[image: Cover: Bite-Size Python#174; by April Speight]

Table of Contents

	Cover

	1 What Is Python?
	How Is This Book Formatted?

	2 Install Python
	Download Python

	Check the Python Version

	3 IDLE
	What Is IDLE?

	IDLE Interface

	Run Code in IDLE

	Create and Run Files

	4 Variables
	What Is a Variable?

	Print a Variable

	Update Variables

	Project: Meet Your Classmates

	5 Numbers
	Numeric Types

	Arithmetic Operators

	Order of Operations

	Project: Shopping for Science Fair Supplies

	6 Strings
	Create a String

	Escape Characters

	String Methods

	Concatenation

	Conversion

	String Formatting

	Index

	Project: Mad Libs Generator

	7 Conditionals and Control Flow
	Comparison Operators

	if Statements

	if-else Statements

	if-elif-else Statements

	Project: What to Wear

	8 Lists

	9 for Loops
	Project: Find the Green Marble

	10 while Loops
	Project: Kickball Teams

	11 Functions
	Create a Function

	Call a Function

	Return

	Parameters

	Built-in Functions

	Project: Customer Service Bot

	12 Dictionaries
	Create a Dictionary

	Access Items in a Dictionary

	Check Whether a Key Is in a Dictionary

	Add a Key-Value Pair to a Dictionary

	Remove a Dictionary Item

	Loop through Dictionaries

	Nested Dictionaries

	Project: School Musical Sign-Ups

	13 Modules
	What Is a Module?

	Create a Module

	Use a Module

	Use an Alias for a Module

	from Keyword

	View All Functions in a Module

	14 Next Steps
	Python Libraries

	Virtual Environments

	Integrated Development Environments

	Appendix: Checkpoint Answers

	Index

	End User License Agreement

Guide

	Cover

	Table of Contents

	Begin Reading

Pages

	iii

	2

	3

	4

	5

	6

	8

	9

	10

	11

	12

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	81

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	116

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

	161

	162

	163

	164

	165

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	182

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	196

	197

	198

	199

	200

	201

	202

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	219

	220

	221

	222

	223

	iv

	vii

	ix

	x

	224

BITE-SIZE PYTHON®

AN INTRODUCTION TO PYTHON PROGRAMMING

APRIL SPEIGHT

[image: Logo]

[image: “Python is used to instruct robots how to behave or to give commands to artificial intelligence assistants for exploring advanced concepts in web development, data integration with application programming interfaces, blockchain technology, data science, and AI.”]

1
What Is Python?

Welcome to the world of Python programming! By opening this book, you've opened your world to infinite possibilities in creating with code. Python is a beginner-friendly programming language, and its structure is often compared to the English language.

So, what can you do with Python? Python can be used to instruct robots how to behave or to give commands to artificial intelligence (AI) assistants. With Python, you can automate everyday processes, such as receiving daily reminders to walk the dog or sending a weekly e-newsletter to the community. You can use it to create a blog, build a social media app like Instagram, or even make your own adventure games. In addition, learning Python is the stepping-stone to exploring advanced concepts in web development, data integration with application programming interfaces (APIs), blockchain technology, data science, and AI (such as computer vision, machine learning, and natural language processing to name a few). The possibilities are endless!

How Is This Book Formatted?

This book was written with the true beginner in mind. Never written a line of code in your life? No problem! This book will get you started with the basics of programming to help you gain a solid foundation for Python.

The chapters in this book are written to build upon each other. If you have never written Python code, consider reading the chapters in this book in the order in which they are presented. The following sections explain what you can expect to find in each chapter.

Syntax

Syntax represents a set of rules to follow when writing code. Whenever syntax is introduced for a new concept, the words you should change are shown in italics.

Code Blocks

Throughout this book, you will be introduced to code examples in a code block. Whenever a code block is presented, the code will appear as such:

>>> print('Welcome to the world of Python!')
Welcome to the world of Python!

You are welcome to copy the code as written in the code block into the code editor to try the examples. In addition, you may also notice that some of the words in the code block are written in color. This is known as syntax highlighting. Syntax highlighting is a helpful feature designed to help you keep track of the syntax elements within your code.

Checkpoints

Checkpoints throughout each chapter help you confirm that you understand the material presented and give you the confidence to continue learning. Checkpoints are presented in quiz format and may consist of multiple-choice questions, matching, or fill-in-the-blank questions. You can find all the answers for the checkpoints in the appendix, “Checkpoint Answers.”

Projects

As you complete the chapters in this book, you will have the opportunity to practice your skills with a project. Each project requires you to write your own Python program. A program is a collection of commands within a file that will be run to complete a task. Projects are designed to enable you to use the knowledge you gained in the current and previous chapters. A detailed walk-through of how to complete each project is provided as well. You can find the code for all project files on the Wiley website at www.wiley.com/go/bitesizepython.

You are encouraged to use the projects in this book to build even greater Python programs. Once you start to develop a better understanding of how to use Python, you will find yourself motivated to build. Use the projects in this book as guidance to help bring your ideas to life!

[image: Illustration depicting the preparedness to code with Python and also instructions to install the latest version of the language.]

2
Install Python

So, you're probably saying to yourself, “Python sounds so cool—I'm ready to code!” Before you can do anything with Python on your computer, you must install the latest version of the language. Ready to get started? Let's go!

Download Python

Here are the instructions to download Python depending on your platform.

Windows Platform

If you're using a computer that runs Windows, you can download Python from the Microsoft Store. In the search bar, enter Python and select the latest version of the language.

[image: Screenshot displaying the Python 3.7 version in the Microsoft Store Search bar when using Windows, to download Python from the Microsoft Store.]

Additional information about the language is provided in the Overview section. If you're unsure about whether your computer meets the requirements to install Python, check out the System Requirements section. Once you're all set, click the Get button to start the download.

After the download is complete, follow the instructions in the installation wizard to install Python. When prompted, be sure to check the box Add Python 3.7 To PATH (your version number may differ).

Unix Platform (macOS or Linux)

If you're using a Mac or a computer running Linux, it's likely that your computer already has an outdated version of Python installed. You will run into problems using earlier versions of Python (Python 2.x or older) while completing the exercises in this book. Therefore, head over to www.python.org to download and install the latest version of the language.

After the download is complete, follow the instructions in the installation wizard to install Python.

Check the Python Version

Now that you've installed Python, you can check the version of the language using the terminal. A terminal is a program that you can use to communicate with your computer. In the terminal, you enter commands, which are instructions for the computer to follow. If the computer doesn't understand a command, it'll respond with an error message.

Windows Platform

On Windows, you can use the Command Prompt window (which is a terminal) to check the Python version installed. Search for the Command Prompt app to open the terminal.

[image: Screenshot of a Command Prompt to check the Python version installed with an default information ending with a blinking line to write the Command.]

At start, the Command Prompt window loads with default information. Below the default information, you'll see a line that ends with a blinking line. This blinking line, also known as a text cursor, is an indicator that the terminal is ready for you to enter a command.

To check the version of Python installed, enter the command python3 --version and press Enter.

[image: Screenshot of a Command prompt confirming installation, enabling the system that is ready to code.]

If the version of Python installed is 3.x or newer, then you're all set to code!

Unix Platform

On a Mac or a computer running Linux, search for terminal to open the terminal.

[image: Illustration depicting a Unix platform on a Mac or a computer running on Linux with a default information and a line that ends with a $ symbol which is an indicator that the terminal is ready to enter a command.]

At start, the terminal will load with default information. Below the default information, you'll see a line that ends with a $ symbol. This symbol, or text cursor, is an indicator that the terminal is ready for you to enter a command.

To check the version of Python installed, enter the command python --version and press Enter.

[image: Illustration depicting the version of the Python installed which is 3.X or more than the system is ready to code.]

If the version of Python installed is 3.x or newer, then you're all set to code!

[image: Illustration depicting that even when you are ready to code in Python, you have to write and run the code in a program that can read and run Python.]

3
IDLE

When you code in Python, you have to write and run your code in a program that can read and run Python. In the previous chapter, you were introduced to the terminal. Although you could code in the terminal, we'll be using an integrated development environment (IDE) instead. An IDE is a powerful program that combines a variety of useful coding tools into a single tool to help you code more efficiently! Although there are many IDEs on the internet available to download, we'll be using an IDE that comes installed with Python; it is named IDLE.

What Is IDLE?

You can write and run Python code in an IDE that comes installed with Python named IDLE. You can use IDLE on both the Windows and Unix platforms as the IDE works mostly the same across each platform.

IDLE is equipped with some useful features to help you out as you code.

	Adds syntax highlighting to your code

	Auto completion

	Multiwindow text editor

	Smart indent

	Call tips

	Command history

These features may not mean much to you now; however, you'll be introduced to the magic of each feature as you read the upcoming chapters of this book.

IDLE Interface

At first look, you may think that IDLE looks like the terminal from the previous chapter. Although you can enter commands into both the terminal and IDLE, there are additional features within the IDLE interface that you'll find helpful as you complete the exercises in this book.

[image: “Screenshot of an IDLE Interface where you can enter commands into both the terminal and IDLE, with additional features within the IDLE interface.”]

	Python Version The version of Python displays at the top of the window in IDLE.

	Python Shell Window Here is where you will type, read, and run your Python code. The Python Shell window is also called an interpreter.

	Text Cursor The text cursor will let you know if it's okay to enter a new command or line of code into the interpreter by blinking repeatedly. If the text cursor isn't blinking, there's a good chance that your computer isn't done completing the command you asked the computer to complete. Just give IDLE a moment to finish completing your prior command before beginning to type.

	IDLE Menus There are lots of options available in the IDLE menus. As you work through the exercises in this book, you will notice that the menus in IDLE will change. IDLE has both a Shell window and an Editor window. Depending on the window type that you're using, the menu options will change.

Run Code in IDLE

Let's take IDLE out for a spin! First, check to make sure that your text cursor is blinking. If your text cursor is blinking, type print(′Hello World!′) into the interpreter and press Enter.

>>> print('Hello World!')
Hello World!

Congratulations—you just wrote and ran your first line of Python code! So, what exactly happened? The code you entered tells Python to print the text inside the quotes. Try writing another line of code using the same code as before; however, replace Hello World! with another phrase. Be sure to keep the quotes surrounding the phrase; otherwise, the interpreter returns an error after you press Enter.

>>> print(‘Python is awesome!’)
Python is awesome!

There are two important things to remember about running Python code. First, Python code is run from top to bottom. What this means is that the code that appears at the top of the program is run first and the final line of the code is run last.

Second, Python relies on proper indentation. You will notice later in this book that some of the code examples are indented. Fortunately, IDLE automatically includes indentation for you. However, it’s also helpful to be aware of how much you should indent your code when necessary. If you need to manually indent your code, you could use either the space bar or Tab key on your keyboard.

Create and Run Files

Each time you press Enter in IDLE, the interpreter checks if it should run the code. However, this can become unnecessary if you are writing a longer program that contains various logic. Typically, you would create the program, change the logic as you code and then test by running the program. There’s little flexibility in changing a piece of the logic if you’re creating the entire program in the interpreter.

Fortunately, you can create a file in IDLE that only runs when you ask the program to run. You can edit the program as much as you want and save the program if you would like to access the program later. This is an important difference between coding in the interpreter vs. creating a new file in IDLE that is then ran in the interpreter. Anything entered into the interpreter cannot be saved. Therefore, if you want to create a program that you can come back to later, create a new file in IDLE and save the program before exiting IDLE.

To create a new file in IDLE, click File then New File. Save the file by clicking File then Save As. When prompted, save the file to a memorable location on the computer and name the file something related to the program inside the file. Notice that the Save as type is Python files. This saves the file using the Python extension .py. This extension tells the computer that the file is a Python file and therefore the program inside the file only runs using the programming language Python. After you name the file, click Save.

[image: Screenshot of an untitled window depicting how to create and save files in Python version 3.X using IDLE.]
To run the program inside a file, click Run at the top of the screen and select Run Module. Each time you choose to run the module, IDLE checks to ensure that you saved the file. You can use the keyboard shortcut CTRL+S or Command+X to save the file. Let’s practice this setup by creating a new file in IDLE! Create a new file and save as hello_world.py.

[image: Screenshot displaying the screen of a Python version system with a field to type the Command “Hello_world” to save in the Python files.]
On the first line of the file, enter print(‘Hello World!’) and save the file.

print(‘Hello World!’)

Click Run at the top of the screen and select Run Module. The original interpreter window that was opened when you started IDLE comes into view and runs the code inside the hello_world.py file.

Hello World!

If you happen to close the interpreter window, selecting Run Module will open a new interpreter window and run the program inside the file.

Each of the projects in this book requires you to create a new file. If you ever get stuck on how to create and run files in IDLE, come back to this chapter for a refresher.

We can do so much more with the interpreter and Python beyond printing phrases. Now that you understand how to write and run Python code in IDLE, get ready to unlock the magic of coding in Python!

[image: Cartoon illustration depicting the option to command choice in IDLE output any phrase you want using print.]

4
Variables

What's your favorite color? If you recall from the previous chapter, you can have IDLE output any phrase you want using print(). How about giving that a try now to see your favorite color printed in the interpreter?

>>> print('blue')
blue

Now, what would you do if you were asked to print your favorite color five times in a row? One option would be to create five print() statements that include your favorite color. Although you could do that, after a while you'll start to realize that typing your favorite color over and over again could become pretty tiring, or you may even accidentally spell your favorite color wrong.

Imagine being asked to write your favorite color 20 times or even 100 times! Sure, you could type the same line of code over and over, however, there's a better way to reuse the same word/phrase in your code.

What Is a Variable?

A variable is a name that represents a value, such as a number or piece of text (called a string).

[image: “The syntax code for a variable as a name that represents a value, such as a number or piece of text (called a string).”]

When you create a variable, you'll want to choose a name that is unique, is specific, is related to what the value represents, and doesn't start with a number or special character. You'll also want to avoid using keywords that already serve a purpose in Python. To review a list of Python keywords, visit docs.python.org/3/reference/lexical_analysis.html#keywords.

The variable names shown here are examples of ways that you can name a variable. Some variable names may be just one word, while others may include underscores. You can even create variable names by capitalizing the first letter of each word after the first word, which is known as camelCasing.

[image: “The syntax code to name a variable that has multiple words which separate each word with an underscore.”]

Once you pick a name for your variable, you can assign a value to the variable such a number or a string. If you're assigning a string to a variable, you'll need to place the string inside quotes—like how you did for printing. You could use either double quotes (“”) or single quotes (‘’). However, you can't use both.

Thinking back to your favorite color, you could create a variable just for that and assign your favorite color as the value.

>>> color = 'blue'

If you want to get more specific with your variable name, you could change the variable name to favorite_color instead. Whenever you want to create a variable name that has multiple words, you can separate each word with an underscore.

>>> favorite_color = 'blue'

Now, you've seen how to assign strings to variables, but what about assigning numbers to variables? Almost the same rules apply; however, you don't always need to place quotes around the number. Whether you need to place quotes around a number will depend on what you want to do with the number. For now, let's start by using the value to print by itself in the interpreter. We can create a variable that represents your age.

>>> age = 13

So, how can you use a variable? As your coding skills improve, you'll find yourself writing many lines of code all within one program. More often, you'll need to use the same values repeatedly throughout your program. Assigning (or storing) a value to a variable name enables you to reuse the value in multiple places throughout your code. Just be sure to spell the variable name the same way in all places; otherwise, Python will think that you're using a completely different variable.

For example, if you were writing a program that used your favorite color value in multiple places within the code, the variable name could be used in its place to save you both space and sometimes time typing. Therefore, every time you want to refer to your favorite color, you could use the variable favorite_color.

[image: image] Checkpoint

Which of the following variable names cannot be used in Python?

	mydogsname

	!_best_friends

	car

	vacationCity

Print a Variable

You can ask Python to tell you the value of a variable by using the print() statement. Instead of typing a string in the print() statement, you would use the variable name in its place and press Enter.

>>> print(favorite_color)
blue

The interpreter remembers the color that you assigned earlier to the favorite_color variable. Want to print your favorite color 20 times or even 100 times? Change your print() statement to print(favorite_color * 20). This syntax will multiply the number of times that the variable is printed by 20.

>>> print(favorite_color * 20)
blueblueblueblueblueblueblueblueblueblueblueblueblue
blueblueblueblueblueblueblue

Printing isn't just for strings; you could also print numbers by using the print() statement. Give this a try by printing your age in IDLE.

>>> print(age)
13

[image: image] Checkpoint

Naomi is creating a Python program that contains information about her favorite movie. She wants to store the movie title, year of release, rating, and a brief description of the movie. So far, she's created the following variables in her program:

movie_title = Toy Story 4
year = 2019
rating = '4/5'
description = 'Woody, Buzz Lightyear, and the rest of the gang embark on a road trip with Bonnie and a new toy named Forky. The adventurous journey turns into an unexpected reunion as a slight detour leads Woody to his long-lost friend Bo Peep. As Woody and Bo discuss the old days, they soon start to realize that they are worlds apart when it comes to what they want from life as a toy.”

Naomi wants to print the value of the movie_title variable; however, the value assigned needs to be fixed. Which option correctly assigns the movie title Toy Story 4 to the variable movie_title?

	movie_title = "Toy Story" 4

	movie_title = "Toy Story 4'

	movie_title = 'Toy Story 4'

	movie_title = 'Toy' 'Story' '4'

When Naomi tries to print the description variable, she gets an error. What is wrong with the description variable?

	The variable name is spelled wrong.

	The string is too long.

	Nothing is wrong.

	The string is surrounded by both a single quote and a double quote.

Update Variables

Variables can be used however many times you'd like throughout your code. But what happens if you want to change the value of a variable? By storing a value in a variable, you can update the value in one place. This will become more useful as you begin to write programs with many lines of code!

Let's say that you changed your mind and now you have a new favorite color. You can assign a new color to the favorite_color variable, which will change the value stored to favorite_color.

>>> favorite_color = 'pink'

If you were to print favorite_color, the most recent assigned value will print in IDLE.

>>> print(favorite_color)
pink

[image: image] Checkpoint

Every year, Harrison travels around the world to visit his friends and experience new cultures. He keeps track of his location in a Python program using the variable current_location. He's currently in Italy but travels to New York soon. Since Harrison will be changing locations, he wants to update the current_location variable with his destination.

current_location = 'Italy'
current_location = 'New York'

If Harrison prints the current_location variable, which location will be printed?

	New York

	Italy

	New York and Italy

	None

Project: Meet Your Classmates

Description:

After a long fun-filled summer break, it's time to return to school! On the first day of school, your teacher asks the class to go around the room and introduce yourselves to each other. Although you spent time at the pool and on vacation this summer, you also began to learn a new programming language—Python!

Eager to show off your new skills, you decide to create a Python program that enables your classmates to introduce themselves to the class.

Let's get started!

Steps:

Create a New File in IDLE

Before you begin to code, open IDLE and create a new file. Save your new file with the filename introduce:app.py. As a reminder, adding the.
py extension to the filename lets the computer know that you are creating a Python file.

Decide on Questions

What would you like to know about your new classmates? Think of some questions that may be interesting to you! The example in this book will use these questions:

	What is your name?

	What is your favorite color?

	What is your favorite food?

	What is your favorite TV show?

Print Introduction and Instructions

When the Python program starts, you will want to greet your classmates. To do so, add a print() statement to the first line of your program and insert your greeting as a string.

print('Welcome back to school! Answer these 3 questions to introduce yourself!')

Be sure to surround the question with quotation marks as shown here.

Create a Variable

You will need to store your classmate's answers into a variable to later print their responses. Let's first create a variable for the question “What is your name?”

We can ask a question and store the answer in a variable using input(). When you run your Python program, the question that you place inside input() will appear in the interpreter window. A blinking text cursor will appear directly after the question indicating that you need to enter a response.

On the next line of your code, create a variable name and place the question What is your name ? inside the parentheses. Be sure to surround the question with quotes since the question is a string.

name = input('What is your name? ')

Notice how a space is added after the question mark. This will add space between the question and your classmate's answer.

Test Your Code

Whenever you write a new Python program, you will want to test your program along the way to ensure that everything works properly. The sooner you test your code, the easier it will be to spot errors and fix any issues within your program.

Before you run the program, add a print() statement on the next line of your code so that the interpreter can print the value of the name variable.

print(name)

Now, save your program and run it! In the interpreter window, you should be greeted and then asked the question What is your name?. Do you see a blinking text cursor next to the question? If so, great! Respond to the question by typing your name and press Enter.

Welcome back to school! Answer these 3 questions to introduce yourself!
What is your name? April
April

The program should respond by printing your name! If you received an error while testing your program, check the introduce:app.py file to ensure that you typed everything correctly.

Add More Questions

Once you have confirmed that your Python program works well, you can repeat the steps starting at “Create a Variable” to add the other questions. Here are the questions that will be used for the remaining variables:

	What is your favorite color?

	What is your favorite food?

	What is your favorite TV show?

Be sure to test your program after adding a new question. Once you are done, your code should look like the following:

print('Welcome back to school! Answer these 3 questions to introduce yourself!')

name = input('What is your name? ')
print(name)

favorite_color = input('What is your favorite color? ')
print(favorite_color)

favorite_food = input('What is your favorite food? ')
print(favorite_food)

favorite_tv_show = input('What is your favorite TV show? ')
print(favorite_tv_show)

Print

Now that all your questions have been added to the Python program, you will need a proper message for your program to use to recite the answers for your classmates. To do so, you can use string formatting. You will learn more about string formatting in Chapter 6, “Strings.” However, for now, just know that string formatting is a quick way to insert your variable values into a sentence.

[image: The syntax code in Python depicting that string formatting is a quick way to insert your variable values into a sentence.]

Under the final print() statement in your Python program, type the following code into your Python program exactly the way that it is written here. If you're using your own questions and variables for this project, replace the variable names with your own variables.

print(f"Everyone, meet {name}! {name}'s favorite color is {favorite_color}. {name}'s favorite food is {favorite_food}. {name}'s favorite TV show is {favorite_tv_show}.")

When you are ready, save and run the Python program. Answer each question that appears on the screen. After you answer the final question, the interpreter window should read something like the following:

Welcome back to school! Answer these 3 questions to introduce yourself!
What is your name? April
April
What is your favorite color? green
green
What is your favorite food? pizza
pizza
What is your favorite TV show? Steven Universe
Steven Universe
Everyone, meet April! April's favorite color is green. April's favorite food is pizza. April's favorite TV show is Steven Universe.

If you have made it this far, then congratulations! You just created your first full Python application! Before you close the Python program and share it with others, you may want to go back into the program and add helpful comments that explain the code in addition to commenting out the print() statements that were used to test your program. Comments can be created in Python using the # key on your keyboard. Comments in Python are not printed when a Python program is run.

Here is an example of the full program for introduce:app.py:

This app will ask classmates their name and a few questions about themselves.
Afterward, the app will share the answers given by the classmates.

