

C Programming
2nd Edition

by Dan Gookin

C Programming For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2021 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020945155

ISBN: 978-1-119-74024-7; 978-1-119-74025-4 (ebk); 978-1-119-74026-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents at a Glance
Introduction. . 1

Part 1: The ABs of C. . 7
CHAPTER 1:	 A Quick Start for the Impatient. . 9
CHAPTER 2:	 The Programming Thing. . 21
CHAPTER 3:	 Anatomy of C. . 29

Part 2: C Programming 101. . 43
CHAPTER 4:	 Trials and Errors. . 45
CHAPTER 5:	 Values and Simple Math . . 57
CHAPTER 6:	 A Place to Put Stuff. . 67
CHAPTER 7:	 Input and Output . . 83
CHAPTER 8:	 Decision Making. . 97
CHAPTER 9:	 Loops, Loops, Loops. . 115
CHAPTER 10:	Fun with Functions. . 133

Part 3: Build Upon What You Know. . 151
CHAPTER 11:	The Unavoidable Math Chapter. . 153
CHAPTER 12:	Give Me Arrays . . 173
CHAPTER 13:	Fun with Text. . 193
CHAPTER 14:	Structures, the Multivariable. . 211
CHAPTER 15:	Life at the Command Prompt. . 221
CHAPTER 16:	Variable Nonsense. . 233
CHAPTER 17:	Binary Mania. . 249

Part 4: The Advanced Part . . 267
CHAPTER 18:	Introduction to Pointers. 269
CHAPTER 19:	Deep into Pointer Land. . 285
CHAPTER 20:	Memory Chunks and Linked Lists . . 305
CHAPTER 21:	It’s About Time. . 329

Part 5: And the Rest of It . . 337
CHAPTER 22:	Permanent Storage Functions. . 339
CHAPTER 23:	File Management . . 359
CHAPTER 24:	Beyond Mere Mortal Projects. . 369
CHAPTER 25:	Out, Bugs!. . 381

C Programming

Part 6: The Part of Tens. . 393
CHAPTER 26:	Ten Common Boo-Boos. . 395
CHAPTER 27:	Ten Reminders and Suggestions. . 403

Part 7: Appendices. . 411
APPENDIX A:	ASCII Codes . . 413
APPENDIX B:	Keywords. . 419
APPENDIX C:	Operators. . 421
APPENDIX D:	Data Types. . 423
APPENDIX E:	Escape Sequences. 425
APPENDIX F:	Conversion Characters. . 427
APPENDIX G:	Order of Precedence . . 429

Index. . 431

Table of Contents v

Table of Contents
INTRODUCTION . . 1

Why the C Language?. . 1
The C Programming For Dummies Approach. . 2
How This Book Works. . 3
Icons Used in This Book. . 4
Parting Thoughts. . 5

PART 1: THE ABs OF C . . 7

CHAPTER 1:	 A Quick Start for the Impatient. . 9
What You Need to Program. . 9
Command Prompt Programming. . 10
IDE Programming . . 11

Installing Code::Blocks . . 12
Touring the Code::Blocks workspace. . 13

Your First Program . . 14
Coding at the command prompt. . 15
Building a new Code::Blocks project. . 16
Building and running . . 18

CHAPTER 2:	 The Programming Thing. . 21
The History of Programming. . 21

Reviewing early programming history. . 21
Introducing the C language. . 22

The Programming Process. . 23
Understanding programming. . 23
Writing source code . . 24
Compiling and linking. . 26
Running and testing . . 27

CHAPTER 3:	 Anatomy of C. . 29
Parts of the C Language. . 29

Keywords . . 30
Functions . . 31
Operators. . 33
Variables and values. . 33
Statements and structure . . 33
Comments . . 35

vi C Programming For Dummies

Behold the Typical C Program. . 37
Understanding C program structure . . 37
Setting the main() function. . 38
Returning something to the operating system. 39
Adding a function . . 40

PART 2: C PROGRAMMING 101 . . 43

CHAPTER 4:	 Trials and Errors . . 45
Display Stuff on the Screen . . 45

Displaying a humorous message . . 45
Introducing the puts() function . . 46
Adding more text. . 47
Commenting out a statement. . 49
Goofing up on purpose. .49

More Text Output Nonsense. . 51
Displaying text with printf(). .52
Introducing the printf() function . . 52
Understanding the newline. . 53
Employing escape sequences. . 54
Goofing up on purpose again . . 55

CHAPTER 5:	 Values and Simple Math. . 57
A Venue for Various Values. . 57

Understanding values. . 58
Displaying values with printf() . . 59
Minding the extra zeros. . 61

The Computer Does the Math. . 61
Doing simple arithmetic. . 61
Reviewing the float-integer thing . . 63
Pretending integers are floats. . 64

CHAPTER 6:	 A Place to Put Stuff. . 67
Values That Vary . . 67

Setting up a quick example. . 68
Introducing data types. . 69
Using variables. . 70

Variable Madness!. . 73
Using more-specific data types. . 73
Working with several variables. . 75
Assigning a value upon creation. . 77
Reusing variables. . 77

Constants Always the Same. . 79
Using the same value over and over . . 79
Constants in your code. . 80
Putting constants to use. . 81

Table of Contents vii

CHAPTER 7:	 Input and Output. . 83
Character I/O. . 83

Understanding input and output devices . . 83
Fetching characters with getchar(). . 84
Using the putchar() function. . 86
Working with character variables. . 87

Text I/O, but Mostly I. . 88
Storing strings . . 89
Introducing the scanf() function. . 90
Reading a string with scanf(). .91
Reading values with scanf() . . 93
Using fgets() for text input . . 94

CHAPTER 8:	 Decision Making . . 97
What If?. . 97

Making a simple comparison. . 97
Introducing the if keyword. . 99
Comparing values in various ways. . 100
Knowing the difference between = and == 102
Forgetting where to put the semicolon. . 103

Multiple Decisions. . 104
Making more-complex decisions . . 104
Adding a third option. . 105

Multiple Comparisons with Logic. . 106
Building a logical comparison. . 106
Adding some logical operators. . 107

The Old Switch Case Trick. . 108
Making a multiple-choice selection. . 108
Understanding the switch-case structure. . 110
Taking no breaks. . 111

The Weird ?: Decision Thing. . 112

CHAPTER 9:	 Loops, Loops, Loops. . 115
A Little Déjà Vu. . 115
The Thrill of for Loops. . 116

Doing something x number of times. . 116
Introducing the for loop. . 117
Counting with the for statement. . 119
Looping letters. . 120
Nesting for loops. . 121

The Joy of the while Loop. . 123
Structuring a while loop . . 123
Using the do while loop. . 125

viii C Programming For Dummies

Loopy Stuff. . 126
Looping endlessly . . 126
Looping endlessly but on purpose. . 127
Breaking out of a loop . . 128
Adding multiple for loop conditions. . 129
Screwing up a loop . . 130

CHAPTER 10:	Fun with Functions. . 133
Anatomy of a Function. . 133

Constructing a function . . 133
Prototyping (or not). . 136

Functions and Variables. . 139
Using variables in functions. . 139
Sending a value to a function . . 140
Sending multiple values to a function . . 142
Creating functions that return values. . 143
Returning early. .145

Constants of the Global Kind. . 147
Introducing defined constants . . 147
Putting defined constants to use . . 148

PART 3: BUILD UPON WHAT YOU KNOW. 151

CHAPTER 11:	The Unavoidable Math Chapter. . 153
Math Operators from Beyond Infinity . . 153

Incrementing and decrementing. . 154
Prefixing the ++ and -- operators . . 156
Discovering the remainder (modulus). . 158
Saving time with assignment operators. . 158

Math Function Mania . . 160
Exploring some common math functions. 161
Suffering through trigonometry . . 163

It’s Totally Random. . 166
Spewing random numbers. .166
Making the numbers more random. . 167

The Holy Order of Precedence . . 170
Getting the order correct. . 170
Forcing order with parentheses . . 171

CHAPTER 12:	Give Me Arrays. . 173
Behold the Array. . 173

Avoiding arrays . . 173
Understanding arrays. . 174
Initializing an array . . 177

Table of Contents ix

Playing with character arrays (strings). . 177
Working with empty char arrays. . 179
Sorting arrays. . 181

Multidimensional Arrays . . 183
Making a two-dimensional array. . 183
Going crazy with three-dimensional arrays. 186
Declaring an initialized multidimensional array. 188

Arrays and Functions . . 189
Passing an array to a function. . 189
Returning an array from a function . . 191

CHAPTER 13:	Fun with Text. . 193
Character Manipulation Functions. . 193

Introducing the CTYPEs. .193
Testing characters. . 195
Changing characters. . 197

String Functions Galore . . 198
Reviewing string functions. . 198
Comparing text . . 199
Building strings . . 200

Fun with printf() Formatting. . 202
Formatting floating point. . 202
Setting the output width. . 204
Aligning output. .206

Gently Down the Stream . . 207
Demonstrating stream input. . 207
Dealing with stream input. . 208

CHAPTER 14:	Structures, the Multivariable. 211
Hello, Structure. . 211

Introducing the multivariable . . 211
Understanding struct. . 213
Filling a structure. . 215
Making an array of structures. . 216

Weird Structure Concepts . . 218
Putting structures within structures. . 218
Passing a structure to a function . . 219

CHAPTER 15:	Life at the Command Prompt . . 221
Conjure a Terminal Window . . 221

Starting a terminal window. . 222
Running code in text mode. . 223

Arguments for the main() Function. . 225
Reading the command line . . 225
Understanding main()’s arguments. . 227

x C Programming For Dummies

Time to Bail. . 229
Quitting the program. . 229
Running another program. . 230

CHAPTER 16:	Variable Nonsense . . 233
Variable Control. . 233

Typecasting into disbelief. . 233
Creating new things with typedef. .235
Making static variables. . 238

Variables, Variables Everywhere. . 241
Using external variables. . 241
Creating an external structure variable. . 243
Enumerating. . 245

CHAPTER 17:	Binary Mania. . 249
Binary Basics . . 249

Understanding binary. . 249
Outputting binary values. . 251

Bit Manipulation . . 253
Using the bitwise | operator. . 253
Using bitwise & . . 256
Operating exclusively with XOR. . 257
Understanding the ~ and ! operators. . 259
Shifting binary values. . 259
Explaining the binbin() function . . 263

The Joy of Hex . . 264

PART 4: THE ADVANCED PART. . 267

CHAPTER 18:	Introduction to Pointers . . 269
The Biggest Problem with Pointers. . 269
Sizing Up Variable Storage. . 270

Understanding variable storage. . 270
Reading a variable’s size. . 271
Checking a variable’s location. . 275
Reviewing variable storage info. .278

The Hideously Complex Topic of Pointers. . 279
Introducing the pointer . . 279
Working with pointers. .282

CHAPTER 19:	Deep into Pointer Land. . 285
Pointers and Arrays. . 285

Getting the address of an array. .285
Working pointer math in an array. . 287
Substituting pointers for array notation . . 293

Table of Contents xi

Strings Are Pointer-Things. . 294
Using pointers to display a string. . 294
Using a pointer to declare a string. . 295
Building an array of pointers. . 296
Sorting strings . . 300

Pointers in Functions . . 302
Passing a pointer to a function. . 302
Returning a pointer from a function. . 303

CHAPTER 20:	Memory Chunks and Linked Lists. 305
Give Me Memory! . . 306

Introducing the malloc() function. . 306
Creating string storage. . 308
Using the calloc() function. . 309
Getting more memory . . 311
Freeing memory . . 313

Lists That Link . . 314
Allocating space for a structure. . 314
Creating a linked list. . 316
Editing a linked list. . 323
Saving a linked list. . 328

CHAPTER 21:	It’s About Time. . 329
What Time Is It?. . 329

Understanding the calendar . . 330
Working with time in C. . 330

Time to Program. . 331
Checking the clock. . 331
Viewing a timestamp. . 333
Slicing through the time string . . 334
Snoozing. . 336

PART 5: AND THE REST OF IT. . 337

CHAPTER 22:	Permanent Storage Functions . . 339
Sequential File Access. . 339

Understanding C file access. . 340
Writing text to a file. . 341
Reading text from a file . . 342
Appending text to a file . . 345
Writing binary data. . 346
Reading binary data . . 348

xii C Programming For Dummies

Random File Access. . 350
Writing a structure to a file . . 351
Reading and rewinding. . 353
Finding a specific record. . 355
Saving a linked list to a file. . 357

CHAPTER 23:	File Management. . 359
Directory Madness . . 359

Calling up a directory . . 359
Gathering more file info. . 361
Separating files from directories. . 363
Exploring the directory tree. . 364

Fun with Files. . 365
Renaming a file . . 365
Copying a file . . 367
Deleting a file. . 368

CHAPTER 24:	Beyond Mere Mortal Projects . . 369
The Multi-Module Monster . . 369

Linking two source code files. . 370
Sharing variables between modules. .372
Creating a custom header file. . 374

Other Libraries to Link. . 378

CHAPTER 25:	Out, Bugs!. . 381
Simple Tricks to Resolve Problems. . 381

Documenting the flow . . 382
Talking through your code. . 382
Writing comments for future-you. . 382

The Debugger. .383
Debugging setup. . 383
Working the debugger . . 385
Setting a breakpoint. . 387
Watching variables . . 388

Improved Error Messages . . 390

PART 6: THE PART OF TENS. . 393

CHAPTER 26:	Ten Common Boo-Boos. . 395
Conditional Foul-Ups. .395
== v. = . . 396
Dangerous Loop Semicolons. . 397
Commas in for Loops . . 398
Missing break in a switch Structure. . 398

Table of Contents xiii

Missing Parentheses and Curly Brackets. . 399
Don’t Ignore a Warning. . 399
Endless Loops . . 400
scanf() Blunders. . 401
Streaming Input Restrictions. . 402

CHAPTER 27:	Ten Reminders and Suggestions. . 403
Maintain Good Posture . . 404
Use Creative Names. . 404
Write a Function. . 405
Work on Your Code a Little Bit at a Time. . 405
Break Apart Larger Projects into Several Modules. 406
Know What a Pointer Is . . 406
Add Whitespace before Condensing . . 407
Know When if-else Becomes switch-case . . 407
Remember Assignment Operators. . 408
When You Get Stuck, Read Your Code Out Loud. 409

PART 7: APPENDICES. 411

APPENDIX A:	ASCII Codes . . 413

APPENDIX B:	Keywords. . 419

APPENDIX C:	Operators. . 421

APPENDIX D:	Data Types. . 423

APPENDIX E:	Escape Sequences . . 425

APPENDIX F:	Conversion Characters . . 427

APPENDIX G:	Order of Precedence. . 429

INDEX. . 431

Introduction 1

Introduction

When I was in school, I’d open a new math textbook and look in the back,
marveling at the problems. Someday, I thought, I would understand all
this nonsense.

You should do that with this book right now: Open it up to one of the final chapters.
Look over the C programming code and think to yourself, “Someday soon, this
will all make perfect sense to me.”

Say “Hello, world” to C Programming For Dummies, 2nd Edition, the book that sets
you on the path to become a computer programmer. Once despised vermin,
banished to basement server rooms and suffering from a lack of personal hygiene,
programmers are now valued and contributing members of society. Some are
billionaires. And they all started their careers by learning to program.

The C language lets you master a number of electronic gizmos. You can craft your
own programs, dictating your every whim and desire to computers, tablets, and
cell phones. The electronics dutifully obey. Given the information offered in this
book, you can pass that programming class, impress your friends, be admired by
Hollywood, or even start your own software company. Truly, learning to program
is a worthy investment of your time.

This book helps make learning how to program understandable and enjoyable.
You don’t need any programming experience — you don’t even need to buy new
software. You just need the desire to program in C and the ability to have fun while
doing so.

Why the C Language?
An argument surfaces every few years that learning C is a road to nowhere. Newer,
better programming languages exist, and it’s far better to learn them than to
waste time learning C.

Poppycock.

2 C Programming For Dummies

C continues to dominate the charts for best and most useful programming
languages, often beating out the newer languages the cool programmers use.
Further, C is like the Latin of computer languages: Just about every Johnny-
come-lately programming language uses C syntax. C keywords and even certain
functions find their way into other popular languages, from C++ to Java to Python
to whatever the latest, trendy language might be.

My point is that once you learn C programming, all those other programming
languages come easy. In fact, many of the books that teach those other languages
often assume that you know a little C before you start out. This assumption is
frustrating for a beginner — but not when you already know C.

So ignore the lofty pundits and know-it-all poohbahs. C is still relevant.
Programming for microcontrollers, operating systems, and major software pack-
ages is still done using good ol’ C. You are not wasting your time.

The C Programming For Dummies
Approach

As a programmer, I’ve toiled through many programming books. I know what I
really don’t like to see, and, lamentably, I see it often — that is, where the author
writes pages-long code or boasts about what he knows, impressing his fellow
nerds and not really teaching anything. Too much of this type of training exists,
which is probably why you’ve picked up this book.

My approach here is simple: Short programs. To-the-point demonstrations. Lots
of examples. Plenty of exercises.

The best way to learn something is by doing it. Each concept presented in this
book is coupled with sample code. The listings are short enough that you can
quickly type them in — and I recommend that you do so. You can then build and
run the code to see how things work. This immediate feedback is not only gratify-
ing, it’s also a marvelous learning tool.

Sample programs are followed by exercises you can try on your own, testing your
skills and expanding your knowledge. Suggested answers to the exercises and all
the source code can be found on this book’s companion website:

https://c-for-dummies.com/cprog

Introduction 3

How This Book Works
This book teaches the C programming language. It starts out by assuming that you
know little to nothing about programming, and it finishes by covering some of the
more advanced C operations.

To program in C, you need a computer. This book makes no assumptions about the
computer you select: It can be a Windows PC, a Macintosh, or a Linux system. You
can choose to use an integrated development environment (IDE) such as
Code::Blocks, or you can compile and run the sample programs at a command
prompt.

This book also wastes no time, getting you started immediately in Chapter 1.
Nothing is introduced without a full explanation first. Due to the nature of
programming, I’ve made a few exceptions; they’re carefully noted in the text.
Otherwise, the book flows from front to back, which is how best to read this book.

C language keywords and functions are shown in italic text, as in printf() and
break. Some keywords, such as for and if, may make the sentence read in a goofy
way, which is why those words are shown in italic.

Filenames and variable names are shown in monofont type, such as program.exe
and loop.

If you need to type something, that text is shown in bold. For example, “Type the
blorfus command” means that you should type blorfus at the keyboard. You’re
directed when to press the Enter key, if at all.

When working numbered steps, text to type appears in regular (roman) type:

3.	 Type exit and press the Enter key.

You type the word exit and then press the Enter key.

Program samples are shown as snippets on the page, similar to this one:

if(i == 1)
 printf("eye won");

You don’t need to type an example unless you’re directed to do so.

4 C Programming For Dummies

Full program listings are shown and numbered in each chapter; for example:

LISTING 1-1:	 The Code::Blocks Skeleton

#include <stdio.h>
#include <stdlib.h>

int main()
{
 printf("Hello world!\n");
 return(0);
}

Because of this book’s margins, text in a listing may occasionally wrap, extending
from one line to the next. You do not need to split up your code in a similar man-
ner, and I remind you whenever such a thing occurs.

The listings in this book don’t contain line numbers, but your text editor might.
This book references the sample code listings by using the line numbers, which
you can also use in your editor to examine the code.

Exercises are numbered by chapter and then sequentially. So the third exercise in
Chapter 13 is Exercise 13-3. You’re directed in the text to work an exercise. Here’s
an example:

Exercise 1-1: Type the source code from Listing 1-1 into your editor. Save it under
the filename ex0101.c. Build and run.

Answers for all exercises can be found on the web:

https://c-for-dummies.com/cprog

Go to this web page if you want to copy-and-paste the source code as well.

Icons Used in This Book
This icon flags information worthy enough to remember. Though I recommend
remembering as much as you can, these icons flag the stuff you just can’t forget.

Introduction 5

A tip is a suggestion, a special trick, or something super fancy to help you out.

This icon marks something you need to avoid. It’s advice that could also be flagged
with a Tip or Remember icon but has dire consequences if ignored.

Face it: All of programming is technical. I reserve the use of this icon for extra-
technical tidbits, asides, and anecdotes. Call it “nerd stuff.”

Parting Thoughts
I enjoy programming. It’s a hobby, and I find it incredibly relaxing, frustrating,
and rewarding. I assume that you share these feelings, though you may also be a
struggling student or someone who wants a career. Regardless, enjoy program-
ming. If you can imagine the program you want to write on a screen, you can make
it happen. It may not happen as fast as you like, but it can happen.

Please work the exercises in this book. Try some on your own, variations on a
theme. Continue working at problems until you solve them. The amazing thing
about programming is that no single, absolutely correct way to do something
exists. Anytime you try, you’re learning.

If possible, find a programming friend who can help you. Don’t make them do the
work or explain how things run, but rely on them as a resource. Programming can
be a solo thing, but it’s good to occasionally commiserate with others who also
program in C — or in any language.

This book has a few companion websites. The primary one is found here:

https://c-for-dummies.com/cprog

You can also check out my C programming blog, which is updated every Saturday
with new lessons and offers a monthly Exercise challenge:

https://c-for-dummies.com/blog

The publisher also features a companion website, which I’m obliged to mention
here, though it’s not updated as frequently as my own site. Visit www.dummies.com
and type C programming into the search box to find this book’s support page and
other goodies.

6 C Programming For Dummies

For more help, or just to say hi, you can send me email at

dan@c-for-dummies.com

I’m happy to hear from you, though I won’t write code for you. I also cannot
explain university assignments. (I don’t do B-trees. No one does.) And if you have
any questions specific to this book — especially any errors or typos — feel free to
pass them along.

Enjoy your C programming!

1The ABs of C

IN THIS PART . . .

Get started with C coding

Work through your very first program

Learn how programming works

Discover the parts of the C language

Craft a basic C skeleton

CHAPTER 1 A Quick Start for the Impatient 9

Chapter 1
A Quick Start for
the Impatient

Y
ou’re most likely eager to get started programming in C. I shan’t waste
your time.

If you already have a compiler or an IDE set up and are ready to go, skip to
Chapter 2.

What You Need to Program
The two most important things you need to begin your programming adven-
ture are

»» A computer

»» Access to the Internet

IN THIS CHAPTER

»» Reviewing software requirements

»» Programming at the command
prompt

»» Using an IDE

»» Creating a command prompt
program

»» Working in Code::Blocks

»» Compiling a program

10 PART 1 The ABs of C

The computer is your primary tool for writing and compiling code. Yes, even if
you’re writing a game for the Xbox, you need a computer to be able to code. The
computer can be a PC or a Macintosh. The PC can run Windows or Linux.

Internet access is necessary to obtain the programming software. You need a text
editor to write the code and a compiler to translate the code into a program. The
compiler generally comes with other tools you need, such as a linker and a debug-
ger. All these tools are found at no cost on the Internet.

The software tools offer two approaches to programming: command line and IDE.

If you want to learn C programming as I did back in the dark ages, you use a ter-
minal window and traditional command-line tools: editor, compiler, and linker.
The process is fast, but complicated because you’re using text mode commands.
Still, it offers a spiritual connection with those who built the foundations upon
which the computer industry roosts.

The most common way to craft code, however, is to obtain an integrated develop-
ment environment — called an IDE by the cool kids. It combines all the tools you
need for programming into one compact, terrifying, and intimidating unit.

Don’t freak! The terms compiler, linker, debugger, and terrifying are all defined in
Chapter 2.

Command Prompt Programming
To re-create the environment where the C language was born, use a Unix or Linux
terminal window running a shell program such as bash. This environment is
available to all major computing platforms, and the programming tools used are
reliable and well-documented. Programming at the command prompt earns you a
nerd merit badge and the admiration of your peers.

For Windows 10, open the Microsoft Store app and install Ubuntu, a free Linux
shell. Ensure that you follow the directions to install the Windows Subsystem for
Linux, which is an extra step you’ll probably miss.

For Linux, you’re ready to go: Open a terminal window to access the shell.

CHAPTER 1 A Quick Start for the Impatient 11

For Mac OS X, use the Terminal app. I also recommend obtaining the Homebrew
package manager. Visit https://brew.sh for directions. Homebrew allows you to
install programming tools not available to OS X.

For an editor, you can use any text mode editor available at the command prompt,
such as vi or emacs. You can also “mix it up” and use a window-based editor. I’m
fond of using the Windows version of the VIM editor while I simultaneously work
at the command prompt in an Ubuntu terminal window.

A C compiler comes native to a Unix/Linux command prompt. The standard ver-
sion is cc or gcc, but I recommend that you use the shell’s package manager to
acquire the LLVM clang compiler. In Ubuntu Linux for Windows 10, type this com-
mand to install clang:

sudo apt-get install clang

Type your account password to initiate the process. To verify the installation, type

clang --version

Various Linux distros offer similar package managers, which you can use to obtain
an editor and the clang compiler.

»» The VIM editor can be obtained from vim.org.

»» Your choice to use the command prompt means you’re taking on an extra
layer of complexity when it comes to programming. I find it fast and enjoya-
ble, but if you believe it to be too much, especially when first learning the C
language, rely instead upon an IDE, as covered in the next section.

IDE Programming
Plenty of programming IDEs are available for your C coding pleasure. On the Mac,
use Xcode, which you can install from the App Store. For Windows and Linux,
I recommend obtaining the Code::Blocks IDE, which is found at codeblocks.org.
You can choose any other IDE you prefer, but Code::Blocks for Windows is fairly
stable and comes with everything you need — providing that you install the cor-
rect version.

12 PART 1 The ABs of C

Installing Code::Blocks
The Code::Blocks website will doubtless be altered over time, so follow these
general steps to install the IDE and confirm that the C compiler is accessible:

1.	 On the main Code::Blocks website page, click the Downloads link.

2.	 Click the binary release link.

The “binary release” means you’re installing a runnable program, not source
code or something equally strange.

3.	 Choose the proper installation program for your computer’s operating
system.

For Windows 10, I recommend that you choose the installation with the text
mingw-setup appended. For example:

codeblocks-20.03mingw-setup.exe

The 20.03 part of the filename is the release number, which will change in the
future. The mingw-setup choice means you’re downloading both the IDE and
the MinGW compiler.

For Linux, click the link to install the proper version for your distro, but keep in
mind that Code::Blocks might be more easily acquired by using the Linux GUI
package/software manager.

4.	 Open the downloaded archive to extract the Code::Blocks IDE installer.

In Windows, you see a User Account Control warning when you open the
archive. Click Yes to proceed with installation.

5.	 Run the installation program.

Perform a default installation; you need not customize anything.

6.	 Choose to run Code:Blocks: Click the Yes button.

Code::Blocks appears, showing its splash screen. Don’t start coding now.
Instead, confirm the compiler’s installation:

7.	 Choose Settings, Compiler.

The Compiler Settings dialog box appears.

8.	 With Global Compiler Settings chosen on the left, click the Toolchain
Executables tab on the right side of the dialog box.

9.	 Ensure that the Compiler’s Installation Directory text box is filled.

In a default confirmation, the following pathname is listed:

C:\Program Files (x86)\CodeBlocks\MinGW

CHAPTER 1 A Quick Start for the Impatient 13

If the text box is blank, use the Browse button (three dots to the right of the
text box) to locate the MinGW installation directory.

10.	Confirm that gcc.exe is set in the Compiler text box.

If not, click the Browse button (three dots) to locate the gcc.exe program,
installed in the MinGW\bin directory by default.

11.	Close the Compiler Settings dialog box; click OK.

Installation is complete. I recommend you close the Code::Blocks window. Finish
the installation program as well.

Touring the Code::Blocks workspace
Figure 1-1 illustrates the Code::Blocks workspace, which is the official name of the
massive mosaic of windows and toolbars you see arranged on the screen.

FIGURE 1-1:
The Code::Blocks

workspace.

14 PART 1 The ABs of C

On your computer, as well as in Figure 1-1, locate the following parts of the
workspace:

Toolbars: These messy strips, adorned with various command buttons, cling to
the top of the Code::Blocks window. The toolbars can be rearranged or hidden, so
don’t mess with them until you get comfy with the interface.

Management: The pane on the left side of the workspace features four tabs,
though you may not see all four at one time. The window provides a handy over-
sight of your programming endeavors.

Status bar: At the bottom of the screen, you see information about the project,
editor, and other activities that take place in Code::Blocks.

Editor: The big window in the center-right area of the screen is where you type
code.

Logs: The bottom of the screen features a window with many, many tabs display-
ing various tidbits about the programming process. The tab used most often is
named Build Log.

The View menu controls the visibility of every item displayed in the window.
Choose the pane name, such as Manager, from the View menu to show or hide that
item. Control toolbars by using the View, Toolbars submenu.

»» Maximize the Code::Blocks program window so that it fills the screen. You
need all that real estate.

»» In addition to color-coding your text, the Code::Blocks editor offers an
autocomplete feature. Items that must be typed in pairs, such as quotes,
parentheses, and so on, are generated automatically for you. Certain C
language keywords and functions are presented automatically, along with
hints for their arguments and options.

»» The editor features a tabbed interface, which lets you work on multiple source
code files at one time.

Your First Program
The traditional first program written for any programming language is called
Hello World. It’s boring, like all traditions.

CHAPTER 1 A Quick Start for the Impatient 15

Listing 1-1 shows the Hello World source code as presented in Code::Blocks. This
code is generated by default whenever you start a new Code::Blocks project.

LISTING 1-1:	 The Code::Blocks Skeleton

#include <stdio.h>
#include <stdlib.h>

int main()
{
 printf("Hello world!\n");
 return 0;
}

The programming process works the same whether you use the command prompt
or an IDE:

1.	 Use an editor to write the source code.

2.	 Compile and link the source code into a program.

3.	 Run the program to see whether it works.

Chapter 2 goes over these steps in detail, but I assume you’re in a rush. The fol-
lowing sections cover the specifics for the command prompt and IDE
environments.

Coding at the command prompt
Use your text editor to create a new file and type in the text presented in Listing 1-1.
This code, like all source code in this book, is available on the companion website:
https://c-for-dummies.com/cprog.

Save the source code file as ex0101.c. The filename must end in .c (“dot C”) to be
recognized as a C source code file by the compiler.

Compile and link, or “build,” the source code into a program file in a Unix termi-
nal window, such as the Ubuntu bash shell in Windows 10. Type the following
command in the same folder/directory where the source code file is saved:

clang -Wall ex0101.c

16 PART 1 The ABs of C

The name of the compiler program is clang. The -Wall argument activates all
warning messages. The final argument is the name of the source code file,
ex0101.c, in this example.

Upon success, you see no output. If you see warnings or error messages, you prob-
ably mistyped the source code. Try again: re-edit and compile.

To run the program, type the default program filename a.out. In a terminal
window, the program name must be prefixed by ./ (“dot slash”) to direct the
command interpreter to look in the current directory:

./a.out

You see the message Hello, world! output in the terminal window. Now skim to
Chapter 2 to discover what just happened.

Building a new Code::Blocks project
Two approaches can be used in Code::Blocks to build the sample code shown in
this book: You can build a project for each exercise or you can use an empty file to
write the code.

Create a project
For a project, follow these steps:

1.	 Choose File, New, Project.

2.	 Choose Console Application and then click the Go button.

3.	 Select C as the programming language and then click the Next button.

C is quite different from C++ — you can do things in one language that aren’t
allowed in the other.

4.	 Type a project title.

The code exercises in this book follow a naming pattern you can use for the
project title: ex followed by a 2-digit chapter number and 2-digit sequential
number. For the sample code presented in Listing 1-1, the project title is ex0101.

When you set the project title, the project’s filename is automatically filled in.

5.	 Click the . . . (Browse) button to the right of the text box titled Folder to
Create Project In.

I recommend that you create and use a special folder for all projects in this
book. Once the location is set, you can skip this step in the future.

CHAPTER 1 A Quick Start for the Impatient 17

6.	 Click the Next button.

The next screen (the final one) allows you to select a compiler and choose
whether to create Debug or Release versions of your code, or both.

The compiler selection is fine; the GNU GCC Compiler (or whatever is shown in
the window) is the one you want.

7.	 Remove the check mark by Create Debug Configuration.

You create this configuration only when you need to debug, or fix, a program-
ming predicament that puzzles you. See Chapter 25.

8.	 Click the Finish button.

Code::Blocks builds a skeleton of your project, which is the same code shown in
Listing 1-1. Skim to the later section “Building and running.”

Create an empty file
A less complicated method for working with this book’s exercises is to type the
source code into an empty project file. Obey these steps in the Code::Blocks IDE:

1.	 Choose File, New, Empty File.

2.	 Type the source code into the editor.

You can also copy-and-paste the source code from the companion website into
the editor. Refer to the introduction for details on the companion website.

If you’d prefer to see the editor color-code your text, save the file! Press Ctrl+S
and choose the folder where you plan to keep all this book’s programming
projects. Name the file according to this book’s convention: ex followed by a
2-digit chapter number and 2-digit project number. End the filename in .c (“dot
C”) to identify it as a C source code file.

3.	 Save the source code file.

If the file is already saved, press Ctrl+S. Otherwise, follow the naming conven-
tion listed under Step 2.

After the empty file is created, you can build and run the program just as you
would had you run through the bothersome technique of starting a Code::Blocks
project.

You can also open the source code file directly in Code::Blocks, if you’ve obtained
it from the companion website: Use the Open command to open the file. At this
point, you can build and run, modify the code, or do whatever your heart pleases.

18 PART 1 The ABs of C

Building and running
In Code::Blocks, the process of compiling and linking C language source code is
accomplished in one step called Build.

To build the project, click the Build button on the toolbar, as shown in the margin
and illustrated in Figure 1-1. Any compiler warnings or errors appear on the Build
Log tab at the bottom of the window. For Listing 1-1, no warnings or errors should
be generated, providing the code is input exactly.

To test-run the program, click the Run button, shown in the margin and illus-
trated in Figure 1-1. Output appears in a terminal window, as shown in
Figure 1-2.

Press the Enter key to close the output window. In Linux, you must type the exit
command to close the window.

Both build and run steps are combined when you click the Build and Run button,
shown in the margin.

When you’re done with a project, or even after you’ve changed a minor thing, save
it. Save the source code file, but also save the project if one was created: Choose
File, Save Everything to save both the source code and project files.

»» Commands for building and running the code are also found on the
Build menu.

»» The keyboard shortcuts for Build, Run, and Build and Run are Ctrl+F9,
Ctrl+F10, and F9, respectively. No need to memorize those shortcuts; they’re
listed on the menu.

FIGURE 1-2:
Program output.

CHAPTER 1 A Quick Start for the Impatient 19

»» The program output appears in the top part of the command prompt window
(refer to Figure 1-2). The last two lines are generated by the IDE when the pro-
gram is run. The text shows a value returned from the program to the operating
system, a zero, and how long the program took to run (0.005 seconds).

C LIBRARY DOCUMENTATION
You can view documentation for the various C library functions in two ways.

First, in a terminal window, use the man program to look up function definitions. For
example, type man printf to read about the printf() function. This documentation is
referred to as the “man pages,” where “man” is short for manual.

The man program also documents shell commands. Occasionally, a shell command
shares the name of a C language function, such as stat. To ensure that you’re viewing
the proper man page, use the page argument to specify either page 2 or page 3, where
most of the C language functions are found. For example:

man stat — view the man page on the stat shell command.

man 2 stat — view the man page for the C language stat() function.

If you’re not using a Unix-like shell to program, man page documentation is found on
the Internet. I recommend these pages:

http://man7.org/linux/man-pages/dir_section_2.html

http://man7.org/linux/man-pages/dir_section_3.html

CHAPTER 2 The Programming Thing 21

Chapter 2
The Programming Thing

It’s called programming, though the cool kids know it as coding — the process
whereby a human being writes information resembling cryptic English that is
then somehow translated into directions for an electronic gizmo. In the end,

this silent and solitary art grants individuals the power to control electronics. It’s
a big deal. It’s the programming thing.

The History of Programming
Few books written about programming get away with not describing the thrill-a-
minute drama of programming history. As a programmer myself, it’s difficult not
to write about it, let alone contain my enthusiasm at cocktail parties. So consider
this section optional reading, though a review of where programming has been
and where it is today may help you better understand the art form.

In a nutshell, programming is the process of telling a gizmo what to do. That gizmo
is hardware; the program is software.

Reviewing early programming history
The first known machine to be programmed was Charles Babbage’s analytical
engine, back in 1822. The programming took place by physically changing the

IN THIS CHAPTER

»» Understanding programming history

»» Reviewing the programming
processes

»» Creating source code

»» Building a program

»» Testing the final program

22 PART 1 The ABs of C

values represented by a column of gears. The engine computed the result of some
dull, complex mathematical equation.

In the 1940s, early electronic computers were programmed in a similar manner to
Babbage’s analytical engine. A major difference was that, rather than rearrange
physical gears, instructions were hard-wired directly into electric circuitry. “Pro-
gramming” pretty much meant “rewiring.”

Over time, the rewiring job was replaced by rows of switches. Computer instruc-
tions were input by throwing switches in a certain way.

Professor John von Neumann pioneered the modern method of computer pro-
gramming in the 1950s. He introduced decision making into the process, where
computers could make if-then choices. Professor von Neumann also developed
the concept of the repeating loop and the subroutine.

It was Admiral Grace Hopper who developed the compiler, or a program that cre-
ates other programs. Her compiler would take words and phrases in English and
translate them into computer code. Thus, the programming language was born.

The first significant programming language was FORTRAN, born in the 1950s. Its
name came from formula translator. Other programming languages of the period
were COBOL, Algol, Pascal, and BASIC.

Regardless of the form, whether it’s rewiring circuits, flipping switches, or writ-
ing a programming language, the result is the same: telling hardware to do
something.

Introducing the C language
The C language was developed in 1972 at AT&T Bell Labs by Dennis Ritchie. It
combined features from the B and BCPL programming languages but also mixed
in a bit of the Pascal language. Mr. Ritchie, along with Brian Kernighan, used C to
create the Unix operating system. A C compiler has been part of that operating
system ever since.

In the early 1980s, Bjarne Stoustroup used C as the basis of the object-oriented
C++ programming language. The ++ (plus-plus) part of the name is kind of an in-
joke, which you’ll understand better after reading Chapter 11. Mr. Stoustroup
intended C++ to be the successor to C. In many ways it is, yet C remains one of the
most popular programming languages.

CHAPTER 2 The Programming Thing 23

»» The B programming language, upon which C is based, was named after the B
in Bell Labs.

»» BCPL stands for Basic Combined Programming Language.

»» The C++ programming language is quite similar to C, but it’s not merely an
extension or an add-on. It’s easier to learn C++ when you know C, but it’s not
easy to switch between the languages.

»» A D programming language exists. Developed in the early 2000s, it’s not as
popular today as other current languages, such as Python and Java.

»» Unfortunately, I have no idea how to pronounce “Bjarne Stoustroup.”

The Programming Process
No matter which language you use, certain procedures are common to the pro-
gramming process. In this manner, learning to program is like learning to cook:
You must take things in a certain order, whether the result is crème brûlée or a
smoldering pile of egg glop.

Understanding programming
The goal of programming is to create a program. The language is C, and the tools
are the editor, compiler, and linker — or an IDE, which combines everything. The
result is a program that directs the hardware to do something. That hardware can
be a computer, tablet, phone, microcontroller, or whatever.

Step-by-step, the programming process works like this:

1.	 Write the source code.

2.	 Compile and link, or build, the source code into a program.

3.	 Run and test the program.

A human (you) writes source code. The source code is built into a program in two
steps: compiling it into object code and then linking the object code with C librar-
ies to build the program. Finally, that program is run.

24 PART 1 The ABs of C

The reality goes more like this:

1.	 Write the source code.

2.	 Compile the source code into object code.

3.	 Fix warnings and repeat Steps 1 and 2.

4.	 Link the object code with libraries to build the program.

5.	 Fix errors and repeat Steps 1 through 4.

6.	 Run and test the program.

7.	 Fix bugs by repeating the entire process.

Or, more frequently, the program runs fine but you want to add a feature or
refine an element. Then you repeat everything.

Hopefully, Steps 3, 5, and 7 don’t happen often. Still, you do a lot of fixing in the
programming cycle.

The good news is that the compiler dutifully reports the errors and even shows
you where they are. That’s better than tracking down a bug in miles of wires back
in the old ENIAC days.

»» Despite having “build” as a single step, the compiler still creates object code,
and a linker links the object code into a program. If you goof up royally, linking
doesn’t even happen and you must fix the compiler warnings before taking
the next step.

»» One of my professional programmer friends said that the art form should be
called debugging, not programming.

»» Legend has it that the first computer bug was a moth that Grace Hopper
found in the wiring of an early computer. There’s some doubt about this
legend, considering that the word bug has been used since Shakespeare’s
time to describe something quirky or odd.

Writing source code
Source code represents the part of the process that contains the programming lan-
guage itself. You use a text editor to write a source code file.

In this book, source code is shown in program listings, such as the example in
Listing 2-1.

CHAPTER 2 The Programming Thing 25

LISTING 2-1:	 Standard “Hello World” Program

#include <stdio.h>

int main()
{
 puts("Greetings, human.");
 return 0;
}

Line numbers are not shown in this book’s listings. They aren’t part of the code,
and showing them here can be confusing. The text editor may display line num-
bers for reference purposes.

In this book, you’re directed to type the source code from a listing as part of an
exercise. For example:

Exercise 2-1: Start a new project in Code::Blocks named ex0201. Or use your text
editor to create the source code file ex0201.c for compiling and linking at the
command prompt.

Do it: Obey Exercise 2-1, either in Code::Blocks, at the command prompt in a ter-
minal window, or in another C language IDE, such as Xcode on the Mac.

1.	 Write the source code in the editor, copying it from Listing 2-1.

Alternatively, you can copy-and-paste the code from the companion website or
use the listing’s source code file, downloaded from the website. Refer to this
book’s introduction for details.

If you’re creating a Code::Blocks project, erase the skeleton that’s provided and
replace it with the code shown in Listing 2-1.

2.	 Save the source code file.

There. You’ve just completed the first step in the programming process — writing
source code. The next section continues your journey with the compiler.

»» All C source code files end with the .c (“dot-see”) filename extension.

»» In Windows, I recommend that you set the folder display options so that
filename extensions appear.

»» C++ source code files have the extension .cpp (“dot-see-pee-pee”). I shall
refrain from writing a puerile joke here.

26 PART 1 The ABs of C

»» Source code files follow the same naming conventions as any file on a
computer. Traditionally, a small program has the same name (but not
extension) as the final program. If your program is named puzzle, the source
code is most likely named puzzle.c.

Compiling and linking
Traditionally, the compiler reads text from a source code file and translates that
text — a programming language — into something called object code. The linker
then creates the final program. It links the object code file with C language librar-
ies to create a program. All this happens exactly as written — unless a warning or
an error crops up along the way.

You can compile and link separately in an IDE or at the command prompt. Fortu-
nately, modern compilers combine both steps in a process called build.

To build the project from Listing 2-1 in Code::Blocks, click the Build toolbar but-
ton (shown in the margin) or choose Build ➪ Build from the menu. Any errors
present themselves on the Build Log tab as well as on the Build Messages tab.

To build the program at the command prompt, type this line in the same directory
(folder) as the source code file (ex0201.c):

clang -c -Wall ex0201.c

First comes the compiler name, clang, followed by the -Wall switch to report all
warnings. The final argument is the source code filename. Upon success, you see
no feedback; otherwise, warnings and error messages spill on the screen like fruit
from an upturned apple cart.

(Running the program file is covered in the next section.)

»» The object code file has the same name as the source code file, but ends in .o
(“dot-o,” “little o”). If the source code file is named ex0201.c the object code
file is named ex0201.o. The modern build process deletes this file unless you
specifically direct the compiler to generate and retain the object code file.

»» As the compiler translates your C code into object code, it checks for common
mistakes, missing items, and other issues. If anything is awry, the compiler
displays a list of warnings. To fix them, you re-edit the source code and
attempt to compile once again.

»» The linker brings in the C language library, which is how the final program is
built. The libraries contain the actual instructions that tell the computer (or

CHAPTER 2 The Programming Thing 27

whatever device) what to do. Those instructions are executed based on the
shorthand directions found in the object code.

»» Any mistakes found by the linker are called errors. When errors occur, a
program isn’t created; errors are fatal.

»» Some C programs link in several libraries, depending on what the program
does. In addition to the standard C library, you can link libraries for working
with graphics, networking, sound, and so on. As you learn more about
programming, you’ll discover how to choose and link in various libraries.
Chapter 24 offers the details.

Running and testing
The next thing to do after building is to run the result. Running is necessary, pri-
marily to demonstrate that the program does what you intend and in the manner
you desire.

When the program doesn’t work, you must go back and fix the source code and try
again. Yes, it’s entirely possible to build a program and see no warnings or errors
and then find that the thing doesn’t work. It happens all the time.

Continue with Exercise 2-1: Run the program.

In Code::Blocks, choose Build ➪   Run or click the Run toolbar button, shown in the
margin.

At the command prompt, type the program name prefixed by the current directory:

./a.out

PREPROCESSOR DIRECTIVES
Beyond source code, a C compiler also deals with special instructions called preproces-
sor directives. For example, Listing 2-1 shows the following preprocessor directive:

#include <stdio.h>

The include directive instructs the compiler to locate the header file stdio.h. The con-
tents of this file are inserted into the source code at compile time. Together, both files
are converted into object code.

28 PART 1 The ABs of C

The name a.out is the default C program filename. You can reset this name by
specifying the -o (“little o”) switch followed by the desired output filename when
building. For example:

clang -Wall ex0201.c -o ex0201

The preceding command uses the source code in ex0201.c to build a program
named ex0201. It must be run at the command prompt in the same manner as
a.out:

./ex0201

The program runs, outputting text, which appears on the next line after you type
the program name:

Greetings, human.

In Code::Blocks, output appears in a terminal window. Press the Enter key to close
the window. For Code::Blocks in Linux, type the exit command to close the output
terminal window.

A program like ex0201 doesn’t require much testing to ensure that it works. As
your programming skills mature, testing, rewriting, compiling, and debugging
become a standard part of the process. Don’t be discouraged; this is how all pro-
grammers learn the craft.

»» The mechanics of running a program are carried out by the device’s operating
system: The operating system loads the program into memory, where the
processor or CPU executes the code. This is a loose description of how a
program works.

»» In Windows, the program name ends with the exe (for executable) extension,
as in ex0201.exe. In Mac OS X, Linux, and Unix, the program name has no
extension: ex0201. Further, in those operating systems, the file’s permissions
are set for the file to run as an executable.

CHAPTER 3 Anatomy of C 29

Chapter 3
Anatomy of C

All programming languages consist of instructions that tell a computer or
another electronic device what to do. Though basic programming concepts
remain the same, each language is different, created to fulfill a specific

need or to frustrate a new crop of college freshmen. The C language meets both of
those qualifications, being flexible and intimidating. To begin a relationship with
C in a friendly, positive way, get to know the language and how it works.

You’ll probably want to reread this chapter after you venture deep into Part 2 of
this book.

Parts of the C Language
Unlike a human language, C has no declensions or cases. You’ll find no masculine,
feminine, or neuter. And you never need to know what the words pluperfect and
subjunctive mean. You do have to understand some of the lingo, the syntax, and
other mischief. This section provides an overview of what’s what in the C
language.

IN THIS CHAPTER

»» Reviewing parts of the C language

»» Understanding keywords and
functions

»» Exploring operators, variables, and
values

»» Learning to comment

»» Building a basic C language skeleton

»» Printing a math problem

30 PART 1 The ABs of C

Keywords
Forget nouns, verbs, adjectives, and adverbs. The C language has keywords. Unlike
human languages, where you need to know at least 2,000 or so words to be some-
what literate, the C language sports a scant vocabulary: Only a handful of key-
words exist, and you may never use them all. Table 3-1 lists the 44 keywords of
the C language.

PROGRAMMING LANGUAGE LEVELS
It’s almost a tradition. Over time, hundreds of programming languages have been devel-
oped. Many fade away, yet new ones pop up annually. The variety is explained by differ-
ent languages meeting specific needs.

Generally speaking, programming languages exist on three levels:

High-level languages are the easiest to read, using words and phrases found in human
languages (mostly English). These languages are quick to learn, but are often limited in
their flexibility.

Low-level languages are the most cryptic, often containing few, if any, recognizable
human language words. These languages, such as assembly, access hardware directly
and therefore are extremely fast. The drawback is that development time is slow
because pretty much everything must be done from scratch.

Midlevel languages combine aspects from both high- and low-level languages. As such,
these languages are quite versatile, and the programs can be designed to do just about
anything. C is the prime example of a midlevel programming language.

TABLE 3-1	 C Language Keywords
_Alignas break float signed

_Alignof case for sizeof

_Atomic char goto static

_Bool const if struct

_Complex continue inline switch

_Generic default int typedef

_Imaginary do long union

CHAPTER 3 Anatomy of C 31

The keywords shown in Table 3-1 represent the C language’s basic commands.
These simple directions are combined in various interesting ways to do won-
drous things. But the language doesn’t stop at keywords; continue reading in the
next section.

»» Don’t bother memorizing the list of keywords. Though I still know the 23 “to
be” words in English (and in the same order as specified in my eighth grade
English text), I’ve never memorized the C language keywords.

»» The keywords are all case-sensitive, as shown in Table 3-1.

»» Of the 44 keywords, 32 are original C language keywords. The C99 update (in
1999) added 5 more, and the more recent C11 (2011) update added 7. Most of
the newer keywords begin with an underscore, as in _Alignas.

»» Keywords are also known as reserved words, which means that you cannot
name functions or variables the same as keywords. The compiler moans like a
drunken, partisan political blogger when you attempt to do so.

Functions
Where you find only 44 keywords, there are hundreds (if not thousands) of func-
tions in the C language, including functions you write yourself. Think of a function
as a programming machine that accomplishes a task. Truly, functions are the
workhorses of the C language.

The telltale sign of the function is the appearance of parentheses, as in puts() for
the “put string” function, which displays text. String is programming lingo for
text that’s longer than a single character.

Functions are used in several ways. For example, a beep() function may cause a
computer’s speaker to beep:

beep();

_Noreturn double register unsigned

_Static_assert else restrict void

_Thread_local enum return volatile

auto extern short while

32 PART 1 The ABs of C

Some functions are sent values, as in

puts("Greetings, human.");

Here, the string Greetings, human. (including the period) is sent to the puts()
function, which sends the string to standard output (displayed on the screen). The
double quotes define the string; they aren’t sent to standard output. The informa-
tion in the parentheses is said to be the function’s arguments, or values. They are
passed to the function.

Functions can generate, or return, information as well:

value = rand();

The rand() function generates a random number, which is returned from the
function and stored in the variable named value. Functions in C return only one
value at a time. They can also return nothing. The function’s documentation
explains what the function returns.

Functions can also be sent information and return something:

result = sqrt(256);

The sqrt() function is sent the value 256. It then calculates the square root of that
value. The calculation returned is stored in the result variable.

»» See the later section “Variables and values” for a discussion of what a
variable is.

»» A function in C must be defined before it’s used. That definition is called a
prototype. It’s necessary for the compiler to understand whether your code is
properly using the function.

»» Lists of, and documentation for, all the C language functions is found online, in
what are called C library references.

»» Library function prototypes are held in header files, which must be included in
your source code. See the later section “Adding a function.”

»» The mechanics of the functions are stored in C language libraries. A library is a
collection of functions and the code that executes those functions. When you
link your program, the linker incorporates the functions’ object code into the
final program.

»» As with keywords, function names are case-sensitive.

CHAPTER 3 Anatomy of C 33

Operators
Mixed in with functions and keywords are various symbols collectively known as
operators. Most of them are mathematic in origin, including traditional symbols
like the plus (+), minus (–), and equal (=) signs.

Operators get thrown in with functions, keywords, and other parts of the C lan-
guage; for example:

result = sqrt(value) + 5;

Here, the = and + operators are used to concoct some sort of mathematical mumbo
jumbo.

Not all C language operators perform math. Appendix C lists the lot.

Variables and values
A program works by manipulating information stored in variables. A variable is a
container into which you can stuff values, characters, or other forms of informa-
tion. The program can also work on specific, unchanging values that I call imme-
diate values:

result = sqrt(value) + 5;

In this example, result and value are variables; their content is unknown by
looking at the code, and the content can change as the program runs. The number
5 is an immediate value.

C sports different types of variables, each designed to hold specific values or data
types. Chapter 6 explains variables and values in more detail.

Statements and structure
As with human languages, programming languages feature syntax — it’s the
method by which the pieces fit together. Unlike English, where syntax can be
determined by rolling dice, the method by which C puts together keywords, func-
tions, operators, variables, and values is quite strict.

The core of the C language is the statement, which is similar to a sentence in
English. A statement is an action, a direction that the program gives to the hard-
ware. All statements end with a semicolon, the C language equivalent of a period:

beep();

34 PART 1 The ABs of C

Here, the single function beep() is a statement. It can be that simple. In fact, a
single semicolon on a line can be a statement:

;

The preceding statement does nothing.

Statements in C are executed one after the other, beginning at the top of the source
code and working down to the bottom. Ways exist to change that order as the
program runs, which are presented elsewhere in this book.

The paragraph-level syntax for the C language involves blocks. These are defined
by enclosing statements in a pair of curly brackets, or braces:

{
 if(money < 0) getjob();
 party();
 sleep(24);
}

These three statements form a block, held within curly brackets, indicating that
they belong together. They’re either part of a function or part of a loop or some-
thing similar. Regardless, they all go together and are executed one after the
other.

You’ll notice that the statements held within a block are indented one tab stop.
That’s a tradition in C, but it’s not required. The term whitespace is used to refer
to tabs, empty lines, and other empty parts of the source code.

Generally, the C compiler ignores whitespace, looking instead for semicolons and
curly brackets. For example, you can edit the source code from Listing 2-1 to read:

#include <stdio.h>
int main(){puts("Greetings, human.");return 0;}

That’s two lines of source code where before you saw several. The include directive
must be on a line by itself, but the C code can be all scrunched up with no
whitespace. The code compiles successfully.

Thankfully, most programmers use whitespace to make their code more readable.

CHAPTER 3 Anatomy of C 35

»» A common mistake made by beginning C language programmers is forgetting
to place the semicolon after a statement. It’s also a common mistake made by
experienced programmers!

»» The compiler is the tool that finds missing semicolons. That’s because when
you forget the semicolon, the compiler assumes that two statements are
really one statement. The effect is that the compiler becomes confused and,
therefore, in a fit of panic, flags those lines of source code with a warning or
error.

Comments
Some items in your C language source code are parts of neither the language nor
the structure. Those are comments, which can be information about the program,
notes to yourself, or filthy limericks.

Traditional C comments begin with the /* characters and end with the */ charac-
ters. All text between these two markers is ignored by the compiler, shunned by
the linker, and avoided in the final program.

Listing 3-1 shows an update to the code from project ex0201, where comments
have been liberally added.

LISTING 3-1:	 Overly Commented Source Code

/* Author: Dan Gookin */
/* This program displays text on the screen */

#include <stdio.h> /* Required for puts() */

int main()
{
 puts("Greetings, human."); /* Displays text */
 return 0;
}

Comments in Listing 3-1 appear on a line by itself or at the end of a line. The first
two lines can be combined for a multiline comment, as shown in Listing 3-2.

36 PART 1 The ABs of C

LISTING 3-2:	 Multiline Comments

/* Author: Dan Gookin
 This program displays text on the screen */

#include <stdio.h> /* Required for puts() */

int main()
{
 puts("Greetings, human."); /* Displays text */
 return 0;
}

All text between the /* and the */ is ignored. Some source code editors, such as
the one in Code::Blocks, display commented text in a unique color, which further
confirms how the compiler sees and ignores the comment text. If you like, type
the source code from Listing 3-2 into a text editor to see how comments work and
whether they’re highlighted.

A second comment style uses the double-slash (//) characters, which originated in
the C++ language but is also available in C. This type of comment affects text on
one line, from the // characters to the end of the line, as shown in Listing 3-3.

LISTING 3-3:	 Double-Slash Comments

#include <stdio.h>

int main()
{
 puts("Greetings, human."); // Displays text
 return 0;
}

Don’t worry about putting comments in your text at this point, unless you’re at a
university somewhere and the professor is ridiculously strict about it. Comments
are for you, the programmer, to help you understand your code and remember
what your intentions are. They come in handy down the road, when you’re looking
at your code and not fully understanding what you were doing. This situation
happens frequently.

CHAPTER 3 Anatomy of C 37

Behold the Typical C Program
All C programs feature a basic structure, which is easily shown by looking at the C
source code skeleton that Code::Blocks uses to start a new project, as shown in
Listing 3-4.

LISTING 3-4:	 Code::Blocks C Skeleton

#include <stdio.h>
#include <stdlib.h>

int main()
{
 printf("Hello world!\n");
 return 0;
}

This listing isn’t the bare minimum, but it gives a rough idea of the basic C
program.

»» Just as you read text on a page, C source code flows from the top down. The
program starts execution at the first line, and then the next line, and so on
until the end of the source code file. Exceptions to this order include decision-
making structures and loops, but mostly the code runs from the top down.

»» Decision-making structures are covered in Chapter 8; loops are introduced in
Chapter 9.

Understanding C program structure
To better understand how C programs come into being, you can create the sim-
plest, most useless type of C program.

Exercise 3-1: Follow the steps in this section to create a new source code file,
named ex0301.c. You can use Code::Blocks to create a new project or use a text
editor and build the project in a terminal window at the command prompt.

38 PART 1 The ABs of C

Here are the specific steps:

1.	 Edit the source code to match Listing 3-5.

That’s not a misprint. The source code is blank, empty. If you’re using
Code::Blocks, erase the skeleton provided.

2.	 Save the source code.

3.	 Build.

Nothing happens or you see a linker error message.

LISTING 3-5:	 A Simple Program That Does Nothing

Because the source code is empty, no object code is generated. Even if a program
is created, it’s empty and does nothing. That’s what you told the compiler to do,
and the resulting program did it well.

Setting the main() function
All C programs have a main() function. It’s the first function that’s run when a
program starts. As a function, it requires parentheses for its arguments but also
curly brackets to hold the function’s statements in a block, as shown in
Listing 3-6.

Continue with Exercise 3-1: Rebuild the source code ex0301.c, as shown in
Listing 3-6. Save the project. Build and run.

LISTING 3-6:	 The main() Function

main() {}

You may see a warning because the main() function lacks a data type. That’s okay.
Otherwise, the program generates no output — which is great! You didn’t direct
the code to do anything, and it did it well. What you see is the minimum C program.
It’s also known as the dummy program.

CHAPTER 3 Anatomy of C 39

»» Main isn’t a keyword; it’s a function. It’s the required first function in all C
language source code.

»» Unlike other functions, main() doesn’t need to be prototyped. It does, how-
ever, use specific arguments, which is a topic covered in Chapter 15.

Returning something to the
operating system
Proper protocol requires that when a program quits, it provides a value to the
operating system. Call it a token of respect. That value is an integer (a whole num-
ber), usually zero, but sometimes other values are used, depending on what the
program does and what the operating system expects.

Continue with Exercise 3-1: Update the source code for ex0301.c to reflect the
changes shown in Listing 3-7.

LISTING 3-7:	 Adding the return Statement

int main()
{
 return(1);
}

First, the main() function is declared to be an integer function. The int keyword
tells the compiler that the function returns, or generates, an integer value.

The return statement sends the value 1 back to the operating system, effectively
ending the main() function and, therefore, the program.

Continue with Exercise 3-1: Save, build, and run the project.

The results are similar to the previous run, but if you’re using the Code::Blocks
IDE, you see the return value of 1 specified in the summary text:

Process returned 1 (0x1)

If you like, edit the code again and change the return value to something else —
say, 5. That value appears in the Code::Blocks output when you run the project.

40 PART 1 The ABs of C

»» Traditionally, a return value of 0 is used to indicate that a program has
completed its job successfully.

»» Return values of 1 or greater often indicate some type of error, or perhaps
they indicate the results of an operation.

»» The keyword return can be used in a statement with or without parentheses.
Here it is without them:

return 1;

In Listing 3-7, return is used with parentheses. The result is the same. I prefer
to code return with parentheses, which is how it’s shown throughout this
book.

Adding a function
C programs should do something. Though you can use keywords and operators to
have a program do marvelous things, the way to make these things useful is out-
put. Continue working on this chapter’s example:

Continue with Exercise 3-1: Modify the project’s source code one final time to
match Listing 3-8.

LISTING 3-8:	 More Updates for the Project

#include <stdio.h>

int main()
{
 printf("4 times 5 is %d\n",4*5);
 return(0);
}

You’re adding three lines. First, add the include line, which brings in the printf()
function’s prototype. Second, type a blank line to separate the processor directive
from the main() function. Third, add the line with the printf() function. All func-
tions must be declared before use, and the stdio.h file contains the declaration
for printf().

CHAPTER 3 Anatomy of C 41

Before proceeding, please note these two important items in your source code:

»» Ensure that you type the include directive exactly as written:

#include <stdio.h>

This directive tells the precompiler to fetch the header file, stdio.h. The
header file is required in order to use the printf() function.

»» Ensure that you type the printf() statement exactly as written:

The printf() function sends formatted text to the standard output device: the
display. It also contains a math problem, 4*5. The result of that equation is
calculated by the computer and then displayed in the formatted text:

printf("4 times 5 is %d\n",4*5);

You’ll find lots of important items in the printf() statement, each of which is
required: quotes, comma, and semicolon. Don’t forget anything!

Later chapters cover the printf() function in more detail, so don’t worry if you’re
not taking it all in at this point.

Finally, I’ve changed the return value from 1 to 0, the traditional value that’s
passed back to the operating system.

Continue with Exercise 3-1: Save the project’s source code. Build and run.

If you get an error, double-check the source code. Otherwise, the result appears in
the terminal window, looking something like this:

4 times 5 is 20

The basic C program is what you’ve seen presented in this section, as built upon
over the past several sections. The functions you use will change, and you’ll
learn how things work and become more comfortable as you explore the
C language.

42 PART 1 The ABs of C

WHERE ARE THE FILES?
A C programming project needs more than just the source code: It includes header files
and libraries. The header files are called in by using the include directives; libraries are
brought in by the linker. Don’t worry about these files, because the compiler and linker
handle the details for you.

Because C comes from a Unix background, traditional locations for the header and
library files are used. Header files are found in the /usr/include directory (folder). The
library files dwell in the /usr/lib directory. Those are system folders, so look but don’t
touch the contents. I frequently peruse header files to look for hints or information that
may not be obvious from the C language documentation. (Header files are plain text;
library files are data.)

If you’re using a Unix-like operating system, you can visit those directories and peruse
the multitude of files located there. On a Windows system, the files are kept with the
compiler; usually, in include and lib folders relative to the compiler’s location.

2C Programming
101

IN THIS PART . . .

Fix compiler and linker errors

Work with values in a program

Explore variables and storage

Grab input and create output

Control program flow and make decisions

Repeat chunks of code with looping statements

Build your own functions

CHAPTER 4 Trials and Errors 45

Chapter 4
Trials and Errors

One of the nifty things about computer programming is that feedback is
immediate. You’re informed right away when something goes awry, by
the compiler, the linker, or the program not running the way you intended.

Believe it or not, that’s the way everyone programs! Errors happen, and even the
most experienced programmer expects them.

Display Stuff on the Screen
The best way to get started programming is to create tiny code samples that
merely toss up some text on the screen. It’s quick. And you learn something while
you do it.

Displaying a humorous message
A computer is known as a serious device, so why not add some levity?

Exercise 4-1: Carefully type the code from Listing 4-1 into the editor. Build
and run.

IN THIS CHAPTER

»» Printing text to the screen

»» Disabling statements by using
comments

»» Fixing compiler errors

»» Using the printf() function

»» Enjoying escape sequences

»» Fixing linking errors

46 PART 2 C Programming 101

LISTING 4-1:	 Another Humorous Example

#include <stdio.h>

int main()
{
 puts("Don't bother me now. I'm busy.");
 return(0);
}

If you encounter any warnings or errors, fix them. They could be typos or missing
items. Everything you see in the editor must look exactly like the code shown in
Listing 4-1.

Upon success, the program runs. Its output looks like this:

Don't bother me now. I'm busy.

Try to contain your laughter.

Exercise 4-2: Modify the source code from Listing 4-1 so that the message says,
“I love displaying text!”

Solutions for all exercises can be found on the web:

www.c-for-dummies.com/begc4d/exercises

Introducing the puts() function
The puts() function streams a string of text to the standard output device.

What the heck does that mean?

For now, consider that the puts() function displays text on the screen on a line by
itself. Here’s the format:

#include <stdio.h>

int puts(const char *s);

Because that official format looks confusing this early in the book, I offer this
unofficial format:

puts("text");

CHAPTER 4 Trials and Errors 47

The text part is a string of text — basically, anything sandwiched between the
double quotes. It can also be a variable, a concept you don’t have to worry about
until you reach Chapter 7.

The puts() function requires that the source code include the stdio.h header file.
This header file contains the function’s prototype. Header files are added to the
source code by using the include directive, as just shown and in various examples
throughout this chapter.

»» The C language handles text in streams, which is probably different from the
way you think computers normally handle text. Chapter 13 discusses this
concept at length.

»» The standard output device is usually the computer’s display. Output can be
redirected at the operating system level; for example, to a file or another
device, such as a printer. This reason is why the technical definition of the
puts() function refers to standard output and not to the display.

Adding more text
When you need to display another line of text, conjure up another puts() function
in your source code, as shown in Listing 4-2.

LISTING 4-2:	 Displaying Two Lines of Text

#include <stdio.h>

int main()
{
 puts("Hickory, dickory, dock,");
 puts("The mouse ran up the clock.");
 return(0);
}

The second puts() function does the same thing as the first. Also, because the first
puts() function requires the stdio.h header file, there’s no need to include this
line again; one reference does the job for any function that requires the same
header file.

48 PART 2 C Programming 101

Exercise 4-3: Type the source code from Listing 4-2 into the editor. Save, com-
pile, and run.

The output appears on two lines:

Hickory, dickory, dock,
The mouse ran up the clock.

As long as you use the puts() function and enclose the text in double quotes, the
resulting program spits out that text, displaying it on the screen. Well, okay, puts()
sends text to the standard output device. (Feel better, university sophomores?)

»» Include the proper header file to prototype functions. The puts() function
requires the stdio.h header.

»» The include precompiler directive thrusts the named header file into your
source code. It’s formatted like this:

#include <file.h>

In this line, file represents the name of the header file. All header files sport
the .h extension, which must be specified with the header filename in the
angle brackets.

»» There’s no need to include the same header file more than once in a source
code file.

Exercise 4-4: Modify Listing 4-2 so that the entire nursery rhyme is displayed.

Here’s the full text:

Hickory, dickory, dock,

The mouse ran up the clock.

The clock struck one,

The mouse ran down,

Hickory, dickory, dock.

Yeah, it doesn’t really rhyme, so for a bonus, change the fourth line of the output
so that it does rhyme!

CHAPTER 4 Trials and Errors 49

Commenting out a statement
Comments are used to not only add information, remarks, and descriptions to
your source code but also disable statements, as shown in Listing 4-3.

LISTING 4-3:	 Disabling a Statement

#include <stdio.h>

int main()
{
 puts("The secret password is:");
/* puts("Spatula."); */
 return(0);
}

Exercise 4-5: Type the source code shown in Listing 4-3. Type /* at the start of
Line 6, and then press the Tab key to indent the statement to the same tab stop as
on the preceding line. Press Tab at the end of Line 6 before adding the final com-
ment marker: */. Save. Build. Run.

