

Coding for Beginners

Advanced Methods and Strategies to Learn the Best Coding Practices

©
 Copyright 2020 by Alexander Cane - All rights reserved.

This document is geared towards providing exact and reliable information in regards to the topic and issue covered. The publication is sold with the idea that the publisher is not required to render accounting, officially permitted, or otherwise, qualified services. If advice is necessary, legal or professional, a practiced individual in the profession should be ordered.

- From a Declaration of Principles which was accepted and approved equally by a Committee of the American Bar Association and a Committee of Publishers and Associations.

In no way is it legal to reproduce, duplicate, or transmit any part of this document in either electronic means or in printed format. Recording of this publication is strictly prohibited, and any storage of this document is not allowed unless with written permission from the publisher. All rights reserved.

The information provided herein is stated to be truthful and consistent, in that any liability, in terms of inattention or otherwise, by any usage or abuse of any policies, processes, or directions contained within is the solitary and utter responsibility of the recipient reader. Under no circumstances will any legal responsibility or blame be held against the publisher for any reparation, damages, or monetary loss due to the information herein, either directly or indirectly.

Respective authors own all copyrights not held by the publisher.

The information herein is offered for informational purposes solely and is universal as so. The presentation of the information is without a contract or any type of guarantee assurance.

The trademarks that are used are without any consent, and the publication of the trademark is without permission or backing by the trademark owner. All trademarks and brands within this book are for clarifying purposes only and are owned by the owners themselves, not affiliated with this document.

Table of Content

Chapter 1: Methods and Strategies for Java Performance Tuning

Introduction

Creating Objects

Exceptions

Casts and Variables

Loops and Switches

Collection

Strings

Best Practices

Java Code Tuning for Optimum Performance

Memory Management for Optimum Performance

Chapter 2: Advanced Strategies for Improving Java Code Performance

Introduction

Best Practices to Avoid Common Mistakes while Coding

Tips for Developing the Java Application Using MySQL and MULE

Chapter 3: Best Coding Practices for Java Programming

Introduction

Best Coding Practices

Advanced Tips in Java

Chapter 4: Coding Standards for Programming

Introduction

Naming Conventions

Hard-Coded Values

Code Format

Java Source File Style

Class

Class Fields

Constructors

Accessor Methods

Other Methods

Documentation for “Javadoc”

Java Comments

Chapter 5: Best Design Practices in Java

Application Design

Coding Design

Chapter 6: Best Practices in Java Swing

Application Design Best Practices

Functionality

Programming Best Practices

Painting Guidelines

Performance Tips

Chapter 7: Best Coding Practices for JavaScript

Performance Tuning

Caching Scripts

Caching Objects

Lazy Initialization

Don’t Use Eval

Pre Calculate Loop’s Length

Tuning in String Manipulations

Eliminate Unnecessary Variables

Declare and Assign a Variable in a Single Statement

Debugging Strategies for Javascript

JavaScript Useful Strategies and Methods

Chapter 8: Best Practices for JavaScript and ExtJS

Project Organization

Naming Conventions

Code Style Conventions

Development Guidelines

ExtJS Development Tips

Enabling Re-Use in ExtJS

Performance Tips

Useful Tips and Techniques for HTML/JavaScript Developers

Chapter 9: Coding Tips and Best Practices for Asp.Net Web
 Application

StringBuilder Class over String

Session State Usage

Server-Side Vs. Client-Side Validation

ViewState and ControlState

Option Strict and Option Explicit

Turn Tracing and Debugging Off

Debugging Tips for Dot Net Application

Chapter 10: Advanced Strategies for Enhancing ASP.NET Performance

String Management

Turn Off Session State

Using View State

Separation of Content and Logging

Constrain Unwanted Web Server Traffic

Exception Management

Window Forms Optimization In .Net

Chapter 11: Mobile App Development Using Android Studio and Sencha

IntelliJ IDEA

Structure of IntelliJ IDEA

Basic Understanding of Android Studio over Eclipse IDE

Sencha Cordova App - Tips and Tricks

Backbase Mobile SDK

Solving Problems with App Development

Conclusion

Chapter 1: Methods and Strategies for Java Performance Tuning

Introduction

Performance has been an important factor for software developers. Java Performance tuning means optimizing the code to obtain a faster, more reliable, scalable, and easily maintainable code. This is a very important aspect because the code written by you should be very fast and maintainable, otherwise it not of any use.

Generally, it is best to keep your knobs off as far as Java tuning is concerned. Most applications, whose performance is required to be improved, can be improved by simply keeping the development environment up-to-date! We will discuss various aspects of tuning. Java performance tuning is a very vast topic, and as such, no document can contain the complete information. First, we will observe certain best practices that may improve your Java application’s performance. Then, we will mention the various improvements which could be made within your Java code.

Following Java performance tips provides all the details a developer needs for performance tuning of the Java code.

Creating Objects

	
We need to create Objects before they can be used, and needs to be garbage-collected when they are no longer needed.

	
When we use more objects, the more garbage-cycling happens so that the CPU cycle gets wasted.

	
Reduce the temporary objects which are getting used inside the loops.

	
Try to avoid the creation of temporary objects inside the methods which are called more frequently in the program.

	
Collection objects should be pre-sized beforehand only.

	
Objects should be reused wherever it is possible to do so.

	
Empty the collection objects in case it is required to reuse them at a later stage.

	
Reduce the number of objects being created inside the loop since creating objects costs both time and additional memory
 utilization.

	
There are certain objects which return a copy of an object, or some methods do not return a copy.

For example, String.trim() returns a new object and methods like Vector.setSize() does not return a copy. So if you do not require a copy, use/create methods that do not copy the objects.

For example:

String str = "";

While(Condition) {

//...

str += appendingString1;

}

It will creates a new String object on each += operation (plus a StringBuilder and the new underlying char array), we can rewrite this into:

Example:

StringBuilder strB = new StringBuilder();

While(Condition){

//...

strB.append(appendingString1);

}

String str = strB.toString();

Try to avoid initializing instance variables more than one time.

Try to Use the clone () method to avoid calling constructors.

Many objects need to be created and initialized, and many of these objects will be used later, but not immediately. In this case, it can be useful to spread out a load of object initialization so we don't use to get one large hit on the application.

Example:

package com.rule;

public class Do_lazy_initialization_violation

{

private Do_lazy_initialization_violation instance = new Do_lazy_initialization_violation(); //Violation

}

Should be written as:

package com.rule;

public class Do_lazy_initialization_correction

{

private Do_lazy_initialization_violation instance;

public Do_lazy_initialization_violation getInstance()

{

if(doLazy == null)

instance = new Do_lazy_initialization_violation(); // Correction

return instance;

}

}

Exceptions

Include all error-condition checking in blocks surrounded by if, if-else statements.

	

Avoid the use of Generic class exception inside the catch block. Instead, you can use the particular catch block for every try block based upon the error you might get in your program.

	

Avoid the use of exception handling when it is not inside the control flow of the program.

	

Try to minimize the use of exception handling unless there is a chance of exception going to happen in the code.

	

Always use the exact subclass of your exception while using
 the “throws” method. It should be ArrayIndexOutOfBoundsException or FlieNotFoundException instead of using Exception.

	

Exception handling should be avoided inside the loops. Try to place the loops in the try/catch blocks only.

	

Prefer to use ‘StringBuilder’ instead of ‘StringBuffer’ as it avoids the cost of internal synchronization.

	

Be cautious when working with String concatenation operations. Choose to use either ‘+’ or ‘StringBuilder.append’ appropriately based upon the requirement. If concatenation of a few items is required, use ‘+.’ If there is a large set of items to be concatenated, then use the ‘append’ method of StringBuilder. It improves the performance greatly in case of a larger item set concatenation.

	

Relying on the ‘finalize’ method to reclaim resources is a bad practice. Even if a ‘finalize’ method is defined, the programmer should define another way of releasing the resources as the finalize method will be called just before the garbage collection and not when the object is out-of-scope.

	

The use of finally block is a must to release the memory resources used in the connection, or closing the file to minimize the risk of exception getting raised at a later stage.

	

Reuse an existing Exception object instead of creating a new one. However, the main disadvantage of reusing the exception object is that instance does not have the correct stack trace, i.e., it is the one generated when the exception object was created.

	

While doing the casting, if you use the try-catch block, it will be slower, but if you use the “instanceof,” it will be much faster.

Example:

package com.performance.exception;

public class ExceptionTest1{

public static void main(String args[]){

long start,end;

int i = 0;

int[] intArray = new int[25000];

String stringArray[] = new String[25000];

int size = stringArray.length;

for(i = 0; i < size ; i++){

if(i % 50 == 0)

stringArray[i] = "hello world";

else

stringArray[i] = Integer.toString(i);

}

start = System.currentTimeMillis();

for(i = 0; i < size; i++){

try{

intArray[i] = Integer.parseInt(stringArray[i]);

}catch(NumberFormatException e){}

}

end = System.currentTimeMillis();

System.out.println(end - start + " millis with try/catch inside the for loop ");

start = System.currentTimeMillis();

try {

for(i = 0 ; i < size; i++){

intArray[i] = Integer.parseInt(stringArray[i]);

}

}

catch(NumberFormatException e){}

end = System.currentTimeMillis();

System.out.println(end - start + " millis with try/catch outside the for loop ");

}

}

The output is as follows:

50 millis with try/catch inside for loop

0 millis with try/catch outside for loop

Casts and Variables

	

Try to avoid the typecasting by using simple collection types.

	

Try to use temporary variables in the case of cast typing, rather than repeatedly casting it.

	

We have to use the Type variables in a precise manner.

	

We have to use local variables more in the program instead of static or instance variables to get faster results and manipulation.

	

Try to avoid using long, double instance, and static variables.

	

Prefer to use primitive data types rather than other temporary variable objects.

	

Use local variables instead of instance or static variables since local variables are faster to manipulate.

Loops and Switches

	

Always make the loop functionality as little as possible to enhance the performance.

	

Consider removing from the loop the execution code that does not require to be executed each time.

	
Move any repeatedly executed code that causes the same result and assign it to a temporary variable before the loop calls.

	

Avoid method calls inside the loops when possible, even if this needs to rewriting or inlining.

	

If possible, avoid using such methods like length (), size (), etc. If we use method calls inside
 the loop condition statement, it can cause a performance hit.

	

Avoid placing exception handling code (try-catch-finally) inside loops. Instead, place loops inside try-catch, which results in better performance.

	

Avoid calling methods inside a loop as far as possible as method calls are very costly operations. Also, avoid using method calls to check for the termination condition in loops.

Example:

package com.rule;

class Avoid_method_calls_in_loop_violation1

{

public void method()

{

String str = "Hello world";

for (int i = 0; i < str.length(); i++)​
 ​
 // VIOLATION

{

i++;

}

}

}

Should be written as:

package com.rule;

class Avoid_method_calls_in_loop_correction1

{​
 public void method()

{

String str = "Hello world ";

int len = str.length();​
 ​
 // CORRECTION

for (int i = 0; i < len ; i++)

{

i++;

}

}

}

Try to use int data types preferably for the loop variable.

Always use System.arraycopy() to copy arrays.

Use Convert equality comparisons to identity comparisons.

Avoid unneeded temporary variables inside loops.

Example:

package com.performance.loop;

// This class tests the loop copy versus System.arraycopy()

public class loopTest1{

public static void main(String s[]){

long start,end;

int[] a = new int[2500000];

int[] b = new int[2500000];

for(int i = 0; i < a.length; i++){

a[i] = i;

}

start = System.currentTimeMillis();

for(int j = 0; j < a.length; j++){

b[j] = a[j];

}

end = System.currentTimeMillis();

System.out.println(end - start + " milli seconds for loop copy display");

int[] c = new int[2500000];

start = System.currentTimeMillis();

System.arraycopy(a, 0, c, 0, c.length);

end = System.currentTimeMillis();

System.out.println(end - start + " milli seconds for System.arraycopy() display");

}

}

The output is

110 milliseconds for loop copy display

50 milliseconds for System.arraycopy() display

Rewrite switch statements to use a contiguous range of cases.

We have to identify whether a recursive method can be done faster.

Change recursive methods to use iteration.

Always caching recursively calculated values in case of reducing the depth of recursion.

Collection

	

Try to pre-size collections to their required sizes when possible.

	

Consider switching for alternative data structures and algorithms when possible.

	

Always prefer the most appropriate collection class.

	

Always compare using two collections with different performance perspective to hold the same data.

	

We have to consider using plain arrays like String[].

	

We need to select specialized collections to avoid casts and unnecessary method calls.

	

Allocate the required memory for element storage in prior instead of allocating at run time.

	

Always use Buffered Streams rather than using just the
 FileInputStream and FileOutputStreams and always close the stream. This is because FileInputStream and FileOutputStream take the data byte by byte and copies it to the destination. BufferedInputStream and BufferedOutputStream batch the requests to improve performance.

Strings

Avoid creating a String object using the ‘new’ keyword and prefer to create a String literal if the content is the same. String literals hold good when compared to String objects in performance.

String.equals() method:

	

Checks for Object identity

	

Checks for null

	

Checks for String Type

	

Checks for Size

	

Checks each character one by one

String.equalsIgnoreCase() method:

	

Checks for null

	

Checks for size

	

Case insensitive comparison character by character by running regionMatches(), converting each character to uppercase before comparing.

	

The equals() method runs much faster than equalsIgnoreCase() if the strings are identical since it does an identity check. An identity check is basically a pointer reference check. Whereas equalsIgnoreCase() method runs much faster than equals() method when the two strings are different in sizes since then equalsIgnoreCase() needs to run only two checks and equals() method needs to run four checks before they return any value.

When a string can be resolved at compile-time, use the concatenation operator (+) but when a string can be resolved at runtime StringBuffer is more efficient.

Avoid the use of StringTokenizer.

Example:

package com.rule;

class Avoid_using_StringTokenizer_violation1

{

public void method(String str)

{

StringTokenizer strtok = new StringTokenizer(str);​
 // VIOLATION

while(strtok.hasMoreTokens())

{

System.out.println(strtok.nextToken());

}

}

}

Should be written as:

package com.rule;

class Avoid_using_StringTokenizer_correction1

{

public void method(String str)

{

String[] parts = breakUp(str);​
 ​
 // CORRECTION

int len = parts.length;

for(int i = len; i > 0; i--)

{

System.out.println(parts[len - i]);

}

}

String[] breakUp(String str)

{

String strParts[];

// break the string into parts

return strParts;

}

}

Try to use efficient methods of String that don’t copy the characters of the string, like String.substring().

Avoid using String methods that used to copy the characters of the string, like String.toUppercase() and String.toLowercase().

Prefer the string concatenation operator in case of to create Strings at compile-time, when possible.

We need to use StringBuffer to create Strings in runtime.

When size exceeds its size, it has to allocate a new character array with a larger capacity when it needs; it copies the old contents into the new array, then it uses to discard the old array.

Example:

package com.rule;

class Specify_StringBuffer_capacity_violation1

{

private StringBuffer sb = new StringBuffer();​
 ​
 // VIOLATION

public void method(int i)

{

sb.append(i);

}

}

Should be written as:

package com.rule;

class Specify_StringBuffer_capacity_correction1

{

private final int SIZE = 10;

private StringBuffer sb = new StringBuffer(SIZE);​
 ​
 // CORRECTION

public void method(int i)

{

sb.append(i);

}

}

Since now we are comfortable with the code tuning, we will move on to tuning by tweaking the JVM and improving the garbage collection capabilities for our application.

Best Practices

These best practices are at the core of performance tuning, and as such, these should be followed to extract maximum performance from your application:

	
Keep Java and OS updated: Any new release brings with it new features as well as better performing and optimized old features. So, before even contemplating any code tweaking, it would be best to upgrade to a new version of Java™. Of course, how easy to say this, but as we know, there may be applications that cannot be upgraded, due to a number of reasons. In such cases, we may try to update the OS, because it may be that Java is platform-independent, but the truth is that its performance does rely on the underlying OS.

	
Follow Java coding standards: Although the performance of an application does rely on the underlying OS, Java version, etc. It also depends upon how you tune your code or write your code for the best performance. As such, when the system has
 to process a loop lesser number of times or when an in-built functionality can do the work faster, we should use the best practices.

Java Code Tuning for Optimum Performance

	
Remove Synchronization Issues: Although synchronization may be unavoidable in certain programs, it is always better to measure the performance of such programs and find an alternative if possible. You may consider re-designing or re-implementing the part of code to do so.

	
Use Exception handling intelligently: Exception handling in Java is slow. Use exception handling to handle exceptions that your application cannot tackle and not handle simple errors that could be deemed unnecessary.

	
Tune strings for best performance:

a)
 Create literal strings instead of creating new Objects of String using one of the constructor methods.

b)
 To alter a String, use character arrays.

c)
 To remove, insert, append or replace a character to a string or to concatenate/split a string, use either StringBuilder or StringBuffer class.

	
Tune JSPs and Servlets:

a)
 In a JSP, include the correct “include” - The include directive is better and faster
 than the include action because the page does not get compiled during run-time and hence does not require any server-side processing—except the delivery of the page to the client. If your file does not change often, or if it is not a dynamic page, use includes a directive to improve performance.

b)
 Use the correct UseBean action – Utilize the scope attribute within <jsp:useBean> action tag intelligently to increase performance. Data Caching using init() – Use this method for data caching. For example, connection pooling would be better performed using the init() method. That is because it is the first method invoked by the server immediately after servlet-instance is created and before any client requests are processed.

c)
 Disable auto-reloading - When an application is deployed, auto-reloading is very expensive. Auto-
 reloading affects performance because it includes the additional activity of unnecessary loading, which is a burden on the Classloader. The best option is to keep this facility OFF in a live/production environment.

d)
 Sessions or no sessions – It is generally advisable not to use session tracking explicitly unless it is required. This is because –

	
Session tracking is expensive. Every time there is a request, the HTTPSession object is processed. This would cause performance issues in case there are any heavy objects stored within HTTPSession. So avoid storing such heavy objects.

	
Session tracking for a long time is unnecessarily expensive. Maintain a low session- timeout value for best performance.

	
Always close sessions when not required using the invalidate method. This would reduce the load on the server and help improve performance.

e)
 Compressed data is always better: Utilize gZip to compress data as it is faster to send data across to the client.

Memory Management for Optimum Performance

A programmer should ensure sure that an object’s reference has been made null once the work is done with the object so that it will be eligible for the garbage collection. It is one of the memory management techniques.

It is always advisable to delay the memory allocation for an object until it is not required. This technique results in the usage of this memory efficient for the required processes and also results in effective time and memory management.

There are various methods for carrying out Java performance tuning using memory management techniques – Ergonomics, Garbage Collection mechanisms, and tweaking various JVM related parameters.

Ergonomics is the smart tuning technology included within the JVM. You must know the ergonomics of the JVM to be able to tweak the heap size and other parameters to optimize performance.

Use a connection pool instead of creating a connection directly whenever required. If application server is there for the applications, use the connection pooling facility available for the server by configuring the properties like initial number of connections to be created, maximum number of connection and incremental size if the application needs extra connection after all the initial connections are in use and maximum number of connections is not yet reached.

It is essential while tuning Java for maximum performance that the JVM is not only allowed to use the best Garbage collection algorithm, but also to ensure that the Garbage Collector intentionally collects any unnecessary objects.

Wrapping up!

Java is the most used programming language nowadays. We can improve the performance of Java by doing some good practice as a developer. Give a try to make it as a regular practice in your daily development process.

Chapter 2: Advanced Strategies for Improving Java Code Performance

Introduction

This chapter lists out few tips on performance tuning while working with data, method calls, loop iterations, etc. The primary intention of creating this chapter is to guide the people who are less experienced in advanced methods and strategies for best coding practices.

It has some of the simple and easy to follow tips and best practices, a developer should learn to code good and portable code so that it is easier for java coders to understand, develop and maintain the standalone or web or enterprise applications.

Best Practices to Avoid Common Mistakes while Coding

	
Before writing a fetch/select query, check whether the data going to be fetched is already available in the parent method or service or managed bean. Re-Use of available data will avoid unnecessary, repeated DB calls.