Greeting
print('Welcome back to school! Answer these 3 questions to introduce yourself!')

Question 1
name = input('What is your name? ')
print(name)

Question 2
favorite_color = input('What is your favorite color? ')
print(favorite_color)

Question 3
favorite_food = input('What is your favorite food? ')
print(favorite_food)

Question 4
favorite_tv_show = input('What is your favorite TV show? ')
print(favorite_tv_show)

Question 5
print(f"Everyone, meet {name}! {name}'s favorite color is {favorite_color}. {name}'s favorite food is {favorite_food}. {name}'s favorite TV show is {favorite_tv_show}.")

[image: “Cartoon depicting the computers whose core functions are to perform calculations or computations with numbers. As a programming language for computers, a core capability of Python is to, well, perform calculations.”]

5
Numbers

Computers, as befits their name, are made to perform calculations or computations with numbers. As a programming language for computers, a core capability of Python is to, well, perform calculations! Python has built-in capabilities that enable the language to perform simple and complex math equations. You may also find other uses for including numbers in your Python program such as collecting numeric input from a user or relying on a numeric value to determine what action should occur in your program.

Numeric Types

Before you begin using Python to solve math equations, there are two number types that you should know: int and float.

Int

An int (short for integer) is a whole number. This means the number never shows a decimal point. Also, integers can be either positive, negative, or zero. Here are some examples of integers:

[image: A number type called Int (short for integer) that never shows a decimal point and that integers can be either positive, negative, or zero.]

Float

A float is any number that contains a decimal point. Like integers, floats can also be positive, negative, or zero. Here are some examples of floats:

[image: “A number type called Float. A float is any number that contains a decimal point. Like integers, floats can also be positive, negative, or zero.”]

Given any number, the type() function tells you whether it's an int or a float.

[image: The syntax for type() function which tells whether a given number is an int or a float.]

Let's use the type() function in IDLE to see the type of the following numbers:

>>>type(37)
<class 'int'>
>>>type(4.2)
<class 'float'>
>>>type(98.321)
<class 'float'>

The type() function is also useful for identifying the type of any object in Python and will be explored more in later chapters.

You can also change the numeric type of a number by converting a number from one type to another. This process is known as type conversion.

[image: A process known as type conversion to convert an int to a float by passing the int value into the parentheses, and to convert a float to an int, the float value should be passed into the parentheses.]

To convert an int to a float, you would pass the int value into the parentheses. Likewise, to convert a float to an int, you would pass the float value into the parentheses. Let's see this in action by converting the sum of two floats into an int.

>>> sum = 3.4 + 2.7
>>> print(sum)
6.1
>>> type(sum)
<class 'float'>
>>> sum = int(sum)
>>> print(sum)
6
>>> type(sum)
<class 'float'>

In the previous example, the variable sum is assigned to 3.4 + 2.7. The sum of the values, 6.1, is of type float because it contains a decimal. Using type conversion, you can reassign the variable to convert the value to be an int. When you now get the type for sum, you can see that sum has been converted to an int. Furthermore, when you print sum, the decimal point, and the values after it are gone!

Arithmetic Operators

Like a calculator, you can use arithmetic operators to calculate values in Python. There's no requirement to convert numbers from one number type to another unless you prefer a specific output for the calculation. Python performs the calculation regardless of the numeric types. However, the result may not be as you intend. Keep these guidelines in mind as you use arithmetic operators in Python.

Any operation with mixed types (int and float) produces a float.

>>> type(40 + 2.5)
<class 'float'>

Addition, subtraction, or multiplication with int produces an int.

>>> type(2 + 2)
<class 'int'>
>>> type(2 - 2)
<class 'int'>
>>> type(2 * 2)
<class 'int'>

Division with an int produces a float.

>>> type(2 / 2)
<class 'float'>

Python is pretty smart about using int and float together! A float can always represent anything an int can represent—just not the other way around. So, when in doubt, the type goes to float, which is why the type for integer division is a float.

Order of Operations

Not all equations are created equal! What happens when we try to use multiple numbers and arithmetic operators in one equation? Like algebra, Python also follows the same order of operations known as PEMDAS.

[image: An order of operations known as PEMDAS to calculate an equation using multiple numbers and arithmetic operators in one equation.]

When you ask Python to calculate an equation that contains more than two values, Python refers to PEMDAS to determine which values are calculated first. Python also calculates values from left to right until all that's left is the result of the calculation.

>>> 5 * (3**2 + 5) - 8/2
66.0

Let's break down the equation completed in the previous example.

	Check for Parentheses The equation contains only one pair of parentheses. Inside the pair of parentheses is the calculation for (3**2 + 5). Since there are multiple mathematical operators inside the parentheses, Python uses PEMDAS to determine which calculation to solve for first. The ** represents exponent, and therefore Python first calculates 3**2. Python then takes the result 9 and adds that to 5. After Python completes the calculation inside the parentheses, the original equation becomes 5 * (14) − 8/2.

	Check for Exponents Since there are no remaining exponents in the equation, Python does not perform any more exponential calculations.

	Check for Multiplication Python now checks for multiplication in the equation. The equation has a calculation for 5 * (14). Python completes this calculation, which changes the equation to 70 − 8/2.

	Check for Division Looking at what's left of the equation, Python completes the division calculation on the right, 8/2. The equation now becomes 70 − 4.0.

	Check for Addition Python now checks for addition in the equation. Since there is no addition in the equation, Python does not perform any addition calculation.

	Check for Subtraction Finally, all that is left in the equation is subtraction. Python subtracts 70 - 4.0, which gives you the result 66.0.

You can also use variables in place of numbers to perform calculations as well!

>>> cakes = 12
>>> pies = 4
>>> desserts = cakes + pies
>>> print(desserts)
16

Try the following checkpoint exercises on paper and compare your answer to the solution by typing the equation into IDLE. The Python syntax for each equation is provided as needed.

[image: image] Checkpoint

	(2 × 3) + 72
Python: (2 * 3) + 7**2

	72 / 8
Python: 72 / 8

	33 / 2 + 32
Python: 3**3 / 2 + 3**2

	(5 + 10) + (9 × 5) − 12
Python: (5 + 10) + (9 * 5) − 12

Project: Shopping for Science Fair Supplies

Description:

Today in class, Alex's science teacher announced the upcoming science fair. This year, Alex chose to do an experiment on how music affects the growth of plants. After school, her mother took her to the store to buy supplies. However, Alex was given only $25 to complete her experiment. After looking around the store, she found some flowerpots, packs of flower seeds, and bags of soil. Alex wants to use an equation to help her determine the quantity of each supply she could purchase that would be within her budget. The price of each item is as follows:

	Flowerpot: $4

	Pack of flower seeds: $1

	Bag of soil: $5

Create a program using variables and equations that would help Alex determine how much she could purchase for $25. Keep in mind, there is a 6 percent sales tax added to the items in Alex's shopping cart.

Steps:

Open IDLE

Before you begin to code, open IDLE and create a new file. Save your new file with the filename shopping_cart.py.

Create Shopping Item Quantity Variables

To give Alex the flexibility of trying different quantities of each item, you can use input() and ask Alex to enter the total quantity of the item. Assign the response to a variable that reflects the shopping item. You'll later use the stored values within each variable to calculate the total cost of Alex's shopping cart.

One thing to keep in mind is that Alex's response should be converted to an integer so that the value can be used in calculations with other numeric values that you'll define later in the program. If you don't convert Alex's response to an int, the response is the type str (which is short for string).

flowerpot = int(input('How many flowerpots? '))
flower_seeds = int(input('How many packs of flower seeds? '))
soil = int(input('How many bags of soil? '))

Create Shopping Item Price Variables

Next, create variables to represent the cost of each shopping item and assign the cost to the variable.

flowerpot_price = 4.00
flower_seeds_price = 1.00
soil_price = 5.00

Create Sales Tax Variable

Since a 6 percent tax rate is applied to the items in Alex's cart, you can create a variable for tax_rate. To convert the tax rate from a percentage to a decimal, you can divide 6/100, which gives you 0.06.

tax_rate = 0.06

Calculate Cost of Items

To calculate the cost of the items in Alex's shopping cart, create an equation using the variables created in the prior steps. By adding the value of each variable together, you can get the total cost of the items.

cost_of_items = (flowerpot * flowerpot_price) + (flower_seeds * flower_seeds_price) + (soil * soil_price)

You can test the program by printing cost_of_items. When you run the program, the interpreter asks you to enter the quantity of flowerpots, flower seed packs, and bags of soil. The program should print the cost of all items.

print(cost_of_items)

After you test your program, you need to include the tax rate in the calculation to give Alex a total cost after tax. You can take the value of cost_of_items and multiply by the tax_rate. You can then add that amount to cost_of_items to get the total cost of the items in Alex's shopping cart with tax.

total_cost = (cost_of_items * tax_rate) + cost_of_items

Finally, print the total cost of the items in Alex's shopping cart.

print(total_cost)

Review the code to ensure that all calculations look correct. Once you're ready, you can save and run the program using different quantities of flowerpots, flower seed packs, and bags of soil.

Here is an example of the full program for shopping_cart.py:

Ask the user to provide the quantity of the shopping item
flowerpot = int(input('How many flowerpots?: '))
flower_seeds = int(input('How many packs of flower seeds?: '))
soil = int(input('How many bags of soil?: '))

Cost of each shopping item
flowerpot_price = 4.00
flower_seeds_price = 1.00
soil_price = 5.00

Sales tax
tax_rate = 0.06

calculate the cost of items
cost_of_items = (flowerpot * flowerpot_price) + (flower_seeds * flower_seeds_price) + (soil * soil_price)

Calculate the cost of items plus tax
total_cost = (cost_of_items * tax_rate) + cost_of_items

print(total_cost)

[image: Illustration depicting multiple systems using Python where use of words and sentences will have to be created as a string. These strings as a variable value are used to print words or phrases.]

6
Strings

Whenever you speak, you use a combination of words to form sentences. If you want to use words and sentences in Python, you'll have to create a string. You can use strings as a variable value or use strings to print words or phrases. You can also manipulate strings using Python!

Create a String

A string is a set of characters used for creating words or sentences in Python. A string can be surrounded by either single quotes or double quotes.

[image: A string using a set of characters for creating words or sentences in Python, which can be surrounded by either single quotes or double quotes.]

You can view how a string looks once your Python program runs by using print().

>>> name = 'Monty'
>>> print(name)
Monty

If you're typing a long string, it's sometimes best to type the string across multiple lines (also known as line breaks) so that the string is easier to read in the program. In IDLE, you can use a triple quote (""") before and after the string to create a string on multiple lines. Press Ctrl+J (Windows) or Control + J (Mac) in IDLE to begin typing on a new line.

>>> story = """Once upon a time in
a galaxy far far away was a coder
who loved nothing more than to code in Python!"""
>>> print(story)
Once upon a time in
a galaxy far far away was a coder
who loved nothing more than to code in Python!

Escape Characters

If you write a string that includes apostrophes, consider surrounding the string with double quotes. Likewise, if you write a string that includes quotations, consider surrounding the string with single quotes.

>>> advice = "You shouldn't eat candy for dinner."
>>> print(advice)
You shouldn't eat candy for dinner.
>>> book = 'My favorite book is "Where the Red Fern Grows" by Wilson Rawls.'
>>> print(book)
My favorite book is "Where the Red Fern Grows” by Wilson Rawls.

But what happens if you write a string that uses both apostrophes and quotes? Python requires you to use an escape character, which enables you to use both apostrophes and quotes in the same string. An escape character is a backslash followed by the character you want to use.

>>> feedback = 'The teacher said "You shouldn\'t quit! Keep trying!"'
>>> print(feedback)
The teacher said "You shouldn't quit! Keep trying!"

If part of your string should display on a new line, you can use the \n escape character. This creates a new line in the string.

>>> quote = 'Dream it.\nWish it.\nDo it.'
>>> print(quote)
Dream it.
Wish it.
Do it.

String Methods

You can automatically change how a string displays when your Python program runs by using a string method. String methods are built-in capabilities of string objects to perform string-related manipulations. A string method creates a new value and will never change the original string.

Although there are more than 60 string methods in Python, the string methods covered in this book are useful for completing the upcoming exercises and projects. However, if you would like to review all the Python string methods, visit docs.python.org/3/library/stdtypes.html#string-methods.

capitalize()

The capitalize() method capitalizes the first character in a string. This is useful for modifying pronouns such as someone's name.

>>> name = 'bridget'
>>> print(name.capitalize())
Bridget

title()

The title() method capitalizes the first character for each word in a string. Consider using this method for books or song titles.

>>> book = 'bite-size python'
>>> print(book.title())
Bite-Size Python

strip()

Suppose someone provides you with a string that contains a lot of unnecessary characters (such as #, $, %, etc.) or spaces. The strip() method strips away the characters you tell it to get rid of from the string.

>>> mood = '!!!happy!!!'
>>> print(mood.strip('!'))
happy

If you want to remove extra spaces from the beginning of a string, then leave the parameter empty inside the parentheses.

>>> season = ' Summer'
>>> print(season.strip())
Summer

lower()

The lower() method turns all characters in a string to lowercase characters.

>>> whisper = 'DO YOU WANT TO HEAR A SECRET?'
>>> print(whisper.lower())
do you want to hear a secret?

upper()

Likewise, for uppercase characters, you can turn all characters in a string to uppercase characters using the upper() method.

>>> yell = "today's the greatest day ever!"
>>> print(yell.upper())
TODAY'S THE GREATEST DAY EVER!

replace()

The replace() method takes a chosen character and replaces it with your desired character. The chosen and desired characters are referred to as arguments. The first argument will be the character to be replaced, and the second argument will be the character that's doing the replacement.

>>> opinion = 'Learning Python is hard!'
>>> print(opinion.replace('hard', 'fun'))
Learning Python is fun!

len()

The len() method will count the total number of characters in a string.

>>> state = 'Mississippi'
>>> print(len(state))
11

[image: image] Checkpoint

Javier put together a list of his 50 favorite songs of all time. However, he copied and pasted the titles from the internet, which resulted in various title formats. Some titles are in all caps, while some are all lowercase. Javier wants to reformat the list so that the first letter in each word of the song is capitalized. Which string method should Javier use?

	capitalize()

	upper()

	replace()

	title()

Concatenation

Like adding numbers together, you can also use the + operator to combine strings. Combining strings into one string is known as concatenation.

>>> animal_first_half = 'mon'
>>> animal_second_half = 'key'
>>> print(animal_first_half + animal_second_half)
monkey

Notice how when you combine two strings together, Python does not automatically include a space. To add a space between two strings, add one to the code.

>>> summer_hobby = 'I like to go swimming'
>>> winter_hobby = 'and snowboarding.'
>>> print(summer_hobby + ' ' + winter_hobby)
I like to go swimming and snowboarding.

Conversion

Python does not allow you to concatenate a string and integer variable together. This is also the case for concatenating a string and float. Strings have the type str. You can check the type for a string variable using the type() method.’

>>> city = 'Los Angeles'
>>> print(type(city))
<class 'str'>

In IDLE, check the type for a string variable. Strings have the type str. If you try to concatenate a str to an int variable, Python gives you an error, which states that you can only concatenate str to str.

>>> city = 'Los Angeles'
>>> state = 'CA'
>>> zip_code = 90028
>>> location = city + ', ' state + ' ' + zip_code
Traceback (most recent call last):
 File "<pyshell#67>", line 1, in <module>
 location = city + ‘, ‘ state + ‘ ‘ + zip_code
TypeError: can only concatenate str (not "int") to str

However, conversion enables you to change the int variable from int to str so that you can combine the two variables together.

>>> city = 'Los Angeles'
>>> state = 'CA'
>>> zip_code = 90028
>>> location = city + ', ' + state + ' ' + str(zip_code)
>>> print(location)
Los Angeles, CA 90028

Calling str() on either a float or an int will change the value to a str. However, keep in mind that this change applies only to the output and does not change the type of the original variable.

String Formatting

Let's say you've assigned values to a few variables and would like to use the values of the variables in a new sentence. You can do so using format strings and the f syntax. There are other ways to format strings in Python; however, the f syntax provides the simplest syntax.

[image: “The syntax to format strings in Python, in which the f syntax provides the simplest syntax.”]

When formatting a string with the f syntax, you can use either a lowercase f or a capital F. The f tells Python that the string that follows contains variable references inside curly braces. The variable(s) that you want to embed into your sentence should be an identical match to how you created the variable name(s) in the program.

>>> dog_breed = 'poodle'
>>> name = 'Lola'
>>> age = 3
>>> print(f'I have a pet {dog_breed}. Her name is {name}.
She is {age}.')
I have a pet poodle. Her name is Lola. She is 3.

Python automatically converts numbers (int or float) to strings when used in format strings.

Index

In school, you most likely learned to count starting with the number 1. However, Python starts to count with the number 0! Each character in a string is assigned a position or index, which indicates the position of the character in the string.

[image: A string formed using the letter P that starts to count with the number 0. Each character in a string is assigned a position or index, which indicates the position of the character in the string.]

In the previous example, the letter P has an index of 0, and the letter n has an index of 5. Although it may seem obvious to count every character in a string to determine a character's position, Python can save you time with the find() method.

[image: The syntax for the find() method to find the index of either a character or a set of characters that appear in a string.]

The find() method returns the index of the first time a character appears in a string. You can use the find() method to find the index of either a character or a set of characters. If the characters are not in the string, Python will return −1.

>>> month = 'January'
>>> print(month.find('u'))
3

Using brackets, you can find which character is at a specific index.

[image: The Syntax of a variable to find which character is at a specific index using brackets.]

>>> car = 'Mercedes'
>>> print(car[2])
r

You can start counting the index from the end of the string by using a negative value. If a negative value is passed into the brackets, Python starts at the last character, which has an index of –1, and counts backward.

>>> car = 'Mercedes'
>>> print(car[−2])
e

If returning one character is not enough, you can use slicing to return a range of characters. Slicing enables you to specify two indexes: (1) where to start looking for characters and (2) where to stop looking for characters.

[image: “The syntax using slicing to return a range of characters. Slicing enables to specify two indexes: (1) where to start looking for characters and (2) where to stop looking for characters.”]

However, slicing can be tricky! Although Python starts at the first index, Python stops at the second index but doesn't include the character at that index.

>>> fruit = 'orange'
>>> print(fruit[1:4])
ran

To slice all characters after the starting index, leave the second index empty.

>>> fruit = 'orange'
>>> print(fruit[2:])
ange

Likewise, you could include all characters until the stop index by leaving the first index empty.

>>> fruit = 'orange'
>>> print(fruit[:4])
oran

Negative numbers could be used as well to count backwards from the end of the string.

>>> fruit = 'orange'
>>> print(fruit[:-1])
orang

You could also use both positive and negative numbers together. To get all characters between the first and last characters of a string, use [1:-1]. The advantage of using negative indexing in this scenario is that you don't need to know the length of the string to get all characters between the indexes.

>>> fruit = 'orange'
>>> print(fruit[1:-1])
rang

Project: Mad Libs Generator

Description:

Mad Libs is a game where the reader is asked to provide a series of words that are then used to create a story. The stories are often silly as the reader has no clue how their word choices will be used! Create a Mad Libs generator that prompts you to provide either a noun, an adjective, a verb, or a specific type of word. After you complete all the prompts, the generator uses the words provided to craft a story by inserting the words into a story template.

Steps:

Open IDLE

Before you begin to code, open IDLE and create a new file. Save your new file with the filename mad_libs.py.

Create Prompts for Words

A story template for the generator is provided later in this project. You need to enter six different words to complete the story. When the generator starts, you should be prompted to provide each of the six words. Here are the different word types needed:

	Adjective

	Name of an outdoor game

	Adjective

	Name of friend

	Verb ending in ing

	Adjective

You can get started by creating variables for each word requested. Notice that the generator needs three different adjectives for the story. Therefore, a separate variable should be created for each adjective. You can prompt a response from the user and store it in a variable using input().

adjective1 = input('Enter an adjective: ')
game = input('Enter the name of an outdoor game: ')
adjective2 = input('Enter another adjective: ')
friend = input('Enter the name of a friend: ')
verb = input('Enter a verb ending in ing: ')
adjective3 = input('Enter one more adjective: ')

Format the Words

Since there is no logic in the generator that requires you or any other user to enter responses in a certain format, you can use string methods to change how the characters display in the story.

The stored value for Name of a friend should have only the first letter capitalized. For all other words, the stored value should be all lowercase.

Change the response for each word using the appropriate string method.

adjective1 = input('Enter an adjective: ').lower()
game = input('Enter the name of an outdoor game: ').lower()
adjective2 = input('Enter another adjective: ').lower()
friend = input('Enter the name of a friend: ').capitalize()
verb = input('Enter a verb ending in ing: ').lower()
adjective3 = input('Enter one more adjective: ').lower()

You can test the generator to ensure that all works properly by passing each variable into a print() statement. Give this a try before moving to the next step.

Create a Story Template

The following story template describes a day at the beach. Copy the story into IDLE and store the template in a story variable.

story = 'It was a ADJECTIVE 1 summer day at the beach. My friends and I were in the water playing GAME. As a ADJECTIVE 2 wave came closer, my friend NAME OF A FRIEND yelled, "Look! There\'s a jellyfish VERB ENDING IN ING!" As we got closer, we saw that the jellyfish was indeed VERB ENDING IN ING! NAME OF A FRIEND ran out of the water and onto the sand. NAME OF A FRIEND was afraid of VERB ENDING IN ING jellyfish. The rest of us stayed in the water playing GAME because VERB ENDING IN ING jellyfish are ADJECTIVE 3.’

Using your knowledge of string formatting with the f syntax, replace each of the fully capitalized words with the correct variable.

story = (f'It was a {adjective1} summer day at the beach. My friends and I were in the water playing {game}. As a {adjective2} wave came closer, my friend {friend} yelled, "Look! There\'s a jellyfish {verb}!" As we got closer, we saw that the jellyfish was indeed {verb}! {friend} ran out of the water and onto the sand. {friend} was afraid of {verb} jellyfish. The rest of us stayed in the water playing {game} because {verb} jellyfish are {adjective3}.')

Play the Game

It's time to play! Add a print() statement to print the story in the interpreter. Look over your code to ensure that all looks accurate. Once you're ready, save and run the program. You should see a silly story printed in IDLE!

Enter an adjective: Lazy
Enter the name of an outdoor game: Tennis
Enter another adjective: Beautiful
Enter the name of a friend: Eric
Enter a verb ending in ing: Singing
Enter one more adjective: Sticky
It was a lazy summer day at the beach. My friends and I were in the water playing tennis. As a beautiful wave came closer, my friend Eric yelled, "Look! There's a jellyfish singing!" As we got closer, we saw that the jellyfish was indeed singing! Eric ran out of the water and onto the sand. Eric was afraid of singing jellyfish. The rest of us stayed in the water playing tennis because singing jellyfish are sticky.

