free-piston driver connected to shock tube
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In an impulse tunnel, also categorized as an intermittent tunnel, high-enthalpy
flow, which is of course supersonic, is generated by unsteady compression. In a shock
tunnel, high-pressure gas in a stagnation state that is generated behind a reflected
shock wave is accelerated through a Laval nozzle. In an expansion tube, the gas is
accelerated by unsteady expansion.

11.3.2 Supersonic Free Flight

Experiments of supersonic flow should usually simulate real supersonic flight. Of
course, using available measurements of real flight is the best approach, but this is
expensive and has slim availability. A ballistic range is a test facility that launches
a scale flight model in a test section. If the similarity exists, this is convenient with
respect to availability and cost.

11.4 Unsteady Operation Driver

In an impulsive wind tunnel, an unsteady drive can generate a high-pressure/high-
temperature test flow, which cannot be realized in steady-state operation. A free-
piston driver boosts a driver gas to a high-pressure/temperature state by using the
inertia of a piston. This is widely used in shock tubes, shock tunnels, expansion tubes,
ballistic ranges, etc. It is composed of a (high-pressure) reservoir, free piston, and
compression tube (Fig. 11.16), which is connected to a shock wave or acceleration
tube in a ballistic range, etc.

The high-pressure gas, usually air, is charged in the reservoir. Once the separation
at the end of the reservoir is removed, the free piston is accelerated in the compression
tube. The free-piston compresses the driver gas charged in the compression tube
using its inertia. Usually, the compression processes are almost isentropic. When the
pressure of the driver gas reaches a preset value, the diaphragm is ruptured. Thus, in
the case of Fig. 11.16, a shock wave propagates in the shock tube.

In order to increase the pressure and temperature of the driver gas, the inertia
and then the speed and mass of the free piston need to be increased. However, if the

Fig. 11.17 Retarding detonation driver
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initial pressure of the test gas in the shock tube is too low, the free piston will collide
against the end wall of the compression tube, causing serious damage.

On the other hand, if the initial pressure in the compression tube is too high, the
free piston stops moving before a sufficiently high pressure is obtained. Moreover,
it is important to maintain the high-pressure state of the driver gas in a sufficiently
long duration time. In the tuned operation by Ito et al. [3], the free-piston motion is
designed so that the duration for the driver pressure to be kept constant is maximized,
and the free-piston lands softly before the end wall.

A free-piston driver is a powerful tool to obtain high-enthalpy flow. However, it
is difficult to obtain a long test time. Yu [4] invented a retarding detonation driver
(Fig. 11.17). It does not use a free piston but a high-pressure/temperature state behind
a detonation wave, thereby increasing the duration time of a constant pressure. The
driver tube is initially filled with a detonable mixture. A detonation is ignited at the
diaphragm to the shock tube, not at the other end. A detonation wave thus initiated
propagates toward the other end, in the direction opposite the shock wave.

When the detonation wave arrives at the other diaphragm of the dump tube, the
diaphragm is ruptured, and the incident detonation wave is attenuated in the dump
tank. During the period in which the detonation wave propagates in the driver tube,
a shock wave is driven and propagates in the shock tube. The test gas between
the shock wave and the tail of the expansion fan is shock-compressed to a constant
pressure. Compared to a free-piston driver, a retarding detonation driver canmaintain
a constant pressure of the test gas during amuch longer period, although its attainable
total enthalpy is lower.

11.5 Shock Tunnel

When a vehicle (re)enters the atmosphere of Earth or other planets, the flight Mach
number exceeds 20 or is even higher. In front of the vehicle, a strong shock wave is
generated. Behind the shock wave, a shock layer at a high temperature is formed.
The heat shield from the shock layer is critical in designing the (re)entry vehicle.

In addition, when designing an air-breathing engine at a flight Mach number of 5
or higher, the heat transfer and aerodynamic forces need to be accurately estimated.
In such flows, the largest part of the total enthalpy is the kinetic energy. In order to
characterize the flow, the total enthalpy is used more often than the Mach number.
For example, a total enthalpy in Mach-10 flight at an altitude of 20 km equals about
4.6 MJ/kg, which is comparable to the internal energy of typical explosives.3 With
an entry speed of 7.9 km/s at an altitude of 200 km, the total enthalpy becomes
31 MJ/kg.