	
When you need just 2 or 3 column value from a table which has more than ten columns or so, do not go for 'select *' in the query.

Similarly, do not fetch the complete entity also in case of the JPA query. Suppose there are 60 columns, and code needs only 2 of them, the unnecessary fetch will delay query run time.

	
For a query which is used only to get the count of rows with some conditions, do not put an order by in it. Getting the count of rows in any order does not make any difference to the count, but the performance degrades with an order by clause.

Suppose a parent method PM calls two child methods CM1 and CM2.

In CM1, data D1 and D2 are fetched from table T1 and do some operations with the data.

In CM2, data D3 and D4 are fetched from table T1 (same table as the other method) and do some operations with the data.

D1, D2, and D3, D4 are used for different purposes. Still, we can avoid the second DB call if they are fetched together in the first call itself.

This DB call need not be inside CM1 itself but in a common method. Then pass the required data only to CM1 and CM2. This procedure can be done even if the data is fetched from multiple tables using a single query.

	
Avoid calling Select queries from inside 'for' or 'while' loops. Instead, pass the parameter arguments as list and get the result set as list itself. Then use for loop, necessary collection, DTO List, etc. to manage the list of data.

// For example:

for (Long id : idList) {

sql = "Select col1, col2 from T2 where id = ?";

query = em.createNativeQuery(sql);

query.setParameter(1, id);

// fetch and do some operations

...

}

//The above code can be re-written as:

sql = "Select id, col1, col2 from T2 where id in (:idList)";

query = em.createNativeQuery(sql);

query.setParameter("idList", idList);

List<Object[]> resultList = query.getResultList();

//DTO has variables id, col1 and col2 and their getter and setter methods.

DataDTO dto = null;

List<DataDTO> dtoList = new ArrayList<DataDTO>()

for (Object[] result : resultList) {

dto = new DataDTO();

//set the values to dto using setter methods

...

//Add to dto List

dtoList.add(dto);

}

	
For some queries, the use of 'OR' can slow down the performance. Instead, try 'UNION' after splitting the query.

For example:

query = select pr_id from tab1 where sr_number in(:srNumList) OR id in (select ad_id from tab2 where sr_number in (:srNumList))

//It can be rewritten as

query = select pr_id from tab1 where sr_number in(:srNumList) UNION

select pr_id from tab1 where id in (select ad_id from tab2 where sr_number in (:srNumList)

	
For functionalities where certain calculations or formula is used, for example, in forecast reports, we can do some planning on where the formulas can be put.

Suppose, for a report, we have around ten columns whose raw data need to be fetched from DB, and after some calculations, they need to be displayed on the screen or exported to excel/pdf files.

Let the data fetched from database is dd1, dd2, dd3 etc. ---> group (1)

Let the data which are calculated with formulas are df1, df2, df3, etc. ---> group (2)

Let the final data which are going to be displayed in the report are dr1, dr2...........dr10. ---> group (3)

Assume:

Group (2) data is common for many further calculations for deriving group (3).

Some formulas use more than one data at a time.

First, create setter and getter methods in the bean for all these fields. If required, create different beans based on use.

Below are the precautions we can make in this scenario for better performance:

	
Do not put any formulas or logic inside getter methods. Put the business inside setters only.

	
Set all the data variables in the DAO/Service method itself while iterating the ResultList (the result of a DB query or so).

	
Do not call setter methods more than once for a report (Arrange the order of calling setter methods according to the availability of data).

	
Avoid any chance of repeating iteration of the lists. Do all the calculations for one set of data in one go (one iteration).

If the report has too many fields and incorporating the approach mentioned above is not practical/increase the complexity of the method, go for sub-method calls from the loop. In any case, repeated calculations and looping need to be avoided.

	
Do not declare any variable inside 'for'/'while' loop. We can save memory if we declare them outside the loop. Declare them just before the set of code implementation where it is to be used.

For example:

for (int i = 0; i < 50; i++){

List<ItemDTO> dtoList = new ArrayList<ItemDTO>();

//logic Implementation

}

//The above code can be re-written as

List<ItemDTO> dtoList;

for (int i = 0; i < 50; i++){

dtoList = new ArrayList<ItemDTO>();

// logic Implementation

}

	
When JPA is used, if the entity structure is complex or too many fields are present, merge operations might take a long time. In the cases where the fields to be updated are very few and rows to be updated are more, we can avoid direct merge operation with the entity.

When it is observed that it is taking a long time than persist operation, avoid the merge and replace it with a simple native update query. It will work really faster.

	
In case of maintenance projects, when there is a need to add additional functionality or screen, people tend to re-use the existing complex query written for some other purpose, instead of writing a new simple query. Using JPA, to get any child table, do not use a query that fetches the whole set of parent and child records. Simply write a query to fetch that single entity by passing the id or so.

	
When working with JDBC to select data from a table, avoid using select * from and use the required column names if all the columns are not required, and only some columns are required as it improves the performance.

Take appropriate care when selecting a JDBC driver. The points below should be kept in mind.

	
Use the JDBC-ODBC driver (type 1 driver) only when there is no driver available for the database. This type 1 drivers are slower when compared to other drivers as the conversion of JDBC calls to ODBC calls and ODBC calls to database-specific calls involves.

	

Use type 3 driver in three-tier applications (client-proxy server-database).

	

Use type 2 driver in two-tier applications (client-database).

	

Use type 4 driver in applications that need applet and
 database communications.

	

Type 2 drivers are slower when compared to type 3 and type 4 drivers, but faster when compared to type 1 driver.

	
For autosuggest/autocomplete (suggestion appearing on UI screen, based on user input for completing the entry), do not go for DB query on every input change. Put the whole data from DB in a master list/map and then compare the input with the master data list/map. Keep this master list/map ready, populated with data well before the actual autosuggest requirement.

	
Use JDBC’s batch update feature to send multiple queries to the database. It improves performance and also reduces the number of JDBC calls to the database.

	
Cache the data that is static in the database tables. It reduces database calls and improves performance as once the data has been fetched and cached, there is no need to hit the database for that data anymore. There is another type of data called read mostly data which is not static and data changes often. This type of data can also be cached by specifying the refresh time limit so that the data can be refreshed periodically. Most of the application servers support the caching feature. The programmer needs to set the values in properties files or by some other means like XML files etc.s

	
Ensure that the JDBC connections, statements, and result sets are closed or released to avoid memory leaks.

	
For the same data (variable), avoid null and blank checks everywhere in code it is used (as long as the data is not updated anywhere in the code). Do these checks once while the data is fetched or updated by the user/program.

	
Suppose we require 2 DAO methods for two different queries (for two different DBs). The input (in clause) of the second query is the output of the first query, which needs to be given as a list.

Query1 -> select id, name from db1.testtab where desc = 10;

Gives the output as List<Object[]> result1;

Query2 -> select details1, details2 from db2.testtab where id in (:idListResult1);

Create the idListResult1 while iterating the result set in the first DAO method itself. Else we may have to keep a new loop for creating the list in the service method, which can degrade the performance.

	
While comparing any field inside two lists in a loop using if condition, use break inside a loop if a condition is satisfied and no more similar result is expected. This will reduce loop execution time.

	
While constructing data tables with pagination in JSP/faces, there may be a need for showing the total records count. Some people write different queries, one for getting the total count and another one for fetching the data for that page.

For the cases where partial fetch is not followed, avoid the duplicate query. Instead, write the query to fetch the details and then get the size of the result list and show it as a total record count.

Consider the scenario below.

In the class SampleClass, there are few public methods and also private methods method1, method2, CM1, CM2, CM3, CM4, and refreshScreen.

Assume that you are asked to create new functionality that would require all these private methods.

//For example:

public class SampleClass
 {

​
 //public methods here

private method1(){

//variable declaration and logic

CM1();

CM2()

refreshScreen();

}

private method2(){

//variable declaration and logic

CM3();

CM4()

refreshScreen();

}

private CM1(){

//Implementation

}

private CM2(){

//Implementation

}

private CM3(){

//Implementation

}

private CM4(){

//Implementation

}

private refreshScreen(){

//DB calls and other logic

}

} //end of class SampleClass

You need the functionality in methods CM1, CM2, CM3, and CM4 and finally refreshScreen.

In this case, do not opt
 new methods as below.

public newMethod1(){

//variable declaration and logi
 c

method1();

method2();

}

This will repeatedly call the method refreshScreen() and lower performance.

Hence create the new method as below

public newMethod2(){

//variable declaration and logic

//calling private methods

CM1();

CM2()

CM3();

CM4()

refreshScreen();

}

While altering existing code, do a thorough analysis of each and every line of code and method call and make sure not to repeat any DB calls or any method implementation.

Tips for Developing the Java Application Using MySQL and MULE

	
Use the DSL connection for downloading the JAR files.

	
Add the Folder that contains the Java or Jar or XML files to the classpath.

Otherwise, you might get the “file not found” error.

	
Add the Log4j.Properties into your Classpath folder if you wanted to view the debug messages at the console without writing any System.out messages.

This is useful in debugging the code when you are writing only the XML file to perform some task.

	
If the MySql database is installed on the different machine other than the Application server, then please check the connection
 from the Standalone remote machine to the MySql Server. Also, assign the permissions for the remote hosts (running the Application Server) to connect and query the database.

Otherwise, you may be able to connect to the MySql database using the Unix Shell window. But still querying the database form the client machine Application server will not be possible.

	
As the plug-ins for the latest Mule versions are not available now and the Old one is not compatible. So do not use them for running a MULE project.

Otherwise, you may get FileNotFound or MethodNotFound exception.

	
In case the variable defined in the Java file is used by the config.xml file of the MULE. Then do not write the names in the camel casing. Otherwise, mule parser might not be able to recognize the variables. We have faced this issue while inserting it into the database using the MULE-Config.xml file.

	
If the Mule-Config.xml uses the Java beans used in the project, then do not add any other method except the getter and setter methods. Otherwise, the run time error will be thrown by the server.

	
While testing for some FTP and HTTP functionality, please make sure that your machine has access to that FTP or HTTP site, as firewalls might block some sites. So, in that case, you might not be able to fetch the contents of the file.

	
In case if you are using “select MAX(column_name) from table_name,” and it is returning null even if the column does not contain any null value. Then please check whether the MySQL version you are using is greater than 3.0 since this is a known bug in MySQL.

Chapter 3: Best Coding Practices for Java Programming

Introduction

This chapter gives a brief introduction and tips on how to improve the performance of Java-based applications to write effective Java code. This helps fresh Java programmers in avoiding common mistakes related to the program’s performance early in the projects/applications and also helps experienced developers just to cross-check the code and rectify the mistakes if any present.

Best Coding Practices

Lazy Initialization

Always prefer lazy initialization by avoiding unnecessary creation of objects. As object creation is very expensive and it impacts performance as well, tries to create/initialize an object only when required say, for example, by having some condition checks like null or empty.

The following example demonstrates this concept:

​
 String userOperation = null;​
 // Lazy initialization

​
 ……..

​
 userOperation = getUserChoice();

​
 if(userOperation.equals(“1”))

​
 // Code to open a new document

​
 else if(userOperation.equals(“2”))

​
 // Code to update the opened document

​
 else (userOperation.equals(“3”))

​
 // Code to delete data in the document

​
 ……………..

​
 public String getUserChoice() {

​
 if(userOperation == null)
 // Condition check for initialization

​

 userOperation = readUserChoice();

​
 return userOperation;

​
 }

Public String readUserChoice() {

System.out.println(“Enter 1 for Open New Document, 2 for Updating the Opened Document, 3 for Deleting the data from Document followed by pressing Enter key”);

Scanner scanner = new Scanner(System.in);

userChoice = scanner.nextLine();

return userChoice;

}

Stack Trace Avoidance

Avoid displaying the stack trace to the end-user; instead, display a generic message to the end-user by keeping in mind that the message should be understandable to a non-technical end-user. The actual message can be logged by using any logging API so that the developers can look into this to understand and fix the problem. Not only this, the stack track display may lead to a security risk.

The following example demonstrates this concept.

public boolean copyFile(File sourceFile, File destinationFile) throws CopyingException {

​
 try {

​
 // Code to copy file at source path to destination path

​
 }

​
 catch(IOException ioe) {

​
 throw new CopyingException(“File copy operation failed ”, ioe);

​
 }

}

public boolean FileOperations {

​
 ………….

​
 public boolean shareFileToUser(File sourceFile, User user) throws SharingException {

try {

 return copyFile(sourceFile, user.getSharedFileDestination(sourceFile));

}

catch (CopyingException copyException) {

 throw new ShareException ("Sharing failed due to an internal error," copyException);

}

}

…………..

}

If the developer simply uses the IOException, there is a chance that sensitive information like “permission denied” may be exposed to the end-user. Instead of that, here, a generic message will be shown.

Use Throws Clause Wisely

Be cautious when using the ‘throws’ clause in a method header. Avoid grouping exceptions that are related in a generic exception class (Exception). For example, consider that there is a requirement to read a file in a Java application. To read the file, the file should exist. If it doesn’t exist, a ‘FileNotFoundException’ exception should be thrown. If the file exists, the next task is to read that file. If there is any problem in reading that file, an ‘IOException’ exception should be thrown. These two are for two different scenarios. If these two exceptions are grouped into a generic exception class, i.e., ‘Exception,’ there is a chance that some important or valuable information is lost.

Use ‘PreparedStatement’ Instead of ‘Statement’ for Database Operations

This should be done, especially when working on sensitive
 operations like checking login credentials to enter into a web site. Consider the following code snippet:

String username = request.getParameter(“name”);

String userPassword = request.getParameter(“pwd”);

Statement stmt = connection.createStatment(“select department, address from users where userId = ’”+ username +”’ and password =’” + userPassword + ”’”;

Consider that the user gives input for user name text field as testUser’;//
 ’. Then the query will be as shown below:

select department, address from users where userId = ‘testUser’;// and password=…

As there is a semicolon after the user name ‘testUser’ in the input and ‘;’ is treated as the end of a SQL query, and there is a Java comment after the semicolon, the rest of the query will be ignored by treating it as a Java comment. If the ‘testUser’ is a valid user in the database table ‘users’ then the department and address will be fetched without having the password. So, an unauthorized user can see confidential data without having the required data. To avoid these sorts of things, use ‘PreparedStatement’. As the parameters will be substituted at runtime, there is no chance of these sorts of things with PreparedStatement.

Not only this, PreparedStatement will be preferred if a query needs to be executed multiple times. As it’s a precompiled statement, it will be faster in this kind scenario.

When working with operations on Strings such as inserting, appending, concatenating, removing, etc., prefer to use StringBuffer or StringBuilder class. As StringBuilder is non-synchronized, prefer it over StringBuffer if there is only a single thread performing the operation(s) as the performance is good with this when compared to StringBuffer which is a synchronized one and it needs to get locks and release locks which result in less performance.

Try – Catch- Finally Block

Use try-catch-finally appropriately during the streams and database operations. When working with database operations using JDBC, database connections will be opened generally in the ‘try’ block. If
 the try block is executed successfully, then catch blocks won’t be executed. So, the catch block is not the correct place to close the connections. If the try block is not executed successfully in a complete manner, then catch block(s) will be executed. So, try block is also not the correct place to close the connections. The ‘finally’ block will be executed irrespective of whether ‘try’ or ‘catch’ block got executed. So, close streams and connections in the ‘finally’ block.

Make sure that constant value should come first in the comparisons. Otherwise, there is a chance that it results in a ‘NullPointerException’ exception. The following code snippet illustrates this:

private static final String CONSTANT_STRING = “test”;

private boolean compareStringWithConstant (String inputString) {

​
 if (inputString.equals (CONSTANT_STRING))

​
 return true;

​
 else

​
 return false;

}

If a ‘null’ value is passed to this method as a parameter when calling, it results in a ‘NullPointerException’ exception. The following line causes the exception:

if (inputString.equals (CONSTANT_STRING))

To resolve this problem, make the constant value as the first one in the comparison like this:

private static final String CONSTANT_STRING = “test”;

private boolean compareStringWithConstant (String inputString) {

​
 if (CONSTANT_STRING.equals (inputString))

​
 return true;

​
 else

​
 return false;

}

Be Cautious when Working with Collections

LinkedList can be used if add/access/remove objects at the beginning of a collection are required, and thread-safety is not required.

Synchronized LinkedList can be used if add/access/remove objects at the beginning of a collection are required, and thread safety is also required.

Use ArrayList or Vector with proper initialization if add/access/remove objects at the middle or end of a collection. If thread safety is not required, use ArrayList; otherwise, use Vector.

Prefer ListIterator over Iterator and Enumeration for iterating a List type. Both side traversals are possible with this.

Prefer Swing over AWT when Thread Safety is not Required

As Swing is a lightweight framework and platform-independent, it suits well on any platform. Swing also offers more API than AWT. Make sure that you never combine the components of AWT and Swing. Mixing the components may result in display problems. Swing components generally start with ‘J.’ For example, button in Swing it is named as JButton whereas it is named as Button in AWT.

Take appropriate care when you need to work with synchronization in Java applications. Avoid making the complete method and synchronized and use synchronized blocks by placing the critical operations in the synchronized block(s). More amount of synchronizations results in less performance of the application.

Use Binary and Character Streams Instead of Normal Byte by Byte

Don’t use one byte at a time as the read/write operations will be very slow with the normal byte-by-byte behavior. To improve the performance of input/output streams, use binary and character streams. Binary streams are to handle binary data, and examples include:

	
InputStream

	
OutputStream

	
BufferedInputStream

	
BufferedOutputStream

	
FileInputStream

	
FileOutputStream

Character streams are to handle character data, and examples include:

Reader

Writer

	
FileReader

	
FileWriter

	
InputStreamReader

	
OutputStreamWriter

	
BufferedReader

	
BufferedWriter

	
PrintWriter

Prefer primitive data types than wrapper classes as far as possible as they are more efficient than wrapper classes. Also, prefer to use local variables than class variables as accessing local variables is faster when compared to accessing class variables.

In multi-threaded applications, take appropriate care using w.r.t objects and class variables. The memory for objects and class variables will be allocated in the heap which is not thread-safe as each thread shares the same heap. For methods and local variables, the memory will be allocated in the stack which is thread-safe as each thread will have its own stack. So, to avoid concurrent access related issues in the heap, use synchronization.

Advanced Tips in Java

Here are some advanced tips for developers working on Java. These tips help the users, especially advanced users to get additional knowledge in Java.

How to Set the classpath in UNIX for a Particular Session

Classpath is set to locate the class file. We can run the class files from any working location thereafter if the user wants this CLASSPATH
 only for that particular UNIX session. This method is session-specific.

Syntax: export CLASSPATH=:<Path of the class file>:

Example
 : ​

Working location = /extractions/extrtst/GT/

Location of class file = /export/home/ABC

export CLASSPATH=:/export/home/ABC:

In this case, we are using only one class file. We can set the paths of various class files separated by a delimiter “:”

How to Set the Default classpath in UNIX for any Session

Classpath is set to locate the class file. We can run the class files from any working location after that. If the user wants the same classpath every time he/she login, append the syntax below in the “.profile” file before logging on to the UNIX server. The classpath set here will be set for every UNIX session. This case is used only if the class files are very much needed for every session in a default manner.

Syntax: export CLASSPATH= :<Path of the class file>:

Example:
 ​

Working location = /extractions/extrtst/GT/

Location of class file = /export/home/ABC/

Open the “.profile” file in the UNIX server or use the Vi editor to do the same. Append the command below at the end of the file.

export CLASSPATH=:/export/home/ABC:

In this case, we are using only one class file. We can set the paths of various class files separated by a delimiter “:.”

How to Compare Strings

Compare only starting part:
 startsWith function can be used to compare the first part of the string with already defined or acquired string. It checks whether the first part of a particular string matches exactly with other string defined.

Boolean temp = String1.startsWith(String2);

It Results as true if starting the string1 matches with the whole of string2, which was given as argument or else it will result as false.

Example:

String1 = Starting Extraction Stats

String2 = Starting Extraction

Boolean temp = String1.startsWith(String2);

Result of temp will be true

Compare only ending part:
 endsWith function can be used to compare the last part of the string with already defined or acquired string. It checks whether the last part of a particular string matches exactly with other string defined.