The complete code for this project is shown next. Feel free to get creative and create your own version of the Mad Libs generator!

Words requested from the user
adjective1 = input('Enter an adjective: ').lower()
game = input('Enter the name of an outdoor game: ').lower()
adjective2 = input('Enter another adjective: ').lower()
friend = input('Enter the name of a friend: ').capitalize()
verb = input('Enter a verb: ').lower()
adjective3 = input('Enter one more adjective: ').lower()

Story template
story = (f'It was a {adjective1} summer day at the beach. My friends and I were in the water playing {game}. As a {adjective2} wave came closer, my friend {friend} yelled, "Look! There\'s a jellyfish {verb}!" As we got closer, we saw that the jellyfish was indeed {verb}! {friend} ran out of the water and onto the sand. {friend} was afraid of {verb} jellyfish. The rest of us stayed in the water playing {game} because {verb} jellyfish are {adjective3}.')

print(story)

[image: Illustration depicting what decisions to take when executing code based on the logic we add to a script. The logic determines if the code encounters a situation that is either true or false, called a condition.]

7
Conditionals and Control Flow

Python can make decisions when executing code based on the logic you add to a script. The logic you add determines what should happen if the code encounters a situation that is either true or false. In Python, the situation is called a condition. Your script can contain one or many conditions all with their own set of actions.

Comparison Operators

You may be familiar with comparing numbers in math using phrases such as “greater than,” “less than,” or even “less than or equal to.” Python shares the same comparators with a few additional ones for you to use when comparing numbers or strings. Comparison operators are used to compare two values. When using a comparison operator, Python will return a Boolean value of either True or False. The return value indicates whether a comparison is true or false. Python will always capitalize the Boolean value.

[image: “Tabular chart for comparing numbers in math using phrases such as “greater than,” “less than,” or even “less than or equal to.” Python shares the same comparators to use when comparing numbers or strings.”]

Comparators can also be used for more complex comparisons that involve math equations. Python completes the equation for both sides of the comparator before determining whether the Boolean value is True or False.

>>> 4 * 7> 98 / 2
False
>>> 5 + (6**2 + 3) <= 99 - (23 * 12/2)
False
>>> 12/2 == 3 * 2
True

Strings can also be compared to see whether each value is the same or different.

>>> favorite_flower = 'rose'
>>> flower = 'Rose'
>>> print(favorite_flower == flower)
False

In the previous example, although both variables are assigned to the same type of flower, the string assigned to favorite_flower is lowercase, while the string assigned to flower starts with a capital R.

Logical Operators

The comparison fun doesn't stop there! There are three logical operators that are used to compare values. Like the previous comparators, logical operators return Boolean values True or False.

[image: Tabular chart depicting three logical operators that are used to compare values. The logical operators are used to evaluate whether two or more expressions are true or not true.]

You can use logical operators to evaluate whether two or more expressions are true or not true.

>>> (4> 5) and (3 <= 3)
False
>>> (((20 * 3) + 2) < (100 / 2) * (5**3 - 6)) or ((8 - 7 +1)>= 4)
True

In the first example, Python compares the Boolean values for each equation, False and True. The result is False since one of the expressions evaluates to False. In the second example, Python first calculates the total for each equation and compares the Boolean value for each expression, False or False. The result is True since both expressions evaluate to False.

Logical operators are not just limited to comparing numbers. These operators can also be used to compare conditions that consist of strings. For example, you can decide whether to watch cartoons if the day of the week is Tuesday and your homework is complete. You can explore this scenario more in the following sections!

if Statements

You can tell your code to take a specific action if all the required conditions are met. Circling back to the example from the previous section, suppose that you can watch cartoons only if the day of the week is Tuesday and your homework is complete.

You can use an if statement to determine what will happen in this scenario. An if statement evaluates a scenario in this form: if some condition is met, then a specific action will occur.

[image: The syntax used for an if statement to determine what will happen in this scenario. An if statement evaluates a scenario in this form: if some condition is met, then a specific action will occur.]

In the case of watching cartoons, if your homework is complete, then you can watch cartoons. You can turn this conditional logic into an if statement in Python. For ease of creating a program for this logic, create a new file in IDLE and save it using the filename cartoons.py.

First, create a variable homework_complete and set the variable to the Boolean value of True. Then, create a variable day_of_week and assign the current day of the week to the variable.

homework_complete = True
day_of_week = 'Tuesday'

Next, create an if statement that states what condition must be met for you to watch cartoons. In the if statement, include a logical comparator that will compare whether both your homework is complete and the day of the week is Tuesday.

if (homework_complete == True) and (day_of_week == 'Tuesday'):

Complete the if statement by including a print() statement that tells you that you can watch cartoons. Save and run the program to test that your logic is correct. The completed program is provided here:

homework_complete = True
day_of_week = 'Tuesday'

if (homework_complete == True) and (day_of_week == 'Tuesday'):
 print('You can watch cartoons!')

if-else Statements

What happens when a condition is not met? Suppose you haven't completed your homework. In the program that you've written so far, there is no logic provided to tell Python what to do if you haven't completed your homework. Therefore, if you change the did_homework assigned value to False, nothing will happen. However, you can provide an action to the if statement using an if-else statement.

[image: The syntax used for an if statement using an if-else statement, which first evaluates whether the if condition is met. If the if condition is met, then the first action occurs.]

An if-
else statement first evaluates whether the if condition is met. If the if condition is met, then the first action occurs. However, if the if condition is not met, Python looks at the else condition and takes that action instead.

Update your program to reflect what should happen if you did not complete your homework. After the print() statement, add an else condition and specify what should print if you did not complete your homework.

else:
 print("You can't watch cartoons until your homework is complete!")

To test whether your logic works properly, you can change the value assigned to the homework_complete variable to False. After you save and run the program, the string You can't watch cartoons until your homework is complete! should print in the interpreter window.

if-elif-else Statements

But wait—there's more! You may encounter a scenario where the outcome is not as straightforward as an either-or outcome. Since Saturdays are great for relaxing, you're able to watch cartoons even if your homework isn't complete since you have the entire weekend to finish your homework.

You can make your conditional logic more complex by adding even more conditional statements! The if-
elif-
else statement enables you to create multiple conditions for Python to evaluate before taking an action. The elif stands for “else if” and is another way of saying “else, do this” or “otherwise, do this.”

[image: The syntax used to create multiple conditions for Python to evaluate before taking an action. Python first starts with the if statement and then checks the elif condition and finally performs the action.]

Python first starts with the if statement to evaluate whether the specified condition has been met. If the condition has not been met, then Python checks the elif condition. If the elif condition is met, then Python performs the action defined by the elif statement and stops evaluating the if-
elif-
else statement. If you find yourself in need of multiple conditions beyond a single elif condition, you could add as many elif statements as needed. However, the final condition in an if-
elif-
else statement is always an else condition.

Modify your program by adding an elif statement between the if and else statements. Like how you formatted the if condition, add a condition for elif that checks to see whether the day_of_week variable is equal to Saturday. If the day is Saturday, use a print() statement to give approval to watch cartoons but also remind you to finish your homework by Sunday night.

elif day_of_week == 'Saturday':
 print('You can watch cartoons, but you must complete your homework by Sunday night!')

Before you test the program, make sure that the homework_complete variable evaluates to False and Saturday is assigned to the day_of_week variable. Save and run the program to check out your logic.

homework_complete = True
day_of_week = 'Saturday'

if (homework_complete == True) and (day_of_week == 'Tuesday'):
 print('You can watch cartoons!')

elif day_of_week == 'Saturday':
 print('You can watch cartoons, but you must complete your homework by Sunday night!')

else:
 print("You can't watch cartoons until your homework is complete!")

Python first checks whether both the homework_complete variable is True and the day of the week is Tuesday. Since the expressions evaluate to False, Python checks the elif condition to see whether the day of the week is Saturday. Since Saturday is assigned to the day_of_week variable, You can watch cartoons, but you must complete your homework by Sunday night! is printed.

To test other scenarios, change the program by assigning different days of the week to the day_of_week variable and modify whether you completed your homework. Try printing each print() statement to the interpreter window! If you're feeling ambitious, add more conditions to the program by adding additional elif statements.

Project: What to Wear

Description:

Madison wants to create a program that tells her what she should wear based on the weather conditions.

	If the temperature is 80 degrees or warmer, then Madison should wear shorts and pack her sunglasses.

	If the temperature is 60–79 degrees, then Madison should wear a light jacket.

	If the temperature is 59 degrees or cooler, then Madison should wear a coat in addition to a hat, gloves, and scarf.

Create conditional logic using if-
elif-
else statements to help Madison create her program.

Steps:

Open IDLE

Before you begin to code, open IDLE and create a new file. Save your new file with the filename what_to_wear.py.

Understand the Logic

There are three different conditions that Madison wants her program to consider before suggesting what to wear. Each condition contains an if statement, an integer, a comparator, and a string. Whether the action (what Madison should wear) is executed is based on the value of the temperature. Therefore, whether a condition is met will be determined by the temperature.

Create a Variable for Temperature

The temperature will vary by day. Therefore, you can have the program ask Madison to provide the current temperature once the program starts. Create a variable temperature that prompts Madison to enter the current temperature.

temperature = int(input('What is the current temperature? '))

The program will use the value assigned to temperature to compare the value to other numeric values. Therefore, make sure that you convert the temperature variable to an int.

Create an if Statement

Starting with the first condition, create an if statement before the variable advice that checks whether the temperature is 80 degrees or warmer. If the condition is met, store Madison's outfit suggestion in a variable called outfit.

if temperature>= 80:
 outfit = 'shorts and pack your sunglasses'

You can test the program to check your logic. Add a print() statement to the condition that prints the outfit suggestion. When prompted, enter any numeric value 80 degrees or greater. The advice string should print with the appropriate outfit suggestion.

Add elif Statements

Now that you've confirmed the initial logic for the program is correct, you can add an elif statement for the second condition. Add an elif statement to the program that checks whether the current temperature is between 60 and 79 degrees. This logic requires you to compare two expressions using the and logical operator. The first expression will reflect whether temperature is less or equal to 79 degrees. The second expression will reflect whether temperature is greater than or equal to 60 degrees. If the condition is met, store Madison's outfit suggestion in a variable called outfit.

elif temperature <= 79 and temperature>= 60:
 outfit = 'a light jacket'

You can test the program to check your logic. Add a print() statement to the condition that prints the outfit suggestion. When prompted, enter any numeric value between 60 and 79 degrees. The advice string should print with the appropriate outfit suggestion.

Add an else statement

There's now just one final condition to add to the program! Since there are no additional conditions, you can create an else statement that stores Madison's outfit suggestion to a variable outfit.

else:
 outfit = 'a coat in addition to a hat, gloves, and scarf'

You can test the program to check your logic. Add a print() statement to the condition that prints the outfit suggestion. When prompted, enter any numeric value 59 degrees or lower. The advice string should print with the appropriate outfit suggestion.

Create a Variable for Advice

Rather than create a separate print() statement inside each condition, you can create one that passes the outfit suggestion into a string based on the condition that is being satisfied.

Under the if-
elif-
else statement, create a variable advice that uses string formatting to add the outfit suggestion to the string Today you should wear. Finally, add a print() statement to print advice.

advice = (f'Today you should wear {outfit}.')

Before you test the program, comment out any print() statements within each condition. Now, save and run the program to test each condition!

If you're up to the challenge, feel free to add more conditional logic to the program. The full program is available here:

Ask the user to enter the current temperature
temperature = int(input('What is the current temperature? '))

Compares the current temperature to provide outfit suggestions
if temperature>= 80:
 outfit = 'shorts and pack your sunglasses'
elif temperature <= 79 and temperature>= 60:
 outfit = 'a light jacket'
else:
 outfit = 'a coat in addition to a hat, gloves, and scarf'

Advice for the user
advice = (f'Today you should wear {outfit}.')

print(advice)

[image: Illustration of the use of lists in Python to create a variable for each friend and assign their name to the variable and apply changes one by one. Python enables related items together into a list that provides with a better experience to manipulate the collection of items.]

8
Lists

If you were asked to list all your friends in Python, you might think to create a variable for each friend and assign their name to the variable. However, you wouldn't be able to work with all friend variables easily in a program as you would have to remember the variable name for each individual friend and apply changes one by one. Python enables you to group related items together into a list, which provides you with a better experience to manipulate the collection of items.

Create a List

A list is a collection of items that are ordered and can be changed. This means that each item in the list has a specific position, and if you'd like to change the items in the list, you can do so. You can also have duplicate items in a list.

[image: The syntax used to create a list as a collection of items that are ordered and can be changed. Each item in the list has a specific position, and you can change the items in the list.]

Let's create a list that consists of hobbies! Start with a variable hobbies and place each of your hobbies in the list as a string.

>>> hobbies = ['swimming', 'dancing', 'singing']

To print the list, use print() and pass in the hobbies variable. Python prints the entire list in order surrounded by brackets.

>>> hobbies = ['swimming', 'dancing', 'singing']
>>> print(hobbies)
['swimming', 'dancing', 'singing']

[image: image] Checkpoint

Jared wants to create a list of his favorite superheroes. Which list demonstrates the proper syntax for his list?

	comic_books = ('Spiderman', 'Wonder Woman', 'Hulk', 'Batman')

	comic_books = ['Spiderman' + 'Wonder Woman' + 'Hulk' + 'Batman']

	comic_books = ['Spiderman', 'Wonder Woman', 'Hulk', 'Batman']

	comic_books = 'Spiderman', 'Wonder Woman', 'Hulk', 'Batman'

List Length

You can create a list with as many list items as you'd like. To determine how many items are in the list, use len().

[image: The syntax used to create a list with as many list items to determine how many items are in the list, use len().]

Using the hobbies list, print the length of the list using len().

>>> len(hobbies)
3

Check Whether an Item Exists in a List

You can search the items in a list to determine whether an item exists in the list using the in keyword. A Boolean value returns with either True or False.

[image: The syntax used to search items in a list to determine whether an item exists in the list using the in keyword.]

Using the in keyword, check to see whether the item play basketball is in the list hobbies.

>>> 'play basketball' in hobbies
False

Since play basketball is not in the list hobbies, False is returned. Now, use the in keyword to check whether the item dancing is in the list hobbies.

>>> 'dancing' in hobbies
True

Since dancing is in the list hobbies, True is returned. What happens if you change the format of the list item? For example, use the in keyword to check whether the item SINGING is in the list hobbies.

>>> 'SINGING' in hobbies
False

The value False is returned because the list item singing is formatted in all lowercase characters in the list hobbies, whereas the example uses the string SINGING, which is in all uppercase characters.

Get Index of an Item

An index is the position of an item in a list. To get an item's index, you can use the index() method.

[image: The syntax used to get an item's index using the index() method. An index is the position of an item in a list.]

The first index position is 0. Let's print the index of the dancing list item from the hobbies list.

>>> hobbies.index('dancing')
1

Access Items in a List

To access a specific item, you can use the index number of the list item.

[image: The syntax used to access a specific item, using the index number of a list item. Python finds the list item at the specified index and completes whatever action you provide in the program.]

Python finds the list item at the specified index and completes whatever action you provide in the program. Let's print the dancing list item from the hobbies list. The list item dancing has an index of 1 (don't forget that Python starts counting at 0!).

>>> hobbies[1]
dancing

As you may remember, you can use negative indexing in Python as well, which begins counting positions from the end. To access dancing with a negative index, start counting from the last list item in the list (which is -1) and use the negative index for dancing in a print() statement.

>>> hobbies[-2]
dancing

[image: image] Checkpoint

What is the item at index [-2] in the list books?

books = ["Charlotte's Web", "Holes", "Matilda", "A Wrinkle in Time", "Hatchet"]

	Matilda

	Hatchet

	Charlotte’s Web

	A Wrinkle in Time

Change List Item Value

Using the index, you can change the item in a list to a new item.

[image: The syntax used to change the item in a list to a new item using the Index.]

Using the hobbies variable, change the swimming variable to snowboarding. The list item swimming has an index of 0. Use this index to change the item and print the list hobbies.

>>> hobbies[0] = 'snowboarding'
>>>hobbies
['snowboarding', 'dancing', 'singing']

Since lists can be changed, the swimming list item no longer appears in the list as it's been replaced with the item snowboarding.

Alternatively, you could use the index() method to change a list item value. The following is an example of using the index() method to change the list item singing to running:

>>> hobbies[hobbies.index('singing')] = 'running'
>>> hobbies
['snowboarding', 'dancing', 'running']

Python changes the list item at the index for singing to running.

Add Item to a List

You can add an item to the end of a list by using append().

[image: The syntax used to add an item to the end of a list by using append(). When you add new list items, the items will always be added to the end of the list if you're using append().]

Add a new hobby gaming to the list hobbies and print the list. When you add new list items, the items will always be added to the end of the list if you're using append().

>>> hobbies.append('gaming')
>>> hobbies
['snowboarding', 'dancing', 'running', 'gaming']

Insert Item to a List

You can insert an item into a list at a specified index using insert().

[image: The syntax used to insert an item into a list at a specified index using insert(), which requires you to use the index of the item.]

Insert a new hobby rock climbing to the list of hobbies after the list item dancing. This requires you to use the index of the item after dancing, which is running. The index() method can be used to get the index. Print the list to see the new hobby inserted into the list.

>>> hobbies.insert(hobbies.index('running'), 'rock climbing')>>> hobbies
['snowboarding', 'dancing', 'rock climbing', 'running', 'gaming']

The item rock climbing becomes the list item at index position 2, which means that running has a new index of 3. You can check this by using the index() method to get the index of running.

>>> hobbies.index('running')
3

Remove Item from a List

You can remove a specific item from a list using remove().

[image: The syntax used to remove a specific item from a list using remove(). Remove the running item from the list by specifying the string in the remove() method.]

Remove the running item from the list by specifying the string in the remove() method. Print the list to see that running is no longer in the list.

>>> hobbies.remove('running')
>>> hobbies
['snowboarding', 'dancing', 'rock climbing', 'gaming']

Remove Item at a Specified Index

You can remove an item from a list at a specified index using pop(). If you do not provide an index, Python removes the last item in the list.

[image: The syntax used to remove an item from a list at a specified index using pop(). If you do not provide an index, Python removes the last item in the list.]

Remove the item that has an index of 1 from the list and print the list.

>>> hobbies.pop(1)
'dancing'
>>> hobbies
['snowboarding', 'rock climbing', 'gaming']

Empty a List

To empty the entire list so that no items are in the list, use clear().

[image: The syntax to empty the entire list so that no items are in the list, using clear(). Clear all items from the hobbies list using clear() and print the list to confirm that the list is empty.]

Clear all items from the hobbies list using clear() and print the list to confirm that the list is empty.

>>> hobbies.clear()
>>> hobbies
[]

You could also empty a list by reassigning the variable hobbies to an empty list.

>>> hobbies = []
>>> print(hobbies)
[]

[image: image] Checkpoint

Claudia's birthday is approaching soon! Her parents asked her to create a list of three presents that she would like to receive for her birthday. Claudia began to put a list together but is having trouble managing the list. The following is Claudia's current list of presents:

presents = ['basketball', 'book', 'camera', 'headphones']

	Claudia's list looks to be a bit too long. Which function can she use to get the length of her list?

	len(presents)

	total(presents)

	presents(len)

	total(presents())

	Since Claudia's list is too long, she needs to remove an item from the list presents. She has decided to remove the basketball since she already has one from her last birthday. Which function can Claudia use to remove the item she no longer wants?

	remove(presents(('basketball'))

	presents.delete('basketball')

	presents.remove('basketball')

	presents.remove(basketball)

	Claudia wants to be specific about the type of camera that she wants for her birthday. Rather than list camera, she wants to specify that she wants a Polaroid camera. Which function can Claudia use to change the item camera to Polaroid camera?

	'camera' = 'Polaroid camera'

	presents[1] = 'Polaroid camera'

	presents('camera') = 'Polaroid camera'

	presents[2] = 'Polaroid camera'

Concatenate

When you combine or concatenate lists, a new list is created that's separate from the initial individual lists.

[image: The syntax used to combine or concatenate lists, and a new list is created that is separate from the initial individual lists. Use + to concatenate lists and store the list in a new variable.]

Use + to concatenate lists and store the list in a new variable.

>>> months = ['January', 'February', 'March', 'April']
>>> seasons = ['Autumn', 'Winter', 'Spring', 'Summer']
>>> months_and_seasons = months + seasons
>>> months_and_seasons
['January', 'February', 'March', 'April', 'Autumn', 'Winter', 'Spring', 'Summer']

The list items in the new list months_and_seasons stay in their original order from the original lists.

Extend

You don't have to create a new list every time you want to join two lists together! You can also add a list to the end of a list using extend().

[image: The syntax used to not create a new list every time you want to join two lists together. You can also add a list to the end of a list using extend().]

Using the individual months and seasons lists from the previous example, add the seasons list to the end of the months list. When you print the months list, the list months is longer and now includes the items from the seasons list.

>>> months = ['January', 'February', 'March', 'April']
>>> seasons = ['Autumn', 'Winter', 'Spring', 'Summer']
>>> months.extend(seasons)
>>> months
['January', 'February', 'March', 'April', 'Autumn', 'Winter', 'Spring', 'Summer']

Even though you added the items in the seasons list to the months list, the seasons list is unchanged! Check it out for yourself by printing the seasons list.

>>> seasons
['Autumn', 'Winter', 'Spring', 'Summer']

Slicing

Earlier, you accessed the items in a list using the index of an item. You can also use the index of an item or items to slice a list. Slicing a list will return items within a specified range.

Create a new list rainbow and store a list of rainbow colors inside the list.

>>> rainbow = ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']

Use len() to get the length of the list. The length of the list is needed to help you determine how many items are in the list.

>>> len(rainbow)
7

Now that you know the length of rainbow, use that as guidance when you slice the list.

To return specific items within a range, pass the list and the index of the item(s) into IDLE. The following example returns the second, third, and fourth items in rainbow:

>>> rainbow[1:4]
['orange', 'yellow', 'green']

Remember that in Python, a range will start at the first index you specify and end before the last index you specify. Therefore, the range in the previous example starts at index 1 of the second item orange and ends at the index 4 of the fifth item so that the fourth item green is printed.

You can also use slicing to return all list items before or after an index. To do so, leave either the first index or the second index blank.

>>> rainbow[3:]
['green', 'blue', 'indigo', 'violet']
>>> rainbow[:5]
['red', 'orange', 'yellow', 'green', 'blue']

In the first example, all items starting at index 3 are printed. In the second example, all items before the item at index 5 are printed.

Negative indexes can be used as well when slicing lists! Python starts at the last item in the list and works backward to return the specified items.

>>> rainbow[-5:-2]
['yellow', 'green', 'blue']

In the example, Python prints the list items starting at index -5 up to and excluding the item at index -2.