Only the first puts() function at Line 5 executes, displaying the following text:

The secret password is:

The second puts() function at Line 6 has been “commented out” and therefore
doesn’t compile.

Exercise 4-6: Uncomment the second puts() statement from your solution to
Exercise 4-5. Run the program to see the results.

Exercise 4-7: Comment out the first puts() function using the // commenting
characters. Build and run again.

Goofing up on purpose
If you haven’t yet made a mistake typing source code, it’s about time to do so.

Exercise 4-8: Carefully type the source code shown in Listing 4-4. If you’ve been
paying attention, you can probably spot the errors. (Hint: Look at the fifth line.)
Don’t fix them — not yet.

50 PART 2 C Programming 101

LISTING 4-4:	 This Program Goes BOOM

#include <stdio.h>

int main()
{
 puts("This program goes BOOM!)
 return(0);
}

I’ll admit that using a smart editor, such as the one in Code::Blocks, makes it
difficult to type the missing double quote. Still, make your source code look like
Listing 4-4. I’m trying to show you how errors look so that you can fix them in the
future.

Build the program. You see warnings and errors along these lines:

ex0408.c: In function 'main':
ex0408.c:5:10: warning: missing terminating " character
 puts("This program goes BOOM!)
 ^
ex0408.c:5:10: error: missing terminating " character
 puts("This program goes BOOM!)
 ^~~~~~~~~~~~~~~~~~~~~~~~~
ex0408.c:6:5: error: expected expression before 'return'
 return(0);
 ^~~~~~
ex0408.c:7:1: error: expected ';' before '}' token
 }
 ^

Errors and warnings are referenced by line number in the source code. They may
appear several times, depending on the severity and how offended the compiler
feels.

Numbers in the following list refer to lines in Listing 4-4 as well as the output just
shown:

Line 5: Warning: missing terminating " character

The first warning is caused by the missing double-quote character. It’s a warning
because the compiler could be mistaken.

CHAPTER 4 Trials and Errors 51

Line 5: Error: missing terminating " character

No, the compiler isn’t mistaken: the double quote is missing. It qualifies as a full-on
error, which is stronger than a warning.

Line 6: Error: expected expression before ‘return’

This error is still related to Line 5, but it’s caught at Line 6. Again, it’s the missing
double quote, which was expected before the return statement.

Line 7: Error: expected ’;’ before ‘}’ token

The final error is again caused by Line 5, the missing semicolon. This error isn’t
caught until Line 7, the closing curly bracket.

A program doesn’t compile when errors are present; you must fix the problem.
Warnings can happen and the code compiles — a program might even be created.
Whether the program runs properly, however, is dubious.

»» A warning is something suspicious that’s spotted by the compiler, but it may
also be something that works as you intended.

»» An error is a fatal flaw in the program. When an error occurs, the compiler
doesn’t create object code or the linker fails to build the program. Either way,
you’re required to fix the problem.

»» Line numbers referenced in warnings and error messages are an approxima-
tion. Sometimes, the issue is on the line that’s indicated, but it might also exist
earlier in the code.

»» It’s possible to adjust how sensitive the compiler is regarding warnings. In fact,
modern compilers have dozens of options designed to turn on or off various
compiling conditions. I recommend activating all warnings, which is the
default in Code::Blocks and is achieved at the command prompt by using the
-Wall switch.

Exercise 4-9: Fix the code from Exercise 4-8 by adding the missing double quote.
Compile to see the difference in the error messages.

Exercise 4-10: Fix the code again, adding the missing semicolon.

More Text Output Nonsense
The puts() function is but one of many functions that sends text to the standard
output device. A second, more popular and versatile function is printf(). It too dis-
plays information to the standard output device, but with more bells and whistles.

52 PART 2 C Programming 101

Displaying text with printf()
On the surface, the printf() function looks and works a lot like puts(), displaying
text to the screen. But printf() is far more potent and capable, and you’ll probably
use it as the primary text output function in your C code, as shown in
Listing 4-5.

LISTING 4-5:	 Using printf to Display Text

#include <stdio.h>

int main()
{
 printf("I have been a stranger in a strange land.");
 return(0);
}

Exercise 4-11: Eagerly type the source code shown in Listing 4-5. Check your
typing carefully because you’re using a new function, printf(), to display text. Save.
Build. Run.

The output should look familiar and expected, although there’s one tiny
difference. If you can spot it, you get a For Dummies bonus point. (Don’t worry
about fixing the problem yet.) If you can’t spot the difference, just proceed with
Exercise 4-12.

Exercise 4-12: Edit your solution for Exercise 4-4, updating the source code to use
the printf() function instead of puts().

Don’t worry if the output for your solution to Exercise 4-12 doesn’t look right.
I explain how to fix it in the later section “Employing escape sequences.”

Introducing the printf() function
The printf() function streams a formatted string of text to the standard output
device. The official format is a bit overwhelming:

#include <stdio.h>

int printf(const char *restrict format, ...);

CHAPTER 4 Trials and Errors 53

Don’t let your eyeballs pop out of your head. Instead, consider my abbreviated
format, which pretty much describes how printf() is used in this chapter:

printf("text");

In this definition, text is a string of text wedged between double quotes.

The printf() function requires the inclusion of the stdio.h header file.

The name printf() means print formatted, and the function really shows its horse-
power in displaying formatted output. You can see this feature demonstrated in
Chapter 13. The print part of the name hails back to the days when C programs sent
their output primarily to printers, not to video displays.

Understanding the newline
Unlike the puts() function, the printf() function doesn’t tack a newline character at
the end of its output. A newline is the character that ends a line of text and directs
the terminal to display any following text on the next line — the “new” line.

The following puts() function outputs the text Goodbye, cruel world on a line by
itself:

puts("Goodbye, cruel world");

The following printf() function displays the text Goodbye, cruel world:

printf("Goodbye, cruel world");

After displaying the text, the cursor waits at the space after the d in world. Any
additional text that’s displayed appears on the same line, which is what you see
for the output of Exercise 4-12:

Hickory, dickory, dock,The mouse ran up the clock.The clock
struck one,The mouse ran down,Hickory, dickory, dock.

The code does exactly what you programmed it to do, albeit without fully knowing
how printf() works. The results most likely aren’t what you intended.

To make the printf() function display text on a line by itself, add the newline char-
acter to the end of the text string. Don’t bother looking for the newline character
on the keyboard; no, it’s not the Enter key. You must use a C language escape
sequence to type the newline character. Keep reading in the next section.

54 PART 2 C Programming 101

Employing escape sequences
To reference certain characters that you can’t type into your source code, the C
language uses something called an escape sequence. The escape sequence allows
you to direct the compiler to temporarily suspend its acceptance of what you’re
typing and instead interpret special characters and codes.

The standard escape sequence uses the backslash character followed by a second
character; for example:

\n

This is the escape sequence for the newline character. The compiler reads both the
backslash and the character that follows it as a single character, interpreting that
character as one that you can’t type at the keyboard, such as the Tab key or Enter
key or characters that may foul up the source code, such as a double quote.

Table 4-1 lists the standard C language escape sequences.

TABLE 4-1:	 Escape Sequences
Escape Sequence Character It Produces

\a Bell (“beep!”)

\b Backspace, non-erasing

\f Form feed or clear the screen

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash character

\? Question mark

\’ Single quote

\" Double quote

\xnn Hexadecimal character code nn

\onn Octal character code nn

\nn Octal character code nn

CHAPTER 4 Trials and Errors 55

Exercise 4-13: Re-edit the source code for your solution to Exercise 4-12, adding
the newline character at the end of every printf() text string.

An escape sequence is required only when you need a character in a text string and
you cannot otherwise type it. For example, if you want to use the statement

printf("What!");

you don’t have to escape the exclamation point character because it doesn’t oth-
erwise mess up the text. You would, however, escape a newline, tab, or double-
quote character.

Exercise 4-14: Create source code that uses the printf() function to display the fol-
lowing line of text:

"Hey," said the snail, "I said no salt!"

Exercise 4-15: Modify the source code from Exercise 4-14 so that the puts() func-
tion is used instead of printf() to display the same text.

Goofing up on purpose again
The section “Goofing up on purpose,” earlier in this chapter, introduces you to
compiler errors. The compiler isn’t the only part of the program creation process.
The other major part is linking, and, yes, you’ll find that the linker can detect
errors as well, as shown in Listing 4-6.

LISTING 4-6:	 Another Horrible Mistake

#include <stdio.h>

int main()
{
 writeln("Another horrible mistake.");
 return(0);
}

Exercise 4-16: Type the source code from Listing 4-6 into the editor. Save. Build.
And . . .

56 PART 2 C Programming 101

The compiler generates a warning for Line 5:

implicit declaration of function 'writeln' is invalid in C99

It’s only a warning because the writeln() function hasn’t been prototyped —
that is, it wasn’t found in the stdio.h header file. The compiler still generates
object code and passes the code to the linker.

The linker, on the other hand, is quite displeased. Here are the linker errors I see
on my screen (showing only the relevant portions of the text):

/tmp/ex0416-0ea1a6.o: In function `main':
ex0416.c:(.text+0x1c): undefined reference to `writeln'
clang: error: linker command failed with exit code 1 (use -v to

see invocation)

It’s the linker’s job to bring in a C language library and, specifically, to link in the
code for the writeln() function. But there is no writeln() function, not in the
standard C library. Therefore, the program isn’t created, and an “undefined
reference” error is reported.

»» To fix the code, change writeln() to puts().

»» This type of error occurs most frequently when you define your own functions.
This topic is covered in Chapter 10.

CHAPTER 5 Values and Simple Math 57

Chapter 5
Values and Simple Math

Back in the old days, most people thought of computers in terms of math.
Computers calculated rocket trajectories, conducted the census, and screwed
up phone bills. They were scary, technological things, and the people who

programmed computers were downright geniuses.

Ha! Fooled everyone.

Programmers merely write the equation and punch in a few numbers, and then
the computer does the math. That’s the genius part. Punching in the wrong num-
bers is the nongenius part. Before you can get there, you have to understand a bit
about values and variables and how the C programming language deals with them.

A Venue for Various Values
Computers deal with both numbers and text. Text comes in the form of individual
characters or a parade of characters all tied together in a string. Numbers are
pretty much numbers until you get into huge values and fractions. The computer
understands everything, as long you properly inform your program of which val-
ues are which.

IN THIS CHAPTER

»» Working with values

»» Using printf() to display values

»» Formatting floating-point output

»» Letting the program do the math

»» Dealing with integer and float math

58 PART 2 C Programming 101

Understanding values
You’ve probably dealt with numbers all your life, virtually tortured by them
throughout your schooling. You may recall terms such as whole number, fraction,
real number, and imaginary number. Ignore them! These terms mean nothing in
computer programming.

When it comes to C programming, you use only two types of numbers:

»» Integer

»» Float

An integer is a whole number — no fractional part. It can be positive. It can be
negative. It can be zero, a single digit, or a humongous value such as the amount
of money the US government spends in a week (no cents). All these numbers are
integers in computer programming jargon.

A float is a number that has a fractional part — a decimal place. It can be a very,
very small number, like the width of a proton. It can be a very, very large number,
like the hat size of the planet Jupiter.

»» Examples of integers: –13, 0, 4, and 234792.

»» In programming, you don’t type commas in large values.

»» Examples of floats are 3.14, 0.1, and 6.023e23. That last number is written in
scientific notation, which means that it’s the value 6.023 × 1023 — a huge
number. (It’s Avogadro’s number, which is another term you’ve probably
forgotten from school.)

»» Integers and floats can be either positive or negative.

»» Integers are judged by their size, as are floats. The size comes into play when
you create storage places for numbers in your programs. Chapter 6 covers the
details.

»» The term float is short for floating point. It refers to the method that’s used to
store large numbers and fractions in the binary counting system of modern
electronics.

CHAPTER 5 Values and Simple Math 59

Displaying values with printf()
The printf() function, introduced in Chapter 4, is ideal for displaying not only
strings of text but also values. To make that happen, you use conversion characters
in the function’s formatting string. Rather than bore you with a description, con-
sider Exercise 5-1.

Exercise 5-1: Input the source code illustrated in Listing 5-1. Save the file. Build
it. Run it.

LISTING 5-1:	 Displaying Various Values

#include <stdio.h>

int main()
{
 printf("The value %d is an integer.\n",986);
 printf("The value %f is a float.\n",98.6);
 return(0);
}

The output from Exercise 5-1 looks something like this:

The value 986 is an integer.
The value 98.600000 is a float.

TO FLOAT OR NOT TO FLOAT
Though it may seem logical to use all floating-point numbers (floats) in your programs,
the problem is that they’re imprecise. In fact, floating-point values are defined by their
precision, or the number of digits in the number that are truly accurate.

For example, a floating-point value with single-precision accuracy may show from six to
nine significant digits in the number. The rest of the numbers in the value are nonsense.
That seems sloppy, but for very large or small numbers, it’s good enough. When it’s not
good enough, double-precision accuracy can be used, though such calculations require
more processor power.

To put it another way, the value of π as represented using seven significant digits, or sin-
gle precision, would be accurate enough to define a circle the size of Saturn’s orbit,
accurate to the millimeter.

60 PART 2 C Programming 101

You’re probably surprised that the output doesn’t look like this:

The value %d is an integer.
The value %f is a float.

It doesn’t, because the text included in a printf() function isn’t merely text — it’s
a formatting string.

The printf() function’s formatting string can contain plain text, escape sequences,
and conversion characters, such as the %d in Line 5 and the %f in Line 6. These
conversion characters act as placeholders for values and variables (arguments)
that follow the formatting string.

For the %d placeholder, the integer value 986 is substituted. The %d conversion
character represents decimal integer values.

For the %f placeholder, the float value 98.6 is substituted. The %f conversion
character represents floating-point values. Of course, 98.6 isn’t displayed.
Instead, you see 98.600000. This issue is addressed in the later section “Minding
the extra zeros.”

The %d and %f are only two of many placeholders for the printf() function’s for-
matting string. The rest are covered in Chapter 7.

Exercise 5-2: Create a project that uses the appropriate conversion characters,
either %d or %f, in a printf() function to display the following values:

127

3.1415926535

122013

0.00008

Do not type a comma when specifying a value in your C language source code.

When typing a small floating-point value, remember to prefix the decimal point
with a zero, as just shown, with 0.00008. Likewise, when typing a float value
without a decimal part, type the decimal and a zero anyway:

1000000.0

CHAPTER 5 Values and Simple Math 61

Minding the extra zeros
When you wrote the code for Exercise 5-1, you probably expected the program’s
output to display the value 98.6, just as it’s written. The problem is that you
directed the printf() function to output that number in the default manner,
98.600000. In fact, you may see more or fewer zeros, depending on your
compiler.

The value 98.600000 is a floating-point number, and it most likely represents the
way the value is stored inside the computer. Specifically, the value is stored using
eight digits, but human beings don’t usually write trailing zeros after numbers.
Computers? They write as many zeros as fills eight digits (not counting the
decimal).

To fix the output, direct the printf() function to format the floating-point number.
That requires a more complex version of the %f placeholder, something you’re
introduced to in Chapter 7. Specifically, change the %f placeholder to read %2.1f.
Here’s the new Line 6 from Listing 5-1:

 printf("The value %2.1f is an float.\n",98.6);

By squeezing 2.1 between the % and the f, you direct printf() to format the output
with two digits to the left of the decimal and one digit to the right.

Exercise 5-3: Modify your source code from Exercise 5-2 so that the value
3.1415926535 is displayed by using the %1.2f placeholder, and the value 0.00008
is displayed by using the %1.1f placeholder.

The Computer Does the Math
It should come as no surprise that computers can do math. In fact, I’d bet that
your computer is, right now, more eager to solve some mathematical puzzles than
it is for you to visit Facebook. Some math examples shown earlier in this chapter
merely bored the processor. Time to put it to work!

Doing simple arithmetic
Math in your C source code is brought to you by the +, –, *, and / operators. These
are the basic math symbols, with the exception of * and /, mostly because the ×
and ÷ characters aren’t found on the typical computer keyboard. For reference,
Table 5-1 lists the basic C language math operators.

62 PART 2 C Programming 101

More C math operators exist, as well as a tumult of mathematical functions.
Chapter 11 helps you continue exploring math programming potential. For now,
the basics will do.

Calculations in C are made by placing values on either side of a math operator, just
as you did all throughout school, but with the benefit of the computer making the
calculations. Listing 5-2 provides a sample.

LISTING 5-2:	 The Computer Does the Math

#include <stdio.h>

int main()
{
 puts("Values 8 and 2:");
 printf("Addition is %d\n",8+2);
 printf("Subtraction is %d\n",8-2);
 printf("Multiplication is %d\n",8*2);
 printf("Division is %d\n",8/2);
 return(0);
}

Exercise 5-4: Input the source code shown in Listing 5-2. Save. Build. Run.

The output looks something like this:

Values 8 and 2:
Addition is 10
Subtraction is 6
Multiplication is 16
Division is 4

TABLE 5-1:	 Basic Math Operators
Operator Function

+ Addition

– Subtraction

* Multiplication

/ Division

CHAPTER 5 Values and Simple Math 63

What you see in this code are immediate calculations. That is, the value that’s cal-
culated, the result, isn’t stored. Instead, the program does the math and deals with
the result, which is stuffed into the %d conversion character in the printf() func-
tion’s formatting text.

Exercise 5-5: Create a program that displays the result of adding 456.98 and
213.4.

Exercise 5-6: Create a program that displays the result of multiplying the values
8, 14, and 25.

Exercise 5-7: Create a program that solves one of those stupid riddles on Face-
book: What’s the result of 0+50*1–60–60*0+10? Solve the equation yourself
before you run the program to see the computer’s result. Refer to Chapter 11 to
read why the results might be different.

Reviewing the float-integer thing
The difference between an immediate value being a float or an int is how you spec-
ify it in a program. Consider Listing 5-3.

LISTING 5-3:	 Another Immediate Math Problem

#include <stdio.h>

int main()
{
 printf("The total is %d\n",16+17);
 return(0);
}

The values 16 and 17 are integers; they have no decimal part.

Exercise 5-8: Create, build, and run the program created from the source code in
Listing 5-3.

Building the project yields the answer, which is also an integer:

The total is 33

64 PART 2 C Programming 101

Exercise 5-9: Modify the source code to specify one of the values as a float. For
example, change Line 5 to read:

printf("The total is %d\n",16.0+17);

Adding that point-zero doesn’t change the value. Instead, it changes the way the
number is stored. It’s now a float.

Save the change in your source code. Build and run.

You may see a warning displayed, depending on whether your compiler is config-
ured. The warning explains that the %d placeholder is used to display a
floating-point value. You may even see a suggestion to use %f instead of %d.
Regardless, run the program. Here’s the result I see:

The total is -90871768

You may see another value. Regardless, the displayed result is incorrect. That’s
because the %d integer placeholder was used when the calculation includes a float.
Adding a float into any calculation causes the compiler to express the result as a
floating-point number. Change Line 5 again, specifying the %f placeholder
this way:

printf("The total is %f\n",16.0+17);

Build and run. The result now looks something like this:

The total is 33.000000

This answer is correct.

Exercise 5-10: Rewrite the source code for Listing 5-3 so that all immediate values
are floating-point numbers. Ensure that the printf() function displays them with a
single digit after the decimal point.

Anytime a floating-point number is used in a calculation, the result is a
floating-point number. Various tricks can be employed to avoid this issue, but for
now consider it solid.

Pretending integers are floats
What happens when you attempt to do math with integer values but the result
isn’t an integer? Don’t even think about it! Just admire the code in Listing 5-4:

CHAPTER 5 Values and Simple Math 65

LISTING 5-4:	 Where Integers Dare

#include <stdio.h>

int main()
{
 printf("%d/%d=%d\n",2,5,2/5);
 return(0);
}

Three %d (integer) placeholders are used in the print() statement. Each corre-
sponds to an integer value argument in the function: 2, 5, and then the expression
2/5. The placeholders in the format string must match the argument count and
the type of value each argument represents, as illustrated in Figure 5-1.

Exercise 5-11: Input the source code from Listing 5-4 into the editor. Build and
run to see the crazy result.

Just to be fair, on my calculator the result of 2/5 is equal to 0.4, which is a float
value. But the computer believes that dividing integer 2 by integer 5 is equal to
zero. How would you fix this problem?

Exercise 5-12: Desperately modify the source code from Listing 5-4 so that the %f
placeholder is used instead of the final %d in the format string. See if that works.
Save, build, and run.

Did you see a warning? If so, the compiler is bemoaning the use of the %f place-
holder to output an integer value. Still, a program is created. When I run it, I see:

2/5=0.000000

Zero again.

The problem here isn’t the same as shown earlier in this chapter, when adding a
float and an integer value. Instead, the issue is math itself: When you must divide

FIGURE 5-1:
Matching printf()

conversion
characters and

arguments.

66 PART 2 C Programming 101

two integer values, unless you’re lucky, the result is a float — a value with a deci-
mal portion. The solution is to ensure that the values used are float — even when
they’re whole numbers.

Exercise 5-13: Rewrite the source code from Listing 5-4 so that the final calcula-
tion is made using immediate float values, not integers.

Later in your C journey, you’ll learn a trick to typecast calculations, which is a
more versatile way to write code that must specify integer values as floats. This
topic is covered in Chapter 16.

CHAPTER 6 A Place to Put Stuff 67

Chapter 6
A Place to Put Stuff

Human beings have obsessed over storing stuff ever since the Garden of
Eden, when Adam stashed a grape in his belly button. This raises the ques-
tion of why Adam would have a belly button, but that’s not my point. My

point is that people enjoy storing things and creating places — boxes, closets,
garages, and underground bunkers — in which to store that stuff.

Your C programs can also store things — specifically, various types of informa-
tion. Computer storage is used to keep these items, but the containers themselves
are called variables. They’re basic components of all computer programming.

Values That Vary
C programs use three types of values: immediate, constant, and variable. An
immediate value is one that you specify in the source code — a value you type.
Constants are discussed later in this chapter. Variables are storage containers for
values where the contents can change. Their contents can vary — hence the name.

IN THIS CHAPTER

»» Understanding variables

»» Creating a specific data type

»» Declaring variables in your code

»» Using signed or unsigned integers

»» Whipping up multiple variables at
a time

»» Declaring and assigning at the
same time

»» Putting variables to work

»» Creating constants

68 PART 2 C Programming 101

Setting up a quick example
Who likes to read a lot about something before they try it? Not me!

Exercise 6-1: Type the source code shown in Listing 6-1. It uses a single variable,
x, which is one of the first computer variable names mentioned in the Bible.

LISTING 6-1:	 Your First Variable

#include <stdio.h>

int main()
{
 int x;

 x = 5;
 printf("The value of variable x is %d.\n",x);
 return(0);
}

Here’s the breakdown of what’s going on in Listing 6-1:

Line 5 contains the variable’s declaration:

int x;

All C language variables are declared as a specific data type and assigned a name.
The variable in Listing 6-1 is declared as an integer (int) data type and given the
name x.

Line 7 assigns the value 5 to variable x:

x = 5;

The value goes on the right side of the equal sign. The variable goes on the left.

Line 8 uses the variable’s value in the printf() statement:

printf("The value of variable x is %d.\n",x)

The %d conversion character is used because the variable’s data type is integer.
The conversion character must match the data type.

CHAPTER 6 A Place to Put Stuff 69

Build and run the code. The output looks like this:

The value of variable x is 5.

The following sections describe in further detail the mechanics of creating and
using variables.

Introducing data types
C language variables are designed to hold specific types of data. If C were a bio-
logical programming language, cats and dogs would go into the animal data type,
and trees and ferns would go into the plant data type. C language variables work
along these lines, with specific values assigned to matching types of data.

The common C language data types are listed in Table 6-1.

When you need to store an integer value, you use a variable of the integer (int) data
type. Likewise, if you’re storing a letter of the alphabet, you use a variable of the
character (char) data type. The program’s needs are what determine which data
types are required for its variables.

»» The char and int data types store integer values. The char data type has a
shorter range, used primarily to store characters — letters of the alphabet,
numbers, and symbols — but it can also be used to store small integer values.

»» The float and double data types are both floating-point variables that can store
a tiny or huge value or any value with a decimal portion.

TABLE 6-1	 Basic C Language Variable Types
Data Type Description

char Single-character variable; stores one character of information

int Integer variable; stores integer (whole number) values

float Floating-point variable; stores real numbers

double Floating-point variable; stores very large or very small real numbers

void No data type

70 PART 2 C Programming 101

»» A newer data type, _Bool, stores binary values, 1 or 0, often referred to as
TRUE and FALSE, respectively. _Bool, a loaner word from C++, must be written
with the initial underscore character and a capital B. You may not find _Bool
used in many C program source code listings — most likely, to keep the code
compatible with older compilers.

Using variables
Most, if not all, of your future C language programs will employ variables. Earlier
in this chapter, Listing 6-1 illustrates the basic three steps for using variables in
the C language:

1.	 Declare the variable, giving it a data type and a name.

2.	 Initialize the variable (assign it a value).

3.	 Use the variable.

All three steps are required for working with variables in your code, and these
steps must be completed in that order.

To declare a variable, place a statement near the start of a function, such as the
main() function in every C program. Place the declaration after the initial curly
bracket. (Refer to Listing 6-1.) The declaration is a statement on a line by itself,
ending with a semicolon:

type name;

type is the data type: char, int, and others are introduced throughout this chapter.

name is the variable’s name. The name must not be the name of a C language key-
word or any other variable name that was previously declared. The name is case-
sensitive — though, traditionally, C language variable names are written in
lowercase. If you want to be saucy, you can add numbers or underscores to the
variable name, but always start a variable name with a letter.

The equal operator assigns a value to a variable. The format is very specific:

variable = value;

Read this expression as, “The value of variable equals value.”

variable is the variable’s name. It must be declared earlier in the source code.

CHAPTER 6 A Place to Put Stuff 71

value is either an immediate value, a constant, an expression, another variable, or
a value returned from a function. After the statement is executed, the variable
holds the value that’s specified.

Assigning a value to a variable satisfies the second step in using a variable. The
third step is to do something with the variable. Variables can be used anywhere in
your source code that a value could otherwise be specified directly.

In Listing 6-2, four variable types are declared, assigned values, and used in sep-
arate printf() statements.

LISTING 6-2:	 Working with Variables

#include <stdio.h>

int main()
{
 char c;
 int i;
 float f;
 double d;

 c = 'a';
 i = 1;
 f = 19.0;
 d = 20000.009;

 printf("%c\n",c);
 printf("%d\n",i);
 printf("%f\n",f);
 printf("%f\n",d);
 return(0);
}

Exercise 6-2: Type the source code for Listing 6-2 into the editor. Build and run.

The output looks something like this:

a
1
19.000000
20000.009000

72 PART 2 C Programming 101

In Line 10, the single-character value a is placed into char variable a. Single char-
acters are expressed using single quotes in C: 'a'

In Line 15, you see the %c placeholder used in the printf() statement. This place-
holder is designed for single characters.

Exercise 6-3: Replace Lines 15 through 18 with a single printf() statement:

printf("%c\n%d\n%f\n%f\n",c,i,f,d);

Build and run the code.

The printf() formatting string can contain as many conversion characters as
needed, but only as long as you specify the proper quantity and type of variables
for those placeholders, and in the proper order. The variables appear after the
formatting string, each separated by a comma, as just shown.

Exercise 6-4: Edit Line 12 from your solution to Exercise 6-3 so that the value
assigned to variable f is 19.8 and not 19.0. Save this change, build, and run the
code.

Did you see the value 19.799999 displayed for variable f? Would you say that the
value is imprecise?

Exactly!

The float data type is single precision: The computer accurately stores only eight
digits of the value. The internal representation of 19.8 is really the value 19.799999
because a single-precision (float) value is accurate to only the eighth digit. For
mathematical purposes, 19.799999 is effectively 19.8; you can direct the code to
display this value by using the %.1f placeholder.

Exercise 6-5: Write source code that declares an integer variable blorf and
assigns it the value 22. Have a printf() statement display the variable’s value. Have
a second printf() statement display this value plus 16. Then have a third printf()
statement that displays the value of blorf multiplied by itself.

Here’s the output from my solution for Exercise 6-5:

The value of blorf is 22.
The value of blorf plus 16 is 38.
The value of blorf times itself is 484.

CHAPTER 6 A Place to Put Stuff 73

Your code’s output need not look identical to what’s shown here.

»» Variables need not be declared at the start of a function. Some programmers
declare variables on the line before they’re first used. This strategy works, but
it’s not traditional and can lead to confusion. Most C programmers expect to
find all variable declarations at the start of the function.

»» It’s possible to start a variable name with an underscore, which the compiler
believes to be a letter. Even so, variable names that begin with underscores
are used internally in the C language. I recommend avoiding this naming
convention.

Variable Madness!
I hope that you’re getting the hang of the variable thing. If not, please review the
first part of this chapter. The variable is truly the heart of any programming lan-
guage, by allowing you to code flexibility into your programs and have it do amaz-
ing things.

Using more-specific data types
The C language offers more data types than are shown in Table 6-1. Depending on
the information stored, you may want to use one of these more detailed variable
declarations. Table 6-2 lists a buffet of C language data types and the range of
values those types can store.

The value range column specifies the size of the number you can store in a variable
as well as whether negative numbers are allowed. The compiler may not always
flag warnings that happen when you assign the wrong value to a variable type. So
get it right when you declare the variable!

For example, if you need to store the value -10, you use a short int, int, or long vari-
able. You cannot use an unsigned int, as the source code in Listing 6-3
demonstrates.

74 PART 2 C Programming 101

LISTING 6-3:	 Oh, No — an Unsigned int!

#include <stdio.h>

int main()
{
 unsigned int ono;

 ono = -10;
 printf("The value of ono is %u.\n",ono);
 return(0);
}

Exercise 6-6: Create a project with the source code shown in Listing 6-3. Note
that the %u conversion character is used for unsigned int values. Build and run.

Here’s the output:

The value of ono is 4294967286.

TABLE 6-2	 More C Language Data Types
Type Value Range printf() Conversion Character

_Bool 0 to 1 %d

char –128 to 127 %c

unsigned char 0 to 255 %u

short int –32,768 to 32,767 %d

unsigned short int 0 to 65,535 %u

int –2,147,483,648 to 2,147,483,647 %d

unsigned int 0 to 4,294,967,295 %u

long int –2,147,483,648 to 2,147,483,647 %ld

unsigned long int 0 to 4,294,967,295 %lu

float 1.17×10–38 to 3.40×1038 %f

double 2.22×10–308 to 1.79×10308 %f

CHAPTER 6 A Place to Put Stuff 75

The moral of the story: If your integer variable stores negative numbers, you can’t
use an unsigned variable type.

»» The range of the int may be the same as the range of the short int on some
compilers. When in doubt, use a long.

»» Some compilers support a long long integer type, also called “double long.” Its
values range from –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
signed, and from 0 to 18,446,744,073,709,551,615 unsigned.

»» Specifying the int keyword isn’t necessary when declaring a short, unsigned, or
long integer value.

»» The keyword signed can be used before any of the integer variable types, as in
signed short int, though only short is necessary.

»» The void data type is used primarily to declare functions that return no values.
Still, it’s a valid variable type, found most often when dealing with pointers and
memory buffers. See Chapter 10 for information on void functions; pointers
are avoided until Part 4 of this book.

Working with several variables
I can find nothing in the rules to prevent starting a section with an exercise, so
here you go:

Exercise 6-7: Create a program that uses the three integer variables shadrach,
meshach, and abednego. Assign integer values to each one, and display the result.

Here’s a copy of the output from the program generated by Exercise 6-7. It’s my
version of the project:

Shadrach is 701
Meshach is 709
Abednego is 719

Your code can generate different text, but the underlying project should work. And
give yourself a bonus if your answer matched my answer, which is given in
Listing 6-4.

76 PART 2 C Programming 101

LISTING 6-4:	 The Answer to Exercise 6-7

#include <stdio.h>

int main()
{
 int shadrach, meshach, abednego;

 shadrach = 701;
 meshach = 709;
 abednego = 719;
 �printf("Shadrach is %d\nMeshach is %d\nAbednego is %d\n",shadrach,

meshach,abednego);
 return(0);
}

When declaring multiple variables of the same type, you can specify all of them on
the same line, as shown in Listing 6-4 (on Line 5). You don’t even have to put
spaces after each name; the line could have easily been written

int shadrach,meshach,abednego;

The C compiler doesn’t care about spaces — specifically, whitespace — outside of
something enclosed in double quotes.

I also stacked up the results in a single, long printf() statement. The line wraps in
Listing 6-4 because of this book’s page width, and it may wrap in your editor as
well. When the code wraps, don’t press the Enter key to start a new line.

You can split a long statement in C simply by escaping the Enter key press at the
end of a line. Escaping in this context doesn’t mean that you’re fleeing danger
(other than offending the compiler); instead, you use the backslash (the escape
character) to read the Enter key without messing up the statement in your code.
To wit:

printf("Shad is %d\nMesh is %d\nAbed is d\n",\
 shadrach,meshach,abednego);

I shortened the names in the formatting string so that the text fits on a line on this
page. Between printf()’s formatting string and the argument list, right after the
first comma, I typed a backslash and then pressed the Enter key. The effect is that
the line is broken visually, but the compiler still sees it as a single statement.

CHAPTER 6 A Place to Put Stuff 77

Assigning a value upon creation
In Listing 6-5, the integer variable start is created and assigned the value 0 upon
creation. This combination saves typing another line of code that would assign 0
to the start variable.

LISTING 6-5:	 Declaring a Variable and Assigning a Value

#include <stdio.h>

int main()
{
 int start = 0;

 printf("The starting value is %d.\n",start);
 return(0);
}

Exercise 6-8: Build a program by using the source code shown in Listing 6-5.

Exercise 6-9: Modify the source code for Exercise 6-7 so that the three variables
are assigned their values on the same lines where the variables are declared. Two
solutions may be possible for this exercise.

Reusing variables
Variables vary, so their contents can be changed at any time in the program. The
examples shown elsewhere in this chapter use a variable only once and don’t alter
its value. That’s pretty much the same as a constant (covered later in this chap-
ter), which makes them good examples for learning but a poor representation of
reality.

In your programming journey, variables are declared, and then their values may
be, well, whatever. Not only that; it’s possible to reuse variables over and over —
no harm done. That’s an easy example to show, as illustrated in Listing 6-6.

78 PART 2 C Programming 101

LISTING 6-6:	 Variables Recycled

#include <stdio.h>

int main()
{
 int prime;

 prime = 701;
 printf("Shadrach is %d\n",prime);
 prime = 709;
 printf("Meshach is %d\n",prime);
 prime = 719;
 printf("Abednego is %d\n",prime);
 return(0);
}

Exercise 6-10: Create new source code from Listing 6-6. As you can see, the vari-
able prime is used over and over, each time changing its value. The new value
that’s assigned replaces any existing value. Build and run the project.

The output from Exercise 6-10 is the same as from Exercise 6-9.

Listing 6-7 illustrates how variables can interact with each other.

LISTING 6-7:	 Variables Mix It Up

#include <stdio.h>

int main()
{
 int a,b,c;

 a = 5;
 b = 7;
 c = a + b;
 printf("Variable c=%d\n",c);
 return(0);
}

Line 9 is the one to notice:

c = a + b;

CHAPTER 6 A Place to Put Stuff 79

The value of variable c is assigned the sum of variables a and b. This calculation is
made when the program runs, and then the result — whatever weirdo value that
could be — is displayed.

Exercise 6-11: Create a project using the source code in Listing 6-7. Can you guess
the output?

Exercise 6-12: Create a new source code file using Listing 6-7 as a starting point.
Declare three float variables and assign values to two of them. Assign a value to the
third variable by dividing the first variable by the second variable. Output the
result.

Constants Always the Same
Computers and their electronic brethren enjoy doing repetitive tasks. In fact, any-
thing you do on a computer that requires you to do something over and over
demands that a faster, simpler solution be at hand. Often, it’s your mission to
simply find the right tool to accomplish that goal.

Using the same value over and over
It may be too early in your C programming career to truly ponder a repetitive pro-
gram; the topic of looping is covered in Chapter 9. But that doesn’t mean you can’t
code programs that use values over and over.

Exercise 6-13: Create a new program using the source code shown in Listing 6-8.
Save it, build it, run it.

LISTING 6-8:	 It’s a Magic Number

#include <stdio.h>

int main()
{
 printf("The value is %d\n",3);
 printf("And %d is the value\n",3);
 printf("It's not %d\n",3+1);
 printf("And it's not %d\n",3-1);
 printf("No, the value is %d\n",3);
 return(0);
}

80 PART 2 C Programming 101

The code uses the value 3 on every line. Here’s the output:

The value is 3
And 3 is the value
It's not 4
And it's not 2
No, the value is 3

Exercise 6-14: Edit the code to replace the value 3 with 5. Compile and run.

You might think that Exercise 6-14 is cruel and requires a lot of work (unless your
source code editor has a nifty search-and-replace command), but such changes
occur frequently in programming. For example, I wrote a program that displays
the top three most recent items added to a database. But then I wanted to change
the list so that it shows the top five items. As you had to do in Exercise 6-14, I had
to painstakingly search-and-replace throughout the entire source code, carefully
plucking out specific references to 3 and substituting 5.

There must be a better way.

Constants in your code
One solution for dealing with the problems presented in Exercises 6-13 and 6-14
is to use a variable. However, because the variable’s value doesn’t change through-
out the main() function, you can instead use a constant.

Like a variable, a constant is a named value used throughout a function. Think of it
as a substitute, something you can quickly change in one spot and have the effect
widespread.

Constants are created like variables, but with the keyword const prefixing the data
type:

const type name = value;

type is the data type, the same as a variable. It can be int, char, double, or any valid
C language data type; refer to Table 6-2.

name is the constant’s name, just like a variable with the same naming restric-
tions, rules, and whatnot.

CHAPTER 6 A Place to Put Stuff 81

The value must be assigned to the constant as it’s declared in your code, all on one
line. That’s because, once the constant is declared, its value cannot be altered
elsewhere in the code. For example:

const char apple = 'a';

Constant apple is used just like a char variable, though its value — the lowercase
letter a — never changes:

printf("Start with letter %c.",apple);

The preceding statement outputs this text:

Start with letter a.

If the code attempts to change a constant, the compiler generates an error mes-
sage and the program isn’t created. This error is the protection afforded by the
compiler to the const keyword: Constants cannot be changed.

»» Constants must be assigned values on the same line where they’re declared.

»» You can define a constant of any data type.

»» Unlike with a variable, you cannot reassign a constant’s value. Otherwise, it’s
used like any other variable in your code.

»» Like a variable declaration, a constant declaration is valid only within the
function where it’s created. When a constant is required in multiple functions,
use the #define preprocessor directive, as covered in Chapter 10.

Putting constants to use
Anytime your code uses a single value over and over (something significant, like
the number of rows in a table or the maximum number of items you can stick in a
shopping cart), declare the value as a constant.

Exercise 6-15: Rewrite the source code for Listing 6-8. Use a constant v to repre-
sent the value 3 used in the various printf() statements.

Remember that constants are declared just like variables, though the statement
begins with the const keyword. Review the preceding section, if necessary.

Because I’m not that evil, Listing 6-9 shows my solution for Exercise 6-15.

82 PART 2 C Programming 101

LISTING 6-9:	 Preparing for Constant Updates

#include <stdio.h>

int main()
{
 const int v = 3;

 printf("The value is %d\n",v);
 printf("And %d is the value\n",v);
 printf("It's not %d\n",v+1);
 printf("And it's not %d\n",v-1);
 printf("No, the value is %d\n",v);
 return(0);
}

Integer constant v is declared at Line 5, set to the value 5. Constant v is used in the
printf() statements exactly as if it were a variable, but replacing the immediate
value 5. The advantage to this approach becomes apparent when you tackle Exer-
cise 6-16.

Exercise 6-16: Update your solution for Exercise 6-15 (refer to Listing 6-9) to
change the value of variable v to 5. (This is an update to Exercise 6-14.)

The difference between Exercise 6-14 and Exercise 6-16 is that you make only one
change in the source code file for the latter.

Exercise 6-17: Modify the source code from Listing 6-7 so that variables a and b
are constants.

You can start out creating a constant. But in my experience, constants tend to
evolve: As you work out problems and refine the code, the need for constants
becomes apparent. Take advantage of them! If you find yourself using a value
consistently in the code, or even a variable when its value doesn’t change, declare
a constant.

CHAPTER 7 Input and Output 83

Chapter 7
Input and Output

One of the basic functions, if not the basic function, of any computing
device is input and output. The old I/O (say “eye oh”) is also the goal of
just about every program. Input is received and processed, and then out-

put is generated. The processing is what makes the program useful. Otherwise,
you’d have only input and output, which is essentially the same thing as plumbing.

Character I/O
The simplest type of input and output takes place at the character level: One char-
acter goes in; one character comes out. Of course, getting to that point involves a
wee bit of programming.

Understanding input and output devices
The C language was born with the Unix operating system. As such, it follows many
of the rules for that operating system with regard to input and output. Those rules
are pretty solid:

»» Input comes from the standard input device, stdin.

»» Output is sent to the standard output device, stdout.

IN THIS CHAPTER

»» Using standard input and output

»» Reading and writing characters

»» Understanding getchar() and putchar()

»» Exploring the char variable type

»» Reading input with scanf()

»» Grabbing strings with fgets()

84 PART 2 C Programming 101

On a computer, the standard input device, stdin, is the keyboard. Input can also
be redirected by the operating system, so it can come from another device, like a
modem or a file.

The standard output device, stdout, is the display. Output can be redirected so
that it goes to another device, such as a printer or into a file.

C language functions that deal with input and output access the stdin and stdout
devices. They do not directly read from the keyboard or output to the screen. Well,
unless you code your program to do so. (Such coding isn’t covered in this book.)

Bottom line: Although your programs can get input from the keyboard and send
output to the display, you need to think about C language I/O in terms of stdin
and stdout devices instead. If you forget that, you can get into trouble, which I
happily demonstrate later in this chapter.

Fetching characters with getchar()
It’s time for your code to become more interactive. Consider the source code from
Listing 7-1, which uses the getchar() function. This function gets (reads) a char-
acter from standard input.

LISTING 7-1:	 It Eats Characters

#include <stdio.h>

int main()
{
 int c;

 printf("I'm waiting for a character: ");
 c = getchar();
 printf("I waited for the '%c' character.\n",c);
 return(0);
}

The code in Listing 7-1 uses the getchar() function at Line 8 to fetch a character
from standard input. The character returned from getchar() is stored in the c inte-
ger variable.

Line 9 displays the character stored in c. The printf() function uses the %c place-
holder to display single characters.

CHAPTER 7 Input and Output 85

Exercise 7-1: Create a new program using the source code from Listing 7-1. Build
and run.

The getchar() function is prototyped in the stdio.h header file, which must be
included in the source code. In Listing 7-1, it’s included already for the definition
of the printf() function. The getchar() function’s format is

int getchar(void);

The function has no arguments, which is why the keyword void is set for the func-
tion’s argument in its definition. In use, the parentheses are always empty.

The getchar() function returns an integer value — not a char value, despite its
being a character I/O function. The integer returned contains a character, which is
just how it works.

Exercise 7-2: Edit Line 9 in the source code from Listing 7-1 so that the %d place-
holder is used instead of %c. Build and run.

The value that’s displayed when you run the solution to Exercise 7-1 is the char-
acter’s ASCII code value. The %d displays that value because internally the com-
puter treats all information as values. Only when information is displayed as a
character does it look like text.

Appendix A lists ASCII code values.

Depending on how the compiler implements it, getchar() may be a macro, not a
function. A macro is a shortcut based on another function. For example, the real
function to get characters from standard input may be getc(); specifically, when
used like this:

c = getc(stdin);

In this example, getc() reads from the standard input device, stdin, which is
defined in the stdio.h header file. The function returns an integer value, which is
stored in variable c.

Exercise 7-3: Rewrite the source code for Listing 7-1, replacing the getchar()
statement with the getc() example just shown.

Exercise 7-4: Write a program that prompts for three characters; for example:

I'm waiting for three characters:

86 PART 2 C Programming 101

Code three consecutive getchar() functions to read the characters. Format the
result like this:

The three characters are 'a', 'b', and 'c'

where these characters — a, b, and c — would be replaced by the program’s input.

The program you create in Exercise 7-4 waits for three characters. The Enter key
is a character, so if you type A, Enter, B, Enter, the three characters are A, the
Enter key character, and then B. This input is valid, but what you probably want to
type is something like ABC or PIE or LOL and then press the Enter key.

Standard input is stream-oriented. As I mention earlier in this chapter, don’t
expect your C programs to be interactive. Exercise 7-4 is an example of how
stream input works; the Enter key doesn’t end stream input; it merely rides along
in the stream, like any other character.

Using the putchar() function
The output counterpart to getchar() is the putchar() function. It’s also prototyped
in the stdio.h header file. The function serves the purpose of sending a single
character to standard output. Here’s the format:

int putchar(int c);

The function’s single argument is an integer value, c in the preceding line of code.
The argument can be a variable or a literal character, as in

putchar('v');

The function returns the integer value of the character output, though this value
need not be checked for simple character output, as shown in Listing 7-2.

LISTING 7-2:	 Putting putchar() to Work

#include <stdio.h>

int main()
{
 int ch;

CHAPTER 7 Input and Output 87

 printf("Press Enter: ");
 getchar();
 ch = 'H';
 putchar(ch);
 ch = 'i';
 putchar(ch);
 putchar('!');
 return(0);
}

This chunk of code uses the getchar() function to pause the program at Line 8. The
input that’s received isn’t stored; it doesn’t need to be. The compiler doesn’t com-
plain when you don’t keep the value returned from the getchar() function (or from
any function).

In Lines 9 through 12, single-character values are assigned to the ch variable,
which works even though ch is an integer variable. The putchar() function then
displays the changing value of variable ch.

In Line 13, putchar() displays a character literal, the exclamation point character.
Again, the character must be enclosed in single quotes.

Exercise 7-5: Create a new source file using the code shown in Listing 7-2. Build
and run the program.

One weird thing about the output is that the final character isn’t followed by a
newline. That output can look awkward on a text display, so:

Exercise 7-6: Modify the source code from Exercise 7-5 so that the newline char-
acter is output after the ! character.

Working with character variables
The getchar() and putchar() functions work with integers, but that doesn’t mean
you must shun character variables. When you work with characters in your code,
use the char data type to store them, as shown in Listing 7-3.

88 PART 2 C Programming 101

LISTING 7-3:	 Character Variable Madness

#include <stdio.h>

int main()
{
 char a,b,c,d;

 a = 'W';
 b = a + 24;
 c = b + 8;
 d = '\n';
 printf("%c%c%c%c",a,b,c,d);
 return(0);
}

Exercise 7-7: Create a new source code file using the code in Listing 7-3. Build and
run the program.

The code declares four char variables at Line 5. These variables are assigned values
in Lines 7 through 10. Line 7 is pretty straightforward. Line 8 uses math to set the
value of variable b to a specific character, as does Line 9 for variable c. (Use
Appendix A to look up a character’s ASCII code value.) Line 10 uses an escape
sequence to set a character’s value, something you can’t type at the keyboard.

All those %c placeholders are stuffed into the printf() statement, but the output is,
well, surprising.

Exercise 7-8: Modify the code for Listing 7-3 so that variables b and c are assigned
their character values directly using character literals held in single quotes.

Exercise 7-9: Modify the source code again so that putchar(), not printf(), is used
to generate output.

Text I/O, but Mostly I
When character I/O is taken up a notch, it becomes text I/O. The primary text out-
put functions are puts() and printf(). On the I side of I/O are text input functions,
primarily scanf() and fgets().

CHAPTER 7 Input and Output 89

Storing strings
When a program needs text input, it’s necessary to create a place to store that text.
Right away, you’ll probably say, “Golly! That would be a string variable.” If you
answered that way, I admire your thinking. You’re relying upon your knowledge
that text in C programming is referred to as a string.

Alas, you’re wrong.

C lacks a string variable type. It does, however, have character variables. Queue up
enough of them and you have a string. Or, to put it in programming lingo, you
have an array of character variables.

Arrays are a big topic, covered in Chapter 12. For now, be open-minded about
arrays and strings and soak in the goodness of Listing 7-4.

LISTING 7-4:	 Stuffing a String into a char Array

#include <stdio.h>

int main()
{
 char prompt[] = "Press Enter to explode:";

 printf("%s",prompt);
 getchar();
 return(0);
}

Line 5 creates an array of char variables. An array is a gizmo that stores a bunch of
the same data types all in a row. The char array is named prompt, which is imme-
diately followed by empty square brackets. This is the Big Clue that the construc-
tion is an array. The array is initialized, via the equal sign, to the text enclosed in
double quotes.

The printf() statement in Line 7 displays the string stored in the prompt array. The
%s conversion character represents a string.

In Line 8, getchar() pauses the program, anticipating the Enter key press. The
program doesn’t follow through by exploding anything, a task I leave up to you to
code at a future date.

90 PART 2 C Programming 101

Exercise 7-10: Create a new program using the source code from Listing 7-4.
Build and run.

Exercise 7-11: Modify the source code from Listing 7-4 so that a single string
variable holds two lines of text; for example:

Program to Destroy the World
Press Enter to explode:

Hint: Refer to Table 4-1, in Chapter 4.

»» A string “variable” in C is really a character array.

»» You can initialize a string to a char array when it’s created, similarly to the way
you initialize any variable when it’s created. The format looks like this:

char string[] = "text";

In the preceding line, string is the name of the char array, and text is the
string assigned to that array.

»» You cannot reassign or change a character array’s contents by using a direct
statement later in the code, such as

prompt = "This is just wrong.";

Changing a string is possible in C, but you need to know more about arrays,
string functions, and especially pointers before you make the attempt. Later
chapters in this book cover these topics.

»» See Chapter 6 for an introduction to the basic C language data types. The full
list of C language data types is found in Appendix D.

Introducing the scanf() function
For the input of specific data types, the scanf() function comes in handy. It’s not a
general-purpose input function, and it has some limitations, but it’s great for
testing code or grabbing values.

In a way, you could argue that scanf() is the input version of the printf() function.
For example, it uses the same conversion characters (the % placeholder-things).
Because of that, scanf() is quite particular about how text is input.

CHAPTER 7 Input and Output 91

The scanf() function is prototyped in the stdio.h header file. Here’s the format:

int scanf(const char *restrict format,...);

Scary, huh? Just ignore it for now. Here’s my less frightening version of the
format:

scanf("placeholder",variable);

In this version, placeholder is a conversion character, and variable is a variable
that matches the conversion character’s data type. Unless variable is a string
(char array), it’s prefixed by the & operator.

Here are some scanf() examples:

scanf("%d",&highscore);

The preceding statement reads an integer value from standard input into the vari-
able highscore, an int variable.

scanf("%f",&temperature);

The preceding scanf() statement waits for a floating-point value to be input, which
is stored in the temperature variable.

scanf("%c",&key);

In the preceding statement, scanf() accepts the first character read from standard
input and stores it in the key variable.

scanf("%s",firstname);

The %s placeholder is used to read in text, but only until the first whitespace char-
acter is encountered. So a space, a tab, or the Enter key terminates the string. Also,
firstname is a char array, so it need not be prefixed by the & operator.

Reading a string with scanf()
It’s rare to use the scanf() function to read a string, because input is terminated at
the first whitespace character. Still, it’s worth a try.

To use the scanf() function to read in a chunk of text, the %s conversion character
is used — just like in printf() but with input instead of output, as shown in
Listing 7-5.

92 PART 2 C Programming 101

LISTING 7-5:	 scanf() Swallows a String

#include <stdio.h>

int main()
{
 char firstname[15];

 printf("Type your first name: ");
 scanf("%s",firstname);
 printf("Pleased to meet you, %s.\n",firstname);
 return(0);
}

Exercise 7-12: Type the source code from Listing 7-5 into your editor. Save, build,
and run.

Line 5 declares a char array — a buffer to store a string — named firstname. The
number in the brackets indicates the size of the array, or the total number of char-
acters that can be stored there. The array isn’t assigned a value, so it’s created
empty. Basically, the statement at Line 5 sets aside storage for up to 15
characters.

The scanf() function in Line 8 reads a string from standard input and stores it in
the firstname array. The %s conversion character directs scanf() to look for a
string as input, just as %s is a placeholder for strings in printf()’s output.

Exercise 7-13: Modify the source code from Listing 7-5 so that a second string is
declared for the person’s last name. Prompt the user for their last name as well,
and then display both names by using a single printf() function.

»» The number in the brackets (refer to Line 5 in Listing 7-5) gives the size of the
char array, or the length of the string, minus one. A 15-character array holds a
string up to 14 characters long.

»» The reason for a char array of size n holding n–1 characters is that all strings in
C end with the null character, which is written as escape sequence \0. In C, as
well as in other programming languages, the null character terminates a
string. For literal strings, the compiler automatically appends the \0 character.
For strings obtained from standard input or those you create, you must
remember to save one character of storage for the null character.

»» The null character is not the same as the NULL pointer constant. Part 4 of this
book covers pointers.

CHAPTER 7 Input and Output 93

»» The scanf() function as used in this chapter is considered insecure by modern
coding standards. These exercises are good for learning C and practicing your
coding. In the real world, however, programmers avoid using the scanf()
function for input, because it can easily be exploited.

Reading values with scanf()
The scanf() function can do more than read strings. It can read in any value speci-
fied by a conversion character, as demonstrated in Listing 7-6.

LISTING 7-6:	 scanf() Eats an Integer

#include <stdio.h>

int main()
{
 int fav;

 printf("What is your favorite number: ");
 scanf("%d",&fav);
 printf("%d is my favorite number, too!\n",fav);
 return(0);
}

In Listing 7-6, the scanf() function reads an integer value from standard input.
The %d conversion character is used, just like printf() — indeed, it’s used again in
Line 9. This character directs scanf() to look for an int value for variable fav.

Exercise 7-14: Write new source code using Listing 7-6. Build and run. Test the
program by typing various integer values, positive and negative.

The ampersand (&) operator is used to prefix the second argument in the scanf()
function. The & is the address-of operator. It’s one of the advanced features in C,
related to pointers. I avoid the topic of pointers until Chapter 18, but for now,
know that an ampersand must prefix any variable specified in the scanf() function.
The exception is an array, such as the firstname char array in Listing 7-5.

Try running the program again, but specify a decimal value, such as 41.9, or type
text instead of a number.

94 PART 2 C Programming 101

The reason you see incorrect output is that scanf() is very specific. It fetches only
the variable type specified by the conversion character. So if you want a
floating-point value, you must specify a float variable and use the appropriate
conversion character; %f, in this case.

Exercise 7-15: Modify the source code from Listing 7-6 so that a floating-point
number is requested, input, and displayed.

»» You don’t need to prefix a char array variable with an ampersand in the scanf()
function; when using scanf() to read in a string, just specify the string
variable name.

»» The scanf() function stops reading text input at the first whitespace character,
space, tab, or Enter key.

Using fgets() for text input
For a general-purpose text input function, one that reads beyond the first
whitespace character, I recommend the fgets() function. Like most of the other text
I/O functions, it’s prototyped in the stdio.h header file. Here’s the format:

char * fgets(char *restrict s, int n, FILE *restrict stream);

Frightening, no? The fgets() function is a file function, which reads text from a
file, as in “file get string.” That’s how programmers talk after an all-nighter.

File functions are covered in Chapter 22, but because the operating system con-
siders standard input like a file, you can use fgets() to read text from the
keyboard.

Here’s a simplified version of the fgets() function as it applies to reading text
input:

fgets(string,size,stdin);

In this example, string is the name of a char array, a string variable; size is the
number of characters to input plus one for the null character. Effectively, the size
value is the same size as the char array. The final argument is the stdin constant,
the name of the standard input device as defined in the stdio.h header file.

CHAPTER 7 Input and Output 95

Listing 7-7 shows code that uses the fgets() function to read input.

LISTING 7-7:	 The fgets() Function Reads a String

#include <stdio.h>

int main()
{
 char name[10];

 printf("Who are you? ");
 fgets(name,10,stdin);
 printf("Glad to meet you, %s.\n",name);
 return(0);
}

Exercise 7-16: Type the source code from Listing 7-7 into your editor. Build
and run.

The fgets() function in Line 8 reads text from standard input. The text is stored in
the name array, which is set to a maximum of ten characters in Line 5. The value
10 is used as the second argument in the fgets() function to ensure that only nine
characters are read, one less than the number specified. The final character in the
name buffer is the null character, \0, which terminates the string.

The last argument in the fgets() function is stdin, the standard input device. This
is the “file” from which input is read.

The char array must have one extra character reserved for the \0 at the end of a
string. Its size must equal the size of input you need — plus one.

Here’s how the program runs on my screen:

Who are you? Danny Gookin
Glad to meet you, Danny Goo.

Only the first nine characters of the text I typed in the first line are displayed. Why
only nine? Because the tenth character must be the null character, \0, terminating
the string. If the fgets() function were to read in ten characters instead of nine, the
array would overflow and the program could malfunction.

96 PART 2 C Programming 101

If you type fewer than ten characters, you see that the Enter character is also
stored in the string. This effect causes the period at the end of the printf() state-
ment to appear alone on the following line:

Who are you? Danny
Glad to meet you, Danny
.

Exercise 7-17: Change the array size in the source code from Listing 7-7 to a con-
stant value. Set the constant to allow only three characters input.

Exercise 7-18: Redo your solution for Exercise 7-13 so that fgets() rather than
scanf() is used to read in the two strings.

You can read more about the reason fgets() is a preferred text input function in the
nearby sidebar, “Avoid fgets()’s evil sibling gets().”

»» The fgets() function as presented in this section reads text from the standard
input device, not from the keyboard directly.

»» The value returned by fgets() is the string that was input. In this book’s sample
code, this return value isn’t used, although upon success, the string returned
is identical to the information stored in the fgets() function’s first argument, the
char array variable.

»» Chapter 13 offers more information about strings in C.

AVOID FGETS()’S EVIL SIBLING GETS()
The original C language string-input function was gets(), for get-string. It took only a sin-
gle argument, the character buffer or array into which text input was stored. The prob-
lem? No limit was set on this input, which means the buffer could easily overflow and
wreak havoc in the computer. In fact, many early computer viruses were written specifi-
cally to exploit this weakness in the gets() function.

The gets() function is still available in the C library, though the compiler scolds you heav-
ily for using it. Further, many compilers add warning text to any program created with
the gets() function included in the code.

Bottom line: Don’t use gets() — use fgets() instead.

CHAPTER 8 Decision Making 97

Chapter 8
Decision Making

Decision making is the part of programming that makes you think a com-
puter is smart. It’s not, of course, but you can fool anyone by crafting your
code to carry out directions based on certain conditions or comparisons.

The process is easy to understand, but deriving that understanding from the
weirdo way it looks in a C program is why this chapter is necessary.

What If?
All human drama is based on disobedience. No matter what the rules, no matter
how strict the guidelines, some joker breaks free and the rest is an interesting
story. This adventure begins with the simple human concept of “what if.” It’s the
same concept used for decision making in your programs, though in that instance
only the word if is required.

Making a simple comparison
You make comparisons all the time. What will you wear in the morning? Should
you avoid Bill’s office because Marjorie says he’s “testy” today? And how much

IN THIS CHAPTER

»» Comparing conditions with if

»» Using comparison operators

»» Adding else to the decision

»» Creating an if-else-if-else structure

»» Making logical decisions

»» Working with a switch-case structure

»» Appreciating the ternary operator

98 PART 2 C Programming 101

longer will you put off going to the dentist? The computer is no different, albeit
the comparisons it makes use values, not abstracts, as illustrated in Listing 8-1.

LISTING 8-1:	 A Simple Comparison

#include <stdio.h>

int main()
{
 int a,b;

 a = 6;
 b = a - 2;

 if(a > b)
 {
 printf("%d is greater than %d\n",a,b);
 }
 return(0);
}

Exercise 8-1: Create a new program using the source code shown in Listing 8-1.
Build and run. Here’s the output you should see:

6 is greater than 4

Fast and obedient, that’s what a computer is. Here’s how the code works:

Line 5 declares two integer variables: a and b. The variables are assigned values in
Lines 7 and 8; the value of variable b is assigned to the value of variable a minus 2.

Line 10 makes a comparison:

if(a > b)

Programmers read this line as, “If a is greater than b.” Or when they’re teaching
the C language, they say, “If variable a is greater than variable b.” And, no, they
don’t announce the parentheses.

Lines 11 through 13 form a block that belongs to the if statement. The meat in the
sandwich is Line 12; the curly brackets don’t play a decision-making role, other
than hugging the statement at Line 12. When the if expression at Line 10 is true,
the statement in Line 12 is executed. Otherwise, all statements in the block are
skipped.

CHAPTER 8 Decision Making 99

Exercise 8-2: Edit the source code from Listing 8-1 so that addition instead of
subtraction is performed in Line 8. Can you explain the program’s output?

Introducing the if keyword
The if keyword is used to make decisions in your code based upon simple compari-
sons. Here’s the basic format:

if(expression)
{
 statement;
}

The expression is a comparison, a mathematical operation, the result of a func-
tion, or some other condition. When the expression is true, the statements (or
statement) enclosed in braces are executed; otherwise, they’re skipped.

»» The if statement’s expression need not be mathematical. It can be a function
that returns a true or false value, for example:

if(ready())

This statement evaluates the return of the ready() function. If the function
returns a true value, the statements belonging to if are executed.

»» Any non-zero value is considered true in C. Zero is considered false. So this
statement is true:

if(1)

And this statement is always false:

if(0)

»» You know whether a function returns a true or false value by reading the
function’s documentation, or you can set a true or false return value when
writing your own functions.

»» You cannot compare strings by using an if comparison. Instead, you use
specific string comparison functions, which are covered in Chapter 13.

»» When only one statement belongs to an if comparison, the braces are
optional.

100 PART 2 C Programming 101

Exercise 8-3: Rewrite the code from Listing 8-1, removing the braces before and
after Line 12. Build and run to ensure that it still works.

Comparing values in various ways
The C language employs a small platoon of mathematical comparison operators.
I’ve gathered the bunch in Table 8-1 for your perusal.

Comparisons in C read from left to right, so you read a >= b as “a is greater than
or equal to b.” Also, the order is important: Both >= and <= must be written in that
order, as must the != (not equal) operator. The == operator can be written
either way.

Listing 8-2 shows if expressions using the less-than and greater-than operators.

LISTING 8-2:	 Values Are Compared

#include <stdio.h>

int main()
{
 int first,second;

 printf("Input the first value: ");
 scanf("%d",&first);
 printf("Input the second value: ");
 scanf("%d",&second);

TABLE 8-1	 C Language Comparison Operators
Operator Pronunciation Example True When

!= Not equal to a != b a is not equal to b

< Less than a < b a is less than b

<= Less than or equal to a <= b a is less than or equal to b

== Is equal to a == b a is equal to b

> Greater than a > b a is greater than b

>= Greater than or equal to a >= b a is greater than or equal to b

CHAPTER 8 Decision Making 101

 puts("Evaluating...");
 if(first<second)
 {
 printf("%d is less than %d\n",first,second);
 }
 if(first>second)
 {
 printf("%d is greater than %d\n",first,second);
 }
 return(0);
}

Exercise 8-4: Create a new project by using the source code shown in Listing 8-2.
Build and run.

The most common expression if examines is probably the double equal sign. It
may look odd to you. The == operator isn’t the same as the = operator. The = oper-
ator is the assignment operator, which sets values. The == operator is the comparison
operator, which checks to see whether two values are equal.

I pronounce == as “is equal to.”

Exercise 8-5: Add a new section to the source code from Listing 8-2 that makes a
final evaluation on whether both variables are equal to each other.

Exercise 8-6: Type the source code from Listing 8-3 into a new source code file.
Build and run.

LISTING 8-3:	 Get “Is Equal To” into Your Head

#include <stdio.h>

int main()
{
 const int secret = 17;
 int guess;

 printf("Can you guess the secret number: ");
 scanf("%d",&guess);
 if(guess==secret)
 {
 puts("You guessed it!");
 return(0);

(continued)

102 PART 2 C Programming 101

 }
 if(guess!=secret)
 {
 puts("Wrong!");
 return(1);
 }
}

Take note of the value returned by the program — either 0 for a correct answer or
1 for a wrong answer. If you’re using Code::Blocks or another IDE, you can see this
value in the output window.

Knowing the difference between = and ==
One of the most common mistakes made by every C language programmer —
beginner and pro alike — is using a single equal sign instead of a double in an if
expression. To wit, I offer Listing 8-4.

LISTING 8-4:	 Always True

#include <stdio.h>

int main()
{
 int a;

 a = 5;

 if(a=-3)
 {
 printf("%d equals %d\n",a,-3);
 }
 return(0);
}

Exercise 8-7: Use the source code shown from Listing 8-4 to create a new pro-
gram. Ignore any warnings and run the program.

LISTING 8-3:	 (continued)

CHAPTER 8 Decision Making 103

The output may puzzle you. What I see is this:

-3 equals -3

That’s true, isn’t it? But what happened?

In Line 9, variable a is assigned the value -3. Because this expression is inside the
parentheses, it’s evaluated first. The result of a variable assignment in C is always
true for any non-zero value.

Exercise 8-8: Edit the source code from Listing 8-4 so that a double equal sign, or
“is equal to,” is used instead of the single equal sign in the if comparison.

Forgetting where to put the semicolon
Listing 8-5 is based upon Listing 8-4, taking advantage of the fact that C doesn’t
require a single statement belonging to an if comparison to be lodged as a block
hugged by curly brackets.

LISTING 8-5:	 Semicolon Boo-Boo

#include <stdio.h>

int main()
{
 int a,b;

 a = 5;
 b = -3;

 if(a==b);
 printf("%d equals %d\n",a,b);
 return(0);
}

Exercise 8-9: Carefully type the source code from Listing 8-5. Pay special atten-
tion to Line 10. Ensure that you type it in exactly, with the semicolon at the end of
the line. Ignore any warnings. Build and run the program.

Here’s the output I see:

5 equals -3

104 PART 2 C Programming 101

The problem here is a common one, a mistake made by just about every C pro-
grammer: The trailing semicolon in Listing 8-5 (Line 10) tells the program that
the if statement has nothing to do when the condition is true. That’s because a
single semicolon is a complete statement in C, albeit a null statement. To wit:

if(condition)
 ;

This construction is basically the same as Line 10 in Listing 8-5. Be careful not to
make the same mistake — especially when you type code a lot and you’re used to
ending a line with a semicolon.

Multiple Decisions
Not every decision is a clean-cut, yes-or-no proposition. Exceptions happen all
the time. C provides a few ways to deal with those exceptions, allowing you to
craft code that executes based on multiple possibilities.

Making more-complex decisions
For the either-or type of comparisons, the if keyword has a companion — else.
Together, they work like this:

if(expression)
{
 statement(s);
}
else
{
 statement(s);
}

When the expression is true in an if-else structure, the statements belonging to
if are executed; otherwise, the statements belonging to else are executed. It’s an
either-or type of decision.

Listing 8-6 is an update of sorts to the code shown in Listing 8-1. The single if
structure has been replaced by if-else. When the if comparison is false, the state-
ment belonging to else is executed.

CHAPTER 8 Decision Making 105

LISTING 8-6:	 An if-else Comparison

#include <stdio.h>

int main()
{
 int a,b;

 a = 6;
 b = a - 2;

 if(a > b)
 {
 printf("%d is greater than %d\n",a,b);
 }
 else
 {
 printf("%d is not greater than %d\n",a,b);
 }
 return(0);
}

Exercise 8-10: Type the source code for Listing 8-6 into a new project. Compile
and run.