Boolean temp = String1.endsWith(String2);

It Results as true if ending of the string1 matches with the whole of string2, which was given as argument or else it will result as false.

Example:

String1 = Ending Extraction Stats of format

String2 = Stats of format

Boolean temp = String1.endsWith(String2);

Result of temp will be true

Get a specific part of the string:
 If you want to get a specific part of a string, then you can use the function Substring.

String String2 = String1.substring(begin Index);

For the above syntax, it will return a string trimming the first ten characters.

Example:

String1 = INFO: File Name

String
 String2 = String1.substring(5);

Result: String2 will be File Name

You can also use, String String2 = String1.substring(begin index, end index)

String

 String2 = String1.substring(1, 5);

Result: String2 will be File Name

How to Check Whether the File Exists or Not from the Input

This is the case we are taking the input from the console (UNIX or cmd). If you want to check whether the file exists or not and print the appropriate message and loop for the same.

Example:
 print the appropriate string for the interaction with the user

System.out.println ("Enter the Path (with filename): ");

Get the string as shown in the syntax below

BufferedReader Read = new
 BufferedReader (new
 InputStreamReader (System.in));

Read the input as using readLine().

String Filename = Read.readLine();

Then to check whether the file exists or not. Convert the string into file

File file=new
 File (Filename);

boolean
 exists = file.isFile();

The syntax above checks whether the file or path exists and also checks whether it is a file or not.

You can also use exists function just to check whether the file/path given exists or not.

boolean
 exists = file.exists();

It returns false if the path/file does not exist and true if it exists. Then you can give the appropriate comment for the interaction.

If you want to iterate the loop until the user gives the correct path, then put a while loop before asking for input with the condition as true. Then the loop iterates till the user gives the correct path.

Chapter 4: Coding Standards for Programming

Introduction

This chapter defines the coding standards to be followed in a programming language while writing your code. The naming conventions, standards, and tips compiled here should be followed. It takes advantage of the features and facilities available in the Java language and the Visual Cafe for Java IDE. This disciplined way of following the convention results in a highly maintainable and easily readable code.

Naming Conventions

Package Names

Package names should be all in lower case and should be of the following format. The module, domain, or package names should uniquely identify the package. The module or domain-specific names will be like ui, arch, domain, etc… These names are coined after the services of architecture or use case groups or any other project-specific grouping.

Class Names

Class names must start with an upper case letter for every word, with lower case letters for non-initial characters. No leading, trailing or embedded underscores should be used. Limit the class name length to a maximum of 30 characters.

Also, the class name should follow the pattern <Meaningful Name><Type>. In this pattern, “Meaningful name” identifies the class nature like Customer, Product, etc. and the “Type” identifies the category of class. The category is “Exception,” “Screen,” “Controller,” etc.

EJB Class and Interface Names

The classes and interfaces for EJBs should follow the following conventions in places wherever applicable. The bean name should follow the same conventions as like class name. If the Enterprise bean to be created is Xyz, then

	

the Bean class should be named as XyzBean,

	
the Home interface should be named as XyzHome and

	

the Remote interface should be named as Xyz.

For an entity bean, the key class should be named as XyzKey.

For example:

If the bean to be created is Address, then the naming convention is as follows:

Bean class: AddressBean

Home Interface: AddressHome

Remote Interface: Address

Key class (in case of entity bean): AddressKey

Class Field Names and Variable Names

General

Variable names must start with a lower case letter, but use an upper case initial letter for every new word. Initial or trailing underscores for private variables must not be followed. Limit the variable name length to a maximum of 30 characters.

Example: empAddress, fixedSalary, employeeAge

Arrays

Arrays should always be specified using the form, and the maximum length of the array name is 30 characters.

<datatype>[][]…[] arrayname;

Example: int[] companyNames;

double[][] salary;

The form given below must NOT be used:

​
 int myArray[]; // Wrong use

Vector and Hashtable

Vector and Hashtable names should end with an‘s’ to represent the multiplicity of elements as far as possible. The maximum length of the name should be restricted to 30 characters.

Static Final Variable Names

Static final variable names should be in all capitals, as an indication that they are definitions. Use underscores to separate words. Limit the length of the variable name to a maximum of 30 characters inclusive of underscores, if any used. No leading or trailing underscores should be used.

Example:​
 INCREMENT

​
 ​
 MAXIMUM_LIMIT

Hard-Coded Values

If there is a requirement for “hardcoded” values for a specific requirement, then declare them as static final variable and use them in the code. If the value required is for one method only, then declare that final value within that method itself. This improves the readability and maintenance of the code.

Example: if (inputUrl = “jdbc:oracle:sample”) { ☐
 Wrong Usage

​

​
 } else {

​

​
 }

​
 Expected code is as below :

static final String JDBC_URL = “jdbc:oracle:sample”;

. . . .

if (inputUrl = JDBC_URL) { ☐
 Correct Usage

​

​
 } else {

​

​

 }

Method Names

The method name should be chosen so that it conveys the intent of the method. Method names should start with a verb like do, get, or move to indicate the functionality. The convention for method names is the same as the convention for variable names.

Note: If the method is a constructor, the convention to be followed is the same as the class names.

Example: get
 MyName ()

​
 do
 Modification ()

copy
 Object ()

Arguments Names and Method Arguments

The convention for argument names is the same as the convention for variable names, and must never use trailing or leading underscore.

Meaningful names should be coined for arguments. Use the same name for arguments as for the field value.

Example: doDivision (int numerator, int denominator) {

​
 ​
 this.numerator = numerator;

​
 ​
 this.denominator = denominator;

}

Code Format

if-else structure

Each block should start in a new line, and the opening brace should be there in the starting line of the block itself.

Example 1:

if (myName.equals(yourName)) {

​
 ChangeYourName();

​
 System.out.println(“Name Changed Successfully”);

} else {

​
 GoodLuck();

​
 System.out.println(“No Change Required!”);

}

Example 2:

Even if the statement for the action of an if-loop is only one, it should be enclosed with braces and code formatting, followed as below.

if (yourAge > myAge) {

​
 System.out.println(“You are older than me!”);

}

try-catch-finally

Each block should start in a new line, and the opening brace should be there in the starting line of the block itself.

Example :

try {

​

} catch (arg0 e0) {

​

} catch (arg1 e1) {

​

} finally {

​

}

Java Source File Style

Copyright Notice

/*

* @(#)Terminator.Java 1.0 10 Jan 2020

*

* The copyright notice must appear here. It must also include

* so that version information is easily searchable using tools

* the above line.

* The copyright text needs to be FINALISED.

*

*/

Modification Log

The modification log must appear immediately after the copyright notice.

/*

* Modification Log

* --

* Ver Date Change ID Modified By Description

* --

*/

Package and Imports

The package line must be the topmost line in the Java file, before the copyright notice.

Import lines should follow the copyright notice and mod log. If there is a reference to more than one class under a directory, then “*” should be used to represent the classes. If there is only one class reference, then the exact class name should be referred. The standard packages are listed before the local packages, all in alphabetical order.

Class

The class comment should immediately follow the import statements and should appear as below. This set of comment lines will show up in the documentation for the package when generated with Javadoc utility. It is a must to follow this documentation
 format, as irrespective of the development kit, the Javadoc document generation is uniformly followed.

Example:

/**

* The class is used to translate an HTTP request

* to a business event. It accepts the HTTP request

* from the Front Component and translates it in

* to a business event with the help of RequestToEventTranslator

* @author Administrator

* @see any other classes/methods that must be referred

*/

In the above example, the first three lines describe the class. The comment should give a clear description of the class, but at the same time, the explanation should be kept short. Also, the code samples can be provided as sample usage, etc.

Apart from the Javadoc comment, any design and implementation-specific comments must appear inside the class body in a normal multi-line comment style.

Example:

/*

* This class follows the Singleton pattern. The constructor will

* be hidden and the getInstance static method will be the only

* method will be exposed.

*/

Class Fields

Every public and protected field declared must be documented. The documentation comment must appear just above the field for which the comment is intended. The documentation comment for a private field is optional. The ordering of the fields will be as specified in Sun’s guidelines.

Constructors

Constructors must be placed immediately after the class definition. They should be arranged in order of increasing complexity. For example, the constructor with less number of arguments should be placed before a constructor with more number of arguments. No return type should be specified for a constructor, and it should be public.

Example:

public class DemoClass {

public DemoClass () {

​
 <Some code>

}

public DemoClass(int inVar, String superStar) {

​
 <Some code>

}

}

Accessor Methods

Accessor methods must start with either get for a read operation or set for a write operation, followed by the property name. Comments for the accessor methods are relevant based on whether or not the class is part of the external interface and the complexity of the method implementation.

Example:

String getName(); //Getter method to read the property value

void setName(String name); //Setter method for writing to the property

Other Methods

Other class and instance methods will follow thereafter.

Example:

String getName(); //Getter method to read the property value

void setName(String name); //Setter method for writing to the property

Documentation for “Javadoc”

Documentation for Class

The first line must be a brief definition of the type, which would show up in the package summary. After the first sentence, a <p> tag should be added, and the second line must start in the second line. From the second line, a more elaborate definition of the class must be given.

Use the html tags <p> new lines, </p> <code> code samples </code> and <blockquote> block quotes </blockquote> wherever appropriate. It is a must to enclose all Java data types and methods "code" pairs HTML tags. Use the see also tags (@see) wherever appropriate. This line should start as a new line. The last line of the comment must be the author’s full name and the company name.

Java Comments

Three types are comments are provided in Java language.

Single Line Comment or InLine Comment

This is the simplest comment in Java, which is marked with two forward slashes in the beginning. This comment cannot fold into multiple lines.

Here are some examples:

//this is a Single Line comment. The line below is a Single Line comment after code

jumper = 10; //jumper jumps as per the number

Block Comment or Multi-Line Comment

In contrast to the above, this comment can span multiple lines. The start of the comment is marked by a forward slash and then followed by an asterisk (/*
). The start and end of the comment may be there in the same line or in different lines.

Here are some examples:

/* The start and end of the multi-line comment is in the same line */

/* This comment is a bigger one that spans more than a line.

The usage of this kind of comment is to give an elaborate description of the program or code piece. While giving a description, try to limit within three or four lines, else it won’t be software but a … */

Documentation Comment

The documentation comments are used to generate documentation using the Javadoc utility provided with Java development kits. The end delimiter is an asterisk followed by a forward slash (*/
).

​
 /** This is a documentation comment */

​
 /** This is also a

​
 documentation comment

​
 typed on multiple lines */

Usage of Comments

Comments have to be used liberally, and at the same time, unnecessary comments should be avoided. Whenever there is a block of code that is complex to interpret, then it is a must to add a comment for that block of code.

/* a(i,k) and b(k,j) is multiplied and added to the corresponding element of the result matrix */ ☐
 Useful Comment

​
 result[i][j] = result[i][j] + amat[i][k] * bmat[k][j];

​
 int iterationCounter; //used as iteration Counter ☐
 Unnecessary usage of Comment

Using Single Line Comments

Use single-line comments always. The advantages of using single-line comments are (a) very simple to add (b) can be nested within a block comment, and (c) can be used to comment block comment itself. The
 example below illustrates the above-said advantages.

(a)

​
 myVariable = “My Name”; // Assign my name to the variable

​
 yourVariable = “Your Name”; // Assign your name to the variable

​
 isSameName = doCompare(myVariable, yourVariable); // Check is both names are same

In case if these lines have to be commented out, it is very simple as below.

(b)

​
 /*

​
 myVariable = “My Name”; // Assign my name to the variable

​
 yourVariable = “Your Name”; // Assign your name to the variable

​
 isSameName = doCompare(myVariable, yourVariable); // Check is both names are same

​
 */

If the same commenting was done using block comment, then it will generate a compiler error. The following code illustrates this.

Wrong Usage

​
 /*

​
 myVariable = “My Name”; /* Assign my name to the variable */

​
 yourVariable = “Your Name”; /* Assign your name to the variable */

​
 isSameName = doCompare(myVariable, yourVariable); /* Check is both names are same */

​
 */

(c)

/*The following piece of code is used to

validate the input parameters. To explain that, this

multi-line comment is being used */

The above block comment can be nested within a single line comment, as shown below:

// /*The following piece of code is used to

// validate the input parameters. To explain that this

// multi-line comment is being used */

Using Multi-Line Comments

Whenever the comment that should be added runs through more than one line and specifically that is meant for elaborating the context, then Multiline comment should be used. Due to the descriptive nature of the comment, it is very unpleasant to put // at the start of every line and also while editing the comment, need arises to format every time to make it as single line comment if // is used.

Using Documentation Comments

Documentation comments being a special-purpose feature for documentation purposes only that should be used appropriately. This comment should be used in front of every public/protected class, interface, method, and class/instance variable. Documentation comment may not be required for a private class, interface, method or variable since these interfaces are not exposed to the class user. This documentation commenting allows any user of the code to generate documentation using the Javadoc utility.

The Javadoc utility picks up all the text inside a documentation comment and formats that into a paragraph. That is, each documentation comment becomes one paragraph in the generated document. While generating the document that will be in the HTML format all the spacing, line breaks, leading asterisks entered within the source comment are ignored. If special formatting is required in the generated HTML document, then HTML tags can be included appropriately. These tags will be reproduced exactly in the generated document.

For example, if a documentation comment is entered as below in the source code,

/**

* This is a sample

* documentation comment

* used to demonstrate the

* formatting policy of Javadoc */

Then in the generated document, these lines will appear as below with all formatting removed.

This is a sample documentation comment used to demonstrate the formatting policy of Javadoc.

If the formatting above has to be retained in the generated document also, then the source comment should look as below embedded with HTML tags.

/**

* This is a sample

* documentation comment

* used to demonstrate the

* used to demonstrate the

* formatting policy of Javadoc */

for which the documentation output will be as below:

This is a sample

documentation comment

used to demonstrate the

formatting policy of Javadoc

If it is required to have the leading asterisk should also appear in the generated document, the source comment should be done as below.

/**

* *This is a sample

* *documentation comment

* *used to demonstrate the

* *formatting policy of Javadoc */

The resulting documentation in the HTML file is as below.

* This is a sample

* documentation comment

* used to demonstrate the

* formatting policy of Javadoc

As mentioned earlier Javadoc utility ignores all the leading asterisks, which are continuous. Similarly the asterisks following the start delimiter /** is also ignored.

Then the document generated will have only the text MAIN PROGRAM INITIALISATION.

Note: It is a general practice to highlight the comment inside the source file, as shown above. Since Javadoc treats the first line as /** followed by many asterisks (NOT /* followed by asterisks), this box structure is treated as a documentation comment. This will appear in the Javadoc output and will be bad user documentation. AVOID USING “BOX” - ING for multi-line comments.

Chapter 5: Best Design Practices in Java

The following are the best practices that provided tangible benefits not only during development but during maintenance as well.

Let’s look at the Application Design first.

Application Design

Have a Backend Batch Update for Workflow Tools

Explanation: Many a time, we have cases where-in we provide users to view data, manipulate the data in a series of steps, and save the data in the system. This works for a light load of 5-10 iterations per day. However, when we have a huge amount of data, this can tend to be cumbersome. Hence, if the requirement entails such a scenario, it is better to build in the bulk update feature using Ant Tasks.

Guideline Premise
 – When to apply this:

In the case of users having to perform:

	
A defined sequence of operations where the complexity is simple to medium (not exceeding five steps).

	
Where the same information can be obtained equivalently from alternative sources such as excel or text files.

	
Where the security audit trail does not mandate entry through the screen and can be performed via login id in the data row from alternative sources.

	
All sanity checks are encoded into the business layer.

Typical Usage Scenarios:

	
Bulk updates to the system occurring due to large data changes.

	
Onboarding clients to the application.

	
Data migration process before the go-live.

Example
 : Mapping data from one source to another and saving the data. This can be done via UI or batch.

Implement a Batched Database Operation in the Data Access Layers

Explanation
 : Data access can either be used for a query for a single item or for a batched query on multiple items. Refactor the batch operation into an interface which, when implemented by new query, automatically allows either single item access or multiple item access in batches. The advantage of batched access is reduced transaction log.

Note:

	
The logic for the batch operation should be abstracted in a base class.

	
The batch size should be customizable. E.g., Batch size may be set for 100 items at one query.

	
This is applicable for all database operations - select, update, and insert.

	
Actual code cannot be given here due to client restrictions.

Guideline Premise
 – When to apply this:

Best results noticed in case of data access layer having:

	
A simple to mid-size query not exceeding 40 lines without join conditions.

	
Keys in ‘where clause’ that run into hundreds of values or greater.

	
The indexes are present for the attribute being queried upon.

Typical Usage Scenarios:

	
The logic required for lookup an attribute for a single entity for user operation via User Interface is similar to the same lookup operation being used in feed processing during batch processing.

	
Investigative tools are written typically take in the single entity being investigated as input. However, they would need to follow the same path as the actual process.

Example
 : A typical example would be to look up names for a given id from the database. It is advisable to have the same code customized for:

	
Ability to lookup single id.

	
Ability to lookup ‘n’ ids.

	
Ability to break the ‘m’ ids into at most ‘n’ id’s, query the result, and look up the names and combine them to give the final result containing ‘m’ ids and names.

Allow Applications to Display Data on the Screen, Export Data into Excel, Export Data into Text, Export Data into pdf

Explanation
 : Once the data is generated on the User Interface, the requirement would be either of the following:

	

Read the data from the UI.

	

Save the data in excel and perform calculations.

	

Send the data in a standard format (pdf) or structured (.docx) to external sources.

	
Save the data as data dump txt files for later analysis.

Guideline Premise
 – When to apply this:

	
It is advisable for all report generating applications to allow data to be extracted in various formats.

	
This should be made part of the framework associated with saving data.

Typical Usage Scenarios:

	
Saved data as data dumps can be used for UAT testing or Regression testing.

	
Users tend to download data into excels and massage it to cater to their specific needs by running macros.

	
Downloading report and sending to external sources in pdf format.

Example:
 Personal websites hosting the resume of an individual.

Keep the Scheduler Batch Tasks Independent

Explanation:

	
Keep related tasks grouped together in one scheduler batch.

	
If there are specifically known dependencies, then convert them to explicit trigger file dependencies rather than tasks depending on each other. This allows for changes in one set of tasks to be independent of the other set of tasks.

	
Focus on the result and not type of processing.

Guideline Premise
 – When to apply this:

	
When the number of dependencies is relatively small (< 5 dependencies).

	
This is especially useful when more than one entity is waiting for an event to occur.

	
If dependencies are more, then consider refactoring or use specified event management.

Typical Usage Scenarios:

	
Grouping database, Java, I/O feed tasks together in their own respective groups. If there are dependencies between groups, they will communicate explicitly via trigger files.

	
Mostly used in schedulers where a set of dependent jobs would need to function as a unit.

Example:
 Dining in a restaurant can be envisaged using this model as below.

	
Diners place all orders with the waiter. Processing of all orders ends with the trigger of acceptance of an order.

	
Once the dishes have arrived, the trigger to serve the order is given to the waiter.

	
Upon completion of serving all orders, and with no further orders, the trigger is to provide the bill to diners.

	
Diners don’t have dependencies on a particular waiter at the start. Once a waiter takes order, he becomes the go-between.

	
Diners don’t have dependencies on individual cook producing the item they ordered.

Allow Queue Skip Mechanism in Queues

Explanation
 : Queues allow buffering of messages between the producer and the consumer when their rate of production and consumption differ. However, many a time a corrupt data message might block the queue leading to stagnation. Allow skipping of one, a group of n-messages, or entire queue to allow fault tolerance and continuity.

Guideline Premise

 – When to apply this:

	
Skipping a message would not lead to catastrophic failure or information loss.

	
The message can be accounted for (maybe by resend of a message) or reconciled by other means.

Typical Usage Scenarios
 :

Message queues have varied usages. Some examples we have seen are:

	
The arrival of internal messaging between various parts of an application.

	
The arrival of SWIFT messages from exchange to the company.