A shock tunnel is an impulsive wind tunnel composed of an unsteady driver,
shock tube, and a Laval nozzle at the end. Initially, the shock tube and the nozzle are
separated by a diaphragm (Fig. 11.18a). After the incident shock wave is reflected at

3The energy released in the detonation of trinitrotoluene (TNT) equals about 4.2 MJ/kg.
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Fig. 11.18 Operation
principle of shock tunnel

Fig. 11.19 Normal shock
wave propagating to right,
and forces exerted on fluid
element

the shock tube end wall, a high-pressure/temperature stagnation state (5) is generated
behind the reflected shock wave (Fig. 11.18b). Then, the diaphragm is ruptured and a
high-enthalpy flow is generated in the downstream of the nozzle (Fig. 11.18c). Once
the gas (5) starts to flow out of the shock tube, the pressure (5’) decreases. During
a period in which the pressure is kept almost constant, the test flow with almost the
same condition continues.

Let us understand the principle of the entropy increase owing to the incident shock
wave. Figure 11.19 illustrates the total enthalpy gain mechanisms behind the shock
wave. Initially, the gray gas segment (which has a null velocity) is compressed by
the incident shock wave. The mass that is compressed in a unit time equals ρ1Us,iA
(Us,i, propagation speed of the incident shock wave; A, cross-sectional area of the
shock tube). While the left-hand end of the segment is compressed with a force of
p2A at a velocity of u2, the right-hand end does not experience any work. Therefore,
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the segment gains an energy of p2Au2.

ρ1UsA�

(
e + 1

2
u2

)
= p2Au2 > 0. (11.44)

Next, let us obtain the increment in ht of the test flow with a constant specific heat
ratio of γ . According to our custom, the quiescent state in front of the incident shock
wave, the state behind the incident shockwave, and that behind the reflected wave are
labeled as 1, 2, and 5, respectively (see Fig. 11.18). The shock Mach number of the
reflected shock wave is Ms,r. Note here that the flow speed u refers to the laboratory
frame. From

p2
p1

= 1 + 2γ

γ + 1

(
M2

s,i − 1
)

(11.45)

ρ2

ρ1
= (γ + 1)M2

s,i

(γ − 1)M2
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(11.46)

u2 = 2a1
γ + 1
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)
, (11.47)
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+ 1
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2
2
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= 2(γ − 1)M2
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γ + 1
. (11.48)

Let us consider the post-shock state of the reflected shock wave (5). From (9.49),

Ms,r =
√
2γ M2

s,i − (γ − 1)

(γ − 1)M2
s,i + 2

. (11.49)

Because u5 = 0,
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)
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. (11.51)

As seen in Fig. 11.20, ht is increased by the incident and reflected shock waves.
The higher the Ms,i, the larger the increments become. For example, when Ms,i = 10,
the increment becomes 34 and 45 times larger than the initial value. However, in real
flows, this ratio becomes lower because the degree of freedom is increased at such
high temperatures, and thus γ is decreased.
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Fig. 11.20 Variation of total
enthalpy owing to shock
wave, γ = 1.4

From (11.48) and (11.50), the upper limit in the total enthalpy increment behind
the reflected shock wave is

ht,5
ht,2

∣∣∣∣
Ms,i→∞

= 3γ − 1

γ + 1
. (11.52)

When γ = 1.4, this ratio equals about 1.3, implying that the total enthalpy is not
increased significantly behind the reflected shock wave.

If we neglect the heat loss to the wall, the total enthalpy of the test flow is deter-
mined uniquely by the shock Mach number of the incident shock wave. In order to
increase this, a free-piston driver is used in many high-enthalpy facilities. A free-
piston shock tunnel (see Fig. 11.21), that is, a shock tunnel with a free-piston driver,
is also known as a Stalker tube [5].