Exercise 8-11: Modify the source code so that the user gets to input the value of
variable b.

Exercise 8-12: Modify the source code from Listing 8-3 so that an if-else structure
replaces that ugly if-if thing. (Hint: The best solution changes only one line of
code.)

Adding a third option
Not every decision made in a program is either-or. Sometimes, you find yourself
in need of an either-or-or-and-then type of thing. No word exists in English to
describe such a structure, but it exists in C. It looks like this:

if(expression)
{
 statement(s);
}
else if(expression)

106 PART 2 C Programming 101

{
 statement(s);
}
else
{
 statement(s);
}

When the first expression proves false, the else if statement makes another test.
If that expression proves true, its statements are executed. When neither condi-
tion is true, the statements belonging to the final else are executed.

Exercise 8-13: Using the source code from Listing 8-2 as a base, create an if-if
else-else structure that handles three conditions. The first two conditions are
specified in Listing 8-2, and you need to add the final possibility using a structure
similar to the one shown in this section.

C has no limit on how many else if statements you can add to an if decision process.
Your code could show an if, followed by three else-if conditions, and a final else.
This process works, though it may not be the best approach. See the later section
“Making a multiple-choice selection,” for a better way.

Multiple Comparisons with Logic
Some comparisons are more complex than those presented by the simple opera-
tors illustrated earlier, in Table 8-1. For example, consider the following
math-thingie:

-5 <= x <= 5

In English, this statement means that x represents a value between –5 and 5,
inclusive. That’s not a C language if comparison, but it can be, when you employ
logical operators.

Building a logical comparison
It’s possible to load two or more comparisons into a single if statement. The
results are then compared by using a logical operator. When the entire thing is
true, the if condition is considered true, as shown in Listing 8-7.

CHAPTER 8 Decision Making 107

LISTING 8-7:	 Logic Is a Tweeting Bird

#include <stdio.h>

int main()
{
 int coordinate;

 printf("Input target coordinate: ");
 scanf("%d",&coordinate);
 if(coordinate >= -5 && coordinate <= 5)
 {
 puts("Close enough!");
 }
 else
 {
 puts("Target is out of range!");
 }
 return(0);
}

Two comparisons are made by the if statement condition in Line 9. That statement
reads like this: “If the value of variable coordinate is greater than or equal to –5
and less than or equal to 5.”

Exercise 8-14: Create a new project using the source code from Listing 8-7. Build
the program. Run the code a few times to test how well it works.

Adding some logical operators
The C language logical comparison operators are shown in Table 8-2. These oper-
ators can be used in an if expression when two or more conditions must be met.

TABLE 8-2	 Logical Comparison Operators
Operator Name True When

&& and Both comparisons are true

|| or Either comparison is true

! not The item is false

108 PART 2 C Programming 101

Listing 8-7 uses the && operator as a logical AND comparison. Both conditions
specified must be true for the if statement to consider everything in the parenthe-
ses to be true.

Exercise 8-15: Modify the source code from Listing 8-7 so that a logical OR oper-
ation is used to make the condition true when the value of variable coordinate is
less than –5 or greater than 5.

Exercise 8-16: Create source code for a program that asks the popular question,
“Do you want to continue (Y/N)?” Process single-character input, testing for Y or
N, either upper- or lowercase. Ensure that the program responds properly when
neither a Y nor N is input.

»» Logical operations are often referred to by using all caps: AND, OR. That
separates them from the normal words and and or.

»» The logical AND is represented by two ampersands: &&. Say “and.”

»» The logical OR is represented by two pipe, or vertical-bar, characters: ||. Say
“or.”

»» The logical NOT is represented by a single exclamation point: !. Say “not!”

»» The logical NOT prefixes a value, or an expression in parentheses, to reverse
the results, transforming False into True and True into False.

The Old Switch Case Trick
Piling up a tower of if and if-else statements can be effective, but it’s not the best
way to walk through some multiple-choice decisions. An alternative offered in the
C language is known as the switch-case structure.

Making a multiple-choice selection
The switch-case structure allows you to code decisions in a C program based
on a single value. It’s the multiple-choice selection statement, as shown in
Listing 8-8.

CHAPTER 8 Decision Making 109

LISTING 8-8:	 Multiple Choice

#include <stdio.h>

int main()
{
 int code;

 printf("Enter the error code (1-3): ");
 scanf("%d",&code);
 switch(code)
 {
 case 1:
 puts("Drive Fault, not your fault.");
 break;
 case 2:
 puts("Illegal format, call a lawyer.");
 break;
 case 3:
 puts("Bad filename, spank it.");
 break;
 default:
 puts("That's not 1, 2, or 3");
 }
 return(0);
}

Exercise 8-17: Create a new program using the code from Listing 8-8. Just type it
in; I describe it later. Build it. Run it a few times, trying various values to see how
it responds.

Examine the source code in your editor, where you can reference the line numbers
mentioned in the following paragraphs.

The switch-case structure starts at Line 9 with the switch statement. The item it
evaluates is enclosed in parentheses. Unlike an if statement, switch eats only a
single value, not a comparison. In Line 9, the value is an integer that the user
types (read in Line 8).

The case part of the structure is enclosed in curly brackets, between Lines 10
and 22. A case statement shows a single value, such as 1 in Line 11. The value is
followed by a colon.

110 PART 2 C Programming 101

The value specified by each case statement is compared with the item specified in
the switch statement. If the values are equal, the statements belonging to case are
executed. If not, they’re skipped and the next case value is compared.

The break keyword stops program flow through the switch-case structure. Program
flow resumes after the switch-case structure’s final curly bracket, which is
Line 23 in Listing 8-8.

After the final comparison, the switch-case structure uses a default item, shown in
Line 20. This item’s statements are executed when none of the case comparisons
matches. The default item need not be specified, though in Listing 8-8 it handles
out-of-range values.

Exercise 8-18: Construct a program using source code similar to Listing 8-8, but
make the input the letters A, B, and C. You might want to review Chapter 7 to see
how single characters are specified in the C language.

»» The comparison being made in a switch-case structure is between the value
specified in switch’s parentheses and the values that follow each case keyword.
When the comparison is true, meaning that both values are equal to each
other, the statements belonging to case are executed.

»» The break keyword disrupts program flow. It can be used in an if structure as
well, but mostly it’s found in loops. See Chapter 9.

»» Specify a break after a case comparison’s statements so that the rest of the
structure isn’t executed. See the later section “Taking no breaks.”

Understanding the switch-case structure
And now — presenting the most complex thing in C. Seriously, you’ll find more
rules and structure with switch-case than just about any other construct in
C. Here’s the skeleton:

switch(expression)
{
 case value1:
 statement(s);
 break;
 case value2:
 statement(s);
 break;
 case value3:
 statement(s);

CHAPTER 8 Decision Making 111

 break;
 default:
 statement(s);
}

The switch item introduces the structure, which follows and is enclosed by a set of
curly brackets. The structure must contain at least one case statement, though
more than one case statement is required to make the thing useful.

The switch statement contains an expression in parentheses. That expression
must evaluate to a single value. It can be a variable, a value returned from a func-
tion, or a mathematical operation.

A case statement is followed by an immediate value and then a colon. Following
this statement are one or more statements. These statements are executed when
the immediate value following case matches the switch statement’s expression.
Otherwise, the statements are skipped and the next case statement is evaluated.

The break keyword is used to flee the switch-case structure. Otherwise, program
execution cascades through the structure.

The default item ends the switch-case structure. It contains statements that are
executed when none of the case statements match. If nothing is left to do, you may
omit the default item from the switch-case structure.

The case portion of a switch-case structure doesn’t make an evaluation. If the code
needs multiple comparisons, use a multiple if-else type of structure instead.

Taking no breaks
It’s possible to construct a switch-case structure with no break statements. Such a
thing can even be useful under special circumstances, as shown in Listing 8-9.

LISTING 8-9:	 Meal Plan Decisions

#include <stdio.h>

int main()
{
 char choice;

 puts("Meal Plans:");
 puts("A - Breakfast, Lunch, and Dinner");

(continued)

112 PART 2 C Programming 101

 puts("B - Lunch and Dinner only");
 puts("C - Dinner only");
 printf("Your choice: ");
 scanf("%c",&choice);

 printf("You've opted for ");
 switch(choice)
 {
 case 'A':
 printf("Breakfast, ");
 case 'B':
 printf("Lunch and ");
 case 'C':
 printf("Dinner ");
 default:
 printf("as your meal plan.\n");
 }
 return(0);
}

Exercise 8-19: Create a new program using the source code from Listing 8-9.
Build and run.

Exercise 8-20: If you understand how case statements can fall through, modify
Exercise 8-19 so that both upper- and lowercase letters are evaluated in the
switch-case structure.

The Weird ?: Decision Thing
I have one last oddball decision-making tool to throw at you in this long, decisive
chapter. It’s perhaps the most cryptic of the decision-making tools in C, a favorite
of programmers who enjoy obfuscating their code. Witness Listing 8-10.

LISTING 8-9:	 (continued)

CHAPTER 8 Decision Making 113

LISTING 8-10:	 And Then It Gets Weird

#include <stdio.h>

int main()
{
 int a,b,larger;

 printf("Enter value A: ");
 scanf("%d",&a);
 printf("Enter different value B: ");
 scanf("%d",&b);

 larger = (a > b) ? a : b;
 printf("Value %d is larger.\n",larger);
 return(0);
}

Specifically, you want to look at Line 12, which I’m showing here as though it isn’t
ugly enough inside Listing 8-10:

larger = (a > b) ? a : b;

Exercise 8-21: Create a project using the source code from Listing 8-10. Build and
run just to prove that the weirdo ?: thing works.

Officially, ?: is known as a ternary operator: It’s composed of three parts: a com-
parison, and then value-if-true and value-if-false. Written in plain, hacker Eng-
lish, the statement looks like this:

result = expression ? if_true : if_false;

The statement begins with an expression. Anything you’d stuff into an if state-
ment’s parentheses works, as do all operators, mathematical and logical. I typi-
cally enclose the expression in parentheses, though this isn’t a requirement.

When expression is true, the if_true portion of the statement is evaluated and
its value is stored in the result variable. Otherwise, the if_false solution is
stored. Oh, and result need not be a variable; the value generated by the ternary
operator can also be used immediately in a function.

Exercise 8-22: Rewrite the source code form Listing 8-10 using an if-else struc-
ture to carry out the decision and result from the ?: ternary operator in Line 12.

CHAPTER 9 Loops, Loops, Loops 115

Chapter 9
Loops, Loops, Loops

Programs love to do things over and over, mirthfully so. They never
complain, they never tire. In fact, they’ll repeat things forever unless you
properly code instructions for when to stop. Indeed, the loop is a basic

programming concept. Do it well. Do it well. Do it well.

A Little Déjà Vu
A loop is a section of code that repeats. How often? That depends on how you write
the loop. As an overview, a loop involves three things:

»» Initialization

»» One or more statements that repeat

»» An exit

The initialization sets up the loop, usually specifying a condition upon which the
loop begins or is activated. For example, “Start the counter at 1.”

The statements that repeat are contained as a block in curly brackets. They
continue to be executed, one after the other, until the exit condition is met.

IN THIS CHAPTER

»» Understanding loops

»» Exploring the for loop

»» Creating nested for loops

»» Working a while loop

»» Using a do while loop

»» Avoiding the endless loop

116 PART 2 C Programming 101

The exit condition determines when the loop stops. Either it’s a condition that’s
met, such as “Stop when the counter equals 10,” or the loop can stop when a break
statement is encountered. The program execution continues with the next state-
ment after the loop’s final curly bracket.

Having an exit condition is perhaps the most important part of a loop. Without it,
the loop repeats forever in a condition called an endless loop. See the later section
“Looping endlessly.”

The C language features two looping keywords: for and while. Assisting the while
keyword is the do keyword. The goto keyword can also be used for looping, though
it’s heavily shunned.

The Thrill of for Loops
A loop is a group of statements that repeat. You choose a set number of iterations,
or the number of repeats can be based on a value. Either way, the for keyword
helps set up a basic type of loop.

Doing something x number of times
It’s entirely possible, and even a valid solution, to write source code that displays
the same line of text ten times. You could copy-and-paste a printf() statement to
do the job. Simple, but it’s not a loop, which is shown in Listing 9-1.

LISTING 9-1:	 Write That Down Ten Times!

#include <stdio.h>

int main()
{
 int x;

 for(x=0; x<10; x=x+1)
 {
 puts("Sore shoulder surgery");
 }
 return(0);
}

CHAPTER 9 Loops, Loops, Loops 117

Exercise 9-1: Create a new program using the source code from Listing 9-1. Type
everything carefully, especially Line 7. Build and run.

As output, the program coughs up the tongue-twister Sore shoulder surgery ten
times, in ten lines of text. The key, of course, is in Line 7, the for statement. That
statement directs the program to repeat the statement(s) in curly brackets a total
of ten times.

Exercise 9-2: Using the source code from Listing 9-1 again, replace the value 10 in
Line 7 with the value 20. Build and run.

Introducing the for loop
The for loop is usually the first type of loop you encounter when you learn to pro-
gram. It looks complex, but that’s because it’s doing everything required of a loop
in a single statement:

for(initialization; exit_condition; repeat_each)

Here’s how it works:

initialization is a C language expression that’s evaluated at the start of the
loop. Most often, it’s where the variable that counts the loop’s iterations is
initialized.

exit_condition is the test upon which the loop stops. In a for loop, the state-
ments continue to repeat until the exit condition is true. The expression used for
the exit_condition is most often a comparison, like something you’d find in an if
statement.

repeat_each is an expression that’s executed once every iteration. It’s normally
an operation affecting the initialization variable at the first part of the for
statement.

The for statement is followed by a block of one or more statements held in curly
brackets:

for(x=0; x<10; x=x+1)
{
 puts("Sore shoulder surgery");
}

118 PART 2 C Programming 101

You can omit the brackets when only one statement is specified:

for(x=0; x<10; x=x+1)
 puts("Sore shoulder surgery");

In this for statement, and from Listing 9-1, the first expression is initialization:

x=0

The value of the int variable x is set to 0. In C programming, you start counting
with 0, not with 1. The advantages of doing so are presented throughout this book.

The second expression sets the loop’s exit condition:

x<10

As long as the value of variable x is less than 10, the loop repeats. Once this expres-
sion is false, the loop stops. The result is that the loop repeats ten times. That’s
because x starts at 0, not at 1.

Finally, the third expression repeats for each iteration of the loop:

x=x+1

Every time the loop’s statements are executed, the value of variable x is increased
by 1. The preceding statement reads, “Variable x equals the value of variable x,
plus 1.” Because C evaluates the right side of the equation first, nothing is goofed
up. So if currently the value of x is 5, the new value of x would be 6.

All told, I read the expression this way:

for(x=0; x<10; x=x+1)

“For x starts at 0, while x is less than 10, add 1 to x.”

Listing 9-2 shows another example of a simple for loop. It displays values from -5
through 5.

CHAPTER 9 Loops, Loops, Loops 119

LISTING 9-2:	 Counting with a Loop

#include <stdio.h>

int main()
{
 int count;

 for(count=-5; count<6; count=count+1)
 {
 printf("%d\n",count);
 }
 return(0);
}

Exercise 9-3: Enter the source code from Listing 9-2 into the editor. Save, build,
and run.

Exercise 9-4: Create a new project using the source code from Listing 9-2 as a
starting point. Display the values from 11 through 19. Separate each value by a tab
character, \t. Use the <= sign for the comparison that ends the loop. Clean up the
display by adding a final newline character when the loop is done.

»» The for statement uses two semicolons, not commas, to separate each
item. Even so:

»» It’s possible to specify two conditions in a for statement by using commas. This
setup is rather rare, so don’t let it throw you. See the later section “Adding
multiple for loop conditions” for details.

Counting with the for statement
You’ll use the for statement quite frequently in your coding travels. Listing 9-3
shows another counting variation.

120 PART 2 C Programming 101

LISTING 9-3:	 Counting by Two

#include <stdio.h>

int main()
{
 int duo;

 for(duo=2;duo<=100;duo=duo+2)
 {
 printf("%d\t",duo);
 }
 putchar('\n');
 return(0);
}

Exercise 9-5: Create a new project using Listing 9-3 as your source code. Compile
and run.

The program’s output displays even values from 2 through 100. The value 100 is
displayed because the “while true” condition in the for statement uses <= (less
than or equal to). The variable duo counts by two because of this expression:

duo=duo+2

In Line 9, the printf() function uses \t to display tabs (though the numbers may
not line up perfectly on an 80-column display). Also, the putchar() function kicks
in a newline character at Line 11.

Exercise 9-6: Modify the source code from Listing 9-3 so that the output starts at
the number 3 and displays multiples of 3 all the way up to 100.

Exercise 9-7: Create a program that counts backward from 25 to 0.

Looping letters
Listing 9-4 shows another way to “count” using a for loop.

CHAPTER 9 Loops, Loops, Loops 121

LISTING 9-4:	 Counting by Letter

#include <stdio.h>

int main()
{
 char alphabet;

 for(alphabet='A';alphabet<='Z';alphabet=alphabet+1)
 {
 printf("%c",alphabet);
 }
 putchar('\n');
 return(0);
}

Before you type the source code from Listing 9-4, can you guess what the output
might be? Does it make sense to you?

Exercise 9-8: Use the source code from Listing 9-4 to create a new program. Build
and run.

Exercise 9-9: Modify your solution to Exercise 9-8, changing the printf() function
in Line 9 so that the %d placeholder is used instead of %c.

Computers see characters as numbers. Only when numbers are displayed and they
fall in the ASCII code range for characters do characters appear. (See Appendix A
for the list of ASCII character codes.)

Exercise 9-10: Using Listing 9-4 as your inspiration, write a for loop that “counts”
backward from z (lowercase Z) to a (lowercase A).

Nesting for loops
One thing you can stick inside a for loop is another for loop. It may seem crazy to
loop within a loop, but it’s a common practice. The official jargon is nested loop.
Listing 9-5 shows an example.

122 PART 2 C Programming 101

LISTING 9-5:	 A Nested Loop

#include <stdio.h>

int main()
{
 int alpha,code;

 for(alpha='A';alpha<='G';alpha=alpha+1)
 {
 for(code=1;code<=7;code=code+1)
 {
 printf("%c%d\t",alpha,code);
 }
 putchar('\n'); /* end a line of text */
 }
 return(0);
}

All the indents are designed to make the code more readable. They show which
statements belong to which for loop because they line up at the same tab stop.

Line 7 in Listing 9-5 begins the first, outer for loop. It counts from letters A to G.
It also contains the second, inner for loop and a putchar() function on Line 13. That
function helps organize the output into rows by spitting out a newline after each
row is displayed.

The printf() function in Line 11 displays the program’s output, specifying the outer
loop value, alpha, and the inner loop value, code. The \t escape sequence sepa-
rates the output.

Exercise 9-11: Type the source code from Listing 9-5 into your editor. Build
and run.

Here’s the output I see on my computer:

A1 A2 A3 A4 A5 A6 A7
B1 B2 B3 B4 B5 B6 B7
C1 C2 C3 C4 C5 C6 C7
D1 D2 D3 D4 D5 D6 D7
E1 E2 E3 E4 E5 E6 E7
F1 F2 F3 F4 F5 F6 F7
G1 G2 G3 G4 G5 G6 G7

CHAPTER 9 Loops, Loops, Loops 123

A triple nested loop contains three for statements, which continues the cascade
shown in Listing 9-5. As long as you can match up the curly brackets with each for
statement (and that’s easy, thanks to modern text editors), it’s something you can
accomplish quite readily.

Exercise 9-12: Write a 3-letter acronym-generating program. The program’s
output lists all 3-letter combinations from AAA through ZZZ, spewed out each on
a line by itself.

I wrote a program similar to the solution to Exercise 9-12 as one of my first pro-
gramming projects. The computers in those days were so slow that the output
took about ten seconds to run. On today’s computers, the output is nearly
instantaneous.

The Joy of the while Loop
Another popular looping keyword in C is while. It has a companion, do, so pro-
grammers refer to this type of loop as either while or do while. The C language is
missing the do-whacka-do type of loop.

Structuring a while loop
The C language while loop is a lot easier to look at than a for loop, but it involves
more careful setup and preparation. Basically, it goes like this:

while(expression)
{
 statement(s);
}

The expression is a value or a comparison or any of a number of other things that
results in a true/false condition, just like you’d find in an if statement. The
expression is evaluated each time the loop repeats. As long as it’s true (“while”
it’s true), the loop spins and its statements continue to execute.

Because the expression is evaluated at the start of the loop, the loop must be ini-
tialized before the while statement, as shown in Listing 9-6.

So how does a while loop end? The termination must be triggered within the loop’s
statements. Usually, one of the statements affects the expression that’s evaluated,
causing it to be false.

124 PART 2 C Programming 101

After the while loop is done, program execution continues with the next statement
after the final curly bracket.

A while loop can also forgo the curly brackets when it has only one statement:

while(expression)
 statement;

LISTING 9-6:	 The while Version of Listing 9-1

#include <stdio.h>

int main()
{
 int x;

 x=0;
 while(x<10)
 {
 puts("Sore shoulder surgery");
 x=x+1;
 }
 return(0);
}

The while loop demonstrated in Listing 9-6 has three parts:

»» The initialization takes place on Line 7, where variable x is set equal to 0.

»» The loop’s exit condition is contained within the while statement’s parenthe-
ses, as shown in Line 8.

»» The item that iterates the loop is found on Line 11, where variable x is
increased in value.

Exercise 9-13: Create a new program using the source code from Listing 9-6.
Build and run.

Exercise 9-14: Change Line 7 in the source code so that variable x is assigned the
value 13. Build and run. Can you explain the output?

Exercise 9-15: Write a program that uses a while loop to output values from –5
through 5, using an increment of 0.5.

CHAPTER 9 Loops, Loops, Loops 125

Using the do while loop
The do while loop can be described as an upside-down while loop. This description
is true, especially when you look at the thing’s structure:

do
{
 statement(s);
} while (condition);

As with a while loop, the initialization must take place before entering the loop,
and one of the loop’s statements should affect the condition so that the loop exits.
The while statement, however, appears after the last curly bracket. The do state-
ment begins the structure.

Because of its inverse structure, the major difference between a while loop and a
do while loop is that the do while loop is always executed at least once. So you can
best employ this type of loop when you need to ensure that the statements exe-
cute. Likewise, avoid do while when you don’t want the statements to execute
unless the condition is true. An interesting do while loop is shown in Listing 9-7.

LISTING 9-7:	 A Fibonacci Sequence

#include <stdio.h>

int main()
{
 int fibo,nacci;

 fibo=0;
 nacci=1;

 do
 {
 printf("%d ",fibo);
 fibo=fibo+nacci;
 printf("%d ",nacci);
 nacci=nacci+fibo;
 } while(nacci < 300);

 putchar('\n');
 return(0);
}

126 PART 2 C Programming 101

Exercise 9-16: Type the source code from Listing 9-7 into the editor. Mind your
typing! The final while statement (refer to Line 16) must end with a semicolon;
otherwise, the compiler gets all huffy on you.

Here’s the output:

0 1 1 2 3 5 8 13 21 34 55 89 144 233

The loop begins at Lines 7 and 8, where the variables are initialized.

Lines 12 through 15 calculate the Fibonacci values. Two printf() functions display
the values.

The loop ends on Line 16, where the while statement makes its evaluation. As long
as variable nacci is less than 300, the loop repeats. You can adjust this value
higher to direct the program to output more Fibonacci numbers.

On Line 18, the putchar() statement cleans up the output by adding a newline
character.

Exercise 9-17: Redo your solution to Exercise 9-14 as a do while loop.

Loopy Stuff
I could go on and on about loops all day, repeating myself endlessly! Before mov-
ing on, however, I’d like to go over a few looping tips and pratfalls. These things
you should know before you get your official For Dummies Looping Programmer
certificate.

Looping endlessly
Beware the endless loop!

When a program enters an endless loop, it either spews output over and over
without end or it sits there tight and does nothing. Well, it’s doing what you
ordered it to do, which is to spin forever. Sometimes, this setup is done on pur-
pose, but mostly it happens because of programmer error. And with the way loops
are set up in C, it’s easy to unintentionally loop ad infinitum.

CHAPTER 9 Loops, Loops, Loops 127

Listing 9-8 illustrates a common endless loop, which is a programming error, not
a syntax error.

LISTING 9-8:	 A Common Way to Make an Endless Loop

#include <stdio.h>

int main()
{
 int x;

 for(x=0;x=10;x=x+1)
 {
 puts("What are you lookin' at?");
 }
 return(0);
}

The problem with the code in Listing 9-8 is that the for statement’s exit condition
is always true: x=10. Read it again if you didn’t catch it the first time, or just do
Exercise 9-18.

Exercise 9-18: Type the source code for Listing 9-8. Save and build, ignoring any
warnings. Run.

The program runs — infinitely.

»» To break out of an endless loop, press Ctrl+C on the keyboard. This trick works
only for console programs, and it may not always work. If it doesn’t, you need
to kill the process run amok, which is something I don’t have time to explain in
this book.

»» Endless loops are also referred to as infinite loops.

Looping endlessly but on purpose
Occasionally, a program needs an endless loop. For example, a microcontroller
may load a program that runs as long as the device is on. When you set up such a
loop on purpose in C, one of two statements is used:

for(;;)

128 PART 2 C Programming 101

I read this statement as “for ever.” With no items in the parentheses, but still with
the required two semicolons, the for loop repeats eternally — even after the cows
come home. Here’s the while loop equivalent:

while(1)

The value in the parentheses doesn’t necessarily need to be 1; any true or non-
zero value works. When the loop is endless on purpose, however, most program-
mers set the value to 1 simply to self-document that they know what’s up.

You can see an example of an endless loop on purpose in the next section.

Breaking out of a loop
Any loop can be terminated instantly — including endless loops — by using a
break statement within the loop’s repeating group of statements. When break is
encountered, looping stops and program execution picks up with the next state-
ment after the loop’s final curly bracket. Listing 9-9 demonstrates the process.

LISTING 9-9:	 Get Me Outta Here!

#include <stdio.h>

int main()
{
 int count;

 count = 0;
 while(1)
 {
 printf("%d, ",count);
 count = count+1;
 if(count > 50)
 break;
 }
 putchar('\n');
 return(0);
}

The while loop at Line 8 is configured to go on forever, but the if test at Line 12 can
stop it: When the value of count is greater than 50, the break statement (refer to
Line 13) is executed and the loop halts.

CHAPTER 9 Loops, Loops, Loops 129

Exercise 9-19: Build and run a new project using the source code from
Listing 9-9.

Exercise 9-20: Rewrite the source code from Listing 9-9 so that an endless for
loop is used instead of an endless while loop.

You don’t need to construct an endless loop to use the break statement. You can
break out of any loop. When you do, execution continues with the first statement
after the loop’s final curly bracket.

Adding multiple for loop conditions
A common mistake in a for loop is to use commas instead of semicolons to sepa-
rate the parts. But commas are allowed in the for loop’s parentheses, just not to
replace the semicolons. Instead, they are used to specify multiple initialization
operations as well as multiple looping conditions. Listing 9-10 shows how you can
get nutty with commas in a for statement.

LISTING 9-10:	 Crowded in Here

#include <stdio.h>

int main()
{
 int a;
 char c;

 for(a=1,c='Z'; a<5; a=a+1,c=c-1)
 printf("%d%c\n",a,c);
 return(0);
}

Line 8 shows a for statement with two initializations and two expressions that
take place each time the loop repeats. Both pairs are separated by a comma. The
semicolons still group each of the three parts in a for loop.

First, variable a is initialized to 1 and variable c is initialized to the letter Z. The
loop spins as long as the value of variable a is less than 5. And after each statement
repeats, the value of variable a is increased by 1 and the value of variable c is
decreased by 1.

Exercise 9-21: Type the source code from Listing 9-10 into your editor. Build
and run.

130 PART 2 C Programming 101

Screwing up a loop
I know of two common ways to mess up a loop. These trouble spots crop up for
beginners and pros alike. The only way to avoid these spots is to keep a keen eye
so that you can spot ’em quick.

The first goof-up is specifying a condition that can never be met; for example:

for(x=1;x==10;x=x+1)

In the preceding line, the exit condition is false before the loop spins once, so the
loop is never executed. This error is almost as insidious as using an assignment
operator (a single equal sign) instead of the “is equal to” operator (as just shown).

Another common mistake is misplacing the semicolon, as in

for(x=1;x<14;x=x+1);
{
 puts("Sore shoulder surgery");
}

Because the first line, the for statement, ends in a semicolon, the line is the entire
loop. The empty code repeats 13 times, which is what the for statement dictates.
The puts() statement is then executed once.

Rogue semicolons can be frustrating!

The problem is worse with while loops because the do while structure requires a
semicolon after the final while statement. In fact, forgetting that particular sem-
icolon is also a source of woe. For a traditional while loop, you don’t do this:

while(x<14);
{
 puts("Sore shoulder surgery");
}

Most compilers catch these rogue semicolon issues with a warning. Still, be on the
lookout, as Listing 9-11 demonstrates.

LISTING 9-11:	 A for Loop with No Body

#include <stdio.h>

int main()
{

CHAPTER 9 Loops, Loops, Loops 131

 int x;

 for(x=0;x<10;x=x+1,printf("%d\n",x))
 ;
 return(0);
}

In the example shown in Listing 9-11, the semicolon is placed on the line after the
for statement at Line 8. This location shows deliberate intent.

As with the example from the preceding section, two items are placed in the for
statement’s parentheses, both separated by a comma.

Exercise 9-22: Type the source code from Listing 9-11 into your editor. Build
and run.

Though you can load up items in a for statement’s parentheses, it’s rare and not
recommended for readability’s sake.

AVOID GOTO HELL
The third looping statement is the most despised and the lowest-of-the-low C language
keywords. It’s goto, which is pronounced “go to,” not “gotto.” It directs program execu-
tion to another line in the source code, a line tagged by label. Here’s an example:

here:
 puts("This is a type of loop");
goto here;

As this chunk of code executes (from the top down), the here label is ignored. The puts()
function comes next, and, finally, goto redirects program flow back up to the here label.
Everything repeats. Everything works. But it’s just darn ugly.

Most clever programmers can craft their code in ways that don’t require goto. The result
is something more readable — and that’s the key. Code that contains lots of goto state-
ments can be difficult to follow, leading experienced programmers to describe it as spa-
ghetti code. The goto statement encourages sloppy habits.

The only time goto might truly be necessary is when busting out of a nested loop. Even
in this situation, an example would be contrived. So it’s probably safe to say that you’ll
run your entire programming career and, hopefully, never have to deal with a goto
statement in C.

CHAPTER 10 Fun with Functions 133

Chapter 10
Fun with Functions

When it comes to getting work done, it’s a program’s functions that do
the heavy lifting. The C language comes with libraries full of functions,
which help bolster the basics of the language, the keywords, the opera-

tors, and so on. When these C library functions fall short, you concoct your own
functions.

Anatomy of a Function
The tools that are needed to craft your own functions are brief. After deciding the
function’s purpose, you give it a unique name, toss in some parentheses and curly
brackets, and you’re pretty much done. Of course, the reality is a bit more involved.

Constructing a function
All functions are dubbed with a name, which must be unique; no two functions
can have the same name, nor can a function have the same name as a keyword or
variable used in the code.

IN THIS CHAPTER

»» Creating a function

»» Avoiding the prototype

»» Working with variables in a function

»» Passing arguments to a function

»» Returning values from a function

»» Using return to leave a function

134 PART 2 C Programming 101

The name is followed by parentheses, which are then followed by a set of curly
brackets. So, in its simplest construction, a function looks like this:

type function() { }

In the preceding example, type defines the function’s data type, which is related
to the value returned from the function. Options for type include all the standard
C data types — char, int, float, double — and also void for cheap functions that
don’t return anything.

function is the function’s name. It’s followed by a pair of parentheses, which
can, optionally, contain values passed to the function. These values are called
arguments. Not every function features arguments.

Central to a function are its statements, enclosed in curly brackets. These state-
ments are what make the function do its thing.

Functions that return a value must use the return keyword. The return statement
either ends the function directly or passes a value back to the statement that called
the function. For example:

return;

This statement ends a function and doesn’t pass on a value. Any statements in the
function after return are ignored.

return(something);

This statement passes the value of the something variable back to the statement
that called the function. The something must be of the same data type as the
function, an int, the float, and so on.

Functions that don’t return values are declared of the void type. Those functions
end with the last statement held in the curly brackets; a return statement isn’t
required.

One more important thing! Functions must be prototyped in your code. This is so
that the compiler understands the function and sees to it that you use it properly.
The prototype describes the value returned and any arguments the function
requires. The prototype must appear in your source code before any statement
calls the function. Listing 10-1 shows a prototype example at Line 3.

CHAPTER 10 Fun with Functions 135

LISTING 10-1:	 Basic Function; No Return

#include <stdio.h>

void prompt(); /* function prototype */

int main()
{
 int loop;
 char input[32];

 loop=0;
 while(loop<5)
 {
 prompt();
 fgets(input,32,stdin);
 loop=loop+1;
 }
 return(0);
}

/* Display prompt */

void prompt(void)
{
 printf("C:\\DOS> ");
}

Exercise 10-1: Use the source code from Listing 10-1 to create a new program.
Build and run.

The program displays a prompt five times, allowing you to type various com-
mands. Of course, nothing happens when you type commands, though you can
program those actions later, if you like. Here’s how this program works in regard
to creating a function:

Line 3 lists the function prototype. It’s essentially a copy of the first line of the
function (from Line 22), but ending with a semicolon. It can also be written like
this:

void prompt(void);

136 PART 2 C Programming 101

The function returns no values and requires no arguments, so its data type is void
and void appears in the parentheses.

Line 13 accesses the function. The function is called as its own statement. It
doesn’t require any arguments or return any values, and it appears on a line by
itself, as shown in the listing. When the program encounters that statement, pro-
gram execution jumps up to the function. The function’s statements are executed,
and then control returns to the next line in the code after the function was called.

Lines 22 through 25 define the function itself. The function’s data type, void, is
specified on Line 22, followed by the function name, and then the parentheses
with void specified because arguments aren’t passed to the function.

The function’s sole statement is held between curly brackets. The prompt() func-
tion uses the printf() function to output a prompt, which makes it seem like the
function isn’t necessary, but many examples of one-line functions can be found
in lots of programs.

Exercise 10-2: Modify the source code from Listing 10-1 to add the busy() func-
tion, which contains the while loop now in the main() function. (Copy Lines 7
through 16 into the new function.) Have the main() function call the busy()
function.

»» C has no limit on what you can do in a function. Any statements you can stuff
into the main() function can go into any function. Indeed, main() is simply
another function in your program, albeit the program’s chief function.

»» The main() function has arguments, so don’t be tempted to edit its empty
parentheses and stick the word void in there. In other words, this construct is
wrong:

int main(void)

The main() function in C has two arguments. It’s possible to avoid listing them
when you’re not going to use them, by keeping parentheses empty.
Chapter 15 discusses using the main() function’s arguments.

»» Other programming languages may refer to a function as a subroutine or
procedure.

Prototyping (or not)
What happens when you don’t prototype? As with anything in programming, the
compiler or linker lets you know with a warning or error message when you

CHAPTER 10 Fun with Functions 137

goof — or the program just doesn’t run properly. It’s not the end of the world —
no, not like programming a military robot or designing genetic code for a new
species of Venus flytrap.

Exercise 10-3: Modify the source code from Exercise 10-1. Comment out the pro-
totype from Line 3. Build the result.

Build errors are wonderful things, delightfully accurate yet entirely cryptic. Here
are the warning and error messages generated by my compiler and linker, show-
ing only the relevant parts of each message:

13 warning: implicit declaration of function 'prompt'
22 error: conflicting types for 'prompt'

The first warning occurs at Line 13 in my source code file, where the prompt()
function is used inside the main() function. The compiler is telling you that a
function is called without a prototype. As the message says, you’re implicitly
declaring a function. That’s a no-no, but not a full-on error; the compiler gener-
ates object code, praying that the linker can resolve the unknown function.

The error occurs where the prompt() function dwells in the program. In my source
code, it’s at Line 22. The prompt() function’s data type is incorrect because the
linker assumes integer as an unknown function’s data type.

You may draw the conclusion that prototyping is an absolute necessity in your C
code. This assumption isn’t entirely true. You can avoid prototyping by reordering
the functions in your source code. As long as a function is listed before it’s used,
you don’t need a prototype.

Exercise 10-4: Edit your source code from Exercise 10-3. Remove the function
prototype that was commented out at Line 3. Cut-and-paste (move) the prompt()
function from the bottom of the source code listing to the top, above the main()
function. Save, build, and run.

Listing 10-2 shows what I conjured up as a solution for Exercise 10-4.

LISTING 10-2:	 Avoiding the Function Prototype

#include <stdio.h>

/* display prompt */

void prompt(void)

(continued)

138 PART 2 C Programming 101

{
 printf("C:\\DOS> ");
}

int main()
{
 int loop;
 char input[32];

 loop=0;
 while(loop<5)
 {
 prompt();
 fgets(input,32,stdin);
 loop=loop+1;
 }
 return(0);
}

In this book, as well as in my own programs, I write the main() function first, fol-
lowed by other functions. This method is traditional in the C language, and it
allows for better readability. You are free on your own to put functions first to
avoid prototyping. And if you don’t, keep in mind that other programmers may do
it that way, so don’t be surprised when you see it.

Compiler messages may feature parenthetical comments that refer to the switch,
or traditional command-line option, that enables checking for a particular warn-
ing. For example, the warning message from Exercise 10-3 reads in full:

ex1003.c:13:9: warning: implicit declaration of function
'prompt' is invalid in C99 [-Wimplicit-function-declaration]

The specific compiler warning switch for this error message is -Wimplicit-
function-declaration.

LISTING 10-2:	 (continued)

CHAPTER 10 Fun with Functions 139

Functions and Variables
I’m fond of saying that functions gotta funct. That is, they need to do something,
to work as a machine that somehow manipulates input or generates output. To
make your functions funct, you need to know how to employ variables to, from,
and within a function.

Using variables in functions
Functions that use variables must declare those variables — just like the main()
function does. In fact, it’s pretty much the same thing. The big difference, which
you must remember, is that variables declared and used within a function are local
to that function. Or, to put it in the vernacular, what happens in a function stays
within the function, as shown in Listing 10-3.

LISTING 10-3:	 Local Variables in a Function

#include <stdio.h>

void vegas(void);

int main()
{
 int a;

 a = 365;
 printf("In the main() function, a=%d\n",a);
 vegas();
 printf("In the main() function, a=%d\n",a);
 return(0);
}

void vegas(void)
{
 int a;

 a = -10;
 printf("In the vegas() function, a=%d\n",a);
}

140 PART 2 C Programming 101

Both the main() and vegas() functions declare and use int variable a. The variable
is assigned the value 365 in main() at Line 9. In the vegas() function, variable a is
assigned the value -10 at Line 20. Can you predict the program’s output for the
printf() function on Line 12?

Exercise 10-5: Create a new project using the source code from Listing 10-3. Build
and run.

Here’s the output I see:

In the main() function, a=365
In the vegas() function, a=-10
In the main() function, a=365

The same variable name is used in both functions, yet it holds a different value in
each. That’s because variables in C are local to their functions: One function can-
not change the value of a variable in another function, even if both variables sport
the same type and name.

»» My admonition earlier in this book about not duplicating variable names
doesn’t hold for variables in other functions. You could have 16 functions in
your code, and each function uses the alpha variable. That’s perfectly
okay. Even so:

»» You need not use the same variable names in all functions. The vegas()
function from Listing 10-3 could have declared its variable name as pip or
wambooli.

»» To allow multiple functions to share a variable, you specify an external or
global variable. That topic is avoided until Chapter 16.

»» Variables local to their functions are determined to be of the auto storage
class. The auto keyword could prefix variables local to a function, as in auto
int a, though it would be considered anachronistic.

Sending a value to a function
The key way to make a function funct is to give it something to chew on — some
data. The process is referred to as passing an argument to a function, where the term
argument is used in C programming to refer to an option or a value. It comes from
the mathematical term for variables in a function, so no bickering is anticipated.

CHAPTER 10 Fun with Functions 141

Arguments are specified in the function’s parentheses. An example is the puts()
function, which accepts a string as an argument, as in

puts("You probably shouldn't have chosen that option.");

The fgets() function swallows three arguments at once:

fgets(buffer,27,stdio);

Arguments can be variables, constants, or literal values, and multiple arguments
are separated by commas. The number and type of values that a function requires
must be specified when the function is written and for its prototype as well.
Listing 10-4 illustrates an example.

LISTING 10-4:	 Passing a Value to a Function

#include <stdio.h>

void graph(int count);

int main()
{
 int value;

 value = 2;

 while(value<=64)
 {
 graph(value);
 printf("Value is %d\n",value);
 value = value * 2;
 }
 return(0);
}

void graph(int count)
{
 int x;

 for(x=0;x<count;x=x+1)
 putchar('*');
 putchar('\n');
}

142 PART 2 C Programming 101

When a function consumes an argument, you must clearly tell the compiler what
type of argument is required. In Listing 10-4, both the prototype at Line 3 and the
graph() function’s definition at Line 20 state that the argument must be an int.
The variable count is used as the int argument, which then serves as the variable’s
name inside the function.

The graph() function is called in Line 13, in the midst of the while loop. It’s called
using the value variable. That’s okay; the variable name used in a function call
need not match the variable name used inside the function. Only the variable’s
data type must match, and both count and value are int types.

The graph() function, from Line 20 through Line 27, displays a row of asterisks.
The length of the row (in characters) is determined by the value sent to the
function.

Exercise 10-6: Fire up your editor and feverishly type the source code from List-
ing 10-4. Save it. Build it. Can you guess what the output might look like before
running?

Functions don’t necessarily need to consume variables. The graph() function from
Listing 10-4 can gobble any int value, including an immediate value (literal) or a
constant.

Exercise 10-7: Edit the source code from Exercise 10-6, changing Line 13 so that
the graph() function is passed a constant value of 64. Build and run.

It’s possible to pass a string to a function, but until you’ve read Chapter 12 on
arrays and especially Chapter 18 on pointers, I don’t recommend it. A string is
really an array, and it requires special C language magic to pass an array to a
function.

Sending multiple values to a function
C offers no limit on how many arguments a function can handle. As long as you
properly declare the arguments as specific data types and separate them all with
commas, you can stack ’em up like commuters on a morning train, similar to this
prototype:

void railway(int engine, int boxcar, int caboose);

In the preceding line, the railway() function is prototyped. It requires three int
arguments: engine, boxcar, and caboose. The function must be passed three
arguments, as shown in the prototype.

CHAPTER 10 Fun with Functions 143

Exercise: 10-8: Modify the source code from Listing 10-4 so that the graph() func-
tion accepts two arguments; the second is the character to display.

Creating functions that return values
A great majority of the C language functions return a value; that is, they generate
something. Your code may not use the values, but they’re returned anyway. For
example, both putchar() and printf() return values, and I’ve rarely seen a program
use these values.

Listing 10-5 illustrates a function that is sent a value and then returns another
value. This is the way most functions work, though some functions return values
without necessarily receiving any. For example, getchar() returns input but doesn’t
require any arguments. In Listing 10-5, the convert() function accepts a Fahrenheit
value and returns its Celsius equivalent.

LISTING 10-5:	 A Function That Returns a Value

#include <stdio.h>

float convert(float f);

int main()
{
 float temp_f,temp_c;

 printf("Temperature in Fahrenheit: ");
 scanf("%f",&temp_f);
 temp_c = convert(temp_f);
 printf("%.1fF is %.1fC\n",temp_f,temp_c);
 return(0);
}

float convert(float f)
{
 float t;

 t = (f - 32) / 1.8;
 return(t);
}

144 PART 2 C Programming 101

Line 3 in Listing 10-5 declares the convert() function’s prototype. The function
requires a floating-point value and returns a floating-point value.

The convert() function is called in Line 11. Its return value is stored in variable
temp_c on that same line. In Line 12, printf() displays the original value and the
conversion. The %.1f placeholder limits floating-point output to one digit to the
left of the decimal. (See Chapter 13 for a full description of the printf() function’s
placeholders.)

The convert() function begins at Line 16. It uses two variables: f contains the float
value passed to the function, a temperature in Fahrenheit. A local variable, t, is
used to calculate the Celsius temperature value, declared at Line 18 and assigned
by the formula on Line 20.

Line 20 uses scary math to convert the f Fahrenheit value into the t Celsius value.
The parentheses surrounding f - 32 direct the compiler to perform that part of
the calculation first and then divide the result by 1.8. If you omit the parentheses,
32 is divided by 1.8 first, which generates an incorrect result. See Chapter 11 for
information on the order of precedence, which describes how C prefers to do long
math equations.

The return statement at Line 21 sends the function’s result back to the caller.

Exercise 10-9: Type the source code from Listing 10-5 into your editor. Build
and run.

Functions that return values can have that value stored in a variable, as shown on
Line 11 of Listing 10-5, or you can also use the value immediately. For example:

printf("%.1fF is %.1fC\n",temp_f,convert(temp_f));

Exercise 10-10: Edit the source code from Listing 10-5 so that the convert() func-
tion is used immediately in the printf() function. Hint: That’s not the only line you
need to fix up to make the change complete.

You may also notice that the convert() function itself has a redundant item. Do you
really need the t variable in that function?

Exercise 10-11: Edit your solution from Exercise 10-10, this time paring out the t
variable from the convert() function.

CHAPTER 10 Fun with Functions 145

Honestly, you could simply eliminate the convert() function altogether because it’s
only one line. Still, the benefit of a function like convert() is that you can call it from
anywhere in your code. So, rather than repeat the same thing over and over and
have to edit that repeated chunk of code when something changes, you instead cre-
ate a function. Such a thing is perfectly legitimate, and it’s done all the time in C.

And just because I’m a good guy, but also because it’s referenced earlier in this
chapter, Listing 10-6 shows my final result for Exercise 10-11.

LISTING 10-6:	 A Tighter Version of Listing 10-5

#include <stdio.h>

float convert(float f);

int main()
{
 float temp_f;

 printf("Temperature in Fahrenheit: ");
 scanf("%f",&temp_f);
 printf("%.1fF is %.1fC\n",temp_f,convert(temp_f));
 return(0);
}

float convert(float f)
{
 return(f - 32) / 1.8;
}

The convert() function’s math is compressed to one line, so a temporary storage
variable (t from Line 18 in Listing 10-5) isn’t needed.

Returning early
The return keyword can blast out of a function at any time, sending execution back
to the statement that called the function. Or, in the case of the main() function,
return exits the program. This rule holds fast even when return doesn’t pass back
a value, which is true for any void function. Consider Listing 10-7.

146 PART 2 C Programming 101

LISTING 10-7:	 Exiting a Function with return

#include <stdio.h>

void limit(int stop);

int main()
{
 int s;

 printf("Enter a stopping value (0-100): ");
 scanf("%d",&s);
 limit(s);
 return(0);
}

void limit(int stop)
{
 int x;

 for(x=0;x<=100;x=x+1)
 {
 printf("%d ",x);
 if(x==stop)
 {
 puts("You won!");
 return;
 }
 }
 puts("I won!");
}

The silly source code shown in Listing 10-7 calls a function, limit(), with the value
read in Line 10. A loop in the function spews out numbers. If a match is made with
the function’s argument, a return statement (refer to Line 25) bails out of the
function. Otherwise, execution continues and the function ends when the loop is
done. No return function is required at the end of the function because no value is
returned.

Exercise 10-12: Create a new project using the source code shown in Listing 10-7.
Build and run.

CHAPTER 10 Fun with Functions 147

Constants of the Global Kind
Constants are useful in functions because they let you change a value in only one
spot and have the change reflected throughout the function. Like any function’s
variables, however, the const type of constant is valid in only one function at a
time. Rather than re-create a constant for each function, you can use the #define
preprocessor directive to create a global constant, available to all functions in the
source code file.

»» Use the const keyword to create a constant for use within a function.

»» Refer to Chapter 6 for more details on constants and the const keyword.

Introducing defined constants
A defined constant is a shortcut — specifically, something used in a source code file
to substitute for something else. This constant operates at the compiler level and
affects the entire source code file. It’s created by using the #define directive, in
this format:

#define SHORTCUT text

SHORTCUT is a keyword, usually written in all caps. It’s created by the compiler to
represent the text part. The line doesn’t end with a semicolon, because it’s a
compiler directive, not a C language statement. The defined constant you create
can be used elsewhere in the code, in any function: The keyword SHORTCUT being
replaced by the text.

The following line creates the defined constant OCTO, equal to the value 8:

#define OCTO 8

After its definition, you can use the defined constant OCTO anywhere in your code
to represent the value 8. For example:

printf("Mr. Octopus has %d legs.",OCTO);

The preceding statement outputs this text:

Mr. Octopus has 8 legs.

148 PART 2 C Programming 101

The OCTO defined constant is replaced by the text 8 when the source code is com-
piled, which translates into the value 8.

»» The #define directive is traditionally placed at the top of the source code,
right after any #include directives. See the next section for an example.

»» You can define strings as well:

#define AUTHOR "Dan Gookin"

The string that’s defined includes the double quotes. Anywhere the defined
constant AUTHOR appears in the source code file, it’s replaced by the text "Dan
Gookin" — including the double quotes.

»» You can even define math calculations:

#define CELLS 24*80

The defined constant CELLS doesn’t do math, but the compiler replaces its
text with the expression 24*80 everywhere CELLS appears in the source code
file.

»» Like a variable name, a defined constant specified inside a string literal is part
of the string. The preprocessor doesn’t expand a defined constant when it
appears in a string.

»» The #define directive can be used in any source code file to create a shortcut
for any text, even when the source code file has only one function.

»» A defined constant is created and managed by the preprocessor. It’s a
search-and-replace operation; no variable “storage container” is created, no
data type is specified.

Putting defined constants to use
Anytime your code uses a single value over and over — something significant, like
the number of rows in a table or the maximum number of items you can stick in a
shopping cart – consider using a defined constant. Because this value appears in
several functions, using the #define directive makes more sense than creating
multiple const values, the same one for each function.

Listing 10-8 shows an example where a defined constant helps in two of the code’s
functions.

CHAPTER 10 Fun with Functions 149

LISTING 10-8:	 Preparing for Constant Updates

#include <stdio.h>

#define GRID 3

/* prototypes */
void forward(void);
void backwards(void);

int main()
{
 puts("Grid forward:");
 forward();
 puts("Grid backwards:");
 backwards();
 return(0);
}

void forward(void)
{
 int x,y;

 for(x=0;x<GRID;x++)
 {
 for(y=0;y<GRID;y++)
 printf("%d:%d\t",x,y);
 putchar('\n');
 }
}

void backwards(void)
{
 int x,y;

 for(x=GRID-1;x>=0;x--)
 {
 for(y=GRID-1;y>=0;y--)
 printf("%d:%d\t",x,y);
 putchar('\n');
 }
}

150 PART 2 C Programming 101

Exercise 10-13: Create a new program using the source code from Listing 10-8.
Build and run.

Here is the output I see:

Grid forward:
0:0 0:1 0:2
1:0 1:1 1:2
2:0 2:1 2:2
Grid backwards:
2:2 2:1 2:0
1:2 1:1 1:0
0:2 0:1 0:0

Both functions rely upon the defined constant GRID to set their size. The forward()
function outputs the grid from low numbers to high; the backwards() function
does the opposite.

Note how the for loops are constructed in the backwards() function:

for(x=GRID-1;x>=0;x--)

Variable x is initialized to the value of GRID minus one, which makes its starting
value equal to the ending value for the companion for statement in the forward()
function. The loop continues as long as the value of variable x is greater than or
equal to zero. This is how both loops generate similar values in their grid output.

Exercise 10-14: Modify the source code from Exercise 10-13 so that the grid is five
items square. Build and run.

Now imagine how difficult Exercise 10-14 would be if you had to search through
the code to replace each instance of 3 with 5. Imagine how ugly it would be had the
value 3 appeared all over the code, not just in relation to the grid. This reason is
why defined constants are used.

Exercise 10-15: Modify the source code from Listing 10-7. Add a new function,
verify(), which confirms whether the value input is within the range from 0 to 100.
The function returns the defined constant TRUE (1) if the value is within the
range, or FALSE (0) if not. When a value is out of range, the program displays an
error message.

3Build Upon What
You Know

IN THIS PART . . .

Discover how math works in the C language

Augment variable storage by creating arrays

Manipulate and massage text

Create structures containing variable types

Work and play at the command prompt

Explore the possibilities for using variables

Dig down deep and play with binary numbers

CHAPTER 11 The Unavoidable Math Chapter 153

Chapter 11
The Unavoidable Math
Chapter

One of the reasons I shunned computers in my early life was that I feared
the math. Eventually, I learned that math doesn’t play a central role in
programming. On one hand, you need to know some math, especially

when a program involves complex calculations. On the other hand, it’s the com-
puter that does the math — you just punch in the formula.

In the programming universe, math is necessary but painless. Most programs
involve some form of simple math. Graphics programming uses a lot of math. And
games wouldn’t be interesting if it weren’t for random numbers. All this stuff is
math. I believe that you’ll find it more interesting than dreadful.

Math Operators from Beyond Infinity
Two things make math happen in C programming: math operators and math
functions.

IN THIS CHAPTER

»» Using the ++ and -- operators

»» Making the modulus useful

»» Employing various operator shortcuts

»» Working with various math functions

»» Creating random numbers

»» Understanding the order of
precedence

154 PART 3 Build Upon What You Know

Math operators allow you to construct mathematical expressions. These are shown
in Table 11-1. The math functions implement complex calculations for which
symbols and characters are unavailable on the keyboard. To list all these functions
in a table would occupy a lot of space.

»» Chapter 5 introduces the basic math operators: +, –, *, and /. The rest aren’t
too heavy-duty to understand — even the oddly named modulo.

»» The C language comparison operators are used for making decisions. Refer to
Chapter 8 for a list.

»» Logical operators are also covered in Chapter 8.

»» The single equal sign (=) is an operator, but not a mathematical operator. It’s
the assignment operator, used to stuff a value into a variable.

»» Bitwise operators manipulate individual bits in a value. They’re covered in
Chapter 17.

»» Appendix C lists all the C language operators.

Incrementing and decrementing
Here’s a handy trick, especially for those loops in your code: the increment and
decrement operators. They’re insanely useful.

TABLE 11-1	 C Math Operators
Operator Function Example

+ Addition var=a+b

– Subtraction var=a-b

* Multiplication var=a*b

/ Division var=a/b

% Modulo var=a%b

++ Increment var++

-- Decrement var--

+ Unary plus +var

– Unary minus -var

CHAPTER 11 The Unavoidable Math Chapter 155

To add one to a variable’s value, use ++, as in

var++;

After this statement is executed, the value of variable var is increased (incre-
mented) by 1. It’s the same as writing this code:

var=var+1;

You’ll find ++ used all over, especially in for loops; for example:

for(x=0;x<100;x++)

This looping statement repeats 100 times. It’s much cleaner than writing the
alternative:

for(x=0;x<100;x=x+1)

Exercise 11-1: Code a program that outputs this phrase ten times: “Get off my
lawn, you kids!” Use the incrementing operator ++ in the for looping statement.

Exercise 11-2: Rewrite your answer for Exercise 11-1 using a while loop.

The ++ operator’s opposite is the decrementing operator --, which is two minus
signs. This operator decreases the value of a variable by 1; for example:

var--;

The preceding statement is the same as

var=var-1;

Exercise 11-3: Write a program that displays values from -5 through 5 and then
back to -5 in increments of 1. The output should look like this:

-5 -4 -3 -2 -1 0 1 2 3 4 5 4 3 2 1 0 -1 -2 -3 -4 -5

This program can be a bit tricky, so rather than have you look up my solution on
the web, I’m illustrating it in Listing 11-1. Please don’t look ahead until you’ve
attempted to solve Exercise 11-3 on your own.

156 PART 3 Build Upon What You Know

LISTING 11-1:	 Counting Up and Down

#include <stdio.h>

int main()
{
 int c;

 for(c=-5;c<5;c++)
 printf("%d ",c);
 for(;c>=-5;c--)
 printf("%d ",c);
 putchar('\n');
 return(0);
}

The crux of what I want you to see happens at Line 9 in Listing 11-1, but it also
plays heavily off the first for statement at Line 7. You might suspect that a loop
counting from -5 to 5 would have the value 5 as its stop condition, as in

for(c=-5;c<=5;c++)

The problem with this approach is that the value of c is incremented to trigger the
end of the loop, which means that c equals 6 when the first for loop is done. If
c remains less than 5, as is done at Line 7, then c is automatically set to 5 when
the second loop starts. Therefore, in Line 9, no initialization of variable x in the for
statement is necessary.

Exercise 11-4: Construct a program that displays values from -10 to 10 and then
back down to -10. Step in increments of 1, as was done in Listing 11-1, but use two
while loops to display the values.

Prefixing the ++ and -- operators
The ++ operator always increments a variable’s value, and the -- operator always
decrements. Knowing that, consider this statement:

a=b++;

If the value of variable b is 16, you know that its value will be 17 after the ++ oper-
ation. So what’s the value of variable a — 16 or 17?

CHAPTER 11 The Unavoidable Math Chapter 157

As a rule, C language math equations are read from left to right. (Refer to the later
section “The Holy Order of Precedence” for specifics.) Based on this rule, after the
preceding statement executes, the value of variable a is 16, and the value of vari-
able b is 17. Right?

The source code in Listing 11-2 answers the question of what happens to variable
a when you increment variable b on the right side of the equal sign (the assign-
ment operator).

LISTING 11-2:	 What Comes First — the = or the ++?

#include <stdio.h>

int main()
{
 int a,b;

 b=16;
 printf("Before, a is unassigned and b=%d\n",b);
 a=b++;
 printf("After, a=%d and b=%d\n",a,b);
 return(0);
}

Exercise 11-5: Type the source code from Listing 11-2. Save, build, and run.

When you place the ++ or -- operator after a variable, it’s called post-incrementing
or post-decrementing, respectively. If you want to increment or decrement the
variable before it’s used, you place ++ or -- to the left of the variable’s name. For
example:

a=++b;

In the preceding line, the value of b is incremented, and then it’s assigned to vari-
able a.

Exercise 11-6: Rewrite the source code from Listing 11-2 so that the equation in
Line 9 increments the value of variable b before it’s assigned to variable a.

And what of this construction:

a=++b++;

Never mind! The ++var++ monster is an error.

158 PART 3 Build Upon What You Know

Discovering the remainder (modulus)
Of all the basic math operator symbols, % is most likely the strangest. No, it’s not
the percentage operator. It’s the modulus operator. It calculates the remainder of
one number divided by another, which is a concept easier to show than to discuss.

Listing 11-3 codes a program that lists the results of modulus 5 and a bunch of
other values, ranging from 0 through 29. The value 5 is a constant, mo, which you
can easily change later.

LISTING 11-3:	 Displaying Modulus Values

#include <stdio.h>

int main()
{
 const int value = 5;
 int a;

 printf("Modulus %d:\n",value);
 for(a=0;a<30;a++)
 printf("%d %% %d = %d\n",a,value,a%value);
 return(0);
}

Line 11 displays the modulus results. The %% placeholder (in Line 10) merely dis-
plays the % character, so don’t let it throw you.

Exercise 11-7: Type in the source code from Listing 11-3. Save, build, and run.

Now that you can see the output, I can better explain how a modulus operation
works. You see its calculation as the remainder of the first value divided by the
second. So 20 % 5 is 0, but 21 % 5 is 1.

Exercise 11-8: Change the value constant in Listing 11-3 to 3. Build and run.

Saving time with assignment operators
If you’re a fan of the ++ and -- operators (and I certainly am), you’ll enjoy the
operators listed in Table 11-2. They’re the math assignment operators, and like
the increment and decrement operators, they not only do something useful —
they also look really cool and confusing in your code.

CHAPTER 11 The Unavoidable Math Chapter 159

Math assignment operators do nothing new, but they work in a special way. Quite
often in C, you need to modify a variable’s value. For example:

alpha=alpha+10;

This statement increases the value of variable alpha by 10. In C, you can write the
same statement by using an assignment operator as follows:

alpha+=10;

Both versions of this statement accomplish the same thing, but the second exam-
ple is punchier and more cryptic, which seems to delight many C programmers.
See Listing 11-4.

LISTING 11-4:	 Assignment Operator Heaven

#include <stdio.h>

int main()
{
 float alpha;

 alpha=501;
 printf("alpha = %.1f\n",alpha);
 alpha=alpha+99;
 printf("alpha = %.1f\n",alpha);
 alpha=alpha-250;
 printf("alpha = %.1f\n",alpha);
 alpha=alpha/82;
 printf("alpha = %.1f\n",alpha);
 alpha=alpha*4.3;
 printf("alpha = %.1f\n",alpha);
 return(0);
}

TABLE 11-2	 C Math Assignment Operators
Operator Function Shortcut for Example

+= Addition x=x+n x+=n

-= Subtraction x=x-n x-=n

*= Multiplication x=x*n x*=n

/= Division x=x/n x/=n

%= Modulo x=x%n x%=n

160 PART 3 Build Upon What You Know

Exercise 11-9: Type the source code from Listing 11-4 into your text editor. Change
Lines 9, 11, 13, and 15 so that assignment operators are used. Build and run.

When you use the assignment operator, keep in mind that the = character comes
last. You can easily remember this tip by swapping the operators; for example:

alpha=-10;

This statement assigns the value -10 to the variable alpha. But the statement

alpha-=10;

decreases the value of alpha by 10.

Exercise 11-10: Write a program that outputs the numbers from 5 through 100 in
increments of 5.

Math Function Mania
When keyboard characters and symbols for operators run dry, the C language
resorts to employing various functions for mathematical operations. Those times
that you’re desperate to find the arctangent of an angle, you can whip out the
atan() function and, well, there you go.

»» Most math functions require including the math.h header file in your code.
Some functions may also require the stdlib.h header file, where stdlib
means standard library.

»» If you’re compiling at the command prompt in Linux, you may be required to
include the math library in the command that builds the program. For
example:

clang -Wall ex1111.c -lm

The clang compiler is used in the preceding command with the -Wall switch
(all warnings), followed by the source code filename, ex1111.c. At the end of
the command, the -l (little L) switch is followed by m, the name of the math
library. This switch directs the linker to add the math library, which helps it
incorporate various math functions.

CHAPTER 11 The Unavoidable Math Chapter 161

Exploring some common math functions
Not everyone is going to employ their C language programming skills to help pilot
a rocket safely across space and into orbit around Titan. No, it’s more likely that
you’ll attempt something far more down-to-earth. Either way, the work will most
likely be done by employing math functions. I’ve listed some common ones in
Table 11-3.

All the functions listed in Table 11-3, save for the abs() function, deal with
floating-point values. The abs() function works only with integers.

You can look up function references in the man pages, as described in Chapter 1.

Listing 11-5 is littered with a smattering of math functions from Table 11-3. The
compiler enjoys seeing these functions, as long as you remember to include the
math.h header file at Line 2.

LISTING 11-5:	 Math Mania Mangled

#include <stdio.h>
#include <math.h>

int main()
{
 float result,value;

 printf("Input a float value: ");
 scanf("%f",&value);
 result = sqrt(value);
 printf("The square root of %.2f is %.2f\n",
 value,result);

TABLE 11-3	 Common, Sane Math Functions
Function #include What It Does

sqrt() math.h Calculates the square root of a floating-point value

pow() math.h Returns the result of a floating-point value raised to a certain power

abs() stdlib.h Returns the absolute value (positive value) of an integer

ceil() math.h Rounds up a floating-point value to the next whole number (nonfractional) value

floor() math.h Rounds down a floating-point value to the next whole number

(continued)

162 PART 3 Build Upon What You Know

 result = pow(value,3);
 printf("%.2f to the 3rd power is %.2f\n",
 value,result);
 result = floor(value);
 printf("The floor of %.2f is %.2f\n",
 value,result);
 result = ceil(value);
 printf("And the ceiling of %.2f is %.2f\n",
 value,result);
 return(0);
}

I’ve wrapped the long printf() statements in Listing 11-5 so that they fit on the
page in this book. You need not wrap long statements in your own source code
files.

Exercise 11-11: Type the source code from Listing 11-5 into your editor. Save. Build
the project. Run it and try various values as input to peruse the results.

If you see any “undefined reference” errors from the linker at the Linux command
prompt, add the -lm switch to the command-line compiling options, as described
earlier in this chapter.

Exercise 11-12: Write a program that displays the powers of 2, from 20 through 210.
These are the Holy Numbers of Computing.

»» The math functions listing in Table 11-3 are only a small sampling of the
variety available.

»» If your code requires some sort of mathematical operation, check the C library
documentation, the man pages, to see whether that specific function exists.

»» On a Unix system, type man 3 math to see a list of the C library’s math
functions.

»» The ceil() function is pronounced “seal.” It’s from the word ceiling, which is a
play on the floor() function.

LISTING 11-5:	 (continued)

CHAPTER 11 The Unavoidable Math Chapter 163

Suffering through trigonometry
I won’t bother to explain trigonometry to you. If your code needs a trig function,
you know why. But what you probably don’t yet know is that trigonometric func-
tions in C — and, indeed, in all programming languages — use radians, not
degrees.

What’s a radian?

Glad you asked. A radian is a measurement of a circle or, specifically, an arc. It
uses the value π (pi) instead of degrees, where π is a handy circle measurement. So
instead of a circle having 360 degrees, it has 2π radians. That works out to 6.2831
(which is 2 × 3.1415) radians in a circle. Figure 11-1 illustrates this concept.

For your trigonometric woes, one radian equals 57.2957795 degrees, and one
degree equals 0.01745329 radians. So when you do your angle math, you need to
translate between human degrees and C language radians. Consider Listing 11-6.

FIGURE 11-1:
Degrees and

radians.

164 PART 3 Build Upon What You Know

LISTING 11-6:	 Convert Degrees to Radians

#include <stdio.h>

int main()
{
 float degrees,radians;

 printf("Enter an angle in degrees: ");
 scanf("%f",°rees);
 radians = 0.0174532925*degrees;
 printf("%.2f degrees is %.2f radians.\n", degrees,radians);
 return(0);
}

Line 10 is split in Listing 11-6 so that it fits on the page in this book.

Exercise 11-13: Type the source code from Listing 11-6 into your editor. Build and
run. Test with the value 180, which should be equal to π radians (3.14).

Exercise 11-14: Write a program that converts from radians to degrees.

Though C has many trigonometric functions, the three basic ones are sin(), cos(),
and tan(), which calculate the sine, cosine, and tangent of an angle, respectively.
Remember that these angles are measured in radians, not degrees.

Oh, and remember that you need the math.h header file to make the compiler
happy about using the trig functions. And you possibly add the -lm switch to link
in the math library. You have lots to remember.

The best programs that demonstrate trig functions are graphical in nature. This
type of code would take pages to reproduce in this book, and even then I’d have to
pick a platform (Windows, for example) on which the code would run. Rather than
do that, I’ve concocted Listing 11-7 for your trigonometric enjoyment.