	
The arrival of an application processed data from the grid computing mechanism.

Example
 : Arrival of cans in the soda bottling unit. One bad bottle should not clog the queue.

Coding Design

Use Facade Design Pattern for Co-Existing Flows or For Staged Releases

Explanation:
 When replacing an existing process with the optimized process or new process set decommissioning an older process set, we would like to have control of the functionality set being released in a staged manner. One way it could be achieved is:

	
To propagate the place of bifurcation to a single touchpoint (or as few touchpoints) as possible and then use the façade pattern.

	
An interface will abstract the functionality with a slow transition from old implementations to new implementations.

	

The code can be cleaned up of old code once done.

Guideline Premise
 – When to apply this:

	
The number of touchpoints should be very limited (one or at best a few).

	
The dependencies on specific implementation should not exist.

Example:

 A socket box that connects old and new wiring to the power source could be a good analogy. Once the new wiring is done, the connection can be switched. The color coding can be an interface.

Use Strategy Design Pattern for Alternative Implementations

Explanation:
 When there are different styles of implementations for different scenarios, but the process remains the same, we use the Strategy design pattern.

Guideline Premise
 – When to apply this:

i. Same interface for different implementations.

ii. Typically useful when we want to introduce optimization in processing. We can refactor the code to be changed and implement different strategies to accomplish the task.

Example
 : Processing the items in a queue is a good example of using the strategy design pattern.

	
FIFO – First in the queue, First Out of the queue. This is traditional processing. Processing starts at item 1.

	
LIFO – Last in the queue, First Out of queue. This is the stack processing. Processing starts at the last item.

	
Priority – Every item in the queue has priority. The servicing queue is based on priority. Processing starts with Item with the highest priority.

We can have an application which has a queue and queue handler. The processing can now be built around a strategy maker who uses one of the underlying strategies to provide the item to be serviced.

Homogenize Code Base in Java for Non-Java Components

Explanation:
 In some cases, we would have code in multiple sources – scripting, Java Code, C++ code, autosys jils (scheduling logic). Sometimes, the benefits of having code in Java, such as testing and deploying. In such cases, it is better converting all logic to be in Java.

Guideline Premise
 – When to apply this:

	
It would be a simple/medium complexity to write a Java
 interface/layer for the items.

	
The end-users can code in Java.

	
We should have the ability to translate Java to non-Java and vice versa.

	
We should be able to program the dependencies and intricacies of the syntax.

Example:
 Writing a Java interface to create autosys jils.

This will allow users to code in Java and have an application to translate it into Jils. Additionally, if we feed jils to the converter, it would give Java code corresponding to the jils. Advantages are:

	

No need to keep separate repositories for JIL and Java code.

	

In case we need to generate various flavors like multiple production instances, QA, and UAT versions, having in Java allows us to maintain a single copy.

	

Since it is now converted into Java code, jils are now testable using JUnit.

	

The release can be automated using Java tools.

Intern Commonly Used Data for Performance Improvement

Explanation
 : If the values for a particular entity are immutable, then it would be efficient to intern the values.

Guideline Premise
 – When to apply this:

	
When the accessed values are immutable – not required to be changed.

	
Need to decrease unwanted memory.

Wrap Command-Line Tools with Extended Error Handling

Explanation:
 Command-line tools tend to get used with little or not enough error catching. This leads to silent failures, which become the bane of maintenance. Having a wrapper for these tools with enhanced error catching will go a long way in preventing errors from incorrect error catching.

Guideline Premise
 – When to apply this:

	
We have standardized tools that had standardized error messages and codes and can be built upon.

	
If there is already widespread use of the tool, this would require effort/money to clean up and standardize the access via scripts.

Example
 : Command-line tools such as isql and bcp (query tools in UNIX for Sybase),

have limited error handling. However, this can’t be enforced during usage due to which we have silent failures. It is better to enhance the error detection ability and build wrappers around it so that we have standardized access with error detection.

Release (Quick Tips)

	
Perform scripted database updates for better co-ordination and to reduce errors.

	
Implement generic comparison tools for reports for delimited text and excel based reports.

	
Ant tasks for dependency management and build.

Chapter 6: Best Practices in Java Swing

For creating maintainable, reusable, scalable, robust, and high-quality software products, some coding best practices must be adopted at the development stage of the application or product. Java Swing technology is widely used for GUI application development in Java platform. This chapter reveals some design and coding best practices practice that may be used for GUI application development using java swing.

Application Design Best Practices

Use a flexible layout in your application:
 Using a layout manager frees the developer from the burden of manually positioning the component. Determining the absolute position of a component can be very cumbersome at times. Moreover using a layout manager ensures that java takes care of window resizing behavior and look and feel in different display resolutions.

Never mix lightweight (swing) and heavyweight (AWT) components within a container:
 Heavyweight components are always drawn on light-weight components. The reason lies in the fact that AWT and Swing use a different way of displaying components on the screen. One effect of using both AWT and Swing component side by side. Textbox used in this example is an AWT component, and Combobox used here is a swing component. The figure shows when the combo box list is opened, AWT textbox is painted on top of it, thereby hiding some elements of the Combobox list. This behavior is totally unexpected.

Avoid low-level events and use semantic events:
 Examples of low-level events include mouse and key events, and examples of semantic events are action events and item events. Using semantic events rather than low-level events makes the code robust and portable. For example, listening to action events on buttons is preferable to listening to mouse events on buttons. In this way, a programmer can ensure that the button will react in the same way when it is clicked on and when it is triggered from the keyboard (by putting a focus on it and pressing the space bar).

Another reason is that some compound components like JComboBox don’t fire low-level events. It fires semantic events, and
 its subcomponent fires low-level events which are look and feel dependent. In order to avoid look and feel (platform) dependent code, it is always recommended to listen only to semantic events or compound components.

Whenever possible, use adapter classes for writing event listeners:
 Each of the AWT listener interfaces, which has more than one method comes with a companion adapter classes which gives an empty implementation of all methods in the listener interface. Adapter classes provide a convenient way of writing event listeners. Extending adapter classes, rather than implementing listener interfaces, eliminates the burden of writing empty implementations of all other listener interface methods in which the developer is not interested. This reduces coding time and the length of the code.

Perform a time-consuming task in a separate worker thread:
 Developers should use separate threads for performing time-consuming operations such as extensive calculations and blocking for network or disk I/O (loading images) etc. so that GUI does not become non-responsive. A specially designed class named “SwingWorker” can be used for this purpose.

Update realized components only from event dispatching thread:
 Event dispatching thread is responsible for managing and updating GUI controls. To avoid the possibility of deadlocks, all GUI controls should be created, modified, and queried from event dispatching threads. SwingUtilities class provides two methods – invokeLater() and invokeLaterAndWait() method to do this task.

Functionality

Prompt for unsaved changes:
 If the user edits some data in the screen and clicks on the close button without saving the data, the system should ask the user whether he wants to save changes.

Provide undo functionality whenever possible:
 User may make some mistake while filling an input form and so it is a good programming practice to provide undo functionality in the system wherever possible.

GUI must provide warnings to the users for those operations which can’t be undone:
 GUI should also alert the users for any actions that cannot be reverted.

GUI should provide feedback to the users about the status of their work:
 GUI should somehow make users aware of what is happening behind the scene for long-running tasks. For example, while saving data, GUI should show the message “Saving data…” in the status bar of the application. Hide or disable GUI elements that are irrelevant in the current context
 .

The busy mouse cursor should be shown for long-running tasks:
 For long-running tasks, the mouse cursor should change to an hourglass cursor to indicate that the application is performing some operation in the background.

The following code shows how to change the cursor to an hourglass cursor before doing a time consuming operation (e.g. submitting a screen and saving its content to database) and how to revert to original cursor after the operation is complete.

try {

panel1.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

doSubmit();

} finally {

panel1.setCursor(Cursor.getDefaultCursor());

}

Programming Best Practices

Text and Messages:
 Font size and colors, messages, texts should not be hardcoded into the application. They should be taken from properties files so that they are easily configurable.

Window/Dialog Box:
 Dialog box should be closed on pressing Esc key. Unlike the Microsoft Windows environment, swing does not provide this feature by default. But by adding a little amount of code, this can be achieved easily. You may refer to the following URL for its implementation procedure.

In an MDI window, making the desktop pane scrollable whenever some or all part of a child window is placed outside desktop pane’s viewable area. In that way, one will not lose the child window when he accidentally places it outside the parent window. In an MDI
 window, make the Window menu available. A windows menu lists all active child frames and lets users easily switch focus between the child frames.

TextField:
 Sufficient width to accommodate the maximum length of the text. The idea is user should not scroll to view the entire content of a text field. For large content, use textarea instead of textfield.

On got focus, the existing text should be selected. The following code shows how to implement this.

(i)

 Extend JTextField to create EnhancedJTextField.

(ii)

 Override the processFocusEvent method.

public class EnhancedJTextField extends JTextField {

public EnhancedJTextField() {

super();

}

protected void processFocusEvent(java.awt.event.FocusEvent e) {

super.processFocusEvent(e);

if (e.getID() == java.awt.event.FocusEvent.FOCUS_GAINED) {

this.selectAll();

}

}

}

(iii)

 Use this EnhancedJTextField class to create your own custom text fields.

​
 JTextField jTextField1 = new EnhancedJTextField();

TextArea:
 Scrollbar should be visible when content does not fit inside textarea. The java.awt.TextArea internally handles scrolling
 and displays scrollbars. JTextArea is different in that it doesn't manage scrolling, but implements the swing Scrollable interface. This allows it to be placed inside a JScrollPane if scrolling behavior is desired.

jScrollPane1 = new JScrollPane();

this.getContentPane().add(jScrollPane1);​

{

jTextArea1 = new JTextArea();

jScrollPane1.setViewportView(jTextArea1);

}

If the tab is pressed, the focus should be shifted outside.

TextArea (in both AWT and Swing) does not provide this feature by default. By default, if you put focus on textarea and press Tab, a Tab character is placed inside the textarea’s text. This behavior may not be preferable to many users because there is no way to shift focus to the next component or the previous component using the keyboard. The following technique can be used to overcome this deficiency.

Extend the JTextArea class to create a custom EnhancedJTextArea, as shown in the following code.

public class EnhancedJTextArea extends JTextArea {

​
 public EnhancedJTextArea() {

​
 super();

​
 this.addKeyListener(new java.awt.event.KeyAdapter() {

​
 public void keyTyped(java.awt.event.KeyEvent e) {

​
 if (e.getKeyChar() == java.awt.event.KeyEvent.VK_TAB) {

​
 e.consume();

​
 if (e.isShiftDown()) {

​
 transferFocusBackward();

​
 }

​
 else {

​

 transferFocus();

​
 }

​
 }

​
 }

​
 });

​
 }

}

Use this EnhancedJTextArea class to create your own custom text area.

jTextArea1 = new EnhancedJTextArea();​

Buttons:
 Every button should have its associated mnemonics. Mnemonics are underlined characters in a button’s text. These keys, when pressed together with the Alt key, activate the button. Ideally, every focusable component (buttons, textfields, checkboxes, radio buttons, etc.) should have its associated mnemonics attached to them. This greatly facilitates keyboard operation. Even for components like JTextField, which does not have their own text, mnemonics should be applied to its associated label.

The following code shows how to add mnemonics.

...

{

​
 jButtonCalculate = new JButton();

​
 this.getContentPane().add(jButtonCalculate);

​
 jButtonCalculate.setText("Calculate");

​
 jButtonCalculate.setMnemonic(java.awt.event.KeyEvent.VK_L);

}

{

​
 jLabelAmountUSD = new JLabel();

​
 this.getContentPane().add(jLabelAmountUSD);

​
 jLabelAmountUSD.setText("Amount in USD:");

​

 jLabelAmountUSD.setDisplayedMnemonic('A');

}

{

​
 jTextFieldAmountUSD = new JTextField();

​
 jLabelAmountUSD.setLabelFor(jTextFieldAmountUSD);

​
 this.getContentPane().add(jTextFieldAmountUSD);

}

...

The default button should not have mnemonics.

It should be activated by hitting Enter. Please note pressing Enter will always activate the default button regardless of which component currently has the keyboard focus.

To do this, follow the simple steps –

(i) Your main class should implement KeyListener, ContainerListener.

Add the following lines of code in your program.

private void addKeyAndContainerListenerRecursively(Component cp) {

cp.removeKeyListener(this);​

cp.addKeyListener(this);

if (cp instanceof Container) {

Container ct = (Container) cp;​

​
 ct.removeContainerListener(this);​

​
 ct.addContainerListener(this);​

​
 Component[] cps = ct.getComponents();​

​
 for (int i = 0; i < cps.length; i++) {​
 ​
 addKeyAndContainerListenerRecursively(cps[i]);

​
 }

}

}

private void removeKeyAndContainerListenerRecursively(Component cp) {

​
 cp.removeKeyListener(this);

​
 if (cp instanceof Container) {

​
 Container ct = (Container) cp;

​
 ct.removeContainerListener(this);

​
 Component[] cps = ct.getComponents();

​
 for (int i = 0; i < cps.length; i++) {​
 ​
 removeKeyAndContainerListenerRecursively(cps[i]);

​
 }

​
 }

​
 }

​
 public void componentAdded(ContainerEvent e) {

​
 addKeyAndContainerListenerRecursively(e.getChild());

​
 }

​
 public void componentRemoved(ContainerEvent e) {

​
 removeKeyAndContainerListenerRecursively(e.getChild());

​
 }

​
 public void keyPressed(KeyEvent e) {

​
 int code = e.getKeyCode();

​
 if (code == KeyEvent.VK_ESCAPE) {

​
 performEscapeAction(e);

​
 } else if (code == KeyEvent.VK_ENTER) {

​
 performEnterAction(e);

​
 }​

​
 }

​
 public void keyReleased(KeyEvent ke) {

​
 }

​

 public void keyTyped(KeyEvent ke) {

​
 }

​
 void performEnterAction(KeyEvent ke) {

​
 JOptionPane.showMessageDialog(this, "Enter pressed.");

​
 }

​
 void performEscapeAction(KeyEvent ke) {

​
 setVisible(false);

​
 }

(iv)

 Modify performEnterAction() and performEscapeAction() to suit your requirement.

ComboBox:
 Sufficient width to accommodate the maximum length of the text. The entire text of all items in a Combobox should be visible. Autocomplete text as a key is pressed.

Menu:
 All menu items should be given proper mnemonics and keyboard accelerators, and there should not be any mnemonic conflict on a page. Items in contextual menus should also appear in a visible location. Users often have difficulty knowing whether contextual menus are available and what is in them. For this reason, the items in contextual menus should also appear in a visible location. You should duplicate these items in the menu bar or toolbar of the primary windows in your application.

Use common mnemonics for common menu titles and items. Common menu titles and their mnemonics are shown below.

	
Menu Titles

	
Menu Items

	
File

	
New, Open, Close, Save, Save As, Page Setup, Print, Preferences, Exit

	
Edit

	
Undo, Redo, Cut, Copy, Paste, Find, Find Again, Select All

	
Help

	
Contents, Tutorial, Index, Search, About Application

Show ellipsis (…) in menu items where more user action is required.

Avoid the use of second-level submenus, i.e., you should not put submenus within submenus. Many people find submenus difficult to use.

Do not disable a menu even if all items are unavailable. According to Sun's Java Look and Feel Design Guidelines, if all the items in a menu are unavailable, the menu should still be available. In this way, users can still display the menu and view all its inactive items. Similarly, if all the items in a submenu are currently not available, do not make the original menu item unavailable.

Painting Guidelines

	
Call repaint() method instead of paint() method. Repaint() method schedules the paint request in the event dispatching thread. This ensures that realized components are modified in a single thread.

	
Wherever possible, call repaint() method with arguments rather than calling no argument version. In that way, you may repaint only a particular portion of a component instead of repainting the entire component.

	
If you create any swing component, override the paintComponent() method instead of the paint() method. You sometimes see code that overrides paint() instead of paintComponent().

	
If you create any new component by extending JComponent, call super.paintComponent() in the first line paintComponent() method.

	
Use Double Buffering to improve perceived performance. Double buffering is a mechanism where any components are first drawn onto an offscreen image and then copy the image to an on-screen image. This results in the smooth rendering of the component.

	
Use anti-aliasing to give a better and smooth look to your components. You may turn on anti-aliasing for your components, so that jagged components and fonts look smoother. To implement anti-aliasing, you need to subclass a particular swing component and override the paintComponent() method as follows.

Performance Tips

	
Perform GUI operations in bulk to minimize the events generated. Suppose that you want to add a few items in a JComboBox. Then instead of individually adding those items one by one in a loop, create a vector of all elements and create a new comboboxmodel form that Vector. Now replace your old model with a newer one. Every time you add a new element to the Combobox, events are generated, and listeners are notified. Total effort is proportional to the number of events generated multiplied by the number of listeners. To improve performance, the number of events generated must be less.

	
When totally replacing the contents of a model, construct a new one instead of reusing the existing one.

	
Use custom models and renderers to handle large datasets in JList or JTable. Default models for JList and JTable are vector-based and not suitable for heavy data operations. In fact, if you use your own model, you can do many optimizations.

	
Enable outline dragging mode in JInternalFrame for faster dragging.

	
Use the Lazy Initialization technique to reduce application startup time. Defer creation and initialization of components until they are actually needed. Do not construct components that are not visible initially at the screen startup time. This allows the screen to come up faster.

Chapter 7: Best Coding Practices for JavaScript

This chapter provides some useful tips to perk up the performance of the web application, which uses JavaScript.

Performance Tuning

Often performance is compromised in the journey of delivering the code for the customer requirement before deadlines. While the product is delivered as required, customers become discontented if the performance is appalling. A series of activities is taken at a later stage to improve the performance of the application. Improving the performance of the application should not be done as a separate activity rather be kept in mind while coding. All applications are distinctive, and so are performance tuning techniques to these applications having common performance requirements. Few techniques can be followed to achieve performance improvement.

Caching Scripts

The most common way of improving performance is by caching the scripts. This is done by writing all the scripts in a separate .js file and include it in the pages required. In this method, the files included are cached by the browser and avoids reloading of this file when the user loads a new page using this file. It also makes our web page lighter. This also helps your code be understandable and maintainable. It is the simple way of making changes in one file to get reflected in all the pages.

For example:

<script language = "JavaScript" src ="/cvisit/js/cmmPopupWindow.js">

</script>

Caching Objects

Caching the objects which are used frequently will improve the performance. Caching the object and using this is less expensive when compared to creating new objects every time.

For example: Consider this simple example to print the field name.

<script language = "JavaScript">

for(var i = 0; i < document.FormName.elements.length; i++)

{

document.write("The field name is: " + document.FormName.elements[i].name");

}

</script>

In the above example, the object document.FormName.elements is accessed multiple times, forcing the browser to dynamically look it up twice during each loop. First to see if i<document.FormName.elements.length and second to access the field name at the current loop index. If the form has more fields, then more calls. Excessive calls like this not only slow the browser, they also take up memory, thereby slowing the system.

Caching the object comes in handy to fix this issue. The way to fix this is to store a repeatedly accessed object inside a user defined variable, and use that variable instead of the actual object.

<script language = "JavaScript">

var element = document.FormName.elements;

for(var i = 0; i < element.length; i++)

{

document.write("The field name is: " + element[i].name");

}

</script>

In the above script, document.FormName.elements[] is referenced only half as many times as before. It goes to the array the second time, instead of the object.

Lazy Initialization

Lazy initialization in common terms is creating objects only when they are needed. Initializing many objects in onload can make the browser noticeably unresponsive for a moment. By this, initializing everything when the page is loaded is avoided. Thus it takes less time to load the pages increasing the performance. The other advantage
 of this is that the same object is never created twice. Thus it can be implemented along with caching the object.

Don’t Use Eval

eval function evaluates and/or executes a string of JavaScript code that is contained in the codestring argument. It is slow and affects performance at a considerable amount. The best way to improve performance is to avoid the usage of this function. The functionality of eval can be achieved alternatively by other code.