(a) T4 at University of Queensland (courtesy of University of Queensland) 

(b) High-Enthalpy Shock Tunnel (HIEST) at Japan Aerospace Exploration 
Agency (JAXA) (courtesy of JAXA) 

Fig. 11.21 Free-piston-driven shock tunnels
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(a) Wave diagram and instant pressure distribution (b) Photograph

Fig. 11.22 Retarding detonation-driven shock tunnel JF12 (HYPER DRAGON), Institute of
Mechanics, China Academy of Science. Courtesy of China Academy of Science

Jiang et al. developed a 265-m-long shock tunnel in which a retarding detonation
driver is employed (Fig. 11.22). The researchers achieved a test time longer than
200 ms in a test section with a nozzle diameter of 2.5 m [6, 7].

With either driver, in order to obtain a long test time, it is favorable that pressure
waves are not reflected on the contact surface between the test and driver gases toward
the end wall of the shock tube. This condition is referred to as the tailored condition,
which is obtained by solving the relevant Riemann problem.

11.6 Expansion Tube

An expansion tube is a device in which the flow behind a normal shock wave is
further accelerated through unsteady expansion without stagnation. Let us compare
here the unsteady expansion from a steady expansion through a nozzle. In the steady
expansion through a nozzle (Fig. 11.23a), the flow passage area increases in the
supersonic acceleration section. The resultant force on the flow element in the control
volume is directed downstream.

However, no work is done on the element owing to this force because the wall
does not move, so the total enthalpy is not increased. In an isentropic flow, the flow
Mach number M, static pressure p, and total pressure pt are related by (11.10).

M =
[

2

γ − 1

{(
p

pt

)− γ−1
γ

− 1

}] 1
2

. (11.53)
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(a) Steady expansion                                                 (b) Unsteady expansion

Fig. 11.23 Steady and unsteady expansions

The force balance in an unsteady expansion of a driver gas in a shock tube is
shown in Fig. 11.23b. In the flow element (gray section), the force owing to the
pressure on the high-pressure (left) side is larger than that on the right side; it is
accelerated to the right. A work is done to the element from the high-pressure gas on
the left, and a work is done from the element to the low-pressure gas on the right. The
work imbalance per area equals to the difference in the product of the pressure and
flow velocity between the left and the right. The pressure decreases and the velocity
increases from the left to the right. If the product is larger on the left than on the
right, then the total enthalpy of the flow element is increased.

Let us formulate the gain in the total enthalpy by unsteady expansion. The
substantial derivative of total enthalpy is

Dht
Dt

= Dh

Dt
+ D

Dt

(
u2

2

)
. (11.54)

Because we assume isentropic flow,

T
Ds

Dt
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Dt
− 1

ρ

Dp

Dt
= 0. (11.55)

Taking the inner product of Euler’s Eq. (3.18) with f = 0 and u,

ρ

(
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Dt

)
· u = −(∇p) · u. (11.56)

Combining (11.54)–(11.56),
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. (11.57)
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Equation (11.57) implies that the total enthalpy is increased by unsteady expansion
during which the pressure measured at a fixed point increases, see Fig. 11.23b.

Let a quiescent, high-pressure state (with subscript t) and a state after unsteady
expansion (without a subscript) correspond to the states L and L*, respectively, in
the Riemann problem of Chap. 9. From (9.11),

u

at
= u

a

a

at
= M

a

at
= 2

γ − 1

{
1 −

(
p

pt

) γ−1
2γ

}
. (11.58)

M=u

a
(11.59)

From (2.91),

a

at
=

(
p

pt

) γ−1
2γ

. (11.60)

Substituting (11.58) with (11.60),

M = 2

γ − 1

{(
p

pt

)− γ−1
2γ

− 1

}
. (11.61)

Equation (11.61) is the relation between the flow Mach number and the pressure
ratio in the unsteady expansion.

As seen in Fig. 11.24, if the flow element is accelerated to a sufficiently low
pressure, the unsteady expansion (11.61) yields a higher flow Mach number than
the steady expansion (11.53). During steady expansion, the total enthalpy is kept
constant. In unsteady expansion, the total enthalpy can be locally increased, although
the total energy in the system remains unchanged.