[image: image] Checkpoint

Raul's dog recently had puppies! Before the puppies were born, he decided to let his friends adopt the puppies on a first-come first-served basis. Prior to the puppies’ birth, Raul created a list to collect the names of his friends who were interested in adopting a puppy. Now that the puppies are born, Raul realizes that there are 12 people on the list and only 7 puppies. Print a list of the friends in adoption_interest who will be able to adopt a puppy.

adoption_interest = ['Mya', 'Shawn',
'Carlos', 'Riley', 'Ashanti', 'Bruce',
'Lauren', 'Mike', 'Keith', 'Kai',
'Shanice', 'Noland']

	adoption_interest[:-4]

	adoption_interest[1:7]

	adoption_interest[7:]

	adoption_interest[:7]

[image: “Illustration of doing the same thing repeatedly, which is mindlessly tedious for human beings and a big reason we like using computers so much. In computer programming, a loop is used to create a repeated action, and one such loop is the for loop.”]

9
for Loops

Computers are great for doing the same thing over and over again, which is mindlessly tedious for human beings. That's a big reason why we like using computers so much! In computer programming, a loop is used to create a repeated action, and one such loop is the for loop.

Create a for Loop

Suppose you want to print out each letter in the string Python. You could start by creating a variable and assigning the string Python to the variable. Using print(), you could then print the variable. However, look at what happens when you follow those steps:

>>> language = 'Python'
>>> print(language)
Python

Although the string Python is printed to the console, the goal is to print each letter in the string one by one. To do so, you can use a for loop.

 [image: The syntax used to print each letter in the string one by one, although the string in Python is printed to the console. To do so, you can use a for loop.]

A for loop repeats the same steps in your code. The process of repeating is called iterating.

Iterate over a String

When you create a for loop with a string, Python loops through each item in the string. Within the loop, you can specify an action to take on each item. Let's see this in action with the string Python!

Since you previously created a language variable that stores the string Python, use that variable to create a for loop. First, create a for statement that states “for each item in the variable language.”

>>> for item in language:

You can name the item whatever you'd like. However, consider choosing an item name that relates to the variable.

Now, add an action that you want the program to take for each item in the string Python. Circling back to the initial goal, print each letter (or item) in the string Python. In IDLE, press Enter twice after typing the print() statement to run the code.

>>> for item in language:
 print(item)

P
y
t
h
o
n

The code starts at the first item in the string Python and completes the action, which is to print the item. The loop then repeats the same action for the next item in Python. The loop continues to repeat until all items in the string Python are printed.

Iterate over a List

Iterating isn't just limited to strings. You can also iterate over lists to take an action on each item in a list. Create a list called continents that stores a list of the continents on Earth.

>>> continents = ['Asia', 'Africa', 'North America', 'South America', 'Antarctica', 'Europe', 'Australia']

Using a for loop, print each item in continents so that each item prints individually.

>>> for continent in continents:
 print(continent)

Asia
Africa
North America
South America
Antarctica
Europe
Australia

The loop starts with the first item, Asia, and prints the value to the interpreter. The loop then repeats and prints the next continent. This process continues until all items in the list continents are printed.

Create a break Statement

To stop a loop, you can add a break statement to the loop. A break statement stops the loop from iterating before the loop has looped through all the items.

[image: The syntax used to stop a loop by adding a break statement to the loop. A break statement stops the loop from iterating before the loop has looped through all the items.]

An if statement helps the loop determine whether it should break. If the condition in the if statement is met, the loop will stop iterating. However, if the condition in the if statement hasn't been met, the loop will continue until the condition is met.

To see this in action, print all items in the list continents up to and including Antarctica. Re-create the for loop from the prior example including the print() statement that prints the item. Add an if statement inside the for loop that checks whether the next item printed is equal to the string Antarctica.

>>> for continent in continents:
 print(continent)
 if continent == 'Antarctica':
 break

Asia
Africa
North America
South America
Antarctica

Python starts with the first item, Asia, and prints the item to the interpreter. Python then checks whether the current item in the loop is equal to the string Antarctica. Since the string Asia is not equal to Antarctica, Python continues to loop through the list continents until the item is equal to Antarctica. Once Python reaches the item Antarctica, Python prints the item and sees that the item string is indeed equal to Antarctica. The loop breaks, and the remaining items in the list continents are not looped nor printed.

Create a continue Statement

But what should you do if you want your loop to break the current looping and pick things back up at a new point? You can use a continue statement to tell the loop to stop looping and then continue to loop after a specified condition.

[image: “The syntax used to break the current looping and pick things back up at a new point. You can use a continue statement to tell the loop to stop looping and then continue to loop after a specified condition.”]

Try using a continue statement to loop through each item in the list continents, stop at North America, and continue looping at South America, use the magic of an if statement and continue statement! First, create a for loop that sets up the iteration for the items in the list continents. Add an if statement that checks whether the item is equal to the string North America. If the item is equal to North America, the loop should continue. Otherwise, the for loop should print the item.

>>> for continent in continents:
 if continent == 'North America':
 continue
 print(continent)

Asia
Africa
South America
Antarctica
Europe
Australia

Python starts with the first item, Asia, and checks whether the item is equal to the string North America. Since the string Asia does not equal the string North America, the item is printed. The loop continues to iterate through the items in the list until the item is equal to the string North America. Once the loop gets to the item North America, Python sees that the item North America is equal to the string North America. Therefore, the loop stops and does not complete the print() action that follows the continue statement. Instead, Python starts the loop again at the next item, South America, and continues the loop until all items in the list continents have been iterated over.

[image: image] Checkpoint

There was a glitch in the grading system that decreased the recent test scores stored in Mr. Klein's grade book by three points. Which for loop can Mr. Klein use to increase each test score by three points and print the new test score?

A.

>>> for score in test_scores:
 score = score + 3
 print score

B.

>>> for score in test_scores:
 score += 3
 print(score)

C.

>>> for score in test_scores:
 score * 3
 print(score)

D.

>>> for score in test_scores:
 score += 3
 print ('score')

Use range()

Oftentimes, you want to iterate some number of times using numbers in a range. The range() function gives you a way to create a list of numbers that you can use in a for loop.

[image: The syntax used to iterate some number of times using numbers in a range. The range() function gives a way to create a list of numbers that you can use in a for loop.]

The range() function includes start and stop parameters that specify where the range should begin and end. The default start parameter is 0. However, if you want a specific range, you need to use the start, stop syntax.

Let's first create a range using the default start parameter. Python can print a sequence of numbers from 0 through 10 using a for loop and range(). Specify the number that the range should count to (but not include) inside the parentheses.

>>> for x in range(11):
 print(x)

0
1
2
3
4
5
6
7
8
9
10

Python starts with 0 and prints the value. Python continues to loop through each item in the range until all numbers 0–10 are printed. Since Python starts counting at 0, only 11 values in total are printed.

To specify a specific range, enter both a start and stop parameter inside range().

[image: The syntax used to specify a specific range, by entering both a start and stop parameter inside range(). The first parameter determines where the range should start to count. The second number determines where the counting should stop.]

The first parameter determines where the range should start to count. The second number determines where the counting should stop. Using this syntax, use a for loop and range() to print a sequence of numbers from 3 through 7.

>>> for x in range(3,8):
 print(x)

3
4
5
6
7

The for loop starts at the number 3 and prints each value up to but not including 8.

You could also get even more creative by telling the code to skip a specific amount of numbers as the code loops through the range. This process of skipping or incrementing can be done with a step parameter.

[image: The syntax used to get even more creative by telling the code to skip a specific amount of numbers as the code loops through the range. This process of skipping or incrementing can be done with a step parameter.]

The first parameter still tells the code where the loop starts, and the second parameter tells the code where the loop stops. However, the third parameter tells the code how much the count should increment (or increase) while the code loops over the range.

Using this syntax, use a for loop and range() to print a sequence of numbers from 10 through 100 incremented by 10.

>>> for x in range(10,101,10):
 print(x)

10
20
30
40
50
60
70
80
90
100

Since you want the range to count up to and include 100, the stop parameter must be 1 greater than 100. Python starts with the number 10, increases the next value printed by 10, and prints the number. This loop continues until the full range is iterated over.

Project: Find the Green Marble

Description:

Mariah recently started a marble collection that consists of the following marbles and quantities:

	Red: 2

	Orange: 1

	Pink: 3

	Yellow: 2

Unfortunately, Mariah is having trouble finding green marbles to add to her collection. While on summer vacation, she discovered a marble store nearby that lets customers pick marbles to purchase from a secret bag. The catch to picking marbles from the bag is that Mariah is not allowed to look inside the bag, and she can pick only five marbles from the bag per day. If she chooses not to keep a marble that is picked, she must place the marble back into the bag. Since Mariah wants one green marble, she wants to stop picking marbles once a green marble is found.

The secret bag contains the following quantities of marbles:

	Blue: 3

	Green: 4

	Orange: 1

	Purple: 2

	Yellow: 2

	Pink: 2

	Red: 4

Create a program that keeps track of how many times Mariah has picked a marble from the bag and confirms whether the marble picked is green. If Mariah picks a green marble from the bag, add the marble to Mariah's collection and remove the marble from the secret bag. Once Mariah picks a green marble, she should stop picking marbles from the secret bag. Keep in mind that Mariah is only allowed to pick five marbles from the secret bag per day.

Steps:

Open IDLE

Before you begin to code, open IDLE and create a new file. Save your new file with the name marbles.py.

Import the Random Module

Python comes equipped with built-in modules that you can use in your programs. Such modules enable you to perform some interesting actions in your code! The random module enables you to return random values. Within the random module is a random.choice() function that returns a random item from a list. To use a module in Python, you must first import the module.

[image: The syntax used to first import a module in Python. Such modules enable to perform some interesting actions in code.]

In IDLE, import the random module so that you can use the random.choice() function in your program to pick marbles from the secret bag of marbles.

import random

Create a List for Mariah's Collection

As Mariah picks marbles from the secret bag, she needs to add any green marble she picks to her collection. Create a list called collection for Mariah's current collection of marbles.

collection = ['red', 'pink', 'orange', 'red', 'pink', 'yellow', 'pink', 'yellow']

Create a Secret Bag

Since you know which marbles are inside the secret bag, create a list called secret_bag to keep track of which marbles are available to choose from.

secret_bag = ['pink', 'blue', 'green', 'orange', 'red', 'purple', 'green', 'blue', 'blue', 'red', 'green', 'purple', 'yellow', 'red', 'pink', 'red', 'green', 'yellow']

The order in which you enter the marbles inside the bag does not matter since Mariah will pick a marble at random.

Create a List for Marbles Chosen

To keep track of which marbles Mariah has picked, you can create an empty list and later add the chosen marbles to the list. To create an empty list, leave the items inside the list empty.

marbles_chosen = []

Track the Tries Remaining

The marble store has a strict rule for the secret bag! Customers can pick only five marbles from the bag a day. Keep track of the number of picks remaining for Mariah by creating a variable called tries_remaining.

tries_remaining = 5

As Mariah picks a marble from the secret bag, the number of tries remaining will decrease until the total number of tries remaining is 0.

Create a for Loop to Iterate

Since Python cannot iterate over an int, you can use range() to loop five times and pick a random marble. Keep in mind that when using range(), the loop will perform the iteration 1 minus the number passed into the parentheses.

for x in range(6):

Create Nested if Statements

There are a couple of conditional statements that the program needs to consider before allowing Mariah to pick another marble. In Python, you can use an if statement inside another if statement. This is known as nesting. First, create an if statement inside the for loop that checks whether the number of tries remaining is greater than 0. If the number of tries remaining is less than 0, print a message that lets Mariah know that she is out of tries and should try again tomorrow.

if tries_remaining> 0:
else:
 print('Sorry, you are out of tries. Please come back tomorrow and try again!')

There are a couple of actions that take place if the number of tries is greater than six. Inside the if statement but before the else statement, select a random marble from the secret bag, add the marble to the list of marbles chosen, and decrease the number of tries remaining. As a reminder, the random.choice() function can be used to pick a random item from a list.

selection = random.choice(secret_bag)
marbles_chosen.append(selection)
tries_remaining -= 1

You can create a variable called selection to store the randomly selected marble. The marble stored inside selection can then be added to the marbles_chosen list that is being used to track the marbles picked from the secret bag. After the marble selected is added to marbles_chosen, you can decrease the number of tries remaining by decrementing the value of tries_remaining by 1.

Now it's time to nest an if statement! After the number of tries remaining is decreased, create an if statement that checks whether the marble chosen at random is green. If the random marble is green, add the marble to Mariah's collection and remove the marble from the secret bag.

if selection == 'green':
 collection.append(selection)
 secret_bag.remove(selection)

In the nested if statement, you can check whether the value stored to selection is equal to the string green. If the value is equal to green, the value (or marble) is added to Mariah's collection using append() and removed from the secret bag using remove().

Let's create one more nested if statement! This if statement will be used to break the loop once a green marble is added to Mariah's collection. If the loop breaks, print a statement that lets Mariah know that she has picked a green marble. In addition, let Mariah know how many tries she has remaining.

if ('green' in collection):
 print(f'Awesome! You found a green marble. If you would like another marble, you have {tries_remaining} pick(s) left.')
 break

The in keyword is used to check whether the item green is in the list collection. The print() statement that follows uses string formatting to pass the value assigned to tries_remaining into the printed string. The break statement is then used to stop the loop from looping.

Print the Marbles Chosen

To let Mariah know which marbles were chosen up until the loop stopped, write a print() statement that uses string formatting and prints the items in the list marbles_chosen. The print() statement should be outside the for loop.

print(f'Here are all the marbles that were chosen: {marbles_chosen}')

Pick Marbles!

Once you've reviewed your code, save and run the program.

Awesome! You found a green marble. If you would like another marble, you have 3 pick(s) left.
Here are all the marbles that were chosen:
['red', 'green']

When the program starts, Python first imports the random module so that the random.choice() function can be used to pick a random marble from secret_bag. Python then starts the first of five loops assuming that tries_remaining is greater than 0. Since tries_remaining is greater than 0, a random item is selected from secret_bag and added to marbles_chosen. The value for tries_remaining is then decreased by 1. Python then checks to see whether the randomly selected marble is green. If the marble is green, the item is added to collection and removed from secret_bag. Python confirms whether the randomly selected marble is now in collection. If the marble is in collection, the loop breaks and prints that a green marble was found in addition to the number of tries remaining. Python continues the loop until one of two conditions is met: tries_remaining is not greater than 0 or a green marble is selected. Once the loop stops, a list of the items in marbles_chosen is printed.

You can add more conditional logic to the program and set your own limitations and rules for picking marbles out of the secret bag! Be sure to watch your indentations as you nest if statements. IDLE is pretty helpful in indenting the proper number of spaces!

Here is an example of the full program for marbles.py:

Import the random module into the program
import random

List of marbles in the marble collection
collection = ['red', 'pink', 'orange', 'red', 'pink', 'yellow', 'pink', 'yellow']

List of marbles in the secret bag
secret_bag = ['pink', 'blue', 'green', 'orange', 'red', 'purple', 'green', 'blue', 'blue', 'red', 'green', 'purple', 'yellow', 'red', 'pink', 'red', 'green', 'yellow']

Empty list of marbles chosen which stores the
randomly selected marbles
marbles_chosen = []

Number of tries remaining for randomly selecting a marble
tries_remaining = 5

For loop used to randomly select marbles 5 times
unless a green marble is chosen.
For each marble selected, the number of tries decreases.
for x in range(6):
 if tries_remaining> 0:
 selection = random.choice(secret_bag)
 marbles_chosen.append(selection)
 tries_remaining -= 1
 if selection == 'green':
 collection.append(selection)
 secret_bag.remove(selection)
 if ('green' in collection):
 print(f'Awesome! You found a green marble. If you would like another marble, you have {tries_remaining} pick(s) left.')
 break

 else:
 print('Sorry, you are out of tries. Please come back tomorrow and try again!')

print(f'Here are all the marbles that were chosen: {marbles_chosen}')

[image: Illustration depicting the use of loop in Python.Inorder to repeat a loop we get ready to learn Python, and the other loop is called the while loop.]

10
while Loops

In the previous chapter, you learned how to repeat actions in Python using a for loop. However, what should you do if you want your loop to keep repeating while a condition is true? Get ready to learn about Python's other loop, the while loop!

Create a while Loop

Suppose you have a variable x that decreases each time a loop is completed. With each decrease, the string "x is greater than 0" is printed until x is equal to the value 0. How would you go about setting this up? You could use a while loop!

[image: The syntax used for a while loop. A while loop repeats all actions indented underneath the while loop so long as the condition you define is true.]

A while loop repeats (or iterates) all actions indented underneath the while loop so long as the condition you define is true. Let's use a while loop to set up the previous logic for the variable x.

>>> x = 5
>>> while x> 0:
 print("x is greater than 0")
 x -= 1

x is greater than 0
x is greater than 0
x is greater than 0
x is greater than 0
x is greater than 0

In the previous code, the variable x is assigned the value 5. This value is where the while loop starts to count down. Just below the variable assignment, the while loop logic begins with the condition “while x is greater than 0.” What this means is that while the value of x is more than 0, the action inside the while loop happens. In this case, a string is printed, and the value of x is decreased by 1.

As you can see, the string is printed five times given that x is greater than 0 for five of the loops that are completed. To double-check that the value of x is in fact decreasing and greater than 0, modify the code to return the current value of x in the printed string. You can use string formatting with the f syntax to insert the current value of x into your string.

>>> x = 5
>>> while x> 0:
 print(f"x value is {x}")
 x -= 1

x value is 5
x value is 4
x value is 3
x value is 2
x value is 1

break statement

Like for loops, you can stop a while loop using a break statement. A break statement stops the loop from looping even if the condition is true.

[image: “The syntax used for a break statement that stops the loop from looping even if the condition is true. An if statement helps the loop determine whether it should break.”]

An if statement helps the loop determine whether it should break. If the condition in the if statement is met, the loop will stop. However, if the condition in the if statement hasn't been met, the loop continues until the condition is met. Let's see a break statement in action!

>>> num = 2
>>> while num <= 10:
 if num == 8:
 break
 print(num)
 num += 2

2
4
6

In the previous code, the variable num is assigned to the value 2. The while loop checks whether the value of num is less than or equal to 10. If the condition is true, then the while loop checks whether the value of num is equal to 8. If the value of num is equal to 8, then the while loop breaks. However, if the value of num is not equal to 8, then the value of num is printed, and the value of num is increased by 2. The while loop then loops again and finally breaks once the value of num is 8.

continue statement

Also like for loops, you can stop running the code at a point and continue to the next iteration. A continue statement tells the loop to return to the top of the loop at some other point in the code.

[image: The syntax used to stop running the code at a point and continue to the next iteration. A continue statement tells the loop to return to the top of the loop at some other point in the code.]

Let's use a continue statement to print every even number from 2 to 10. Define a variable num and assign the value 2. The value of num should increase by 1 after the completion of each loop. If the current value of num is an even number, print num to the console.

>>> num = 2
>>> while num <= 10:
 if (num % 2) == 0:
 print(f'{num} is an even number')
 num += 1
 continue

2 is an even number
4 is an even number
6 is an even number
8 is an even number
10 is an even number

In the previous code, the while loop checks that the value of num is less than or equal to 10. If the condition is true, then the while loop checks whether the value of num modulo 2 is equal to 0. As a reminder, modulo returns the remainder of two divided numbers. If the remainder of a number divided by 2 is 0, then the number is an even number. As for the previous code, if the remainder of modulo divided by 2 is 0, then the number is an even number. Therefore, the value of num is printed to the console and num is increased by 1. The while loop then continues.

while, else Loops

Suppose you want a block of code to run once the condition for your while loop is no longer true. Including an else statement makes this possible!

[image: The syntax used to run once the condition for your while loop is no longer true. For each iteration, Python checks whether the condition specified in the while loop is true.]

For each iteration, Python checks whether the condition specified in the while loop is true. However, once the condition is false, the action inside the else statement occurs.

Let's give this a try by creating logic for a model rocket launch. Suppose that the model rocket should be launched only if it's not windy. As the while loop counts down from 10 to 1, ask the user whether it's windy. If it's windy, break the loop and print the phrase Mission Aborted. If it's not windy, continue the countdown, launch the model rocket, and print the We Have Liftoff! phrase.

>>> countdown = 10
>>> while countdown> 0:
 print(countdown)
 countdown -= 1
 if input('Is it windy? ') == 'yes':
 print('Mission Aborted')
 break
else:
 print('We Have Liftoff!')

10
Is it windy? no
9
Is it windy? no
8
Is it windy? no
7
Is it windy? no
6
Is it windy? no
5
Is it windy? no
4
Is it windy? no
3
Is it windy? no
2
Is it windy? no
1
Is it windy? no
We Have Liftoff!

The previous code starts with a variable countdown that is assigned the value 10. A while loop checks whether the value of countdown is greater than 0. If the condition is true, the value of countdown is printed and then decreased by 1. Next, a conditional statement uses the input() method to ask whether it is windy. If the user's input is equal to the string yes, then the phrase Mission Aborted is printed, and the while loop breaks. However, if the user's input is not equal to the string yes, then the while loop continues with the next iteration. Once the while loop is complete, the else statement prints the We Have Liftoff! phrase.

[image: image] Checkpoint

Which of the following statements is true about while loops?

	A while loop iterates as long as a specified condition is false. A while loop can break by using a break statement. A break statement stops the loop and no longer runs the code inside the while loop.

	A while loop iterates only once regardless of whether a specified condition is true or false.

	A while loop iterates as long as a specified condition is true. A while loop can break by using a continue statement. A continue statement stops the loop and no longer runs the code inside the while loop.

	A while loop iterates so long as a specified condition is true. A while loop can break by using a break statement. A break statement stops the loop and no longer runs the code inside the while loop.

Project: Kickball Teams

Description:

Jaleesa and Rahim have been chosen as captains for today's game of kickball. Rather than pick their own teammates one by one, they've chosen to let Python pick the players instead! Using the random module, create a program that randomly assigns players to a team. The program should continue to add players to a team until the total number of players on the team is eight (seven plus the captain). Any players not selected for the first team will automatically be assigned to the second team.

After you create the program, run the program and print the list of players assigned to each team.

The following are the players who are playing in today's game of kickball:

Anastasia

Eli

Jamal

Jada

Theo

Michelle

Adam

Rhea

Charlie

Jasmine

Marley

Kenji

Sydney

Yara

Steps:

Open IDLE

Before you begin to code, open IDLE and create a new file. Save your new file with the filename kickball.py.

Import the Random Module

Python comes equipped with built-in modules that you can use in your programs. Such modules enable you to perform some interesting actions in your code! To use a module in Python, you must first import the module.

[image: The syntax used to import a module in Python, which enables the user to perform some interesting actions in their code.]