Consider the simple example:

	
<script language="JavaScript">

var x = 10;

document.write(eval(x*10));

}

</script>

	
<script language="JavaScript">

var x = 10;

document.write(x*10);

}

</script>

The script without eval() takes less time to execute than the one with eval().

Pre Calculate Loop’s Length

Determining the length of the loop earlier is another common method to amplify the performance. This will have a minimal effect per iteration, in most cases. If the length variable is reused in the body of the loop, the benefit will be greater. It is very easy to do and doesn't complicate the code, so we just do it anyway.

Consider the simple example:

<script language = "JavaScript">

var element = document.FormName.elements;

for(var i = 0; i < element.length; i++)

{

document.write("The field name is: " + element[i].name");

}

</script>

This above script can be more efficiently written as:

<script language="JavaScript">

var element = document.FormName.elements;

for(var i=0; var len= element.length;i<len; i++)

{

document.write("The field name is: " + element[i].name");

}

</script>

Limit Processing Inside loops

Just like all the other programming languages, JavaScript’s performance is diminished by doing so much of activities inside a loop. Limit the work done inside the loop to the degree that is possible to improve the performance.

Avoid document.write()

When we use document.write() in a small file, the performance decline is not evident. For bigger applications that involve a lot of write operations, it is best practice to avoid document.write() for content display. Alternatively, use HTML tags for content displays. The performance variations between these two can be observed clearly by reloading the pages a few times. Stick to the general rule of using HTML for content display.

Tuning in String Manipulations

Using performance tuning techniques in String manipulations boosts the performance exponentially. Some of the simple tips that can be followed are as follows:

String Literals Concatenation

Concatenations are common operations done on Strings. String concatenation using literals are much faster than variables. In browsers like Mozilla, the performance gain is more.

Consider the simple example:

​

 “Welcome” + “to JavaScript World.”

will be faster when compared to:

var msg = “Welcome”;

msg = msg + “to JavaScript World”;

Concatenate Using ‘+’ Instead Of ‘+=.’

It is always a better practice to concatenate using ‘+’ instead of ‘+=.’ It seems like a better option to use += in concatenating and assigning but silently, this eats up the performance of the application.

Consider the simple example:

var msg1 = “Welcome”;

var msg2 = “to JavaScript World”;

var final = msg1 + msg2;

is faster when compared to:

var msg1 = “Welcome”;

var msg2 = “to JavaScript World”;

var final = msg1;

final += msg1;

Use Local Variables than Global Variables

Local variables are the fastest type of variables. Though global variables are advised when it is used across several functions in the file, this hinders the performance. The cost of looking up a local variable is lesser when compared to the global variable. When a local variable is used to store the global object chain, the performance is even more improved.

Eliminate Unnecessary Variables

Usually, the variables which will be used only once in the script are eliminated.

For example:

function fnUpdateVal(newVal) {

​
 var form = document.forms[0];

var newValuew = form.elements[“update”];

newValue.value = newVal;

}

Should be changed to:

function fnUpdateVal(newVal) {

​
 document.forms[0].elements[“update”].value = newVal;

}

Declare and Assign a Variable in a Single Statement

Declaring all the variables at the top of the function and assigning it later is the traditional methodology which has been followed widely. This reduces code clarity and hence bad practice. But declaring and assigning a variable in the same statement offers a slight performance boost. This is because the variable is referenced only once.

For example:

<script language = "JavaScript">

var element, i, len;

element = document.FormName.elements;

for(i = 0; len = element.length; i < len; i++)

{

document.write("The field name is: " + element[i].name");

}

</script>

Should be changed to:

<script language = "JavaScript">

var element = document.FormName.elements;

for(var i = 0; var len = element.length; i < len; i++)

{

document.write("The field name is: " + element[i].name");

}

</script>

Debugging Strategies for Javascript

JavaScript is one of the coolest web tools around. An extension to Hypertext Markup Language (HTML), JavaScript enables you to access and manipulate all the components that make up a Web page.

This section describes some of the mistakes that a JavaScript programmer does and how to find and rectify it using debugging.

JavaScript – Reads only code, not the mind:
 In general, if the JavaScript code is not working in a way you designed, then there is a bug. Sometimes the design will be perfect and still you encounter some problems. As we all know, JavaScript never throws straight forward error.

For Example: If the user clicks on Next button ->

If the action selected from the UI is an addition, then the action to be performed in addition.

Else the action to be performed is subtraction.

It’s always advisable to write a pseudo code of your requirements so that even when your script design is perfect, if you face any issues, this will help you to debug your problem easily.

Bug Isolation:
 If you try to zero it on a genuine error that is which lines of code are affected, then the following ways might be useful.

	
Error on page loads? Then the problem might be either HTML related or in the onLoad event of your code.

	
Error on while giving input to text fields? Then check onBlur or onChange event.

	
Error on button click. Then check the onClick event.

	
Error on the page closes? Check onUnLoad event.

Documentation:
 It is always advisable to refer to the documentation. As I mentioned in my previous section, refer documentation from Netscape for script related bugs or issues. You can either download it on your browser or bookmark it for your reference.

“alert” tracking:
 If you wrote some 50 lines of script and you face any issues after running the script, the one easiest way to debug is to use “alert” statements.

For example, you are iterating a string value in an array. Check whether the string value is coming as expected in the following way.

	
var strXXX = some value.

	
alert(strXXX);

	
Iterate it.

In this way, you can track the issue step by step to rectify it.

Code break up:
 By breaking a large block of statements into smaller functions, we can avoid error possibility. This will increase our ability to code reuse, and our frustration level will decrease.

Elimination:
 By eliminating the unwanted tracks in finding errors, we can avoid wasting time and the solution will become more reliable.

This can be achieved by writing several test cases against your script.

Browser problems:
 There may be problems because of your browser too. JavaScript may be disabled in your browser, or your browser’s version is incompatible with JavaScript. Solving these issues will help to solve the error.

Checking Script:
 There may be mistakes happens while writing your script. This may be keyword error, error in assigning a value to the variable, parameter passing, etc. Tracking for these problems may help you solve the issue.

JavaScript Useful Strategies and Methods

We have included various JavaScript methods that are very useful
 and easy to implement. Most of the code snippets can be reused as such. Some of them might require some minor changes.

To check all the checkbox in a page when the select-all checkbox is checked or to uncheck all the checkboxs in a page when the select-all checkbox is unchecked
 .

On click of the select-all checkbox, call the checkAll function. If the select-all checkbox is checked, checkAll function will call the selectAll function else checkAll function will call deselectAll function. The checkAll function will check all the other checkboxes. The decheckAll function will uncheck all the other checkboxes.

// to check whether the select-all checkbox is checked or not

// call this function when the select-all checkbox is clicked

function checkAll() {

​
 var check = document.getElementsByName("chkAll");

if(check[0].checked == true){

​
 selectAll(check);

​
 }

else {

​
 deSelectAll(check);

​
 }

}

// to select all the check-boxes

function selectAll(check){

​
 var check2 = document.getElementsByName("chkItem");

​
 for (var i = 0; i < check2.length; i++) {

​
 ​
 check2[i].checked = true;

​
 }

}

// to de-select all the check-boxes

function deSelectAll(check){

​
 var check2 = document.getElementsByName("chkItem");

​
 for (var i = 0; i < check2.length; i++) {

​
 check2[i].checked = false;

}

}

- chkAll is the name of the select-all checkbox

- chkItem is the name of the other checkboxes

To check the select-all checkbox on a page when all other checkboxes on the page is checked or to uncheck the select all checkbox on a page when any of the other checkboxes are unchecked.

On click of any of the checkboxes other than the select-all checkbox call the function checkFunction. This function checks if all the other checkboxes with name chkItem are checked or not. If all the checkboxes with name chkItem are checked, the select-all is checked. If any of the checkboxes with name chkItem is unchecked, then the select-all checkbox will be unchecked.

// call this function when the any of the checkbox other than the selectall checkbox is clicked.

function checkFunction(){

​
 var count =0;

​
 var check = document.getElementsByName("chkAll");

​
 var innerCheck = document.getElementsByName("chkItem");

​
 for (var i = 0; i < innerCheck.length; i++) {​

​
 if(innerCheck[i].checked == true){​

​
 count = count +1;

​
 }​

​
 }

​
 if (count == innerCheck.length){​

​
 for (var i = 0; i < check.length; i++) {

​

 check[i].checked = true;

​
 }

​
 }

​
 for (var i = 0; i < check.length; i++) {

​
 if(check[i].checked == true){​

​
 for (var j = 0; j < innerCheck.length; j++) {

​
 if(innerCheck[j].checked == false){​

​
 check[i].checked = false;

​
 }​

​
 }

​
 }

​
 }

}

- chkAll is the name of the select all checkbox

- chkItem is the name of the other checkboxes

To get the final count of the selected items across pages in pagination and validate in JavaScript before form submission.

var finalCount = session.length; //count of items already in session​

for(var i = 0; i < pageList.length; i++){

var currentPageItem = pageList[i];

//checked length is 0 and session length is 0

if (checked.length == 0 && session.length > 0){

​
 // No items checked; previously checked items are removed

​
 ​
 for (var l = 0; l < session.length; l++){

​
 ​
 if(session[l] == currentPageItem){

​
 ​
 finalCount --;

​
 ​
 }

​
 ​

 } // end for

​
 }

//checked length greater than 0 and session length is 0

else if(checked.length > 0 && session.length == 0){

​
 ​
 // No items in session

​
 ​
 for(var k = 0; k < checked.length; k++){

​
 ​
 if(currentPageItem == checked[k]) {

​
 ​
 // checked items in current page

​
 ​
 finalCount ++;

​
 ​
 }

​
 ​
 } // end for

​
 }

//checked length greater than 0 and session length greater than 0

else {​

​
 ​
 if(isPresent(currentPageItem, checked)){

​
 ​
 // Item is checked

​
 ​
 if(!isPresent(currentPageItem, session)){

​
 ​
 // Item is not in session; add item

​
 ​
 finalCount ++;​

​
 ​
 }

​
 ​
 }

else {

​
 ​
 //Item is not checked

​
 ​
 if(isPresent(currentPageItem, session)){

​
 ​
 // Item in session; remove item

​
 ​
 finalCount --;

​
 ​
 }

​
 ​

 }

​
 } // end main if

} // end for loop

alert (finalCount);

Before using the script, get the three arrays used in the script.

Arrays used in the JavaScript:

	

session
 - an array of selected items already in session (items checked in the previous pages). This can be passed as a string separated by a comma to the script and then put into the array.

	

checked
 - an array of checked items on the current page.

	

pageList
 - an array of all items on the current page, both checked and unchecked.

The finalCount gives the total count of selected items across pages.

The function isPresent is called to check if an item is present in the array. The function will return true if the item is present in the array else it will return false.

//function isPresent(key, Array)

//returns true if key is present in the Array

function isPresent(item, itemList){

​
 var flag = new Boolean();

​
 flag = false;

​
 for(var i = 0; i < itemList.length; i++){

​
 if(itemList[i] == item){

​
 flag = true;

​
 }

​
 }

​
 return flag;

}

To trim leading and trailing spaces from a string in JavaScript

//To trim leading or trailing spaces

function trimString (str) {

return str.replace(/^\s+/g, '').replace(/\s+$/g, '');

}

The thing to note here is that the first .replace actually removes the leading blank spaces, whereas the second replace removes the trailing blank space. The first parameter in the .replace is known as a regular expression.

	
^ indicates the beginning of the string. Using a ^ metacharacter requires that the match starts at the beginning.

	
$ indicates the end of the string. Using a $ metacharacter requires that the match ended at the end of the string.

	

\s represents any single space character.

	

/g represents the global search for all occurrences of the pattern.

To refresh the parent window by clicking the button in a popup opened from the parent window. Different parent windows can create the same popup. When clicking the button in the popup, the corresponding parent window should be refreshed.

The refresh function should be in the corresponding parent windows JavaScript. Instead of var i = “/ShowInbox.do”; give the path of the corresponding parent window. Return 0 if the parent window need not be refreshed.

// for parent page refresh after clicking ok in a popup

// this function should be in the corresponding parent windows script

function refresh(){

​
 var i = "/ShowInbox.do";

​
 return i;

}

Call the confirm function on the clicking of the button in the popup. This, in turn, calls the corresponding parent window refresh function. The refresh function returns the path of the parent window. If the return is 0, the parent window is not refreshed and the popup window is closed. If a path is returned, the parent window is refreshed with the corresponding path and the popup window is closed.

//for reload of the opener of the confirmation

// this function should be in the pop-up’s JavaScript

function confirm() {

​
 var contextPath = document.getElementById("context").value;

​
 var i = window.opener.refresh();

​
 if (i == 0){

​
 window.close();

​
 }

​
 else{

​
 window.opener.document.forms[0].action = contextPath + i;

​
 window.opener.document.forms[0].submit();

​
 window.close();

​
 }

}

To disable the corresponding menu bar link and make it bold upon loading the page.

Consider an application with three pages. There is a link for each page in the common menu bar. On loading the page, the corresponding page’s menu bar should be disabled and bold.

In the common menu bar, give an id for each link. Let the id be menu1, menu2, and menu3 for the corresponding links.

For example, In the common JSP

<div>

​

<html:link action="/ShowMenu1.do"> Menu1 </html:link>

</div>

<div>

​

<html:link action="/ ShowMenu2.do"> Menu2 </html:link>

</div>

<div>

​

<html:link action="/ ShowMenu3.do"> Menu3 </html:link>

</div>

Use the below script in the first page JSP

<script type = "text/javascript">

​
 document.getElementById('menu1').innerHTML =

'<a> Menu1 ';

</script>

On loading the first page the link Menu1 becomes disabled and bold.

To make tabs that expand and collapse on clicking.

Tabs that expand or collapse on clicking are very useful and attractive from a user perspective. The idea behind this is that the user needs to see only those things which are relevant to him.

See the below code

function newFunction(id){

​
 if(document.getElementById(n).style.display == "none"){

​
 document.getElementById(n).style.display="";

​
 }else if(document.getElementById(n).style.display == ""){

​

 document.getElementById(n).style.display = "none";

​
 }

}

The whole trick is to set an id to the div (or table), and this id is passed as the parameter to the function. To make the div hidden we set style.display to none. On clicking the tab the above function is called. If it is hidden, it is made visible by setting the display to “”. A common practice is to set the display to ‘block’. But this may lead to problems because the block is container specific. In Mozilla, it may affect the whole layout.

One more way to make the div visible or hidden is by adjusting the height of the div. See the code below.

function showHideSects() {

​
 if (!document.getElementsByTagName) return false;

​
 var headings = document.getElementsByTagName("h2");

​
 for (var i = 0; i < headings.length; i++) {

​
 headings[i].parentNode.className += " open";

​
 /*headings[i].parentNode.style.height = "3em";

​
 headings[i].parentNode.style.overflow = "hidden";*/

​
 headings[i].onmouseover = function() {

​
 this.style.cursor = "pointer";

​
 }

}

Here the tag with name =h2 is made to disappear. The height is set to ‘3em’.To display the whole content, we set the height to “.” But I would advise you to stick to the earlier method because it is easy to understand and reuse.

To ensure than a selected item in a dropdown does not appear in other dropdowns.

Consider a series of the dropdown. We need to ensure that the selection in any of the dropdown does not come in the other dropdowns. Call the function onRowChange on change of the
 dropdown

function onRowChange(rowId) {

for(var i = 0; i < getMaxEditableRows(); i++) {

if(rowId == i)

continue;

​
 var rowName = 'optAttr' + i;

​
 var tempVal = document.getElementById(rowName).value;

​
 document.getElementById(rowName).options.length = 0;

​
 document.getElementById(rowName).options[0] = new Option("--Select--",'');

​
 for(var j = 0; j < (allAttributesKeyArray.length); j++){

​
 var text = allAttributesKeyArray[j];

​
 if(isSelectedInOthers(text, i))

​
 continue;

​
 document.getElementById(rowName).options[1 + count++] = new Option(text, text);

​
 }

​
 document.getElementById(rowName).value = tempVal;

​
 }

}

getMaxEditableRows is the number of dropdowns

allAttributesKeyArray is an array of all items in dropdown

// checks whether the attribute is selected in other dropdowns or not

function isSelectedInOthers(text,rowId) {

​
 for(var i = 0; i < getMaxEditableRows(); i++) {

​
 var rowName = 'optAttr' + i;

​
 if(rowId == i)

​
 continue;

​

 if(document.getElementById(rowName) .value == text) {

​
 return true;

​
 }​

​
 }

​
 return false;

}

The function is called on onChange of the dropdowns. The parameter rowId denotes which row was selected, i.e., which dropdown. The value selected in the dropdown is stored in a temporary variable – tempVal, after this the values in the dropdown are flushed by setting its length to zero. Again the dropdown is re-loaded with values from the allAttributesKeyArray. Before the actual setting, another function isSelectedInOthers is called. The parameter ‘text’ denotes any value in the allAttributesKeyArray which will be compared with the values already selected. This function ensures that the value selected is not selected in other dropdowns. It returns true or false depending on this criterion. Based on what the isSelectedInOthers function returns, the dropdown is populated with values other than one’s selected.

Logout in case of Mozilla

Simply window.close(); will not close the main window in Mozzilla. Only if it is a child window, window.close(); will work in Mozilla. So to logout (close the window) in Mozilla, call the below function.

// logout

function closeWindow() {

window.open('','_parent','');

window.close();

}

To validate all Textboxes in the Screen for the following:

i) No fields can be empty

ii) Numeric Validation

i) No fields can be empty

To Validate All the Text Box in the screen so that none can be empty

function validateBlankFields() {

​
 var the_inputs = document.getElementsByTagName("input");

​
 var validationStat = true;

​
 var flag = 1;

​
 for(var n = 0; n < the_inputs.length; n++){

if(the_inputs[n].type == "text"){

​
 var name = the_inputs[n].name.substr(8);

​
 name = trimString(name);

​
 var values = the_inputs[n].value;

​
 values = trimString (values);

​
 if (values !=''){

​
 validationStat = true;

​
 }

​
 else{

​
 alert("All fields must be completed.");

​
 var name1 = the_inputs[n].name;

​
 validationStat = false;

​
 break;

​
 }

​
 }

​
 }

​
 return validationStat;

}

Let us analyze the code line by line.

var the_inputs = document.getElementsByTagName("input");

Here we are getting all the ‘Input’ tags.

for(var n = 0; n < the_inputs.length; n++){

if(the_inputs[n].type == "text"){

​
 var name = the_inputs[n].name;

​
 name = trimString(name);

​
 var values = the_inputs[n].value;

​
 values = trimString (values);

​
 if (values !=''){

​
 validationStat = true;

​
 }

Next, we are checking all the input tags whose type is ‘Text.’ Then we are getting the names and values of the ‘Textbox.’ The trimstring is the trim function mentioned above. After that, we will check whether the value is a null string. If it is not, we will set the flag to true.

else{

​
 alert("All fields must be specified.");

​
 validationStat = false;

​
 break;

}

}

}

This is for giving an alert in case it is null. If it is null, we are setting the flag to false and breaking from the for loop.

Numeric Validation

Here we are passing the value of the textbox as a parameter to the function. The for loop iterates through the whole length. We are storing each character of the string and checking it against a set of predefined characters. I think the rest is self-explanatory.

This method has its own drawbacks. The main thing is if you enter a value like ---3…2344, it still returns true because all digits are present in the above validation. This can be solved if we give a check on the count and position of “-“ and. “” in the function.

Chapter 8: Best Practices for JavaScript and ExtJS

Here we have provided the best practices that were captured during the development of applications on advanced JavaScript, which has proved to improve the usability, availability, and maintenance of the application. The learning covers superficially on a wide range of topics— from naming files and variables all the way to coding JavaScript that performs well in typical environments.

Organized-structured source code and conventions make code readable and can provide ease of communication of complex algorithms.