LISTING 11-7:	 Having Fun with Trigonometry

#include <stdio.h>
#include <math.h>

#ifndef M_PI
#define M_PI 3.14159
#endif

CHAPTER 11 The Unavoidable Math Chapter 165

int main()
{
 const float amplitude=70;
 const float wavelength=0.1;
 float graph,s,x;

 for(graph=0;graph<M_PI;graph+=wavelength)
 {
 s = sin(graph);
 for(x=0;x<s*amplitude;x++)
 putchar('*');
 putchar('\n');
 }
 return(0);
}

The preprocessor directives in Lines 4, 5, and 6 test for the presence of the defined
constant M_PI, which should dwell in the math.h header file. The #ifndef direc-
tive reads “if not defined.” If M_PI isn’t defined, the next line uses the #define
directive to create it. The #endif directive ends the decision-making process.
When complete, the code can use the M_PI defined constant to represent the value
of π.

Exercise 11-15: Type the source code from Listing 11-7 into your editor. Before you
build and run, try to guess what the output could be.

Exercise 11-16: Modify the code from Listing 11-7 so that a cosine wave is dis-
played. Don’t get lazy on me! A cosine wave looks best when you cycle from 0 to
2π. Modify your code so that you get a good, albeit character-based, representa-
tion of the curve.

No, Exercise 11-16 isn’t easy. You need to compensate for the negative cosine val-
ues when drawing the graph.

»» One radian equals 57.2957795 degrees, or 360/π/2.

»» One degree equals 0.0174532925 radians., or π/360*2.

166 PART 3 Build Upon What You Know

It’s Totally Random
One mathematical function that’s relatively easy to grasp is the rand() function. It
generates random numbers. Though such a task may seem silly, it’s the basis for
just about every computer game ever invented. Random numbers are a big deal in
programming.

A computer cannot generate truly random numbers. Instead, it produces what are
known as pseudo-random numbers. The reason is that conditions inside the com-
puter can be replicated. Therefore, serious mathematicians scoff that any value a
computer calls random isn’t a truly random number. Can you hear them scoffing?
I can.

Spewing random numbers
The rand() function is the simplest of C’s random-number functions. It requires
the stdlib.h header file, and it coughs up an int value that’s supposedly random.
Listing 11-8 demonstrates sample code.

LISTING 11-8:	 Now, That’s Random

#include <stdio.h>
#include <stdlib.h>

int main()
{
int r,a,b;

 puts("100 Random Numbers");
 for(a=0;a<20;a++)
 {
 for(b=0;b<5;b++)
 {
 r=rand();
 printf("%d\t",r);
 }
 putchar('\n');
 }
 return(0);
}

CHAPTER 11 The Unavoidable Math Chapter 167

Listing 11-8 uses a nested for loop to generate 100 random values. The rand() func-
tion in Line 13 generates the values. The printf() function in Line 14 displays the
values by using the %d conversion character, which outputs int values.

Exercise 11-17: Type the source code shown in Listing 11-8 into your editor. Save,
build, and run to behold 100 random values.

Exercise 11-18: Modify the code so that all values displayed are in the range 0
through 20.

Here’s a hint for Exercise 11-18: Use the modulus assignment operator to limit the
range of the random numbers. The format looks like this:

r%=n;

r is the number returned from the rand() function. %= is the modulus assignment
operator. n is the range limit, plus 1. After the preceding statement, values returned
are in the range 0 through n-1. So if you want to generate values between 1 and
100, you would use this formula:

value = (r % 100) + 1;

Making the numbers more random
Just to give some credit to the snooty mathematicians who claim that computers
generate pseudo-random numbers, run the program you generated from Exercise
11-18. Observe the output. Run the program again. See anything familiar?

The rand() function is good at generating a slew of random values, but they’re
predictable values. To make the output less predictable, you need to seed the
random-number generator. That’s done by using the srand() function.

Like the rand() function, the srand() function requires the stdlib.h header, shown
at Line 2 in Listing 11-9. The function requires an unsigned int value, seed, which
is declared at Line 6. The scanf() function at Line 10 reads in the unsigned value by
using the %u placeholder. Then the srand() function uses the seed value in Line 11.

168 PART 3 Build Upon What You Know

LISTING 11-9:	 Even More Randomness

#include <stdio.h>
#include <stdlib.h>

int main()
{
 unsigned seed;
 int r,a,b;

 printf("Input a random number seed: ");
 scanf("%u",&seed);
 srand(seed);
 for(a=0;a<20;a++)
 {
 for(b=0;b<5;b++)
 {
 r=rand();
 printf("%d\t",r);
 }
 putchar('\n');
 }
 return(0);
}

The rand() function is used at Line 16, though the results are now based on the
seed, which is set when the program runs.

Exercise 11-19: Create a new project using the source code shown in Listing 11-9.
Build it. Run the program a few times, trying different seed values. The output is
different every time.

Alas, the random values that are generated are still predictable when you type the
same seed number. In fact, when the value 1 is used as the seed, you see the same
“random” values you saw in Exercise 11-17, when you didn’t even use srand()! And
how many games have you played where you’re asked to seed the randomizer?
None.

There must be a better way.

The best way to write a random-number generator is not to ask the user to type a
seed, but rather to fetch a seed from elsewhere. In Listing 11-10, the seed value is
pulled from the system clock by using the time() function.

CHAPTER 11 The Unavoidable Math Chapter 169

LISTING 11-10:	 More Truly Random than Ever

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main()
{
 int r,a,b;

 srand((unsigned)time(NULL));
 for(a=0;a<20;a++)
 {
 for(b=0;b<5;b++)
 {
 r=rand();
 printf("%d\t",r);
 }
 putchar('\n');
 }
 return(0);
}

Chapter 21 covers programming time functions in C. Without getting too far ahead,
the time() function returns information about the current time of day, a value
that’s constantly changing. The NULL argument helps solve some problems that I
don’t want to get into right now, but suffice it to say that time() returns a value
that changes every second.

The time() function requires inclusion of the time.h header file, shown at Line 3.

The (unsigned) part of the statement ensures that the value returned by the
time() function is an unsigned integer (not negative). This technique is known as
typecasting, which is covered in Chapter 16.

The bottom line is that the srand() function is passed a seed value, courtesy of the
time() function, and the result is that the rand() function generates values that are
more random than you’d get otherwise.

Exercise 11-20: Type the source code from Listing 11-10 and build the project. Run
it a few times to ensure that the numbers are as random as the computer can get
them.

170 PART 3 Build Upon What You Know

Exercise 11-21: Rewrite your solution to Exercise 8-6 (from Chapter 8) so that a
random number is generated to make the guessing game more interesting but
perhaps not entirely fair. Display the random number if they fail to guess it.

The Holy Order of Precedence
Before you flee the tyranny of the Unavoidable Math Chapter, you need to know
about the order of precedence. It’s not a religious order, and it has nothing to do
with guessing the future. It’s about ensuring that the math equations you code in
C represent what you intend.

Getting the order correct
Consider the following puzzle. Can you guess the value of the variable answer?

answer = 5 + 4 * 3;

As a human, reading the puzzle from left to right, you’d probably answer 27: 5 + 4
is 9 times 3 is 27. This answer is correct — for a human. The computer, however,
would answer 17.

The computer isn’t wrong — it just assumes that multiplication is more impor-
tant than addition. Therefore, that part of the equation gets calculated first. To the
computer, the order of operations is based on which operators are used. To put it
another way, multiplication has precedence over addition.

You can remember the basic order of precedence for the basic math operators like
this:

First: Multiplication, Division

Second: Addition, Subtraction

The clever mnemonic for the basic order of precedence is, “My Dear Aunt Sally.”
For more detail on the order of precedence for all C language operators, see
Appendix G.

Exercise 11-22: Write a program that evaluates the following equation, displaying
the result:

20 - 5 * 2 + 42 / 6

CHAPTER 11 The Unavoidable Math Chapter 171

See whether you can guess the output before the program runs.

Exercise 11-23: Modify the code from Exercise 11-22 so that the program evaluates
the equation

12 / 3 / 2

No, that’s not a date. It’s 12 divided by 3 divided by 2.

Forcing order with parentheses
The order of precedence can be fooled by using parentheses. As far as the C lan-
guage is concerned, anything happening within parentheses is evaluated first in
any equation. So even when you forget the order of precedence, you can force it by
hugging parts of an equation with parentheses.

Math ahead!

Exercise 11-24: Code the following equation so that the result equals 14, not 2:

12 - 5 * 2

Exercise 11-25: Code the following equation (from Exercise 11-22) so that addition
and subtraction take place before multiplication and division. If you do it cor-
rectly, the result is 110:

20 - 5 * 2 + 42 / 6

»» The code you write may deal more with variables than with literal or immedi-
ate values, so you must understand the equation and what’s being evaluated.
For example, if you need to add the number of full-time and part-time
employees before you divide by the total payroll, put the first two values in
parentheses.

»» Beyond the order of precedence, parentheses add a level of readability to the
code, especially in long equations. Even when parentheses aren’t necessary,
consider adding them if the result is more readable code.

»» Appendix G lists the full order of precedence for all C language operators.

CHAPTER 12 Give Me Arrays 173

Chapter 12
Give Me Arrays

When I first learned to program, I avoided the topic of arrays. They didn’t
make sense to me. Array variables sport their own methods and mad-
ness, which is different from working with single variables in C. Rather

than shun this topic and skip ahead to the next chapter (which isn’t any easier),
consider embracing the array as a lovely, weird, and useful tool.

Behold the Array
Humans enjoy grouping things, mostly done by type: People collect spoons, for
example, or coins or husbands. These items are easily grouped because they’re of
similar types. The C language, too, has ways to group values of similar types, like
a row of variables in a queue. The word used in C is array.

Avoiding arrays
At some point in your programming career, an array becomes painfully inevitable.
As an example, consider Listing 12-1. The code asks for and displays your three
top scores, presumably from a game.

IN THIS CHAPTER

»» Storing multiple variables in an array

»» Creating an array

»» Understanding character arrays

»» Sorting values in an array

»» Working with multidimensional
arrays

»» Sending an array to a function

174 PART 3 Build Upon What You Know

LISTING 12-1:	 High Scores, the Awful Version

#include <stdio.h>

int main()
{
 int highscore1,highscore2,highscore3;

 printf("Your highest score: ");
 scanf("%d",&highscore1);
 printf("Your second highest score: ");
 scanf("%d",&highscore2);
 printf("Your third highest score: ");
 scanf("%d",&highscore3);

 puts("Here are your high scores");
 printf("#1 %d\n",highscore1);
 printf("#2 %d\n",highscore2);
 printf("#3 %d\n",highscore3);

 return(0);
}

The code in Listing 12-1 asks for three integer values. Input is stored in the three
int variables declared in Line 5. Lines 15 through 17 output the values. Simple.

Exercise 12-1: Type the source code from Listing 12-1 into the editor. Build
and run.

Typing that code can be a lot of work, right? Thank goodness it’s only the top
three scores. Or did I speak too soon?

Exercise 12-2: Modify the source code from Listing 12-1 so that the fourth-highest
score is added. Build and run.

For the next exercise, modify the code to provide for ten high scores. No! Never
mind. You can just learn about arrays instead.

Understanding arrays
An array is a series of variables of the same type: a dozen int variables, two or three
double variables, or a string of char variables. The array doesn’t contain all the

CHAPTER 12 Give Me Arrays 175

same values. No, it’s more like a series of cubbyholes into which you stick differ-
ent values.

An array is declared like any other variable. It’s given a data type and a name and
then also a set of square brackets. The following statement declares the highscore
array:

int highscore[];

This declaration is incomplete; the compiler doesn’t yet know how many items, or
elements, are in the array. So if the highscore array were to hold three elements,
it would be declared like this:

int highscore[3];

This array contains three elements, each of them its own int value. The elements
are accessed and assigned like this:

highscore[0] = 750;
highscore[1] = 699;
highscore[2] = 675;

An array element is referenced by its index number in square brackets. The first
item is index 0, which is something you must remember. In C, you start counting
at 0, which has its advantages, so don’t think it’s stupid.

In the preceding example, the first array element, highscore[0], is assigned the
value 750; the second element, 699; and the third, 675.

After initialization, an array variable is used like any other variable in your code:

var = highscore[0];

This statement stores the value of array element highscore[0] to int variable var.
If highscore[0] is equal to 750, var is equal to 750 after the statement executes.

Exercise 12-3: Rewrite the source code from your solution to Exercise 12-2 using
an array as described in this section — but keep in mind that your array holds four
values, not three.

Many solutions exist for Exercise 12-3. The brute force solution has you stuffing
each array variable individually, line after line, similar to the source code in
Listing 12-1. A better, more insightful solution is offered in Listing 12-2.

176 PART 3 Build Upon What You Know

LISTING 12-2:	 High Scores, a Better Version

#include <stdio.h>

int main()
{
 int highscore[4];
 int x;

 for(x=0;x<4;x++)
 {
 printf("Your #%d score: ",x+1);
 scanf("%d",&highscore[x]);
 }

 puts("Here are your high scores");
 for(x=0;x<4;x++)
 printf("#%d %d\n",x+1,highscore[x]);

 return(0);
}

Most of the code from Listing 12-2 should be familiar to you, albeit the new array
notation. The x+1 arguments in the printf() statements (Lines 10 and 16) allow you
to use the x variable in the loop but output its value starting with 1 instead of 0.
Although C likes to start numbering at 0, humans still prefer starting at 1.

Exercise 12-4: Type the source code from Listing 12-2 into your editor and build a
new program. Run it.

Though the program’s output is pretty much the same as the output in
Exercises 12-2 and 12-3, the method is far more efficient, as proven by working
Exercise 12-5:

Exercise 12-5: Modify the source code from Listing 12-2 so that the top ten scores
are input and displayed. (You knew this one was coming.)

Imagine how you’d have to code the answer to Exercise 12-5 if you chose not to
use arrays!

»» The first element of an array is 0.

»» When declaring an array, use the full number of elements, such as 10 for ten
elements. Even though the elements are indexed from 0 through 9, you still
must specify 10 when declaring the array’s size.

CHAPTER 12 Give Me Arrays 177

Initializing an array
As with any variable in C, you can initialize an array when it’s declared. The ini-
tialization requires a special format, similar to this statement:

int highscore[] = { 750, 699, 675 };

The number in the square brackets isn’t necessary when you initialize an array, as
shown in the preceding example. The reason is that the compiler is smart enough
to count the elements and allocate the array’s storage automatically.

Exercise 12-6: Write a program that displays the stock market closing numbers
for the past five days. Use an initialized array, marketclose[], to hold the values.
The output should look something like this:

Stock Market Close
Day 1: 24164.95
Day 2: 24107.08
Day 3: 24643.63
Day 4: 24400.93
Day 5: 23728.53

Exercise 12-7: Write a program that uses two arrays. The first array is initialized
to the values 10, 12, 14, 15, 16, 18, and 20. The second array is the same size but not
initialized. In the code, fill the second array with the square root of each of the
values from the first array. Output the results.

Playing with character arrays (strings)
You can create an array using any of the C language’s data types. A char array,
however, is a little different when it’s a string.

As with any array, you can declare a char array initialized or not. The format for an
initialized char array can look like this:

char letters[] = { 'c', 'a', 't' };

This array declaration is for a 3-element character array, containing the letters c,
a, and t. This example is a character array, not a string.

char pet[] = "cat";

178 PART 3 Build Upon What You Know

The preceding array declaration creates a string. The initialization text is enclosed
in double quotes. Further, because a string literal is used, the compiler automati-
cally adds the terminating null character: \0. This addition is what makes the
array a string and not a collection of characters — an important concept to
understand.

Here is the same string declaration written as individual characters:

char cat[] = { 'c', 'a', 't', '\0' };

Each array element in the preceding line is defined as its own char value, including
the \0 character that terminates the string. (I believe that you’ll find the double-
quote method far more effective at declaring strings.)

The code in Listing 12-3 plods through the char array one character at a time. The
index variable is used as, well, the index. The while loop spins until the \0 char-
acter at the end of the string is encountered. A final putchar() function (in Line 14)
kicks in a newline.

LISTING 12-3:	 Displaying a char Array

#include <stdio.h>

int main()
{
 char sentence[] = "Random text";
 int index;

 index = 0;
 while(sentence[index] != '\0')
 {
 putchar(sentence[index]);
 index++;
 }
 putchar('\n');
 return(0);
}

Exercise 12-8: Type the source code from Listing 12-3 into your editor. Build and
run the program.

The while loop in Listing 12-3 works like many string display routines found in the
C library. These functions probably use pointers instead of arrays, which is a topic

CHAPTER 12 Give Me Arrays 179

unleashed in Chapter 18. Beyond that bit o’ trivia, you could replace Lines 8
through 14 in the code with the line

puts(sentence);

or even with this one:

printf("%s\n",sentence);

When the char array is used as a function’s argument, as shown in the preceding
line, the square brackets aren’t necessary. If they’re included, the compiler
believes that you screwed up.

Working with empty char arrays
Just as you can declare an empty, or uninitialized, float or int array, you can create
an empty char array. You must be precise, however: The array’s size must be one
character greater than the maximum length of the string to account for the ter-
minating null character. Also, you have to ensure that whatever input fills the
array doesn’t exceed the array’s size.

In Listing 12-4, the char array firstname at Line 5 can hold 15 characters, plus 1
for the \0 at the end of the string. This 15-character limitation is an assumption
made by the programmer; most first names are fewer than 15 characters long.

LISTING 12-4:	 Filling a char Array

#include <stdio.h>

int main()
{
 char firstname[16];

 printf("What is your name? ");
 fgets(firstname,16,stdin);
 printf("Pleased to meet you, %s\n",firstname);
 return(0);
}

An fgets() function in Line 8 reads in data for the firstname string. The maximum
input size is set to 16 characters, which already accounts for the null character
because fgets() is smart that way. The text is read from stdin (the function’s third
argument), or standard input.

180 PART 3 Build Upon What You Know

Exercise 12-9: Create a new program using the source code from Listing 12-4.
Build and run, using your first name as input.

Try running the program again, but fill up the buffer: Type more than 15 charac-
ters. You’ll see that only the first 15 characters are stored in the array. Even the
Enter key press isn’t stored, which it would be otherwise when input is fewer than
15 characters.

Exercise 12-10: Modify your source code from Exercise 12-9 so that the program
also asks for your last name, storing this data in another array. The program
should then greet you by using both your first and last names.

Yes, the Enter key press is stored as part of your name when you type fewer than
15 characters. This effect is how input is read by the fgets() function. If your first
name is Dan, the array looks like this:

firstname[0] == 'D'
firstname[1] == 'a'
firstname[2] == 'n'
firstname[3] == '\n'
firstname[4] == '\0'

The newline lurks in the string because input in C is stream oriented and Enter is
part of the input stream as far as the fgets() function is concerned. You can fix this
issue by obeying Exercise 12-11.

Exercise 12-11: Rewrite your source code from Exercise 12-10 so that the scanf()
function is used to read in the first and last name strings.

Of course, the problem with the scanf() function is that it doesn’t check to ensure
that input is limited to 15 characters — that is, unless you direct it to do so:

Exercise 12-12: Modify the scanf() functions in your source code from Exercise
12-11 so that the conversion character used is written as %15s. Build and run.

The %15s conversion character tells the first scanf() function to read only the first
15 characters of input and place it into the char array (string). Any extra text is
then read by the second scanf() function, and any extra text after that is
discarded.

It’s critical that you understand stream input when it comes to reading text in
C. Chapter 13 offers additional information on this important topic.

CHAPTER 12 Give Me Arrays 181

Sorting arrays
Computers are designed to quickly and merrily accomplish boring tasks, such as
sorting an array. In fact, they love doing it so much that “the sort” is a basic com-
puter concept upon which many theories and algorithms have been written. It’s a
real snoozer topic if you’re not a Mentat or a native of the planet Vulcan.

The simplest sort is the bubble sort, which not only is easy to explain and under-
stand but also has a fun name. It also best shows the basic array sorting philoso-
phy, which is to swap values between two elements.

Suppose that you’re sorting an array so that the smallest values are listed first. If
array[2] contains the value 20, and array[3] contains the value 5, these two ele-
ments would need to swap values. To make it happen, you use a temporary vari-
able in a series of statements that looks like this:

temp=array[2]; /* Save 20 in temp */
array[2]=array[3]; /* Store 5 in array[2] */
array[3]=temp; /* Put 20 in array[3] */

In a bubble sort, each array element is compared with every other array element
in an organized sequence. When one value is larger (or smaller) than another, the
values are swapped. Otherwise, the comparison continues, plodding through every
possible permutation of comparisons in the array. Listing 12-5 demonstrates.

LISTING 12-5:	 A Bubble Sort

#include <stdio.h>

int main()
{
 const int size = 6;
 int bubble[] = { 95, 60, 6, 87, 50, 24 };
 int inner,outer,temp,x;

 /* Display original array */
 puts("Original Array:");
 for(x=0;x<size;x++)
 printf("%d\t",bubble[x]);
 putchar('\n');

 /* Bubble sort */
 for(outer=0;outer<size-1;outer++)

(continued)

182 PART 3 Build Upon What You Know

 {
 for(inner=outer+1;inner<size;inner++)
 {
 if(bubble[outer] > bubble[inner])
 {
 temp=bubble[outer];
 bubble[outer] = bubble[inner];
 bubble[inner] = temp;
 }
 }
 }

 /* Display sorted array */
 puts("Sorted Array:");
 for(x=0;x<size;x++)
 printf("%d\t",bubble[x]);
 putchar('\n');

 return(0);
}

Listing 12-5 is long, but it’s easily split into three parts, each headed by a comment:

»» Lines 9 through 13 output the original array.

»» Lines 15 through 27 sort the array.

»» Lines 29 through 33 output the sorted array (duplicating Lines 9 through 13).

The constant size is declared at Line 5. This declaration allows you to easily
change the array size in case you reuse this code again later (and you will).

The sort itself involves nested for loops: an outer loop and an inner loop. The outer
loop marches through the entire array, one step at a time. The inner loop takes its
position one element higher in the array and swoops through each value
individually.

Exercise 12-13: Copy the source code from Listing 12-5 into your editor and create
a new project, ex1213. Build and run.

Exercise 12-14: Using the source code from Listing 12-5 as a starting point, create
a program that generates 40 random numbers in the range from 1 through 100 and
stores those values in an array. Display that array. Sort that array. Display the
results.

LISTING 12-5:	 (continued)

CHAPTER 12 Give Me Arrays 183

Exercise 12-15: Modify the source code from Exercise 12-14 so that the numbers
are sorted in reverse order, from largest to smallest.

Exercise 12-16: Write a program that sorts the text in the 21-character string
“C Programming is fun!”

Multidimensional Arrays
The arrays described in the first part of this chapter are known as single-dimension
arrays: They’re basically a series of values, one after the other. This organization
is fine for describing items that march single file. When you need to describe
items in the second or third dimension, you conjure forth a multidimensional type
of array.

Making a two-dimensional array
It helps to think of a two-dimensional array as a grid of rows and columns. An
example of this type of array is a chess board — a grid of eight rows and eight
columns. Though you can declare a single 64-element array to handle the job of
representing a chess board, a two-dimensional array works better. Such a thing is
declared this way:

int chess[8][8];

CHANGE AN ARRAY’S SIZE, WILL YOU?
When an array is declared in C, its size is set. After the program runs, you can neither
add nor remove more elements. So if you code an array with 10 elements, as in

int topten[10];

you cannot add an 11th element to the array. Doing so leads to all sorts of woe and
misery.

To use nerdy lingo, an array in C is not dynamic: It cannot change size after the size has
been established. Other programming languages let you resize, or redimension, arrays,
but not C. A workaround for dynamic storage does exist in C, but it involves using point-
ers to allocate storage. This scary topic is avoided until Chapter 18.

184 PART 3 Build Upon What You Know

The two square brackets define two different dimensions of the chess array: eight
rows and eight columns. The square located at the first row and column would be
referenced as chess[0][0]. The last square on that row would be chess[0][7],
and the last square on the board would be chess[7][7].

In Listing 12-6, a simple tic-tac-toe board is created using a two-dimensional
matrix: 3-by-3. Lines 9 through 11 fill in the matrix. Line 12 adds an X character
in the center square.

LISTING 12-6:	 Tic-Tac-Toe

#include <stdio.h>

int main()
{
 char tictactoe[3][3];
 int x,y;

/* initialize matrix */
 for(x=0;x<3;x++)
 for(y=0;y<3;y++)
 tictactoe[x][y]='.';
 tictactoe[1][1] = 'X';

/* display game board */
 puts("Ready to play Tic-Tac-Toe?");
 for(x=0;x<3;x++)
 {
 for(y=0;y<3;y++)
 printf("%c ",tictactoe[x][y]);
 putchar('\n');
 }
 return(0);
}

Lines 14 through 21 output the matrix. As with its creation, the matrix is output by
using a nested for loop.

Exercise 12-17: Create a new project using the source code shown in Listing 12-6.
Build and run.

A type of two-dimensional array that’s pretty easy to understand is an array of
strings, as shown in Listing 12-7.

CHAPTER 12 Give Me Arrays 185

LISTING 12-7:	 An Array of Strings

#include <stdio.h>

int main()
{
 int const size = 3;
 char caesar[size][9] = {
 "Julius",
 "Augustus",
 "Nero"
 };
 int x,index;

 for(x=0;x<size;x++)
 {
 index = 0;
 while(caesar[x][index] != '\0')
 {
 putchar(caesar[x][index]);
 index++;
 }
 putchar('\n');
 }
 return(0);
}

Line 6 in Listing 12-7 declares a two-dimensional char array: caesar. The first
value in square brackets is the number of items (strings) in the array, set by the
constant size. The second value in square brackets is the maximum size required
to hold the largest string. The largest string is Augustus with eight letters, so nine
characters are required for storage, which includes the terminating \0 or null
character.

Because all items in the array’s second dimension must have the same number of
elements, all strings are stored using nine characters. Yep, this configuration is
wasteful, but it’s the way the system works. Figure 12-1 illustrates this concept.

Exercise 12-18: Type the source code from Listing 12-7 into your editor; build and
run the program.

186 PART 3 Build Upon What You Know

Lines 15 through 21 in Listing 12-7 are inspired by Exercise 12-8, earlier in this
chapter. The statements basically plod through the caesar array’s second dimen-
sion, spitting out one character at a time.

Exercise 12-19: Replace Lines 15 through 21 in Listing 12-7 with a single puts()
function to display the string. Here’s how that statement looks:

puts(caesar[x]);

When working with strings in a two-dimensional array, the string is referenced
by the first dimension only.

Exercise 12-20: Modify your source code from Exercise 12-19 so that three more
emperors are added to the array: Tiberius, Caligula, and Claudius.

Going crazy with three-dimensional arrays
Two-dimensional arrays are pretty common in the programming realm. Multidi-
mensional is insane!

Well, maybe not. Three- and four-dimensional arrays have their place. The big
deal is that your human brain has trouble keeping up with the various possible
dimensions.

Listing 12-8 illustrates code that works with a three-dimensional array. The dec-
laration is found at Line 5. The third dimension is simply the third set of square
brackets, which effectively creates a 3D tic-tac-toe game board.

FIGURE 12-1:
Storing strings

in a two-
dimensional

array.

CHAPTER 12 Give Me Arrays 187

LISTING 12-8:	 Going 3D

#include <stdio.h>

int main()
{
 char tictactoe[3][3][3];
 int x,y,z;

/* initialize matrix */
 for(x=0;x<3;x++)
 for(y=0;y<3;y++)
 for(z=0;z<3;z++)
 tictactoe[x][y][z]='.';
 tictactoe[1][1][1] = 'X';

/* display game board */
 puts("Ready to play 3D Tic-Tac-Toe?");
 for(z=0;z<3;z++)
 {
 printf("Level %d\n",z+1);
 for(x=0;x<3;x++)
 {
 for(y=0;y<3;y++)
 printf("%c ",tictactoe[x][y][z]);
 putchar('\n');
 }
 }
 return(0);
}

Lines 8 through 12 fill the array with data, using variables x, y, and z as the
three-dimensional coordinates. Line 13 places character X in the center cube,
which gives you an idea of how individual elements are referenced.

The rest of the code from Lines 15 through 26 displays the matrix.

Exercise 12-21: Create a three-dimensional array program using the source code
from Listing 12-8. Build and run.

Lamentably, the output is two-dimensional. If you’d like to code a third dimen-
sion, I’ll leave that up to you.

188 PART 3 Build Upon What You Know

Declaring an initialized multidimensional
array
The dark secret of multidimensional arrays is that they don’t really exist. Inter-
nally, the compiler sees things as single dimensions — just a long array full of
elements. The double (or triple) bracket notation is used to calculate the proper
offset in the array at compile time. That’s okay because the compiler does the
work.

You can see how multidimensional arrays translate into regular old boring arrays
when you declare them already initialized. For example:

int grid[3][4] = {
 5, 4, 4, 5,
 4, 4, 5, 4,
 4, 5, 4, 5
 };

The grid array consists of three rows of four items each. As just shown, it’s
declared as a grid and it looks like a grid. Such a declaration works, as long as the
last element doesn’t have a comma after it. In fact, you can write the whole thing
like this:

int grid[3][4] = { 5, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 5 };

This statement still defines a multidimensional array, but you can see how it’s
really just a single-dimension array with dual indexes. In fact, the compiler is
smart enough to figure out the dimensions even when you give only one of them,
as in this example:

int grid[][4] = { 5, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 5 };

In the preceding line, the compiler sees the 12 elements in an array grid, so it
automatically knows that it’s a 3-by-4 matrix based on the 4 in the brackets. Or
you can do this:

int grid[][6] = { 5, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 5 };

In this example, the compiler would figure that you have two rows of six elements.
But the following example is just wrong:

int grid[][] = { 5, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 5 };

CHAPTER 12 Give Me Arrays 189

The compiler isn’t going to get cute. In the preceding line, it sees an improperly
declared single-dimension array. The extra square brackets aren’t needed.

Exercise 12-22: Rewrite the code from Exercise 12-17 so that the tic-tac-toe game
board is initialized when the array is declared — including putting the X in the
proper spot.

Arrays and Functions
Creating an array for use inside a function works just like creating an array for use
inside the main() function: The array is declared, it’s initialized, and its elements
are used. You can also pass arrays to, and return them from, functions.

Passing an array to a function
Sending an array off to a function is pretty straightforward. The function must be
prototyped with the array specified as one of the arguments. It looks like this:

void whatever(int nums[]);

This statement prototypes the whatever() function. The function accepts an inte-
ger array as an argument, using nums to represent the array within the function.
The entire array — every element — is passed to the function, where it’s available
for fun and frolic.

When you call a function with an array as an argument, you must omit the square
brackets:

whatever(values);

In the preceding line, the whatever() function is called using the array values as
an argument. If you keep the square brackets, the compiler assumes that you
meant only to pass a single element and that you forgot to specify which one. So
this is good:

whatever(values);

But this is not good:

whatever(values[]);

190 PART 3 Build Upon What You Know

And this statement passes a single element to the nice() function:

nice(value[x]);

The topic in this section is passing entire arrays, and the code shown in
Listing 12-9 features the showarray() function. It’s a void function, so it doesn’t
return any values, but it can manipulate the passed array.

LISTING 12-9:	 Mr. Function, Meet Mr. Array

include <stdio.h>

void showarray(int array[]);

int main()
{
 int n[] = { 2, 3, 5, 7, 11 };

 puts("Here's your array:");
 showarray(n);
 return(0);
}

void showarray(int array[])
{
 int x;

 for(x=0;x<5;x++)
 printf("%d ",array[x]);
 putchar('\n');
}

The showarray() function is called at Line 10. See how the n array is passed without
its angle brackets? Remember this format!

At Line 14, the showarray() function is declared with the array specified using
square brackets, just like the prototype at Line 3. Within the function, the array is
accessed just like it would be in the main() function, which you can see at Line 19.

Exercise 12-23: Type the source code from Listing 12-9 into your editor. Build and
run the program to ensure that it works.

CHAPTER 12 Give Me Arrays 191

Exercise 12-24: Add a second function, arrayinc(), to your solution for Exercise
12-23. Make it a void function. The function takes an array as its argument. The
function adds 1 to each value in the array. Have the main() function call arrayinc()
with array n as its argument. Then call the showarray() function a second time to
display the modified values in the array.

The arrayinc() function need not return the modified array (a topic referenced in
the next section). Because of the interesting nature of arrays in C, the element’s
values manipulated in the one function affect the array throughout the code.

Returning an array from a function
In addition to being passed an array, a function in C can return an array. The
problem is that arrays are returned only as pointers. This topic is covered in
Chapter 19. But it’s not the worst part:

In Chapter 19, you discover the scandalous truth that C has no arrays — that they
are merely cleverly disguised pointers. (Sorry to save that revelation for the end of
this chapter.) Array notation does have its place, but pointers are where the
action is.

CHAPTER 13 Fun with Text 193

Chapter 13
Fun with Text

A string is a chunk of text. It’s a programming concept but also a basic part
of all human communications. What a string isn’t, however, is a variable
type in the C language; nope, a string is an array of char variables. This fact

doesn’t make it less important. A lot of programming involves presenting text and
manipulating strings. So, despite its not being invited to the official C language
data type club, the string has lots of clout when it comes to writing programs.

Character Manipulation Functions
At the heart of any string of text is the char variable. It’s a unique cubby hole, into
which you stuff an integer from 0 through 255. This value is represented visually
as a character — a symbol, squiggle, or whatsis, and the beloved alphabet you’ve
been familiar with even before you learned to read.

Introducing the CTYPEs
The C language features a bevy of functions designed to test or manipulate indi-
vidual characters. The functions are all defined in the ctype.h header file. Most
programmers therefore refer to the functions as the CTYPE functions, where CTYPE
is pronounced “see-type,” and not “stoor-ye,” which how a native Russian would
read it.

IN THIS CHAPTER

»» Checking for certain characters

»» Converting text characters

»» Manipulating strings

»» Working with conversion characters

»» Adjusting text output

»» Understanding stream input

194 PART 3 Build Upon What You Know

To use the CTYPE functions, the ctype.h header file must be included in your
source code:

#include <ctype.h>

I classify the CTYPE functions into two categories: is-testing and to-manipulation.
Some of my favorite testing functions are shown in Table 13-1; manipulation
functions, in Table 13-2.

CTYPE functions are consistent: Testing functions begin with is, and manipulation
functions begin with to.

Every CTYPE function accepts an int value as the argument, represented by the
variable ch in Tables 13-1 and 13-2. These are not char functions!

TABLE 13-1	 CTYPE Testing Functions
Function Returns TRUE When ch Is

isalnum(ch) A letter of the alphabet (upper- or lowercase) or a number

isalpha(ch) An upper- or lowercase letter of the alphabet

iscntrl(ch) A control code character, values 0 through 31 and 127

isdigit(ch) A character 0 through 9

isgraph(ch) Any printable character except for the space

islower(ch) A lowercase letter of the alphabet, a to z

isprint(ch) Any character that can be displayed, including the space

ispunct(ch) A punctuation symbol

isspace(ch) A whitespace character, space, tab, form feed, or Enter, for example

isupper(ch) An uppercase letter of the alphabet, A to Z

isxdigit(ch) Any hexadecimal digit, 0 through 9 or A through F (upper- or lowercase)

TABLE 13-2	 CTYPE Manipulation Functions
Function Returns

tolower(ch) The lowercase of character ch

toupper(ch) The uppercase of character ch

CHAPTER 13 Fun with Text 195

Every CTYPE function returns an int value. The functions in Table 13-1 return
logical TRUE or FALSE values; FALSE is 0, and TRUE is a non-zero value.

CTYPE functions are not real functions. No, they’re macros defined in the ctype.h
header file. Regardless, they look like functions and are used that way. (I write this
note to prevent college sophomores from emailing me such corrections.)

Testing characters
The CTYPE functions come in most handy when testing input, determining
that the proper information was typed, or pulling required information out of
junk. The code in Listing 13-1 illustrates how a program can scan text, pluck out
certain attributes, and then output a summary of that information.

LISTING 13-1:	 Text Statistics

#include <stdio.h>
#include <ctype.h>

int main()
{
 char ph�rase[] = "When in the Course of human events, it becomes

necessary for one people to dissolve the political bands
which have connected them with another, and to assume
among the powers of the earth, the separate and equal
station to which the Laws of Nature and of Nature's God
entitle them, a decent respect to the opinions of mankind
requires that they should declare the causes which impel
them to the separation.";

 int index,alpha,space,punct;

 alpha = space = punct = 0;

 /* gather data */
 index = 0;
 while(phrase[index])
 {
 if(isalpha(phrase[index]))
 alpha++;
 if(isspace(phrase[index]))
 space++;

(continued)

196 PART 3 Build Upon What You Know

 if(ispunct(phrase[index]))
 punct++;
 index++;
 }

 /* print results */
 printf("\"%s\"\n",phrase);
 puts("Statistics:");
 printf("%d alphabetic characters\n",alpha);
 printf("%d spaces\n",space);
 printf("%d punctuation symbols\n",punct);

 return(0);
}}

Listing 13-1 may seem long, but it’s not; the phrase[] string declared at Line 6
can be anything you like — any text, a poem, or a filthy limerick. It should be long
enough to have a smattering of interesting characters. Note that though the text
wraps and indents in this text, you should just type one long line of text in your
code.

This code also does something not yet presented in this book. I call it a gang
initialization:

 alpha = space = punct = 0;

Because each of these variables must be set to 0, you use multiple assignment
operators on the same line and accomplish the task in one fell swoop.

The meat of the program’s operation takes place starting after the gather data
comment. A while loop steps through each character in the string. The condition
for the while loop is phrase[index]. This evaluation is TRUE for each character in
the array except for the last one, the null character, which evaluates to FALSE and
stops the loop.

CTYPE functions are used in if statements as each character is evaluated at
Lines 16, 18, and 20. I don’t use if-else tests because every character must be
checked. When a positive or TRUE match is found, a counter variable is
incremented.

LISTING 13-1:	 (continued)

CHAPTER 13 Fun with Text 197

Exercise 13-1: Type the source code from Listing 13-1 into your editor. Build
and run.

Exercise 13-2: Modify the source code from Listing 13-1 so that tests are also made
for counting upper- and lowercase letters. Display those results as well.

Exercise 13-3: Add code to your solution to Exercise 13-2 so that a final tally of all
characters in the text (the text’s length) is displayed as the final statistic.

Many compilers add other is-CTYPE functions to their libraries. These functions
are useful, such as isblank() to test for a space or tab, but they might not be avail-
able to every C compiler.

Changing characters
The CTYPE functions that begin with to are used to manipulate characters. The
most common of these functions (the only two in the standard C library) are toup-
per() and tolower(), which come in handy when testing input. As an example, con-
sider the typical yorn problem, illustrated in Listing 13-2.

LISTING 13-2:	 A yorn Problem

#include <stdio.h>
#include <ctype.h>

int main()
{
 char answer;

 printf("Would you like to blow up the moon? ");
 scanf("%c",&answer);
 answer = toupper(answer);
 if(answer=='Y')
 puts("BOOM!");
 else
 puts("The moon is safe");
 return(0);
}

Yorn is programmer-speak for a yes-or-no situation: The user is asked to type Y
for Yes or N for No. Does the person have to type Y or y? Or can they type N or n,
or would any non-Y key be considered No?

198 PART 3 Build Upon What You Know

In Listing 13-2, Line 10 uses toupper() to convert the character input to uppercase.
This way, only a single if condition is required in order to test for Y or y input.

Exercise 13-4: Create a new program using the source code shown in Listing 13-2.
Build and run.

Exercise 13-5: Modify the source code from Listing 13-2 so that text is displayed
when the user types neither Y nor N.

Exercise 13-6: Write a program that changes all uppercase letters in a string of
text to lowercase and changes all lowercase letters to uppercase. Output the
results.

Here’s sample output from my solution to Exercise 13-6:

Original: ThiS Is a RANsom NoTE!
Modified: tHIs iS A ranSOM nOte!

Some C libraries add the toascii() function to the CTYPE parade. This function con-
verts non-ASCII characters, those with codes greater than 127, to ASCII codes
from 0 to 127. The toascii() function, however, is nonstandard.

String Functions Galore
Despite its not-a-variable type classification, the C library doesn’t skimp on func-
tions that manipulate strings. Just about anything you desire to do with a string
can be done by using some of the many string functions. And when these func-
tions fall short, you can write your own.

Reviewing string functions
Table 13-3 lists some of the C language library functions that manipulate or abuse
strings.

More string functions are available than are shown in Table 13-3. Many of them
do specific things that require a deeper understanding of C. The ones shown in the
table are the most common found in the standard library.

CHAPTER 13 Fun with Text 199

All the string functions in Table 13-3 require the string.h header file to be
included with your source code:

#include <string.h>

On a Unix system, you can review all the string functions by typing the command
man string in a terminal window.

Be aware of nonstandard string functions. For example, the strcasecmp() function
compares strings regardless of text case, though this function isn’t part of the
standard C library. If you use such a function in your code, it may not compile on
another computer system.

Comparing text
Strings are compared by using the strcmp() function and its cousin strncmp().

The string comparison functions return an int value based on the result of the com-
parison: 0 for when the strings are equal, or a higher or lower int value based on
whether the first string’s value is greater than (higher in the alphabet) or less than
(lower in the alphabet) the second string. Most of the time, you just check for 0.

TABLE 13-3	 String Functions
Function What It Does

strcat() Appends one string to another, creating a single string out of two.

strncat() Appends a given number of characters from one string to the end of another.

strchr() Searches for a character within a string. The function returns that character’s position from the
start of the string as a pointer.

strcmp() Compares two strings in a case-sensitive way. If the strings match, the function returns 0.

strncmp() Compares the first n characters of two strings, returning 0 if the given number of characters
match.

strcpy() Copies (duplicates) one string to another.

strncpy() Copies a specific number of characters from one string to another.

strlen() Returns the length of a string, not counting the \0 or NULL character at the end of the string.

strrchr() Searches for a character within a string, but in reverse. The function returns the character’s posi-
tion from the end of the string as a pointer.

strstr() Searches for one string inside another string. The function returns a pointer to the string’s loca-
tion if it’s found.

200 PART 3 Build Upon What You Know

Listing 13-3 uses the strcmp() function in Line 13 to compare the initialized string
password with whatever text is read at Line 11, which is stored in the input array.
The result of this operation is stored in the match variable, which is used in an if-
else decision tree at Line 14 to display the results.

LISTING 13-3:	 Let Me In

#include <stdio.h>
#include <string.h>

int main()
{
 char password[]="taco";
 char input[15];
 int match;

 printf("Password: ");
 scanf("%s",input);

 match=strcmp(input,password);
 if(match==0)
 puts("Password accepted");
 else
 puts("Invalid password. Alert the authorities.");

 return(0);
}

Exercise 13-7: Type the source code from Listing 13-3 into your editor. Try out the
program a few times to ensure that it accepts only taco as the proper password.

Exercise 13-8: Eliminate the match variable from your code in Exercise 13-7 and
use the strcmp() function directly in the if comparison. This is the way most pro-
grammers do it.

Building strings
The glue that sticks one string onto the end of another is the strcat() function. The
term cat is short for concatenate, which means to link together. Here’s how it
works:

strcat(first,second);

CHAPTER 13 Fun with Text 201

After this statement executes, the text from the second string is appended to the
first string. Or you can use immediate values:

strcat(gerund,"ing");

This statement tacks the text ing onto the end of the gerund text array.

It’s important that the destination string buffer be large enough to accommodate
all the text. The compiler doesn’t check for an overflow, which is a security risk.
No, it’s up to you, the programmer, to confirm that the target char array is large
enough.

The code in Listing 13-4 declares two char arrays to hold text. Array first is twice
as large as array last because it’s the location where the second string’s content
is copied. The copying takes place at Line 13 with the strcat() function.

LISTING 13-4:	 Introductions

#include <stdio.h>
#include <string.h>

int main()
{
 char first[40];
 char last[20];

 printf("What is your first name? ");
 scanf("%s",first);
 printf("What is your last name? ");
 scanf("%s",last);
 strcat(first,last);
 printf("Pleased to meet you, %s!\n",first);
 return(0);
}

Exercise 13-9: Create a new program by using the source code from Listing 13-4.
Run the program.

Exercise 13-10: Modify your source code so that a single space is concatenated to
the first string before the last string is concatenated.

202 PART 3 Build Upon What You Know

Though I’m careful in Listing 13-4 to avoid a buffer overflow, the scanf() function
is used in this code. This function is weak for gathering text input. The fgets()
function would be better, but it retains the newline in the string, which creates
more problems for generating clean output.

Fun with printf() Formatting
The most popular output function in C has to be printf(). It’s everyone’s favorite.
It’s one of the first functions you learn in C. And as one of the most complex, it’s
one of the functions that no one ever fully knows.

The power in printf() lies in its formatting string. This string can be packed with
plain text, escape sequences, and conversion characters, which are the little per-
cent goobers that insert values into the text output. It’s the conversion characters,
or placeholders, that give printf() its real power, and they’re also one of the func-
tion’s least understood aspects.

»» The printf() function is so popular that just about every current, trendy
programming language features its own version.

»» All conversion characters are listed in Appendix F.

Formatting floating point
You can use more than the basic %f conversion character to format floating-point
values. In fact, here’s the format I typically use in the printf() function’s format-
ting text:

%w.pf

The w sets the maximum width of the entire number, including the decimal place.
The p sets the number of characters after the decimal. For example:

printf("%9.2f",12.45);

This statement outputs four spaces and then 12.45. These four spaces plus 12.45
(five characters total) equal the 9 in the width. Only two values are shown to the
right of the decimal because .2 is used in the %f conversion character.

CHAPTER 13 Fun with Text 203

It’s possible to specify the decimal value without setting a width, but it must be
prefixed by the period, as in %.2f (percent point-two F). Listing 13-5 shows a
variety of options.

LISTING 13-5:	 The printf() Floating-Point Formatting Gamut

#include <stdio.h>

int main()
{
 float sample1 = 34.5;
 float sample2 = 12.3456789;

 printf("%%9.1f = %9.1f\n",sample1);
 printf("%%8.1f = %8.1f\n",sample1);
 printf("%%7.1f = %7.1f\n",sample1);
 printf("%%6.1f = %6.1f\n",sample1);
 printf("%%5.1f = %5.1f\n",sample1);
 printf("%%4.1f = %4.1f\n",sample1);
 printf("%%3.1f = %3.1f\n",sample1);
 printf("%%2.1f = %2.1f\n",sample1);
 printf("%%1.1f = %1.1f\n",sample1);
 printf("%%9.1f = %9.1f\n",sample2);
 printf("%%9.2f = %9.2f\n",sample2);
 printf("%%9.3f = %9.3f\n",sample2);
 printf("%%9.4f = %9.4f\n",sample2);
 printf("%%9.5f = %9.5f\n",sample2);
 printf("%%9.6f = %9.6f\n",sample2);
 printf("%%9.7f = %9.7f\n",sample2);
 printf("%%9.8f = %9.8f\n",sample2);
 return(0);
}

Exercise 13-11: Type the source code from Listing 13-5 into your editor. It looks
like a lot of work, but you can create the code quickly by using a lot of
copy-and-paste.

The output from Exercise 13-11 helps illustrate the width and precision portions of
the %f conversion character:

%9.1f = 34.5
%8.1f = 34.5
%7.1f = 34.5

204 PART 3 Build Upon What You Know

%6.1f = 34.5
%5.1f = 34.5
%4.1f = 34.5
%3.1f = 34.5
%2.1f = 34.5
%1.1f = 34.5
%9.1f = 12.3
%9.2f = 12.35
%9.3f = 12.346
%9.4f = 12.3457
%9.5f = 12.34568
%9.6f = 12.345679
%9.7f = 12.3456793
%9.8f = 12.34567928

From this output, you can see how the width value “pads” the numbers on the
left. As the width value decreases, so does the padding. However, when the width
specified is wider than the original value, nonsense is displayed, as shown by the
last two lines of output. This is because the width is beyond the limit of single
precision.

Setting the output width
The w output width option is available to all the conversion characters, not just %f.
The width is the minimum amount of space provided for output. When the output
is less than the width, it’s right-justified. When the output is greater than the
width, the width value is ignored. Listing 13-6 provides examples using the %s
placeholder.

LISTING 13-6:	 Messing with the Width

#include <stdio.h>

int main()
{
 printf("%%15s = %15s\n","hello");
 printf("%%14s = %14s\n","hello");
 printf("%%13s = %13s\n","hello");
 printf("%%12s = %12s\n","hello");
 printf("%%11s = %11s\n","hello");
 printf("%%10s = %10s\n","hello");
 printf(" %%9s = %9s\n","hello");
 printf(" %%8s = %8s\n","hello");

CHAPTER 13 Fun with Text 205

 printf(" %%7s = %7s\n","hello");
 printf(" %%6s = %6s\n","hello");
 printf(" %%5s = %5s\n","hello");
 printf(" %%4s = %4s\n","hello");
 return(0);
}

Exercise 13-12: Type the source code from Listing 13-6 into a new project. Build
and run to examine the output, which looks like this:

%15s = hello
%14s = hello
%13s = hello
%12s = hello
%11s = hello
%10s = hello
 %9s = hello
 %8s = hello
 %7s = hello
 %6s = hello
 %5s = hello
 %4s = hello

As with the width option for floating-point numbers (refer to Listing 13-5), space
is padded on the left when the width value is greater than the string. But when the
width is less than the string’s length, the full string is still output.

When the width value is specified for an integer, it can be used to right-align the
output. For example:

printf("%4d",value);

This statement ensures that the output for value is right-justified and at least
four characters wide. If value is fewer than four characters wide, it’s padded with
spaces on the left. That is, unless you stick a 0 in there:

printf("%04d",value);

In this case, the printf() function pads the width with zeros to keep everything four
characters wide.

206 PART 3 Build Upon What You Know

Exercise 13-13: Modify Exercise 13-1 so that the integer values’ output is aligned.
For example, the summary portion of the output should look something like this:

 330 alphabetic characters
 70 blanks
 6 punctuation symbols

Aligning output
The width value in the conversion character aligns output to the right, known as
right justification. But not everything is all right. Sometimes, you want left justifi-
cation. To force the padding to the right side of the output, insert a minus sign
before the width value in the %s conversion character. For example:

printf("%-15s",string);

This statement outputs the text in the array string justified to the left. If string
is shorter than 15 characters, spaces are added to the right.

The source code in Listing 13-7 displays two strings. The first one is left-justified
within a range of varying widths. The width gets smaller with each progressive
printf() statement.

LISTING 13-7:	 Meeting in the Middle

#include <stdio.h>

int main()
{
 printf("%-9s me\n","meet");
 printf("%-8s me\n","meet");
 printf("%-7s me\n","meet");
 printf("%-6s me\n","meet");
 printf("%-5s me\n","meet");
 printf("%-4s me\n","meet");
 return(0);
}

Exercise 13-14: Copy the code from Listing 13-7 into your editor. Create the pro-
gram and run it to see the alignment output demonstrated.

Exercise 13-15: Write a program that displays the first and last names of the first
four presidents of the United States. You can express the names as literal values in

CHAPTER 13 Fun with Text 207

the printf() statements. The names need to line up so that the output looks
like this:

George Washington
John Adams
Thomas Jefferson
James Madison

Gently Down the Stream
The basic input/output functions in C are not interactive. They don’t sit and wait
for you to type text at the keyboard, which is the way you expect to use a computer
program. But standard input in C isn’t character based, it’s stream based.

With stream based input, a program looks at the input as though it were poured out
of a jug. All the characters, including Enter, march in, one after another. Only after
a given chunk of text is received, or input stops altogether, does the stream end.
This concept can be frustrating to any beginning C programmer.

Demonstrating stream input
Consider the code illustrated in Listing 13-8. It appears that the code reads input
until the period is encountered. At this point, you would assume that input would
stop, but doing so is not anticipating stream input.

LISTING 13-8:	 Foiled by Stream input

#include <stdio.h>

int main()
{
 int i;

 do
 {
 i = getchar();
 putchar(i);
 } while(i != '.');

 putchar('\n');
 return(0);
}

208 PART 3 Build Upon What You Know

Exercise 13-16: Type the source code from Listing 13-8 into an editor. Build and
run to try out the program. Type a lot of text and a period to see what happens.

Here’s how it ran on my computer, with my typing shown in bold:

This is a test. It's only a test.
This is a test.

The program doesn’t halt input after you type a period. The first line in the pre-
ceding example is the stream, like a fire hose shooting characters into the pro-
gram. The program behaves properly, processing the stream and halting its
display after the period is encountered. The Enter key serves as a break in the
stream, which the program uses to digest input until that point.

Dealing with stream input
Despite the C language’s stream orientation, ways do exist to create more-or-less
interactive programs. You merely have to embrace stream input and deal with it
accordingly.

The source code in Listing 13-9 should be pretty straightforward to you. The
getchar() function fetches two characters and then the characters are displayed on
Line 11.

LISTING 13-9:	 Fishing for Characters in the Stream

#include <stdio.h>

int main()
{
 int first,second;

 printf("Type your first initial: ");
 first = getchar();
 printf("Type your second initial: ");
 second = getchar();
 printf("Your initials are '%c' and '%c'\n", first,second);
 return(0);
}

CHAPTER 13 Fun with Text 209

Exercise 13-17: Type the source code from Listing 13-9 into your editor. Line 11 in
the listing is split so that it doesn’t wrap; you don’t have to split the line in your
editor. Build and run using your initials as input.

Here’s the output I saw, with my typing shown in bold:

Type your first initial: D
Type your second initial: Your initials are 'D' and '
'

Like you, I never got a chance to type my second initial. The stream included the
Enter key press, which the program accepted as input for the second getchar()
function. That character, \n, is displayed in the output between the single quotes.

How do you run the program? Simple: Type both initials at the first prompt:

Type your first initial: DG
Type your second initial: Your initials are 'D' and 'G'

Of course, this isn’t what the code asks for. So how do you fix it? Can you think of
a solution using your current programmers’ bag o’ tricks?

Don’t give up!

The solution I would use is to devise a function that returns the first character in
the stream and then swallows the rest of the characters until the \n is encoun-
tered. This function appears in Listing 13-10:

LISTING 13-10:	 A Single-Character Input Function, getch()

int getch(void)
{
 int ch;

 ch = getchar();
 while(getchar()!='\n')
 ;
 return(ch);
}

210 PART 3 Build Upon What You Know

To wrap your brain around stream input, consider that the while loop in
Listing 13-10 spins through all text in the stream until a newline is encountered.
Then the first character in the stream, grabbed at Line 5, is returned from the
function.

Exercise 13-18: Modify the source code from Exercise 13-17 so that the getch()
function illustrated in Listing 13-10 is used to gather input. Build and run to
ensure that the output is what the user anticipates.

If you want truly interactive programs, I recommend that you look into the
NCurses library, which extends C’s capability to output and input text. NCurses
lets you create full-screen text programs that are immediately interactive.

CHAPTER 14 Structures, the Multivariable 211

Chapter 14
Structures, the
Multivariable

Individual variables are perfect for storing single values. When you need more of
one type of a variable, you declare an array. For data that consists of several
different types of variables, you mold the variable types into something called a

structure. It’s the C language’s method of creating a variable buffet.

Hello, Structure
I prefer to think of the C language structure as a multivariable, or several variables
rolled into one. You use structures to store or access complex information. That
way, you can keep various int, char, float variables, and even arrays, all in one neat
package.

Introducing the multivariable
Some things just belong together — like your name and address or your bank
account number and all the money that’s supposedly there. You can craft such a
relationship in C by using parallel arrays or specifically named variables. But this

IN THIS CHAPTER

»» Creating structures

»» Declaring structure variables

»» Assigning values to a structure
variable

»» Building structure arrays

»» Putting one structure inside another

212 PART 3 Build Upon What You Know

method is clunky. A better solution is to employ a structure, as demonstrated in
Listing 14-1.

LISTING 14-1:	 One Variable, Many Parts

#include <stdio.h>

int main()
{
 struct player
 {
 char name[32];
 int highscore;
 };
 struct player xbox;

 printf("Enter the player's name: ");
 scanf("%s",xbox.name);
 printf("Enter their high score: ");
 scanf("%d",&xbox.highscore);

 printf("Player %s has a high score of %d\n",
 xbox.name,xbox.highscore);
 return(0);
}

Exercise 14-1: Without even knowing what the heck is going on, type Listing 14-1
into your editor to create a new program. Build and run.

Here’s how the code in Listing 14-1 works:

Lines 5 through 9 declare the player structure. This structure has two members —
a char array (string) and int — declared just like any other variables, in Lines 7
and 8.

Line 10 declares a new variable for the player structure, xbox.

Line 13 uses scanf() to fill the name member for the xbox structure variable with a
string value.

Line 15 uses scanf() to assign a value to the highscore member in the xbox
structure.

CHAPTER 14 Structures, the Multivariable 213

The structure’s member values are displayed at Line 17 by using a printf() func-
tion. The statement is split between Lines 17 and 18, with the arguments for
printf() on Line 18.

Understanding struct
A structure is a collection. Think of it as a frame that holds multiple variable types.
In many ways, a structure is similar to a record in a database. For example:

Name
Age
Gambling debt

These three items can be fields in a database record, but they can also be members
in a structure: Name would be a string; Age, an integer; and Gambling Debt, an
unsigned floating-point value. Here’s how such a record would look as a structure
in C:

struct record
{
 char name[32];
 int age;
 float debt;
};

struct is a C language keyword that introduces a structure. It’s a definition that
says, “This structure holds the following data types.”

record is the name of the new structure being created. It’s not a variable — it’s a
structure type.

Within the curly brackets dwell the structure’s members, the variables contained
in the named structure. The record structure type contains three member vari-
ables: a string name, an int named age, and a float value, debt.

The struct keyword only defines a structure type, setting its contents. To use the
structure, you must declare a structure variable of the structure type you created.
For instance:

struct record human;

This statement declares a new variable human of the record structure type.

214 PART 3 Build Upon What You Know

Structure variables can also be declared when you define the structure itself. For
example:

struct record
{
 char name[32];
 int age;
 float debt;
} human;

These statements define the record structure and declare a record structure vari-
able, human. Multiple variables of that structure type can also be created:

struct record
{
 char name[32];
 int age;
 float debt;
} bill, mary, dan, susie;

Four record structure variables are created in this example.

To access members in a structure variable, you use a period, which is the member
operator. It connects the structure variable name with a member name. For
example:

printf("Victim: %s\n",bill.name);

This statement references the name member in the bill structure variable. A char
array, it’s used in your code like any other char array. Other members in the struc-
ture variable are used like their individual counterparts as well:

dan.age = 32;

In this example, the age member in the structure variable dan is set to the value 32.

Exercise 14-2: Modify the source code from Listing 14-1 so that another member
is added to the player structure, a float value indicating hours played. Spruce up
the rest of the code so that the new value is input and displayed.

CHAPTER 14 Structures, the Multivariable 215

Filling a structure
As with other variables, you can initialize a structure variable when it’s created.
You first define the structure type and then declare a structure variable with its
member values preset. Ensure that the preset values match the order and type of
members defined in the structure, as shown in Listing 14-2.

LISTING 14-2:	 Declaring an Initialized Structure

#include <stdio.h>

int main()
{
 struct president
 {
 char name[40];
 int year;
 };
 struct president first = {
 "George Washington",
 1789
 };

 printf("The first president was %s\n",first.name);
 printf("He was inaugurated in %d\n",first.year);

 return(0);
}

Exercise 14-3: Create a new program by typing the source code from Listing 14-2
into the editor. Build and run.

You can also declare a structure and initialize it in one statement:

struct president
{
 char name[40];
 int year;
} first = {
 "George Washington",
 1789
};

216 PART 3 Build Upon What You Know

Exercise 14-4: Modify your source code from Exercise 14-3 so that the structure
and variable are declared and initialized as one statement.

Exercise 14-5: Add another president structure variable, second, to your code,
initializing that structure with information about the second president, John
Adams, who was inaugurated in 1797. Display the contents of both structures.

Making an array of structures
Creating individual structure variables, one after the other, is as boring and waste-
ful as creating a series of any individual variable type. The solution for multiple
structures is the same as for multiple individual variables: an array.

A structure array is declared like this:

struct scores player[4];

This statement declares an array of scores structures. The array is named player,
and it contains four structure variables as its elements.

The structures in the array are accessed by using a combination of array and
structure notation. For example:

player[2].name

The variable in the preceding line accesses the name member in the third element
(2) in the player structure array. Yes, that’s the third element because the first
element would be referenced like this:

player[0].name

Arrays start numbering with the element 0, not element 1.

Line 10 in Listing 14-3 declares an array of four scores structures. The array is
named player. Lines 13 through 19 fill each structure in the array. Lines 21 through
27 display each structure’s member values.

LISTING 14-3:	 Arrays of Structures

#include <stdio.h>

int main()

CHAPTER 14 Structures, the Multivariable 217

{
 struct scores
 {
 char name[32];
 int score;
 };
 struct scores player[4];
 int x;

 for(x=0;x<4;x++)
 {
 printf("Enter player %d: ",x+1);
 scanf("%s",player[x].name);
 printf("Enter their score: ");
 scanf("%d",&player[x].score);
 }

 puts("Player Info");
 printf("#\tName\tScore\n");
 for(x=0;x<4;x++)
 {
 printf("%d\t%s\t%5d\n",
 x+1,player[x].name,player[x].score);
 }
 return(0);
}

Exercise 14-6: Type the source code from Listing 14-3 into your editor. Build and
run the program.

Exercise 14-7: Add code to Listing 14-3 so that the display of structures is sorted
with the highest score listed first. Yes, you can do this. Sorting an array of struc-
tures works just like sorting any other array. Review Chapter 12 if you suddenly
lose your nerve.

Here’s a hint, just because I’m a nice guy. Line 28 of my solution looks like this:

player[a]=player[b];

You can swap structure array elements just as you can swap any array elements.
You don’t need to swap the structure variable’s members.

218 PART 3 Build Upon What You Know

Weird Structure Concepts
I’ll admit that structures are perhaps the weirdest type of variable in the C lan-
guage. The two steps required to create them are unusual, but the dot method of
referencing a structure’s member always seems to throw off beginning program-
mers. If you think that, beyond those two issues, structures couldn’t get any
odder, you’re sorely mistaken.

Putting structures within structures
It’s true that a structure holds C language variables. It’s also true that a structure
is a C language variable. Therefore, it follows that a structure can hold another
structure as a member. Don’t let this type of odd thinking confuse you. Instead,
witness the example shown in Listing 14-4.

LISTING 14-4:	 A Nested Structure

#include <stdio.h>
#include <string.h>

int main()
{
 struct date
 {
 int month;
 int day;
 int year;
 };
 struct human
 {
 char name[45];
 struct date birthday;
 };
 struct human president;

 strcpy(president.name,"George Washington");
 president.birthday.month = 2;
 president.birthday.day = 22;
 president.birthday.year = 1732;

CHAPTER 14 Structures, the Multivariable 219

 printf("%s was born on %d/%d/%d\n",
 president.name,
 president.birthday.month,
 president.birthday.day,
 president.birthday.year);

 return(0);
}

Listing 14-4 declares two structure types: date at Line 6 and human at Line 12.
Within the human structure’s declaration, at Line 15 you see the date structure
variable birthday declared. That’s effectively how one structure is born inside
another.

Line 17 creates a human structure variable, president. The rest of the code fills this
structure’s members with data. The method for accessing a nested structure’s
members is shown in Lines 20 through 22.

Exercise 14-8: Type the source code from Listing 14-4 into your editor. Build and
run the program.

Exercise 14-9: From your solution for Exercise 14-8, replace the name member in
the human structure with a nested structure. Name that structure id and have it
contain two char array members for storing an individual’s first and last names:
first and last. If you do everything correctly, the reference to the president’s
name will be the variables president.name.first and president.name.last. Be
sure to assign values to these variables in your code and display the results.

Passing a structure to a function
As a type of variable, it’s entirely possible for a function to accept a structure as an
argument and return it as a value. However, this process requires that the struc-
ture be declared externally, as a global variable. The reason is that the structure’s
definition must be available to all functions in the source code.

The topic of global variables is avoided until Chapter 16. It’s not that complex, but
learning about passing and returning structures can be delayed until then.

CHAPTER 15 Life at the Command Prompt 221

Chapter 15
Life at the Command
Prompt

Before computers went graphical, the text screen was as high-tech as com-
puters went. Visually, everything was plain and dull, and the most exciting
computer games involved a lot of reading. If Facebook were invented back

then, it would be all book and no face.

Way back when, computer life centered around the command prompt. Directions
were typed, and output was plain text. That’s the environment in which the
C language was born, and to some extent, where it still exists today.

Conjure a Terminal Window
Whether you’re using Windows, Mac OS X, Linux, or a Unix variant, you can still
bring forth a terminal window, in which you can witness the breathtaking stark-
ness of the command prompt. It’s a text-only environment, and, in fact, it’s the
environment in which each and every program you’ve coded in this book is per-
fectly at home.

IN THIS CHAPTER

»» Using a terminal window

»» Working with the command line

»» Specifying main()’s arguments

»» Understanding the exit() function

»» Running programs with system()

222 PART 3 Build Upon What You Know

Starting a terminal window
Figure 15-1 illustrates the Ubuntu Linux bash shell in Windows 10. Similar
command prompt or terminal windows are available for other platforms: On the
Macintosh, start the Terminal app. For Linux, start the terminal window.

Open the Terminal app on your computer to witness its nongraphical glory.

»» In Windows, choose Ubuntu from the Start button menu.

»» On the Mac, in the Finder, press Command+Shift+U to view the Utilities folder.
Open the Terminal app.

»» In a Linux or Unix GUI environment, locate and launch the Terminal, Term, or
Xterm program.

The command prompt is both cryptic and powerful. In fact, programmers at
Microsoft use a command-prompt environment called PowerShell to configure
Windows. For the configurations just mentioned in the list, you can compile and
run all the programs presented in this book. In fact, you can use the terminal
window to do everything: edit, build, and run — just like back in the 1980s!

FIGURE 15-1:
Text mode in a

terminal window.

CHAPTER 15 Life at the Command Prompt 223

To close the command prompt or terminal window, type the exit command and
press the Enter key.

»» Code::Blocks for Windows uses the old DOS command prompt, the cmd
program, to output its text mode programs. This environment is rather
limited, which is why I recommend obtaining the Ubuntu shell for
Windows 10.

»» Using the Ubuntu shell in Windows 10 involves more than just obtaining the
app from the Microsoft Store. You must also configure Windows per the
directions offered. Don’t worry! If you screw up, the error message explains
what to do.

Running code in text mode
The programs you create in this book all run in Text mode. If you’re using
Code::Blocks, you see an output window, but you can also run your programs
directly at the DOS command prompt. The trick is finding the program, which
requires a little command-prompt acumen.

Why do this?

Because it’s the best way to test programs that access the main() function’s argu-
ments, which are obtained from the command prompt. Heed these directions:

1.	 Open the terminal window.

Refer to the directions in the preceding section.

The command prompt or terminal window opens to your home folder, which
is called a directory in text mode. The home directory most likely doesn’t
contain your C programs, so you must change to another directory.

2.	 Use the cd, change directory, command to switch to the folder you
created for storing this book’s projects.

For example, I save my C programming projects in the prog/c directory. For
this book, source code files dwell in the cprog subdirectory. The shell com-
mand I type to visit this directory is

cd ~/prog/c/cprog

Type a space after the cd command and then type the pathname, such as my
~/prog/c/cprog (where ~ is the shortcut to your account’s home directory).

224 PART 3 Build Upon What You Know

Type the pathname on your own system to visit the proper directory. If you’re
using Code::Blocks, the project folder is named after the project you’ve saved,
such as ex1409 for the last project in Chapter 14. To run the program that’s
created, you must change to the project’s bin folder:

cd ex1409/bin/release

The current directory now contains the executable program file for your
project.