The random module enables you to return random values. Within the random module is a random.choice() function that returns a random item from a list. In IDLE, import the random module so that you can use the random.choice() function in your program to pick a player at random from a list of available players.

import random

Create a List for Players

Players will be chosen at random from the list of players playing in today's game of kickball. The program will first randomly select all seven players for Jaleesa's team. Any player not selected for Jaleesa's team will be a player on Rahim's team. Since a player can be chosen only once, the player should be removed from the list of available players when they are selected for Jaleesa's team.

Create a list available_players that consists of the 14 available players listed earlier.

available_players = ['Anastasia', 'Eli', 'Jamal', 'Jada', 'Theo', 'Michelle', 'Adam', 'Rhea', 'Charlie', 'Jasmine', 'Marley', 'Kenji', 'Sydney', 'Yara']

Create a List for Each Team

Each captain needs their own list of players to keep track of who's on their team. First, create a list named jaleesas_team for Jaleesa's team. Be sure to include Jaleesa as a player.

jaleesas_team = ['Jaleesa']

Now, create a list named rahims_team for Rahim's team. Be sure to include Rahim as a player.

rahims_team = ['Rahim']

Add Players to Jaleesa's Team

The program will select a player at random until the total number of players on Jaleesa's team is 8. You can get the total number of players on Jaleesa's team by getting the length (or len) of the list jaleesas_team. The len() method will provide you with the total number of items in the list.

Create the beginning of a while loop that will iterate while the length of Jaleesa's team is less than 8. Remember, Python starts to count at 0 rather than 1.

while len(jaleesas_team) < 8:

Next you create the code inside the while loop to add a player to the team. This is where the random module that was imported earlier comes in handy! Inside the while loop, create a variable player_selected to store the randomly selected player. The random.choice() method randomly selects a player from the available_players list.

while len(jaleesas_team) < 8:
 player_selected = random.choice(available_players)

Next, add (or append) that player to Jaleesa's team. The append() method adds a player to the list.

while len(jaleesas_team) < 8:
 player_selected = random.choice(available_players)
 jaleesas_team.append(player_selected)

Finally, remove the player from the list if they're selected for Jaleesa's team. The remove() method removes the player from the list.

while len(jaleesas_team) < 8:
 player_selected = random.choice(available_players)
 jaleesas_team.append(player_selected)
 available_players.remove(player_selected)

When the while loop starts, it checks whether the length of the jaleesas_team list is less than 8. If the length is less than 8, a random player is selected from available_players using random.choice(). The selected player is added to the jaleesas_team list and removed from the available_players list. Once the length of the jaleesas_team list is no longer less than 8, the loop stops.

Add Players to Rahim's Team

Now that Jaleesa's team is squared away, add the remaining players in the available_players list to Rahim's team. You can do so using the extend() method.

rahims_team.extend(available_players)

Print Players on Each Team

After Jaleesa's team is formed, you need to let the captains and the players know who's on which team. First, print the string “Jaleesa'
s Team” on its own line.

print("Jaleesa's Team")

Just below the string “Jaleesa's Team”, print the list of players from the jaleesas_team list. Remember, if you pass a list variable into a print() statement, the format of the output will include the brackets, commas, and quotations. To make the list of players read more like a natural list with just commas, use the * symbol and include the character that separates each item (or player) in the list.

print("Jaleesa's Team")
print (*jaleesas_team, sep = ", ")

Repeat the same for Rahim's team!

print("Rahim's Team")
print (*rahims_team, sep = ", ")

When the program starts, Python first imports the random module so that the random.choice() function can be used to pick a player from available_players. Python then starts the first loop assuming that the length of jaleesas_team is less than 8. Since len(jaleesas_team) is less than 8, a random player is selected from available_players and added to jaleesas
_team. The selected player is then removed from available_players. Python then repeats the loop and checks whether len(jaleesas_team) is still less than 8. This loop continues until the condition is no longer true. Since the flow of logic in Python happens from top to bottom, the for loop runs next and takes each of the remaining players in available_players and appends them to rahims_team. In the end, Python prints the list of players on each team.

Here is an example of the full program for kickball.py:

Import the random module to pick a random item in the list
import random

List of players available to choose from for teammates
available_players = ['Anastasia', 'Eli', 'Jamal', 'Jada', 'Theo', 'Michelle', 'Adam',
'Rhea', 'Charlie', 'Jasmine', 'Marley', 'Kenji', 'Sydney', 'Cooper']

List of each captain’s teams
jaleesas_team = ['Jaleesa']

rahims_team = ['Rahim']

While-loop that iterates until Jaleesa’s team has 8 players total
while len(jaleesas_team) < 8:
 player_selected = random.choice(available_players)
 jaleesas_team.append(player_selected)
 available_players.remove(player_selected)

For-loop that adds the remaining players to Rahim’s team
rahims_team.extend(available_players)

Prints the players on each team
print("Jaleesa's Team")
print (*jaleesas_team, sep = ", ")

print("Rahim's Team")
print (*rahims_team, sep = ", ")

[image: Illustration depicting the repeated use of the same block of codes. Python creates a function that can be used anywhere needed.]

11
Functions

Programs in Python often repeat the same set of actions defined in a block of code. Rather than rewrite the same block of code repeatedly in your program, create a function that you can use anywhere you need.

Create a Function

In Python, every function has a name, which is what you use to call it. Here's the syntax for defining a function:

[image: “The syntax used for defining a function. All functions start with the keyword def followed by the name of the function and a pair of parentheses. The function body contains whatever actions you choose to have your function complete.”]

All functions start with the keyword def followed by the name of the function and a pair of parentheses. Just below the function is the function body. The function body contains whatever actions you choose to have your function complete.

Here is an example of a hello_world function that prints the string "Hello World":

>>> def hello_world():
 print("Hello World")

Call a Function

The function in the prior example won't do anything in your program until you call the function. Calling a function tells your code to run the code inside the function body. To call a function, use the function name and include the parentheses. The parentheses specifically say, “Treat the name as a function and call it.”

>>> hello_world()
Hello World

Notice how you don't need to include a print statement in the function call. Since the hello_world() function includes a print statement in the function body, the string inside the function prints whenever the function is called.

It's worth noting that a function can do more than print strings! Essentially, most of the code you've written up to this point can be placed inside a function body.

Return

You can end the run of a function by including a return statement in the function body. A return statement appears at the end of the actions within the function body and can include an expression. An expression is a combination of values, variables, operators, and calls to functions.

[image: The syntax used to end the run of a function by including a return statement in the function body. A return statement appears at the end of the actions within the function body and can include an expression.]

If an expression is included with the return statement, the expression is evaluated, and the value is returned. Returning a value is useful as it enables you to use the result value of a function in your code. However, if no return statement is included at the end of a function, the function returns None.

Let's re-create the hello_world() function from the prior example and include a return statement at the end of the function body.

>>> def hello_world():
 print('Hello World')
 return

>>> hello_world()
Hello World

Parameters

Sometimes, you may need to provide data with your function to complete the action inside the function body. The data that you pass into a function is known as a parameter.

[image: The syntax used to provide data with your function to complete the action inside the function body. When you call a function that has parameters, you provide values for the parameters inside the parentheses.]

When you call a function that has parameters, you provide values for the parameters inside the parentheses. These values are known as arguments. Python takes the arguments and assigns them to the variables named by the parameters. By default functions accept arguments in order and assigns the arguments to the parameters in that order.

Let's create a good_morning() function that greets a person using their first and last names.

>>> def good_morning(fname, lname):
 print(f'Hello {fname} {lname}')
 return

>>> good_morning('April', 'Speight')
Hello April Speight

The good_morning() function has two parameters, fname and lname. Inside the function body, a string prints that includes the arguments used in the function call for the good_morning() function. When the good_morning() function is called, the two arguments you provide in the parentheses appear in the parameter variables fname and lname inside the function. You can then use these variables like any others inside the function body. It's important to know that a function can accept any type of value as an argument, like an int. For example, the following sum() function takes two parameters, a and b, and returns the sum of the two numbers:

>>> def sum(a,b):
 return a + b

>>> sum(5,6)
11

[image: image] Checkpoint

The following block of code contains a code snippet that consists of a function double(). The double() function takes a number and returns twice the number's value. Label each part of the code block.

[image: “A block of code containing a code snippet that consists of a function double(). The double() function takes a number and returns twice the number's value.”]

Default Arguments

A function can also have default arguments, which makes the parameter optional. The function uses the default value unless one is provided when calling the function.

[image: The syntax used for a function that has default arguments, which makes the parameter optional. A default value is assigned to a parameter when creating a function.]

A default value is assigned to a parameter when creating a function. When you call a function that has default values, the default value is used. The following is an example of a function favorite_season, which has a parameter season. The default value for the parameter season is Summer.

>>> def favorite_season(season="Summer"):
 print(f"{season} is my favorite season.")

>>> favorite_season()
Summer is my favorite season.

In the previous example, favorite_season() is called without passing a value into the parentheses. As a result, the string Summer is my favorite season. is printed. However, if you were to pass a value in the function call, the value provided is used instead and therefore printed.

>>> def favorite_season(season="Summer"):
print(f'{season} is my favorite season.')

>>> favorite_season('Spring')
Spring is my favorite season.

Since the value Spring is passed into the function call, the string Spring is my favorite season. is printed despite having a default value of Summer for the parameter season.

[image: image] Checkpoint

Ricky is having trouble figuring out why his age_in_dog_years() function returns the value 117 instead of 91. What should Ricky do to make sure that 91 prints to the console?

>>> def age_in_dog_years(age, dog_years=7):
 return age * dog_years

>>> age_in_dog_years(13, 9)
117

	Change the function call to age_in_dog_years(age=13, 9).

	Change the function to def age_in_dog_years(age=117, dog_years=7), which assigns a default parameter of 117 for the age parameter in the function.

	Pass only the argument 13 into the age_in_dog_years() function call.

	Replace 9 with dog_years=9 in the function call.

Arbitrary Arguments

You can also create a function without knowing how many arguments will be passed into the function. An arbitrary argument is indicated by a * before the parameter name in a function. Arbitrary arguments are often referred to as *args.

[image: “The syntax to create a function without knowing how many arguments will be passed into the function. An arbitrary argument is indicated by a * before the parameter name in a function, often referred to as *args.”]

Consider the following states_traveled() function that returns a string that prints the names of states visited:

>>> def states_traveled(*states):
 for state in states:
 print(f'I have traveled to {state}.')

>>> states_traveled('Vermont', 'Alaska', 'Florida')
I have traveled to Vermont.
I have traveled to Alaska.
I have traveled to Florida.

Since the number of states traveled is unknown, the * is placed before the states parameter in the states_traveled() function. When the states_traveled() function is called, three arguments are provided, one for each state traveled. The for loop created in the body of the states_traveled() function prints a string that includes each of the arguments passed into the function call.

Keyword Arguments

You also have the option to pass arguments into a function call without maintaining the default order. If you don't want to depend on ordering, then you can name the arguments. You can name arguments by creating keyword arguments in the function call. Keyword arguments are often referred to as *kwargs.

[image: “A block of code containing a code snippet that consists of a function double(). The double() function takes a number and returns twice the number's value.”]

To create a keyword argument, assign a value to an argument in the function call. The order of the keyword arguments in the function call do not have to match the order of the parameters in the function.

The following gameshow_contestants() function contains three parameters, which reflect the names of the contestants. The print statement inside the function body prints a string that includes the name of each contestant.

>>> def gameshow_contestants(contestant_1, contestant_2, contestant_3):
 print(f"Here are today's contestants: {contestant_1}, {contestant_2}, {contestant_3}.")

>>> gameshow_contestants(contestant_2 = 'Lamont',
contestant_1 = 'Pippa', contestant_3 = 'Sven')
Here are today's contestants: Pippa, Lamont, Sven.

The name of each contestant is passed into the function call by naming contestant_2 first followed by contestant_1 and finally by contestant_3. Regardless of the order used for the function call, the string printed within the function body maintains its order by first printing contestant_1, followed by contestant_2 and finally contestant_3.

If you were to call the gameshow_contestants() function without using keyword arguments, the function would print the names in the order in which they appear in the function call.

>>> gameshow_contestants('Lamont', 'Pippa', 'Sven')
Here are today's contestants: Lamont, Pippa, Sven.

Built-in Functions

Although you could create your own functions to use in a program, Python also has dozens of built-in functions! You've used some of the built-in functions already in prior chapters, as shown here:

	print()

	bool()

	float()

	int()

	
input()

	len()

	range()

	slice()

	str()

	type()

There are more than 60 built-in functions available in Python. To review all the built-in functions, visit docs.python.org/3/library/functions.html.

Project: Customer Service Bot

Tiny Space is a furniture store that specializes in selling furniture for small spaces. The company has one location in addition to a website, which features a customer service chat window that enables customers to chat in real time with someone from the Tiny Space team. When Addison first started Tiny Space, she and her team handled all incoming chat messages from customers as soon as an incoming message was received. However, business has grown from the early days of Tiny Space, and the Tiny Space team can no longer dedicate a significant amount of their day to responding to chat inquiries. Addison began to explore solutions that could minimize the amount of time spent on conversations with customers.

Addison figured that she could add a chat bot to the chat feature on the Tiny Space website to screen incoming chat messages and route customers to the appropriate person on the Tiny Space team if human assistance is needed. For some inquiries, the chat bot should be able to answer a customer's question without the need to have someone from the Tiny Space online team involved. Addison would also like the bot to mimic an actual conversation with a human.

Help the Tiny Space team by creating a program for the Tiny Space website chat bot.

Additional information for how the chat bot should respond to chat messages is provided next.

Greeting

When a customer starts a chat message with Tiny Space, the bot should greet the customer with the phrase Thanks for contacting Tiny Space!.

The bot should then collect the customer's name before continuing with the conversation. After the bot collects the customer's name, the bot should respond with the phrase Thanks, {insert customer's name}!.

Inquiry Categories

When a customer starts a chat message with Tiny Space, their inquiry typically falls into one of five categories. The Tiny Space team member responsible for providing human assistance after the initial inquiry screening is provided next to their assigned category, as shown here:

	Store Location and Hours

	Order Status: Elliot

	Issue with Order: Chrissa

	Design Services: Ramon

	Other: Trinity

Store Location and Hours is the only inquiry category that does not require a transfer to a human for assistance.

After the chat bot greets the customer, the bot should respond with this message: Please select from one of the categories below using the numbers 1–5. The customer should then select an inquiry category from the categories described earlier. If the customer provides an unrecognizable response, the bot should ask the customer to select a category provided and repeat the list of categories.

Store Location and Hours

Tiny Space is located at 2300 Riverdale Lane, Boston, MA 02101. The store is open Monday–Saturday from 10 a.m. to 6 p.m.

After providing a customer with the store's location and hours of operation, the bot should ask the customer May I help you with anything else?. If the customer needs additional help, the list of inquiry categories should display again for the customer. However, if the customer does not need any additional help, the bot should end the conversation with the phrase Thanks for contacting Tiny Space!. If the customer selects another inquiry category, the bot should continue the conversation with the prompt for the selected category.

Status of Order

If a customer wants to know the status of their order, the bot should respond with the message Sure, I can help you with that. The bot should then collect the following information from the customer:

	Full name on the order

	Order number

Once the information is collected from the customer, the bot should transfer the conversation to the assigned member of the Tiny Space team for assistance and follow up with the message Awesome! I'm checking the status of the order now.

Issue with Order

If a customer has an issue with their order, the bot should respond with the message I'm sorry that you're experiencing issues with your order. The bot should then collect the following information from the customer:

	Full name on the order

	Order number

	Issue

Once the information is collected from the customer, the bot should transfer the conversation to the assigned member of the Tiny Space team for assistance and follow up with the message Thanks for providing that information. I'm looking into this now.

Design Services

If a customer requests Design Services, the bot should transfer the conversation to the assigned member of the Tiny Space team and respond with the message I can definitely help you out with your design questions! Tell me how I may be of assistance. The customer's response should be collected.

Other

If a customer selects Other, the bot should transfer the conversation to the assigned member of the Tiny Space team and respond with the message No problem, please describe to me how I may be of assistance. The customer's response should be collected.

Steps:

Here are the steps you need to follow to create the customer service bot.

Open IDLE

Before you begin to code, open IDLE and create a new file. Save your new file with the file name tinyspace.py.

Create Greeting Function

The chat bot's greeting is the first thing that the bot says to the customer. This greeting can be placed inside a function greeting() and called to start the bot.

def greeting():

Inside the function body, you should greet the customer and ask for their name. You can use the input() method to provide a way for the customer to respond with their name. Be sure to convert the customer's response to capitalize the first letter in their name. By doing so, you can ensure that their name is properly formatted when the chat bot says thanks.

def greeting():
 name = input('Thanks for contacting Tiny Space! May
I have your name? ').capitalize()
 print(f'Thanks, {name}!')
 return

Create Select Category Function

After the chat bot greets the customer, the bot needs to ask the customer to select a category related to their reason for contacting Tiny Space. You can use the input() method again to ask the customer to select 1 of the 5 inquiry categories. Since the bot is designed to repeat the list of categories and follow a specific set of actions based on the customer's response more than once throughout the conversation, create a function select_category that contains a set of actions to follow based on the category selected.

def select_category():

Later in the program, you will create functions for each of the inquiry categories. For now, focus on completing the actions within the select_category() function.

The chat bot should first ask the customer to select a category from a list of available categories. Assign the customer's response to a variable category. In addition, providing a number surrounded by brackets to the left of each category gives the customer a better idea of which number corresponds to which category.

def select_category():
 category = input('Please select from one of the
categories below using the numbers
1 - 5. [1] Store Hours & Locations [2] Status of Order
[3] Issue with Order [4] Design Services [5] Other ')

You now need to add logic to the select_category() function body that can be used to direct the bot to the appropriate inquiry category function. An if statement is helpful in this scenario as you can compare the customer's response to determine which inquiry category function should be run. Create an if statement that compares whether the response for category is 1, 2, 3, 4, or 5. Keep in mind that the customer's response is a str and not an int.

def select_category():
 category = input('Please select from one of the categories below using the numbers 1 - 5. [1] Store Hours & Locations [2] Status of Order [3] Issue with Order [4] Design Services [5] Other ')

 if category == '1':

 if category == '2':

 if category == '3':

 if category == '4':

 if category == '5':

Each if statement needs a function to call if the customer's response for category matches the inquiry category's corresponding number. Add a function call to each if statement that can be used later in the program to create functions for each inquiry category.

def select_category():
 category = input('Please select from one of the
categories below using the numbers 1 - 5. [1] Store Hours
& Locations [2] Status of Order [3] Issue with Order [4]
Design Services [5] Other ')

 if category == '1':
 store_location_hours()
 return

 if category == '2':
 order_status()
 return

 if category == '3':
 order_issue()
 return

 if category == '4':
 design_services()
 return

 if category == '5':
 other()
 return

Finally, create a final if statement inside the select_category() function body that compares whether the customer's response for category is not one of the valid responses. You can compare multiple strings at a time by checking whether the response for category is not in a list of valid strings. If the customer's response is not 1, 2, 3, 4, or 5, then call the select_category() function so that the chat bot can ask the customer once more to select a category.

if category not in ['1', '2', '3', '4', '5']:
 select_category()

Create Inquiry Category Functions

Each of the inquiry categories needs its own function that can be called depending on the customer's response. Be sure to use the function names created in the previous step.

Start first with the store_location_hours() function. The store's location can be stored in a variable store. The store's hours can be stored in a variable hours. You can then print a string to the customer that includes the store's location and hours together.

def store_location_hours():
 location = '2300 Riverdale Lane Boston, MA 02101'
 hours = 'Monday - Saturday from 10AM to 6PM'
 print(f'Tiny Space is located at {location}. The store is open {hours}.')

Next, the chat bot should ask the customer if they have any additional questions by using the input() method. If the customer's response is yes, then the bot should ask the customer to select an inquiry category. However, if the customer's response is no, then the chat bot should end the conversation. To help compare the customer's response to the strings yes or no, convert the customer's response to all lowercase letters.

def store_location_hours():
 location = '2300 Riverdale Lane Boston, MA 02101'
 hours = 'Monday - Saturday from 10AM to 6PM'
 print(f'Tiny Space is located at {location}. The store is open {hours}.')
 additional_question = input('May I help you with anything else? [Yes/No] ').lower()
 if additional_question == 'yes':
 select_category()
 elif additional_question == 'no':
 print('Thanks for contacting Tiny Space!')
 return

The next function to create is order_status(). This function should first instruct the chat bot to inform the customer that the bot can help them. The chat bot should then ask the customer for the full name on the order in addition to the order number. The response for each question can be collected using the input() method and stored to a variable.

def order_status():
 print('Sure, I can help you with that.')
 full_name = input('May I have the full name on the order? ')
 order_number = input('May I have the order number? ')

After the bot collects the information from the customer, the conversation should be transferred to the assigned individual on the Tiny Space team. Later in the program, you will create a function for each conversation transfer. For now, make a function call to a new function transfer_Elliot() that can be called to transfer the conversation to Elliot.

def order_status():
 print('Sure, I can help you with that.')
 full_name = input('May I have the full name on the order? ')
 order_number = input('May I have the order number? ')
 transfer_Elliot()
 return

The next function to create is order_issue(). This function should first instruct the chat bot to inform the customer that Tiny Space is sorry that the customer is experiencing issues with their order. The chat bot should then ask the customer for the full name on the order in addition to the order number and the issue. The response for each question can be collected using the input() method and stored to a variable. Finally, make a function call to transfer_Chrissa() that can be called to transfer the conversation to Chrissa.

def order_issue():
 print("I'm sorry that you're experiencing issues with your order.")
 full_name = input('May I have the full name on the order? ')
 order_number = input('May I have the order number? ')
 issue = ('Could you please describe the issue with your order? ')
 transfer_Chrissa()
 return

The next function to create is design_services(). This function should first instruct the chat bot to inform the customer that Tiny Space can help with their design questions. The conversation should then be transferred to Ramon by making a function call to transfer_Ramon().

def design_services():
 print('I can definitely help you out with your design questions!')
 transfer_Ramon()
 return

The final category function to create is other(). This function should transfer the conversation directly to Trinity by making a function call to transfer_Trinity().

def other():
 transfer_Trinity()
 return

Create Transfer Functions

The program is almost complete! All that's left to create are actions for the transfer functions that you added in the previous step. First, start with the transfer_Elliot() function. When the chat bot calls transfer_Elliot(), the final thing that the bot should say to the customer is they're checking on the status of the order. This helps create a smooth transition from bot to human so that when Elliot is routed the conversation, the customer should still feel that they're talking to the same person.

def transfer_Elliot():
 print("Awesome! I'm checking the status of the order now.")
 return

The transfer_Chrissa() function also follows the same logic. The chat bot thanks the customer for providing the information and informs them that they're looking into the order issue.

def transfer_Chrissa():
 print("Thanks for providing that information. I'm looking into this now.")
 return

The transfer_Ramon() and transfer_Trinity() functions each instruct the chat bot to request a response from the customer once the conversation is transferred to the Tiny Space team member. Use the input() method for each function to ask the customer to provide a response.

def transfer_Ramon():
 design_question = input('Tell me how I may be of assistance. ')
 return

def transfer_Trinity():
 other_inquiry = input('No problem, please describe to me how I may be of assistance. ')
 return

Start the Chat Bot

To start the chat bot, call the greeting() function followed by the select_category() function.

greeting()
select_category()

When the program starts, Python first calls the greeting() function followed by the select_category() function. The select_category() function asks the customer to select from a list of provided categories. If the customer's response is one of the valid responses, then Python calls the corresponding function, and the actions inside the function run. However, if the customer's response is not a valid response, the select_category() function is called again, and the actions within the select_category() function body start over.