Project Organization

The project is organized, roughly, into the same structure as a typical ASP.NET project where the separation is based on stable library contents and dynamically changing contents – created by developers, with additional directories called application and resources, organized as:

application/

​
 css/

​
 images/

​
 js/

resources/

​
 extjs/

​
 css/

​
 images/

​
 js/

The idea is that the application directory is changed frequently, and the resources directory is relatively stable: it is only updated when we adopt a new version of a major upstream library, such as ExtJs itself. This means that most of the time, the resources directory need not be touched when deploying a new version of the application. If the application is engineered well, this has positive implications for performance.

Naming Conventions

The naming conventions were based on what the ExtJs authors define or what the official stance is from Sencha

 (owners of the ExtJs framework).

	
Files should be named after the primary object contained within, and each source file should contain one primary object; for example, the object MyCompany.pkg.Foo should be contained in the file pkg/Foo.js. Rationale: When a developer is searching for the source code of an object, naming the file after that object makes it easy to find.

	
Constructors (that is, JavaScript “classes”) should be named with CamelCase names and should be placed inside a reasonable namespace, declared with the Ext.ns() function. Rationale: Camel-case names are found in the majority of existing JavaScript code, and so are consistent with what most web developers will read, and namespaces help prevent accidental name collisions.

	
Variables and functions should use camelCase names with an initial lower-case letter. Rationale: Again, this is consistent with the vast existing base of JavaScript code.

For example:

// source file: myproject/MyClass.js

Ext.ns('MyCompany.myproject');// not applicable beyond ExtJs3.0

MyCompany.myproject.MyClass = Ext.extend(Ext.Observable, {

myMethod: function(myParameter) {

// ...

}

});

// for ExtJs 4.0 and above

Ext.define('MyCompany.myproject.MyClass’,{//members…},{//onClassCreated…}

});

Code Style Conventions

Automatic formatting in newer versions of Microsoft Visual Studio
 will mostly follow these guidelines, below are a few highlights:

	
An opening curly brace goes at the end of a line and has one space before it; a closing curly brace goes on its own line and is indented to the same level as the line that contains the corresponding opening brace.

	
One space goes on each side of math operators and equality operators. One space goes on (only) the right side of other operators like colon, comma, and semicolon.

	
Control constructs like “if,” “while,” and “for” should have one space between the keyword and the following parenthesis. The “else” keyword should appear one space to the right of the previous closing brace.

	
A common belief is that only block statements should follow control constructs like “if” and “while;” that is, curly braces should be mandatory for control constructs even if they only encompass a single statement. A difference in opinion exists on the same.

	
If a statement doesn’t fit on a single line, break the line after a comma, an opening parenthesis, or another operator. This avoids accidentally invoking JavaScript’s semicolon insertion misfeature.

Some of these guidelines are demonstrated in an example:

function MyCompany.mypkg.makeCounter(msg) {

var count = 1;

return function() {

var s = '';

if (typeof msg !== 'undefined') {

s += msg + ': ';

} else {

s += 'count: ';

}

return s + (count++)
 ;

};

}

//example of JavaScript semicolon insertion misfeature

function MyCompany.mypkg.makeCounter(msg) {

var count = 1;

return function() {

var s = '';

if (typeof msg !== 'undefined') {

s += msg + ': ';

} else {

s += 'count: ';

}

return “ the return for the function makeCounter is ”;

s + (count++);

};

}

Development Guidelines

The following are some broad guidelines for writing JavaScript code that is understandable and performs well based on the application developed.

	

Introduce variables at the top of a function
 . There is no such thing as block scope in JavaScript like there is in C and its descendants. Rather, only functions have a scope. So, introducing variables within a block statement other than a function—while perfectly legal—is potentially confusing. Introduce all the variables used in a function at its top.

var f = function() {

var x = 1;

if (x) {

var x = 2;
 }

alert(x); // output, x === 2

};

	

An opening curly brace belongs at the end of a line, not on its own line
 . Because of JavaScript’s semicolon insertion misfeature, code that breaks this rule can have very surprising results:

var test = function() {

return

{

name: 'value'

};

};

var obj = test();

// obj.name is undefined: a ';' is inserted in the line 2

	

Never use implied global variables
 . If a variable is used without a corresponding “var” statement, then the variable ends up implicitly in the global object (the “window” object in browsers), which is a source of namespace pollution. If there is a need to put something in the global object—and almost certainly it never is—then it should be done explicitly.

	

Use strict equality operators whenever possible
 . The “===” operator is like “==,” except that the latter is non-strict: it can coerce the types of one or more of its operands. The case with “!==” and “!=” is similar. Use the strict operators “===” and “!==” whenever possible, since they perform better and are less likely to lead to surprises or mask errors. The non-strict equality operator is not even an equivalence relation, in the mathematical sense:

// An example of non-transitivity of the ‘==’ operator:

false == 'false' // true

0 == false // true

0 == 'false' // false

	

Avoid serious arithmetic.

 JavaScript has exactly one numeric type, namely the IEEE 754 double-precision floating-point number. Being a binary storage type, this can have ugly implications; for example, “0.1 + 0.2 === 0.3” is false. For that reason, non-trivial arithmetic should usually be pushed up to a more suitable platform via AJAX.

	

Always use the second argument to parseInt().
 In the absence of a specific radix, parseInt() behaves like a programming language, which is probably not what users want. For example, parseInt('011') is 9, but parseInt('011', 10) is 11.

ExtJS Development Tips

This section describes some tips for working with the ExtJS JavaScript framework
 and producing readable code, is maintainable, and works well across different runtime platforms.

Prefer ExtJS mapping constructs to simple loops:
 The functions Ext.each() and Ext.iterate() are great for acting on each member of an array or other objects; using these produce shorter and more robust code than rolling one’s own for loops. Use the former if you know the object being looped over is an array; otherwise, use the latter. In the Tailored Workstation project, we created a function Ext.ux.map()—also aliased to Ext.ux.collect() to make Ruby users feel at home—that acts like Ext.each() but also collects an array of results.

// Instead of...

for (var i = 0; i < this.items.length; ++i) {

this.add(this.items.length);

}

// Prefer...

Ext.each(this.items, this.add, this);

Avoid global IDs (that is, avoid the “id” configuration property):
 Using global DOM IDs—which is a consequence of using the id
 configuration property when creating ExtJS components—is the moral equivalent of using global variables in a program. That is,
 it is sometimes necessary and reasonable, but it should be done sparingly and viewed as suspicious. In particular, using a global ID means that only one instance of your component can appear in the DOM at once, and that may harm developers trying to re-use your component. Instead of searching for a component by its global ID, consider (a) using events to communicate among components (see below) or (b) keeping a reference to the component when it is created. Alternatively, you can use the itemId configuration property for child components, which need not be globally unique.

Use events for communication among components:
 The proper way to communicate between two unrelated components is to use the event system. This is a good replacement for the more brute-force solution of one component looking up another by ID at some crucial moment. Instead, have one component register one or more custom events that represent its workflow, and other components can listen for those events and react to them.

MyCompany.MyComponent = Ext.extend(Ext.Panel, {

constructor: function(config) {

var M = MyCompany.MyComponent;

M.superclass.constructor.call(this, config);

this.addEvents('myevent');

// Now, other components can listen for

// ‘myevent’ like any other event.

},

someMethod: function() {

this.fireEvent('myevent', /*...*/);

}

});

Whenever possible, load data when a component renders:
 It is polite when loading data to display a “load mask,” but displaying a loading mask in ExtJs requires a DOM element, which is first available after the component fires its render event. So, when you
 must load data, the easiest idiom is something like this:

this.add({

// ...

listeners: {

render: function(comp) {

var s = new MyStore();

new Ext.LoadMask(comp.el, {

removeMask: true,

store: s

});

s.load(/* ... */);

}

}

});

Never over-nest the components:
 A ExtJs grid can act as both a panel and a container and can have headers too. Hence a grid can be used when a container and a panel is required

Put validations at the component level:
 A validation event on component change event where all the business validation lies and on submit or save the validation function on panel instead of individual input controls (text fields and combo boxes) inside the panel is executed, this function should return true or false based on its sub-component validations. This will make sure that all the validation business logic lies in one place, which is easier to maintain and understand.

Exercise care when two components access the same data store.

Enabling Re-Use in ExtJS

Use inheritance when adding behavior to one type of ExtJS object.
 When you are enhancing the behavior of one type of ExtJS object (for example, a Panel), use inheritance with Ext.extend(). The example above shows how to create an object that extends Ext.Panel and add a custom event and method to that object.

When using inheritance, use property defaults and/or override initComponent(); override constructor() if must.
 Overriding the constructor() method of an ExtJs component is tricky because the contract of that method is tricky; preserve any reasonable configuration object that exists and add additional behaviors without colliding with those configurations. The example below adds some default behaviors to a new type of panel without overriding the constructor() method.

MyCompany.MyComponent = Ext.extend(Ext.Panel, {

fbar: [],

defaults: {

cls: 'my-css-class'

},

initComponent: function() {

var M = MyCompany.MyComponent;

M.superclass.initComponent.call(this);

// Add some extra components…

}

});

Use a custom plugin when adding lightweight behaviors, especially to different types of ExtJs objects.

Styling

Avoid inline style attributes:
 Using the style attribute in markup—or, equivalently, using the style
 configuration property on many ExtJs components—should be done sparingly. Just as CSS classes and IDs are used to split up semantics from the presentation, so it should be with JavaScript code and presentation. Prefer using CSS classes, perhaps via the cls configuration property.

Use selectors to restrict style application to your own components:
 In a large project, it is important to make certain that your CSS changes do not accidentally pollute all areas of the application. To that end, consider using selectors—in particular,
 descendant selectors—to prevent your CSS changes from “escaping” their intended place.

/* Dangerous... */

.x-panel {

color: #ccc;

}

/* Safer... */

.my-window .x-panel {

color: #ccc;

}

Performance Tips

Place frequently used object chains into the local scope:
 If there are many places in a single function that uses this.a.long.object.chain, use a local variable to lift that constant into the local scope. Newer JavaScript runtimes with just-in-time compilers will automatically apply this optimization in the frequently used code, but many in prominent use —notably Internet Explorer before version 9 and Firefox before version 3.6—do not.

Minimize the number of HTTP requests:
 While developing an application, probably JavaScript code will be placed into many source files. For the second release of an application, we had more than 130 script elements, each pointing to a single JavaScript file. Concatenating those into a single file and a single script element improved initial page load times by over 30%.

Minify and/or compress JavaScript and CSS files:
 Applying a minification algorithm to JavaScript and/or CSS files greatly reduces the number of bytes that need to travel over the network. Configuring your webserver to apply gzip or another compression content-transfer-encoding algorithm to JavaScript and CSS is usually another significant boost to network throughput, as those tend to be very low-entropy, even after minification. In one of the projects, we created a script to minify JavaScript automatically with the Google Closure Compiler and produce a single file out of our
 many human-readable source files; even without gzip, that improved the initial page load performance by 50% to 80% over a fast network. The difference is larger over the Internet.

Consider cache correctness:
 Minification and compression improve a user’s empty cache
 experience. Improving the user’s full cache experience is far trickier but provides another big boost in perceived performance. Explaining HTTP caching is beyond the scope of this document, but the steps are (a) ensure that objects that can be cached such as JavaScript, CSS, and images have different URLs with each version released, and (b) configure your webserver to set the cache lifetime of those objects to a very long time. For this application, Optimize Website Accelerator was adopted, which does both tasks transparently for IIS.

Caution: Usual practice is to add the script elements, images and CSS files to the default or initial load page, this can lead to performance bottleneck as the application will try and download all the files, particularly if the application performs any task during load(other than say validation).

Use “EnableSession = true,”
 while defining a web method, with discretion as it renders AJAX calls as synchronous rather than in an asynchronous mode.

Use “JSON(JavaScript Object Notation)” return type rather than XML wherever possible as JSON is text-based, lightweight, and very easy to parse.

Useful Tips and Techniques for HTML/JavaScript Developers

JavaScript is used to implement client-side validation to avoid an invalid input character. JavaScript is a very useful programming language, and it is of great help to improve user experience in the B/C applications. JavaScript has many useful events available to developers.

Here are some of them:

onKeyDown event
 : This JavaScript event is invoked whenever the user key of the keyboard is up. Commonly we use this event when we want to run some function after we input something from
 the keyboard.

For example:

Number only: <input name = "number" size = "8" maxlength = "8" onkeyup = "numericOnly(this);"/>

RegExpObject.test(string):
 This method is used to see whether a string matches a certain pattern.

For example:

<script type = "text/javascript">

var str = "Welcome to USA";

var patt1 = new RegExp("to");

var result = patt1.test(str);

document.write("Result: " + result);

</script>

You can run this demo to find the result yourself.

The result should be Result: true in the JavaScript alert box.

stringObject.replace(regexp,replacement):
 This method is used to replace regexp with replacement string. regexp could also be a substring using regular expression

For example:

<script type = "text/javascript">

var str = "Welcome to USA!"

document.write(str.replace(/USA/, "US"))

</script>

Regular Expressions:
 This is probably one of the most difficult parts of the whole JavaScript knowledge. Regular expressions have many simple expressions to implement a complex function. To have good knowledge will help to make the development more efficient.

A regular expression consists of some metacharacters. Such a normal letter includes alpha letters and numbers. Metacharacters have special meaning, and some are explained below.

. (dot)

match any single character. e.g., b.t could match bat, bet, b t, but it could not match the boat.

$

match line end. e.g., EUS$ could match "We are in EUS," but it could not match "They are also EUScion."

\

This is the escape character in JavaScript. The character next to \ will be regarded as a normal character.

For example, \$ means dollar other than line end.

[]

This means any character in the [].

For example, b[ae]t could mean bat or bet, but not bot. – could mean a range, e.g. [a-z] could mean alpha letter from a to z. And you could use ^ here. e.g. [^168a-z] means any characters except 1, 6, 8 and all small case alpha letters.

Some Useful Regulation Expressions:

E-mail format: \w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*

URL format: [a-zA-z]+://[^\s]*

Account name validation(begin with letter, length 5-16, number and underline i.e.”_” allowed): ^[a-zA-Z][a-zA-Z0-9_]{4,15}$

numbers(1-9)

^[1-9]\d*$

alpha letters(both uppercase and smallcase)

^[A-Za-z]+$

Demo that the Input Field Only Accept Alpha Letter in the Input Field

<html>

<body>

Alpha Letters Only: <input name = "letter" size = "8" maxlength = "8" onkeyup = "alphaOnly(this);"/>

<script language="JavaScript" type="text/javascript">

​
 function alphaOnly(field) {

​
 var validValue = /^[a-zA-Z]*$/;

​
 if (!validValue.test(field.value)) {

​
 field.value = field.value.replace(/[^a-zA-Z]/g,"");

​
 }

​
 return true;

​
 }

</script>

</body>

</html>

Chapter 9: Coding Tips and Best Practices for Asp.Net Web Application

This chapter provides coding tips and best practices to increase the performance of an Asp.Net web application. C# and VB.net codes are both complied into Microsoft intermediate language (MSIL), which eliminates the difference in the performance of the application. The choice of developing in C# or VB.net should not be based on performance.

However, there are few do's and don'ts we can follow while coding an Asp.Net web -application, to increase the performance considerably.

StringBuilder Class over String

StringBuilder Class is preferred over String Class while working with string manipulation operations. However, it's not always recommended to do so. Sometimes usage of StringBuilder class can undo the performance advantage it provides. StringBuilder Class is recommended while performing insert/delete or formatting of strings.

While performing string “replace” operations, String class is preferred over StringBuilder. There is no significant advantage of StringBuilder over String in Concatenate operations on a small scale.

Therefore, as a thumb rule, we don’t want to use StringBuilder when we don’t have very large strings and do not use a lot of string operations (like append, remove, insert, delete). In this case, there is no improvement in performance when MSIL is generated for the same.

Since there is some overhead associated while StringBuilder Object is created in memory, it’s advised to use StringBuilder only if we are doing more than five-string manipulation operations.

Session State Usage

Turn off session state when not used

By default, the session state in asp.net is set to ON. Disable the session state when not used. Session state value can be controlled
 at the page level or application level.

We can use the EnableSessionState option in the @Page directive to turn it turn off on a page as shown below.

<%@ Page EnableSessionState = "false" %>

To turn off session state at application level set the <sessionState> mode value to off in web.config file.

Specify the session access level on the page

We can limit the session access permissions on a page based on the usage by setting EnableSessionState to ReadOnly.

E.g., If we are just reading data from session objects on a page and do not perform any write operations on it, we can set the session state to read-only using

<%@ Page EnableSessionState = "ReadOnly" %>

Server-Side Vs. Client-Side Validation

Client-side validations are faster, but server-side validations are reliable. Client-side validation provides instant feedback and saves the CPU cycles, useful in low bandwidth scenarios. However, Java scripts can be disabled rendering client-side validations obsolete.

Server-side validations are dependable. However, they use server resources, and the latency and bandwidth usage from the return trip slows down the site.

It’s generally recommended to use both types of validations. Apart from ensuring integrity with the dual validation process, validations on the client side provide instant feedback reducing the strain on the server while uncaught validations on the client side are handled at the server.

Page.IsValid and Validator Controls

It’s a good practice to check if the page is valid using Page.IsValid when using validation controls, before going ahead with the execution of the page. The validate method is automatically fired when CausesValidation property is set to true. After the PageLoad event is fired, the Validate method iterates through all the enabled validation controls on the page, validating them.

Note: By default, all button controls have this property set to true.

HTML Footprint

Many of Asp.net controls are heavy in HTML. In the long run, it’s a hindrance with respect to performance and scalability. Sometimes we do not need the rich asp.net controls; we can use the HTML tags with runat = “server” set.

E.g., Use literals instead of labels for a static display of text. Literals generate far less HTML compared to labels.

E.g., Use repeater control over datalist/datagrid or dataview controls. Though the other controls are easier to code when compared to a repeater control, it is more efficient.

ViewState and ControlState

It’s a good practice to turn Off ViewState when form postback is not used. By default page, ViewState is ON for all controls which slow down the site. We can turn off the ViewState at the page level by setting the attribute in @page directive, as shown below.

<% @Page EnableViewState = "false" %>

As a good practice, we can use ControlState instead of Viewstate.

Avoid Exceptions

Exception handling is very costly in terms of resource usage on the server. Throwing and handling of unneeded exceptions are the biggest resource hogs; cause the web/windows applications to slow down.

Try to write code to avoid exceptions altogether. However, if exceptions bound to occur, place the minimum possible code, which might cause exception in the try block.

Always use the finally method to close connections to the database, files, etc. Any input or output connections opened should always be closed in “Finally” method, which is sure to execute irrespective of an exception occurs or not.

Option Strict and Option Explicit

The explicit option ensures that all the variables are declared before use. The strict option ensures that implicit data type
 conversions happen only to widen conversions. It restricts when an implicit data type conversion causes data loss.

Ex: Integer to Single, Long to Double

This is required when developing VB.NET applications, ensure that both Explicit and Strict options are turned on in the visual studio.

	
On the Tools
 menu, choose Options
 .

	
Open the Projects and Solutions
 node.

	
Choose VB Defaults
 .

	
Modify the Option Strict
 setting.

Note: Setting Strict automatically enforces explicit.

Turn Tracing and Debugging Off

Tracing is a great tool while testing or for diagnosing the application’s execution path and display diagnostic information at runtime. Evidently, this is an overhead and causes the site to slow down, hence ensure. Tracing is turned off in the production site, where tracing is not required.

Debugging is a very handy tool while coding or issue isolation. Sometimes, we forget to reset the debug flag in web.config, which hinders the performance of the site.

Ex: enabling debugging doesn’t cache the scripts and images. These are downloaded from the WebResources.axd handler every time.

We can turn off tracing and debugging by editing web.config

<configuration>

<system.web>

<trace enabled = "false" pageOutput = "false" />

<compilation debug = "false" />

</system.web>

</configuration>

Deploy with Release Build

Make sure your production build is created by setting the deployment type to Release mode in Visual studio. By default, it’s
 in debug mode. Creating a build in debug mode overrides the compilation setting web.config to true.

<compilation debug = "true" />

The code produced in release mode is more efficient and removes the checks that are associated with the development phase of the application. Leaving the debug mode ON actually changes how and when the pages are compiled by the JIT, which hits the performance by adding additional information for better interactive debugging which is not required in production.