3.	 To run the program, type its name at the command prompt.

For example, the default output name for the cc, gcc, and clang compiler is
a.out. Type this command:

./a.out

The ./ directs the shell to look for an executable file in the current directory,
a.out. Otherwise, you follow the ./ with the program file’s name.

Follow these steps to run any program you’ve created at the command prompt.
Alternative ways exist to specify the arguments in an IDE. These methods are
covered elsewhere in this chapter.

FINDING WINDOWS FILES IN UBUNTU
If you’re using Ubuntu in Windows 10, be aware that it uses a separate file system from
Windows. To access files in the Windows file system, at the bash shell you must use this
command:

cd /mnt/c

The /mnt/c folder is a mount point for drive C, which is where Windows is normally
installed. From there, you can change to the Users directory, and then to your user pro-
file folder. Then you can change to the directory (folder) where you keep program files.

This technique offers a good solution for using the Linux bash shell for coding, but be
aware that you shouldn’t venture in the other direction: Don’t use Windows to find the
Ubuntu file system and use the File Explorer to manage files there. If you do, the files
may not synchronize properly, which leads to more problems you don’t want.

CHAPTER 15 Life at the Command Prompt 225

Arguments for the main() Function
Back in the old days, programs featured command-line options or switches. For
example, to compile and link a C program, you type something like this:

cc ex1501.c -o ex1501

The three tidbits of text after the cc command are options or switches. With the cc
program, these text tidbits are accessed as arguments to the main() function. A
program can read these arguments to perform certain actions. Even today, when
the world runs graphical operating systems, command-line arguments are rele-
vant. All you need to do in your code is examine the arguments to the main()
function.

Reading the command line
Pretend that it’s 1987 and you’re writing a program that says “Hello” to the user
by name. The way you get the user’s name is to have your code swallow the first
chunk of text that appears after the program name at the command line. That
code may look something like Listing 15-1.

LISTING 15-1:	 Well, Hello There!

#include <stdio.h>

int main(int argc, char *argv[])
{
 if(argc>1)
 printf("Greetings, %s!\n",argv[1]);
 return(0);
}

Line 3 in Listing 15-1 is different from the ones you see earlier in this book. Instead
of being empty, the main() function now shows its two arguments — argc and
*argv[] — in its parentheses.

Line 5 uses the int value argc to determine whether any additional items were
typed after the program name at the command prompt.

226 PART 3 Build Upon What You Know

Line 6 uses the string value (char array) argv[1] to display the first item after the
program name at the command prompt.

Exercise 15-1: Type the source code from Listing 15-1 into a new project. Build
and run.

The program displays no output unless a command-line argument is specified. To
do so at the command prompt:

./a.out Jonah

The name of the program is a.out. The ./ prefix directs the command interpreter
to look for the file in the current directory. This command is followed by a space
and then the first command-line argument, Jonah. The program outputs this
message:

Greetings, Jonah!

If you’re using Code:: Blocks, follow these steps to set a command-line argument:

1.	 Choose Project ➪   Set Programs’ Arguments.

This command is available when you start a Code::Blocks project. Upon
success, you see the Select Target dialog box, as shown in Figure 15-2.

FIGURE 15-2:
Setting

command-line
arguments in
Code::Blocks.

CHAPTER 15 Life at the Command Prompt 227

2.	 Type command-line text in the Program Arguments portion of the Select
Target dialog box.

Use Figure 15-2 as your guide. Type the arguments just as though they were
typed at the command prompt — spaces, dashes, jots, and tittles.

3.	 Click the OK button.

4.	 Run your program again to see its output given the command-line
arguments.

If you’re coding at the command prompt in DOS, you can run the program like this
at the DOS prompt:

ex1501 Shadrach

Press the Enter key to run.

The code from Listing 15-1 uses only the first command-line argument, so if you
type more items, they’re ignored. For example:

ex1501 Shadrach Meshach Abednego

In the preceding line, only Shadrach’s name appears in the output.

Understanding main()’s arguments
When you don’t plan on your program accepting any command-line arguments,
you can leave the main() function’s parentheses empty. Like this:

int main()

When arguments are used in your code, they must be declared. Using them looks
like this:

int main(int argc, char *argv[])

argc is the argument count value. It’s an integer that ranges from 1 through how-
ever many items were typed after the program name at the command prompt.

*argv[] is an array of char pointers. You can think of it instead as an array of
strings, which is how it can be used in your code.

228 PART 3 Build Upon What You Know

The code in Listing 15-2 merely counts the number of arguments typed at the
command line. That value, argc, is output.

LISTING 15-2:	 Argument Counter

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("You typed %d arguments.\n",argc);
 return(0);
}

Exercise 15-2: Type the preceding source code. Build and run by typing no
arguments.

The main() function receives information about the command-line argument
directly from the operating system. The command line is evaluated, and argu-
ments are tallied and referenced. The tally appears as argc, and the references are
stored in the argv[] array.

When no arguments are typed — in Code::Blocks, that means the Program Argu-
ments window remains empty (refer to Figure 15-2) — you see this output:

You typed 1 arguments.

That’s because the program name itself is the first argument. You can prove it by
adding a single line to the code:

printf("Argument one is %s.\n",argv[0]);

Exercise 15-3: Modify your source code by adding the preceding line, inserting it
after the first printf() statement. Build and run.

The program’s output now displays the program’s name — most likely, a full path
to the program, which is accurate but a bit of overkill.

Exercise 15-4: Modify the code again, this time adding a for loop to work through
all the arguments and displaying each one. For example, the output may look like
this:

CHAPTER 15 Life at the Command Prompt 229

begc4d$./ex1504 Shadrach Meshach Abednego
Arg#1 = ./ex1504
Arg#2 = Shadrach
Arg#3 = Meshach
Arg#4 = Abednego

The first argument is element zero of the argv[] array.

Time to Bail
Information can get into your program via command-line arguments. Informa-
tion gets back out thanks to the return statement. That’s the primary, but not the
only, way a program bails out when it’s done.

Quitting the program
Your program quits when the main() function encounters the return statement.
Traditionally, that statement appears at the end of the function, but it doesn’t
always need to go there. Further, you can use the exit() function to leave the pro-
gram at any time, even within a function other than main().

The exit() function gracefully quits a program, tying up any loose ends, tucking
variables into bed, and so on. In Listing 15-3, this function is used at Line 17 to
leave the program in the sub() function.

LISTING 15-3:	 There Must Be Some Way Out of Here

#include <stdio.h>
#include <stdlib.h>

void sub(void);

int main()
{
 puts("This program quits before it's done.");
 sub();
 puts("Or was that on purpose?");
 return(0);
}

(continued)

230 PART 3 Build Upon What You Know

void sub(void)
{
 puts("Which is the plan.");
 exit(0);
}

You must include the stdlib.h header file to use the exit() function, and it con-
sumes an int value as an argument for the exit status, similar to the value passed
by return in the main() function.

Exercise 15-5: Type the source code from Listing 15-3 into your edit. Build and
run the program.

Running another program
The system() function directs your program to run another program or to issue a
command. For example:

system("blorf");

The preceding statement directs the operating system to issue the blorf com-
mand, running whatever program has that name or carrying out whatever actions
the blorf command dictates.

After running the command, control returns to your program, which continues
with the statement following the system() function.

Listing 15-4 contains two system() functions; your code needs only one. Use the
first system() statement if you’re using Windows; use the second statement if
you’re using anything else. Or you can just comment out the statement rather
than delete it.

LISTING 15-4:	 Clearing Things Up

#include <stdio.h>
#include <stdlib.h>

int main()
{
 printf("Press Enter to clear the screen:");
 getchar();

LISTING 15-3:	 (continued)

CHAPTER 15 Life at the Command Prompt 231

 system("cls"); /* Windows only */
 system("clear"); /* Mac - Unix */
 puts("That's better");
 return(0);
}

Line 2 includes the stdlib.h header file, which is required for the system() func-
tion to work. Ensure that the command to be run is a string literal enclosed in
double quotes or is represented by a char array (string).

Exercise 15-6: Create a new project by using the source code shown in Listing 15-4.
Build and run.

CHAPTER 16 Variable Nonsense 233

Chapter 16
Variable Nonsense

You have more to learn about C language variables than knowing the key-
words int, char, float, and double. Yes, I’m including signed, unsigned, long,
and anything else you may already know in that list. The reason is that the

variable is a big part of C. Choosing the right data type and using it properly can
make or break a program.

Variable Control
That which is called a variable by any other name would still be a variable. That is,
unless you mess with the variable’s data type in your code by changing it into
another type, giving it a new name altogether, or casting a spell upon the variable
to meet your needs, benevolent or not.

Typecasting into disbelief
When is a float variable not a float? When it’s typecast into an int, of course. This
trick is made possible in C by using the typecast. For example:

(int)debt

IN THIS CHAPTER

»» Changing variable types

»» Using typedef to create new variables

»» Making static variables

»» Creating a global variable

»» Working with structures and
functions

»» Exploring enumerated constants

234 PART 3 Build Upon What You Know

In the preceding line, the float variable debt is typecast to an int value. The int in
parentheses directs the compiler to treat the value of debt as an integer.

Why would anyone want to do that?

Sometimes a function requires a specific data type and the type isn’t available.
Rather than juggle several data types in one program, you just typecast a variable
into the data type you desire. This trick is often necessary, as shown in
Listing 16-1.

LISTING 16-1:	 That’s Not Right

#include <stdio.h>

int main()
{
 int a,b;
 float c;

 printf("Input the first value: ");
 scanf("%d",&a);
 printf("Input the second value: ");
 scanf("%d",&b);
 c = a/b;
 printf("%d/%d = %.2f\n",a,b,c);
 return(0);
}

Exercise 16-1: Type the source code from Listing 16-1 into your editor. Build
and run.

Here’s a sample run with my input in bold:

Input the first value: 3
Input the second value: 2
3/2 = 1.00

Obviously, I’m incorrect in my assumption that 3 ÷ 2 would somehow work out to
1.50. If the computer says it’s 1.00, the computer must be correct.

Or perhaps the computer is merely confused because, in Line 12 of the source code,
two int values are divided and the result is assigned to a float. This operation
doesn’t quite work, however, because dividing an integer by an integer in C yields

CHAPTER 16 Variable Nonsense 235

an integer as the result. The value 1 is the closest integer value to 1.50. So even
though the computer is wrong, it’s doing exactly what it was told to do.

Exercise 16-2: Modify your source code, changing Line 12 to read

c = (float)a/(float)b;

Save the change. Build and run using the same values as just shown. Here’s the
new output:

Input the first value: 3
Input the second value: 2
3/2 = 1.50

Better. That’s because you typecast variables a and b in the equation, temporarily
allowing the compiler to treat them as floating-point numbers. Therefore, the
result is what it should be.

»» To typecast a variable, prefix it with the data type desired, enclosed in
parentheses:

(float)boat;

In this line, integer variable boat is typecast to a float value.

»» A typecast is different from a typedef, covered in the next section.

Creating new things with typedef
You can get into loads of trouble with the typedef keyword. Beware! It’s powerful.
Heck, it’s more than a keyword — it’s a spell! It can cast normal C words and
operators from their consistent selves into all sorts of mischief.

And because my editor needs a reference in the text to this next code sample, see
Listing 16-2.

LISTING 16-2:	 The Perils of typedef

#include <stdio.h>

typedef int stinky;

stinky main()

(continued)

236 PART 3 Build Upon What You Know

{
 stinky a = 2;

 printf("Everyone knows that ");
 printf("%d + %d = %d\n",a,a,a+a);
 return(0);
}

In Listing 16-2, the typedef statement at Line 3 creates a new data type, named
stinky. It’s created as a synonym for the keyword int. Anywhere you can use int
in the code, you can use the word stinky instead, as shown on Lines 5 and 7.

Exercise 16-3: Use the source code from Listing 16-2 to create a new program,
demonstrating that a stinky variable type is the same as an int. Build and run.

Granted, the example in Listing 16-2 is rather silly; no serious programmer would
set up a real program like that. Where typedef is used most often is in defining
structures. The typedef statement helps to reduce the chunkiness of this activity.

For example, Exercise 14-9 (from Chapter 14) directs you to declare two structures
nested in a third. Listing 16-3 shows how that operation works, given a knowledge
of structures (from Chapter 14):

LISTING 16-3:	 Creating a Structure the Traditional Way

struct id
{
 char first[20];
 char last[20];
};

struct date
{
 int month;
 int day;
 int year;
};

struct human
{
 struct id name;
 struct date birthday;
};

LISTING 16-2:	 (continued)

CHAPTER 16 Variable Nonsense 237

Listing 16-4 shows how the declarations take place if you were to use typedef to
simplify the structures:

LISTING 16-4:	 Using typedef to Define a Structure

typedef struct id
{
 char first[20];
 char last[20];
} personal;

typedef struct date
{
 int month;
 int day;
 int year;
} calendar;

struct human
{
 personal name;
 calendar birthday;
};

In this listing, the structure id is typedef’d to the name personal. This isn’t a
variable name; it’s a typedef. It’s the same as saying, “All references to struct id
are now the same as the name personal.”

Likewise, the structure date is typedef’d to calendar. Finally, in the declaration of
the structure human, the typedef names are used instead of the more complex
structure definitions.

Exercise 16-4: Modify the source code from the project you create in Exercise 14-9
(in Chapter 14) to use typedef, as shown in Listing 16-4. Build and run.

It can be argued that using typedef doesn’t make your code any more clear than
had you just used good variable names and well-formatted text. For example, I
don’t use typedef because I don’t want to have to remember what I’ve defined. But
you will encounter other code that uses typedef. Don’t let it freak you out.

»» To cast the typedef spell, use this format:

typedef data_type new_type

238 PART 3 Build Upon What You Know

Follow the typedef keyword with an existing C data type, data_type, and then
the synonym for the data type, new_type. Use the same rules for naming a
variable as you would for the new_type definition.

»» One advantage of using typedef with a structure is that it saves you from
typing the word struct too many times.

»» Just about any data type you encounter in the C library other than a keyword,
such as time_t, size_t, or st_mode, is most likely a typedef, declared in a header
file. The library documentation (man page) explains the underlying data type,
but you should use the typedef-defined name in your code to declare any
required variables. For example:

time_t now;

The preceding statement creates a variable now of the time_t data type,
defined in the time.h header file. See Chapter 21 for more information on
C library time functions.

»» The rare times the underlying data type for a typedef must be known is when
using a typedef variable in a printf() statement. The conversion character must
match the actual data type. Fortunately, modern compilers, like clang, report
the correct conversion character to use.

»» Where programmers get into trouble with typedef and structures is when
creating a linked list. I repeat this warning in Chapter 20, which covers linked
lists.

Making static variables
Variables used within a function are local to that function: Their values are used
and then discarded when the function is done. Listing 16-5 demonstrates the
concept.

LISTING 16-5:	 Don’t Give Me No static

#include <stdio.h>

void proc(void);

int main()
{
 puts("First call");
 proc();
 puts("Second call");

CHAPTER 16 Variable Nonsense 239

 proc();
 return(0);
}

void proc(void)
{
 int a;

 printf("The value of variable a is %d\n",a);
 printf("Enter a new value: ");
 scanf("%d",&a);
}

In Listing 16-5, variable a in the proc() function doesn’t retain its value. The vari-
able is initialized only by the scanf() function at Line 20. Otherwise, the variable
contains junk information.

Exercise 16-5: Type the source code from Listing 16-5 into your editor. Build the
code. Ignore the “uninitialized” warning that may appear. Run the program.

On my computer, the output looks like this:

First call
The value of variable a is 0
Enter a new value: 6
Second call
The value of variable a is 0
Enter a new value: 6

Despite my attempts to assign 6 to variable a, the program always forgets. So
much for that. Or is it?

Exercise 16-6: Modify the source code from Listing 16-5, editing Line 16 to read:

static int a;

Build and run to test the output. Here’s what I see:

First call
The value of variable a is 0
Enter a new value: 6
Second call
The value of variable a is 6
Enter a new value: 5

240 PART 3 Build Upon What You Know

VARIABLE KEYWORD ROUNDUP
The C language features a few keywords that puzzle beginners and advanced users
alike. Here’s the roundup of various variable classifier, quantifier, and what-have-
you-ifier keywords related to variables.

auto: The auto keyword is a storage class specifier. It’s a holdover from the ancient
B programming language, which defines all variables used in a function that aren’t
constants or static. Because this definition means pretty much every variable declara-
tion, the auto variable classification is assumed by the compiler and, therefore, this
keyword prefix isn’t required.

const: The const keyword is a quantifier used to create a constant or unchanging value.
Refer to Chapter 6.

enum: The enum keyword creates an enumerated list of constants. See the section
“Enumerating,” later in this chapter.

extern: Like auto, the extern keyword is a storage class specifier, referencing variables
declared outside of a function. It’s covered in Chapter 24, though the concept of exter-
nal variables is covered elsewhere in this chapter.

register: Another storage class specifier, a variable declared as a register (followed by
the data type and variable name) is to be stored directly in a CPU register. Modern com-
pilers are highly optimized, which makes this keyword unnecessary.

static: The static keyword declares a storage class that isn’t discarded when a function
terminates. It’s covered elsewhere in this chapter.

union: A union is a complex data construction, similar to a structure. Unlike a structure,
the union can hold a variety of data types in the same memory space, though the code
can access only one type at a time. Unions are considered a security risk because they
define a storage area with an inconsistent data type.

volatile: This scary keyword is a quantifier, often called the opposite of the const key-
word. Like register, volatile was once used to optimize code by telling the compiler which
variables would change most often. Such optimization is no longer necessary with mod-
ern C compilers.

CHAPTER 16 Variable Nonsense 241

Because the variable was declared as static, its value is retained between function
calls.

»» As a bonus, static variable declarations are initialized to zero.

»» The keyword static defines a storage class. See the nearby sidebar, “Variable
keyword roundup.”

»» You need not declare variables as static unless their values must be retained
each time the function is called. This situation crops up from time to time. Also
refer to the later section “Using external variables.”

»» Values returned from a function need not be declared static. When you return
a value, such as

return(a);

only the variable’s value is returned, not the variable itself. The only challenge
with this approach occurs when allocating memory as the buffer. The buffer’s
data is discarded and should be declared static if you want the calling function
to access it. See Chapter 19.

Variables, Variables Everywhere
Sometimes, a variable must be like cellular phone service: available everywhere
and accessed from any function. Often referred to as a global variable, in C it’s
officially known as an external variable.

Using external variables
External variables solve specific problems by making the variable declaration
available to all functions in the source code file. Any function can access the vari-
able. It doesn’t have to be passed to or returned from a function.

Listing 16-6 shows how external variables are declared and used. The variables
age and feet are external. Both are used in, and manipulated by, all functions in
the source code.

242 PART 3 Build Upon What You Know

LISTING 16-6:	 Tossing Your Age Around

#include <stdio.h>

void half(void);
void twice(void);

int age;
float feet;

int main()
{
 printf("How old are you: ");
 scanf("%d",&age);
 printf("How tall are you (in feet): ");
 scanf("%f",&feet);
 printf("You are %d years old and %.1f feet tall.\n",

age,feet);
 half();
 twice();
 printf("But you're not really %d years old or %.1f feet

tall.\n",age,feet);
 return(0);
}

void half(void)
{
 float a,h;

 a=(float)age/2.0;
 printf("Half your age is %.1f.\n",a);
 h=feet/2.0;
 printf("Half your height is %.1f.\n",h);
}

void twice(void)
{
 age*=2;
 printf("Twice your age is %d.\n",age);
 feet*=2;
 printf("Twice your height is %.1f\n",feet);
}

CHAPTER 16 Variable Nonsense 243

Line 6 declares the external int variable age, and Line 7 creates external float vari-
able feet. These variables are declared outside of any function, up there in
#include, #define, and prototyping land. The variables are available to every
function. Even when those values are changed in the twice() function, the main()
function uses the new values.

Be aware that two printf() statements in the main() function wrap their text in
Listing 16-6. You don’t need to wrap those statements in a text editor; just type
each one on a single line.

Exercise 16-7: Type the source code for Listing 16-6 into your editor, creating a
new program. Build and run.

Though both age and feet variables are external, the extern keyword isn’t used to
declare them. This keyword is required only when linking multiple source code
files (modules) into a single program. In this configuration, the keyword identi-
fies external variables available in another source code file but not declared in the
current file. Chapter 24 explains how to use the extern keyword in full detail.

»» Don’t be lazy about using global variables! If you can pass a value to a
function, do so! It’s proper. Too many indolent programmers declare all their
variables external to “solve the problem.” This approach is sloppy
and improper.

»» Good examples of global variables include information that all functions in the
program must access. For example, status settings, user information, and
other items too difficult to pass to every function make excellent candidates
for external variables.

»» In my programming history, it’s rare that code begs for an external variable.
Only when I can’t figure out any other way to make the information available
do I declare a variable globally.

Creating an external structure variable
A situation where external variables are completely necessary occurs when pass-
ing a structure to a function. In this instance, you must declare the structure
externally so that all functions can access variables of the given structure type.
Further, the structure must be declared before any function prototypes for which
the structure appears as an argument.

Don’t let the massive length of Listing 16-7 intimidate you! Most of the “real”
programs you eventually write will be far longer!

244 PART 3 Build Upon What You Know

LISTING 16-7:	 Passing a Structure to a Function

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

struct bot {
 int xpos;
 int ypos;
};

struct bot initialize(struct bot b);

int main()
{
 const int size = 5;
 struct bot robots[SIZE];
 int x;

 srand((unsigned)time(NULL));

 for(x=0;x<SIZE;x++)
 {
 robots[x] = initialize(robots[x]);
 printf("Robot %d: Coordinates: %d,%d\n",
 x+1,robots[x].xpos,robots[x].ypos);
 }
 return(0);
}

struct bot initialize(struct bot b)
{
 int x,y;

 x = rand();
 y = rand();
 x%=20;
 y%=20;
 b.xpos = x;
 b.ypos = y;
 return(b);
}

CHAPTER 16 Variable Nonsense 245

To pass a structure to a function, the structure must be declared externally, which
happens between Lines 5 and 8 in Listing 16-7. This declaration is required before
the function is prototyped, which takes place at Line 10.

The initialize() function runs from Lines 39 through 40. The structure is passed to
the function and returned. Note that the structure variable must be fully defined
as the argument. On Line 29, the structure is given the variable name b inside the
function.

The return statement at Line 39 passes the structure back to the calling function.
Indeed, the initialize() function is defined as a structure bot data type. This type is
the value it returns.

Exercise 16-8: Screw your courage to the sticking place, and type all those lines of
source code from Listing 16-7 into your editor. Build and run.

The output demonstrates how the structure array was passed (one element at a
time) to a function, modified in the function, and then returned.

Enumerating
The enum keyword need not baffle you. Instead, bathe yourself in its warm comfort
whenever you must declare a series of sequentially numbered constants.
Listing 16-8 shows an example that might be familiar to you.

LISTING 16-8:	 Verifying That Input Value

#include <stdio.h>

int verify(int check);

int main()
{
 int s;

 printf("Enter a value (0-100): ");
 scanf("%d",&s);
 if(verify(s))
 {
 printf("%d is in range.\n",s);
 }
 else

(continued)

246 PART 3 Build Upon What You Know

 {
 printf("%d is out of range!\n",s);
 }
 return(0);
}

int verify(int check)
{
 enum { false, true };

 if(check < 0 || check > 100)
 return false;
 return true;
}

The code shown in Listing 16-8 is a modification to the solution for Exercise
10-15, from Chapter 10. The enum keyword is used at Line 24 to declare two con-
stant values: false and true. These constants are assigned the values 0 and 1,
used in the code to represent TRUE and FALSE conditions.

Exercise 16-9: Type the source code from Listing 16-8 into your editor. Save.
Build. Run.

The enum keyword is handy for declaring a clutch of sequential constants. In
Listing 16-8, it declares false and true, assigning zero to the value of false and
1 to true. This keyword saves time over making multiple constant declarations.
For example:

const int zero = 0;
const int one = 1;
const int two = 2;
const int three = 3;

These four statements can be expressed by using a single enum statement:

enum { zero, one, two, three };

The enum keyword is followed by a set of curly brackets. They contain the constant
declarations, separated by commas, as just shown. The first constant is assigned
a value of zero, with each subsequent constant’s value incremented by one. This
statement can appear in a function, as shown in Listing 16-8, or it can be declared
externally.

LISTING 16-8:	 (continued)

CHAPTER 16 Variable Nonsense 247

As a bonus, you can override the default numbering scheme. Consider the follow-
ing statement:

enum { jack=11, queen, king };

In this statement, the enumerated constant jack is set to a value of 11, queen to
12, and king to 13. You can use the assignment (=) operator anywhere in the curly
brackets to set the value of an enumerated constant.

Exercise 16-10: Write code that asks the user for a number, from 0 to 6, repre-
senting a day of the week. Use a switch-case structure to evaluate input and output
the weekday name.

Here’s a sample run of my solution:

Enter a weekday number, 0 - 6: 3
Wednesday

You often find enumerated constants used in switch-case structures, which helps
make the code more readable — if you’re clever with the enumerated constant
names.

CHAPTER 17 Binary Mania 249

Chapter 17
Binary Mania

Computers are digital devices, bathed in the binary waters of ones and zeros.
Everything your programs deal with — all the text, graphics, music, video,
and whatnot — melts down to the basic digital elements of one-zero,

true-false, on-off, yes-no. When you understand binary, you can better under-
stand computers and all digital technology.

Binary Basics
Happily, you don’t have to program any digital device by writing low-level code,
flipping switches, or soldering wires. That’s because today’s programming hap-
pens at a higher level. But still, deep within the machine, that type of low-level
coding continues. You’re just insulated from the primordial soup of ones and
zeros from which all software rises.

Understanding binary
The binary digits, or bits, are 1 and 0. Alone, they’re feeble; but in groups, they
muster great power. Digital storage uses these bits in groups, as illustrated in
Table 17-1.

IN THIS CHAPTER

»» Getting to know binary digits

»» Showing binary output

»» Working with bitwise operators

»» Setting and masking bits

»» Shifting bits

»» Understanding hexadecimal

250 PART 3 Build Upon What You Know

The advantage of grouping bits into bytes, words, and so on is that it makes them
easier to handle. The processor best deals with information in chunks. How chunks
get their values is based upon powers of 2, as shown in Table 17-2.

In Table 17-1, you see the range of values that can be stored in 8 bits, or 1 byte. It’s
the same range you’d find in a C language char variable. Indeed, if you total
Column 2 in Table 17-2, you get 255, which is the highest value represented in a
byte.

A byte has 256 possible values, which includes the all-zero permutation.

Figure 17-1 illustrates how the powers of 2 map into binary storage. Just as deci-
mal places in a base 10 number increase by powers of 10, bits in a binary number
increase by powers of 2, reading from right to left.

TABLE 17-1	 Binary Groupings
Term C Data Type Bits Value Range Unsigned Value Range Signed

Bit _Bool 1 0 to 1 0 to 1

Byte char 8 0 to 255 –128 to 127

Word short int 16 0 to 65,535 –32,768 to 32,767

Double-
word

Int 32 0 to 4,294,967,295 –2,147,483,648 to 2,147,483,647

Long Long 64 0 to 18,446,744,073,709,551,615 –9,223,372,036,854,775,807 to
9,223,372,036,854,775,808

TABLE 17-2	 Powers of 2
Expression Decimal Value Binary Value

20 1 1

21 2 10

22 4 100

23 8 1000

24 16 10000

25 32 100000

26 64 1000000

27 128 10000000

CHAPTER 17 Binary Mania 251

Each bit that is set or has the value 1 in Figure 17-1 represents a power of two: 25,
23, 21, and 20. When you total these values, you get the decimal representation of
binary 00101011, which is 43.

That’s all well and good, but please don’t memorize it!

»» Don’t concern yourself with translating binary into decimal values; the computer
does that job for you all the time. This is because the computer sees only binary
and then displays decimal numbers as a courtesy for your human eyeballs. But
when you manipulate binary values, it helps to know what’s going on.

»» Changing a bit’s value to 1 is referred to as setting a bit.

»» Changing a bit’s value to 0 is referred to as resetting a bit.

Outputting binary values
To best make sense of the C language’s binary manipulation operators, it helps to
see a binary number in action. The printf() function lacks a binary conversion
character, and the C library doesn’t host a binary output function. Nope, to view a
binary number, you must craft your own function.

Listing 17-1 presents a binary output function I’ve concocted called binbin(). The
binbin() function, at Line 15 in Listing 17-1, swallows an unsigned char value. Its
output is a string representing that char value in binary digits.

FIGURE 17-1:
Base 2 values

in a byte.

252 PART 3 Build Upon What You Know

LISTING 17-1:	 The binbin() Function

#include <stdio.h>

char *binbin(unsigned char n);

int main()
{
 unsigned input;

 printf("Type a value 0 to 255: ");
 scanf("%u",&input);
 printf("%u is binary %s\n",
 input,binbin((unsigned char)input));
 return(0);
}

char *binbin(unsigned char n)
{
 static char bin[9];
 int x;

 for(x=0;x<8;x++)
 {
 bin[x] = n & 0x80 ? '1' : '0';
 n <<= 1;
 }
 bin[x] = '\0';
 return(bin);
}

At this point in the chapter, the contents of the binbin() function appear rather
mysterious. That’s okay. The details are offered in the later section “Explaining
the binbin() function,” and the char * thing at the start of the function is dis-
cussed in Chapter 19.

Exercise 17-1: Type the source code from Listing 17-1 into your editor. Build and
run it a few times to see how integers appear as binary numbers. Try the value 43
to confirm that I got it right in Figure 17-1.

As written in Listing 17-1, binbin() displays only 8 bits of data, which is why it’s
passed an unsigned char value — and why the unsigned input variable is typecast
to unsigned char in the printf() statement (split in the listing at Lines 11 and 2).

CHAPTER 17 Binary Mania 253

Exercise 17-2: Modify the binbin() function from Listing 17-1 so that it outputs 16
bits instead of 8. A 16-bit value is a short int, and it should be unsigned to properly
interpret the values. To help you out, change these items:

Line 9: Alter the text so that 65535 is specified instead of 255.

Line 15: Alter the binbin() function’s argument to be an unsigned int (just unsigned).

Line 18: Modify the size of the array to 17 to account for 16 characters in the output
plus the \0 (null character) at the end of the string.

Line 21: Adjust the literal value 8 in the code to 16 to account for all 16 characters
in the output.

Line 23: Replace the value 0x80 with 0x8000. This change makes the bit field
larger, which is something you’ll understand better after completing this chapter.

Build Exercise 17-2. Run it a few times to see what the bit field looks like for larger
values.

The binbin() function, or a variation of it, is used in the following sections to help
describe binary programming. You will copy and paste that function frequently,
and feel free to use it in your own code however you deem appropriate.

Bit Manipulation
A smattering of C language operators provide data manipulation at the binary
level. These operators are easy to ignore, but only when their true power and use-
fulness aren’t appreciated.

Using the bitwise | operator
You’re already familiar with the decision-making logical operators: && for AND
and || for OR. In the && evaluation, both items must be true for the statement to
be evaluated as true; for the || evaluation, only one of the items must be true.

At the atomic level, the operators & and | perform similar operations, though on a
bit-by-bit basis. The net effect is that you can use the & and | operators to manip-
ulate individual bits:

The | is the bitwise OR operator, also known as the inclusive OR.

The & is the bitwise AND operator.

254 PART 3 Build Upon What You Know

Listing 17-2 demonstrates how to use the bitwise OR operator to set bits in a byte.
The OR value is defined as the constant set at Line 7. It’s binary 00100000.

LISTING 17-2:	 The OR Set

#include <stdio.h>

char *binbin(unsigned char n);

int main()
{
 const int set = 32;
 unsigned int bor,result;

 printf("Type a value from 0 to 255: ");
 scanf("%u",&bor);
 result = bor | set;

 printf("\t%s\t%d\n",
 binbin((unsigned char)bor),bor);
 printf("|\t%s\t%d\n",
 binbin((unsigned char)set),set);
 printf("=\t%s\t%d\n",
 binbin((unsigned char)result),result);
 return(0);
}

char *binbin(unsigned char n)
{
 static char bin[9];
 int x;

 for(x=0;x<8;x++)
 {
 bin[x] = n & 0x80 ? '1' : '0';
 n <<= 1;
 }
 bin[x] = '\0';
 return(bin);
}

Line 12 calculates the bitwise OR operation between a value input, bor, and the set
constant. The result is output in three columns: operator, binary string, and

CHAPTER 17 Binary Mania 255

decimal value. The result of the operation is that the bits set to 1 in the set value
are also set to 1 in the bor value.

Exercise 17-3: Type the source code from Listing 17-2 into your editor to create a
new program. Build and run the program.

Here’s the output I see for the value 65:

Type a value from 0 to 255: 65
 01000001 65
| 00100000 32
= 01100001 97

You can see in the binary output how the sixth bit is set in the result.

What does it mean?

The bitwise | (OR) operator lets you manipulate values at the binary level. This
control has interesting consequences for certain mathematical operations, as
shown in Listing 17-3.

LISTING 17-3:	 Up with That Text

#include <stdio.h>

int main()
{
 char input[64];
 int ch;
 int x = 0;

 printf("Type in ALL CAPS: ");
 fgets(input,63,stdin);

 while(input[x] != '\n')
 {
 ch = input[x] | 32;
 putchar(ch);
 x++;
 }
 putchar('\n');

 return(0);
}

256 PART 3 Build Upon What You Know

Exercise 17-4: Type the source code shown in Listing 17-3 into your editor. Save,
build, and run.

Because of the way the ASCII codes map between upper- and lowercase charac-
ters, you can switch from upper- to lowercase by setting the sixth bit in a byte.

Using bitwise &
Like the bitwise OR operator, the bitwise AND operator, &, also affects bits in a
byte. Unlike OR, which sets bits, the AND operation masks bit values. It’s easier to
show you a program example than to feebly describe what mask means.

Exercise 17-5: Modify the source code from Listing 17-2 so that a bitwise AND
operation takes place instead of a bitwise OR. Change the constant set in Line 7 to
the value 223. Change the | (bitwise OR) in Line 12 to the & (bitwise AND). And
finally, change the printf() statement in Line 16 so that the | is replaced by the &
character. Build and run.

Here’s the output I see when I type the value 255 (all bits set):

Type a value from 0 to 255: 255
 11111111 255
& 11011111 223
= 11011111 223

The bitwise & masks out the sixth bit, causing its value to be reset to 0 in the final
calculation. No other bits are affected. To see more examples, try the values 170
and 85. Watch how the bits fall through the mask.

Exercise 17-6: Modify the source code from Listing 17-3 so that a bitwise AND
operation takes place instead of a bitwise OR. Change Line 9 so that the printf()
statement prompts: “Type in some text:” Change Line 14, replacing | with & and
replacing the value 32 with 223. Build and run.

Just as the bitwise OR sets the sixth bit to convert uppercase text to lowercase,
masking the sixth bit with a bitwise AND converts lowercase text into uppercase.
Of course, the bitwise AND also masks out the space character, changing its value
to 0, which isn’t a displayable character.

Exercise 17-7: Modify your solution for Exercise 17-6 so that only letters of the
alphabet are affected.

CHAPTER 17 Binary Mania 257

Operating exclusively with XOR
XOR is the exclusive OR operator, yet another bitwise logical operator. And to
answer your most pressing question, you pronounce XOR like “zor.” It’s the per-
fect evil name from bad science fiction.

The XOR operation is kind of weird, but it does have its charm. In this manipula-
tion, bits are compared with one another, just like the & and | operators. When
two bits are identical, XOR coughs up a 0. When the two bits are different, XOR
spits out a 1. As usual, a program example helps explain things.

The C language XOR operator is the caret character: ^. You can find it put into
action on Line 14 in Listing 17-4.

LISTING 17-4:	 It’s Exclusive or

#include <stdio.h>

char *binbin(unsigned char n);

int main()
{
 int a,x,r;

 a = 73;
 x = 170;

 printf(" %s %3d\n",
 binbin((unsigned char)a),a);
 printf("^ %s %3d\n",
 binbin((unsigned char)x),x);
 r = a ^ x;
 printf("= %s %3d\n",
 binbin((unsigned char)r),r);
 return(0);
}

char *binbin(unsigned char n)
{
 static char bin[9];
 int x;

(continued)

258 PART 3 Build Upon What You Know

 for(x=0;x<8;x++)
 {
 bin[x] = n & 0x80 ? '1' : '0';
 n <<= 1;
 }
 bin[x] = '\0';
 return(bin);
}

Exercise 17-8: Type the source code from Listing 17-4 into your editor. Build and
run to see how the XOR operation affects binary values.

The charming thing about the XOR operation is that if you use the same XOR value
on a variable twice, you get back the variable’s original value.

Exercise 17-9: Modify the source code from Listing 17-4 so that one more XOR
operation takes place. Insert these three statements after Line 18 (the two printf()
statements are split between two lines):

printf("^ %s %3d\n",
 binbin((unsigned char)x),x);
a = r ^ x;
printf("= %s %3d\n",
 binbin((unsigned char)a),a);

Save your update to the code. Build and run. The output looks like this:

 01001001 73
^ 10101010 170
= 11100011 227
^ 10101010 170
= 01001001 73

Using the same XOR value of 170 turns the value 73 first into 227 and then back
to 73.

Because XOR is the exclusive OR operator, some programmers refer to the stan-
dard bitwise OR operator as the inclusive OR operator.

LISTING 17-4:	 (continued)

CHAPTER 17 Binary Mania 259

Understanding the ~ and ! operators
Two infrequent binary operators are the unary ~ (or ones’ complement) and the !
(or NOT). They lack the charm of the logical bitwise operators, but I suppose that
they have a place.

The ones’ complement operator flips all the bits in a value, turning a 1 into a 0 and
a 0 into a 1. For example:

~01010011 = 10101100

The ! (NOT) operator affects the entire value — all the bits. It changes any non-
zero value to 0 and the value 0 to 1:

!01010011 = 00000000
!00000000 = 00000001

Zero and 1 are the only two results possible when using the bitwise ! operator.

Both the ~ and ! operators are unary operators — you prefix a value to get the
results.

Table 17-3 summarizes C’s binary operators.

Shifting binary values
The C language features two binary operators that perform the equivalent opera-
tion of “Everyone move one step to the left (or right).” The << and >> operators
shift bits in value, marching them to the left or right, respectively. Here’s the for-
mat for the << operator:

v = int << count;

TABLE 17-3	 Binary Operators
Operator Name Type Action

& AND Bitwise Masks bits, resetting some bits to 0 and leaving the rest alone

| OR Bitwise Sets bits, changing specific bits from 0 to 1

^ XOR Bitwise Changes bits to 0 when they match; otherwise, to 1

~ 1’s complement Unary Reverses all bits

! NOT Unary Changes nonzero values to 0; 0 values, to 1

260 PART 3 Build Upon What You Know

int is an integer value. count is the number of places to shift the value’s bits to
the left. The result of this operation is stored in variable v. Any bits that are shifted
to the left beyond the width of the int variable x are lost. New bits shifted in from
the right are always 0.

As with most binary nonsense, it helps to see what’s going on in a value when its
bits are shifted. Therefore, I present Listing 17-5.

LISTING 17-5:	 Everyone Out of the Pool!

#include <stdio.h>

char *binbin(unsigned char n);

int main()
{
 unsigned bshift,x;

 printf("Type a value 0 to 255: ");
 scanf("%u",&bshift);

 for(x=0;x<8;x++)
 {
 printf("%s\n",
 binbin((unsigned char)bshift));
 bshift = bshift << 1;
 }
 return(0);
}

char *binbin(unsigned char n)
{
 static char bin[9];
 int x;

 for(x=0;x<8;x++)
 {
 bin[x] = n & 0x80 ? '1' : '0';
 n <<= 1;
 }
 bin[x] = '\0';
 return(bin);
}

CHAPTER 17 Binary Mania 261

The shift operation takes place at Line 16 in Listing 17-5. The value in variable
bshift is shifted to the left one bit.

Exercise 17-10: Type the source code from Listing 17-5 into your editor and build
a new program to see what it does.

Shifting a value one bit to the left doubles the value. This rule holds true to a cer-
tain point: Obviously, the farther left you shift, some bits get lost and the value
ceases to double. Also, this trick works best for unsigned values.

Exercise 17-11: Modify the source code from Listing 17-5 so that the printf() func-
tion at Line 14 also displays the decimal value of the bshift variable. You should
also modify the binbin() function so that it displays 16 digits instead of 8. (Refer to
Exercise 17-2 for the 16-bit binbin() solution.)

Here’s the output I see when using the value 12:

Type a value from 0 to 255: 12
0000000000001100 12
0000000000011000 24
0000000000110000 48
0000000001100000 96
0000000011000000 192
0000000110000000 384
0000001100000000 768
0000011000000000 1536

Try the value 800,000,000 (don’t type the commas) to see how the doubling rule
fails as the values keep shifting to the left. Also see the nearby sidebar “Negative
binary numbers.”

The >> shift operator works similarly to the << shift operator, though values are
marched to the right instead of the left. Any bit that’s marched off the right end is
discarded, and only zero bits slide in on the left. Here’s the format:

v = int >> count;

int is an integer value, and count is the number of places to shift the bits to the
right. The result is stored in variable v.

Exercise 17-12: Modify the source code from Exercise 17-11 so that the right shift
operator is used instead of the left shift at Line 15. Build the program.

262 PART 3 Build Upon What You Know

NEGATIVE BINARY NUMBERS
Binary numbers are always positive, considering that the values of a bit can be only 1 or
0 and not –1 and 0. So how does the computer do signed integers? Easy: It cheats.

The leftmost bit in a signed binary value is known as the sign bit. When that bit is set
(equal to 1), the value is negative for a signed int. Otherwise, the value is read as positive.

In this example, the sign bit is set for a signed char. The values expressed are negative,
which is in the range of a signed char variable.

In this example, the sign bit is ignored because the value is an unsigned char. The values
can only be positive, which is why the positive range for an unsigned variable is greater
than for a signed variable.

CHAPTER 17 Binary Mania 263

Here’s the result I see when using the value 128:

Type a value from 0 to 255: 128
0000000010000000 128
0000000001000000 64
0000000000100000 32
0000000000010000 16
0000000000001000 8
0000000000000100 4
0000000000000010 2
0000000000000001 1

Unlike the << operator, the >> is guaranteed to always cut the value in half when
you shift one digit to the right. In fact, the >> operator is far quicker to use on an
integer value than the / (division) operator to divide a value by 2.

Operators looking like the C language’s bit shift operators, << and >>, are used in
the C++ language for input and output. C++ also has bit shift operators, which are
considered overloaded (duplicated) with the I/O operators.

Explaining the binbin() function
If you’ve worked through this chapter from front to back, I can now sanely explain
what’s going on in the binbin() function to make it convert values into a binary
string. Two statements do the job:

bin[x] = n & 0x80 ? '1' : '0';
n <<= 1;

The first statement performs an AND mask with the value n and hexadecimal
value 0x80. All but the leftmost bit in the number is discarded. If that bit is set,
which makes it a TRUE condition, the character 1 is stored in the array; otherwise,
the character 0 is stored. (Refer to Chapter 8 to review the ternary operator, ?:.)

The value 0x80 is expressed in hexadecimal notation, a type of shorthand for
binary. (See the next section, “The Joy of Hex.”) The hex value 0x80 is equal to
10000000 binary, which is the AND mask. For wider, 16-bit values, the mask
0x8000 is used instead.

The second statement shifts the bits in the value n one notch to the left. As the
loop spins, working through the value n, another bit in the value is shifted to the
leftmost position. That bit is evaluated, and the binary string is built by adding a
‘1’ or ‘0’ character to the string.

264 PART 3 Build Upon What You Know

The Joy of Hex
Face it: No one wants to count bits in a binary number. No one. Perhaps some nerd
somewhere can tell you that 10110001 is really the value 177 (I had to look it up),
but most programmers can’t. What a good programmer can do, however, is trans-
late binary into hex.

Hex has nothing to do with Harry Potter. It’s short for hexadecimal, which is the
base 16 counting system. This concept isn’t as obtuse as it sounds, because it’s
easy to translate between base 16 (hex) and binary.

For example, the value 10110001 translates into B1 hexadecimal. I can see that at
once because I’ve been using hex for a while. It also means that I accept that hexa-
decimal numbers include the letters A through F, representing decimal values 10
through 15, respectively. A B in hex is the decimal value 11. Letters are used because
they occupy a single character position.

Table 17-4 shows the 16 hexadecimal values 0 through F and how they relate to
four bits of data.

The hexadecimal values shown in Table 17-4 are prefixed with 0x. This prefix is
used in C, though other programming languages may use different prefixes or a
postfix.

The next hexadecimal value after 0xF is 0x10. Don’t read it as the number ten, but
rather as “one zero hex.” It’s the value 16 in decimal (base 10). After that, hex
keeps counting with 0x11, 0x12, and up through 0x1F and beyond.

TABLE 17-4	 Hexadecimal Values
Hex Binary Decimal Hex Binary Decimal

0x0 0000 0 0x8 1000 8

0x1 0001 1 0x9 1001 9

0x2 0010 2 0xA 1010 10

0x3 0011 3 0xB 1011 11

0x4 0100 4 0xC 1100 12

0x5 0101 5 0xD 1101 13

0x6 0110 6 0xE 1110 14

0x7 0111 7 0xF 1111 15

CHAPTER 17 Binary Mania 265

Yes, and all of this is just as much fun as learning the ancient Egyptian counting
symbols, so where will it get you?

A programmer who sees the binary value 10110100 first splits it into two 4-bit
nibbles: 1011 0100. Then he translates it into hex, 0xB4. The C programming lan-
guage does the translation as well, as long as you use the %x or %X conversion
characters, as shown in Listing 17-6.

LISTING 17-6:	 A Little Hex

#include <stdio.h>

char *binbin(unsigned n);

int main()
{
 unsigned b,x;

 b = 21;

 for(x=0;x<8;x++)
 {
 printf("%s 0x%04X %4d\n",binbin(b),b,b);
 b<<=1;
 }

 return(0);
}

char *binbin(unsigned n)
{
 static char bin[17];
 int x;

 for(x=0;x<16;x++)
 {
 bin[x] = n & 0x8000 ? '1' : '0';
 n <<= 1;
 }
 bin[x] = '\0';
 return(bin);
}

266 PART 3 Build Upon What You Know

The code in Listing 17-6 outputs a value in binary, hexadecimal, and decimal and
then shifts that value to the left, repeating the process. The print() statement at
Line 13 uses the %X conversion character to output hexadecimal values.

Well, actually, the placeholder is %04X, which displays hex values using uppercase
letters, four digits wide, and padded with zeros on the left as needed. The 0x text
before the conversion character merely displays the output in standard C style.

Exercise 17-13: Type the code from Listing 17-6 into your editor. Save, build,
and run.

Exercise 17-14: Change the value of variable b in Line 9 to read this way:

b = 0x11;

Save this change, build, and run.

You can write hex values directly in your code. Prefix the values with 0x, followed
by a valid hexadecimal number using either upper- or lowercase letters where
required.

ONCE UPON A TIME, OCTAL WAS POPULAR
Another number format available in the C language is octal, or base 8. Octal was quite
popular around the time Unix was developed, and many of the old, grizzled program-
mers league still enjoy tossing around octal values and doing octal-this or octal-that.
C even sports an octal conversion character, %o, and an octal prefix, 0 (zero).

I’ve never used octal in any of my programs. Some older code may use it, and occasion-
ally a function references octal values. So my advice is to be aware of octal, but don’t
bother to memorize anything.

4The Advanced
Part

IN THIS PART . . .

Discover how variables are stored and accessed

Access variables and memory locations

Replace array notation with pointers

Mangle and abuse an array of pointers

Sort strings by using pointers

Build a linked list of structures

Work with time functions in C

CHAPTER 18 Introduction to Pointers 269

Chapter 18
Introduction to Pointers

I

t’s considered one of the most frightening topics in all of programming. Boo!

Pointers scare a lot of beginning C programmers — and even experienced pro-
grammers of other languages. I believe that the reason for the dread is that no one
bothers to explain in fun, scintillating detail how pointers really work. So clear
your mind, crack your knuckles, and get ready to embrace one of the C language’s
most unique and powerful features.

The Biggest Problem with Pointers
It’s true that you can program in C and avoid pointers. I did it for a long time when
I began to learn C programming. Array notation offers a quick-and-dirty work-
around for pointers, and you can fake your way around the various pointer func-
tions, hoping that you get it right. But that’s not why you bought this book!

After working with pointers for some time and understanding the grief they cause,
I’ve come up with a reason for the woe they induce: Pointers are misnamed.

IN THIS CHAPTER

»» Using the sizeof operator

»» Grabbing a variable’s memory
location

»» Creating pointer variables

»» Peeking at data

»» Using pointers to assign values

270 PART 4 The Advanced Part

I can reason why a pointer is called a pointer: It points at something, a location in
memory. The problem with this description is that most pedants explain how a
pointer works by uttering the phrase, “A pointer points. . . .” This explanation is
just wrong. It confuses the issue.

Adding to the name confusion is the fact that pointers have two personalities. One
side is a variable that holds a memory location, an address. The other side reveals
the value at that address. In this way, the pointer should be called a peeker. This
chapter helps straighten out the confusion.

»» The pointer is a part of the C programming language that’s considered
low-level. It gives you direct access to memory, information that other
languages — and even operating systems — prefer that you not touch. For
this reason:

»» A pointer can get you into trouble faster than any other part of C program-
ming. Be prepared to witness memory segmentation errors, bus errors, core
dumps, and all sorts of havoc as you experiment with, and begin to under-
stand, pointers.

Sizing Up Variable Storage
Digital storage is measured in bytes. All the information stored inside memory is
simply a mass of data, bits piled upon bits, bytes upon bytes. It’s up to the soft-
ware to make sense of it all.

Understanding variable storage
In C, data is categorized by storage type (char, int, float, or double) and further
classified by keyword (long, short, signed, or unsigned). Despite the chaos inside
memory, your program’s storage is organized into these values, ready for use in
your code.

Inside a running program, a variable is described by these attributes:

»» Name

»» Type

»» Value

»» Size

»» Location

CHAPTER 18 Introduction to Pointers 271

The name is the name you give the variable. The name is used only in your code,
not when the program runs.

The type is one of the C language’s data types: char, int, float, or double.

The value is assigned in your program. Though data at the variable’s storage loca-
tion may exist beforehand, it’s considered garbage, and the variable is considered
uninitialized until it’s assigned a value.

The size references the number of bytes of storage the variable occupies.

The location is an address, a spot inside the device’s memory. This aspect of a
variable is something you need not dictate; the program and operating system
negotiate where information is stored internally. When the program runs, it uses
the location to access a variable’s data.

Of these aspects, the variable’s name, type, and contents are already known to
you. The variable’s size and location can also be gathered. Not only that, but the
location can be manipulated, which is the inspiration behind pointers.

Reading a variable’s size
How big is a char? How long is a long? You can look up these definitions in Appen-
dix D, but even then the values are general. Only the device you’re programming
knows the exact storage size of C’s standard data types.

Listing 18-1 uses the sizeof operator to determine how much storage each C lan-
guage data type occupies in memory. This operator requires an argument in
parentheses and returns a long unsigned int value representing the number of bytes
the argument — data type, array, structure, and so on — occupies as it squats in
memory.

LISTING 18-1:	 How Big Is a Variable?

#include <stdio.h>

int main()
{
 char c = 'c';
 int i = 123;
 long l = 12345678910;
 float f = 98.6;
 double d = 6.022E23;

(continued)

272 PART 4 The Advanced Part

 printf("char\t%lu\n",sizeof(c));
 printf("int\t%lu\n",sizeof(i));
 printf("long\t%lu\n",sizeof(l));
 printf("float\t%lu\n",sizeof(f));
 printf("double\t%lu\n",sizeof(d));
 return(0);
}

Exercise 18-1: Type the source code from Listing 18-1 into your editor. Build and
run to see the size of each variable type.

Here’s the output I see:

char 1
int 4
long 8
float 4
double 8

The value returned by the sizeof operator is known as size_t data type. Without my
getting into a long, boring description, the size_t variable is a typedef of another
variable type, such as a long unsigned int on modern computer systems (hence the
%lu placeholder in Listing 18-1). The bottom line is that the size indicates the
number of bytes used to store the operator’s argument.

Arrays are also variables in C, and sizeof works on them as well, as shown in
Listing 18-2.

LISTING 18-2:	 How Big Is an Array?

#include <stdio.h>

int main()
{
 char string[] = "Does this string make me look fat?";

 printf("The string \"%s\" has a size of %u.\n",
 string,sizeof(string));
 return(0);
}

LISTING 18-1:	 (continued)

CHAPTER 18 Introduction to Pointers 273

Exercise 18-2: Type the source code from Listing 18-2. Build and run it to see how
much storage the char array occupies.

Exercise 18-3: Edit your source code from Exercise 18-2, adding the strlen() func-
tion to compare its result on the array with the sizeof operator’s result.

If the values returned by strlen() and sizeof differ, can you explain the difference?

Okay, I’ll explain: The compiler appends the null character (\0) to any string lit-
eral, such as the one declared at Line 5 in Listing 18-2. This extra byte of storage
is accounted for by the sizeof operator. The extra storage is not counted by the
strlen() function, which returns a character count in the string itself. The termi-
nating null character is a delimiter, not a character in the string.

Exercise 18-4: Edit the source code from Exercise 18-2 again, this time creating
an int array with five elements. The array need not be assigned any values, nor
does it need to be displayed. Build and run.

Can you explain the output? If not, review the output from Exercise 18-1. Try to
figure out what’s happening.

In Listing 18-3, the sizeof operator is used on a structure.

LISTING 18-3:	 How Large Is a Structure?

#include <stdio.h>

int main()
{
 struct robot {
 int alive;
 char name[5];
 int xpos;
 int ypos;
 int strength;
 };

 printf("The evil robot struct size is %lu\n",
 sizeof(struct robot));
 return(0);
}

274 PART 4 The Advanced Part

Exercise 18-5: Use Listing 18-3 to create a new source code file. Build and run to
determine the size of the structure.

The sizeof operator works on all variable types, but for a structure, specify the
structure itself. Use the keyword struct followed by the structure’s name, as shown
in Line 14. Avoid using a structure variable when obtaining the size of a structure.

The size of the structure is calculated by totaling the storage requirement for each
of its members. You might assume, given the size output from Exercise 18-5, that
four int variables plus five char variables would give you 21: 4 × 4 + 1 × 5. But it
doesn’t work that way.

On my screen I see this output:

The evil robot struct size is 24

The reason you see a value other than 21 is that the program aligns variables in
memory. It doesn’t stack them up, one after another. If I were to guess, I would
say that 3 extra bytes are padded to the end of the name array to keep it aligned
with an 8-byte offset in memory. Figure 18-1 illustrates what’s going on.

»» The sizeof operator returns the size of a C language variable, array, buffer or
structure.

»» You cannot use sizeof to determine the size of your program, the amount of
memory in the computer, or the size of anything other than a declared
variable or buffer.

»» Use sizeof on a structure’s definition, not a structure variable. A problem
occurs when writing structures to a file if you use the variable’s size (especially
when it’s a pointer) rather than the structure’s defined size. See Chapter 22.

»» Most compilers today typedef the size_t value (number of bytes of member)
returned by the sizeof operator as an unsigned long integer, placeholder %lu.
You can also use the %zd placeholder, where z represents a byte-size value
and d stands for decimal output.

»» If you’re a nerd, you can conclude that the %zx placeholder outputs a size_t
value in hexadecimal.

»» The 8-byte offset used to align variables in memory keeps the CPU happy. The
processor is much more efficient at reading memory aligned to those 8-byte
offsets.

CHAPTER 18 Introduction to Pointers 275

»» The values returned by sizeof are most likely bytes, as in 8 bits of storage. This
size is an assumption: Just about every electronic gizmo today uses an 8-bit
byte as the standard storage unit. This assumption doesn’t mean you won’t
find a gizmo with a 7-bit byte or even a 12-bit byte. Just treat the values
returned by sizeof as a “unit” and you’ll be fine.

Checking a variable’s location
This chapter has covered four of the attributes used to describe a C language vari-
able: name, type, value, and size. The final description of a variable is its location
in memory. You gather this information by using the & operator and the %p place-
holder, as shown in Listing 18-4.

FIGURE 18-1:
How a structure
fits in memory.

276 PART 4 The Advanced Part

LISTING 18-4:	 O Variable, Wherefore Art Thou?

#include <stdio.h>

int main()
{
 char c = 'c';
 int i = 123;
 float f = 98.6;
 double d = 6.022E23;

 printf("Address of 'c' %p\n",&c);
 printf("Address of 'i' %p\n",&i);
 printf("Address of 'f' %p\n",&f);
 printf("Address of 'd' %p\n",&d);
 return(0);
}

When the & operator prefixes a variable, it returns a value representing the vari-
able’s address, or its location in memory. To view this value, the %p conversion
character is used, as shown in Listing 18-4.

Exercise 18-6: Type the source code from Listing 18-4 into your editor. Build
and run.

The results produced by the program generated from Exercise 18-6 are unique,
not only for each computer but also, potentially, for each time the program is run.
Here’s what I see:

Address of 'c' 0x7fff5fbff8ff
Address of 'i' 0x7fff5fbff8f8
Address of 'f' 0x7fff5fbff8f4
Address of 'd' 0x7fff5fbff8e8

Variable c is stored in memory at location 0x7fff5fbff8ff — which is decimal loca-
tion 140,734,799,804,671. Both values are trivial, of course; the computer keeps
track of the memory locations, which is just fine by me. Figure 18-2 offers a mem-
ory map of the results just shown.

I can offer no explanation why my computer chose to place the int variables where
it did, but Figure 18-2 illustrates how those addresses map out in memory.

Individual array elements have memory locations as well, as shown in Listing 18-5
on Line 10. The & operator prefixes the specific element variable, coughing up an
address. The %p conversion character in the printf() function outputs the address.

CHAPTER 18 Introduction to Pointers 277

LISTING 18-5:	 Memory Locations in an Array

#include <stdio.h>

int main()
{
 char hello[] = "Hello!";
 int i = 0;

 while(hello[i])
 {
 printf("%c at %p\n",hello[i],&hello[i]);
 i++;
 }
 return(0);
}

FIGURE 18-2:
Variable locations

in memory.

278 PART 4 The Advanced Part

Exercise 18-7: Create a new program by using the source code shown in List-
ing 18-5. Build and run.

Again, memory location output is unique on each computer. Here’s what I see:

H at 0x7fff5fbff8f0
e at 0x7fff5fbff8f1
l at 0x7fff5fbff8f2
l at 0x7fff5fbff8f3
o at 0x7fff5fbff8f4
! at 0x7fff5fbff8f5

Unlike the example from Exercise 18-6, the addresses generated by Exercise 18-7
are contiguous in memory, one byte after another.

Exercise 18-8: Code a program to display five values in an int array along with
each element’s memory address. You can use Listing 18-5 to inspire you, although
a for loop might be easier to code.

»» By the way, the & address-of operator should be familiar to you. It’s used by
the scanf() function, which requires a variable’s address, not the variable itself.
The reason is that scanf() places a value at a memory location directly. How?
By using pointers, of course!

»» The & operator is also the bitwise AND operator; however, the compiler is
smart enough to tell when & prefixes a variable and when & is part of a binary
math equation.

Reviewing variable storage info
To summarize this section, variables in C have a name, type, value, size, and
location.

»» The variable’s type is closely tied to the variable’s size in memory, which is
obtained by using the sizeof operator.

»» A variable’s value is set or used directly in the code.

»» The variable’s location is shown courtesy of the & operator and the %p
conversion character.

When you have a basic understanding of each of the elements in a variable, you’re
ready to tackle the hideously complex topic of pointers.

CHAPTER 18 Introduction to Pointers 279

The Hideously Complex Topic of Pointers
Memorize this sentence:

A pointer is a variable that contains a memory location.

Or maybe this story will help:

Once upon a time, a pointer variable met a college student enrolled in a C pro-
gramming course. The student asked, “What do you point at?” The variable
replied, “Nothing! But I contain a memory location.” And the freshman was
severely satisfied.

You must accept the insanity of the pointer before moving on. True, though you
can get at a variable’s memory location, or address, by using the & operator, the
pointer is a far more powerful beast.

Introducing the pointer
A pointer is a type of variable. Like other variables, it must be declared in the code.
Further, it must be initialized before it’s used. That last part is really important,
but first the declaration has this format:

type *name;

As when you declare any variable, the type identifies the pointer as a char, int, float,
and so on. The name is the pointer variable’s name, which must be unique, just like
any other variable name. The asterisk identifies the variable as a pointer, not as a
regular variable.

The following statement declares a char pointer, sidekick:

char *sidekick;

And this statement creates a double pointer:

double *rainbow;

To initialize a pointer, you must assign it a value, just like any other variable. The
big difference is that a pointer is initialized to the memory location. This address

280 PART 4 The Advanced Part

isn’t a random spot in memory, but rather the location of another variable within
the program. For example:

sidekick = &lead;

The preceding statement initializes pointer variable sidekick to the address of
variable lead. Both variables are char types; if not, the compiler would growl like
a wet cat. After that statement is executed, the sidekick pointer contains the
address of the lead variable.

If you’re reading this text and just nodding your head without understanding
anything, good! It’s time for an example.

I’ve festooned the source code in Listing 18-6 with comments to help describe two
crucial lines. The program really doesn’t do anything other than prove that the
pointer sidekick contains the address, or memory location, of variable lead.

LISTING 18-6:	 An Example

#include <stdio.h>

int main()
{
 char lead;
 char *sidekick;

 lead = 'A'; /* initialize char variable */
 sidekick = &lead; /* initialize pointer IMPORTANT! */

 printf("About variable 'lead':\n");
 printf("Size\t\t%zd\n",sizeof(lead));
 printf("Contents\t%c\n",lead);
 printf("Location\t%p\n",&lead);
 printf("About variable 'sidekick':\n");
 printf("Contents\t%p\n",sidekick);

 return(0);
}

Other things to note: Line 12 uses two tab escape sequences to line up the output.
Also, don’t forget the & in Line 14, which fetches the variable’s address.

CHAPTER 18 Introduction to Pointers 281

Exercise 18-9: Type the source code from Listing 18-6 into your editor. Build
and run.

Here’s the output I see on my screen:

About variable 'lead':
Size 1
Contents A
Location 0x7fff5fbff8ff
About variable 'sidekick':
Contents 0x7fff5fbff8ff

The addresses (in the example) are unique for each system, but the key thing to
note is that the contents of pointer sidekick are equal to the memory location of
variable lead. That’s because of the initialization that takes place on Line 9 in the
code:

sidekick = &lead;

It would be pointless for a pointer to merely contain a memory address. The
pointer can also peek into its address and determine the value that’s stored there.
To make that happen, the * operator is prefixed to the pointer’s variable name.

Exercise 18-10: Modify your source code from Exercise 18-9 by adding the follow-
ing statement after Line 16:

printf("Peek value\t%c\n",*sidekick);

Build and run. Here’s the output I see as output:

About variable 'lead':
Size 1
Contents A
Location 0x7fff5fbff8ff
And variable 'sidekick':
Contents 0x7fff5fbff8ff
Peek value A

When you specify the * (asterisk) before an initialized pointer variable’s name, the
results are the contents of the address. The value is interpreted based on the type
of pointer. In this example, *sidekick represents the char value stored at a mem-
ory location kept in the sidekick variable, which is really the same as the memory
location variable lead.

282 PART 4 The Advanced Part

To put it another way:

»» A pointer variable contains a memory location.

»» The *pointer variable peeks into the value stored at that memory location.

Working with pointers
The pointer’s power comes from its split personality as well as from its capability
to manipulate values at its stored memory location.

In Listing 18-7, three char variables are declared at Line 5 and initialized all on
Line 8. (I stacked them up on a single line so that the listing wouldn’t get too
long.) A char pointer is created at Line 6 and then initialized at Lines 11, 13, and 15.

LISTING 18-7:	 More Pointer Fun

#include <stdio.h>

int main()
{
 char a,b,c;
 char *p;

 a = 'A'; b = 'B'; c = 'C';

 printf("Know your ");
 p = &a; /* initialize */
 putchar(*p); /* use */
 p = &b; /* initialize */
 putchar(*p); /* use */
 p = &c; /* initialize */
 putchar(*p); /* use */
 printf("s\n");

 return(0);
}

Lines 11 and 12 set up the basic operation in the code: First, pointer p is initialized
to the address of a char variable. Second, the * (asterisk) peeks at the value stored

CHAPTER 18 Introduction to Pointers 283

at that address. The *p variable represents that value as a char inside the putchar()
function. This operation is then repeated for char variables b and c.

Exercise 18-11: Create a new project by using the source code from Listing 18-7.
Build and run.

Figure 18-3 attempts to illustrate the behavior of pointer variable p as the code
runs.

Exercise 18-12: Write a program that declares both an int variable and an int
pointer variable. Use the pointer variable to display the value stored by the int
variable.

Just as you can grab a variable’s value, as shown in Listing 18-7, you can use the
*pointer operator to set a variable’s value. Refer to Listing 18-8.

LISTING 18-8:	 Assigning Values by Using a Pointer

#include <stdio.h>

int main()
{
 char a,b,c;
 char *p;

 p = &a; /* initialize */
 p = 'A'; / assign */
 p = &b; /* initialize */
 p = 'B'; / assign */

FIGURE 18-3:
Using a pointer to

read values.

(continued)

284 PART 4 The Advanced Part

 p = &c; /* initialize */
 p = 'C'; / assign */
 printf("Know your %c%c%cs\n",a,b,c);
 return(0);
}

Line 5 in Listing 18-8 declares three char variables. These variables are never
directly assigned values anywhere in the code. Pointer p, however, is initialized
thrice (Lines 8, 10, and 12) to the memory locations of variables a, b, and c. Then
the *p variable assigns values to those variables (Lines 9, 11, and 13.) The result is
output by printf() at Line 14.

Exercise 18-13: Copy the source code from Listing 18-8 into your editor. Build and
run the program.

Exercise 18-14: Write code that declares an int variable and a float variable for your
age and weight, respectively. Use corresponding pointers to assign values to these
variables. Output the values by using the int and float variables, not the pointer
variables.

LISTING 18-8:	 (continued)

CHAPTER 19 Deep into Pointer Land 285

Chapter 19
Deep into Pointer Land

It’s easy to accept what a pointer does, to numbly nod your head, to repeat the
mantra, “A pointer is a variable that contains a memory location.” You can even
memorize the difference between pointer variable p and pointer variable *p. But

to truly know the power of the pointer, you have to discover how it’s fully exploited
in the C language. You must eschew the old way of doing things and fully embrace
pointers for the miraculous witchcraft they do.

Pointers and Arrays
Arrays in the C language are nothing but a kettle full of lies! Truly, they don’t
exist. As you discover the power of the pointer, you come to accept that an array is
merely a cleverly disguised pointer. Be prepared to feel betrayed.

Getting the address of an array
An array is a type of variable in C, one that you can examine for its size and
address. Chapter 18 covers using the sizeof operator on an array. Now you uncover
the deep, dark secret of beholding an array’s address.

IN THIS CHAPTER

»» Using a pointer to display an array

»» Replacing array notation with
pointers

»» Working with strings and pointers

»» Understanding arrays of pointers

»» Performing a string sort

»» Creating a function that eats pointers

286 PART 4 The Advanced Part

The source code from Listing 19-1 shows a teensy program that declares an int
array and then displays that array’s location in memory. Simple. (Well, it’s simple
if you’ve worked through Chapter 18.)