Here is an example of the full program for tinyspace.py:

Greeting

def greeting():
 name = input('Thanks for contacting Tiny Space! May I have your name? ').capitalize()
 print(f'Thanks, {name}!')
 return

Inquiry Category

def select_category():
 category = input('Please select from one of the categories below using the numbers 1 - 5. [1] Store Hours & Locations [2] Status of Order [3] Issue with Order [4] Design Services [5] Other ')

 if category == '1':
 store_location_hours()
 return

 if category == '2':
 order_status()
 return

 if category == '3':
 order_issue()
 return

 if category == '4':
 design_services()
 return

 if category == '5':
 other()
 return

 if category not in ['1', '2', '3', '4', '5']:
 select_category()

Category: Store Location & Hours

def store_location_hours():
 location = '2300 Riverdale Lane Boston, MA 02101'
 hours = 'Monday - Saturday from 10AM to 6PM'
 print(f'Tiny Space is located at {location}. The store is open {hours}.')
 additional_question = input('May I help you with anything else? [Yes/No] ').lower()
 if additional_question == 'yes':
 select_category()
 elif additional_question == 'no':
 print('Thanks for contacting Tiny Space!')
 return

Category: Status of Order

def order_status():
 print('Sure, I can help you with that.')
 full_name = input('May I have the full name on the order? ')
 order_number = input('May I have the order number? ')
 transfer_Elliot()
 return

Category: Issue with Order

def order_issue():
 print("I'm sorry that you're experiencing issues with your order.")
 full_name = input('May I have the full name on the order? ')
 order_number = input('May I have the order number? ')
 issue = ('Could you please describe the issue with your order? ')
 transfer_Chrissa()
 return

Category: Design Services

def design_services():
 print('I can definitely help you out with your design questions!')
 transfer_Ramon()
 return

Category: Other

def other():
 transfer_Trinity()
 return

Transfers to Tiny Space online team

def transfer_Elliot():
 print("Awesome! I'm checking the status of the order now.")
 return

def transfer_Chrissa():
 print("Thanks for providing that information. I'm looking into this now.")
 return

def transfer_Ramon():
 design_question = input('Tell me how I may be of assistance. ')
 return

def transfer_Trinity():
 other_inquiry = input('No problem, please describe to me how I may be of assistance. ')
 return

Call the functions to start the chat bot

greeting()
select_category()

[image: “Illustration depicting Python as a great choice of languages. Sometimes, named values may be more appropriate for the data which helps create a dictionary.”]

12
Dictionaries

Python is a great choice of languages to use when working with sets of data! You previously learned how to create a list to store items, each of which consists of a singular object. But sometimes, named values may be more appropriate for the data you're using. How can you store named values? This sounds like a job for a dictionary!

Create a Dictionary

A dictionary is a list of named values, which means that each item in the list consists of a key and a value, often referred to as a key-value pair.

[image: The syntax for a collection of data inside a dictionary with a list of named values, which is surrounded by curly braces, {}. Each item (key-value pair) has the syntax key: value.]

The collection of data inside a dictionary is surrounded by curly braces, {}. Each item (key-value pair) has the syntax key:
value. Keys must be unique in the dictionary and can be quoted strings, numbers, or tuples. Each key can have any value of any type. The items inside a dictionary are separated by commas. Since dictionaries can be rather lengthy, you can format a dictionary in a manner that's visually easier for you to read.

[image: The syntax for creating a dictionary where each key can have any value of any type. The items inside a dictionary are separated by commas.]

The following are grades for a recent math test. On the left, the name of the student is provided, and on the right, the grade that they received on the test is provided.

[image: are grades for a recent math test. On the left, the name of the student is provided, and on the right, the grade that they received on the test is provided]

Let's create a dictionary called math_test to store everyone's test scores.

>>> math_test = {
 "Angelo": 77,
 "Samir": 93,
 "Raquel": 84,
 "Louis": 62,
 "Analicia": 87,
 "Tori": 95
 }
>>> print(math_test)
{'Angelo': 77, 'Samir': 93, 'Raquel': 84, 'Louis': 62, 'Analicia': 87, 'Tori': 95}

Each student's name and math test grade line is created as a key-value pair. The student's name is surrounded by quotes since their name is a string. However, the test score itself is not surrounded by quotes since the value is an integer. If you print the math_test variable, all key-value pairs in the dictionary print to the console.

Dictionaries can be changed, which is great because that gives you the flexibility to modify the key-value pairs stored inside a dictionary! Let's explore ways to modify a dictionary.

[image: image] Checkpoint

Briana created a dictionary to store her friend's favorite rides at the carnival. When she tries to print the dictionary, she receives the error SyntaxError: invalid syntax. Whose item should Briana change to fix her dictionary so that the dictionary can print without errors?

>>> carnival_rides = {
 "Bryant": "Tilt-a-World",
 "Suzie: "Bananarama Slide",
 "Gary": "Mind Twister",
 "Mandy": "Gloopy Boop"
 }
SyntaxError: invalid syntax

	Change Bryant's item to this: “Bryant”: Tilt-a-World

	Change Mandy's item to this: Mandy: Gloopy Boop

	Change Gary's item to this: Gary: “Mind Twister”

	Change Suzie's item to this: “Suzie”: “Bananarama Slide”

Access Items in a Dictionary

The value of the keys inside a dictionary can be retrieved (or accessed) by referencing the key name.

[image: The syntax used to retrieve the value of the keys inside a dictionary by referencing the key name. Brackets are placed after the dictionary variable name, and the key is placed inside the brackets.]

Brackets are placed after the dictionary variable name, and the key is placed inside the brackets. You can give this a try with the math_test dictionary by accessing the value for Tori's test score.

>>> print(math_test["Tori"])
95

In the previous example, Tori's test score is accessed from the math_test dictionary and printed.

Check Whether a Key Is in a Dictionary

To check whether a key is in a dictionary, create an if statement that uses the in operator.

[image: “The syntax used to check whether a key is in a dictionary, by creating an if statement that uses the in operator. If the key is found inside the dictionary, Python runs the action inside the if statement body.”]

The in operator is used to check whether the provided key exists in the dictionary. If the key is found inside the dictionary, Python runs the action inside the if statement body.

Using the math_test dictionary, you can check whether Samir is in the dictionary.

>>> if "Samir" in math_test:
 print("Samir is a key in the dictionary.")

Samir is a key in the dictionary.

In the previous example, Python checks whether the string "Samir" is a key in the math_test dictionary. Since "Samir" is a key in the math_test dictionary, the string "Samir is a key in the dictionary. " prints to the console.

Add a Key-Value Pair to a Dictionary

You can add an additional key-value pair to a dictionary by referencing the key and assigning its value.

[image: The syntax used to add an additional key-value pair to a dictionary. The dictionary variable name appears first followed by the new key surrounded by brackets. The value for the key is then assigned following the equal sign.]

The dictionary variable name appears first and is followed by the new key surrounded by brackets. The value for the key is then assigned following the equal sign.

Let's add another student and grade to the math_test dictionary. Choose a name of your liking and add a grade for the test score.

>>> math_test["Donald"] = 88
>>> print(math_test)
{'Angelo': 77, 'Samir': 93, 'Raquel': 84, 'Louis': 62, 'Analicia': 87, 'Tori': 95, 'Donald': 88}

In the previous example, the key Donald and the value 88 are added to the dictionary. Now, when you print the dictionary, the new key-value pair displays at the end of the dictionary. Whenever a new key-value pair is added to a dictionary, the pair is added at the end of the dictionary.

If you reference an existing key, you can assign a new value. Let's see this in action by changing Louis’ test score from 62 to 72.

>>> math_test["Louis"] = 72
>>> print(math_test)
{'Angelo': 77, 'Samir': 93, 'Raquel': 84, 'Louis': 72, 'Analicia': 87, 'Tori': 95, 'Donald': 88}

When the math_test dictionary prints, Louis’ new test score is now in the dictionary.

[image: image] Checkpoint

Gus maintains a dictionary of books he's read that includes a rating of the book that is on a scale of 1–5.

>>> books = {
 "Much Ado About Nothing": 3,
 "Their Eyes Were Watching God": 5,
 "Invisible Man": 4,
 }

He recently finished reading Speak and would like to rate the book as a 5. Which line of code is the correct way for Gus to add his rating for Speak to his dictionary?

	books["Speak"] = 5

	[books]["Speak"] = 5

	books["Speak] = 5

	"books" [Speak] = 5

Remove a Dictionary Item

There are three ways to remove items from a dictionary: pop(), popitem(), and del.

pop() Method

A dictionary's pop() method removes an item identified with a given key and returns the item's value.

[image: The syntax used to remove items from a dictionary: pop(), which removes an item identified with a given key and returns the item's value.]

You can give this a try by removing Analicia and her test score from the math_test dictionary.

>>> math_test.pop("Analicia")
87
>>> print(math_test)
{'Angelo': 77, 'Samir': 93, 'Raquel': 84, 'Louis': 72, 'Tori': 95, 'Donald': 88}

After the pop() method is applied to the math_test dictionary, Analicia's value prints to the console. However, if you now print the math_test dictionary, Analicia's key-value pair no longer appears in the dictionary.

popitem() Method

A dictionary's popitem() method removes the last item in the dictionary and returns that item.

[image: The syntax used to try popitem() on the math_test dictionary to see the item at the last index removed.]

Try popitem() on the math_test dictionary to see the item at the last index removed.

>>> math_test.popitem()
('Donald', 88)
>>> print(math_test)
{'Angelo': 77, 'Samir': 93, 'Raquel': 84, 'Louis': 72, 'Tori': 95}

In the math_test dictionary, the item 'Donald': 88 is at the last index of the dictionary. After the popitem() method is applied to the math_test dictionary, Donald and his test score are printed to the console. However, if you now print the math_test dictionary, Donald's key-value pair no longer appears in the dictionary.

Loop through Dictionaries

There are several ways to loop through a dictionary using a for loop.

Print All Keys

By default, when you loop through a dictionary, the keys are returned.

>>> for student in math_test:
 print(student)

Angelo
Samir
Louis
Tori

In the previous example, the for loop loops through each item (or student) in the dictionary. Each key is then printed one by one on its own line to the console.

You could also print the keys in a dictionary using the keys() method.

[image: “The syntax used to print the keys in a dictionary using the keys() method that is applied to the end of the dictionary variable name, to ensure that Python refers to the keys in the dictionary.”]

The keys() method is applied to the end of the dictionary variable name. This ensures that Python refers to the keys in the dictionary. Give this a try using the math_test dictionary!

>>> for key in math_test.keys():
 print(keys)

Angelo
Samir
Louis
Tori

Print All Values

Although keys are returned by default, you can also print the values in a dictionary. To do so, reference the dictionary variable name and include the item variable in a pair of brackets.

[image: “The syntax used to print the values in a dictionary. To do so, reference the dictionary variable name and include the item variable in a pair of brackets.”]

By passing the math_test dictionary and student item variable into a print statement, you can print each student's test score.

>>> for student in math_test:
 print(math_test[student])

77
93
72
95

The test score for each student is printed one by one on its own line to the console. Another way to return all values in a dictionary is to use the values() method.

[image: “The syntax used to return all values in a dictionary using the values() method that is applied to the end of the dictionary variable name, to ensure that Python refers to the values in the dictionary.”]

The values() method is applied to the end of the dictionary variable name. This ensures that Python refers to the values in the dictionary. Give this a try using the math_test dictionary!

>>> for student in math_test.values():
 print(student)

77
93
72
95

Print Keys and Values

Earlier in this chapter, you learned how to print a dictionary. Another way to print the items in a dictionary is by looping through the dictionary using the items() function.

[image: The syntax used to print the items in a dictionary is by looping through the dictionary using the items() function. The item pair (the key and value) are represented by variables in the for loop.]

The item pair (the key and value) are represented by variables in the for loop. The items() function is applied to the end of the dictionary variable name, which ensures that Python refers to all items in the dictionary.

When applied to the math_test dictionary, the variable student represents the key, and the variable score represents the value. Python prints each key and value together on their own line.

>>> for student, score in math_test.items():
 print(student, score)

Angelo 77
Samir 93
Louis 72
Tori 95

[image: image] Checkpoint

Which code snippet could be used to print only the values in the birthday_month dictionary?

>>> birthday_month = {
 "Aya": "June",
 "Clair": "August",
 "Noah": "December"
 }

	
>>> for month in birthday_month.values():
 print(month)

	
>>> for person in birthday_month:
 print(birthday_month[person])

	
>>> for person, month in birthday_month.items():
 print(person)

	A, B, and C

Nested Dictionaries

Dictionaries can also contain many dictionaries! Storing multiple dictionaries inside a dictionary is known as nesting.

[image: “The syntax used for storing multiple dictionaries inside a dictionary known as nesting. Each individual dictionary starts with a name for the nested dictionary and is separated by a pair of curly braces, {}.”]

Each individual dictionary starts with a name for the nested dictionary and is separated by a pair of curly braces, {}.

Let's say that you have a set of grades by subject and grade-point average (GPA) for three students. Using a nested dictionary, you can store everyone's grades for all their subjects into one larger dictionary.

>>> gradebook = {
 "Mylene" : {
 "English" : "A",
 "Math" : "A",
 "Science": "B",
 "GPA": 3.7
 },
 "Terrell" : {
 "English" : "C",
 "Math" : "B",
 "Science": "A",
 "GPA": 3.2
 },
 "Joseph" : {
 "English" : "B",
 "Math" : "B",
 "Science": "B",
 "GPA": 3.0
 }
}

If you intend to iterate over each item and produce output, it's best practice to stay consistent with the order of key-value pairs inside each nested dictionary. In doing so, the data inside the nested dictionaries aligns with one another.

You can apply everything learned in this chapter to a nested dictionary—just make sure that you're referring to the correct inner dictionary! Provided next are examples of how to work with the data inside nested dictionaries. Although the examples provided are not a complete list, you can refer to the previous sections of this chapter and apply similar logic to any nested dictionary.

Access Items in a Nested Dictionary

How would you go about accessing an item inside a nested dictionary? If you recall from the previous section on accessing values, you must first reference the dictionary name and then surround the key in brackets. The same rules apply for nested dictionaries!

>>> print(gradebook["Mylene"]["English"])
A

First provide the name of the dictionary variable and then reference the nested dictionary's name. After you've done that, you can provide the name of the key as well in brackets! In the previous example, the value for Mylene's English grade is printed. You could read the code as follows: the value for English that is in the Mylene dictionary inside the gradebook dictionary.

Add a Key-Value Pair to Nested Dictionary

You can add items to a nested dictionary by referencing the nested dictionary by name and creating a new key and value.

>>> gradebook["Mylene"]["Art"] = "A"
>>> print(gradebook["Mylene"])
{'English': 'A', 'Math': 'A', 'Science': 'B', 'GPA': 3.7, 'Art': 'A'}

In the previous example, the key Art is added to the Mylene dictionary. The value provided for Art is A.

To change a value in a nested dictionary, first access the item and assign the new value for the key-value pair you'd like to change.

>>> gradebook["Mylene"]["English"] = "B"
>>> mylene_english_grade = gradebook["Mylene"]["English"]
>>> print(mylene_english_grade)
B

In this example, the grade (or value) of Mylene's English class is changed from an A to a B.

Remove the Last Item from a Nested Dictionary

To remove the last item from a nested dictionary, apply the pop() method to the end of the reference dictionary.

>>> gradebook["Mylene"].pop()
('Art', 'A')
>>> print(gradebook["Mylene"])
{'English': 'B', 'Math': 'A', 'Science': 'B', 'GPA': 3.7}

Since none of the other students has a grade listed for Art, you can remove the new Art item created by applying the pop() method to the end of Mylene's dictionary.

Loop through a Nested Dictionary

Looping through a nested dictionary still requires a variable to represent the item in addition to the name of the dictionary. In the case of the gradebook dictionary, you can loop through the names of the nested dictionaries as follows:

>>> for student in gradebook:
 print(student)

Mylene
Terrell
Joseph

By providing just the name of the larger dictionary gradebook, the name of each nested dictionary is printed to the console. If you want to loop through the items inside each nested dictionary, consider trying one of the options explained earlier in this chapter.

>>> for student,grades in gradebook.items():
 print(student,grades)

Mylene {'English': 'B', 'Math': 'A', 'Science': 'B', 'GPA': 3.7}
Terrell {'English': 'C', 'Math': 'B', 'Science': 'A', 'GPA': 3.2}
Joseph {'English': 'B', 'Math': 'B', 'Science': 'B', 'GPA': 3.0}

In the previous example, a for loop is created to loop through each item in the nested dictionaries. The complete nested dictionary name, key, and values are printed one by one on their own lines to the console.

Project: School Musical Sign-Ups

It's time for the annual school musical! This year, Vijay is in charge of casting student actors for his newly written musical A Day Without a Principal. Auditions are scheduled to happen soon; however, Vijay still needs to create a program that gives those interested in auditioning the ability to sign up for their preferred role. Furthermore, his time is limited for each day of auditions. Vijay can have only five students audition per day. Therefore, the sign-up list will be open to complete on a first-come, first-served basis, whereas after five students signed up, the sign-up list will close. Vijay plans to run the program on multiple days and will therefore need the ability to have the program run when necessary and close after five students sign up.

Vijay needs to complete auditions for these four roles:

	Principal

	Teacher

	Troublemaker

	Students

The program should prompt the student to answer the following questions:

	What is your name?

	What is your grade?

	What is your preferred role?

The responses to each question should be stored inside a dictionary so that Vijay can later look at everyone's information in addition to their preferred role.

Your job is to create such a program so that Vijay can begin the sign-up process for the school musical auditions.

Steps:

Open IDLE

Before you begin to code, open IDLE and create a new file. Save your new file with the file name auditions.py.

Create a Dictionary to Store Responses

Let's first create a dictionary to store the student responses to the sign-up questions. To help keep the audition interests organized, use a nested dictionary to store data about which student signed up for each role. For now, leave the items in the dictionary empty.

auditions = {
 "Principal" : {
 },
 "Teacher" : {
 },
 "Troublemaker" : {
 },
 "Students" : {
 }
 }

In the previous code snippet, auditions is the name of the dictionary. Inside the auditions dictionary are four nested dictionaries: Principal, Teacher, Troublemaker, and Students. Each dictionary is currently empty given that the responses from the students will be added as the program runs.

Ask for Input

Create a variable for the first sign-up question from earlier and use the input() function to ask the student for a response. To ensure that the student's name is formatted properly, convert the student's response to capitalize only the first letter in their response.

name = input('What is your name? ').capitalize()

By applying the capitalize() method to the end of the input() function, the first letter of the input provided by the student is capitalized.

Next, you need to create a variable for the second sign-up question. To provide guidance on how students should respond, create a question that asks the student to enter a number to reflect their grade.

grade = (input('What is your grade? (Please respond with a number) '))

When using a pair of parentheses inside a pair of parentheses, be sure to close each pair; otherwise, an error occurs!

Finally, create a variable for the final sign-up question. Like the prior question about the student's grade, the student should provide a number to reflect which of the four roles interests them.

role = input('''What is your preferred role? Please select a number from the following
options:
 [1] Principal
 [2] Teacher
 [3] Troublemaker
 [4] Student
 ''')

Triple quotes enable you to write multiline strings. So long as a string is surrounded by triple quotes, you can place each role in your program on a separate line. When the question prints to the console, each role displays by itself on its own line.

Add a Response to the Nested Dictionary

You now need to provide logic that creates a new item in the appropriate nested dictionary. Depending on which role the student selects to audition, the student's name and grade should create a new key-value pair in the appropriate nested dictionary. For example, if a student selects the role Principal, the responses from their input should create a new key-value pair in the Principal nested dictionary.

Let's start by creating an if statement that checks whether the student is auditioning for the role of Principal. Since input() function responses by default are the type str, the if statement should check whether the response is the string '1' and not the int or float 1.

Inside the if statement, add the student's response for the name and grade variables as key-value pairs to the nested Principal dictionary.

if role == '1':
 auditions['Principal'][name] = grade

The variable name can be placed into the brackets for the key, whereas the variable grade is assigned to represent the value.

Now, you should check whether the student chose to audition for the role of Teacher. You can apply the same logic as the previous if condition to an elif statement.

elif role == '2':
 auditions['Teacher'][name] = grade

The elif statement checks whether the response for the role variable is '2'. If the value is '2', then the student's name and grade are added to the nested Teacher dictionary. The same logic can be applied for the role of Troublemaker. Create another elif statement to add sign-ups for the role of Troublemaker.

elif role == '3':
 auditions['Troublemaker'][name] = grade

Finally, create an else statement for the final condition of whether the student is signing up to audition for the role of Students.

else:
 auditions['Student'][name] = grade

Loop the Sign-Up Form

Currently, if you run the program, the sign-up process occurs only once. Since sign-ups are an ongoing process, the program should run until five students have signed up to audition. This sounds like a job for a for loop and a function!

First, place the sign-up process code that you previously created into a function. Be sure to include the variables that were created to store each student's response.

def sign_up():
 name = input('What is your name? ').capitalize()
 grade = str(input('What is your grade? (Please respond with a number) '))
 role = input('''What is your preferred role? Please select a number from the following options:
 [1] Principal
 [2] Teacher
 [3] Troublemaker
 [4] Student
 ''')

 if role == '1':
 auditions['Principal'][name] = grade
 elif role == '2':
 auditions['Teacher'][name] = grade
 elif role == '3':
 auditions['Troublemaker'][name] = grade
 else:
 auditions['Student'][name] = grade

The new sign_up() function now includes the entire sign-up process. Now, create a for loop outside the sign_up() function that loops a total of five times. The range() function can be used to tell the loop to iterate whatever number of times that is passed into the function.

for i in range(5):

Since the loop should iterate five times, the number 5 is passed into range(). Finally, inside the for loop body, call the sign_up() function. Calling the function inside the for loop ensures that the sign-up process runs five times.

for i in range(5):
 sign_up()

Once the loop stops, you should inform students that sign-ups are over for the day. Add a print statement to the code that informs students that sign-ups are closed.

print("Sign-ups for 'A Day without a Principal' are now closed")

Print the Sign-Ups

After sign-ups are over, a list of everyone signed up to audition should print. Ideally, the printout should be organized by role. Underneath each role, the students and their respective grades should display. You can use another for loop to do so!