Debugging Tips for Dot Net Application

Most of the common runtime errors and exceptions encountered while debugging a DotNet application can be avoided if proper coding techniques followed.

Some of the common error encountered in the project, and its resolutions are listed below:

Tip 1
 : If you get any error while debugging, then check the JavaScript path and the name of the JavaScript function called through the HTML file.

Tip 2
 : While adding a column with a blank header in the grid, add it with multiple spaces as the header. Make sure that all such blank columns have different headers.

dsDisc.Tables[0].Columns.Add(" ");

dsDisc.Tables[0].Columns.Add(" ");

Could not load type '<filenname>’

Tip: Include all the aspx files and related files in the project. This can be done by right click on the file name listed in the solution explorer.

Tip 3
 : Table (0) error

This error may occur if the wrong table name is passed to the stored procedure through the data access layer. Just make sure that the table name used exists in the database used for running the application.

Tip 4
 : ‘Input string not in correct format’ error

This error occurs while typecasting one data type to another.

For example: While casting a string with non-integer character to an integer.

Tip 5
 : ‘Column name not found’ error

The column-name specified in the Datagrid (formed through bound columns) to display the data is not selected in the stored procedure query.

For example: If no Request Date column is selected through a stored procedure and the bound column in the Datagrid is:

<ASP:BOUNDCOLUMN datafield = "RequestDate" headertext = "Request Date">

Tip 6
 : Page is getting submitted even if the input values are invalid

This error occurs if Page. IsValid() is not checked in the code behind file before any database operations. This function call checks the isValid property of all the validations.

Page.Validate();

if(Page.IsValid == true)

{

// Code for database operation

}

Tip 7
 : ‘Object Reference not found.’

This error occurs if any attribute or method of a null object is accessed. Before referring to any attribute or method of an object, make sure that the null condition is checked.

For example:

string strVar;

if (strVar != null)

{

if(strVal.Equals(“”))

{

strVal = “value”;

}

}

Confirm that there is entries for Page_Load event handler in initialize component method.

For example:

private void InitializeComponent()

​
 {

​
 this.Load += new System.EventHandler(this.Page_Load);

}

This line is automatically generated when the code behind file is coded for the first time.

Tip 8
 : Always use the access specifier as protected or public for a variable that has to be used in the HTML file.

Do not forget to import the namespace separately in the HTML file if any class of that namespace is used there.

For example:

<%@ Import namespace = "AIRS.Common.Config" %>

if any of the class files present in Config namespace is used.

Tip 9
 : ‘0 rows present in the dataset’ error

This error occurs if the dataset is not null, it has a table, but the table does not have any row, and the user is referring to the 0th row in the dataset.

A systematic procedure for debugging saves a considerable amount of time while testing. Following are some of the steps to be followed:

	
To enable or disable the debugging, right-click on the project name in the solution explorer. Then click on the properties menu. In the window that appears, select Configuration properties | debugging for various debugging options.

	
Always set the mode in the toolbar combo-box as DEBUG(not release) while using the debugger.

	
Always check for the correct file paths and database names in the web.config file.

	
Don't forget to set the start page through the solution explorer.
 This can be done on the right click of the file, which has to be
 set as the first file of the application.

	
Put the breakpoints by pressing F9 or by using the left click of the mouse at the desired statement.

	
The application can be started in debug mode by pressing F5. Otherwise, use ctrl+f5 to start the application without debugging.

	
Execution sequence for the user-controls and aspx files is

	
Code behind of aspx

	
Code behind of user-control

	
Html of user-control

	
Html of aspx

	
After starting the application in debug, mode following options can be used -:

	
F5- to go to next breakpoint after executing the in-between code

	
F11 - To go to the next statement

	
F10- to execute a function call without going inside the function

During Debugging:

	
If you need to go to a certain logical point either forward or backward, right-click on that particular line of code and choose 'Set Next Statement,' or you can directly drag the cursor to that point.

	
Instead of using breakpoint, 'Run To Cursor' can be used if you don’t want the debugger to stop at a particular statement every time.

	
For a scenario in which you have multiple files or a large file, to locate the cursor, you can choose 'Show Next Statement' options by right click on the code.

Watch For:

	
The value of a variable can be seen using a Quick watch or Normal watch.

	
Both the watches can be added by using the Right Click on the variable to be watched.

	
The Normal watch can also be added by selecting the Debug | Windows | Watch from the main menu.

	
In quick watch at a time, only one variable can be seen, and the user has to close the watch before going to the next statement.

	
In normal watch, the user can add several variables and see how their values get changed while the debugging proceeds.

	
Remember not to add too many variables in the watch window. It makes the debugging very slow.

	
Use a quick watch wherever possible.

	
Using immediate window option of debug windows, you can directly assign values to simple variables

	
E.g., int, string, float, and test for further execution.

	
To see the variable definition or function implementation, right-click and select the option for 'GO TO Definition.'

	
If there is any hidden control in your application. The type of control can be made other than hidden to see the value while debugging, or we can view the source code through the browser.

Chapter 10: Advanced Strategies for Enhancing ASP.NET Performance

This chapter is prepared for the benefits of developers using ASP.NET 2.0 or above, to improve or enhance performance and response time to end-users.

String Management

Use a StringBuilder class to perform two or more operations on the string instead of the string object. The StringBuilder object is preferable for concatenation operation if an arbitrary number of strings are involved. Use the concatenation operator when everything which needs to be concatenated is specified in one statement.

What is the Exact Difference?

When manipulation is accomplished on a string object, the original instance of the String object in memory will be wiped out, and a new one will be placed which leads to memory de-allocation and reallocation. The StringBuilder class resolves this difficulty by preallocating an internal buffer to hold a string. The contents of this string buffer are used directly.

Note: It's usually advisable to use a StringBuilder when performing two or more string manipulations. (If it's only one change, copying the value to and from StringBuilder will not result in better performance.)

Turn Off Session State

Typically in a web application, there may be static as well as dynamic pages. In the static pages, which do not require Session, the Session State can be turned off. The pages which require Session Data as ReadOnly, the SessionState can be made ReadOnly.

To turn off Session State at the page level,

<%@ Page EnableSessionState = “False” %>

To make it Read-only at the page level,

<%@ Page EnableSessionState = “ReadOnly” %>

To implement session expiration for specific pages, add a <META>
 tag to the HTML headers of the pages that require a valid session. The session time-outs can be set in web.config to reflect on all the pages of the application.

Set Session Expiration for specific pages,

<meta http-equiv = 'refresh' content = '60' />

Set Session time-out in Web config,

<system.web>

<sessionState timeout = "1" mode = "InProc" />

</system.web>

Using View State

View state allows the state to be persisted with the client, and it requires no cookies or server memory to save this state. The View State can be switched on and off at the Web Control level as well as the Page-level.

Switch off View State for controls and pages that do not need it.

Use http://<host>/trace.axd to identify unneeded VIEWSTATE

It helps to retain the values among multiple requests on the same page. The View State values are hashed, compressed, and encoded to provide higher security than the hidden field. If larger values are stored in the View State, it decreases the page loading and posting performances. So it is preferable to store only lightweight data in the view state.

Separation of Content and Logging

Separating the content and logs to different physical disks will improve the performance due to the increased concurrency while accessing content and writing the log data.

The location of the content and the IIS Logs should be a part of the initial architecture design and be included in the build document used to configure the application/server. As the load increases on the server, it is advisable to move the IIS Logs away from the drive where the content is located to gain better performance from the disk subsystem.

IIS Log Optimization

The W3C Extended Log Format includes a lot of fields that can be logged per request, and attention has to be given in selecting the appropriate fields to optimize the writing performance to the disk.

Since fields like User-Agent, Referer can have variable-length strings, unless the information provided by such fields is used for analytic purposes, they can be ignored for really busy sites. IIS Logging can also be disabled for static content like images to reduce the writing overhead on the disk.

IIS Compression

IIS Compression can result in significant bandwidth savings. It compress the static file types .htm, .html and .txt and also dynamic file types .asp and .exe. After a few users have hit a site, we can verify that compression is working by viewing the %WINDIR%\IIS Temporary Compressed Files directory on a Web server. It should contain multiple files, which indicates that static files have been requested, and IIS has compressed a copy of them and stored them on the local drive. When that file is requested again, whether it's the same user or not, the compressed version of the file is served directly from this folder. Dynamic files can be compressed as well, but copies are not kept on the local Web server. It may be advantageous to compress additional file types.

Connection Timeouts

Connection timeouts help reduce the number of memory resources that are consumed by idle connections. When we enable connection timeouts, IIS enforces the following types of connection timeouts at the connection level:

	
A connection timeout, which triggers after the connection between the client and the server has been idle for a while.

	
A request timeout, which prevents clients from issuing unreasonably slow requests to the server (for example, 1 bit per second).

	
A response timeout, which can trigger due to the server not being able to furnish the response in the time specified by the timeout value.

The server usage needs to be reviewed, and user habits analyzed to
 come up with an ideal value for the timeouts.

IIS Services

IIS is capable of hosting the following four services:

	
W3SVC: Web Service. Required for Hosting Web Sites.

	
FTPSVC: FTP Publishing Service. Required for hosting FTP Sites.

	
SMTPSVC: Simple Mail Transfer Protocol Service. Required for working with mail components on the web.

	
NNTPSVC: Network News Transfer Protocol Service. Required for hosting news bulletins.

Enable only those services that are used to reduce the attack surface and also to preserve the resources on the server. Please review if FTPSVC and SMTP are required to be running.

Unnecessary Services

Windows servers, by default, have some services that are not needed on a dedicated Web Server. Disabling the services that are not needed releases the resources they consume and also reduce the attack surface on the server. The security guide (from www.microsoft.com) is a good resource to follow when deciding what services need to be enabled on the servers depending on the role the server is destined for.

Constrain Unwanted Web Server Traffic

Limit the traffic in the Web Server to avoid unnecessary processing. For example, block invalid requests at the firewall to limit the load on the Web server. Also, do the following:

	
Map unsupported extensions to the 404.dll file in IIS.

	
Use the UrlScan filter to control the verbs and the URL requests to allow.

	
Review your IIS logs. If the logs are full of traffic, then investigate blocking that traffic at the firewall or filtering the traffic by using a reverse proxy.

Disable Tracing and Debugging

In the production environment, to avoid the performance issues, disable tracing and debugging configuration in the configuration file.
 It can be disabled inside Machine.config file to affect all the applications deployed in that server and also inside the Web.config file in the particular application alone.

<Configuration>

<system.web>

<trace enabled = "false" pageOutput = "false" />

<compilation debug = "false" />

</system.web>

</configuration>

Make Sure Pages are Batch Compiled

The virtual address space will be split based on the number of assemblies that are placed in the process. When the virtual address space is fragmented, which leads to out-of-memory conditions. ASP.NET compiles all pages that are placed in the same directory into a single assembly for decreasing the number of assemblies placed in the process. Below techniques helps to condense the number of assemblies that are not batch compiled: Place multiple languages in a separate directory. When placed in the same directory, ASP.NET compiles a separate assembly for each language in that directory.

Use of Server.Transfer and Response.Redirect

To navigate to the pages within the same application, Server.Transfer is used. The Response.Redirect method should be used when controls are transferred to pages in different applications, and if authentication and authorization need to be ensured, then Response.Redirect should be used for redirection.

Page Size Reduction

The frequently used static scripts on the web page can be referred by including the <script> tag, which helps the client to cache these scripts for consequent requests.

<script language = Javascript src = "datepicker.js">

To reduce the size of the web page, eliminate the characters such as tabs and spaces before sending a response. These characters create
 white spaces when it is included on the page. Refer to the below samples to check the page size reduction. Create two separate pages to copy the contents below and check page size.

// with white space

<table>

<tr>

<td>Good </td>

<td>Morning</td>

</tr>

</table>

// without white space

<table><tr><td>Good</td><td>Morning</td></tr></table>

Images

The size of the images placed in the web pages can be reduced to trim down the page weight.

Create smaller versions of bloated icons.

Remove text from images where possible.

Reduce the whitespaces in webpages using a white-space reduction tool that removes and compresses white spaces from HTML, CSS, and Script files.

Explicitly Dispose or Close All the Resources

Even when an exception occurs, ensure that resources are disposed of using try/finally block. Use finally clause to close the resources. Create a connection when it is needed and end the connection once the task is done. When different objects are used in the program, make sure to call the Dispose or Close method of the object. When the Dispose or Close method of the object is not invoked, it extends the life of the object in memory. The shared resources such as database connection and files should be closed explicitly.

Exception Management

To improve the performance and scalability of the application, handle the exceptions effectively by identifying the causes of
 exceptions, and writing the code to avoid exceptions. Consider the following guiding principles to ensure optimum performance:

	
Implement a Global.aspx error handler.

	
Monitor application exceptions.

	
Use try/catch/finally on disposal resources.

	
Write code that avoids exceptions.

Caching

Caching technique aids in accumulating the data. The data, such as page output or application data, will be stored in the client or the server temporarily. The stored information will be recycled to meet the consequent requests to avoid the difficulty in reconstructing the similar data. The Cache uses the least recently used (LRU) algorithm to remove the items automatically. The data stored in the cache will be deleted or erased when the application restarts.

ASP.NET provides the following three caching techniques:

	
Cache API

	
Output caching

	
The partial page or fragment caching

Segregate Secure and Non-Secure Content

When a folder structure is planned for the website, under the virtual root folder, create two separate subfolders to enclose public and confidential files. The pages that hold sensitive information will be stored under a confidential folder and secured using HTTPS instead of enabling SSL for the complete website.

Only Use SSL for Required Pages

Identify the pages which enclose sensitive information and enable SSL for those pages. The sensitive data, such as user login details, passwords, and credit card numbers.

Ensure the below points are satisfied to enable SSL.

	
To encrypt the page data.

	
To guarantee that the server to which we send the data is the server that we expect.

For pages which need SSL, follow these strategies:

	
Make the page size as small as possible.

	
Avoid using graphics that have large file sizes. Use graphics that have smaller file sizes and resolution.

Data Binding

Use data binding effectively to keep away from performance problems.

When Page.DataBind is called in a page, it recursively invokes this page level DataBind for the controls on the page which supports this functionality. So, instead of page-level databind, invoke the DataBind for the controls which require databind.

The following line calls the page level DataBind.

DataBind();

The following line calls DataBind on the specific control.

ServerControl.DataBind();

Reduce Cookie Size

Cookies help to store user-specific information on the client-side. It is a small file sent by the web server and stored on the client machine by the web browser.

	
Reduce the size of the cookies.

	
Avoid sensitive data in Cookies. If needed, encrypt the data and store it.

	
Use less number of cookies by eliminating unwanted cookies.

	
When the application becomes ineffective, cookies should expire immediately.

The performance tuning for ASP.net applications can be done by using the strategies mentioned above.

Window Forms Optimization In .Net

This section contains C# coding tips to improve the loading time of a window form at the designer level. There are requirements when we want to optimize and speed up the loading time of the opening of a window form. Speed improvement is noticeable when there are so many controls on a single form, and even more when there are controls like “Panel control,” which can have different controls in it. The example below will help you in optimizing your code of designer.

Code Overview

The code is written in C# for windows application. In the project, it was written with Dot Net compact framework 2.0 for pocket pc application. There are two independent workarounds for optimizing the controls load-time.

Part 1 - Creating the Controls in a Tree Manner (Top to the down formation of controls)

Initializing the controls in a tree manner helps in improving the load time by 40%. That means parent controls should be initialized first. When we create the child node, parent ID should be specified immediately after that.

Examples:

	
If there is a ‘Panel controls’ with many other child controls on it, create a panel control first and specify the parent of that control (usually the main form) and then add other controls to the panel. Have a look at the following example.

	
Also, use the .Parent property of the control instead of adding the controls using ‘controls’ collection. This will improve the performance for sure.

Code 1 - Default code:

private void InitializeComponent()

{

this.myPanel = new System.Windows.Forms.Panel();

this.txtName = new System.Windows.Forms.TextBox();

this.myPanel.SuspendLayout();

this.SuspendLayout();

// myPanel

this.myPanel.Controls.Add(this.txtName); // victim 1

this.myPanel.Location = new System.Drawing.Point(12, 26);

this.myPanel.Size = new System.Drawing.Size(173, 68);

this.myPanel.Name = "myPanel"
 ;

// txtName

this.txtName.Location = new System.Drawing.Point(50, 12);

this.txtName.Size = new System.Drawing.Size(100, 20);

this.txtName.Name = "txtName";

// Form1

this.Controls.Add(this.myPanel); // victim 2

this.myPanel.ResumeLayout(false);

this.myPanel.PerformLayout();

this.ResumeLayout(false);

}

Optimizing the above code using the top-down (tree) method will result in the following code snippet.

Code 2 – Controls in tree manner, and using .Parent property:

private void InitializeComponent()

{

this.myPanel = new System.Windows.Forms.Panel();

this.txtName = new System.Windows.Forms.TextBox();

this.myPanel.SuspendLayout();

this.SuspendLayout();

// txtName // Moved up before panel

this.txtName.Location = new System.Drawing.Point(50, 12);

this.txtName.Size = new System.Drawing.Size(100, 20);

this.txtName.Name = "txtName";

// myPanel

this.myPanel.Location = new System.Drawing.Point(12, 26);

this.myPanel.Size = new System.Drawing.Size(173, 68);

this.myPanel.Name = "myPanel";

this.myPanel.Parent = this; // putting panel first and using .Paren
 t

this.txtName.Parent = this.myPanel; // Using .Parent

// Form1

this.myPanel.ResumeLayout(false);

this.myPanel.PerformLayout();

this.ResumeLayout(false);

}

Part 2 – Minimize the Number of Method Calls

Another way to improve the loading time of a window form is by minimizing the number of method calls, used by default mode in form initialization.

Example: Code generated by the ‘form designer’ for setting the ‘location and size of control’ makes call to two methods Point() and Size() for setting these properties, like below sample code:

Code snippet - 3:

// txtName

this.txtName.Location = new System.Drawing.Point(50, 12); // Point()

this.txtName.Size = new System.Drawing.Size(100, 20); // Size()

this.txtName.Name = "txtName";

// myPanel

this.myPanel.Location = new System.Drawing.Point(12, 26); // Point()

this.myPanel.Size = new System.Drawing.Size(173, 68); // Size()

this.myPanel.Name = "myPanel";

We can consolidate Point() and Size() methods into single Rectangle() method and assign it to .Bounds property. So Code Snippet 3 can be replaced by the code below.

Code snippet - 4: Using .Bounds and Rectangle()

// txtNam
 e

this.txtName.Bounds = new System.Drawing.Rectangle(50, 12, 100, 20);

this.txtName.Name = "txtName";

// myPanel

this.myPanel.Bounds = new System.Drawing.Rectangle(12, 26, 173, 68);

this.myPanel.Name = "myPanel";

These were very fruitful for the performance benchmarks, and even improvement of half of a second was helpful. Using a combination of both the tricks, we can get around 65% faster loading of forms.

Notes:

	
We need to modify the default code generated by visual studio designer.

	
These changes should be done only on the final stage of form designing. If someone makes any changes from the GUI designer of form post these modifications, then all will be rolled back to the default coding style.

	
It improves only from initialize time; the additional components loading time will remain unchanged.

Chapter 11: Mobile App Development Using Android Studio and Sencha

In recent times, most of the mobile technologies use Android OS. Let us try to understand how Android Studio is different from Eclipse and the uses of Android Studio for developing software over Eclipse.

The aim is to provide basic information about the uses of Android Studio over Eclipse IDE. We can have a basic understanding of the IntelliJ IDEA IDE used in Android Studio. Also, we will get to know the basic structure of IntelliJ IDEA.

Eclipse and Android Studio

Eclipse: Eclipse
 IDE (Integrated Development Environment) is a platform that is used to develop/build the software and applications using the components like jar files, libraries, plug-ins, etc. We can use the Eclipse IDE to build the applications, mostly in Java.