LISTING 19-1:	 Where the Array Lurks

#include <stdio.h>

int main()
{
 int array[5] = { 2, 3, 5, 7, 11 };

 printf("'array' is at address %p\n",&array);
 return(0);
}

Exercise 19-1: Type the source code from Listing 19-1 into your editor. Build and
run the program.

Here’s the output I see:

'array' is at address 0x7fffcb7333b0

Exercise 19-2: Duplicate Line 7 in the code to create a new Line 8, removing the
ampersand:

printf("'array' is at address %p\n",array);

The difference between the old Line 7 and the new Line 8 is the missing & that
prefixes the array variable. Will it work? Compile and run to be sure.

Here’s my output for the new code:

'array' is at address 0x7fffeddd9c40
'array' is at address 0x7fffeddd9c40

Is the & prefix necessary? Better find out:

Exercise 19-3: Summon the source code from Exercise 18-6 (from Chapter 18).
Edit Lines 10 through 14 to remove the & from the variable’s name in the printf()
statement. Attempt to build the program.

CHAPTER 19 Deep into Pointer Land 287

Here’s the warning message I saw repeated four times:

Warning: format specifies type 'void *' ...

Obviously, the & is important for individual variables. But for arrays, it’s optional.
But how could that be, unless . . . unless an array is really a pointer!

Working pointer math in an array
What happens when you increment a pointer? Say that pointer variable dave ref-
erences a variable at memory address 0x8000. If so, consider this statement:

dave++;

What would the new value of pointer dave be?

Your first inclination might be to say that dave would be incremented by 1, which
is correct. But the result of the calculation may not be 0x8001. That’s because the
address stored in a pointer variable is incremented by one unit, not by one digit.

What’s a unit?

It depends on the pointer’s data type. If pointer dave is a char pointer, indeed the
new address could be 0x8001. But if dave were an int or a float, the new address
would be the same as

0x8000 + sizeof(int)

or

0x8000 + sizeof(float)

On most systems, an int is 4 bytes, so you could guess that dave would be 0x8004
after the increment operation. But why guess when you can code?

Listing 19-2 illustrates a simple program, something I could have directed you to
code without using pointers: Fill an int array with values 1 through 10, and then
display the array’s elements and their values. But in Listing 19-2, a pointer is used
to fill the array.

288 PART 4 The Advanced Part

LISTING 19-2:	 Arrays and Pointer Math

#include <stdio.h>

int main()
{
 int numbers[10];
 int x;
 int *pn;

 pn = numbers; /* initialize pointer */

/* Fill array */
 for(x=0;x<10;x++)
 {
 *pn=x+1;
 pn++;
 }

/* Display array */
 for(x=0;x<10;x++)
 printf("numbers[%d] = %d\n",
 x,numbers[x]);

 return(0);
}

Line 7 declares the pointer pn, and Line 9 initializes it. The & isn’t needed here,
because numbers is an array, not an individual variable. At that point, the pointer
holds the base address of the array, as illustrated in Figure 19-1. Keep in mind that
the array is empty.

The for loop at Lines 12 through 16 fills the numbers array. The first element is
filled at Line 14 using the peeker notation for pointer pn. Then at Line 15, pointer
pn is incremented one unit. It now points at the next element in the array, as
shown in Figure 19-1, and the loop repeats.

CHAPTER 19 Deep into Pointer Land 289

Exercise 19-4: Copy the source code from Listing 19-2 into your editor. Build
and run.

Exercise 19-5: Modify your source code from Exercise 19-4 so that the address of
each element in the array is displayed along with its value.

In the output of Exercise 19-5, you should see that each address is separated by
4 bytes (assuming that the size of an int is 4 bytes on your machine). In fact, the
addresses probably all end in the hex digits 0, 4, 8, and C.

Exercise 19-6: Complete the conversion of Listing 19-2, and what you began in
Exercise 19-5, by having the second for loop display the array’s values using the
peeker side of pointer variable pn.

Exercise 19-7: Create a new project that fills a 26-character array by using point-
ers similar to the ones shown in Listing 19-2. Fill the array with the letters ‘A’
through ‘Z’ by using pointer notation. (Build a char array, not a string.) Use pointer
notation to output the array’s contents.

Here’s a big hint:

*pn=x+'A';

In fact, in case you’re totally lost, I’ve put my solution for Exercise 19-7 in
Listing 19-3.

FIGURE 19-1:
Filling an array by

using a pointer.

290 PART 4 The Advanced Part

LISTING 19-3:	 My Solution to Exercise 19-7

#include <stdio.h>

int main()
{
 char alphabet[26];
 int x;
 char *pa;

 pa = alphabet; /* initialize pointer */

 /* fill the array */
 for(x=0;x<26;x++)
 {
 *pa=x+'A';
 pa++;
 }

 pa = alphabet; /* re-initialize pointer */

 /* output the array */
 for(x=0;x<26;x++)
 {
 putchar(*pa);
 pa++;
 }
 putchar('\n');

 return(0);
}

The source code in Listing 19-3 should be rather lucid, performing each task one
step at a time. But keep in mind that many C programmers like to combine state-
ments, and such combinations happen frequently with pointers.

Exercise 19-8: Combine the two statements in the first for loop from Listing 19-3
to be only one statement:

*pa++=x+'A';

Ensure that you type it in properly. Save, build, and run.

CHAPTER 19 Deep into Pointer Land 291

The output is the same. What this ugly *pa++=x+'A' mess does is described here:

x+'A’ This part of the statement is executed first, adding the value of variable x
to letter A. The effect is that the code marches up the alphabet as the value
of x increases.

*pa The result of x+'A’ is placed into the memory location specified by
pointer pa.

++ The value of variable pa — the memory address — is incremented one unit.
Because the ++ appears after the variable (it’s post-fixed), the value is
incremented after the value at that address is written.

Keeping the two statements separate still works, and I code my programs this way
because it’s easier for me to read later. But not every programmer does so! Many
of them love to stack up pointers with the increment operator. Watch out for it!

Exercise 19-9: Fix up your source code from Exercise 19-8 so that the second for
loop uses the *pa++ monster.

Hopefully, the *pa++ pointer-thing makes sense. If not, take a nap and then come
back and examine Listing 19-4.

LISTING 19-4:	 Head-Imploding Program

#include <stdio.h>

int main()
{
 char alpha = 'A';
 int x;
 char *pa;

 pa = <SPiSymbol>α</SPiSymbol> /* initialize

pointer */

 for(x=0;x<26;x++)
 putchar((*pa)++);
 putchar('\n');

 return(0);
}

292 PART 4 The Advanced Part

The source code from Listing 19-4 deals with a single char variable and not an
array. Therefore, the pointer initialization in Line 9 requires the & prefix. Don’t
forget it!

Line 12 in this code contains the booger (*pa)++. It looks similar to *pa++, but it’s
definitely not. Unlike *pa++, which peeks at a value and then increments the
pointer, the (*pa)++ construction increments a value being peeked at; the
pointer’s address is unchanged.

Exercise 19-10: Edit, build, and run a new program by using the source code from
Listing 19-4.

The (*pa)++ operation works, thanks to the parentheses. The program fetches the
value represented by *pa first, and then that value is incremented. The pointer
variable, pa, isn’t affected by the operation; pa still holds the address of char vari-
able alpha.

To help avoid confusion on this topic, I offer Table 19-1, which explains the vari-
ous cryptic pointer/peeker notation doodads.

Use Table 19-1 to help you decipher code as well as get the correct format for what
you need done with a pointer. If the pointer notation you see or want doesn’t
appear in Table 19-1, it’s either not possible or not a pointer. For example, the
expressions p*++ and p++* may look like they belong in Table 19-1, but they’re not
pointers. (In fact, they’re not defined as valid expressions in C.)

TABLE 19-1	 Pointers and Peekers In and Out of Parentheses
Expression Address p Value *p

*p++ Incremented after the value is read Unchanged

*(p++) Incremented after the value is read Unchanged

(*p)++ Unchanged Incremented after it’s read

*++p Incremented before the value is read Unchanged

*(++p) Incremented before the value is read Unchanged

++*p Unchanged Incremented before it’s read

++(*p) Unchanged Incremented before it’s read

CHAPTER 19 Deep into Pointer Land 293

Substituting pointers for array notation
Array notation must be a myth because it can easily be replaced by pointer nota-
tion. In fact, internally to your programs, it probably is.

Consider Table 19-2, which compares array notation with pointer notation.
Assume that pointer a is initialized to array alpha. The array and pointer are of
the same variable type; notation doesn’t differ between variable types. A char
array and an int array would use the same references, as shown in both columns
in Table 19-2.

You can test your knowledge of array-to-pointer notation by using a sample pro-
gram, such as the one shown in Listing 19-5.

LISTING 19-5:	 A Simple Array Program

#include <stdio.h>

int main()
{
 enum weekdays { mon, tues, wed, thurs, fri };
 float temps[5] = { 18.7, 22.8, 25.0, 23.3, 23.2 };

 printf("The temperature on Tuesday was %.1f\n",
 temps[tues]);
 printf("The temperature on Friday was %.1f\n",
 temps[fri]);
 return(0);
}

TABLE 19-2	 Array Notation Replaced by Pointers
Array alpha[] Pointer a

alpha[0] *a or *(a+0)

alpha[1] *(a+1)

alpha[2] *(a+2)

alpha[3] *(a+3)

alpha[n] *(a+n)

294 PART 4 The Advanced Part

At Line 5, the enum keyword creates a list of enumerated constants to represent
values 0 through 4. Each constant refers to an element in the temps array, corre-
sponding to a day of the week. This example shows how enumerated constants are
used to make a program more readable.

Exercise 19-11: Rewrite the code so that the two printf() statements from List-
ing 19-5 use pointer notation to output the values. You may use literal values or
the enumerated constants in your code.

Strings Are Pointer-Things
C lacks a string data type, but it does have the char array, which is effectively the
same thing. As an array, a string in C can be completely twisted, torqued, and
abused by using pointers. It’s a much more interesting topic than messing with
numeric arrays, which is why it gets a whole section all by itself.

Using pointers to display a string
You’re most likely familiar with displaying a string in C, probably by using either
the puts() or printf() function. Strings, too, can be displayed one character a time
by plodding through an array. To wit, I offer Listing 19-6.

LISTING 19-6:	 Hello, String

#include <stdio.h>

int main()
{
 char sample[] = "From whence cometh my help?\n";
 int index = 0;

 while(sample[index] != '\0')
 {
 putchar(sample[index]);
 index++;
 }
 return(0);
}

CHAPTER 19 Deep into Pointer Land 295

The code shown in Listing 19-6 is completely legitimate C code, valid to create a
program that displays a string. But it doesn’t use pointers, does it?

Exercise 19-12: Modify the source code from Listing 19-6, replacing array nota-
tion with pointer notation. Eliminate the index variable. You need to create and
initialize a pointer variable.

It’s possible to tighten the while loop’s evaluation in Listing 19-6. The null char-
acter evaluates as FALSE. So the evaluation could be rewritten as

while(sample[index])

The loop spins as long as the array element referenced by sample[index] isn’t a
null character.

Exercise 19-13: Edit the while loop’s evaluation in your solution for Exercise 19-12,
eliminating the null character comparison.

Exercise 19-14: Continue working on your code, this time eliminating all state-
ments in the while loop. Set all the action in the while statement’s evaluation. For
the sake of reference, the putchar() function returns the character that’s output.

Using a pointer to declare a string
Here’s a scary trick you can pull using pointers, one that comes with a boatload of
caution. Consider Listing 19-7.

LISTING 19-7:	 A Pointer Announces a String

#include <stdio.h>

int main()
{
 const char *sample = "From whence cometh my help?\n";

 puts(sample);
 return(0);
}

296 PART 4 The Advanced Part

In Listing 19-7, the string output is created by initializing a pointer. It’s a con-
struct that looks odd, but it’s something you witness often in C code, particularly
with strings. (You cannot use this convention to initialize a numeric array.)

Exercise 19-15: Copy the source code from Listing 19-7 in your editor. Build
and run.

Here is the boatload of caution: First, the string is declared as a constant, which I
strongly recommend. The reason is that this construction doesn’t behave the
same way as a traditional string declaration and manipulating the string must be
avoided.

Second, the pointer value (its address) shouldn’t be changed (incremented, for
example,) because doing so loses the string’s location in memory.

Third, processing this type of string declaration may result in unintended and
unpredictable consequences. For example, if you use the putchar() function with a
pointer to output the string, the null character may not be interpreted properly.

Fourth, this type of string has issues when passed to a function, which is why I
offer this warning:

When declaring a string by using a pointer, don’t mess with the pointer variable
elsewhere in the code.

The solution is to declare strings as arrays and just leave it at that.

Building an array of pointers
An array of pointers would be an array that holds memory locations. Such a con-
struction is often necessary in C, and I could devise a wickedly complex demo
program that would frustrate you to insanity. But this condition doesn’t result
when you consider that an array of pointers is really an array of strings, as shown
in Listing 19-8. This approach makes topic digestion easier.

LISTING 19-8:	 Crazy Pointer Arrays

#include <stdio.h>

int main()
{
 char *fruit[] = {
 "watermelon",
 "banana",

CHAPTER 19 Deep into Pointer Land 297

 "pear",
 "apple",
 "coconut",
 "grape",
 "blueberry"
 };
 int x;

 for(x=0;x<7;x++)
 puts(fruit[x]);

 return(0);
}

An array of pointers is declared in Listing 19-8. It works similarly to Listing 12-7
(from Chapter 12), though in this construction you don’t need to specifically count
individual string lengths. That’s because the array is really an array of pointers, or
memory locations. Each string dwells somewhere in memory. The array lists
where each one starts.

Exercise 19-16: Type the source code from Listing 19-8 into your editor. Build and
run to confirm that it works.

This chapter covers pointers, so which part of Listing 19-8 do you think could be
improved?

Exercise 19-17: Using information from Table 19-2 as your guide, replace the
array notation at Line 17 in Listing 19-8 with pointer notation.

The reason that your solution to Exercise 19-17 works (assuming that you got it
correct) is that the fruit array contains pointers. The value of each element is
another pointer. But that’s nothing; consider Listing 19-9.

LISTING 19-9:	 Pointers-to-Pointers Example

#include <stdio.h>

int main()
{
 char *fruit[] = {
 "watermelon",
 "banana",

(continued)

298 PART 4 The Advanced Part

 "pear",
 "apple",
 "coconut",
 "grape",
 "blueberry"
 };
 int x;

 for(x=0;x<7;x++)
 {
 putchar(**(fruit+x));
 putchar('\n');
 }

 return(0);
}

Line 18 in Listing 19-9 contains the dreaded, feared, avoided, and cursed ** nota-
tion, or double-pointer notation. To use my preferred nomenclature, it’s a double-
peeker. Before I commence the discussion, do Exercise 19-18.

Exercise 19-18: Carefully type the source code from Listing 19-9 into your editor.
Compile and run.

To understand the **(fruit+x) construct, you must work from the inside out:

fruit+x

Variable fruit contains a memory address. It’s a pointer! The x is a value incre-
menting by one unit. In this case, the unit is the size of a pointer; all elements of
the fruit array are pointers.

*(fruit+x)

You’ve seen the preceding construction already. It’s the contents of the address
fruit+x. From the code, fruit is an array of pointers. So the result of the preced-
ing operation is . . . a pointer!

**(fruit+x)

Finally, you get a pointer to a pointer or — put better — a peeker to a peeker. If
the inside peeker is a memory address, the outside peeker (the first asterisk) is the
content of that memory address. Figure 19-2 attempts to clear up this concept.

LISTING 19-9:	 (continued)

CHAPTER 19 Deep into Pointer Land 299

It helps to remember that the ** operator is almost always (but not exclusively)
tied to an array of pointers; or, if you want to make it simple, to an array of
strings. So, in Figure 19-2, *fruit[] represents the address of an array of pointers.
The second column contains each address as it’s referenced relative to the fruit
base address. The column on the right shows the strings at each address, with the
**(fruit+0) expression holding the first character of the first string. Subsequent
strings’ first characters would be **(fruit+1), **(fruit+1), and so on.

If you’re still confused — and I don’t blame you; Einstein was in knots at this
point when he read this book’s first edition — consider mulling over Table 19-3.
In the table, pointer notation (using variable ptr) is compared with the equivalent
array notation (using variable array).

FIGURE 19-2:
How the ** thing

works.

TABLE 19-3	 Pointer Notation and Array Notation
Pointer Notation Array Notation Description

**ptr *array[] Declares an array of pointers

*ptr array[0] The address of the first pointer in the array; for a string array, the
first string

*(ptr+0) array[0] The same as the preceding entry

**ptr array[0][0] The first element of the first pointer in the array; the first character
of the first string in the array

**(ptr+1) array[1][0] The first element of the second pointer in the array; the first char-
acter of the second string

((ptr+1)) array[1][0] The same as the preceding entry

((ptr+a)+b) array[a][b] Element b of pointer a

300 PART 4 The Advanced Part

Just to keep you from understanding this topic too well, accept that the *array[]
notation can also be written as **array. Effectively, the ** declaration refers to a
pointer to a pointer.

Exercise 19-19: Rework your source code from Exercise 19-18 so that each indi-
vidual character in a string is displayed, one at a time, by using the putchar() func-
tion. If you can write the entire putchar() operation as a while loop’s condition, you
get ten For Dummies bonus points.

Sorting strings
Taking what you know about sorting in the C language (gleaned from Chapter 12),
you can probably craft a decent string sorting program. Or, at minimum, you can
explain how it’s done. That’s great! But it’s a lot of work.

What’s better when it comes to sorting strings is not to sort the strings at all. No,
instead, you sort an array of pointers referencing the strings. Listing 19-10 shows
an example.

LISTING 19-10:	 Sorting Strings, Initial Attempt

#include <stdio.h>

int main()
{

SEE ANYTHING FAMILIAR?
Arrays of pointers should be somewhat familiar to you. If you’ve worked through
Chapter 15, you may remember this thing:

int main(int argc, char *argv[])

The full declaration of the main() function includes an array of pointers as the second
argument. In Chapter 15, you treat each item as its own string, which is exactly how the
construction works. But secretly, what’s being passed to the main() function is an array
of pointers.

By the way, the full declaration of the main() function can also be written like this:

int main(int argc, char **argv)

CHAPTER 19 Deep into Pointer Land 301

 char *fruit[] = {
 "apricot",
 "banana",
 "pineapple",
 "apple",
 "persimmon",
 "pear",
 "blueberry"
 };
 char *temp;
 int a,b,x;

 for(a=0;a<6;a++)
 for(b=a+1;b<7;b++)
 if(*(fruit+a) > *(fruit+b))
 {
 temp = *(fruit+a);
 *(fruit+a) = *(fruit+b);
 *(fruit+b) = temp;
 }

 for(x=0;x<7;x++)
 puts(fruit[x]);

 return(0);
}

Exercise 19-20: Type the source code from Listing 19-10 into your editor. Build
and run to ensure that the strings are properly sorted.

Well, it probably didn’t work. It may have, but if the list is sorted or changed in
any way, it’s an unintended consequence and definitely not repeatable.

The problem is in Line 19: You can’t compare strings by using the > operator. You
can compare individual characters and then sort the list based on those charac-
ters, but most humans prefer words sorted across their entire length, not just the
first character.

Exercise 19-21: Modify your source code, and use the strcmp() function to compare
strings to determine whether they need to be swapped.

302 PART 4 The Advanced Part

Pointers in Functions
A pointer is a type of variable. As such, it can easily be flung off to a function. Even
more thrilling, a pointer can wander back from a function as a return value. Often-
times, these tricks are the only ways to get information to or from a function.

Passing a pointer to a function
The great advantage of passing a pointer to a function is that the information
that’s modified is automatically returned. That’s because the function references
a memory address, not a value directly. By using that address, information can be
manipulated directly. Listing 19-11 demonstrates.

LISTING 19-11:	 Pointing at a Discount

#include <stdio.h>

void discount(float *a);

int main()
{
 float price = 42.99;

 printf("The item costs $%.2f\n",price);
 discount(&price);
 printf("With the discount, that's $%.2f\n",price);
 return(0);
}

void discount(float *a)
{
 *a *= 0.90;
}

In Line 3 of Listing 19-11, the discount() function is prototyped. It requires a float
pointer variable as its only argument.

Line 10 passes the address of the price variable to the discount() function. The &
operator obtains the memory location of the price variable.

CHAPTER 19 Deep into Pointer Land 303

Within the function, pointer variable a accesses the value stored at its memory
location. An assignment operator reduces the value by 90 percent. Nothing is
returned, because the value is modified directly in memory.

Exercise 19-22: Type the source code from Listing 19-11 into your editor. Build
and run the program.

Exercise 19-23: Write code in which the swap() function swaps the values of two
integer variables. In the main() function, output the variable’s values before and
after the swap. The swap() function returns no values; it’s of the void data type.

Returning a pointer from a function
Functions are known by their types, such as int or char or even void. You can also
declare pointer functions, which return a memory location as a value. For example:

int *monster(void);

In this example, the monster() function requires no arguments but returns a
pointer to an integer value.

Most functions that return pointers return the memory location of a buffer — a
storage area that the function allocates. For example:

struct person *fill_data(void);

The preceding prototype declares the fill_data() function, which returns the
address of a person structure. The structure is created, or allocated, within the
function and its memory address returned.

The address() function prototype shown on the following line returns a string
value, either a static array declared in the function or the address of a freshly allo-
cated char buffer:

char *address(int a, int b);

Allocating memory buffers is the job of the malloc() function. This function, as
well as many examples of functions that return memory locations, is covered in
Chapter 20.

CHAPTER 20 Memory Chunks and Linked Lists 305

Chapter 20
Memory Chunks and
Linked Lists

Another reason for having a pointer variable is to hold the address of a
freshly allocated chunk of memory. This approach is far better than creat-
ing an array and guessing at its size: Memory chunks can be assigned a

size on the fly, resized, and banished. You can’t perform such actions with an
array — well, not in civilized society.

Dovetailing from memory allocation comes the ultimate thrill ride in the C lan-
guage amusement park: the linked list. It combines the mystery of structures with
the dread of pointers to create one heart-stopping, scream-inducing, hair-
blowing roller coaster of fun. Please fasten your gaming chair’s seat belt and keep
your hands on the keyboard at all times. Here we go!

IN THIS CHAPTER

»» Grabbing a chunk of memory with
malloc()

»» Initializing and allocating memory

»» Resizing an allocated memory chunk

»» De-allocating memory

»» Creating space for a structure

»» Building a linked list

»» Editing structures in a linked list

306 PART 4 The Advanced Part

Give Me Memory!
Don’t tell a beginning programmer, but declaring a variable in C is in reality
directing the program to beg for some storage space from the operating system.
As you know (hopefully, you know), the operating system is the Lord High Master
of the computer or whatever electronic device you’re programming. As such, it
doles out RAM to programs that request it.

When you declare a variable, from a lowly short int to a massive string buffer,
you’re directing the program to beg for that much space, into which you plan to
put something useful. In the C language, you can also allocate memory on the fly,
as long as you have an army of pointers at hand to save the addresses.

Introducing the malloc() function
The malloc() function allocates a chunk of memory; think “memory allocation,”
malloc. You pass it a size_t (byte) value, and it returns the address — a pointer —
for the allocated chunk. When something horrible happens, it returns the NULL
pointer constant. Here’s the format:

p = malloc(size);

The size argument is a size_t value, the same data type returned by the sizeof
operator. Unofficially, it’s a byte. Officially, programmers set this value based on
the size of the data type they want to store in the memory chunk. More on that in
a bit.

The value returned is a pointer, p, a memory location. The NULL constant is
returned otherwise, which must be checked for to confirm that memory was allo-
cated. If not, your program gets into all kinds of trouble.

The NULL constant is not the same thing as the null character, \0, marking the
end of a string. NULL is a pointer equivalent used to test for unallocated memory.
The null character is character code zero, a byte value.

Most programmers use the sizeof operator to set the malloc() function’s argument.
For example, if you need space to store five int values, you construct a malloc()
statement like this:

p = malloc(sizeof(int) * 5);

The sizeof operator obtains the storage required for a single integer value, multi-
plied by five, to allocate a 5-integer storage buffer.

CHAPTER 20 Memory Chunks and Linked Lists 307

Further, programmers with social skills typecast the malloc() function to return
the data type allocated. Improving upon the preceding example:

p = (int *)malloc(sizeof(int) * 5);

The int typecast includes the * (pointer) operator, to ensure that the memory
chunk allocated is of the integer pointer data type.

Finally, you must include the stdlib.h header file in your source code to keep the
compiler pleased with the malloc() function. Listing 20-1 shows an example.

LISTING 20-1:	 Give Me Space

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int *age;

 /* allocate memory */
 age = (int *)malloc(sizeof(int)*1);
 if(age == NULL)
 {
 puts("Unable to allocate memory");
 exit(1);
 }

 /* use the memory */
 printf("How old are you? ");
 scanf("%d",age);
 printf("You are %d years old.\n",*age);

 return(0);
}

The first thing to notice about Listing 20-1 is that the only variable declared is int
pointer, age. This pointer isn’t assigned the address of another variable, but rather
is used to hold the address of memory allocated later in the code.

Line 9 uses malloc() to set aside storage for one integer. To ensure that the proper
amount of storage is allocated, the sizeof operator is used. To allocate space for one
integer, the value 1 is multiplied by the result of the sizeof(int) operation. The
address returned is saved in the age pointer.

308 PART 4 The Advanced Part

Line 10 tests to ensure that malloc() was successful. If not, the value returned is
NULL (a constant defined in stdlib.h), and the program outputs an error mes-
sage (Line 12) and quits (Line 13).

The scanf() function at Line 18 doesn’t use the & prefix for its second argument
because the age variable is a memory address — a pointer.

Finally, peeker notation is used in Line 19 to output the value input.

Exercise 20-1: Fire up a new program using the source code from Listing 20-1.
Build and run.

Exercise 20-2: Using Listing 20-1 as your inspiration, write a program that asks
for the current temperature outside as a floating-point value. Use malloc() to cre-
ate storage for the value input. Have the program ask whether the input is Celsius
or Fahrenheit. Output the resulting temperature in Kelvin. Here are the
formulae:

kelvin = celsius + 273.15;

kelvin = (fahrenheit + 459.67) * (5.0/9.0);

Exercise 20-3: Write a program that allocates space for three int values — an
array. You need to use only one malloc() function to accomplish this task. Assign
100, 200, and 300 to each int, and then display all three values. Use pointer nota-
tion throughout the code.

Creating string storage
The malloc() function is commonly used to create a text input buffer. This tech-
nique avoids declaring and sizing an empty array. For example, the notation

char input[64];

can be replaced by this statement:

char *input;

The size of the buffer is set in the code by using the malloc() function.
In Listing 20-2, malloc() at Line 8 declares a char array — a storage buffer — for
about 1,024 bytes. Okay, it’s a kilobyte (KB). I remember when they were a big
deal.

CHAPTER 20 Memory Chunks and Linked Lists 309

LISTING 20-2:	 Allocating an Input Buffer

#include <stdio.h>
#include <stdlib.h>

int main()
{
 char *input;

 /* allocate memory */
 input = (char *)malloc(sizeof(char)*1024);
 if(input==NULL)
 {
 puts("Unable to allocate buffer! Oh no!");
 exit(1);
 }

 /* use the memory */
 puts("Type something long and boring:");
 fgets(input,1024,stdin);
 puts("You wrote:");
 printf("\"%s\"\n",input);

 return(0);
}

Lines 9 through 14 in Listing 20-2 allocate a 1K storage buffer. The rest of the code
from Lines 17 through 20 accepts input and then displays the output.

Exercise 20-4: Whip up a new program using the source code from Listing 20-2.

Exercise 20-5: Modify the source code from Listing 20-2. Use the malloc() func-
tion to create a second char buffer. After text is read by the fgets() function, copy
text from the first buffer (input in Listing 20-2) into the second buffer — all the
text except for the newline character, \n, at the end of input. Output the result.

Using the calloc() function
The memory allocated by the malloc() function is uninitialized. Whatever garbage
values linger in memory remain there when the buffer is created. For this reason
you must always initialize the allocated buffer before you use it. An example of
how things might go wrong is shown in Listing 20-3.

310 PART 4 The Advanced Part

LISTING 20-3:	 Show Me the Garbage

#include <stdio.h>
#include <stdlib.h>

int main()
{
 unsigned char *junk;
 int x;

 /* allocate memory */
 junk = malloc(64);
 if(junk==NULL)
 {
 puts("Unable to allocate memory");
 exit(1);
 }

 /* output the buffer */
 for(x=0;x<64;x++)
 {
 printf("%02X ",*(junk+x));
 if((x+1) % 8 == 0)
 putchar('\n');
 }

 return(0);
}

Exercise 20-6: Copy the source code from Listing 20-3 in your editor. Save, build,
and run.

The output from Exercise 20-6 shows the 64 bytes allocated as 2-digit hexadeci-
mal values. The values are unpredictable. Memory could contain all zeros or any
other values. The point is that the information is raw and uninitialized, and
shouldn’t be trusted.

When you must ensure that memory is allocated and initialized, use the calloc()
function instead of malloc(). Its format requires two arguments:

p = calloc(size,type);

CHAPTER 20 Memory Chunks and Linked Lists 311

The first argument, size, is the quantity of memory requested. The second
argument, type, is the size of each item requested. For example:

p = calloc(64,sizeof(char));

The preceding statement allocates a 64-character memory buffer, all values ini-
tialized to \0, the null character.

The following statement sets aside storage for 16 integers, all initialized to zero:

v = calloc(16,sizeof(int));

Like the malloc() function, the calloc() function is prototyped in the stdlib.h
header file, which must be included in your source code file, lest the compiler get
all huffy.

Exercise 20-7: Fix the source code from Listing 20-3 so that the calloc() function
is used to allocate 64 char values. Confirm that the output is all zeros.

Getting more memory
The malloc() function has a companion function that should be called oops().
Instead, computer scientists determined that it be called realloc(). As you might
guess, this function’s purpose is to reallocate memory, changing the buffer size as
needed. Listing 20-4 shows how it works.

LISTING 20-4:	 Giving Back a Few Bytes

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
	 char *input;
	 int len;

	 /* allocate storage */
	 input = (char *)malloc(sizeof(char)*1024);
	 if(input==NULL)
	 {
		 puts("Unable to allocate buffer! Oh no!");
		 exit(1);

(continued)

312 PART 4 The Advanced Part

	 }
	 /* gather input */
	 puts("Type something long and boring:");
	 fgets(input,1023,stdin);

	 /* resize the buffer */
	 len = strlen(input);
	 input = realloc(input,sizeof(char)*(len+1));
	 if(input==NULL)
	 {
		 puts("Unable to reallocate buffer!");
		 exit(1);
	 }
	 puts("Memory reallocated.");

	 /* output results */
	 puts("You wrote:");
	 printf("%s",input);

	 return(0);
}

The source code in Listing 20-4 is based on Listing 20-2, with code added to
accommodate the realloc() function at Line 24. Here’s the format:

p = realloc(buffer,size);

buffer is an existing, allocated storage area, created by the malloc() or similar
function. size is the new buffer size, calculated the same as the malloc() func-
tion’s size argument. Upon success, realloc() returns a pointer to buffer; other-
wise, NULL is returned. And, yes, you can use the same pointer variable as both p
and buffer, as shown with variable input at Line 24 in Listing 20-4.

As with malloc(), the realloc() function requires the stdlib.h header, shown in
Listing 20-4 at Line 2.

The string.h header is called in at Line 3 to satisfy the use of the strlen() function
at Line 23. The input string’s length is gathered and saved in the len variable.

At Line 24, the realloc() function resizes the input buffer to a new value. The new
value is based on the input string’s length plus 1, to account for the \0 character.
The point of this code is to resize the input buffer to match the string’s exact
length, which is the value of len plus one for the null character.

LISTING 20-4:	 (continued)

CHAPTER 20 Memory Chunks and Linked Lists 313

If the realloc() function is successful, it resizes the input buffer. If it’s unsuccess-
ful, a NULL is returned, which is tested for at Line 25.

Exercise 20-8: Type the source code from Listing 20-4 into your editor. Build
and run.

Freeing memory
Because C is a mid-level language, a lot of the memory management chore falls
upon you, the programmer. When the code is done using allocated memory, it
should be freed. This step allows the memory to be used again, and it prevents
allocated memory chunks from piling up like empty Amazon boxes in your garage.

The free() function is demonstrated in Listing 20-5.

LISTING 20-5:	 If You Love Your Memory, Set It Free

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int *age;

 /* allocate memory */
 age = (int *)malloc(sizeof(int)*1);
 if(age==NULL)
 {
 puts("Out of Memory or something!");
 exit(1);
 }

 /* use memory */
 printf("How old are you in years? ");
 scanf("%d",age);
 *age *= 365;
 printf("You're over %d days old!\n",*age);

 /* free memory */
 free(age);

 return(0);
}

314 PART 4 The Advanced Part

The code shown in Listing 20-4 doesn’t contain any surprises; most of it should
be familiar if you’ve worked through this chapter straight from the beginning.
The only new item is at Line 23, the free() function.

The free() function releases the allocated memory, making it available for malloc()
or something else to use. Its argument is a pointer, the address of memory to free.
Like malloc(), calloc(), and realloc(), the free() function is prototyped in the
stdlib.h header file.

Exercise 20-9: Type the source code from Listing 20-4 into a new project. Build
and run.

You may have noticed that no earlier listings in this chapter use the free() function
to release allocated memory. The reason is that memory was allocated in the
main() function, and the operating system releases all the program’s memory
when the program quits. Even in Listing 20-5, the free() function is redundant.

Where the free() function is vital is in functions or elsewhere that temporary
memory is allocated. When the program is done using the memory, it must be
freed or else it accumulates and hogs system resources. An example of using free()
in this manner is provided later in this chapter, in Listing 20-8.

Lists That Link
At the intersection of Structure Street and Pointer Place, you find a topic known as
the linked list. It’s an array of structures, like a database. The big difference is that
each structure is carved out of memory one at a time, like hewing blocks of marble
to build an elaborate temple. It’s a marvelously nerdy topic and an excellent dem-
onstration of how pointers can be useful. Linked lists put the malloc() function to
the test.

Allocating space for a structure
As a C language data storage thingy, a structure can be allocated storage just like
any other C language data type. The malloc() function uses the structure’s defini-
tion to allocate memory. The address returned is assigned to a structure pointer
variable. The operation works as you’d expect — except for one thing: Instead of
a period used to reference structure members, allocated structures use the struc-
ture pointer operator, which looks like this: ->.

CHAPTER 20 Memory Chunks and Linked Lists 315

As an example, structure variable date has integer member day. To assign a value
to this member, use the following statement:

date.day = 14;

When structure variable date is a pointer, its day member is accessed like this:

date->day = 14;

Weird. You might be wondering why the expression isn’t *date.day — which is
similar to how the expression looked back in the ancient days of the C language:

(*date).day = 14;

The parentheses are required in order to bind the * pointer operator to date, the
structure pointer variable name; otherwise, the . (member) operator takes prec-
edence. But, for some reason, primitive C programmers detested this format, so
they went with -> instead.

Listing 20-6 demonstrates how the malloc() function allocates storage for a struc-
ture. The stk structure is defined at Line 7. Pointer variable invest of the stk
structure type is declared at Line 12. In Line 15, malloc() allocates storage for one
stk structure. The size of the structure is determined by using the sizeof operator
on the structure definition, not the structure variable name.

LISTING 20-6:	 Creating a Structured Portfolio

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 struct stk {
 char symbol[5];
 int quantity;
 float price;
 };
 struct stk *invest;

 /* allocate structure */
 invest=(struct stk *)malloc(sizeof(struct stk)*1);
 if(invest==NULL)

(continued)

316 PART 4 The Advanced Part

 {
 puts("Some kind of malloc() error");
 exit(1);
 }

 /* assign structure data */
 strcpy(invest->symbol,"GOOG");
 invest->quantity=26;
 invest->price=1373.19;

 /* output database */
 puts("Investment Portfolio");
 printf("Symbol\tShares\tPrice\tValue\n");
 printf("%-6s\t%5d\t%.2f\t%.2f\n",
 invest->symbol,
 invest->quantity,
 invest->price,
 invest->quantity*invest->price);

 return(0);
}

The invest pointer references the new structure carved out of memory. Lines 23
through 25 fill the structure with data. Then Lines 28 through 34 output the data.
See how the -> operator is used to reference the structure’s members?

Exercise 20-10: Create a new program by using the source code from
Listing 20-6. Build and run.

The -> operator is used only when the structure is an allocated pointer. For a
regular structure with a pointer member, the dot operator is still used. If the
structure is a pointer with a pointer member, the -> operator is used.

Creating a linked list
If you wanted to add a second structure to the source code in Listing 20-5, you’d
probably create another structure pointer, something like this:

struct stk *invest2;

You’d probably rename the original invest pointer to invest1 to keep things
clear. Then you’d say, “You know, this smells like the start of an array,” so you

LISTING 20-6:	 (continued)

CHAPTER 20 Memory Chunks and Linked Lists 317

create an array of structure pointers, struct stk invest[]. Yes, sir, all of that
works.

What works better, however, is to create a linked list, a series of structures that
contain pointers referencing other structures in the list. To make this change, one
new member is added to the stk structure: a pointer to the stk structure.

Yes, this concept is difficult to describe. So, rather than spin words, look at
Listing 20-7.

LISTING 20-7:	 A Primitive Linked-List Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 struct stk {
 char symbol[5];
 int quantity;
 float price;
 struct stk *next;
 };
 struct stk *first;
 struct stk *current;

 /* allocate structre */
 first=(struct stk *)malloc(sizeof(struct stk)*1);
 if(first==NULL)
 {
 puts("Some kind of malloc() error");
 exit(1);
 }
 /* set the base */
 current=first;

 /* assign structure data */
 strcpy(current->symbol,"GOOG");
 current->quantity=26;
 current->price=1373.19;

 /* allocate the next structure */
 current->next=\

(continued)

318 PART 4 The Advanced Part

 (struct stk *)malloc(sizeof(struct stk)*1);
 if(current->next==NULL)
 {
 puts("Another malloc() error");
 exit(1);
 }
 /* reference the new structure */
 current=current->next;
 strcpy(current->symbol,"MSFT");
 current->quantity=67;
 current->price=183.16;
 /* cap the end of the list */
 current->next=NULL;

 /* outupt database */
 puts("Investment Portfolio");
 printf("Symbol\tShares\tPrice\tValue\n");
 current=first;
 while(current)
 {
 printf("%-6s\t%5d\t%.2f\t%.2f\n",
 current->symbol,
 current->quantity,
 current->price,
 current->quantity*current->price);
 current=current->next;
 }

 return(0);
}

The source code shown in Listing 20-7 is long, but it’s based on Listing 20-6.
I just created a second structure, linked to the first one. So don’t let the source
code’s length intimidate you.

Key to the linked list are three required structure pointer variables: first,
current, and next.

Lines 13 and 14 declare two of the traditional structure pointers, first and
current. The third pointer variable, next, is incorporated into the linked list
structure at Line 11. Before moving on, a couple of warnings:

LISTING 20-7:	 (continued)

CHAPTER 20 Memory Chunks and Linked Lists 319

Do not use typedef to define a new structure variable when creating a linked list.
I’m not using typedef in Listing 20-7, so it’s not an issue with the code, but many
C programmers use typedef with structures. Be careful!

The third traditional linked-list variable is named new. I use next instead because
new is a reserved word in C++. Though you can use new in your C code, it’s best not
to confuse the two. Therefore, I’ve rewritten the code to use the next variable
name, which is also part of the linked-list structure shown in Listing 20-7.

At Line 17, the first pointer is allocated. This pointer forms the base address of
the linked list, and it must never be altered or else the entire list is lost. Therefore,
at Line 24, it’s assigned to the current pointer, which is used to assign values in
the current list structure.

At Line 32, the next member of the current structure is allocated to a new stk
structure in memory. (The line is split so that it doesn’t mess up this book’s
layout.) Upon success, at Line 40 the current structure pointer is assigned to
current->next, and this new structure’s data is filled.

The linked list is capped at Line 45. The NULL pointer is assigned to the last
structure’s next member.

Line 50 resets the list to the base, assigning pointer current to first. A while loop
outputs the list as long as the current pointer isn’t NULL. This pointer is updated
at Line 58.

Exercise 20-11: Type the source code from Listing 20-7 into your editor, or just
copy over the source code from Exercise 20-10 and modify it. Even though it’s
long, type it in because you need to edit it again later (if you’re not used to that by
now). Build and run.

Figure 20-1 illustrates the concept of the linked list based on what Listing 20-7
does.

Unlike arrays, structures in a linked list aren’t numbered. Instead, each structure
is linked to the next one in the list. Providing that you know the address of the
first structure, you can work through the list until the end, which is marked by a
NULL pointer.

FIGURE 20-1:
A linked list in

memory.

320 PART 4 The Advanced Part

Listing 20-6 could use some cleaning. Functions scream at me, so I’ll heed their
cries with an improved version of the code, shown in Listing 20-8.

LISTING 20-8:	 A Better Linked-List Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define ITEMS 5

struct stk {
 char symbol[5];
 int quantity;
 float price;
 struct stk *next;
};

struct stk *make_structure(void);
void fill_structure(struct stk *a,int c);
void show_structure(struct stk *a);

int main()
{
 struct stk *first;
 struct stk *current;
 int x;

 /* create the ITEMS-sized linked list */
 for(x=0;x<ITEMS;x++)
 {
 if(x==0)
 {
 first=make_structure();
 current=first;
 }
 else
 {
 current->next=make_structure();
 current=current->next;
 }
 fill_structure(current,x+1);
 }
 /* cap the list */
 current->next=NULL;

CHAPTER 20 Memory Chunks and Linked Lists 321

 /* output the database */
 puts("Investment Portfolio");
 printf("Symbol\tShares\tPrice\tValue\n");
 current = first;
 while(current)
 {
 show_structure(current);
 current=current->next;
 }

 return(0);
}

/* allocate a new structure */
struct stk *make_structure(void)
{
 struct stk *a;

 a=(struct stk *)malloc(sizeof(struct stk)*1);
 if(a==NULL)
 {
 puts("Some kind of malloc() error");
 exit(1);
 }

 return(a);
}

/* fill the structure with data */
void fill_structure(struct stk *a,int c)
{
 printf("Item #%d/%d:\n",c,ITEMS);
 printf("Stock Symbol: ");
 scanf("%s",a->symbol);
 printf("Number of shares: ");
 scanf("%d",&a->quantity);
 printf("Share price: ");
 scanf("%f",&a->price);
}

/* output the structure */
void show_structure(struct stk *a)

(continued)

322 PART 4 The Advanced Part

{
 printf("%-6s\t%5d\t%.2f\t%.2f\n",\
 a->symbol,
 a->quantity,
 a->price,
 a->quantity*a->price);
}

Most linked lists are created as shown in Listing 20-8. The key is to use three
structure variables, shown at Lines 11, 20, and 21:

»» next is a structure member that references the next structure in the list. It’s
allocated with a new structure as the program runs. This pointer is capped
with the NULL constant at the end of list.

»» first always contains the address of the first structure in the list. Always.

»» current contains the address of the structure being worked on, filled with
data, or output.

Line 7 declares the stk structure as global so that it can be accessed from the var-
ious functions.

The for loop between Lines 25 and 38 creates new structures, linking them
together. The initial structure is special, so its address is saved in Line 29. Other-
wise, a new structure is allocated, thanks to the make_structure() function.

In Line 34, a new structure is allocated using the next pointer member of the
current structure. The current pointer is updated to reference the freshly
allocated structure at Line 35.

At Line 40, the end of the linked list is marked by resetting the current pointer in
the last structure to a NULL.

The while loop at Line 46 outputs all structures in the linked list. The loop’s con-
dition is the value of the current pointer. When the NULL is encountered, the loop
stops.

The rest of the code shown in Listing 20-8 consists of functions that are self-
explanatory. If the make_structure() function concerns you because you believe the

LISTING 20-8:	 (continued)

CHAPTER 20 Memory Chunks and Linked Lists 323

value of variable a to be lost, you’re correct. Its value is lost, but the address
returned from the function continues to reference an allocated chunk of memory.

Exercise 20-12: Copy the code from Listing 20-8 into the editor. Build and run.

Take note of the scanf() statements in the fill_structure() function. Remember that
the -> is the “peeker” notation for a pointer. To get the address, you must prefix
the variable with an & in the scanf() function.

Editing a linked list
Because a linked list is chained together by referencing memory locations, editing
is done by modifying those memory locations. For example, in Figure 20-2, if you
want to remove the third item from the list, you dodge around it by linking the
second item to the fourth item. The third item is effectively removed (and lost) by
this operation.

Likewise, you can insert an item into the list by editing the next pointer from the
previous structure, as illustrated in Figure 20-3.

The best way to alter items in a linked list is to have an interactive program that
lets you view, add, insert, delete, and edit the various structures. Such a program
would be quite long and complex, which is why it’s shown in Listing 20-9.

FIGURE 20-2:
Removing an item
from a linked list.

FIGURE 20-3:
Adding an item to

a linked list.

324 PART 4 The Advanced Part

LISTING 20-9:	 An Interactive Linked-List Program

/* An interactive linked-list program */
/* Dan Gookin, C Programming For Dummies */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

struct lili {
 int value;
 struct lili *next;
};
struct lili *first;
struct lili *current;

int menu(void);
void add(void);
void show(void);
void delrec(void);
struct lili *create(void);

/* the main function works with input only
 everything else is handled by a function */
int main()
{
 /* initialize variables */
 int choice='\0';
 first=NULL;

 while(choice!='Q')
 {
 choice=menu();
 switch (choice)
 {
 case 'S':
 show();
 break;
 case 'A':
 add();
 break;
 case 'R':
 delrec();
 break;
 case 'Q':
 break;

CHAPTER 20 Memory Chunks and Linked Lists 325

 }
 }

 return(0);
}

/* output the main menu and collect input */
int menu(void)
{
 int ch;

 printf("S)how, A)dd, R)emove, Q)uit: ");
 ch=getchar();
 /* delete excess input */
 while(getchar()!='\n')
 ;
 return(toupper(ch));
}

/* add an item to the end of the linked list */
void add(void)
{
 /* special case for the first item */
 if(first==NULL)
 {
 first=create();
 current=first;
 }
 /* otherwise, find the last item */
 else
 {
 current=first;
 /* find the NULL */
 while(current->next)
 current=current->next;
 current->next=create();
 current=current->next;
 }
 printf("Type a value: ");
 scanf("%d",¤t->value);
 current->next=NULL;
 /* delete excess input */
 while(getchar()!='\n')
 ;
}

(continued)

326 PART 4 The Advanced Part

/* output all structures in the linked list */
void show(void)
{
 int count=1;

 /* is the list empty? */
 if(first==NULL)
 {
 puts("Nothing to show");
 return;
 }
 puts("Showing all records:");
 current=first;
 /* loop until current==NULL */
 while(current)
 {
 printf("Record %d: %d\n",
 count,current->value);
 current=current->next;
 count++;
 }
}

/* delete a record from the list */
void delrec(void)
{
 /* the previous record must be saved */
 struct lili *previous;
 int r,c;

 /* is the list empty? */
 if(first==NULL)
 {
 puts("No records to remove");
 return;
 }

 puts("Choose a record to remove:");
 /* output the list */
 show();
 printf("Record: ");
 scanf("%d",&r);
 /* delete excess input */

LISTING 20-9:	 (continued)

CHAPTER 20 Memory Chunks and Linked Lists 327

 while(getchar()!='\n')
 ;
 c=1;
 /* reset the list */
 current=first;
 /* initialize the previous pointer */
 previous=NULL;
 while(c!=r)
 {
 previous=current;
 current=current->next;
 c++;
 /* bail on the end of the list */
 if(current==NULL)
 {
 puts("Record not found");
 return;
 }
 }
 /* 'current' holds the record to delete */
 /* is it the first record? */
 if(previous==NULL)
 first=current->next;
 /* otherwise, reset the next reference */
 else
 previous->next=current->next;
 printf("Record %d removed.\n",r);
 /* release memory of the current record */
 free(current);
}

/* build an empty structure & return its address */
struct lili *create(void)
{
 struct lili *a;

 a=(struct lili *)malloc(sizeof(struct lili)*1);
 if(a==NULL)
 {
 puts("Some kind of malloc() error");
 exit(1);
 }

 return(a);
}

328 PART 4 The Advanced Part

Exercise 20-13: If you have the time, type the source code from Listing 20-9 into
your editor. I could argue that typing it in helps you better understand the code.
Build and run a few times to get the hang of it.

Saving a linked list
Linked lists exist only in memory. Though you can save all records from a linked
list to a file, the next pointer member in each structure should be discarded when
the information is read from the file. The reason is because the linked list may not
lay out in the same chunk of memory.

See Chapter 22 for details on working with files — specifically, the topic of random
file access.

CHAPTER 21 It’s About Time 329

Chapter 21
It’s About Time

It’s time to program! Or, to put it another way, it’s time to program time.
The C library is bursting with various time-oriented functions, allowing you to
not only report the current time but also display dates and times. You can even

suspend a program’s execution — on purpose — providing you know the proper
functions.

What Time Is It?
Does anyone have the time? Seriously, does anyone really know what time it is —
or was?

Electronic devices have clocks, but this feature doesn’t make them the best time-
keepers. In fact, most gizmos today constantly update their internal clocks by
using an Internet time server. Otherwise, the clock on your computer, cell phone,
or tablet would never be accurate.

When you program the time in C, you’re relying upon the device you’re using to
accurately report the date and time. That brings to light a whole bunch of terms
and technology surrounding the subject of time and how it’s measured.

IN THIS CHAPTER

»» Programming time functions

»» Understanding the Unix epoch

»» Retrieving the current time

»» Displaying the date and time

»» Pausing program execution

330 PART 4 The Advanced Part

Understanding the calendar
Digital devices keep track of time by counting ones and zeros. Humans like to keep
track of time by counting seconds, minutes, hours, days, weeks, months, and
years. Various schemes have been developed to work between the two systems.

The Julian calendar was popular for centuries. Developed by Julius Caesar and pro-
grammed in Latin, this calendar worked well for a long time.

Sadly, old Julius didn’t account for fractions of a day that accumulated over time.
In the year 1500, Pope Gregory developed the Gregorian calendar, which fixed
Caesar’s oversights. This calendar was also programmed in Latin.

Computer scientists developed something called the Modified Julian Date (MJD),
back in the 1950s. They set the date January 1, 4713 B.C. as Day 0 and numbered
each day since. Hours are given fractional parts of the day. Noon on January 1,
2014, was 2456293.5 MJD.

When Unix popped into being, two things were born: the C language and the Unix
epoch. At midnight on January 1, 1970, Unix computers started counting the sec-
onds. The Unix epoch is measured since that moment as a time_t value, which is a
typedef of a long unsigned int. This data type’s range makes the Unix epoch calendar
valid until January 19, 2038, at 3:14:07 a.m., when the computer suddenly believes
that the date is December 13, 1901, all over again. And that was a Friday!

Most Unix computers have addressed the 2038 problem, so unlike the Y2K crisis,
nothing bad happens after January 19, 2038. The Unix epoch, however, is still used
in time programming C functions.

Working with time in C
Time functions and related matters in the C language are held in the time.h
header file. In this file, you find goodies to sate your program’s timely needs.
These items include the time_t data type and tm structure:

time_t The time_t data type holds the value of the Unix epoch, or the
number of seconds that have passed since January 1, 1970. On
most systems, time_t is a typedef of a long signed int; use the %ld
or %lu placeholder to output this value.

struct tm The tm structure holds definitions for storing various parts of a
timestamp. It’s filled by the localtime() function. See the later section
“Slicing through the time string.”

CHAPTER 21 It’s About Time 331

Also defined in the time.h header file are these chronological functions:

time() The time() function uses the address of the time_t variable as its
argument. This function fills the time_t variable with the current Unix
epoch time and it also returns a time_t value.

ctime() The ctime() function consumes a time_t variable and converts it into
a displayable date-time string.

localtime() This function fills a tm structure with information based on the time
value stored in a time_t variable. The localtime() function returns the
address of the tm structure, so it gets all messy with structures and
pointers and that -> operator.

difftime() The difftime() function compares the values between two time_t
values and returns a float value as the difference in seconds.

C libraries often come with other time-related functions, such as sleep() and
clock(). These functions may not be available on all systems — which shouldn’t be
a problem, because you can always code your own time functions.

Time to Program
I could imagine that the same Programming Lords who invented pointers and
linked lists could really mess up your brain with time programming. Happily, they
didn’t. Though a knowledge of pointers and structures helps you learn the ropes,
time programming in C is straightforward.

Checking the clock
The computer, or whichever device you’re programming, keeps a time value
somewhere deep in its digital bosom. To access this value, you need to code a pro-
gram that uses the time() function. It stuffs the current clock tick value into a
time_t variable, as shown in Listing 21-1.

332 PART 4 The Advanced Part

LISTING 21-1:	 Oh, So This Is the Time?

#include <stdio.h>
#include <time.h>

int main()
{
 time_t tictoc;

 time(&tictoc);
 printf("The time is now %ld\n",tictoc);
 return(0);
}

Line 2 in Listing 21-2 brings in the time.h header file, which is required for var-
ious time functions in C.

Line 6 declares the time_t variable tictoc. The time() function at Line 8 requires
the address of a time_t variable as its argument. The time value is placed directly
into variable tictoc (in its memory location).

Finally, in Line 9, the resulting value — the Unix epoch — is output by using the
%ld conversion character, long int.

Exercise 21-1: Type the source code from Listing 21-1 into your editor. Build
and run.

Exercise 21-2: Edit your solution from Exercise 21-1, replacing Line 8 with

tictoc=time(NULL);

The time() function requires a memory location as an argument, but it also returns
a time_t value. You can use either the format just presented or the format shown
at Line 8 in Listing 21-1, depending on which weirdo symbol, the & or NULL,
frightens you the most.

Back in the 1970s and ’80s, BASIC programmers would write for loops in their code
to pause program execution. I recall that my trusty old TRS-80 required a loop
that counted from 1 to 100 to delay execution by one second. Today’s systems are
far faster, and such loops can no longer be relied upon to accurately delay program
execution.

CHAPTER 21 It’s About Time 333

Viewing a timestamp
Displaying the current date-and-time as an integer won’t make your users happy.
In fact, I don’t even know any Unix geeks who can look at a Unix epoch number
and determine which date it is. Therefore, some conversion needs to take place.
The C library function required to fulfill that duty is ctime(), the time conversion
function, shown in Listing 21-2.

LISTING 21-2:	 Oh, So That’s the Time!

#include <stdio.h>
#include <time.h>

int main()
{
 time_t tictoc;

 time(&tictoc);
 printf("The time is now %s",ctime(&tictoc));
 return(0);
}

The ctime() function eats the address of a time_t variable. The function returns a
pointer to a timestamp string, which is the address of a char array elsewhere in
memory. The string includes a terminating newline.

HOW TIME() PLAYS INTO RANDOM
NUMBERS
The best way to generate random numbers in C is to seed the randomizer. In
Chapter 11, I describe how that process works by using the time() function. Here’s the
format:

srand((unsigned)time(NULL));

When called with a NULL value (a pointer), the time() function returns the current time of
day in the Unix epoch format. To ensure that the value returned — the Unix epoch —
isn’t negative, it’s typecast to an unsigned type. This step may not be required, because
the time_t value may be unsigned on certain systems. Still, the typecast ensures that the
value is always positive.

334 PART 4 The Advanced Part

Exercise 21-3: Create a new program using the source code from Listing 21-2.
Don’t forget the %s conversion character in the printf() statement. Build and run.
The output looks something like this:

The time is now Mon May 18 13:54:31 2020

The latter part of the string (starting with Mon) is returned from the ctime()
function.

Exercise 21-4: Write code that passes the time_t value 946684800 to the ctime()
function. Output the string that’s returned.

Slicing through the time string
Don’t fret about the string that ctime() returns, or about your code having to slice
through it to obtain specific date or time tidbits. That’s because the localtime()
function can be used with a time_t value to squeeze out individual bits and pieces
of the current time.

The localtime() function extracts time-and-date information based on a time_t
value. It fills the relevant parts into a tm structure, which looks something like
this:

struct tm {
 int tm_sec; /* seconds after the minute [0-60] */
 int tm_min; /* minutes after the hour [0-59] */
 int tm_hour; /* hours since midnight [0-23] */
 int tm_mday; /* day of the month [1-31] */
 int tm_mon; /* months since January [0-11] */
 int tm_year; /* years since 1900 */
 int tm_wday; /* days since Sunday [0-6] */
 int tm_yday; /* days since January 1 [0-365] */
 int tm_isdst; /* Daylight Saving Time flag */
};

Listing 21-3 shows how to use the tm structure to output a recognizable date
format.

CHAPTER 21 It’s About Time 335

LISTING 21-3:	 What’s Today?

#include <stdio.h>
#include <time.h>

int main()
{
 time_t tictoc;
 struct tm *today;

 time(&tictoc);
 today = localtime(&tictoc);
 printf("Today is %d/%d/%d\n",
 today->tm_mon,
 today->tm_mday,
 today->tm_year);
 return(0);
}

The current time in Unix epoch ticks is gathered by the time() function in Line 9 in
Listing 21-3. The value is stored in the tictoc variable.

At Line 10, the localtime() function returns the tm structure pointer today. The
structure’s elements are output by printf() across a few lines. Structure pointer
notation is used to access the structure’s elements (Lines 12, 13, and 14) because
the structure is a pointer (memory address).

Exercise 21-5: Type the source code from Listing 21-3 into your editor. Build and
run the program to see the current date.

Because Trajan is no longer the Roman emperor and it isn’t last month, you must
make some adjustments to the code. Refer to the definition for the structure ear-
lier in this section and you’ll understand the math necessary to output the proper
month-and-year values.

Exercise 21-6: Fix your solution to Exercise 21-5 so that the current year and cur-
rent month are output.

Exercise 21-7: Write code that outputs the current time in the format
hour:minute:second. Ensure that the minute-and-second output is two digits
wide with a leading zero.

Exercise 21-8: Fix your solution from Exercise 21-7 so that the output is in 12-hour
format with an A.M. or P.M. suffix based on the time of day.

336 PART 4 The Advanced Part

Exercise 21-9: Write code that outputs the full name for the current day of the
week.

Snoozing
Most programmers want their code to run fast. Occasionally, you want your code
to slow down, to take a measured pause, or to build . . . suspense! In these
instances, you can rely upon C’s time functions to cause a wee bit of delay.

The sleep() function is a common, though nonstandard, time function. It’s proto-
typed in the unistd.h header file. The function’s argument is the number of sec-
onds to pause program execution.

The difftime() function, shown in Listing 21-4, is prototyped in the time.h header.
Use it to calculate the difference between the two time_t values, now and then, in
the code. The function returns a floating-point value indicating the number of
seconds elapsed.

LISTING 21-4:	 Wait a Sec!

#include <stdio.h>
#include <time.h>

int main()
{
 time_t now,then;
 float delay=0.0;

 time(&then);
 puts("Start");
 while(delay < 1)
 {
 time(&now);
 delay = difftime(now,then);
 printf("%f\r",delay);
 }
 puts("\nStop");
 return(0);
}

Exercise 21-10: Type the source code from Listing 21-4 into your editor. Build the
program. Run.

5And the Rest
of It

IN THIS PART . . .

Read and write information to files

Desperately save a linked list

Use C to perform file management

Create larger projects

Rid your code of bugs

CHAPTER 22 Permanent Storage Functions 339

Chapter 22
Permanent Storage
Functions

C programs work innately with storage in memory. Variables are created,
values are set, locations are mapped. It’s all pretty much automatic, but the
information that’s created is lost after the program runs.

For the long term, programs need to access permanent storage, writing and read-
ing information to and from files. C comes with a host of interactive functions that
let you create, read, write, and manipulate files. These are the permanent storage
functions.

Sequential File Access
The simplest way that information can be written to or read from a file is sequen-
tially, one byte after the other. The file contains one long stream of data. This
information is accessed from start to finish, like watching a movie on broad-
cast TV.

IN THIS CHAPTER

»» Working with file functions

»» Reading and writing text to a file

»» Creating binary files

»» Using the fread() and fwrite() functions

»» Reading and writing records

»» Building a linked-list database

340 PART 5 And the Rest of It

Understanding C file access
File access in C is another form of I/O. Rather than use standard input (the key-
board) or standard output (the display), the input or output acts upon a file.
Sounds simple. Happily, it is.

A file is opened by using the fopen() function:

handle = fopen(filename,mode);

The fopen() function requires two arguments, both strings. The first is a filename;
the second is a mode. The choices for mode are listed in Table 22-1. The fopen()
function returns a file handle, which is a pointer used to reference the file. This
pointer is of the FILE data type, which is a structure defined in the stdio.h
header file.

The mode is a string. Even when only one character is specified, it must be enclosed
in double quotes.

After the file is open, you use the handle variable to reference the file as you read
and write. Many file I/O functions are similar to their standard I/O counterparts,
but with an f prefix. To write to a file, you can use the fprintf(), fputs(), fputchar(),
and similar functions. Reading from a file uses the fscanf(), fgets(), and so on.

After all the reading and writing, the file is closed by using the fclose() function
with the file handle as its argument.

All the file I/O functions mentioned in this chapter are prototyped in the stdio.h
header file.

TABLE 22-1:	 Access Modes for the fopen() Function
Mode File Open for Create File? Notes

“a” Appending Yes It adds to the end of an existing file; a file is created if it
doesn’t exist.

“a+” Appending and
reading

Yes Information is added to the end of the file.

“r” Reading No If the file doesn’t exist, fopen() returns an error.

“r+” Reading and writing No If the file doesn’t exist, an error is returned.

“w” Writing Yes The existing file is overwritten if the same name is used.

“w+” Writing and reading Yes The existing file is overwritten.

CHAPTER 22 Permanent Storage Functions 341

Writing text to a file
To write text to a file, you abide by these steps:

1.	 Open the file.

2.	 Check to confirm whether the file opened successfully.

3.	 Write data to the file.

4.	 Close the file.

Listing 22-1 performs these steps. The file hello.txt is created. It’s a text file,
with the contents Look what I made!.

LISTING 22-1:	 Write That File

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE *fh;

 /* open the file */
 fh=fopen("hello.txt","w");
 /* check for errors */
 if(fh==NULL)
 {
 puts("Can't open that file!");
 exit(1);
 }
 /* output text */
 fprintf(fh,"Look what I made!\n");
 /* close the file */
 fclose(fh);
 /* inform the user */
 puts("File written.");
 return(0);
}

Line 6 creates the file handle, fh. It’s a pointer. The pointer stores the return value
from the fopen() function at Line 9. The function’s first argument is the filename
hello.txt. The second argument is "w", the write mode. If the file exists, it’s
overwritten.

342 PART 5 And the Rest of It

The if statement at Line 11 confirms that the file was properly opened. If it wasn’t,
the value of fh is NULL and appropriate action is taken.

The fprintf() function writes text to the file at Line 17. The format is the same as
for printf(), but with the file handle as the first argument, followed by the format
string and then any variables.

Finally, Line 19 closes the file by using the fclose() function. This statement is a
required step for any file access programming.

Exercise 22-1: Copy the source code from Listing 22-1 into your editor. Build and
run the program.

Use your computer’s file browser to locate the file that’s created and open it. At
the bash prompt, use the command cat hello.txt to view the file’s contents.

Reading text from a file
To read text from a file, you follow the same rules as for writing text to a file, but
with reading the text as the third step. (Refer to the preceding section.) Familiar
functions are used to access the file’s information, but with the f prefix and a file
handle argument somewhere in the function’s parentheses.

To read text from a file one character at a time, use the fgetc() function as shown
in Listing 22-2.

LISTING 22-2:	 Read That File

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE *fh;
 int ch;

 /* open the file */
 fh=fopen("hello.txt","r");
 /* check for errors */
 if(fh==NULL)
 {
 puts("Can't open that file!");
 exit(1);
 }

CHAPTER 22 Permanent Storage Functions 343

 /* loop until the end-of-file */
 while(!feof(fh))
 {
 /* read one character */
 ch=fgetc(fh);
 /* end of file? */
 if(ch==EOF)
 break;
 /* output character */
 putchar(ch);
 }
 /* close the file */
 fclose(fh);
 return(0);
}

Line 11 in Listing 22-2 opens the file hello.txt for reading only. The file must
exist; otherwise, an error occurs.

The while loop at Line 18 repeats based on the return value of the feof() function.
This function returns TRUE when the end of the file is encountered. The ! (not)
operator reverses this condition, so the loop repeats “while not true,” or until all
information has been read from the file.

Line 21 uses the fgetc() function to read one character from the file identified by
handle fh. This character is stored in variable ch.

At Line 23, the character read from the file stored in variable ch is compared with
the EOF, or End of File, constant. When TRUE, the file’s text has been completely
read and the while loop breaks. EOF is an integer constant, which is why variable
ch is declared as an int value. And it’s important to run this test in the loop,
because the EOF may be countered here before it’s read by the feof() function at
Line 18.

The character read from the file is output at Line 26.

Exercise 22-2: Create a new program by using the source code shown in
Listing 22-2. Build and run.

The program outputs the contents of the file created by Exercise 22-1; otherwise,
you see the error message.

344 PART 5 And the Rest of It

Exercise 22-3: Modify your source code from Exercise 22-1 to write a second
string to the file. Add the following statement after Line 17:

fputs("My C program wrote this file.\n",fh);

Unlike the puts() statement for standard output, you must specify a newline
character for fputs() file output. Further, the file handle argument appears as the
second argument, which is unusual for a C language file function.

Build and run Exercise 22-3, and then rerun your solution from Exercise 22-2 to
view the file’s contents.

The two functions fprintf() and fputs() write text sequentially to the file, one
character after the other. The process works just like sending text to standard
output, but instead the characters are sent to a file in permanent storage.

The fgets() function reads an entire string of text from a file, just as it’s been used
elsewhere in this book to read from standard input (stdin). To make it work, you
need an input buffer, the number of characters to read, and the file handle.
Listing 22-3 shows an example.

LISTING 22-3:	 Gulping Strings of Text

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE *fh;
 char buffer[64];
 char *r;

 fh=fopen("hello.txt","r");
 if(fh==NULL)
 {
 puts("Can't open that file!");
 exit(1);
 }
 while(!feof(fh))
 {
 /* fgets returns (char *)NULL on
 error or EOF */
 r = fgets(buffer,64,fh);
 if(r==NULL)
 break;

CHAPTER 22 Permanent Storage Functions 345

 printf("%s",buffer);
 }
 fclose(fh);
 return(0);
}

The fgets() function at Line 20 reads in a line of text (terminated by a newline) or
64 characters, whichever comes first. The function returns a pointer to the string
read unless an error occurs, in which case NULL is returned. This value is saved in
char pointer variable r, which is tested at Line 21.

Exercise 22-4: Type the source code from Listing 22-3 into your editor. Build
and run.

Appending text to a file
When you’re using the fopen() function in the "a" mode, text is appended to an
already existing file. Or when the file doesn’t exist, the fopen() command creates
a new file. At Line 9 in Listing 22-4, the “a” mode opens an existing file, hello.
txt, for appending. If the file doesn’t exist, it’s created.

LISTING 22-4:	 Add More Text

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE *fh;

 /* "a" == append */
 fh=fopen("hello.txt","a");
 if(fh==NULL)
 {
 puts("Can't open that file!");
 exit(1);
 }
 fprintf(fh,"This text was added later\n");
 puts("Text appended");
 fclose(fh);
 return(0);
}

346 PART 5 And the Rest of It

The standard file-writing functions are used to spew text to the open file, as
shown in Line 15.