An expansion tube (Fig. 11.25) has an acceleration tube attached to the end of a

Fig. 11.24 p/pt versus M.
Steady expansion withM < 1
is possible in converging duct
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Fig. 11.25 Expansion tube, components, and operation wave diagram

low-pressure channel of a shock tube. The initial pressure in the acceleration tube
is even lower than that in the low-pressure channel. A flow element that is shock-
compressed in the low-pressure channel experiences unsteady expansion, thereby
being accelerated with its total enthalpy increased in the acceleration tube. The test
section is at the exit of the acceleration tube. The test flow state 30 (Fig. 11.25) is kept
intact in the region enclosed by the expansion fan during the test time. Since the flow
element is not stagnated, it does not experience an extremely high-temperature pro-
cess that is accompanied by a nonequilibrium condition such as electronic excitation,
dissociation, or ionization during combustible mixture ignition in the acceleration
processes.

However, the test time is considerably short and should be kept intact against
the expansion waves and reflected waves from the contact surface to the driver gas.
The wave diagram of the associated processes (Fig. 11.25) is rather complicated.
Depending on the operation condition and the location of the test section, the test
time might not be obtained.

Let us analyze the unsteady acceleration of flow element 2 in Fig. 11.25. The total
enthalpy is given by

ht,2 = h2 + 1

2
u22 = h2

(
1 + γ − 1

2
M2

2

)
. (11.62)
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When this flow element experiences unsteady expansion, from (8.44),

u + 2a

γ − 1
= u2 + 2a2

γ − 1
. (11.63)

Labeling the stagnation state of 2 with the subscript “t,2”, the corresponding
isentropic relation is

a = a2

(
p

p2

) γ−1
2γ

= at,2

(
p

pt,2

) γ−1
2γ

.

Therefore,

ht
ht,2

= h + 1
2u

2

ht,2
=

a2

γ−1 + 1
2u

2

a2t,2
γ−1

= 1

γ − 1

[
(γ + 1)

(
p

pt,2

) γ−1
γ

− 4

(
p

pt,2

) γ−1
2γ

+ 2

]
.

(11.64)

From (11.61),

M = 2

γ − 1

{(
p

pt,2

)− γ−1
2γ

− 1

}
. (11.65)

Differentiating (11.64) with (11.65),

dht
ht,2

= γ − 1

γ

(
p

pt,2

)− 1
γ

(1 − M)
dp

pt,2
. (11.66)

ht is increased during supersonic expansion in which M > 1 and dp < 0. As seen
in Fig. 11.26, at a relatively low pressure

(
p/pt,2 > 0.058

)
or low Mach number

(M < 2.5), the total enthalpy decreases. Yet, when accelerating to lower pressure, it
increases.

From (11.60), in the ultimate condition of null pressure,

ht
ht,2

∣∣∣∣
p

pt,2
→0

= 2

γ − 1
. (11.67)

This corresponds to the total enthalpy at the escape speed (9.23). When γ = 1.4,
(11.67) equals 5. Considering that the total enthalpy behind a reflected shock wave
is increased by a factor of 1.3 at most, the unsteady expansion is very effective for
locally increasing the total enthalpy.
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Fig. 11.26 Variation of total enthalpy and Mach number through unsteady expansion

Fig. 11.27 Expansion tube X-3 at University of Queensland. Courtesy of University of Queensland

The X-3, a large expansion tube at the University of Queensland (Fig. 11.27),
uses a free-piston driver as the shock tunnel (Stalker tube) in the same place.

11.7 Ballistic Range

A ballistic range (Fig. 11.28) is a high-speed launcher in which a flight model, often
termed a projectile, is accelerated using high-pressure gas. This realizes a supersonic
flight experiment in the laboratory, thus vastly saving on the costs of full-scale flight.
The range is also utilized in hypervelocity impact experiments. The flight model is
accelerated by a driver gas at high pressure. The higher the speed of the flight model,
the lower the driver gas pressure behind the flight model.