Let's start by printing a list of everyone signed up to audition for the role of Principal. First, create a print statement that reads Role: Principal.

print("Role: Principal")

After the print statement, add a for loop that iterates through the nested dictionary for Principal and prints each student's name and their grade. You can use the items() function to print both the key and the value for an item.

for student, grade in auditions['Principal'].items():
 print(student, grade)

When the program starts, Python begins the first iteration of the for loop, which calls the sign_up() function. The user is asked to respond to three questions. Depending on the user's response for role, the answer for both the user's name and the grade is stored into the appropriate nested dictionary. The loop then iterates again until it has looped for a total of 5 times. After the final loop, Python prints a statement to the console that lets the user know that the sign-up process is closed. Python then follows up with a list of which students signed up for each role.

Here is an example of the full program for auditions.py:

Dictionary that stores the audition sign-ups
auditions = {
 "Principal" : {
 },
 "Teacher" : {
 },
 "Troublemaker" : {
 },
 "Student" : {
 }
 }

Function for the sign-up process
def sign_up():
 name = input('What is your name? ').capitalize()
 grade = str(input('What is your grade? (Please respond with a number) '))
 role = input('''What is your preferred role? Please select a number from the following options:
 [1] Principal
 [2] Teacher
 [3] Troublemaker
 [4] Student
 ''')

 if role == '1':
 auditions['Principal'][name] = grade
 elif role == '2':
 auditions['Teacher'][name] = grade
 elif role == '3':
 auditions['Troublemaker'][name] = grade
 else:
 auditions['Student'][name] = grade
For-loop that calls the sign_up() function 12 times
for i in range(5):
 sign_up()

Printout for the list of students signed up to audition
print("Sign-ups for 'A Day without a Principal' are now closed")

print("Role: Principal")
for student, grade in auditions['Principal'].items():
 print(student, grade)

print("Role: Teacher")
for student, grade in auditions['Teacher'].items():
 print(student, grade)

print("Role: Troublemaker")
for student, grade in auditions['Troublemaker'].items():
 print(student, grade)

print("Role: Students")
for student, grade in auditions['Students'].items():
 print(student, grade)

[image: Illustration depicting the Python file (with the .py extension). With Python, you can put your code, specifically functions and variables, in any number of .py files, creating what are called modules.]

13
Modules

So far in this book you have been writing all your code in a single Python file (with the .py extension). With Python, you can put your code, specifically functions and variables, in any number of .py files, creating what are called modules.

What Is a Module?

A module is a file containing a set of functions that you want to include in your program. Rather than re-create the same function or variable across various Python programs, you could store the function or variable inside a module and import that module into multiple Python programs. Modules also help provide organization for Python programs. Instead of having all the code in one file, you can group pieces of the code together in separate modules—like how a book organizes information into chapters. Modules make functions even more reusable by enabling you to import a module from a file outside the file in which you are writing a Python program. Although modules can be imported into a program, a module itself is not a program.

Create a Module

You create a module by saving the code you write in a file with a .py extension. As a reminder, the .py extension is the extension for Python files. The file itself can contain functions as well as variables.

Let's create your first module that will be reused throughout this chapter! The module consists of functions and variables that are used to provide information about the planets in the solar system.

In IDLE, create a new file and save the file as solarsystem.py. Inside the solarsystem.py file, create a nested dictionary named planets that contains an empty dictionary for each planet in the solar system.

planets = {
 "Mercury" : {
 },
 "Venus" : {
 },
 "Earth" : {
 },
 "Mars" : {
 },
 "Jupiter" : {
 },
 "Saturn" : {
 },
 "Uranus" : {
 },
 "Neptune" : {
 }
 }

If you were to run the solarsystem.py file, the module would do nothing more than define the variable planets.

[image: image] Checkpoint

Which file extension is used to create a Python module?

	python

	py

	png

	html

Let's now add some facts about each planet to the planets dictionary. The Planet Facts table contains information that should be added to each planet in the planets dictionary.

 [image: “The Planet Facts table containing information that should be added to each planet in the planets dictionary - name of the planet, length of the year, planet type, and distance from the Sun.”]

Use the information in the Planet Facts table to create key-value pairs for each planet.

planets = {
 "Mercury" : {
 "length of year": 88,
 "planet type": "Terrestrial",
 "distance from sun": 0.4
 },
 "Venus" : {
 "length of year": 225,
 "planet type": "Terrestrial",
 "distance from sun": 0.7
 },
 "Earth" : {
 "length of year": 365,
 "planet type": "Terrestrial",
 "distance from sun": 1
 },
 "Mars" : {
 "length of year": 687,
 "planet type": "Terrestrial",
 "distance from sun": 1.5
 },
 "Jupiter" : {
 "length of year": 4333,
 "planet type": "Gas Giant",
 "distance from sun": 5.2
 },
 "Saturn" : {
 "length of year": 10759,
 "planet type": "Gas Giant",
 "distance from sun": 9.5
 },
 "Uranus" : {
 "length of year": 30687,
 "planet type": "Ice Giant",
 "distance from sun": 19.8
 },
 "Neptune" : {
 "length of year": 60190,
 "planet type": "Ice Giant",
 "distance from sun": 30
 }
 }

We could use the data within the planets dictionary to calculate someone's age on a planet. Such a calculation is best stored in a function. Before we create the function, consider which values are needed to calculate someone's age on the planet.

To calculate someone's age on a planet, you need to first multiply their Earth age in years by the total number of days on Earth. This number reflects the age of the person in Earth days. Next, divide the age in Earth days by the length of a year in Earth days on the planet. For example, to calculate the age of a 12-year-old on Mercury, the calculation would look as such: (12 × 365) / 88 = 49.77272727272727.

In the prior example, a person's age, their number of days on Earth, and the length of a year in Earth days for a planet are all values required to calculate someone's age on a planet. However, only the number of days on Earth is a constant, which means the value never changes. Therefore, we could create a variable outside the function to store the value of EARTH_DAYS, which is 365 days. In Python, constants' variable names are written in all capitalized letters.

EARTH_DAYS = 365

Next, consider which values should be parameters in the function call. We could have the user pass in both their age and the name of a planet.

def age_on_planet(age, planet):

Within the function body, we can store the calculation value inside a variable called new_age.

def age_on_planet(age, planet):
 new_age =

The calculation itself first multiplies the user's age and total number of days on Earth. We created an EARTH_DAYS variable outside the function, which can be used to complete this calculation.

def age_on_planet(age, planet):
 new_age = (age * EARTH_DAYS)

Next, we need to divide the first calculation by the length of a year in Earth days for a given planet. This value is stored in the planets dictionary as the key length of year. In the new_age calculation, access the key for the planet that is passed into the function call.

>>> def age_on_planet(age, planet):
 new_age = (age * EARTH_DAYS) / planets[planet]
 ["length of year"]

Let's now return the value of new_age as a whole number. You can do so using the round() method.

def age_on_planet(age, planet):
 new_age = (age * EARTH_DAYS) / planets[planet]
 ["length of year"]
 return round(new_age)

Before you finish up with the module for solarsystem.py, test the function to ensure that the calculation is set up properly. Be sure to save the solarsystem.py file before running the module in IDLE. You can use the prior example of calculating the age of a 12-year-old on Mercury. The age of the person is first passed into the function call followed by the name of the planet.

age_on_planet(12, "Mercury")
Result: 50

Now that you have confirmed that the function works properly, remove or comment out the function call and save the solarsystem.py file. Here is an example of the full module:

Facts about each planet

planets = {
 "Mercury" : {
 "length of year": 88,
 "planet type": "Terrestrial",
 "distance from sun": 0.4
 },
 "Venus" : {
 "length of year": 225,
 "planet type": "Terrestrial",
 "distance from sun": 0.7
 },
 "Earth" : {
 "length of year": 365,
 "planet type": "Terrestrial",
 "distance from sun": 1
 },
 "Mars" : {
 "length of year": 687,
 "planet type": "Terrestrial",
 "distance from sun": 1.5
 },
 "Jupiter" : {
 "length of year": 4333,
 "planet type": "Gas Giant",
 "distance from sun": 5.2
 },
 "Saturn" : {
 "length of year": 10759,
 "planet type": "Gas Giant",
 "distance from sun": 9.5
 },
 "Uranus" : {
 "length of year": 30687,
 "planet type": "Ice Giant",
 "distance from sun": 19.8
 },
 "Neptune" : {
 "length of year": 60190,
 "planet type": "Ice Giant",
 "distance from sun": 30
 }
 }

EARTH_DAYS = 365

Calculate the age of a person on a planet

def age_on_planet(age, planet):
 new_age = (age * EARTH_DAYS) / planets[planet]["length of year"]
 return round(new_age)

Use a Module

To use a module, you must first import the module into your program.

[image: The syntax to import a module. The import statement is first used followed by the name of the module.]

To import a module, use an import statement followed by the name of the module. The name of the module is the name of the .py file, without the .py extension, that contains the functions and variables to be imported. Make sure to never include .py in the import statement.

Let's import the solarsystem module to access the module's function and variables. In IDLE, run the solarsystem.py module. In the new interpreter window that appears, use an import statement to import the solarsystem module.

import solarsystem

Now that the solarsystem module is imported, you're all set and ready to use the module! Let's start by accessing variables from the solarsystem module. The syntax to access a variable from a module is as such:

[image: “The syntax to access a variable from a module. The module name is first used followed by a period and the variable name.”]

The module name is first used followed by a period and the variable name. In IDLE, access the EARTH_DAYS variable value from the solarsystem module.

solarsystem.EARTH_DAYS
Result: 365

You may notice that after you type the period, IDLE provides you with a list of the dictionary, variable, and function within the solarsystem module. This is a helpful feature that can help you keep track of what is available inside the module. If you click the EARTH_DAYS variable, the variable is placed into the line of code.

[image: “Illustration in which the IDLE provides a list of the dictionary, variable, and function within the solarsystem module. If you click the EARTH_DAYS variable, the variable is placed into the line of code.”]

Let's access one of the nested dictionary items within the planets dictionary variable from the solarsystem module. In IDLE, access the "distance from sun" value for Saturn.

solarsystem.planets["Saturn"]["distance from sun"]
Result: 9.5

Accessing a nested dictionary item within a module follows the same syntax for accessing nested items as introduced in Chapter 12, “Dictionaries.”

Let's now use the age_on_planet() function within the solarsystem module. Using a function from a module follows this syntax:

[image: The syntax to access a function from a module. The module name is first used followed by a period and the function name, followed by the nested items in parenthesis.]

When using a function from an imported module, IDLE provides documentation for the parameters. You can see this in action when you access the age_on_planet() function from the solarsystem module.

[image: “Illustration in which the IDLE provides documentation for the parameters when you access the age_on_planet() function from the solarsystem module.”]

In IDLE, use the age_on_planet() function to calculate a 12-year-old's age on Mars.

solarsystem.age_on_planet(12, "Mars")
Result: 6

When you call the age_on_planet function, the parameters for the function are passed into the parentheses. An int value for age is first passed into the argument followed by a str value for planet.

To use a module in a program file, the module's file must be saved in the same folder on your computer. To try this, create a new file in IDLE called program.py and save the program in the same folder as the solarsystem.py file. In the program.py file, import the solarsystem module using an import statement.

import solarsystem

You can follow the same steps previously reviewed to access the dictionary, variable, and function inside the solarsystem module. For example, to access the value for the EARTH_DAYS variable, write a print statement in the program.py file that accesses the EARTH_DAYS variable from the solarsystem module.

print(solarsystem.EARTH_DAYS)

When you run the program.py module, the value 365 is printed in a new interpreter window.

[image: image] Checkpoint

Which of the following is the proper syntax for importing a module named orderpizza into a Python program?

	orderpizza import

	import module orderpizza

	import orderpizza

	import orderpizza module

Use an Alias for a Module

An alias enables you to refer to a module as a different name. This can be helpful if you have imported a module that has a rather long name. In Python, you create an alias for a module using the as keyword.

[image: The syntax used to import a module that has a rather long name in Python, to create an alias for a module using the as keyword.]

When using an alias for a module, be sure to use the alias throughout the entire program. After an alias is created for a module, Python only recognizes the alias name for the module and not the actual name of the module.

You can shorten the name for the solarsystem module by creating an alias of sol. Let's modify the program.py file by importing the solarsystem module and creating an alias sol.

import solarsystem as sol

You can access the functions and variables within the solarsystem module in the same manner as before; however, this time refer to the module as sol. Call the age_on_planet() function to calculate the age of a 12-year-old on Venus.

print(sol.age_on_planet(12, "Venus"))

from Keyword

Oftentimes, you may only need to import specific functions, variables, dictionaries, etc., from a module. You can do so using the from keyword.

[image: The syntax used to import specific functions, variables, and dictionaries from a module, using the from keyword importing only a part of a module.]

The solarsystem module contains one dictionary, one constant variable, and one function. Modify the program.py file to import only the planets dictionary.

from solarsystem import planets

Importing only a part of a module eliminates the need to include the module name to access a variable within the module. For example, to access the planet_type value for Venus, follow the same syntax used for accessing items in nested dictionaries.

print(planets["Venus"]["planet type"])
Result: Terrestrial

What happens if you try to use the age_on_planet function?

age_on_planet(12, "Venus")
Result:
Traceback (most recent call last):
 File "C:/Users/aprilspeight/solarsystem/program.py",
 line 5, in <module>
 age_on_planet(12, "Venus")
NameError: name 'age_on_planet' is not defined

Python doesn't recognize the function! Since age_of_planet() was never imported into program.py, Python is unaware of its existence.

Just as you could create an alias for a module name, you could create an alias for what you import. For example, the alias p can be used for the planets dictionary. In the program.py file, modify the import statement to import planets with the alias p.

from solarsystem import planets as p

Like before, you can access the planet_type value for Venus without including the solarsystem module name. However, instead of writing the full dictionary name planets, use the alias p.

print(p["Venus"]["planet type"])
Terrestrial

[image: image] Checkpoint

Shannon created a module chessboardgame that contains functions and variables for programming a computer to play a game of chess. She wants to use the module in a program but would rather give the module name an alias to avoid typing the full module name each time she wants to use part of the module. What is the proper syntax for Shannon to use to refer to the chessboardgame module as chess when she imports chessboardgame into her program?

	import chessboardgame as chess

	chessboardgame import chess

	import module chessboardgame as chess

	as chess import chessboardgame

View All Functions in a Module

To get a list of all function names and variable names within a module, you can use the dir() function.

[image: “The syntax used to get a list of all function names and variable names within a module, using the dir() function that returns a list of names of all attributes within the module.”]

The dir() function returns a list of names of all attributes within the module. You can think of the attributes as the features of a module.

In the program file, modify the import statement so that all parts of the solarsystem module are imported into the program. Next, use the dir() function to get all the attributes for the solarsystem module.

import solarsystem

print(dir(solarsystem))
Result: ['__builtins__', '__cached__', '__doc__',
'__file__', '__loader__', '__name__', '__package__',
'__spec__', 'age_on_planet', 'planets']

You may notice some attributes that you've never heard of before. Python automatically generates these attributes for you.

	__builtins__ contains a list of all the built-in attributes that can be used within the module. These built-in attributes are automatically added by Python.

	__cached__ tells you the name and location of the cached file that is associated with the module. The cache file speeds up how long it takes to load the Python module.

	__doc__ provides help information for the module. If you create a docstring inside a module, the text within the docstring can be accessed using the __doc__ attribute.

	__file__ tells you the name and location of the module.

	__loader__ provides the loader information for the module. A loader is a piece of software that retrieves the module and places it into memory so that Python can use the module.

	__name__ tells you the name of the module.

	__package__ is used by the import system to make it easier to load and manage modules.

	__spec__ contains the specification for importing the module.

Toward the end of the list are the module's attributes that are created by the user. For example, the solarsystem module contains an age_on_planet attribute and a planets attribute.

[image: Illustration depicting the use of additional tools in Python that helps to create and manage Python projects.]

14
Next Steps

Everything you have learned up to this point has provided you with a foundation for basic Python concepts. So, what is next? Before you move forward with creating your own Python programs, discover additional tools available to help you create and manage your Python projects!

Python Libraries

Modules provide you with the ability to do more with Python by importing modules created by other Python programmers. The website PyPI.org provides what are known as packages available for you to install and import into your personal programs. A package is a collection of Python modules.

When using packages from the Python community, you must first install the package using PIP. PIP is a package manager for Python packages. You can check whether PIP is installed on your computer by typing the command pip --version into the terminal. If PIP is not installed, you can download and install it from pypi.org/project/pip.

If PIP is installed on your computer, you can install a package using the command pip install package. Replace package with the name of the package to be installed (for example, pip install emoji). To use the functions and variables within a package, follow the same steps introduced in Chapter 13, “Modules.”

Let's try the library Matplotlib! Matplotlib is a library for creating static, animated, and interactive visualizations in Python. We'll create a line plot of a few coordinates on a line. You can view documentation for Matplotlib by visiting matplotlib.org.

Before using Matplotlib, open a terminal and enter the command pip install matplotlib. This command installs the Matplotlib library onto your computer for use in a Python program.

In IDLE, create a new file and save the file as pyplot.py. Next, you'll need to import matplotlib.pylot to access the functions to create a line plot. Open IDLE and type import matplotlib.pylot as plt. Using an alias is helpful here as you can refer to the library with a shorter name, plt.

import matplotlib.pyplot as plt

The plot() function included with matplotlib.pyplot can be used to plot points on the x- and y-axes. When using the plot() function, pass a list of numbers to be plotted on the x- and y-axes into the parentheses. Pass a list of values for the x-axis first followed by another list for the y-axis. In this example, we'll use the following coordinates:

	(1, 2)

	(2, 4)

	(3, 6)

	(4, 8)

In the pyplot.py file, use the plt alias and the plot() function to plot the coordinates.

plt.plot([1, 2, 3, 4], [2, 4, 6, 8])

Providing labels for the x- and y-axes is helpful to inform what the values on a chart represent. Matplotlib.pylot contains xlabel() and ylabel() functions, which enable you to provide a label for each axis. The name of the label is passed as a string into the parentheses of the function. We'll label each axis x-axis and y-axis.

plt.xlabel('x-axis')
plt.ylabel('y-axis')

The final function we'll use in the pyplot.py program is show(). The show() function displays the chart.

plt.show()

Save the pyplot.py program and run it. In the new interpreter window that appears, wait a moment for IDLE to display the chart.

[image: The new interpreter window displaying the chart plotting the coordinates on a line - a list of numbers plotted on the x- and y-axes into the parentheses.]

The default visualization plots the coordinates on a line. However, you could style how plots are visualized by modifying the arguments in the plot() function. For example, you can add markers to the chart to display where the coordinates are plotted on the chart with color. In IDLE, modify the plot() arguments to include the parameter 'ob', which provides a blue circle for each coordinate.

import matplotlib.pyplot as plt

plt.plot([1, 2, 3, 4], [2, 4, 6, 8], 'ob')
plt.xlabel('x-axis')
plt.ylabel('y-axis')
plt.show()

Save the pyplot.py program and run it. In the new interpreter window that appears, wait a moment for IDLE to display the chart.

[image: The new interpreter window displaying the chart plotting the coordinates [1, 2, 3, 4], [2, 4, 6, 8], a list of 4 points plotted on the x- and y-axes.]

Virtual Environments

As you continue your Python journey, you'll find yourself installing a bunch of libraries for different projects. However, maybe it would be a good idea to keep those separate. Up to this point, you've been using the global Python environment, which is an environment shared between all projects and programs. As you create more programs, it's helpful to keep their environments separate, specifically to have each project maintain its own list of required libraries. Such requirements are referred to as dependencies.

With Python, you could use a virtual environment for each of your projects. A virtual environment provides an isolated environment for Python projects. Virtual environments are independent of each other, which means that project dependencies will not conflict with one another.

The package virtualenv is used to create a virtual environment. Therefore, the command line is required to create the isolated environment. The command pip install virtualenv is used to install the package. After the package is installed, the command python3 -m venv is used to create the virtual environment.

The python3 -m venv <folder name> command creates a new folder in your current folder that stores all the virtual environment files. In the command, replace <folder name> at the end of the command with a folder name of your choice (for example, python3 -m venv env creates a folder named env). The virtual environment uses the current version of Python installed on your PATH.

You can choose which version of Python to use with the virtual environment by changing python3 to the appropriate version (for example, python3.8 for Python 3.8).

Virtual environments must be activated before use. Depending on your operating system, the file used to activate the virtual environment is stored in either the bin (Windows) or Scripts (iOS, Linux) folder. For Windows, you can activate a virtual environment using the Command Prompt app or PowerShell. The command to activate using the Command Prompt app is <environment_name>\Scripts\activate.bat. The command to activate using PowerShell is <environment_name>\Scripts\Activate.ps1. For iOS or Linux, you can activate a virtual environment using bash/zsh. The command to activate using bash/zsh is source <environment_name>/bin/activate.

Once the virtual environment is activated, you can see the name of the virtual environment at the start of the terminal prompt in parentheses. Any package that you install while the virtual environment is activated is stored inside the virtual environment. When you are done using the virtual environment, enter the command deactivate into the terminal.

What happens if you want to share your program with a friend? How would they know what libraries the program exactly needs? You can keep a list of required libraries in a requirements.txt file and share that with the program. The person who receives the program can install the requirements into a virtual environment with the command pip install -r requirements.txt.

You can learn more about virtual environments by visiting docs.python.org/3/library/venv.html.

Integrated Development Environments

Up to this point, you have used IDLE to create and run your Python programs. Although you could use IDLE to create and manage your Python programs, IDLE is not recommended for larger projects. There are other integrated development environments (IDEs) available with additional capabilities to help you create and manage your programs.

An IDE provides you with the ability to edit, run, and fix problems with your Python programs. IDEs provide syntax highlighting and autocomplete to help you out as you code. You can also find and fix errors in your code with the help of an IDE.

Some popular IDEs available to use with Python include PyCharm (jetbrains.com/pycharm), Visual Studio Code (code.visualstudio.com), and Atom (atom.io).

Appendix
Checkpoint Answers

Chapter 4

Which of the following variable names cannot be used in Python?

Answer: B

Naomi wants to print the value of the movie_title variable; however, the value assigned needs to be fixed. Which option correctly assigns the movie title Toy Story 4 to the variable movie_title?

Answer: C

When Naomi tries to print the description variable, she gets an error. What is wrong with the description variable?

Answer: D

If Harrison prints the current_location variable, which location will be printed?