Exercise 22-5: Create a new project by using the source code shown in Listing 22-4.
Build and run to append text to the hello.txt file. Use the program from Exercise
22-4 to view the file’s contents. Then run the program (from Exercise 22-5) again
to append the text to the file a second time. View the result.

When you’re done, the hello.txt file contains the following text:

Look what I made!
My C program wrote this file.
This text was added later
This text was added later

Writing binary data
The demo programs shown so far in this chapter deal with plain text files. Not every
file is text, however. Most files contain binary data, unreadable by humans. You can
use the C language to work with these files as well. Start by studying Listing 22-5.

LISTING 22-5:	 Writing Binary Data

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE *handle;
 int highscore;

 handle = fopen("scores.dat","w");
 if(!handle)
 {
 puts("File error!");
 exit(1);
 }
 printf("What is your high score? ");
 scanf("%d",&highscore);
 fprintf(handle,"%d",highscore);
 fclose(handle);
 puts("Score saved");
 return(0);
}

CHAPTER 22 Permanent Storage Functions 347

Exercise 22-6: Type the source code from Listing 22-5 into a new project. Build
and run.

Most everything that goes on in Listing 22-5 is familiar to you. The problem?
Binary data wasn’t written. Instead, the fprintf() function at Line 17 writes the int
value to the file as a text string. To prove it, examine the contents of the scores.
dat file and you see that the value is stored as plain text.

Exercise 22-7: Replace Line 17 from the code for your solution to Exercise 22-6
with this statement:

fwrite(&highscore,sizeof(int),1,handle);

Save the change. Build and run. When you try to examine the contents of the
scores.dat file now, it isn’t plain text. That’s because binary information was
written, thanks to the fwrite() function.

Here’s the format for fwrite():

fwrite(variable_ptr,sizeof(type),count,handle);

The fwrite() function is concerned with writing chunks of information to a file.
Unlike the fprintf() and fputs() functions, it doesn’t always write text.

variable_ptr is the address of a variable — a pointer. Most programmers satisfy
this requirement by prefixing a variable’s name with the & operator.

Arrays and strings need not be prefixed with the & operator when specified in the
fwrite() function.

sizeof(type) is the variable’s storage size based on the type of variable — int,
char, and float, for example.

count is the number of items to write. If you were writing an array of ten int val-
ues, you specify 10 as the size.

handle is the file handle address, returned from an fopen() function.

Exercise 22-8: Using the source code from Listing 22-5 as a start, write a program
that saves an array of five high-score values to the file scores.dat. (It’s okay if
the program overwrites the original scores.dat file.)

The next section covers how to read binary data from a file.

348 PART 5 And the Rest of It

In earlier versions of the C standard, it was common to add a b to the fopen()
function’s mode string when reading or writing binary data. This requirement is
no longer the case. A modern compiler ignores the "b" in a mode string if used in
the fopen() function.

Reading binary data
The fread() function reports for duty when it comes time to read binary
information from a file. Like the fwrite() function, fread() takes in raw data and
stuffs it into a C language variable for further examination. Listing 22-6 provides
a demonstration. The scores.dat file in the listing is created in the preceding
section’s Exercise 22-8.

LISTING 22-6:	 Check Those High Scores

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE *handle;
 int highscore[5];
 int x;

 handle = fopen("scores.dat","r");
 if(!handle)
 {
 puts("File error!");
 exit(1);
 }
 fread(highscore,sizeof(int),5,handle);
 fclose(handle);
 for(x=0;x<5;x++)
 printf("High score #%d: %d\n",x+1,highscore[x]);
 return(0);
}

Thanks to the flexibility of the fread() function, and its ability to devour multiple
values at a time, Line 16 in Listing 22-6 gobbles up all five int values that were
previously saved in the scores.dat file. The fread() function works just like
fwrite() and has the same arguments in the same order, but binary data is read
from the file.

CHAPTER 22 Permanent Storage Functions 349

In Line 16, the base address of the highscore array is passed to fread() as the first
argument. Next comes the size of each element to be read, the size of an int vari-
able. Then comes the immediate value 5, effectively ordering fread() to scan in five
values. The final argument is the file handle variable, confusingly named handle.

Exercise 22-9: Type the source code from Listing 22-6 into your editor. Build and
run to see the five int values that were previously saved to the scores.dat file.

Because fread() can read any file’s data, you can use it to create a file-dumper type
of program, as shown in Listing 22-7.

LISTING 22-7:	 A File Dumper

#include <stdio.h>
#include <stdlib.h>

int main()
{
 char filename[255];
 FILE *dumpme;
 int x,c;

 printf("File to dump: ");
 scanf("%s",filename);
 dumpme=fopen(filename,"r");
 if(!dumpme)
 {
 printf("Unable to open '%s'\n",filename);
 exit(1);
 }
 x=0;
 while((c=fgetc(dumpme)) != EOF)
 {
 printf("%02X ",c);
 x++;
 if(!(x%16))
 putchar('\n');
 }
 putchar('\n');
 fclose(dumpme);
 return(0);
}

350 PART 5 And the Rest of It

The source code from Listing 22-7 displays each byte in a file. It uses a 2-digit
hexadecimal format, %02X, to represent each byte in the printf() statement at
Line 24.

The fgetc() function reads the file one byte at a time in Line 21. To prevent the code
from reading beyond the end of the file, this byte is compared with the EOF, or
end-of-file, marker at Line 22.

The if decision at Line 26 uses the modulus operator to determine when 16 bytes
have been displayed. When true, a newline is output, keeping the display neat and
tidy.

Unlike other programs presented in this chapter, Listing 22-7 prompts the user
for a filename at Line 10. Therefore, a good possibility exists that you’ll see the
error message displayed when an improper filename is typed.

Exercise 22-10: Type the source code from Listing 22-7 into your editor. Build the
project. Run it using the scores.dat file you created earlier in this chapter, or use
the file’s own source code listing as the file to view.

Exercise 22-11: Rewrite the source code from Listing 22-7 so that the filename can
also be typed at the command prompt as the program’s first argument.

»» Dump is an old programming term. It’s an inelegant way to refer to a transfer
of data from one place to another without any manipulation. For example, a
core dump is a copy of the operating system’s kernel (or another basic
component) transferred from memory into a file.

»» The information saved by the fwrite() and read by the fread() functions is
binary — effectively, the same information that’s stored in memory when you
assign a value to an int or a float or another C variable type.

»» As long as you get the order correct, you can use fwrite() and fread() to save
any data to a file, including full arrays, structures, and what-have-you. But if
you read the information out of sequence, it turns into garbage.

Random File Access
Random file access has nothing to do with random numbers. Rather, the file can
be accessed at any point hither, thither, and even yon. It’s like watching stream-
ing video as opposed to broadcast TV: You can start reading the file at any point,
fetching or putting whatever information wherever you need it.

CHAPTER 22 Permanent Storage Functions 351

The best way to witness random file access in action is when the file is dotted with
records of the same size. The notion of records brings up structures, which can
easily be written to a file and then fetched back individually, selectively, or all at
once.

Writing a structure to a file
As a type of variable, writing a structure to a file is cinchy. The process works just
like writing any variable to a file, as demonstrated in Listing 22-8.

LISTING 22-8:	 Save Mr. Bond

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 struct agent {
 char actor[32];
 int year;
 char title[32];
 };
 struct agent bond;
 FILE *jbdb;

 strcpy(bond.actor,"Sean Connery");
 bond.year = 1962;
 strcpy(bond.title,"Dr. No");

 jbdb = fopen("bond.db","w");
 if(!jbdb)
 {
 puts("SPECTRE wins!");
 exit(1);
 }
 fwrite(&bond,sizeof(struct agent),1,jbdb);
 fclose(jbdb);
 puts("Record written");

 return(0);
}

352 PART 5 And the Rest of It

Most of the code in Listing 22-8 should be familiar to you if you’ve worked through
earlier exercises in this chapter.

Exercise 22-12: Copy the code from Listing 22-8 into your editor. Build and run
the program to create the bond.db file, and write one structure to that file.

Exercise 22-13: Modify the code from Listing 22-8 so that a new program is cre-
ated. Have that program write two more records to the bond.db file. They must be
appended to any existing data, not overwriting the original file. Use this data:

Roger Moore, 1973, Live and Let Die
Pierce Brosnan, 1995, GoldenEye

Good information in a file doesn’t do you any good unless you create code to read
the data. Listing 22-9 reads in the three records written to the bond.db file,
assuming that you’ve run program solutions to both Exercises 22-12 and 22-13.

LISTING 22-9:	 Get Me Bond!

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 struct agent {
 char actor[32];
 int year;
 char title[32];
 };
 struct agent bond;
 FILE *jbdb;
 int r;

 jbdb = fopen("bond.db","r");
 if(!jbdb)
 {
 puts("SPECTRE wins!");
 exit(1);
 }
 while(!feof(jbdb))
 {
 r = fread(&bond,sizeof(struct agent),1,jbdb);
 if(r==0)
 break;

CHAPTER 22 Permanent Storage Functions 353

 printf("%s\t%d\t%s\n",
 bond.actor,
 bond.year,
 bond.title);
 }
 fclose(jbdb);

 return(0);
}

The source code in Listing 22-9 uses a while loop at Line 22 to read in the struc-
tures from the bond.db file. The code assumes that the file was created by writing
full-size agent structures with the fwrite() function.

The fread() function returns the number of items read. It returns 0 if no data
remains to be read. This value is tested in variable r at Line 25. If zero, the while
loop is broken. Otherwise, the feof() function terminates the loop at Line 22.

The code uses the structure variable bond at Line 12 to read multiple items from a
file. The new items overwrite any values already in the structure, just like reusing
any variable.

Exercise 22-14: Create a new project by using the source code from Listing 22-9.
Build and run to examine the bond.db file, which was created in Exercises 22-12
and 22-13.

The key to effectively read and write structures to a file — like a database — is to
keep all structures uniform. This way, they can be read and written to the file in
chunks. They can also be read or written in any order, as long as you also use the
proper C language file functions.

Reading and rewinding
As your program reads data from a file, it keeps track of the position from whence
data is read in the file. A file position index is maintained so that the location at
which the code is reading or writing within a file isn’t lost.

When you first open a file, this index position is located at the beginning of the
file, the first byte. If you read a 40-byte record into memory, the file position
index is 40 bytes from the start. If you read until the end of the file, the position
index maintains that location as well.

354 PART 5 And the Rest of It

To keep things confusing, the position index is often referred to as a file pointer,
even though it’s not a pointer variable or a FILE type of pointer. It’s just the loca-
tion within a file where the next byte of data is read.

You can mess with the file pointer-index-thing by using several interesting func-
tions in C. Two of them are ftell() and rewind(). The ftell() function returns the
current position as a long int value. The rewind() function returns the file pointer
back to the start of the file.

Listing 22-10 reads twice through the records in the bond.db file. After reading all
the records, the rewind() function at Line 37 resets the file pointer to the start of
the file. The second while loop repeats the process, rereading all the records.

The ftell() function is used at Lines 26 and 42 to output the file pointer’s offset
each time the code reads records from the file.

LISTING 22-10:	 Tell and Rewind

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 struct agent {
 char actor[32];
 int year;
 char title[32];
 };
 struct agent bond;
 FILE *jbdb;
 int r;

 jbdb = fopen("bond.db","r");
 if(!jbdb)
 {
 puts("SPECTRE wins!");
 exit(1);
 }

 puts("First read-through:");
 while(!feof(jbdb))
 {
 printf("%ld:\t",ftell(jbdb));

CHAPTER 22 Permanent Storage Functions 355

 r = fread(&bond,sizeof(struct agent),1,jbdb);
 if(r==0)
 break;
 printf("%s\t%d\t%s\n",
 bond.actor,
 bond.year,
 bond.title);
 }

 /* restart! */
 rewind(jbdb);

 puts("Second read-through:");
 while(!feof(jbdb))
 {
 printf("%ld:\t",ftell(jbdb));
 r = fread(&bond,sizeof(struct agent),1,jbdb);
 if(r==0)
 break;
 printf("%s\t%d\t%s\n",
 bond.actor,
 bond.year,
 bond.title);
 }

	 /* close and exit */
 fclose(jbdb);
 return(0);
}

Exercise 22-15: Type the source code from Listing 22-10 into your editor. Build
and run to see how the ftell() and rewind() functions operate.

Finding a specific record
When a file contains records all of the same size, such as the James Bond database
used so far in this chapter, you can use the fseek() function to pluck out any indi-
vidual item. This is the essence of random file access. The format for fseek() is

fseek(handle,offset,whence);

356 PART 5 And the Rest of It

handle is a file handle, a FILE pointer representing a file that’s open for reading.
offset is the number of bytes from the start, end, or current position in a file. And
whence is one of three constants: SEEK_SET, SEEK_CUR, or SEEK_END for the start,
current position, or end of a file, respectively.

Providing that the data file contains records of a constant size, you can use fseek()
to pluck out any specific record, as shown in Listing 22-11.

LISTING 22-11:	 Find a Specific Record in a File

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 struct agent {
 char actor[32];
 int year;
 char title[32];
 };
 struct agent bond;
 FILE *jbdb;

 jbdb = fopen("bond.db","r");
 if(!jbdb)
 {
 puts("SPECTRE wins!");
 exit(1);
 }
 /* locate the 2nd record based on the
 size of structure agent */
 fseek(jbdb,sizeof(struct agent)*1,SEEK_SET);
 fread(&bond,sizeof(struct agent),1,jbdb);
 printf("%s\t%d\t%s\n",
 bond.actor,
 bond.year,
 bond.title);
 fclose(jbdb);

 return(0);
}

CHAPTER 22 Permanent Storage Functions 357

The fseek() function at Line 21 sets the file-pointer-thing position so that the
fread() function that follows (Line 22) reads in a specific record located inside the
database. The offset is calculated by multiplying the size of the entry structure. As
with an array, multiplying this size by 1 yields the second record in the file; multi-
ply the value by 0 (or just specify 0 in the function) to read the first record. The
SEEK_SET constant ensures that fseek() looks from the beginning of the file.

Exercise 22-16: Using the source code from Listing 22-11, create a new program to
see the second record in the file. This exercise’s success depends on the existence
of the bond.db file, which has been built throughout this chapter.

Saving a linked list to a file
Chapter 20 ponders the ponderous topic of linked lists in C. One question that
inevitably surfaces during the linked-list discussion is how to save such a list to a
file. If you’ve read the past few sections, you already know how: Create the file and
then use fwrite() to save all the linked-list records.

Exercise 22-17: Modify the source code from Exercise 20-12 (refer to Chapter 20)
so that the program retrieves and saves all records to a file. The program should
automatically load the records when it starts. As it quits, the program automati-
cally saves the records. The code needs two new functions, load() and save(), which
you can base upon the existing create() and show() functions, respectively. Of
course, other spiffing-up is required, as usual.

Here are some pointers [sic] for creating Exercise 22-17:

»» It’s inevitable that saving a linked-list structure saves a pointer’s address.
Doing so is okay — just discard the value when you read in the structure,
replacing it with the new address allocated for the linked structure.

»» When the code runs the first time, obviously it won’t find a file to load into
memory. That’s okay; have your program create the file.

»» As with any complex coding, tackle the improvements one step at a time.

CHAPTER 23 File Management 359

Chapter 23
File Management

The C library features many functions that interface directly with the operat-
ing system, allowing you to peek, poke, and prod into the very essence of
files themselves. You never know when you need to plow through a direc-

tory, rename a file, or delete a temporary file that the program created. It’s pow-
erful stuff, but such file management is well within the capabilities of your
C programs.

Directory Madness
A directory is nothing more than a database of files stored on a device’s mass stor-
age system. Also called a folder, a directory contains a list of files plus any subdi-
rectories. Just as you can manipulate a file, a directory can be opened, read, and
then closed. And, as with the directory listing you see on a computer screen, you
can gather information about the various files, their sizes, types, and more.

Calling up a directory
The C library’s opendir() function examines the contents of a specific directory. It
works similarly to the fopen() function. Here’s the format:

dhandle = opendir(pathname);

IN THIS CHAPTER

»» Reading files from a directory

»» Checking file types

»» Working with the directory hierarchy

»» Changing filenames

»» Duplicating files

»» Removing a file

360 PART 5 And the Rest of It

dhandle is a pointer of the DIR type, like a file handle being of the FILE type. The
pathname is the name of a directory to examine. It can be a full path, or you can
use the . (dot) abbreviation for the current directory or .. (dot-dot) for the parent
directory.

Once a directory is open, the readdir() function fetches records from its database,
similar to the fread() function, though the records describe files stored in the
directory. Here’s the readdir() function’s format:

*entry = readdir(dhandle);

entry is a pointer to a dirent structure. After a successful call to readdir(), the
structure is filled with information about a file in the directory. Each time readdir()
is called, it points to the next file entry, like reading records from a database.
When the function returns NULL, the last file in the directory has been read.

Finally, after the program is done messing around, the directory must be closed.
This operation is handled by the closedir() function:

closedir(dhandle);

All these directory functions require the dirent.h header file to be included with
your source code.

Listing 23-1 illustrates code that reads a single entry from the current directory.
Two required variables are declared in Lines 7 and 8: folder is a DIR pointer, used
as the handle to represent the directory that’s opened, and file is the memory
location of a structure that holds information about individual files in the directory.

LISTING 23-1:	 Pluck a File from the Directory

#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>

int main()
{
 DIR *folder;
 struct dirent *file;

 folder=opendir(".");
 if(folder==NULL)
 {
 puts("Unable to read directory");
 exit(1);

CHAPTER 23 File Management 361

 }
 file = readdir(folder);
 printf("Found the file '%s'\n",file->d_name);
 closedir(folder);
 return(0);
}

The directory is opened at Line 10; the single dot is an abbreviation for the current
directory. Lines 11 through 15 handle any errors, similar to opening any file. (Refer
to Chapter 22.)

The first entry in the directory is read at Line 16, and then Line 17 displays the
information. The d_name member of the dirent structure references the file’s
name.

At Line 18, the directory is closed.

Exercise 23-1: Create a new project by using the source code from Listing 23-1.
Build and run.

Of course, the first file that’s most likely to be read in a directory is the directory
itself, the dot entry. Boring!

Exercise 23-2: Modify the source code shown in Listing 23-1 so that the entire
directory is read. A while loop can handle the job.

The readdir() function returns NULL after the last file entry has been read from a
directory. In fact, the expression file=readdir(folder) evaluates to NULL when
the last entry has been read from a directory.

Gathering more file info
The stat() function reads various and sundry information about a file: its date,
size, type, and other trivia. The function’s format looks like this:

stat(filename,stat);

filename is a string value, the name of the file to examine. stat is the address of
a stat structure. After a successful call to the stat() function, the stat structure is
filled with information about the file. And I wholly agree that calling both the
function and the structure stat leads to an undue amount of consternation.

362 PART 5 And the Rest of It

You need to include the sys/stat.h header file in your code to make the compiler
pleased with the stat() function.

Listing 23-2 demonstrates how the stat() function can be incorporated into a direc-
tory listing. It starts with the inclusion of the sys/stat.h header file at Line 5.
The sys/ part directs the compiler to look in that directory to locate the stat.h
file. (sys is a subdirectory of include, where C header files are stored.)

LISTING 23-2:	 A More Impressive File Listing

#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>
#include <time.h>
#include <sys/stat.h>

int main()
{
 DIR *folder;
 struct dirent *file;
 struct stat filestat;

 folder=opendir(".");
 if(folder==NULL)
 {
 puts("Unable to read directory");
 exit(1);
 }
 while((file = readdir(folder)) != NULL)
 {
 stat(file->d_name,&filestat);
 printf("%-14s %5ld %s",
 file->d_name,
 filestat.st_size,
 ctime(&filestat.st_mtime));
 }
 closedir(folder);
 return(0);
}

Line 11 creates a stat structure variable named filestat. This structure is filled
at Line 21 for each file found in the directory; the file->d_name member provides
the filename as the stat() function’s first argument. The second argument is the
address of the filestat structure.

CHAPTER 23 File Management 363

The printf() function starting at Line 22 outputs the information revealed by the
stat() function: Line 23 displays the file’s name; Line 24 pulls the file’s size from
the filestat structure; and in Line 25, the ctime() function extract’s the file’s
modification time from the filestat structure’s st_mtime member. (Refer to
Chapter 21 for more information about time programming in C.)

Oh! And the printf() statement lacks a \n (newline) because the ctime() function’s
output provides one.

Exercise 23-3: Type the source code from Listing 23-2 into your editor, or just
modify your solution from Exercise 23-2. Build and run to see a better directory
listing.

Separating files from directories
Each file stored in a directory is classified by a file type or mode. For example,
some entries in a directory listing are subdirectories. Other entries may be sym-
bolic links or sockets. To determine which file is of which type, your code can
examine the st_mode member of the stat structure.

The st_mode value is a bit field — bits in this value are set depending on the vari-
ous file type attributes and permissions applied to the file. To examine the bits,
you use special macros made available in the dirent.h header.

For example, the S_ISDIR macro returns TRUE when a file’s st_mode element
indicates a directory, not a regular file. Use the S_ISDIR macro like this:

S_ISDIR(filestat.st_mode)

This expression evaluates TRUE for a directory, and FALSE otherwise.

Exercise 23-4: Modify your solution to Exercise 23-3 so that any subdirectories
listed are flagged as such. Because directories don’t generally have file sizes,
specify the text <DIR> in the file size field for the program’s output.

If the current directory lacks subdirectories, change the directory name in Line 13.

In Windows, use two backslashes when typing a path. For example:

dhandle = opendir("\\Users\\Dan");

Windows uses the backslash as a pathname separator. C uses the backslash as an
escape character in a string. To specify a single backslash, you must specify two of
them.

364 PART 5 And the Rest of It

Exploring the directory tree
Most storage media feature more than one directory. The main directory is the
root, with subdirectories organizing the media. Using C, you can create directories
of your own and flit between them like bees upon flowers. The C library sports
various functions to sate your directory-diving desires. Here’s a sampling:

getcwd() Retrieve the current working directory

mkdir() Create a new directory

chdir() Change to the directory specified

rmdir() Obliterate the directory specified

getcwd(), chdir(), and rmdir() require the unistd.h header file; the mkdir() function
requires sys/stat.h.

Listing 23-3 makes use of three directory functions: getcwd(), mkdir(), and chdir().

LISTING 23-3:	 Make Me a Directory

#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>

int main()
{
 char curdir[255];

 getcwd(curdir,255);
 printf("Current directory is %s\n",curdir);
 mkdir("very_temporary",S_IRWXU);
 puts("New directory created.");
 chdir("very_temporary");
 getcwd(curdir,255);
 printf("Current directory is %s\n",curdir);
 return(0);

The getcwd() function in Line 9 captures the current directory’s name and saves it
in the curdir array. The directory name — a full pathname — is output at Line 10.

Line 11 creates a new directory, very_temporary. The defined constant S_IRWXU is
the file-creation mode. This constant sets the new directory’s permissions, allow-
ing the owner read, write, and execute access.

CHAPTER 23 File Management 365

If you’re compiling for Windows, you must omit the second argument for the
mkdir() function at Line 11:

mkdir("very_temporary");

After the directory is created, the chdir() function on Line 13 changes to that direc-
tory, followed by the getcwd() function at Line 14 capturing its full pathname.

When the program is done, its environment is purged, which means the directory
in which the program is running is restored; the program changes to the new
directory only while the program is running.

Exercise 23-5: Copy the source code from Listing 23-3 into your editor. Remember
to omit the second argument for mkdir() at Line 11 if you’re compiling on Win-
dows. Build and run the program.

After running the program for Exercise 23-5, a new directory, very_temporary, is
created in whichever directory the program was run. Feel free to remove that
directory using your computer operating system’s directory obliteration command.

In Listing 23-3, Line 7 sets aside 255 characters for storing the current directory’s
pathname. I’m plucking the value 255 out of thin air; it should be large enough.
Serious programmers use a constant defined for their systems. For example,
PATH_MAX defined in the sys/syslimit.h header file is perfect, but it’s not avail-
able on all systems. You could use the FILENAME_MAX constant (defined in stdio.h),
but it sets the size for a filename, not a full pathname. As a compromise, I
choose 255.

Fun with Files
The C library offers functions for making a new file, writing to that file, and read-
ing data from any file. Bolstering these file I/O functions are a suite of file manip-
ulation functions. They allow your programs to rename, copy, and delete files. The
functions work on any file, not just those you create, so be careful!

Renaming a file
The rename() function is not only appropriately named but also easy to figure out:

x = rename(oldname,newname);

366 PART 5 And the Rest of It

oldname is the name of a file already present; newname is the file’s new name. Both
values can be immediate or variables. The return value is 0 upon success, and –1
otherwise.

The rename() function is prototyped in the stdio.h header file.

The source code shown in Listing 23-4 creates a file named blorfus and then
renames that file to wambooli.

LISTING 23-4:	 Creating and Renaming a File

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE *test;

 test=fopen("blorfus","w");
 if(!test)
 {
 puts("Unable to create file");
 exit(1);
 }
 fclose(test);
 puts("File created");
 if(rename("blorfus","wambooli") == -1)
 {
 puts("Unable to rename file");
 exit(1);
 }
 puts("File renamed");
 return(0);
}

Lines 8 through 14 create the file blorfus. The file is empty; nothing is written
to it.

The rename() function at Line 16 renames the file. The return value is compared
with –1 to confirm that the operation is successful.

Exercise 23-6: Create a new program by using the source code shown in List-
ing 23-4. Build and run.

CHAPTER 23 File Management 367

The renamed file, wambooli, is used in a later section as an example.

Copying a file
The C library features no function that duplicates a file. Instead, you must craft
your own: Write code that reads in a file, one chunk at a time, and then writes out
that chunk to a duplicate file. This method is how files are copied.

Listing 23-5 demonstrates how a file can be duplicated, or copied. The two files
are specified in Lines 9 and 10. In fact, Line 9 uses the name of the exercise file,
the source code from Listing 23-5. The destination file, which contains the copy,
is the same filename, but with a bak extension.

LISTING 23-5:	 Duplicate That File

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE *original,*copy;
 int c;

 original=fopen("ex2307.c","r");
 copy=fopen("ex2307.bak","w");
 if(!original || !copy)
 {
 puts("File error!");
 exit(1);
 }
 while((c=fgetc(original)) != EOF)
 fputc(c,copy);
 puts("File duplicated");
 return(0);
}

The copying work is done by the while loop at Line 16. One character is read by the
fgetc() function, and it’s immediately copied to the destination by the fputc() func-
tion in Line 17. The loop keeps spinning until the EOF, or end-of-file, is
encountered.

368 PART 5 And the Rest of It

Exercise 23-7: Copy the source code from Listing 23-5 into your editor. Save the
file as ex2307.c (which is this book’s file-naming convention), build, and run.
You need to use your computer’s operating system to view the resulting file in a
folder window. Or, for For Dummies bonus points, you can view the results in a
terminal or command prompt window.

Deleting a file
Programs delete files all the time, though these files are mostly temporary any-
way. Back in the bad old days, I remember complaining about programs that
didn’t “clean up their mess.” If your code creates temporary files, remember to
remove them as the program quits. The way to do that is via the unlink() function.

Yes, the function is named unlink and not delete or remove or erase or whatever
nomenclature you’re otherwise used to. In Unix, the unlink command is used in
the terminal window to zap files, though the rm command is more popular.

The unlink() function requires the presence of the unistd.h header file, which you
see at Line 3 in Listing 23-6.

LISTING 23-6:	 File Be Gone!

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main()
{
 if(unlink("wambooli") == -1)
 {
 puts("I just can't kill that file");
 exit(1);
 }
 puts("File killed");
 return(0);
}

The file slated for death is listed in Line 7 as the unlink() function’s only argument.
It’s the wambooli file, created back in Exercise 23-6! So, if you don’t have that file,
go back and work Exercise 23-6. (In Code::Blocks, you must copy this file into the
proper folder for your solution to Exercise 23-8.)

Exercise 23-8: Type the source code from Listing 23-6 into your editor. Build
and run.

CHAPTER 24 Beyond Mere Mortal Projects 369

Chapter 24
Beyond Mere Mortal
Projects

Not every C program you write will have only 20 or 30 lines of code. Most of
the programs, the ones that truly do something, are much longer. Much,
much longer. Some become so huge that it makes sense to split them into

smaller modules, or individual source code files, with maybe 20 to 60 lines of code
apiece. Not only do these smaller modules make it easier to write and update code,
but you can also reuse common modules in other projects, reducing development
time.

The Multi-Module Monster
The C language places no limit on how long a source code file can be. Likewise, a
source code file can consist of only a few lines — if you can pull off this trick. The
determination of whether to use multiple source code files — modules — really
depends on the programmer. That’s you. How easy do you want to make the pro-
cess of writing, maintaining, and updating your code?

IN THIS CHAPTER

»» Building big programs

»» Combining multiple source code files

»» Making your own header file

»» Linking in additional libraries

370 PART 5 And the Rest of It

Linking two source code files
The most basic multi-module monster project has two source code files. Each file
is separate — written, saved, and compiled individually — but eventually brought
together as one unit by the linker. The linker, which is part of the build process in
Code::Blocks, is what creates a single program from several different modules.

What’s a module?

A module is a compiled object file. The various object files are linked to build a
program. The entire operation starts with separate source code files, starting with
Listing 24-1.

LISTING 24-1:	 The main.c Source Code File

#include <stdio.h>
#include <stdlib.h>

void second(void);

int main()
{
 printf("Second module, I send you greetings!\n");
 second();
 return 0;
}

Listing 24-1 shows the main.c module. In it, you see the second() function proto-
typed at Line 4. This prototype is required because the second() function is called
at Line 11, but it exists in another module — just like C library functions exist
elsewhere. You don’t need to prototype all functions found in another module,
only those referenced or called.

Exercise 24-1: Fire up a new project in your IDE named ex2401. Create the project
as you normally would: Type the source code from Listing 24-1 into the editor as
the contents of the main.c file. Save the file.

Don’t build yet! After all, the code references the second() function, which doesn’t
seem to exist anywhere. It’s prototyped, as is required for any function that’s used
in your code, but the second() function is found in another module. To create this
next module in the Code::Blocks IDE, follow these steps:

CHAPTER 24 Beyond Mere Mortal Projects 371

1.	 Save the current project.

2.	 Choose File ➪   New ➪   Empty File.

3.	 Click the Yes button when you’re prompted to add the file to the active
project.

The Save File dialog box appears.

4.	 Type alpha.c as the filename and then click the Save button.

The new file is listed on the left side of the Code::Blocks window, beneath the
Sources heading where the main.c file is listed. A new tab appears in the
editor window, with the alpha.c file ready for editing, as shown in Figure 24-1.

5.	 Edit the new source code file.

Click its tab, if necessary. (Refer to Figure 24-1.)

6.	 Type the source code from Listing 24-2 into the alpha.c file in
Code::Blocks.

7.	 Save the project.

8.	 Build and run.

FIGURE 24-1:
Two source code

files in the
Code::Blocks IDE.

372 PART 5 And the Rest of It

LISTING 24-2:	 The alpha.c Source Code File

#include <stdio.h>

void second(void)
{
 puts("Glad to be here!");
}

The alpha.c module contains the second() function called from the first module.
Because both modules are linked as the program is built, the function is found
when it’s called.

Here’s the output I see on my computer:

Second module, I send you greetings!
Glad to be here!

The two source code files aren’t “glued together” by the compiler; each source
code file is compiled individually. A separate object code file is created for each
one: main.o and alpha.o. It’s these two object code files that are then linked
together, combined with the C standard library, to form the final program.

»» The main module for a multi-module C program is traditionally named
main.c. This is the reason that Code::Blocks names the first (and, often, only)
project source code file main.c.

»» Only source code files contained within the same project — found beneath
the Sources branch, as shown in Figure 24-1 — are linked together in the
Code::Blocks IDE.

»» To compile and link source code files in a terminal window, use the following
command:

clang main.c alpha.c -o ex2401

This command uses the clang compiler to build the source code files main.c
and alpha.c into a single project. The output switch (-o) sets the program
filename to ex2401. To run, type ./ex2401 at the command prompt.

Sharing variables between modules
The best way to share a variable between several functions in a huge project is to
make that variable external. (The specifics for this operation are found in

CHAPTER 24 Beyond Mere Mortal Projects 373

Chapter 16.) An external variable, also called a global variable, must be declared in
only one module, usually the main module. This variable is declared outside of any
function, usually at the top of the source code file, betwixt the #include directives
and function prototypes. It works like any variable declaration:

type name;

with type being the data type and name the assigned name, optionally followed by
an assignment or initialization. To access this external variable from other mod-
ules, you must employ the extern keyword. This keyword doesn’t declare the vari-
able, but rather references that it’s declared elsewhere, in another source code
module. Here’s the extern keyword’s format:

extern type name;

Listing 24-3 shows an example of how an external variable is declared, with List-
ing 24-4 illustrating how the extern keyword is put to work.

LISTING 24-3:	 Code for main.c and a Global Variable

#include <stdio.h>
#include <stdlib.h>

void second(void);

int count;

int main()
{
 for(count=0;count<5;count++)
 second();
 return 0;
}

External variable count is declared at Line 6. It’s used in the for loop at Line 10,
but it’s also used in the second.c source code file, shown in Listing 24-4.

374 PART 5 And the Rest of It

LISTING 24-4:	 Code for second.c Using the Global Variable

#include <stdio.h>

extern int count;

void second(void)
{
 printf("%d\n",count+1);
}

The second.c source code file declares external variable count, which is found in
the main.c file. To properly access this variable, Line 3 in Listing 24-4 identifies
it as an external int. The count variable is then used in the second() function —
specifically, at Line 7. Its value is retained between modules and all functions in
which it’s used.

Exercise 24-2: Create a new project in Code::Blocks that incorporates both source
code files shown in Listings 24-3 and 24-4. Build and run.

To build the project at the command prompt: Update the two source code files
from Exercise 24-1 and build per the directions at the end of the preceding section.

Creating a custom header file
As multi-module projects grow more complex, you find that the first part of each
source code file gets longer and longer: More prototypes, more constants, and
more external variables, structures, and other whatnot are required for each mod-
ule. Rather than burden your source code files with redundancies, you can create
a header file for the project.

A header file contains just about everything you can put into a source code file.
Specifically, it’s best to put items in the header file that would otherwise be
required for every source code module. Listing 24-5 shows a sample header file.

LISTING 24-5:	 Header File ex2403.h

#include <stdio.h>
#include <stdlib.h>

/* structures */
struct thing {

CHAPTER 24 Beyond Mere Mortal Projects 375

 char name[32];
 int age;
 };
typedef struct thing human;

/* prototypes */

void fillstructure(void);
void printstructure(void);

/* defined constants */

/* variables */

The header file shown in Listing 24-5 starts with some #include directives, which
works well when these header files are required by each module in the program.

The structure thing is defined at Line 5, with Line 8 specifying a typedef so that
the word human (instead of struct thing) can be used in the code.

Structures must be declared before any functions or prototypes that use the
structure.

Next come two prototypes at Lines 13 and 14. These prototypes save you the bother
of prototyping each function referenced in the various modules.

The header file in Listing 24-5 lacks defined constants and external variables,
which could easily be placed there.

Other popular items to include in a header file are macros. These are preprocessor
directives that can also help simplify your code. You can read about them at my
blog:

c-for-dummies.com/blog/?page_id=2

One thing not found in traditional C header files is a function. Putting a function
into a header is something that C++ programmers may do, but it’s unusual in
C. Keep your functions in the source code files, where they’re expected. Do not set
them into header files.

376 PART 5 And the Rest of It

To use a local header file, you specify the #include preprocessor directive at the
start of the source code file, as in any other header file. The big difference is that
double quotes are used instead of angle brackets. For example:

#include "ex2403.h"

The double quotes direct the compiler to look for the header file in the current
directory. If the file isn’t in that directory, you must specify a pathname, as in

#include "headers/ex2403.h"

Listing 24-6 uses the header file from Listing 24-5.

LISTING 24-6:	 Project ex2403 main.c Source Code

#include "ex2403.h"

human person;

int main()
{
 fillstructure();
 printstructure();
 return 0;
}

void fillstructure(void)
{
 printf("Enter your name: ");
 fgets(person.name,31,stdin);
 printf("Enter your age: ");
 scanf("%d",&person.age);
}

void printstructure(void)
{
 printf("You are %s\n",person.name);
 printf("And you are %d years old.\n",person.age);
}

CHAPTER 24 Beyond Mere Mortal Projects 377

Line 1 of the source code shown in Listing 24-6 includes the custom header file,
ex2403.h. The typedef human is then used at Line 3 to declare structure variable
person. That’s it! No other declarations are necessary in the source code, because
they’ve been handled by the custom header.

Exercise 24-3: Create a new project in Code::Blocks. Write a new header file,
ex2403.h, for the project using code from Listing 24-5. Use the steps from the
earlier section “Linking two source code files” to create a new file, naming it
ex2403.h and adding it to the current project. Copy the source code from
Listing 24-6 into the main.c file. Build and run.

Ensure that the header file ex2403.h is in the same build folder as the main.c file
when building the project in Code::Blocks. If it isn’t, the compiler belches up a
fatal error.

You don’t specify the header file when compiling at the command line. The com-
mand to build Exercise 24-3 is clang main.c -o main, where the program output
is named main. The compiler stirs in the ex2403.h header file as directed to do so
in the main.c source code file.

Exercise 24-4: Split out the fillstructure() and printstructure() functions from
Listing 24-6 so that each appears in its own source code module, input.c and
output.c for filenames, respectively. Build the multi-module program.

THOUGHTS ON SPLITTING UP CODE
I divide large program modules by function. For example, all output functions go into a
display.c module; input functions belong in input.c. I create an init.c module for
initialization routines. Beyond that, the number of modules depends on what the pro-
gram does.

Putting similar functions into a module is a good idea, though having one function in a
module is also okay. In fact, when you do, and the module works, you can pretty much
set it aside when it comes to working out bugs and whatnot.

No matter what the project size, I recommend creating a project header file. That
header file keeps all function prototypes, global variables, and constants in one place —
plus, it helps map out the entire project. For example, you can list function prototypes
by module or add comments, development history, and other notes.

378 PART 5 And the Rest of It

Other Libraries to Link
Throughout this book, your programs have linked in the standard C library. This
process works automatically. It’s all that’s needed for the basic console applica-
tions in this book. When your programs require more sophistication, however,
they can link in other libraries.

If you’re coding something graphical, for example, you can link in a graphics
library. Or, if you’re doing fancy console (text) programming, you can link in the
NCurses library. These libraries, and the functions they include, greatly augment
a program’s capabilities.

A function’s documentation helps determine which libraries to use. For example,
in Linux the pow() function’s man page has this note right up front:

Link with -lm.

This direction tells you to use the compiler’s command line -l (little L) switch
immediately followed by m (little M) for the math library. This switch directs the
linker to bring in the math library, without which you’d witness a flood of errors
for unknown functions, like pow().

Linking in a library is different from including a header file. The header file is
handled by the #include directive. It contains prototypes, definitions, and other
helpful information. But it’s the library that contains the gears that make the
functions work.

All C compilers link in the standard C library, called c. If another library needs to
be linked in, it’s specified directly. The library must be available (on the local stor-
age system), and you must know its location when using an IDE.

For example, in Code::Blocks, a library is added by choosing Project ➪   Build
Options and adding the library on the Linker Settings tab. You must know the
library’s folder and its name to complete this task.

At the command prompt, the -l (little L) switch is immediately followed by the
library’s name. This switch might need to be specified as the last argument with
certain compilers.

CHAPTER 24 Beyond Mere Mortal Projects 379

The variety and purpose of the various libraries available to a C compiler depend
on what you plan to do. C language library packages can be found for free and
downloaded from the Internet. For example, a hardware manufacturer may pro-
vide a library you can use to program its specific device.

»» Libraries are linked in only when creating a Code::Blocks project. You cannot
link in a library for an individual source code file.

»» Traditionally, C libraries are stored in the /usr/lib folder, though down-
loaded libraries might be found in /usr/local/lib or elsewhere. Command-
line compilers automatically look in these locations.

»» The -L switch for a command-line compiler can be specified to direct the
compiler to look in a specific folder for a library. For example:

clang -L/usr/local/share/lib -lcompress main.c

The preceding command directs the clang compiler to look in the /usr/
local/share/lib folder for the compress library.

CHAPTER 25 Out, Bugs! 381

Chapter 25
Out, Bugs!

Everyone writes buggy code. Not intentionally, of course. Even the best pro-
grammers get lazy or sloppy and do silly things. Stray semicolons, misplaced
commas, and missing curly brackets happen to all programmers. Fortunately,

the compiler catches a lot of this crummy code. Fix the source code and recompile
to deal with those annoying, typical bugs.

For deeper problems, flaws in logic, or maybe code boo-boos that aren’t easy to
find, it helps to have a little assistance. That assistance comes in the form of
debugging your code, which you can do manually or with the help of a debugger.
The goal is to see what’s gone wrong.

Simple Tricks to Resolve Problems
When I can’t figure out what’s going on with a program and I’m too lazy to run it
through a debugger, I use the printf() and puts() functions as my debugging friends.
These tools can output helpful messages and values, assisting me in determining
what’s buggy with the code.

IN THIS CHAPTER

»» Inserting code to help you debug

»» Configuring a project for debugging

»» Using Code::Blocks’ GNU debugger

»» Stepping through a program

»» Checking the values of variables

»» Writing better error messages

382 PART 5 And the Rest of It

Documenting the flow
Suppose a function receives variable x but, somehow, variable x never shows up.
Where did it go? To find out, I insert the following statement into the code:

printf("value of 'x' at Line 125: %d\n",x);

This statement may appear in several places, tracing the value of variable x as it
moves through the code. The output clues me in to where variable x wanders off.
Further, you can use the __LINE__ macro instead of hard-coding the line number:

printf("value of 'x' at Line %d: %d\n",__LINE__,x);

The preprocessor expands the __LINE__ macro — and yes, it has two underscores
before and after — into the current source code line number. By using this trick,
you can set an output message and continue to edit your code without manually
updating line numbers.

When I’m not tracking a variable and I only want to know why a chunk of code
isn’t executing, I insert a puts() statement, like this:

puts("You got to here");

When I see the preceding text in the output, I know that the code is being
approached but still may not be executed. At this point, I examine the code nearby,
looking for common C language boo-boos, many of which are documented in
Chapter 26.

Talking through your code
An excellent way to catch flaws in program flow is to talk through your code. The
catch is that you must do so out loud. Yes, this trick can be embarrassing, but it’s
highly effective.

For example, some code isn’t working and you have no clue why. Pretend you’re
speaking with a fellow programmer. Explain to the phantom person what your
code is doing and how it works. As you talk through your code, the problem may
suddenly appear. Believe it or not, this trick has worked for me dozens of times.

Writing comments for future-you
Another thing you can do to help fix undue woe is to use comments to describe the
problem in the code. This approach may not fix the problem now, but for

CHAPTER 25 Out, Bugs! 383

future-you looking at the code down the line, it’s a real help; it beats trying to
discover the boo-boo all over again.

For example:

for(y=x+a;y<c;y++) /* this doesn’t seem to work */
 manipulate(y); /* Confirm that 'a' is changing */

In this example, the note reminds future-me that the statements aren’t doing
what they’re intended; plus, it offers future-me a suggestion on what to look for
in a solution.

You can also use comments to offer future-you suggestions on how to improve the
code, things to tighten up, or new features you just don’t have time to add.

The Debugger
Many popular debuggers exist, tools that let you examine your code line-by-line
as it runs, peeking at memory and looking at variables as they change. The popu-
lar GNU debugger is available at the command prompt — if you’re bold enough to
use it. For mere mortals, consider using the Code::Blocks debugger.

Debugging setup
To debug a project, you need to set its target — the program — to include debug-
ging information. The debugger uses this information to help process your code
and to see how things run — or not. This process works only with a Code::Blocks
project and only when you create a debugging target build for your code. Follow
these steps:

1.	 Start a new project in Code::Blocks.

Choose File ➪   New ➪   Project.

2.	 Choose Console Application and click Go.

3.	 Choose C and click Next.

4.	 Type the project title, such as ex2501 for Exercise 25-1.

5.	 Click the Next button.

So far, these first few steps are the same as for creating any C language
console program in Code::Blocks.

384 PART 5 And the Rest of It

6.	 Place a check mark by the option Create “Debug” Configuration.

This setting directs Code::Blocks to include debugging information when the
program is built.

7.	 Ensure that the item Create “Release” Configuration is also selected.

8.	 Click the Finish button.

The new project appears in Code::Blocks.

When you activate debugging for a project, as well as keeping the release
configuration (refer to Step 7), you can use the Compiler toolbar to choose which
version of the code is created, as shown in Figure 25-1. Use the View ➪   
Toolbars ➪   Compiler command to show or hide that toolbar.

When debugging, ensure that the Debug command is chosen as the build target.
You cannot debug the code unless the debugging information is included in the
final program.

To create the final program when you’re finished debugging, choose the Release
command from the Build Target menu. Though you could release a debugging
version of your program, this information makes the final program larger.

FIGURE 25-1:
The Compiler

toolbar.

CHAPTER 25 Out, Bugs! 385

Working the debugger
The debugger operates by examining your code as it runs, showing you what’s
happening, both internally to the program as well as the output. If you’ve created
a new Code::Blocks program with debugging information (see the preceding
section) and you have code to debug, you’re ready to start.

I confess that the code shown in Listing 25-1 is purposefully riddled with bugs.

LISTING 25-1:	 Debug Me!

#include <stdio.h>
#include <stdlib.h>

int main()
{
 char loop;

 puts("Presenting the alphabet:");
 for(loop='A';loop<='Z';loop++);
 putchar(loop);
 return 0;
}

Exercise 25-1: Create a new project in Code::Blocks, one that has a Debug target
build. Copy the source code from Listing 25-1 into the main.c file. Ensure that you
copy the text exactly, including a mistake you may see at the end of Line 9. Build
and run.

Because the Code::Blocks editor is smart, as are other programming editors, you
may catch the erroneous semicolon at the end of Line 9 because the following line
didn’t automatically indent. The compiler may also catch the boo-boo. These are
big clues, but also things you may not notice, especially if you have 200 lines of
code to look at. Regardless, the program’s output tells you something is amiss.
Here’s what I see:

Presenting the alphabet:
[

The alphabet doesn’t show up, of course. Not only that, what’s the [character for?
Time to debug!

386 PART 5 And the Rest of It

Use the Debugger toolbar in Code::Blocks to help you wade into your code to see
what’s fouled up. (Refer to Figure 25-1.) To show or hide that toolbar, choose
View ➪   Toolbars ➪   Debugger.

Follow these steps to work through your code to determine what’s wrong:

1.	Click the cursor in your code right before the puts() statement.

This location is at Line 8.

2.	Click the Run to Cursor button on the Debugging toolbar.

The Run to Cursor button is illustrated in the margin.

The program runs, but only up to the cursor’s location. The output window
appears, and debugging information shows up on the Debugging tab at the
bottom of the Code::Blocks window.

3.	Click the Next Line button.

The puts() statement executes, and its output appears in the output window.

4.	Click the Next Line button again.

The for loop does its thing; no output.

5.	Click the Next Line button again.

The putchar() function outputs the character lurking in the loop variable.
Because the loop already went through ASCII A to Z, the next character is [.
This is the character output.

Hopefully, at this point you look closer at your code and find the stray
semicolon at the end of Line 9.

6.	Click the Stop button to halt the debugger.

7.	Remove the semicolon at the end of Line 9.

8.	Save and rebuild your code.

To determine whether you’ve fixed the problem, step through the code again:

9.	Click the mouse pointer to place the cursor right before the for statement
at Line 9.

10.	Click the Run to Cursor button.

11.	Click the Next Line button twice.

An A appears as output. Good.

CHAPTER 25 Out, Bugs! 387

12.	Keep clicking the Next Line button to work through the for loop.

When you’re satisfied that the code has been debugged:

13.	Click the Stop button.

The program runs fine after you fix the stray semicolon. See the later section
“Watching variables” for insight into how variable values can be examined by the
debugger.

Setting a breakpoint
No one wants to step through 200 lines of source code to find a bug. Odds are that
you have a good idea where the bug is, either by the program’s output or because
it ran just five minutes ago, before you edited that one particular section. If so, you
know where you want to snoop into operations. It’s at that place in your code that
you set a debugging breakpoint.

A breakpoint is like a stop sign in your text. In fact, that’s the exact icon used by
Code::Blocks, as shown in Figure 25-2. To set a breakpoint, click the mouse
between the line number and the green line (or yellow line, if you haven’t saved
yet). The Breakpoint icon appears.

To run your code to the breakpoint, click the Debug/Continue button on the
Debugging toolbar. The program runs, but then comes to a screeching halt at the
breakpoint. From this point on, you can work the debugger to see what’s going
wrong.

FIGURE 25-2:
A breakpoint in

the code.

388 PART 5 And the Rest of It

Watching variables
Sometimes, you must get down-and-dirty in memory and look at a variable’s
value while the code runs. The Code::Block’s debugger allows you to watch any
variable in a program, showing you that variable’s contents as the program runs.
Listing 25-2 assists in this process:

LISTING 25-2:	 Where Variables Lurk

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int x;
 int *px;

 px=&x;
 for(x=0;x<10;x++)
 printf("%d\n",*px);
 return 0;
}

Exercise 25-2: Create a new Code::Blocks project, ex2502, with debugging active.
Copy the source code from Listing 25-2 into the main.c file. Build and run.

The code runs fine, but the debugger can help you see how it works. Further, you
can witness how a pointer works in memory, which may help you understand the
whole pointer thing. Regardless, it’s time to debug! Follow these steps:

1.	 Click the mouse to place it at the start of Line 6, where the integer
variable x is declared.

2.	 Click the Run to Cursor button on the Debugging toolbar.

3.	 Click the Debugging Windows button.

This button is shown in the margin. It’s really a menu, listing useful items.

4.	 Choose the Watches command.

The Watches window appears, similar to the one shown in Figure 25-3. You see
variables x and px listed under the Locals heading. You can add more variables
to watch by typing them in.

CHAPTER 25 Out, Bugs! 389

5.	 Click the mouse in the first empty box in the Locals column in the
Watches window.

Use Figure 25-3 as your guide.

6.	 Type *px to examine the contents of the memory location stored in
pointer px. Press the Enter key.

Because pointer px isn’t assigned a value, an error message appears in the
contents column. Until a variable is initialized, its contents are junk.

7.	 Click the Next Line button on the Debugging toolbar until the cursor is on
Line 10, the start of the for loop.

Because the value of pointer px is assigned to the memory location of variable
x, pay heed to the Watches window. Instantly, you see a memory address
appear by variable px, and you see the *px variable set equal to whatever
value is assigned to variable x. The pointer has been initialized!

8.	 Click the Next Line button repeatedly and observe the values in the
Watches window.

As the for loop starts, it initializes the value of variable x. You see that value
change in the Watches window, along with the value of *px. The value of px
(the address of variable x) doesn’t change.

9.	 Click the Stop button when you’re done.

I find that examining variables in memory is the best way to see what’s going on
with your code. If the variables aren’t popping the way they should, you need to
check the statements manipulating those variables.

FIGURE 25-3:
Monitoring

variable values.

390 PART 5 And the Rest of It

Improved Error Messages
One way you can better communicate your program’s goof-ups to users is to
present better, more descriptive error messages. Though too many details can
confuse users, too scant an error message can frustrate them. For example:

Unable to allocate 128K char buffer 'input' at location 0xFE3958

This error message may be ideal when you’re debugging the code, but a user either
ignores it or “Googles it” to see how to fix the problem.

The opposite type of error message is just as frustrating:

Error 1202

For heaven’s sake, don’t use numbers as error messages! Even if you’ve provided
documentation, no user appreciates it, especially when you can just as easily write

Not enough memory available

To help you craft better error messages, many C language functions — specifically,
the file access functions — provide a consistent set of error values when a function
fails. The error value is stored in the global variable errno, which your program
can examine. Listing 25-3 provides sample source code.

LISTING 25-3:	 Checking the errno Value

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int main()
{
 int e;

 e = rename("blorfus","fragus");
 if(e != 0)
 {
 printf("Error! ");
 switch(errno)

CHAPTER 25 Out, Bugs! 391

 {
 case EPERM:
 puts("Operation not permitted");
 break;
 case ENOENT:
 puts("File not found");
 break;
 case EACCES:
 puts("Permission denied");
 break;
 case EROFS:
 puts("Read only file");
 break;
 case ENAMETOOLONG:
 puts("Filname is too long");
 break;
 default:
 puts("Too ugly to describe");
 }
 exit(1);
 }
 puts("File renamed");
 return 0;
}

To use the errno variable, your code must include the errno.h header file, as
shown in Line 3 of Listing 25-3. That header file declares errno as an external
variable. It also contains common error conditions as defined constants known to
numerous C library functions.

The rename() function at Line 9 attempts to rename a file. I’m assuming that the
file blorfus is unavailable, so the function is designed to generate an error. If so,
it returns –1 and sets the global variable errno to represent the error condition
that’s encountered.

The switch structure at Line 13 plows through some errors that are possible when
renaming a file. The defined constants represent these error codes, which are
defined in the errno.h header file.

Exercise 25-3: Type the source code from Listing 25-3 into a new project. Build
and run to witness an accurate error message.

392 PART 5 And the Rest of It

You can refine the error messages further, if you like. I kept the messages short in
Listing 25-3 so that the text wouldn’t wrap in this book. For example, a better
message than “Permission denied” is “The permission settings for ‘blorfus’ do
not allow renaming. Consider resetting the file’s permissions and trying again.”
This message is descriptive and informative, which is what users appreciate: It
explains the problem and also offers a solution.

»» Refer to Chapter 23 for more information on the rename() function.

»» You can find relevant errno defined constants in a function’s man page. Look
there to see which defined constants to check and what they represent.

6The Part of Tens

IN THIS PART . . .

See how to avoid ten common bugs and coding
mistakes

Review ten helpful suggestions, reminders, and bits of
advice

CHAPTER 26 Ten Common Boo-Boos 395

Chapter 26
Ten Common Boo-Boos

The programming adventure has its pitfalls. Many of them are common; the
same mistakes, over and over. Even after decades of coding, I still find
myself doing stupid, silly things. Most often they’re done in haste —

usually, simple things that I’m not paying attention to. But isn’t that the way of
everything?

Conditional Foul-Ups
When you employ an if statement or initiate a while or for loop, the code makes a
comparison. Properly expressing this comparison is an art form, especially when
you try to do multiple things at once.

IN THIS CHAPTER

»» Conditional foul-ups

»» == v. =

»» Dangerous loop semicolons

»» Commas in for loops

»» Missing break in a switch structure

»» Missing parentheses and curly
brackets

»» Pay heed to that warning

»» Endless loops

»» scanf() blunders

»» Streaming input restrictions

396 PART 6 The Part of Tens

My advice is to first split up the code before you load everything into the paren-
theses. For example:

while((c=fgetc(dumpme)) != EOF)

The code on the preceding line works, but before you get there, try this:

c = 1; /* initialize c */
while(c != EOF)
 c=fgetc(dumpme);

This improvement is more readable and less error prone.

The situation grows more hair when you use logical operators to combine condi-
tions. I highly recommend that you limit the expression to two choices only:

if(a==b || a==c)

The statements belonging to if are executed when the value of variable a is equal
to either the value of variable b or variable c. Simple. But what about this:

if(a==b || a==c && a==d)

Oops. Now the order of precedence takes over, and for the if statement to be true,
a must be equal to b, or a must be equal to both c and d. The situation can also be
improved by using parentheses:

if(a==b || (a==c && a==d))

When you’re unsure about the order of precedence, use parentheses.

== v. =
A single equal sign is the assignment operator:

a=65;

A double equal sign is used for comparison:

a==65

CHAPTER 26 Ten Common Boo-Boos 397

To get my brain to appreciate the difference, in my head I say “is equal to” when
I type two equal signs. Despite this reminder, I still goof up, especially in a condi-
tional statement.

When you assign a value in a conditional statement, you generally create a TRUE
condition unless the result of the assignment is zero:

if(here=there)

This if statement evaluates to the value of variable there. If it’s 0, the if condition
evaluates as FALSE; otherwise, it’s true. Regardless, it’s most likely not what you
intended. Most compilers, such as clang, catch this mistake.

Dangerous Loop Semicolons
You can get into a rut when you’re typing code, using the semicolon as a prefix
before typing the Enter key to end a line. This practice has unintended conse-
quences! It’s especially toxic when you code loops:

for(x=0;x<10;x++);

This loop works, but its statements aren’t repeated. When it’s done, the value of
variable x is 10. That’s it.

The same problem exists for a while loop:

while(c<255);

This loop may spin endlessly, depending on the value of variable c. If the value is
greater than or equal to 255, the loop won’t execute. Otherwise, it executes forever.

These semicolons are unintentional and unwanted. They’re also perfectly legiti-
mate; the compiler doesn’t flag them as errors, though you may see a warning —
which is quite helpful. For example, the suggested resolution is to place the
semicolon on the next line:

while(putchar(*(ps++)))
 ;

This sole semicolon on a line by itself shouts to the compiler, as well as to any
programmer reading the code, that the while loop is intentionally empty.

398 PART 6 The Part of Tens

Commas in for Loops
The three items in a for loop’s parentheses are separated by semicolons. Both
those semicolons are required, and they are not commas. The compiler doesn’t
like this statement:

for(a=0,a<10,a++)

Because commas are allowed in a for statement, the compiler merely thinks that
you’ve omitted the last two required items. In fact, the following is a legitimate for
statement:

for(a=0,a<10,a++;;)

The preceding statement assigns the value 0 to variable a, generates a TRUE com-
parison (which is ignored), and increments the value of a to 1. Then, because the
second and third items are empty, the loop repeats endlessly. (Well, unless a break
statement belongs to the loop.)

Missing break in a switch Structure
It’s perfectly legitimate to write a switch structure where the execution falls
through from one case statement to the other:

switch(letter)
{
 case 'A':
 case 'E':
 case 'I':
 case 'O':
 case 'U':
 printf("Vowel");
 break;
 default:
 printf("Not a vowel");
}

In this example, the first five case conditions capture the same set of statements.
When you forget the break, however, execution falls through with more tests and,
eventually, the default. Unless this control is what you want, remember to add
break statements as necessary.

CHAPTER 26 Ten Common Boo-Boos 399

Suppose that you have a switch structure that’s several dozen lines high. One case
condition has multiple rows of statements, so many that it scrolls up and off the
screen. In such a setup, it’s easy to forget the break as you concentrate instead on
crafting the proper statements. I know — I’ve done it.

Another situation happens when you code a loop inside a switch structure and you
use break to get out of that loop. This inner break escapes from the for loop only: A
second break is required in order to get out of the switch structure.

Many editors, such as the one used in Code::Blocks, let you collapse and expand
parts of your code. To make this feature work in a switch structure, you must
enclose the case statements in curly brackets.

Missing Parentheses and Curly Brackets
Forgetting a parenthesis or two is one of the most common C coding mistakes.
The compiler catches it, but usually the error isn’t flagged until the end of the
function.

For example, a missing parenthesis in the main() function causes the error to be
flagged at the final line of the function. This warning is a good clue to a missing
parenthesis or curly bracket, but it doesn’t help you locate it.

Today’s editors are good at matching up parentheses and brackets. For example,
the Code::Blocks editor inserts both characters when you type the first one. This
feature helps keep things organized. Other editors, such as VIM, highlight both
sets of brackets when the cursor hovers over one. Use these hints as you type to
ensure that things match up.

Another editor clue is that the formatting, text coloring, and indents screw up
when you forget a parenthesis or bracket. The problem with recognizing this
reminder is that the human brain automatically assumes that the editor has
screwed up. So you need to train yourself to recognize improper indentation by the
editor as a sign of a missing parenthesis or curly bracket.

Don’t Ignore a Warning
When the compiler generates a warning, the program (or object code) is still cre-
ated. This condition can be dangerous, especially when dealing with pointer
errors. The problem is that warnings can be ignored; the code compiles anyway.

400 PART 6 The Part of Tens

For example, you may be using printf() to display a value that you know is an int,
but somehow the compiler insists that it’s some other value. If so, you can type-
cast the variable as an int. For example:

printf("%-14s %5ld %s",
 file->d_name,
 (long)filestat.st_size,
 ctime(&filestat.st_mtime));

In this example, the filestate.st_size variable is of the off_t data type. The
printf() function lacks a conversion character for off_t, so it has typecast it to a long
int. Similar typecasting can be done with other variable types for which printf()
lacks a conversion character. But before you go nuts with this trick, check the man
page for printf() to ensure that the specific data type lacks a conversion
character.

»» A common warning happens when you try to display a long int value by using
the %d placeholder. When that happens, just edit %d to %ld.

»» An “lvalue required” warning indicates that you’ve written a malformed
equation. The lvalue is the left value, or the item on the left side of the
equation. It must be present and be of the proper type so that the equation is
properly handled.

»» The degree to which the compiler flags your code with warnings can be
adjusted. Various flags are used to adjust the compiler’s warning level. These
flags are set in the Code::Blocks IDE by choosing the Project ➪   Build Options
command. The Compiler Flags tab in the Project Build Options dialog box lets
you set and reset the various warnings.

»» The “turn on all warnings” option for a command-line C compiler is the -Wall
switch. It looks like this:

clang -Wall source.c

»» Wall stands for “warnings, all.”

Endless Loops
There’s got to be a way outta here, which is true for just about every loop. The exit
condition must exist. In fact, I highly recommend that when you set out to code a
loop, the first thing you code is the exit condition. As long as it works, you can
move forward and write the rest of the joyous things that the loop does.

CHAPTER 26 Ten Common Boo-Boos 401

Unintentional endless loops do happen. I’ve run code many times, only to watch a
blank screen for a few moments. Oops.

Console applications, such as the kind created throughout this book, are halted by
pressing the Ctrl+C key combination in a terminal window. This trick may not
always work, so you can try closing the window. You can also kill the task, which
is a process that’s handled differently by every operating system. For example, in
a Unix operating system, you can open another terminal window and use the kill
command to rub out a program run amok in the first terminal window.

scanf() Blunders
The scanf() function is a handy way to read specific information from standard
input. It’s not, however, ideal for all forms of input.

For example, scanf() doesn’t understand when a user types something other than
the format that’s requested. Specifically, you cannot read in a full string of text.
This issue is because scanf() discards any part of the string after the first whitespace
character.

Though the fgets() function is a great alternative for capturing text, keep in mind
that it can capture the newline that ends a line of text. This character, \n, becomes
part of the input string.

The other thing to keep in mind when using scanf() is that its second argument is
an address, a pointer. For standard variable types — such as int, float, and double —
you must prefix the variable name with the &, the address operator:

scanf("%d",&some_int);

The & prefix isn’t necessary for reading in an array:

scanf("%s",first_name);

Individual array elements, however, aren’t memory locations, and they still
require the & prefix:

scanf("%c",&first_name[0]);

Pointer variables do not require the & prefix, which could result in unintended
consequences.

402 PART 6 The Part of Tens

Streaming Input Restrictions
The basic input and output functions in the C language aren’t interactive. They
work on streams, which are continuous flows of input or output, interrupted only
by an end-of-file marker or, occasionally, the newline character.

When you plan to read only one character from input, be aware that the Enter key,
pressed to process input, is still waiting to be read from the stream. A second
input function, such as another getchar(), immediately fetches the Enter key press
(the \n character). It does not wait, as an interactive input function would.

»» If you desire interactive programs, get a library with interactive functions, such
as the NCurses library. You can check out my book on Ncurses, available from
Amazon.com in the kindle eBook and printed formats.

»» The end-of-file marker is represented by the EOF constant, defined in the
stdio.h header file.

»» The newline character is represented by the \n escape sequence.

»» The newline character’s ASCII value may differ from machine to machine, so
always specify the escape sequence \n for the newline.

CHAPTER 27 Ten Reminders and Suggestions 403

Chapter 27
Ten Reminders and
Suggestions

It’s difficult to narrow down the list of reminders and suggestions, especially for
a topic as rich and diverse as programming. For example, I could suggest ways
to fit in with other programmers, which movies to quote, which games to play,

and even which foods to eat. A programming subculture exists — even today,
though the emphasis on professional workplace attire has thankfully abated.

Beyond social suggestions, I do have a few things to remind you of — plus, some
general-purpose C language recommendations. Believe it or not, every

IN THIS CHAPTER

»» Maintain good posture

»» Use creative names

»» Write functions when needed

»» Work on your code a little bit at
a time

»» Break apart larger projects into
several modules

»» Know what a pointer is

»» Use whitespace before condensing

»» Know when if-else becomes switch-case

»» Remember to use assignment
operators

»» When you get stuck, read your code
aloud

404 PART 6 The Part of Tens

programmer has been through the same things you’ve experienced. It’s good to
hear advice from a grizzled programming veteran.

Maintain Good Posture
I’m certain that some authority figure somewhere in your early life drilled into
you the importance of having proper posture. Ignore them at your own peril,
especially when you’re young and haven’t yet gotten out of bed to say, “Ouch.”

For many programmers, coding becomes an obsession. As an example, it’s quite
easy for me to sit and write code for many hours straight. Such a stationary posi-
tion is hard on the body. So, every few minutes, take a break. If you can’t manage
that, schedule a break. Seriously: The next time you compile, stand up! Look out-
side! Walk around a bit!

While you’re working, try as hard as you can to keep your shoulders back and your
wrists elevated. Don’t crook your neck when you look at the monitor. Don’t hunch
over the keyboard. Look out a window to change your focus.

I might also add that it’s pleasant to acknowledge others. True, it’s easy to grunt
or snarl at someone when you’re in the midst of a project. Keep in mind that other
humans may not appreciate the depth of thought and elation you feel when you
code. If you can’t be pleasant now, apologize later.

Use Creative Names
The best code I’ve seen reads like a human language. It’s tough to make the entire
source code read that way, but for small snippets, having appropriate variable and
function names is a boon to writing clear code.

For example, the following expression is one of my favorites:

while(!done)

I read this statement as “while not done.” It makes sense. Until the value of the
done variable is TRUE, the loop spins. But somewhere inside the loop, when the
exit condition is met, the value of done is set equal to TRUE and the loop stops. It’s
lucid.

CHAPTER 27 Ten Reminders and Suggestions 405

It also helps to offer descriptive names to your functions. A name such as setring-
ervolume() is great, but the name set_ringer_volume() is better. It also helps to
consider the function in context. For example:

ch=read_next_character();

In the preceding line, the function read_next_character() needs no explanation —
unless it doesn’t actually return the next character.

Write a Function
Anytime you use code more than once, consider throwing it off into a function,
even if the code is only one line long or appears in several spots and doesn’t really
seem function-worthy.

Suppose that you use the fgets() function to read a string, but then you follow
fgets() with another function that removes the final newline character from the
input buffer. Why not make both items their own function, something like
get_input()?

Work on Your Code a Little Bit at a Time
A majority of the time you spend coding is to fix problems, to correct flaws in
logic, or to fine-tune. When making such adjustments, avoid the temptation to
make three or four changes at one time. Address issues one at a time.

The reason for my admonition is that it’s tempting to hop around your code and
work on several things at a time. For example: You need to fix the spacing in a
printf() statement’s output, adjust a loop, and set a new maximum value. Do those
things one at a time!