Before launch operation, the gas in front of the flight model is quiescent with a
static pressure in the test section. The higher the acceleration of the flight model,
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Fig. 11.28 Ballistic range, operation principle, and operation wave diagram

Fig. 11.29 Two-stage, light-gas gun at Institute of Fluid Science (IFS), TohokuUniversity. Courtesy
of IFS

the greater the compression of the test gas in front of the flight model. Eventually, a
precursor shock wave appears and propagates ahead of the flight model.

Figure 11.28 shows a wave diagram of the projectile (or flight model), the pre-
cursor shock wave, and associated pressure waves. The lower picture indicates their
locations at t = t1. If the driver section has a finite length, then the expansion waves
behind the projectile can be reflected from the (leftmost) end wall. As long as the
reflected waves do not catch up with the projectile, the condition immediately behind
the projectile is obtained from a Riemann invariant.

High-speed launch experiments are important not only in fluid dynamics but also
for investigating hypervelocity impact phenomena. For example, in low Earth orbits,
space debris moves at an orbital speed on the order of 8 km/s. During a mutual
collision, the relative speed can even double. In order to obtain a high launch speed,
the speed of sound of the driver gas needs to be high. For this purpose, light gas
(hydrogen and helium) is often used.

In order to further increase the speed of sound, the driver gas is sometimes heated.
Anothermethod to increase the speed of sound is to utilize a free-piston driver. A two-
stage, light-gas gun (Fig. 11.29) is a typical hypervelocity ballistic range. So far, we
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Fig. 11.30 In-tube catapult launch method

have dealt with only the aeroballistic range. Other devices utilizing electromagnetic
forces (rail gun, coil gun, etc.) can be used.

Usually, the cross section of the acceleration tube in a ballistic range has a circular
bore. Many or most flight models do not fit this shape. In order to fit the projection
area to the tube cross section, a sabot of the same cross-sectional shape as the bore,
and contacts the flight model during the acceleration is used. The sabot needs to be
separated from the flight model before the test section. Usually, the sabot separation
is done after the muzzle, which is the exit of the launch tube.

The in-tube catapult launch [8] is a unique method to separate the sabot before
the muzzle. In this method (see Fig. 11.30), in the launch tube after the acceleration
section there exist a ventilation section and a sabot separation section, thereby sep-
arating the sabot before the muzzle. In the acceleration section, the flight model is
accelerated together with the sabot. In the ventilation section, the gas in the launch
tube is exhausted through many ventilation holes so that the precursor shock wave
is attenuated and the pressure behind the sabot is also decreased.

When the flight model and the sabot enter the sabot separation section, which has
the same cross-sectional shape as the acceleration section, the pressure in front of
the sabot and behind the precursor shock wave should be higher than that behind the
sabot, thereby decelerating the sabot. However, the pressure around the flight model
is kept uniform because the speed of the post-shock flow behind the precursor shock
wave equals that of the flight model, and the flight model is drag-free. Owing to the
difference in drag between the sabot and the flight model, the sabot is separated from
the flight model in the sabot separation section. However, this separation should be
completed near the muzzle in order to suppress the yaw and pitch motions of the
light model to be as small as possible.

Figure 11.31 shows an aeroballistic range with an in-tube catapult launch scheme
and an example of a free-flight experiment. Heliumwas used as the driver gas. Before
the launch operation, the driver gas was separated from the launch tube using a free
piston. Once the gas behind the free piston was released, the separation is broken
with the free-piston pushed back by the driver gas. Then, the flight model held in the
sabot starts to be accelerated.

The launch tube has a rectangular bore (Fig. 11.31b) so that a flight model with
a large aspect ratio such as a winged body (Fig. 11.31c) can be launched. In the
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(a) Entire system

(b) Bore (c) Example of sabot and flight model

(d) Schlieren image, Mach number 1.7, (e) Time variation of pressure 
coefficient unsame condition as (d)cient under

over flight model of (c) 

Fig. 11.31 Rectangular-bore ballistic range with shot example (Nagoya University)

experiment, the flow field around themodel was visualized by a high-speed Schlieren
arrangement (Fig. 11.31d) and the pressure history was measured on a flat plate at
a separation distance of 1.5 model lengths (shown as the variation in the pressure
coefficient, Cp, in Fig. 11.31e).
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