Android Studio: Android Studio
 is an IDE used to create android applications. It has the IntelliJ IDEA, which is just another IDE as Eclipse that contains most of the features associated with it. Some of the features are listed below:

	
The Gradle based build system is used to build, test, run, and package the project without being an overhead.

	
Build variants consist of two factors. Debug and Release.

	
Build types define the process of how the module is built. And build flavor defines the resources of the module that is going to build (resources may be the Source code, for example).

	
Code templates are provided by Android SDK, which provides the templates used to create and run the application instantly. It helps the developer to proceed with the development in the right direction.

	
Android Studio helps the developer to create an application by the feature of drag and drop of the theme, wherein the theme would be added in the application in no time.

	
Lint tool is provided by Android Studio to check any performance/ structural/unused codes from the module, which
 adversely affect the application by unnecessary compilation and processing of the code which is not required. We can correct the errors projected by the Lint tool so that the performance can also be maximized.

IntelliJ IDEA

IntelliJ IDEA
 is an IDE that stands for Intelli
 gent J
 ava IDEA,
 which is used in Android Studio for developing the application software mostly for mobiles and tablets.

It supports languages like Java, XML, HTML, XHTML, JavaScript, SQL, and so on.

The technologies and frameworks supported by IntelliJ IDEA are AJAX, EJB, Hibernate/JPA, JSF, JSP, Spring, Struts2, Struts, Web Services, WebSphere, Glassfish, etc.

Structure of IntelliJ IDEA

Project and its Components
 :

The project is known as Modules in Android Studio. It consists of components like Modules, Facets, different types of libraries, SDK, and so on. Each component is described below.

Project:
 Projects consist of the source codes, libraries, and build files consolidated in it. It can have collections consisting of modules and libraries. Depending on the complexity of the project, there can be a single-module project or multi-module project.

Module:
 Module is an individually separate functionality that consists of the source codes, build files, web.xml, unit tests, etc. We can perform many actions on it, such as run, test, debug. A module can depend on other modules in a multi-module project. Modules can have a common SDK or it can also be defined for each module independently.

Facets:
 A facet represents a specific configuration for a particular framework/technology associated with the module. For Ex: Java-related projects in Eclipse will have Project Facets in the Properties -> Project Facets for a particular project. Each module can have multiple Facets associated with it.

Library:
 Library is an archive of compiled code that the module
 depends on (Ex: JAR Files). There are three types of libraries supported by IntelliJ IDEA. They are as follows:

	
Module Library: Module libraries are the java class files that are accessible within the module. The details of these libraries will be stored in module*.iml files in the workspace.

	
Project Library: Project libraries are the java class files that are accessible to the modules within the project as a project contains one or more modules within it. The details of these libraries will be stored in module*.jpr files or in .idea/library file.

	

Global library:
 Global libraries are the java class files that are accessible to the different projects that contain modules in it. The details of these libraries will be stored in applicationLibraries.xml or the .config directory.

SDK:
 Every project uses the Software Development Kit (SDK). For Java projects, SDK is referred to as JDK (Java Development Kit). It determines the API libraries to be used to build the project. If the project is a multi-module project, then the project SDK, by default, will be common for all the modules. Also, there is an option to configure individual SDK for each of the modules.

Structure of IntelliJ IDEA:
 The IntelliJ IDEA project consists of many modules. Each module will have the Source Code, Unit Tests. It also contains the Order entities like SDK and Libraries along with it. It might also have one or more Project Facets, which helps in configuring the IntelliJ IDEA. In the example shown above is assumed to have two modules.

Basic Understanding of Android Studio over Eclipse IDE

This section explains the basic comparison between Angular Studio and Eclipse IDE.

In Eclipse IDE, we have the concepts called Projects and libraries. In Android Studio, we have replaced the Projects with “Modules” and “Libraries.” The definitions of the two have given above.

Each module has its own Gradle Build File (It means that the build file is generated automatically for the new module / we can create the build files manually if we are importing the existing Eclipse
 Projects). The Gradle build files consist of important information such as the supported android versions, dependencies, and other meta-data related to the project.

Android Studio has advanced features when compared to Eclipse IDE.

Some of them are as follows:

i)
 Code Editing: Android Studio provides the code editing feature which can be used while creating an application. Some of the features are as follows:

(a) Alt+Enter key is used to fix any errors present in the project, either it will completely fix the error or suggest you with the possible solutions.

(b) Ctrl+D key is used to duplicate the code. We can select the line that has to be duplicated and click on the Ctrl+D key so that it can duplicate the entire code for us.

ii)
 ‎
 Sample Importing and templates: Android Studio has a new user interface that contains dialog boxes that enable the user to create a new application with the project templates and code samples provided by Google.

iii) Internationalization string editing: An android developer can grasp the features such as code completion, refactoring, and code analysis through Android studio.

iv)
 User interface design: The developer can use this feature to edit and preview the layouts with multiple screen sizes, languages, and other criteria.

Including the Jar dependencies: Just like in Eclipse IDE, we need to add the JAR files to the modules in Android Studio. There will be a lib directory where we can place all the jars.

The exception from Eclipse is that, in Android Studio, all we need to do is just right click .jars in the lib directory and click on “Add to Libraries.” This will automatically add all the jars as Gradle dependencies in the Gradle build file of the particular module. This is hassle-free which saves the effort of adding the jars manually. Always click on “Sync Gradle” to make sure that the module has been notified with all the dependencies present in the build file.

Sencha Cordova App - Tips and Tricks

Environment Set Up Guide

If the project targets Android, iOS alone, then one machine – MAC OS alone - is enough; if the project targets for windows as well, then a windows machine is a must. Targeting mostly the windows platform since it is the platform that causes many issues.

For the Windows Phone environment:

	
A windows 8 desktop/laptop is required.

	
For windows setup, please follow the below steps:

	
Install “Microsoft Visual Studio Professional 2012.

	
Download windows phone SDK from the official website and run it.

	
Have windows account created- HDFC parent account or normal account. To create a normal account please below the steps:

Steps to create a Microsoft:

	
Hit https://signup.live.com on your browser. (You can also google as “create a Microsoft account”)

	
You will be directed to a page where you will be prompted to enter some personal details like name, date of birth, and a username and password.

	
After entering all these, click on Create Account.

Your account is created.

	
Once the SDK is installed, go to window start and type “Windows Phone Developer Registration” and click on that

	
Connect the device and register the device – you should get some message like this “Your phone is unlocked for development,” and the button will be turned now to unregister.

Build Process

When a sencha project folder is created, that project has to be initiated for Cordova to use the Cordova plus points.

Command to generate a new app in cmd.exe inside the folder where you want to create the project.

​
 Sencha generate app <appname> <path of the project>

When the project needs to use Cordova, we have to initialize it, use
 the below command for the same after navigating to your project folder.

​
 Sencha cordova init “package name.”

Usually, the package name is the bundle identifier in iOS.

When you want to add plugins which we need to use in the app, download the plugins, and keep in a folder. Then navigate to Project->Cordova folder ->Plugins and then type the below command:

​
 Cordova plugin add <path where the plugin is there in the system>

To check all the list of plugins added to the device:

​
 Cordova plugin list

To build a specified platform, please follow the steps below.

	
Change the platform to be the desired platform in app.json – ios, android, wp8

	
Any config.xml changes required like adding icons can be done

	
Then run the command: Sencha app build native>log.txt

Once the build is succeeded, get into the path project->cordova->platforms->respective platform folder-> and check for the apk, .xcodeproject or .xap file.

Android: The .apk will be in Android->build->outputs->.apk. Install the apk file and check-in device directly.

iOS: .xcode project will be created. Double click on the project, it will open in Xcode.

In general, settings, check for bundle identifier, a device targeted for this app, and in build settings, set the code signing identities and provisioning profile and run the app in the device.

Windows:

	
.xap is placed inside the Bin folder. Connect the device to the desktop/laptop

	
Go to windows start and type “Application Deployment.”

	
The tool will be open, select the option to be device and browse to the location of the .xap file and click deploy

	
Once the deploy is mentioned as complete in tool. You can use the application.

Sencha Issues in Windows Build, and it’s Solution

	
Sencha Message Box goes beyond the device width and doesn’t wrap.

Sencha Message Box doesn’t take the parent width and height, so max-width and min-width property should be set in the message box element. See the example below.

createNewMessageBox: function(){

​
 ​
 var newMsgBox = new Ext.MessageBox();

​
 ​
 newMsgBox.defaultAllowedConfig.showAnimation = false;

​
 ​
 newMsgBox.defaultAllowedConfig.hideAnimation = false;

​
 ​
 newMsgBox.setHeight('auto');

​
 ​
 newMsgBox.setWidth('80%');

​
 ​
 newMsgBox.setMaxWidth('300');

​
 ​
 newMsgBox.setPadding('5%');

​
 ​
 return newMsgBox;

​
 },

​
 ​
 messageText = '<div style = "white-space:normal !important; word-break:break-word !important; min-width:320px; max-width:320px>'+”Sample message text”+'</div>';

​
 ​
 var showVCAlertMsg = this.createNewMessageBox();

​
 ​
 showVCAlertMsg.show({

​
 ​
 itemId:'showVCAlertId',

​
 ​
 message: messageText,

​
 ​
 scope:this,

​
 ​
 buttons: [

​
 ​
 {

​
 ​
 itemId: 'okVC',

​
 ​
 text: 'OK',

​
 ​
 ui:'plain',​

​
 ​
 width:'200px',

​
 ​
 height:'40px',

​
 ​

 margin:'2% 0 4% 2%',

​
 ​
 style:'background-image: none; background-color : #0067ac; color:#ffffff; border-radius: 0;font-size:18px;'

​
 ​
 }

​
 ​
],

​
 ​
 fn: function(response) {

​
 ​
 }

​
 ​
 });

​
 },

	
Title bar goes up and never comes down when the input field is focus.

In all places where the title bar is gone up, either in a blur of that input field or hide event of mask element, put window.scrollTo(0, 0)

For mask element:

component..on(hide, function() {

​
 window.scrollTo(0, 0)​

},component);

In Controller for input element:

​
 blur:’resetTitleBar’

resetTitleBar: function(){

​
 window.scrollTo(0, 0);

}

	
Sencha select field is not clickable on the right portion of the field.

The select field component is having some constrained width, so use the css for the select field to have the min-width:320px; max-width:320px;

	
Sencha select field pops up the keypad and dismisses before displaying the picker field.

Customize the select field, and in the initialize method, detect
 the touch start event and call the picker and blur the dom input. On the usual masktap, do not call the picker.

component.element.on('touchstart', function() {

​
 ​
 me.showCalendar();

​
 ​
 component.input.dom.blur();

}, component);

	
Sencha select field icon not appearing.

For windows alone in media queries, assign a background image, position, and no-repeat for this select field with respective icons.

	
Date formatting not working in windows and hangs the application

Check the format used for date formatting, only / is compatible with windows, manually format date easily.

	
Page going beyond the device width and height with scrolling enabled.

Set the page panel css min-width and Max-width to the desired pixels.

Push Notification Environment Pre-requisites in all Platforms

Cordova plugin for push notification can be used in sencha.

iOS:

	
For IOS, we will be using the APNS library.

	
We need .p12 and .cer file and the password which was used while exporting the file.

	
We need Device token which unique to a mobile number from mobile

Procedure to get these details:

In the app, when we register, we will get a device token, which needs to be sent to the server, which sends the payload to the APNS server, which in turn sends the push notification to the
 device.

In the member center, for the app, we can enable push notification and create the certificate signing request from keychain access from MAC and upload the same in the SSL certificate creation section for Push and get the .cer files for the sandbox and production environment.

Windows:

	
For Windows Phone, we will be using WNS service.

	
We need Channel URI which is unique to each mobile device from the mobile app

	
We need Package SID and Client secret

Procedure to get these details:

From plugin, you will get channel URI from the app.

In your app record in your windows DEV center, the App identity section gives you all the details below.

Package/Identity/Name​
 XXXXX

Package/Identity/Publisher​
 CN = YYYYYY

Package/Properties/PublisherDisplayName​
 HDFC Standard Life Insurance Company Limited

Package Family Name (PFN)​
 aaa.bbbbbbbbbb

Package SID​
 cccccccccccccccccccc

You can share this link to help customers find your app in the Store.

And in the App settings section under push notification, you will get the secret key.

Package SID:

ms-app://dsaddsf-sfsdfdsf-dsgfdsfdfgdg-dgdfhggfhfhgfh-fjhgjhgjgjhgj-gfjkjhjkhjkgjk-gjgkhjkkh-kgkjhjkljl.nm-vh-fhjgjhgjgj

Application identity:

<Identity Name="HDFCLife.HDFCGeoFencingApp" Publisher="CN=sadsfsfsfdsfdgffdgf-dgfdgfhgf-dgdgfhgfg-fdfgffhf" />

Client ID:

000adsfdgryr6577687654658769709870

Client secret:

Ohhgjgjgjghjghjgjgjgj/sffdgfgfhfhghjvjgjg

Android:

	
For Android, we will be using the GCM service.

	
We need sender Id, which is Project number and App ID which API Key from developer’s login.

	
We need a device ID, which is a Registration Id that is unique to each mobile from the mobile App.

Backbase Mobile SDK

It describes typical mobile application development using Backbase Mobile SDK and issues faced during development.

Overview of Backbase CXP Mobile SDK

CXP Mobile is a mobile application development platform (MADP) which is designed to help customers to produce and maintain their mobile applications. The CXP Mobile SDK is the term given to the product and components which are shipped together to form CXP Mobile.

The main CXP Mobile SDK features include:

	
The ability to help customers develop entirely new mobile applications from scratch.

	
The ability to enrich previously existing mobile applications.

	
Support for both iOS (7.x and higher) and Android (4.x and higher).

	
Support for rendering (Launchpad-based) widgets in a native container with the ability to navigate between widgets using native transitions.

	
Extending widgets with native capability using out-of-the-box and custom-built widget features.

	
App management, including Navigation, Page, Widget, and Content Management.

	
A dedicated backend (MBaaS) with JWT authentication
 support and additional mobile-specific services.

	
Development tools to develop and test widgets in a mobile environment more easily.

Implementing the Backbase CXP Mobile SDK solution produces a mobile application that uses a combination of native components and web items (such as widgets and containers). This increases the ability to reuse content and functionality across platforms. As Backbase CXP Mobile is built on top of the existing operating systems, mobile applications are using native user interface (UI) components to build navigation structures and transitions between functionality. As a result of this, the mobile application is responsive and aligns with the user interface guidelines for the used platform.

The CXP Mobile SDK is split into three parts. These are:

	

MBaaS
 — the backend mechanism is serving mobile optimized and mobile-specific data services.

	

Library
 — an iOS and Android-compatible framework that can be embedded in new and already existing mobile applications and offers developers a set of functions to, amongst other things, render widgets.

	

Templates
 — native mobile application projects that can be compiled into real mobile applications. It links the widgets, library, and native components together.

Solving Problems with App Development

	
The mobile app isn’t able to hit server using HTTPS for communication (SSL Pinning)

​
 Backbase SDK Version:
 1.2.0

Issue:
 The mobile application wasn’t able to hit the backend server, which was using the https protocol for communication. Status Code 404 was received as a response from the server while trying to use its services.

The server was using a self-signed certificate, which was added to the mobile application under the ‘assets/backbase’ path.

Resolution Action
 : Backbase SDK 1.2.0 doesn’t support SSL
 Pinning using Self-Signed Certificates. Higher SDK versions (>1.2) support SSL Pinning now.

	
Device Login Issue

Backbase SDK Version:
 1.3.2 +

Issue:
 The mobile application wasn’t able to log in while running the application on an Android or an iOS device. The login functionality was, however, working fine on emulators.

All the necessary service calls were returning success status code (200) as responses from the server for both device and emulator.

The one difference between the device and the emulator was the network connectivity. The Android devices were using WiFi for connectivity, but the emulators were using the system LAN internet for the same.

Flow of the requests on LAN and WiFi were:

Emulator:
 Mobile App -> via LAN Internet -> Application Server

Device:
 Mobile App -> via WiFi -> via Proxy Server -> Application Server

Model.json is retrieved from the application server for the first time when the app launches. This file provides page information for the pre-login widgets. Once the user logs in, model.json is fetched from the server for a second time, which contains the page information for the post-login widgets and replaces the first file.

The proxy server in the WiFi route was caching the first model.json that we retrieve from the application server. Due to this, when the second request for model.json was sent from our application, the proxy server provided the cached file instead of letting the request go to the application server.

Resolution Action:
 The proxy server was removed from the WiFi route by removing the application server URL from the firewall of the WiFi. Due to this, our application was able to communicate directly with the app server without any caching happening in between.

	
Backbase supports versions of iOS and Android

Backbase SDK Version:
 1.3.2 +

Issue:

 There are a few OS versions for Android and iOS for which Backbase doesn’t provide support yet or has withdrawn their support. Below is the list of those versions:

	
iOS - 7 (Support from Backbase will be withdrawn January’16 onwards)

	
iOS - 8

	
iOS - 9

	
Android 4.X

	
Android 5.X

	
Android 6.X (Backbase found some problems with SSL pinning in Android 6.0 with trusted certificates and thus are not providing any support for the same. Fixes and support will probably start from February’16 onwards)

Due to certain APIs not supported by Backbase Mobile SDK, issues are prone to come if we are building our mobile app for the unsupported versions. For example, at present, as no support is available for Android 6.0(Marshmallow), the mobile app being developed for the same API using Backbase Mobile SDK won’t execute.

Resolution Action:
 Backbase SDK 1.2.0 doesn’t support SSL Pinning using Self-Signed Certificates. Higher SDK versions (>1.2) support SSL Pinning now.

	
Single Page and Multi-Page Architecture for Portals

URL:
 N/A

Backbase SDK Version:
 1.3.2 +

Issue:
 Backbase CXP provides several containers which assist a developer in creating web portals. These containers allow developers to position the widgets as per their choice. For example, the Launcher Deck container follows a Panel-Widget format due to which Panels are created on the left-hand side, and their respective widgets are opened on the right-hand side. Please find below the screenshot explaining the same.

Such containers are, however, not supported by Backbase Mobile SDK at present. Due to this, the entire widget information that we require to create the mobile app is not present in the model.json file. Containers specific for mobile are still being envisaged/developed by Backbase.

Due to this, a Single-Page Architecture, where all widgets reside in a single page, inside a single container, differentiated only by permissions is not achievable with Backbase Mobile SDK.

Resolution Action:
 A Multi-Page architecture, having one page per widget, is achievable with Mobile SDK. We get all the widget information in our model.json file correctly. The individual pages appear in the Hamburger Menu (for Android) or the native iOS menu as individual components. Upon clicking one page, the respective widget would open up on the mobile screen.

	
App crash on Android platform

Issue:
 The Mobile application was crashing on various Android devices.

It was then established then in Android webview 48 and above, the application was crashing.

Resolution Action:
 In backbase SDK, there is a method that is used to subscribe to events in PubSubs. The method is called in the javascript realm every time a call is made to method gadget.pubsub.subscribe and it was triggering a memory issue in Webview version 48 and above.

This method was like this:

@org.xwalk.core.JavascriptInterface

@android.webkit.JavascriptInterface

public Map<String, PubSub> subscribe(String eventName) {

The method was returning a Map of the subscribed events. This map was not used in javascript at all.

Conclusion

So this was all about the advanced methods and strategies you can use to learn the best coding practices for various programming languages such as Java, ASP.NET, JavaScript, Swing, HTML, and Mobile App Development. By learning these methods and strategies, you will become a master of advanced coding, and your code will have the best performance in terms of speed, reliability, portability, and reusability.

We covered all the major aspects like best design practices, best coding practices, performance tuning of your code, Android studio app development, and Sencha Cordova App. I hope you liked the book and best of luck on your clean coding adventures.

OEBPS/Image00000.jpg
Coding for

BEGINNERS

ADVANCED METHODS AND
STRATEGIES TO LEARN THE
BEST CODING PRALCTICES

ALEXANDER CANE

OEBPS/Image00001.jpg
Coding for

BEGINNERS

ADVANCED METHODS AND
STRATEGIES TO LEARN THE
BEST CODING PRALCTICES

ALEXANDER CANE