When you attempt to do several things at a time, you can screw up. But which
thing did you goof up? You have to go back and check everything, including the
related statements and functions, to ensure that they work. During situations like
these, you will seriously wish for a time machine. Instead, just work on your code
a little bit at a time.

406 PART 6 The Part of Tens

Break Apart Larger Projects
into Several Modules

No one likes to scroll through 500 lines of code. Unless you’re totally immersed in
your project and can keep everything stored in your noggin, break out functions
into modules.

I prefer to group related functions into similar files. I typically have an output file,
an input file, an initialization file, and so on. Each file, or module, is compiled and
linked separately to form the code. The benefits are that the files are smaller and
if they compile and work, you no longer need to mess with them.

Know What a Pointer Is
A pointer is a variable that stores a memory location. It’s not magic, and it shouldn’t
be confusing, as long as you keep the basic mantra in your head:

A pointer is a variable that stores a memory location.

A memory location stored in a pointer references another variable or a buffer (like
an array). Therefore, the pointer must be initialized before it’s used:

A pointer must be initialized before it’s used.

When the pointer variable is prefixed by the * (asterisk) operator, it references the
contents of the variable at the memory location. This duality is weird, of course,
but it’s highly useful, as demonstrated in Chapters 18 and 19.

»» Declare a pointer variable by using the * prefix.

»» Use the & operator to grab the address of any variable in C.

»» Arrays are automatically referenced by their memory locations, so you can
use an array name without the & prefix to grab its address.

»» “Address” and “memory location” are the same thing.

»» A great way to explore pointers is to use the Code::Blocks debugger; specifi-
cally, the Watches window. See Chapter 25.

CHAPTER 27 Ten Reminders and Suggestions 407

Add Whitespace before Condensing
C programmers love to bunch up statements, cramming as many of them as they
can into a single line. Even I am guilty of this pleasure, as shown by a few exam-
ples from this book, such as

while(putchar(*(sample++)))

Admit it: Such a construction looks cool. It makes it seem like you really know how
to code C. But it can also be a source of woe.

My advice: Split out the code before you condense it. Make liberal use of whitespace,
especially when you first write the code. For example, the line

if(c != '\0')

is easier to read than the line

if(c!='\0')

After you write your code with whitespace — or use several statements to express
something — you can condense, move out the spaces, or do whatever else you
like.

In C language source code, whitespace is for the benefit of human eyes. I admire
programmers who prefer to use whitespace over cramming their code onto one
line, despite how interesting it looks.

Know When if-else Becomes switch-case
I’m a big fan of the if-else decision tree, but I generally avoid stacking up multiple
if statements. To me, it usually means that my programming logic is flawed. For
example:

if(something)
 ;
else if(something_else)
 ;
else(finally)
 ;

408 PART 6 The Part of Tens

This structure is okay, and it’s often necessary to deal with a 3-part decision. But
the following structure, which I’ve seen built by many budding C programmers,
probably isn’t the best way to code a decision tree:

if(something)
 ;
else if(something_else_1)
 ;
else if(something_else_2)
 ;
else if(something_else_3)
 ;
else if(something_else_4)
 ;
else(finally)
 ;

Generally speaking, anytime you have that many else-if statements, you probably
need to employ the switch-case structure instead. In fact, my guess is that this
example is probably what inspired the switch-case structure in the first place.

See Chapter 8 for more information on switch-case.

Remember Assignment Operators
Though it’s nice to write readable code, one handy tool in the C language is an
assignment operator. Even if you don’t use one, you need to be able to recognize it.

The following equation is quite common in programming:

a = a + n;

In C, you can abbreviate this statement by using an assignment operator:

a += n;

The operator goes before the equal sign. If it went afterward, it might change into
a unary operator, which looks weird:

a =+ n;

CHAPTER 27 Ten Reminders and Suggestions 409

So the value of variable a equals positive n? The compiler may buy that argument,
but it’s not what you intended.

Also, don’t forget the increment and decrement operators, ++ and --, which are
quite popular in loops.

When You Get Stuck,
Read Your Code Out Loud

To help you track down that bug, start reading your code aloud. Pretend that a
programmer friend is sitting right next to you. Explain what your code is doing
and how it works. As you talk through your code, you’ll find the problem. If you
don’t, have your imaginary friend ask you questions during your explanation.

Don’t worry about going mental. You’re a programmer. You’re already mental.

As a bonus, talking through your code also helps you identify which portions need
to have comments and what the comments should be. For example:

a++; /* increment a */

In the preceding line, you see a terrible example of a comment. Duh. Of course, a
is incremented. Here’s a better version of that comment:

a++; /* skip the next item to align output */

Don’t just comment on what the code is doing — comment on why. Again, pretend
that you’re explaining your code to another programmer — or to future-you.
Future-you will thank present-you for the effort.

7Appendices

IN THIS PART . . .

Codes and keywords

Operators and data types

Escape sequences and conversion characters

Order of precedence

APPENDIX A ASCII Codes 413

ASCII Codes
Decimal Hex Character Comment

0 0x00 ^@ Null, \0

1 0x01 ^A

2 0x02 ^B

3 0x03 ^C

4 0x04 ^D

5 0x05 ^E

6 0x06 ^F

7 0x07 ^G Bell, \a

8 0x08 ^H Backspace, \b

9 0x09 ^I Tab, \t

10 0x0A ^J

11 0x0B ^K Vertical tab, \v

12 0x0C ^L Form feed, \f

13 0x0D ^M Carriage return, \r

14 0x0E ^N

15 0x0F ^O

16 0x10 ^P

17 0x11 ^Q

18 0x12 ^R

19 0x13 ^S

20 0x14 ^T

21 0x15 ^U

Appendix A

414 PART 7 Appendices

Decimal Hex Character Comment

22 0x16 ^V

23 0x17 ^W

24 0x18 ^X

25 0x19 ^Y

26 0x1A ^Z

27 0x1B ^[Escape

28 0x1C ^\

29 0x1D ^]

30 0x1E ^^

31 0x1F ^_

32 0x20 Space, start of visible characters

33 0x21 ! Exclamation point

34 0x22 “ Double quote

35 0x23 # Pound, hash

36 0x24 $ Dollar sign

37 0x25 % Percent sign

38 0x26 & Ampersand

39 0x27 ’ Apostrophe

40 0x28 (Left parenthesis

41 0x29) Right parenthesis

42 0x2A * Asterisk

43 0x2B + Plus

44 0x2C , Comma

45 0x2D - Hyphen, minus

46 0x2E . Period

47 0x2F / Slash

48 0x30 0 Numbers

APPENDIX A ASCII Codes 415

Decimal Hex Character Comment

49 0x31 1

50 0x32 2

51 0x33 3

52 0x34 4

53 0x35 5

54 0x36 6

55 0x37 7

56 0x38 8

57 0x39 9

58 0x3A : Colon

59 0x3B ; Semicolon

60 0x3C < Less than, left angle bracket

61 0x3D = Equals

62 0x3E > Greater than, right angle bracket

63 0x3F ? Question mark

64 0x40 @ At sign

65 0x41 A Uppercase alphabet

66 0x42 B

67 0x43 C

68 0x44 D

69 0x45 E

70 0x46 F

71 0x47 G

72 0x48 H

73 0x49 I

74 0x4A J

75 0x4B K

416 PART 7 Appendices

Decimal Hex Character Comment

76 0x4C L

77 0x4D M

78 0x4E N

79 0x4F O

80 0x50 P

81 0x51 Q

82 0x52 R

83 0x53 S

84 0x54 T

85 0x55 U

86 0x56 V

87 0x57 W

88 0x58 X

89 0x59 Y

90 0x5A Z

91 0x5B [Left square bracket

92 0x5C \ Backslash

93 0x5D] Right square bracket

94 0x5E ^ Caret

95 0x5F _ Underscore

96 0x60 ` Back tick, accent grave

97 0x61 a Lowercase alphabet

98 0x62 b

99 0x63 c

100 0x64 d

101 0x65 e

APPENDIX A ASCII Codes 417

Decimal Hex Character Comment

102 0x66 f

103 0x67 g

104 0x68 h

105 0x69 i

106 0x6A j

107 0x6B k

108 0x6C l

109 0x6D m

110 0x6E n

111 0x6F o

112 0x70 p

113 0x71 q

114 0x72 r

115 0x73 s

116 0x74 t

117 0x75 u

118 0x76 v

119 0x77 w

120 0x78 x

121 0x79 y

122 0x7A z

123 0x7B { Left brace, left curly bracket

124 0x7C | Vertical bar

125 0x7D } Right brace, right curly bracket

126 0x7E ~ Tilde

127 0x7F Delete

418 PART 7 Appendices

»» ASCII 0 through ASCII 31 represent control code values. These characters are
accessed by pressing the Ctrl key on the keyboard and typing the correspond-
ing symbol or letter key.

»» Code 32 is the code for the space character.

»» Code 127 is the Delete character, which is different from Code 8, Backspace.
The reason is that Code 8 is defined as nondestructive, which means that it
only moves the cursor back a space.

»» Many of the control codes manipulate text on the screen, such as Ctrl+I for the
Tab key.

»» A keen eye can spot three repetitions in the ASCII code lists. Look at codes 0
through 26 and then 64 through 90. Also look at codes 97 through 122.

»» The difference between uppercase and lowercase characters in the table is 32,
a computer holy number. The hexadecimal difference is 0x20. Therefore, by
using simple math, or bitwise logic, you can convert between upper- and
lowercase.

»» The digits 0 through 9 are equal to the values 0 through 9 when you subtract
48 (0x30) from the ASCII code values. Likewise, to convert values 0 through 9
into their corresponding ASCII characters, add 48 or 0x30.

»» Any ASCII character can be represented as an escape sequence. Follow the
backslash with the character’s code value, as in \33 for the exclamation
point (!) character. The hexadecimal value can also be used, as in \x68 for
the little H.

APPENDIX B Keywords 419

Keywords
C Language Keywords, C17 Standard

_Alignas break float signed

_Alignof case for sizeof

_Atomic char goto Static

_Bool const if Struct

_Complex continue inline Switch

_Generic default int Typedef

_Imaginary do long Union

_Noreturn double register unsigned

_Static_assert else restrict void

_Thread_local enum return Volatile

auto extern short While

Deprecated C Language Keywords, No Longer Standard
asm entry Fortran

Appendix B

420 PART 7 Appendices

C++ Language Keywords
Asm dynamic_cast new requires typeid

Bool export not static_cast typename

Catch False operator template using

Class friend private this virtual

Concept inline protected throw xor

const_cast mutable public true

Delete namespace reinterpret_cast try

»» The C17 standard is the current C language standard as this book goes to
press. The standard was established in 2017.

»» You don’t need to memorize the C++ keywords, and not all of them are listed
in this appendix. Still, it’s important to be aware of them. I strongly recom-
mend that you not use any of them as function names or variable names in
your code.

»» The most frequent C++ reserved word that C programmers tend to use is new.
Just don’t use it; use something else, like new_item or newSomething instead.

»» The bool keyword in C++ is effectively the same thing as the _Bool keyword
in C.

APPENDIX C Operators 421

Operators
A

lso see Appendix G for the order of precedence.

Operator Type Function

+ Math Addition

– Math Subtraction

* Math Multiplication

/ Math Division

% Math Modulo

++ Math Increment

-- Math Decrement

+ Math Unary plus

- Math Unary minus

= Assignment Assigns a value to a variable

+= Assignment Addition

-= Assignment Subtraction

*= Assignment Multiplication

/= Assignment Division

%= Assignment Modulo

!= Comparison Not equal

< Comparison Less than

<= Comparison Less than or equal to

== Comparison Is equal to

> Comparison Greater than

>= Comparison Greater than or equal to

Appendix C

422 PART 7 Appendices

Operator Type Function

?: Ternary Either-or decision

. Structure Member

-> Structure Member of a pointer structure

&& Logical Both comparisons are true

|| Logical Either comparison is true

! Logical The item is false

& Bitwise Mask bits

| Bitwise Set bits

^ Bitwise Exclusive or (XOR)

<< Bitwise Shift bits to the left

>> Bitwise Shift bits to the right

~ Unary One’s complement

! Unary NOT

* Unary Pointer (peeker)

APPENDIX D Data Types 423

Data Types
Standard Data Types

Type Value Range Conversion Character

void None None

_Bool 0 to 1 %d

char –128 to 127 %c

unsigned char 0 to 255 %u

short int –32,768 to 32,767 %d

unsigned short int 0 to 65,535 %u

int –2,147,483,648 to 2,147,483,647 %d

unsigned int 0 to 4,294,967,295 %u

long int –2,147,483,648 to 2,147,483,647 %ld

unsigned long int 0 to 4,294,967,295 %lu

long long -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

%lld

unsigned long long 0 to 18,446,744,073,709,551,615 %llu

float 1.2×10–38 to 3.4×1038 %e, %f, %g

Double 2.3×10–308 to 1.7×10308 %e, %f, %g

long double 3.4×10–4932 to 1.1×104932 %e, %f, %g

The %i placeholder generates integer output, the same as %d. (Think %i for inte-
ger, but %d for decimal.)

»» The %x placeholder outputs integer values in hexadecimal. When %X is
specified, numbers A through F are output in uppercase.

»» The %o placeholder outputs integer values in octal.

Appendix D

424 PART 7 Appendices

»» Some overlap exists between the size of an int and the size of a long. The
ranges depend on how these data types are implemented on a given system.

»» The limits.h header file lists the sizes of data types.

»» The size_t defined data type represents bytes in memory. This typedef value is
nominally a char, but size_t is used instead of char (or unsigned char). The
placeholder to represent this value is %z, though %zu (unsigned) and %zd
(decimal output) are also used.

APPENDIX E Escape Sequences 425

Escape Sequences
Characters What It Represents or Displays

\a Bell (“beep!”)

\b Backspace, non-erasing

\f Form feed or clear the screen

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash character

\? Question mark

\’ Single quote

\” Double quote

\xnn Hexadecimal character code nn

\onn Octal character code nn

\nn Octal character code nn

Appendix E

APPENDIX F Conversion Characters 427

Conversion Characters
Conversion Character What It Displays

%% Percent character (%)

%c Single character (char)

%d Integer value (short, int)

%e Floating-point value in scientific notation using a little E (float, double)

%E Floating-point value in scientific notation using a big E (float, double)

%f Floating-point value in decimal notation (float, double)

%g Substitution of %f or %e, whichever is shorter (float, double)

%G Substitution of %f or %E, whichever is shorter (float, double)

%i Integer value (short, int)

%ld Long integer value (long int)

%o Unsigned octal value; no leading zero

%p Memory location in hexadecimal (*pointer)

%s String (char *)

%u Unsigned integer (unsigned short, unsigned int, unsigned long)

%x Unsigned hexadecimal value, lowercase (short, int, long)

%X Unsigned hexadecimal value, capital letters (short, int, long)

Appendix F

428 PART 7 Appendices

Conversion-character formatting
The options available for conversion characters in C are extensive. The printf()
man page lists many of them, with some requiring a bit of experimentation to get
them correct. Generally speaking, here’s the format for the typical conversion
character:

%-pw.dn

Only the first and last characters are required: % is the percent sign that prefixes
all conversion characters, and n is the conversion character(s).

– The minus sign; works with the w option to right-justify output.

p The padding character, which is either zero or a space, when the w option is
used. The padding character is normally a space, in which case the p need
not be specified. When p is 0, however, the value is padded on the left with
zeroes to match the width set by the w option.

w The width option; sets the minimum number of positions in which the
information is displayed. Output is right-justified unless the – prefix is used.
Spaces are padded to the left, unless the p value specifies the character 0 (a
zero).

.d The dot, followed by a value, d, that describes how many digits to display
after the decimal in a floating-point value. If d isn’t specified, only the
whole-number portion of the value appears.

n A conversion character, as shown in the table in this appendix. Or it can be the
percent sign (%), in which case a % appears in the output.

APPENDIX G Order of Precedence 429

Order of Precedence
»» The order of precedence goes as shown in Table G-1 and is overridden by using

parentheses. C always executes the portion of an equation in parentheses
before anything else.

»» Incremented or decremented variables as lvalues (assigned to another value)
operate left-to-right. So, ++var increments before its value is assigned; var++
increments its value after it’s assigned. (See Table G-2.)

»» Associativity for the assignment operators moves right-to-left. For example,
the operation on the right side of += happens first.

»» The order of precedence may also be referred to as the order of operations.

Appendix G

TABLE G-1	 Standard Operator Precedence
Operator(s) Category Description

() [] -> . (period) Expression Function arguments, arrays, pointer members

! ~ -- + * & ++ -- Unary Logical not, one’s complement, positive, negative, pointer,
address-of, increment, decrement; operations right-to-left

* / % Math Multiplication, division, modulo

+ – Math Addition, subtraction

<< >> Binary Shift left, shift right

< > <= >= Comparison Less than, greater than, less than or equal to, greater than or
equal to

== != Comparison Is equal to, not equal to

& Binary And

^ Binary Exclusive or (XOR)

| Binary Or

(continued)

430 PART 7 Appendices

TABLE G-2	 Pointers and Precedence
Expression Address p Value *p

p Yes No

*p No Yes

*p++ Incremented after value is read Unchanged

*(p++) Incremented after value is read Unchanged

(*p)++ Unchanged Incremented after it’s read

*++p Incremented before value is read Unchanged

*(++p) Incremented before value is read Unchanged

++*p Unchanged Incremented before it’s read

++(*p) Unchanged Incremented before it’s read

Operator(s) Category Description

&& Logical And

|| Logical Or

?: Comparison Ternary operator, associativity goes right-to-left

= Assignment Variable assignment operator, including += and *= and all
assignment operators

, (comma) (None) Separates items in a for statement; precedence is left-to-right

TABLE G-1 (continued)

Index 431

Symbols
*/ character, 35–36
/* character, 35–36
-> operator, 316
+ (addition) operator,

61–63, 154
+= (addition) operator, 159
& (ampersand) operator, 93
& (AND) operator, 256, 259
&& (and) operator, 107–108
* (asterisk), pointers and,

281, 282–283, 406
-- (decrement) operator,

154–157
/ (division) operator,

61–63, 154
/= (division) operator, 159
// (double-slash), 36
= (equal) sign, 33, 102–

103, 154
> (greater than)

operator, 100
>= (greater than or equal to)

operator, 100
++ (increment) operator,

154–157
== (is equal to) operator,

100–102, 102–103
< (less than) operator, 100
<= (less than or equal to)

operator, 100
- (minus) sign, 33
% (modulo) operator,

154, 158
%= (modulo) operator, 159
* (multiplication) operator,

61–63, 154

*= (multiplication)
operator, 159

! (not) operator,
107–108, 259

!= (not equal to)
operator, 100

~ (ones’ complement)
operator, 259

| (OR) operator,
253–256, 259

|| (or) operator, 107–108
+ (plus) sing, 33
- (subtraction) operator,

61–63, 154
-= (subtraction)

operator, 159
?: (ternary) operator,

112–113
- (unary minus) operator, 154
+ (unary plus) operator, 154

A
abs() function, 161
adding

functions, 40–41
logical operators, 107–108
multiple for loop

conditions, 129
return statement, 39
text, 47–48

addition (+) operator, 154
addition (+=) operator, 159
address() function, 303
addresses, getting for arrays,

285–287
Algol, 22

aligning output, 206–207
allocating space for

structures, 314–316
ampersand (&) operator, 93
analytical engine, 21–22
and (&&) operator, 107–108
AND (&) operator, 256, 259
appending text to files,

345–346
arguments

defined, 32
for main() function,

225–229
passing to functions,

140–143
arithmetic, 61–63
arrayinc() function, 191
arrays

about, 89, 173–176
avoiding, 173–174
building of pointers,

296–300
character, 177–179
creating from structures,

216–217
declaring multidimensional,

188–189
empty char, 179–180
functions and, 189–191
getting addresses for,

285–287
initializing, 177
memory locations in, 277
multidimensional, 183–189
passing to functions,

189–191

Index

432 C Programming For Dummies

arrays (continued)

pointer math in, 287–292
pointers and, 285–294
reading size of, 272
resizing, 183
returning from

functions, 191
sorting, 181–183
substituting pointers for

notation in, 293–294
three-dimensional, 186–187
two-dimensional, 183–186

ASCII codes, 85, 121,
413–418

assigning
values on creation, 77
values to variables, 71
values using pointers,

283–284
assignment operators,

158–160, 408–409
asterisk (*), pointers and,

281, 282–283, 406
attributes, of variables, 270
auto keyword, 240
avoiding arrays, 173–174

B
B programming language,

22, 23
Babbage, Charles, 21–22
backslash character, 54–55,

76, 363
backwards() function, 150
bash shell program, 10
BASIC, 22
Basic Combined

Programming Language
(BCPL), 22, 23

beep() function, 31, 34
binary digits (bits)

! (NOT) operator, 259
~ (ones’ complement)

operator, 259
about, 249–251
binbin() function, 263
bitwise & operator, 256
bitwise | operator, 253–256
defined, 250
hexadecimal values,

264–266
manipulating, 253–263
negative binary

numbers, 262
outputting values, 251–253
reading, 348–350
shifting values, 259–263
writing, 346–348
XOR operator, 257–258

binbin() function, 251–253,
261, 263

bit field, 363
bits (binary digits)

! (NOT) operator, 259
~ (ones’ complement)

operator, 259
about, 249–251
binbin() function, 263
bitwise & operator, 256
bitwise | operator, 253–256
defined, 250
hexadecimal values,

264–266
manipulating, 253–263
negative binary

numbers, 262
outputting values, 251–253
reading, 348–350
shifting values, 259–263
writing, 346–348
XOR operator, 257–258

bitwise & operator, 256
bitwise | operator, 253–256
bitwise operators, 154
_Bool data type, 70, 74
braces, 34
break keyword, 110,

111–112, 128–129,
398–399

breaking out, of endless
loops, 127–129

breakpoints, setting, 387
bubble sort, 181–182
bugs

about, 381
debugger, 383–389
error messages, 390–392
resolving problems,

381–383
building

arrays from structures,
216–217

arrays of pointers, 296–300
Code::Blocks projects,

16–17
custom header files,

374–377
empty files, 17
external structure

variables, 243–245
functions, 133–136
functions to return values,

143–145
linked lists, 316–323
logic comparisons, 106–107
projects, 16–17, 18–19
static variables, 238–241
string storage, 308–309
strings, 200–202
with typedef keyword,

235–238
byte, 250

Index 433

C
C compiler, 11, 76
C library references, 19, 32
%c placeholder, 88
C programming language

about, 22–23, 29
comments, 35–36
components of, 29–36
functions, 31–32
keywords, 30–31
operators, 33
statements, 33–35
structure, 33–35
typical program in, 37–41
values, 33
variables, 33

C++ programming language,
22, 23

Caesar, Julius, 330
calendar, 330
calling directories, 359–361
calloc() function, 309–311
case statement, 109–110
cc compiler, 11
ceil() function, 161, 162
changing characters,

197–198
char arrays, 89, 92, 94, 95,

178–180
char data type, 69, 70, 74, 81
character arrays. See strings
character I/O, 83–88
character variables, 87–88
characters, fetching with

getchar() function, 84–86
chdir() function, 364–365
checking

clocks, 331–332
location of variables,

275–278

clang compiler, 26, 160,
372, 379

clock() function, 331
clocks, checking, 331–332
closing

command prompt, 223
terminal window, 223

COBOL, 22
code

constants in, 80–81
reading, 409
running in Text mode,

223–224
splitting, 377
talking through, 382
working on, 405

code listings
% (modulo) operator, 158
-- (decrement) operator,

156, 157
= (equal) sign, 102, 157
++ (increment) operator,

156, 157
== (is equal to) operator,

101–102
| (OR) operator, 254, 255
?: (ternary) operator, 113
adding multiple for loop

conditions, 129
adding return statement, 39
aligning output, 206
allocating input buffers, 309
allocating space for

structures, 315–316
appending text to files, 345
argument counter, 228
array of strings, 185
array program, 293
arrays, 176
arrays and pointer math,

288, 290, 291

assigning values, 77
assigning values using

pointers, 283–284
assignment operators, 159
avoiding arrays, 174
avoiding function

prototype, 137–138
basic function, 135
binbin() function, 252
breaking out of endless

loops, 128
bubble sort, 181–182
calloc() function, 310
changing characters, 197
character variables, 88
checking location of

variables, 276
Code::Blocks C skeleton, 4,

15, 37
comparing values, 100–101
computer math, 62
constants, 149
converting degrees to

radians, 164
copying files, 367
counting by letters, 121
counting by two, 120
counting with for loops, 119
creating arrays from

structures, 216–217
creating custom header

files, 374–375, 376
creating file-dumper

programs, 349
creating files, 366
creating functions to return

values, 143, 145
creating linked lists,

317–318, 320–322
creating static variables,

238–239
creating structures, 236

434 C Programming For Dummies

code listings (continued)

debugger, 385
decision-making, 111–112
declaring initialized

structures, 215
declaring strings using

pointers, 295
declaring variables, 77
deleting files, 368
directories, 364
disabling statements, 49
displaying char arrays, 178
displaying humorous

messages, 46
displaying text with printf()

function, 52
displaying two lines of

text, 47
displaying values, 59
double-slash comments, 36
do-while loop, 125
editing linked lists, 324–327
endless loops, 127
enum keyword, 245–246
error messages, 390–391
errors in source code,

50, 55
exiting functions with

return, 146
external variables, 242
fetching characters with

getchar() function, 84
fgets() function and,

344–345
Fibonacci sequence, 125
filling char arrays, 179
formatting floating

points, 203
free() function, 313–314
fseek() function, 356
ftell() function, 354–355

getting addresses for
arrays, 286

Hello World program, 25
hexadecimals, 265
if-else comparison, 105
integers, 65
ìnteracting variables, 78
linking two source files,

370, 372
local variables in

functions, 139
logic comparisons, 107
for loops, 116, 130–131
main() function, 38
malloc() function, 307
math functions, 161–162
memory locations in

arrays, 277
multiline comments, 36
multiple-choice

selections, 109
multivariable, 212
nested for loops, 122
nested structures, 218–219
overly commented source

code, 35
passing arrays to

functions, 190
passing pointers to

functions, 302
passing structures to

functions, 244
passing values to

functions, 141
pointer arrays, 296–297,

297–298
pointers, 280, 282
preparing for constant

updates, 82
pulling files from

directories, 360–361
quitting programs, 229–230

random numbers, 166,
168, 169

reading binary data, 348
reading command line, 225
reading size of arrays, 272
reading size of

structures, 273
reading size of variables,

271–272
reading strings with fget()

function 5, 95
reading strings with scanf()

function, 92
reading text from files,

342–343
reading values with scanf()

function, 93
realloc() function, 311–312
renaming files, 366
reusing variables, 78
rewind() function, 354–355
semicolons, 103
setting output width,

204–205
sharing variables between

modules, 373, 374
shifting binary values, 260
simple comparison, 98
simple program that does

nothing, 38
single-character input

function, 209
snoozing time, 336
sorting strings, 300–301
stat() function, 362
storing strings, 89
strcat() function, 201
strcmp() function, 200
stream input, 207, 208
strings and pointers, 294
system() function, 230–231

Index 435

testing characters, 195–196
tic-tac-toe board, 184, 187
time() function, 332, 335
trigonometry, 164–165
typecasting, 234
typedef keyword,

235–236, 237
unsigned int, 74
using putchar() function, 86
values, 79
variables, 68, 71
viewing timestamps, 333
watching variables, 388
while loop, 124
writing binary data, 346
writing structures to files,

351, 352–353
writing text to files, 341
XOR operator, 257–258

Code::Blocks IDE
about, 11
building projects, 16–17
installing, 12–13
skeleton code listing, 4, 15
workspace, 13–14

coding. See programming
command line

reading, 225–227
tools, as requirement for

programming, 10
command prompt

about, 221
arguments for main()

function, 225–229
launching terminal window,

221–224
programming in, 10–11
quitting programs, 229–230
reading command line,

225–227

running another program,
230–231

running code in Text mode,
223–224

command prompt
programming, 15–16

commas, in for loops, 398
comments

about, 35–36
statements and, 49
writing, 382–383

comparing
conditions and, 395–397
logic, 106–108
simple, 97–99
text, 199–200
values, 100–102

comparison operators,
100–102

compiler messages, 138
compilers/compiling,

26–27, 35
complex decisions, 104–105
computer, as requirement

for programming, 10
conditions, 395–397
const type, 147, 240
constants

about, 79, 147
in code, 80–81
defined, 147–150
reusing values, 79–80
using, 81–82

conversion characters,
59–60, 427–428

convert() function, 143–145
copying files, 367–368
cos() function, 164
counting, with for statement,

119–120

creating
arrays from structures,

216–217
arrays of pointers, 296–300
Code::Blocks projects,

16–17
custom header files,

374–377
empty files, 17
external structure

variables, 243–245
functions, 133–136
functions to return values,

143–145
linked lists, 316–323
logic comparisons, 106–107
projects, 16–17, 18–19
static variables, 238–241
string storage, 308–309
strings, 200–202
with typedef keyword,

235–238
creativity, in names, 404–405
ctime() function, 331, 333,

334–336
CTYPE functions, 193–195
curly brackets, 34, 109, 115,

123, 134, 213, 399

D
%d placeholder, 59, 65, 68
D programming language, 23
data types, 69–70, 423–424
debugger, 383–389
decision making

about, 97
adding logical operators,

107–108
adding third options,

105–106
break statements, 111–112

436 C Programming For Dummies

decision making (continued)

building logical
comparisons, 106–107

comparing = and ==,
102–103

comparing values, 100–102
complex, 104–105
if keyword, 99–100
multiple, 104–106
multiple comparisons with

logic, 106–108
semicolons, 103–104
simple comparisons, 97–99
switch-case structure,

108–112
?: (ternary) operator,

112–113
declaring

multidimensional arrays,
188–189

strings using pointers,
295–296

variables, 70
decrement (--) operator,

154–157
#define directive, 147, 148
defined constants

about, 147–148
using, 148–150

deleting files, 368
devices, input/output (I/O),

83–84
difftime() function, 331, 336
directories

calling, 359–361
separating files from, 363
stat() function, 361–363

directory tree, 364–365
disabling statements, 49
discount() function, 302
displaying

humorous messages,
45–46

strings using pointers,
294–295

text on-screen, 45–51
text with printf()

function, 52
values with printf() function,

59–60
division (/) operator, 154
division (/=) operator, 159
documenting flow, 382
double data type, 69, 74
double-pointer notation, 298
double-slash (//), 36
double-word, 250
do-while loop, 125–126
dump, 350

E
editing linked lists, 323–328
Editor, Code::Blocks

workspace, 14
elements, in arrays, 175
else if statement, 105–106
emacs text mode editor, 11
endless loops, 126–128,

400–401
enum keyword, 240,

245–247, 294
enumerating, 245–247
equal (=) sign, 33,

102–103, 154
error messages, 390–392
errors

defined, 51
in source code, 49–51,

55–56
escape sequences

about, 425
using, 54–55

escaping, 76
ex0201 program, 28
exit condition, 116, 117
exit() function, 229–230
extern keyword, 240,

243, 373
external variables, 241–243

F
%f placeholder, 59
feof() function, 353
fgetc() function, 342–343,

350, 367
fgets() function, 94–96, 179,

309, 340, 344–345,
401, 405

Fibonacci sequence, 125–126
files

appending text to, 345–346
copying, 367–368
creating empty, 17
deleting, 368
directories, 359–365
header, 41
library, 41
linking two source, 370–372
reading data from, 353–355
reading text from, 342–345
renaming, 365–367
rewinding data in, 353–355
saving linked lists to, 357
separating from

directories, 363
writing structures to,

351–353
writing text to, 341–342

fill_data() function, 303
filling structures, 215–216
fillstructure() function, 377
finding

Index 437

specific records, 355–357
Windows files in

Ubuntu, 224
float data type, 69, 74
float variable, 233–234
floating points. See floats
floating-point numbers. See

floats
floats

about, 58
formatting, 202–204
integers compared with,

62–63
pretending integers are,

64–65
floor() function, 161
flow, documenting, 382
folders. See directories
fopen() function, 340, 341,

345–346
for loops

about, 116, 117–119
adding multiple

conditions, 129
commas in, 398
counting with, 119–120
creating structures, 322
for letters, 120–121
nesting, 121–123
for a specific numbers of

times, 116–117
for statement, 119–120

formatting
floating points, 202–204
with printf() function,

202–207
FORTRAN language, 22
forward() function, 150
fprintf() function, 340,

342, 347
fputc() function, 367

fputchar() function, 340
fputs() function, 340, 344
fread() function, 348–349,

350, 353, 357, 360
free() function, 313–314
freeing memory, 313–314
fscanf() function, 340
fseek() function, 355–357
ftell() function, 354–355
functions

about, 31–32
abs(), 161
adding, 40–41
address(), 303
anatomy of, 133–138
arrayinc(), 191
arrays and, 189–191
backwards(), 150
beep(), 31, 34
binbin(), 251–253,

261, 263
calloc(), 309–311
ceil(), 161, 162
character manipulation,

193–198
chdir(), 364–365
clock(), 331
constants, 147–150
constructing, 133–136
convert(), 143–145
cos(), 164
creating that return values,

143–145
ctime(), 331, 333, 334–336
CTYPE, 193–195
difftime(), 331, 336
discount(), 302
exit(), 229–230
feof(), 353
fgetc(), 342–343, 350, 367

fgets(), 94–96, 179, 309, 340,
344–345, 401, 405

fill_data(), 303
fillstructure(), 377
floor(), 161
fopen(), 340, 341, 345–346
forward(), 150
fprintf(), 340, 342, 347
fputc(), 367
fputchar(), 340
fputs(), 340, 344
fread(), 348–349, 350, 353,

357, 360
free(), 313–314
fscanf(), 340
fseek(), 355–357
ftell(), 354–355
fwrite(), 347, 350, 357
getc(), 85
getch(), 209–210
getchar(), 84–86, 87, 89,

143, 209
getcwd(), 364–365
gets(), 96
graph(), 142–143
initialize(), 245
isalnum(), 194
isalpha(), 194
isblank(), 197
iscntrl(), 194
isdigit(), 194
isgraph(), 194
islower(), 194
isprint(), 194
ispunct(), 194
isspace(), 194
isupper(), 194
isxdigit(), 194
limit(), 146
load(), 357

438 C Programming For Dummies

functions (continued)

localtime(), 331, 334–336
main()

about, 70
arguments for, 136,

225–229
code listing, 38
constants and, 80
missing parentheses

in, 399
passing pointers to

functions, 303
prompt() function and, 137
return statement and, 145
setting, 38–39
using, 138
variables in, 140

make_structure(), 322–323
malloc(), 303, 306–309, 311,

312, 314, 315
math, 160–165
mkdir(), 364–365
monster(), 303
nice(), 190
opendir(), 359–361
passing arguments to,

140–143
passing arrays to, 189–191
passing pointers to, 302
passing structures

to, 219
pointers in, 302–303
pow(), 161, 378
printf()

about, 19, 40–41, 51,
52–53, 72, 85

arguments for, 176, 213
binary functions and,

251, 252
constants in, 82

conversion character in,
334, 400

counting by letters, 121
counting by two, 120
for debugging, 381
displaying strings using

pointers, 294–295
displaying text with, 52
displaying values with,

59–60
external variables, 243
formatting with, 202–207
nested for loop, 122
newline character and, 53
prompt() function and, 136
random numbers

and, 167
returning values with,

143, 144
stat() function and, 363
storing strings, 89
wrapping statements, 162

printstructure(), 377
proc(), 239
prompt(), 136, 137
prototyping, 134, 136–138
putchar(), 86–87, 120, 122,

143, 296
puts(), 31, 32, 46–49, 51, 53,

294–295, 381, 382
railway(), 142
rand(), 32, 166–170
readdir(), 360–361
read_next_character(), 405
realloc(), 311–313
rename(), 365–367, 391
returning arrays from, 191
returning early, 145–146
returning pointers

from, 303

rewind(), 354–355
rmdir(), 364–365
save(), 357
scanf(), 90–94, 167, 180,

202, 212, 239, 278, 308,
323, 401

second(), 370, 372
sending values to, 140–143
setringervolume(), 405
showarray(), 190–191
sin(), 164
sleep(), 331, 336
sqrt(), 32, 161
srand(), 167, 169
stat(), 361–363
for storage, 339–357
strcat(), 199, 200–202
strchr(), 199
strcmp(), 199–200
strcpy(), 199
string, 198–202
strlen(), 199, 273
strncat(), 199
strncmp(), 199–200
strncpy(), 199
strrchr(), 199
strstr(), 199
swap(), 303
system(), 230–231
tan(), 164
time(), 168–169,

331–332, 333
toascii(), 198
tolower(), 194, 197–198
toupper(), 194, 197–198
trigonometric, 163–165
unlink(), 368
variables and, 139–146
vegas(), 140

Index 439

verify(), 150
whatever(), 189
writeln(), 56
writing, 405

fwrite() function, 347,
350, 357

G
gcc compiler, 11
generating

arrays from structures,
216–217

arrays of pointers,
296–300

Code::Blocks projects,
16–17

custom header files,
374–377

empty files, 17
external structure

variables, 243–245
functions, 133–136
functions to return values,

143–145
linked lists, 316–323
logic comparisons, 106–107
projects, 16–17, 18–19
static variables, 238–241
string storage, 308–309
strings, 200–202
with typedef keyword,

235–238
getc() function, 85
getch() function, 209–210
getchar() function, 84–86, 87,

89, 143, 209
getcwd() function, 364–365
gets() function, 96
goto keyword, 131

graph() function, 142–143
greater than (>)

operator, 100
greater than or equal to (>=)

operator, 100
groupings, binary, 250

H
header files, 32, 41, 374–377
Hello World program,

14–19, 25
hexadecimals, 264–266
high-level languages, 30
Homebrew package

manager, 11
Hopper, Grace, 22
humorous messages,

displaying, 45–46

I
icons, explained, 4–5
IDE. See integrated

development
environment (IDE)

if statement
CTYPE functions and, 196
in simple comparisons,

97–99
using, 99–100

if-else comparison, 104–105,
196, 407–408

immediate value, 67
#include directives, 27,

34, 373
increment (++) operator,

154–157
initialization, of loops,

115, 117
initialize() function, 245
initializing

arrays, 177
pointers, 279–280

input devices, 83–84
input/output (I/O)

character, 83–88
fetching characters with

getchar() function, 84–86
input devices, 83–84
output devices, 83–84
reading strings with scanf()

function, 91–93
reading values with scanf()

function, 93–94
scanf() function, 90–91
storing strings, 89–90
text, 88–96
using fgets() function for

text input, 94–96
using putchar() function,

86–87
working with character

variables, 87–88
installing

clang, 11
Code::Blocks IDE, 12–13
Ubuntu, 10
Xcode, 11

int data type, 69, 70, 74
integers

about, 58
compared with floats,

62–63
pretending they’re floats,

64–65
integrated development

environment (IDE)
Code::Blocks, 11–14
programming in, 11–14
as requirement for

programming, 10

440 C Programming For Dummies

Internet access, as
requirement for
programming, 10

Internet resources
Code::Blocks IDE, 11
Homebrew package

manager, 11
VIM editor, 11

is equal to (==) operator,
100–102, 102–103

isalnum() function, 194
isalpha() function, 194
isblank() function, 197
iscntrl() function, 194
isdigit() function, 194
isgraph() function, 194
islower() function, 194
isprint() function, 194
ispunct() function, 194
isspace() function, 194
isupper() function, 194
isxdigit() function, 194

J
Julian calendar, 330

K
Kernighan, Brian, 22
keywords, 30–31, 419–420

L
launching terminal windows,

221–224
less than (<) operator, 100
less than or equal to (<=)

operator, 100
letters, looping, 120–121
levels, of programming

languages, 30

libraries
defined, 32
files for, 41
linking, 378–379

limit() function, 146
line numbers, 51
linked lists

about, 305–306, 314
allocating space for

structures, 314–316
creating, 316–323
editing, 323–328
saving, 328
saving to files, 357

linker, 26
linking

about, 26–27
libraries, 378–379
two source code files,

370–372
Linux

Code::Blocks IDE, 11, 12
command prompt

programming in, 10
opening Terminal app, 222

listings, code
% (modulo) operator, 158
-- (decrement) operator,

156, 157
= (equal) sign, 102, 157
++ (increment) operator,

156, 157
== (is equal to) operator,

101–102
| (OR) operator, 254, 255
?: (ternary) operator, 113
adding multiple for loop

conditions, 129
adding return statement, 39
aligning output, 206

allocating input buffers, 309
allocating space for

structures, 315–316
appending text to files, 345
argument counter, 228
array of strings, 185
array program, 293
arrays, 176
arrays and pointer math,

288, 290, 291
assigning values, 77
assigning values using

pointers, 283–284
assignment operators, 159
avoiding arrays, 174
avoiding function

prototype, 137–138
basic function, 135
binbin() function, 252
breaking out of endless

loops, 128
bubble sort, 181–182
calloc() function, 310
changing characters, 197
character variables, 88
checking location of

variables, 276
Code::Blocks C skeleton, 4,

15, 37
comparing values, 100–101
computer math, 62
constants, 149
converting degrees to

radians, 164
copying files, 367
counting by letters, 121
counting by two, 120
counting with for loops, 119
creating arrays from

structures, 216–217

Index 441

creating custom header
files, 374–375, 376

creating file-dumper
programs, 349

creating files, 366
creating functions to return

values, 143, 145
creating linked lists,

317–318, 320–322
creating static variables,

238–239
creating structures, 236
debugger, 385
decision-making, 111–112
declaring initialized

structures, 215
declaring strings using

pointers, 295
declaring variables, 77
deleting files, 368
directories, 364
disabling statements, 49
displaying char arrays, 178
displaying humorous

messages, 46
displaying text with printf()

function, 52
displaying two lines of

text, 47
displaying values, 59
double-slash comments, 36
do-while loop, 125
editing linked lists, 324–327
endless loops, 127
enum keyword, 245–246
error messages, 390–391
errors in source code,

50, 55
exiting functions with

return, 146
external variables, 242

fetching characters with
getchar() function, 84

fgets() function and,
344–345

Fibonacci sequence, 125
filling char arrays, 179
formatting floating

points, 203
free() function, 313–314
fseek() function, 356
ftell() function, 354–355
getting addresses for

arrays, 286
Hello World program, 25
hexadecimals, 265
if-else comparison, 105
integers, 65
ìnteracting variables, 78
linking two source files,

370, 372
local variables in

functions, 139
logic comparisons, 107
for loops, 116, 130–131
main() function, 38
malloc() function, 307
math functions, 161–162
memory locations in

arrays, 277
multiline comments, 36
multiple-choice

selections, 109
multivariable, 212
nested for loops, 122
nested structures, 218–219
overly commented source

code, 35
passing arrays to

functions, 190
passing pointers to

functions, 302

passing structures to
functions, 244

passing values to
functions, 141

pointer arrays, 296–297,
297–298

pointers, 280, 282
preparing for constant

updates, 82
pulling files from

directories, 360–361
quitting programs, 229–230
random numbers, 166,

168, 169
reading binary data, 348
reading command line, 225
reading size of arrays, 272
reading size of

structures, 273
reading size of variables,

271–272
reading strings with fget()

function 5, 95
reading strings with scanf()

function, 92
reading text from files,

342–343
reading values with scanf()

function, 93
realloc() function, 311–312
renaming files, 366
reusing variables, 78
rewind() function, 354–355
semicolons, 103
setting output width,

204–205
sharing variables between

modules, 373, 374
shifting binary values, 260
simple comparison, 98
simple program that does

nothing, 38

442 C Programming For Dummies

listings, code (continued)

single-character input
function, 209

snoozing time, 336
sorting strings, 300–301
stat() function, 362
storing strings, 89
strcat() function, 201
strcmp() function, 200
stream input, 207, 208
strings and pointers, 294
system() function, 230–231
testing characters, 195–196
tic-tac-toe board, 184, 187
time() function, 332, 335
trigonometry, 164–165
typecasting, 234
typedef keyword,

235–236, 237
unsigned int, 74
using putchar() function, 86
values, 79
variables, 68, 71
viewing timestamps, 333
watching variables, 388
while loop, 124
writing binary data, 346
writing structures to files,

351, 352–353
writing text to files, 341
XOR operator, 257–258

LLVM clang compiler, 11
load() function, 357
localtime() function, 331,

334–336
logic comparisons, 106–108
logical operators, 107–108
Logs, Code::Blocks

workspace, 14
long, 250
long int data type, 74

loops
for, 116–123, 129
about, 115–116
breaking out of, 128–129
endless, 126–128, 400–401
goto, 131
semicolons and, 397
troubleshooting, 130–131
while, 123–126

low-level languages, 30

M
Mac

opening Terminal app, 222
Xcode, 11

Mac OS X, command prompt
programming in, 11

macros, 85
main() function

about, 70
arguments for, 136,

225–229
code listing, 38
constants and, 80
missing parentheses in, 399
passing pointers to

functions, 303
prompt() function and, 137
return statement and, 145
setting, 38–39
using, 138
variables in, 140

make_structure() function,
322–323

malloc() function, 303,
306–309, 311, 312,
314, 315

man program, 19
Management pane,

Code::Blocks
workspace, 14

manipulating binary digits
(bits), 253–263

math
-- operator, 156–157
++ operator, 156–157
about, 57, 153
arithmetic, 61–63
assignment operators,

158–160
decrementing, 154–156
float-integer, 63–64
functions, 160–165
incrementing, 154–156
integers, 64–66
modulus operator, 158
operators, 153–160
order of precedence,

170–171
for pointers in arrays,

287–292
random numbers, 166–170
trigonometry, 163–165

math operators, 61–63
member operator, 214
memory

about, 305–306
calloc() function, 309–311
creating string storage,

308–309
freeing, 313–314
malloc() function, 306–309
reallocating, 311–313

midlevel languages, 30
minus (-) sign, 33
MJD (Modified Julian

Date), 330
mkdir() function, 364–365
mode, 340
Modified Julian Date

(MJD), 330
modules

Index 443

about, 369
breaking into, 406
creating custom header

files, 374–377
defined, 370
libraries, 378–379
linking two source code

files, 370–372
multi-, 369–377
sharing variables between,

372–374
modulo (%) operator,

154, 158
modulo (%=) operator, 159
monster() function, 303
multidimensional arrays

about, 183
declaring, 188–189
three-dimensional, 186–187
two-dimensional, 183–186

multiple decisions, 104–106
multiple-choice selections,

108–110
multiplication (*)

operator, 154
multiplication (*=)

operator, 159
multivariables, 211–213
“My Dear Aunt Sally”

mnemonic, 170

N
names

creativity in, 404–405
of variables, 70

negative binary
numbers, 262

nested for loops,
121–123, 167

nested structures, 218–219
newline character, 53
nice() function, 190

not equal to (!=)
operator, 100

not (!) operator,
107–108, 259

notation, pointer vs.
array, 299

NULL value, 92, 306, 333
numbers, random,

166–170, 333

O
object code, 26
octal, 266
OCTO constant, 147–148
ones’ complement (~)

operator, 259
on-screen, displaying text,

45–51
Open command, 17
opendir() function, 359–361
operating system, returning

something to the, 39–40
operators. See also specific

operators
about, 33, 421–422
assignment, 158–160,

408–409
comparison, 100–102
logical, 107–108
math, 61–63, 153–160
member, 214
shift, 259–263

or (||) operator, 107–108
OR (|) operator,

253–256, 259
order of precedence,

170–171, 429–430
output

aligning, 206–207
of binary values, 251–253
devices for, 83–84
setting width for, 204–206

P
parentheses

in functions, 31, 134
missing, 399
order of precedence

and, 171
pointers and, 292

Pascal, 22
passing

arguments to functions,
140–143

arrays to functions,
189–191

pointers to functions, 302
structures to functions,

219, 243–245
plus (+) sign, 33
pointers

about, 269, 279–282, 406
arrays and, 285–294
building arrays of, 296–300
declaring strings using,

295–296
displaying strings using,

294–295
in functions, 302–303
getting addresses of arrays,

285–287
math in arrays, 287–292
passing to functions,

302–303
problems with, 269–270
returning from

functions, 303
sorting strings, 300–301
strings and, 294–301
substituting for array

notation, 293–294
variable storage, 270–278
working with, 282–284

posture, 404
pow() function, 161, 378

444 C Programming For Dummies

powers of 2, 250
PowerShell, 222
precedence, order of,

170–171
precision, 59
preprocessor directives, 27
print() statement, 65
printf() function

about, 19, 40–41, 51, 52–53,
72, 85

arguments for, 176, 213
binary functions and,

251, 252
constants in, 82
conversion character in,

334, 400
counting by letters, 121
counting by two, 120
for debugging, 381
displaying strings using

pointers, 294–295
displaying text with, 52
displaying values with,

59–60
external variables, 243
formatting with, 202–207
nested for loop, 122
newline character and, 53
prompt() function and, 136
random numbers and, 167
returning values with,

143, 144
stat() function and, 363
storing strings, 89
wrapping statements, 162

printstructure() function, 377
proc() function, 239
programming

command prompt, 10–11,
15–16

defined, 21

history of, 21–23
in integrated development

environment (IDE),
11–14

process of, 23–28
requirements for, 9–10

programs
quitting, 229–230
running other, 230–231

projects
building, 18–19
creating, 16–17
running, 18–19

prompt() function, 136, 137
prototype, 32
prototyping functions, 134,

136–138
pseudo-random

numbers, 166
putchar() function, 86–87,

120, 122, 143, 296
puts() function, 31, 32, 46–49,

51, 53, 294–295, 381, 382

Q
quitting programs, 229–230

R
radians, 163–164
railway() function, 142
rand() function, 32, 166–170
random file access

about, 350–351
finding specific records,

355–357
reading, 353–355
rewinding, 353–355
saving linked lists to

files, 357
writing structures to files,

351–353

random numbers,
166–170, 333

readdir() function, 360–361
reading

binary data, 348–350
code, 409
command line, 225–227
data from files, 353–355
size of arrays, 272
size of structures, 273
size of variables, 271–275
strings with scanf() function,

91–93
text from tiles, 342–345
values with scanf() function,

93–94
read_next_character()

function, 405
realloc() function, 311–313
reallocating memory,

311–313
records, finding specific,

355–357
redimensioning arrays, 183
register keyword, 240
release number, 12
Remember icon, 4
rename() function,

365–367, 391
renaming files, 365–367
repeat each condition, 117
resizing arrays, 183
return statement, 39, 134,

144, 145–146, 245
returning

arrays from functions, 191
pointers from

functions, 303
reusing

values, 79–80
variables, 77–79

Index 445

rewind() function, 354–355
rewinding data in files,

353–355
Ritchie, Dennis, 22
rmdir() function, 364–365
Run button, 18
running

about, 27–28
code in Text mode,

223–224
other programs, 230–231
projects, 18–19

S
save() function, 357
saving linked lists, 328, 357
scanf() function, 90–94, 167,

180, 202, 212, 239, 278,
308, 323, 401

second() function, 370, 372
semicolons, 34, 103–104, 397
sending values to functions,

140–143
separating files from

directories, 363
sequential file access,

339–350
setringervolume()

function, 405
setting

breakpoints, 387
main() function, 38–39
output width, 204–206

setup
debugger, 383–384
variables, 68–69

sharing variables between
modules, 372–374

shift operators, 259–263
shifting binary values,

259–263

short int data type, 74
showarray() function,

190–191
showing

humorous messages,
45–46

strings using pointers,
294–295

text on-screen, 45–51
text with printf()

function, 52
values with printf() function,

59–60
sin() function, 164
single precision float data

type, 72
sizeof operator, 273–275, 306
sleep() function, 331, 336
snoozing time, 336
sorting

arrays, 181–183
strings, 300–301

source code
defined, 23
errors in, 49–51, 55–56
writing, 24–26

splitting code, 377
sqrt() function, 32, 161
square brackets, 175, 177
srand() function, 167, 169
stat() function, 361–363
statements

comments and, 49
disabling, 49

statements about, 33–35
static keyword, 240
static variables, 238–241
Status bar, Code::Blocks

workspace, 14
stdin, 84

stdout, 84
storage

permanent functions for,
339–357

random file access,
350–357

sequential file access,
339–350

strings, 89–90
variable, 270–278

Stoustroup, Bjarne, 22
strcat() function, 199,

200–202
strchr() function, 199
strcmp() function, 199–200
strcpy() function, 199
stream input, 207–210, 402
stream-oriented input, 86
strings

about, 177–179
building, 200–202
creating storage for,

308–309
declaring using pointers,

295–296
defined, 31, 193
displaying using pointers,

294–295
pointers and, 294–301
reading with scanf()

function, 91–93
sorting, 300–301
storing, 89–90
time, 334–336
using, 177–179

strlen() function, 199, 273
strncat() function, 199
strncmp() function, 199–200
strncpy() function, 199
strrchr() function, 199

446 C Programming For Dummies

strstr() function, 199
struct keyword, 213–214
structures

about, 33–35
allocating space for,

314–316
creating arrays from,

216–217
filling, 215–216
multivariables, 211–213
nested, 218–219
passing to functions, 219
putting within other

structures, 218–219
reading size of, 273
struct keyword, 213–214
writing to files, 351–353

substituting pointers for
array notation, 293–294

subtraction (-) operator, 154
subtraction (-=)

operator, 159
swap() function, 303
switch structure, 111,

398–399
switch-case structure,

108–112, 247, 407–408
syntax, 33
system() function, 230–231

T
tan() function, 164
Technical Stuff icon, 5
Terminal app, 11, 222
terminal windows, launching,

221–224
ternary (?:) operator,

112–113
testing

about, 27–28
characters, 195–197

text
adding, 47–48
aligning output, 206–207
appending to files, 345–346
building strings, 200–202
changing characters,

197–198
character manipulation

functions, 193–198
comparing, 199–200
CTYPE functions, 193–195
displaying on-screen,

45–51
displaying with printf()

function, 52
formatting floating point,

202–204
input of using fgets()

function for, 94–96
printf() function formatting,

202–207
reading from files, 342–345
setting output width,

204–206
stream based input,

207–210
string functions, 198–202
testing characters, 195–197
writing to files, 341–342

text I/O, 88–96
Text mode, running code in,

223–224
text part, 47
three-dimensional arrays,

186–187
time

about, 329
calendar, 330
checking clock, 331–332
random numbers and, 333
snoozing, 336
strings and, 334–336

viewing timestamps,
333–334

working with, 330–331
time() function, 168–169,

331–332, 333
timestamps, viewing,

333–334
Tip icon, 5
toascii() function, 198
tolower() function, 194,

197–198
toolbars, Code::Blocks

workspace, 14
toupper() function, 194,

197–198
trigonometry, 163–165
triple nested loop, 123
troubleshooting loops,

130–131
2, powers of, 250
two-dimensional arrays,

183–186
type data type, 70
typecasting, 169, 233–235
typedef keyword, 235–238,

274, 319

U
Ubuntu, 10, 224
unary minus (-) operator, 154
unary plus (+) operator, 154
undefined reference, 162
union keyword, 240
Unix

command prompt
programming in, 10

displaying math
functions, 162

locating files in, 41
opening Terminal app, 222
string functions, 199
time and, 330

Index 447

Unix epoch, 330
unlink() function, 368
unsigned char data type, 74
unsigned int data type, 74
unsigned long int data

type, 74
unsigned short int data

type, 74

V
value range, 73
values. See also arguments

about, 33, 57–58, 70–71
assigning on creation, 77
assigning to variables, 71
assigning using pointers,

283–284
comparing, 100–102
creating functions to

return, 143–145
displaying with printf()

function, 59–60
floating-point, 59
hexadecimal, 264
outputting binary, 251–253
reading with scanf()

function, 93–94
reusing, 79–80
sending to functions,

140–143
variables, 67–73
zeros, 61

variables
about, 33, 67
assigning values on

creation, 77
assigning values to, 71
attributes of, 270
checking location of,

275–278
controlling, 233–241

creating external structure,
243–245

data types, 69–70
declaring, 70
enumerating, 245–247
external, 241–243
functions and, 139–146
more-specific data types,

73–75
reading size of, 271–275
reusing, 77–79
setting up, 68–69
sharing between modules,

372–374
static, 238–241
storage of, 270–278
typecasting, 233–235
typedef keyword, 235–238
using, 70–73
watching, 388–389
working with several, 75–76

vegas() function, 140
verify() function, 150
verifying

clocks, 331–332
location of variables,

275–278
vi text mode editor, 11
View menu, Code::Blocks

workspace, 14
viewing timestamps,

333–334
VIM editor, 11
void type, 69, 75, 134
volatile keyword, 240
von Neumann, John, 22

W
Warning icon, 5
warnings, 50–51, 399–400

websites
Code::Blocks IDE, 11
Homebrew package

manager, 11
VIM editor, 11

whatever() function, 189
while loop

about, 123, 178–179, 196
creating structures, 322
do-while loop, 125–126
feof() function and, 343
structure of,

123–124
white space, 34, 407
Windows 10

Code::Blocks IDE, 11
command prompt

programming in, 10
locating files in, 41
opening Terminal

app, 222
word, 250
workspace, Code::Blocks IDE,

13–14
writeln() function, 56
writing

binary data, 346–348
comments, 382–383
functions, 405
source code, 24–26
structures to files, 351–353
text to files, 341–342

X
Xcode, 11
XOR operator, 257–258, 259

Z
zeros, extra, 61

About the Author
Dan Gookin has been writing about technology for nearly three decades. He com-
bines his love of writing with his gizmo fascination to create books that are infor-
mative, entertaining, and not boring. Having written over 160 titles with 12 million
copies in print translated into over 30 languages, Dan can attest that his method
of crafting computer tomes seems to work.

Perhaps his most famous title is the original DOS For Dummies, published in 1991.
It became the world’s fastest-selling computer book, at one time moving more
copies per week than the New York Times number-one bestseller (though, as a ref-
erence, it could not be listed on the Times’ Best Sellers list). That book spawned
the entire line of For Dummies books, which remains a publishing phenomenon to
this day.

Dan’s most popular titles include PCs For Dummies, Laptops For Dummies, and
Microsoft Word For Dummies. He also maintains the vast and helpful website
www.wambooli.com.

Dan holds a degree in Communications/Visual Arts from the University of
California, San Diego. He lives in the Pacific Northwest, where he enjoys spending
time annoying people who deserve it.

Publisher’s Acknowledgments

Acquisitions Editor: Katie Mohr

Senior Project Editor: Paul Levesque

Copy Editor: Becky Whitney

Production Editor: Tamilmani Varadharaj

Cover Image: © kasezo/Getty Images

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	Why the C Language?
	The C Programming For Dummies Approach
	How This Book Works
	Icons Used in This Book
	Parting Thoughts

	Part 1 The ABs of C
	Chapter 1 A Quick Start for the Impatient
	What You Need to Program
	Command Prompt Programming
	IDE Programming
	Installing Code::Blocks
	Touring the Code::Blocks workspace

	Your First Program
	Coding at the command prompt
	Building a new Code::Blocks project
	Building and running

	Chapter 2 The Programming Thing
	The History of Programming
	Reviewing early programming history
	Introducing the C language

	The Programming Process
	Understanding programming
	Writing source code
	Compiling and linking
	Running and testing

	Chapter 3 Anatomy of C
	Parts of the C Language
	Keywords
	Functions
	Operators
	Variables and values
	Statements and structure
	Comments

	Behold the Typical C Program
	Understanding C program structure
	Setting the main() function
	Returning something to the operating system
	Adding a function

	Part 2 C Programming 101
	Chapter 4 Trials and Errors
	Display Stuff on the Screen
	Displaying a humorous message
	Introducing the puts() function
	Adding more text
	Commenting out a statement
	Goofing up on purpose

	More Text Output Nonsense
	Displaying text with printf()
	Introducing the printf() function
	Understanding the newline
	Employing escape sequences
	Goofing up on purpose again

	Chapter 5 Values and Simple Math
	A Venue for Various Values
	Understanding values
	Displaying values with printf()
	Minding the extra zeros

	The Computer Does the Math
	Doing simple arithmetic
	Reviewing the float-integer thing
	Pretending integers are floats

	Chapter 6 A Place to Put Stuff
	Values That Vary
	Setting up a quick example
	Introducing data types
	Using variables

	Variable Madness!
	Using more-specific data types
	Working with several variables
	Assigning a value upon creation
	Reusing variables

	Constants Always the Same
	Using the same value over and over
	Constants in your code
	Putting constants to use

	Chapter 7 Input and Output
	Character I/O
	Understanding input and output devices
	Fetching characters with getchar()
	Using the putchar() function
	Working with character variables

	Text I/O, but Mostly I
	Storing strings
	Introducing the scanf() function
	Reading a string with scanf()
	Reading values with scanf()
	Using fgets() for text input

	Chapter 8 Decision Making
	What If?
	Making a simple comparison
	Introducing the if keyword
	Comparing values in various ways
	Knowing the difference between = and ==
	Forgetting where to put the semicolon

	Multiple Decisions
	Making more-complex decisions
	Adding a third option

	Multiple Comparisons with Logic
	Building a logical comparison
	Adding some logical operators

	The Old Switch Case Trick
	Making a multiple-choice selection
	Understanding the switch-case structure
	Taking no breaks

	The Weird ?: Decision Thing

	Chapter 9 Loops, Loops, Loops
	A Little Déjà Vu
	The Thrill of for Loops
	Doing something x number of times
	Introducing the for loop
	Counting with the for statement
	Looping letters
	Nesting for loops

	The Joy of the while Loop
	Structuring a while loop
	Using the do while loop

	Loopy Stuff
	Looping endlessly
	Looping endlessly but on purpose
	Breaking out of a loop
	Adding multiple for loop conditions
	Screwing up a loop

	Chapter 10 Fun with Functions
	Anatomy of a Function
	Constructing a function
	Prototyping (or not)

	Functions and Variables
	Using variables in functions
	Sending a value to a function
	Sending multiple values to a function
	Creating functions that return values
	Returning early

	Constants of the Global Kind
	Introducing defined constants
	Putting defined constants to use

	Part 3 Build Upon What You Know
	Chapter 11 The Unavoidable Math Chapter
	Math Operators from Beyond Infinity
	Incrementing and decrementing
	Prefixing the ++ and -- operators
	Discovering the remainder (modulus)
	Saving time with assignment operators

	Math Function Mania
	Exploring some common math functions
	Suffering through trigonometry

	It’s Totally Random
	Spewing random numbers
	Making the numbers more random

	The Holy Order of Precedence
	Getting the order correct
	Forcing order with parentheses

	Chapter 12 Give Me Arrays
	Behold the Array
	Avoiding arrays
	Understanding arrays
	Initializing an array
	Playing with character arrays (strings)
	Working with empty char arrays
	Sorting arrays

	Multidimensional Arrays
	Making a two-dimensional array
	Going crazy with three-dimensional arrays
	Declaring an initialized multidimensional array

	Arrays and Functions
	Passing an array to a function
	Returning an array from a function

	Chapter 13 Fun with Text
	Character Manipulation Functions
	Introducing the CTYPEs
	Testing characters
	Changing characters

	String Functions Galore
	Reviewing string functions
	Comparing text
	Building strings

	Fun with printf() Formatting
	Formatting floating point
	Setting the output width
	Aligning output

	Gently Down the Stream
	Demonstrating stream input
	Dealing with stream input

	Chapter 14 Structures, the Multivariable
	Hello, Structure
	Introducing the multivariable
	Understanding struct
	Filling a structure
	Making an array of structures

	Weird Structure Concepts
	Putting structures within structures
	Passing a structure to a function

	Chapter 15 Life at the Command Prompt
	Conjure a Terminal Window
	Starting a terminal window
	Running code in text mode

	Arguments for the main() Function
	Reading the command line
	Understanding main()’s arguments

	Time to Bail
	Quitting the program
	Running another program

	Chapter 16 Variable Nonsense
	Variable Control
	Typecasting into disbelief
	Creating new things with typedef
	Making static variables

	Variables, Variables Everywhere
	Using external variables
	Creating an external structure variable
	Enumerating

	Chapter 17 Binary Mania
	Binary Basics
	Understanding binary
	Outputting binary values

	Bit Manipulation
	Using the bitwise | operator
	Using bitwise &
	Operating exclusively with XOR
	Understanding the ~ and ! operators
	Shifting binary values
	Explaining the binbin() function

	The Joy of Hex

	Part 4 The Advanced Part
	Chapter 18 Introduction to Pointers
	The Biggest Problem with Pointers
	Sizing Up Variable Storage
	Understanding variable storage
	Reading a variable’s size
	Checking a variable’s location
	Reviewing variable storage info

	The Hideously Complex Topic of Pointers
	Introducing the pointer
	Working with pointers

	Chapter 19 Deep into Pointer Land
	Pointers and Arrays
	Getting the address of an array
	Working pointer math in an array
	Substituting pointers for array notation

	Strings Are Pointer-Things
	Using pointers to display a string
	Using a pointer to declare a string
	Building an array of pointers
	Sorting strings

	Pointers in Functions
	Passing a pointer to a function
	Returning a pointer from a function

	Chapter 20 Memory Chunks and Linked Lists
	Give Me Memory!
	Introducing the malloc() function
	Creating string storage
	Using the calloc() function
	Getting more memory
	Freeing memory

	Lists That Link
	Allocating space for a structure
	Creating a linked list
	Editing a linked list
	Saving a linked list

	Chapter 21 It’s About Time
	What Time Is It?
	Understanding the calendar
	Working with time in C

	Time to Program
	Checking the clock
	Viewing a timestamp
	Slicing through the time string
	Snoozing

	Part 5 And the Rest of It
	Chapter 22 Permanent Storage Functions
	Sequential File Access
	Understanding C file access
	Writing text to a file
	Reading text from a file
	Appending text to a file
	Writing binary data
	Reading binary data

	Random File Access
	Writing a structure to a file
	Reading and rewinding
	Finding a specific record
	Saving a linked list to a file

	Chapter 23 File Management
	Directory Madness
	Calling up a directory
	Gathering more file info
	Separating files from directories
	Exploring the directory tree

	Fun with Files
	Renaming a file
	Copying a file
	Deleting a file

	Chapter 24 Beyond Mere Mortal Projects
	The Multi-Module Monster
	Linking two source code files
	Sharing variables between modules
	Creating a custom header file

	Other Libraries to Link

	Chapter 25 Out, Bugs!
	Simple Tricks to Resolve Problems
	Documenting the flow
	Talking through your code
	Writing comments for future-you

	The Debugger
	Debugging setup
	Working the debugger
	Setting a breakpoint
	Watching variables

	Improved Error Messages

	Part 6 The Part of Tens
	Chapter 26 Ten Common Boo-Boos
	Conditional Foul-Ups
	== v. =
	Dangerous Loop Semicolons
	Commas in for Loops
	Missing break in a switch Structure
	Missing Parentheses and Curly Brackets
	Don’t Ignore a Warning
	Endless Loops
	scanf() Blunders
	Streaming Input Restrictions

	Chapter 27 Ten Reminders and Suggestions
	Maintain Good Posture
	Use Creative Names
	Write a Function
	Work on Your Code a Little Bit at a Time
	Break Apart Larger Projects into Several Modules
	Know What a Pointer Is
	Add Whitespace before Condensing
	Know When if-else Becomes switch-case
	Remember Assignment Operators
	When You Get Stuck, Read Your Code Out Loud

	Part 7 Appendices
	Appendix A ASCII Codes
	Appendix B Keywords
	Appendix C Operators
	Appendix D Data Types
	Appendix E Escape Sequences
	Appendix F Conversion Characters
	Appendix G Order of Precedence

	Index
	EULA

©

CProgramming
ey