Answer: A

Chapter 5

(2 × 3) + 72

Answer: 55

72 / 8

Answer: 9.0

33 / 2 + 32

Answer: 22.5

(5 + 10) + (9 × 5) − 12

Answer: 48

Chapter 6

Javier put together a list of his 50 favorite songs of all time. However, he copied and pasted the titles from the internet, which resulted in various title formats. Some titles are in all caps, while some are all lowercase. Javier wants to reformat the list so that the first letter in each word of the song is capitalized. Which string method should Javier use?

Answer: D

Chapter 8

Jared wants to create a list of his favorite superheroes. Which list demonstrates the proper syntax for his list?

Answer: C

What is the item at index [-2] in the list books?

Answer: D

Claudia's list looks to be a bit too long. Which function can she use to get the length of her list?

Answer: A

Since Claudia's list is too long, she needs to remove an item from the list presents. She has decided to remove the basketball since she already has one from her last birthday. Which function can Claudia use to remove the item she no longer wants?

Answer: C

Claudia wants to be specific about the type of camera that she wants for her birthday. Rather than list camera, she wants to specify that she wants a Polaroid camera. Which function can Claudia use to change the item camera to Polaroid camera?

Answer: B

Raul's dog recently had puppies! Before the puppies were born, he decided to let his friends adopt the puppies on a first-come first-serve basis. Prior to the puppies' birth, Raul created a list to collect the names of his friends who were interested in adopting a puppy. Now that the puppies are born, Raul realizes that there are 12 people on the list and only 7 puppies. Print a list of the friends in adoption_interest who will be able to adopt a puppy.

Answer: D

Chapter 9

There was a glitch in the grading system that decreased the recent test scores stored in Mr. Klein's grade book by three points. Which for loop can Mr. Klein use to increase each test score by three points and print the new test score?

Answer: B

Chapter 10

Which of the following statements is true about while loops?

Answer: D

Chapter 11

The following block of code contains a code snippet that consists of a function double(). The double() function takes a number and returns twice the number's value. Label each part of the code block.

Answer: 1. Function name, 2. Parameter, 3. Variable, 4. Argument

Ricky is having trouble figuring out why his age_in_dog_years() function returns the value 117 instead of 91. What should Ricky do to make sure that 91 prints to the console?

Answer: C

Chapter 12

Briana created a dictionary to store her friend's favorite rides at the carnival. When she tries to print the dictionary, she receives the error SyntaxError: invalidsyntax. Whose item should Briana change to fix her dictionary so that the dictionary can print without errors?

Answer: D

He recently finished reading Speak and would like to rate the book as a 5. Which line of code is the correct way for Gus to add his rating for Speak to his dictionary?

Answer: A

Which code snippet could be used to print only the values in the birthday_month dictionary?

Answers: D

Chapter 13

Which file extension is used to create a Python module?

Answer: B

Which of the following is the proper syntax for importing a module named orderpizza into a Python program?

Answer: C

Shannon created a module chessboardgame that contains functions and variables for programming a computer to play a game of chess. She wants to use the module in a program but would rather give the module name an alias to avoid typing the full module name each time she wants to use part of the module. What is the proper syntax for Shannon to use to refer to the chessboardgame module as chess when she imports chessboardgame into her program?

Answer: A

Index

	" " " (triple quote), 52

	[] (brackets), 60

	* (asterisk) in arbitrary arguments, 140–141

	\n escape character, 53

	A

	addition (order of operations), 45

	AI (artificial intelligence), 4

	aliases, modules, 199–200

	APIs (application programming interfaces), 4

	
append() method, 88–89, 111–112

	arbitrary arguments, 140–141

	arguments, 136–137; arbitrary, 140–141; default, 138–139; keyword, 141–142

	arithmetic operators, 42–43; order of operations, 43–45

	B

	Boolean values, 85

	brackets ([]), index, 60

	break statements, loops, 100–101; while loop, 119–120

	built-in functions, 142–143

	C

	calling functions, 134–135

	camelCasing, 25

	
capitalize() method, 179

	checkpoints, 5; answers, 213–217; birthday present list, 91–92; books with ratings, 167; dictionaries, 164, 172; equations, 46–49; functions, 137–138, 139–140; for loops for test scores, 103; module syntax, 199; modules, 189, 202; printing, 28–29; string methods, 56; superhero list, 84; variable updates, 30; while loops, 124

	classmate introduction project, 30–37

	
clear() method, 90

	code, testing, 32–33

	code blocks, 5

	Command Prompt window (Windows), 11

	commands, 11

	comparison operators, 70–71; logical operators, 71–72

	concatenation, 57

	conditionals, 69; comparison operators, 70–72; if statements, 72–73; if-elif-else statements, 75–77; if-else statements, 74

	
continue statement, 101–103

	continue statement, while loops, 120–122

	control flow, 69; comparison operators, 70–72; if statements, 72–73; if-elif-else statements, 75–77; if-else statements, 74

	converting, int to str, 57–58

	D

	
def keyword, 134

	dependencies, 210–211

	
design_services() function, 153

	dictionaries, 161; creating, 162–164, 178–179; item access, 164–165; item access in tested, 174–175; items, removing, 167–168; key-value pairs, 162–163; adding, 166–167; keys: checking for, 165; printing, 169–170; keys and values, printing, 171; loops, 169–172; nesting, 172–177, 180–182; in operator, if statement, 165; values, printing, 170–171

	division (order of operations), 44

	double quotes (“ “), 25

	E

	
elif statement, 75, 79

	
else statement, 76, 80; while loop, 122–124

	escape characters, 53

	exponents (order of operations), 44

	
extend() method, 93

	F

	
f syntax, 59

	files: creating, 19–21; running, 19–21

	
find() method, 60

	float type, 40–41; converting to from int, 41–42

	
for loops, 97, 110; creating, 98–100

	format strings, 58–59

	
from keyword, 200–201

	functions, 133; arguments, 136–137; arbitrary, 140–141; default, 138–139; keywords, 141–142; built-in, 142–143; calling, 134–135; creating, 134; design_services(), 153; good_morning(), 136–137; greeting(), 147–148; input(), 179; order_issue(), 153; order_status(), 152; parameters, 136–137; plot(), 207, 208; random.choice(), 108; range(), 104–106; return statement, 135–136; select_category(), 148–150; show(), 208; sum(), 137; syntax, 134; type(), 41; viewing in modules, 202–203

	G

	
good_morning() function, 136–137

	
greeting() function, 147–148

	H

	highlighting, syntax highlighting, 5

	I

	IDE (integrated development environment), 15, 212

	IDLE, 16; " " " (triple quote), 52; creating files, 19–21, 31; New File command, 19; random module, 108, 126; Run Module command, 19–21; running code, 19; running files, 19–21; Save As command, 19

	IDLE interface: Python Shell Window, 17; Python version, 17; text cursor, 17

	
if statements, 72–73, 78; loops and, 100–101; nested, 110–112; in operator, 165

	
if-elif-else statements, 75–77

	
if-else statements, 74

	
in keyword, 85

	index, 59–60; find() method, 60; negative numbers, 61; slicing and, 61; variables, 60

	
index() method, 86, 88

	
input() function, 179

	
input() method, 147–148

	
insert() method, 89

	
int type, 40; converting to float, 41–42; converting to str, 57–58

	iterating: for loop, 110; over a list, 99–100; over a string, 98–99; range() function, 104–106

	K

	key-value pairs, 162–163; dictionaries, adding to, 166–167

	keywords, 24; in, 85; from, 200–201; arguments, 141–142; def, 134

	L

	
len() method, 85, 94

	libraries, 206; Matplotlib, 206

	line breaks, strings, 52

	Linux, Python download, 10

	lists, 83, 109; accessing items, 86–87; adding items, 88–89; concatenation, 92; creating, 84, 126–127; emptying, 90–91; extending, 93; indexes, 86; inserting items, 89; item values, 88; iterating over, 99–100; length, 85; removing items, 89–90; removing items at specific index, 90; searching items, 85–86; slicing, 93–95

	logical operators, 71–72, 78

	loops: for, 97, 98–100; break statements, 100–101; continue statement, 101–103; dictionaries, 169–172; if statements, 100–101; range(), 110; while, 117, 120–122, 122–124

	M

	macOS, Python download, 10

	Mad Libs generator, 62–66

	Matplotlib library, 206

	methods: append(), 88–89, 111–112; capitalize(), 179; clear(), 90; extend(), 93; find(), 60; index(), 86, 88; input(), 147–148; insert(), 89; len(), 85, 94; pop(), 90, 167–168; popitem(), 168; remove(), 89–90, 111–112

	modules, 187; aliases, 199–200; creating, 188–195; description, 188; functions, viewing all, 202–203; from keyword, 200–201; using, 195–199

	multiplication (order of operations), 44

	N

	negative numbers, 61

	nested dictionaries, 172–177, 180–182; item access, 174–175; item removal, 176; key-value pairs, 175; looping through, 176–177, 182–183

	nesting, if statements, 110–112

	New File command, 19

	numbers, 39; negative numbers, 61; variables, 25

	numeric types: float, 40–41; int, 40; type conversion, 41; type() function, 41

	O

	operators: arithmetic operators, 42–43; comparison operators, 70–72; order of operations, 43–45

	order of operations, 43–45; addition, 45; division, 44; exponents, 44; multiplication, 44; parentheses, 44; subtraction, 45

	
order_issue() function, 153

	
order_status() function, 152

	P

	packages, 206; virtualenv, 210–211

	parameters, 136–137; step, 105–106

	parentheses (order of operations), 44

	PEMDAS (order of operation), 43–45

	PIP, 206

	
plot() function, 207, 208

	
pop() method, 90, 167–168

	
popitem() method, 168

	
print() statement, 23–24, 31–32

	
print() statement, 27, 31–32, 34–37

	printing, 31–32, 34–35; checkpoint, 28–29; variables, 27

	programs, 5–6

	projects, 5–6; classmate introduction, 30–37; customer service bot, 143–159; green marble, 107–114; kickball teams, 125–130; Mad Libs generator, 62–66; school musical sign-up, 177–185; shopping for science fair, 46–49; what to wear, 77–81

	.py file extension, 19

	Python: downloading, 9–10; Linux download, 10; macOS download, 10; Unix download, 10; uses, 4; version, 11; Windows download, 10

	R

	random module, 108, 126

	
random.choice() function, 108

	
range() function, 104–106

	range() loop, 110

	
remove() method, 89–90, 111–112

	
return statement, 135–136

	S

	Save As command, 19

	
select_category() function, 148–150

	Shell Window, IDLE interface, 17

	shopping for science fair project, 46–49

	
show() function, 208

	single quotes (“), 25

	slicing: indexes, 61; lists, 93–95

	statements: break statements, loops, 100–101; continue, 101–103; elif, 75, 79; else, 76, 80; if, 78, 110–112; print(), 23–24, 27, 31–32; return, 135–136

	
step parameter, 105–106

	
str type, converting from int, 57–58

	string formatting, 34–37, 58–59

	string methods: capitalize(), 54; len(), 56; lower(), 55; replace(), 56; strip(), 55; title(), 54; upper(), 55

	strings, 51, 63–64; concatenation, 57; conversion, 57–58; creating, 52; escape characters, 53; iterating over, 98–99; line breaks, 52; variables, 25

	subtraction (order of operations), 45

	
sum variable, 42

	
sum() function, 137

	syntax, 4

	syntax highlighting, 5

	system requirements, Python download, 10

	T

	templates, 64–65

	terminal: commands, 11; Unix, 11; Windows, 11

	testing, code, 32–33

	text cursor, 11, 12; IDLE interface, 17–18

	triple quote (“ “ “), 52

	type conversion, 41

	
type() function, 41

	U

	Unix, terminal, 11

	V

	variables, 23, 24–26, 47, 63–64, 78; creating, 32; index, 60; numbers, 25; printing, 27; strings, 25; sum, 42; unusable, 26; updating, 29

	virtual environments, 210–211

	
virtualenv package, 210–211

	W–Z

	while loops, 117; break statement, 119–120; continue statement, 120–122; creating, 118–119; else statement, 122–124

	Windows: Command Prompt window, 11; Python download, 10

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-64381-4
ISBN: 978-1-119-64383-8 (ebk)
ISBN: 978-1-119-64382-1 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020941813

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Python is a registered trademark of Python Software Foundation Corporation. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

About the Author

 [image: Photograph of April Speight, the author of this book, is a Python developer with a passion for helping beginners get started with programming.]

April Speight is a Python developer with a passion for helping beginners get started with programming. She believes that by providing programming instruction that is equal parts approachable, relatable, and fun she can truly foster a welcoming learning experience. Considered a true creator at heart, April enjoys programming AI assistants and chat bots, creating experiences with mixed reality, and discovering new ways to teach technical concepts to nontechnical audiences. Curious about what she's currently learning or creating? Follow her on Twitter @VogueandCode.

About the Technical Editor

Kraig Brockschmidt has worked on technical developer content for over 30 years, publishing books, articles, sample code, and documentation for multiple languages and platforms. He currently works on developer documentation at Microsoft, specializing in developing with Python on Microsoft’s cloud computing platform, Azure.

Acknowledgments

When I began my journey to learn Python, there were few to no resources available online. The programming books in bookstores were less than beginner friendly. The platforms to which we often refer beginners were either nonexistent or within their infancy stage. In summation, the journey to learning foundational programming concepts included a lot of heavy lifting for beginners who did not come from technical academic backgrounds.

Today, as I look at the endless number of resources available both physically and digitally for learners, I can say that I am eternally grateful for each and every content creator who has contributed to such a vast number of resources for learning how to code.

As for the book that you're currently reading, I would be remiss if I did not give thanks to the many individuals involved in creating Bite-Size Python: An Introduction to Python Programming. To everyone at Wiley, thank you for contributing to a dream of mine, but most important thank you for the opportunity.

To my acquisitions editor, Devon Lewis, not a moment goes by where I share my publishing journey without mentioning your name. Thank you for watching my YouTube videos and believing in my ability to share my content on a larger scale. Furthermore, thank you for fostering the inclusion of diverse voices in the technical publishing world.

To my technical editor, Kraig Brockschmidt, I'm forever grateful for connecting with you professionally. I knew that I could trust you to take on a project that meant the world to me after the first time I saw your edits on a research assignment for work.

To my family and friends who have checked in on me, supported me, and promoted the heck out of this book since day one, I appreciate and love each and every one of you.

Finally, to the 2013–2014 IT department at CEA (now CTA), thank you for welcoming me into the tech industry with open arms. If it weren't for you all, who knows where I'd be today. Shell, Sterling, Winson, Jay, Jonathan, Ahmed, Tony, Chris, and Kyle, I'm forever indebted to you all.

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

OPS/images/c04uf002.png
age city_names booksOwned

OPS/images/c04uf001.png
variable =

OPS/images/c04uf004.png

OPS/images/c04uf003.png

OPS/images/c03uf004.png

OPS/images/c03uf002.png
[& untitled

File Edit Format Run Options Window Help
New File Ctrl+N
Open... Ctrl+O
Open Medule.. Alt+M
Recent Files
Module Browser Alt+C
Path Browser

Save Ctrl+S

Ctrl+Shift+5S

Save Copy As.. Alt+Shift+S

Print Window Ctrl+P

Close Alt+F4
Exit Ctrl+Q

OPS/images/c03uf003.png
(& Save As

« v 4 | - Documents > Python £ Search Python

Organize - New folder
Date modified
Quick access
No items match your search.
‘& Creative Cloud Files
@ OneDrive
" This pC

& Network

<

File name: Ig

Save as type: Python files

A Hide Folders

OPS/images/ffirs02uf001.png

OPS/images/c03uf001.png
[Python 3.7.5 Shell

File Edit Shell Debug Options Window Help

Python 3.7.5 (tags/v3.7.5:5c02a39%a0b, Oct 15 2019, 01:31:54)
Type "help", "copyright",
>>> |

[MSC v.1916 64 bit (AMD64)] on win32

"credits" or "license ()" for more information.

OPS/images/c05uf001.png

OPS/images/c05uf002.png

OPS/images/c05uf003.png
type(object)

OPS/images/c02uf002.png
Command Prompt

Microsoft Windows [Version 10.0.18363.418]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\apspeigh>

OPS/images/c05uf004.png
int(float)

float(integer)

OPS/images/c02uf001.png
Python 3.7

Python Software Foundation * Developer tools > Development kits
*k k¥ 88 12 Share

Python s an easy to leam, powerful programming language. It has efficient high-level data structures and a

simple but effective approach to object-oriented programming. Python's elegant syntax and dynamic typing,
together with its interpreted nature, make it an ideal language for scripting and rapid application development in

More

EVERYONE

© Wish list

Get

Add to cart

OPS/images/c05uf005.png
Exponents Division

| /

Parentheses — P E M D A s — Subtraction
/ |

Multiplication Addition

OPS/images/c02uf004.png
Aprils-MBP:~ aspeight$ [

OPS/images/c05uf006.png

OPS/images/c02uf003.png
B¥ Command Prompt

Microsoft Windows [Version 10.0.18363.418]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\apspeigh>python --version
Python 3.6.7

C:\Users\apspeigh>

OPS/images/9781119643821.jpg
BITE-SIZE

PYTHON

AN INTRODUCTION TO
PYTHON PROGRAMMING

OPS/images/c02uf006.png

OPS/images/c02uf005.png
%) aspeight — -bash

Aprils-MBP:~ aspeight$ python3 —-version

Python 3.7.4
Aprils-MBP:~ aspeight$ I

OPS/images/c08uf014.png

OPS/images/c06uf006.png

OPS/images/c08uf012.png
my_list = [‘list item 1’, ‘list item 2’)
my_other_list = [‘list item A’)
my_new_list = my_list + my_other_list

OPS/images/c06uf005.png

OPS/images/c08uf013.png
my_list = [‘list item’, ‘list item’]
my_other_list = [‘list item’)
my_list.extend(my_other_list)

OPS/images/c08uf010.png
.pop()

OPS/images/c06uf007.png

OPS/images/c08uf011.png
my_list.clear()

OPS/images/c06uf002.png

OPS/images/c06uf001.png
‘word’
‘A sentence.’

OPS/images/c06uf004.png
find(¢

OPS/images/c06uf003.png

OPS/images/c12uf010.png
print(

1)

OPS/images/c12uf011.png
for item in dictionary_name.values():
print(item)

OPS/images/c12uf012.png
for key, value in dictionary_name.items():
print(key, value)

OPS/images/c12uf013.png
dictionary_name = {
“nested_dictionary” : {

key : value,
key : value
h
“nested_dictionary” : {
key : value,
key : value
}

OPS/images/c12uf014.png

OPS/images/c12uf004.png

OPS/images/c12uf005.png
if key in dictionary_name:
action

OPS/images/c12uf006.png

OPS/images/c12uf007.png
.pop(|

OPS/images/c12uf008.png
.popitem()

OPS/images/c12uf009.png
for key in dictionary_name.keys():
print(keys)

OPS/images/c12uf001.png

OPS/images/c12uf002.png
dictionary_name = {
key: value,
key: value

OPS/images/c12uf003.png
Angelo
Samir
Raquel
Louis
Analicia
Tori

77%
93%
84%
62%
87%
959%,

OPS/images/c13uf009.png
dir(

OPS/images/c13uf005.png
module.’

OPS/images/c13uf006.png
>>»> import solarsystem

>>> solarsystem.age_on_planet (|
{age, planet)

OPS/images/c13uf007.png
import as

OPS/images/c13uf008.png
from

import

OPS/images/c09uf003.png
for item in object:
action
continue

OPS/images/c09uf002.png
for item in object:
action
break

OPS/images/c09uf001.png
for item in object:
action

OPS/images/c13uf010.png

OPS/images/c09uf007.png
import

OPS/images/c09uf006.png
for item in range(start, stop, step):
action

OPS/images/c09uf005.png
for item in range(start, stop):
action

OPS/images/c09uf004.png
for item in range(int):
action

OPS/images/c11uf002.png
def function_name():
action 1
return

OPS/images/c11uf001.png
def function_name():
action 1
action 2

OPS/images/c09uf008.png

OPS/images/c11uf006.png
def function_name(*args):
action 1
action 2

OPS/images/c11uf005.png
def function_name(parameter = value):
action

OPS/images/c11uf004.png
2
| — |

def double(x):

3

=
return x * 2
4

!
double(4)
8

OPS/images/c11uf003.png
def function_name(parameterl, parameter2):
action

OPS/images/c11uf008.png

OPS/images/c11uf007.png
function_name(keyword 1 = value 1, keyword 2 = value 2)

OPS/images/logo.png
WILEY

OPS/images/c08uf009.png
remove(

OPS/images/c13uf001.png
Length of Year

Distance

Planet (Earth days) Planet Type From the Sun
(astronomical units)
Mercury 88 Terrestrial 0.4
Venus 225 Terrestrial 0.7
Earth 365 Terrestrial 1
Mars 687 Terrestrial 15
Jupiter 4333 Gas Giant 5.2
Saturn 10759 Gas Giant 9.5
Uranus 30687 Ice Giant 19.8
Neptune 60190 Ice Giant 30

OPS/images/c10uf001.png
while condition:
actionl
action2
action3

OPS/images/c13uf002.png
import

OPS/images/c08uf007.png
.append(

OPS/images/c13uf003.png
module.

OPS/images/c08uf008.png
Jinsert(1,

OPS/images/c13uf004.png
»»» import solarsystem
e sola.rsystem.l

e_on_planet
lanets

OPS/images/c08uf005.png

OPS/images/c08uf006.png

OPS/images/c08uf003.png
my_list = [‘list item 1’, ‘list item 2’]
‘list item 1’ in my_list

OPS/images/c08uf004.png
my_list.index(‘list item’)

OPS/images/c08uf001.png

OPS/images/c08uf002.png

OPS/images/c07uf004.png
if some condition:
action

else:
action

OPS/images/c01uf001.png

OPS/images/c07uf005.png
if some condition:
action

elif some condition:
action

else:
action

OPS/images/c07uf002.png
Operator

Description

Example

and

or

Returns True if both
statements are true

Returns True if one of
the statements is true

2<3and5>10

True

1>7o0r4<3

False

OPS/images/c07uf003.png
if some condition:
action

OPS/images/c07uf006.png
///

/4

17777

OPS/images/c10uf006.png

OPS/images/c10uf004.png
while condition:
action1

else:
action2

OPS/images/c07uf001.png
Operator Name Example
== Equal 5==
1= Not equal 26!=3
> Greater than 100 > 67
< Less than 89 < 216
>= Greater than or equal to 90 >= 54
<= Less than or equal to 23 <=77

OPS/images/c10uf005.png
import

OPS/images/c10uf002.png
while condition1:
action
if condition2:
break

OPS/images/Gthan.png

OPS/images/c10uf003.png
while condition1:
actionl
if condition2:
continue
action2

OPS/images/c14uf001.png
ﬁ&\ Figure 1

OPS/images/c14uf003.png

OPS/images/c14uf002.png

